1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scu_completion_codes.h" 65 #include "scu_event_codes.h" 66 #include "registers.h" 67 #include "scu_remote_node_context.h" 68 #include "scu_task_context.h" 69 70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 71 72 #define smu_max_ports(dcc_value) \ 73 (\ 74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 76 ) 77 78 #define smu_max_task_contexts(dcc_value) \ 79 (\ 80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 82 ) 83 84 #define smu_max_rncs(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 88 ) 89 90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 91 92 /** 93 * 94 * 95 * The number of milliseconds to wait while a given phy is consuming power 96 * before allowing another set of phys to consume power. Ultimately, this will 97 * be specified by OEM parameter. 98 */ 99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 100 101 /** 102 * NORMALIZE_PUT_POINTER() - 103 * 104 * This macro will normalize the completion queue put pointer so its value can 105 * be used as an array inde 106 */ 107 #define NORMALIZE_PUT_POINTER(x) \ 108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 109 110 111 /** 112 * NORMALIZE_EVENT_POINTER() - 113 * 114 * This macro will normalize the completion queue event entry so its value can 115 * be used as an index. 116 */ 117 #define NORMALIZE_EVENT_POINTER(x) \ 118 (\ 119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 121 ) 122 123 /** 124 * NORMALIZE_GET_POINTER() - 125 * 126 * This macro will normalize the completion queue get pointer so its value can 127 * be used as an index into an array 128 */ 129 #define NORMALIZE_GET_POINTER(x) \ 130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 131 132 /** 133 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 134 * 135 * This macro will normalize the completion queue cycle pointer so it matches 136 * the completion queue cycle bit 137 */ 138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 140 141 /** 142 * COMPLETION_QUEUE_CYCLE_BIT() - 143 * 144 * This macro will return the cycle bit of the completion queue entry 145 */ 146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 147 148 /* Init the state machine and call the state entry function (if any) */ 149 void sci_init_sm(struct sci_base_state_machine *sm, 150 const struct sci_base_state *state_table, u32 initial_state) 151 { 152 sci_state_transition_t handler; 153 154 sm->initial_state_id = initial_state; 155 sm->previous_state_id = initial_state; 156 sm->current_state_id = initial_state; 157 sm->state_table = state_table; 158 159 handler = sm->state_table[initial_state].enter_state; 160 if (handler) 161 handler(sm); 162 } 163 164 /* Call the state exit fn, update the current state, call the state entry fn */ 165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 166 { 167 sci_state_transition_t handler; 168 169 handler = sm->state_table[sm->current_state_id].exit_state; 170 if (handler) 171 handler(sm); 172 173 sm->previous_state_id = sm->current_state_id; 174 sm->current_state_id = next_state; 175 176 handler = sm->state_table[sm->current_state_id].enter_state; 177 if (handler) 178 handler(sm); 179 } 180 181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 182 { 183 u32 get_value = ihost->completion_queue_get; 184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 185 186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 188 return true; 189 190 return false; 191 } 192 193 static bool sci_controller_isr(struct isci_host *ihost) 194 { 195 if (sci_controller_completion_queue_has_entries(ihost)) { 196 return true; 197 } else { 198 /* 199 * we have a spurious interrupt it could be that we have already 200 * emptied the completion queue from a previous interrupt */ 201 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 202 203 /* 204 * There is a race in the hardware that could cause us not to be notified 205 * of an interrupt completion if we do not take this step. We will mask 206 * then unmask the interrupts so if there is another interrupt pending 207 * the clearing of the interrupt source we get the next interrupt message. */ 208 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 209 writel(0, &ihost->smu_registers->interrupt_mask); 210 } 211 212 return false; 213 } 214 215 irqreturn_t isci_msix_isr(int vec, void *data) 216 { 217 struct isci_host *ihost = data; 218 219 if (sci_controller_isr(ihost)) 220 tasklet_schedule(&ihost->completion_tasklet); 221 222 return IRQ_HANDLED; 223 } 224 225 static bool sci_controller_error_isr(struct isci_host *ihost) 226 { 227 u32 interrupt_status; 228 229 interrupt_status = 230 readl(&ihost->smu_registers->interrupt_status); 231 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 232 233 if (interrupt_status != 0) { 234 /* 235 * There is an error interrupt pending so let it through and handle 236 * in the callback */ 237 return true; 238 } 239 240 /* 241 * There is a race in the hardware that could cause us not to be notified 242 * of an interrupt completion if we do not take this step. We will mask 243 * then unmask the error interrupts so if there was another interrupt 244 * pending we will be notified. 245 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 246 writel(0xff, &ihost->smu_registers->interrupt_mask); 247 writel(0, &ihost->smu_registers->interrupt_mask); 248 249 return false; 250 } 251 252 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 253 { 254 u32 index = SCU_GET_COMPLETION_INDEX(ent); 255 struct isci_request *ireq = ihost->reqs[index]; 256 257 /* Make sure that we really want to process this IO request */ 258 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 259 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 260 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 261 /* Yep this is a valid io request pass it along to the 262 * io request handler 263 */ 264 sci_io_request_tc_completion(ireq, ent); 265 } 266 267 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 268 { 269 u32 index; 270 struct isci_request *ireq; 271 struct isci_remote_device *idev; 272 273 index = SCU_GET_COMPLETION_INDEX(ent); 274 275 switch (scu_get_command_request_type(ent)) { 276 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 278 ireq = ihost->reqs[index]; 279 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 280 __func__, ent, ireq); 281 /* @todo For a post TC operation we need to fail the IO 282 * request 283 */ 284 break; 285 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 288 idev = ihost->device_table[index]; 289 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 290 __func__, ent, idev); 291 /* @todo For a port RNC operation we need to fail the 292 * device 293 */ 294 break; 295 default: 296 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 297 __func__, ent); 298 break; 299 } 300 } 301 302 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 303 { 304 u32 index; 305 u32 frame_index; 306 307 struct scu_unsolicited_frame_header *frame_header; 308 struct isci_phy *iphy; 309 struct isci_remote_device *idev; 310 311 enum sci_status result = SCI_FAILURE; 312 313 frame_index = SCU_GET_FRAME_INDEX(ent); 314 315 frame_header = ihost->uf_control.buffers.array[frame_index].header; 316 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 317 318 if (SCU_GET_FRAME_ERROR(ent)) { 319 /* 320 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 321 * / this cause a problem? We expect the phy initialization will 322 * / fail if there is an error in the frame. */ 323 sci_controller_release_frame(ihost, frame_index); 324 return; 325 } 326 327 if (frame_header->is_address_frame) { 328 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 329 iphy = &ihost->phys[index]; 330 result = sci_phy_frame_handler(iphy, frame_index); 331 } else { 332 333 index = SCU_GET_COMPLETION_INDEX(ent); 334 335 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 336 /* 337 * This is a signature fis or a frame from a direct attached SATA 338 * device that has not yet been created. In either case forwared 339 * the frame to the PE and let it take care of the frame data. */ 340 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 341 iphy = &ihost->phys[index]; 342 result = sci_phy_frame_handler(iphy, frame_index); 343 } else { 344 if (index < ihost->remote_node_entries) 345 idev = ihost->device_table[index]; 346 else 347 idev = NULL; 348 349 if (idev != NULL) 350 result = sci_remote_device_frame_handler(idev, frame_index); 351 else 352 sci_controller_release_frame(ihost, frame_index); 353 } 354 } 355 356 if (result != SCI_SUCCESS) { 357 /* 358 * / @todo Is there any reason to report some additional error message 359 * / when we get this failure notifiction? */ 360 } 361 } 362 363 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 364 { 365 struct isci_remote_device *idev; 366 struct isci_request *ireq; 367 struct isci_phy *iphy; 368 u32 index; 369 370 index = SCU_GET_COMPLETION_INDEX(ent); 371 372 switch (scu_get_event_type(ent)) { 373 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 374 /* / @todo The driver did something wrong and we need to fix the condtion. */ 375 dev_err(&ihost->pdev->dev, 376 "%s: SCIC Controller 0x%p received SMU command error " 377 "0x%x\n", 378 __func__, 379 ihost, 380 ent); 381 break; 382 383 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 384 case SCU_EVENT_TYPE_SMU_ERROR: 385 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 386 /* 387 * / @todo This is a hardware failure and its likely that we want to 388 * / reset the controller. */ 389 dev_err(&ihost->pdev->dev, 390 "%s: SCIC Controller 0x%p received fatal controller " 391 "event 0x%x\n", 392 __func__, 393 ihost, 394 ent); 395 break; 396 397 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 398 ireq = ihost->reqs[index]; 399 sci_io_request_event_handler(ireq, ent); 400 break; 401 402 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 403 switch (scu_get_event_specifier(ent)) { 404 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 405 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 406 ireq = ihost->reqs[index]; 407 if (ireq != NULL) 408 sci_io_request_event_handler(ireq, ent); 409 else 410 dev_warn(&ihost->pdev->dev, 411 "%s: SCIC Controller 0x%p received " 412 "event 0x%x for io request object " 413 "that doesnt exist.\n", 414 __func__, 415 ihost, 416 ent); 417 418 break; 419 420 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 421 idev = ihost->device_table[index]; 422 if (idev != NULL) 423 sci_remote_device_event_handler(idev, ent); 424 else 425 dev_warn(&ihost->pdev->dev, 426 "%s: SCIC Controller 0x%p received " 427 "event 0x%x for remote device object " 428 "that doesnt exist.\n", 429 __func__, 430 ihost, 431 ent); 432 433 break; 434 } 435 break; 436 437 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 438 /* 439 * direct the broadcast change event to the phy first and then let 440 * the phy redirect the broadcast change to the port object */ 441 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 442 /* 443 * direct error counter event to the phy object since that is where 444 * we get the event notification. This is a type 4 event. */ 445 case SCU_EVENT_TYPE_OSSP_EVENT: 446 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 447 iphy = &ihost->phys[index]; 448 sci_phy_event_handler(iphy, ent); 449 break; 450 451 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 453 case SCU_EVENT_TYPE_RNC_OPS_MISC: 454 if (index < ihost->remote_node_entries) { 455 idev = ihost->device_table[index]; 456 457 if (idev != NULL) 458 sci_remote_device_event_handler(idev, ent); 459 } else 460 dev_err(&ihost->pdev->dev, 461 "%s: SCIC Controller 0x%p received event 0x%x " 462 "for remote device object 0x%0x that doesnt " 463 "exist.\n", 464 __func__, 465 ihost, 466 ent, 467 index); 468 469 break; 470 471 default: 472 dev_warn(&ihost->pdev->dev, 473 "%s: SCIC Controller received unknown event code %x\n", 474 __func__, 475 ent); 476 break; 477 } 478 } 479 480 static void sci_controller_process_completions(struct isci_host *ihost) 481 { 482 u32 completion_count = 0; 483 u32 ent; 484 u32 get_index; 485 u32 get_cycle; 486 u32 event_get; 487 u32 event_cycle; 488 489 dev_dbg(&ihost->pdev->dev, 490 "%s: completion queue begining get:0x%08x\n", 491 __func__, 492 ihost->completion_queue_get); 493 494 /* Get the component parts of the completion queue */ 495 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 496 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 497 498 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 499 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 500 501 while ( 502 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 503 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 504 ) { 505 completion_count++; 506 507 ent = ihost->completion_queue[get_index]; 508 509 /* increment the get pointer and check for rollover to toggle the cycle bit */ 510 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 511 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 512 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 513 514 dev_dbg(&ihost->pdev->dev, 515 "%s: completion queue entry:0x%08x\n", 516 __func__, 517 ent); 518 519 switch (SCU_GET_COMPLETION_TYPE(ent)) { 520 case SCU_COMPLETION_TYPE_TASK: 521 sci_controller_task_completion(ihost, ent); 522 break; 523 524 case SCU_COMPLETION_TYPE_SDMA: 525 sci_controller_sdma_completion(ihost, ent); 526 break; 527 528 case SCU_COMPLETION_TYPE_UFI: 529 sci_controller_unsolicited_frame(ihost, ent); 530 break; 531 532 case SCU_COMPLETION_TYPE_EVENT: 533 sci_controller_event_completion(ihost, ent); 534 break; 535 536 case SCU_COMPLETION_TYPE_NOTIFY: { 537 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 538 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 539 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 540 541 sci_controller_event_completion(ihost, ent); 542 break; 543 } 544 default: 545 dev_warn(&ihost->pdev->dev, 546 "%s: SCIC Controller received unknown " 547 "completion type %x\n", 548 __func__, 549 ent); 550 break; 551 } 552 } 553 554 /* Update the get register if we completed one or more entries */ 555 if (completion_count > 0) { 556 ihost->completion_queue_get = 557 SMU_CQGR_GEN_BIT(ENABLE) | 558 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 559 event_cycle | 560 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 561 get_cycle | 562 SMU_CQGR_GEN_VAL(POINTER, get_index); 563 564 writel(ihost->completion_queue_get, 565 &ihost->smu_registers->completion_queue_get); 566 567 } 568 569 dev_dbg(&ihost->pdev->dev, 570 "%s: completion queue ending get:0x%08x\n", 571 __func__, 572 ihost->completion_queue_get); 573 574 } 575 576 static void sci_controller_error_handler(struct isci_host *ihost) 577 { 578 u32 interrupt_status; 579 580 interrupt_status = 581 readl(&ihost->smu_registers->interrupt_status); 582 583 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 584 sci_controller_completion_queue_has_entries(ihost)) { 585 586 sci_controller_process_completions(ihost); 587 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 588 } else { 589 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 590 interrupt_status); 591 592 sci_change_state(&ihost->sm, SCIC_FAILED); 593 594 return; 595 } 596 597 /* If we dont process any completions I am not sure that we want to do this. 598 * We are in the middle of a hardware fault and should probably be reset. 599 */ 600 writel(0, &ihost->smu_registers->interrupt_mask); 601 } 602 603 irqreturn_t isci_intx_isr(int vec, void *data) 604 { 605 irqreturn_t ret = IRQ_NONE; 606 struct isci_host *ihost = data; 607 608 if (sci_controller_isr(ihost)) { 609 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 610 tasklet_schedule(&ihost->completion_tasklet); 611 ret = IRQ_HANDLED; 612 } else if (sci_controller_error_isr(ihost)) { 613 spin_lock(&ihost->scic_lock); 614 sci_controller_error_handler(ihost); 615 spin_unlock(&ihost->scic_lock); 616 ret = IRQ_HANDLED; 617 } 618 619 return ret; 620 } 621 622 irqreturn_t isci_error_isr(int vec, void *data) 623 { 624 struct isci_host *ihost = data; 625 626 if (sci_controller_error_isr(ihost)) 627 sci_controller_error_handler(ihost); 628 629 return IRQ_HANDLED; 630 } 631 632 /** 633 * isci_host_start_complete() - This function is called by the core library, 634 * through the ISCI Module, to indicate controller start status. 635 * @isci_host: This parameter specifies the ISCI host object 636 * @completion_status: This parameter specifies the completion status from the 637 * core library. 638 * 639 */ 640 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 641 { 642 if (completion_status != SCI_SUCCESS) 643 dev_info(&ihost->pdev->dev, 644 "controller start timed out, continuing...\n"); 645 isci_host_change_state(ihost, isci_ready); 646 clear_bit(IHOST_START_PENDING, &ihost->flags); 647 wake_up(&ihost->eventq); 648 } 649 650 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 651 { 652 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 653 struct isci_host *ihost = ha->lldd_ha; 654 655 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 656 return 0; 657 658 sas_drain_work(ha); 659 660 dev_dbg(&ihost->pdev->dev, 661 "%s: ihost->status = %d, time = %ld\n", 662 __func__, isci_host_get_state(ihost), time); 663 664 return 1; 665 666 } 667 668 /** 669 * sci_controller_get_suggested_start_timeout() - This method returns the 670 * suggested sci_controller_start() timeout amount. The user is free to 671 * use any timeout value, but this method provides the suggested minimum 672 * start timeout value. The returned value is based upon empirical 673 * information determined as a result of interoperability testing. 674 * @controller: the handle to the controller object for which to return the 675 * suggested start timeout. 676 * 677 * This method returns the number of milliseconds for the suggested start 678 * operation timeout. 679 */ 680 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 681 { 682 /* Validate the user supplied parameters. */ 683 if (!ihost) 684 return 0; 685 686 /* 687 * The suggested minimum timeout value for a controller start operation: 688 * 689 * Signature FIS Timeout 690 * + Phy Start Timeout 691 * + Number of Phy Spin Up Intervals 692 * --------------------------------- 693 * Number of milliseconds for the controller start operation. 694 * 695 * NOTE: The number of phy spin up intervals will be equivalent 696 * to the number of phys divided by the number phys allowed 697 * per interval - 1 (once OEM parameters are supported). 698 * Currently we assume only 1 phy per interval. */ 699 700 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 701 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 702 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 703 } 704 705 static void sci_controller_enable_interrupts(struct isci_host *ihost) 706 { 707 BUG_ON(ihost->smu_registers == NULL); 708 writel(0, &ihost->smu_registers->interrupt_mask); 709 } 710 711 void sci_controller_disable_interrupts(struct isci_host *ihost) 712 { 713 BUG_ON(ihost->smu_registers == NULL); 714 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 715 } 716 717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 718 { 719 u32 port_task_scheduler_value; 720 721 port_task_scheduler_value = 722 readl(&ihost->scu_registers->peg0.ptsg.control); 723 port_task_scheduler_value |= 724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 726 writel(port_task_scheduler_value, 727 &ihost->scu_registers->peg0.ptsg.control); 728 } 729 730 static void sci_controller_assign_task_entries(struct isci_host *ihost) 731 { 732 u32 task_assignment; 733 734 /* 735 * Assign all the TCs to function 0 736 * TODO: Do we actually need to read this register to write it back? 737 */ 738 739 task_assignment = 740 readl(&ihost->smu_registers->task_context_assignment[0]); 741 742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 745 746 writel(task_assignment, 747 &ihost->smu_registers->task_context_assignment[0]); 748 749 } 750 751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 752 { 753 u32 index; 754 u32 completion_queue_control_value; 755 u32 completion_queue_get_value; 756 u32 completion_queue_put_value; 757 758 ihost->completion_queue_get = 0; 759 760 completion_queue_control_value = 761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 763 764 writel(completion_queue_control_value, 765 &ihost->smu_registers->completion_queue_control); 766 767 768 /* Set the completion queue get pointer and enable the queue */ 769 completion_queue_get_value = ( 770 (SMU_CQGR_GEN_VAL(POINTER, 0)) 771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 772 | (SMU_CQGR_GEN_BIT(ENABLE)) 773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 774 ); 775 776 writel(completion_queue_get_value, 777 &ihost->smu_registers->completion_queue_get); 778 779 /* Set the completion queue put pointer */ 780 completion_queue_put_value = ( 781 (SMU_CQPR_GEN_VAL(POINTER, 0)) 782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 783 ); 784 785 writel(completion_queue_put_value, 786 &ihost->smu_registers->completion_queue_put); 787 788 /* Initialize the cycle bit of the completion queue entries */ 789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 790 /* 791 * If get.cycle_bit != completion_queue.cycle_bit 792 * its not a valid completion queue entry 793 * so at system start all entries are invalid */ 794 ihost->completion_queue[index] = 0x80000000; 795 } 796 } 797 798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 799 { 800 u32 frame_queue_control_value; 801 u32 frame_queue_get_value; 802 u32 frame_queue_put_value; 803 804 /* Write the queue size */ 805 frame_queue_control_value = 806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 807 808 writel(frame_queue_control_value, 809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 810 811 /* Setup the get pointer for the unsolicited frame queue */ 812 frame_queue_get_value = ( 813 SCU_UFQGP_GEN_VAL(POINTER, 0) 814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 815 ); 816 817 writel(frame_queue_get_value, 818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 819 /* Setup the put pointer for the unsolicited frame queue */ 820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 821 writel(frame_queue_put_value, 822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 823 } 824 825 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 826 { 827 if (ihost->sm.current_state_id == SCIC_STARTING) { 828 /* 829 * We move into the ready state, because some of the phys/ports 830 * may be up and operational. 831 */ 832 sci_change_state(&ihost->sm, SCIC_READY); 833 834 isci_host_start_complete(ihost, status); 835 } 836 } 837 838 static bool is_phy_starting(struct isci_phy *iphy) 839 { 840 enum sci_phy_states state; 841 842 state = iphy->sm.current_state_id; 843 switch (state) { 844 case SCI_PHY_STARTING: 845 case SCI_PHY_SUB_INITIAL: 846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 847 case SCI_PHY_SUB_AWAIT_IAF_UF: 848 case SCI_PHY_SUB_AWAIT_SAS_POWER: 849 case SCI_PHY_SUB_AWAIT_SATA_POWER: 850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 852 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 853 case SCI_PHY_SUB_FINAL: 854 return true; 855 default: 856 return false; 857 } 858 } 859 860 /** 861 * sci_controller_start_next_phy - start phy 862 * @scic: controller 863 * 864 * If all the phys have been started, then attempt to transition the 865 * controller to the READY state and inform the user 866 * (sci_cb_controller_start_complete()). 867 */ 868 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 869 { 870 struct sci_oem_params *oem = &ihost->oem_parameters; 871 struct isci_phy *iphy; 872 enum sci_status status; 873 874 status = SCI_SUCCESS; 875 876 if (ihost->phy_startup_timer_pending) 877 return status; 878 879 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 880 bool is_controller_start_complete = true; 881 u32 state; 882 u8 index; 883 884 for (index = 0; index < SCI_MAX_PHYS; index++) { 885 iphy = &ihost->phys[index]; 886 state = iphy->sm.current_state_id; 887 888 if (!phy_get_non_dummy_port(iphy)) 889 continue; 890 891 /* The controller start operation is complete iff: 892 * - all links have been given an opportunity to start 893 * - have no indication of a connected device 894 * - have an indication of a connected device and it has 895 * finished the link training process. 896 */ 897 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 898 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 899 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 900 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) { 901 is_controller_start_complete = false; 902 break; 903 } 904 } 905 906 /* 907 * The controller has successfully finished the start process. 908 * Inform the SCI Core user and transition to the READY state. */ 909 if (is_controller_start_complete == true) { 910 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 911 sci_del_timer(&ihost->phy_timer); 912 ihost->phy_startup_timer_pending = false; 913 } 914 } else { 915 iphy = &ihost->phys[ihost->next_phy_to_start]; 916 917 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 918 if (phy_get_non_dummy_port(iphy) == NULL) { 919 ihost->next_phy_to_start++; 920 921 /* Caution recursion ahead be forwarned 922 * 923 * The PHY was never added to a PORT in MPC mode 924 * so start the next phy in sequence This phy 925 * will never go link up and will not draw power 926 * the OEM parameters either configured the phy 927 * incorrectly for the PORT or it was never 928 * assigned to a PORT 929 */ 930 return sci_controller_start_next_phy(ihost); 931 } 932 } 933 934 status = sci_phy_start(iphy); 935 936 if (status == SCI_SUCCESS) { 937 sci_mod_timer(&ihost->phy_timer, 938 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 939 ihost->phy_startup_timer_pending = true; 940 } else { 941 dev_warn(&ihost->pdev->dev, 942 "%s: Controller stop operation failed " 943 "to stop phy %d because of status " 944 "%d.\n", 945 __func__, 946 ihost->phys[ihost->next_phy_to_start].phy_index, 947 status); 948 } 949 950 ihost->next_phy_to_start++; 951 } 952 953 return status; 954 } 955 956 static void phy_startup_timeout(unsigned long data) 957 { 958 struct sci_timer *tmr = (struct sci_timer *)data; 959 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 960 unsigned long flags; 961 enum sci_status status; 962 963 spin_lock_irqsave(&ihost->scic_lock, flags); 964 965 if (tmr->cancel) 966 goto done; 967 968 ihost->phy_startup_timer_pending = false; 969 970 do { 971 status = sci_controller_start_next_phy(ihost); 972 } while (status != SCI_SUCCESS); 973 974 done: 975 spin_unlock_irqrestore(&ihost->scic_lock, flags); 976 } 977 978 static u16 isci_tci_active(struct isci_host *ihost) 979 { 980 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 981 } 982 983 static enum sci_status sci_controller_start(struct isci_host *ihost, 984 u32 timeout) 985 { 986 enum sci_status result; 987 u16 index; 988 989 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 990 dev_warn(&ihost->pdev->dev, 991 "SCIC Controller start operation requested in " 992 "invalid state\n"); 993 return SCI_FAILURE_INVALID_STATE; 994 } 995 996 /* Build the TCi free pool */ 997 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 998 ihost->tci_head = 0; 999 ihost->tci_tail = 0; 1000 for (index = 0; index < ihost->task_context_entries; index++) 1001 isci_tci_free(ihost, index); 1002 1003 /* Build the RNi free pool */ 1004 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1005 ihost->remote_node_entries); 1006 1007 /* 1008 * Before anything else lets make sure we will not be 1009 * interrupted by the hardware. 1010 */ 1011 sci_controller_disable_interrupts(ihost); 1012 1013 /* Enable the port task scheduler */ 1014 sci_controller_enable_port_task_scheduler(ihost); 1015 1016 /* Assign all the task entries to ihost physical function */ 1017 sci_controller_assign_task_entries(ihost); 1018 1019 /* Now initialize the completion queue */ 1020 sci_controller_initialize_completion_queue(ihost); 1021 1022 /* Initialize the unsolicited frame queue for use */ 1023 sci_controller_initialize_unsolicited_frame_queue(ihost); 1024 1025 /* Start all of the ports on this controller */ 1026 for (index = 0; index < ihost->logical_port_entries; index++) { 1027 struct isci_port *iport = &ihost->ports[index]; 1028 1029 result = sci_port_start(iport); 1030 if (result) 1031 return result; 1032 } 1033 1034 sci_controller_start_next_phy(ihost); 1035 1036 sci_mod_timer(&ihost->timer, timeout); 1037 1038 sci_change_state(&ihost->sm, SCIC_STARTING); 1039 1040 return SCI_SUCCESS; 1041 } 1042 1043 void isci_host_scan_start(struct Scsi_Host *shost) 1044 { 1045 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1046 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1047 1048 set_bit(IHOST_START_PENDING, &ihost->flags); 1049 1050 spin_lock_irq(&ihost->scic_lock); 1051 sci_controller_start(ihost, tmo); 1052 sci_controller_enable_interrupts(ihost); 1053 spin_unlock_irq(&ihost->scic_lock); 1054 } 1055 1056 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) 1057 { 1058 isci_host_change_state(ihost, isci_stopped); 1059 sci_controller_disable_interrupts(ihost); 1060 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1061 wake_up(&ihost->eventq); 1062 } 1063 1064 static void sci_controller_completion_handler(struct isci_host *ihost) 1065 { 1066 /* Empty out the completion queue */ 1067 if (sci_controller_completion_queue_has_entries(ihost)) 1068 sci_controller_process_completions(ihost); 1069 1070 /* Clear the interrupt and enable all interrupts again */ 1071 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1072 /* Could we write the value of SMU_ISR_COMPLETION? */ 1073 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1074 writel(0, &ihost->smu_registers->interrupt_mask); 1075 } 1076 1077 /** 1078 * isci_host_completion_routine() - This function is the delayed service 1079 * routine that calls the sci core library's completion handler. It's 1080 * scheduled as a tasklet from the interrupt service routine when interrupts 1081 * in use, or set as the timeout function in polled mode. 1082 * @data: This parameter specifies the ISCI host object 1083 * 1084 */ 1085 static void isci_host_completion_routine(unsigned long data) 1086 { 1087 struct isci_host *ihost = (struct isci_host *)data; 1088 struct list_head completed_request_list; 1089 struct list_head errored_request_list; 1090 struct list_head *current_position; 1091 struct list_head *next_position; 1092 struct isci_request *request; 1093 struct isci_request *next_request; 1094 struct sas_task *task; 1095 u16 active; 1096 1097 INIT_LIST_HEAD(&completed_request_list); 1098 INIT_LIST_HEAD(&errored_request_list); 1099 1100 spin_lock_irq(&ihost->scic_lock); 1101 1102 sci_controller_completion_handler(ihost); 1103 1104 /* Take the lists of completed I/Os from the host. */ 1105 1106 list_splice_init(&ihost->requests_to_complete, 1107 &completed_request_list); 1108 1109 /* Take the list of errored I/Os from the host. */ 1110 list_splice_init(&ihost->requests_to_errorback, 1111 &errored_request_list); 1112 1113 spin_unlock_irq(&ihost->scic_lock); 1114 1115 /* Process any completions in the lists. */ 1116 list_for_each_safe(current_position, next_position, 1117 &completed_request_list) { 1118 1119 request = list_entry(current_position, struct isci_request, 1120 completed_node); 1121 task = isci_request_access_task(request); 1122 1123 /* Normal notification (task_done) */ 1124 dev_dbg(&ihost->pdev->dev, 1125 "%s: Normal - request/task = %p/%p\n", 1126 __func__, 1127 request, 1128 task); 1129 1130 /* Return the task to libsas */ 1131 if (task != NULL) { 1132 1133 task->lldd_task = NULL; 1134 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1135 1136 /* If the task is already in the abort path, 1137 * the task_done callback cannot be called. 1138 */ 1139 task->task_done(task); 1140 } 1141 } 1142 1143 spin_lock_irq(&ihost->scic_lock); 1144 isci_free_tag(ihost, request->io_tag); 1145 spin_unlock_irq(&ihost->scic_lock); 1146 } 1147 list_for_each_entry_safe(request, next_request, &errored_request_list, 1148 completed_node) { 1149 1150 task = isci_request_access_task(request); 1151 1152 /* Use sas_task_abort */ 1153 dev_warn(&ihost->pdev->dev, 1154 "%s: Error - request/task = %p/%p\n", 1155 __func__, 1156 request, 1157 task); 1158 1159 if (task != NULL) { 1160 1161 /* Put the task into the abort path if it's not there 1162 * already. 1163 */ 1164 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) 1165 sas_task_abort(task); 1166 1167 } else { 1168 /* This is a case where the request has completed with a 1169 * status such that it needed further target servicing, 1170 * but the sas_task reference has already been removed 1171 * from the request. Since it was errored, it was not 1172 * being aborted, so there is nothing to do except free 1173 * it. 1174 */ 1175 1176 spin_lock_irq(&ihost->scic_lock); 1177 /* Remove the request from the remote device's list 1178 * of pending requests. 1179 */ 1180 list_del_init(&request->dev_node); 1181 isci_free_tag(ihost, request->io_tag); 1182 spin_unlock_irq(&ihost->scic_lock); 1183 } 1184 } 1185 1186 /* the coalesence timeout doubles at each encoding step, so 1187 * update it based on the ilog2 value of the outstanding requests 1188 */ 1189 active = isci_tci_active(ihost); 1190 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1191 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1192 &ihost->smu_registers->interrupt_coalesce_control); 1193 } 1194 1195 /** 1196 * sci_controller_stop() - This method will stop an individual controller 1197 * object.This method will invoke the associated user callback upon 1198 * completion. The completion callback is called when the following 1199 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1200 * controller has been quiesced. This method will ensure that all IO 1201 * requests are quiesced, phys are stopped, and all additional operation by 1202 * the hardware is halted. 1203 * @controller: the handle to the controller object to stop. 1204 * @timeout: This parameter specifies the number of milliseconds in which the 1205 * stop operation should complete. 1206 * 1207 * The controller must be in the STARTED or STOPPED state. Indicate if the 1208 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1209 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1210 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1211 * controller is not either in the STARTED or STOPPED states. 1212 */ 1213 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1214 { 1215 if (ihost->sm.current_state_id != SCIC_READY) { 1216 dev_warn(&ihost->pdev->dev, 1217 "SCIC Controller stop operation requested in " 1218 "invalid state\n"); 1219 return SCI_FAILURE_INVALID_STATE; 1220 } 1221 1222 sci_mod_timer(&ihost->timer, timeout); 1223 sci_change_state(&ihost->sm, SCIC_STOPPING); 1224 return SCI_SUCCESS; 1225 } 1226 1227 /** 1228 * sci_controller_reset() - This method will reset the supplied core 1229 * controller regardless of the state of said controller. This operation is 1230 * considered destructive. In other words, all current operations are wiped 1231 * out. No IO completions for outstanding devices occur. Outstanding IO 1232 * requests are not aborted or completed at the actual remote device. 1233 * @controller: the handle to the controller object to reset. 1234 * 1235 * Indicate if the controller reset method succeeded or failed in some way. 1236 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1237 * the controller reset operation is unable to complete. 1238 */ 1239 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1240 { 1241 switch (ihost->sm.current_state_id) { 1242 case SCIC_RESET: 1243 case SCIC_READY: 1244 case SCIC_STOPPED: 1245 case SCIC_FAILED: 1246 /* 1247 * The reset operation is not a graceful cleanup, just 1248 * perform the state transition. 1249 */ 1250 sci_change_state(&ihost->sm, SCIC_RESETTING); 1251 return SCI_SUCCESS; 1252 default: 1253 dev_warn(&ihost->pdev->dev, 1254 "SCIC Controller reset operation requested in " 1255 "invalid state\n"); 1256 return SCI_FAILURE_INVALID_STATE; 1257 } 1258 } 1259 1260 void isci_host_deinit(struct isci_host *ihost) 1261 { 1262 int i; 1263 1264 /* disable output data selects */ 1265 for (i = 0; i < isci_gpio_count(ihost); i++) 1266 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1267 1268 isci_host_change_state(ihost, isci_stopping); 1269 for (i = 0; i < SCI_MAX_PORTS; i++) { 1270 struct isci_port *iport = &ihost->ports[i]; 1271 struct isci_remote_device *idev, *d; 1272 1273 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { 1274 if (test_bit(IDEV_ALLOCATED, &idev->flags)) 1275 isci_remote_device_stop(ihost, idev); 1276 } 1277 } 1278 1279 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1280 1281 spin_lock_irq(&ihost->scic_lock); 1282 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1283 spin_unlock_irq(&ihost->scic_lock); 1284 1285 wait_for_stop(ihost); 1286 1287 /* disable sgpio: where the above wait should give time for the 1288 * enclosure to sample the gpios going inactive 1289 */ 1290 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1291 1292 sci_controller_reset(ihost); 1293 1294 /* Cancel any/all outstanding port timers */ 1295 for (i = 0; i < ihost->logical_port_entries; i++) { 1296 struct isci_port *iport = &ihost->ports[i]; 1297 del_timer_sync(&iport->timer.timer); 1298 } 1299 1300 /* Cancel any/all outstanding phy timers */ 1301 for (i = 0; i < SCI_MAX_PHYS; i++) { 1302 struct isci_phy *iphy = &ihost->phys[i]; 1303 del_timer_sync(&iphy->sata_timer.timer); 1304 } 1305 1306 del_timer_sync(&ihost->port_agent.timer.timer); 1307 1308 del_timer_sync(&ihost->power_control.timer.timer); 1309 1310 del_timer_sync(&ihost->timer.timer); 1311 1312 del_timer_sync(&ihost->phy_timer.timer); 1313 } 1314 1315 static void __iomem *scu_base(struct isci_host *isci_host) 1316 { 1317 struct pci_dev *pdev = isci_host->pdev; 1318 int id = isci_host->id; 1319 1320 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1321 } 1322 1323 static void __iomem *smu_base(struct isci_host *isci_host) 1324 { 1325 struct pci_dev *pdev = isci_host->pdev; 1326 int id = isci_host->id; 1327 1328 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1329 } 1330 1331 static void isci_user_parameters_get(struct sci_user_parameters *u) 1332 { 1333 int i; 1334 1335 for (i = 0; i < SCI_MAX_PHYS; i++) { 1336 struct sci_phy_user_params *u_phy = &u->phys[i]; 1337 1338 u_phy->max_speed_generation = phy_gen; 1339 1340 /* we are not exporting these for now */ 1341 u_phy->align_insertion_frequency = 0x7f; 1342 u_phy->in_connection_align_insertion_frequency = 0xff; 1343 u_phy->notify_enable_spin_up_insertion_frequency = 0x33; 1344 } 1345 1346 u->stp_inactivity_timeout = stp_inactive_to; 1347 u->ssp_inactivity_timeout = ssp_inactive_to; 1348 u->stp_max_occupancy_timeout = stp_max_occ_to; 1349 u->ssp_max_occupancy_timeout = ssp_max_occ_to; 1350 u->no_outbound_task_timeout = no_outbound_task_to; 1351 u->max_concurr_spinup = max_concurr_spinup; 1352 } 1353 1354 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1355 { 1356 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1357 1358 sci_change_state(&ihost->sm, SCIC_RESET); 1359 } 1360 1361 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1362 { 1363 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1364 1365 sci_del_timer(&ihost->timer); 1366 } 1367 1368 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1369 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1370 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1371 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1372 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1373 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1374 1375 /** 1376 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1377 * configure the interrupt coalescence. 1378 * @controller: This parameter represents the handle to the controller object 1379 * for which its interrupt coalesce register is overridden. 1380 * @coalesce_number: Used to control the number of entries in the Completion 1381 * Queue before an interrupt is generated. If the number of entries exceed 1382 * this number, an interrupt will be generated. The valid range of the input 1383 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1384 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1385 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1386 * interrupt coalescing timeout. 1387 * 1388 * Indicate if the user successfully set the interrupt coalesce parameters. 1389 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1390 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1391 */ 1392 static enum sci_status 1393 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1394 u32 coalesce_number, 1395 u32 coalesce_timeout) 1396 { 1397 u8 timeout_encode = 0; 1398 u32 min = 0; 1399 u32 max = 0; 1400 1401 /* Check if the input parameters fall in the range. */ 1402 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1403 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1404 1405 /* 1406 * Defined encoding for interrupt coalescing timeout: 1407 * Value Min Max Units 1408 * ----- --- --- ----- 1409 * 0 - - Disabled 1410 * 1 13.3 20.0 ns 1411 * 2 26.7 40.0 1412 * 3 53.3 80.0 1413 * 4 106.7 160.0 1414 * 5 213.3 320.0 1415 * 6 426.7 640.0 1416 * 7 853.3 1280.0 1417 * 8 1.7 2.6 us 1418 * 9 3.4 5.1 1419 * 10 6.8 10.2 1420 * 11 13.7 20.5 1421 * 12 27.3 41.0 1422 * 13 54.6 81.9 1423 * 14 109.2 163.8 1424 * 15 218.5 327.7 1425 * 16 436.9 655.4 1426 * 17 873.8 1310.7 1427 * 18 1.7 2.6 ms 1428 * 19 3.5 5.2 1429 * 20 7.0 10.5 1430 * 21 14.0 21.0 1431 * 22 28.0 41.9 1432 * 23 55.9 83.9 1433 * 24 111.8 167.8 1434 * 25 223.7 335.5 1435 * 26 447.4 671.1 1436 * 27 894.8 1342.2 1437 * 28 1.8 2.7 s 1438 * Others Undefined */ 1439 1440 /* 1441 * Use the table above to decide the encode of interrupt coalescing timeout 1442 * value for register writing. */ 1443 if (coalesce_timeout == 0) 1444 timeout_encode = 0; 1445 else{ 1446 /* make the timeout value in unit of (10 ns). */ 1447 coalesce_timeout = coalesce_timeout * 100; 1448 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1449 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1450 1451 /* get the encode of timeout for register writing. */ 1452 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1453 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1454 timeout_encode++) { 1455 if (min <= coalesce_timeout && max > coalesce_timeout) 1456 break; 1457 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1458 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1459 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1460 break; 1461 else{ 1462 timeout_encode++; 1463 break; 1464 } 1465 } else { 1466 max = max * 2; 1467 min = min * 2; 1468 } 1469 } 1470 1471 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1472 /* the value is out of range. */ 1473 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1474 } 1475 1476 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1477 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1478 &ihost->smu_registers->interrupt_coalesce_control); 1479 1480 1481 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1482 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1483 1484 return SCI_SUCCESS; 1485 } 1486 1487 1488 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1489 { 1490 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1491 u32 val; 1492 1493 /* enable clock gating for power control of the scu unit */ 1494 val = readl(&ihost->smu_registers->clock_gating_control); 1495 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | 1496 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | 1497 SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); 1498 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); 1499 writel(val, &ihost->smu_registers->clock_gating_control); 1500 1501 /* set the default interrupt coalescence number and timeout value. */ 1502 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1503 } 1504 1505 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1506 { 1507 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1508 1509 /* disable interrupt coalescence. */ 1510 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1511 } 1512 1513 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1514 { 1515 u32 index; 1516 enum sci_status status; 1517 enum sci_status phy_status; 1518 1519 status = SCI_SUCCESS; 1520 1521 for (index = 0; index < SCI_MAX_PHYS; index++) { 1522 phy_status = sci_phy_stop(&ihost->phys[index]); 1523 1524 if (phy_status != SCI_SUCCESS && 1525 phy_status != SCI_FAILURE_INVALID_STATE) { 1526 status = SCI_FAILURE; 1527 1528 dev_warn(&ihost->pdev->dev, 1529 "%s: Controller stop operation failed to stop " 1530 "phy %d because of status %d.\n", 1531 __func__, 1532 ihost->phys[index].phy_index, phy_status); 1533 } 1534 } 1535 1536 return status; 1537 } 1538 1539 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1540 { 1541 u32 index; 1542 enum sci_status port_status; 1543 enum sci_status status = SCI_SUCCESS; 1544 1545 for (index = 0; index < ihost->logical_port_entries; index++) { 1546 struct isci_port *iport = &ihost->ports[index]; 1547 1548 port_status = sci_port_stop(iport); 1549 1550 if ((port_status != SCI_SUCCESS) && 1551 (port_status != SCI_FAILURE_INVALID_STATE)) { 1552 status = SCI_FAILURE; 1553 1554 dev_warn(&ihost->pdev->dev, 1555 "%s: Controller stop operation failed to " 1556 "stop port %d because of status %d.\n", 1557 __func__, 1558 iport->logical_port_index, 1559 port_status); 1560 } 1561 } 1562 1563 return status; 1564 } 1565 1566 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1567 { 1568 u32 index; 1569 enum sci_status status; 1570 enum sci_status device_status; 1571 1572 status = SCI_SUCCESS; 1573 1574 for (index = 0; index < ihost->remote_node_entries; index++) { 1575 if (ihost->device_table[index] != NULL) { 1576 /* / @todo What timeout value do we want to provide to this request? */ 1577 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1578 1579 if ((device_status != SCI_SUCCESS) && 1580 (device_status != SCI_FAILURE_INVALID_STATE)) { 1581 dev_warn(&ihost->pdev->dev, 1582 "%s: Controller stop operation failed " 1583 "to stop device 0x%p because of " 1584 "status %d.\n", 1585 __func__, 1586 ihost->device_table[index], device_status); 1587 } 1588 } 1589 } 1590 1591 return status; 1592 } 1593 1594 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1595 { 1596 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1597 1598 /* Stop all of the components for this controller */ 1599 sci_controller_stop_phys(ihost); 1600 sci_controller_stop_ports(ihost); 1601 sci_controller_stop_devices(ihost); 1602 } 1603 1604 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1605 { 1606 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1607 1608 sci_del_timer(&ihost->timer); 1609 } 1610 1611 static void sci_controller_reset_hardware(struct isci_host *ihost) 1612 { 1613 /* Disable interrupts so we dont take any spurious interrupts */ 1614 sci_controller_disable_interrupts(ihost); 1615 1616 /* Reset the SCU */ 1617 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1618 1619 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1620 udelay(1000); 1621 1622 /* The write to the CQGR clears the CQP */ 1623 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1624 1625 /* The write to the UFQGP clears the UFQPR */ 1626 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1627 } 1628 1629 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1630 { 1631 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1632 1633 sci_controller_reset_hardware(ihost); 1634 sci_change_state(&ihost->sm, SCIC_RESET); 1635 } 1636 1637 static const struct sci_base_state sci_controller_state_table[] = { 1638 [SCIC_INITIAL] = { 1639 .enter_state = sci_controller_initial_state_enter, 1640 }, 1641 [SCIC_RESET] = {}, 1642 [SCIC_INITIALIZING] = {}, 1643 [SCIC_INITIALIZED] = {}, 1644 [SCIC_STARTING] = { 1645 .exit_state = sci_controller_starting_state_exit, 1646 }, 1647 [SCIC_READY] = { 1648 .enter_state = sci_controller_ready_state_enter, 1649 .exit_state = sci_controller_ready_state_exit, 1650 }, 1651 [SCIC_RESETTING] = { 1652 .enter_state = sci_controller_resetting_state_enter, 1653 }, 1654 [SCIC_STOPPING] = { 1655 .enter_state = sci_controller_stopping_state_enter, 1656 .exit_state = sci_controller_stopping_state_exit, 1657 }, 1658 [SCIC_STOPPED] = {}, 1659 [SCIC_FAILED] = {} 1660 }; 1661 1662 static void sci_controller_set_default_config_parameters(struct isci_host *ihost) 1663 { 1664 /* these defaults are overridden by the platform / firmware */ 1665 u16 index; 1666 1667 /* Default to APC mode. */ 1668 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; 1669 1670 /* Default to APC mode. */ 1671 ihost->oem_parameters.controller.max_concurr_spin_up = 1; 1672 1673 /* Default to no SSC operation. */ 1674 ihost->oem_parameters.controller.do_enable_ssc = false; 1675 1676 /* Default to short cables on all phys. */ 1677 ihost->oem_parameters.controller.cable_selection_mask = 0; 1678 1679 /* Initialize all of the port parameter information to narrow ports. */ 1680 for (index = 0; index < SCI_MAX_PORTS; index++) { 1681 ihost->oem_parameters.ports[index].phy_mask = 0; 1682 } 1683 1684 /* Initialize all of the phy parameter information. */ 1685 for (index = 0; index < SCI_MAX_PHYS; index++) { 1686 /* Default to 3G (i.e. Gen 2). */ 1687 ihost->user_parameters.phys[index].max_speed_generation = 1688 SCIC_SDS_PARM_GEN2_SPEED; 1689 1690 /* the frequencies cannot be 0 */ 1691 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f; 1692 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff; 1693 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; 1694 1695 /* 1696 * Previous Vitesse based expanders had a arbitration issue that 1697 * is worked around by having the upper 32-bits of SAS address 1698 * with a value greater then the Vitesse company identifier. 1699 * Hence, usage of 0x5FCFFFFF. */ 1700 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id; 1701 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF; 1702 } 1703 1704 ihost->user_parameters.stp_inactivity_timeout = 5; 1705 ihost->user_parameters.ssp_inactivity_timeout = 5; 1706 ihost->user_parameters.stp_max_occupancy_timeout = 5; 1707 ihost->user_parameters.ssp_max_occupancy_timeout = 20; 1708 ihost->user_parameters.no_outbound_task_timeout = 2; 1709 } 1710 1711 static void controller_timeout(unsigned long data) 1712 { 1713 struct sci_timer *tmr = (struct sci_timer *)data; 1714 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1715 struct sci_base_state_machine *sm = &ihost->sm; 1716 unsigned long flags; 1717 1718 spin_lock_irqsave(&ihost->scic_lock, flags); 1719 1720 if (tmr->cancel) 1721 goto done; 1722 1723 if (sm->current_state_id == SCIC_STARTING) 1724 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1725 else if (sm->current_state_id == SCIC_STOPPING) { 1726 sci_change_state(sm, SCIC_FAILED); 1727 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); 1728 } else /* / @todo Now what do we want to do in this case? */ 1729 dev_err(&ihost->pdev->dev, 1730 "%s: Controller timer fired when controller was not " 1731 "in a state being timed.\n", 1732 __func__); 1733 1734 done: 1735 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1736 } 1737 1738 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1739 void __iomem *scu_base, 1740 void __iomem *smu_base) 1741 { 1742 u8 i; 1743 1744 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1745 1746 ihost->scu_registers = scu_base; 1747 ihost->smu_registers = smu_base; 1748 1749 sci_port_configuration_agent_construct(&ihost->port_agent); 1750 1751 /* Construct the ports for this controller */ 1752 for (i = 0; i < SCI_MAX_PORTS; i++) 1753 sci_port_construct(&ihost->ports[i], i, ihost); 1754 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1755 1756 /* Construct the phys for this controller */ 1757 for (i = 0; i < SCI_MAX_PHYS; i++) { 1758 /* Add all the PHYs to the dummy port */ 1759 sci_phy_construct(&ihost->phys[i], 1760 &ihost->ports[SCI_MAX_PORTS], i); 1761 } 1762 1763 ihost->invalid_phy_mask = 0; 1764 1765 sci_init_timer(&ihost->timer, controller_timeout); 1766 1767 /* Initialize the User and OEM parameters to default values. */ 1768 sci_controller_set_default_config_parameters(ihost); 1769 1770 return sci_controller_reset(ihost); 1771 } 1772 1773 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1774 { 1775 int i; 1776 1777 for (i = 0; i < SCI_MAX_PORTS; i++) 1778 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1779 return -EINVAL; 1780 1781 for (i = 0; i < SCI_MAX_PHYS; i++) 1782 if (oem->phys[i].sas_address.high == 0 && 1783 oem->phys[i].sas_address.low == 0) 1784 return -EINVAL; 1785 1786 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1787 for (i = 0; i < SCI_MAX_PHYS; i++) 1788 if (oem->ports[i].phy_mask != 0) 1789 return -EINVAL; 1790 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1791 u8 phy_mask = 0; 1792 1793 for (i = 0; i < SCI_MAX_PHYS; i++) 1794 phy_mask |= oem->ports[i].phy_mask; 1795 1796 if (phy_mask == 0) 1797 return -EINVAL; 1798 } else 1799 return -EINVAL; 1800 1801 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1802 oem->controller.max_concurr_spin_up < 1) 1803 return -EINVAL; 1804 1805 if (oem->controller.do_enable_ssc) { 1806 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1807 return -EINVAL; 1808 1809 if (version >= ISCI_ROM_VER_1_1) { 1810 u8 test = oem->controller.ssc_sata_tx_spread_level; 1811 1812 switch (test) { 1813 case 0: 1814 case 2: 1815 case 3: 1816 case 6: 1817 case 7: 1818 break; 1819 default: 1820 return -EINVAL; 1821 } 1822 1823 test = oem->controller.ssc_sas_tx_spread_level; 1824 if (oem->controller.ssc_sas_tx_type == 0) { 1825 switch (test) { 1826 case 0: 1827 case 2: 1828 case 3: 1829 break; 1830 default: 1831 return -EINVAL; 1832 } 1833 } else if (oem->controller.ssc_sas_tx_type == 1) { 1834 switch (test) { 1835 case 0: 1836 case 3: 1837 case 6: 1838 break; 1839 default: 1840 return -EINVAL; 1841 } 1842 } 1843 } 1844 } 1845 1846 return 0; 1847 } 1848 1849 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost) 1850 { 1851 u32 state = ihost->sm.current_state_id; 1852 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 1853 1854 if (state == SCIC_RESET || 1855 state == SCIC_INITIALIZING || 1856 state == SCIC_INITIALIZED) { 1857 u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version : 1858 ISCI_ROM_VER_1_0; 1859 1860 if (sci_oem_parameters_validate(&ihost->oem_parameters, 1861 oem_version)) 1862 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1863 1864 return SCI_SUCCESS; 1865 } 1866 1867 return SCI_FAILURE_INVALID_STATE; 1868 } 1869 1870 static u8 max_spin_up(struct isci_host *ihost) 1871 { 1872 if (ihost->user_parameters.max_concurr_spinup) 1873 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1874 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1875 else 1876 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1877 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1878 } 1879 1880 static void power_control_timeout(unsigned long data) 1881 { 1882 struct sci_timer *tmr = (struct sci_timer *)data; 1883 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1884 struct isci_phy *iphy; 1885 unsigned long flags; 1886 u8 i; 1887 1888 spin_lock_irqsave(&ihost->scic_lock, flags); 1889 1890 if (tmr->cancel) 1891 goto done; 1892 1893 ihost->power_control.phys_granted_power = 0; 1894 1895 if (ihost->power_control.phys_waiting == 0) { 1896 ihost->power_control.timer_started = false; 1897 goto done; 1898 } 1899 1900 for (i = 0; i < SCI_MAX_PHYS; i++) { 1901 1902 if (ihost->power_control.phys_waiting == 0) 1903 break; 1904 1905 iphy = ihost->power_control.requesters[i]; 1906 if (iphy == NULL) 1907 continue; 1908 1909 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1910 break; 1911 1912 ihost->power_control.requesters[i] = NULL; 1913 ihost->power_control.phys_waiting--; 1914 ihost->power_control.phys_granted_power++; 1915 sci_phy_consume_power_handler(iphy); 1916 1917 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { 1918 u8 j; 1919 1920 for (j = 0; j < SCI_MAX_PHYS; j++) { 1921 struct isci_phy *requester = ihost->power_control.requesters[j]; 1922 1923 /* 1924 * Search the power_control queue to see if there are other phys 1925 * attached to the same remote device. If found, take all of 1926 * them out of await_sas_power state. 1927 */ 1928 if (requester != NULL && requester != iphy) { 1929 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1930 iphy->frame_rcvd.iaf.sas_addr, 1931 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1932 1933 if (other == 0) { 1934 ihost->power_control.requesters[j] = NULL; 1935 ihost->power_control.phys_waiting--; 1936 sci_phy_consume_power_handler(requester); 1937 } 1938 } 1939 } 1940 } 1941 } 1942 1943 /* 1944 * It doesn't matter if the power list is empty, we need to start the 1945 * timer in case another phy becomes ready. 1946 */ 1947 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1948 ihost->power_control.timer_started = true; 1949 1950 done: 1951 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1952 } 1953 1954 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1955 struct isci_phy *iphy) 1956 { 1957 BUG_ON(iphy == NULL); 1958 1959 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1960 ihost->power_control.phys_granted_power++; 1961 sci_phy_consume_power_handler(iphy); 1962 1963 /* 1964 * stop and start the power_control timer. When the timer fires, the 1965 * no_of_phys_granted_power will be set to 0 1966 */ 1967 if (ihost->power_control.timer_started) 1968 sci_del_timer(&ihost->power_control.timer); 1969 1970 sci_mod_timer(&ihost->power_control.timer, 1971 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1972 ihost->power_control.timer_started = true; 1973 1974 } else { 1975 /* 1976 * There are phys, attached to the same sas address as this phy, are 1977 * already in READY state, this phy don't need wait. 1978 */ 1979 u8 i; 1980 struct isci_phy *current_phy; 1981 1982 for (i = 0; i < SCI_MAX_PHYS; i++) { 1983 u8 other; 1984 current_phy = &ihost->phys[i]; 1985 1986 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1987 iphy->frame_rcvd.iaf.sas_addr, 1988 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1989 1990 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1991 current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS && 1992 other == 0) { 1993 sci_phy_consume_power_handler(iphy); 1994 break; 1995 } 1996 } 1997 1998 if (i == SCI_MAX_PHYS) { 1999 /* Add the phy in the waiting list */ 2000 ihost->power_control.requesters[iphy->phy_index] = iphy; 2001 ihost->power_control.phys_waiting++; 2002 } 2003 } 2004 } 2005 2006 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 2007 struct isci_phy *iphy) 2008 { 2009 BUG_ON(iphy == NULL); 2010 2011 if (ihost->power_control.requesters[iphy->phy_index]) 2012 ihost->power_control.phys_waiting--; 2013 2014 ihost->power_control.requesters[iphy->phy_index] = NULL; 2015 } 2016 2017 static int is_long_cable(int phy, unsigned char selection_byte) 2018 { 2019 return !!(selection_byte & (1 << phy)); 2020 } 2021 2022 static int is_medium_cable(int phy, unsigned char selection_byte) 2023 { 2024 return !!(selection_byte & (1 << (phy + 4))); 2025 } 2026 2027 static enum cable_selections decode_selection_byte( 2028 int phy, 2029 unsigned char selection_byte) 2030 { 2031 return ((selection_byte & (1 << phy)) ? 1 : 0) 2032 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 2033 } 2034 2035 static unsigned char *to_cable_select(struct isci_host *ihost) 2036 { 2037 if (is_cable_select_overridden()) 2038 return ((unsigned char *)&cable_selection_override) 2039 + ihost->id; 2040 else 2041 return &ihost->oem_parameters.controller.cable_selection_mask; 2042 } 2043 2044 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 2045 { 2046 return decode_selection_byte(phy, *to_cable_select(ihost)); 2047 } 2048 2049 char *lookup_cable_names(enum cable_selections selection) 2050 { 2051 static char *cable_names[] = { 2052 [short_cable] = "short", 2053 [long_cable] = "long", 2054 [medium_cable] = "medium", 2055 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 2056 }; 2057 return (selection <= undefined_cable) ? cable_names[selection] 2058 : cable_names[undefined_cable]; 2059 } 2060 2061 #define AFE_REGISTER_WRITE_DELAY 10 2062 2063 static void sci_controller_afe_initialization(struct isci_host *ihost) 2064 { 2065 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 2066 const struct sci_oem_params *oem = &ihost->oem_parameters; 2067 struct pci_dev *pdev = ihost->pdev; 2068 u32 afe_status; 2069 u32 phy_id; 2070 unsigned char cable_selection_mask = *to_cable_select(ihost); 2071 2072 /* Clear DFX Status registers */ 2073 writel(0x0081000f, &afe->afe_dfx_master_control0); 2074 udelay(AFE_REGISTER_WRITE_DELAY); 2075 2076 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 2077 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 2078 * Timer, PM Stagger Timer 2079 */ 2080 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 2081 udelay(AFE_REGISTER_WRITE_DELAY); 2082 } 2083 2084 /* Configure bias currents to normal */ 2085 if (is_a2(pdev)) 2086 writel(0x00005A00, &afe->afe_bias_control); 2087 else if (is_b0(pdev) || is_c0(pdev)) 2088 writel(0x00005F00, &afe->afe_bias_control); 2089 else if (is_c1(pdev)) 2090 writel(0x00005500, &afe->afe_bias_control); 2091 2092 udelay(AFE_REGISTER_WRITE_DELAY); 2093 2094 /* Enable PLL */ 2095 if (is_a2(pdev)) 2096 writel(0x80040908, &afe->afe_pll_control0); 2097 else if (is_b0(pdev) || is_c0(pdev)) 2098 writel(0x80040A08, &afe->afe_pll_control0); 2099 else if (is_c1(pdev)) { 2100 writel(0x80000B08, &afe->afe_pll_control0); 2101 udelay(AFE_REGISTER_WRITE_DELAY); 2102 writel(0x00000B08, &afe->afe_pll_control0); 2103 udelay(AFE_REGISTER_WRITE_DELAY); 2104 writel(0x80000B08, &afe->afe_pll_control0); 2105 } 2106 2107 udelay(AFE_REGISTER_WRITE_DELAY); 2108 2109 /* Wait for the PLL to lock */ 2110 do { 2111 afe_status = readl(&afe->afe_common_block_status); 2112 udelay(AFE_REGISTER_WRITE_DELAY); 2113 } while ((afe_status & 0x00001000) == 0); 2114 2115 if (is_a2(pdev)) { 2116 /* Shorten SAS SNW lock time (RxLock timer value from 76 2117 * us to 50 us) 2118 */ 2119 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 2120 udelay(AFE_REGISTER_WRITE_DELAY); 2121 } 2122 2123 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 2124 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id]; 2125 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 2126 int cable_length_long = 2127 is_long_cable(phy_id, cable_selection_mask); 2128 int cable_length_medium = 2129 is_medium_cable(phy_id, cable_selection_mask); 2130 2131 if (is_a2(pdev)) { 2132 /* All defaults, except the Receive Word 2133 * Alignament/Comma Detect Enable....(0xe800) 2134 */ 2135 writel(0x00004512, &xcvr->afe_xcvr_control0); 2136 udelay(AFE_REGISTER_WRITE_DELAY); 2137 2138 writel(0x0050100F, &xcvr->afe_xcvr_control1); 2139 udelay(AFE_REGISTER_WRITE_DELAY); 2140 } else if (is_b0(pdev)) { 2141 /* Configure transmitter SSC parameters */ 2142 writel(0x00030000, &xcvr->afe_tx_ssc_control); 2143 udelay(AFE_REGISTER_WRITE_DELAY); 2144 } else if (is_c0(pdev)) { 2145 /* Configure transmitter SSC parameters */ 2146 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2147 udelay(AFE_REGISTER_WRITE_DELAY); 2148 2149 /* All defaults, except the Receive Word 2150 * Alignament/Comma Detect Enable....(0xe800) 2151 */ 2152 writel(0x00014500, &xcvr->afe_xcvr_control0); 2153 udelay(AFE_REGISTER_WRITE_DELAY); 2154 } else if (is_c1(pdev)) { 2155 /* Configure transmitter SSC parameters */ 2156 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2157 udelay(AFE_REGISTER_WRITE_DELAY); 2158 2159 /* All defaults, except the Receive Word 2160 * Alignament/Comma Detect Enable....(0xe800) 2161 */ 2162 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2163 udelay(AFE_REGISTER_WRITE_DELAY); 2164 } 2165 2166 /* Power up TX and RX out from power down (PWRDNTX and 2167 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2168 */ 2169 if (is_a2(pdev)) 2170 writel(0x000003F0, &xcvr->afe_channel_control); 2171 else if (is_b0(pdev)) { 2172 writel(0x000003D7, &xcvr->afe_channel_control); 2173 udelay(AFE_REGISTER_WRITE_DELAY); 2174 2175 writel(0x000003D4, &xcvr->afe_channel_control); 2176 } else if (is_c0(pdev)) { 2177 writel(0x000001E7, &xcvr->afe_channel_control); 2178 udelay(AFE_REGISTER_WRITE_DELAY); 2179 2180 writel(0x000001E4, &xcvr->afe_channel_control); 2181 } else if (is_c1(pdev)) { 2182 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2183 &xcvr->afe_channel_control); 2184 udelay(AFE_REGISTER_WRITE_DELAY); 2185 2186 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2187 &xcvr->afe_channel_control); 2188 } 2189 udelay(AFE_REGISTER_WRITE_DELAY); 2190 2191 if (is_a2(pdev)) { 2192 /* Enable TX equalization (0xe824) */ 2193 writel(0x00040000, &xcvr->afe_tx_control); 2194 udelay(AFE_REGISTER_WRITE_DELAY); 2195 } 2196 2197 if (is_a2(pdev) || is_b0(pdev)) 2198 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2199 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2200 * Enabled) ....(0xe800) 2201 */ 2202 writel(0x00004100, &xcvr->afe_xcvr_control0); 2203 else if (is_c0(pdev)) 2204 writel(0x00014100, &xcvr->afe_xcvr_control0); 2205 else if (is_c1(pdev)) 2206 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2207 udelay(AFE_REGISTER_WRITE_DELAY); 2208 2209 /* Leave DFE/FFE on */ 2210 if (is_a2(pdev)) 2211 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2212 else if (is_b0(pdev)) { 2213 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2214 udelay(AFE_REGISTER_WRITE_DELAY); 2215 /* Enable TX equalization (0xe824) */ 2216 writel(0x00040000, &xcvr->afe_tx_control); 2217 } else if (is_c0(pdev)) { 2218 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2219 udelay(AFE_REGISTER_WRITE_DELAY); 2220 2221 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2222 udelay(AFE_REGISTER_WRITE_DELAY); 2223 2224 /* Enable TX equalization (0xe824) */ 2225 writel(0x00040000, &xcvr->afe_tx_control); 2226 } else if (is_c1(pdev)) { 2227 writel(cable_length_long ? 0x01500C0C : 2228 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2229 &xcvr->afe_xcvr_control1); 2230 udelay(AFE_REGISTER_WRITE_DELAY); 2231 2232 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2233 udelay(AFE_REGISTER_WRITE_DELAY); 2234 2235 writel(cable_length_long ? 0x33091C1F : 2236 cable_length_medium ? 0x3315181F : 0x2B17161F, 2237 &xcvr->afe_rx_ssc_control0); 2238 udelay(AFE_REGISTER_WRITE_DELAY); 2239 2240 /* Enable TX equalization (0xe824) */ 2241 writel(0x00040000, &xcvr->afe_tx_control); 2242 } 2243 2244 udelay(AFE_REGISTER_WRITE_DELAY); 2245 2246 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2247 udelay(AFE_REGISTER_WRITE_DELAY); 2248 2249 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2250 udelay(AFE_REGISTER_WRITE_DELAY); 2251 2252 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2253 udelay(AFE_REGISTER_WRITE_DELAY); 2254 2255 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2256 udelay(AFE_REGISTER_WRITE_DELAY); 2257 } 2258 2259 /* Transfer control to the PEs */ 2260 writel(0x00010f00, &afe->afe_dfx_master_control0); 2261 udelay(AFE_REGISTER_WRITE_DELAY); 2262 } 2263 2264 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2265 { 2266 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2267 2268 memset(ihost->power_control.requesters, 0, 2269 sizeof(ihost->power_control.requesters)); 2270 2271 ihost->power_control.phys_waiting = 0; 2272 ihost->power_control.phys_granted_power = 0; 2273 } 2274 2275 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2276 { 2277 struct sci_base_state_machine *sm = &ihost->sm; 2278 enum sci_status result = SCI_FAILURE; 2279 unsigned long i, state, val; 2280 2281 if (ihost->sm.current_state_id != SCIC_RESET) { 2282 dev_warn(&ihost->pdev->dev, 2283 "SCIC Controller initialize operation requested " 2284 "in invalid state\n"); 2285 return SCI_FAILURE_INVALID_STATE; 2286 } 2287 2288 sci_change_state(sm, SCIC_INITIALIZING); 2289 2290 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2291 2292 ihost->next_phy_to_start = 0; 2293 ihost->phy_startup_timer_pending = false; 2294 2295 sci_controller_initialize_power_control(ihost); 2296 2297 /* 2298 * There is nothing to do here for B0 since we do not have to 2299 * program the AFE registers. 2300 * / @todo The AFE settings are supposed to be correct for the B0 but 2301 * / presently they seem to be wrong. */ 2302 sci_controller_afe_initialization(ihost); 2303 2304 2305 /* Take the hardware out of reset */ 2306 writel(0, &ihost->smu_registers->soft_reset_control); 2307 2308 /* 2309 * / @todo Provide meaningfull error code for hardware failure 2310 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2311 for (i = 100; i >= 1; i--) { 2312 u32 status; 2313 2314 /* Loop until the hardware reports success */ 2315 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2316 status = readl(&ihost->smu_registers->control_status); 2317 2318 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2319 break; 2320 } 2321 if (i == 0) 2322 goto out; 2323 2324 /* 2325 * Determine what are the actaul device capacities that the 2326 * hardware will support */ 2327 val = readl(&ihost->smu_registers->device_context_capacity); 2328 2329 /* Record the smaller of the two capacity values */ 2330 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2331 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2332 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2333 2334 /* 2335 * Make all PEs that are unassigned match up with the 2336 * logical ports 2337 */ 2338 for (i = 0; i < ihost->logical_port_entries; i++) { 2339 struct scu_port_task_scheduler_group_registers __iomem 2340 *ptsg = &ihost->scu_registers->peg0.ptsg; 2341 2342 writel(i, &ptsg->protocol_engine[i]); 2343 } 2344 2345 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2346 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2347 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2348 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2349 2350 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2351 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2352 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2353 2354 /* 2355 * Initialize the PHYs before the PORTs because the PHY registers 2356 * are accessed during the port initialization. 2357 */ 2358 for (i = 0; i < SCI_MAX_PHYS; i++) { 2359 result = sci_phy_initialize(&ihost->phys[i], 2360 &ihost->scu_registers->peg0.pe[i].tl, 2361 &ihost->scu_registers->peg0.pe[i].ll); 2362 if (result != SCI_SUCCESS) 2363 goto out; 2364 } 2365 2366 for (i = 0; i < ihost->logical_port_entries; i++) { 2367 struct isci_port *iport = &ihost->ports[i]; 2368 2369 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2370 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2371 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2372 } 2373 2374 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2375 2376 out: 2377 /* Advance the controller state machine */ 2378 if (result == SCI_SUCCESS) 2379 state = SCIC_INITIALIZED; 2380 else 2381 state = SCIC_FAILED; 2382 sci_change_state(sm, state); 2383 2384 return result; 2385 } 2386 2387 static enum sci_status sci_user_parameters_set(struct isci_host *ihost, 2388 struct sci_user_parameters *sci_parms) 2389 { 2390 u32 state = ihost->sm.current_state_id; 2391 2392 if (state == SCIC_RESET || 2393 state == SCIC_INITIALIZING || 2394 state == SCIC_INITIALIZED) { 2395 u16 index; 2396 2397 /* 2398 * Validate the user parameters. If they are not legal, then 2399 * return a failure. 2400 */ 2401 for (index = 0; index < SCI_MAX_PHYS; index++) { 2402 struct sci_phy_user_params *user_phy; 2403 2404 user_phy = &sci_parms->phys[index]; 2405 2406 if (!((user_phy->max_speed_generation <= 2407 SCIC_SDS_PARM_MAX_SPEED) && 2408 (user_phy->max_speed_generation > 2409 SCIC_SDS_PARM_NO_SPEED))) 2410 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2411 2412 if (user_phy->in_connection_align_insertion_frequency < 2413 3) 2414 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2415 2416 if ((user_phy->in_connection_align_insertion_frequency < 2417 3) || 2418 (user_phy->align_insertion_frequency == 0) || 2419 (user_phy-> 2420 notify_enable_spin_up_insertion_frequency == 2421 0)) 2422 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2423 } 2424 2425 if ((sci_parms->stp_inactivity_timeout == 0) || 2426 (sci_parms->ssp_inactivity_timeout == 0) || 2427 (sci_parms->stp_max_occupancy_timeout == 0) || 2428 (sci_parms->ssp_max_occupancy_timeout == 0) || 2429 (sci_parms->no_outbound_task_timeout == 0)) 2430 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2431 2432 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms)); 2433 2434 return SCI_SUCCESS; 2435 } 2436 2437 return SCI_FAILURE_INVALID_STATE; 2438 } 2439 2440 static int sci_controller_mem_init(struct isci_host *ihost) 2441 { 2442 struct device *dev = &ihost->pdev->dev; 2443 dma_addr_t dma; 2444 size_t size; 2445 int err; 2446 2447 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2448 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2449 if (!ihost->completion_queue) 2450 return -ENOMEM; 2451 2452 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower); 2453 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper); 2454 2455 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2456 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma, 2457 GFP_KERNEL); 2458 if (!ihost->remote_node_context_table) 2459 return -ENOMEM; 2460 2461 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower); 2462 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper); 2463 2464 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2465 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL); 2466 if (!ihost->task_context_table) 2467 return -ENOMEM; 2468 2469 ihost->task_context_dma = dma; 2470 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower); 2471 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper); 2472 2473 err = sci_unsolicited_frame_control_construct(ihost); 2474 if (err) 2475 return err; 2476 2477 /* 2478 * Inform the silicon as to the location of the UF headers and 2479 * address table. 2480 */ 2481 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2482 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2483 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2484 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2485 2486 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2487 &ihost->scu_registers->sdma.uf_address_table_lower); 2488 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2489 &ihost->scu_registers->sdma.uf_address_table_upper); 2490 2491 return 0; 2492 } 2493 2494 int isci_host_init(struct isci_host *ihost) 2495 { 2496 int err = 0, i; 2497 enum sci_status status; 2498 struct sci_user_parameters sci_user_params; 2499 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); 2500 2501 spin_lock_init(&ihost->state_lock); 2502 spin_lock_init(&ihost->scic_lock); 2503 init_waitqueue_head(&ihost->eventq); 2504 2505 isci_host_change_state(ihost, isci_starting); 2506 2507 status = sci_controller_construct(ihost, scu_base(ihost), 2508 smu_base(ihost)); 2509 2510 if (status != SCI_SUCCESS) { 2511 dev_err(&ihost->pdev->dev, 2512 "%s: sci_controller_construct failed - status = %x\n", 2513 __func__, 2514 status); 2515 return -ENODEV; 2516 } 2517 2518 ihost->sas_ha.dev = &ihost->pdev->dev; 2519 ihost->sas_ha.lldd_ha = ihost; 2520 2521 /* 2522 * grab initial values stored in the controller object for OEM and USER 2523 * parameters 2524 */ 2525 isci_user_parameters_get(&sci_user_params); 2526 status = sci_user_parameters_set(ihost, &sci_user_params); 2527 if (status != SCI_SUCCESS) { 2528 dev_warn(&ihost->pdev->dev, 2529 "%s: sci_user_parameters_set failed\n", 2530 __func__); 2531 return -ENODEV; 2532 } 2533 2534 /* grab any OEM parameters specified in orom */ 2535 if (pci_info->orom) { 2536 status = isci_parse_oem_parameters(&ihost->oem_parameters, 2537 pci_info->orom, 2538 ihost->id); 2539 if (status != SCI_SUCCESS) { 2540 dev_warn(&ihost->pdev->dev, 2541 "parsing firmware oem parameters failed\n"); 2542 return -EINVAL; 2543 } 2544 } 2545 2546 status = sci_oem_parameters_set(ihost); 2547 if (status != SCI_SUCCESS) { 2548 dev_warn(&ihost->pdev->dev, 2549 "%s: sci_oem_parameters_set failed\n", 2550 __func__); 2551 return -ENODEV; 2552 } 2553 2554 tasklet_init(&ihost->completion_tasklet, 2555 isci_host_completion_routine, (unsigned long)ihost); 2556 2557 INIT_LIST_HEAD(&ihost->requests_to_complete); 2558 INIT_LIST_HEAD(&ihost->requests_to_errorback); 2559 2560 spin_lock_irq(&ihost->scic_lock); 2561 status = sci_controller_initialize(ihost); 2562 spin_unlock_irq(&ihost->scic_lock); 2563 if (status != SCI_SUCCESS) { 2564 dev_warn(&ihost->pdev->dev, 2565 "%s: sci_controller_initialize failed -" 2566 " status = 0x%x\n", 2567 __func__, status); 2568 return -ENODEV; 2569 } 2570 2571 err = sci_controller_mem_init(ihost); 2572 if (err) 2573 return err; 2574 2575 for (i = 0; i < SCI_MAX_PORTS; i++) 2576 isci_port_init(&ihost->ports[i], ihost, i); 2577 2578 for (i = 0; i < SCI_MAX_PHYS; i++) 2579 isci_phy_init(&ihost->phys[i], ihost, i); 2580 2581 /* enable sgpio */ 2582 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2583 for (i = 0; i < isci_gpio_count(ihost); i++) 2584 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2585 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2586 2587 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 2588 struct isci_remote_device *idev = &ihost->devices[i]; 2589 2590 INIT_LIST_HEAD(&idev->reqs_in_process); 2591 INIT_LIST_HEAD(&idev->node); 2592 } 2593 2594 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2595 struct isci_request *ireq; 2596 dma_addr_t dma; 2597 2598 ireq = dmam_alloc_coherent(&ihost->pdev->dev, 2599 sizeof(struct isci_request), &dma, 2600 GFP_KERNEL); 2601 if (!ireq) 2602 return -ENOMEM; 2603 2604 ireq->tc = &ihost->task_context_table[i]; 2605 ireq->owning_controller = ihost; 2606 spin_lock_init(&ireq->state_lock); 2607 ireq->request_daddr = dma; 2608 ireq->isci_host = ihost; 2609 ihost->reqs[i] = ireq; 2610 } 2611 2612 return 0; 2613 } 2614 2615 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2616 struct isci_phy *iphy) 2617 { 2618 switch (ihost->sm.current_state_id) { 2619 case SCIC_STARTING: 2620 sci_del_timer(&ihost->phy_timer); 2621 ihost->phy_startup_timer_pending = false; 2622 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2623 iport, iphy); 2624 sci_controller_start_next_phy(ihost); 2625 break; 2626 case SCIC_READY: 2627 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2628 iport, iphy); 2629 break; 2630 default: 2631 dev_dbg(&ihost->pdev->dev, 2632 "%s: SCIC Controller linkup event from phy %d in " 2633 "unexpected state %d\n", __func__, iphy->phy_index, 2634 ihost->sm.current_state_id); 2635 } 2636 } 2637 2638 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2639 struct isci_phy *iphy) 2640 { 2641 switch (ihost->sm.current_state_id) { 2642 case SCIC_STARTING: 2643 case SCIC_READY: 2644 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2645 iport, iphy); 2646 break; 2647 default: 2648 dev_dbg(&ihost->pdev->dev, 2649 "%s: SCIC Controller linkdown event from phy %d in " 2650 "unexpected state %d\n", 2651 __func__, 2652 iphy->phy_index, 2653 ihost->sm.current_state_id); 2654 } 2655 } 2656 2657 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2658 { 2659 u32 index; 2660 2661 for (index = 0; index < ihost->remote_node_entries; index++) { 2662 if ((ihost->device_table[index] != NULL) && 2663 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2664 return true; 2665 } 2666 2667 return false; 2668 } 2669 2670 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2671 struct isci_remote_device *idev) 2672 { 2673 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2674 dev_dbg(&ihost->pdev->dev, 2675 "SCIC Controller 0x%p remote device stopped event " 2676 "from device 0x%p in unexpected state %d\n", 2677 ihost, idev, 2678 ihost->sm.current_state_id); 2679 return; 2680 } 2681 2682 if (!sci_controller_has_remote_devices_stopping(ihost)) 2683 sci_change_state(&ihost->sm, SCIC_STOPPED); 2684 } 2685 2686 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2687 { 2688 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2689 __func__, ihost->id, request); 2690 2691 writel(request, &ihost->smu_registers->post_context_port); 2692 } 2693 2694 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2695 { 2696 u16 task_index; 2697 u16 task_sequence; 2698 2699 task_index = ISCI_TAG_TCI(io_tag); 2700 2701 if (task_index < ihost->task_context_entries) { 2702 struct isci_request *ireq = ihost->reqs[task_index]; 2703 2704 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2705 task_sequence = ISCI_TAG_SEQ(io_tag); 2706 2707 if (task_sequence == ihost->io_request_sequence[task_index]) 2708 return ireq; 2709 } 2710 } 2711 2712 return NULL; 2713 } 2714 2715 /** 2716 * This method allocates remote node index and the reserves the remote node 2717 * context space for use. This method can fail if there are no more remote 2718 * node index available. 2719 * @scic: This is the controller object which contains the set of 2720 * free remote node ids 2721 * @sci_dev: This is the device object which is requesting the a remote node 2722 * id 2723 * @node_id: This is the remote node id that is assinged to the device if one 2724 * is available 2725 * 2726 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2727 * node index available. 2728 */ 2729 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2730 struct isci_remote_device *idev, 2731 u16 *node_id) 2732 { 2733 u16 node_index; 2734 u32 remote_node_count = sci_remote_device_node_count(idev); 2735 2736 node_index = sci_remote_node_table_allocate_remote_node( 2737 &ihost->available_remote_nodes, remote_node_count 2738 ); 2739 2740 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2741 ihost->device_table[node_index] = idev; 2742 2743 *node_id = node_index; 2744 2745 return SCI_SUCCESS; 2746 } 2747 2748 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2749 } 2750 2751 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2752 struct isci_remote_device *idev, 2753 u16 node_id) 2754 { 2755 u32 remote_node_count = sci_remote_device_node_count(idev); 2756 2757 if (ihost->device_table[node_id] == idev) { 2758 ihost->device_table[node_id] = NULL; 2759 2760 sci_remote_node_table_release_remote_node_index( 2761 &ihost->available_remote_nodes, remote_node_count, node_id 2762 ); 2763 } 2764 } 2765 2766 void sci_controller_copy_sata_response(void *response_buffer, 2767 void *frame_header, 2768 void *frame_buffer) 2769 { 2770 /* XXX type safety? */ 2771 memcpy(response_buffer, frame_header, sizeof(u32)); 2772 2773 memcpy(response_buffer + sizeof(u32), 2774 frame_buffer, 2775 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2776 } 2777 2778 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2779 { 2780 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2781 writel(ihost->uf_control.get, 2782 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2783 } 2784 2785 void isci_tci_free(struct isci_host *ihost, u16 tci) 2786 { 2787 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2788 2789 ihost->tci_pool[tail] = tci; 2790 ihost->tci_tail = tail + 1; 2791 } 2792 2793 static u16 isci_tci_alloc(struct isci_host *ihost) 2794 { 2795 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2796 u16 tci = ihost->tci_pool[head]; 2797 2798 ihost->tci_head = head + 1; 2799 return tci; 2800 } 2801 2802 static u16 isci_tci_space(struct isci_host *ihost) 2803 { 2804 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2805 } 2806 2807 u16 isci_alloc_tag(struct isci_host *ihost) 2808 { 2809 if (isci_tci_space(ihost)) { 2810 u16 tci = isci_tci_alloc(ihost); 2811 u8 seq = ihost->io_request_sequence[tci]; 2812 2813 return ISCI_TAG(seq, tci); 2814 } 2815 2816 return SCI_CONTROLLER_INVALID_IO_TAG; 2817 } 2818 2819 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2820 { 2821 u16 tci = ISCI_TAG_TCI(io_tag); 2822 u16 seq = ISCI_TAG_SEQ(io_tag); 2823 2824 /* prevent tail from passing head */ 2825 if (isci_tci_active(ihost) == 0) 2826 return SCI_FAILURE_INVALID_IO_TAG; 2827 2828 if (seq == ihost->io_request_sequence[tci]) { 2829 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2830 2831 isci_tci_free(ihost, tci); 2832 2833 return SCI_SUCCESS; 2834 } 2835 return SCI_FAILURE_INVALID_IO_TAG; 2836 } 2837 2838 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2839 struct isci_remote_device *idev, 2840 struct isci_request *ireq) 2841 { 2842 enum sci_status status; 2843 2844 if (ihost->sm.current_state_id != SCIC_READY) { 2845 dev_warn(&ihost->pdev->dev, "invalid state to start I/O"); 2846 return SCI_FAILURE_INVALID_STATE; 2847 } 2848 2849 status = sci_remote_device_start_io(ihost, idev, ireq); 2850 if (status != SCI_SUCCESS) 2851 return status; 2852 2853 set_bit(IREQ_ACTIVE, &ireq->flags); 2854 sci_controller_post_request(ihost, ireq->post_context); 2855 return SCI_SUCCESS; 2856 } 2857 2858 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2859 struct isci_remote_device *idev, 2860 struct isci_request *ireq) 2861 { 2862 /* terminate an ongoing (i.e. started) core IO request. This does not 2863 * abort the IO request at the target, but rather removes the IO 2864 * request from the host controller. 2865 */ 2866 enum sci_status status; 2867 2868 if (ihost->sm.current_state_id != SCIC_READY) { 2869 dev_warn(&ihost->pdev->dev, 2870 "invalid state to terminate request\n"); 2871 return SCI_FAILURE_INVALID_STATE; 2872 } 2873 2874 status = sci_io_request_terminate(ireq); 2875 if (status != SCI_SUCCESS) 2876 return status; 2877 2878 /* 2879 * Utilize the original post context command and or in the POST_TC_ABORT 2880 * request sub-type. 2881 */ 2882 sci_controller_post_request(ihost, 2883 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2884 return SCI_SUCCESS; 2885 } 2886 2887 /** 2888 * sci_controller_complete_io() - This method will perform core specific 2889 * completion operations for an IO request. After this method is invoked, 2890 * the user should consider the IO request as invalid until it is properly 2891 * reused (i.e. re-constructed). 2892 * @ihost: The handle to the controller object for which to complete the 2893 * IO request. 2894 * @idev: The handle to the remote device object for which to complete 2895 * the IO request. 2896 * @ireq: the handle to the io request object to complete. 2897 */ 2898 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2899 struct isci_remote_device *idev, 2900 struct isci_request *ireq) 2901 { 2902 enum sci_status status; 2903 u16 index; 2904 2905 switch (ihost->sm.current_state_id) { 2906 case SCIC_STOPPING: 2907 /* XXX: Implement this function */ 2908 return SCI_FAILURE; 2909 case SCIC_READY: 2910 status = sci_remote_device_complete_io(ihost, idev, ireq); 2911 if (status != SCI_SUCCESS) 2912 return status; 2913 2914 index = ISCI_TAG_TCI(ireq->io_tag); 2915 clear_bit(IREQ_ACTIVE, &ireq->flags); 2916 return SCI_SUCCESS; 2917 default: 2918 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O"); 2919 return SCI_FAILURE_INVALID_STATE; 2920 } 2921 2922 } 2923 2924 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2925 { 2926 struct isci_host *ihost = ireq->owning_controller; 2927 2928 if (ihost->sm.current_state_id != SCIC_READY) { 2929 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O"); 2930 return SCI_FAILURE_INVALID_STATE; 2931 } 2932 2933 set_bit(IREQ_ACTIVE, &ireq->flags); 2934 sci_controller_post_request(ihost, ireq->post_context); 2935 return SCI_SUCCESS; 2936 } 2937 2938 /** 2939 * sci_controller_start_task() - This method is called by the SCIC user to 2940 * send/start a framework task management request. 2941 * @controller: the handle to the controller object for which to start the task 2942 * management request. 2943 * @remote_device: the handle to the remote device object for which to start 2944 * the task management request. 2945 * @task_request: the handle to the task request object to start. 2946 */ 2947 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2948 struct isci_remote_device *idev, 2949 struct isci_request *ireq) 2950 { 2951 enum sci_status status; 2952 2953 if (ihost->sm.current_state_id != SCIC_READY) { 2954 dev_warn(&ihost->pdev->dev, 2955 "%s: SCIC Controller starting task from invalid " 2956 "state\n", 2957 __func__); 2958 return SCI_TASK_FAILURE_INVALID_STATE; 2959 } 2960 2961 status = sci_remote_device_start_task(ihost, idev, ireq); 2962 switch (status) { 2963 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2964 set_bit(IREQ_ACTIVE, &ireq->flags); 2965 2966 /* 2967 * We will let framework know this task request started successfully, 2968 * although core is still woring on starting the request (to post tc when 2969 * RNC is resumed.) 2970 */ 2971 return SCI_SUCCESS; 2972 case SCI_SUCCESS: 2973 set_bit(IREQ_ACTIVE, &ireq->flags); 2974 sci_controller_post_request(ihost, ireq->post_context); 2975 break; 2976 default: 2977 break; 2978 } 2979 2980 return status; 2981 } 2982 2983 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2984 { 2985 int d; 2986 2987 /* no support for TX_GP_CFG */ 2988 if (reg_index == 0) 2989 return -EINVAL; 2990 2991 for (d = 0; d < isci_gpio_count(ihost); d++) { 2992 u32 val = 0x444; /* all ODx.n clear */ 2993 int i; 2994 2995 for (i = 0; i < 3; i++) { 2996 int bit = (i << 2) + 2; 2997 2998 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2999 write_data, reg_index, 3000 reg_count); 3001 if (bit < 0) 3002 break; 3003 3004 /* if od is set, clear the 'invert' bit */ 3005 val &= ~(bit << ((i << 2) + 2)); 3006 } 3007 3008 if (i < 3) 3009 break; 3010 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 3011 } 3012 3013 /* unless reg_index is > 1, we should always be able to write at 3014 * least one register 3015 */ 3016 return d > 0; 3017 } 3018 3019 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 3020 u8 reg_count, u8 *write_data) 3021 { 3022 struct isci_host *ihost = sas_ha->lldd_ha; 3023 int written; 3024 3025 switch (reg_type) { 3026 case SAS_GPIO_REG_TX_GP: 3027 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 3028 break; 3029 default: 3030 written = -EINVAL; 3031 } 3032 3033 return written; 3034 } 3035