xref: /openbmc/linux/drivers/scsi/hpsa.h (revision 483eb062)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 #ifndef HPSA_H
22 #define HPSA_H
23 
24 #include <scsi/scsicam.h>
25 
26 #define IO_OK		0
27 #define IO_ERROR	1
28 
29 struct ctlr_info;
30 
31 struct access_method {
32 	void (*submit_command)(struct ctlr_info *h,
33 		struct CommandList *c);
34 	void (*set_intr_mask)(struct ctlr_info *h, unsigned long val);
35 	unsigned long (*fifo_full)(struct ctlr_info *h);
36 	bool (*intr_pending)(struct ctlr_info *h);
37 	unsigned long (*command_completed)(struct ctlr_info *h, u8 q);
38 };
39 
40 struct hpsa_scsi_dev_t {
41 	int devtype;
42 	int bus, target, lun;		/* as presented to the OS */
43 	unsigned char scsi3addr[8];	/* as presented to the HW */
44 #define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0"
45 	unsigned char device_id[16];    /* from inquiry pg. 0x83 */
46 	unsigned char vendor[8];        /* bytes 8-15 of inquiry data */
47 	unsigned char model[16];        /* bytes 16-31 of inquiry data */
48 	unsigned char raid_level;	/* from inquiry page 0xC1 */
49 };
50 
51 struct reply_pool {
52 	u64 *head;
53 	size_t size;
54 	u8 wraparound;
55 	u32 current_entry;
56 };
57 
58 struct ctlr_info {
59 	int	ctlr;
60 	char	devname[8];
61 	char    *product_name;
62 	struct pci_dev *pdev;
63 	u32	board_id;
64 	void __iomem *vaddr;
65 	unsigned long paddr;
66 	int 	nr_cmds; /* Number of commands allowed on this controller */
67 	struct CfgTable __iomem *cfgtable;
68 	int	interrupts_enabled;
69 	int	major;
70 	int 	max_commands;
71 	int	commands_outstanding;
72 	int 	max_outstanding; /* Debug */
73 	int	usage_count;  /* number of opens all all minor devices */
74 #	define PERF_MODE_INT	0
75 #	define DOORBELL_INT	1
76 #	define SIMPLE_MODE_INT	2
77 #	define MEMQ_MODE_INT	3
78 	unsigned int intr[MAX_REPLY_QUEUES];
79 	unsigned int msix_vector;
80 	unsigned int msi_vector;
81 	int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */
82 	struct access_method access;
83 
84 	/* queue and queue Info */
85 	struct list_head reqQ;
86 	struct list_head cmpQ;
87 	unsigned int Qdepth;
88 	unsigned int maxSG;
89 	spinlock_t lock;
90 	int maxsgentries;
91 	u8 max_cmd_sg_entries;
92 	int chainsize;
93 	struct SGDescriptor **cmd_sg_list;
94 
95 	/* pointers to command and error info pool */
96 	struct CommandList 	*cmd_pool;
97 	dma_addr_t		cmd_pool_dhandle;
98 	struct ErrorInfo 	*errinfo_pool;
99 	dma_addr_t		errinfo_pool_dhandle;
100 	unsigned long  		*cmd_pool_bits;
101 	int			scan_finished;
102 	spinlock_t		scan_lock;
103 	wait_queue_head_t	scan_wait_queue;
104 
105 	struct Scsi_Host *scsi_host;
106 	spinlock_t devlock; /* to protect hba[ctlr]->dev[];  */
107 	int ndevices; /* number of used elements in .dev[] array. */
108 	struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES];
109 	/*
110 	 * Performant mode tables.
111 	 */
112 	u32 trans_support;
113 	u32 trans_offset;
114 	struct TransTable_struct *transtable;
115 	unsigned long transMethod;
116 
117 	/* cap concurrent passthrus at some reasonable maximum */
118 #define HPSA_MAX_CONCURRENT_PASSTHRUS (20)
119 	spinlock_t passthru_count_lock; /* protects passthru_count */
120 	int passthru_count;
121 
122 	/*
123 	 * Performant mode completion buffers
124 	 */
125 	u64 *reply_pool;
126 	size_t reply_pool_size;
127 	struct reply_pool reply_queue[MAX_REPLY_QUEUES];
128 	u8 nreply_queues;
129 	dma_addr_t reply_pool_dhandle;
130 	u32 *blockFetchTable;
131 	unsigned char *hba_inquiry_data;
132 	u64 last_intr_timestamp;
133 	u32 last_heartbeat;
134 	u64 last_heartbeat_timestamp;
135 	u32 heartbeat_sample_interval;
136 	atomic_t firmware_flash_in_progress;
137 	u32 lockup_detected;
138 	struct delayed_work monitor_ctlr_work;
139 	int remove_in_progress;
140 	u32 fifo_recently_full;
141 	/* Address of h->q[x] is passed to intr handler to know which queue */
142 	u8 q[MAX_REPLY_QUEUES];
143 	u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */
144 #define HPSATMF_BITS_SUPPORTED  (1 << 0)
145 #define HPSATMF_PHYS_LUN_RESET  (1 << 1)
146 #define HPSATMF_PHYS_NEX_RESET  (1 << 2)
147 #define HPSATMF_PHYS_TASK_ABORT (1 << 3)
148 #define HPSATMF_PHYS_TSET_ABORT (1 << 4)
149 #define HPSATMF_PHYS_CLEAR_ACA  (1 << 5)
150 #define HPSATMF_PHYS_CLEAR_TSET (1 << 6)
151 #define HPSATMF_PHYS_QRY_TASK   (1 << 7)
152 #define HPSATMF_PHYS_QRY_TSET   (1 << 8)
153 #define HPSATMF_PHYS_QRY_ASYNC  (1 << 9)
154 #define HPSATMF_MASK_SUPPORTED  (1 << 16)
155 #define HPSATMF_LOG_LUN_RESET   (1 << 17)
156 #define HPSATMF_LOG_NEX_RESET   (1 << 18)
157 #define HPSATMF_LOG_TASK_ABORT  (1 << 19)
158 #define HPSATMF_LOG_TSET_ABORT  (1 << 20)
159 #define HPSATMF_LOG_CLEAR_ACA   (1 << 21)
160 #define HPSATMF_LOG_CLEAR_TSET  (1 << 22)
161 #define HPSATMF_LOG_QRY_TASK    (1 << 23)
162 #define HPSATMF_LOG_QRY_TSET    (1 << 24)
163 #define HPSATMF_LOG_QRY_ASYNC   (1 << 25)
164 };
165 #define HPSA_ABORT_MSG 0
166 #define HPSA_DEVICE_RESET_MSG 1
167 #define HPSA_RESET_TYPE_CONTROLLER 0x00
168 #define HPSA_RESET_TYPE_BUS 0x01
169 #define HPSA_RESET_TYPE_TARGET 0x03
170 #define HPSA_RESET_TYPE_LUN 0x04
171 #define HPSA_MSG_SEND_RETRY_LIMIT 10
172 #define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000)
173 
174 /* Maximum time in seconds driver will wait for command completions
175  * when polling before giving up.
176  */
177 #define HPSA_MAX_POLL_TIME_SECS (20)
178 
179 /* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines
180  * how many times to retry TEST UNIT READY on a device
181  * while waiting for it to become ready before giving up.
182  * HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval
183  * between sending TURs while waiting for a device
184  * to become ready.
185  */
186 #define HPSA_TUR_RETRY_LIMIT (20)
187 #define HPSA_MAX_WAIT_INTERVAL_SECS (30)
188 
189 /* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board
190  * to become ready, in seconds, before giving up on it.
191  * HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait
192  * between polling the board to see if it is ready, in
193  * milliseconds.  HPSA_BOARD_READY_POLL_INTERVAL and
194  * HPSA_BOARD_READY_ITERATIONS are derived from those.
195  */
196 #define HPSA_BOARD_READY_WAIT_SECS (120)
197 #define HPSA_BOARD_NOT_READY_WAIT_SECS (100)
198 #define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100)
199 #define HPSA_BOARD_READY_POLL_INTERVAL \
200 	((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000)
201 #define HPSA_BOARD_READY_ITERATIONS \
202 	((HPSA_BOARD_READY_WAIT_SECS * 1000) / \
203 		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
204 #define HPSA_BOARD_NOT_READY_ITERATIONS \
205 	((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \
206 		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
207 #define HPSA_POST_RESET_PAUSE_MSECS (3000)
208 #define HPSA_POST_RESET_NOOP_RETRIES (12)
209 
210 /*  Defining the diffent access_menthods */
211 /*
212  * Memory mapped FIFO interface (SMART 53xx cards)
213  */
214 #define SA5_DOORBELL	0x20
215 #define SA5_REQUEST_PORT_OFFSET	0x40
216 #define SA5_REPLY_INTR_MASK_OFFSET	0x34
217 #define SA5_REPLY_PORT_OFFSET		0x44
218 #define SA5_INTR_STATUS		0x30
219 #define SA5_SCRATCHPAD_OFFSET	0xB0
220 
221 #define SA5_CTCFG_OFFSET	0xB4
222 #define SA5_CTMEM_OFFSET	0xB8
223 
224 #define SA5_INTR_OFF		0x08
225 #define SA5B_INTR_OFF		0x04
226 #define SA5_INTR_PENDING	0x08
227 #define SA5B_INTR_PENDING	0x04
228 #define FIFO_EMPTY		0xffffffff
229 #define HPSA_FIRMWARE_READY	0xffff0000 /* value in scratchpad register */
230 
231 #define HPSA_ERROR_BIT		0x02
232 
233 /* Performant mode flags */
234 #define SA5_PERF_INTR_PENDING   0x04
235 #define SA5_PERF_INTR_OFF       0x05
236 #define SA5_OUTDB_STATUS_PERF_BIT       0x01
237 #define SA5_OUTDB_CLEAR_PERF_BIT        0x01
238 #define SA5_OUTDB_CLEAR         0xA0
239 #define SA5_OUTDB_CLEAR_PERF_BIT        0x01
240 #define SA5_OUTDB_STATUS        0x9C
241 
242 
243 #define HPSA_INTR_ON 	1
244 #define HPSA_INTR_OFF	0
245 /*
246 	Send the command to the hardware
247 */
248 static void SA5_submit_command(struct ctlr_info *h,
249 	struct CommandList *c)
250 {
251 	dev_dbg(&h->pdev->dev, "Sending %x, tag = %x\n", c->busaddr,
252 		c->Header.Tag.lower);
253 	writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
254 	(void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
255 }
256 
257 /*
258  *  This card is the opposite of the other cards.
259  *   0 turns interrupts on...
260  *   0x08 turns them off...
261  */
262 static void SA5_intr_mask(struct ctlr_info *h, unsigned long val)
263 {
264 	if (val) { /* Turn interrupts on */
265 		h->interrupts_enabled = 1;
266 		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
267 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
268 	} else { /* Turn them off */
269 		h->interrupts_enabled = 0;
270 		writel(SA5_INTR_OFF,
271 			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
272 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
273 	}
274 }
275 
276 static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val)
277 {
278 	if (val) { /* turn on interrupts */
279 		h->interrupts_enabled = 1;
280 		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
281 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
282 	} else {
283 		h->interrupts_enabled = 0;
284 		writel(SA5_PERF_INTR_OFF,
285 			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
286 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
287 	}
288 }
289 
290 static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q)
291 {
292 	struct reply_pool *rq = &h->reply_queue[q];
293 	unsigned long flags, register_value = FIFO_EMPTY;
294 
295 	/* msi auto clears the interrupt pending bit. */
296 	if (!(h->msi_vector || h->msix_vector)) {
297 		/* flush the controller write of the reply queue by reading
298 		 * outbound doorbell status register.
299 		 */
300 		register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
301 		writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR);
302 		/* Do a read in order to flush the write to the controller
303 		 * (as per spec.)
304 		 */
305 		register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
306 	}
307 
308 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
309 		register_value = rq->head[rq->current_entry];
310 		rq->current_entry++;
311 		spin_lock_irqsave(&h->lock, flags);
312 		h->commands_outstanding--;
313 		spin_unlock_irqrestore(&h->lock, flags);
314 	} else {
315 		register_value = FIFO_EMPTY;
316 	}
317 	/* Check for wraparound */
318 	if (rq->current_entry == h->max_commands) {
319 		rq->current_entry = 0;
320 		rq->wraparound ^= 1;
321 	}
322 	return register_value;
323 }
324 
325 /*
326  *  Returns true if fifo is full.
327  *
328  */
329 static unsigned long SA5_fifo_full(struct ctlr_info *h)
330 {
331 	if (h->commands_outstanding >= h->max_commands)
332 		return 1;
333 	else
334 		return 0;
335 
336 }
337 /*
338  *   returns value read from hardware.
339  *     returns FIFO_EMPTY if there is nothing to read
340  */
341 static unsigned long SA5_completed(struct ctlr_info *h,
342 	__attribute__((unused)) u8 q)
343 {
344 	unsigned long register_value
345 		= readl(h->vaddr + SA5_REPLY_PORT_OFFSET);
346 	unsigned long flags;
347 
348 	if (register_value != FIFO_EMPTY) {
349 		spin_lock_irqsave(&h->lock, flags);
350 		h->commands_outstanding--;
351 		spin_unlock_irqrestore(&h->lock, flags);
352 	}
353 
354 #ifdef HPSA_DEBUG
355 	if (register_value != FIFO_EMPTY)
356 		dev_dbg(&h->pdev->dev, "Read %lx back from board\n",
357 			register_value);
358 	else
359 		dev_dbg(&h->pdev->dev, "FIFO Empty read\n");
360 #endif
361 
362 	return register_value;
363 }
364 /*
365  *	Returns true if an interrupt is pending..
366  */
367 static bool SA5_intr_pending(struct ctlr_info *h)
368 {
369 	unsigned long register_value  =
370 		readl(h->vaddr + SA5_INTR_STATUS);
371 	dev_dbg(&h->pdev->dev, "intr_pending %lx\n", register_value);
372 	return register_value & SA5_INTR_PENDING;
373 }
374 
375 static bool SA5_performant_intr_pending(struct ctlr_info *h)
376 {
377 	unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
378 
379 	if (!register_value)
380 		return false;
381 
382 	if (h->msi_vector || h->msix_vector)
383 		return true;
384 
385 	/* Read outbound doorbell to flush */
386 	register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
387 	return register_value & SA5_OUTDB_STATUS_PERF_BIT;
388 }
389 
390 static struct access_method SA5_access = {
391 	SA5_submit_command,
392 	SA5_intr_mask,
393 	SA5_fifo_full,
394 	SA5_intr_pending,
395 	SA5_completed,
396 };
397 
398 static struct access_method SA5_performant_access = {
399 	SA5_submit_command,
400 	SA5_performant_intr_mask,
401 	SA5_fifo_full,
402 	SA5_performant_intr_pending,
403 	SA5_performant_completed,
404 };
405 
406 struct board_type {
407 	u32	board_id;
408 	char	*product_name;
409 	struct access_method *access;
410 };
411 
412 #endif /* HPSA_H */
413 
414