1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scu_completion_codes.h" 65 #include "scu_event_codes.h" 66 #include "registers.h" 67 #include "scu_remote_node_context.h" 68 #include "scu_task_context.h" 69 70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 71 72 #define smu_max_ports(dcc_value) \ 73 (\ 74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 76 ) 77 78 #define smu_max_task_contexts(dcc_value) \ 79 (\ 80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 82 ) 83 84 #define smu_max_rncs(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 88 ) 89 90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 91 92 /** 93 * 94 * 95 * The number of milliseconds to wait while a given phy is consuming power 96 * before allowing another set of phys to consume power. Ultimately, this will 97 * be specified by OEM parameter. 98 */ 99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 100 101 /** 102 * NORMALIZE_PUT_POINTER() - 103 * 104 * This macro will normalize the completion queue put pointer so its value can 105 * be used as an array inde 106 */ 107 #define NORMALIZE_PUT_POINTER(x) \ 108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 109 110 111 /** 112 * NORMALIZE_EVENT_POINTER() - 113 * 114 * This macro will normalize the completion queue event entry so its value can 115 * be used as an index. 116 */ 117 #define NORMALIZE_EVENT_POINTER(x) \ 118 (\ 119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 121 ) 122 123 /** 124 * NORMALIZE_GET_POINTER() - 125 * 126 * This macro will normalize the completion queue get pointer so its value can 127 * be used as an index into an array 128 */ 129 #define NORMALIZE_GET_POINTER(x) \ 130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 131 132 /** 133 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 134 * 135 * This macro will normalize the completion queue cycle pointer so it matches 136 * the completion queue cycle bit 137 */ 138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 140 141 /** 142 * COMPLETION_QUEUE_CYCLE_BIT() - 143 * 144 * This macro will return the cycle bit of the completion queue entry 145 */ 146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 147 148 /* Init the state machine and call the state entry function (if any) */ 149 void sci_init_sm(struct sci_base_state_machine *sm, 150 const struct sci_base_state *state_table, u32 initial_state) 151 { 152 sci_state_transition_t handler; 153 154 sm->initial_state_id = initial_state; 155 sm->previous_state_id = initial_state; 156 sm->current_state_id = initial_state; 157 sm->state_table = state_table; 158 159 handler = sm->state_table[initial_state].enter_state; 160 if (handler) 161 handler(sm); 162 } 163 164 /* Call the state exit fn, update the current state, call the state entry fn */ 165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 166 { 167 sci_state_transition_t handler; 168 169 handler = sm->state_table[sm->current_state_id].exit_state; 170 if (handler) 171 handler(sm); 172 173 sm->previous_state_id = sm->current_state_id; 174 sm->current_state_id = next_state; 175 176 handler = sm->state_table[sm->current_state_id].enter_state; 177 if (handler) 178 handler(sm); 179 } 180 181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 182 { 183 u32 get_value = ihost->completion_queue_get; 184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 185 186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 188 return true; 189 190 return false; 191 } 192 193 static bool sci_controller_isr(struct isci_host *ihost) 194 { 195 if (sci_controller_completion_queue_has_entries(ihost)) 196 return true; 197 198 /* we have a spurious interrupt it could be that we have already 199 * emptied the completion queue from a previous interrupt 200 * FIXME: really!? 201 */ 202 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 203 204 /* There is a race in the hardware that could cause us not to be 205 * notified of an interrupt completion if we do not take this 206 * step. We will mask then unmask the interrupts so if there is 207 * another interrupt pending the clearing of the interrupt 208 * source we get the next interrupt message. 209 */ 210 spin_lock(&ihost->scic_lock); 211 if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) { 212 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 213 writel(0, &ihost->smu_registers->interrupt_mask); 214 } 215 spin_unlock(&ihost->scic_lock); 216 217 return false; 218 } 219 220 irqreturn_t isci_msix_isr(int vec, void *data) 221 { 222 struct isci_host *ihost = data; 223 224 if (sci_controller_isr(ihost)) 225 tasklet_schedule(&ihost->completion_tasklet); 226 227 return IRQ_HANDLED; 228 } 229 230 static bool sci_controller_error_isr(struct isci_host *ihost) 231 { 232 u32 interrupt_status; 233 234 interrupt_status = 235 readl(&ihost->smu_registers->interrupt_status); 236 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 237 238 if (interrupt_status != 0) { 239 /* 240 * There is an error interrupt pending so let it through and handle 241 * in the callback */ 242 return true; 243 } 244 245 /* 246 * There is a race in the hardware that could cause us not to be notified 247 * of an interrupt completion if we do not take this step. We will mask 248 * then unmask the error interrupts so if there was another interrupt 249 * pending we will be notified. 250 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 251 writel(0xff, &ihost->smu_registers->interrupt_mask); 252 writel(0, &ihost->smu_registers->interrupt_mask); 253 254 return false; 255 } 256 257 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 258 { 259 u32 index = SCU_GET_COMPLETION_INDEX(ent); 260 struct isci_request *ireq = ihost->reqs[index]; 261 262 /* Make sure that we really want to process this IO request */ 263 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 264 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 265 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 266 /* Yep this is a valid io request pass it along to the 267 * io request handler 268 */ 269 sci_io_request_tc_completion(ireq, ent); 270 } 271 272 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 273 { 274 u32 index; 275 struct isci_request *ireq; 276 struct isci_remote_device *idev; 277 278 index = SCU_GET_COMPLETION_INDEX(ent); 279 280 switch (scu_get_command_request_type(ent)) { 281 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 282 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 283 ireq = ihost->reqs[index]; 284 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 285 __func__, ent, ireq); 286 /* @todo For a post TC operation we need to fail the IO 287 * request 288 */ 289 break; 290 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 291 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 292 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 293 idev = ihost->device_table[index]; 294 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 295 __func__, ent, idev); 296 /* @todo For a port RNC operation we need to fail the 297 * device 298 */ 299 break; 300 default: 301 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 302 __func__, ent); 303 break; 304 } 305 } 306 307 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 308 { 309 u32 index; 310 u32 frame_index; 311 312 struct scu_unsolicited_frame_header *frame_header; 313 struct isci_phy *iphy; 314 struct isci_remote_device *idev; 315 316 enum sci_status result = SCI_FAILURE; 317 318 frame_index = SCU_GET_FRAME_INDEX(ent); 319 320 frame_header = ihost->uf_control.buffers.array[frame_index].header; 321 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 322 323 if (SCU_GET_FRAME_ERROR(ent)) { 324 /* 325 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 326 * / this cause a problem? We expect the phy initialization will 327 * / fail if there is an error in the frame. */ 328 sci_controller_release_frame(ihost, frame_index); 329 return; 330 } 331 332 if (frame_header->is_address_frame) { 333 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 334 iphy = &ihost->phys[index]; 335 result = sci_phy_frame_handler(iphy, frame_index); 336 } else { 337 338 index = SCU_GET_COMPLETION_INDEX(ent); 339 340 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 341 /* 342 * This is a signature fis or a frame from a direct attached SATA 343 * device that has not yet been created. In either case forwared 344 * the frame to the PE and let it take care of the frame data. */ 345 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 346 iphy = &ihost->phys[index]; 347 result = sci_phy_frame_handler(iphy, frame_index); 348 } else { 349 if (index < ihost->remote_node_entries) 350 idev = ihost->device_table[index]; 351 else 352 idev = NULL; 353 354 if (idev != NULL) 355 result = sci_remote_device_frame_handler(idev, frame_index); 356 else 357 sci_controller_release_frame(ihost, frame_index); 358 } 359 } 360 361 if (result != SCI_SUCCESS) { 362 /* 363 * / @todo Is there any reason to report some additional error message 364 * / when we get this failure notifiction? */ 365 } 366 } 367 368 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 369 { 370 struct isci_remote_device *idev; 371 struct isci_request *ireq; 372 struct isci_phy *iphy; 373 u32 index; 374 375 index = SCU_GET_COMPLETION_INDEX(ent); 376 377 switch (scu_get_event_type(ent)) { 378 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 379 /* / @todo The driver did something wrong and we need to fix the condtion. */ 380 dev_err(&ihost->pdev->dev, 381 "%s: SCIC Controller 0x%p received SMU command error " 382 "0x%x\n", 383 __func__, 384 ihost, 385 ent); 386 break; 387 388 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 389 case SCU_EVENT_TYPE_SMU_ERROR: 390 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 391 /* 392 * / @todo This is a hardware failure and its likely that we want to 393 * / reset the controller. */ 394 dev_err(&ihost->pdev->dev, 395 "%s: SCIC Controller 0x%p received fatal controller " 396 "event 0x%x\n", 397 __func__, 398 ihost, 399 ent); 400 break; 401 402 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 403 ireq = ihost->reqs[index]; 404 sci_io_request_event_handler(ireq, ent); 405 break; 406 407 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 408 switch (scu_get_event_specifier(ent)) { 409 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 410 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 411 ireq = ihost->reqs[index]; 412 if (ireq != NULL) 413 sci_io_request_event_handler(ireq, ent); 414 else 415 dev_warn(&ihost->pdev->dev, 416 "%s: SCIC Controller 0x%p received " 417 "event 0x%x for io request object " 418 "that doesnt exist.\n", 419 __func__, 420 ihost, 421 ent); 422 423 break; 424 425 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 426 idev = ihost->device_table[index]; 427 if (idev != NULL) 428 sci_remote_device_event_handler(idev, ent); 429 else 430 dev_warn(&ihost->pdev->dev, 431 "%s: SCIC Controller 0x%p received " 432 "event 0x%x for remote device object " 433 "that doesnt exist.\n", 434 __func__, 435 ihost, 436 ent); 437 438 break; 439 } 440 break; 441 442 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 443 /* 444 * direct the broadcast change event to the phy first and then let 445 * the phy redirect the broadcast change to the port object */ 446 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 447 /* 448 * direct error counter event to the phy object since that is where 449 * we get the event notification. This is a type 4 event. */ 450 case SCU_EVENT_TYPE_OSSP_EVENT: 451 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 452 iphy = &ihost->phys[index]; 453 sci_phy_event_handler(iphy, ent); 454 break; 455 456 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 457 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 458 case SCU_EVENT_TYPE_RNC_OPS_MISC: 459 if (index < ihost->remote_node_entries) { 460 idev = ihost->device_table[index]; 461 462 if (idev != NULL) 463 sci_remote_device_event_handler(idev, ent); 464 } else 465 dev_err(&ihost->pdev->dev, 466 "%s: SCIC Controller 0x%p received event 0x%x " 467 "for remote device object 0x%0x that doesnt " 468 "exist.\n", 469 __func__, 470 ihost, 471 ent, 472 index); 473 474 break; 475 476 default: 477 dev_warn(&ihost->pdev->dev, 478 "%s: SCIC Controller received unknown event code %x\n", 479 __func__, 480 ent); 481 break; 482 } 483 } 484 485 static void sci_controller_process_completions(struct isci_host *ihost) 486 { 487 u32 completion_count = 0; 488 u32 ent; 489 u32 get_index; 490 u32 get_cycle; 491 u32 event_get; 492 u32 event_cycle; 493 494 dev_dbg(&ihost->pdev->dev, 495 "%s: completion queue beginning get:0x%08x\n", 496 __func__, 497 ihost->completion_queue_get); 498 499 /* Get the component parts of the completion queue */ 500 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 501 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 502 503 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 504 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 505 506 while ( 507 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 508 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 509 ) { 510 completion_count++; 511 512 ent = ihost->completion_queue[get_index]; 513 514 /* increment the get pointer and check for rollover to toggle the cycle bit */ 515 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 516 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 517 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 518 519 dev_dbg(&ihost->pdev->dev, 520 "%s: completion queue entry:0x%08x\n", 521 __func__, 522 ent); 523 524 switch (SCU_GET_COMPLETION_TYPE(ent)) { 525 case SCU_COMPLETION_TYPE_TASK: 526 sci_controller_task_completion(ihost, ent); 527 break; 528 529 case SCU_COMPLETION_TYPE_SDMA: 530 sci_controller_sdma_completion(ihost, ent); 531 break; 532 533 case SCU_COMPLETION_TYPE_UFI: 534 sci_controller_unsolicited_frame(ihost, ent); 535 break; 536 537 case SCU_COMPLETION_TYPE_EVENT: 538 sci_controller_event_completion(ihost, ent); 539 break; 540 541 case SCU_COMPLETION_TYPE_NOTIFY: { 542 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 543 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 544 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 545 546 sci_controller_event_completion(ihost, ent); 547 break; 548 } 549 default: 550 dev_warn(&ihost->pdev->dev, 551 "%s: SCIC Controller received unknown " 552 "completion type %x\n", 553 __func__, 554 ent); 555 break; 556 } 557 } 558 559 /* Update the get register if we completed one or more entries */ 560 if (completion_count > 0) { 561 ihost->completion_queue_get = 562 SMU_CQGR_GEN_BIT(ENABLE) | 563 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 564 event_cycle | 565 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 566 get_cycle | 567 SMU_CQGR_GEN_VAL(POINTER, get_index); 568 569 writel(ihost->completion_queue_get, 570 &ihost->smu_registers->completion_queue_get); 571 572 } 573 574 dev_dbg(&ihost->pdev->dev, 575 "%s: completion queue ending get:0x%08x\n", 576 __func__, 577 ihost->completion_queue_get); 578 579 } 580 581 static void sci_controller_error_handler(struct isci_host *ihost) 582 { 583 u32 interrupt_status; 584 585 interrupt_status = 586 readl(&ihost->smu_registers->interrupt_status); 587 588 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 589 sci_controller_completion_queue_has_entries(ihost)) { 590 591 sci_controller_process_completions(ihost); 592 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 593 } else { 594 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 595 interrupt_status); 596 597 sci_change_state(&ihost->sm, SCIC_FAILED); 598 599 return; 600 } 601 602 /* If we dont process any completions I am not sure that we want to do this. 603 * We are in the middle of a hardware fault and should probably be reset. 604 */ 605 writel(0, &ihost->smu_registers->interrupt_mask); 606 } 607 608 irqreturn_t isci_intx_isr(int vec, void *data) 609 { 610 irqreturn_t ret = IRQ_NONE; 611 struct isci_host *ihost = data; 612 613 if (sci_controller_isr(ihost)) { 614 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 615 tasklet_schedule(&ihost->completion_tasklet); 616 ret = IRQ_HANDLED; 617 } else if (sci_controller_error_isr(ihost)) { 618 spin_lock(&ihost->scic_lock); 619 sci_controller_error_handler(ihost); 620 spin_unlock(&ihost->scic_lock); 621 ret = IRQ_HANDLED; 622 } 623 624 return ret; 625 } 626 627 irqreturn_t isci_error_isr(int vec, void *data) 628 { 629 struct isci_host *ihost = data; 630 631 if (sci_controller_error_isr(ihost)) 632 sci_controller_error_handler(ihost); 633 634 return IRQ_HANDLED; 635 } 636 637 /** 638 * isci_host_start_complete() - This function is called by the core library, 639 * through the ISCI Module, to indicate controller start status. 640 * @isci_host: This parameter specifies the ISCI host object 641 * @completion_status: This parameter specifies the completion status from the 642 * core library. 643 * 644 */ 645 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 646 { 647 if (completion_status != SCI_SUCCESS) 648 dev_info(&ihost->pdev->dev, 649 "controller start timed out, continuing...\n"); 650 clear_bit(IHOST_START_PENDING, &ihost->flags); 651 wake_up(&ihost->eventq); 652 } 653 654 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 655 { 656 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 657 struct isci_host *ihost = ha->lldd_ha; 658 659 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 660 return 0; 661 662 sas_drain_work(ha); 663 664 return 1; 665 } 666 667 /** 668 * sci_controller_get_suggested_start_timeout() - This method returns the 669 * suggested sci_controller_start() timeout amount. The user is free to 670 * use any timeout value, but this method provides the suggested minimum 671 * start timeout value. The returned value is based upon empirical 672 * information determined as a result of interoperability testing. 673 * @controller: the handle to the controller object for which to return the 674 * suggested start timeout. 675 * 676 * This method returns the number of milliseconds for the suggested start 677 * operation timeout. 678 */ 679 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 680 { 681 /* Validate the user supplied parameters. */ 682 if (!ihost) 683 return 0; 684 685 /* 686 * The suggested minimum timeout value for a controller start operation: 687 * 688 * Signature FIS Timeout 689 * + Phy Start Timeout 690 * + Number of Phy Spin Up Intervals 691 * --------------------------------- 692 * Number of milliseconds for the controller start operation. 693 * 694 * NOTE: The number of phy spin up intervals will be equivalent 695 * to the number of phys divided by the number phys allowed 696 * per interval - 1 (once OEM parameters are supported). 697 * Currently we assume only 1 phy per interval. */ 698 699 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 700 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 701 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 702 } 703 704 static void sci_controller_enable_interrupts(struct isci_host *ihost) 705 { 706 set_bit(IHOST_IRQ_ENABLED, &ihost->flags); 707 writel(0, &ihost->smu_registers->interrupt_mask); 708 } 709 710 void sci_controller_disable_interrupts(struct isci_host *ihost) 711 { 712 clear_bit(IHOST_IRQ_ENABLED, &ihost->flags); 713 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 714 readl(&ihost->smu_registers->interrupt_mask); /* flush */ 715 } 716 717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 718 { 719 u32 port_task_scheduler_value; 720 721 port_task_scheduler_value = 722 readl(&ihost->scu_registers->peg0.ptsg.control); 723 port_task_scheduler_value |= 724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 726 writel(port_task_scheduler_value, 727 &ihost->scu_registers->peg0.ptsg.control); 728 } 729 730 static void sci_controller_assign_task_entries(struct isci_host *ihost) 731 { 732 u32 task_assignment; 733 734 /* 735 * Assign all the TCs to function 0 736 * TODO: Do we actually need to read this register to write it back? 737 */ 738 739 task_assignment = 740 readl(&ihost->smu_registers->task_context_assignment[0]); 741 742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 745 746 writel(task_assignment, 747 &ihost->smu_registers->task_context_assignment[0]); 748 749 } 750 751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 752 { 753 u32 index; 754 u32 completion_queue_control_value; 755 u32 completion_queue_get_value; 756 u32 completion_queue_put_value; 757 758 ihost->completion_queue_get = 0; 759 760 completion_queue_control_value = 761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 763 764 writel(completion_queue_control_value, 765 &ihost->smu_registers->completion_queue_control); 766 767 768 /* Set the completion queue get pointer and enable the queue */ 769 completion_queue_get_value = ( 770 (SMU_CQGR_GEN_VAL(POINTER, 0)) 771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 772 | (SMU_CQGR_GEN_BIT(ENABLE)) 773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 774 ); 775 776 writel(completion_queue_get_value, 777 &ihost->smu_registers->completion_queue_get); 778 779 /* Set the completion queue put pointer */ 780 completion_queue_put_value = ( 781 (SMU_CQPR_GEN_VAL(POINTER, 0)) 782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 783 ); 784 785 writel(completion_queue_put_value, 786 &ihost->smu_registers->completion_queue_put); 787 788 /* Initialize the cycle bit of the completion queue entries */ 789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 790 /* 791 * If get.cycle_bit != completion_queue.cycle_bit 792 * its not a valid completion queue entry 793 * so at system start all entries are invalid */ 794 ihost->completion_queue[index] = 0x80000000; 795 } 796 } 797 798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 799 { 800 u32 frame_queue_control_value; 801 u32 frame_queue_get_value; 802 u32 frame_queue_put_value; 803 804 /* Write the queue size */ 805 frame_queue_control_value = 806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 807 808 writel(frame_queue_control_value, 809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 810 811 /* Setup the get pointer for the unsolicited frame queue */ 812 frame_queue_get_value = ( 813 SCU_UFQGP_GEN_VAL(POINTER, 0) 814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 815 ); 816 817 writel(frame_queue_get_value, 818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 819 /* Setup the put pointer for the unsolicited frame queue */ 820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 821 writel(frame_queue_put_value, 822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 823 } 824 825 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 826 { 827 if (ihost->sm.current_state_id == SCIC_STARTING) { 828 /* 829 * We move into the ready state, because some of the phys/ports 830 * may be up and operational. 831 */ 832 sci_change_state(&ihost->sm, SCIC_READY); 833 834 isci_host_start_complete(ihost, status); 835 } 836 } 837 838 static bool is_phy_starting(struct isci_phy *iphy) 839 { 840 enum sci_phy_states state; 841 842 state = iphy->sm.current_state_id; 843 switch (state) { 844 case SCI_PHY_STARTING: 845 case SCI_PHY_SUB_INITIAL: 846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 847 case SCI_PHY_SUB_AWAIT_IAF_UF: 848 case SCI_PHY_SUB_AWAIT_SAS_POWER: 849 case SCI_PHY_SUB_AWAIT_SATA_POWER: 850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 852 case SCI_PHY_SUB_AWAIT_OSSP_EN: 853 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 854 case SCI_PHY_SUB_FINAL: 855 return true; 856 default: 857 return false; 858 } 859 } 860 861 bool is_controller_start_complete(struct isci_host *ihost) 862 { 863 int i; 864 865 for (i = 0; i < SCI_MAX_PHYS; i++) { 866 struct isci_phy *iphy = &ihost->phys[i]; 867 u32 state = iphy->sm.current_state_id; 868 869 /* in apc mode we need to check every phy, in 870 * mpc mode we only need to check phys that have 871 * been configured into a port 872 */ 873 if (is_port_config_apc(ihost)) 874 /* pass */; 875 else if (!phy_get_non_dummy_port(iphy)) 876 continue; 877 878 /* The controller start operation is complete iff: 879 * - all links have been given an opportunity to start 880 * - have no indication of a connected device 881 * - have an indication of a connected device and it has 882 * finished the link training process. 883 */ 884 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 885 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 886 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 887 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) 888 return false; 889 } 890 891 return true; 892 } 893 894 /** 895 * sci_controller_start_next_phy - start phy 896 * @scic: controller 897 * 898 * If all the phys have been started, then attempt to transition the 899 * controller to the READY state and inform the user 900 * (sci_cb_controller_start_complete()). 901 */ 902 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 903 { 904 struct sci_oem_params *oem = &ihost->oem_parameters; 905 struct isci_phy *iphy; 906 enum sci_status status; 907 908 status = SCI_SUCCESS; 909 910 if (ihost->phy_startup_timer_pending) 911 return status; 912 913 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 914 if (is_controller_start_complete(ihost)) { 915 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 916 sci_del_timer(&ihost->phy_timer); 917 ihost->phy_startup_timer_pending = false; 918 } 919 } else { 920 iphy = &ihost->phys[ihost->next_phy_to_start]; 921 922 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 923 if (phy_get_non_dummy_port(iphy) == NULL) { 924 ihost->next_phy_to_start++; 925 926 /* Caution recursion ahead be forwarned 927 * 928 * The PHY was never added to a PORT in MPC mode 929 * so start the next phy in sequence This phy 930 * will never go link up and will not draw power 931 * the OEM parameters either configured the phy 932 * incorrectly for the PORT or it was never 933 * assigned to a PORT 934 */ 935 return sci_controller_start_next_phy(ihost); 936 } 937 } 938 939 status = sci_phy_start(iphy); 940 941 if (status == SCI_SUCCESS) { 942 sci_mod_timer(&ihost->phy_timer, 943 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 944 ihost->phy_startup_timer_pending = true; 945 } else { 946 dev_warn(&ihost->pdev->dev, 947 "%s: Controller stop operation failed " 948 "to stop phy %d because of status " 949 "%d.\n", 950 __func__, 951 ihost->phys[ihost->next_phy_to_start].phy_index, 952 status); 953 } 954 955 ihost->next_phy_to_start++; 956 } 957 958 return status; 959 } 960 961 static void phy_startup_timeout(struct timer_list *t) 962 { 963 struct sci_timer *tmr = from_timer(tmr, t, timer); 964 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 965 unsigned long flags; 966 enum sci_status status; 967 968 spin_lock_irqsave(&ihost->scic_lock, flags); 969 970 if (tmr->cancel) 971 goto done; 972 973 ihost->phy_startup_timer_pending = false; 974 975 do { 976 status = sci_controller_start_next_phy(ihost); 977 } while (status != SCI_SUCCESS); 978 979 done: 980 spin_unlock_irqrestore(&ihost->scic_lock, flags); 981 } 982 983 static u16 isci_tci_active(struct isci_host *ihost) 984 { 985 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 986 } 987 988 static enum sci_status sci_controller_start(struct isci_host *ihost, 989 u32 timeout) 990 { 991 enum sci_status result; 992 u16 index; 993 994 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 995 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 996 __func__, ihost->sm.current_state_id); 997 return SCI_FAILURE_INVALID_STATE; 998 } 999 1000 /* Build the TCi free pool */ 1001 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 1002 ihost->tci_head = 0; 1003 ihost->tci_tail = 0; 1004 for (index = 0; index < ihost->task_context_entries; index++) 1005 isci_tci_free(ihost, index); 1006 1007 /* Build the RNi free pool */ 1008 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 1009 ihost->remote_node_entries); 1010 1011 /* 1012 * Before anything else lets make sure we will not be 1013 * interrupted by the hardware. 1014 */ 1015 sci_controller_disable_interrupts(ihost); 1016 1017 /* Enable the port task scheduler */ 1018 sci_controller_enable_port_task_scheduler(ihost); 1019 1020 /* Assign all the task entries to ihost physical function */ 1021 sci_controller_assign_task_entries(ihost); 1022 1023 /* Now initialize the completion queue */ 1024 sci_controller_initialize_completion_queue(ihost); 1025 1026 /* Initialize the unsolicited frame queue for use */ 1027 sci_controller_initialize_unsolicited_frame_queue(ihost); 1028 1029 /* Start all of the ports on this controller */ 1030 for (index = 0; index < ihost->logical_port_entries; index++) { 1031 struct isci_port *iport = &ihost->ports[index]; 1032 1033 result = sci_port_start(iport); 1034 if (result) 1035 return result; 1036 } 1037 1038 sci_controller_start_next_phy(ihost); 1039 1040 sci_mod_timer(&ihost->timer, timeout); 1041 1042 sci_change_state(&ihost->sm, SCIC_STARTING); 1043 1044 return SCI_SUCCESS; 1045 } 1046 1047 void isci_host_start(struct Scsi_Host *shost) 1048 { 1049 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1050 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1051 1052 set_bit(IHOST_START_PENDING, &ihost->flags); 1053 1054 spin_lock_irq(&ihost->scic_lock); 1055 sci_controller_start(ihost, tmo); 1056 sci_controller_enable_interrupts(ihost); 1057 spin_unlock_irq(&ihost->scic_lock); 1058 } 1059 1060 static void isci_host_stop_complete(struct isci_host *ihost) 1061 { 1062 sci_controller_disable_interrupts(ihost); 1063 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1064 wake_up(&ihost->eventq); 1065 } 1066 1067 static void sci_controller_completion_handler(struct isci_host *ihost) 1068 { 1069 /* Empty out the completion queue */ 1070 if (sci_controller_completion_queue_has_entries(ihost)) 1071 sci_controller_process_completions(ihost); 1072 1073 /* Clear the interrupt and enable all interrupts again */ 1074 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1075 /* Could we write the value of SMU_ISR_COMPLETION? */ 1076 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1077 writel(0, &ihost->smu_registers->interrupt_mask); 1078 } 1079 1080 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task) 1081 { 1082 if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) && 1083 !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1084 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) { 1085 /* Normal notification (task_done) */ 1086 dev_dbg(&ihost->pdev->dev, 1087 "%s: Normal - ireq/task = %p/%p\n", 1088 __func__, ireq, task); 1089 task->lldd_task = NULL; 1090 task->task_done(task); 1091 } else { 1092 dev_dbg(&ihost->pdev->dev, 1093 "%s: Error - ireq/task = %p/%p\n", 1094 __func__, ireq, task); 1095 if (sas_protocol_ata(task->task_proto)) 1096 task->lldd_task = NULL; 1097 sas_task_abort(task); 1098 } 1099 } else 1100 task->lldd_task = NULL; 1101 1102 if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags)) 1103 wake_up_all(&ihost->eventq); 1104 1105 if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags)) 1106 isci_free_tag(ihost, ireq->io_tag); 1107 } 1108 /** 1109 * isci_host_completion_routine() - This function is the delayed service 1110 * routine that calls the sci core library's completion handler. It's 1111 * scheduled as a tasklet from the interrupt service routine when interrupts 1112 * in use, or set as the timeout function in polled mode. 1113 * @data: This parameter specifies the ISCI host object 1114 * 1115 */ 1116 void isci_host_completion_routine(unsigned long data) 1117 { 1118 struct isci_host *ihost = (struct isci_host *)data; 1119 u16 active; 1120 1121 spin_lock_irq(&ihost->scic_lock); 1122 sci_controller_completion_handler(ihost); 1123 spin_unlock_irq(&ihost->scic_lock); 1124 1125 /* 1126 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs 1127 * issued for hardware issue workaround 1128 */ 1129 active = isci_tci_active(ihost) - SCI_MAX_PORTS; 1130 1131 /* 1132 * the coalesence timeout doubles at each encoding step, so 1133 * update it based on the ilog2 value of the outstanding requests 1134 */ 1135 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1136 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1137 &ihost->smu_registers->interrupt_coalesce_control); 1138 } 1139 1140 /** 1141 * sci_controller_stop() - This method will stop an individual controller 1142 * object.This method will invoke the associated user callback upon 1143 * completion. The completion callback is called when the following 1144 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1145 * controller has been quiesced. This method will ensure that all IO 1146 * requests are quiesced, phys are stopped, and all additional operation by 1147 * the hardware is halted. 1148 * @controller: the handle to the controller object to stop. 1149 * @timeout: This parameter specifies the number of milliseconds in which the 1150 * stop operation should complete. 1151 * 1152 * The controller must be in the STARTED or STOPPED state. Indicate if the 1153 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1154 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1155 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1156 * controller is not either in the STARTED or STOPPED states. 1157 */ 1158 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1159 { 1160 if (ihost->sm.current_state_id != SCIC_READY) { 1161 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1162 __func__, ihost->sm.current_state_id); 1163 return SCI_FAILURE_INVALID_STATE; 1164 } 1165 1166 sci_mod_timer(&ihost->timer, timeout); 1167 sci_change_state(&ihost->sm, SCIC_STOPPING); 1168 return SCI_SUCCESS; 1169 } 1170 1171 /** 1172 * sci_controller_reset() - This method will reset the supplied core 1173 * controller regardless of the state of said controller. This operation is 1174 * considered destructive. In other words, all current operations are wiped 1175 * out. No IO completions for outstanding devices occur. Outstanding IO 1176 * requests are not aborted or completed at the actual remote device. 1177 * @controller: the handle to the controller object to reset. 1178 * 1179 * Indicate if the controller reset method succeeded or failed in some way. 1180 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1181 * the controller reset operation is unable to complete. 1182 */ 1183 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1184 { 1185 switch (ihost->sm.current_state_id) { 1186 case SCIC_RESET: 1187 case SCIC_READY: 1188 case SCIC_STOPPING: 1189 case SCIC_FAILED: 1190 /* 1191 * The reset operation is not a graceful cleanup, just 1192 * perform the state transition. 1193 */ 1194 sci_change_state(&ihost->sm, SCIC_RESETTING); 1195 return SCI_SUCCESS; 1196 default: 1197 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1198 __func__, ihost->sm.current_state_id); 1199 return SCI_FAILURE_INVALID_STATE; 1200 } 1201 } 1202 1203 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1204 { 1205 u32 index; 1206 enum sci_status status; 1207 enum sci_status phy_status; 1208 1209 status = SCI_SUCCESS; 1210 1211 for (index = 0; index < SCI_MAX_PHYS; index++) { 1212 phy_status = sci_phy_stop(&ihost->phys[index]); 1213 1214 if (phy_status != SCI_SUCCESS && 1215 phy_status != SCI_FAILURE_INVALID_STATE) { 1216 status = SCI_FAILURE; 1217 1218 dev_warn(&ihost->pdev->dev, 1219 "%s: Controller stop operation failed to stop " 1220 "phy %d because of status %d.\n", 1221 __func__, 1222 ihost->phys[index].phy_index, phy_status); 1223 } 1224 } 1225 1226 return status; 1227 } 1228 1229 1230 /** 1231 * isci_host_deinit - shutdown frame reception and dma 1232 * @ihost: host to take down 1233 * 1234 * This is called in either the driver shutdown or the suspend path. In 1235 * the shutdown case libsas went through port teardown and normal device 1236 * removal (i.e. physical links stayed up to service scsi_device removal 1237 * commands). In the suspend case we disable the hardware without 1238 * notifying libsas of the link down events since we want libsas to 1239 * remember the domain across the suspend/resume cycle 1240 */ 1241 void isci_host_deinit(struct isci_host *ihost) 1242 { 1243 int i; 1244 1245 /* disable output data selects */ 1246 for (i = 0; i < isci_gpio_count(ihost); i++) 1247 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1248 1249 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1250 1251 spin_lock_irq(&ihost->scic_lock); 1252 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1253 spin_unlock_irq(&ihost->scic_lock); 1254 1255 wait_for_stop(ihost); 1256 1257 /* phy stop is after controller stop to allow port and device to 1258 * go idle before shutting down the phys, but the expectation is 1259 * that i/o has been shut off well before we reach this 1260 * function. 1261 */ 1262 sci_controller_stop_phys(ihost); 1263 1264 /* disable sgpio: where the above wait should give time for the 1265 * enclosure to sample the gpios going inactive 1266 */ 1267 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1268 1269 spin_lock_irq(&ihost->scic_lock); 1270 sci_controller_reset(ihost); 1271 spin_unlock_irq(&ihost->scic_lock); 1272 1273 /* Cancel any/all outstanding port timers */ 1274 for (i = 0; i < ihost->logical_port_entries; i++) { 1275 struct isci_port *iport = &ihost->ports[i]; 1276 del_timer_sync(&iport->timer.timer); 1277 } 1278 1279 /* Cancel any/all outstanding phy timers */ 1280 for (i = 0; i < SCI_MAX_PHYS; i++) { 1281 struct isci_phy *iphy = &ihost->phys[i]; 1282 del_timer_sync(&iphy->sata_timer.timer); 1283 } 1284 1285 del_timer_sync(&ihost->port_agent.timer.timer); 1286 1287 del_timer_sync(&ihost->power_control.timer.timer); 1288 1289 del_timer_sync(&ihost->timer.timer); 1290 1291 del_timer_sync(&ihost->phy_timer.timer); 1292 } 1293 1294 static void __iomem *scu_base(struct isci_host *isci_host) 1295 { 1296 struct pci_dev *pdev = isci_host->pdev; 1297 int id = isci_host->id; 1298 1299 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1300 } 1301 1302 static void __iomem *smu_base(struct isci_host *isci_host) 1303 { 1304 struct pci_dev *pdev = isci_host->pdev; 1305 int id = isci_host->id; 1306 1307 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1308 } 1309 1310 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1311 { 1312 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1313 1314 sci_change_state(&ihost->sm, SCIC_RESET); 1315 } 1316 1317 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1318 { 1319 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1320 1321 sci_del_timer(&ihost->timer); 1322 } 1323 1324 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1325 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1326 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1327 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1328 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1329 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1330 1331 /** 1332 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1333 * configure the interrupt coalescence. 1334 * @controller: This parameter represents the handle to the controller object 1335 * for which its interrupt coalesce register is overridden. 1336 * @coalesce_number: Used to control the number of entries in the Completion 1337 * Queue before an interrupt is generated. If the number of entries exceed 1338 * this number, an interrupt will be generated. The valid range of the input 1339 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1340 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1341 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1342 * interrupt coalescing timeout. 1343 * 1344 * Indicate if the user successfully set the interrupt coalesce parameters. 1345 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1346 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1347 */ 1348 static enum sci_status 1349 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1350 u32 coalesce_number, 1351 u32 coalesce_timeout) 1352 { 1353 u8 timeout_encode = 0; 1354 u32 min = 0; 1355 u32 max = 0; 1356 1357 /* Check if the input parameters fall in the range. */ 1358 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1359 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1360 1361 /* 1362 * Defined encoding for interrupt coalescing timeout: 1363 * Value Min Max Units 1364 * ----- --- --- ----- 1365 * 0 - - Disabled 1366 * 1 13.3 20.0 ns 1367 * 2 26.7 40.0 1368 * 3 53.3 80.0 1369 * 4 106.7 160.0 1370 * 5 213.3 320.0 1371 * 6 426.7 640.0 1372 * 7 853.3 1280.0 1373 * 8 1.7 2.6 us 1374 * 9 3.4 5.1 1375 * 10 6.8 10.2 1376 * 11 13.7 20.5 1377 * 12 27.3 41.0 1378 * 13 54.6 81.9 1379 * 14 109.2 163.8 1380 * 15 218.5 327.7 1381 * 16 436.9 655.4 1382 * 17 873.8 1310.7 1383 * 18 1.7 2.6 ms 1384 * 19 3.5 5.2 1385 * 20 7.0 10.5 1386 * 21 14.0 21.0 1387 * 22 28.0 41.9 1388 * 23 55.9 83.9 1389 * 24 111.8 167.8 1390 * 25 223.7 335.5 1391 * 26 447.4 671.1 1392 * 27 894.8 1342.2 1393 * 28 1.8 2.7 s 1394 * Others Undefined */ 1395 1396 /* 1397 * Use the table above to decide the encode of interrupt coalescing timeout 1398 * value for register writing. */ 1399 if (coalesce_timeout == 0) 1400 timeout_encode = 0; 1401 else{ 1402 /* make the timeout value in unit of (10 ns). */ 1403 coalesce_timeout = coalesce_timeout * 100; 1404 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1405 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1406 1407 /* get the encode of timeout for register writing. */ 1408 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1409 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1410 timeout_encode++) { 1411 if (min <= coalesce_timeout && max > coalesce_timeout) 1412 break; 1413 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1414 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1415 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1416 break; 1417 else{ 1418 timeout_encode++; 1419 break; 1420 } 1421 } else { 1422 max = max * 2; 1423 min = min * 2; 1424 } 1425 } 1426 1427 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1428 /* the value is out of range. */ 1429 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1430 } 1431 1432 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1433 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1434 &ihost->smu_registers->interrupt_coalesce_control); 1435 1436 1437 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1438 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1439 1440 return SCI_SUCCESS; 1441 } 1442 1443 1444 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1445 { 1446 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1447 u32 val; 1448 1449 /* enable clock gating for power control of the scu unit */ 1450 val = readl(&ihost->smu_registers->clock_gating_control); 1451 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | 1452 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | 1453 SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); 1454 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); 1455 writel(val, &ihost->smu_registers->clock_gating_control); 1456 1457 /* set the default interrupt coalescence number and timeout value. */ 1458 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1459 } 1460 1461 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1462 { 1463 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1464 1465 /* disable interrupt coalescence. */ 1466 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1467 } 1468 1469 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1470 { 1471 u32 index; 1472 enum sci_status port_status; 1473 enum sci_status status = SCI_SUCCESS; 1474 1475 for (index = 0; index < ihost->logical_port_entries; index++) { 1476 struct isci_port *iport = &ihost->ports[index]; 1477 1478 port_status = sci_port_stop(iport); 1479 1480 if ((port_status != SCI_SUCCESS) && 1481 (port_status != SCI_FAILURE_INVALID_STATE)) { 1482 status = SCI_FAILURE; 1483 1484 dev_warn(&ihost->pdev->dev, 1485 "%s: Controller stop operation failed to " 1486 "stop port %d because of status %d.\n", 1487 __func__, 1488 iport->logical_port_index, 1489 port_status); 1490 } 1491 } 1492 1493 return status; 1494 } 1495 1496 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1497 { 1498 u32 index; 1499 enum sci_status status; 1500 enum sci_status device_status; 1501 1502 status = SCI_SUCCESS; 1503 1504 for (index = 0; index < ihost->remote_node_entries; index++) { 1505 if (ihost->device_table[index] != NULL) { 1506 /* / @todo What timeout value do we want to provide to this request? */ 1507 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1508 1509 if ((device_status != SCI_SUCCESS) && 1510 (device_status != SCI_FAILURE_INVALID_STATE)) { 1511 dev_warn(&ihost->pdev->dev, 1512 "%s: Controller stop operation failed " 1513 "to stop device 0x%p because of " 1514 "status %d.\n", 1515 __func__, 1516 ihost->device_table[index], device_status); 1517 } 1518 } 1519 } 1520 1521 return status; 1522 } 1523 1524 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1525 { 1526 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1527 1528 sci_controller_stop_devices(ihost); 1529 sci_controller_stop_ports(ihost); 1530 1531 if (!sci_controller_has_remote_devices_stopping(ihost)) 1532 isci_host_stop_complete(ihost); 1533 } 1534 1535 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1536 { 1537 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1538 1539 sci_del_timer(&ihost->timer); 1540 } 1541 1542 static void sci_controller_reset_hardware(struct isci_host *ihost) 1543 { 1544 /* Disable interrupts so we dont take any spurious interrupts */ 1545 sci_controller_disable_interrupts(ihost); 1546 1547 /* Reset the SCU */ 1548 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1549 1550 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1551 udelay(1000); 1552 1553 /* The write to the CQGR clears the CQP */ 1554 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1555 1556 /* The write to the UFQGP clears the UFQPR */ 1557 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1558 1559 /* clear all interrupts */ 1560 writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status); 1561 } 1562 1563 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1564 { 1565 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1566 1567 sci_controller_reset_hardware(ihost); 1568 sci_change_state(&ihost->sm, SCIC_RESET); 1569 } 1570 1571 static const struct sci_base_state sci_controller_state_table[] = { 1572 [SCIC_INITIAL] = { 1573 .enter_state = sci_controller_initial_state_enter, 1574 }, 1575 [SCIC_RESET] = {}, 1576 [SCIC_INITIALIZING] = {}, 1577 [SCIC_INITIALIZED] = {}, 1578 [SCIC_STARTING] = { 1579 .exit_state = sci_controller_starting_state_exit, 1580 }, 1581 [SCIC_READY] = { 1582 .enter_state = sci_controller_ready_state_enter, 1583 .exit_state = sci_controller_ready_state_exit, 1584 }, 1585 [SCIC_RESETTING] = { 1586 .enter_state = sci_controller_resetting_state_enter, 1587 }, 1588 [SCIC_STOPPING] = { 1589 .enter_state = sci_controller_stopping_state_enter, 1590 .exit_state = sci_controller_stopping_state_exit, 1591 }, 1592 [SCIC_FAILED] = {} 1593 }; 1594 1595 static void controller_timeout(struct timer_list *t) 1596 { 1597 struct sci_timer *tmr = from_timer(tmr, t, timer); 1598 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1599 struct sci_base_state_machine *sm = &ihost->sm; 1600 unsigned long flags; 1601 1602 spin_lock_irqsave(&ihost->scic_lock, flags); 1603 1604 if (tmr->cancel) 1605 goto done; 1606 1607 if (sm->current_state_id == SCIC_STARTING) 1608 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1609 else if (sm->current_state_id == SCIC_STOPPING) { 1610 sci_change_state(sm, SCIC_FAILED); 1611 isci_host_stop_complete(ihost); 1612 } else /* / @todo Now what do we want to do in this case? */ 1613 dev_err(&ihost->pdev->dev, 1614 "%s: Controller timer fired when controller was not " 1615 "in a state being timed.\n", 1616 __func__); 1617 1618 done: 1619 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1620 } 1621 1622 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1623 void __iomem *scu_base, 1624 void __iomem *smu_base) 1625 { 1626 u8 i; 1627 1628 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1629 1630 ihost->scu_registers = scu_base; 1631 ihost->smu_registers = smu_base; 1632 1633 sci_port_configuration_agent_construct(&ihost->port_agent); 1634 1635 /* Construct the ports for this controller */ 1636 for (i = 0; i < SCI_MAX_PORTS; i++) 1637 sci_port_construct(&ihost->ports[i], i, ihost); 1638 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1639 1640 /* Construct the phys for this controller */ 1641 for (i = 0; i < SCI_MAX_PHYS; i++) { 1642 /* Add all the PHYs to the dummy port */ 1643 sci_phy_construct(&ihost->phys[i], 1644 &ihost->ports[SCI_MAX_PORTS], i); 1645 } 1646 1647 ihost->invalid_phy_mask = 0; 1648 1649 sci_init_timer(&ihost->timer, controller_timeout); 1650 1651 return sci_controller_reset(ihost); 1652 } 1653 1654 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1655 { 1656 int i; 1657 1658 for (i = 0; i < SCI_MAX_PORTS; i++) 1659 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1660 return -EINVAL; 1661 1662 for (i = 0; i < SCI_MAX_PHYS; i++) 1663 if (oem->phys[i].sas_address.high == 0 && 1664 oem->phys[i].sas_address.low == 0) 1665 return -EINVAL; 1666 1667 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1668 for (i = 0; i < SCI_MAX_PHYS; i++) 1669 if (oem->ports[i].phy_mask != 0) 1670 return -EINVAL; 1671 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1672 u8 phy_mask = 0; 1673 1674 for (i = 0; i < SCI_MAX_PHYS; i++) 1675 phy_mask |= oem->ports[i].phy_mask; 1676 1677 if (phy_mask == 0) 1678 return -EINVAL; 1679 } else 1680 return -EINVAL; 1681 1682 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1683 oem->controller.max_concurr_spin_up < 1) 1684 return -EINVAL; 1685 1686 if (oem->controller.do_enable_ssc) { 1687 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1688 return -EINVAL; 1689 1690 if (version >= ISCI_ROM_VER_1_1) { 1691 u8 test = oem->controller.ssc_sata_tx_spread_level; 1692 1693 switch (test) { 1694 case 0: 1695 case 2: 1696 case 3: 1697 case 6: 1698 case 7: 1699 break; 1700 default: 1701 return -EINVAL; 1702 } 1703 1704 test = oem->controller.ssc_sas_tx_spread_level; 1705 if (oem->controller.ssc_sas_tx_type == 0) { 1706 switch (test) { 1707 case 0: 1708 case 2: 1709 case 3: 1710 break; 1711 default: 1712 return -EINVAL; 1713 } 1714 } else if (oem->controller.ssc_sas_tx_type == 1) { 1715 switch (test) { 1716 case 0: 1717 case 3: 1718 case 6: 1719 break; 1720 default: 1721 return -EINVAL; 1722 } 1723 } 1724 } 1725 } 1726 1727 return 0; 1728 } 1729 1730 static u8 max_spin_up(struct isci_host *ihost) 1731 { 1732 if (ihost->user_parameters.max_concurr_spinup) 1733 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1734 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1735 else 1736 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1737 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1738 } 1739 1740 static void power_control_timeout(struct timer_list *t) 1741 { 1742 struct sci_timer *tmr = from_timer(tmr, t, timer); 1743 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1744 struct isci_phy *iphy; 1745 unsigned long flags; 1746 u8 i; 1747 1748 spin_lock_irqsave(&ihost->scic_lock, flags); 1749 1750 if (tmr->cancel) 1751 goto done; 1752 1753 ihost->power_control.phys_granted_power = 0; 1754 1755 if (ihost->power_control.phys_waiting == 0) { 1756 ihost->power_control.timer_started = false; 1757 goto done; 1758 } 1759 1760 for (i = 0; i < SCI_MAX_PHYS; i++) { 1761 1762 if (ihost->power_control.phys_waiting == 0) 1763 break; 1764 1765 iphy = ihost->power_control.requesters[i]; 1766 if (iphy == NULL) 1767 continue; 1768 1769 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1770 break; 1771 1772 ihost->power_control.requesters[i] = NULL; 1773 ihost->power_control.phys_waiting--; 1774 ihost->power_control.phys_granted_power++; 1775 sci_phy_consume_power_handler(iphy); 1776 1777 if (iphy->protocol == SAS_PROTOCOL_SSP) { 1778 u8 j; 1779 1780 for (j = 0; j < SCI_MAX_PHYS; j++) { 1781 struct isci_phy *requester = ihost->power_control.requesters[j]; 1782 1783 /* 1784 * Search the power_control queue to see if there are other phys 1785 * attached to the same remote device. If found, take all of 1786 * them out of await_sas_power state. 1787 */ 1788 if (requester != NULL && requester != iphy) { 1789 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1790 iphy->frame_rcvd.iaf.sas_addr, 1791 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1792 1793 if (other == 0) { 1794 ihost->power_control.requesters[j] = NULL; 1795 ihost->power_control.phys_waiting--; 1796 sci_phy_consume_power_handler(requester); 1797 } 1798 } 1799 } 1800 } 1801 } 1802 1803 /* 1804 * It doesn't matter if the power list is empty, we need to start the 1805 * timer in case another phy becomes ready. 1806 */ 1807 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1808 ihost->power_control.timer_started = true; 1809 1810 done: 1811 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1812 } 1813 1814 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1815 struct isci_phy *iphy) 1816 { 1817 BUG_ON(iphy == NULL); 1818 1819 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1820 ihost->power_control.phys_granted_power++; 1821 sci_phy_consume_power_handler(iphy); 1822 1823 /* 1824 * stop and start the power_control timer. When the timer fires, the 1825 * no_of_phys_granted_power will be set to 0 1826 */ 1827 if (ihost->power_control.timer_started) 1828 sci_del_timer(&ihost->power_control.timer); 1829 1830 sci_mod_timer(&ihost->power_control.timer, 1831 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1832 ihost->power_control.timer_started = true; 1833 1834 } else { 1835 /* 1836 * There are phys, attached to the same sas address as this phy, are 1837 * already in READY state, this phy don't need wait. 1838 */ 1839 u8 i; 1840 struct isci_phy *current_phy; 1841 1842 for (i = 0; i < SCI_MAX_PHYS; i++) { 1843 u8 other; 1844 current_phy = &ihost->phys[i]; 1845 1846 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1847 iphy->frame_rcvd.iaf.sas_addr, 1848 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1849 1850 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1851 current_phy->protocol == SAS_PROTOCOL_SSP && 1852 other == 0) { 1853 sci_phy_consume_power_handler(iphy); 1854 break; 1855 } 1856 } 1857 1858 if (i == SCI_MAX_PHYS) { 1859 /* Add the phy in the waiting list */ 1860 ihost->power_control.requesters[iphy->phy_index] = iphy; 1861 ihost->power_control.phys_waiting++; 1862 } 1863 } 1864 } 1865 1866 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1867 struct isci_phy *iphy) 1868 { 1869 BUG_ON(iphy == NULL); 1870 1871 if (ihost->power_control.requesters[iphy->phy_index]) 1872 ihost->power_control.phys_waiting--; 1873 1874 ihost->power_control.requesters[iphy->phy_index] = NULL; 1875 } 1876 1877 static int is_long_cable(int phy, unsigned char selection_byte) 1878 { 1879 return !!(selection_byte & (1 << phy)); 1880 } 1881 1882 static int is_medium_cable(int phy, unsigned char selection_byte) 1883 { 1884 return !!(selection_byte & (1 << (phy + 4))); 1885 } 1886 1887 static enum cable_selections decode_selection_byte( 1888 int phy, 1889 unsigned char selection_byte) 1890 { 1891 return ((selection_byte & (1 << phy)) ? 1 : 0) 1892 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 1893 } 1894 1895 static unsigned char *to_cable_select(struct isci_host *ihost) 1896 { 1897 if (is_cable_select_overridden()) 1898 return ((unsigned char *)&cable_selection_override) 1899 + ihost->id; 1900 else 1901 return &ihost->oem_parameters.controller.cable_selection_mask; 1902 } 1903 1904 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 1905 { 1906 return decode_selection_byte(phy, *to_cable_select(ihost)); 1907 } 1908 1909 char *lookup_cable_names(enum cable_selections selection) 1910 { 1911 static char *cable_names[] = { 1912 [short_cable] = "short", 1913 [long_cable] = "long", 1914 [medium_cable] = "medium", 1915 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 1916 }; 1917 return (selection <= undefined_cable) ? cable_names[selection] 1918 : cable_names[undefined_cable]; 1919 } 1920 1921 #define AFE_REGISTER_WRITE_DELAY 10 1922 1923 static void sci_controller_afe_initialization(struct isci_host *ihost) 1924 { 1925 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 1926 const struct sci_oem_params *oem = &ihost->oem_parameters; 1927 struct pci_dev *pdev = ihost->pdev; 1928 u32 afe_status; 1929 u32 phy_id; 1930 unsigned char cable_selection_mask = *to_cable_select(ihost); 1931 1932 /* Clear DFX Status registers */ 1933 writel(0x0081000f, &afe->afe_dfx_master_control0); 1934 udelay(AFE_REGISTER_WRITE_DELAY); 1935 1936 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 1937 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 1938 * Timer, PM Stagger Timer 1939 */ 1940 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 1941 udelay(AFE_REGISTER_WRITE_DELAY); 1942 } 1943 1944 /* Configure bias currents to normal */ 1945 if (is_a2(pdev)) 1946 writel(0x00005A00, &afe->afe_bias_control); 1947 else if (is_b0(pdev) || is_c0(pdev)) 1948 writel(0x00005F00, &afe->afe_bias_control); 1949 else if (is_c1(pdev)) 1950 writel(0x00005500, &afe->afe_bias_control); 1951 1952 udelay(AFE_REGISTER_WRITE_DELAY); 1953 1954 /* Enable PLL */ 1955 if (is_a2(pdev)) 1956 writel(0x80040908, &afe->afe_pll_control0); 1957 else if (is_b0(pdev) || is_c0(pdev)) 1958 writel(0x80040A08, &afe->afe_pll_control0); 1959 else if (is_c1(pdev)) { 1960 writel(0x80000B08, &afe->afe_pll_control0); 1961 udelay(AFE_REGISTER_WRITE_DELAY); 1962 writel(0x00000B08, &afe->afe_pll_control0); 1963 udelay(AFE_REGISTER_WRITE_DELAY); 1964 writel(0x80000B08, &afe->afe_pll_control0); 1965 } 1966 1967 udelay(AFE_REGISTER_WRITE_DELAY); 1968 1969 /* Wait for the PLL to lock */ 1970 do { 1971 afe_status = readl(&afe->afe_common_block_status); 1972 udelay(AFE_REGISTER_WRITE_DELAY); 1973 } while ((afe_status & 0x00001000) == 0); 1974 1975 if (is_a2(pdev)) { 1976 /* Shorten SAS SNW lock time (RxLock timer value from 76 1977 * us to 50 us) 1978 */ 1979 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 1980 udelay(AFE_REGISTER_WRITE_DELAY); 1981 } 1982 1983 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 1984 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id]; 1985 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 1986 int cable_length_long = 1987 is_long_cable(phy_id, cable_selection_mask); 1988 int cable_length_medium = 1989 is_medium_cable(phy_id, cable_selection_mask); 1990 1991 if (is_a2(pdev)) { 1992 /* All defaults, except the Receive Word 1993 * Alignament/Comma Detect Enable....(0xe800) 1994 */ 1995 writel(0x00004512, &xcvr->afe_xcvr_control0); 1996 udelay(AFE_REGISTER_WRITE_DELAY); 1997 1998 writel(0x0050100F, &xcvr->afe_xcvr_control1); 1999 udelay(AFE_REGISTER_WRITE_DELAY); 2000 } else if (is_b0(pdev)) { 2001 /* Configure transmitter SSC parameters */ 2002 writel(0x00030000, &xcvr->afe_tx_ssc_control); 2003 udelay(AFE_REGISTER_WRITE_DELAY); 2004 } else if (is_c0(pdev)) { 2005 /* Configure transmitter SSC parameters */ 2006 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2007 udelay(AFE_REGISTER_WRITE_DELAY); 2008 2009 /* All defaults, except the Receive Word 2010 * Alignament/Comma Detect Enable....(0xe800) 2011 */ 2012 writel(0x00014500, &xcvr->afe_xcvr_control0); 2013 udelay(AFE_REGISTER_WRITE_DELAY); 2014 } else if (is_c1(pdev)) { 2015 /* Configure transmitter SSC parameters */ 2016 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2017 udelay(AFE_REGISTER_WRITE_DELAY); 2018 2019 /* All defaults, except the Receive Word 2020 * Alignament/Comma Detect Enable....(0xe800) 2021 */ 2022 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2023 udelay(AFE_REGISTER_WRITE_DELAY); 2024 } 2025 2026 /* Power up TX and RX out from power down (PWRDNTX and 2027 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2028 */ 2029 if (is_a2(pdev)) 2030 writel(0x000003F0, &xcvr->afe_channel_control); 2031 else if (is_b0(pdev)) { 2032 writel(0x000003D7, &xcvr->afe_channel_control); 2033 udelay(AFE_REGISTER_WRITE_DELAY); 2034 2035 writel(0x000003D4, &xcvr->afe_channel_control); 2036 } else if (is_c0(pdev)) { 2037 writel(0x000001E7, &xcvr->afe_channel_control); 2038 udelay(AFE_REGISTER_WRITE_DELAY); 2039 2040 writel(0x000001E4, &xcvr->afe_channel_control); 2041 } else if (is_c1(pdev)) { 2042 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2043 &xcvr->afe_channel_control); 2044 udelay(AFE_REGISTER_WRITE_DELAY); 2045 2046 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2047 &xcvr->afe_channel_control); 2048 } 2049 udelay(AFE_REGISTER_WRITE_DELAY); 2050 2051 if (is_a2(pdev)) { 2052 /* Enable TX equalization (0xe824) */ 2053 writel(0x00040000, &xcvr->afe_tx_control); 2054 udelay(AFE_REGISTER_WRITE_DELAY); 2055 } 2056 2057 if (is_a2(pdev) || is_b0(pdev)) 2058 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2059 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2060 * Enabled) ....(0xe800) 2061 */ 2062 writel(0x00004100, &xcvr->afe_xcvr_control0); 2063 else if (is_c0(pdev)) 2064 writel(0x00014100, &xcvr->afe_xcvr_control0); 2065 else if (is_c1(pdev)) 2066 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2067 udelay(AFE_REGISTER_WRITE_DELAY); 2068 2069 /* Leave DFE/FFE on */ 2070 if (is_a2(pdev)) 2071 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2072 else if (is_b0(pdev)) { 2073 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2074 udelay(AFE_REGISTER_WRITE_DELAY); 2075 /* Enable TX equalization (0xe824) */ 2076 writel(0x00040000, &xcvr->afe_tx_control); 2077 } else if (is_c0(pdev)) { 2078 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2079 udelay(AFE_REGISTER_WRITE_DELAY); 2080 2081 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2082 udelay(AFE_REGISTER_WRITE_DELAY); 2083 2084 /* Enable TX equalization (0xe824) */ 2085 writel(0x00040000, &xcvr->afe_tx_control); 2086 } else if (is_c1(pdev)) { 2087 writel(cable_length_long ? 0x01500C0C : 2088 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2089 &xcvr->afe_xcvr_control1); 2090 udelay(AFE_REGISTER_WRITE_DELAY); 2091 2092 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2093 udelay(AFE_REGISTER_WRITE_DELAY); 2094 2095 writel(cable_length_long ? 0x33091C1F : 2096 cable_length_medium ? 0x3315181F : 0x2B17161F, 2097 &xcvr->afe_rx_ssc_control0); 2098 udelay(AFE_REGISTER_WRITE_DELAY); 2099 2100 /* Enable TX equalization (0xe824) */ 2101 writel(0x00040000, &xcvr->afe_tx_control); 2102 } 2103 2104 udelay(AFE_REGISTER_WRITE_DELAY); 2105 2106 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2107 udelay(AFE_REGISTER_WRITE_DELAY); 2108 2109 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2110 udelay(AFE_REGISTER_WRITE_DELAY); 2111 2112 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2113 udelay(AFE_REGISTER_WRITE_DELAY); 2114 2115 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2116 udelay(AFE_REGISTER_WRITE_DELAY); 2117 } 2118 2119 /* Transfer control to the PEs */ 2120 writel(0x00010f00, &afe->afe_dfx_master_control0); 2121 udelay(AFE_REGISTER_WRITE_DELAY); 2122 } 2123 2124 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2125 { 2126 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2127 2128 memset(ihost->power_control.requesters, 0, 2129 sizeof(ihost->power_control.requesters)); 2130 2131 ihost->power_control.phys_waiting = 0; 2132 ihost->power_control.phys_granted_power = 0; 2133 } 2134 2135 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2136 { 2137 struct sci_base_state_machine *sm = &ihost->sm; 2138 enum sci_status result = SCI_FAILURE; 2139 unsigned long i, state, val; 2140 2141 if (ihost->sm.current_state_id != SCIC_RESET) { 2142 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2143 __func__, ihost->sm.current_state_id); 2144 return SCI_FAILURE_INVALID_STATE; 2145 } 2146 2147 sci_change_state(sm, SCIC_INITIALIZING); 2148 2149 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2150 2151 ihost->next_phy_to_start = 0; 2152 ihost->phy_startup_timer_pending = false; 2153 2154 sci_controller_initialize_power_control(ihost); 2155 2156 /* 2157 * There is nothing to do here for B0 since we do not have to 2158 * program the AFE registers. 2159 * / @todo The AFE settings are supposed to be correct for the B0 but 2160 * / presently they seem to be wrong. */ 2161 sci_controller_afe_initialization(ihost); 2162 2163 2164 /* Take the hardware out of reset */ 2165 writel(0, &ihost->smu_registers->soft_reset_control); 2166 2167 /* 2168 * / @todo Provide meaningfull error code for hardware failure 2169 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2170 for (i = 100; i >= 1; i--) { 2171 u32 status; 2172 2173 /* Loop until the hardware reports success */ 2174 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2175 status = readl(&ihost->smu_registers->control_status); 2176 2177 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2178 break; 2179 } 2180 if (i == 0) 2181 goto out; 2182 2183 /* 2184 * Determine what are the actaul device capacities that the 2185 * hardware will support */ 2186 val = readl(&ihost->smu_registers->device_context_capacity); 2187 2188 /* Record the smaller of the two capacity values */ 2189 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2190 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2191 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2192 2193 /* 2194 * Make all PEs that are unassigned match up with the 2195 * logical ports 2196 */ 2197 for (i = 0; i < ihost->logical_port_entries; i++) { 2198 struct scu_port_task_scheduler_group_registers __iomem 2199 *ptsg = &ihost->scu_registers->peg0.ptsg; 2200 2201 writel(i, &ptsg->protocol_engine[i]); 2202 } 2203 2204 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2205 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2206 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2207 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2208 2209 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2210 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2211 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2212 2213 /* 2214 * Initialize the PHYs before the PORTs because the PHY registers 2215 * are accessed during the port initialization. 2216 */ 2217 for (i = 0; i < SCI_MAX_PHYS; i++) { 2218 result = sci_phy_initialize(&ihost->phys[i], 2219 &ihost->scu_registers->peg0.pe[i].tl, 2220 &ihost->scu_registers->peg0.pe[i].ll); 2221 if (result != SCI_SUCCESS) 2222 goto out; 2223 } 2224 2225 for (i = 0; i < ihost->logical_port_entries; i++) { 2226 struct isci_port *iport = &ihost->ports[i]; 2227 2228 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2229 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2230 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2231 } 2232 2233 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2234 2235 out: 2236 /* Advance the controller state machine */ 2237 if (result == SCI_SUCCESS) 2238 state = SCIC_INITIALIZED; 2239 else 2240 state = SCIC_FAILED; 2241 sci_change_state(sm, state); 2242 2243 return result; 2244 } 2245 2246 static int sci_controller_dma_alloc(struct isci_host *ihost) 2247 { 2248 struct device *dev = &ihost->pdev->dev; 2249 size_t size; 2250 int i; 2251 2252 /* detect re-initialization */ 2253 if (ihost->completion_queue) 2254 return 0; 2255 2256 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2257 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, 2258 GFP_KERNEL); 2259 if (!ihost->completion_queue) 2260 return -ENOMEM; 2261 2262 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2263 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, 2264 GFP_KERNEL); 2265 2266 if (!ihost->remote_node_context_table) 2267 return -ENOMEM; 2268 2269 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2270 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, 2271 GFP_KERNEL); 2272 if (!ihost->task_context_table) 2273 return -ENOMEM; 2274 2275 size = SCI_UFI_TOTAL_SIZE; 2276 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); 2277 if (!ihost->ufi_buf) 2278 return -ENOMEM; 2279 2280 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2281 struct isci_request *ireq; 2282 dma_addr_t dma; 2283 2284 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); 2285 if (!ireq) 2286 return -ENOMEM; 2287 2288 ireq->tc = &ihost->task_context_table[i]; 2289 ireq->owning_controller = ihost; 2290 ireq->request_daddr = dma; 2291 ireq->isci_host = ihost; 2292 ihost->reqs[i] = ireq; 2293 } 2294 2295 return 0; 2296 } 2297 2298 static int sci_controller_mem_init(struct isci_host *ihost) 2299 { 2300 int err = sci_controller_dma_alloc(ihost); 2301 2302 if (err) 2303 return err; 2304 2305 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); 2306 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); 2307 2308 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); 2309 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); 2310 2311 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); 2312 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); 2313 2314 sci_unsolicited_frame_control_construct(ihost); 2315 2316 /* 2317 * Inform the silicon as to the location of the UF headers and 2318 * address table. 2319 */ 2320 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2321 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2322 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2323 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2324 2325 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2326 &ihost->scu_registers->sdma.uf_address_table_lower); 2327 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2328 &ihost->scu_registers->sdma.uf_address_table_upper); 2329 2330 return 0; 2331 } 2332 2333 /** 2334 * isci_host_init - (re-)initialize hardware and internal (private) state 2335 * @ihost: host to init 2336 * 2337 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or 2338 * one-time initialization objects like locks and waitqueues, are 2339 * not touched (they are initialized in isci_host_alloc) 2340 */ 2341 int isci_host_init(struct isci_host *ihost) 2342 { 2343 int i, err; 2344 enum sci_status status; 2345 2346 spin_lock_irq(&ihost->scic_lock); 2347 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); 2348 spin_unlock_irq(&ihost->scic_lock); 2349 if (status != SCI_SUCCESS) { 2350 dev_err(&ihost->pdev->dev, 2351 "%s: sci_controller_construct failed - status = %x\n", 2352 __func__, 2353 status); 2354 return -ENODEV; 2355 } 2356 2357 spin_lock_irq(&ihost->scic_lock); 2358 status = sci_controller_initialize(ihost); 2359 spin_unlock_irq(&ihost->scic_lock); 2360 if (status != SCI_SUCCESS) { 2361 dev_warn(&ihost->pdev->dev, 2362 "%s: sci_controller_initialize failed -" 2363 " status = 0x%x\n", 2364 __func__, status); 2365 return -ENODEV; 2366 } 2367 2368 err = sci_controller_mem_init(ihost); 2369 if (err) 2370 return err; 2371 2372 /* enable sgpio */ 2373 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2374 for (i = 0; i < isci_gpio_count(ihost); i++) 2375 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2376 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2377 2378 return 0; 2379 } 2380 2381 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2382 struct isci_phy *iphy) 2383 { 2384 switch (ihost->sm.current_state_id) { 2385 case SCIC_STARTING: 2386 sci_del_timer(&ihost->phy_timer); 2387 ihost->phy_startup_timer_pending = false; 2388 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2389 iport, iphy); 2390 sci_controller_start_next_phy(ihost); 2391 break; 2392 case SCIC_READY: 2393 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2394 iport, iphy); 2395 break; 2396 default: 2397 dev_dbg(&ihost->pdev->dev, 2398 "%s: SCIC Controller linkup event from phy %d in " 2399 "unexpected state %d\n", __func__, iphy->phy_index, 2400 ihost->sm.current_state_id); 2401 } 2402 } 2403 2404 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2405 struct isci_phy *iphy) 2406 { 2407 switch (ihost->sm.current_state_id) { 2408 case SCIC_STARTING: 2409 case SCIC_READY: 2410 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2411 iport, iphy); 2412 break; 2413 default: 2414 dev_dbg(&ihost->pdev->dev, 2415 "%s: SCIC Controller linkdown event from phy %d in " 2416 "unexpected state %d\n", 2417 __func__, 2418 iphy->phy_index, 2419 ihost->sm.current_state_id); 2420 } 2421 } 2422 2423 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2424 { 2425 u32 index; 2426 2427 for (index = 0; index < ihost->remote_node_entries; index++) { 2428 if ((ihost->device_table[index] != NULL) && 2429 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2430 return true; 2431 } 2432 2433 return false; 2434 } 2435 2436 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2437 struct isci_remote_device *idev) 2438 { 2439 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2440 dev_dbg(&ihost->pdev->dev, 2441 "SCIC Controller 0x%p remote device stopped event " 2442 "from device 0x%p in unexpected state %d\n", 2443 ihost, idev, 2444 ihost->sm.current_state_id); 2445 return; 2446 } 2447 2448 if (!sci_controller_has_remote_devices_stopping(ihost)) 2449 isci_host_stop_complete(ihost); 2450 } 2451 2452 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2453 { 2454 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2455 __func__, ihost->id, request); 2456 2457 writel(request, &ihost->smu_registers->post_context_port); 2458 } 2459 2460 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2461 { 2462 u16 task_index; 2463 u16 task_sequence; 2464 2465 task_index = ISCI_TAG_TCI(io_tag); 2466 2467 if (task_index < ihost->task_context_entries) { 2468 struct isci_request *ireq = ihost->reqs[task_index]; 2469 2470 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2471 task_sequence = ISCI_TAG_SEQ(io_tag); 2472 2473 if (task_sequence == ihost->io_request_sequence[task_index]) 2474 return ireq; 2475 } 2476 } 2477 2478 return NULL; 2479 } 2480 2481 /** 2482 * This method allocates remote node index and the reserves the remote node 2483 * context space for use. This method can fail if there are no more remote 2484 * node index available. 2485 * @scic: This is the controller object which contains the set of 2486 * free remote node ids 2487 * @sci_dev: This is the device object which is requesting the a remote node 2488 * id 2489 * @node_id: This is the remote node id that is assinged to the device if one 2490 * is available 2491 * 2492 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2493 * node index available. 2494 */ 2495 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2496 struct isci_remote_device *idev, 2497 u16 *node_id) 2498 { 2499 u16 node_index; 2500 u32 remote_node_count = sci_remote_device_node_count(idev); 2501 2502 node_index = sci_remote_node_table_allocate_remote_node( 2503 &ihost->available_remote_nodes, remote_node_count 2504 ); 2505 2506 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2507 ihost->device_table[node_index] = idev; 2508 2509 *node_id = node_index; 2510 2511 return SCI_SUCCESS; 2512 } 2513 2514 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2515 } 2516 2517 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2518 struct isci_remote_device *idev, 2519 u16 node_id) 2520 { 2521 u32 remote_node_count = sci_remote_device_node_count(idev); 2522 2523 if (ihost->device_table[node_id] == idev) { 2524 ihost->device_table[node_id] = NULL; 2525 2526 sci_remote_node_table_release_remote_node_index( 2527 &ihost->available_remote_nodes, remote_node_count, node_id 2528 ); 2529 } 2530 } 2531 2532 void sci_controller_copy_sata_response(void *response_buffer, 2533 void *frame_header, 2534 void *frame_buffer) 2535 { 2536 /* XXX type safety? */ 2537 memcpy(response_buffer, frame_header, sizeof(u32)); 2538 2539 memcpy(response_buffer + sizeof(u32), 2540 frame_buffer, 2541 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2542 } 2543 2544 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2545 { 2546 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2547 writel(ihost->uf_control.get, 2548 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2549 } 2550 2551 void isci_tci_free(struct isci_host *ihost, u16 tci) 2552 { 2553 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2554 2555 ihost->tci_pool[tail] = tci; 2556 ihost->tci_tail = tail + 1; 2557 } 2558 2559 static u16 isci_tci_alloc(struct isci_host *ihost) 2560 { 2561 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2562 u16 tci = ihost->tci_pool[head]; 2563 2564 ihost->tci_head = head + 1; 2565 return tci; 2566 } 2567 2568 static u16 isci_tci_space(struct isci_host *ihost) 2569 { 2570 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2571 } 2572 2573 u16 isci_alloc_tag(struct isci_host *ihost) 2574 { 2575 if (isci_tci_space(ihost)) { 2576 u16 tci = isci_tci_alloc(ihost); 2577 u8 seq = ihost->io_request_sequence[tci]; 2578 2579 return ISCI_TAG(seq, tci); 2580 } 2581 2582 return SCI_CONTROLLER_INVALID_IO_TAG; 2583 } 2584 2585 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2586 { 2587 u16 tci = ISCI_TAG_TCI(io_tag); 2588 u16 seq = ISCI_TAG_SEQ(io_tag); 2589 2590 /* prevent tail from passing head */ 2591 if (isci_tci_active(ihost) == 0) 2592 return SCI_FAILURE_INVALID_IO_TAG; 2593 2594 if (seq == ihost->io_request_sequence[tci]) { 2595 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2596 2597 isci_tci_free(ihost, tci); 2598 2599 return SCI_SUCCESS; 2600 } 2601 return SCI_FAILURE_INVALID_IO_TAG; 2602 } 2603 2604 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2605 struct isci_remote_device *idev, 2606 struct isci_request *ireq) 2607 { 2608 enum sci_status status; 2609 2610 if (ihost->sm.current_state_id != SCIC_READY) { 2611 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2612 __func__, ihost->sm.current_state_id); 2613 return SCI_FAILURE_INVALID_STATE; 2614 } 2615 2616 status = sci_remote_device_start_io(ihost, idev, ireq); 2617 if (status != SCI_SUCCESS) 2618 return status; 2619 2620 set_bit(IREQ_ACTIVE, &ireq->flags); 2621 sci_controller_post_request(ihost, ireq->post_context); 2622 return SCI_SUCCESS; 2623 } 2624 2625 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2626 struct isci_remote_device *idev, 2627 struct isci_request *ireq) 2628 { 2629 /* terminate an ongoing (i.e. started) core IO request. This does not 2630 * abort the IO request at the target, but rather removes the IO 2631 * request from the host controller. 2632 */ 2633 enum sci_status status; 2634 2635 if (ihost->sm.current_state_id != SCIC_READY) { 2636 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2637 __func__, ihost->sm.current_state_id); 2638 return SCI_FAILURE_INVALID_STATE; 2639 } 2640 status = sci_io_request_terminate(ireq); 2641 2642 dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n", 2643 __func__, status, ireq, ireq->flags); 2644 2645 if ((status == SCI_SUCCESS) && 2646 !test_bit(IREQ_PENDING_ABORT, &ireq->flags) && 2647 !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) { 2648 /* Utilize the original post context command and or in the 2649 * POST_TC_ABORT request sub-type. 2650 */ 2651 sci_controller_post_request( 2652 ihost, ireq->post_context | 2653 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2654 } 2655 return status; 2656 } 2657 2658 /** 2659 * sci_controller_complete_io() - This method will perform core specific 2660 * completion operations for an IO request. After this method is invoked, 2661 * the user should consider the IO request as invalid until it is properly 2662 * reused (i.e. re-constructed). 2663 * @ihost: The handle to the controller object for which to complete the 2664 * IO request. 2665 * @idev: The handle to the remote device object for which to complete 2666 * the IO request. 2667 * @ireq: the handle to the io request object to complete. 2668 */ 2669 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2670 struct isci_remote_device *idev, 2671 struct isci_request *ireq) 2672 { 2673 enum sci_status status; 2674 u16 index; 2675 2676 switch (ihost->sm.current_state_id) { 2677 case SCIC_STOPPING: 2678 /* XXX: Implement this function */ 2679 return SCI_FAILURE; 2680 case SCIC_READY: 2681 status = sci_remote_device_complete_io(ihost, idev, ireq); 2682 if (status != SCI_SUCCESS) 2683 return status; 2684 2685 index = ISCI_TAG_TCI(ireq->io_tag); 2686 clear_bit(IREQ_ACTIVE, &ireq->flags); 2687 return SCI_SUCCESS; 2688 default: 2689 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2690 __func__, ihost->sm.current_state_id); 2691 return SCI_FAILURE_INVALID_STATE; 2692 } 2693 2694 } 2695 2696 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2697 { 2698 struct isci_host *ihost = ireq->owning_controller; 2699 2700 if (ihost->sm.current_state_id != SCIC_READY) { 2701 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2702 __func__, ihost->sm.current_state_id); 2703 return SCI_FAILURE_INVALID_STATE; 2704 } 2705 2706 set_bit(IREQ_ACTIVE, &ireq->flags); 2707 sci_controller_post_request(ihost, ireq->post_context); 2708 return SCI_SUCCESS; 2709 } 2710 2711 /** 2712 * sci_controller_start_task() - This method is called by the SCIC user to 2713 * send/start a framework task management request. 2714 * @controller: the handle to the controller object for which to start the task 2715 * management request. 2716 * @remote_device: the handle to the remote device object for which to start 2717 * the task management request. 2718 * @task_request: the handle to the task request object to start. 2719 */ 2720 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2721 struct isci_remote_device *idev, 2722 struct isci_request *ireq) 2723 { 2724 enum sci_status status; 2725 2726 if (ihost->sm.current_state_id != SCIC_READY) { 2727 dev_warn(&ihost->pdev->dev, 2728 "%s: SCIC Controller starting task from invalid " 2729 "state\n", 2730 __func__); 2731 return SCI_TASK_FAILURE_INVALID_STATE; 2732 } 2733 2734 status = sci_remote_device_start_task(ihost, idev, ireq); 2735 switch (status) { 2736 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2737 set_bit(IREQ_ACTIVE, &ireq->flags); 2738 2739 /* 2740 * We will let framework know this task request started successfully, 2741 * although core is still woring on starting the request (to post tc when 2742 * RNC is resumed.) 2743 */ 2744 return SCI_SUCCESS; 2745 case SCI_SUCCESS: 2746 set_bit(IREQ_ACTIVE, &ireq->flags); 2747 sci_controller_post_request(ihost, ireq->post_context); 2748 break; 2749 default: 2750 break; 2751 } 2752 2753 return status; 2754 } 2755 2756 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2757 { 2758 int d; 2759 2760 /* no support for TX_GP_CFG */ 2761 if (reg_index == 0) 2762 return -EINVAL; 2763 2764 for (d = 0; d < isci_gpio_count(ihost); d++) { 2765 u32 val = 0x444; /* all ODx.n clear */ 2766 int i; 2767 2768 for (i = 0; i < 3; i++) { 2769 int bit = (i << 2) + 2; 2770 2771 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2772 write_data, reg_index, 2773 reg_count); 2774 if (bit < 0) 2775 break; 2776 2777 /* if od is set, clear the 'invert' bit */ 2778 val &= ~(bit << ((i << 2) + 2)); 2779 } 2780 2781 if (i < 3) 2782 break; 2783 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 2784 } 2785 2786 /* unless reg_index is > 1, we should always be able to write at 2787 * least one register 2788 */ 2789 return d > 0; 2790 } 2791 2792 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 2793 u8 reg_count, u8 *write_data) 2794 { 2795 struct isci_host *ihost = sas_ha->lldd_ha; 2796 int written; 2797 2798 switch (reg_type) { 2799 case SAS_GPIO_REG_TX_GP: 2800 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 2801 break; 2802 default: 2803 written = -EINVAL; 2804 } 2805 2806 return written; 2807 } 2808