1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scu_completion_codes.h" 65 #include "scu_event_codes.h" 66 #include "registers.h" 67 #include "scu_remote_node_context.h" 68 #include "scu_task_context.h" 69 70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 71 72 #define smu_max_ports(dcc_value) \ 73 (\ 74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 76 ) 77 78 #define smu_max_task_contexts(dcc_value) \ 79 (\ 80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 82 ) 83 84 #define smu_max_rncs(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 88 ) 89 90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 91 92 /* 93 * The number of milliseconds to wait while a given phy is consuming power 94 * before allowing another set of phys to consume power. Ultimately, this will 95 * be specified by OEM parameter. 96 */ 97 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 98 99 /* 100 * NORMALIZE_PUT_POINTER() - 101 * 102 * This macro will normalize the completion queue put pointer so its value can 103 * be used as an array inde 104 */ 105 #define NORMALIZE_PUT_POINTER(x) \ 106 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 107 108 109 /* 110 * NORMALIZE_EVENT_POINTER() - 111 * 112 * This macro will normalize the completion queue event entry so its value can 113 * be used as an index. 114 */ 115 #define NORMALIZE_EVENT_POINTER(x) \ 116 (\ 117 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 118 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 119 ) 120 121 /* 122 * NORMALIZE_GET_POINTER() - 123 * 124 * This macro will normalize the completion queue get pointer so its value can 125 * be used as an index into an array 126 */ 127 #define NORMALIZE_GET_POINTER(x) \ 128 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 129 130 /* 131 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 132 * 133 * This macro will normalize the completion queue cycle pointer so it matches 134 * the completion queue cycle bit 135 */ 136 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 137 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 138 139 /* 140 * COMPLETION_QUEUE_CYCLE_BIT() - 141 * 142 * This macro will return the cycle bit of the completion queue entry 143 */ 144 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 145 146 /* Init the state machine and call the state entry function (if any) */ 147 void sci_init_sm(struct sci_base_state_machine *sm, 148 const struct sci_base_state *state_table, u32 initial_state) 149 { 150 sci_state_transition_t handler; 151 152 sm->initial_state_id = initial_state; 153 sm->previous_state_id = initial_state; 154 sm->current_state_id = initial_state; 155 sm->state_table = state_table; 156 157 handler = sm->state_table[initial_state].enter_state; 158 if (handler) 159 handler(sm); 160 } 161 162 /* Call the state exit fn, update the current state, call the state entry fn */ 163 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 164 { 165 sci_state_transition_t handler; 166 167 handler = sm->state_table[sm->current_state_id].exit_state; 168 if (handler) 169 handler(sm); 170 171 sm->previous_state_id = sm->current_state_id; 172 sm->current_state_id = next_state; 173 174 handler = sm->state_table[sm->current_state_id].enter_state; 175 if (handler) 176 handler(sm); 177 } 178 179 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 180 { 181 u32 get_value = ihost->completion_queue_get; 182 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 183 184 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 185 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 186 return true; 187 188 return false; 189 } 190 191 static bool sci_controller_isr(struct isci_host *ihost) 192 { 193 if (sci_controller_completion_queue_has_entries(ihost)) 194 return true; 195 196 /* we have a spurious interrupt it could be that we have already 197 * emptied the completion queue from a previous interrupt 198 * FIXME: really!? 199 */ 200 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 201 202 /* There is a race in the hardware that could cause us not to be 203 * notified of an interrupt completion if we do not take this 204 * step. We will mask then unmask the interrupts so if there is 205 * another interrupt pending the clearing of the interrupt 206 * source we get the next interrupt message. 207 */ 208 spin_lock(&ihost->scic_lock); 209 if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) { 210 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 211 writel(0, &ihost->smu_registers->interrupt_mask); 212 } 213 spin_unlock(&ihost->scic_lock); 214 215 return false; 216 } 217 218 irqreturn_t isci_msix_isr(int vec, void *data) 219 { 220 struct isci_host *ihost = data; 221 222 if (sci_controller_isr(ihost)) 223 tasklet_schedule(&ihost->completion_tasklet); 224 225 return IRQ_HANDLED; 226 } 227 228 static bool sci_controller_error_isr(struct isci_host *ihost) 229 { 230 u32 interrupt_status; 231 232 interrupt_status = 233 readl(&ihost->smu_registers->interrupt_status); 234 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 235 236 if (interrupt_status != 0) { 237 /* 238 * There is an error interrupt pending so let it through and handle 239 * in the callback */ 240 return true; 241 } 242 243 /* 244 * There is a race in the hardware that could cause us not to be notified 245 * of an interrupt completion if we do not take this step. We will mask 246 * then unmask the error interrupts so if there was another interrupt 247 * pending we will be notified. 248 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 249 writel(0xff, &ihost->smu_registers->interrupt_mask); 250 writel(0, &ihost->smu_registers->interrupt_mask); 251 252 return false; 253 } 254 255 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 256 { 257 u32 index = SCU_GET_COMPLETION_INDEX(ent); 258 struct isci_request *ireq = ihost->reqs[index]; 259 260 /* Make sure that we really want to process this IO request */ 261 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 262 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 263 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 264 /* Yep this is a valid io request pass it along to the 265 * io request handler 266 */ 267 sci_io_request_tc_completion(ireq, ent); 268 } 269 270 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 271 { 272 u32 index; 273 struct isci_request *ireq; 274 struct isci_remote_device *idev; 275 276 index = SCU_GET_COMPLETION_INDEX(ent); 277 278 switch (scu_get_command_request_type(ent)) { 279 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 280 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 281 ireq = ihost->reqs[index]; 282 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 283 __func__, ent, ireq); 284 /* @todo For a post TC operation we need to fail the IO 285 * request 286 */ 287 break; 288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 289 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 291 idev = ihost->device_table[index]; 292 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 293 __func__, ent, idev); 294 /* @todo For a port RNC operation we need to fail the 295 * device 296 */ 297 break; 298 default: 299 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 300 __func__, ent); 301 break; 302 } 303 } 304 305 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 306 { 307 u32 index; 308 u32 frame_index; 309 310 struct scu_unsolicited_frame_header *frame_header; 311 struct isci_phy *iphy; 312 struct isci_remote_device *idev; 313 314 enum sci_status result = SCI_FAILURE; 315 316 frame_index = SCU_GET_FRAME_INDEX(ent); 317 318 frame_header = ihost->uf_control.buffers.array[frame_index].header; 319 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 320 321 if (SCU_GET_FRAME_ERROR(ent)) { 322 /* 323 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 324 * / this cause a problem? We expect the phy initialization will 325 * / fail if there is an error in the frame. */ 326 sci_controller_release_frame(ihost, frame_index); 327 return; 328 } 329 330 if (frame_header->is_address_frame) { 331 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 332 iphy = &ihost->phys[index]; 333 result = sci_phy_frame_handler(iphy, frame_index); 334 } else { 335 336 index = SCU_GET_COMPLETION_INDEX(ent); 337 338 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 339 /* 340 * This is a signature fis or a frame from a direct attached SATA 341 * device that has not yet been created. In either case forwared 342 * the frame to the PE and let it take care of the frame data. */ 343 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 344 iphy = &ihost->phys[index]; 345 result = sci_phy_frame_handler(iphy, frame_index); 346 } else { 347 if (index < ihost->remote_node_entries) 348 idev = ihost->device_table[index]; 349 else 350 idev = NULL; 351 352 if (idev != NULL) 353 result = sci_remote_device_frame_handler(idev, frame_index); 354 else 355 sci_controller_release_frame(ihost, frame_index); 356 } 357 } 358 359 if (result != SCI_SUCCESS) { 360 /* 361 * / @todo Is there any reason to report some additional error message 362 * / when we get this failure notifiction? */ 363 } 364 } 365 366 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 367 { 368 struct isci_remote_device *idev; 369 struct isci_request *ireq; 370 struct isci_phy *iphy; 371 u32 index; 372 373 index = SCU_GET_COMPLETION_INDEX(ent); 374 375 switch (scu_get_event_type(ent)) { 376 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 377 /* / @todo The driver did something wrong and we need to fix the condtion. */ 378 dev_err(&ihost->pdev->dev, 379 "%s: SCIC Controller 0x%p received SMU command error " 380 "0x%x\n", 381 __func__, 382 ihost, 383 ent); 384 break; 385 386 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 387 case SCU_EVENT_TYPE_SMU_ERROR: 388 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 389 /* 390 * / @todo This is a hardware failure and its likely that we want to 391 * / reset the controller. */ 392 dev_err(&ihost->pdev->dev, 393 "%s: SCIC Controller 0x%p received fatal controller " 394 "event 0x%x\n", 395 __func__, 396 ihost, 397 ent); 398 break; 399 400 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 401 ireq = ihost->reqs[index]; 402 sci_io_request_event_handler(ireq, ent); 403 break; 404 405 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 406 switch (scu_get_event_specifier(ent)) { 407 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 408 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 409 ireq = ihost->reqs[index]; 410 if (ireq != NULL) 411 sci_io_request_event_handler(ireq, ent); 412 else 413 dev_warn(&ihost->pdev->dev, 414 "%s: SCIC Controller 0x%p received " 415 "event 0x%x for io request object " 416 "that doesn't exist.\n", 417 __func__, 418 ihost, 419 ent); 420 421 break; 422 423 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 424 idev = ihost->device_table[index]; 425 if (idev != NULL) 426 sci_remote_device_event_handler(idev, ent); 427 else 428 dev_warn(&ihost->pdev->dev, 429 "%s: SCIC Controller 0x%p received " 430 "event 0x%x for remote device object " 431 "that doesn't exist.\n", 432 __func__, 433 ihost, 434 ent); 435 436 break; 437 } 438 break; 439 440 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 441 /* 442 * direct the broadcast change event to the phy first and then let 443 * the phy redirect the broadcast change to the port object */ 444 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 445 /* 446 * direct error counter event to the phy object since that is where 447 * we get the event notification. This is a type 4 event. */ 448 case SCU_EVENT_TYPE_OSSP_EVENT: 449 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 450 iphy = &ihost->phys[index]; 451 sci_phy_event_handler(iphy, ent); 452 break; 453 454 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 455 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 456 case SCU_EVENT_TYPE_RNC_OPS_MISC: 457 if (index < ihost->remote_node_entries) { 458 idev = ihost->device_table[index]; 459 460 if (idev != NULL) 461 sci_remote_device_event_handler(idev, ent); 462 } else 463 dev_err(&ihost->pdev->dev, 464 "%s: SCIC Controller 0x%p received event 0x%x " 465 "for remote device object 0x%0x that doesn't " 466 "exist.\n", 467 __func__, 468 ihost, 469 ent, 470 index); 471 472 break; 473 474 default: 475 dev_warn(&ihost->pdev->dev, 476 "%s: SCIC Controller received unknown event code %x\n", 477 __func__, 478 ent); 479 break; 480 } 481 } 482 483 static void sci_controller_process_completions(struct isci_host *ihost) 484 { 485 u32 completion_count = 0; 486 u32 ent; 487 u32 get_index; 488 u32 get_cycle; 489 u32 event_get; 490 u32 event_cycle; 491 492 dev_dbg(&ihost->pdev->dev, 493 "%s: completion queue beginning get:0x%08x\n", 494 __func__, 495 ihost->completion_queue_get); 496 497 /* Get the component parts of the completion queue */ 498 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 499 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 500 501 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 502 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 503 504 while ( 505 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 506 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 507 ) { 508 completion_count++; 509 510 ent = ihost->completion_queue[get_index]; 511 512 /* increment the get pointer and check for rollover to toggle the cycle bit */ 513 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 514 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 515 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 516 517 dev_dbg(&ihost->pdev->dev, 518 "%s: completion queue entry:0x%08x\n", 519 __func__, 520 ent); 521 522 switch (SCU_GET_COMPLETION_TYPE(ent)) { 523 case SCU_COMPLETION_TYPE_TASK: 524 sci_controller_task_completion(ihost, ent); 525 break; 526 527 case SCU_COMPLETION_TYPE_SDMA: 528 sci_controller_sdma_completion(ihost, ent); 529 break; 530 531 case SCU_COMPLETION_TYPE_UFI: 532 sci_controller_unsolicited_frame(ihost, ent); 533 break; 534 535 case SCU_COMPLETION_TYPE_EVENT: 536 sci_controller_event_completion(ihost, ent); 537 break; 538 539 case SCU_COMPLETION_TYPE_NOTIFY: { 540 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 541 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 542 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 543 544 sci_controller_event_completion(ihost, ent); 545 break; 546 } 547 default: 548 dev_warn(&ihost->pdev->dev, 549 "%s: SCIC Controller received unknown " 550 "completion type %x\n", 551 __func__, 552 ent); 553 break; 554 } 555 } 556 557 /* Update the get register if we completed one or more entries */ 558 if (completion_count > 0) { 559 ihost->completion_queue_get = 560 SMU_CQGR_GEN_BIT(ENABLE) | 561 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 562 event_cycle | 563 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 564 get_cycle | 565 SMU_CQGR_GEN_VAL(POINTER, get_index); 566 567 writel(ihost->completion_queue_get, 568 &ihost->smu_registers->completion_queue_get); 569 570 } 571 572 dev_dbg(&ihost->pdev->dev, 573 "%s: completion queue ending get:0x%08x\n", 574 __func__, 575 ihost->completion_queue_get); 576 577 } 578 579 static void sci_controller_error_handler(struct isci_host *ihost) 580 { 581 u32 interrupt_status; 582 583 interrupt_status = 584 readl(&ihost->smu_registers->interrupt_status); 585 586 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 587 sci_controller_completion_queue_has_entries(ihost)) { 588 589 sci_controller_process_completions(ihost); 590 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 591 } else { 592 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 593 interrupt_status); 594 595 sci_change_state(&ihost->sm, SCIC_FAILED); 596 597 return; 598 } 599 600 /* If we dont process any completions I am not sure that we want to do this. 601 * We are in the middle of a hardware fault and should probably be reset. 602 */ 603 writel(0, &ihost->smu_registers->interrupt_mask); 604 } 605 606 irqreturn_t isci_intx_isr(int vec, void *data) 607 { 608 irqreturn_t ret = IRQ_NONE; 609 struct isci_host *ihost = data; 610 611 if (sci_controller_isr(ihost)) { 612 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 613 tasklet_schedule(&ihost->completion_tasklet); 614 ret = IRQ_HANDLED; 615 } else if (sci_controller_error_isr(ihost)) { 616 spin_lock(&ihost->scic_lock); 617 sci_controller_error_handler(ihost); 618 spin_unlock(&ihost->scic_lock); 619 ret = IRQ_HANDLED; 620 } 621 622 return ret; 623 } 624 625 irqreturn_t isci_error_isr(int vec, void *data) 626 { 627 struct isci_host *ihost = data; 628 629 if (sci_controller_error_isr(ihost)) 630 sci_controller_error_handler(ihost); 631 632 return IRQ_HANDLED; 633 } 634 635 /** 636 * isci_host_start_complete() - This function is called by the core library, 637 * through the ISCI Module, to indicate controller start status. 638 * @ihost: This parameter specifies the ISCI host object 639 * @completion_status: This parameter specifies the completion status from the 640 * core library. 641 * 642 */ 643 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 644 { 645 if (completion_status != SCI_SUCCESS) 646 dev_info(&ihost->pdev->dev, 647 "controller start timed out, continuing...\n"); 648 clear_bit(IHOST_START_PENDING, &ihost->flags); 649 wake_up(&ihost->eventq); 650 } 651 652 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 653 { 654 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 655 struct isci_host *ihost = ha->lldd_ha; 656 657 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 658 return 0; 659 660 sas_drain_work(ha); 661 662 return 1; 663 } 664 665 /** 666 * sci_controller_get_suggested_start_timeout() - This method returns the 667 * suggested sci_controller_start() timeout amount. The user is free to 668 * use any timeout value, but this method provides the suggested minimum 669 * start timeout value. The returned value is based upon empirical 670 * information determined as a result of interoperability testing. 671 * @ihost: the handle to the controller object for which to return the 672 * suggested start timeout. 673 * 674 * This method returns the number of milliseconds for the suggested start 675 * operation timeout. 676 */ 677 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 678 { 679 /* Validate the user supplied parameters. */ 680 if (!ihost) 681 return 0; 682 683 /* 684 * The suggested minimum timeout value for a controller start operation: 685 * 686 * Signature FIS Timeout 687 * + Phy Start Timeout 688 * + Number of Phy Spin Up Intervals 689 * --------------------------------- 690 * Number of milliseconds for the controller start operation. 691 * 692 * NOTE: The number of phy spin up intervals will be equivalent 693 * to the number of phys divided by the number phys allowed 694 * per interval - 1 (once OEM parameters are supported). 695 * Currently we assume only 1 phy per interval. */ 696 697 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 698 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 699 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 700 } 701 702 static void sci_controller_enable_interrupts(struct isci_host *ihost) 703 { 704 set_bit(IHOST_IRQ_ENABLED, &ihost->flags); 705 writel(0, &ihost->smu_registers->interrupt_mask); 706 } 707 708 void sci_controller_disable_interrupts(struct isci_host *ihost) 709 { 710 clear_bit(IHOST_IRQ_ENABLED, &ihost->flags); 711 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 712 readl(&ihost->smu_registers->interrupt_mask); /* flush */ 713 } 714 715 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 716 { 717 u32 port_task_scheduler_value; 718 719 port_task_scheduler_value = 720 readl(&ihost->scu_registers->peg0.ptsg.control); 721 port_task_scheduler_value |= 722 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 723 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 724 writel(port_task_scheduler_value, 725 &ihost->scu_registers->peg0.ptsg.control); 726 } 727 728 static void sci_controller_assign_task_entries(struct isci_host *ihost) 729 { 730 u32 task_assignment; 731 732 /* 733 * Assign all the TCs to function 0 734 * TODO: Do we actually need to read this register to write it back? 735 */ 736 737 task_assignment = 738 readl(&ihost->smu_registers->task_context_assignment[0]); 739 740 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 741 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 742 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 743 744 writel(task_assignment, 745 &ihost->smu_registers->task_context_assignment[0]); 746 747 } 748 749 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 750 { 751 u32 index; 752 u32 completion_queue_control_value; 753 u32 completion_queue_get_value; 754 u32 completion_queue_put_value; 755 756 ihost->completion_queue_get = 0; 757 758 completion_queue_control_value = 759 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 760 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 761 762 writel(completion_queue_control_value, 763 &ihost->smu_registers->completion_queue_control); 764 765 766 /* Set the completion queue get pointer and enable the queue */ 767 completion_queue_get_value = ( 768 (SMU_CQGR_GEN_VAL(POINTER, 0)) 769 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 770 | (SMU_CQGR_GEN_BIT(ENABLE)) 771 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 772 ); 773 774 writel(completion_queue_get_value, 775 &ihost->smu_registers->completion_queue_get); 776 777 /* Set the completion queue put pointer */ 778 completion_queue_put_value = ( 779 (SMU_CQPR_GEN_VAL(POINTER, 0)) 780 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 781 ); 782 783 writel(completion_queue_put_value, 784 &ihost->smu_registers->completion_queue_put); 785 786 /* Initialize the cycle bit of the completion queue entries */ 787 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 788 /* 789 * If get.cycle_bit != completion_queue.cycle_bit 790 * its not a valid completion queue entry 791 * so at system start all entries are invalid */ 792 ihost->completion_queue[index] = 0x80000000; 793 } 794 } 795 796 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 797 { 798 u32 frame_queue_control_value; 799 u32 frame_queue_get_value; 800 u32 frame_queue_put_value; 801 802 /* Write the queue size */ 803 frame_queue_control_value = 804 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 805 806 writel(frame_queue_control_value, 807 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 808 809 /* Setup the get pointer for the unsolicited frame queue */ 810 frame_queue_get_value = ( 811 SCU_UFQGP_GEN_VAL(POINTER, 0) 812 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 813 ); 814 815 writel(frame_queue_get_value, 816 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 817 /* Setup the put pointer for the unsolicited frame queue */ 818 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 819 writel(frame_queue_put_value, 820 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 821 } 822 823 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 824 { 825 if (ihost->sm.current_state_id == SCIC_STARTING) { 826 /* 827 * We move into the ready state, because some of the phys/ports 828 * may be up and operational. 829 */ 830 sci_change_state(&ihost->sm, SCIC_READY); 831 832 isci_host_start_complete(ihost, status); 833 } 834 } 835 836 static bool is_phy_starting(struct isci_phy *iphy) 837 { 838 enum sci_phy_states state; 839 840 state = iphy->sm.current_state_id; 841 switch (state) { 842 case SCI_PHY_STARTING: 843 case SCI_PHY_SUB_INITIAL: 844 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 845 case SCI_PHY_SUB_AWAIT_IAF_UF: 846 case SCI_PHY_SUB_AWAIT_SAS_POWER: 847 case SCI_PHY_SUB_AWAIT_SATA_POWER: 848 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 849 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 850 case SCI_PHY_SUB_AWAIT_OSSP_EN: 851 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 852 case SCI_PHY_SUB_FINAL: 853 return true; 854 default: 855 return false; 856 } 857 } 858 859 bool is_controller_start_complete(struct isci_host *ihost) 860 { 861 int i; 862 863 for (i = 0; i < SCI_MAX_PHYS; i++) { 864 struct isci_phy *iphy = &ihost->phys[i]; 865 u32 state = iphy->sm.current_state_id; 866 867 /* in apc mode we need to check every phy, in 868 * mpc mode we only need to check phys that have 869 * been configured into a port 870 */ 871 if (is_port_config_apc(ihost)) 872 /* pass */; 873 else if (!phy_get_non_dummy_port(iphy)) 874 continue; 875 876 /* The controller start operation is complete iff: 877 * - all links have been given an opportunity to start 878 * - have no indication of a connected device 879 * - have an indication of a connected device and it has 880 * finished the link training process. 881 */ 882 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 883 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 884 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 885 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) 886 return false; 887 } 888 889 return true; 890 } 891 892 /** 893 * sci_controller_start_next_phy - start phy 894 * @ihost: controller 895 * 896 * If all the phys have been started, then attempt to transition the 897 * controller to the READY state and inform the user 898 * (sci_cb_controller_start_complete()). 899 */ 900 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 901 { 902 struct sci_oem_params *oem = &ihost->oem_parameters; 903 struct isci_phy *iphy; 904 enum sci_status status; 905 906 status = SCI_SUCCESS; 907 908 if (ihost->phy_startup_timer_pending) 909 return status; 910 911 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 912 if (is_controller_start_complete(ihost)) { 913 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 914 sci_del_timer(&ihost->phy_timer); 915 ihost->phy_startup_timer_pending = false; 916 } 917 } else { 918 iphy = &ihost->phys[ihost->next_phy_to_start]; 919 920 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 921 if (phy_get_non_dummy_port(iphy) == NULL) { 922 ihost->next_phy_to_start++; 923 924 /* Caution recursion ahead be forwarned 925 * 926 * The PHY was never added to a PORT in MPC mode 927 * so start the next phy in sequence This phy 928 * will never go link up and will not draw power 929 * the OEM parameters either configured the phy 930 * incorrectly for the PORT or it was never 931 * assigned to a PORT 932 */ 933 return sci_controller_start_next_phy(ihost); 934 } 935 } 936 937 status = sci_phy_start(iphy); 938 939 if (status == SCI_SUCCESS) { 940 sci_mod_timer(&ihost->phy_timer, 941 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 942 ihost->phy_startup_timer_pending = true; 943 } else { 944 dev_warn(&ihost->pdev->dev, 945 "%s: Controller stop operation failed " 946 "to stop phy %d because of status " 947 "%d.\n", 948 __func__, 949 ihost->phys[ihost->next_phy_to_start].phy_index, 950 status); 951 } 952 953 ihost->next_phy_to_start++; 954 } 955 956 return status; 957 } 958 959 static void phy_startup_timeout(struct timer_list *t) 960 { 961 struct sci_timer *tmr = from_timer(tmr, t, timer); 962 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 963 unsigned long flags; 964 enum sci_status status; 965 966 spin_lock_irqsave(&ihost->scic_lock, flags); 967 968 if (tmr->cancel) 969 goto done; 970 971 ihost->phy_startup_timer_pending = false; 972 973 do { 974 status = sci_controller_start_next_phy(ihost); 975 } while (status != SCI_SUCCESS); 976 977 done: 978 spin_unlock_irqrestore(&ihost->scic_lock, flags); 979 } 980 981 static u16 isci_tci_active(struct isci_host *ihost) 982 { 983 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 984 } 985 986 static enum sci_status sci_controller_start(struct isci_host *ihost, 987 u32 timeout) 988 { 989 enum sci_status result; 990 u16 index; 991 992 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 993 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 994 __func__, ihost->sm.current_state_id); 995 return SCI_FAILURE_INVALID_STATE; 996 } 997 998 /* Build the TCi free pool */ 999 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 1000 ihost->tci_head = 0; 1001 ihost->tci_tail = 0; 1002 for (index = 0; index < ihost->task_context_entries; index++) 1003 isci_tci_free(ihost, index); 1004 1005 /* Build the RNi free pool */ 1006 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1007 ihost->remote_node_entries); 1008 1009 /* 1010 * Before anything else lets make sure we will not be 1011 * interrupted by the hardware. 1012 */ 1013 sci_controller_disable_interrupts(ihost); 1014 1015 /* Enable the port task scheduler */ 1016 sci_controller_enable_port_task_scheduler(ihost); 1017 1018 /* Assign all the task entries to ihost physical function */ 1019 sci_controller_assign_task_entries(ihost); 1020 1021 /* Now initialize the completion queue */ 1022 sci_controller_initialize_completion_queue(ihost); 1023 1024 /* Initialize the unsolicited frame queue for use */ 1025 sci_controller_initialize_unsolicited_frame_queue(ihost); 1026 1027 /* Start all of the ports on this controller */ 1028 for (index = 0; index < ihost->logical_port_entries; index++) { 1029 struct isci_port *iport = &ihost->ports[index]; 1030 1031 result = sci_port_start(iport); 1032 if (result) 1033 return result; 1034 } 1035 1036 sci_controller_start_next_phy(ihost); 1037 1038 sci_mod_timer(&ihost->timer, timeout); 1039 1040 sci_change_state(&ihost->sm, SCIC_STARTING); 1041 1042 return SCI_SUCCESS; 1043 } 1044 1045 void isci_host_start(struct Scsi_Host *shost) 1046 { 1047 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1048 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1049 1050 set_bit(IHOST_START_PENDING, &ihost->flags); 1051 1052 spin_lock_irq(&ihost->scic_lock); 1053 sci_controller_start(ihost, tmo); 1054 sci_controller_enable_interrupts(ihost); 1055 spin_unlock_irq(&ihost->scic_lock); 1056 } 1057 1058 static void isci_host_stop_complete(struct isci_host *ihost) 1059 { 1060 sci_controller_disable_interrupts(ihost); 1061 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1062 wake_up(&ihost->eventq); 1063 } 1064 1065 static void sci_controller_completion_handler(struct isci_host *ihost) 1066 { 1067 /* Empty out the completion queue */ 1068 if (sci_controller_completion_queue_has_entries(ihost)) 1069 sci_controller_process_completions(ihost); 1070 1071 /* Clear the interrupt and enable all interrupts again */ 1072 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1073 /* Could we write the value of SMU_ISR_COMPLETION? */ 1074 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1075 writel(0, &ihost->smu_registers->interrupt_mask); 1076 } 1077 1078 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task) 1079 { 1080 if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) && 1081 !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1082 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) { 1083 /* Normal notification (task_done) */ 1084 dev_dbg(&ihost->pdev->dev, 1085 "%s: Normal - ireq/task = %p/%p\n", 1086 __func__, ireq, task); 1087 task->lldd_task = NULL; 1088 task->task_done(task); 1089 } else { 1090 dev_dbg(&ihost->pdev->dev, 1091 "%s: Error - ireq/task = %p/%p\n", 1092 __func__, ireq, task); 1093 if (sas_protocol_ata(task->task_proto)) 1094 task->lldd_task = NULL; 1095 sas_task_abort(task); 1096 } 1097 } else 1098 task->lldd_task = NULL; 1099 1100 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags)) 1101 wake_up_all(&ihost->eventq); 1102 1103 if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags)) 1104 isci_free_tag(ihost, ireq->io_tag); 1105 } 1106 /** 1107 * isci_host_completion_routine() - This function is the delayed service 1108 * routine that calls the sci core library's completion handler. It's 1109 * scheduled as a tasklet from the interrupt service routine when interrupts 1110 * in use, or set as the timeout function in polled mode. 1111 * @data: This parameter specifies the ISCI host object 1112 * 1113 */ 1114 void isci_host_completion_routine(unsigned long data) 1115 { 1116 struct isci_host *ihost = (struct isci_host *)data; 1117 u16 active; 1118 1119 spin_lock_irq(&ihost->scic_lock); 1120 sci_controller_completion_handler(ihost); 1121 spin_unlock_irq(&ihost->scic_lock); 1122 1123 /* 1124 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs 1125 * issued for hardware issue workaround 1126 */ 1127 active = isci_tci_active(ihost) - SCI_MAX_PORTS; 1128 1129 /* 1130 * the coalesence timeout doubles at each encoding step, so 1131 * update it based on the ilog2 value of the outstanding requests 1132 */ 1133 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1134 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1135 &ihost->smu_registers->interrupt_coalesce_control); 1136 } 1137 1138 /** 1139 * sci_controller_stop() - This method will stop an individual controller 1140 * object.This method will invoke the associated user callback upon 1141 * completion. The completion callback is called when the following 1142 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1143 * controller has been quiesced. This method will ensure that all IO 1144 * requests are quiesced, phys are stopped, and all additional operation by 1145 * the hardware is halted. 1146 * @ihost: the handle to the controller object to stop. 1147 * @timeout: This parameter specifies the number of milliseconds in which the 1148 * stop operation should complete. 1149 * 1150 * The controller must be in the STARTED or STOPPED state. Indicate if the 1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1154 * controller is not either in the STARTED or STOPPED states. 1155 */ 1156 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1157 { 1158 if (ihost->sm.current_state_id != SCIC_READY) { 1159 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1160 __func__, ihost->sm.current_state_id); 1161 return SCI_FAILURE_INVALID_STATE; 1162 } 1163 1164 sci_mod_timer(&ihost->timer, timeout); 1165 sci_change_state(&ihost->sm, SCIC_STOPPING); 1166 return SCI_SUCCESS; 1167 } 1168 1169 /** 1170 * sci_controller_reset() - This method will reset the supplied core 1171 * controller regardless of the state of said controller. This operation is 1172 * considered destructive. In other words, all current operations are wiped 1173 * out. No IO completions for outstanding devices occur. Outstanding IO 1174 * requests are not aborted or completed at the actual remote device. 1175 * @ihost: the handle to the controller object to reset. 1176 * 1177 * Indicate if the controller reset method succeeded or failed in some way. 1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1179 * the controller reset operation is unable to complete. 1180 */ 1181 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1182 { 1183 switch (ihost->sm.current_state_id) { 1184 case SCIC_RESET: 1185 case SCIC_READY: 1186 case SCIC_STOPPING: 1187 case SCIC_FAILED: 1188 /* 1189 * The reset operation is not a graceful cleanup, just 1190 * perform the state transition. 1191 */ 1192 sci_change_state(&ihost->sm, SCIC_RESETTING); 1193 return SCI_SUCCESS; 1194 default: 1195 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1196 __func__, ihost->sm.current_state_id); 1197 return SCI_FAILURE_INVALID_STATE; 1198 } 1199 } 1200 1201 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1202 { 1203 u32 index; 1204 enum sci_status status; 1205 enum sci_status phy_status; 1206 1207 status = SCI_SUCCESS; 1208 1209 for (index = 0; index < SCI_MAX_PHYS; index++) { 1210 phy_status = sci_phy_stop(&ihost->phys[index]); 1211 1212 if (phy_status != SCI_SUCCESS && 1213 phy_status != SCI_FAILURE_INVALID_STATE) { 1214 status = SCI_FAILURE; 1215 1216 dev_warn(&ihost->pdev->dev, 1217 "%s: Controller stop operation failed to stop " 1218 "phy %d because of status %d.\n", 1219 __func__, 1220 ihost->phys[index].phy_index, phy_status); 1221 } 1222 } 1223 1224 return status; 1225 } 1226 1227 1228 /** 1229 * isci_host_deinit - shutdown frame reception and dma 1230 * @ihost: host to take down 1231 * 1232 * This is called in either the driver shutdown or the suspend path. In 1233 * the shutdown case libsas went through port teardown and normal device 1234 * removal (i.e. physical links stayed up to service scsi_device removal 1235 * commands). In the suspend case we disable the hardware without 1236 * notifying libsas of the link down events since we want libsas to 1237 * remember the domain across the suspend/resume cycle 1238 */ 1239 void isci_host_deinit(struct isci_host *ihost) 1240 { 1241 int i; 1242 1243 /* disable output data selects */ 1244 for (i = 0; i < isci_gpio_count(ihost); i++) 1245 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1246 1247 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1248 1249 spin_lock_irq(&ihost->scic_lock); 1250 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1251 spin_unlock_irq(&ihost->scic_lock); 1252 1253 wait_for_stop(ihost); 1254 1255 /* phy stop is after controller stop to allow port and device to 1256 * go idle before shutting down the phys, but the expectation is 1257 * that i/o has been shut off well before we reach this 1258 * function. 1259 */ 1260 sci_controller_stop_phys(ihost); 1261 1262 /* disable sgpio: where the above wait should give time for the 1263 * enclosure to sample the gpios going inactive 1264 */ 1265 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1266 1267 spin_lock_irq(&ihost->scic_lock); 1268 sci_controller_reset(ihost); 1269 spin_unlock_irq(&ihost->scic_lock); 1270 1271 /* Cancel any/all outstanding port timers */ 1272 for (i = 0; i < ihost->logical_port_entries; i++) { 1273 struct isci_port *iport = &ihost->ports[i]; 1274 del_timer_sync(&iport->timer.timer); 1275 } 1276 1277 /* Cancel any/all outstanding phy timers */ 1278 for (i = 0; i < SCI_MAX_PHYS; i++) { 1279 struct isci_phy *iphy = &ihost->phys[i]; 1280 del_timer_sync(&iphy->sata_timer.timer); 1281 } 1282 1283 del_timer_sync(&ihost->port_agent.timer.timer); 1284 1285 del_timer_sync(&ihost->power_control.timer.timer); 1286 1287 del_timer_sync(&ihost->timer.timer); 1288 1289 del_timer_sync(&ihost->phy_timer.timer); 1290 } 1291 1292 static void __iomem *scu_base(struct isci_host *isci_host) 1293 { 1294 struct pci_dev *pdev = isci_host->pdev; 1295 int id = isci_host->id; 1296 1297 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1298 } 1299 1300 static void __iomem *smu_base(struct isci_host *isci_host) 1301 { 1302 struct pci_dev *pdev = isci_host->pdev; 1303 int id = isci_host->id; 1304 1305 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1306 } 1307 1308 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1309 { 1310 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1311 1312 sci_change_state(&ihost->sm, SCIC_RESET); 1313 } 1314 1315 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1316 { 1317 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1318 1319 sci_del_timer(&ihost->timer); 1320 } 1321 1322 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1323 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1324 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1325 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1326 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1327 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1328 1329 /** 1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1331 * configure the interrupt coalescence. 1332 * @ihost: This parameter represents the handle to the controller object 1333 * for which its interrupt coalesce register is overridden. 1334 * @coalesce_number: Used to control the number of entries in the Completion 1335 * Queue before an interrupt is generated. If the number of entries exceed 1336 * this number, an interrupt will be generated. The valid range of the input 1337 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1339 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1340 * interrupt coalescing timeout. 1341 * 1342 * Indicate if the user successfully set the interrupt coalesce parameters. 1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1345 */ 1346 static enum sci_status 1347 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1348 u32 coalesce_number, 1349 u32 coalesce_timeout) 1350 { 1351 u8 timeout_encode = 0; 1352 u32 min = 0; 1353 u32 max = 0; 1354 1355 /* Check if the input parameters fall in the range. */ 1356 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1357 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1358 1359 /* 1360 * Defined encoding for interrupt coalescing timeout: 1361 * Value Min Max Units 1362 * ----- --- --- ----- 1363 * 0 - - Disabled 1364 * 1 13.3 20.0 ns 1365 * 2 26.7 40.0 1366 * 3 53.3 80.0 1367 * 4 106.7 160.0 1368 * 5 213.3 320.0 1369 * 6 426.7 640.0 1370 * 7 853.3 1280.0 1371 * 8 1.7 2.6 us 1372 * 9 3.4 5.1 1373 * 10 6.8 10.2 1374 * 11 13.7 20.5 1375 * 12 27.3 41.0 1376 * 13 54.6 81.9 1377 * 14 109.2 163.8 1378 * 15 218.5 327.7 1379 * 16 436.9 655.4 1380 * 17 873.8 1310.7 1381 * 18 1.7 2.6 ms 1382 * 19 3.5 5.2 1383 * 20 7.0 10.5 1384 * 21 14.0 21.0 1385 * 22 28.0 41.9 1386 * 23 55.9 83.9 1387 * 24 111.8 167.8 1388 * 25 223.7 335.5 1389 * 26 447.4 671.1 1390 * 27 894.8 1342.2 1391 * 28 1.8 2.7 s 1392 * Others Undefined */ 1393 1394 /* 1395 * Use the table above to decide the encode of interrupt coalescing timeout 1396 * value for register writing. */ 1397 if (coalesce_timeout == 0) 1398 timeout_encode = 0; 1399 else{ 1400 /* make the timeout value in unit of (10 ns). */ 1401 coalesce_timeout = coalesce_timeout * 100; 1402 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1403 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1404 1405 /* get the encode of timeout for register writing. */ 1406 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1407 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1408 timeout_encode++) { 1409 if (min <= coalesce_timeout && max > coalesce_timeout) 1410 break; 1411 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1412 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1413 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1414 break; 1415 else{ 1416 timeout_encode++; 1417 break; 1418 } 1419 } else { 1420 max = max * 2; 1421 min = min * 2; 1422 } 1423 } 1424 1425 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1426 /* the value is out of range. */ 1427 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1428 } 1429 1430 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1431 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1432 &ihost->smu_registers->interrupt_coalesce_control); 1433 1434 1435 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1436 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1437 1438 return SCI_SUCCESS; 1439 } 1440 1441 1442 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1443 { 1444 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1445 u32 val; 1446 1447 /* enable clock gating for power control of the scu unit */ 1448 val = readl(&ihost->smu_registers->clock_gating_control); 1449 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | 1450 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | 1451 SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); 1452 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); 1453 writel(val, &ihost->smu_registers->clock_gating_control); 1454 1455 /* set the default interrupt coalescence number and timeout value. */ 1456 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1457 } 1458 1459 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1460 { 1461 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1462 1463 /* disable interrupt coalescence. */ 1464 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1465 } 1466 1467 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1468 { 1469 u32 index; 1470 enum sci_status port_status; 1471 enum sci_status status = SCI_SUCCESS; 1472 1473 for (index = 0; index < ihost->logical_port_entries; index++) { 1474 struct isci_port *iport = &ihost->ports[index]; 1475 1476 port_status = sci_port_stop(iport); 1477 1478 if ((port_status != SCI_SUCCESS) && 1479 (port_status != SCI_FAILURE_INVALID_STATE)) { 1480 status = SCI_FAILURE; 1481 1482 dev_warn(&ihost->pdev->dev, 1483 "%s: Controller stop operation failed to " 1484 "stop port %d because of status %d.\n", 1485 __func__, 1486 iport->logical_port_index, 1487 port_status); 1488 } 1489 } 1490 1491 return status; 1492 } 1493 1494 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1495 { 1496 u32 index; 1497 enum sci_status status; 1498 enum sci_status device_status; 1499 1500 status = SCI_SUCCESS; 1501 1502 for (index = 0; index < ihost->remote_node_entries; index++) { 1503 if (ihost->device_table[index] != NULL) { 1504 /* / @todo What timeout value do we want to provide to this request? */ 1505 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1506 1507 if ((device_status != SCI_SUCCESS) && 1508 (device_status != SCI_FAILURE_INVALID_STATE)) { 1509 dev_warn(&ihost->pdev->dev, 1510 "%s: Controller stop operation failed " 1511 "to stop device 0x%p because of " 1512 "status %d.\n", 1513 __func__, 1514 ihost->device_table[index], device_status); 1515 } 1516 } 1517 } 1518 1519 return status; 1520 } 1521 1522 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1523 { 1524 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1525 1526 sci_controller_stop_devices(ihost); 1527 sci_controller_stop_ports(ihost); 1528 1529 if (!sci_controller_has_remote_devices_stopping(ihost)) 1530 isci_host_stop_complete(ihost); 1531 } 1532 1533 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1534 { 1535 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1536 1537 sci_del_timer(&ihost->timer); 1538 } 1539 1540 static void sci_controller_reset_hardware(struct isci_host *ihost) 1541 { 1542 /* Disable interrupts so we dont take any spurious interrupts */ 1543 sci_controller_disable_interrupts(ihost); 1544 1545 /* Reset the SCU */ 1546 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1547 1548 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1549 udelay(1000); 1550 1551 /* The write to the CQGR clears the CQP */ 1552 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1553 1554 /* The write to the UFQGP clears the UFQPR */ 1555 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1556 1557 /* clear all interrupts */ 1558 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status); 1559 } 1560 1561 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1562 { 1563 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1564 1565 sci_controller_reset_hardware(ihost); 1566 sci_change_state(&ihost->sm, SCIC_RESET); 1567 } 1568 1569 static const struct sci_base_state sci_controller_state_table[] = { 1570 [SCIC_INITIAL] = { 1571 .enter_state = sci_controller_initial_state_enter, 1572 }, 1573 [SCIC_RESET] = {}, 1574 [SCIC_INITIALIZING] = {}, 1575 [SCIC_INITIALIZED] = {}, 1576 [SCIC_STARTING] = { 1577 .exit_state = sci_controller_starting_state_exit, 1578 }, 1579 [SCIC_READY] = { 1580 .enter_state = sci_controller_ready_state_enter, 1581 .exit_state = sci_controller_ready_state_exit, 1582 }, 1583 [SCIC_RESETTING] = { 1584 .enter_state = sci_controller_resetting_state_enter, 1585 }, 1586 [SCIC_STOPPING] = { 1587 .enter_state = sci_controller_stopping_state_enter, 1588 .exit_state = sci_controller_stopping_state_exit, 1589 }, 1590 [SCIC_FAILED] = {} 1591 }; 1592 1593 static void controller_timeout(struct timer_list *t) 1594 { 1595 struct sci_timer *tmr = from_timer(tmr, t, timer); 1596 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1597 struct sci_base_state_machine *sm = &ihost->sm; 1598 unsigned long flags; 1599 1600 spin_lock_irqsave(&ihost->scic_lock, flags); 1601 1602 if (tmr->cancel) 1603 goto done; 1604 1605 if (sm->current_state_id == SCIC_STARTING) 1606 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1607 else if (sm->current_state_id == SCIC_STOPPING) { 1608 sci_change_state(sm, SCIC_FAILED); 1609 isci_host_stop_complete(ihost); 1610 } else /* / @todo Now what do we want to do in this case? */ 1611 dev_err(&ihost->pdev->dev, 1612 "%s: Controller timer fired when controller was not " 1613 "in a state being timed.\n", 1614 __func__); 1615 1616 done: 1617 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1618 } 1619 1620 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1621 void __iomem *scu_base, 1622 void __iomem *smu_base) 1623 { 1624 u8 i; 1625 1626 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1627 1628 ihost->scu_registers = scu_base; 1629 ihost->smu_registers = smu_base; 1630 1631 sci_port_configuration_agent_construct(&ihost->port_agent); 1632 1633 /* Construct the ports for this controller */ 1634 for (i = 0; i < SCI_MAX_PORTS; i++) 1635 sci_port_construct(&ihost->ports[i], i, ihost); 1636 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1637 1638 /* Construct the phys for this controller */ 1639 for (i = 0; i < SCI_MAX_PHYS; i++) { 1640 /* Add all the PHYs to the dummy port */ 1641 sci_phy_construct(&ihost->phys[i], 1642 &ihost->ports[SCI_MAX_PORTS], i); 1643 } 1644 1645 ihost->invalid_phy_mask = 0; 1646 1647 sci_init_timer(&ihost->timer, controller_timeout); 1648 1649 return sci_controller_reset(ihost); 1650 } 1651 1652 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1653 { 1654 int i; 1655 1656 for (i = 0; i < SCI_MAX_PORTS; i++) 1657 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1658 return -EINVAL; 1659 1660 for (i = 0; i < SCI_MAX_PHYS; i++) 1661 if (oem->phys[i].sas_address.high == 0 && 1662 oem->phys[i].sas_address.low == 0) 1663 return -EINVAL; 1664 1665 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1666 for (i = 0; i < SCI_MAX_PHYS; i++) 1667 if (oem->ports[i].phy_mask != 0) 1668 return -EINVAL; 1669 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1670 u8 phy_mask = 0; 1671 1672 for (i = 0; i < SCI_MAX_PHYS; i++) 1673 phy_mask |= oem->ports[i].phy_mask; 1674 1675 if (phy_mask == 0) 1676 return -EINVAL; 1677 } else 1678 return -EINVAL; 1679 1680 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1681 oem->controller.max_concurr_spin_up < 1) 1682 return -EINVAL; 1683 1684 if (oem->controller.do_enable_ssc) { 1685 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1686 return -EINVAL; 1687 1688 if (version >= ISCI_ROM_VER_1_1) { 1689 u8 test = oem->controller.ssc_sata_tx_spread_level; 1690 1691 switch (test) { 1692 case 0: 1693 case 2: 1694 case 3: 1695 case 6: 1696 case 7: 1697 break; 1698 default: 1699 return -EINVAL; 1700 } 1701 1702 test = oem->controller.ssc_sas_tx_spread_level; 1703 if (oem->controller.ssc_sas_tx_type == 0) { 1704 switch (test) { 1705 case 0: 1706 case 2: 1707 case 3: 1708 break; 1709 default: 1710 return -EINVAL; 1711 } 1712 } else if (oem->controller.ssc_sas_tx_type == 1) { 1713 switch (test) { 1714 case 0: 1715 case 3: 1716 case 6: 1717 break; 1718 default: 1719 return -EINVAL; 1720 } 1721 } 1722 } 1723 } 1724 1725 return 0; 1726 } 1727 1728 static u8 max_spin_up(struct isci_host *ihost) 1729 { 1730 if (ihost->user_parameters.max_concurr_spinup) 1731 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1732 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1733 else 1734 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1735 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1736 } 1737 1738 static void power_control_timeout(struct timer_list *t) 1739 { 1740 struct sci_timer *tmr = from_timer(tmr, t, timer); 1741 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1742 struct isci_phy *iphy; 1743 unsigned long flags; 1744 u8 i; 1745 1746 spin_lock_irqsave(&ihost->scic_lock, flags); 1747 1748 if (tmr->cancel) 1749 goto done; 1750 1751 ihost->power_control.phys_granted_power = 0; 1752 1753 if (ihost->power_control.phys_waiting == 0) { 1754 ihost->power_control.timer_started = false; 1755 goto done; 1756 } 1757 1758 for (i = 0; i < SCI_MAX_PHYS; i++) { 1759 1760 if (ihost->power_control.phys_waiting == 0) 1761 break; 1762 1763 iphy = ihost->power_control.requesters[i]; 1764 if (iphy == NULL) 1765 continue; 1766 1767 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1768 break; 1769 1770 ihost->power_control.requesters[i] = NULL; 1771 ihost->power_control.phys_waiting--; 1772 ihost->power_control.phys_granted_power++; 1773 sci_phy_consume_power_handler(iphy); 1774 1775 if (iphy->protocol == SAS_PROTOCOL_SSP) { 1776 u8 j; 1777 1778 for (j = 0; j < SCI_MAX_PHYS; j++) { 1779 struct isci_phy *requester = ihost->power_control.requesters[j]; 1780 1781 /* 1782 * Search the power_control queue to see if there are other phys 1783 * attached to the same remote device. If found, take all of 1784 * them out of await_sas_power state. 1785 */ 1786 if (requester != NULL && requester != iphy) { 1787 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1788 iphy->frame_rcvd.iaf.sas_addr, 1789 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1790 1791 if (other == 0) { 1792 ihost->power_control.requesters[j] = NULL; 1793 ihost->power_control.phys_waiting--; 1794 sci_phy_consume_power_handler(requester); 1795 } 1796 } 1797 } 1798 } 1799 } 1800 1801 /* 1802 * It doesn't matter if the power list is empty, we need to start the 1803 * timer in case another phy becomes ready. 1804 */ 1805 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1806 ihost->power_control.timer_started = true; 1807 1808 done: 1809 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1810 } 1811 1812 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1813 struct isci_phy *iphy) 1814 { 1815 BUG_ON(iphy == NULL); 1816 1817 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1818 ihost->power_control.phys_granted_power++; 1819 sci_phy_consume_power_handler(iphy); 1820 1821 /* 1822 * stop and start the power_control timer. When the timer fires, the 1823 * no_of_phys_granted_power will be set to 0 1824 */ 1825 if (ihost->power_control.timer_started) 1826 sci_del_timer(&ihost->power_control.timer); 1827 1828 sci_mod_timer(&ihost->power_control.timer, 1829 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1830 ihost->power_control.timer_started = true; 1831 1832 } else { 1833 /* 1834 * There are phys, attached to the same sas address as this phy, are 1835 * already in READY state, this phy don't need wait. 1836 */ 1837 u8 i; 1838 struct isci_phy *current_phy; 1839 1840 for (i = 0; i < SCI_MAX_PHYS; i++) { 1841 u8 other; 1842 current_phy = &ihost->phys[i]; 1843 1844 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1845 iphy->frame_rcvd.iaf.sas_addr, 1846 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1847 1848 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1849 current_phy->protocol == SAS_PROTOCOL_SSP && 1850 other == 0) { 1851 sci_phy_consume_power_handler(iphy); 1852 break; 1853 } 1854 } 1855 1856 if (i == SCI_MAX_PHYS) { 1857 /* Add the phy in the waiting list */ 1858 ihost->power_control.requesters[iphy->phy_index] = iphy; 1859 ihost->power_control.phys_waiting++; 1860 } 1861 } 1862 } 1863 1864 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1865 struct isci_phy *iphy) 1866 { 1867 BUG_ON(iphy == NULL); 1868 1869 if (ihost->power_control.requesters[iphy->phy_index]) 1870 ihost->power_control.phys_waiting--; 1871 1872 ihost->power_control.requesters[iphy->phy_index] = NULL; 1873 } 1874 1875 static int is_long_cable(int phy, unsigned char selection_byte) 1876 { 1877 return !!(selection_byte & (1 << phy)); 1878 } 1879 1880 static int is_medium_cable(int phy, unsigned char selection_byte) 1881 { 1882 return !!(selection_byte & (1 << (phy + 4))); 1883 } 1884 1885 static enum cable_selections decode_selection_byte( 1886 int phy, 1887 unsigned char selection_byte) 1888 { 1889 return ((selection_byte & (1 << phy)) ? 1 : 0) 1890 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 1891 } 1892 1893 static unsigned char *to_cable_select(struct isci_host *ihost) 1894 { 1895 if (is_cable_select_overridden()) 1896 return ((unsigned char *)&cable_selection_override) 1897 + ihost->id; 1898 else 1899 return &ihost->oem_parameters.controller.cable_selection_mask; 1900 } 1901 1902 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 1903 { 1904 return decode_selection_byte(phy, *to_cable_select(ihost)); 1905 } 1906 1907 char *lookup_cable_names(enum cable_selections selection) 1908 { 1909 static char *cable_names[] = { 1910 [short_cable] = "short", 1911 [long_cable] = "long", 1912 [medium_cable] = "medium", 1913 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 1914 }; 1915 return (selection <= undefined_cable) ? cable_names[selection] 1916 : cable_names[undefined_cable]; 1917 } 1918 1919 #define AFE_REGISTER_WRITE_DELAY 10 1920 1921 static void sci_controller_afe_initialization(struct isci_host *ihost) 1922 { 1923 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 1924 const struct sci_oem_params *oem = &ihost->oem_parameters; 1925 struct pci_dev *pdev = ihost->pdev; 1926 u32 afe_status; 1927 u32 phy_id; 1928 unsigned char cable_selection_mask = *to_cable_select(ihost); 1929 1930 /* Clear DFX Status registers */ 1931 writel(0x0081000f, &afe->afe_dfx_master_control0); 1932 udelay(AFE_REGISTER_WRITE_DELAY); 1933 1934 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 1935 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 1936 * Timer, PM Stagger Timer 1937 */ 1938 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 1939 udelay(AFE_REGISTER_WRITE_DELAY); 1940 } 1941 1942 /* Configure bias currents to normal */ 1943 if (is_a2(pdev)) 1944 writel(0x00005A00, &afe->afe_bias_control); 1945 else if (is_b0(pdev) || is_c0(pdev)) 1946 writel(0x00005F00, &afe->afe_bias_control); 1947 else if (is_c1(pdev)) 1948 writel(0x00005500, &afe->afe_bias_control); 1949 1950 udelay(AFE_REGISTER_WRITE_DELAY); 1951 1952 /* Enable PLL */ 1953 if (is_a2(pdev)) 1954 writel(0x80040908, &afe->afe_pll_control0); 1955 else if (is_b0(pdev) || is_c0(pdev)) 1956 writel(0x80040A08, &afe->afe_pll_control0); 1957 else if (is_c1(pdev)) { 1958 writel(0x80000B08, &afe->afe_pll_control0); 1959 udelay(AFE_REGISTER_WRITE_DELAY); 1960 writel(0x00000B08, &afe->afe_pll_control0); 1961 udelay(AFE_REGISTER_WRITE_DELAY); 1962 writel(0x80000B08, &afe->afe_pll_control0); 1963 } 1964 1965 udelay(AFE_REGISTER_WRITE_DELAY); 1966 1967 /* Wait for the PLL to lock */ 1968 do { 1969 afe_status = readl(&afe->afe_common_block_status); 1970 udelay(AFE_REGISTER_WRITE_DELAY); 1971 } while ((afe_status & 0x00001000) == 0); 1972 1973 if (is_a2(pdev)) { 1974 /* Shorten SAS SNW lock time (RxLock timer value from 76 1975 * us to 50 us) 1976 */ 1977 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 1978 udelay(AFE_REGISTER_WRITE_DELAY); 1979 } 1980 1981 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 1982 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id]; 1983 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 1984 int cable_length_long = 1985 is_long_cable(phy_id, cable_selection_mask); 1986 int cable_length_medium = 1987 is_medium_cable(phy_id, cable_selection_mask); 1988 1989 if (is_a2(pdev)) { 1990 /* All defaults, except the Receive Word 1991 * Alignament/Comma Detect Enable....(0xe800) 1992 */ 1993 writel(0x00004512, &xcvr->afe_xcvr_control0); 1994 udelay(AFE_REGISTER_WRITE_DELAY); 1995 1996 writel(0x0050100F, &xcvr->afe_xcvr_control1); 1997 udelay(AFE_REGISTER_WRITE_DELAY); 1998 } else if (is_b0(pdev)) { 1999 /* Configure transmitter SSC parameters */ 2000 writel(0x00030000, &xcvr->afe_tx_ssc_control); 2001 udelay(AFE_REGISTER_WRITE_DELAY); 2002 } else if (is_c0(pdev)) { 2003 /* Configure transmitter SSC parameters */ 2004 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2005 udelay(AFE_REGISTER_WRITE_DELAY); 2006 2007 /* All defaults, except the Receive Word 2008 * Alignament/Comma Detect Enable....(0xe800) 2009 */ 2010 writel(0x00014500, &xcvr->afe_xcvr_control0); 2011 udelay(AFE_REGISTER_WRITE_DELAY); 2012 } else if (is_c1(pdev)) { 2013 /* Configure transmitter SSC parameters */ 2014 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2015 udelay(AFE_REGISTER_WRITE_DELAY); 2016 2017 /* All defaults, except the Receive Word 2018 * Alignament/Comma Detect Enable....(0xe800) 2019 */ 2020 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2021 udelay(AFE_REGISTER_WRITE_DELAY); 2022 } 2023 2024 /* Power up TX and RX out from power down (PWRDNTX and 2025 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2026 */ 2027 if (is_a2(pdev)) 2028 writel(0x000003F0, &xcvr->afe_channel_control); 2029 else if (is_b0(pdev)) { 2030 writel(0x000003D7, &xcvr->afe_channel_control); 2031 udelay(AFE_REGISTER_WRITE_DELAY); 2032 2033 writel(0x000003D4, &xcvr->afe_channel_control); 2034 } else if (is_c0(pdev)) { 2035 writel(0x000001E7, &xcvr->afe_channel_control); 2036 udelay(AFE_REGISTER_WRITE_DELAY); 2037 2038 writel(0x000001E4, &xcvr->afe_channel_control); 2039 } else if (is_c1(pdev)) { 2040 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2041 &xcvr->afe_channel_control); 2042 udelay(AFE_REGISTER_WRITE_DELAY); 2043 2044 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2045 &xcvr->afe_channel_control); 2046 } 2047 udelay(AFE_REGISTER_WRITE_DELAY); 2048 2049 if (is_a2(pdev)) { 2050 /* Enable TX equalization (0xe824) */ 2051 writel(0x00040000, &xcvr->afe_tx_control); 2052 udelay(AFE_REGISTER_WRITE_DELAY); 2053 } 2054 2055 if (is_a2(pdev) || is_b0(pdev)) 2056 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2057 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2058 * Enabled) ....(0xe800) 2059 */ 2060 writel(0x00004100, &xcvr->afe_xcvr_control0); 2061 else if (is_c0(pdev)) 2062 writel(0x00014100, &xcvr->afe_xcvr_control0); 2063 else if (is_c1(pdev)) 2064 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2065 udelay(AFE_REGISTER_WRITE_DELAY); 2066 2067 /* Leave DFE/FFE on */ 2068 if (is_a2(pdev)) 2069 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2070 else if (is_b0(pdev)) { 2071 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2072 udelay(AFE_REGISTER_WRITE_DELAY); 2073 /* Enable TX equalization (0xe824) */ 2074 writel(0x00040000, &xcvr->afe_tx_control); 2075 } else if (is_c0(pdev)) { 2076 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2077 udelay(AFE_REGISTER_WRITE_DELAY); 2078 2079 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2080 udelay(AFE_REGISTER_WRITE_DELAY); 2081 2082 /* Enable TX equalization (0xe824) */ 2083 writel(0x00040000, &xcvr->afe_tx_control); 2084 } else if (is_c1(pdev)) { 2085 writel(cable_length_long ? 0x01500C0C : 2086 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2087 &xcvr->afe_xcvr_control1); 2088 udelay(AFE_REGISTER_WRITE_DELAY); 2089 2090 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2091 udelay(AFE_REGISTER_WRITE_DELAY); 2092 2093 writel(cable_length_long ? 0x33091C1F : 2094 cable_length_medium ? 0x3315181F : 0x2B17161F, 2095 &xcvr->afe_rx_ssc_control0); 2096 udelay(AFE_REGISTER_WRITE_DELAY); 2097 2098 /* Enable TX equalization (0xe824) */ 2099 writel(0x00040000, &xcvr->afe_tx_control); 2100 } 2101 2102 udelay(AFE_REGISTER_WRITE_DELAY); 2103 2104 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2105 udelay(AFE_REGISTER_WRITE_DELAY); 2106 2107 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2108 udelay(AFE_REGISTER_WRITE_DELAY); 2109 2110 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2111 udelay(AFE_REGISTER_WRITE_DELAY); 2112 2113 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2114 udelay(AFE_REGISTER_WRITE_DELAY); 2115 } 2116 2117 /* Transfer control to the PEs */ 2118 writel(0x00010f00, &afe->afe_dfx_master_control0); 2119 udelay(AFE_REGISTER_WRITE_DELAY); 2120 } 2121 2122 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2123 { 2124 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2125 2126 memset(ihost->power_control.requesters, 0, 2127 sizeof(ihost->power_control.requesters)); 2128 2129 ihost->power_control.phys_waiting = 0; 2130 ihost->power_control.phys_granted_power = 0; 2131 } 2132 2133 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2134 { 2135 struct sci_base_state_machine *sm = &ihost->sm; 2136 enum sci_status result = SCI_FAILURE; 2137 unsigned long i, state, val; 2138 2139 if (ihost->sm.current_state_id != SCIC_RESET) { 2140 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2141 __func__, ihost->sm.current_state_id); 2142 return SCI_FAILURE_INVALID_STATE; 2143 } 2144 2145 sci_change_state(sm, SCIC_INITIALIZING); 2146 2147 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2148 2149 ihost->next_phy_to_start = 0; 2150 ihost->phy_startup_timer_pending = false; 2151 2152 sci_controller_initialize_power_control(ihost); 2153 2154 /* 2155 * There is nothing to do here for B0 since we do not have to 2156 * program the AFE registers. 2157 * / @todo The AFE settings are supposed to be correct for the B0 but 2158 * / presently they seem to be wrong. */ 2159 sci_controller_afe_initialization(ihost); 2160 2161 2162 /* Take the hardware out of reset */ 2163 writel(0, &ihost->smu_registers->soft_reset_control); 2164 2165 /* 2166 * / @todo Provide meaningfull error code for hardware failure 2167 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2168 for (i = 100; i >= 1; i--) { 2169 u32 status; 2170 2171 /* Loop until the hardware reports success */ 2172 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2173 status = readl(&ihost->smu_registers->control_status); 2174 2175 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2176 break; 2177 } 2178 if (i == 0) 2179 goto out; 2180 2181 /* 2182 * Determine what are the actaul device capacities that the 2183 * hardware will support */ 2184 val = readl(&ihost->smu_registers->device_context_capacity); 2185 2186 /* Record the smaller of the two capacity values */ 2187 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2188 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2189 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2190 2191 /* 2192 * Make all PEs that are unassigned match up with the 2193 * logical ports 2194 */ 2195 for (i = 0; i < ihost->logical_port_entries; i++) { 2196 struct scu_port_task_scheduler_group_registers __iomem 2197 *ptsg = &ihost->scu_registers->peg0.ptsg; 2198 2199 writel(i, &ptsg->protocol_engine[i]); 2200 } 2201 2202 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2203 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2204 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2205 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2206 2207 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2208 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2209 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2210 2211 /* 2212 * Initialize the PHYs before the PORTs because the PHY registers 2213 * are accessed during the port initialization. 2214 */ 2215 for (i = 0; i < SCI_MAX_PHYS; i++) { 2216 result = sci_phy_initialize(&ihost->phys[i], 2217 &ihost->scu_registers->peg0.pe[i].tl, 2218 &ihost->scu_registers->peg0.pe[i].ll); 2219 if (result != SCI_SUCCESS) 2220 goto out; 2221 } 2222 2223 for (i = 0; i < ihost->logical_port_entries; i++) { 2224 struct isci_port *iport = &ihost->ports[i]; 2225 2226 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2227 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2228 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2229 } 2230 2231 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2232 2233 out: 2234 /* Advance the controller state machine */ 2235 if (result == SCI_SUCCESS) 2236 state = SCIC_INITIALIZED; 2237 else 2238 state = SCIC_FAILED; 2239 sci_change_state(sm, state); 2240 2241 return result; 2242 } 2243 2244 static int sci_controller_dma_alloc(struct isci_host *ihost) 2245 { 2246 struct device *dev = &ihost->pdev->dev; 2247 size_t size; 2248 int i; 2249 2250 /* detect re-initialization */ 2251 if (ihost->completion_queue) 2252 return 0; 2253 2254 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2255 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, 2256 GFP_KERNEL); 2257 if (!ihost->completion_queue) 2258 return -ENOMEM; 2259 2260 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2261 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, 2262 GFP_KERNEL); 2263 2264 if (!ihost->remote_node_context_table) 2265 return -ENOMEM; 2266 2267 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2268 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, 2269 GFP_KERNEL); 2270 if (!ihost->task_context_table) 2271 return -ENOMEM; 2272 2273 size = SCI_UFI_TOTAL_SIZE; 2274 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); 2275 if (!ihost->ufi_buf) 2276 return -ENOMEM; 2277 2278 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2279 struct isci_request *ireq; 2280 dma_addr_t dma; 2281 2282 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); 2283 if (!ireq) 2284 return -ENOMEM; 2285 2286 ireq->tc = &ihost->task_context_table[i]; 2287 ireq->owning_controller = ihost; 2288 ireq->request_daddr = dma; 2289 ireq->isci_host = ihost; 2290 ihost->reqs[i] = ireq; 2291 } 2292 2293 return 0; 2294 } 2295 2296 static int sci_controller_mem_init(struct isci_host *ihost) 2297 { 2298 int err = sci_controller_dma_alloc(ihost); 2299 2300 if (err) 2301 return err; 2302 2303 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); 2304 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); 2305 2306 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); 2307 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); 2308 2309 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); 2310 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); 2311 2312 sci_unsolicited_frame_control_construct(ihost); 2313 2314 /* 2315 * Inform the silicon as to the location of the UF headers and 2316 * address table. 2317 */ 2318 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2319 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2320 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2321 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2322 2323 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2324 &ihost->scu_registers->sdma.uf_address_table_lower); 2325 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2326 &ihost->scu_registers->sdma.uf_address_table_upper); 2327 2328 return 0; 2329 } 2330 2331 /** 2332 * isci_host_init - (re-)initialize hardware and internal (private) state 2333 * @ihost: host to init 2334 * 2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or 2336 * one-time initialization objects like locks and waitqueues, are 2337 * not touched (they are initialized in isci_host_alloc) 2338 */ 2339 int isci_host_init(struct isci_host *ihost) 2340 { 2341 int i, err; 2342 enum sci_status status; 2343 2344 spin_lock_irq(&ihost->scic_lock); 2345 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); 2346 spin_unlock_irq(&ihost->scic_lock); 2347 if (status != SCI_SUCCESS) { 2348 dev_err(&ihost->pdev->dev, 2349 "%s: sci_controller_construct failed - status = %x\n", 2350 __func__, 2351 status); 2352 return -ENODEV; 2353 } 2354 2355 spin_lock_irq(&ihost->scic_lock); 2356 status = sci_controller_initialize(ihost); 2357 spin_unlock_irq(&ihost->scic_lock); 2358 if (status != SCI_SUCCESS) { 2359 dev_warn(&ihost->pdev->dev, 2360 "%s: sci_controller_initialize failed -" 2361 " status = 0x%x\n", 2362 __func__, status); 2363 return -ENODEV; 2364 } 2365 2366 err = sci_controller_mem_init(ihost); 2367 if (err) 2368 return err; 2369 2370 /* enable sgpio */ 2371 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2372 for (i = 0; i < isci_gpio_count(ihost); i++) 2373 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2374 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2375 2376 return 0; 2377 } 2378 2379 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2380 struct isci_phy *iphy) 2381 { 2382 switch (ihost->sm.current_state_id) { 2383 case SCIC_STARTING: 2384 sci_del_timer(&ihost->phy_timer); 2385 ihost->phy_startup_timer_pending = false; 2386 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2387 iport, iphy); 2388 sci_controller_start_next_phy(ihost); 2389 break; 2390 case SCIC_READY: 2391 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2392 iport, iphy); 2393 break; 2394 default: 2395 dev_dbg(&ihost->pdev->dev, 2396 "%s: SCIC Controller linkup event from phy %d in " 2397 "unexpected state %d\n", __func__, iphy->phy_index, 2398 ihost->sm.current_state_id); 2399 } 2400 } 2401 2402 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2403 struct isci_phy *iphy) 2404 { 2405 switch (ihost->sm.current_state_id) { 2406 case SCIC_STARTING: 2407 case SCIC_READY: 2408 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2409 iport, iphy); 2410 break; 2411 default: 2412 dev_dbg(&ihost->pdev->dev, 2413 "%s: SCIC Controller linkdown event from phy %d in " 2414 "unexpected state %d\n", 2415 __func__, 2416 iphy->phy_index, 2417 ihost->sm.current_state_id); 2418 } 2419 } 2420 2421 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2422 { 2423 u32 index; 2424 2425 for (index = 0; index < ihost->remote_node_entries; index++) { 2426 if ((ihost->device_table[index] != NULL) && 2427 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2428 return true; 2429 } 2430 2431 return false; 2432 } 2433 2434 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2435 struct isci_remote_device *idev) 2436 { 2437 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2438 dev_dbg(&ihost->pdev->dev, 2439 "SCIC Controller 0x%p remote device stopped event " 2440 "from device 0x%p in unexpected state %d\n", 2441 ihost, idev, 2442 ihost->sm.current_state_id); 2443 return; 2444 } 2445 2446 if (!sci_controller_has_remote_devices_stopping(ihost)) 2447 isci_host_stop_complete(ihost); 2448 } 2449 2450 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2451 { 2452 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2453 __func__, ihost->id, request); 2454 2455 writel(request, &ihost->smu_registers->post_context_port); 2456 } 2457 2458 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2459 { 2460 u16 task_index; 2461 u16 task_sequence; 2462 2463 task_index = ISCI_TAG_TCI(io_tag); 2464 2465 if (task_index < ihost->task_context_entries) { 2466 struct isci_request *ireq = ihost->reqs[task_index]; 2467 2468 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2469 task_sequence = ISCI_TAG_SEQ(io_tag); 2470 2471 if (task_sequence == ihost->io_request_sequence[task_index]) 2472 return ireq; 2473 } 2474 } 2475 2476 return NULL; 2477 } 2478 2479 /** 2480 * sci_controller_allocate_remote_node_context() 2481 * This method allocates remote node index and the reserves the remote node 2482 * context space for use. This method can fail if there are no more remote 2483 * node index available. 2484 * @ihost: This is the controller object which contains the set of 2485 * free remote node ids 2486 * @idev: This is the device object which is requesting the a remote node 2487 * id 2488 * @node_id: This is the remote node id that is assinged to the device if one 2489 * is available 2490 * 2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2492 * node index available. 2493 */ 2494 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2495 struct isci_remote_device *idev, 2496 u16 *node_id) 2497 { 2498 u16 node_index; 2499 u32 remote_node_count = sci_remote_device_node_count(idev); 2500 2501 node_index = sci_remote_node_table_allocate_remote_node( 2502 &ihost->available_remote_nodes, remote_node_count 2503 ); 2504 2505 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2506 ihost->device_table[node_index] = idev; 2507 2508 *node_id = node_index; 2509 2510 return SCI_SUCCESS; 2511 } 2512 2513 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2514 } 2515 2516 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2517 struct isci_remote_device *idev, 2518 u16 node_id) 2519 { 2520 u32 remote_node_count = sci_remote_device_node_count(idev); 2521 2522 if (ihost->device_table[node_id] == idev) { 2523 ihost->device_table[node_id] = NULL; 2524 2525 sci_remote_node_table_release_remote_node_index( 2526 &ihost->available_remote_nodes, remote_node_count, node_id 2527 ); 2528 } 2529 } 2530 2531 void sci_controller_copy_sata_response(void *response_buffer, 2532 void *frame_header, 2533 void *frame_buffer) 2534 { 2535 /* XXX type safety? */ 2536 memcpy(response_buffer, frame_header, sizeof(u32)); 2537 2538 memcpy(response_buffer + sizeof(u32), 2539 frame_buffer, 2540 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2541 } 2542 2543 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2544 { 2545 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2546 writel(ihost->uf_control.get, 2547 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2548 } 2549 2550 void isci_tci_free(struct isci_host *ihost, u16 tci) 2551 { 2552 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2553 2554 ihost->tci_pool[tail] = tci; 2555 ihost->tci_tail = tail + 1; 2556 } 2557 2558 static u16 isci_tci_alloc(struct isci_host *ihost) 2559 { 2560 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2561 u16 tci = ihost->tci_pool[head]; 2562 2563 ihost->tci_head = head + 1; 2564 return tci; 2565 } 2566 2567 static u16 isci_tci_space(struct isci_host *ihost) 2568 { 2569 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2570 } 2571 2572 u16 isci_alloc_tag(struct isci_host *ihost) 2573 { 2574 if (isci_tci_space(ihost)) { 2575 u16 tci = isci_tci_alloc(ihost); 2576 u8 seq = ihost->io_request_sequence[tci]; 2577 2578 return ISCI_TAG(seq, tci); 2579 } 2580 2581 return SCI_CONTROLLER_INVALID_IO_TAG; 2582 } 2583 2584 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2585 { 2586 u16 tci = ISCI_TAG_TCI(io_tag); 2587 u16 seq = ISCI_TAG_SEQ(io_tag); 2588 2589 /* prevent tail from passing head */ 2590 if (isci_tci_active(ihost) == 0) 2591 return SCI_FAILURE_INVALID_IO_TAG; 2592 2593 if (seq == ihost->io_request_sequence[tci]) { 2594 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2595 2596 isci_tci_free(ihost, tci); 2597 2598 return SCI_SUCCESS; 2599 } 2600 return SCI_FAILURE_INVALID_IO_TAG; 2601 } 2602 2603 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2604 struct isci_remote_device *idev, 2605 struct isci_request *ireq) 2606 { 2607 enum sci_status status; 2608 2609 if (ihost->sm.current_state_id != SCIC_READY) { 2610 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2611 __func__, ihost->sm.current_state_id); 2612 return SCI_FAILURE_INVALID_STATE; 2613 } 2614 2615 status = sci_remote_device_start_io(ihost, idev, ireq); 2616 if (status != SCI_SUCCESS) 2617 return status; 2618 2619 set_bit(IREQ_ACTIVE, &ireq->flags); 2620 sci_controller_post_request(ihost, ireq->post_context); 2621 return SCI_SUCCESS; 2622 } 2623 2624 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2625 struct isci_remote_device *idev, 2626 struct isci_request *ireq) 2627 { 2628 /* terminate an ongoing (i.e. started) core IO request. This does not 2629 * abort the IO request at the target, but rather removes the IO 2630 * request from the host controller. 2631 */ 2632 enum sci_status status; 2633 2634 if (ihost->sm.current_state_id != SCIC_READY) { 2635 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2636 __func__, ihost->sm.current_state_id); 2637 return SCI_FAILURE_INVALID_STATE; 2638 } 2639 status = sci_io_request_terminate(ireq); 2640 2641 dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n", 2642 __func__, status, ireq, ireq->flags); 2643 2644 if ((status == SCI_SUCCESS) && 2645 !test_bit(IREQ_PENDING_ABORT, &ireq->flags) && 2646 !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) { 2647 /* Utilize the original post context command and or in the 2648 * POST_TC_ABORT request sub-type. 2649 */ 2650 sci_controller_post_request( 2651 ihost, ireq->post_context | 2652 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2653 } 2654 return status; 2655 } 2656 2657 /** 2658 * sci_controller_complete_io() - This method will perform core specific 2659 * completion operations for an IO request. After this method is invoked, 2660 * the user should consider the IO request as invalid until it is properly 2661 * reused (i.e. re-constructed). 2662 * @ihost: The handle to the controller object for which to complete the 2663 * IO request. 2664 * @idev: The handle to the remote device object for which to complete 2665 * the IO request. 2666 * @ireq: the handle to the io request object to complete. 2667 */ 2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2669 struct isci_remote_device *idev, 2670 struct isci_request *ireq) 2671 { 2672 enum sci_status status; 2673 2674 switch (ihost->sm.current_state_id) { 2675 case SCIC_STOPPING: 2676 /* XXX: Implement this function */ 2677 return SCI_FAILURE; 2678 case SCIC_READY: 2679 status = sci_remote_device_complete_io(ihost, idev, ireq); 2680 if (status != SCI_SUCCESS) 2681 return status; 2682 2683 clear_bit(IREQ_ACTIVE, &ireq->flags); 2684 return SCI_SUCCESS; 2685 default: 2686 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2687 __func__, ihost->sm.current_state_id); 2688 return SCI_FAILURE_INVALID_STATE; 2689 } 2690 2691 } 2692 2693 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2694 { 2695 struct isci_host *ihost = ireq->owning_controller; 2696 2697 if (ihost->sm.current_state_id != SCIC_READY) { 2698 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2699 __func__, ihost->sm.current_state_id); 2700 return SCI_FAILURE_INVALID_STATE; 2701 } 2702 2703 set_bit(IREQ_ACTIVE, &ireq->flags); 2704 sci_controller_post_request(ihost, ireq->post_context); 2705 return SCI_SUCCESS; 2706 } 2707 2708 /** 2709 * sci_controller_start_task() - This method is called by the SCIC user to 2710 * send/start a framework task management request. 2711 * @ihost: the handle to the controller object for which to start the task 2712 * management request. 2713 * @idev: the handle to the remote device object for which to start 2714 * the task management request. 2715 * @ireq: the handle to the task request object to start. 2716 */ 2717 enum sci_status sci_controller_start_task(struct isci_host *ihost, 2718 struct isci_remote_device *idev, 2719 struct isci_request *ireq) 2720 { 2721 enum sci_status status; 2722 2723 if (ihost->sm.current_state_id != SCIC_READY) { 2724 dev_warn(&ihost->pdev->dev, 2725 "%s: SCIC Controller starting task from invalid " 2726 "state\n", 2727 __func__); 2728 return SCI_FAILURE_INVALID_STATE; 2729 } 2730 2731 status = sci_remote_device_start_task(ihost, idev, ireq); 2732 switch (status) { 2733 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2734 set_bit(IREQ_ACTIVE, &ireq->flags); 2735 2736 /* 2737 * We will let framework know this task request started successfully, 2738 * although core is still woring on starting the request (to post tc when 2739 * RNC is resumed.) 2740 */ 2741 return SCI_SUCCESS; 2742 case SCI_SUCCESS: 2743 set_bit(IREQ_ACTIVE, &ireq->flags); 2744 sci_controller_post_request(ihost, ireq->post_context); 2745 break; 2746 default: 2747 break; 2748 } 2749 2750 return status; 2751 } 2752 2753 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2754 { 2755 int d; 2756 2757 /* no support for TX_GP_CFG */ 2758 if (reg_index == 0) 2759 return -EINVAL; 2760 2761 for (d = 0; d < isci_gpio_count(ihost); d++) { 2762 u32 val = 0x444; /* all ODx.n clear */ 2763 int i; 2764 2765 for (i = 0; i < 3; i++) { 2766 int bit; 2767 2768 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2769 write_data, reg_index, 2770 reg_count); 2771 if (bit < 0) 2772 break; 2773 2774 /* if od is set, clear the 'invert' bit */ 2775 val &= ~(bit << ((i << 2) + 2)); 2776 } 2777 2778 if (i < 3) 2779 break; 2780 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 2781 } 2782 2783 /* unless reg_index is > 1, we should always be able to write at 2784 * least one register 2785 */ 2786 return d > 0; 2787 } 2788 2789 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 2790 u8 reg_count, u8 *write_data) 2791 { 2792 struct isci_host *ihost = sas_ha->lldd_ha; 2793 int written; 2794 2795 switch (reg_type) { 2796 case SAS_GPIO_REG_TX_GP: 2797 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 2798 break; 2799 default: 2800 written = -EINVAL; 2801 } 2802 2803 return written; 2804 } 2805