xref: /openbmc/linux/drivers/scsi/hpsa.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289 
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 	struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 	struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 	int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 			       u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 				    unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 				bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 					   unsigned char lunaddr[],
310 					   int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 				     int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 	struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 	unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 			       struct hpsa_scsi_dev_t *dev,
333 			       unsigned char *scsi3addr);
334 
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 	unsigned long *priv = shost_priv(sdev->host);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 	unsigned long *priv = shost_priv(sh);
344 	return (struct ctlr_info *) *priv;
345 }
346 
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 	return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 	device->offload_enabled = 0;
514 	device->offload_to_be_enabled = 0;
515 }
516 
517 static ssize_t host_show_firmware_revision(struct device *dev,
518 	     struct device_attribute *attr, char *buf)
519 {
520 	struct ctlr_info *h;
521 	struct Scsi_Host *shost = class_to_shost(dev);
522 	unsigned char *fwrev;
523 
524 	h = shost_to_hba(shost);
525 	if (!h->hba_inquiry_data)
526 		return 0;
527 	fwrev = &h->hba_inquiry_data[32];
528 	return snprintf(buf, 20, "%c%c%c%c\n",
529 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531 
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 	     struct device_attribute *attr, char *buf)
534 {
535 	struct Scsi_Host *shost = class_to_shost(dev);
536 	struct ctlr_info *h = shost_to_hba(shost);
537 
538 	return snprintf(buf, 20, "%d\n",
539 			atomic_read(&h->commands_outstanding));
540 }
541 
542 static ssize_t host_show_transport_mode(struct device *dev,
543 	struct device_attribute *attr, char *buf)
544 {
545 	struct ctlr_info *h;
546 	struct Scsi_Host *shost = class_to_shost(dev);
547 
548 	h = shost_to_hba(shost);
549 	return snprintf(buf, 20, "%s\n",
550 		h->transMethod & CFGTBL_Trans_Performant ?
551 			"performant" : "simple");
552 }
553 
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 	struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct Scsi_Host *shost = class_to_shost(dev);
559 
560 	h = shost_to_hba(shost);
561 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564 
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 	0x324a103C, /* Smart Array P712m */
568 	0x324b103C, /* Smart Array P711m */
569 	0x3223103C, /* Smart Array P800 */
570 	0x3234103C, /* Smart Array P400 */
571 	0x3235103C, /* Smart Array P400i */
572 	0x3211103C, /* Smart Array E200i */
573 	0x3212103C, /* Smart Array E200 */
574 	0x3213103C, /* Smart Array E200i */
575 	0x3214103C, /* Smart Array E200i */
576 	0x3215103C, /* Smart Array E200i */
577 	0x3237103C, /* Smart Array E500 */
578 	0x323D103C, /* Smart Array P700m */
579 	0x40800E11, /* Smart Array 5i */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 	0x40700E11, /* Smart Array 5300 */
583 	0x40820E11, /* Smart Array 532 */
584 	0x40830E11, /* Smart Array 5312 */
585 	0x409A0E11, /* Smart Array 641 */
586 	0x409B0E11, /* Smart Array 642 */
587 	0x40910E11, /* Smart Array 6i */
588 };
589 
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 	0x40800E11, /* Smart Array 5i */
593 	0x40700E11, /* Smart Array 5300 */
594 	0x40820E11, /* Smart Array 532 */
595 	0x40830E11, /* Smart Array 5312 */
596 	0x409A0E11, /* Smart Array 641 */
597 	0x409B0E11, /* Smart Array 642 */
598 	0x40910E11, /* Smart Array 6i */
599 	/* Exclude 640x boards.  These are two pci devices in one slot
600 	 * which share a battery backed cache module.  One controls the
601 	 * cache, the other accesses the cache through the one that controls
602 	 * it.  If we reset the one controlling the cache, the other will
603 	 * likely not be happy.  Just forbid resetting this conjoined mess.
604 	 * The 640x isn't really supported by hpsa anyway.
605 	 */
606 	0x409C0E11, /* Smart Array 6400 */
607 	0x409D0E11, /* Smart Array 6400 EM */
608 };
609 
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 	int i;
613 
614 	for (i = 0; i < nelems; i++)
615 		if (a[i] == board_id)
616 			return 1;
617 	return 0;
618 }
619 
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(unresettable_controller,
623 			ARRAY_SIZE(unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 	return !board_id_in_array(soft_unresettable_controller,
629 			ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631 
632 static int ctlr_is_resettable(u32 board_id)
633 {
634 	return ctlr_is_hard_resettable(board_id) ||
635 		ctlr_is_soft_resettable(board_id);
636 }
637 
638 static ssize_t host_show_resettable(struct device *dev,
639 	struct device_attribute *attr, char *buf)
640 {
641 	struct ctlr_info *h;
642 	struct Scsi_Host *shost = class_to_shost(dev);
643 
644 	h = shost_to_hba(shost);
645 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647 
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 	return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652 
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0	0
657 #define HPSA_RAID_4	1
658 #define HPSA_RAID_1	2	/* also used for RAID 10 */
659 #define HPSA_RAID_5	3	/* also used for RAID 50 */
660 #define HPSA_RAID_51	4
661 #define HPSA_RAID_6	5	/* also used for RAID 60 */
662 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665 
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 	return !device->physical_device;
669 }
670 
671 static ssize_t raid_level_show(struct device *dev,
672 	     struct device_attribute *attr, char *buf)
673 {
674 	ssize_t l = 0;
675 	unsigned char rlevel;
676 	struct ctlr_info *h;
677 	struct scsi_device *sdev;
678 	struct hpsa_scsi_dev_t *hdev;
679 	unsigned long flags;
680 
681 	sdev = to_scsi_device(dev);
682 	h = sdev_to_hba(sdev);
683 	spin_lock_irqsave(&h->lock, flags);
684 	hdev = sdev->hostdata;
685 	if (!hdev) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		return -ENODEV;
688 	}
689 
690 	/* Is this even a logical drive? */
691 	if (!is_logical_device(hdev)) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 		return l;
695 	}
696 
697 	rlevel = hdev->raid_level;
698 	spin_unlock_irqrestore(&h->lock, flags);
699 	if (rlevel > RAID_UNKNOWN)
700 		rlevel = RAID_UNKNOWN;
701 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 	return l;
703 }
704 
705 static ssize_t lunid_show(struct device *dev,
706 	     struct device_attribute *attr, char *buf)
707 {
708 	struct ctlr_info *h;
709 	struct scsi_device *sdev;
710 	struct hpsa_scsi_dev_t *hdev;
711 	unsigned long flags;
712 	unsigned char lunid[8];
713 
714 	sdev = to_scsi_device(dev);
715 	h = sdev_to_hba(sdev);
716 	spin_lock_irqsave(&h->lock, flags);
717 	hdev = sdev->hostdata;
718 	if (!hdev) {
719 		spin_unlock_irqrestore(&h->lock, flags);
720 		return -ENODEV;
721 	}
722 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 	spin_unlock_irqrestore(&h->lock, flags);
724 	return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726 
727 static ssize_t unique_id_show(struct device *dev,
728 	     struct device_attribute *attr, char *buf)
729 {
730 	struct ctlr_info *h;
731 	struct scsi_device *sdev;
732 	struct hpsa_scsi_dev_t *hdev;
733 	unsigned long flags;
734 	unsigned char sn[16];
735 
736 	sdev = to_scsi_device(dev);
737 	h = sdev_to_hba(sdev);
738 	spin_lock_irqsave(&h->lock, flags);
739 	hdev = sdev->hostdata;
740 	if (!hdev) {
741 		spin_unlock_irqrestore(&h->lock, flags);
742 		return -ENODEV;
743 	}
744 	memcpy(sn, hdev->device_id, sizeof(sn));
745 	spin_unlock_irqrestore(&h->lock, flags);
746 	return snprintf(buf, 16 * 2 + 2,
747 			"%02X%02X%02X%02X%02X%02X%02X%02X"
748 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 			sn[0], sn[1], sn[2], sn[3],
750 			sn[4], sn[5], sn[6], sn[7],
751 			sn[8], sn[9], sn[10], sn[11],
752 			sn[12], sn[13], sn[14], sn[15]);
753 }
754 
755 static ssize_t sas_address_show(struct device *dev,
756 	      struct device_attribute *attr, char *buf)
757 {
758 	struct ctlr_info *h;
759 	struct scsi_device *sdev;
760 	struct hpsa_scsi_dev_t *hdev;
761 	unsigned long flags;
762 	u64 sas_address;
763 
764 	sdev = to_scsi_device(dev);
765 	h = sdev_to_hba(sdev);
766 	spin_lock_irqsave(&h->lock, flags);
767 	hdev = sdev->hostdata;
768 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 		spin_unlock_irqrestore(&h->lock, flags);
770 		return -ENODEV;
771 	}
772 	sas_address = hdev->sas_address;
773 	spin_unlock_irqrestore(&h->lock, flags);
774 
775 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777 
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 	     struct device_attribute *attr, char *buf)
780 {
781 	struct ctlr_info *h;
782 	struct scsi_device *sdev;
783 	struct hpsa_scsi_dev_t *hdev;
784 	unsigned long flags;
785 	int offload_enabled;
786 
787 	sdev = to_scsi_device(dev);
788 	h = sdev_to_hba(sdev);
789 	spin_lock_irqsave(&h->lock, flags);
790 	hdev = sdev->hostdata;
791 	if (!hdev) {
792 		spin_unlock_irqrestore(&h->lock, flags);
793 		return -ENODEV;
794 	}
795 	offload_enabled = hdev->offload_enabled;
796 	spin_unlock_irqrestore(&h->lock, flags);
797 
798 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 		return snprintf(buf, 20, "%d\n", offload_enabled);
800 	else
801 		return snprintf(buf, 40, "%s\n",
802 				"Not applicable for a controller");
803 }
804 
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807 	     struct device_attribute *attr, char *buf)
808 {
809 	struct ctlr_info *h;
810 	struct scsi_device *sdev;
811 	struct hpsa_scsi_dev_t *hdev;
812 	unsigned long flags;
813 	int i;
814 	int output_len = 0;
815 	u8 box;
816 	u8 bay;
817 	u8 path_map_index = 0;
818 	char *active;
819 	unsigned char phys_connector[2];
820 
821 	sdev = to_scsi_device(dev);
822 	h = sdev_to_hba(sdev);
823 	spin_lock_irqsave(&h->devlock, flags);
824 	hdev = sdev->hostdata;
825 	if (!hdev) {
826 		spin_unlock_irqrestore(&h->devlock, flags);
827 		return -ENODEV;
828 	}
829 
830 	bay = hdev->bay;
831 	for (i = 0; i < MAX_PATHS; i++) {
832 		path_map_index = 1<<i;
833 		if (i == hdev->active_path_index)
834 			active = "Active";
835 		else if (hdev->path_map & path_map_index)
836 			active = "Inactive";
837 		else
838 			continue;
839 
840 		output_len += scnprintf(buf + output_len,
841 				PAGE_SIZE - output_len,
842 				"[%d:%d:%d:%d] %20.20s ",
843 				h->scsi_host->host_no,
844 				hdev->bus, hdev->target, hdev->lun,
845 				scsi_device_type(hdev->devtype));
846 
847 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 			output_len += scnprintf(buf + output_len,
849 						PAGE_SIZE - output_len,
850 						"%s\n", active);
851 			continue;
852 		}
853 
854 		box = hdev->box[i];
855 		memcpy(&phys_connector, &hdev->phys_connector[i],
856 			sizeof(phys_connector));
857 		if (phys_connector[0] < '0')
858 			phys_connector[0] = '0';
859 		if (phys_connector[1] < '0')
860 			phys_connector[1] = '0';
861 		output_len += scnprintf(buf + output_len,
862 				PAGE_SIZE - output_len,
863 				"PORT: %.2s ",
864 				phys_connector);
865 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 			hdev->expose_device) {
867 			if (box == 0 || box == 0xFF) {
868 				output_len += scnprintf(buf + output_len,
869 					PAGE_SIZE - output_len,
870 					"BAY: %hhu %s\n",
871 					bay, active);
872 			} else {
873 				output_len += scnprintf(buf + output_len,
874 					PAGE_SIZE - output_len,
875 					"BOX: %hhu BAY: %hhu %s\n",
876 					box, bay, active);
877 			}
878 		} else if (box != 0 && box != 0xFF) {
879 			output_len += scnprintf(buf + output_len,
880 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 				box, active);
882 		} else
883 			output_len += scnprintf(buf + output_len,
884 				PAGE_SIZE - output_len, "%s\n", active);
885 	}
886 
887 	spin_unlock_irqrestore(&h->devlock, flags);
888 	return output_len;
889 }
890 
891 static ssize_t host_show_ctlr_num(struct device *dev,
892 	struct device_attribute *attr, char *buf)
893 {
894 	struct ctlr_info *h;
895 	struct Scsi_Host *shost = class_to_shost(dev);
896 
897 	h = shost_to_hba(shost);
898 	return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900 
901 static ssize_t host_show_legacy_board(struct device *dev,
902 	struct device_attribute *attr, char *buf)
903 {
904 	struct ctlr_info *h;
905 	struct Scsi_Host *shost = class_to_shost(dev);
906 
907 	h = shost_to_hba(shost);
908 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910 
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 			host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 		host_show_hp_ssd_smart_path_status,
921 		host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 			host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 	host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 	host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 	host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 	host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 	host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 	host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 	host_show_legacy_board, NULL);
938 
939 static struct attribute *hpsa_sdev_attrs[] = {
940 	&dev_attr_raid_level.attr,
941 	&dev_attr_lunid.attr,
942 	&dev_attr_unique_id.attr,
943 	&dev_attr_hp_ssd_smart_path_enabled.attr,
944 	&dev_attr_path_info.attr,
945 	&dev_attr_sas_address.attr,
946 	NULL,
947 };
948 
949 ATTRIBUTE_GROUPS(hpsa_sdev);
950 
951 static struct attribute *hpsa_shost_attrs[] = {
952 	&dev_attr_rescan.attr,
953 	&dev_attr_firmware_revision.attr,
954 	&dev_attr_commands_outstanding.attr,
955 	&dev_attr_transport_mode.attr,
956 	&dev_attr_resettable.attr,
957 	&dev_attr_hp_ssd_smart_path_status.attr,
958 	&dev_attr_raid_offload_debug.attr,
959 	&dev_attr_lockup_detected.attr,
960 	&dev_attr_ctlr_num.attr,
961 	&dev_attr_legacy_board.attr,
962 	NULL,
963 };
964 
965 ATTRIBUTE_GROUPS(hpsa_shost);
966 
967 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
968 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
969 
970 static struct scsi_host_template hpsa_driver_template = {
971 	.module			= THIS_MODULE,
972 	.name			= HPSA,
973 	.proc_name		= HPSA,
974 	.queuecommand		= hpsa_scsi_queue_command,
975 	.scan_start		= hpsa_scan_start,
976 	.scan_finished		= hpsa_scan_finished,
977 	.change_queue_depth	= hpsa_change_queue_depth,
978 	.this_id		= -1,
979 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
980 	.ioctl			= hpsa_ioctl,
981 	.slave_alloc		= hpsa_slave_alloc,
982 	.slave_configure	= hpsa_slave_configure,
983 	.slave_destroy		= hpsa_slave_destroy,
984 #ifdef CONFIG_COMPAT
985 	.compat_ioctl		= hpsa_compat_ioctl,
986 #endif
987 	.sdev_groups = hpsa_sdev_groups,
988 	.shost_groups = hpsa_shost_groups,
989 	.max_sectors = 2048,
990 	.no_write_same = 1,
991 };
992 
993 static inline u32 next_command(struct ctlr_info *h, u8 q)
994 {
995 	u32 a;
996 	struct reply_queue_buffer *rq = &h->reply_queue[q];
997 
998 	if (h->transMethod & CFGTBL_Trans_io_accel1)
999 		return h->access.command_completed(h, q);
1000 
1001 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002 		return h->access.command_completed(h, q);
1003 
1004 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005 		a = rq->head[rq->current_entry];
1006 		rq->current_entry++;
1007 		atomic_dec(&h->commands_outstanding);
1008 	} else {
1009 		a = FIFO_EMPTY;
1010 	}
1011 	/* Check for wraparound */
1012 	if (rq->current_entry == h->max_commands) {
1013 		rq->current_entry = 0;
1014 		rq->wraparound ^= 1;
1015 	}
1016 	return a;
1017 }
1018 
1019 /*
1020  * There are some special bits in the bus address of the
1021  * command that we have to set for the controller to know
1022  * how to process the command:
1023  *
1024  * Normal performant mode:
1025  * bit 0: 1 means performant mode, 0 means simple mode.
1026  * bits 1-3 = block fetch table entry
1027  * bits 4-6 = command type (== 0)
1028  *
1029  * ioaccel1 mode:
1030  * bit 0 = "performant mode" bit.
1031  * bits 1-3 = block fetch table entry
1032  * bits 4-6 = command type (== 110)
1033  * (command type is needed because ioaccel1 mode
1034  * commands are submitted through the same register as normal
1035  * mode commands, so this is how the controller knows whether
1036  * the command is normal mode or ioaccel1 mode.)
1037  *
1038  * ioaccel2 mode:
1039  * bit 0 = "performant mode" bit.
1040  * bits 1-4 = block fetch table entry (note extra bit)
1041  * bits 4-6 = not needed, because ioaccel2 mode has
1042  * a separate special register for submitting commands.
1043  */
1044 
1045 /*
1046  * set_performant_mode: Modify the tag for cciss performant
1047  * set bit 0 for pull model, bits 3-1 for block fetch
1048  * register number
1049  */
1050 #define DEFAULT_REPLY_QUEUE (-1)
1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1052 					int reply_queue)
1053 {
1054 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056 		if (unlikely(!h->msix_vectors))
1057 			return;
1058 		c->Header.ReplyQueue = reply_queue;
1059 	}
1060 }
1061 
1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063 						struct CommandList *c,
1064 						int reply_queue)
1065 {
1066 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1067 
1068 	/*
1069 	 * Tell the controller to post the reply to the queue for this
1070 	 * processor.  This seems to give the best I/O throughput.
1071 	 */
1072 	cp->ReplyQueue = reply_queue;
1073 	/*
1074 	 * Set the bits in the address sent down to include:
1075 	 *  - performant mode bit (bit 0)
1076 	 *  - pull count (bits 1-3)
1077 	 *  - command type (bits 4-6)
1078 	 */
1079 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080 					IOACCEL1_BUSADDR_CMDTYPE;
1081 }
1082 
1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084 						struct CommandList *c,
1085 						int reply_queue)
1086 {
1087 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088 		&h->ioaccel2_cmd_pool[c->cmdindex];
1089 
1090 	/* Tell the controller to post the reply to the queue for this
1091 	 * processor.  This seems to give the best I/O throughput.
1092 	 */
1093 	cp->reply_queue = reply_queue;
1094 	/* Set the bits in the address sent down to include:
1095 	 *  - performant mode bit not used in ioaccel mode 2
1096 	 *  - pull count (bits 0-3)
1097 	 *  - command type isn't needed for ioaccel2
1098 	 */
1099 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101 
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 						struct CommandList *c,
1104 						int reply_queue)
1105 {
1106 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107 
1108 	/*
1109 	 * Tell the controller to post the reply to the queue for this
1110 	 * processor.  This seems to give the best I/O throughput.
1111 	 */
1112 	cp->reply_queue = reply_queue;
1113 	/*
1114 	 * Set the bits in the address sent down to include:
1115 	 *  - performant mode bit not used in ioaccel mode 2
1116 	 *  - pull count (bits 0-3)
1117 	 *  - command type isn't needed for ioaccel2
1118 	 */
1119 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1120 }
1121 
1122 static int is_firmware_flash_cmd(u8 *cdb)
1123 {
1124 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125 }
1126 
1127 /*
1128  * During firmware flash, the heartbeat register may not update as frequently
1129  * as it should.  So we dial down lockup detection during firmware flash. and
1130  * dial it back up when firmware flash completes.
1131  */
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136 		struct CommandList *c)
1137 {
1138 	if (!is_firmware_flash_cmd(c->Request.CDB))
1139 		return;
1140 	atomic_inc(&h->firmware_flash_in_progress);
1141 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1142 }
1143 
1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145 		struct CommandList *c)
1146 {
1147 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1148 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1149 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1150 }
1151 
1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153 	struct CommandList *c, int reply_queue)
1154 {
1155 	dial_down_lockup_detection_during_fw_flash(h, c);
1156 	atomic_inc(&h->commands_outstanding);
1157 	/*
1158 	 * Check to see if the command is being retried.
1159 	 */
1160 	if (c->device && !c->retry_pending)
1161 		atomic_inc(&c->device->commands_outstanding);
1162 
1163 	reply_queue = h->reply_map[raw_smp_processor_id()];
1164 	switch (c->cmd_type) {
1165 	case CMD_IOACCEL1:
1166 		set_ioaccel1_performant_mode(h, c, reply_queue);
1167 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1168 		break;
1169 	case CMD_IOACCEL2:
1170 		set_ioaccel2_performant_mode(h, c, reply_queue);
1171 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 		break;
1173 	case IOACCEL2_TMF:
1174 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1176 		break;
1177 	default:
1178 		set_performant_mode(h, c, reply_queue);
1179 		h->access.submit_command(h, c);
1180 	}
1181 }
1182 
1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1184 {
1185 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1186 }
1187 
1188 static inline int is_hba_lunid(unsigned char scsi3addr[])
1189 {
1190 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1191 }
1192 
1193 static inline int is_scsi_rev_5(struct ctlr_info *h)
1194 {
1195 	if (!h->hba_inquiry_data)
1196 		return 0;
1197 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1198 		return 1;
1199 	return 0;
1200 }
1201 
1202 static int hpsa_find_target_lun(struct ctlr_info *h,
1203 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1204 {
1205 	/* finds an unused bus, target, lun for a new physical device
1206 	 * assumes h->devlock is held
1207 	 */
1208 	int i, found = 0;
1209 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210 
1211 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212 
1213 	for (i = 0; i < h->ndevices; i++) {
1214 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215 			__set_bit(h->dev[i]->target, lun_taken);
1216 	}
1217 
1218 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219 	if (i < HPSA_MAX_DEVICES) {
1220 		/* *bus = 1; */
1221 		*target = i;
1222 		*lun = 0;
1223 		found = 1;
1224 	}
1225 	return !found;
1226 }
1227 
1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229 	struct hpsa_scsi_dev_t *dev, char *description)
1230 {
1231 #define LABEL_SIZE 25
1232 	char label[LABEL_SIZE];
1233 
1234 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1235 		return;
1236 
1237 	switch (dev->devtype) {
1238 	case TYPE_RAID:
1239 		snprintf(label, LABEL_SIZE, "controller");
1240 		break;
1241 	case TYPE_ENCLOSURE:
1242 		snprintf(label, LABEL_SIZE, "enclosure");
1243 		break;
1244 	case TYPE_DISK:
1245 	case TYPE_ZBC:
1246 		if (dev->external)
1247 			snprintf(label, LABEL_SIZE, "external");
1248 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249 			snprintf(label, LABEL_SIZE, "%s",
1250 				raid_label[PHYSICAL_DRIVE]);
1251 		else
1252 			snprintf(label, LABEL_SIZE, "RAID-%s",
1253 				dev->raid_level > RAID_UNKNOWN ? "?" :
1254 				raid_label[dev->raid_level]);
1255 		break;
1256 	case TYPE_ROM:
1257 		snprintf(label, LABEL_SIZE, "rom");
1258 		break;
1259 	case TYPE_TAPE:
1260 		snprintf(label, LABEL_SIZE, "tape");
1261 		break;
1262 	case TYPE_MEDIUM_CHANGER:
1263 		snprintf(label, LABEL_SIZE, "changer");
1264 		break;
1265 	default:
1266 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1267 		break;
1268 	}
1269 
1270 	dev_printk(level, &h->pdev->dev,
1271 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1273 			description,
1274 			scsi_device_type(dev->devtype),
1275 			dev->vendor,
1276 			dev->model,
1277 			label,
1278 			dev->offload_config ? '+' : '-',
1279 			dev->offload_to_be_enabled ? '+' : '-',
1280 			dev->expose_device);
1281 }
1282 
1283 /* Add an entry into h->dev[] array. */
1284 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285 		struct hpsa_scsi_dev_t *device,
1286 		struct hpsa_scsi_dev_t *added[], int *nadded)
1287 {
1288 	/* assumes h->devlock is held */
1289 	int n = h->ndevices;
1290 	int i;
1291 	unsigned char addr1[8], addr2[8];
1292 	struct hpsa_scsi_dev_t *sd;
1293 
1294 	if (n >= HPSA_MAX_DEVICES) {
1295 		dev_err(&h->pdev->dev, "too many devices, some will be "
1296 			"inaccessible.\n");
1297 		return -1;
1298 	}
1299 
1300 	/* physical devices do not have lun or target assigned until now. */
1301 	if (device->lun != -1)
1302 		/* Logical device, lun is already assigned. */
1303 		goto lun_assigned;
1304 
1305 	/* If this device a non-zero lun of a multi-lun device
1306 	 * byte 4 of the 8-byte LUN addr will contain the logical
1307 	 * unit no, zero otherwise.
1308 	 */
1309 	if (device->scsi3addr[4] == 0) {
1310 		/* This is not a non-zero lun of a multi-lun device */
1311 		if (hpsa_find_target_lun(h, device->scsi3addr,
1312 			device->bus, &device->target, &device->lun) != 0)
1313 			return -1;
1314 		goto lun_assigned;
1315 	}
1316 
1317 	/* This is a non-zero lun of a multi-lun device.
1318 	 * Search through our list and find the device which
1319 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1320 	 * Assign the same bus and target for this new LUN.
1321 	 * Use the logical unit number from the firmware.
1322 	 */
1323 	memcpy(addr1, device->scsi3addr, 8);
1324 	addr1[4] = 0;
1325 	addr1[5] = 0;
1326 	for (i = 0; i < n; i++) {
1327 		sd = h->dev[i];
1328 		memcpy(addr2, sd->scsi3addr, 8);
1329 		addr2[4] = 0;
1330 		addr2[5] = 0;
1331 		/* differ only in byte 4 and 5? */
1332 		if (memcmp(addr1, addr2, 8) == 0) {
1333 			device->bus = sd->bus;
1334 			device->target = sd->target;
1335 			device->lun = device->scsi3addr[4];
1336 			break;
1337 		}
1338 	}
1339 	if (device->lun == -1) {
1340 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341 			" suspect firmware bug or unsupported hardware "
1342 			"configuration.\n");
1343 		return -1;
1344 	}
1345 
1346 lun_assigned:
1347 
1348 	h->dev[n] = device;
1349 	h->ndevices++;
1350 	added[*nadded] = device;
1351 	(*nadded)++;
1352 	hpsa_show_dev_msg(KERN_INFO, h, device,
1353 		device->expose_device ? "added" : "masked");
1354 	return 0;
1355 }
1356 
1357 /*
1358  * Called during a scan operation.
1359  *
1360  * Update an entry in h->dev[] array.
1361  */
1362 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363 	int entry, struct hpsa_scsi_dev_t *new_entry)
1364 {
1365 	/* assumes h->devlock is held */
1366 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367 
1368 	/* Raid level changed. */
1369 	h->dev[entry]->raid_level = new_entry->raid_level;
1370 
1371 	/*
1372 	 * ioacccel_handle may have changed for a dual domain disk
1373 	 */
1374 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 
1376 	/* Raid offload parameters changed.  Careful about the ordering. */
1377 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378 		/*
1379 		 * if drive is newly offload_enabled, we want to copy the
1380 		 * raid map data first.  If previously offload_enabled and
1381 		 * offload_config were set, raid map data had better be
1382 		 * the same as it was before. If raid map data has changed
1383 		 * then it had better be the case that
1384 		 * h->dev[entry]->offload_enabled is currently 0.
1385 		 */
1386 		h->dev[entry]->raid_map = new_entry->raid_map;
1387 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388 	}
1389 	if (new_entry->offload_to_be_enabled) {
1390 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392 	}
1393 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394 	h->dev[entry]->offload_config = new_entry->offload_config;
1395 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1397 
1398 	/*
1399 	 * We can turn off ioaccel offload now, but need to delay turning
1400 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401 	 * can't do that until all the devices are updated.
1402 	 */
1403 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1404 
1405 	/*
1406 	 * turn ioaccel off immediately if told to do so.
1407 	 */
1408 	if (!new_entry->offload_to_be_enabled)
1409 		h->dev[entry]->offload_enabled = 0;
1410 
1411 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1412 }
1413 
1414 /* Replace an entry from h->dev[] array. */
1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416 	int entry, struct hpsa_scsi_dev_t *new_entry,
1417 	struct hpsa_scsi_dev_t *added[], int *nadded,
1418 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419 {
1420 	/* assumes h->devlock is held */
1421 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422 	removed[*nremoved] = h->dev[entry];
1423 	(*nremoved)++;
1424 
1425 	/*
1426 	 * New physical devices won't have target/lun assigned yet
1427 	 * so we need to preserve the values in the slot we are replacing.
1428 	 */
1429 	if (new_entry->target == -1) {
1430 		new_entry->target = h->dev[entry]->target;
1431 		new_entry->lun = h->dev[entry]->lun;
1432 	}
1433 
1434 	h->dev[entry] = new_entry;
1435 	added[*nadded] = new_entry;
1436 	(*nadded)++;
1437 
1438 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1439 }
1440 
1441 /* Remove an entry from h->dev[] array. */
1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444 {
1445 	/* assumes h->devlock is held */
1446 	int i;
1447 	struct hpsa_scsi_dev_t *sd;
1448 
1449 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450 
1451 	sd = h->dev[entry];
1452 	removed[*nremoved] = h->dev[entry];
1453 	(*nremoved)++;
1454 
1455 	for (i = entry; i < h->ndevices-1; i++)
1456 		h->dev[i] = h->dev[i+1];
1457 	h->ndevices--;
1458 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1459 }
1460 
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462 	(a)[7] == (b)[7] && \
1463 	(a)[6] == (b)[6] && \
1464 	(a)[5] == (b)[5] && \
1465 	(a)[4] == (b)[4] && \
1466 	(a)[3] == (b)[3] && \
1467 	(a)[2] == (b)[2] && \
1468 	(a)[1] == (b)[1] && \
1469 	(a)[0] == (b)[0])
1470 
1471 static void fixup_botched_add(struct ctlr_info *h,
1472 	struct hpsa_scsi_dev_t *added)
1473 {
1474 	/* called when scsi_add_device fails in order to re-adjust
1475 	 * h->dev[] to match the mid layer's view.
1476 	 */
1477 	unsigned long flags;
1478 	int i, j;
1479 
1480 	spin_lock_irqsave(&h->lock, flags);
1481 	for (i = 0; i < h->ndevices; i++) {
1482 		if (h->dev[i] == added) {
1483 			for (j = i; j < h->ndevices-1; j++)
1484 				h->dev[j] = h->dev[j+1];
1485 			h->ndevices--;
1486 			break;
1487 		}
1488 	}
1489 	spin_unlock_irqrestore(&h->lock, flags);
1490 	kfree(added);
1491 }
1492 
1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494 	struct hpsa_scsi_dev_t *dev2)
1495 {
1496 	/* we compare everything except lun and target as these
1497 	 * are not yet assigned.  Compare parts likely
1498 	 * to differ first
1499 	 */
1500 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501 		sizeof(dev1->scsi3addr)) != 0)
1502 		return 0;
1503 	if (memcmp(dev1->device_id, dev2->device_id,
1504 		sizeof(dev1->device_id)) != 0)
1505 		return 0;
1506 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1507 		return 0;
1508 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1509 		return 0;
1510 	if (dev1->devtype != dev2->devtype)
1511 		return 0;
1512 	if (dev1->bus != dev2->bus)
1513 		return 0;
1514 	return 1;
1515 }
1516 
1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518 	struct hpsa_scsi_dev_t *dev2)
1519 {
1520 	/* Device attributes that can change, but don't mean
1521 	 * that the device is a different device, nor that the OS
1522 	 * needs to be told anything about the change.
1523 	 */
1524 	if (dev1->raid_level != dev2->raid_level)
1525 		return 1;
1526 	if (dev1->offload_config != dev2->offload_config)
1527 		return 1;
1528 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1529 		return 1;
1530 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531 		if (dev1->queue_depth != dev2->queue_depth)
1532 			return 1;
1533 	/*
1534 	 * This can happen for dual domain devices. An active
1535 	 * path change causes the ioaccel handle to change
1536 	 *
1537 	 * for example note the handle differences between p0 and p1
1538 	 * Device                    WWN               ,WWN hash,Handle
1539 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541 	 */
1542 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1543 		return 1;
1544 	return 0;
1545 }
1546 
1547 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1548  * and return needle location in *index.  If scsi3addr matches, but not
1549  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550  * location in *index.
1551  * In the case of a minor device attribute change, such as RAID level, just
1552  * return DEVICE_UPDATED, along with the updated device's location in index.
1553  * If needle not found, return DEVICE_NOT_FOUND.
1554  */
1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557 	int *index)
1558 {
1559 	int i;
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1564 	if (needle == NULL)
1565 		return DEVICE_NOT_FOUND;
1566 
1567 	for (i = 0; i < haystack_size; i++) {
1568 		if (haystack[i] == NULL) /* previously removed. */
1569 			continue;
1570 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1571 			*index = i;
1572 			if (device_is_the_same(needle, haystack[i])) {
1573 				if (device_updated(needle, haystack[i]))
1574 					return DEVICE_UPDATED;
1575 				return DEVICE_SAME;
1576 			} else {
1577 				/* Keep offline devices offline */
1578 				if (needle->volume_offline)
1579 					return DEVICE_NOT_FOUND;
1580 				return DEVICE_CHANGED;
1581 			}
1582 		}
1583 	}
1584 	*index = -1;
1585 	return DEVICE_NOT_FOUND;
1586 }
1587 
1588 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589 					unsigned char scsi3addr[])
1590 {
1591 	struct offline_device_entry *device;
1592 	unsigned long flags;
1593 
1594 	/* Check to see if device is already on the list */
1595 	spin_lock_irqsave(&h->offline_device_lock, flags);
1596 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597 		if (memcmp(device->scsi3addr, scsi3addr,
1598 			sizeof(device->scsi3addr)) == 0) {
1599 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600 			return;
1601 		}
1602 	}
1603 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604 
1605 	/* Device is not on the list, add it. */
1606 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1607 	if (!device)
1608 		return;
1609 
1610 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611 	spin_lock_irqsave(&h->offline_device_lock, flags);
1612 	list_add_tail(&device->offline_list, &h->offline_device_list);
1613 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1614 }
1615 
1616 /* Print a message explaining various offline volume states */
1617 static void hpsa_show_volume_status(struct ctlr_info *h,
1618 	struct hpsa_scsi_dev_t *sd)
1619 {
1620 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621 		dev_info(&h->pdev->dev,
1622 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623 			h->scsi_host->host_no,
1624 			sd->bus, sd->target, sd->lun);
1625 	switch (sd->volume_offline) {
1626 	case HPSA_LV_OK:
1627 		break;
1628 	case HPSA_LV_UNDERGOING_ERASE:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_NOT_AVAILABLE:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_UNDERGOING_RPI:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PENDING_RPI:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_ENCRYPTED_NO_KEY:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	case HPSA_LV_PENDING_ENCRYPTION:
1683 		dev_info(&h->pdev->dev,
1684 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685 			h->scsi_host->host_no,
1686 			sd->bus, sd->target, sd->lun);
1687 		break;
1688 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689 		dev_info(&h->pdev->dev,
1690 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691 			h->scsi_host->host_no,
1692 			sd->bus, sd->target, sd->lun);
1693 		break;
1694 	}
1695 }
1696 
1697 /*
1698  * Figure the list of physical drive pointers for a logical drive with
1699  * raid offload configured.
1700  */
1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1703 				struct hpsa_scsi_dev_t *logical_drive)
1704 {
1705 	struct raid_map_data *map = &logical_drive->raid_map;
1706 	struct raid_map_disk_data *dd = &map->data[0];
1707 	int i, j;
1708 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709 				le16_to_cpu(map->metadata_disks_per_row);
1710 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711 				le16_to_cpu(map->layout_map_count) *
1712 				total_disks_per_row;
1713 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714 				total_disks_per_row;
1715 	int qdepth;
1716 
1717 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719 
1720 	logical_drive->nphysical_disks = nraid_map_entries;
1721 
1722 	qdepth = 0;
1723 	for (i = 0; i < nraid_map_entries; i++) {
1724 		logical_drive->phys_disk[i] = NULL;
1725 		if (!logical_drive->offload_config)
1726 			continue;
1727 		for (j = 0; j < ndevices; j++) {
1728 			if (dev[j] == NULL)
1729 				continue;
1730 			if (dev[j]->devtype != TYPE_DISK &&
1731 			    dev[j]->devtype != TYPE_ZBC)
1732 				continue;
1733 			if (is_logical_device(dev[j]))
1734 				continue;
1735 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1736 				continue;
1737 
1738 			logical_drive->phys_disk[i] = dev[j];
1739 			if (i < nphys_disk)
1740 				qdepth = min(h->nr_cmds, qdepth +
1741 				    logical_drive->phys_disk[i]->queue_depth);
1742 			break;
1743 		}
1744 
1745 		/*
1746 		 * This can happen if a physical drive is removed and
1747 		 * the logical drive is degraded.  In that case, the RAID
1748 		 * map data will refer to a physical disk which isn't actually
1749 		 * present.  And in that case offload_enabled should already
1750 		 * be 0, but we'll turn it off here just in case
1751 		 */
1752 		if (!logical_drive->phys_disk[i]) {
1753 			dev_warn(&h->pdev->dev,
1754 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755 				__func__,
1756 				h->scsi_host->host_no, logical_drive->bus,
1757 				logical_drive->target, logical_drive->lun);
1758 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1759 			logical_drive->queue_depth = 8;
1760 		}
1761 	}
1762 	if (nraid_map_entries)
1763 		/*
1764 		 * This is correct for reads, too high for full stripe writes,
1765 		 * way too high for partial stripe writes
1766 		 */
1767 		logical_drive->queue_depth = qdepth;
1768 	else {
1769 		if (logical_drive->external)
1770 			logical_drive->queue_depth = EXTERNAL_QD;
1771 		else
1772 			logical_drive->queue_depth = h->nr_cmds;
1773 	}
1774 }
1775 
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < ndevices; i++) {
1782 		if (dev[i] == NULL)
1783 			continue;
1784 		if (dev[i]->devtype != TYPE_DISK &&
1785 		    dev[i]->devtype != TYPE_ZBC)
1786 			continue;
1787 		if (!is_logical_device(dev[i]))
1788 			continue;
1789 
1790 		/*
1791 		 * If offload is currently enabled, the RAID map and
1792 		 * phys_disk[] assignment *better* not be changing
1793 		 * because we would be changing ioaccel phsy_disk[] pointers
1794 		 * on a ioaccel volume processing I/O requests.
1795 		 *
1796 		 * If an ioaccel volume status changed, initially because it was
1797 		 * re-configured and thus underwent a transformation, or
1798 		 * a drive failed, we would have received a state change
1799 		 * request and ioaccel should have been turned off. When the
1800 		 * transformation completes, we get another state change
1801 		 * request to turn ioaccel back on. In this case, we need
1802 		 * to update the ioaccel information.
1803 		 *
1804 		 * Thus: If it is not currently enabled, but will be after
1805 		 * the scan completes, make sure the ioaccel pointers
1806 		 * are up to date.
1807 		 */
1808 
1809 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 	}
1812 }
1813 
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816 	int rc = 0;
1817 
1818 	if (!h->scsi_host)
1819 		return 1;
1820 
1821 	if (is_logical_device(device)) /* RAID */
1822 		rc = scsi_add_device(h->scsi_host, device->bus,
1823 					device->target, device->lun);
1824 	else /* HBA */
1825 		rc = hpsa_add_sas_device(h->sas_host, device);
1826 
1827 	return rc;
1828 }
1829 
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 						struct hpsa_scsi_dev_t *dev)
1832 {
1833 	int i;
1834 	int count = 0;
1835 
1836 	for (i = 0; i < h->nr_cmds; i++) {
1837 		struct CommandList *c = h->cmd_pool + i;
1838 		int refcount = atomic_inc_return(&c->refcount);
1839 
1840 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 				dev->scsi3addr)) {
1842 			unsigned long flags;
1843 
1844 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1845 			if (!hpsa_is_cmd_idle(c))
1846 				++count;
1847 			spin_unlock_irqrestore(&h->lock, flags);
1848 		}
1849 
1850 		cmd_free(h, c);
1851 	}
1852 
1853 	return count;
1854 }
1855 
1856 #define NUM_WAIT 20
1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858 						struct hpsa_scsi_dev_t *device)
1859 {
1860 	int cmds = 0;
1861 	int waits = 0;
1862 	int num_wait = NUM_WAIT;
1863 
1864 	if (device->external)
1865 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1866 
1867 	while (1) {
1868 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1869 		if (cmds == 0)
1870 			break;
1871 		if (++waits > num_wait)
1872 			break;
1873 		msleep(1000);
1874 	}
1875 
1876 	if (waits > num_wait) {
1877 		dev_warn(&h->pdev->dev,
1878 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1879 			__func__,
1880 			h->scsi_host->host_no,
1881 			device->bus, device->target, device->lun, cmds);
1882 	}
1883 }
1884 
1885 static void hpsa_remove_device(struct ctlr_info *h,
1886 			struct hpsa_scsi_dev_t *device)
1887 {
1888 	struct scsi_device *sdev = NULL;
1889 
1890 	if (!h->scsi_host)
1891 		return;
1892 
1893 	/*
1894 	 * Allow for commands to drain
1895 	 */
1896 	device->removed = 1;
1897 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1898 
1899 	if (is_logical_device(device)) { /* RAID */
1900 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901 						device->target, device->lun);
1902 		if (sdev) {
1903 			scsi_remove_device(sdev);
1904 			scsi_device_put(sdev);
1905 		} else {
1906 			/*
1907 			 * We don't expect to get here.  Future commands
1908 			 * to this device will get a selection timeout as
1909 			 * if the device were gone.
1910 			 */
1911 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1912 					"didn't find device for removal.");
1913 		}
1914 	} else { /* HBA */
1915 
1916 		hpsa_remove_sas_device(device);
1917 	}
1918 }
1919 
1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921 	struct hpsa_scsi_dev_t *sd[], int nsds)
1922 {
1923 	/* sd contains scsi3 addresses and devtypes, and inquiry
1924 	 * data.  This function takes what's in sd to be the current
1925 	 * reality and updates h->dev[] to reflect that reality.
1926 	 */
1927 	int i, entry, device_change, changes = 0;
1928 	struct hpsa_scsi_dev_t *csd;
1929 	unsigned long flags;
1930 	struct hpsa_scsi_dev_t **added, **removed;
1931 	int nadded, nremoved;
1932 
1933 	/*
1934 	 * A reset can cause a device status to change
1935 	 * re-schedule the scan to see what happened.
1936 	 */
1937 	spin_lock_irqsave(&h->reset_lock, flags);
1938 	if (h->reset_in_progress) {
1939 		h->drv_req_rescan = 1;
1940 		spin_unlock_irqrestore(&h->reset_lock, flags);
1941 		return;
1942 	}
1943 	spin_unlock_irqrestore(&h->reset_lock, flags);
1944 
1945 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1947 
1948 	if (!added || !removed) {
1949 		dev_warn(&h->pdev->dev, "out of memory in "
1950 			"adjust_hpsa_scsi_table\n");
1951 		goto free_and_out;
1952 	}
1953 
1954 	spin_lock_irqsave(&h->devlock, flags);
1955 
1956 	/* find any devices in h->dev[] that are not in
1957 	 * sd[] and remove them from h->dev[], and for any
1958 	 * devices which have changed, remove the old device
1959 	 * info and add the new device info.
1960 	 * If minor device attributes change, just update
1961 	 * the existing device structure.
1962 	 */
1963 	i = 0;
1964 	nremoved = 0;
1965 	nadded = 0;
1966 	while (i < h->ndevices) {
1967 		csd = h->dev[i];
1968 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969 		if (device_change == DEVICE_NOT_FOUND) {
1970 			changes++;
1971 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972 			continue; /* remove ^^^, hence i not incremented */
1973 		} else if (device_change == DEVICE_CHANGED) {
1974 			changes++;
1975 			hpsa_scsi_replace_entry(h, i, sd[entry],
1976 				added, &nadded, removed, &nremoved);
1977 			/* Set it to NULL to prevent it from being freed
1978 			 * at the bottom of hpsa_update_scsi_devices()
1979 			 */
1980 			sd[entry] = NULL;
1981 		} else if (device_change == DEVICE_UPDATED) {
1982 			hpsa_scsi_update_entry(h, i, sd[entry]);
1983 		}
1984 		i++;
1985 	}
1986 
1987 	/* Now, make sure every device listed in sd[] is also
1988 	 * listed in h->dev[], adding them if they aren't found
1989 	 */
1990 
1991 	for (i = 0; i < nsds; i++) {
1992 		if (!sd[i]) /* if already added above. */
1993 			continue;
1994 
1995 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996 		 * as the SCSI mid-layer does not handle such devices well.
1997 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998 		 * at 160Hz, and prevents the system from coming up.
1999 		 */
2000 		if (sd[i]->volume_offline) {
2001 			hpsa_show_volume_status(h, sd[i]);
2002 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003 			continue;
2004 		}
2005 
2006 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007 					h->ndevices, &entry);
2008 		if (device_change == DEVICE_NOT_FOUND) {
2009 			changes++;
2010 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2011 				break;
2012 			sd[i] = NULL; /* prevent from being freed later. */
2013 		} else if (device_change == DEVICE_CHANGED) {
2014 			/* should never happen... */
2015 			changes++;
2016 			dev_warn(&h->pdev->dev,
2017 				"device unexpectedly changed.\n");
2018 			/* but if it does happen, we just ignore that device */
2019 		}
2020 	}
2021 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2022 
2023 	/*
2024 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025 	 * any logical drives that need it enabled.
2026 	 *
2027 	 * The raid map should be current by now.
2028 	 *
2029 	 * We are updating the device list used for I/O requests.
2030 	 */
2031 	for (i = 0; i < h->ndevices; i++) {
2032 		if (h->dev[i] == NULL)
2033 			continue;
2034 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2035 	}
2036 
2037 	spin_unlock_irqrestore(&h->devlock, flags);
2038 
2039 	/* Monitor devices which are in one of several NOT READY states to be
2040 	 * brought online later. This must be done without holding h->devlock,
2041 	 * so don't touch h->dev[]
2042 	 */
2043 	for (i = 0; i < nsds; i++) {
2044 		if (!sd[i]) /* if already added above. */
2045 			continue;
2046 		if (sd[i]->volume_offline)
2047 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2048 	}
2049 
2050 	/* Don't notify scsi mid layer of any changes the first time through
2051 	 * (or if there are no changes) scsi_scan_host will do it later the
2052 	 * first time through.
2053 	 */
2054 	if (!changes)
2055 		goto free_and_out;
2056 
2057 	/* Notify scsi mid layer of any removed devices */
2058 	for (i = 0; i < nremoved; i++) {
2059 		if (removed[i] == NULL)
2060 			continue;
2061 		if (removed[i]->expose_device)
2062 			hpsa_remove_device(h, removed[i]);
2063 		kfree(removed[i]);
2064 		removed[i] = NULL;
2065 	}
2066 
2067 	/* Notify scsi mid layer of any added devices */
2068 	for (i = 0; i < nadded; i++) {
2069 		int rc = 0;
2070 
2071 		if (added[i] == NULL)
2072 			continue;
2073 		if (!(added[i]->expose_device))
2074 			continue;
2075 		rc = hpsa_add_device(h, added[i]);
2076 		if (!rc)
2077 			continue;
2078 		dev_warn(&h->pdev->dev,
2079 			"addition failed %d, device not added.", rc);
2080 		/* now we have to remove it from h->dev,
2081 		 * since it didn't get added to scsi mid layer
2082 		 */
2083 		fixup_botched_add(h, added[i]);
2084 		h->drv_req_rescan = 1;
2085 	}
2086 
2087 free_and_out:
2088 	kfree(added);
2089 	kfree(removed);
2090 }
2091 
2092 /*
2093  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094  * Assume's h->devlock is held.
2095  */
2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097 	int bus, int target, int lun)
2098 {
2099 	int i;
2100 	struct hpsa_scsi_dev_t *sd;
2101 
2102 	for (i = 0; i < h->ndevices; i++) {
2103 		sd = h->dev[i];
2104 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2105 			return sd;
2106 	}
2107 	return NULL;
2108 }
2109 
2110 static int hpsa_slave_alloc(struct scsi_device *sdev)
2111 {
2112 	struct hpsa_scsi_dev_t *sd = NULL;
2113 	unsigned long flags;
2114 	struct ctlr_info *h;
2115 
2116 	h = sdev_to_hba(sdev);
2117 	spin_lock_irqsave(&h->devlock, flags);
2118 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119 		struct scsi_target *starget;
2120 		struct sas_rphy *rphy;
2121 
2122 		starget = scsi_target(sdev);
2123 		rphy = target_to_rphy(starget);
2124 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2125 		if (sd) {
2126 			sd->target = sdev_id(sdev);
2127 			sd->lun = sdev->lun;
2128 		}
2129 	}
2130 	if (!sd)
2131 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132 					sdev_id(sdev), sdev->lun);
2133 
2134 	if (sd && sd->expose_device) {
2135 		atomic_set(&sd->ioaccel_cmds_out, 0);
2136 		sdev->hostdata = sd;
2137 	} else
2138 		sdev->hostdata = NULL;
2139 	spin_unlock_irqrestore(&h->devlock, flags);
2140 	return 0;
2141 }
2142 
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
2145 static int hpsa_slave_configure(struct scsi_device *sdev)
2146 {
2147 	struct hpsa_scsi_dev_t *sd;
2148 	int queue_depth;
2149 
2150 	sd = sdev->hostdata;
2151 	sdev->no_uld_attach = !sd || !sd->expose_device;
2152 
2153 	if (sd) {
2154 		sd->was_removed = 0;
2155 		queue_depth = sd->queue_depth != 0 ?
2156 				sd->queue_depth : sdev->host->can_queue;
2157 		if (sd->external) {
2158 			queue_depth = EXTERNAL_QD;
2159 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160 			blk_queue_rq_timeout(sdev->request_queue,
2161 						HPSA_EH_PTRAID_TIMEOUT);
2162 		}
2163 		if (is_hba_lunid(sd->scsi3addr)) {
2164 			sdev->eh_timeout = CTLR_TIMEOUT;
2165 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2166 		}
2167 	} else {
2168 		queue_depth = sdev->host->can_queue;
2169 	}
2170 
2171 	scsi_change_queue_depth(sdev, queue_depth);
2172 
2173 	return 0;
2174 }
2175 
2176 static void hpsa_slave_destroy(struct scsi_device *sdev)
2177 {
2178 	struct hpsa_scsi_dev_t *hdev = NULL;
2179 
2180 	hdev = sdev->hostdata;
2181 
2182 	if (hdev)
2183 		hdev->was_removed = 1;
2184 }
2185 
2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187 {
2188 	int i;
2189 
2190 	if (!h->ioaccel2_cmd_sg_list)
2191 		return;
2192 	for (i = 0; i < h->nr_cmds; i++) {
2193 		kfree(h->ioaccel2_cmd_sg_list[i]);
2194 		h->ioaccel2_cmd_sg_list[i] = NULL;
2195 	}
2196 	kfree(h->ioaccel2_cmd_sg_list);
2197 	h->ioaccel2_cmd_sg_list = NULL;
2198 }
2199 
2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201 {
2202 	int i;
2203 
2204 	if (h->chainsize <= 0)
2205 		return 0;
2206 
2207 	h->ioaccel2_cmd_sg_list =
2208 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2209 					GFP_KERNEL);
2210 	if (!h->ioaccel2_cmd_sg_list)
2211 		return -ENOMEM;
2212 	for (i = 0; i < h->nr_cmds; i++) {
2213 		h->ioaccel2_cmd_sg_list[i] =
2214 			kmalloc_array(h->maxsgentries,
2215 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2216 				      GFP_KERNEL);
2217 		if (!h->ioaccel2_cmd_sg_list[i])
2218 			goto clean;
2219 	}
2220 	return 0;
2221 
2222 clean:
2223 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2224 	return -ENOMEM;
2225 }
2226 
2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228 {
2229 	int i;
2230 
2231 	if (!h->cmd_sg_list)
2232 		return;
2233 	for (i = 0; i < h->nr_cmds; i++) {
2234 		kfree(h->cmd_sg_list[i]);
2235 		h->cmd_sg_list[i] = NULL;
2236 	}
2237 	kfree(h->cmd_sg_list);
2238 	h->cmd_sg_list = NULL;
2239 }
2240 
2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242 {
2243 	int i;
2244 
2245 	if (h->chainsize <= 0)
2246 		return 0;
2247 
2248 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2249 				 GFP_KERNEL);
2250 	if (!h->cmd_sg_list)
2251 		return -ENOMEM;
2252 
2253 	for (i = 0; i < h->nr_cmds; i++) {
2254 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255 						  sizeof(*h->cmd_sg_list[i]),
2256 						  GFP_KERNEL);
2257 		if (!h->cmd_sg_list[i])
2258 			goto clean;
2259 
2260 	}
2261 	return 0;
2262 
2263 clean:
2264 	hpsa_free_sg_chain_blocks(h);
2265 	return -ENOMEM;
2266 }
2267 
2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 	struct io_accel2_cmd *cp, struct CommandList *c)
2270 {
2271 	struct ioaccel2_sg_element *chain_block;
2272 	u64 temp64;
2273 	u32 chain_size;
2274 
2275 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276 	chain_size = le32_to_cpu(cp->sg[0].length);
2277 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2278 				DMA_TO_DEVICE);
2279 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280 		/* prevent subsequent unmapping */
2281 		cp->sg->address = 0;
2282 		return -1;
2283 	}
2284 	cp->sg->address = cpu_to_le64(temp64);
2285 	return 0;
2286 }
2287 
2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289 	struct io_accel2_cmd *cp)
2290 {
2291 	struct ioaccel2_sg_element *chain_sg;
2292 	u64 temp64;
2293 	u32 chain_size;
2294 
2295 	chain_sg = cp->sg;
2296 	temp64 = le64_to_cpu(chain_sg->address);
2297 	chain_size = le32_to_cpu(cp->sg[0].length);
2298 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2299 }
2300 
2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302 	struct CommandList *c)
2303 {
2304 	struct SGDescriptor *chain_sg, *chain_block;
2305 	u64 temp64;
2306 	u32 chain_len;
2307 
2308 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 	chain_block = h->cmd_sg_list[c->cmdindex];
2310 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311 	chain_len = sizeof(*chain_sg) *
2312 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313 	chain_sg->Len = cpu_to_le32(chain_len);
2314 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2315 				DMA_TO_DEVICE);
2316 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317 		/* prevent subsequent unmapping */
2318 		chain_sg->Addr = cpu_to_le64(0);
2319 		return -1;
2320 	}
2321 	chain_sg->Addr = cpu_to_le64(temp64);
2322 	return 0;
2323 }
2324 
2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326 	struct CommandList *c)
2327 {
2328 	struct SGDescriptor *chain_sg;
2329 
2330 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2331 		return;
2332 
2333 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336 }
2337 
2338 
2339 /* Decode the various types of errors on ioaccel2 path.
2340  * Return 1 for any error that should generate a RAID path retry.
2341  * Return 0 for errors that don't require a RAID path retry.
2342  */
2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344 					struct CommandList *c,
2345 					struct scsi_cmnd *cmd,
2346 					struct io_accel2_cmd *c2,
2347 					struct hpsa_scsi_dev_t *dev)
2348 {
2349 	int data_len;
2350 	int retry = 0;
2351 	u32 ioaccel2_resid = 0;
2352 
2353 	switch (c2->error_data.serv_response) {
2354 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355 		switch (c2->error_data.status) {
2356 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357 			if (cmd)
2358 				cmd->result = 0;
2359 			break;
2360 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2362 			if (c2->error_data.data_present !=
2363 					IOACCEL2_SENSE_DATA_PRESENT) {
2364 				memset(cmd->sense_buffer, 0,
2365 					SCSI_SENSE_BUFFERSIZE);
2366 				break;
2367 			}
2368 			/* copy the sense data */
2369 			data_len = c2->error_data.sense_data_len;
2370 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2371 				data_len = SCSI_SENSE_BUFFERSIZE;
2372 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2373 				data_len =
2374 					sizeof(c2->error_data.sense_data_buff);
2375 			memcpy(cmd->sense_buffer,
2376 				c2->error_data.sense_data_buff, data_len);
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2383 			retry = 1;
2384 			break;
2385 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2386 			retry = 1;
2387 			break;
2388 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2389 			retry = 1;
2390 			break;
2391 		default:
2392 			retry = 1;
2393 			break;
2394 		}
2395 		break;
2396 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2397 		switch (c2->error_data.status) {
2398 		case IOACCEL2_STATUS_SR_IO_ERROR:
2399 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2400 		case IOACCEL2_STATUS_SR_OVERRUN:
2401 			retry = 1;
2402 			break;
2403 		case IOACCEL2_STATUS_SR_UNDERRUN:
2404 			cmd->result = (DID_OK << 16);		/* host byte */
2405 			ioaccel2_resid = get_unaligned_le32(
2406 						&c2->error_data.resid_cnt[0]);
2407 			scsi_set_resid(cmd, ioaccel2_resid);
2408 			break;
2409 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2412 			/*
2413 			 * Did an HBA disk disappear? We will eventually
2414 			 * get a state change event from the controller but
2415 			 * in the meantime, we need to tell the OS that the
2416 			 * HBA disk is no longer there and stop I/O
2417 			 * from going down. This allows the potential re-insert
2418 			 * of the disk to get the same device node.
2419 			 */
2420 			if (dev->physical_device && dev->expose_device) {
2421 				cmd->result = DID_NO_CONNECT << 16;
2422 				dev->removed = 1;
2423 				h->drv_req_rescan = 1;
2424 				dev_warn(&h->pdev->dev,
2425 					"%s: device is gone!\n", __func__);
2426 			} else
2427 				/*
2428 				 * Retry by sending down the RAID path.
2429 				 * We will get an event from ctlr to
2430 				 * trigger rescan regardless.
2431 				 */
2432 				retry = 1;
2433 			break;
2434 		default:
2435 			retry = 1;
2436 		}
2437 		break;
2438 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2439 		break;
2440 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2441 		break;
2442 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2443 		retry = 1;
2444 		break;
2445 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2446 		break;
2447 	default:
2448 		retry = 1;
2449 		break;
2450 	}
2451 
2452 	if (dev->in_reset)
2453 		retry = 0;
2454 
2455 	return retry;	/* retry on raid path? */
2456 }
2457 
2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459 		struct CommandList *c)
2460 {
2461 	struct hpsa_scsi_dev_t *dev = c->device;
2462 
2463 	/*
2464 	 * Reset c->scsi_cmd here so that the reset handler will know
2465 	 * this command has completed.  Then, check to see if the handler is
2466 	 * waiting for this command, and, if so, wake it.
2467 	 */
2468 	c->scsi_cmd = SCSI_CMD_IDLE;
2469 	mb();	/* Declare command idle before checking for pending events. */
2470 	if (dev) {
2471 		atomic_dec(&dev->commands_outstanding);
2472 		if (dev->in_reset &&
2473 			atomic_read(&dev->commands_outstanding) <= 0)
2474 			wake_up_all(&h->event_sync_wait_queue);
2475 	}
2476 }
2477 
2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479 				      struct CommandList *c)
2480 {
2481 	hpsa_cmd_resolve_events(h, c);
2482 	cmd_tagged_free(h, c);
2483 }
2484 
2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486 		struct CommandList *c, struct scsi_cmnd *cmd)
2487 {
2488 	hpsa_cmd_resolve_and_free(h, c);
2489 	if (cmd)
2490 		scsi_done(cmd);
2491 }
2492 
2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2494 {
2495 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2497 }
2498 
2499 static void process_ioaccel2_completion(struct ctlr_info *h,
2500 		struct CommandList *c, struct scsi_cmnd *cmd,
2501 		struct hpsa_scsi_dev_t *dev)
2502 {
2503 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2504 
2505 	/* check for good status */
2506 	if (likely(c2->error_data.serv_response == 0 &&
2507 			c2->error_data.status == 0)) {
2508 		cmd->result = 0;
2509 		return hpsa_cmd_free_and_done(h, c, cmd);
2510 	}
2511 
2512 	/*
2513 	 * Any RAID offload error results in retry which will use
2514 	 * the normal I/O path so the controller can handle whatever is
2515 	 * wrong.
2516 	 */
2517 	if (is_logical_device(dev) &&
2518 		c2->error_data.serv_response ==
2519 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2520 		if (c2->error_data.status ==
2521 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522 			hpsa_turn_off_ioaccel_for_device(dev);
2523 		}
2524 
2525 		if (dev->in_reset) {
2526 			cmd->result = DID_RESET << 16;
2527 			return hpsa_cmd_free_and_done(h, c, cmd);
2528 		}
2529 
2530 		return hpsa_retry_cmd(h, c);
2531 	}
2532 
2533 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534 		return hpsa_retry_cmd(h, c);
2535 
2536 	return hpsa_cmd_free_and_done(h, c, cmd);
2537 }
2538 
2539 /* Returns 0 on success, < 0 otherwise. */
2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541 					struct CommandList *cp)
2542 {
2543 	u8 tmf_status = cp->err_info->ScsiStatus;
2544 
2545 	switch (tmf_status) {
2546 	case CISS_TMF_COMPLETE:
2547 		/*
2548 		 * CISS_TMF_COMPLETE never happens, instead,
2549 		 * ei->CommandStatus == 0 for this case.
2550 		 */
2551 	case CISS_TMF_SUCCESS:
2552 		return 0;
2553 	case CISS_TMF_INVALID_FRAME:
2554 	case CISS_TMF_NOT_SUPPORTED:
2555 	case CISS_TMF_FAILED:
2556 	case CISS_TMF_WRONG_LUN:
2557 	case CISS_TMF_OVERLAPPED_TAG:
2558 		break;
2559 	default:
2560 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2561 				tmf_status);
2562 		break;
2563 	}
2564 	return -tmf_status;
2565 }
2566 
2567 static void complete_scsi_command(struct CommandList *cp)
2568 {
2569 	struct scsi_cmnd *cmd;
2570 	struct ctlr_info *h;
2571 	struct ErrorInfo *ei;
2572 	struct hpsa_scsi_dev_t *dev;
2573 	struct io_accel2_cmd *c2;
2574 
2575 	u8 sense_key;
2576 	u8 asc;      /* additional sense code */
2577 	u8 ascq;     /* additional sense code qualifier */
2578 	unsigned long sense_data_size;
2579 
2580 	ei = cp->err_info;
2581 	cmd = cp->scsi_cmd;
2582 	h = cp->h;
2583 
2584 	if (!cmd->device) {
2585 		cmd->result = DID_NO_CONNECT << 16;
2586 		return hpsa_cmd_free_and_done(h, cp, cmd);
2587 	}
2588 
2589 	dev = cmd->device->hostdata;
2590 	if (!dev) {
2591 		cmd->result = DID_NO_CONNECT << 16;
2592 		return hpsa_cmd_free_and_done(h, cp, cmd);
2593 	}
2594 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2595 
2596 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597 	if ((cp->cmd_type == CMD_SCSI) &&
2598 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599 		hpsa_unmap_sg_chain_block(h, cp);
2600 
2601 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2602 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2604 
2605 	cmd->result = (DID_OK << 16);		/* host byte */
2606 
2607 	/* SCSI command has already been cleaned up in SML */
2608 	if (dev->was_removed) {
2609 		hpsa_cmd_resolve_and_free(h, cp);
2610 		return;
2611 	}
2612 
2613 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614 		if (dev->physical_device && dev->expose_device &&
2615 			dev->removed) {
2616 			cmd->result = DID_NO_CONNECT << 16;
2617 			return hpsa_cmd_free_and_done(h, cp, cmd);
2618 		}
2619 		if (likely(cp->phys_disk != NULL))
2620 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621 	}
2622 
2623 	/*
2624 	 * We check for lockup status here as it may be set for
2625 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626 	 * fail_all_oustanding_cmds()
2627 	 */
2628 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629 		/* DID_NO_CONNECT will prevent a retry */
2630 		cmd->result = DID_NO_CONNECT << 16;
2631 		return hpsa_cmd_free_and_done(h, cp, cmd);
2632 	}
2633 
2634 	if (cp->cmd_type == CMD_IOACCEL2)
2635 		return process_ioaccel2_completion(h, cp, cmd, dev);
2636 
2637 	scsi_set_resid(cmd, ei->ResidualCnt);
2638 	if (ei->CommandStatus == 0)
2639 		return hpsa_cmd_free_and_done(h, cp, cmd);
2640 
2641 	/* For I/O accelerator commands, copy over some fields to the normal
2642 	 * CISS header used below for error handling.
2643 	 */
2644 	if (cp->cmd_type == CMD_IOACCEL1) {
2645 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646 		cp->Header.SGList = scsi_sg_count(cmd);
2647 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650 		cp->Header.tag = c->tag;
2651 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2653 
2654 		/* Any RAID offload error results in retry which will use
2655 		 * the normal I/O path so the controller can handle whatever's
2656 		 * wrong.
2657 		 */
2658 		if (is_logical_device(dev)) {
2659 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660 				dev->offload_enabled = 0;
2661 			return hpsa_retry_cmd(h, cp);
2662 		}
2663 	}
2664 
2665 	/* an error has occurred */
2666 	switch (ei->CommandStatus) {
2667 
2668 	case CMD_TARGET_STATUS:
2669 		cmd->result |= ei->ScsiStatus;
2670 		/* copy the sense data */
2671 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2673 		else
2674 			sense_data_size = sizeof(ei->SenseInfo);
2675 		if (ei->SenseLen < sense_data_size)
2676 			sense_data_size = ei->SenseLen;
2677 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2678 		if (ei->ScsiStatus)
2679 			decode_sense_data(ei->SenseInfo, sense_data_size,
2680 				&sense_key, &asc, &ascq);
2681 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682 			switch (sense_key) {
2683 			case ABORTED_COMMAND:
2684 				cmd->result |= DID_SOFT_ERROR << 16;
2685 				break;
2686 			case UNIT_ATTENTION:
2687 				if (asc == 0x3F && ascq == 0x0E)
2688 					h->drv_req_rescan = 1;
2689 				break;
2690 			case ILLEGAL_REQUEST:
2691 				if (asc == 0x25 && ascq == 0x00) {
2692 					dev->removed = 1;
2693 					cmd->result = DID_NO_CONNECT << 16;
2694 				}
2695 				break;
2696 			}
2697 			break;
2698 		}
2699 		/* Problem was not a check condition
2700 		 * Pass it up to the upper layers...
2701 		 */
2702 		if (ei->ScsiStatus) {
2703 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705 				"Returning result: 0x%x\n",
2706 				cp, ei->ScsiStatus,
2707 				sense_key, asc, ascq,
2708 				cmd->result);
2709 		} else {  /* scsi status is zero??? How??? */
2710 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711 				"Returning no connection.\n", cp),
2712 
2713 			/* Ordinarily, this case should never happen,
2714 			 * but there is a bug in some released firmware
2715 			 * revisions that allows it to happen if, for
2716 			 * example, a 4100 backplane loses power and
2717 			 * the tape drive is in it.  We assume that
2718 			 * it's a fatal error of some kind because we
2719 			 * can't show that it wasn't. We will make it
2720 			 * look like selection timeout since that is
2721 			 * the most common reason for this to occur,
2722 			 * and it's severe enough.
2723 			 */
2724 
2725 			cmd->result = DID_NO_CONNECT << 16;
2726 		}
2727 		break;
2728 
2729 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2730 		break;
2731 	case CMD_DATA_OVERRUN:
2732 		dev_warn(&h->pdev->dev,
2733 			"CDB %16phN data overrun\n", cp->Request.CDB);
2734 		break;
2735 	case CMD_INVALID: {
2736 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2737 		print_cmd(cp); */
2738 		/* We get CMD_INVALID if you address a non-existent device
2739 		 * instead of a selection timeout (no response).  You will
2740 		 * see this if you yank out a drive, then try to access it.
2741 		 * This is kind of a shame because it means that any other
2742 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743 		 * missing target. */
2744 		cmd->result = DID_NO_CONNECT << 16;
2745 	}
2746 		break;
2747 	case CMD_PROTOCOL_ERR:
2748 		cmd->result = DID_ERROR << 16;
2749 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2750 				cp->Request.CDB);
2751 		break;
2752 	case CMD_HARDWARE_ERR:
2753 		cmd->result = DID_ERROR << 16;
2754 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2755 			cp->Request.CDB);
2756 		break;
2757 	case CMD_CONNECTION_LOST:
2758 		cmd->result = DID_ERROR << 16;
2759 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760 			cp->Request.CDB);
2761 		break;
2762 	case CMD_ABORTED:
2763 		cmd->result = DID_ABORT << 16;
2764 		break;
2765 	case CMD_ABORT_FAILED:
2766 		cmd->result = DID_ERROR << 16;
2767 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2768 			cp->Request.CDB);
2769 		break;
2770 	case CMD_UNSOLICITED_ABORT:
2771 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773 			cp->Request.CDB);
2774 		break;
2775 	case CMD_TIMEOUT:
2776 		cmd->result = DID_TIME_OUT << 16;
2777 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2778 			cp->Request.CDB);
2779 		break;
2780 	case CMD_UNABORTABLE:
2781 		cmd->result = DID_ERROR << 16;
2782 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2783 		break;
2784 	case CMD_TMF_STATUS:
2785 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786 			cmd->result = DID_ERROR << 16;
2787 		break;
2788 	case CMD_IOACCEL_DISABLED:
2789 		/* This only handles the direct pass-through case since RAID
2790 		 * offload is handled above.  Just attempt a retry.
2791 		 */
2792 		cmd->result = DID_SOFT_ERROR << 16;
2793 		dev_warn(&h->pdev->dev,
2794 				"cp %p had HP SSD Smart Path error\n", cp);
2795 		break;
2796 	default:
2797 		cmd->result = DID_ERROR << 16;
2798 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799 				cp, ei->CommandStatus);
2800 	}
2801 
2802 	return hpsa_cmd_free_and_done(h, cp, cmd);
2803 }
2804 
2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806 		int sg_used, enum dma_data_direction data_direction)
2807 {
2808 	int i;
2809 
2810 	for (i = 0; i < sg_used; i++)
2811 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812 				le32_to_cpu(c->SG[i].Len),
2813 				data_direction);
2814 }
2815 
2816 static int hpsa_map_one(struct pci_dev *pdev,
2817 		struct CommandList *cp,
2818 		unsigned char *buf,
2819 		size_t buflen,
2820 		enum dma_data_direction data_direction)
2821 {
2822 	u64 addr64;
2823 
2824 	if (buflen == 0 || data_direction == DMA_NONE) {
2825 		cp->Header.SGList = 0;
2826 		cp->Header.SGTotal = cpu_to_le16(0);
2827 		return 0;
2828 	}
2829 
2830 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831 	if (dma_mapping_error(&pdev->dev, addr64)) {
2832 		/* Prevent subsequent unmap of something never mapped */
2833 		cp->Header.SGList = 0;
2834 		cp->Header.SGTotal = cpu_to_le16(0);
2835 		return -1;
2836 	}
2837 	cp->SG[0].Addr = cpu_to_le64(addr64);
2838 	cp->SG[0].Len = cpu_to_le32(buflen);
2839 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2841 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842 	return 0;
2843 }
2844 
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2849 {
2850 	DECLARE_COMPLETION_ONSTACK(wait);
2851 
2852 	c->waiting = &wait;
2853 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2854 	if (timeout_msecs == NO_TIMEOUT) {
2855 		/* TODO: get rid of this no-timeout thing */
2856 		wait_for_completion_io(&wait);
2857 		return IO_OK;
2858 	}
2859 	if (!wait_for_completion_io_timeout(&wait,
2860 					msecs_to_jiffies(timeout_msecs))) {
2861 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2862 		return -ETIMEDOUT;
2863 	}
2864 	return IO_OK;
2865 }
2866 
2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868 				   int reply_queue, unsigned long timeout_msecs)
2869 {
2870 	if (unlikely(lockup_detected(h))) {
2871 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2872 		return IO_OK;
2873 	}
2874 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2875 }
2876 
2877 static u32 lockup_detected(struct ctlr_info *h)
2878 {
2879 	int cpu;
2880 	u32 rc, *lockup_detected;
2881 
2882 	cpu = get_cpu();
2883 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884 	rc = *lockup_detected;
2885 	put_cpu();
2886 	return rc;
2887 }
2888 
2889 #define MAX_DRIVER_CMD_RETRIES 25
2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891 		struct CommandList *c, enum dma_data_direction data_direction,
2892 		unsigned long timeout_msecs)
2893 {
2894 	int backoff_time = 10, retry_count = 0;
2895 	int rc;
2896 
2897 	do {
2898 		memset(c->err_info, 0, sizeof(*c->err_info));
2899 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2900 						  timeout_msecs);
2901 		if (rc)
2902 			break;
2903 		retry_count++;
2904 		if (retry_count > 3) {
2905 			msleep(backoff_time);
2906 			if (backoff_time < 1000)
2907 				backoff_time *= 2;
2908 		}
2909 	} while ((check_for_unit_attention(h, c) ||
2910 			check_for_busy(h, c)) &&
2911 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2912 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2914 		rc = -EIO;
2915 	return rc;
2916 }
2917 
2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919 				struct CommandList *c)
2920 {
2921 	const u8 *cdb = c->Request.CDB;
2922 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2923 
2924 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925 		 txt, lun, cdb);
2926 }
2927 
2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929 			struct CommandList *cp)
2930 {
2931 	const struct ErrorInfo *ei = cp->err_info;
2932 	struct device *d = &cp->h->pdev->dev;
2933 	u8 sense_key, asc, ascq;
2934 	int sense_len;
2935 
2936 	switch (ei->CommandStatus) {
2937 	case CMD_TARGET_STATUS:
2938 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2939 			sense_len = sizeof(ei->SenseInfo);
2940 		else
2941 			sense_len = ei->SenseLen;
2942 		decode_sense_data(ei->SenseInfo, sense_len,
2943 					&sense_key, &asc, &ascq);
2944 		hpsa_print_cmd(h, "SCSI status", cp);
2945 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947 				sense_key, asc, ascq);
2948 		else
2949 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950 		if (ei->ScsiStatus == 0)
2951 			dev_warn(d, "SCSI status is abnormally zero.  "
2952 			"(probably indicates selection timeout "
2953 			"reported incorrectly due to a known "
2954 			"firmware bug, circa July, 2001.)\n");
2955 		break;
2956 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2957 		break;
2958 	case CMD_DATA_OVERRUN:
2959 		hpsa_print_cmd(h, "overrun condition", cp);
2960 		break;
2961 	case CMD_INVALID: {
2962 		/* controller unfortunately reports SCSI passthru's
2963 		 * to non-existent targets as invalid commands.
2964 		 */
2965 		hpsa_print_cmd(h, "invalid command", cp);
2966 		dev_warn(d, "probably means device no longer present\n");
2967 		}
2968 		break;
2969 	case CMD_PROTOCOL_ERR:
2970 		hpsa_print_cmd(h, "protocol error", cp);
2971 		break;
2972 	case CMD_HARDWARE_ERR:
2973 		hpsa_print_cmd(h, "hardware error", cp);
2974 		break;
2975 	case CMD_CONNECTION_LOST:
2976 		hpsa_print_cmd(h, "connection lost", cp);
2977 		break;
2978 	case CMD_ABORTED:
2979 		hpsa_print_cmd(h, "aborted", cp);
2980 		break;
2981 	case CMD_ABORT_FAILED:
2982 		hpsa_print_cmd(h, "abort failed", cp);
2983 		break;
2984 	case CMD_UNSOLICITED_ABORT:
2985 		hpsa_print_cmd(h, "unsolicited abort", cp);
2986 		break;
2987 	case CMD_TIMEOUT:
2988 		hpsa_print_cmd(h, "timed out", cp);
2989 		break;
2990 	case CMD_UNABORTABLE:
2991 		hpsa_print_cmd(h, "unabortable", cp);
2992 		break;
2993 	case CMD_CTLR_LOCKUP:
2994 		hpsa_print_cmd(h, "controller lockup detected", cp);
2995 		break;
2996 	default:
2997 		hpsa_print_cmd(h, "unknown status", cp);
2998 		dev_warn(d, "Unknown command status %x\n",
2999 				ei->CommandStatus);
3000 	}
3001 }
3002 
3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004 					u8 page, u8 *buf, size_t bufsize)
3005 {
3006 	int rc = IO_OK;
3007 	struct CommandList *c;
3008 	struct ErrorInfo *ei;
3009 
3010 	c = cmd_alloc(h);
3011 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012 			page, scsi3addr, TYPE_CMD)) {
3013 		rc = -1;
3014 		goto out;
3015 	}
3016 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3017 			NO_TIMEOUT);
3018 	if (rc)
3019 		goto out;
3020 	ei = c->err_info;
3021 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022 		hpsa_scsi_interpret_error(h, c);
3023 		rc = -1;
3024 	}
3025 out:
3026 	cmd_free(h, c);
3027 	return rc;
3028 }
3029 
3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3031 						u8 *scsi3addr)
3032 {
3033 	u8 *buf;
3034 	u64 sa = 0;
3035 	int rc = 0;
3036 
3037 	buf = kzalloc(1024, GFP_KERNEL);
3038 	if (!buf)
3039 		return 0;
3040 
3041 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3042 					buf, 1024);
3043 
3044 	if (rc)
3045 		goto out;
3046 
3047 	sa = get_unaligned_be64(buf+12);
3048 
3049 out:
3050 	kfree(buf);
3051 	return sa;
3052 }
3053 
3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055 			u16 page, unsigned char *buf,
3056 			unsigned char bufsize)
3057 {
3058 	int rc = IO_OK;
3059 	struct CommandList *c;
3060 	struct ErrorInfo *ei;
3061 
3062 	c = cmd_alloc(h);
3063 
3064 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065 			page, scsi3addr, TYPE_CMD)) {
3066 		rc = -1;
3067 		goto out;
3068 	}
3069 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3070 			NO_TIMEOUT);
3071 	if (rc)
3072 		goto out;
3073 	ei = c->err_info;
3074 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075 		hpsa_scsi_interpret_error(h, c);
3076 		rc = -1;
3077 	}
3078 out:
3079 	cmd_free(h, c);
3080 	return rc;
3081 }
3082 
3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084 	u8 reset_type, int reply_queue)
3085 {
3086 	int rc = IO_OK;
3087 	struct CommandList *c;
3088 	struct ErrorInfo *ei;
3089 
3090 	c = cmd_alloc(h);
3091 	c->device = dev;
3092 
3093 	/* fill_cmd can't fail here, no data buffer to map. */
3094 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3096 	if (rc) {
3097 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3098 		goto out;
3099 	}
3100 	/* no unmap needed here because no data xfer. */
3101 
3102 	ei = c->err_info;
3103 	if (ei->CommandStatus != 0) {
3104 		hpsa_scsi_interpret_error(h, c);
3105 		rc = -1;
3106 	}
3107 out:
3108 	cmd_free(h, c);
3109 	return rc;
3110 }
3111 
3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113 			       struct hpsa_scsi_dev_t *dev,
3114 			       unsigned char *scsi3addr)
3115 {
3116 	int i;
3117 	bool match = false;
3118 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3120 
3121 	if (hpsa_is_cmd_idle(c))
3122 		return false;
3123 
3124 	switch (c->cmd_type) {
3125 	case CMD_SCSI:
3126 	case CMD_IOCTL_PEND:
3127 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128 				sizeof(c->Header.LUN.LunAddrBytes));
3129 		break;
3130 
3131 	case CMD_IOACCEL1:
3132 	case CMD_IOACCEL2:
3133 		if (c->phys_disk == dev) {
3134 			/* HBA mode match */
3135 			match = true;
3136 		} else {
3137 			/* Possible RAID mode -- check each phys dev. */
3138 			/* FIXME:  Do we need to take out a lock here?  If
3139 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3140 			 * instead. */
3141 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142 				/* FIXME: an alternate test might be
3143 				 *
3144 				 * match = dev->phys_disk[i]->ioaccel_handle
3145 				 *              == c2->scsi_nexus;      */
3146 				match = dev->phys_disk[i] == c->phys_disk;
3147 			}
3148 		}
3149 		break;
3150 
3151 	case IOACCEL2_TMF:
3152 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153 			match = dev->phys_disk[i]->ioaccel_handle ==
3154 					le32_to_cpu(ac->it_nexus);
3155 		}
3156 		break;
3157 
3158 	case 0:		/* The command is in the middle of being initialized. */
3159 		match = false;
3160 		break;
3161 
3162 	default:
3163 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3164 			c->cmd_type);
3165 		BUG();
3166 	}
3167 
3168 	return match;
3169 }
3170 
3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172 	u8 reset_type, int reply_queue)
3173 {
3174 	int rc = 0;
3175 
3176 	/* We can really only handle one reset at a time */
3177 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179 		return -EINTR;
3180 	}
3181 
3182 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3183 	if (!rc) {
3184 		/* incremented by sending the reset request */
3185 		atomic_dec(&dev->commands_outstanding);
3186 		wait_event(h->event_sync_wait_queue,
3187 			atomic_read(&dev->commands_outstanding) <= 0 ||
3188 			lockup_detected(h));
3189 	}
3190 
3191 	if (unlikely(lockup_detected(h))) {
3192 		dev_warn(&h->pdev->dev,
3193 			 "Controller lockup detected during reset wait\n");
3194 		rc = -ENODEV;
3195 	}
3196 
3197 	if (!rc)
3198 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3199 
3200 	mutex_unlock(&h->reset_mutex);
3201 	return rc;
3202 }
3203 
3204 static void hpsa_get_raid_level(struct ctlr_info *h,
3205 	unsigned char *scsi3addr, unsigned char *raid_level)
3206 {
3207 	int rc;
3208 	unsigned char *buf;
3209 
3210 	*raid_level = RAID_UNKNOWN;
3211 	buf = kzalloc(64, GFP_KERNEL);
3212 	if (!buf)
3213 		return;
3214 
3215 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3217 		goto exit;
3218 
3219 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3221 
3222 	if (rc == 0)
3223 		*raid_level = buf[8];
3224 	if (*raid_level > RAID_UNKNOWN)
3225 		*raid_level = RAID_UNKNOWN;
3226 exit:
3227 	kfree(buf);
3228 	return;
3229 }
3230 
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234 				struct raid_map_data *map_buff)
3235 {
3236 	struct raid_map_disk_data *dd = &map_buff->data[0];
3237 	int map, row, col;
3238 	u16 map_cnt, row_cnt, disks_per_row;
3239 
3240 	if (rc != 0)
3241 		return;
3242 
3243 	/* Show details only if debugging has been activated. */
3244 	if (h->raid_offload_debug < 2)
3245 		return;
3246 
3247 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3248 				le32_to_cpu(map_buff->structure_size));
3249 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250 			le32_to_cpu(map_buff->volume_blk_size));
3251 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252 			le64_to_cpu(map_buff->volume_blk_cnt));
3253 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254 			map_buff->phys_blk_shift);
3255 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256 			map_buff->parity_rotation_shift);
3257 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3258 			le16_to_cpu(map_buff->strip_size));
3259 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260 			le64_to_cpu(map_buff->disk_starting_blk));
3261 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262 			le64_to_cpu(map_buff->disk_blk_cnt));
3263 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264 			le16_to_cpu(map_buff->data_disks_per_row));
3265 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266 			le16_to_cpu(map_buff->metadata_disks_per_row));
3267 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268 			le16_to_cpu(map_buff->row_cnt));
3269 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270 			le16_to_cpu(map_buff->layout_map_count));
3271 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272 			le16_to_cpu(map_buff->flags));
3273 	dev_info(&h->pdev->dev, "encryption = %s\n",
3274 			le16_to_cpu(map_buff->flags) &
3275 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3276 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3277 			le16_to_cpu(map_buff->dekindex));
3278 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279 	for (map = 0; map < map_cnt; map++) {
3280 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3281 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3282 		for (row = 0; row < row_cnt; row++) {
3283 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3284 			disks_per_row =
3285 				le16_to_cpu(map_buff->data_disks_per_row);
3286 			for (col = 0; col < disks_per_row; col++, dd++)
3287 				dev_info(&h->pdev->dev,
3288 					"    D%02u: h=0x%04x xor=%u,%u\n",
3289 					col, dd->ioaccel_handle,
3290 					dd->xor_mult[0], dd->xor_mult[1]);
3291 			disks_per_row =
3292 				le16_to_cpu(map_buff->metadata_disks_per_row);
3293 			for (col = 0; col < disks_per_row; col++, dd++)
3294 				dev_info(&h->pdev->dev,
3295 					"    M%02u: h=0x%04x xor=%u,%u\n",
3296 					col, dd->ioaccel_handle,
3297 					dd->xor_mult[0], dd->xor_mult[1]);
3298 		}
3299 	}
3300 }
3301 #else
3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303 			__attribute__((unused)) int rc,
3304 			__attribute__((unused)) struct raid_map_data *map_buff)
3305 {
3306 }
3307 #endif
3308 
3309 static int hpsa_get_raid_map(struct ctlr_info *h,
3310 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3311 {
3312 	int rc = 0;
3313 	struct CommandList *c;
3314 	struct ErrorInfo *ei;
3315 
3316 	c = cmd_alloc(h);
3317 
3318 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319 			sizeof(this_device->raid_map), 0,
3320 			scsi3addr, TYPE_CMD)) {
3321 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322 		cmd_free(h, c);
3323 		return -1;
3324 	}
3325 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3326 			NO_TIMEOUT);
3327 	if (rc)
3328 		goto out;
3329 	ei = c->err_info;
3330 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331 		hpsa_scsi_interpret_error(h, c);
3332 		rc = -1;
3333 		goto out;
3334 	}
3335 	cmd_free(h, c);
3336 
3337 	/* @todo in the future, dynamically allocate RAID map memory */
3338 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3339 				sizeof(this_device->raid_map)) {
3340 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3341 		rc = -1;
3342 	}
3343 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3344 	return rc;
3345 out:
3346 	cmd_free(h, c);
3347 	return rc;
3348 }
3349 
3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351 		unsigned char scsi3addr[], u16 bmic_device_index,
3352 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3353 {
3354 	int rc = IO_OK;
3355 	struct CommandList *c;
3356 	struct ErrorInfo *ei;
3357 
3358 	c = cmd_alloc(h);
3359 
3360 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361 		0, RAID_CTLR_LUNID, TYPE_CMD);
3362 	if (rc)
3363 		goto out;
3364 
3365 	c->Request.CDB[2] = bmic_device_index & 0xff;
3366 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3367 
3368 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3369 			NO_TIMEOUT);
3370 	if (rc)
3371 		goto out;
3372 	ei = c->err_info;
3373 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374 		hpsa_scsi_interpret_error(h, c);
3375 		rc = -1;
3376 	}
3377 out:
3378 	cmd_free(h, c);
3379 	return rc;
3380 }
3381 
3382 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383 	struct bmic_identify_controller *buf, size_t bufsize)
3384 {
3385 	int rc = IO_OK;
3386 	struct CommandList *c;
3387 	struct ErrorInfo *ei;
3388 
3389 	c = cmd_alloc(h);
3390 
3391 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392 		0, RAID_CTLR_LUNID, TYPE_CMD);
3393 	if (rc)
3394 		goto out;
3395 
3396 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3397 			NO_TIMEOUT);
3398 	if (rc)
3399 		goto out;
3400 	ei = c->err_info;
3401 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402 		hpsa_scsi_interpret_error(h, c);
3403 		rc = -1;
3404 	}
3405 out:
3406 	cmd_free(h, c);
3407 	return rc;
3408 }
3409 
3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411 		unsigned char scsi3addr[], u16 bmic_device_index,
3412 		struct bmic_identify_physical_device *buf, size_t bufsize)
3413 {
3414 	int rc = IO_OK;
3415 	struct CommandList *c;
3416 	struct ErrorInfo *ei;
3417 
3418 	c = cmd_alloc(h);
3419 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420 		0, RAID_CTLR_LUNID, TYPE_CMD);
3421 	if (rc)
3422 		goto out;
3423 
3424 	c->Request.CDB[2] = bmic_device_index & 0xff;
3425 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3426 
3427 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3428 						NO_TIMEOUT);
3429 	ei = c->err_info;
3430 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431 		hpsa_scsi_interpret_error(h, c);
3432 		rc = -1;
3433 	}
3434 out:
3435 	cmd_free(h, c);
3436 
3437 	return rc;
3438 }
3439 
3440 /*
3441  * get enclosure information
3442  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444  * Uses id_physical_device to determine the box_index.
3445  */
3446 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447 			unsigned char *scsi3addr,
3448 			struct ReportExtendedLUNdata *rlep, int rle_index,
3449 			struct hpsa_scsi_dev_t *encl_dev)
3450 {
3451 	int rc = -1;
3452 	struct CommandList *c = NULL;
3453 	struct ErrorInfo *ei = NULL;
3454 	struct bmic_sense_storage_box_params *bssbp = NULL;
3455 	struct bmic_identify_physical_device *id_phys = NULL;
3456 	struct ext_report_lun_entry *rle;
3457 	u16 bmic_device_index = 0;
3458 
3459 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3460 		return;
3461 
3462 	rle = &rlep->LUN[rle_index];
3463 
3464 	encl_dev->eli =
3465 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3466 
3467 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3468 
3469 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3470 		rc = IO_OK;
3471 		goto out;
3472 	}
3473 
3474 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3475 		rc = IO_OK;
3476 		goto out;
3477 	}
3478 
3479 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480 	if (!bssbp)
3481 		goto out;
3482 
3483 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484 	if (!id_phys)
3485 		goto out;
3486 
3487 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488 						id_phys, sizeof(*id_phys));
3489 	if (rc) {
3490 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491 			__func__, encl_dev->external, bmic_device_index);
3492 		goto out;
3493 	}
3494 
3495 	c = cmd_alloc(h);
3496 
3497 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3499 
3500 	if (rc)
3501 		goto out;
3502 
3503 	if (id_phys->phys_connector[1] == 'E')
3504 		c->Request.CDB[5] = id_phys->box_index;
3505 	else
3506 		c->Request.CDB[5] = 0;
3507 
3508 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3509 						NO_TIMEOUT);
3510 	if (rc)
3511 		goto out;
3512 
3513 	ei = c->err_info;
3514 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3515 		rc = -1;
3516 		goto out;
3517 	}
3518 
3519 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3522 
3523 	rc = IO_OK;
3524 out:
3525 	kfree(bssbp);
3526 	kfree(id_phys);
3527 
3528 	if (c)
3529 		cmd_free(h, c);
3530 
3531 	if (rc != IO_OK)
3532 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533 			"Error, could not get enclosure information");
3534 }
3535 
3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537 						unsigned char *scsi3addr)
3538 {
3539 	struct ReportExtendedLUNdata *physdev;
3540 	u32 nphysicals;
3541 	u64 sa = 0;
3542 	int i;
3543 
3544 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545 	if (!physdev)
3546 		return 0;
3547 
3548 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550 		kfree(physdev);
3551 		return 0;
3552 	}
3553 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3554 
3555 	for (i = 0; i < nphysicals; i++)
3556 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3558 			break;
3559 		}
3560 
3561 	kfree(physdev);
3562 
3563 	return sa;
3564 }
3565 
3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567 					struct hpsa_scsi_dev_t *dev)
3568 {
3569 	int rc;
3570 	u64 sa = 0;
3571 
3572 	if (is_hba_lunid(scsi3addr)) {
3573 		struct bmic_sense_subsystem_info *ssi;
3574 
3575 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576 		if (!ssi)
3577 			return;
3578 
3579 		rc = hpsa_bmic_sense_subsystem_information(h,
3580 					scsi3addr, 0, ssi, sizeof(*ssi));
3581 		if (rc == 0) {
3582 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583 			h->sas_address = sa;
3584 		}
3585 
3586 		kfree(ssi);
3587 	} else
3588 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3589 
3590 	dev->sas_address = sa;
3591 }
3592 
3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594 	struct ReportExtendedLUNdata *physdev)
3595 {
3596 	u32 nphysicals;
3597 	int i;
3598 
3599 	if (h->discovery_polling)
3600 		return;
3601 
3602 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3603 
3604 	for (i = 0; i < nphysicals; i++) {
3605 		if (physdev->LUN[i].device_type ==
3606 			BMIC_DEVICE_TYPE_CONTROLLER
3607 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3608 			dev_info(&h->pdev->dev,
3609 				"External controller present, activate discovery polling and disable rld caching\n");
3610 			hpsa_disable_rld_caching(h);
3611 			h->discovery_polling = 1;
3612 			break;
3613 		}
3614 	}
3615 }
3616 
3617 /* Get a device id from inquiry page 0x83 */
3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619 	unsigned char scsi3addr[], u8 page)
3620 {
3621 	int rc;
3622 	int i;
3623 	int pages;
3624 	unsigned char *buf, bufsize;
3625 
3626 	buf = kzalloc(256, GFP_KERNEL);
3627 	if (!buf)
3628 		return false;
3629 
3630 	/* Get the size of the page list first */
3631 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 				buf, HPSA_VPD_HEADER_SZ);
3634 	if (rc != 0)
3635 		goto exit_unsupported;
3636 	pages = buf[3];
3637 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3639 	else
3640 		bufsize = 255;
3641 
3642 	/* Get the whole VPD page list */
3643 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3645 				buf, bufsize);
3646 	if (rc != 0)
3647 		goto exit_unsupported;
3648 
3649 	pages = buf[3];
3650 	for (i = 1; i <= pages; i++)
3651 		if (buf[3 + i] == page)
3652 			goto exit_supported;
3653 exit_unsupported:
3654 	kfree(buf);
3655 	return false;
3656 exit_supported:
3657 	kfree(buf);
3658 	return true;
3659 }
3660 
3661 /*
3662  * Called during a scan operation.
3663  * Sets ioaccel status on the new device list, not the existing device list
3664  *
3665  * The device list used during I/O will be updated later in
3666  * adjust_hpsa_scsi_table.
3667  */
3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3670 {
3671 	int rc;
3672 	unsigned char *buf;
3673 	u8 ioaccel_status;
3674 
3675 	this_device->offload_config = 0;
3676 	this_device->offload_enabled = 0;
3677 	this_device->offload_to_be_enabled = 0;
3678 
3679 	buf = kzalloc(64, GFP_KERNEL);
3680 	if (!buf)
3681 		return;
3682 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3683 		goto out;
3684 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686 	if (rc != 0)
3687 		goto out;
3688 
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693 	this_device->offload_config =
3694 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695 	if (this_device->offload_config) {
3696 		bool offload_enabled =
3697 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3698 		/*
3699 		 * Check to see if offload can be enabled.
3700 		 */
3701 		if (offload_enabled) {
3702 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703 			if (rc) /* could not load raid_map */
3704 				goto out;
3705 			this_device->offload_to_be_enabled = 1;
3706 		}
3707 	}
3708 
3709 out:
3710 	kfree(buf);
3711 	return;
3712 }
3713 
3714 /* Get the device id from inquiry page 0x83 */
3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716 	unsigned char *device_id, int index, int buflen)
3717 {
3718 	int rc;
3719 	unsigned char *buf;
3720 
3721 	/* Does controller have VPD for device id? */
3722 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723 		return 1; /* not supported */
3724 
3725 	buf = kzalloc(64, GFP_KERNEL);
3726 	if (!buf)
3727 		return -ENOMEM;
3728 
3729 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731 	if (rc == 0) {
3732 		if (buflen > 16)
3733 			buflen = 16;
3734 		memcpy(device_id, &buf[8], buflen);
3735 	}
3736 
3737 	kfree(buf);
3738 
3739 	return rc; /*0 - got id,  otherwise, didn't */
3740 }
3741 
3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743 		void *buf, int bufsize,
3744 		int extended_response)
3745 {
3746 	int rc = IO_OK;
3747 	struct CommandList *c;
3748 	unsigned char scsi3addr[8];
3749 	struct ErrorInfo *ei;
3750 
3751 	c = cmd_alloc(h);
3752 
3753 	/* address the controller */
3754 	memset(scsi3addr, 0, sizeof(scsi3addr));
3755 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757 		rc = -EAGAIN;
3758 		goto out;
3759 	}
3760 	if (extended_response)
3761 		c->Request.CDB[1] = extended_response;
3762 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3763 			NO_TIMEOUT);
3764 	if (rc)
3765 		goto out;
3766 	ei = c->err_info;
3767 	if (ei->CommandStatus != 0 &&
3768 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769 		hpsa_scsi_interpret_error(h, c);
3770 		rc = -EIO;
3771 	} else {
3772 		struct ReportLUNdata *rld = buf;
3773 
3774 		if (rld->extended_response_flag != extended_response) {
3775 			if (!h->legacy_board) {
3776 				dev_err(&h->pdev->dev,
3777 					"report luns requested format %u, got %u\n",
3778 					extended_response,
3779 					rld->extended_response_flag);
3780 				rc = -EINVAL;
3781 			} else
3782 				rc = -EOPNOTSUPP;
3783 		}
3784 	}
3785 out:
3786 	cmd_free(h, c);
3787 	return rc;
3788 }
3789 
3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791 		struct ReportExtendedLUNdata *buf, int bufsize)
3792 {
3793 	int rc;
3794 	struct ReportLUNdata *lbuf;
3795 
3796 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797 				      HPSA_REPORT_PHYS_EXTENDED);
3798 	if (!rc || rc != -EOPNOTSUPP)
3799 		return rc;
3800 
3801 	/* REPORT PHYS EXTENDED is not supported */
3802 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803 	if (!lbuf)
3804 		return -ENOMEM;
3805 
3806 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3807 	if (!rc) {
3808 		int i;
3809 		u32 nphys;
3810 
3811 		/* Copy ReportLUNdata header */
3812 		memcpy(buf, lbuf, 8);
3813 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814 		for (i = 0; i < nphys; i++)
3815 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3816 	}
3817 	kfree(lbuf);
3818 	return rc;
3819 }
3820 
3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822 		struct ReportLUNdata *buf, int bufsize)
3823 {
3824 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3825 }
3826 
3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828 	int bus, int target, int lun)
3829 {
3830 	device->bus = bus;
3831 	device->target = target;
3832 	device->lun = lun;
3833 }
3834 
3835 /* Use VPD inquiry to get details of volume status */
3836 static int hpsa_get_volume_status(struct ctlr_info *h,
3837 					unsigned char scsi3addr[])
3838 {
3839 	int rc;
3840 	int status;
3841 	int size;
3842 	unsigned char *buf;
3843 
3844 	buf = kzalloc(64, GFP_KERNEL);
3845 	if (!buf)
3846 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3847 
3848 	/* Does controller have VPD for logical volume status? */
3849 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3850 		goto exit_failed;
3851 
3852 	/* Get the size of the VPD return buffer */
3853 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854 					buf, HPSA_VPD_HEADER_SZ);
3855 	if (rc != 0)
3856 		goto exit_failed;
3857 	size = buf[3];
3858 
3859 	/* Now get the whole VPD buffer */
3860 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861 					buf, size + HPSA_VPD_HEADER_SZ);
3862 	if (rc != 0)
3863 		goto exit_failed;
3864 	status = buf[4]; /* status byte */
3865 
3866 	kfree(buf);
3867 	return status;
3868 exit_failed:
3869 	kfree(buf);
3870 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3871 }
3872 
3873 /* Determine offline status of a volume.
3874  * Return either:
3875  *  0 (not offline)
3876  *  0xff (offline for unknown reasons)
3877  *  # (integer code indicating one of several NOT READY states
3878  *     describing why a volume is to be kept offline)
3879  */
3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881 					unsigned char scsi3addr[])
3882 {
3883 	struct CommandList *c;
3884 	unsigned char *sense;
3885 	u8 sense_key, asc, ascq;
3886 	int sense_len;
3887 	int rc, ldstat = 0;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891 
3892 	c = cmd_alloc(h);
3893 
3894 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896 					NO_TIMEOUT);
3897 	if (rc) {
3898 		cmd_free(h, c);
3899 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900 	}
3901 	sense = c->err_info->SenseInfo;
3902 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903 		sense_len = sizeof(c->err_info->SenseInfo);
3904 	else
3905 		sense_len = c->err_info->SenseLen;
3906 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3907 	cmd_free(h, c);
3908 
3909 	/* Determine the reason for not ready state */
3910 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3911 
3912 	/* Keep volume offline in certain cases: */
3913 	switch (ldstat) {
3914 	case HPSA_LV_FAILED:
3915 	case HPSA_LV_UNDERGOING_ERASE:
3916 	case HPSA_LV_NOT_AVAILABLE:
3917 	case HPSA_LV_UNDERGOING_RPI:
3918 	case HPSA_LV_PENDING_RPI:
3919 	case HPSA_LV_ENCRYPTED_NO_KEY:
3920 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3922 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924 		return ldstat;
3925 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926 		/* If VPD status page isn't available,
3927 		 * use ASC/ASCQ to determine state
3928 		 */
3929 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931 			return ldstat;
3932 		break;
3933 	default:
3934 		break;
3935 	}
3936 	return HPSA_LV_OK;
3937 }
3938 
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941 	unsigned char *is_OBDR_device)
3942 {
3943 
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948 
3949 	unsigned char *inq_buff;
3950 	unsigned char *obdr_sig;
3951 	int rc = 0;
3952 
3953 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954 	if (!inq_buff) {
3955 		rc = -ENOMEM;
3956 		goto bail_out;
3957 	}
3958 
3959 	/* Do an inquiry to the device to see what it is. */
3960 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962 		dev_err(&h->pdev->dev,
3963 			"%s: inquiry failed, device will be skipped.\n",
3964 			__func__);
3965 		rc = HPSA_INQUIRY_FAILED;
3966 		goto bail_out;
3967 	}
3968 
3969 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971 
3972 	this_device->devtype = (inq_buff[0] & 0x1f);
3973 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3974 	memcpy(this_device->vendor, &inq_buff[8],
3975 		sizeof(this_device->vendor));
3976 	memcpy(this_device->model, &inq_buff[16],
3977 		sizeof(this_device->model));
3978 	this_device->rev = inq_buff[2];
3979 	memset(this_device->device_id, 0,
3980 		sizeof(this_device->device_id));
3981 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982 		sizeof(this_device->device_id)) < 0) {
3983 		dev_err(&h->pdev->dev,
3984 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985 			h->ctlr, __func__,
3986 			h->scsi_host->host_no,
3987 			this_device->bus, this_device->target,
3988 			this_device->lun,
3989 			scsi_device_type(this_device->devtype),
3990 			this_device->model);
3991 		rc = HPSA_LV_FAILED;
3992 		goto bail_out;
3993 	}
3994 
3995 	if ((this_device->devtype == TYPE_DISK ||
3996 		this_device->devtype == TYPE_ZBC) &&
3997 		is_logical_dev_addr_mode(scsi3addr)) {
3998 		unsigned char volume_offline;
3999 
4000 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4004 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005 		    h->legacy_board) {
4006 			/*
4007 			 * Legacy boards might not support volume status
4008 			 */
4009 			dev_info(&h->pdev->dev,
4010 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011 				 this_device->target, this_device->lun);
4012 			volume_offline = 0;
4013 		}
4014 		this_device->volume_offline = volume_offline;
4015 		if (volume_offline == HPSA_LV_FAILED) {
4016 			rc = HPSA_LV_FAILED;
4017 			dev_err(&h->pdev->dev,
4018 				"%s: LV failed, device will be skipped.\n",
4019 				__func__);
4020 			goto bail_out;
4021 		}
4022 	} else {
4023 		this_device->raid_level = RAID_UNKNOWN;
4024 		this_device->offload_config = 0;
4025 		hpsa_turn_off_ioaccel_for_device(this_device);
4026 		this_device->hba_ioaccel_enabled = 0;
4027 		this_device->volume_offline = 0;
4028 		this_device->queue_depth = h->nr_cmds;
4029 	}
4030 
4031 	if (this_device->external)
4032 		this_device->queue_depth = EXTERNAL_QD;
4033 
4034 	if (is_OBDR_device) {
4035 		/* See if this is a One-Button-Disaster-Recovery device
4036 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4037 		 */
4038 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4041 						OBDR_SIG_LEN) == 0);
4042 	}
4043 	kfree(inq_buff);
4044 	return 0;
4045 
4046 bail_out:
4047 	kfree(inq_buff);
4048 	return rc;
4049 }
4050 
4051 /*
4052  * Helper function to assign bus, target, lun mapping of devices.
4053  * Logical drive target and lun are assigned at this time, but
4054  * physical device lun and target assignment are deferred (assigned
4055  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4061 
4062 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063 		/* physical device, target and lun filled in later */
4064 		if (is_hba_lunid(lunaddrbytes)) {
4065 			int bus = HPSA_HBA_BUS;
4066 
4067 			if (!device->rev)
4068 				bus = HPSA_LEGACY_HBA_BUS;
4069 			hpsa_set_bus_target_lun(device,
4070 					bus, 0, lunid & 0x3fff);
4071 		} else
4072 			/* defer target, lun assignment for physical devices */
4073 			hpsa_set_bus_target_lun(device,
4074 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075 		return;
4076 	}
4077 	/* It's a logical device */
4078 	if (device->external) {
4079 		hpsa_set_bus_target_lun(device,
4080 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081 			lunid & 0x00ff);
4082 		return;
4083 	}
4084 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085 				0, lunid & 0x3fff);
4086 }
4087 
4088 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089 	int i, int nphysicals, int nlocal_logicals)
4090 {
4091 	/* In report logicals, local logicals are listed first,
4092 	* then any externals.
4093 	*/
4094 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095 
4096 	if (i == raid_ctlr_position)
4097 		return 0;
4098 
4099 	if (i < logicals_start)
4100 		return 0;
4101 
4102 	/* i is in logicals range, but still within local logicals */
4103 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104 		return 0;
4105 
4106 	return 1; /* it's an external lun */
4107 }
4108 
4109 /*
4110  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111  * logdev.  The number of luns in physdev and logdev are returned in
4112  * *nphysicals and *nlogicals, respectively.
4113  * Returns 0 on success, -1 otherwise.
4114  */
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117 	struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121 		return -1;
4122 	}
4123 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127 		*nphysicals = HPSA_MAX_PHYS_LUN;
4128 	}
4129 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131 		return -1;
4132 	}
4133 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134 	/* Reject Logicals in excess of our max capability. */
4135 	if (*nlogicals > HPSA_MAX_LUN) {
4136 		dev_warn(&h->pdev->dev,
4137 			"maximum logical LUNs (%d) exceeded.  "
4138 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4139 			*nlogicals - HPSA_MAX_LUN);
4140 		*nlogicals = HPSA_MAX_LUN;
4141 	}
4142 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143 		dev_warn(&h->pdev->dev,
4144 			"maximum logical + physical LUNs (%d) exceeded. "
4145 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148 	}
4149 	return 0;
4150 }
4151 
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153 	int i, int nphysicals, int nlogicals,
4154 	struct ReportExtendedLUNdata *physdev_list,
4155 	struct ReportLUNdata *logdev_list)
4156 {
4157 	/* Helper function, figure out where the LUN ID info is coming from
4158 	 * given index i, lists of physical and logical devices, where in
4159 	 * the list the raid controller is supposed to appear (first or last)
4160 	 */
4161 
4162 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164 
4165 	if (i == raid_ctlr_position)
4166 		return RAID_CTLR_LUNID;
4167 
4168 	if (i < logicals_start)
4169 		return &physdev_list->LUN[i -
4170 				(raid_ctlr_position == 0)].lunid[0];
4171 
4172 	if (i < last_device)
4173 		return &logdev_list->LUN[i - nphysicals -
4174 			(raid_ctlr_position == 0)][0];
4175 	BUG();
4176 	return NULL;
4177 }
4178 
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181 		struct hpsa_scsi_dev_t *dev,
4182 		struct ReportExtendedLUNdata *rlep, int rle_index,
4183 		struct bmic_identify_physical_device *id_phys)
4184 {
4185 	int rc;
4186 	struct ext_report_lun_entry *rle;
4187 
4188 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189 		return;
4190 
4191 	rle = &rlep->LUN[rle_index];
4192 
4193 	dev->ioaccel_handle = rle->ioaccel_handle;
4194 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195 		dev->hba_ioaccel_enabled = 1;
4196 	memset(id_phys, 0, sizeof(*id_phys));
4197 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199 			sizeof(*id_phys));
4200 	if (!rc)
4201 		/* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204 		dev->queue_depth =
4205 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4206 				DRIVE_CMDS_RESERVED_FOR_FW;
4207 	else
4208 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210 
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212 	struct ReportExtendedLUNdata *rlep, int rle_index,
4213 	struct bmic_identify_physical_device *id_phys)
4214 {
4215 	struct ext_report_lun_entry *rle;
4216 
4217 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218 		return;
4219 
4220 	rle = &rlep->LUN[rle_index];
4221 
4222 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223 		this_device->hba_ioaccel_enabled = 1;
4224 
4225 	memcpy(&this_device->active_path_index,
4226 		&id_phys->active_path_number,
4227 		sizeof(this_device->active_path_index));
4228 	memcpy(&this_device->path_map,
4229 		&id_phys->redundant_path_present_map,
4230 		sizeof(this_device->path_map));
4231 	memcpy(&this_device->box,
4232 		&id_phys->alternate_paths_phys_box_on_port,
4233 		sizeof(this_device->box));
4234 	memcpy(&this_device->phys_connector,
4235 		&id_phys->alternate_paths_phys_connector,
4236 		sizeof(this_device->phys_connector));
4237 	memcpy(&this_device->bay,
4238 		&id_phys->phys_bay_in_box,
4239 		sizeof(this_device->bay));
4240 }
4241 
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244 	struct bmic_identify_controller *id_ctlr,
4245 	u32 *nlocals)
4246 {
4247 	int rc;
4248 
4249 	if (!id_ctlr) {
4250 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251 			__func__);
4252 		return -ENOMEM;
4253 	}
4254 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4255 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256 	if (!rc)
4257 		if (id_ctlr->configured_logical_drive_count < 255)
4258 			*nlocals = id_ctlr->configured_logical_drive_count;
4259 		else
4260 			*nlocals = le16_to_cpu(
4261 					id_ctlr->extended_logical_unit_count);
4262 	else
4263 		*nlocals = -1;
4264 	return rc;
4265 }
4266 
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269 	struct bmic_identify_physical_device *id_phys;
4270 	bool is_spare = false;
4271 	int rc;
4272 
4273 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274 	if (!id_phys)
4275 		return false;
4276 
4277 	rc = hpsa_bmic_id_physical_device(h,
4278 					lunaddrbytes,
4279 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280 					id_phys, sizeof(*id_phys));
4281 	if (rc == 0)
4282 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4283 
4284 	kfree(id_phys);
4285 	return is_spare;
4286 }
4287 
4288 #define RPL_DEV_FLAG_NON_DISK                           0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291 
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293 
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295 				struct ext_report_lun_entry *rle)
4296 {
4297 	u8 device_flags;
4298 	u8 device_type;
4299 
4300 	if (!MASKED_DEVICE(lunaddrbytes))
4301 		return false;
4302 
4303 	device_flags = rle->device_flags;
4304 	device_type = rle->device_type;
4305 
4306 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308 			return false;
4309 		return true;
4310 	}
4311 
4312 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313 		return false;
4314 
4315 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316 		return false;
4317 
4318 	/*
4319 	 * Spares may be spun down, we do not want to
4320 	 * do an Inquiry to a RAID set spare drive as
4321 	 * that would have them spun up, that is a
4322 	 * performance hit because I/O to the RAID device
4323 	 * stops while the spin up occurs which can take
4324 	 * over 50 seconds.
4325 	 */
4326 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4327 		return true;
4328 
4329 	return false;
4330 }
4331 
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334 	/* the idea here is we could get notified
4335 	 * that some devices have changed, so we do a report
4336 	 * physical luns and report logical luns cmd, and adjust
4337 	 * our list of devices accordingly.
4338 	 *
4339 	 * The scsi3addr's of devices won't change so long as the
4340 	 * adapter is not reset.  That means we can rescan and
4341 	 * tell which devices we already know about, vs. new
4342 	 * devices, vs.  disappearing devices.
4343 	 */
4344 	struct ReportExtendedLUNdata *physdev_list = NULL;
4345 	struct ReportLUNdata *logdev_list = NULL;
4346 	struct bmic_identify_physical_device *id_phys = NULL;
4347 	struct bmic_identify_controller *id_ctlr = NULL;
4348 	u32 nphysicals = 0;
4349 	u32 nlogicals = 0;
4350 	u32 nlocal_logicals = 0;
4351 	u32 ndev_allocated = 0;
4352 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353 	int ncurrent = 0;
4354 	int i, ndevs_to_allocate;
4355 	int raid_ctlr_position;
4356 	bool physical_device;
4357 
4358 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364 
4365 	if (!currentsd || !physdev_list || !logdev_list ||
4366 		!tmpdevice || !id_phys || !id_ctlr) {
4367 		dev_err(&h->pdev->dev, "out of memory\n");
4368 		goto out;
4369 	}
4370 
4371 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372 
4373 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4374 			logdev_list, &nlogicals)) {
4375 		h->drv_req_rescan = 1;
4376 		goto out;
4377 	}
4378 
4379 	/* Set number of local logicals (non PTRAID) */
4380 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4381 		dev_warn(&h->pdev->dev,
4382 			"%s: Can't determine number of local logical devices.\n",
4383 			__func__);
4384 	}
4385 
4386 	/* We might see up to the maximum number of logical and physical disks
4387 	 * plus external target devices, and a device for the local RAID
4388 	 * controller.
4389 	 */
4390 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391 
4392 	hpsa_ext_ctrl_present(h, physdev_list);
4393 
4394 	/* Allocate the per device structures */
4395 	for (i = 0; i < ndevs_to_allocate; i++) {
4396 		if (i >= HPSA_MAX_DEVICES) {
4397 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4398 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4399 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4400 			break;
4401 		}
4402 
4403 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4404 		if (!currentsd[i]) {
4405 			h->drv_req_rescan = 1;
4406 			goto out;
4407 		}
4408 		ndev_allocated++;
4409 	}
4410 
4411 	if (is_scsi_rev_5(h))
4412 		raid_ctlr_position = 0;
4413 	else
4414 		raid_ctlr_position = nphysicals + nlogicals;
4415 
4416 	/* adjust our table of devices */
4417 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4418 		u8 *lunaddrbytes, is_OBDR = 0;
4419 		int rc = 0;
4420 		int phys_dev_index = i - (raid_ctlr_position == 0);
4421 		bool skip_device = false;
4422 
4423 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4424 
4425 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426 
4427 		/* Figure out where the LUN ID info is coming from */
4428 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4429 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4430 
4431 		/* Determine if this is a lun from an external target array */
4432 		tmpdevice->external =
4433 			figure_external_status(h, raid_ctlr_position, i,
4434 						nphysicals, nlocal_logicals);
4435 
4436 		/*
4437 		 * Skip over some devices such as a spare.
4438 		 */
4439 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4440 			physical_device) {
4441 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4442 					&physdev_list->LUN[phys_dev_index]);
4443 			if (skip_device)
4444 				continue;
4445 		}
4446 
4447 		/* Get device type, vendor, model, device id, raid_map */
4448 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449 							&is_OBDR);
4450 		if (rc == -ENOMEM) {
4451 			dev_warn(&h->pdev->dev,
4452 				"Out of memory, rescan deferred.\n");
4453 			h->drv_req_rescan = 1;
4454 			goto out;
4455 		}
4456 		if (rc) {
4457 			h->drv_req_rescan = 1;
4458 			continue;
4459 		}
4460 
4461 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4462 		this_device = currentsd[ncurrent];
4463 
4464 		*this_device = *tmpdevice;
4465 		this_device->physical_device = physical_device;
4466 
4467 		/*
4468 		 * Expose all devices except for physical devices that
4469 		 * are masked.
4470 		 */
4471 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4472 			this_device->expose_device = 0;
4473 		else
4474 			this_device->expose_device = 1;
4475 
4476 
4477 		/*
4478 		 * Get the SAS address for physical devices that are exposed.
4479 		 */
4480 		if (this_device->physical_device && this_device->expose_device)
4481 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482 
4483 		switch (this_device->devtype) {
4484 		case TYPE_ROM:
4485 			/* We don't *really* support actual CD-ROM devices,
4486 			 * just "One Button Disaster Recovery" tape drive
4487 			 * which temporarily pretends to be a CD-ROM drive.
4488 			 * So we check that the device is really an OBDR tape
4489 			 * device by checking for "$DR-10" in bytes 43-48 of
4490 			 * the inquiry data.
4491 			 */
4492 			if (is_OBDR)
4493 				ncurrent++;
4494 			break;
4495 		case TYPE_DISK:
4496 		case TYPE_ZBC:
4497 			if (this_device->physical_device) {
4498 				/* The disk is in HBA mode. */
4499 				/* Never use RAID mapper in HBA mode. */
4500 				this_device->offload_enabled = 0;
4501 				hpsa_get_ioaccel_drive_info(h, this_device,
4502 					physdev_list, phys_dev_index, id_phys);
4503 				hpsa_get_path_info(this_device,
4504 					physdev_list, phys_dev_index, id_phys);
4505 			}
4506 			ncurrent++;
4507 			break;
4508 		case TYPE_TAPE:
4509 		case TYPE_MEDIUM_CHANGER:
4510 			ncurrent++;
4511 			break;
4512 		case TYPE_ENCLOSURE:
4513 			if (!this_device->external)
4514 				hpsa_get_enclosure_info(h, lunaddrbytes,
4515 						physdev_list, phys_dev_index,
4516 						this_device);
4517 			ncurrent++;
4518 			break;
4519 		case TYPE_RAID:
4520 			/* Only present the Smartarray HBA as a RAID controller.
4521 			 * If it's a RAID controller other than the HBA itself
4522 			 * (an external RAID controller, MSA500 or similar)
4523 			 * don't present it.
4524 			 */
4525 			if (!is_hba_lunid(lunaddrbytes))
4526 				break;
4527 			ncurrent++;
4528 			break;
4529 		default:
4530 			break;
4531 		}
4532 		if (ncurrent >= HPSA_MAX_DEVICES)
4533 			break;
4534 	}
4535 
4536 	if (h->sas_host == NULL) {
4537 		int rc = 0;
4538 
4539 		rc = hpsa_add_sas_host(h);
4540 		if (rc) {
4541 			dev_warn(&h->pdev->dev,
4542 				"Could not add sas host %d\n", rc);
4543 			goto out;
4544 		}
4545 	}
4546 
4547 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4548 out:
4549 	kfree(tmpdevice);
4550 	for (i = 0; i < ndev_allocated; i++)
4551 		kfree(currentsd[i]);
4552 	kfree(currentsd);
4553 	kfree(physdev_list);
4554 	kfree(logdev_list);
4555 	kfree(id_ctlr);
4556 	kfree(id_phys);
4557 }
4558 
4559 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4560 				   struct scatterlist *sg)
4561 {
4562 	u64 addr64 = (u64) sg_dma_address(sg);
4563 	unsigned int len = sg_dma_len(sg);
4564 
4565 	desc->Addr = cpu_to_le64(addr64);
4566 	desc->Len = cpu_to_le32(len);
4567 	desc->Ext = 0;
4568 }
4569 
4570 /*
4571  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572  * dma mapping  and fills in the scatter gather entries of the
4573  * hpsa command, cp.
4574  */
4575 static int hpsa_scatter_gather(struct ctlr_info *h,
4576 		struct CommandList *cp,
4577 		struct scsi_cmnd *cmd)
4578 {
4579 	struct scatterlist *sg;
4580 	int use_sg, i, sg_limit, chained;
4581 	struct SGDescriptor *curr_sg;
4582 
4583 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584 
4585 	use_sg = scsi_dma_map(cmd);
4586 	if (use_sg < 0)
4587 		return use_sg;
4588 
4589 	if (!use_sg)
4590 		goto sglist_finished;
4591 
4592 	/*
4593 	 * If the number of entries is greater than the max for a single list,
4594 	 * then we have a chained list; we will set up all but one entry in the
4595 	 * first list (the last entry is saved for link information);
4596 	 * otherwise, we don't have a chained list and we'll set up at each of
4597 	 * the entries in the one list.
4598 	 */
4599 	curr_sg = cp->SG;
4600 	chained = use_sg > h->max_cmd_sg_entries;
4601 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4602 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4603 		hpsa_set_sg_descriptor(curr_sg, sg);
4604 		curr_sg++;
4605 	}
4606 
4607 	if (chained) {
4608 		/*
4609 		 * Continue with the chained list.  Set curr_sg to the chained
4610 		 * list.  Modify the limit to the total count less the entries
4611 		 * we've already set up.  Resume the scan at the list entry
4612 		 * where the previous loop left off.
4613 		 */
4614 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4615 		sg_limit = use_sg - sg_limit;
4616 		for_each_sg(sg, sg, sg_limit, i) {
4617 			hpsa_set_sg_descriptor(curr_sg, sg);
4618 			curr_sg++;
4619 		}
4620 	}
4621 
4622 	/* Back the pointer up to the last entry and mark it as "last". */
4623 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624 
4625 	if (use_sg + chained > h->maxSG)
4626 		h->maxSG = use_sg + chained;
4627 
4628 	if (chained) {
4629 		cp->Header.SGList = h->max_cmd_sg_entries;
4630 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4631 		if (hpsa_map_sg_chain_block(h, cp)) {
4632 			scsi_dma_unmap(cmd);
4633 			return -1;
4634 		}
4635 		return 0;
4636 	}
4637 
4638 sglist_finished:
4639 
4640 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4641 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4642 	return 0;
4643 }
4644 
4645 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4646 						u8 *cdb, int cdb_len,
4647 						const char *func)
4648 {
4649 	dev_warn(&h->pdev->dev,
4650 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4651 		 func, cdb_len, cdb);
4652 }
4653 
4654 #define IO_ACCEL_INELIGIBLE 1
4655 /* zero-length transfers trigger hardware errors. */
4656 static bool is_zero_length_transfer(u8 *cdb)
4657 {
4658 	u32 block_cnt;
4659 
4660 	/* Block zero-length transfer sizes on certain commands. */
4661 	switch (cdb[0]) {
4662 	case READ_10:
4663 	case WRITE_10:
4664 	case VERIFY:		/* 0x2F */
4665 	case WRITE_VERIFY:	/* 0x2E */
4666 		block_cnt = get_unaligned_be16(&cdb[7]);
4667 		break;
4668 	case READ_12:
4669 	case WRITE_12:
4670 	case VERIFY_12: /* 0xAF */
4671 	case WRITE_VERIFY_12:	/* 0xAE */
4672 		block_cnt = get_unaligned_be32(&cdb[6]);
4673 		break;
4674 	case READ_16:
4675 	case WRITE_16:
4676 	case VERIFY_16:		/* 0x8F */
4677 		block_cnt = get_unaligned_be32(&cdb[10]);
4678 		break;
4679 	default:
4680 		return false;
4681 	}
4682 
4683 	return block_cnt == 0;
4684 }
4685 
4686 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4687 {
4688 	int is_write = 0;
4689 	u32 block;
4690 	u32 block_cnt;
4691 
4692 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4693 	switch (cdb[0]) {
4694 	case WRITE_6:
4695 	case WRITE_12:
4696 		is_write = 1;
4697 		fallthrough;
4698 	case READ_6:
4699 	case READ_12:
4700 		if (*cdb_len == 6) {
4701 			block = (((cdb[1] & 0x1F) << 16) |
4702 				(cdb[2] << 8) |
4703 				cdb[3]);
4704 			block_cnt = cdb[4];
4705 			if (block_cnt == 0)
4706 				block_cnt = 256;
4707 		} else {
4708 			BUG_ON(*cdb_len != 12);
4709 			block = get_unaligned_be32(&cdb[2]);
4710 			block_cnt = get_unaligned_be32(&cdb[6]);
4711 		}
4712 		if (block_cnt > 0xffff)
4713 			return IO_ACCEL_INELIGIBLE;
4714 
4715 		cdb[0] = is_write ? WRITE_10 : READ_10;
4716 		cdb[1] = 0;
4717 		cdb[2] = (u8) (block >> 24);
4718 		cdb[3] = (u8) (block >> 16);
4719 		cdb[4] = (u8) (block >> 8);
4720 		cdb[5] = (u8) (block);
4721 		cdb[6] = 0;
4722 		cdb[7] = (u8) (block_cnt >> 8);
4723 		cdb[8] = (u8) (block_cnt);
4724 		cdb[9] = 0;
4725 		*cdb_len = 10;
4726 		break;
4727 	}
4728 	return 0;
4729 }
4730 
4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4732 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4733 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734 {
4735 	struct scsi_cmnd *cmd = c->scsi_cmd;
4736 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737 	unsigned int len;
4738 	unsigned int total_len = 0;
4739 	struct scatterlist *sg;
4740 	u64 addr64;
4741 	int use_sg, i;
4742 	struct SGDescriptor *curr_sg;
4743 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744 
4745 	/* TODO: implement chaining support */
4746 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4747 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4748 		return IO_ACCEL_INELIGIBLE;
4749 	}
4750 
4751 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752 
4753 	if (is_zero_length_transfer(cdb)) {
4754 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4755 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4756 		return IO_ACCEL_INELIGIBLE;
4757 	}
4758 
4759 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4760 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4761 		return IO_ACCEL_INELIGIBLE;
4762 	}
4763 
4764 	c->cmd_type = CMD_IOACCEL1;
4765 
4766 	/* Adjust the DMA address to point to the accelerated command buffer */
4767 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4768 				(c->cmdindex * sizeof(*cp));
4769 	BUG_ON(c->busaddr & 0x0000007F);
4770 
4771 	use_sg = scsi_dma_map(cmd);
4772 	if (use_sg < 0) {
4773 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4774 		return use_sg;
4775 	}
4776 
4777 	if (use_sg) {
4778 		curr_sg = cp->SG;
4779 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4780 			addr64 = (u64) sg_dma_address(sg);
4781 			len  = sg_dma_len(sg);
4782 			total_len += len;
4783 			curr_sg->Addr = cpu_to_le64(addr64);
4784 			curr_sg->Len = cpu_to_le32(len);
4785 			curr_sg->Ext = cpu_to_le32(0);
4786 			curr_sg++;
4787 		}
4788 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789 
4790 		switch (cmd->sc_data_direction) {
4791 		case DMA_TO_DEVICE:
4792 			control |= IOACCEL1_CONTROL_DATA_OUT;
4793 			break;
4794 		case DMA_FROM_DEVICE:
4795 			control |= IOACCEL1_CONTROL_DATA_IN;
4796 			break;
4797 		case DMA_NONE:
4798 			control |= IOACCEL1_CONTROL_NODATAXFER;
4799 			break;
4800 		default:
4801 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4802 			cmd->sc_data_direction);
4803 			BUG();
4804 			break;
4805 		}
4806 	} else {
4807 		control |= IOACCEL1_CONTROL_NODATAXFER;
4808 	}
4809 
4810 	c->Header.SGList = use_sg;
4811 	/* Fill out the command structure to submit */
4812 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4813 	cp->transfer_len = cpu_to_le32(total_len);
4814 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4815 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4816 	cp->control = cpu_to_le32(control);
4817 	memcpy(cp->CDB, cdb, cdb_len);
4818 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4819 	/* Tag was already set at init time. */
4820 	enqueue_cmd_and_start_io(h, c);
4821 	return 0;
4822 }
4823 
4824 /*
4825  * Queue a command directly to a device behind the controller using the
4826  * I/O accelerator path.
4827  */
4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4829 	struct CommandList *c)
4830 {
4831 	struct scsi_cmnd *cmd = c->scsi_cmd;
4832 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4833 
4834 	if (!dev)
4835 		return -1;
4836 
4837 	c->phys_disk = dev;
4838 
4839 	if (dev->in_reset)
4840 		return -1;
4841 
4842 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4843 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4844 }
4845 
4846 /*
4847  * Set encryption parameters for the ioaccel2 request
4848  */
4849 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4850 	struct CommandList *c, struct io_accel2_cmd *cp)
4851 {
4852 	struct scsi_cmnd *cmd = c->scsi_cmd;
4853 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4854 	struct raid_map_data *map = &dev->raid_map;
4855 	u64 first_block;
4856 
4857 	/* Are we doing encryption on this device */
4858 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859 		return;
4860 	/* Set the data encryption key index. */
4861 	cp->dekindex = map->dekindex;
4862 
4863 	/* Set the encryption enable flag, encoded into direction field. */
4864 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865 
4866 	/* Set encryption tweak values based on logical block address
4867 	 * If block size is 512, tweak value is LBA.
4868 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4869 	 */
4870 	switch (cmd->cmnd[0]) {
4871 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872 	case READ_6:
4873 	case WRITE_6:
4874 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4875 				(cmd->cmnd[2] << 8) |
4876 				cmd->cmnd[3]);
4877 		break;
4878 	case WRITE_10:
4879 	case READ_10:
4880 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881 	case WRITE_12:
4882 	case READ_12:
4883 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4884 		break;
4885 	case WRITE_16:
4886 	case READ_16:
4887 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4888 		break;
4889 	default:
4890 		dev_err(&h->pdev->dev,
4891 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4892 			__func__, cmd->cmnd[0]);
4893 		BUG();
4894 		break;
4895 	}
4896 
4897 	if (le32_to_cpu(map->volume_blk_size) != 512)
4898 		first_block = first_block *
4899 				le32_to_cpu(map->volume_blk_size)/512;
4900 
4901 	cp->tweak_lower = cpu_to_le32(first_block);
4902 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4903 }
4904 
4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4906 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4907 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908 {
4909 	struct scsi_cmnd *cmd = c->scsi_cmd;
4910 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4911 	struct ioaccel2_sg_element *curr_sg;
4912 	int use_sg, i;
4913 	struct scatterlist *sg;
4914 	u64 addr64;
4915 	u32 len;
4916 	u32 total_len = 0;
4917 
4918 	if (!cmd->device)
4919 		return -1;
4920 
4921 	if (!cmd->device->hostdata)
4922 		return -1;
4923 
4924 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925 
4926 	if (is_zero_length_transfer(cdb)) {
4927 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4928 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4929 		return IO_ACCEL_INELIGIBLE;
4930 	}
4931 
4932 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4933 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4934 		return IO_ACCEL_INELIGIBLE;
4935 	}
4936 
4937 	c->cmd_type = CMD_IOACCEL2;
4938 	/* Adjust the DMA address to point to the accelerated command buffer */
4939 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4940 				(c->cmdindex * sizeof(*cp));
4941 	BUG_ON(c->busaddr & 0x0000007F);
4942 
4943 	memset(cp, 0, sizeof(*cp));
4944 	cp->IU_type = IOACCEL2_IU_TYPE;
4945 
4946 	use_sg = scsi_dma_map(cmd);
4947 	if (use_sg < 0) {
4948 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4949 		return use_sg;
4950 	}
4951 
4952 	if (use_sg) {
4953 		curr_sg = cp->sg;
4954 		if (use_sg > h->ioaccel_maxsg) {
4955 			addr64 = le64_to_cpu(
4956 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4957 			curr_sg->address = cpu_to_le64(addr64);
4958 			curr_sg->length = 0;
4959 			curr_sg->reserved[0] = 0;
4960 			curr_sg->reserved[1] = 0;
4961 			curr_sg->reserved[2] = 0;
4962 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963 
4964 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965 		}
4966 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4967 			addr64 = (u64) sg_dma_address(sg);
4968 			len  = sg_dma_len(sg);
4969 			total_len += len;
4970 			curr_sg->address = cpu_to_le64(addr64);
4971 			curr_sg->length = cpu_to_le32(len);
4972 			curr_sg->reserved[0] = 0;
4973 			curr_sg->reserved[1] = 0;
4974 			curr_sg->reserved[2] = 0;
4975 			curr_sg->chain_indicator = 0;
4976 			curr_sg++;
4977 		}
4978 
4979 		/*
4980 		 * Set the last s/g element bit
4981 		 */
4982 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983 
4984 		switch (cmd->sc_data_direction) {
4985 		case DMA_TO_DEVICE:
4986 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988 			break;
4989 		case DMA_FROM_DEVICE:
4990 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4992 			break;
4993 		case DMA_NONE:
4994 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4996 			break;
4997 		default:
4998 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4999 				cmd->sc_data_direction);
5000 			BUG();
5001 			break;
5002 		}
5003 	} else {
5004 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5005 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5006 	}
5007 
5008 	/* Set encryption parameters, if necessary */
5009 	set_encrypt_ioaccel2(h, c, cp);
5010 
5011 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5012 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5013 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014 
5015 	cp->data_len = cpu_to_le32(total_len);
5016 	cp->err_ptr = cpu_to_le64(c->busaddr +
5017 			offsetof(struct io_accel2_cmd, error_data));
5018 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019 
5020 	/* fill in sg elements */
5021 	if (use_sg > h->ioaccel_maxsg) {
5022 		cp->sg_count = 1;
5023 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5024 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5025 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5026 			scsi_dma_unmap(cmd);
5027 			return -1;
5028 		}
5029 	} else
5030 		cp->sg_count = (u8) use_sg;
5031 
5032 	if (phys_disk->in_reset) {
5033 		cmd->result = DID_RESET << 16;
5034 		return -1;
5035 	}
5036 
5037 	enqueue_cmd_and_start_io(h, c);
5038 	return 0;
5039 }
5040 
5041 /*
5042  * Queue a command to the correct I/O accelerator path.
5043  */
5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5045 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5046 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047 {
5048 	if (!c->scsi_cmd->device)
5049 		return -1;
5050 
5051 	if (!c->scsi_cmd->device->hostdata)
5052 		return -1;
5053 
5054 	if (phys_disk->in_reset)
5055 		return -1;
5056 
5057 	/* Try to honor the device's queue depth */
5058 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5059 					phys_disk->queue_depth) {
5060 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5061 		return IO_ACCEL_INELIGIBLE;
5062 	}
5063 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5064 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5065 						cdb, cdb_len, scsi3addr,
5066 						phys_disk);
5067 	else
5068 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5069 						cdb, cdb_len, scsi3addr,
5070 						phys_disk);
5071 }
5072 
5073 static void raid_map_helper(struct raid_map_data *map,
5074 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5075 {
5076 	if (offload_to_mirror == 0)  {
5077 		/* use physical disk in the first mirrored group. */
5078 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5079 		return;
5080 	}
5081 	do {
5082 		/* determine mirror group that *map_index indicates */
5083 		*current_group = *map_index /
5084 			le16_to_cpu(map->data_disks_per_row);
5085 		if (offload_to_mirror == *current_group)
5086 			continue;
5087 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5088 			/* select map index from next group */
5089 			*map_index += le16_to_cpu(map->data_disks_per_row);
5090 			(*current_group)++;
5091 		} else {
5092 			/* select map index from first group */
5093 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5094 			*current_group = 0;
5095 		}
5096 	} while (offload_to_mirror != *current_group);
5097 }
5098 
5099 /*
5100  * Attempt to perform offload RAID mapping for a logical volume I/O.
5101  */
5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5103 	struct CommandList *c)
5104 {
5105 	struct scsi_cmnd *cmd = c->scsi_cmd;
5106 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5107 	struct raid_map_data *map = &dev->raid_map;
5108 	struct raid_map_disk_data *dd = &map->data[0];
5109 	int is_write = 0;
5110 	u32 map_index;
5111 	u64 first_block, last_block;
5112 	u32 block_cnt;
5113 	u32 blocks_per_row;
5114 	u64 first_row, last_row;
5115 	u32 first_row_offset, last_row_offset;
5116 	u32 first_column, last_column;
5117 	u64 r0_first_row, r0_last_row;
5118 	u32 r5or6_blocks_per_row;
5119 	u64 r5or6_first_row, r5or6_last_row;
5120 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5121 	u32 r5or6_first_column, r5or6_last_column;
5122 	u32 total_disks_per_row;
5123 	u32 stripesize;
5124 	u32 first_group, last_group, current_group;
5125 	u32 map_row;
5126 	u32 disk_handle;
5127 	u64 disk_block;
5128 	u32 disk_block_cnt;
5129 	u8 cdb[16];
5130 	u8 cdb_len;
5131 	u16 strip_size;
5132 #if BITS_PER_LONG == 32
5133 	u64 tmpdiv;
5134 #endif
5135 	int offload_to_mirror;
5136 
5137 	if (!dev)
5138 		return -1;
5139 
5140 	if (dev->in_reset)
5141 		return -1;
5142 
5143 	/* check for valid opcode, get LBA and block count */
5144 	switch (cmd->cmnd[0]) {
5145 	case WRITE_6:
5146 		is_write = 1;
5147 		fallthrough;
5148 	case READ_6:
5149 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5150 				(cmd->cmnd[2] << 8) |
5151 				cmd->cmnd[3]);
5152 		block_cnt = cmd->cmnd[4];
5153 		if (block_cnt == 0)
5154 			block_cnt = 256;
5155 		break;
5156 	case WRITE_10:
5157 		is_write = 1;
5158 		fallthrough;
5159 	case READ_10:
5160 		first_block =
5161 			(((u64) cmd->cmnd[2]) << 24) |
5162 			(((u64) cmd->cmnd[3]) << 16) |
5163 			(((u64) cmd->cmnd[4]) << 8) |
5164 			cmd->cmnd[5];
5165 		block_cnt =
5166 			(((u32) cmd->cmnd[7]) << 8) |
5167 			cmd->cmnd[8];
5168 		break;
5169 	case WRITE_12:
5170 		is_write = 1;
5171 		fallthrough;
5172 	case READ_12:
5173 		first_block =
5174 			(((u64) cmd->cmnd[2]) << 24) |
5175 			(((u64) cmd->cmnd[3]) << 16) |
5176 			(((u64) cmd->cmnd[4]) << 8) |
5177 			cmd->cmnd[5];
5178 		block_cnt =
5179 			(((u32) cmd->cmnd[6]) << 24) |
5180 			(((u32) cmd->cmnd[7]) << 16) |
5181 			(((u32) cmd->cmnd[8]) << 8) |
5182 		cmd->cmnd[9];
5183 		break;
5184 	case WRITE_16:
5185 		is_write = 1;
5186 		fallthrough;
5187 	case READ_16:
5188 		first_block =
5189 			(((u64) cmd->cmnd[2]) << 56) |
5190 			(((u64) cmd->cmnd[3]) << 48) |
5191 			(((u64) cmd->cmnd[4]) << 40) |
5192 			(((u64) cmd->cmnd[5]) << 32) |
5193 			(((u64) cmd->cmnd[6]) << 24) |
5194 			(((u64) cmd->cmnd[7]) << 16) |
5195 			(((u64) cmd->cmnd[8]) << 8) |
5196 			cmd->cmnd[9];
5197 		block_cnt =
5198 			(((u32) cmd->cmnd[10]) << 24) |
5199 			(((u32) cmd->cmnd[11]) << 16) |
5200 			(((u32) cmd->cmnd[12]) << 8) |
5201 			cmd->cmnd[13];
5202 		break;
5203 	default:
5204 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205 	}
5206 	last_block = first_block + block_cnt - 1;
5207 
5208 	/* check for write to non-RAID-0 */
5209 	if (is_write && dev->raid_level != 0)
5210 		return IO_ACCEL_INELIGIBLE;
5211 
5212 	/* check for invalid block or wraparound */
5213 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5214 		last_block < first_block)
5215 		return IO_ACCEL_INELIGIBLE;
5216 
5217 	/* calculate stripe information for the request */
5218 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5219 				le16_to_cpu(map->strip_size);
5220 	strip_size = le16_to_cpu(map->strip_size);
5221 #if BITS_PER_LONG == 32
5222 	tmpdiv = first_block;
5223 	(void) do_div(tmpdiv, blocks_per_row);
5224 	first_row = tmpdiv;
5225 	tmpdiv = last_block;
5226 	(void) do_div(tmpdiv, blocks_per_row);
5227 	last_row = tmpdiv;
5228 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230 	tmpdiv = first_row_offset;
5231 	(void) do_div(tmpdiv, strip_size);
5232 	first_column = tmpdiv;
5233 	tmpdiv = last_row_offset;
5234 	(void) do_div(tmpdiv, strip_size);
5235 	last_column = tmpdiv;
5236 #else
5237 	first_row = first_block / blocks_per_row;
5238 	last_row = last_block / blocks_per_row;
5239 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5240 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5241 	first_column = first_row_offset / strip_size;
5242 	last_column = last_row_offset / strip_size;
5243 #endif
5244 
5245 	/* if this isn't a single row/column then give to the controller */
5246 	if ((first_row != last_row) || (first_column != last_column))
5247 		return IO_ACCEL_INELIGIBLE;
5248 
5249 	/* proceeding with driver mapping */
5250 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5251 				le16_to_cpu(map->metadata_disks_per_row);
5252 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5253 				le16_to_cpu(map->row_cnt);
5254 	map_index = (map_row * total_disks_per_row) + first_column;
5255 
5256 	switch (dev->raid_level) {
5257 	case HPSA_RAID_0:
5258 		break; /* nothing special to do */
5259 	case HPSA_RAID_1:
5260 		/* Handles load balance across RAID 1 members.
5261 		 * (2-drive R1 and R10 with even # of drives.)
5262 		 * Appropriate for SSDs, not optimal for HDDs
5263 		 * Ensure we have the correct raid_map.
5264 		 */
5265 		if (le16_to_cpu(map->layout_map_count) != 2) {
5266 			hpsa_turn_off_ioaccel_for_device(dev);
5267 			return IO_ACCEL_INELIGIBLE;
5268 		}
5269 		if (dev->offload_to_mirror)
5270 			map_index += le16_to_cpu(map->data_disks_per_row);
5271 		dev->offload_to_mirror = !dev->offload_to_mirror;
5272 		break;
5273 	case HPSA_RAID_ADM:
5274 		/* Handles N-way mirrors  (R1-ADM)
5275 		 * and R10 with # of drives divisible by 3.)
5276 		 * Ensure we have the correct raid_map.
5277 		 */
5278 		if (le16_to_cpu(map->layout_map_count) != 3) {
5279 			hpsa_turn_off_ioaccel_for_device(dev);
5280 			return IO_ACCEL_INELIGIBLE;
5281 		}
5282 
5283 		offload_to_mirror = dev->offload_to_mirror;
5284 		raid_map_helper(map, offload_to_mirror,
5285 				&map_index, &current_group);
5286 		/* set mirror group to use next time */
5287 		offload_to_mirror =
5288 			(offload_to_mirror >=
5289 			le16_to_cpu(map->layout_map_count) - 1)
5290 			? 0 : offload_to_mirror + 1;
5291 		dev->offload_to_mirror = offload_to_mirror;
5292 		/* Avoid direct use of dev->offload_to_mirror within this
5293 		 * function since multiple threads might simultaneously
5294 		 * increment it beyond the range of dev->layout_map_count -1.
5295 		 */
5296 		break;
5297 	case HPSA_RAID_5:
5298 	case HPSA_RAID_6:
5299 		if (le16_to_cpu(map->layout_map_count) <= 1)
5300 			break;
5301 
5302 		/* Verify first and last block are in same RAID group */
5303 		r5or6_blocks_per_row =
5304 			le16_to_cpu(map->strip_size) *
5305 			le16_to_cpu(map->data_disks_per_row);
5306 		if (r5or6_blocks_per_row == 0) {
5307 			hpsa_turn_off_ioaccel_for_device(dev);
5308 			return IO_ACCEL_INELIGIBLE;
5309 		}
5310 		stripesize = r5or6_blocks_per_row *
5311 			le16_to_cpu(map->layout_map_count);
5312 #if BITS_PER_LONG == 32
5313 		tmpdiv = first_block;
5314 		first_group = do_div(tmpdiv, stripesize);
5315 		tmpdiv = first_group;
5316 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5317 		first_group = tmpdiv;
5318 		tmpdiv = last_block;
5319 		last_group = do_div(tmpdiv, stripesize);
5320 		tmpdiv = last_group;
5321 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5322 		last_group = tmpdiv;
5323 #else
5324 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5325 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326 #endif
5327 		if (first_group != last_group)
5328 			return IO_ACCEL_INELIGIBLE;
5329 
5330 		/* Verify request is in a single row of RAID 5/6 */
5331 #if BITS_PER_LONG == 32
5332 		tmpdiv = first_block;
5333 		(void) do_div(tmpdiv, stripesize);
5334 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5335 		tmpdiv = last_block;
5336 		(void) do_div(tmpdiv, stripesize);
5337 		r5or6_last_row = r0_last_row = tmpdiv;
5338 #else
5339 		first_row = r5or6_first_row = r0_first_row =
5340 						first_block / stripesize;
5341 		r5or6_last_row = r0_last_row = last_block / stripesize;
5342 #endif
5343 		if (r5or6_first_row != r5or6_last_row)
5344 			return IO_ACCEL_INELIGIBLE;
5345 
5346 
5347 		/* Verify request is in a single column */
5348 #if BITS_PER_LONG == 32
5349 		tmpdiv = first_block;
5350 		first_row_offset = do_div(tmpdiv, stripesize);
5351 		tmpdiv = first_row_offset;
5352 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5353 		r5or6_first_row_offset = first_row_offset;
5354 		tmpdiv = last_block;
5355 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5356 		tmpdiv = r5or6_last_row_offset;
5357 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5358 		tmpdiv = r5or6_first_row_offset;
5359 		(void) do_div(tmpdiv, map->strip_size);
5360 		first_column = r5or6_first_column = tmpdiv;
5361 		tmpdiv = r5or6_last_row_offset;
5362 		(void) do_div(tmpdiv, map->strip_size);
5363 		r5or6_last_column = tmpdiv;
5364 #else
5365 		first_row_offset = r5or6_first_row_offset =
5366 			(u32)((first_block % stripesize) %
5367 						r5or6_blocks_per_row);
5368 
5369 		r5or6_last_row_offset =
5370 			(u32)((last_block % stripesize) %
5371 						r5or6_blocks_per_row);
5372 
5373 		first_column = r5or6_first_column =
5374 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375 		r5or6_last_column =
5376 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377 #endif
5378 		if (r5or6_first_column != r5or6_last_column)
5379 			return IO_ACCEL_INELIGIBLE;
5380 
5381 		/* Request is eligible */
5382 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5383 			le16_to_cpu(map->row_cnt);
5384 
5385 		map_index = (first_group *
5386 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5387 			(map_row * total_disks_per_row) + first_column;
5388 		break;
5389 	default:
5390 		return IO_ACCEL_INELIGIBLE;
5391 	}
5392 
5393 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5394 		return IO_ACCEL_INELIGIBLE;
5395 
5396 	c->phys_disk = dev->phys_disk[map_index];
5397 	if (!c->phys_disk)
5398 		return IO_ACCEL_INELIGIBLE;
5399 
5400 	disk_handle = dd[map_index].ioaccel_handle;
5401 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5402 			first_row * le16_to_cpu(map->strip_size) +
5403 			(first_row_offset - first_column *
5404 			le16_to_cpu(map->strip_size));
5405 	disk_block_cnt = block_cnt;
5406 
5407 	/* handle differing logical/physical block sizes */
5408 	if (map->phys_blk_shift) {
5409 		disk_block <<= map->phys_blk_shift;
5410 		disk_block_cnt <<= map->phys_blk_shift;
5411 	}
5412 	BUG_ON(disk_block_cnt > 0xffff);
5413 
5414 	/* build the new CDB for the physical disk I/O */
5415 	if (disk_block > 0xffffffff) {
5416 		cdb[0] = is_write ? WRITE_16 : READ_16;
5417 		cdb[1] = 0;
5418 		cdb[2] = (u8) (disk_block >> 56);
5419 		cdb[3] = (u8) (disk_block >> 48);
5420 		cdb[4] = (u8) (disk_block >> 40);
5421 		cdb[5] = (u8) (disk_block >> 32);
5422 		cdb[6] = (u8) (disk_block >> 24);
5423 		cdb[7] = (u8) (disk_block >> 16);
5424 		cdb[8] = (u8) (disk_block >> 8);
5425 		cdb[9] = (u8) (disk_block);
5426 		cdb[10] = (u8) (disk_block_cnt >> 24);
5427 		cdb[11] = (u8) (disk_block_cnt >> 16);
5428 		cdb[12] = (u8) (disk_block_cnt >> 8);
5429 		cdb[13] = (u8) (disk_block_cnt);
5430 		cdb[14] = 0;
5431 		cdb[15] = 0;
5432 		cdb_len = 16;
5433 	} else {
5434 		cdb[0] = is_write ? WRITE_10 : READ_10;
5435 		cdb[1] = 0;
5436 		cdb[2] = (u8) (disk_block >> 24);
5437 		cdb[3] = (u8) (disk_block >> 16);
5438 		cdb[4] = (u8) (disk_block >> 8);
5439 		cdb[5] = (u8) (disk_block);
5440 		cdb[6] = 0;
5441 		cdb[7] = (u8) (disk_block_cnt >> 8);
5442 		cdb[8] = (u8) (disk_block_cnt);
5443 		cdb[9] = 0;
5444 		cdb_len = 10;
5445 	}
5446 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447 						dev->scsi3addr,
5448 						dev->phys_disk[map_index]);
5449 }
5450 
5451 /*
5452  * Submit commands down the "normal" RAID stack path
5453  * All callers to hpsa_ciss_submit must check lockup_detected
5454  * beforehand, before (opt.) and after calling cmd_alloc
5455  */
5456 static int hpsa_ciss_submit(struct ctlr_info *h,
5457 	struct CommandList *c, struct scsi_cmnd *cmd,
5458 	struct hpsa_scsi_dev_t *dev)
5459 {
5460 	cmd->host_scribble = (unsigned char *) c;
5461 	c->cmd_type = CMD_SCSI;
5462 	c->scsi_cmd = cmd;
5463 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5464 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5465 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466 
5467 	/* Fill in the request block... */
5468 
5469 	c->Request.Timeout = 0;
5470 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5471 	c->Request.CDBLen = cmd->cmd_len;
5472 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5473 	switch (cmd->sc_data_direction) {
5474 	case DMA_TO_DEVICE:
5475 		c->Request.type_attr_dir =
5476 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477 		break;
5478 	case DMA_FROM_DEVICE:
5479 		c->Request.type_attr_dir =
5480 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5481 		break;
5482 	case DMA_NONE:
5483 		c->Request.type_attr_dir =
5484 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485 		break;
5486 	case DMA_BIDIRECTIONAL:
5487 		/* This can happen if a buggy application does a scsi passthru
5488 		 * and sets both inlen and outlen to non-zero. ( see
5489 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490 		 */
5491 
5492 		c->Request.type_attr_dir =
5493 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5494 		/* This is technically wrong, and hpsa controllers should
5495 		 * reject it with CMD_INVALID, which is the most correct
5496 		 * response, but non-fibre backends appear to let it
5497 		 * slide by, and give the same results as if this field
5498 		 * were set correctly.  Either way is acceptable for
5499 		 * our purposes here.
5500 		 */
5501 
5502 		break;
5503 
5504 	default:
5505 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5506 			cmd->sc_data_direction);
5507 		BUG();
5508 		break;
5509 	}
5510 
5511 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5512 		hpsa_cmd_resolve_and_free(h, c);
5513 		return SCSI_MLQUEUE_HOST_BUSY;
5514 	}
5515 
5516 	if (dev->in_reset) {
5517 		hpsa_cmd_resolve_and_free(h, c);
5518 		return SCSI_MLQUEUE_HOST_BUSY;
5519 	}
5520 
5521 	c->device = dev;
5522 
5523 	enqueue_cmd_and_start_io(h, c);
5524 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5525 	return 0;
5526 }
5527 
5528 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5529 				struct CommandList *c)
5530 {
5531 	dma_addr_t cmd_dma_handle, err_dma_handle;
5532 
5533 	/* Zero out all of commandlist except the last field, refcount */
5534 	memset(c, 0, offsetof(struct CommandList, refcount));
5535 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5536 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5537 	c->err_info = h->errinfo_pool + index;
5538 	memset(c->err_info, 0, sizeof(*c->err_info));
5539 	err_dma_handle = h->errinfo_pool_dhandle
5540 	    + index * sizeof(*c->err_info);
5541 	c->cmdindex = index;
5542 	c->busaddr = (u32) cmd_dma_handle;
5543 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5544 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545 	c->h = h;
5546 	c->scsi_cmd = SCSI_CMD_IDLE;
5547 }
5548 
5549 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5550 {
5551 	int i;
5552 
5553 	for (i = 0; i < h->nr_cmds; i++) {
5554 		struct CommandList *c = h->cmd_pool + i;
5555 
5556 		hpsa_cmd_init(h, i, c);
5557 		atomic_set(&c->refcount, 0);
5558 	}
5559 }
5560 
5561 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5562 				struct CommandList *c)
5563 {
5564 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565 
5566 	BUG_ON(c->cmdindex != index);
5567 
5568 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5569 	memset(c->err_info, 0, sizeof(*c->err_info));
5570 	c->busaddr = (u32) cmd_dma_handle;
5571 }
5572 
5573 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5574 		struct CommandList *c, struct scsi_cmnd *cmd,
5575 		bool retry)
5576 {
5577 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5578 	int rc = IO_ACCEL_INELIGIBLE;
5579 
5580 	if (!dev)
5581 		return SCSI_MLQUEUE_HOST_BUSY;
5582 
5583 	if (dev->in_reset)
5584 		return SCSI_MLQUEUE_HOST_BUSY;
5585 
5586 	if (hpsa_simple_mode)
5587 		return IO_ACCEL_INELIGIBLE;
5588 
5589 	cmd->host_scribble = (unsigned char *) c;
5590 
5591 	if (dev->offload_enabled) {
5592 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5593 		c->cmd_type = CMD_SCSI;
5594 		c->scsi_cmd = cmd;
5595 		c->device = dev;
5596 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5597 			c->retry_pending = true;
5598 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599 		if (rc < 0)     /* scsi_dma_map failed. */
5600 			rc = SCSI_MLQUEUE_HOST_BUSY;
5601 	} else if (dev->hba_ioaccel_enabled) {
5602 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5603 		c->cmd_type = CMD_SCSI;
5604 		c->scsi_cmd = cmd;
5605 		c->device = dev;
5606 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5607 			c->retry_pending = true;
5608 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5609 		if (rc < 0)     /* scsi_dma_map failed. */
5610 			rc = SCSI_MLQUEUE_HOST_BUSY;
5611 	}
5612 	return rc;
5613 }
5614 
5615 static void hpsa_command_resubmit_worker(struct work_struct *work)
5616 {
5617 	struct scsi_cmnd *cmd;
5618 	struct hpsa_scsi_dev_t *dev;
5619 	struct CommandList *c = container_of(work, struct CommandList, work);
5620 
5621 	cmd = c->scsi_cmd;
5622 	dev = cmd->device->hostdata;
5623 	if (!dev) {
5624 		cmd->result = DID_NO_CONNECT << 16;
5625 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5626 	}
5627 
5628 	if (dev->in_reset) {
5629 		cmd->result = DID_RESET << 16;
5630 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5631 	}
5632 
5633 	if (c->cmd_type == CMD_IOACCEL2) {
5634 		struct ctlr_info *h = c->h;
5635 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5636 		int rc;
5637 
5638 		if (c2->error_data.serv_response ==
5639 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5640 			/* Resubmit with the retry_pending flag set. */
5641 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5642 			if (rc == 0)
5643 				return;
5644 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645 				/*
5646 				 * If we get here, it means dma mapping failed.
5647 				 * Try again via scsi mid layer, which will
5648 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5649 				 */
5650 				cmd->result = DID_IMM_RETRY << 16;
5651 				return hpsa_cmd_free_and_done(h, c, cmd);
5652 			}
5653 			/* else, fall thru and resubmit down CISS path */
5654 		}
5655 	}
5656 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657 	/*
5658 	 * Here we have not come in though queue_command, so we
5659 	 * can set the retry_pending flag to true for a driver initiated
5660 	 * retry attempt (I.E. not a SML retry).
5661 	 * I.E. We are submitting a driver initiated retry.
5662 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5663 	 *       ioaccel submit does.
5664 	 */
5665 	c->retry_pending = true;
5666 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667 		/*
5668 		 * If we get here, it means dma mapping failed. Try
5669 		 * again via scsi mid layer, which will then get
5670 		 * SCSI_MLQUEUE_HOST_BUSY.
5671 		 *
5672 		 * hpsa_ciss_submit will have already freed c
5673 		 * if it encountered a dma mapping failure.
5674 		 */
5675 		cmd->result = DID_IMM_RETRY << 16;
5676 		scsi_done(cmd);
5677 	}
5678 }
5679 
5680 /* Running in struct Scsi_Host->host_lock less mode */
5681 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682 {
5683 	struct ctlr_info *h;
5684 	struct hpsa_scsi_dev_t *dev;
5685 	struct CommandList *c;
5686 	int rc = 0;
5687 
5688 	/* Get the ptr to our adapter structure out of cmd->host. */
5689 	h = sdev_to_hba(cmd->device);
5690 
5691 	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5692 
5693 	dev = cmd->device->hostdata;
5694 	if (!dev) {
5695 		cmd->result = DID_NO_CONNECT << 16;
5696 		scsi_done(cmd);
5697 		return 0;
5698 	}
5699 
5700 	if (dev->removed) {
5701 		cmd->result = DID_NO_CONNECT << 16;
5702 		scsi_done(cmd);
5703 		return 0;
5704 	}
5705 
5706 	if (unlikely(lockup_detected(h))) {
5707 		cmd->result = DID_NO_CONNECT << 16;
5708 		scsi_done(cmd);
5709 		return 0;
5710 	}
5711 
5712 	if (dev->in_reset)
5713 		return SCSI_MLQUEUE_DEVICE_BUSY;
5714 
5715 	c = cmd_tagged_alloc(h, cmd);
5716 	if (c == NULL)
5717 		return SCSI_MLQUEUE_DEVICE_BUSY;
5718 
5719 	/*
5720 	 * This is necessary because the SML doesn't zero out this field during
5721 	 * error recovery.
5722 	 */
5723 	cmd->result = 0;
5724 
5725 	/*
5726 	 * Call alternate submit routine for I/O accelerated commands.
5727 	 * Retries always go down the normal I/O path.
5728 	 * Note: If cmd->retries is non-zero, then this is a SML
5729 	 *       initiated retry and not a driver initiated retry.
5730 	 *       This command has been obtained from cmd_tagged_alloc
5731 	 *       and is therefore a brand-new command.
5732 	 */
5733 	if (likely(cmd->retries == 0 &&
5734 			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5735 			h->acciopath_status)) {
5736 		/* Submit with the retry_pending flag unset. */
5737 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5738 		if (rc == 0)
5739 			return 0;
5740 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5741 			hpsa_cmd_resolve_and_free(h, c);
5742 			return SCSI_MLQUEUE_HOST_BUSY;
5743 		}
5744 	}
5745 	return hpsa_ciss_submit(h, c, cmd, dev);
5746 }
5747 
5748 static void hpsa_scan_complete(struct ctlr_info *h)
5749 {
5750 	unsigned long flags;
5751 
5752 	spin_lock_irqsave(&h->scan_lock, flags);
5753 	h->scan_finished = 1;
5754 	wake_up(&h->scan_wait_queue);
5755 	spin_unlock_irqrestore(&h->scan_lock, flags);
5756 }
5757 
5758 static void hpsa_scan_start(struct Scsi_Host *sh)
5759 {
5760 	struct ctlr_info *h = shost_to_hba(sh);
5761 	unsigned long flags;
5762 
5763 	/*
5764 	 * Don't let rescans be initiated on a controller known to be locked
5765 	 * up.  If the controller locks up *during* a rescan, that thread is
5766 	 * probably hosed, but at least we can prevent new rescan threads from
5767 	 * piling up on a locked up controller.
5768 	 */
5769 	if (unlikely(lockup_detected(h)))
5770 		return hpsa_scan_complete(h);
5771 
5772 	/*
5773 	 * If a scan is already waiting to run, no need to add another
5774 	 */
5775 	spin_lock_irqsave(&h->scan_lock, flags);
5776 	if (h->scan_waiting) {
5777 		spin_unlock_irqrestore(&h->scan_lock, flags);
5778 		return;
5779 	}
5780 
5781 	spin_unlock_irqrestore(&h->scan_lock, flags);
5782 
5783 	/* wait until any scan already in progress is finished. */
5784 	while (1) {
5785 		spin_lock_irqsave(&h->scan_lock, flags);
5786 		if (h->scan_finished)
5787 			break;
5788 		h->scan_waiting = 1;
5789 		spin_unlock_irqrestore(&h->scan_lock, flags);
5790 		wait_event(h->scan_wait_queue, h->scan_finished);
5791 		/* Note: We don't need to worry about a race between this
5792 		 * thread and driver unload because the midlayer will
5793 		 * have incremented the reference count, so unload won't
5794 		 * happen if we're in here.
5795 		 */
5796 	}
5797 	h->scan_finished = 0; /* mark scan as in progress */
5798 	h->scan_waiting = 0;
5799 	spin_unlock_irqrestore(&h->scan_lock, flags);
5800 
5801 	if (unlikely(lockup_detected(h)))
5802 		return hpsa_scan_complete(h);
5803 
5804 	/*
5805 	 * Do the scan after a reset completion
5806 	 */
5807 	spin_lock_irqsave(&h->reset_lock, flags);
5808 	if (h->reset_in_progress) {
5809 		h->drv_req_rescan = 1;
5810 		spin_unlock_irqrestore(&h->reset_lock, flags);
5811 		hpsa_scan_complete(h);
5812 		return;
5813 	}
5814 	spin_unlock_irqrestore(&h->reset_lock, flags);
5815 
5816 	hpsa_update_scsi_devices(h);
5817 
5818 	hpsa_scan_complete(h);
5819 }
5820 
5821 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822 {
5823 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5824 
5825 	if (!logical_drive)
5826 		return -ENODEV;
5827 
5828 	if (qdepth < 1)
5829 		qdepth = 1;
5830 	else if (qdepth > logical_drive->queue_depth)
5831 		qdepth = logical_drive->queue_depth;
5832 
5833 	return scsi_change_queue_depth(sdev, qdepth);
5834 }
5835 
5836 static int hpsa_scan_finished(struct Scsi_Host *sh,
5837 	unsigned long elapsed_time)
5838 {
5839 	struct ctlr_info *h = shost_to_hba(sh);
5840 	unsigned long flags;
5841 	int finished;
5842 
5843 	spin_lock_irqsave(&h->scan_lock, flags);
5844 	finished = h->scan_finished;
5845 	spin_unlock_irqrestore(&h->scan_lock, flags);
5846 	return finished;
5847 }
5848 
5849 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850 {
5851 	struct Scsi_Host *sh;
5852 
5853 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5854 	if (sh == NULL) {
5855 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5856 		return -ENOMEM;
5857 	}
5858 
5859 	sh->io_port = 0;
5860 	sh->n_io_port = 0;
5861 	sh->this_id = -1;
5862 	sh->max_channel = 3;
5863 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5864 	sh->max_lun = HPSA_MAX_LUN;
5865 	sh->max_id = HPSA_MAX_LUN;
5866 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5867 	sh->cmd_per_lun = sh->can_queue;
5868 	sh->sg_tablesize = h->maxsgentries;
5869 	sh->transportt = hpsa_sas_transport_template;
5870 	sh->hostdata[0] = (unsigned long) h;
5871 	sh->irq = pci_irq_vector(h->pdev, 0);
5872 	sh->unique_id = sh->irq;
5873 
5874 	h->scsi_host = sh;
5875 	return 0;
5876 }
5877 
5878 static int hpsa_scsi_add_host(struct ctlr_info *h)
5879 {
5880 	int rv;
5881 
5882 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883 	if (rv) {
5884 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5885 		return rv;
5886 	}
5887 	scsi_scan_host(h->scsi_host);
5888 	return 0;
5889 }
5890 
5891 /*
5892  * The block layer has already gone to the trouble of picking out a unique,
5893  * small-integer tag for this request.  We use an offset from that value as
5894  * an index to select our command block.  (The offset allows us to reserve the
5895  * low-numbered entries for our own uses.)
5896  */
5897 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898 {
5899 	int idx = scsi_cmd_to_rq(scmd)->tag;
5900 
5901 	if (idx < 0)
5902 		return idx;
5903 
5904 	/* Offset to leave space for internal cmds. */
5905 	return idx += HPSA_NRESERVED_CMDS;
5906 }
5907 
5908 /*
5909  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911  */
5912 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5913 				struct CommandList *c, unsigned char lunaddr[],
5914 				int reply_queue)
5915 {
5916 	int rc;
5917 
5918 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5920 			NULL, 0, 0, lunaddr, TYPE_CMD);
5921 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5922 	if (rc)
5923 		return rc;
5924 	/* no unmap needed here because no data xfer. */
5925 
5926 	/* Check if the unit is already ready. */
5927 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5928 		return 0;
5929 
5930 	/*
5931 	 * The first command sent after reset will receive "unit attention" to
5932 	 * indicate that the LUN has been reset...this is actually what we're
5933 	 * looking for (but, success is good too).
5934 	 */
5935 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5936 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5937 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5938 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5939 		return 0;
5940 
5941 	return 1;
5942 }
5943 
5944 /*
5945  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946  * returns zero when the unit is ready, and non-zero when giving up.
5947  */
5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5949 				struct CommandList *c,
5950 				unsigned char lunaddr[], int reply_queue)
5951 {
5952 	int rc;
5953 	int count = 0;
5954 	int waittime = 1; /* seconds */
5955 
5956 	/* Send test unit ready until device ready, or give up. */
5957 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5958 
5959 		/*
5960 		 * Wait for a bit.  do this first, because if we send
5961 		 * the TUR right away, the reset will just abort it.
5962 		 */
5963 		msleep(1000 * waittime);
5964 
5965 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5966 		if (!rc)
5967 			break;
5968 
5969 		/* Increase wait time with each try, up to a point. */
5970 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5971 			waittime *= 2;
5972 
5973 		dev_warn(&h->pdev->dev,
5974 			 "waiting %d secs for device to become ready.\n",
5975 			 waittime);
5976 	}
5977 
5978 	return rc;
5979 }
5980 
5981 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5982 					   unsigned char lunaddr[],
5983 					   int reply_queue)
5984 {
5985 	int first_queue;
5986 	int last_queue;
5987 	int rq;
5988 	int rc = 0;
5989 	struct CommandList *c;
5990 
5991 	c = cmd_alloc(h);
5992 
5993 	/*
5994 	 * If no specific reply queue was requested, then send the TUR
5995 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5996 	 * the loop exactly once using only the specified queue.
5997 	 */
5998 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999 		first_queue = 0;
6000 		last_queue = h->nreply_queues - 1;
6001 	} else {
6002 		first_queue = reply_queue;
6003 		last_queue = reply_queue;
6004 	}
6005 
6006 	for (rq = first_queue; rq <= last_queue; rq++) {
6007 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6008 		if (rc)
6009 			break;
6010 	}
6011 
6012 	if (rc)
6013 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6014 	else
6015 		dev_warn(&h->pdev->dev, "device is ready.\n");
6016 
6017 	cmd_free(h, c);
6018 	return rc;
6019 }
6020 
6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022  * complaining.  Doing a host- or bus-reset can't do anything good here.
6023  */
6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6025 {
6026 	int rc = SUCCESS;
6027 	int i;
6028 	struct ctlr_info *h;
6029 	struct hpsa_scsi_dev_t *dev = NULL;
6030 	u8 reset_type;
6031 	char msg[48];
6032 	unsigned long flags;
6033 
6034 	/* find the controller to which the command to be aborted was sent */
6035 	h = sdev_to_hba(scsicmd->device);
6036 	if (h == NULL) /* paranoia */
6037 		return FAILED;
6038 
6039 	spin_lock_irqsave(&h->reset_lock, flags);
6040 	h->reset_in_progress = 1;
6041 	spin_unlock_irqrestore(&h->reset_lock, flags);
6042 
6043 	if (lockup_detected(h)) {
6044 		rc = FAILED;
6045 		goto return_reset_status;
6046 	}
6047 
6048 	dev = scsicmd->device->hostdata;
6049 	if (!dev) {
6050 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051 		rc = FAILED;
6052 		goto return_reset_status;
6053 	}
6054 
6055 	if (dev->devtype == TYPE_ENCLOSURE) {
6056 		rc = SUCCESS;
6057 		goto return_reset_status;
6058 	}
6059 
6060 	/* if controller locked up, we can guarantee command won't complete */
6061 	if (lockup_detected(h)) {
6062 		snprintf(msg, sizeof(msg),
6063 			 "cmd %d RESET FAILED, lockup detected",
6064 			 hpsa_get_cmd_index(scsicmd));
6065 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066 		rc = FAILED;
6067 		goto return_reset_status;
6068 	}
6069 
6070 	/* this reset request might be the result of a lockup; check */
6071 	if (detect_controller_lockup(h)) {
6072 		snprintf(msg, sizeof(msg),
6073 			 "cmd %d RESET FAILED, new lockup detected",
6074 			 hpsa_get_cmd_index(scsicmd));
6075 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076 		rc = FAILED;
6077 		goto return_reset_status;
6078 	}
6079 
6080 	/* Do not attempt on controller */
6081 	if (is_hba_lunid(dev->scsi3addr)) {
6082 		rc = SUCCESS;
6083 		goto return_reset_status;
6084 	}
6085 
6086 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6087 		reset_type = HPSA_DEVICE_RESET_MSG;
6088 	else
6089 		reset_type = HPSA_PHYS_TARGET_RESET;
6090 
6091 	sprintf(msg, "resetting %s",
6092 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6093 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6094 
6095 	/*
6096 	 * wait to see if any commands will complete before sending reset
6097 	 */
6098 	dev->in_reset = true; /* block any new cmds from OS for this device */
6099 	for (i = 0; i < 10; i++) {
6100 		if (atomic_read(&dev->commands_outstanding) > 0)
6101 			msleep(1000);
6102 		else
6103 			break;
6104 	}
6105 
6106 	/* send a reset to the SCSI LUN which the command was sent to */
6107 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6108 	if (rc == 0)
6109 		rc = SUCCESS;
6110 	else
6111 		rc = FAILED;
6112 
6113 	sprintf(msg, "reset %s %s",
6114 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6115 		rc == SUCCESS ? "completed successfully" : "failed");
6116 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117 
6118 return_reset_status:
6119 	spin_lock_irqsave(&h->reset_lock, flags);
6120 	h->reset_in_progress = 0;
6121 	if (dev)
6122 		dev->in_reset = false;
6123 	spin_unlock_irqrestore(&h->reset_lock, flags);
6124 	return rc;
6125 }
6126 
6127 /*
6128  * For operations with an associated SCSI command, a command block is allocated
6129  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6131  * the complement, although cmd_free() may be called instead.
6132  * This function is only called for new requests from queue_command.
6133  */
6134 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6135 					    struct scsi_cmnd *scmd)
6136 {
6137 	int idx = hpsa_get_cmd_index(scmd);
6138 	struct CommandList *c = h->cmd_pool + idx;
6139 
6140 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6141 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6142 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6143 		/* The index value comes from the block layer, so if it's out of
6144 		 * bounds, it's probably not our bug.
6145 		 */
6146 		BUG();
6147 	}
6148 
6149 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6150 		/*
6151 		 * We expect that the SCSI layer will hand us a unique tag
6152 		 * value.  Thus, there should never be a collision here between
6153 		 * two requests...because if the selected command isn't idle
6154 		 * then someone is going to be very disappointed.
6155 		 */
6156 		if (idx != h->last_collision_tag) { /* Print once per tag */
6157 			dev_warn(&h->pdev->dev,
6158 				"%s: tag collision (tag=%d)\n", __func__, idx);
6159 			if (scmd)
6160 				scsi_print_command(scmd);
6161 			h->last_collision_tag = idx;
6162 		}
6163 		return NULL;
6164 	}
6165 
6166 	atomic_inc(&c->refcount);
6167 	hpsa_cmd_partial_init(h, idx, c);
6168 
6169 	/*
6170 	 * This is a new command obtained from queue_command so
6171 	 * there have not been any driver initiated retry attempts.
6172 	 */
6173 	c->retry_pending = false;
6174 
6175 	return c;
6176 }
6177 
6178 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6179 {
6180 	/*
6181 	 * Release our reference to the block.  We don't need to do anything
6182 	 * else to free it, because it is accessed by index.
6183 	 */
6184 	(void)atomic_dec(&c->refcount);
6185 }
6186 
6187 /*
6188  * For operations that cannot sleep, a command block is allocated at init,
6189  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190  * which ones are free or in use.  Lock must be held when calling this.
6191  * cmd_free() is the complement.
6192  * This function never gives up and returns NULL.  If it hangs,
6193  * another thread must call cmd_free() to free some tags.
6194  */
6195 
6196 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197 {
6198 	struct CommandList *c;
6199 	int refcount, i;
6200 	int offset = 0;
6201 
6202 	/*
6203 	 * There is some *extremely* small but non-zero chance that that
6204 	 * multiple threads could get in here, and one thread could
6205 	 * be scanning through the list of bits looking for a free
6206 	 * one, but the free ones are always behind him, and other
6207 	 * threads sneak in behind him and eat them before he can
6208 	 * get to them, so that while there is always a free one, a
6209 	 * very unlucky thread might be starved anyway, never able to
6210 	 * beat the other threads.  In reality, this happens so
6211 	 * infrequently as to be indistinguishable from never.
6212 	 *
6213 	 * Note that we start allocating commands before the SCSI host structure
6214 	 * is initialized.  Since the search starts at bit zero, this
6215 	 * all works, since we have at least one command structure available;
6216 	 * however, it means that the structures with the low indexes have to be
6217 	 * reserved for driver-initiated requests, while requests from the block
6218 	 * layer will use the higher indexes.
6219 	 */
6220 
6221 	for (;;) {
6222 		i = find_next_zero_bit(h->cmd_pool_bits,
6223 					HPSA_NRESERVED_CMDS,
6224 					offset);
6225 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6226 			offset = 0;
6227 			continue;
6228 		}
6229 		c = h->cmd_pool + i;
6230 		refcount = atomic_inc_return(&c->refcount);
6231 		if (unlikely(refcount > 1)) {
6232 			cmd_free(h, c); /* already in use */
6233 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6234 			continue;
6235 		}
6236 		set_bit(i & (BITS_PER_LONG - 1),
6237 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6238 		break; /* it's ours now. */
6239 	}
6240 	hpsa_cmd_partial_init(h, i, c);
6241 	c->device = NULL;
6242 
6243 	/*
6244 	 * cmd_alloc is for "internal" commands and they are never
6245 	 * retried.
6246 	 */
6247 	c->retry_pending = false;
6248 
6249 	return c;
6250 }
6251 
6252 /*
6253  * This is the complementary operation to cmd_alloc().  Note, however, in some
6254  * corner cases it may also be used to free blocks allocated by
6255  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6256  * the clear-bit is harmless.
6257  */
6258 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6259 {
6260 	if (atomic_dec_and_test(&c->refcount)) {
6261 		int i;
6262 
6263 		i = c - h->cmd_pool;
6264 		clear_bit(i & (BITS_PER_LONG - 1),
6265 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6266 	}
6267 }
6268 
6269 #ifdef CONFIG_COMPAT
6270 
6271 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6272 	void __user *arg)
6273 {
6274 	struct ctlr_info *h = sdev_to_hba(dev);
6275 	IOCTL32_Command_struct __user *arg32 = arg;
6276 	IOCTL_Command_struct arg64;
6277 	int err;
6278 	u32 cp;
6279 
6280 	if (!arg)
6281 		return -EINVAL;
6282 
6283 	memset(&arg64, 0, sizeof(arg64));
6284 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6285 		return -EFAULT;
6286 	if (get_user(cp, &arg32->buf))
6287 		return -EFAULT;
6288 	arg64.buf = compat_ptr(cp);
6289 
6290 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291 		return -EAGAIN;
6292 	err = hpsa_passthru_ioctl(h, &arg64);
6293 	atomic_inc(&h->passthru_cmds_avail);
6294 	if (err)
6295 		return err;
6296 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297 			 sizeof(arg32->error_info)))
6298 		return -EFAULT;
6299 	return 0;
6300 }
6301 
6302 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6303 	unsigned int cmd, void __user *arg)
6304 {
6305 	struct ctlr_info *h = sdev_to_hba(dev);
6306 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6307 	BIG_IOCTL_Command_struct arg64;
6308 	int err;
6309 	u32 cp;
6310 
6311 	if (!arg)
6312 		return -EINVAL;
6313 	memset(&arg64, 0, sizeof(arg64));
6314 	if (copy_from_user(&arg64, arg32,
6315 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6316 		return -EFAULT;
6317 	if (get_user(cp, &arg32->buf))
6318 		return -EFAULT;
6319 	arg64.buf = compat_ptr(cp);
6320 
6321 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6322 		return -EAGAIN;
6323 	err = hpsa_big_passthru_ioctl(h, &arg64);
6324 	atomic_inc(&h->passthru_cmds_avail);
6325 	if (err)
6326 		return err;
6327 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6328 			 sizeof(arg32->error_info)))
6329 		return -EFAULT;
6330 	return 0;
6331 }
6332 
6333 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6334 			     void __user *arg)
6335 {
6336 	switch (cmd) {
6337 	case CCISS_GETPCIINFO:
6338 	case CCISS_GETINTINFO:
6339 	case CCISS_SETINTINFO:
6340 	case CCISS_GETNODENAME:
6341 	case CCISS_SETNODENAME:
6342 	case CCISS_GETHEARTBEAT:
6343 	case CCISS_GETBUSTYPES:
6344 	case CCISS_GETFIRMVER:
6345 	case CCISS_GETDRIVVER:
6346 	case CCISS_REVALIDVOLS:
6347 	case CCISS_DEREGDISK:
6348 	case CCISS_REGNEWDISK:
6349 	case CCISS_REGNEWD:
6350 	case CCISS_RESCANDISK:
6351 	case CCISS_GETLUNINFO:
6352 		return hpsa_ioctl(dev, cmd, arg);
6353 
6354 	case CCISS_PASSTHRU32:
6355 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6356 	case CCISS_BIG_PASSTHRU32:
6357 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6358 
6359 	default:
6360 		return -ENOIOCTLCMD;
6361 	}
6362 }
6363 #endif
6364 
6365 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367 	struct hpsa_pci_info pciinfo;
6368 
6369 	if (!argp)
6370 		return -EINVAL;
6371 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6372 	pciinfo.bus = h->pdev->bus->number;
6373 	pciinfo.dev_fn = h->pdev->devfn;
6374 	pciinfo.board_id = h->board_id;
6375 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6376 		return -EFAULT;
6377 	return 0;
6378 }
6379 
6380 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6381 {
6382 	DriverVer_type DriverVer;
6383 	unsigned char vmaj, vmin, vsubmin;
6384 	int rc;
6385 
6386 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6387 		&vmaj, &vmin, &vsubmin);
6388 	if (rc != 3) {
6389 		dev_info(&h->pdev->dev, "driver version string '%s' "
6390 			"unrecognized.", HPSA_DRIVER_VERSION);
6391 		vmaj = 0;
6392 		vmin = 0;
6393 		vsubmin = 0;
6394 	}
6395 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6396 	if (!argp)
6397 		return -EINVAL;
6398 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6399 		return -EFAULT;
6400 	return 0;
6401 }
6402 
6403 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6404 			       IOCTL_Command_struct *iocommand)
6405 {
6406 	struct CommandList *c;
6407 	char *buff = NULL;
6408 	u64 temp64;
6409 	int rc = 0;
6410 
6411 	if (!capable(CAP_SYS_RAWIO))
6412 		return -EPERM;
6413 	if ((iocommand->buf_size < 1) &&
6414 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6415 		return -EINVAL;
6416 	}
6417 	if (iocommand->buf_size > 0) {
6418 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6419 		if (buff == NULL)
6420 			return -ENOMEM;
6421 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6422 			/* Copy the data into the buffer we created */
6423 			if (copy_from_user(buff, iocommand->buf,
6424 				iocommand->buf_size)) {
6425 				rc = -EFAULT;
6426 				goto out_kfree;
6427 			}
6428 		} else {
6429 			memset(buff, 0, iocommand->buf_size);
6430 		}
6431 	}
6432 	c = cmd_alloc(h);
6433 
6434 	/* Fill in the command type */
6435 	c->cmd_type = CMD_IOCTL_PEND;
6436 	c->scsi_cmd = SCSI_CMD_BUSY;
6437 	/* Fill in Command Header */
6438 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6439 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6440 		c->Header.SGList = 1;
6441 		c->Header.SGTotal = cpu_to_le16(1);
6442 	} else	{ /* no buffers to fill */
6443 		c->Header.SGList = 0;
6444 		c->Header.SGTotal = cpu_to_le16(0);
6445 	}
6446 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6447 
6448 	/* Fill in Request block */
6449 	memcpy(&c->Request, &iocommand->Request,
6450 		sizeof(c->Request));
6451 
6452 	/* Fill in the scatter gather information */
6453 	if (iocommand->buf_size > 0) {
6454 		temp64 = dma_map_single(&h->pdev->dev, buff,
6455 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6456 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6457 			c->SG[0].Addr = cpu_to_le64(0);
6458 			c->SG[0].Len = cpu_to_le32(0);
6459 			rc = -ENOMEM;
6460 			goto out;
6461 		}
6462 		c->SG[0].Addr = cpu_to_le64(temp64);
6463 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6464 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6465 	}
6466 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6467 					NO_TIMEOUT);
6468 	if (iocommand->buf_size > 0)
6469 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6470 	check_ioctl_unit_attention(h, c);
6471 	if (rc) {
6472 		rc = -EIO;
6473 		goto out;
6474 	}
6475 
6476 	/* Copy the error information out */
6477 	memcpy(&iocommand->error_info, c->err_info,
6478 		sizeof(iocommand->error_info));
6479 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6480 		iocommand->buf_size > 0) {
6481 		/* Copy the data out of the buffer we created */
6482 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6483 			rc = -EFAULT;
6484 			goto out;
6485 		}
6486 	}
6487 out:
6488 	cmd_free(h, c);
6489 out_kfree:
6490 	kfree(buff);
6491 	return rc;
6492 }
6493 
6494 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6495 				   BIG_IOCTL_Command_struct *ioc)
6496 {
6497 	struct CommandList *c;
6498 	unsigned char **buff = NULL;
6499 	int *buff_size = NULL;
6500 	u64 temp64;
6501 	BYTE sg_used = 0;
6502 	int status = 0;
6503 	u32 left;
6504 	u32 sz;
6505 	BYTE __user *data_ptr;
6506 
6507 	if (!capable(CAP_SYS_RAWIO))
6508 		return -EPERM;
6509 
6510 	if ((ioc->buf_size < 1) &&
6511 	    (ioc->Request.Type.Direction != XFER_NONE))
6512 		return -EINVAL;
6513 	/* Check kmalloc limits  using all SGs */
6514 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6515 		return -EINVAL;
6516 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6517 		return -EINVAL;
6518 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6519 	if (!buff) {
6520 		status = -ENOMEM;
6521 		goto cleanup1;
6522 	}
6523 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6524 	if (!buff_size) {
6525 		status = -ENOMEM;
6526 		goto cleanup1;
6527 	}
6528 	left = ioc->buf_size;
6529 	data_ptr = ioc->buf;
6530 	while (left) {
6531 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6532 		buff_size[sg_used] = sz;
6533 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6534 		if (buff[sg_used] == NULL) {
6535 			status = -ENOMEM;
6536 			goto cleanup1;
6537 		}
6538 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6539 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6540 				status = -EFAULT;
6541 				goto cleanup1;
6542 			}
6543 		} else
6544 			memset(buff[sg_used], 0, sz);
6545 		left -= sz;
6546 		data_ptr += sz;
6547 		sg_used++;
6548 	}
6549 	c = cmd_alloc(h);
6550 
6551 	c->cmd_type = CMD_IOCTL_PEND;
6552 	c->scsi_cmd = SCSI_CMD_BUSY;
6553 	c->Header.ReplyQueue = 0;
6554 	c->Header.SGList = (u8) sg_used;
6555 	c->Header.SGTotal = cpu_to_le16(sg_used);
6556 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6557 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6558 	if (ioc->buf_size > 0) {
6559 		int i;
6560 		for (i = 0; i < sg_used; i++) {
6561 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6562 				    buff_size[i], DMA_BIDIRECTIONAL);
6563 			if (dma_mapping_error(&h->pdev->dev,
6564 							(dma_addr_t) temp64)) {
6565 				c->SG[i].Addr = cpu_to_le64(0);
6566 				c->SG[i].Len = cpu_to_le32(0);
6567 				hpsa_pci_unmap(h->pdev, c, i,
6568 					DMA_BIDIRECTIONAL);
6569 				status = -ENOMEM;
6570 				goto cleanup0;
6571 			}
6572 			c->SG[i].Addr = cpu_to_le64(temp64);
6573 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6574 			c->SG[i].Ext = cpu_to_le32(0);
6575 		}
6576 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6577 	}
6578 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6579 						NO_TIMEOUT);
6580 	if (sg_used)
6581 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6582 	check_ioctl_unit_attention(h, c);
6583 	if (status) {
6584 		status = -EIO;
6585 		goto cleanup0;
6586 	}
6587 
6588 	/* Copy the error information out */
6589 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6590 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6591 		int i;
6592 
6593 		/* Copy the data out of the buffer we created */
6594 		BYTE __user *ptr = ioc->buf;
6595 		for (i = 0; i < sg_used; i++) {
6596 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6597 				status = -EFAULT;
6598 				goto cleanup0;
6599 			}
6600 			ptr += buff_size[i];
6601 		}
6602 	}
6603 	status = 0;
6604 cleanup0:
6605 	cmd_free(h, c);
6606 cleanup1:
6607 	if (buff) {
6608 		int i;
6609 
6610 		for (i = 0; i < sg_used; i++)
6611 			kfree(buff[i]);
6612 		kfree(buff);
6613 	}
6614 	kfree(buff_size);
6615 	return status;
6616 }
6617 
6618 static void check_ioctl_unit_attention(struct ctlr_info *h,
6619 	struct CommandList *c)
6620 {
6621 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6622 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6623 		(void) check_for_unit_attention(h, c);
6624 }
6625 
6626 /*
6627  * ioctl
6628  */
6629 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6630 		      void __user *argp)
6631 {
6632 	struct ctlr_info *h = sdev_to_hba(dev);
6633 	int rc;
6634 
6635 	switch (cmd) {
6636 	case CCISS_DEREGDISK:
6637 	case CCISS_REGNEWDISK:
6638 	case CCISS_REGNEWD:
6639 		hpsa_scan_start(h->scsi_host);
6640 		return 0;
6641 	case CCISS_GETPCIINFO:
6642 		return hpsa_getpciinfo_ioctl(h, argp);
6643 	case CCISS_GETDRIVVER:
6644 		return hpsa_getdrivver_ioctl(h, argp);
6645 	case CCISS_PASSTHRU: {
6646 		IOCTL_Command_struct iocommand;
6647 
6648 		if (!argp)
6649 			return -EINVAL;
6650 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6651 			return -EFAULT;
6652 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6653 			return -EAGAIN;
6654 		rc = hpsa_passthru_ioctl(h, &iocommand);
6655 		atomic_inc(&h->passthru_cmds_avail);
6656 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6657 			rc = -EFAULT;
6658 		return rc;
6659 	}
6660 	case CCISS_BIG_PASSTHRU: {
6661 		BIG_IOCTL_Command_struct ioc;
6662 		if (!argp)
6663 			return -EINVAL;
6664 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6665 			return -EFAULT;
6666 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6667 			return -EAGAIN;
6668 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6669 		atomic_inc(&h->passthru_cmds_avail);
6670 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6671 			rc = -EFAULT;
6672 		return rc;
6673 	}
6674 	default:
6675 		return -ENOTTY;
6676 	}
6677 }
6678 
6679 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6680 {
6681 	struct CommandList *c;
6682 
6683 	c = cmd_alloc(h);
6684 
6685 	/* fill_cmd can't fail here, no data buffer to map */
6686 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6687 		RAID_CTLR_LUNID, TYPE_MSG);
6688 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6689 	c->waiting = NULL;
6690 	enqueue_cmd_and_start_io(h, c);
6691 	/* Don't wait for completion, the reset won't complete.  Don't free
6692 	 * the command either.  This is the last command we will send before
6693 	 * re-initializing everything, so it doesn't matter and won't leak.
6694 	 */
6695 	return;
6696 }
6697 
6698 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6699 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6700 	int cmd_type)
6701 {
6702 	enum dma_data_direction dir = DMA_NONE;
6703 
6704 	c->cmd_type = CMD_IOCTL_PEND;
6705 	c->scsi_cmd = SCSI_CMD_BUSY;
6706 	c->Header.ReplyQueue = 0;
6707 	if (buff != NULL && size > 0) {
6708 		c->Header.SGList = 1;
6709 		c->Header.SGTotal = cpu_to_le16(1);
6710 	} else {
6711 		c->Header.SGList = 0;
6712 		c->Header.SGTotal = cpu_to_le16(0);
6713 	}
6714 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6715 
6716 	if (cmd_type == TYPE_CMD) {
6717 		switch (cmd) {
6718 		case HPSA_INQUIRY:
6719 			/* are we trying to read a vital product page */
6720 			if (page_code & VPD_PAGE) {
6721 				c->Request.CDB[1] = 0x01;
6722 				c->Request.CDB[2] = (page_code & 0xff);
6723 			}
6724 			c->Request.CDBLen = 6;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 			c->Request.Timeout = 0;
6728 			c->Request.CDB[0] = HPSA_INQUIRY;
6729 			c->Request.CDB[4] = size & 0xFF;
6730 			break;
6731 		case RECEIVE_DIAGNOSTIC:
6732 			c->Request.CDBLen = 6;
6733 			c->Request.type_attr_dir =
6734 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735 			c->Request.Timeout = 0;
6736 			c->Request.CDB[0] = cmd;
6737 			c->Request.CDB[1] = 1;
6738 			c->Request.CDB[2] = 1;
6739 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6740 			c->Request.CDB[4] = size & 0xFF;
6741 			break;
6742 		case HPSA_REPORT_LOG:
6743 		case HPSA_REPORT_PHYS:
6744 			/* Talking to controller so It's a physical command
6745 			   mode = 00 target = 0.  Nothing to write.
6746 			 */
6747 			c->Request.CDBLen = 12;
6748 			c->Request.type_attr_dir =
6749 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6750 			c->Request.Timeout = 0;
6751 			c->Request.CDB[0] = cmd;
6752 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6753 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6754 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6755 			c->Request.CDB[9] = size & 0xFF;
6756 			break;
6757 		case BMIC_SENSE_DIAG_OPTIONS:
6758 			c->Request.CDBLen = 16;
6759 			c->Request.type_attr_dir =
6760 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6761 			c->Request.Timeout = 0;
6762 			/* Spec says this should be BMIC_WRITE */
6763 			c->Request.CDB[0] = BMIC_READ;
6764 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6765 			break;
6766 		case BMIC_SET_DIAG_OPTIONS:
6767 			c->Request.CDBLen = 16;
6768 			c->Request.type_attr_dir =
6769 					TYPE_ATTR_DIR(cmd_type,
6770 						ATTR_SIMPLE, XFER_WRITE);
6771 			c->Request.Timeout = 0;
6772 			c->Request.CDB[0] = BMIC_WRITE;
6773 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6774 			break;
6775 		case HPSA_CACHE_FLUSH:
6776 			c->Request.CDBLen = 12;
6777 			c->Request.type_attr_dir =
6778 					TYPE_ATTR_DIR(cmd_type,
6779 						ATTR_SIMPLE, XFER_WRITE);
6780 			c->Request.Timeout = 0;
6781 			c->Request.CDB[0] = BMIC_WRITE;
6782 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6783 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6784 			c->Request.CDB[8] = size & 0xFF;
6785 			break;
6786 		case TEST_UNIT_READY:
6787 			c->Request.CDBLen = 6;
6788 			c->Request.type_attr_dir =
6789 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6790 			c->Request.Timeout = 0;
6791 			break;
6792 		case HPSA_GET_RAID_MAP:
6793 			c->Request.CDBLen = 12;
6794 			c->Request.type_attr_dir =
6795 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796 			c->Request.Timeout = 0;
6797 			c->Request.CDB[0] = HPSA_CISS_READ;
6798 			c->Request.CDB[1] = cmd;
6799 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6800 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6801 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6802 			c->Request.CDB[9] = size & 0xFF;
6803 			break;
6804 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6805 			c->Request.CDBLen = 10;
6806 			c->Request.type_attr_dir =
6807 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808 			c->Request.Timeout = 0;
6809 			c->Request.CDB[0] = BMIC_READ;
6810 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6811 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6812 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6813 			break;
6814 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6815 			c->Request.CDBLen = 10;
6816 			c->Request.type_attr_dir =
6817 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818 			c->Request.Timeout = 0;
6819 			c->Request.CDB[0] = BMIC_READ;
6820 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6821 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6822 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6823 			break;
6824 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6825 			c->Request.CDBLen = 10;
6826 			c->Request.type_attr_dir =
6827 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6828 			c->Request.Timeout = 0;
6829 			c->Request.CDB[0] = BMIC_READ;
6830 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6831 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6832 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6833 			break;
6834 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6835 			c->Request.CDBLen = 10;
6836 			c->Request.type_attr_dir =
6837 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6838 			c->Request.Timeout = 0;
6839 			c->Request.CDB[0] = BMIC_READ;
6840 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6841 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6842 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6843 			break;
6844 		case BMIC_IDENTIFY_CONTROLLER:
6845 			c->Request.CDBLen = 10;
6846 			c->Request.type_attr_dir =
6847 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6848 			c->Request.Timeout = 0;
6849 			c->Request.CDB[0] = BMIC_READ;
6850 			c->Request.CDB[1] = 0;
6851 			c->Request.CDB[2] = 0;
6852 			c->Request.CDB[3] = 0;
6853 			c->Request.CDB[4] = 0;
6854 			c->Request.CDB[5] = 0;
6855 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6856 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6857 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6858 			c->Request.CDB[9] = 0;
6859 			break;
6860 		default:
6861 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6862 			BUG();
6863 		}
6864 	} else if (cmd_type == TYPE_MSG) {
6865 		switch (cmd) {
6866 
6867 		case  HPSA_PHYS_TARGET_RESET:
6868 			c->Request.CDBLen = 16;
6869 			c->Request.type_attr_dir =
6870 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6871 			c->Request.Timeout = 0; /* Don't time out */
6872 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6873 			c->Request.CDB[0] = HPSA_RESET;
6874 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6875 			/* Physical target reset needs no control bytes 4-7*/
6876 			c->Request.CDB[4] = 0x00;
6877 			c->Request.CDB[5] = 0x00;
6878 			c->Request.CDB[6] = 0x00;
6879 			c->Request.CDB[7] = 0x00;
6880 			break;
6881 		case  HPSA_DEVICE_RESET_MSG:
6882 			c->Request.CDBLen = 16;
6883 			c->Request.type_attr_dir =
6884 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6885 			c->Request.Timeout = 0; /* Don't time out */
6886 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6887 			c->Request.CDB[0] =  cmd;
6888 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6889 			/* If bytes 4-7 are zero, it means reset the */
6890 			/* LunID device */
6891 			c->Request.CDB[4] = 0x00;
6892 			c->Request.CDB[5] = 0x00;
6893 			c->Request.CDB[6] = 0x00;
6894 			c->Request.CDB[7] = 0x00;
6895 			break;
6896 		default:
6897 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6898 				cmd);
6899 			BUG();
6900 		}
6901 	} else {
6902 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6903 		BUG();
6904 	}
6905 
6906 	switch (GET_DIR(c->Request.type_attr_dir)) {
6907 	case XFER_READ:
6908 		dir = DMA_FROM_DEVICE;
6909 		break;
6910 	case XFER_WRITE:
6911 		dir = DMA_TO_DEVICE;
6912 		break;
6913 	case XFER_NONE:
6914 		dir = DMA_NONE;
6915 		break;
6916 	default:
6917 		dir = DMA_BIDIRECTIONAL;
6918 	}
6919 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6920 		return -1;
6921 	return 0;
6922 }
6923 
6924 /*
6925  * Map (physical) PCI mem into (virtual) kernel space
6926  */
6927 static void __iomem *remap_pci_mem(ulong base, ulong size)
6928 {
6929 	ulong page_base = ((ulong) base) & PAGE_MASK;
6930 	ulong page_offs = ((ulong) base) - page_base;
6931 	void __iomem *page_remapped = ioremap(page_base,
6932 		page_offs + size);
6933 
6934 	return page_remapped ? (page_remapped + page_offs) : NULL;
6935 }
6936 
6937 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6938 {
6939 	return h->access.command_completed(h, q);
6940 }
6941 
6942 static inline bool interrupt_pending(struct ctlr_info *h)
6943 {
6944 	return h->access.intr_pending(h);
6945 }
6946 
6947 static inline long interrupt_not_for_us(struct ctlr_info *h)
6948 {
6949 	return (h->access.intr_pending(h) == 0) ||
6950 		(h->interrupts_enabled == 0);
6951 }
6952 
6953 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6954 	u32 raw_tag)
6955 {
6956 	if (unlikely(tag_index >= h->nr_cmds)) {
6957 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6958 		return 1;
6959 	}
6960 	return 0;
6961 }
6962 
6963 static inline void finish_cmd(struct CommandList *c)
6964 {
6965 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6966 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6967 			|| c->cmd_type == CMD_IOACCEL2))
6968 		complete_scsi_command(c);
6969 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6970 		complete(c->waiting);
6971 }
6972 
6973 /* process completion of an indexed ("direct lookup") command */
6974 static inline void process_indexed_cmd(struct ctlr_info *h,
6975 	u32 raw_tag)
6976 {
6977 	u32 tag_index;
6978 	struct CommandList *c;
6979 
6980 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6981 	if (!bad_tag(h, tag_index, raw_tag)) {
6982 		c = h->cmd_pool + tag_index;
6983 		finish_cmd(c);
6984 	}
6985 }
6986 
6987 /* Some controllers, like p400, will give us one interrupt
6988  * after a soft reset, even if we turned interrupts off.
6989  * Only need to check for this in the hpsa_xxx_discard_completions
6990  * functions.
6991  */
6992 static int ignore_bogus_interrupt(struct ctlr_info *h)
6993 {
6994 	if (likely(!reset_devices))
6995 		return 0;
6996 
6997 	if (likely(h->interrupts_enabled))
6998 		return 0;
6999 
7000 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7001 		"(known firmware bug.)  Ignoring.\n");
7002 
7003 	return 1;
7004 }
7005 
7006 /*
7007  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7008  * Relies on (h-q[x] == x) being true for x such that
7009  * 0 <= x < MAX_REPLY_QUEUES.
7010  */
7011 static struct ctlr_info *queue_to_hba(u8 *queue)
7012 {
7013 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7014 }
7015 
7016 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7017 {
7018 	struct ctlr_info *h = queue_to_hba(queue);
7019 	u8 q = *(u8 *) queue;
7020 	u32 raw_tag;
7021 
7022 	if (ignore_bogus_interrupt(h))
7023 		return IRQ_NONE;
7024 
7025 	if (interrupt_not_for_us(h))
7026 		return IRQ_NONE;
7027 	h->last_intr_timestamp = get_jiffies_64();
7028 	while (interrupt_pending(h)) {
7029 		raw_tag = get_next_completion(h, q);
7030 		while (raw_tag != FIFO_EMPTY)
7031 			raw_tag = next_command(h, q);
7032 	}
7033 	return IRQ_HANDLED;
7034 }
7035 
7036 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7037 {
7038 	struct ctlr_info *h = queue_to_hba(queue);
7039 	u32 raw_tag;
7040 	u8 q = *(u8 *) queue;
7041 
7042 	if (ignore_bogus_interrupt(h))
7043 		return IRQ_NONE;
7044 
7045 	h->last_intr_timestamp = get_jiffies_64();
7046 	raw_tag = get_next_completion(h, q);
7047 	while (raw_tag != FIFO_EMPTY)
7048 		raw_tag = next_command(h, q);
7049 	return IRQ_HANDLED;
7050 }
7051 
7052 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7053 {
7054 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7055 	u32 raw_tag;
7056 	u8 q = *(u8 *) queue;
7057 
7058 	if (interrupt_not_for_us(h))
7059 		return IRQ_NONE;
7060 	h->last_intr_timestamp = get_jiffies_64();
7061 	while (interrupt_pending(h)) {
7062 		raw_tag = get_next_completion(h, q);
7063 		while (raw_tag != FIFO_EMPTY) {
7064 			process_indexed_cmd(h, raw_tag);
7065 			raw_tag = next_command(h, q);
7066 		}
7067 	}
7068 	return IRQ_HANDLED;
7069 }
7070 
7071 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7072 {
7073 	struct ctlr_info *h = queue_to_hba(queue);
7074 	u32 raw_tag;
7075 	u8 q = *(u8 *) queue;
7076 
7077 	h->last_intr_timestamp = get_jiffies_64();
7078 	raw_tag = get_next_completion(h, q);
7079 	while (raw_tag != FIFO_EMPTY) {
7080 		process_indexed_cmd(h, raw_tag);
7081 		raw_tag = next_command(h, q);
7082 	}
7083 	return IRQ_HANDLED;
7084 }
7085 
7086 /* Send a message CDB to the firmware. Careful, this only works
7087  * in simple mode, not performant mode due to the tag lookup.
7088  * We only ever use this immediately after a controller reset.
7089  */
7090 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7091 			unsigned char type)
7092 {
7093 	struct Command {
7094 		struct CommandListHeader CommandHeader;
7095 		struct RequestBlock Request;
7096 		struct ErrDescriptor ErrorDescriptor;
7097 	};
7098 	struct Command *cmd;
7099 	static const size_t cmd_sz = sizeof(*cmd) +
7100 					sizeof(cmd->ErrorDescriptor);
7101 	dma_addr_t paddr64;
7102 	__le32 paddr32;
7103 	u32 tag;
7104 	void __iomem *vaddr;
7105 	int i, err;
7106 
7107 	vaddr = pci_ioremap_bar(pdev, 0);
7108 	if (vaddr == NULL)
7109 		return -ENOMEM;
7110 
7111 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7112 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7113 	 * memory.
7114 	 */
7115 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7116 	if (err) {
7117 		iounmap(vaddr);
7118 		return err;
7119 	}
7120 
7121 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7122 	if (cmd == NULL) {
7123 		iounmap(vaddr);
7124 		return -ENOMEM;
7125 	}
7126 
7127 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7128 	 * although there's no guarantee, we assume that the address is at
7129 	 * least 4-byte aligned (most likely, it's page-aligned).
7130 	 */
7131 	paddr32 = cpu_to_le32(paddr64);
7132 
7133 	cmd->CommandHeader.ReplyQueue = 0;
7134 	cmd->CommandHeader.SGList = 0;
7135 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7136 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7137 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7138 
7139 	cmd->Request.CDBLen = 16;
7140 	cmd->Request.type_attr_dir =
7141 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7142 	cmd->Request.Timeout = 0; /* Don't time out */
7143 	cmd->Request.CDB[0] = opcode;
7144 	cmd->Request.CDB[1] = type;
7145 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7146 	cmd->ErrorDescriptor.Addr =
7147 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7148 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7149 
7150 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7151 
7152 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7153 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7154 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7155 			break;
7156 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7157 	}
7158 
7159 	iounmap(vaddr);
7160 
7161 	/* we leak the DMA buffer here ... no choice since the controller could
7162 	 *  still complete the command.
7163 	 */
7164 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7165 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7166 			opcode, type);
7167 		return -ETIMEDOUT;
7168 	}
7169 
7170 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7171 
7172 	if (tag & HPSA_ERROR_BIT) {
7173 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7174 			opcode, type);
7175 		return -EIO;
7176 	}
7177 
7178 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7179 		opcode, type);
7180 	return 0;
7181 }
7182 
7183 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7184 
7185 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7186 	void __iomem *vaddr, u32 use_doorbell)
7187 {
7188 
7189 	if (use_doorbell) {
7190 		/* For everything after the P600, the PCI power state method
7191 		 * of resetting the controller doesn't work, so we have this
7192 		 * other way using the doorbell register.
7193 		 */
7194 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7195 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7196 
7197 		/* PMC hardware guys tell us we need a 10 second delay after
7198 		 * doorbell reset and before any attempt to talk to the board
7199 		 * at all to ensure that this actually works and doesn't fall
7200 		 * over in some weird corner cases.
7201 		 */
7202 		msleep(10000);
7203 	} else { /* Try to do it the PCI power state way */
7204 
7205 		/* Quoting from the Open CISS Specification: "The Power
7206 		 * Management Control/Status Register (CSR) controls the power
7207 		 * state of the device.  The normal operating state is D0,
7208 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7209 		 * the controller, place the interface device in D3 then to D0,
7210 		 * this causes a secondary PCI reset which will reset the
7211 		 * controller." */
7212 
7213 		int rc = 0;
7214 
7215 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7216 
7217 		/* enter the D3hot power management state */
7218 		rc = pci_set_power_state(pdev, PCI_D3hot);
7219 		if (rc)
7220 			return rc;
7221 
7222 		msleep(500);
7223 
7224 		/* enter the D0 power management state */
7225 		rc = pci_set_power_state(pdev, PCI_D0);
7226 		if (rc)
7227 			return rc;
7228 
7229 		/*
7230 		 * The P600 requires a small delay when changing states.
7231 		 * Otherwise we may think the board did not reset and we bail.
7232 		 * This for kdump only and is particular to the P600.
7233 		 */
7234 		msleep(500);
7235 	}
7236 	return 0;
7237 }
7238 
7239 static void init_driver_version(char *driver_version, int len)
7240 {
7241 	memset(driver_version, 0, len);
7242 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7243 }
7244 
7245 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7246 {
7247 	char *driver_version;
7248 	int i, size = sizeof(cfgtable->driver_version);
7249 
7250 	driver_version = kmalloc(size, GFP_KERNEL);
7251 	if (!driver_version)
7252 		return -ENOMEM;
7253 
7254 	init_driver_version(driver_version, size);
7255 	for (i = 0; i < size; i++)
7256 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7257 	kfree(driver_version);
7258 	return 0;
7259 }
7260 
7261 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7262 					  unsigned char *driver_ver)
7263 {
7264 	int i;
7265 
7266 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7267 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7268 }
7269 
7270 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7271 {
7272 
7273 	char *driver_ver, *old_driver_ver;
7274 	int rc, size = sizeof(cfgtable->driver_version);
7275 
7276 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7277 	if (!old_driver_ver)
7278 		return -ENOMEM;
7279 	driver_ver = old_driver_ver + size;
7280 
7281 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7282 	 * should have been changed, otherwise we know the reset failed.
7283 	 */
7284 	init_driver_version(old_driver_ver, size);
7285 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7286 	rc = !memcmp(driver_ver, old_driver_ver, size);
7287 	kfree(old_driver_ver);
7288 	return rc;
7289 }
7290 /* This does a hard reset of the controller using PCI power management
7291  * states or the using the doorbell register.
7292  */
7293 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7294 {
7295 	u64 cfg_offset;
7296 	u32 cfg_base_addr;
7297 	u64 cfg_base_addr_index;
7298 	void __iomem *vaddr;
7299 	unsigned long paddr;
7300 	u32 misc_fw_support;
7301 	int rc;
7302 	struct CfgTable __iomem *cfgtable;
7303 	u32 use_doorbell;
7304 	u16 command_register;
7305 
7306 	/* For controllers as old as the P600, this is very nearly
7307 	 * the same thing as
7308 	 *
7309 	 * pci_save_state(pci_dev);
7310 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7311 	 * pci_set_power_state(pci_dev, PCI_D0);
7312 	 * pci_restore_state(pci_dev);
7313 	 *
7314 	 * For controllers newer than the P600, the pci power state
7315 	 * method of resetting doesn't work so we have another way
7316 	 * using the doorbell register.
7317 	 */
7318 
7319 	if (!ctlr_is_resettable(board_id)) {
7320 		dev_warn(&pdev->dev, "Controller not resettable\n");
7321 		return -ENODEV;
7322 	}
7323 
7324 	/* if controller is soft- but not hard resettable... */
7325 	if (!ctlr_is_hard_resettable(board_id))
7326 		return -ENOTSUPP; /* try soft reset later. */
7327 
7328 	/* Save the PCI command register */
7329 	pci_read_config_word(pdev, 4, &command_register);
7330 	pci_save_state(pdev);
7331 
7332 	/* find the first memory BAR, so we can find the cfg table */
7333 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7334 	if (rc)
7335 		return rc;
7336 	vaddr = remap_pci_mem(paddr, 0x250);
7337 	if (!vaddr)
7338 		return -ENOMEM;
7339 
7340 	/* find cfgtable in order to check if reset via doorbell is supported */
7341 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7342 					&cfg_base_addr_index, &cfg_offset);
7343 	if (rc)
7344 		goto unmap_vaddr;
7345 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7346 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7347 	if (!cfgtable) {
7348 		rc = -ENOMEM;
7349 		goto unmap_vaddr;
7350 	}
7351 	rc = write_driver_ver_to_cfgtable(cfgtable);
7352 	if (rc)
7353 		goto unmap_cfgtable;
7354 
7355 	/* If reset via doorbell register is supported, use that.
7356 	 * There are two such methods.  Favor the newest method.
7357 	 */
7358 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7359 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7360 	if (use_doorbell) {
7361 		use_doorbell = DOORBELL_CTLR_RESET2;
7362 	} else {
7363 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7364 		if (use_doorbell) {
7365 			dev_warn(&pdev->dev,
7366 				"Soft reset not supported. Firmware update is required.\n");
7367 			rc = -ENOTSUPP; /* try soft reset */
7368 			goto unmap_cfgtable;
7369 		}
7370 	}
7371 
7372 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7373 	if (rc)
7374 		goto unmap_cfgtable;
7375 
7376 	pci_restore_state(pdev);
7377 	pci_write_config_word(pdev, 4, command_register);
7378 
7379 	/* Some devices (notably the HP Smart Array 5i Controller)
7380 	   need a little pause here */
7381 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7382 
7383 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7384 	if (rc) {
7385 		dev_warn(&pdev->dev,
7386 			"Failed waiting for board to become ready after hard reset\n");
7387 		goto unmap_cfgtable;
7388 	}
7389 
7390 	rc = controller_reset_failed(vaddr);
7391 	if (rc < 0)
7392 		goto unmap_cfgtable;
7393 	if (rc) {
7394 		dev_warn(&pdev->dev, "Unable to successfully reset "
7395 			"controller. Will try soft reset.\n");
7396 		rc = -ENOTSUPP;
7397 	} else {
7398 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7399 	}
7400 
7401 unmap_cfgtable:
7402 	iounmap(cfgtable);
7403 
7404 unmap_vaddr:
7405 	iounmap(vaddr);
7406 	return rc;
7407 }
7408 
7409 /*
7410  *  We cannot read the structure directly, for portability we must use
7411  *   the io functions.
7412  *   This is for debug only.
7413  */
7414 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7415 {
7416 #ifdef HPSA_DEBUG
7417 	int i;
7418 	char temp_name[17];
7419 
7420 	dev_info(dev, "Controller Configuration information\n");
7421 	dev_info(dev, "------------------------------------\n");
7422 	for (i = 0; i < 4; i++)
7423 		temp_name[i] = readb(&(tb->Signature[i]));
7424 	temp_name[4] = '\0';
7425 	dev_info(dev, "   Signature = %s\n", temp_name);
7426 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7427 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7428 	       readl(&(tb->TransportSupport)));
7429 	dev_info(dev, "   Transport methods active = 0x%x\n",
7430 	       readl(&(tb->TransportActive)));
7431 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7432 	       readl(&(tb->HostWrite.TransportRequest)));
7433 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7434 	       readl(&(tb->HostWrite.CoalIntDelay)));
7435 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7436 	       readl(&(tb->HostWrite.CoalIntCount)));
7437 	dev_info(dev, "   Max outstanding commands = %d\n",
7438 	       readl(&(tb->CmdsOutMax)));
7439 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7440 	for (i = 0; i < 16; i++)
7441 		temp_name[i] = readb(&(tb->ServerName[i]));
7442 	temp_name[16] = '\0';
7443 	dev_info(dev, "   Server Name = %s\n", temp_name);
7444 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7445 		readl(&(tb->HeartBeat)));
7446 #endif				/* HPSA_DEBUG */
7447 }
7448 
7449 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7450 {
7451 	int i, offset, mem_type, bar_type;
7452 
7453 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7454 		return 0;
7455 	offset = 0;
7456 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7457 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7458 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7459 			offset += 4;
7460 		else {
7461 			mem_type = pci_resource_flags(pdev, i) &
7462 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7463 			switch (mem_type) {
7464 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7465 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7466 				offset += 4;	/* 32 bit */
7467 				break;
7468 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7469 				offset += 8;
7470 				break;
7471 			default:	/* reserved in PCI 2.2 */
7472 				dev_warn(&pdev->dev,
7473 				       "base address is invalid\n");
7474 				return -1;
7475 			}
7476 		}
7477 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7478 			return i + 1;
7479 	}
7480 	return -1;
7481 }
7482 
7483 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7484 {
7485 	pci_free_irq_vectors(h->pdev);
7486 	h->msix_vectors = 0;
7487 }
7488 
7489 static void hpsa_setup_reply_map(struct ctlr_info *h)
7490 {
7491 	const struct cpumask *mask;
7492 	unsigned int queue, cpu;
7493 
7494 	for (queue = 0; queue < h->msix_vectors; queue++) {
7495 		mask = pci_irq_get_affinity(h->pdev, queue);
7496 		if (!mask)
7497 			goto fallback;
7498 
7499 		for_each_cpu(cpu, mask)
7500 			h->reply_map[cpu] = queue;
7501 	}
7502 	return;
7503 
7504 fallback:
7505 	for_each_possible_cpu(cpu)
7506 		h->reply_map[cpu] = 0;
7507 }
7508 
7509 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7510  * controllers that are capable. If not, we use legacy INTx mode.
7511  */
7512 static int hpsa_interrupt_mode(struct ctlr_info *h)
7513 {
7514 	unsigned int flags = PCI_IRQ_LEGACY;
7515 	int ret;
7516 
7517 	/* Some boards advertise MSI but don't really support it */
7518 	switch (h->board_id) {
7519 	case 0x40700E11:
7520 	case 0x40800E11:
7521 	case 0x40820E11:
7522 	case 0x40830E11:
7523 		break;
7524 	default:
7525 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7526 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7527 		if (ret > 0) {
7528 			h->msix_vectors = ret;
7529 			return 0;
7530 		}
7531 
7532 		flags |= PCI_IRQ_MSI;
7533 		break;
7534 	}
7535 
7536 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7537 	if (ret < 0)
7538 		return ret;
7539 	return 0;
7540 }
7541 
7542 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7543 				bool *legacy_board)
7544 {
7545 	int i;
7546 	u32 subsystem_vendor_id, subsystem_device_id;
7547 
7548 	subsystem_vendor_id = pdev->subsystem_vendor;
7549 	subsystem_device_id = pdev->subsystem_device;
7550 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7551 		    subsystem_vendor_id;
7552 
7553 	if (legacy_board)
7554 		*legacy_board = false;
7555 	for (i = 0; i < ARRAY_SIZE(products); i++)
7556 		if (*board_id == products[i].board_id) {
7557 			if (products[i].access != &SA5A_access &&
7558 			    products[i].access != &SA5B_access)
7559 				return i;
7560 			dev_warn(&pdev->dev,
7561 				 "legacy board ID: 0x%08x\n",
7562 				 *board_id);
7563 			if (legacy_board)
7564 			    *legacy_board = true;
7565 			return i;
7566 		}
7567 
7568 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7569 	if (legacy_board)
7570 		*legacy_board = true;
7571 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7572 }
7573 
7574 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7575 				    unsigned long *memory_bar)
7576 {
7577 	int i;
7578 
7579 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7580 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7581 			/* addressing mode bits already removed */
7582 			*memory_bar = pci_resource_start(pdev, i);
7583 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7584 				*memory_bar);
7585 			return 0;
7586 		}
7587 	dev_warn(&pdev->dev, "no memory BAR found\n");
7588 	return -ENODEV;
7589 }
7590 
7591 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7592 				     int wait_for_ready)
7593 {
7594 	int i, iterations;
7595 	u32 scratchpad;
7596 	if (wait_for_ready)
7597 		iterations = HPSA_BOARD_READY_ITERATIONS;
7598 	else
7599 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7600 
7601 	for (i = 0; i < iterations; i++) {
7602 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7603 		if (wait_for_ready) {
7604 			if (scratchpad == HPSA_FIRMWARE_READY)
7605 				return 0;
7606 		} else {
7607 			if (scratchpad != HPSA_FIRMWARE_READY)
7608 				return 0;
7609 		}
7610 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7611 	}
7612 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7613 	return -ENODEV;
7614 }
7615 
7616 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7617 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7618 			       u64 *cfg_offset)
7619 {
7620 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7621 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7622 	*cfg_base_addr &= (u32) 0x0000ffff;
7623 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7624 	if (*cfg_base_addr_index == -1) {
7625 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7626 		return -ENODEV;
7627 	}
7628 	return 0;
7629 }
7630 
7631 static void hpsa_free_cfgtables(struct ctlr_info *h)
7632 {
7633 	if (h->transtable) {
7634 		iounmap(h->transtable);
7635 		h->transtable = NULL;
7636 	}
7637 	if (h->cfgtable) {
7638 		iounmap(h->cfgtable);
7639 		h->cfgtable = NULL;
7640 	}
7641 }
7642 
7643 /* Find and map CISS config table and transfer table
7644 + * several items must be unmapped (freed) later
7645 + * */
7646 static int hpsa_find_cfgtables(struct ctlr_info *h)
7647 {
7648 	u64 cfg_offset;
7649 	u32 cfg_base_addr;
7650 	u64 cfg_base_addr_index;
7651 	u32 trans_offset;
7652 	int rc;
7653 
7654 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7655 		&cfg_base_addr_index, &cfg_offset);
7656 	if (rc)
7657 		return rc;
7658 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7659 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7660 	if (!h->cfgtable) {
7661 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7662 		return -ENOMEM;
7663 	}
7664 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7665 	if (rc)
7666 		return rc;
7667 	/* Find performant mode table. */
7668 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7669 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7670 				cfg_base_addr_index)+cfg_offset+trans_offset,
7671 				sizeof(*h->transtable));
7672 	if (!h->transtable) {
7673 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7674 		hpsa_free_cfgtables(h);
7675 		return -ENOMEM;
7676 	}
7677 	return 0;
7678 }
7679 
7680 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7681 {
7682 #define MIN_MAX_COMMANDS 16
7683 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7684 
7685 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7686 
7687 	/* Limit commands in memory limited kdump scenario. */
7688 	if (reset_devices && h->max_commands > 32)
7689 		h->max_commands = 32;
7690 
7691 	if (h->max_commands < MIN_MAX_COMMANDS) {
7692 		dev_warn(&h->pdev->dev,
7693 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7694 			h->max_commands,
7695 			MIN_MAX_COMMANDS);
7696 		h->max_commands = MIN_MAX_COMMANDS;
7697 	}
7698 }
7699 
7700 /* If the controller reports that the total max sg entries is greater than 512,
7701  * then we know that chained SG blocks work.  (Original smart arrays did not
7702  * support chained SG blocks and would return zero for max sg entries.)
7703  */
7704 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7705 {
7706 	return h->maxsgentries > 512;
7707 }
7708 
7709 /* Interrogate the hardware for some limits:
7710  * max commands, max SG elements without chaining, and with chaining,
7711  * SG chain block size, etc.
7712  */
7713 static void hpsa_find_board_params(struct ctlr_info *h)
7714 {
7715 	hpsa_get_max_perf_mode_cmds(h);
7716 	h->nr_cmds = h->max_commands;
7717 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7718 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7719 	if (hpsa_supports_chained_sg_blocks(h)) {
7720 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7721 		h->max_cmd_sg_entries = 32;
7722 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7723 		h->maxsgentries--; /* save one for chain pointer */
7724 	} else {
7725 		/*
7726 		 * Original smart arrays supported at most 31 s/g entries
7727 		 * embedded inline in the command (trying to use more
7728 		 * would lock up the controller)
7729 		 */
7730 		h->max_cmd_sg_entries = 31;
7731 		h->maxsgentries = 31; /* default to traditional values */
7732 		h->chainsize = 0;
7733 	}
7734 
7735 	/* Find out what task management functions are supported and cache */
7736 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7737 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7738 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7739 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7740 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7741 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7742 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7743 }
7744 
7745 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7746 {
7747 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7748 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7749 		return false;
7750 	}
7751 	return true;
7752 }
7753 
7754 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7755 {
7756 	u32 driver_support;
7757 
7758 	driver_support = readl(&(h->cfgtable->driver_support));
7759 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7760 #ifdef CONFIG_X86
7761 	driver_support |= ENABLE_SCSI_PREFETCH;
7762 #endif
7763 	driver_support |= ENABLE_UNIT_ATTN;
7764 	writel(driver_support, &(h->cfgtable->driver_support));
7765 }
7766 
7767 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7768  * in a prefetch beyond physical memory.
7769  */
7770 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7771 {
7772 	u32 dma_prefetch;
7773 
7774 	if (h->board_id != 0x3225103C)
7775 		return;
7776 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7777 	dma_prefetch |= 0x8000;
7778 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7779 }
7780 
7781 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7782 {
7783 	int i;
7784 	u32 doorbell_value;
7785 	unsigned long flags;
7786 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7787 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7788 		spin_lock_irqsave(&h->lock, flags);
7789 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7790 		spin_unlock_irqrestore(&h->lock, flags);
7791 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7792 			goto done;
7793 		/* delay and try again */
7794 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7795 	}
7796 	return -ENODEV;
7797 done:
7798 	return 0;
7799 }
7800 
7801 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7802 {
7803 	int i;
7804 	u32 doorbell_value;
7805 	unsigned long flags;
7806 
7807 	/* under certain very rare conditions, this can take awhile.
7808 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7809 	 * as we enter this code.)
7810 	 */
7811 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7812 		if (h->remove_in_progress)
7813 			goto done;
7814 		spin_lock_irqsave(&h->lock, flags);
7815 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7816 		spin_unlock_irqrestore(&h->lock, flags);
7817 		if (!(doorbell_value & CFGTBL_ChangeReq))
7818 			goto done;
7819 		/* delay and try again */
7820 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7821 	}
7822 	return -ENODEV;
7823 done:
7824 	return 0;
7825 }
7826 
7827 /* return -ENODEV or other reason on error, 0 on success */
7828 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7829 {
7830 	u32 trans_support;
7831 
7832 	trans_support = readl(&(h->cfgtable->TransportSupport));
7833 	if (!(trans_support & SIMPLE_MODE))
7834 		return -ENOTSUPP;
7835 
7836 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7837 
7838 	/* Update the field, and then ring the doorbell */
7839 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7840 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7841 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7842 	if (hpsa_wait_for_mode_change_ack(h))
7843 		goto error;
7844 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7845 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7846 		goto error;
7847 	h->transMethod = CFGTBL_Trans_Simple;
7848 	return 0;
7849 error:
7850 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7851 	return -ENODEV;
7852 }
7853 
7854 /* free items allocated or mapped by hpsa_pci_init */
7855 static void hpsa_free_pci_init(struct ctlr_info *h)
7856 {
7857 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7858 	iounmap(h->vaddr);			/* pci_init 3 */
7859 	h->vaddr = NULL;
7860 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7861 	/*
7862 	 * call pci_disable_device before pci_release_regions per
7863 	 * Documentation/driver-api/pci/pci.rst
7864 	 */
7865 	pci_disable_device(h->pdev);		/* pci_init 1 */
7866 	pci_release_regions(h->pdev);		/* pci_init 2 */
7867 }
7868 
7869 /* several items must be freed later */
7870 static int hpsa_pci_init(struct ctlr_info *h)
7871 {
7872 	int prod_index, err;
7873 	bool legacy_board;
7874 
7875 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7876 	if (prod_index < 0)
7877 		return prod_index;
7878 	h->product_name = products[prod_index].product_name;
7879 	h->access = *(products[prod_index].access);
7880 	h->legacy_board = legacy_board;
7881 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7882 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7883 
7884 	err = pci_enable_device(h->pdev);
7885 	if (err) {
7886 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7887 		pci_disable_device(h->pdev);
7888 		return err;
7889 	}
7890 
7891 	err = pci_request_regions(h->pdev, HPSA);
7892 	if (err) {
7893 		dev_err(&h->pdev->dev,
7894 			"failed to obtain PCI resources\n");
7895 		pci_disable_device(h->pdev);
7896 		return err;
7897 	}
7898 
7899 	pci_set_master(h->pdev);
7900 
7901 	err = hpsa_interrupt_mode(h);
7902 	if (err)
7903 		goto clean1;
7904 
7905 	/* setup mapping between CPU and reply queue */
7906 	hpsa_setup_reply_map(h);
7907 
7908 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7909 	if (err)
7910 		goto clean2;	/* intmode+region, pci */
7911 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7912 	if (!h->vaddr) {
7913 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7914 		err = -ENOMEM;
7915 		goto clean2;	/* intmode+region, pci */
7916 	}
7917 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7918 	if (err)
7919 		goto clean3;	/* vaddr, intmode+region, pci */
7920 	err = hpsa_find_cfgtables(h);
7921 	if (err)
7922 		goto clean3;	/* vaddr, intmode+region, pci */
7923 	hpsa_find_board_params(h);
7924 
7925 	if (!hpsa_CISS_signature_present(h)) {
7926 		err = -ENODEV;
7927 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7928 	}
7929 	hpsa_set_driver_support_bits(h);
7930 	hpsa_p600_dma_prefetch_quirk(h);
7931 	err = hpsa_enter_simple_mode(h);
7932 	if (err)
7933 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7934 	return 0;
7935 
7936 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7937 	hpsa_free_cfgtables(h);
7938 clean3:	/* vaddr, intmode+region, pci */
7939 	iounmap(h->vaddr);
7940 	h->vaddr = NULL;
7941 clean2:	/* intmode+region, pci */
7942 	hpsa_disable_interrupt_mode(h);
7943 clean1:
7944 	/*
7945 	 * call pci_disable_device before pci_release_regions per
7946 	 * Documentation/driver-api/pci/pci.rst
7947 	 */
7948 	pci_disable_device(h->pdev);
7949 	pci_release_regions(h->pdev);
7950 	return err;
7951 }
7952 
7953 static void hpsa_hba_inquiry(struct ctlr_info *h)
7954 {
7955 	int rc;
7956 
7957 #define HBA_INQUIRY_BYTE_COUNT 64
7958 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7959 	if (!h->hba_inquiry_data)
7960 		return;
7961 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7962 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7963 	if (rc != 0) {
7964 		kfree(h->hba_inquiry_data);
7965 		h->hba_inquiry_data = NULL;
7966 	}
7967 }
7968 
7969 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7970 {
7971 	int rc, i;
7972 	void __iomem *vaddr;
7973 
7974 	if (!reset_devices)
7975 		return 0;
7976 
7977 	/* kdump kernel is loading, we don't know in which state is
7978 	 * the pci interface. The dev->enable_cnt is equal zero
7979 	 * so we call enable+disable, wait a while and switch it on.
7980 	 */
7981 	rc = pci_enable_device(pdev);
7982 	if (rc) {
7983 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7984 		return -ENODEV;
7985 	}
7986 	pci_disable_device(pdev);
7987 	msleep(260);			/* a randomly chosen number */
7988 	rc = pci_enable_device(pdev);
7989 	if (rc) {
7990 		dev_warn(&pdev->dev, "failed to enable device.\n");
7991 		return -ENODEV;
7992 	}
7993 
7994 	pci_set_master(pdev);
7995 
7996 	vaddr = pci_ioremap_bar(pdev, 0);
7997 	if (vaddr == NULL) {
7998 		rc = -ENOMEM;
7999 		goto out_disable;
8000 	}
8001 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8002 	iounmap(vaddr);
8003 
8004 	/* Reset the controller with a PCI power-cycle or via doorbell */
8005 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8006 
8007 	/* -ENOTSUPP here means we cannot reset the controller
8008 	 * but it's already (and still) up and running in
8009 	 * "performant mode".  Or, it might be 640x, which can't reset
8010 	 * due to concerns about shared bbwc between 6402/6404 pair.
8011 	 */
8012 	if (rc)
8013 		goto out_disable;
8014 
8015 	/* Now try to get the controller to respond to a no-op */
8016 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8017 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8018 		if (hpsa_noop(pdev) == 0)
8019 			break;
8020 		else
8021 			dev_warn(&pdev->dev, "no-op failed%s\n",
8022 					(i < 11 ? "; re-trying" : ""));
8023 	}
8024 
8025 out_disable:
8026 
8027 	pci_disable_device(pdev);
8028 	return rc;
8029 }
8030 
8031 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8032 {
8033 	kfree(h->cmd_pool_bits);
8034 	h->cmd_pool_bits = NULL;
8035 	if (h->cmd_pool) {
8036 		dma_free_coherent(&h->pdev->dev,
8037 				h->nr_cmds * sizeof(struct CommandList),
8038 				h->cmd_pool,
8039 				h->cmd_pool_dhandle);
8040 		h->cmd_pool = NULL;
8041 		h->cmd_pool_dhandle = 0;
8042 	}
8043 	if (h->errinfo_pool) {
8044 		dma_free_coherent(&h->pdev->dev,
8045 				h->nr_cmds * sizeof(struct ErrorInfo),
8046 				h->errinfo_pool,
8047 				h->errinfo_pool_dhandle);
8048 		h->errinfo_pool = NULL;
8049 		h->errinfo_pool_dhandle = 0;
8050 	}
8051 }
8052 
8053 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8054 {
8055 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8056 				   sizeof(unsigned long),
8057 				   GFP_KERNEL);
8058 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8059 		    h->nr_cmds * sizeof(*h->cmd_pool),
8060 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8061 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8062 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8063 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8064 	if ((h->cmd_pool_bits == NULL)
8065 	    || (h->cmd_pool == NULL)
8066 	    || (h->errinfo_pool == NULL)) {
8067 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8068 		goto clean_up;
8069 	}
8070 	hpsa_preinitialize_commands(h);
8071 	return 0;
8072 clean_up:
8073 	hpsa_free_cmd_pool(h);
8074 	return -ENOMEM;
8075 }
8076 
8077 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8078 static void hpsa_free_irqs(struct ctlr_info *h)
8079 {
8080 	int i;
8081 	int irq_vector = 0;
8082 
8083 	if (hpsa_simple_mode)
8084 		irq_vector = h->intr_mode;
8085 
8086 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8087 		/* Single reply queue, only one irq to free */
8088 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8089 				&h->q[h->intr_mode]);
8090 		h->q[h->intr_mode] = 0;
8091 		return;
8092 	}
8093 
8094 	for (i = 0; i < h->msix_vectors; i++) {
8095 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8096 		h->q[i] = 0;
8097 	}
8098 	for (; i < MAX_REPLY_QUEUES; i++)
8099 		h->q[i] = 0;
8100 }
8101 
8102 /* returns 0 on success; cleans up and returns -Enn on error */
8103 static int hpsa_request_irqs(struct ctlr_info *h,
8104 	irqreturn_t (*msixhandler)(int, void *),
8105 	irqreturn_t (*intxhandler)(int, void *))
8106 {
8107 	int rc, i;
8108 	int irq_vector = 0;
8109 
8110 	if (hpsa_simple_mode)
8111 		irq_vector = h->intr_mode;
8112 
8113 	/*
8114 	 * initialize h->q[x] = x so that interrupt handlers know which
8115 	 * queue to process.
8116 	 */
8117 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8118 		h->q[i] = (u8) i;
8119 
8120 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8121 		/* If performant mode and MSI-X, use multiple reply queues */
8122 		for (i = 0; i < h->msix_vectors; i++) {
8123 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8124 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8125 					0, h->intrname[i],
8126 					&h->q[i]);
8127 			if (rc) {
8128 				int j;
8129 
8130 				dev_err(&h->pdev->dev,
8131 					"failed to get irq %d for %s\n",
8132 				       pci_irq_vector(h->pdev, i), h->devname);
8133 				for (j = 0; j < i; j++) {
8134 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8135 					h->q[j] = 0;
8136 				}
8137 				for (; j < MAX_REPLY_QUEUES; j++)
8138 					h->q[j] = 0;
8139 				return rc;
8140 			}
8141 		}
8142 	} else {
8143 		/* Use single reply pool */
8144 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8145 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8146 				h->msix_vectors ? "x" : "");
8147 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8148 				msixhandler, 0,
8149 				h->intrname[0],
8150 				&h->q[h->intr_mode]);
8151 		} else {
8152 			sprintf(h->intrname[h->intr_mode],
8153 				"%s-intx", h->devname);
8154 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8155 				intxhandler, IRQF_SHARED,
8156 				h->intrname[0],
8157 				&h->q[h->intr_mode]);
8158 		}
8159 	}
8160 	if (rc) {
8161 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8162 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8163 		hpsa_free_irqs(h);
8164 		return -ENODEV;
8165 	}
8166 	return 0;
8167 }
8168 
8169 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8170 {
8171 	int rc;
8172 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8173 
8174 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8175 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8176 	if (rc) {
8177 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8178 		return rc;
8179 	}
8180 
8181 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8182 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8183 	if (rc) {
8184 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8185 			"after soft reset.\n");
8186 		return rc;
8187 	}
8188 
8189 	return 0;
8190 }
8191 
8192 static void hpsa_free_reply_queues(struct ctlr_info *h)
8193 {
8194 	int i;
8195 
8196 	for (i = 0; i < h->nreply_queues; i++) {
8197 		if (!h->reply_queue[i].head)
8198 			continue;
8199 		dma_free_coherent(&h->pdev->dev,
8200 					h->reply_queue_size,
8201 					h->reply_queue[i].head,
8202 					h->reply_queue[i].busaddr);
8203 		h->reply_queue[i].head = NULL;
8204 		h->reply_queue[i].busaddr = 0;
8205 	}
8206 	h->reply_queue_size = 0;
8207 }
8208 
8209 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8210 {
8211 	hpsa_free_performant_mode(h);		/* init_one 7 */
8212 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8213 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8214 	hpsa_free_irqs(h);			/* init_one 4 */
8215 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8216 	h->scsi_host = NULL;			/* init_one 3 */
8217 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8218 	free_percpu(h->lockup_detected);	/* init_one 2 */
8219 	h->lockup_detected = NULL;		/* init_one 2 */
8220 	if (h->resubmit_wq) {
8221 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8222 		h->resubmit_wq = NULL;
8223 	}
8224 	if (h->rescan_ctlr_wq) {
8225 		destroy_workqueue(h->rescan_ctlr_wq);
8226 		h->rescan_ctlr_wq = NULL;
8227 	}
8228 	if (h->monitor_ctlr_wq) {
8229 		destroy_workqueue(h->monitor_ctlr_wq);
8230 		h->monitor_ctlr_wq = NULL;
8231 	}
8232 
8233 	kfree(h);				/* init_one 1 */
8234 }
8235 
8236 /* Called when controller lockup detected. */
8237 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8238 {
8239 	int i, refcount;
8240 	struct CommandList *c;
8241 	int failcount = 0;
8242 
8243 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8244 	for (i = 0; i < h->nr_cmds; i++) {
8245 		c = h->cmd_pool + i;
8246 		refcount = atomic_inc_return(&c->refcount);
8247 		if (refcount > 1) {
8248 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8249 			finish_cmd(c);
8250 			atomic_dec(&h->commands_outstanding);
8251 			failcount++;
8252 		}
8253 		cmd_free(h, c);
8254 	}
8255 	dev_warn(&h->pdev->dev,
8256 		"failed %d commands in fail_all\n", failcount);
8257 }
8258 
8259 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8260 {
8261 	int cpu;
8262 
8263 	for_each_online_cpu(cpu) {
8264 		u32 *lockup_detected;
8265 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8266 		*lockup_detected = value;
8267 	}
8268 	wmb(); /* be sure the per-cpu variables are out to memory */
8269 }
8270 
8271 static void controller_lockup_detected(struct ctlr_info *h)
8272 {
8273 	unsigned long flags;
8274 	u32 lockup_detected;
8275 
8276 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8277 	spin_lock_irqsave(&h->lock, flags);
8278 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8279 	if (!lockup_detected) {
8280 		/* no heartbeat, but controller gave us a zero. */
8281 		dev_warn(&h->pdev->dev,
8282 			"lockup detected after %d but scratchpad register is zero\n",
8283 			h->heartbeat_sample_interval / HZ);
8284 		lockup_detected = 0xffffffff;
8285 	}
8286 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8287 	spin_unlock_irqrestore(&h->lock, flags);
8288 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8289 			lockup_detected, h->heartbeat_sample_interval / HZ);
8290 	if (lockup_detected == 0xffff0000) {
8291 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8292 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8293 	}
8294 	pci_disable_device(h->pdev);
8295 	fail_all_outstanding_cmds(h);
8296 }
8297 
8298 static int detect_controller_lockup(struct ctlr_info *h)
8299 {
8300 	u64 now;
8301 	u32 heartbeat;
8302 	unsigned long flags;
8303 
8304 	now = get_jiffies_64();
8305 	/* If we've received an interrupt recently, we're ok. */
8306 	if (time_after64(h->last_intr_timestamp +
8307 				(h->heartbeat_sample_interval), now))
8308 		return false;
8309 
8310 	/*
8311 	 * If we've already checked the heartbeat recently, we're ok.
8312 	 * This could happen if someone sends us a signal. We
8313 	 * otherwise don't care about signals in this thread.
8314 	 */
8315 	if (time_after64(h->last_heartbeat_timestamp +
8316 				(h->heartbeat_sample_interval), now))
8317 		return false;
8318 
8319 	/* If heartbeat has not changed since we last looked, we're not ok. */
8320 	spin_lock_irqsave(&h->lock, flags);
8321 	heartbeat = readl(&h->cfgtable->HeartBeat);
8322 	spin_unlock_irqrestore(&h->lock, flags);
8323 	if (h->last_heartbeat == heartbeat) {
8324 		controller_lockup_detected(h);
8325 		return true;
8326 	}
8327 
8328 	/* We're ok. */
8329 	h->last_heartbeat = heartbeat;
8330 	h->last_heartbeat_timestamp = now;
8331 	return false;
8332 }
8333 
8334 /*
8335  * Set ioaccel status for all ioaccel volumes.
8336  *
8337  * Called from monitor controller worker (hpsa_event_monitor_worker)
8338  *
8339  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8340  * transformation, so we will be turning off ioaccel for all volumes that
8341  * make up the Array.
8342  */
8343 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8344 {
8345 	int rc;
8346 	int i;
8347 	u8 ioaccel_status;
8348 	unsigned char *buf;
8349 	struct hpsa_scsi_dev_t *device;
8350 
8351 	if (!h)
8352 		return;
8353 
8354 	buf = kmalloc(64, GFP_KERNEL);
8355 	if (!buf)
8356 		return;
8357 
8358 	/*
8359 	 * Run through current device list used during I/O requests.
8360 	 */
8361 	for (i = 0; i < h->ndevices; i++) {
8362 		int offload_to_be_enabled = 0;
8363 		int offload_config = 0;
8364 
8365 		device = h->dev[i];
8366 
8367 		if (!device)
8368 			continue;
8369 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8370 						HPSA_VPD_LV_IOACCEL_STATUS))
8371 			continue;
8372 
8373 		memset(buf, 0, 64);
8374 
8375 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8376 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8377 					buf, 64);
8378 		if (rc != 0)
8379 			continue;
8380 
8381 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8382 
8383 		/*
8384 		 * Check if offload is still configured on
8385 		 */
8386 		offload_config =
8387 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8388 		/*
8389 		 * If offload is configured on, check to see if ioaccel
8390 		 * needs to be enabled.
8391 		 */
8392 		if (offload_config)
8393 			offload_to_be_enabled =
8394 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8395 
8396 		/*
8397 		 * If ioaccel is to be re-enabled, re-enable later during the
8398 		 * scan operation so the driver can get a fresh raidmap
8399 		 * before turning ioaccel back on.
8400 		 */
8401 		if (offload_to_be_enabled)
8402 			continue;
8403 
8404 		/*
8405 		 * Immediately turn off ioaccel for any volume the
8406 		 * controller tells us to. Some of the reasons could be:
8407 		 *    transformation - change to the LVs of an Array.
8408 		 *    degraded volume - component failure
8409 		 */
8410 		hpsa_turn_off_ioaccel_for_device(device);
8411 	}
8412 
8413 	kfree(buf);
8414 }
8415 
8416 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8417 {
8418 	char *event_type;
8419 
8420 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8421 		return;
8422 
8423 	/* Ask the controller to clear the events we're handling. */
8424 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8425 			| CFGTBL_Trans_io_accel2)) &&
8426 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8427 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8428 
8429 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8430 			event_type = "state change";
8431 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8432 			event_type = "configuration change";
8433 		/* Stop sending new RAID offload reqs via the IO accelerator */
8434 		scsi_block_requests(h->scsi_host);
8435 		hpsa_set_ioaccel_status(h);
8436 		hpsa_drain_accel_commands(h);
8437 		/* Set 'accelerator path config change' bit */
8438 		dev_warn(&h->pdev->dev,
8439 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8440 			h->events, event_type);
8441 		writel(h->events, &(h->cfgtable->clear_event_notify));
8442 		/* Set the "clear event notify field update" bit 6 */
8443 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8444 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8445 		hpsa_wait_for_clear_event_notify_ack(h);
8446 		scsi_unblock_requests(h->scsi_host);
8447 	} else {
8448 		/* Acknowledge controller notification events. */
8449 		writel(h->events, &(h->cfgtable->clear_event_notify));
8450 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8451 		hpsa_wait_for_clear_event_notify_ack(h);
8452 	}
8453 	return;
8454 }
8455 
8456 /* Check a register on the controller to see if there are configuration
8457  * changes (added/changed/removed logical drives, etc.) which mean that
8458  * we should rescan the controller for devices.
8459  * Also check flag for driver-initiated rescan.
8460  */
8461 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8462 {
8463 	if (h->drv_req_rescan) {
8464 		h->drv_req_rescan = 0;
8465 		return 1;
8466 	}
8467 
8468 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8469 		return 0;
8470 
8471 	h->events = readl(&(h->cfgtable->event_notify));
8472 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8473 }
8474 
8475 /*
8476  * Check if any of the offline devices have become ready
8477  */
8478 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8479 {
8480 	unsigned long flags;
8481 	struct offline_device_entry *d;
8482 	struct list_head *this, *tmp;
8483 
8484 	spin_lock_irqsave(&h->offline_device_lock, flags);
8485 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8486 		d = list_entry(this, struct offline_device_entry,
8487 				offline_list);
8488 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8489 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8490 			spin_lock_irqsave(&h->offline_device_lock, flags);
8491 			list_del(&d->offline_list);
8492 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8493 			return 1;
8494 		}
8495 		spin_lock_irqsave(&h->offline_device_lock, flags);
8496 	}
8497 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8498 	return 0;
8499 }
8500 
8501 static int hpsa_luns_changed(struct ctlr_info *h)
8502 {
8503 	int rc = 1; /* assume there are changes */
8504 	struct ReportLUNdata *logdev = NULL;
8505 
8506 	/* if we can't find out if lun data has changed,
8507 	 * assume that it has.
8508 	 */
8509 
8510 	if (!h->lastlogicals)
8511 		return rc;
8512 
8513 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8514 	if (!logdev)
8515 		return rc;
8516 
8517 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8518 		dev_warn(&h->pdev->dev,
8519 			"report luns failed, can't track lun changes.\n");
8520 		goto out;
8521 	}
8522 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8523 		dev_info(&h->pdev->dev,
8524 			"Lun changes detected.\n");
8525 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8526 		goto out;
8527 	} else
8528 		rc = 0; /* no changes detected. */
8529 out:
8530 	kfree(logdev);
8531 	return rc;
8532 }
8533 
8534 static void hpsa_perform_rescan(struct ctlr_info *h)
8535 {
8536 	struct Scsi_Host *sh = NULL;
8537 	unsigned long flags;
8538 
8539 	/*
8540 	 * Do the scan after the reset
8541 	 */
8542 	spin_lock_irqsave(&h->reset_lock, flags);
8543 	if (h->reset_in_progress) {
8544 		h->drv_req_rescan = 1;
8545 		spin_unlock_irqrestore(&h->reset_lock, flags);
8546 		return;
8547 	}
8548 	spin_unlock_irqrestore(&h->reset_lock, flags);
8549 
8550 	sh = scsi_host_get(h->scsi_host);
8551 	if (sh != NULL) {
8552 		hpsa_scan_start(sh);
8553 		scsi_host_put(sh);
8554 		h->drv_req_rescan = 0;
8555 	}
8556 }
8557 
8558 /*
8559  * watch for controller events
8560  */
8561 static void hpsa_event_monitor_worker(struct work_struct *work)
8562 {
8563 	struct ctlr_info *h = container_of(to_delayed_work(work),
8564 					struct ctlr_info, event_monitor_work);
8565 	unsigned long flags;
8566 
8567 	spin_lock_irqsave(&h->lock, flags);
8568 	if (h->remove_in_progress) {
8569 		spin_unlock_irqrestore(&h->lock, flags);
8570 		return;
8571 	}
8572 	spin_unlock_irqrestore(&h->lock, flags);
8573 
8574 	if (hpsa_ctlr_needs_rescan(h)) {
8575 		hpsa_ack_ctlr_events(h);
8576 		hpsa_perform_rescan(h);
8577 	}
8578 
8579 	spin_lock_irqsave(&h->lock, flags);
8580 	if (!h->remove_in_progress)
8581 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8582 				HPSA_EVENT_MONITOR_INTERVAL);
8583 	spin_unlock_irqrestore(&h->lock, flags);
8584 }
8585 
8586 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8587 {
8588 	unsigned long flags;
8589 	struct ctlr_info *h = container_of(to_delayed_work(work),
8590 					struct ctlr_info, rescan_ctlr_work);
8591 
8592 	spin_lock_irqsave(&h->lock, flags);
8593 	if (h->remove_in_progress) {
8594 		spin_unlock_irqrestore(&h->lock, flags);
8595 		return;
8596 	}
8597 	spin_unlock_irqrestore(&h->lock, flags);
8598 
8599 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8600 		hpsa_perform_rescan(h);
8601 	} else if (h->discovery_polling) {
8602 		if (hpsa_luns_changed(h)) {
8603 			dev_info(&h->pdev->dev,
8604 				"driver discovery polling rescan.\n");
8605 			hpsa_perform_rescan(h);
8606 		}
8607 	}
8608 	spin_lock_irqsave(&h->lock, flags);
8609 	if (!h->remove_in_progress)
8610 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8611 				h->heartbeat_sample_interval);
8612 	spin_unlock_irqrestore(&h->lock, flags);
8613 }
8614 
8615 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8616 {
8617 	unsigned long flags;
8618 	struct ctlr_info *h = container_of(to_delayed_work(work),
8619 					struct ctlr_info, monitor_ctlr_work);
8620 
8621 	detect_controller_lockup(h);
8622 	if (lockup_detected(h))
8623 		return;
8624 
8625 	spin_lock_irqsave(&h->lock, flags);
8626 	if (!h->remove_in_progress)
8627 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8628 				h->heartbeat_sample_interval);
8629 	spin_unlock_irqrestore(&h->lock, flags);
8630 }
8631 
8632 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8633 						char *name)
8634 {
8635 	struct workqueue_struct *wq = NULL;
8636 
8637 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8638 	if (!wq)
8639 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8640 
8641 	return wq;
8642 }
8643 
8644 static void hpda_free_ctlr_info(struct ctlr_info *h)
8645 {
8646 	kfree(h->reply_map);
8647 	kfree(h);
8648 }
8649 
8650 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8651 {
8652 	struct ctlr_info *h;
8653 
8654 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8655 	if (!h)
8656 		return NULL;
8657 
8658 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8659 	if (!h->reply_map) {
8660 		kfree(h);
8661 		return NULL;
8662 	}
8663 	return h;
8664 }
8665 
8666 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8667 {
8668 	int rc;
8669 	struct ctlr_info *h;
8670 	int try_soft_reset = 0;
8671 	unsigned long flags;
8672 	u32 board_id;
8673 
8674 	if (number_of_controllers == 0)
8675 		printk(KERN_INFO DRIVER_NAME "\n");
8676 
8677 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8678 	if (rc < 0) {
8679 		dev_warn(&pdev->dev, "Board ID not found\n");
8680 		return rc;
8681 	}
8682 
8683 	rc = hpsa_init_reset_devices(pdev, board_id);
8684 	if (rc) {
8685 		if (rc != -ENOTSUPP)
8686 			return rc;
8687 		/* If the reset fails in a particular way (it has no way to do
8688 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8689 		 * a soft reset once we get the controller configured up to the
8690 		 * point that it can accept a command.
8691 		 */
8692 		try_soft_reset = 1;
8693 		rc = 0;
8694 	}
8695 
8696 reinit_after_soft_reset:
8697 
8698 	/* Command structures must be aligned on a 32-byte boundary because
8699 	 * the 5 lower bits of the address are used by the hardware. and by
8700 	 * the driver.  See comments in hpsa.h for more info.
8701 	 */
8702 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8703 	h = hpda_alloc_ctlr_info();
8704 	if (!h) {
8705 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8706 		return -ENOMEM;
8707 	}
8708 
8709 	h->pdev = pdev;
8710 
8711 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8712 	INIT_LIST_HEAD(&h->offline_device_list);
8713 	spin_lock_init(&h->lock);
8714 	spin_lock_init(&h->offline_device_lock);
8715 	spin_lock_init(&h->scan_lock);
8716 	spin_lock_init(&h->reset_lock);
8717 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8718 
8719 	/* Allocate and clear per-cpu variable lockup_detected */
8720 	h->lockup_detected = alloc_percpu(u32);
8721 	if (!h->lockup_detected) {
8722 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8723 		rc = -ENOMEM;
8724 		goto clean1;	/* aer/h */
8725 	}
8726 	set_lockup_detected_for_all_cpus(h, 0);
8727 
8728 	rc = hpsa_pci_init(h);
8729 	if (rc)
8730 		goto clean2;	/* lu, aer/h */
8731 
8732 	/* relies on h-> settings made by hpsa_pci_init, including
8733 	 * interrupt_mode h->intr */
8734 	rc = hpsa_scsi_host_alloc(h);
8735 	if (rc)
8736 		goto clean2_5;	/* pci, lu, aer/h */
8737 
8738 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8739 	h->ctlr = number_of_controllers;
8740 	number_of_controllers++;
8741 
8742 	/* configure PCI DMA stuff */
8743 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8744 	if (rc != 0) {
8745 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8746 		if (rc != 0) {
8747 			dev_err(&pdev->dev, "no suitable DMA available\n");
8748 			goto clean3;	/* shost, pci, lu, aer/h */
8749 		}
8750 	}
8751 
8752 	/* make sure the board interrupts are off */
8753 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754 
8755 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8756 	if (rc)
8757 		goto clean3;	/* shost, pci, lu, aer/h */
8758 	rc = hpsa_alloc_cmd_pool(h);
8759 	if (rc)
8760 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8761 	rc = hpsa_alloc_sg_chain_blocks(h);
8762 	if (rc)
8763 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8764 	init_waitqueue_head(&h->scan_wait_queue);
8765 	init_waitqueue_head(&h->event_sync_wait_queue);
8766 	mutex_init(&h->reset_mutex);
8767 	h->scan_finished = 1; /* no scan currently in progress */
8768 	h->scan_waiting = 0;
8769 
8770 	pci_set_drvdata(pdev, h);
8771 	h->ndevices = 0;
8772 
8773 	spin_lock_init(&h->devlock);
8774 	rc = hpsa_put_ctlr_into_performant_mode(h);
8775 	if (rc)
8776 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8777 
8778 	/* create the resubmit workqueue */
8779 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8780 	if (!h->rescan_ctlr_wq) {
8781 		rc = -ENOMEM;
8782 		goto clean7;
8783 	}
8784 
8785 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8786 	if (!h->resubmit_wq) {
8787 		rc = -ENOMEM;
8788 		goto clean7;	/* aer/h */
8789 	}
8790 
8791 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8792 	if (!h->monitor_ctlr_wq) {
8793 		rc = -ENOMEM;
8794 		goto clean7;
8795 	}
8796 
8797 	/*
8798 	 * At this point, the controller is ready to take commands.
8799 	 * Now, if reset_devices and the hard reset didn't work, try
8800 	 * the soft reset and see if that works.
8801 	 */
8802 	if (try_soft_reset) {
8803 
8804 		/* This is kind of gross.  We may or may not get a completion
8805 		 * from the soft reset command, and if we do, then the value
8806 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8807 		 * after the reset throwing away any completions we get during
8808 		 * that time.  Unregister the interrupt handler and register
8809 		 * fake ones to scoop up any residual completions.
8810 		 */
8811 		spin_lock_irqsave(&h->lock, flags);
8812 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8813 		spin_unlock_irqrestore(&h->lock, flags);
8814 		hpsa_free_irqs(h);
8815 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8816 					hpsa_intx_discard_completions);
8817 		if (rc) {
8818 			dev_warn(&h->pdev->dev,
8819 				"Failed to request_irq after soft reset.\n");
8820 			/*
8821 			 * cannot goto clean7 or free_irqs will be called
8822 			 * again. Instead, do its work
8823 			 */
8824 			hpsa_free_performant_mode(h);	/* clean7 */
8825 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8826 			hpsa_free_cmd_pool(h);		/* clean5 */
8827 			/*
8828 			 * skip hpsa_free_irqs(h) clean4 since that
8829 			 * was just called before request_irqs failed
8830 			 */
8831 			goto clean3;
8832 		}
8833 
8834 		rc = hpsa_kdump_soft_reset(h);
8835 		if (rc)
8836 			/* Neither hard nor soft reset worked, we're hosed. */
8837 			goto clean7;
8838 
8839 		dev_info(&h->pdev->dev, "Board READY.\n");
8840 		dev_info(&h->pdev->dev,
8841 			"Waiting for stale completions to drain.\n");
8842 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8843 		msleep(10000);
8844 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8845 
8846 		rc = controller_reset_failed(h->cfgtable);
8847 		if (rc)
8848 			dev_info(&h->pdev->dev,
8849 				"Soft reset appears to have failed.\n");
8850 
8851 		/* since the controller's reset, we have to go back and re-init
8852 		 * everything.  Easiest to just forget what we've done and do it
8853 		 * all over again.
8854 		 */
8855 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8856 		try_soft_reset = 0;
8857 		if (rc)
8858 			/* don't goto clean, we already unallocated */
8859 			return -ENODEV;
8860 
8861 		goto reinit_after_soft_reset;
8862 	}
8863 
8864 	/* Enable Accelerated IO path at driver layer */
8865 	h->acciopath_status = 1;
8866 	/* Disable discovery polling.*/
8867 	h->discovery_polling = 0;
8868 
8869 
8870 	/* Turn the interrupts on so we can service requests */
8871 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8872 
8873 	hpsa_hba_inquiry(h);
8874 
8875 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8876 	if (!h->lastlogicals)
8877 		dev_info(&h->pdev->dev,
8878 			"Can't track change to report lun data\n");
8879 
8880 	/* hook into SCSI subsystem */
8881 	rc = hpsa_scsi_add_host(h);
8882 	if (rc)
8883 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8884 
8885 	/* Monitor the controller for firmware lockups */
8886 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8887 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8888 	schedule_delayed_work(&h->monitor_ctlr_work,
8889 				h->heartbeat_sample_interval);
8890 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8891 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8892 				h->heartbeat_sample_interval);
8893 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8894 	schedule_delayed_work(&h->event_monitor_work,
8895 				HPSA_EVENT_MONITOR_INTERVAL);
8896 	return 0;
8897 
8898 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899 	kfree(h->lastlogicals);
8900 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8901 	hpsa_free_performant_mode(h);
8902 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8904 	hpsa_free_sg_chain_blocks(h);
8905 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8906 	hpsa_free_cmd_pool(h);
8907 clean4: /* irq, shost, pci, lu, aer/h */
8908 	hpsa_free_irqs(h);
8909 clean3: /* shost, pci, lu, aer/h */
8910 	scsi_host_put(h->scsi_host);
8911 	h->scsi_host = NULL;
8912 clean2_5: /* pci, lu, aer/h */
8913 	hpsa_free_pci_init(h);
8914 clean2: /* lu, aer/h */
8915 	if (h->lockup_detected) {
8916 		free_percpu(h->lockup_detected);
8917 		h->lockup_detected = NULL;
8918 	}
8919 clean1:	/* wq/aer/h */
8920 	if (h->resubmit_wq) {
8921 		destroy_workqueue(h->resubmit_wq);
8922 		h->resubmit_wq = NULL;
8923 	}
8924 	if (h->rescan_ctlr_wq) {
8925 		destroy_workqueue(h->rescan_ctlr_wq);
8926 		h->rescan_ctlr_wq = NULL;
8927 	}
8928 	if (h->monitor_ctlr_wq) {
8929 		destroy_workqueue(h->monitor_ctlr_wq);
8930 		h->monitor_ctlr_wq = NULL;
8931 	}
8932 	kfree(h);
8933 	return rc;
8934 }
8935 
8936 static void hpsa_flush_cache(struct ctlr_info *h)
8937 {
8938 	char *flush_buf;
8939 	struct CommandList *c;
8940 	int rc;
8941 
8942 	if (unlikely(lockup_detected(h)))
8943 		return;
8944 	flush_buf = kzalloc(4, GFP_KERNEL);
8945 	if (!flush_buf)
8946 		return;
8947 
8948 	c = cmd_alloc(h);
8949 
8950 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8951 		RAID_CTLR_LUNID, TYPE_CMD)) {
8952 		goto out;
8953 	}
8954 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8955 			DEFAULT_TIMEOUT);
8956 	if (rc)
8957 		goto out;
8958 	if (c->err_info->CommandStatus != 0)
8959 out:
8960 		dev_warn(&h->pdev->dev,
8961 			"error flushing cache on controller\n");
8962 	cmd_free(h, c);
8963 	kfree(flush_buf);
8964 }
8965 
8966 /* Make controller gather fresh report lun data each time we
8967  * send down a report luns request
8968  */
8969 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8970 {
8971 	u32 *options;
8972 	struct CommandList *c;
8973 	int rc;
8974 
8975 	/* Don't bother trying to set diag options if locked up */
8976 	if (unlikely(h->lockup_detected))
8977 		return;
8978 
8979 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8980 	if (!options)
8981 		return;
8982 
8983 	c = cmd_alloc(h);
8984 
8985 	/* first, get the current diag options settings */
8986 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8987 		RAID_CTLR_LUNID, TYPE_CMD))
8988 		goto errout;
8989 
8990 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8991 			NO_TIMEOUT);
8992 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8993 		goto errout;
8994 
8995 	/* Now, set the bit for disabling the RLD caching */
8996 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8997 
8998 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8999 		RAID_CTLR_LUNID, TYPE_CMD))
9000 		goto errout;
9001 
9002 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9003 			NO_TIMEOUT);
9004 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9005 		goto errout;
9006 
9007 	/* Now verify that it got set: */
9008 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9009 		RAID_CTLR_LUNID, TYPE_CMD))
9010 		goto errout;
9011 
9012 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9013 			NO_TIMEOUT);
9014 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9015 		goto errout;
9016 
9017 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9018 		goto out;
9019 
9020 errout:
9021 	dev_err(&h->pdev->dev,
9022 			"Error: failed to disable report lun data caching.\n");
9023 out:
9024 	cmd_free(h, c);
9025 	kfree(options);
9026 }
9027 
9028 static void __hpsa_shutdown(struct pci_dev *pdev)
9029 {
9030 	struct ctlr_info *h;
9031 
9032 	h = pci_get_drvdata(pdev);
9033 	/* Turn board interrupts off  and send the flush cache command
9034 	 * sendcmd will turn off interrupt, and send the flush...
9035 	 * To write all data in the battery backed cache to disks
9036 	 */
9037 	hpsa_flush_cache(h);
9038 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9039 	hpsa_free_irqs(h);			/* init_one 4 */
9040 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9041 }
9042 
9043 static void hpsa_shutdown(struct pci_dev *pdev)
9044 {
9045 	__hpsa_shutdown(pdev);
9046 	pci_disable_device(pdev);
9047 }
9048 
9049 static void hpsa_free_device_info(struct ctlr_info *h)
9050 {
9051 	int i;
9052 
9053 	for (i = 0; i < h->ndevices; i++) {
9054 		kfree(h->dev[i]);
9055 		h->dev[i] = NULL;
9056 	}
9057 }
9058 
9059 static void hpsa_remove_one(struct pci_dev *pdev)
9060 {
9061 	struct ctlr_info *h;
9062 	unsigned long flags;
9063 
9064 	if (pci_get_drvdata(pdev) == NULL) {
9065 		dev_err(&pdev->dev, "unable to remove device\n");
9066 		return;
9067 	}
9068 	h = pci_get_drvdata(pdev);
9069 
9070 	/* Get rid of any controller monitoring work items */
9071 	spin_lock_irqsave(&h->lock, flags);
9072 	h->remove_in_progress = 1;
9073 	spin_unlock_irqrestore(&h->lock, flags);
9074 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9075 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9076 	cancel_delayed_work_sync(&h->event_monitor_work);
9077 	destroy_workqueue(h->rescan_ctlr_wq);
9078 	destroy_workqueue(h->resubmit_wq);
9079 	destroy_workqueue(h->monitor_ctlr_wq);
9080 
9081 	hpsa_delete_sas_host(h);
9082 
9083 	/*
9084 	 * Call before disabling interrupts.
9085 	 * scsi_remove_host can trigger I/O operations especially
9086 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9087 	 * operations which cannot complete and will hang the system.
9088 	 */
9089 	if (h->scsi_host)
9090 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9091 	/* includes hpsa_free_irqs - init_one 4 */
9092 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9093 	__hpsa_shutdown(pdev);
9094 
9095 	hpsa_free_device_info(h);		/* scan */
9096 
9097 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9098 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9099 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9100 	hpsa_free_performant_mode(h);			/* init_one 7 */
9101 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9102 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9103 	kfree(h->lastlogicals);
9104 
9105 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9106 
9107 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9108 	h->scsi_host = NULL;				/* init_one 3 */
9109 
9110 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9111 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9112 
9113 	free_percpu(h->lockup_detected);		/* init_one 2 */
9114 	h->lockup_detected = NULL;			/* init_one 2 */
9115 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9116 
9117 	hpda_free_ctlr_info(h);				/* init_one 1 */
9118 }
9119 
9120 static int __maybe_unused hpsa_suspend(
9121 	__attribute__((unused)) struct device *dev)
9122 {
9123 	return -ENOSYS;
9124 }
9125 
9126 static int __maybe_unused hpsa_resume
9127 	(__attribute__((unused)) struct device *dev)
9128 {
9129 	return -ENOSYS;
9130 }
9131 
9132 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9133 
9134 static struct pci_driver hpsa_pci_driver = {
9135 	.name = HPSA,
9136 	.probe = hpsa_init_one,
9137 	.remove = hpsa_remove_one,
9138 	.id_table = hpsa_pci_device_id,	/* id_table */
9139 	.shutdown = hpsa_shutdown,
9140 	.driver.pm = &hpsa_pm_ops,
9141 };
9142 
9143 /* Fill in bucket_map[], given nsgs (the max number of
9144  * scatter gather elements supported) and bucket[],
9145  * which is an array of 8 integers.  The bucket[] array
9146  * contains 8 different DMA transfer sizes (in 16
9147  * byte increments) which the controller uses to fetch
9148  * commands.  This function fills in bucket_map[], which
9149  * maps a given number of scatter gather elements to one of
9150  * the 8 DMA transfer sizes.  The point of it is to allow the
9151  * controller to only do as much DMA as needed to fetch the
9152  * command, with the DMA transfer size encoded in the lower
9153  * bits of the command address.
9154  */
9155 static void  calc_bucket_map(int bucket[], int num_buckets,
9156 	int nsgs, int min_blocks, u32 *bucket_map)
9157 {
9158 	int i, j, b, size;
9159 
9160 	/* Note, bucket_map must have nsgs+1 entries. */
9161 	for (i = 0; i <= nsgs; i++) {
9162 		/* Compute size of a command with i SG entries */
9163 		size = i + min_blocks;
9164 		b = num_buckets; /* Assume the biggest bucket */
9165 		/* Find the bucket that is just big enough */
9166 		for (j = 0; j < num_buckets; j++) {
9167 			if (bucket[j] >= size) {
9168 				b = j;
9169 				break;
9170 			}
9171 		}
9172 		/* for a command with i SG entries, use bucket b. */
9173 		bucket_map[i] = b;
9174 	}
9175 }
9176 
9177 /*
9178  * return -ENODEV on err, 0 on success (or no action)
9179  * allocates numerous items that must be freed later
9180  */
9181 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9182 {
9183 	int i;
9184 	unsigned long register_value;
9185 	unsigned long transMethod = CFGTBL_Trans_Performant |
9186 			(trans_support & CFGTBL_Trans_use_short_tags) |
9187 				CFGTBL_Trans_enable_directed_msix |
9188 			(trans_support & (CFGTBL_Trans_io_accel1 |
9189 				CFGTBL_Trans_io_accel2));
9190 	struct access_method access = SA5_performant_access;
9191 
9192 	/* This is a bit complicated.  There are 8 registers on
9193 	 * the controller which we write to to tell it 8 different
9194 	 * sizes of commands which there may be.  It's a way of
9195 	 * reducing the DMA done to fetch each command.  Encoded into
9196 	 * each command's tag are 3 bits which communicate to the controller
9197 	 * which of the eight sizes that command fits within.  The size of
9198 	 * each command depends on how many scatter gather entries there are.
9199 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9200 	 * with the number of 16-byte blocks a command of that size requires.
9201 	 * The smallest command possible requires 5 such 16 byte blocks.
9202 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9203 	 * blocks.  Note, this only extends to the SG entries contained
9204 	 * within the command block, and does not extend to chained blocks
9205 	 * of SG elements.   bft[] contains the eight values we write to
9206 	 * the registers.  They are not evenly distributed, but have more
9207 	 * sizes for small commands, and fewer sizes for larger commands.
9208 	 */
9209 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9210 #define MIN_IOACCEL2_BFT_ENTRY 5
9211 #define HPSA_IOACCEL2_HEADER_SZ 4
9212 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9213 			13, 14, 15, 16, 17, 18, 19,
9214 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9215 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9216 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9217 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9218 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9219 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9220 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9221 	/*  5 = 1 s/g entry or 4k
9222 	 *  6 = 2 s/g entry or 8k
9223 	 *  8 = 4 s/g entry or 16k
9224 	 * 10 = 6 s/g entry or 24k
9225 	 */
9226 
9227 	/* If the controller supports either ioaccel method then
9228 	 * we can also use the RAID stack submit path that does not
9229 	 * perform the superfluous readl() after each command submission.
9230 	 */
9231 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9232 		access = SA5_performant_access_no_read;
9233 
9234 	/* Controller spec: zero out this buffer. */
9235 	for (i = 0; i < h->nreply_queues; i++)
9236 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9237 
9238 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9239 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9240 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9241 	for (i = 0; i < 8; i++)
9242 		writel(bft[i], &h->transtable->BlockFetch[i]);
9243 
9244 	/* size of controller ring buffer */
9245 	writel(h->max_commands, &h->transtable->RepQSize);
9246 	writel(h->nreply_queues, &h->transtable->RepQCount);
9247 	writel(0, &h->transtable->RepQCtrAddrLow32);
9248 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9249 
9250 	for (i = 0; i < h->nreply_queues; i++) {
9251 		writel(0, &h->transtable->RepQAddr[i].upper);
9252 		writel(h->reply_queue[i].busaddr,
9253 			&h->transtable->RepQAddr[i].lower);
9254 	}
9255 
9256 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9257 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9258 	/*
9259 	 * enable outbound interrupt coalescing in accelerator mode;
9260 	 */
9261 	if (trans_support & CFGTBL_Trans_io_accel1) {
9262 		access = SA5_ioaccel_mode1_access;
9263 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9264 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9265 	} else
9266 		if (trans_support & CFGTBL_Trans_io_accel2)
9267 			access = SA5_ioaccel_mode2_access;
9268 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9269 	if (hpsa_wait_for_mode_change_ack(h)) {
9270 		dev_err(&h->pdev->dev,
9271 			"performant mode problem - doorbell timeout\n");
9272 		return -ENODEV;
9273 	}
9274 	register_value = readl(&(h->cfgtable->TransportActive));
9275 	if (!(register_value & CFGTBL_Trans_Performant)) {
9276 		dev_err(&h->pdev->dev,
9277 			"performant mode problem - transport not active\n");
9278 		return -ENODEV;
9279 	}
9280 	/* Change the access methods to the performant access methods */
9281 	h->access = access;
9282 	h->transMethod = transMethod;
9283 
9284 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9285 		(trans_support & CFGTBL_Trans_io_accel2)))
9286 		return 0;
9287 
9288 	if (trans_support & CFGTBL_Trans_io_accel1) {
9289 		/* Set up I/O accelerator mode */
9290 		for (i = 0; i < h->nreply_queues; i++) {
9291 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9292 			h->reply_queue[i].current_entry =
9293 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9294 		}
9295 		bft[7] = h->ioaccel_maxsg + 8;
9296 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9297 				h->ioaccel1_blockFetchTable);
9298 
9299 		/* initialize all reply queue entries to unused */
9300 		for (i = 0; i < h->nreply_queues; i++)
9301 			memset(h->reply_queue[i].head,
9302 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9303 				h->reply_queue_size);
9304 
9305 		/* set all the constant fields in the accelerator command
9306 		 * frames once at init time to save CPU cycles later.
9307 		 */
9308 		for (i = 0; i < h->nr_cmds; i++) {
9309 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9310 
9311 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9312 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9313 					(i * sizeof(struct ErrorInfo)));
9314 			cp->err_info_len = sizeof(struct ErrorInfo);
9315 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9316 			cp->host_context_flags =
9317 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9318 			cp->timeout_sec = 0;
9319 			cp->ReplyQueue = 0;
9320 			cp->tag =
9321 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9322 			cp->host_addr =
9323 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9324 					(i * sizeof(struct io_accel1_cmd)));
9325 		}
9326 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9327 		u64 cfg_offset, cfg_base_addr_index;
9328 		u32 bft2_offset, cfg_base_addr;
9329 
9330 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9331 				    &cfg_base_addr_index, &cfg_offset);
9332 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9333 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9334 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9335 				4, h->ioaccel2_blockFetchTable);
9336 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9337 		BUILD_BUG_ON(offsetof(struct CfgTable,
9338 				io_accel_request_size_offset) != 0xb8);
9339 		h->ioaccel2_bft2_regs =
9340 			remap_pci_mem(pci_resource_start(h->pdev,
9341 					cfg_base_addr_index) +
9342 					cfg_offset + bft2_offset,
9343 					ARRAY_SIZE(bft2) *
9344 					sizeof(*h->ioaccel2_bft2_regs));
9345 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9346 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9347 	}
9348 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9349 	if (hpsa_wait_for_mode_change_ack(h)) {
9350 		dev_err(&h->pdev->dev,
9351 			"performant mode problem - enabling ioaccel mode\n");
9352 		return -ENODEV;
9353 	}
9354 	return 0;
9355 }
9356 
9357 /* Free ioaccel1 mode command blocks and block fetch table */
9358 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9359 {
9360 	if (h->ioaccel_cmd_pool) {
9361 		dma_free_coherent(&h->pdev->dev,
9362 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363 				  h->ioaccel_cmd_pool,
9364 				  h->ioaccel_cmd_pool_dhandle);
9365 		h->ioaccel_cmd_pool = NULL;
9366 		h->ioaccel_cmd_pool_dhandle = 0;
9367 	}
9368 	kfree(h->ioaccel1_blockFetchTable);
9369 	h->ioaccel1_blockFetchTable = NULL;
9370 }
9371 
9372 /* Allocate ioaccel1 mode command blocks and block fetch table */
9373 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9374 {
9375 	h->ioaccel_maxsg =
9376 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9377 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9378 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9379 
9380 	/* Command structures must be aligned on a 128-byte boundary
9381 	 * because the 7 lower bits of the address are used by the
9382 	 * hardware.
9383 	 */
9384 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9385 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9386 	h->ioaccel_cmd_pool =
9387 		dma_alloc_coherent(&h->pdev->dev,
9388 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9389 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9390 
9391 	h->ioaccel1_blockFetchTable =
9392 		kmalloc(((h->ioaccel_maxsg + 1) *
9393 				sizeof(u32)), GFP_KERNEL);
9394 
9395 	if ((h->ioaccel_cmd_pool == NULL) ||
9396 		(h->ioaccel1_blockFetchTable == NULL))
9397 		goto clean_up;
9398 
9399 	memset(h->ioaccel_cmd_pool, 0,
9400 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9401 	return 0;
9402 
9403 clean_up:
9404 	hpsa_free_ioaccel1_cmd_and_bft(h);
9405 	return -ENOMEM;
9406 }
9407 
9408 /* Free ioaccel2 mode command blocks and block fetch table */
9409 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9410 {
9411 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9412 
9413 	if (h->ioaccel2_cmd_pool) {
9414 		dma_free_coherent(&h->pdev->dev,
9415 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416 				  h->ioaccel2_cmd_pool,
9417 				  h->ioaccel2_cmd_pool_dhandle);
9418 		h->ioaccel2_cmd_pool = NULL;
9419 		h->ioaccel2_cmd_pool_dhandle = 0;
9420 	}
9421 	kfree(h->ioaccel2_blockFetchTable);
9422 	h->ioaccel2_blockFetchTable = NULL;
9423 }
9424 
9425 /* Allocate ioaccel2 mode command blocks and block fetch table */
9426 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9427 {
9428 	int rc;
9429 
9430 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9431 
9432 	h->ioaccel_maxsg =
9433 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9434 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9435 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9436 
9437 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9438 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9439 	h->ioaccel2_cmd_pool =
9440 		dma_alloc_coherent(&h->pdev->dev,
9441 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9442 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9443 
9444 	h->ioaccel2_blockFetchTable =
9445 		kmalloc(((h->ioaccel_maxsg + 1) *
9446 				sizeof(u32)), GFP_KERNEL);
9447 
9448 	if ((h->ioaccel2_cmd_pool == NULL) ||
9449 		(h->ioaccel2_blockFetchTable == NULL)) {
9450 		rc = -ENOMEM;
9451 		goto clean_up;
9452 	}
9453 
9454 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9455 	if (rc)
9456 		goto clean_up;
9457 
9458 	memset(h->ioaccel2_cmd_pool, 0,
9459 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9460 	return 0;
9461 
9462 clean_up:
9463 	hpsa_free_ioaccel2_cmd_and_bft(h);
9464 	return rc;
9465 }
9466 
9467 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9468 static void hpsa_free_performant_mode(struct ctlr_info *h)
9469 {
9470 	kfree(h->blockFetchTable);
9471 	h->blockFetchTable = NULL;
9472 	hpsa_free_reply_queues(h);
9473 	hpsa_free_ioaccel1_cmd_and_bft(h);
9474 	hpsa_free_ioaccel2_cmd_and_bft(h);
9475 }
9476 
9477 /* return -ENODEV on error, 0 on success (or no action)
9478  * allocates numerous items that must be freed later
9479  */
9480 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9481 {
9482 	u32 trans_support;
9483 	unsigned long transMethod = CFGTBL_Trans_Performant |
9484 					CFGTBL_Trans_use_short_tags;
9485 	int i, rc;
9486 
9487 	if (hpsa_simple_mode)
9488 		return 0;
9489 
9490 	trans_support = readl(&(h->cfgtable->TransportSupport));
9491 	if (!(trans_support & PERFORMANT_MODE))
9492 		return 0;
9493 
9494 	/* Check for I/O accelerator mode support */
9495 	if (trans_support & CFGTBL_Trans_io_accel1) {
9496 		transMethod |= CFGTBL_Trans_io_accel1 |
9497 				CFGTBL_Trans_enable_directed_msix;
9498 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9499 		if (rc)
9500 			return rc;
9501 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9502 		transMethod |= CFGTBL_Trans_io_accel2 |
9503 				CFGTBL_Trans_enable_directed_msix;
9504 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9505 		if (rc)
9506 			return rc;
9507 	}
9508 
9509 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9510 	hpsa_get_max_perf_mode_cmds(h);
9511 	/* Performant mode ring buffer and supporting data structures */
9512 	h->reply_queue_size = h->max_commands * sizeof(u64);
9513 
9514 	for (i = 0; i < h->nreply_queues; i++) {
9515 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9516 						h->reply_queue_size,
9517 						&h->reply_queue[i].busaddr,
9518 						GFP_KERNEL);
9519 		if (!h->reply_queue[i].head) {
9520 			rc = -ENOMEM;
9521 			goto clean1;	/* rq, ioaccel */
9522 		}
9523 		h->reply_queue[i].size = h->max_commands;
9524 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9525 		h->reply_queue[i].current_entry = 0;
9526 	}
9527 
9528 	/* Need a block fetch table for performant mode */
9529 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9530 				sizeof(u32)), GFP_KERNEL);
9531 	if (!h->blockFetchTable) {
9532 		rc = -ENOMEM;
9533 		goto clean1;	/* rq, ioaccel */
9534 	}
9535 
9536 	rc = hpsa_enter_performant_mode(h, trans_support);
9537 	if (rc)
9538 		goto clean2;	/* bft, rq, ioaccel */
9539 	return 0;
9540 
9541 clean2:	/* bft, rq, ioaccel */
9542 	kfree(h->blockFetchTable);
9543 	h->blockFetchTable = NULL;
9544 clean1:	/* rq, ioaccel */
9545 	hpsa_free_reply_queues(h);
9546 	hpsa_free_ioaccel1_cmd_and_bft(h);
9547 	hpsa_free_ioaccel2_cmd_and_bft(h);
9548 	return rc;
9549 }
9550 
9551 static int is_accelerated_cmd(struct CommandList *c)
9552 {
9553 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9554 }
9555 
9556 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9557 {
9558 	struct CommandList *c = NULL;
9559 	int i, accel_cmds_out;
9560 	int refcount;
9561 
9562 	do { /* wait for all outstanding ioaccel commands to drain out */
9563 		accel_cmds_out = 0;
9564 		for (i = 0; i < h->nr_cmds; i++) {
9565 			c = h->cmd_pool + i;
9566 			refcount = atomic_inc_return(&c->refcount);
9567 			if (refcount > 1) /* Command is allocated */
9568 				accel_cmds_out += is_accelerated_cmd(c);
9569 			cmd_free(h, c);
9570 		}
9571 		if (accel_cmds_out <= 0)
9572 			break;
9573 		msleep(100);
9574 	} while (1);
9575 }
9576 
9577 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9578 				struct hpsa_sas_port *hpsa_sas_port)
9579 {
9580 	struct hpsa_sas_phy *hpsa_sas_phy;
9581 	struct sas_phy *phy;
9582 
9583 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9584 	if (!hpsa_sas_phy)
9585 		return NULL;
9586 
9587 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9588 		hpsa_sas_port->next_phy_index);
9589 	if (!phy) {
9590 		kfree(hpsa_sas_phy);
9591 		return NULL;
9592 	}
9593 
9594 	hpsa_sas_port->next_phy_index++;
9595 	hpsa_sas_phy->phy = phy;
9596 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9597 
9598 	return hpsa_sas_phy;
9599 }
9600 
9601 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602 {
9603 	struct sas_phy *phy = hpsa_sas_phy->phy;
9604 
9605 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9606 	if (hpsa_sas_phy->added_to_port)
9607 		list_del(&hpsa_sas_phy->phy_list_entry);
9608 	sas_phy_delete(phy);
9609 	kfree(hpsa_sas_phy);
9610 }
9611 
9612 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9613 {
9614 	int rc;
9615 	struct hpsa_sas_port *hpsa_sas_port;
9616 	struct sas_phy *phy;
9617 	struct sas_identify *identify;
9618 
9619 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9620 	phy = hpsa_sas_phy->phy;
9621 
9622 	identify = &phy->identify;
9623 	memset(identify, 0, sizeof(*identify));
9624 	identify->sas_address = hpsa_sas_port->sas_address;
9625 	identify->device_type = SAS_END_DEVICE;
9626 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9627 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9628 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9629 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9630 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9631 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9632 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9633 
9634 	rc = sas_phy_add(hpsa_sas_phy->phy);
9635 	if (rc)
9636 		return rc;
9637 
9638 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9639 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9640 			&hpsa_sas_port->phy_list_head);
9641 	hpsa_sas_phy->added_to_port = true;
9642 
9643 	return 0;
9644 }
9645 
9646 static int
9647 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9648 				struct sas_rphy *rphy)
9649 {
9650 	struct sas_identify *identify;
9651 
9652 	identify = &rphy->identify;
9653 	identify->sas_address = hpsa_sas_port->sas_address;
9654 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9655 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9656 
9657 	return sas_rphy_add(rphy);
9658 }
9659 
9660 static struct hpsa_sas_port
9661 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9662 				u64 sas_address)
9663 {
9664 	int rc;
9665 	struct hpsa_sas_port *hpsa_sas_port;
9666 	struct sas_port *port;
9667 
9668 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9669 	if (!hpsa_sas_port)
9670 		return NULL;
9671 
9672 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9673 	hpsa_sas_port->parent_node = hpsa_sas_node;
9674 
9675 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9676 	if (!port)
9677 		goto free_hpsa_port;
9678 
9679 	rc = sas_port_add(port);
9680 	if (rc)
9681 		goto free_sas_port;
9682 
9683 	hpsa_sas_port->port = port;
9684 	hpsa_sas_port->sas_address = sas_address;
9685 	list_add_tail(&hpsa_sas_port->port_list_entry,
9686 			&hpsa_sas_node->port_list_head);
9687 
9688 	return hpsa_sas_port;
9689 
9690 free_sas_port:
9691 	sas_port_free(port);
9692 free_hpsa_port:
9693 	kfree(hpsa_sas_port);
9694 
9695 	return NULL;
9696 }
9697 
9698 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9699 {
9700 	struct hpsa_sas_phy *hpsa_sas_phy;
9701 	struct hpsa_sas_phy *next;
9702 
9703 	list_for_each_entry_safe(hpsa_sas_phy, next,
9704 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9705 		hpsa_free_sas_phy(hpsa_sas_phy);
9706 
9707 	sas_port_delete(hpsa_sas_port->port);
9708 	list_del(&hpsa_sas_port->port_list_entry);
9709 	kfree(hpsa_sas_port);
9710 }
9711 
9712 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9713 {
9714 	struct hpsa_sas_node *hpsa_sas_node;
9715 
9716 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9717 	if (hpsa_sas_node) {
9718 		hpsa_sas_node->parent_dev = parent_dev;
9719 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9720 	}
9721 
9722 	return hpsa_sas_node;
9723 }
9724 
9725 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9726 {
9727 	struct hpsa_sas_port *hpsa_sas_port;
9728 	struct hpsa_sas_port *next;
9729 
9730 	if (!hpsa_sas_node)
9731 		return;
9732 
9733 	list_for_each_entry_safe(hpsa_sas_port, next,
9734 			&hpsa_sas_node->port_list_head, port_list_entry)
9735 		hpsa_free_sas_port(hpsa_sas_port);
9736 
9737 	kfree(hpsa_sas_node);
9738 }
9739 
9740 static struct hpsa_scsi_dev_t
9741 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9742 					struct sas_rphy *rphy)
9743 {
9744 	int i;
9745 	struct hpsa_scsi_dev_t *device;
9746 
9747 	for (i = 0; i < h->ndevices; i++) {
9748 		device = h->dev[i];
9749 		if (!device->sas_port)
9750 			continue;
9751 		if (device->sas_port->rphy == rphy)
9752 			return device;
9753 	}
9754 
9755 	return NULL;
9756 }
9757 
9758 static int hpsa_add_sas_host(struct ctlr_info *h)
9759 {
9760 	int rc;
9761 	struct device *parent_dev;
9762 	struct hpsa_sas_node *hpsa_sas_node;
9763 	struct hpsa_sas_port *hpsa_sas_port;
9764 	struct hpsa_sas_phy *hpsa_sas_phy;
9765 
9766 	parent_dev = &h->scsi_host->shost_dev;
9767 
9768 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9769 	if (!hpsa_sas_node)
9770 		return -ENOMEM;
9771 
9772 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9773 	if (!hpsa_sas_port) {
9774 		rc = -ENODEV;
9775 		goto free_sas_node;
9776 	}
9777 
9778 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9779 	if (!hpsa_sas_phy) {
9780 		rc = -ENODEV;
9781 		goto free_sas_port;
9782 	}
9783 
9784 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9785 	if (rc)
9786 		goto free_sas_phy;
9787 
9788 	h->sas_host = hpsa_sas_node;
9789 
9790 	return 0;
9791 
9792 free_sas_phy:
9793 	hpsa_free_sas_phy(hpsa_sas_phy);
9794 free_sas_port:
9795 	hpsa_free_sas_port(hpsa_sas_port);
9796 free_sas_node:
9797 	hpsa_free_sas_node(hpsa_sas_node);
9798 
9799 	return rc;
9800 }
9801 
9802 static void hpsa_delete_sas_host(struct ctlr_info *h)
9803 {
9804 	hpsa_free_sas_node(h->sas_host);
9805 }
9806 
9807 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9808 				struct hpsa_scsi_dev_t *device)
9809 {
9810 	int rc;
9811 	struct hpsa_sas_port *hpsa_sas_port;
9812 	struct sas_rphy *rphy;
9813 
9814 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9815 	if (!hpsa_sas_port)
9816 		return -ENOMEM;
9817 
9818 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9819 	if (!rphy) {
9820 		rc = -ENODEV;
9821 		goto free_sas_port;
9822 	}
9823 
9824 	hpsa_sas_port->rphy = rphy;
9825 	device->sas_port = hpsa_sas_port;
9826 
9827 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9828 	if (rc)
9829 		goto free_sas_port;
9830 
9831 	return 0;
9832 
9833 free_sas_port:
9834 	hpsa_free_sas_port(hpsa_sas_port);
9835 	device->sas_port = NULL;
9836 
9837 	return rc;
9838 }
9839 
9840 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9841 {
9842 	if (device->sas_port) {
9843 		hpsa_free_sas_port(device->sas_port);
9844 		device->sas_port = NULL;
9845 	}
9846 }
9847 
9848 static int
9849 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9850 {
9851 	return 0;
9852 }
9853 
9854 static int
9855 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9856 {
9857 	struct Scsi_Host *shost = phy_to_shost(rphy);
9858 	struct ctlr_info *h;
9859 	struct hpsa_scsi_dev_t *sd;
9860 
9861 	if (!shost)
9862 		return -ENXIO;
9863 
9864 	h = shost_to_hba(shost);
9865 
9866 	if (!h)
9867 		return -ENXIO;
9868 
9869 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9870 	if (!sd)
9871 		return -ENXIO;
9872 
9873 	*identifier = sd->eli;
9874 
9875 	return 0;
9876 }
9877 
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881 	return -ENXIO;
9882 }
9883 
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887 	return 0;
9888 }
9889 
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893 	return 0;
9894 }
9895 
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899 	return 0;
9900 }
9901 
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906 
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910 	return -EINVAL;
9911 }
9912 
9913 static struct sas_function_template hpsa_sas_transport_functions = {
9914 	.get_linkerrors = hpsa_sas_get_linkerrors,
9915 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9916 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9917 	.phy_reset = hpsa_sas_phy_reset,
9918 	.phy_enable = hpsa_sas_phy_enable,
9919 	.phy_setup = hpsa_sas_phy_setup,
9920 	.phy_release = hpsa_sas_phy_release,
9921 	.set_phy_speed = hpsa_sas_phy_speed,
9922 };
9923 
9924 /*
9925  *  This is it.  Register the PCI driver information for the cards we control
9926  *  the OS will call our registered routines when it finds one of our cards.
9927  */
9928 static int __init hpsa_init(void)
9929 {
9930 	int rc;
9931 
9932 	hpsa_sas_transport_template =
9933 		sas_attach_transport(&hpsa_sas_transport_functions);
9934 	if (!hpsa_sas_transport_template)
9935 		return -ENODEV;
9936 
9937 	rc = pci_register_driver(&hpsa_pci_driver);
9938 
9939 	if (rc)
9940 		sas_release_transport(hpsa_sas_transport_template);
9941 
9942 	return rc;
9943 }
9944 
9945 static void __exit hpsa_cleanup(void)
9946 {
9947 	pci_unregister_driver(&hpsa_pci_driver);
9948 	sas_release_transport(hpsa_sas_transport_template);
9949 }
9950 
9951 static void __attribute__((unused)) verify_offsets(void)
9952 {
9953 #define VERIFY_OFFSET(member, offset) \
9954 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9955 
9956 	VERIFY_OFFSET(structure_size, 0);
9957 	VERIFY_OFFSET(volume_blk_size, 4);
9958 	VERIFY_OFFSET(volume_blk_cnt, 8);
9959 	VERIFY_OFFSET(phys_blk_shift, 16);
9960 	VERIFY_OFFSET(parity_rotation_shift, 17);
9961 	VERIFY_OFFSET(strip_size, 18);
9962 	VERIFY_OFFSET(disk_starting_blk, 20);
9963 	VERIFY_OFFSET(disk_blk_cnt, 28);
9964 	VERIFY_OFFSET(data_disks_per_row, 36);
9965 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9966 	VERIFY_OFFSET(row_cnt, 40);
9967 	VERIFY_OFFSET(layout_map_count, 42);
9968 	VERIFY_OFFSET(flags, 44);
9969 	VERIFY_OFFSET(dekindex, 46);
9970 	/* VERIFY_OFFSET(reserved, 48 */
9971 	VERIFY_OFFSET(data, 64);
9972 
9973 #undef VERIFY_OFFSET
9974 
9975 #define VERIFY_OFFSET(member, offset) \
9976 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9977 
9978 	VERIFY_OFFSET(IU_type, 0);
9979 	VERIFY_OFFSET(direction, 1);
9980 	VERIFY_OFFSET(reply_queue, 2);
9981 	/* VERIFY_OFFSET(reserved1, 3);  */
9982 	VERIFY_OFFSET(scsi_nexus, 4);
9983 	VERIFY_OFFSET(Tag, 8);
9984 	VERIFY_OFFSET(cdb, 16);
9985 	VERIFY_OFFSET(cciss_lun, 32);
9986 	VERIFY_OFFSET(data_len, 40);
9987 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9988 	VERIFY_OFFSET(sg_count, 45);
9989 	/* VERIFY_OFFSET(reserved3 */
9990 	VERIFY_OFFSET(err_ptr, 48);
9991 	VERIFY_OFFSET(err_len, 56);
9992 	/* VERIFY_OFFSET(reserved4  */
9993 	VERIFY_OFFSET(sg, 64);
9994 
9995 #undef VERIFY_OFFSET
9996 
9997 #define VERIFY_OFFSET(member, offset) \
9998 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9999 
10000 	VERIFY_OFFSET(dev_handle, 0x00);
10001 	VERIFY_OFFSET(reserved1, 0x02);
10002 	VERIFY_OFFSET(function, 0x03);
10003 	VERIFY_OFFSET(reserved2, 0x04);
10004 	VERIFY_OFFSET(err_info, 0x0C);
10005 	VERIFY_OFFSET(reserved3, 0x10);
10006 	VERIFY_OFFSET(err_info_len, 0x12);
10007 	VERIFY_OFFSET(reserved4, 0x13);
10008 	VERIFY_OFFSET(sgl_offset, 0x14);
10009 	VERIFY_OFFSET(reserved5, 0x15);
10010 	VERIFY_OFFSET(transfer_len, 0x1C);
10011 	VERIFY_OFFSET(reserved6, 0x20);
10012 	VERIFY_OFFSET(io_flags, 0x24);
10013 	VERIFY_OFFSET(reserved7, 0x26);
10014 	VERIFY_OFFSET(LUN, 0x34);
10015 	VERIFY_OFFSET(control, 0x3C);
10016 	VERIFY_OFFSET(CDB, 0x40);
10017 	VERIFY_OFFSET(reserved8, 0x50);
10018 	VERIFY_OFFSET(host_context_flags, 0x60);
10019 	VERIFY_OFFSET(timeout_sec, 0x62);
10020 	VERIFY_OFFSET(ReplyQueue, 0x64);
10021 	VERIFY_OFFSET(reserved9, 0x65);
10022 	VERIFY_OFFSET(tag, 0x68);
10023 	VERIFY_OFFSET(host_addr, 0x70);
10024 	VERIFY_OFFSET(CISS_LUN, 0x78);
10025 	VERIFY_OFFSET(SG, 0x78 + 8);
10026 #undef VERIFY_OFFSET
10027 }
10028 
10029 module_init(hpsa_init);
10030 module_exit(hpsa_cleanup);
10031