xref: /openbmc/linux/drivers/scsi/hpsa.c (revision fc772314)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-200"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77 
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 	HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289 
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 	struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 	struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 	int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 			       u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 				    unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 				bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 					   unsigned char lunaddr[],
310 					   int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 				     int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 	struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 	unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 			       struct hpsa_scsi_dev_t *dev,
333 			       unsigned char *scsi3addr);
334 
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 	unsigned long *priv = shost_priv(sdev->host);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 	unsigned long *priv = shost_priv(sh);
344 	return (struct ctlr_info *) *priv;
345 }
346 
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 	return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 	device->offload_enabled = 0;
514 	device->offload_to_be_enabled = 0;
515 }
516 
517 static ssize_t host_show_firmware_revision(struct device *dev,
518 	     struct device_attribute *attr, char *buf)
519 {
520 	struct ctlr_info *h;
521 	struct Scsi_Host *shost = class_to_shost(dev);
522 	unsigned char *fwrev;
523 
524 	h = shost_to_hba(shost);
525 	if (!h->hba_inquiry_data)
526 		return 0;
527 	fwrev = &h->hba_inquiry_data[32];
528 	return snprintf(buf, 20, "%c%c%c%c\n",
529 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531 
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 	     struct device_attribute *attr, char *buf)
534 {
535 	struct Scsi_Host *shost = class_to_shost(dev);
536 	struct ctlr_info *h = shost_to_hba(shost);
537 
538 	return snprintf(buf, 20, "%d\n",
539 			atomic_read(&h->commands_outstanding));
540 }
541 
542 static ssize_t host_show_transport_mode(struct device *dev,
543 	struct device_attribute *attr, char *buf)
544 {
545 	struct ctlr_info *h;
546 	struct Scsi_Host *shost = class_to_shost(dev);
547 
548 	h = shost_to_hba(shost);
549 	return snprintf(buf, 20, "%s\n",
550 		h->transMethod & CFGTBL_Trans_Performant ?
551 			"performant" : "simple");
552 }
553 
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 	struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct Scsi_Host *shost = class_to_shost(dev);
559 
560 	h = shost_to_hba(shost);
561 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564 
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 	0x324a103C, /* Smart Array P712m */
568 	0x324b103C, /* Smart Array P711m */
569 	0x3223103C, /* Smart Array P800 */
570 	0x3234103C, /* Smart Array P400 */
571 	0x3235103C, /* Smart Array P400i */
572 	0x3211103C, /* Smart Array E200i */
573 	0x3212103C, /* Smart Array E200 */
574 	0x3213103C, /* Smart Array E200i */
575 	0x3214103C, /* Smart Array E200i */
576 	0x3215103C, /* Smart Array E200i */
577 	0x3237103C, /* Smart Array E500 */
578 	0x323D103C, /* Smart Array P700m */
579 	0x40800E11, /* Smart Array 5i */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 	0x40700E11, /* Smart Array 5300 */
583 	0x40820E11, /* Smart Array 532 */
584 	0x40830E11, /* Smart Array 5312 */
585 	0x409A0E11, /* Smart Array 641 */
586 	0x409B0E11, /* Smart Array 642 */
587 	0x40910E11, /* Smart Array 6i */
588 };
589 
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 	0x40800E11, /* Smart Array 5i */
593 	0x40700E11, /* Smart Array 5300 */
594 	0x40820E11, /* Smart Array 532 */
595 	0x40830E11, /* Smart Array 5312 */
596 	0x409A0E11, /* Smart Array 641 */
597 	0x409B0E11, /* Smart Array 642 */
598 	0x40910E11, /* Smart Array 6i */
599 	/* Exclude 640x boards.  These are two pci devices in one slot
600 	 * which share a battery backed cache module.  One controls the
601 	 * cache, the other accesses the cache through the one that controls
602 	 * it.  If we reset the one controlling the cache, the other will
603 	 * likely not be happy.  Just forbid resetting this conjoined mess.
604 	 * The 640x isn't really supported by hpsa anyway.
605 	 */
606 	0x409C0E11, /* Smart Array 6400 */
607 	0x409D0E11, /* Smart Array 6400 EM */
608 };
609 
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 	int i;
613 
614 	for (i = 0; i < nelems; i++)
615 		if (a[i] == board_id)
616 			return 1;
617 	return 0;
618 }
619 
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(unresettable_controller,
623 			ARRAY_SIZE(unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 	return !board_id_in_array(soft_unresettable_controller,
629 			ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631 
632 static int ctlr_is_resettable(u32 board_id)
633 {
634 	return ctlr_is_hard_resettable(board_id) ||
635 		ctlr_is_soft_resettable(board_id);
636 }
637 
638 static ssize_t host_show_resettable(struct device *dev,
639 	struct device_attribute *attr, char *buf)
640 {
641 	struct ctlr_info *h;
642 	struct Scsi_Host *shost = class_to_shost(dev);
643 
644 	h = shost_to_hba(shost);
645 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647 
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 	return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652 
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0	0
657 #define HPSA_RAID_4	1
658 #define HPSA_RAID_1	2	/* also used for RAID 10 */
659 #define HPSA_RAID_5	3	/* also used for RAID 50 */
660 #define HPSA_RAID_51	4
661 #define HPSA_RAID_6	5	/* also used for RAID 60 */
662 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665 
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 	return !device->physical_device;
669 }
670 
671 static ssize_t raid_level_show(struct device *dev,
672 	     struct device_attribute *attr, char *buf)
673 {
674 	ssize_t l = 0;
675 	unsigned char rlevel;
676 	struct ctlr_info *h;
677 	struct scsi_device *sdev;
678 	struct hpsa_scsi_dev_t *hdev;
679 	unsigned long flags;
680 
681 	sdev = to_scsi_device(dev);
682 	h = sdev_to_hba(sdev);
683 	spin_lock_irqsave(&h->lock, flags);
684 	hdev = sdev->hostdata;
685 	if (!hdev) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		return -ENODEV;
688 	}
689 
690 	/* Is this even a logical drive? */
691 	if (!is_logical_device(hdev)) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 		return l;
695 	}
696 
697 	rlevel = hdev->raid_level;
698 	spin_unlock_irqrestore(&h->lock, flags);
699 	if (rlevel > RAID_UNKNOWN)
700 		rlevel = RAID_UNKNOWN;
701 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 	return l;
703 }
704 
705 static ssize_t lunid_show(struct device *dev,
706 	     struct device_attribute *attr, char *buf)
707 {
708 	struct ctlr_info *h;
709 	struct scsi_device *sdev;
710 	struct hpsa_scsi_dev_t *hdev;
711 	unsigned long flags;
712 	unsigned char lunid[8];
713 
714 	sdev = to_scsi_device(dev);
715 	h = sdev_to_hba(sdev);
716 	spin_lock_irqsave(&h->lock, flags);
717 	hdev = sdev->hostdata;
718 	if (!hdev) {
719 		spin_unlock_irqrestore(&h->lock, flags);
720 		return -ENODEV;
721 	}
722 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 	spin_unlock_irqrestore(&h->lock, flags);
724 	return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726 
727 static ssize_t unique_id_show(struct device *dev,
728 	     struct device_attribute *attr, char *buf)
729 {
730 	struct ctlr_info *h;
731 	struct scsi_device *sdev;
732 	struct hpsa_scsi_dev_t *hdev;
733 	unsigned long flags;
734 	unsigned char sn[16];
735 
736 	sdev = to_scsi_device(dev);
737 	h = sdev_to_hba(sdev);
738 	spin_lock_irqsave(&h->lock, flags);
739 	hdev = sdev->hostdata;
740 	if (!hdev) {
741 		spin_unlock_irqrestore(&h->lock, flags);
742 		return -ENODEV;
743 	}
744 	memcpy(sn, hdev->device_id, sizeof(sn));
745 	spin_unlock_irqrestore(&h->lock, flags);
746 	return snprintf(buf, 16 * 2 + 2,
747 			"%02X%02X%02X%02X%02X%02X%02X%02X"
748 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 			sn[0], sn[1], sn[2], sn[3],
750 			sn[4], sn[5], sn[6], sn[7],
751 			sn[8], sn[9], sn[10], sn[11],
752 			sn[12], sn[13], sn[14], sn[15]);
753 }
754 
755 static ssize_t sas_address_show(struct device *dev,
756 	      struct device_attribute *attr, char *buf)
757 {
758 	struct ctlr_info *h;
759 	struct scsi_device *sdev;
760 	struct hpsa_scsi_dev_t *hdev;
761 	unsigned long flags;
762 	u64 sas_address;
763 
764 	sdev = to_scsi_device(dev);
765 	h = sdev_to_hba(sdev);
766 	spin_lock_irqsave(&h->lock, flags);
767 	hdev = sdev->hostdata;
768 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 		spin_unlock_irqrestore(&h->lock, flags);
770 		return -ENODEV;
771 	}
772 	sas_address = hdev->sas_address;
773 	spin_unlock_irqrestore(&h->lock, flags);
774 
775 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777 
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 	     struct device_attribute *attr, char *buf)
780 {
781 	struct ctlr_info *h;
782 	struct scsi_device *sdev;
783 	struct hpsa_scsi_dev_t *hdev;
784 	unsigned long flags;
785 	int offload_enabled;
786 
787 	sdev = to_scsi_device(dev);
788 	h = sdev_to_hba(sdev);
789 	spin_lock_irqsave(&h->lock, flags);
790 	hdev = sdev->hostdata;
791 	if (!hdev) {
792 		spin_unlock_irqrestore(&h->lock, flags);
793 		return -ENODEV;
794 	}
795 	offload_enabled = hdev->offload_enabled;
796 	spin_unlock_irqrestore(&h->lock, flags);
797 
798 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 		return snprintf(buf, 20, "%d\n", offload_enabled);
800 	else
801 		return snprintf(buf, 40, "%s\n",
802 				"Not applicable for a controller");
803 }
804 
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807 	     struct device_attribute *attr, char *buf)
808 {
809 	struct ctlr_info *h;
810 	struct scsi_device *sdev;
811 	struct hpsa_scsi_dev_t *hdev;
812 	unsigned long flags;
813 	int i;
814 	int output_len = 0;
815 	u8 box;
816 	u8 bay;
817 	u8 path_map_index = 0;
818 	char *active;
819 	unsigned char phys_connector[2];
820 
821 	sdev = to_scsi_device(dev);
822 	h = sdev_to_hba(sdev);
823 	spin_lock_irqsave(&h->devlock, flags);
824 	hdev = sdev->hostdata;
825 	if (!hdev) {
826 		spin_unlock_irqrestore(&h->devlock, flags);
827 		return -ENODEV;
828 	}
829 
830 	bay = hdev->bay;
831 	for (i = 0; i < MAX_PATHS; i++) {
832 		path_map_index = 1<<i;
833 		if (i == hdev->active_path_index)
834 			active = "Active";
835 		else if (hdev->path_map & path_map_index)
836 			active = "Inactive";
837 		else
838 			continue;
839 
840 		output_len += scnprintf(buf + output_len,
841 				PAGE_SIZE - output_len,
842 				"[%d:%d:%d:%d] %20.20s ",
843 				h->scsi_host->host_no,
844 				hdev->bus, hdev->target, hdev->lun,
845 				scsi_device_type(hdev->devtype));
846 
847 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 			output_len += scnprintf(buf + output_len,
849 						PAGE_SIZE - output_len,
850 						"%s\n", active);
851 			continue;
852 		}
853 
854 		box = hdev->box[i];
855 		memcpy(&phys_connector, &hdev->phys_connector[i],
856 			sizeof(phys_connector));
857 		if (phys_connector[0] < '0')
858 			phys_connector[0] = '0';
859 		if (phys_connector[1] < '0')
860 			phys_connector[1] = '0';
861 		output_len += scnprintf(buf + output_len,
862 				PAGE_SIZE - output_len,
863 				"PORT: %.2s ",
864 				phys_connector);
865 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 			hdev->expose_device) {
867 			if (box == 0 || box == 0xFF) {
868 				output_len += scnprintf(buf + output_len,
869 					PAGE_SIZE - output_len,
870 					"BAY: %hhu %s\n",
871 					bay, active);
872 			} else {
873 				output_len += scnprintf(buf + output_len,
874 					PAGE_SIZE - output_len,
875 					"BOX: %hhu BAY: %hhu %s\n",
876 					box, bay, active);
877 			}
878 		} else if (box != 0 && box != 0xFF) {
879 			output_len += scnprintf(buf + output_len,
880 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 				box, active);
882 		} else
883 			output_len += scnprintf(buf + output_len,
884 				PAGE_SIZE - output_len, "%s\n", active);
885 	}
886 
887 	spin_unlock_irqrestore(&h->devlock, flags);
888 	return output_len;
889 }
890 
891 static ssize_t host_show_ctlr_num(struct device *dev,
892 	struct device_attribute *attr, char *buf)
893 {
894 	struct ctlr_info *h;
895 	struct Scsi_Host *shost = class_to_shost(dev);
896 
897 	h = shost_to_hba(shost);
898 	return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900 
901 static ssize_t host_show_legacy_board(struct device *dev,
902 	struct device_attribute *attr, char *buf)
903 {
904 	struct ctlr_info *h;
905 	struct Scsi_Host *shost = class_to_shost(dev);
906 
907 	h = shost_to_hba(shost);
908 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910 
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 			host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 		host_show_hp_ssd_smart_path_status,
921 		host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 			host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 	host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 	host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 	host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 	host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 	host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 	host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 	host_show_legacy_board, NULL);
938 
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940 	&dev_attr_raid_level,
941 	&dev_attr_lunid,
942 	&dev_attr_unique_id,
943 	&dev_attr_hp_ssd_smart_path_enabled,
944 	&dev_attr_path_info,
945 	&dev_attr_sas_address,
946 	NULL,
947 };
948 
949 static struct device_attribute *hpsa_shost_attrs[] = {
950 	&dev_attr_rescan,
951 	&dev_attr_firmware_revision,
952 	&dev_attr_commands_outstanding,
953 	&dev_attr_transport_mode,
954 	&dev_attr_resettable,
955 	&dev_attr_hp_ssd_smart_path_status,
956 	&dev_attr_raid_offload_debug,
957 	&dev_attr_lockup_detected,
958 	&dev_attr_ctlr_num,
959 	&dev_attr_legacy_board,
960 	NULL,
961 };
962 
963 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
964 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
965 
966 static struct scsi_host_template hpsa_driver_template = {
967 	.module			= THIS_MODULE,
968 	.name			= HPSA,
969 	.proc_name		= HPSA,
970 	.queuecommand		= hpsa_scsi_queue_command,
971 	.scan_start		= hpsa_scan_start,
972 	.scan_finished		= hpsa_scan_finished,
973 	.change_queue_depth	= hpsa_change_queue_depth,
974 	.this_id		= -1,
975 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
976 	.ioctl			= hpsa_ioctl,
977 	.slave_alloc		= hpsa_slave_alloc,
978 	.slave_configure	= hpsa_slave_configure,
979 	.slave_destroy		= hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981 	.compat_ioctl		= hpsa_compat_ioctl,
982 #endif
983 	.sdev_attrs = hpsa_sdev_attrs,
984 	.shost_attrs = hpsa_shost_attrs,
985 	.max_sectors = 2048,
986 	.no_write_same = 1,
987 };
988 
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991 	u32 a;
992 	struct reply_queue_buffer *rq = &h->reply_queue[q];
993 
994 	if (h->transMethod & CFGTBL_Trans_io_accel1)
995 		return h->access.command_completed(h, q);
996 
997 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998 		return h->access.command_completed(h, q);
999 
1000 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001 		a = rq->head[rq->current_entry];
1002 		rq->current_entry++;
1003 		atomic_dec(&h->commands_outstanding);
1004 	} else {
1005 		a = FIFO_EMPTY;
1006 	}
1007 	/* Check for wraparound */
1008 	if (rq->current_entry == h->max_commands) {
1009 		rq->current_entry = 0;
1010 		rq->wraparound ^= 1;
1011 	}
1012 	return a;
1013 }
1014 
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040 
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048 					int reply_queue)
1049 {
1050 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052 		if (unlikely(!h->msix_vectors))
1053 			return;
1054 		c->Header.ReplyQueue = reply_queue;
1055 	}
1056 }
1057 
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059 						struct CommandList *c,
1060 						int reply_queue)
1061 {
1062 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063 
1064 	/*
1065 	 * Tell the controller to post the reply to the queue for this
1066 	 * processor.  This seems to give the best I/O throughput.
1067 	 */
1068 	cp->ReplyQueue = reply_queue;
1069 	/*
1070 	 * Set the bits in the address sent down to include:
1071 	 *  - performant mode bit (bit 0)
1072 	 *  - pull count (bits 1-3)
1073 	 *  - command type (bits 4-6)
1074 	 */
1075 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076 					IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078 
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080 						struct CommandList *c,
1081 						int reply_queue)
1082 {
1083 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084 		&h->ioaccel2_cmd_pool[c->cmdindex];
1085 
1086 	/* Tell the controller to post the reply to the queue for this
1087 	 * processor.  This seems to give the best I/O throughput.
1088 	 */
1089 	cp->reply_queue = reply_queue;
1090 	/* Set the bits in the address sent down to include:
1091 	 *  - performant mode bit not used in ioaccel mode 2
1092 	 *  - pull count (bits 0-3)
1093 	 *  - command type isn't needed for ioaccel2
1094 	 */
1095 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097 
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099 						struct CommandList *c,
1100 						int reply_queue)
1101 {
1102 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103 
1104 	/*
1105 	 * Tell the controller to post the reply to the queue for this
1106 	 * processor.  This seems to give the best I/O throughput.
1107 	 */
1108 	cp->reply_queue = reply_queue;
1109 	/*
1110 	 * Set the bits in the address sent down to include:
1111 	 *  - performant mode bit not used in ioaccel mode 2
1112 	 *  - pull count (bits 0-3)
1113 	 *  - command type isn't needed for ioaccel2
1114 	 */
1115 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117 
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122 
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132 		struct CommandList *c)
1133 {
1134 	if (!is_firmware_flash_cmd(c->Request.CDB))
1135 		return;
1136 	atomic_inc(&h->firmware_flash_in_progress);
1137 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139 
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141 		struct CommandList *c)
1142 {
1143 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1144 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1145 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147 
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149 	struct CommandList *c, int reply_queue)
1150 {
1151 	dial_down_lockup_detection_during_fw_flash(h, c);
1152 	atomic_inc(&h->commands_outstanding);
1153 	if (c->device)
1154 		atomic_inc(&c->device->commands_outstanding);
1155 
1156 	reply_queue = h->reply_map[raw_smp_processor_id()];
1157 	switch (c->cmd_type) {
1158 	case CMD_IOACCEL1:
1159 		set_ioaccel1_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161 		break;
1162 	case CMD_IOACCEL2:
1163 		set_ioaccel2_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 		break;
1166 	case IOACCEL2_TMF:
1167 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169 		break;
1170 	default:
1171 		set_performant_mode(h, c, reply_queue);
1172 		h->access.submit_command(h, c);
1173 	}
1174 }
1175 
1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180 
1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185 
1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188 	if (!h->hba_inquiry_data)
1189 		return 0;
1190 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191 		return 1;
1192 	return 0;
1193 }
1194 
1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198 	/* finds an unused bus, target, lun for a new physical device
1199 	 * assumes h->devlock is held
1200 	 */
1201 	int i, found = 0;
1202 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203 
1204 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205 
1206 	for (i = 0; i < h->ndevices; i++) {
1207 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208 			__set_bit(h->dev[i]->target, lun_taken);
1209 	}
1210 
1211 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212 	if (i < HPSA_MAX_DEVICES) {
1213 		/* *bus = 1; */
1214 		*target = i;
1215 		*lun = 0;
1216 		found = 1;
1217 	}
1218 	return !found;
1219 }
1220 
1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222 	struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225 	char label[LABEL_SIZE];
1226 
1227 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228 		return;
1229 
1230 	switch (dev->devtype) {
1231 	case TYPE_RAID:
1232 		snprintf(label, LABEL_SIZE, "controller");
1233 		break;
1234 	case TYPE_ENCLOSURE:
1235 		snprintf(label, LABEL_SIZE, "enclosure");
1236 		break;
1237 	case TYPE_DISK:
1238 	case TYPE_ZBC:
1239 		if (dev->external)
1240 			snprintf(label, LABEL_SIZE, "external");
1241 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242 			snprintf(label, LABEL_SIZE, "%s",
1243 				raid_label[PHYSICAL_DRIVE]);
1244 		else
1245 			snprintf(label, LABEL_SIZE, "RAID-%s",
1246 				dev->raid_level > RAID_UNKNOWN ? "?" :
1247 				raid_label[dev->raid_level]);
1248 		break;
1249 	case TYPE_ROM:
1250 		snprintf(label, LABEL_SIZE, "rom");
1251 		break;
1252 	case TYPE_TAPE:
1253 		snprintf(label, LABEL_SIZE, "tape");
1254 		break;
1255 	case TYPE_MEDIUM_CHANGER:
1256 		snprintf(label, LABEL_SIZE, "changer");
1257 		break;
1258 	default:
1259 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1260 		break;
1261 	}
1262 
1263 	dev_printk(level, &h->pdev->dev,
1264 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266 			description,
1267 			scsi_device_type(dev->devtype),
1268 			dev->vendor,
1269 			dev->model,
1270 			label,
1271 			dev->offload_config ? '+' : '-',
1272 			dev->offload_to_be_enabled ? '+' : '-',
1273 			dev->expose_device);
1274 }
1275 
1276 /* Add an entry into h->dev[] array. */
1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278 		struct hpsa_scsi_dev_t *device,
1279 		struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281 	/* assumes h->devlock is held */
1282 	int n = h->ndevices;
1283 	int i;
1284 	unsigned char addr1[8], addr2[8];
1285 	struct hpsa_scsi_dev_t *sd;
1286 
1287 	if (n >= HPSA_MAX_DEVICES) {
1288 		dev_err(&h->pdev->dev, "too many devices, some will be "
1289 			"inaccessible.\n");
1290 		return -1;
1291 	}
1292 
1293 	/* physical devices do not have lun or target assigned until now. */
1294 	if (device->lun != -1)
1295 		/* Logical device, lun is already assigned. */
1296 		goto lun_assigned;
1297 
1298 	/* If this device a non-zero lun of a multi-lun device
1299 	 * byte 4 of the 8-byte LUN addr will contain the logical
1300 	 * unit no, zero otherwise.
1301 	 */
1302 	if (device->scsi3addr[4] == 0) {
1303 		/* This is not a non-zero lun of a multi-lun device */
1304 		if (hpsa_find_target_lun(h, device->scsi3addr,
1305 			device->bus, &device->target, &device->lun) != 0)
1306 			return -1;
1307 		goto lun_assigned;
1308 	}
1309 
1310 	/* This is a non-zero lun of a multi-lun device.
1311 	 * Search through our list and find the device which
1312 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1313 	 * Assign the same bus and target for this new LUN.
1314 	 * Use the logical unit number from the firmware.
1315 	 */
1316 	memcpy(addr1, device->scsi3addr, 8);
1317 	addr1[4] = 0;
1318 	addr1[5] = 0;
1319 	for (i = 0; i < n; i++) {
1320 		sd = h->dev[i];
1321 		memcpy(addr2, sd->scsi3addr, 8);
1322 		addr2[4] = 0;
1323 		addr2[5] = 0;
1324 		/* differ only in byte 4 and 5? */
1325 		if (memcmp(addr1, addr2, 8) == 0) {
1326 			device->bus = sd->bus;
1327 			device->target = sd->target;
1328 			device->lun = device->scsi3addr[4];
1329 			break;
1330 		}
1331 	}
1332 	if (device->lun == -1) {
1333 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334 			" suspect firmware bug or unsupported hardware "
1335 			"configuration.\n");
1336 		return -1;
1337 	}
1338 
1339 lun_assigned:
1340 
1341 	h->dev[n] = device;
1342 	h->ndevices++;
1343 	added[*nadded] = device;
1344 	(*nadded)++;
1345 	hpsa_show_dev_msg(KERN_INFO, h, device,
1346 		device->expose_device ? "added" : "masked");
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356 	int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/*
1365 	 * ioacccel_handle may have changed for a dual domain disk
1366 	 */
1367 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368 
1369 	/* Raid offload parameters changed.  Careful about the ordering. */
1370 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371 		/*
1372 		 * if drive is newly offload_enabled, we want to copy the
1373 		 * raid map data first.  If previously offload_enabled and
1374 		 * offload_config were set, raid map data had better be
1375 		 * the same as it was before. If raid map data has changed
1376 		 * then it had better be the case that
1377 		 * h->dev[entry]->offload_enabled is currently 0.
1378 		 */
1379 		h->dev[entry]->raid_map = new_entry->raid_map;
1380 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381 	}
1382 	if (new_entry->offload_to_be_enabled) {
1383 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385 	}
1386 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387 	h->dev[entry]->offload_config = new_entry->offload_config;
1388 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1390 
1391 	/*
1392 	 * We can turn off ioaccel offload now, but need to delay turning
1393 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394 	 * can't do that until all the devices are updated.
1395 	 */
1396 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397 
1398 	/*
1399 	 * turn ioaccel off immediately if told to do so.
1400 	 */
1401 	if (!new_entry->offload_to_be_enabled)
1402 		h->dev[entry]->offload_enabled = 0;
1403 
1404 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406 
1407 /* Replace an entry from h->dev[] array. */
1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409 	int entry, struct hpsa_scsi_dev_t *new_entry,
1410 	struct hpsa_scsi_dev_t *added[], int *nadded,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415 	removed[*nremoved] = h->dev[entry];
1416 	(*nremoved)++;
1417 
1418 	/*
1419 	 * New physical devices won't have target/lun assigned yet
1420 	 * so we need to preserve the values in the slot we are replacing.
1421 	 */
1422 	if (new_entry->target == -1) {
1423 		new_entry->target = h->dev[entry]->target;
1424 		new_entry->lun = h->dev[entry]->lun;
1425 	}
1426 
1427 	h->dev[entry] = new_entry;
1428 	added[*nadded] = new_entry;
1429 	(*nadded)++;
1430 
1431 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433 
1434 /* Remove an entry from h->dev[] array. */
1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438 	/* assumes h->devlock is held */
1439 	int i;
1440 	struct hpsa_scsi_dev_t *sd;
1441 
1442 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443 
1444 	sd = h->dev[entry];
1445 	removed[*nremoved] = h->dev[entry];
1446 	(*nremoved)++;
1447 
1448 	for (i = entry; i < h->ndevices-1; i++)
1449 		h->dev[i] = h->dev[i+1];
1450 	h->ndevices--;
1451 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453 
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455 	(a)[7] == (b)[7] && \
1456 	(a)[6] == (b)[6] && \
1457 	(a)[5] == (b)[5] && \
1458 	(a)[4] == (b)[4] && \
1459 	(a)[3] == (b)[3] && \
1460 	(a)[2] == (b)[2] && \
1461 	(a)[1] == (b)[1] && \
1462 	(a)[0] == (b)[0])
1463 
1464 static void fixup_botched_add(struct ctlr_info *h,
1465 	struct hpsa_scsi_dev_t *added)
1466 {
1467 	/* called when scsi_add_device fails in order to re-adjust
1468 	 * h->dev[] to match the mid layer's view.
1469 	 */
1470 	unsigned long flags;
1471 	int i, j;
1472 
1473 	spin_lock_irqsave(&h->lock, flags);
1474 	for (i = 0; i < h->ndevices; i++) {
1475 		if (h->dev[i] == added) {
1476 			for (j = i; j < h->ndevices-1; j++)
1477 				h->dev[j] = h->dev[j+1];
1478 			h->ndevices--;
1479 			break;
1480 		}
1481 	}
1482 	spin_unlock_irqrestore(&h->lock, flags);
1483 	kfree(added);
1484 }
1485 
1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487 	struct hpsa_scsi_dev_t *dev2)
1488 {
1489 	/* we compare everything except lun and target as these
1490 	 * are not yet assigned.  Compare parts likely
1491 	 * to differ first
1492 	 */
1493 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494 		sizeof(dev1->scsi3addr)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->device_id, dev2->device_id,
1497 		sizeof(dev1->device_id)) != 0)
1498 		return 0;
1499 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500 		return 0;
1501 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502 		return 0;
1503 	if (dev1->devtype != dev2->devtype)
1504 		return 0;
1505 	if (dev1->bus != dev2->bus)
1506 		return 0;
1507 	return 1;
1508 }
1509 
1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511 	struct hpsa_scsi_dev_t *dev2)
1512 {
1513 	/* Device attributes that can change, but don't mean
1514 	 * that the device is a different device, nor that the OS
1515 	 * needs to be told anything about the change.
1516 	 */
1517 	if (dev1->raid_level != dev2->raid_level)
1518 		return 1;
1519 	if (dev1->offload_config != dev2->offload_config)
1520 		return 1;
1521 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522 		return 1;
1523 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524 		if (dev1->queue_depth != dev2->queue_depth)
1525 			return 1;
1526 	/*
1527 	 * This can happen for dual domain devices. An active
1528 	 * path change causes the ioaccel handle to change
1529 	 *
1530 	 * for example note the handle differences between p0 and p1
1531 	 * Device                    WWN               ,WWN hash,Handle
1532 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534 	 */
1535 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550 	int *index)
1551 {
1552 	int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557 	if (needle == NULL)
1558 		return DEVICE_NOT_FOUND;
1559 
1560 	for (i = 0; i < haystack_size; i++) {
1561 		if (haystack[i] == NULL) /* previously removed. */
1562 			continue;
1563 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564 			*index = i;
1565 			if (device_is_the_same(needle, haystack[i])) {
1566 				if (device_updated(needle, haystack[i]))
1567 					return DEVICE_UPDATED;
1568 				return DEVICE_SAME;
1569 			} else {
1570 				/* Keep offline devices offline */
1571 				if (needle->volume_offline)
1572 					return DEVICE_NOT_FOUND;
1573 				return DEVICE_CHANGED;
1574 			}
1575 		}
1576 	}
1577 	*index = -1;
1578 	return DEVICE_NOT_FOUND;
1579 }
1580 
1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582 					unsigned char scsi3addr[])
1583 {
1584 	struct offline_device_entry *device;
1585 	unsigned long flags;
1586 
1587 	/* Check to see if device is already on the list */
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590 		if (memcmp(device->scsi3addr, scsi3addr,
1591 			sizeof(device->scsi3addr)) == 0) {
1592 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 			return;
1594 		}
1595 	}
1596 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 
1598 	/* Device is not on the list, add it. */
1599 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1600 	if (!device)
1601 		return;
1602 
1603 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604 	spin_lock_irqsave(&h->offline_device_lock, flags);
1605 	list_add_tail(&device->offline_list, &h->offline_device_list);
1606 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608 
1609 /* Print a message explaining various offline volume states */
1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611 	struct hpsa_scsi_dev_t *sd)
1612 {
1613 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614 		dev_info(&h->pdev->dev,
1615 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616 			h->scsi_host->host_no,
1617 			sd->bus, sd->target, sd->lun);
1618 	switch (sd->volume_offline) {
1619 	case HPSA_LV_OK:
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ERASE:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_NOT_AVAILABLE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_UNDERGOING_RPI:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_ENCRYPTED_NO_KEY:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_PENDING_ENCRYPTION:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	}
1688 }
1689 
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1696 				struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698 	struct raid_map_data *map = &logical_drive->raid_map;
1699 	struct raid_map_disk_data *dd = &map->data[0];
1700 	int i, j;
1701 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702 				le16_to_cpu(map->metadata_disks_per_row);
1703 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704 				le16_to_cpu(map->layout_map_count) *
1705 				total_disks_per_row;
1706 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707 				total_disks_per_row;
1708 	int qdepth;
1709 
1710 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712 
1713 	logical_drive->nphysical_disks = nraid_map_entries;
1714 
1715 	qdepth = 0;
1716 	for (i = 0; i < nraid_map_entries; i++) {
1717 		logical_drive->phys_disk[i] = NULL;
1718 		if (!logical_drive->offload_config)
1719 			continue;
1720 		for (j = 0; j < ndevices; j++) {
1721 			if (dev[j] == NULL)
1722 				continue;
1723 			if (dev[j]->devtype != TYPE_DISK &&
1724 			    dev[j]->devtype != TYPE_ZBC)
1725 				continue;
1726 			if (is_logical_device(dev[j]))
1727 				continue;
1728 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729 				continue;
1730 
1731 			logical_drive->phys_disk[i] = dev[j];
1732 			if (i < nphys_disk)
1733 				qdepth = min(h->nr_cmds, qdepth +
1734 				    logical_drive->phys_disk[i]->queue_depth);
1735 			break;
1736 		}
1737 
1738 		/*
1739 		 * This can happen if a physical drive is removed and
1740 		 * the logical drive is degraded.  In that case, the RAID
1741 		 * map data will refer to a physical disk which isn't actually
1742 		 * present.  And in that case offload_enabled should already
1743 		 * be 0, but we'll turn it off here just in case
1744 		 */
1745 		if (!logical_drive->phys_disk[i]) {
1746 			dev_warn(&h->pdev->dev,
1747 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748 				__func__,
1749 				h->scsi_host->host_no, logical_drive->bus,
1750 				logical_drive->target, logical_drive->lun);
1751 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1752 			logical_drive->queue_depth = 8;
1753 		}
1754 	}
1755 	if (nraid_map_entries)
1756 		/*
1757 		 * This is correct for reads, too high for full stripe writes,
1758 		 * way too high for partial stripe writes
1759 		 */
1760 		logical_drive->queue_depth = qdepth;
1761 	else {
1762 		if (logical_drive->external)
1763 			logical_drive->queue_depth = EXTERNAL_QD;
1764 		else
1765 			logical_drive->queue_depth = h->nr_cmds;
1766 	}
1767 }
1768 
1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772 	int i;
1773 
1774 	for (i = 0; i < ndevices; i++) {
1775 		if (dev[i] == NULL)
1776 			continue;
1777 		if (dev[i]->devtype != TYPE_DISK &&
1778 		    dev[i]->devtype != TYPE_ZBC)
1779 			continue;
1780 		if (!is_logical_device(dev[i]))
1781 			continue;
1782 
1783 		/*
1784 		 * If offload is currently enabled, the RAID map and
1785 		 * phys_disk[] assignment *better* not be changing
1786 		 * because we would be changing ioaccel phsy_disk[] pointers
1787 		 * on a ioaccel volume processing I/O requests.
1788 		 *
1789 		 * If an ioaccel volume status changed, initially because it was
1790 		 * re-configured and thus underwent a transformation, or
1791 		 * a drive failed, we would have received a state change
1792 		 * request and ioaccel should have been turned off. When the
1793 		 * transformation completes, we get another state change
1794 		 * request to turn ioaccel back on. In this case, we need
1795 		 * to update the ioaccel information.
1796 		 *
1797 		 * Thus: If it is not currently enabled, but will be after
1798 		 * the scan completes, make sure the ioaccel pointers
1799 		 * are up to date.
1800 		 */
1801 
1802 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804 	}
1805 }
1806 
1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809 	int rc = 0;
1810 
1811 	if (!h->scsi_host)
1812 		return 1;
1813 
1814 	if (is_logical_device(device)) /* RAID */
1815 		rc = scsi_add_device(h->scsi_host, device->bus,
1816 					device->target, device->lun);
1817 	else /* HBA */
1818 		rc = hpsa_add_sas_device(h->sas_host, device);
1819 
1820 	return rc;
1821 }
1822 
1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824 						struct hpsa_scsi_dev_t *dev)
1825 {
1826 	int i;
1827 	int count = 0;
1828 
1829 	for (i = 0; i < h->nr_cmds; i++) {
1830 		struct CommandList *c = h->cmd_pool + i;
1831 		int refcount = atomic_inc_return(&c->refcount);
1832 
1833 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834 				dev->scsi3addr)) {
1835 			unsigned long flags;
1836 
1837 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1838 			if (!hpsa_is_cmd_idle(c))
1839 				++count;
1840 			spin_unlock_irqrestore(&h->lock, flags);
1841 		}
1842 
1843 		cmd_free(h, c);
1844 	}
1845 
1846 	return count;
1847 }
1848 
1849 #define NUM_WAIT 20
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851 						struct hpsa_scsi_dev_t *device)
1852 {
1853 	int cmds = 0;
1854 	int waits = 0;
1855 	int num_wait = NUM_WAIT;
1856 
1857 	if (device->external)
1858 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859 
1860 	while (1) {
1861 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862 		if (cmds == 0)
1863 			break;
1864 		if (++waits > num_wait)
1865 			break;
1866 		msleep(1000);
1867 	}
1868 
1869 	if (waits > num_wait) {
1870 		dev_warn(&h->pdev->dev,
1871 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872 			__func__,
1873 			h->scsi_host->host_no,
1874 			device->bus, device->target, device->lun, cmds);
1875 	}
1876 }
1877 
1878 static void hpsa_remove_device(struct ctlr_info *h,
1879 			struct hpsa_scsi_dev_t *device)
1880 {
1881 	struct scsi_device *sdev = NULL;
1882 
1883 	if (!h->scsi_host)
1884 		return;
1885 
1886 	/*
1887 	 * Allow for commands to drain
1888 	 */
1889 	device->removed = 1;
1890 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891 
1892 	if (is_logical_device(device)) { /* RAID */
1893 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894 						device->target, device->lun);
1895 		if (sdev) {
1896 			scsi_remove_device(sdev);
1897 			scsi_device_put(sdev);
1898 		} else {
1899 			/*
1900 			 * We don't expect to get here.  Future commands
1901 			 * to this device will get a selection timeout as
1902 			 * if the device were gone.
1903 			 */
1904 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1905 					"didn't find device for removal.");
1906 		}
1907 	} else { /* HBA */
1908 
1909 		hpsa_remove_sas_device(device);
1910 	}
1911 }
1912 
1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914 	struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916 	/* sd contains scsi3 addresses and devtypes, and inquiry
1917 	 * data.  This function takes what's in sd to be the current
1918 	 * reality and updates h->dev[] to reflect that reality.
1919 	 */
1920 	int i, entry, device_change, changes = 0;
1921 	struct hpsa_scsi_dev_t *csd;
1922 	unsigned long flags;
1923 	struct hpsa_scsi_dev_t **added, **removed;
1924 	int nadded, nremoved;
1925 
1926 	/*
1927 	 * A reset can cause a device status to change
1928 	 * re-schedule the scan to see what happened.
1929 	 */
1930 	spin_lock_irqsave(&h->reset_lock, flags);
1931 	if (h->reset_in_progress) {
1932 		h->drv_req_rescan = 1;
1933 		spin_unlock_irqrestore(&h->reset_lock, flags);
1934 		return;
1935 	}
1936 	spin_unlock_irqrestore(&h->reset_lock, flags);
1937 
1938 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940 
1941 	if (!added || !removed) {
1942 		dev_warn(&h->pdev->dev, "out of memory in "
1943 			"adjust_hpsa_scsi_table\n");
1944 		goto free_and_out;
1945 	}
1946 
1947 	spin_lock_irqsave(&h->devlock, flags);
1948 
1949 	/* find any devices in h->dev[] that are not in
1950 	 * sd[] and remove them from h->dev[], and for any
1951 	 * devices which have changed, remove the old device
1952 	 * info and add the new device info.
1953 	 * If minor device attributes change, just update
1954 	 * the existing device structure.
1955 	 */
1956 	i = 0;
1957 	nremoved = 0;
1958 	nadded = 0;
1959 	while (i < h->ndevices) {
1960 		csd = h->dev[i];
1961 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962 		if (device_change == DEVICE_NOT_FOUND) {
1963 			changes++;
1964 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965 			continue; /* remove ^^^, hence i not incremented */
1966 		} else if (device_change == DEVICE_CHANGED) {
1967 			changes++;
1968 			hpsa_scsi_replace_entry(h, i, sd[entry],
1969 				added, &nadded, removed, &nremoved);
1970 			/* Set it to NULL to prevent it from being freed
1971 			 * at the bottom of hpsa_update_scsi_devices()
1972 			 */
1973 			sd[entry] = NULL;
1974 		} else if (device_change == DEVICE_UPDATED) {
1975 			hpsa_scsi_update_entry(h, i, sd[entry]);
1976 		}
1977 		i++;
1978 	}
1979 
1980 	/* Now, make sure every device listed in sd[] is also
1981 	 * listed in h->dev[], adding them if they aren't found
1982 	 */
1983 
1984 	for (i = 0; i < nsds; i++) {
1985 		if (!sd[i]) /* if already added above. */
1986 			continue;
1987 
1988 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989 		 * as the SCSI mid-layer does not handle such devices well.
1990 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991 		 * at 160Hz, and prevents the system from coming up.
1992 		 */
1993 		if (sd[i]->volume_offline) {
1994 			hpsa_show_volume_status(h, sd[i]);
1995 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996 			continue;
1997 		}
1998 
1999 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000 					h->ndevices, &entry);
2001 		if (device_change == DEVICE_NOT_FOUND) {
2002 			changes++;
2003 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004 				break;
2005 			sd[i] = NULL; /* prevent from being freed later. */
2006 		} else if (device_change == DEVICE_CHANGED) {
2007 			/* should never happen... */
2008 			changes++;
2009 			dev_warn(&h->pdev->dev,
2010 				"device unexpectedly changed.\n");
2011 			/* but if it does happen, we just ignore that device */
2012 		}
2013 	}
2014 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015 
2016 	/*
2017 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018 	 * any logical drives that need it enabled.
2019 	 *
2020 	 * The raid map should be current by now.
2021 	 *
2022 	 * We are updating the device list used for I/O requests.
2023 	 */
2024 	for (i = 0; i < h->ndevices; i++) {
2025 		if (h->dev[i] == NULL)
2026 			continue;
2027 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028 	}
2029 
2030 	spin_unlock_irqrestore(&h->devlock, flags);
2031 
2032 	/* Monitor devices which are in one of several NOT READY states to be
2033 	 * brought online later. This must be done without holding h->devlock,
2034 	 * so don't touch h->dev[]
2035 	 */
2036 	for (i = 0; i < nsds; i++) {
2037 		if (!sd[i]) /* if already added above. */
2038 			continue;
2039 		if (sd[i]->volume_offline)
2040 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041 	}
2042 
2043 	/* Don't notify scsi mid layer of any changes the first time through
2044 	 * (or if there are no changes) scsi_scan_host will do it later the
2045 	 * first time through.
2046 	 */
2047 	if (!changes)
2048 		goto free_and_out;
2049 
2050 	/* Notify scsi mid layer of any removed devices */
2051 	for (i = 0; i < nremoved; i++) {
2052 		if (removed[i] == NULL)
2053 			continue;
2054 		if (removed[i]->expose_device)
2055 			hpsa_remove_device(h, removed[i]);
2056 		kfree(removed[i]);
2057 		removed[i] = NULL;
2058 	}
2059 
2060 	/* Notify scsi mid layer of any added devices */
2061 	for (i = 0; i < nadded; i++) {
2062 		int rc = 0;
2063 
2064 		if (added[i] == NULL)
2065 			continue;
2066 		if (!(added[i]->expose_device))
2067 			continue;
2068 		rc = hpsa_add_device(h, added[i]);
2069 		if (!rc)
2070 			continue;
2071 		dev_warn(&h->pdev->dev,
2072 			"addition failed %d, device not added.", rc);
2073 		/* now we have to remove it from h->dev,
2074 		 * since it didn't get added to scsi mid layer
2075 		 */
2076 		fixup_botched_add(h, added[i]);
2077 		h->drv_req_rescan = 1;
2078 	}
2079 
2080 free_and_out:
2081 	kfree(added);
2082 	kfree(removed);
2083 }
2084 
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090 	int bus, int target, int lun)
2091 {
2092 	int i;
2093 	struct hpsa_scsi_dev_t *sd;
2094 
2095 	for (i = 0; i < h->ndevices; i++) {
2096 		sd = h->dev[i];
2097 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098 			return sd;
2099 	}
2100 	return NULL;
2101 }
2102 
2103 static int hpsa_slave_alloc(struct scsi_device *sdev)
2104 {
2105 	struct hpsa_scsi_dev_t *sd = NULL;
2106 	unsigned long flags;
2107 	struct ctlr_info *h;
2108 
2109 	h = sdev_to_hba(sdev);
2110 	spin_lock_irqsave(&h->devlock, flags);
2111 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112 		struct scsi_target *starget;
2113 		struct sas_rphy *rphy;
2114 
2115 		starget = scsi_target(sdev);
2116 		rphy = target_to_rphy(starget);
2117 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118 		if (sd) {
2119 			sd->target = sdev_id(sdev);
2120 			sd->lun = sdev->lun;
2121 		}
2122 	}
2123 	if (!sd)
2124 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125 					sdev_id(sdev), sdev->lun);
2126 
2127 	if (sd && sd->expose_device) {
2128 		atomic_set(&sd->ioaccel_cmds_out, 0);
2129 		sdev->hostdata = sd;
2130 	} else
2131 		sdev->hostdata = NULL;
2132 	spin_unlock_irqrestore(&h->devlock, flags);
2133 	return 0;
2134 }
2135 
2136 /* configure scsi device based on internal per-device structure */
2137 #define CTLR_TIMEOUT (120 * HZ)
2138 static int hpsa_slave_configure(struct scsi_device *sdev)
2139 {
2140 	struct hpsa_scsi_dev_t *sd;
2141 	int queue_depth;
2142 
2143 	sd = sdev->hostdata;
2144 	sdev->no_uld_attach = !sd || !sd->expose_device;
2145 
2146 	if (sd) {
2147 		sd->was_removed = 0;
2148 		queue_depth = sd->queue_depth != 0 ?
2149 				sd->queue_depth : sdev->host->can_queue;
2150 		if (sd->external) {
2151 			queue_depth = EXTERNAL_QD;
2152 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2153 			blk_queue_rq_timeout(sdev->request_queue,
2154 						HPSA_EH_PTRAID_TIMEOUT);
2155 		}
2156 		if (is_hba_lunid(sd->scsi3addr)) {
2157 			sdev->eh_timeout = CTLR_TIMEOUT;
2158 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2159 		}
2160 	} else {
2161 		queue_depth = sdev->host->can_queue;
2162 	}
2163 
2164 	scsi_change_queue_depth(sdev, queue_depth);
2165 
2166 	return 0;
2167 }
2168 
2169 static void hpsa_slave_destroy(struct scsi_device *sdev)
2170 {
2171 	struct hpsa_scsi_dev_t *hdev = NULL;
2172 
2173 	hdev = sdev->hostdata;
2174 
2175 	if (hdev)
2176 		hdev->was_removed = 1;
2177 }
2178 
2179 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181 	int i;
2182 
2183 	if (!h->ioaccel2_cmd_sg_list)
2184 		return;
2185 	for (i = 0; i < h->nr_cmds; i++) {
2186 		kfree(h->ioaccel2_cmd_sg_list[i]);
2187 		h->ioaccel2_cmd_sg_list[i] = NULL;
2188 	}
2189 	kfree(h->ioaccel2_cmd_sg_list);
2190 	h->ioaccel2_cmd_sg_list = NULL;
2191 }
2192 
2193 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (h->chainsize <= 0)
2198 		return 0;
2199 
2200 	h->ioaccel2_cmd_sg_list =
2201 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2202 					GFP_KERNEL);
2203 	if (!h->ioaccel2_cmd_sg_list)
2204 		return -ENOMEM;
2205 	for (i = 0; i < h->nr_cmds; i++) {
2206 		h->ioaccel2_cmd_sg_list[i] =
2207 			kmalloc_array(h->maxsgentries,
2208 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2209 				      GFP_KERNEL);
2210 		if (!h->ioaccel2_cmd_sg_list[i])
2211 			goto clean;
2212 	}
2213 	return 0;
2214 
2215 clean:
2216 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2217 	return -ENOMEM;
2218 }
2219 
2220 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222 	int i;
2223 
2224 	if (!h->cmd_sg_list)
2225 		return;
2226 	for (i = 0; i < h->nr_cmds; i++) {
2227 		kfree(h->cmd_sg_list[i]);
2228 		h->cmd_sg_list[i] = NULL;
2229 	}
2230 	kfree(h->cmd_sg_list);
2231 	h->cmd_sg_list = NULL;
2232 }
2233 
2234 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2235 {
2236 	int i;
2237 
2238 	if (h->chainsize <= 0)
2239 		return 0;
2240 
2241 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2242 				 GFP_KERNEL);
2243 	if (!h->cmd_sg_list)
2244 		return -ENOMEM;
2245 
2246 	for (i = 0; i < h->nr_cmds; i++) {
2247 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2248 						  sizeof(*h->cmd_sg_list[i]),
2249 						  GFP_KERNEL);
2250 		if (!h->cmd_sg_list[i])
2251 			goto clean;
2252 
2253 	}
2254 	return 0;
2255 
2256 clean:
2257 	hpsa_free_sg_chain_blocks(h);
2258 	return -ENOMEM;
2259 }
2260 
2261 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2262 	struct io_accel2_cmd *cp, struct CommandList *c)
2263 {
2264 	struct ioaccel2_sg_element *chain_block;
2265 	u64 temp64;
2266 	u32 chain_size;
2267 
2268 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2269 	chain_size = le32_to_cpu(cp->sg[0].length);
2270 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2271 				DMA_TO_DEVICE);
2272 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2273 		/* prevent subsequent unmapping */
2274 		cp->sg->address = 0;
2275 		return -1;
2276 	}
2277 	cp->sg->address = cpu_to_le64(temp64);
2278 	return 0;
2279 }
2280 
2281 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2282 	struct io_accel2_cmd *cp)
2283 {
2284 	struct ioaccel2_sg_element *chain_sg;
2285 	u64 temp64;
2286 	u32 chain_size;
2287 
2288 	chain_sg = cp->sg;
2289 	temp64 = le64_to_cpu(chain_sg->address);
2290 	chain_size = le32_to_cpu(cp->sg[0].length);
2291 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2292 }
2293 
2294 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2295 	struct CommandList *c)
2296 {
2297 	struct SGDescriptor *chain_sg, *chain_block;
2298 	u64 temp64;
2299 	u32 chain_len;
2300 
2301 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2302 	chain_block = h->cmd_sg_list[c->cmdindex];
2303 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2304 	chain_len = sizeof(*chain_sg) *
2305 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2306 	chain_sg->Len = cpu_to_le32(chain_len);
2307 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2308 				DMA_TO_DEVICE);
2309 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2310 		/* prevent subsequent unmapping */
2311 		chain_sg->Addr = cpu_to_le64(0);
2312 		return -1;
2313 	}
2314 	chain_sg->Addr = cpu_to_le64(temp64);
2315 	return 0;
2316 }
2317 
2318 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2319 	struct CommandList *c)
2320 {
2321 	struct SGDescriptor *chain_sg;
2322 
2323 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2324 		return;
2325 
2326 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2327 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2328 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2329 }
2330 
2331 
2332 /* Decode the various types of errors on ioaccel2 path.
2333  * Return 1 for any error that should generate a RAID path retry.
2334  * Return 0 for errors that don't require a RAID path retry.
2335  */
2336 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2337 					struct CommandList *c,
2338 					struct scsi_cmnd *cmd,
2339 					struct io_accel2_cmd *c2,
2340 					struct hpsa_scsi_dev_t *dev)
2341 {
2342 	int data_len;
2343 	int retry = 0;
2344 	u32 ioaccel2_resid = 0;
2345 
2346 	switch (c2->error_data.serv_response) {
2347 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2348 		switch (c2->error_data.status) {
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2350 			if (cmd)
2351 				cmd->result = 0;
2352 			break;
2353 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2354 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2355 			if (c2->error_data.data_present !=
2356 					IOACCEL2_SENSE_DATA_PRESENT) {
2357 				memset(cmd->sense_buffer, 0,
2358 					SCSI_SENSE_BUFFERSIZE);
2359 				break;
2360 			}
2361 			/* copy the sense data */
2362 			data_len = c2->error_data.sense_data_len;
2363 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2364 				data_len = SCSI_SENSE_BUFFERSIZE;
2365 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2366 				data_len =
2367 					sizeof(c2->error_data.sense_data_buff);
2368 			memcpy(cmd->sense_buffer,
2369 				c2->error_data.sense_data_buff, data_len);
2370 			retry = 1;
2371 			break;
2372 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2373 			retry = 1;
2374 			break;
2375 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2376 			retry = 1;
2377 			break;
2378 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2379 			retry = 1;
2380 			break;
2381 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2382 			retry = 1;
2383 			break;
2384 		default:
2385 			retry = 1;
2386 			break;
2387 		}
2388 		break;
2389 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2390 		switch (c2->error_data.status) {
2391 		case IOACCEL2_STATUS_SR_IO_ERROR:
2392 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2393 		case IOACCEL2_STATUS_SR_OVERRUN:
2394 			retry = 1;
2395 			break;
2396 		case IOACCEL2_STATUS_SR_UNDERRUN:
2397 			cmd->result = (DID_OK << 16);		/* host byte */
2398 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2399 			ioaccel2_resid = get_unaligned_le32(
2400 						&c2->error_data.resid_cnt[0]);
2401 			scsi_set_resid(cmd, ioaccel2_resid);
2402 			break;
2403 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2404 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2405 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2406 			/*
2407 			 * Did an HBA disk disappear? We will eventually
2408 			 * get a state change event from the controller but
2409 			 * in the meantime, we need to tell the OS that the
2410 			 * HBA disk is no longer there and stop I/O
2411 			 * from going down. This allows the potential re-insert
2412 			 * of the disk to get the same device node.
2413 			 */
2414 			if (dev->physical_device && dev->expose_device) {
2415 				cmd->result = DID_NO_CONNECT << 16;
2416 				dev->removed = 1;
2417 				h->drv_req_rescan = 1;
2418 				dev_warn(&h->pdev->dev,
2419 					"%s: device is gone!\n", __func__);
2420 			} else
2421 				/*
2422 				 * Retry by sending down the RAID path.
2423 				 * We will get an event from ctlr to
2424 				 * trigger rescan regardless.
2425 				 */
2426 				retry = 1;
2427 			break;
2428 		default:
2429 			retry = 1;
2430 		}
2431 		break;
2432 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2435 		break;
2436 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2437 		retry = 1;
2438 		break;
2439 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2440 		break;
2441 	default:
2442 		retry = 1;
2443 		break;
2444 	}
2445 
2446 	if (dev->in_reset)
2447 		retry = 0;
2448 
2449 	return retry;	/* retry on raid path? */
2450 }
2451 
2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2453 		struct CommandList *c)
2454 {
2455 	struct hpsa_scsi_dev_t *dev = c->device;
2456 
2457 	/*
2458 	 * Reset c->scsi_cmd here so that the reset handler will know
2459 	 * this command has completed.  Then, check to see if the handler is
2460 	 * waiting for this command, and, if so, wake it.
2461 	 */
2462 	c->scsi_cmd = SCSI_CMD_IDLE;
2463 	mb();	/* Declare command idle before checking for pending events. */
2464 	if (dev) {
2465 		atomic_dec(&dev->commands_outstanding);
2466 		if (dev->in_reset &&
2467 			atomic_read(&dev->commands_outstanding) <= 0)
2468 			wake_up_all(&h->event_sync_wait_queue);
2469 	}
2470 }
2471 
2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2473 				      struct CommandList *c)
2474 {
2475 	hpsa_cmd_resolve_events(h, c);
2476 	cmd_tagged_free(h, c);
2477 }
2478 
2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2480 		struct CommandList *c, struct scsi_cmnd *cmd)
2481 {
2482 	hpsa_cmd_resolve_and_free(h, c);
2483 	if (cmd && cmd->scsi_done)
2484 		cmd->scsi_done(cmd);
2485 }
2486 
2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2488 {
2489 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2490 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2491 }
2492 
2493 static void process_ioaccel2_completion(struct ctlr_info *h,
2494 		struct CommandList *c, struct scsi_cmnd *cmd,
2495 		struct hpsa_scsi_dev_t *dev)
2496 {
2497 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2498 
2499 	/* check for good status */
2500 	if (likely(c2->error_data.serv_response == 0 &&
2501 			c2->error_data.status == 0)) {
2502 		cmd->result = 0;
2503 		return hpsa_cmd_free_and_done(h, c, cmd);
2504 	}
2505 
2506 	/*
2507 	 * Any RAID offload error results in retry which will use
2508 	 * the normal I/O path so the controller can handle whatever is
2509 	 * wrong.
2510 	 */
2511 	if (is_logical_device(dev) &&
2512 		c2->error_data.serv_response ==
2513 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2514 		if (c2->error_data.status ==
2515 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2516 			hpsa_turn_off_ioaccel_for_device(dev);
2517 		}
2518 
2519 		if (dev->in_reset) {
2520 			cmd->result = DID_RESET << 16;
2521 			return hpsa_cmd_free_and_done(h, c, cmd);
2522 		}
2523 
2524 		return hpsa_retry_cmd(h, c);
2525 	}
2526 
2527 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2528 		return hpsa_retry_cmd(h, c);
2529 
2530 	return hpsa_cmd_free_and_done(h, c, cmd);
2531 }
2532 
2533 /* Returns 0 on success, < 0 otherwise. */
2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2535 					struct CommandList *cp)
2536 {
2537 	u8 tmf_status = cp->err_info->ScsiStatus;
2538 
2539 	switch (tmf_status) {
2540 	case CISS_TMF_COMPLETE:
2541 		/*
2542 		 * CISS_TMF_COMPLETE never happens, instead,
2543 		 * ei->CommandStatus == 0 for this case.
2544 		 */
2545 	case CISS_TMF_SUCCESS:
2546 		return 0;
2547 	case CISS_TMF_INVALID_FRAME:
2548 	case CISS_TMF_NOT_SUPPORTED:
2549 	case CISS_TMF_FAILED:
2550 	case CISS_TMF_WRONG_LUN:
2551 	case CISS_TMF_OVERLAPPED_TAG:
2552 		break;
2553 	default:
2554 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2555 				tmf_status);
2556 		break;
2557 	}
2558 	return -tmf_status;
2559 }
2560 
2561 static void complete_scsi_command(struct CommandList *cp)
2562 {
2563 	struct scsi_cmnd *cmd;
2564 	struct ctlr_info *h;
2565 	struct ErrorInfo *ei;
2566 	struct hpsa_scsi_dev_t *dev;
2567 	struct io_accel2_cmd *c2;
2568 
2569 	u8 sense_key;
2570 	u8 asc;      /* additional sense code */
2571 	u8 ascq;     /* additional sense code qualifier */
2572 	unsigned long sense_data_size;
2573 
2574 	ei = cp->err_info;
2575 	cmd = cp->scsi_cmd;
2576 	h = cp->h;
2577 
2578 	if (!cmd->device) {
2579 		cmd->result = DID_NO_CONNECT << 16;
2580 		return hpsa_cmd_free_and_done(h, cp, cmd);
2581 	}
2582 
2583 	dev = cmd->device->hostdata;
2584 	if (!dev) {
2585 		cmd->result = DID_NO_CONNECT << 16;
2586 		return hpsa_cmd_free_and_done(h, cp, cmd);
2587 	}
2588 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2589 
2590 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2591 	if ((cp->cmd_type == CMD_SCSI) &&
2592 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2593 		hpsa_unmap_sg_chain_block(h, cp);
2594 
2595 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2596 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2597 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2598 
2599 	cmd->result = (DID_OK << 16); 		/* host byte */
2600 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2601 
2602 	/* SCSI command has already been cleaned up in SML */
2603 	if (dev->was_removed) {
2604 		hpsa_cmd_resolve_and_free(h, cp);
2605 		return;
2606 	}
2607 
2608 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2609 		if (dev->physical_device && dev->expose_device &&
2610 			dev->removed) {
2611 			cmd->result = DID_NO_CONNECT << 16;
2612 			return hpsa_cmd_free_and_done(h, cp, cmd);
2613 		}
2614 		if (likely(cp->phys_disk != NULL))
2615 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2616 	}
2617 
2618 	/*
2619 	 * We check for lockup status here as it may be set for
2620 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2621 	 * fail_all_oustanding_cmds()
2622 	 */
2623 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2624 		/* DID_NO_CONNECT will prevent a retry */
2625 		cmd->result = DID_NO_CONNECT << 16;
2626 		return hpsa_cmd_free_and_done(h, cp, cmd);
2627 	}
2628 
2629 	if (cp->cmd_type == CMD_IOACCEL2)
2630 		return process_ioaccel2_completion(h, cp, cmd, dev);
2631 
2632 	scsi_set_resid(cmd, ei->ResidualCnt);
2633 	if (ei->CommandStatus == 0)
2634 		return hpsa_cmd_free_and_done(h, cp, cmd);
2635 
2636 	/* For I/O accelerator commands, copy over some fields to the normal
2637 	 * CISS header used below for error handling.
2638 	 */
2639 	if (cp->cmd_type == CMD_IOACCEL1) {
2640 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2641 		cp->Header.SGList = scsi_sg_count(cmd);
2642 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2643 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2644 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2645 		cp->Header.tag = c->tag;
2646 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2647 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2648 
2649 		/* Any RAID offload error results in retry which will use
2650 		 * the normal I/O path so the controller can handle whatever's
2651 		 * wrong.
2652 		 */
2653 		if (is_logical_device(dev)) {
2654 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2655 				dev->offload_enabled = 0;
2656 			return hpsa_retry_cmd(h, cp);
2657 		}
2658 	}
2659 
2660 	/* an error has occurred */
2661 	switch (ei->CommandStatus) {
2662 
2663 	case CMD_TARGET_STATUS:
2664 		cmd->result |= ei->ScsiStatus;
2665 		/* copy the sense data */
2666 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2667 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2668 		else
2669 			sense_data_size = sizeof(ei->SenseInfo);
2670 		if (ei->SenseLen < sense_data_size)
2671 			sense_data_size = ei->SenseLen;
2672 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2673 		if (ei->ScsiStatus)
2674 			decode_sense_data(ei->SenseInfo, sense_data_size,
2675 				&sense_key, &asc, &ascq);
2676 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2677 			switch (sense_key) {
2678 			case ABORTED_COMMAND:
2679 				cmd->result |= DID_SOFT_ERROR << 16;
2680 				break;
2681 			case UNIT_ATTENTION:
2682 				if (asc == 0x3F && ascq == 0x0E)
2683 					h->drv_req_rescan = 1;
2684 				break;
2685 			case ILLEGAL_REQUEST:
2686 				if (asc == 0x25 && ascq == 0x00) {
2687 					dev->removed = 1;
2688 					cmd->result = DID_NO_CONNECT << 16;
2689 				}
2690 				break;
2691 			}
2692 			break;
2693 		}
2694 		/* Problem was not a check condition
2695 		 * Pass it up to the upper layers...
2696 		 */
2697 		if (ei->ScsiStatus) {
2698 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2699 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2700 				"Returning result: 0x%x\n",
2701 				cp, ei->ScsiStatus,
2702 				sense_key, asc, ascq,
2703 				cmd->result);
2704 		} else {  /* scsi status is zero??? How??? */
2705 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2706 				"Returning no connection.\n", cp),
2707 
2708 			/* Ordinarily, this case should never happen,
2709 			 * but there is a bug in some released firmware
2710 			 * revisions that allows it to happen if, for
2711 			 * example, a 4100 backplane loses power and
2712 			 * the tape drive is in it.  We assume that
2713 			 * it's a fatal error of some kind because we
2714 			 * can't show that it wasn't. We will make it
2715 			 * look like selection timeout since that is
2716 			 * the most common reason for this to occur,
2717 			 * and it's severe enough.
2718 			 */
2719 
2720 			cmd->result = DID_NO_CONNECT << 16;
2721 		}
2722 		break;
2723 
2724 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2725 		break;
2726 	case CMD_DATA_OVERRUN:
2727 		dev_warn(&h->pdev->dev,
2728 			"CDB %16phN data overrun\n", cp->Request.CDB);
2729 		break;
2730 	case CMD_INVALID: {
2731 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2732 		print_cmd(cp); */
2733 		/* We get CMD_INVALID if you address a non-existent device
2734 		 * instead of a selection timeout (no response).  You will
2735 		 * see this if you yank out a drive, then try to access it.
2736 		 * This is kind of a shame because it means that any other
2737 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2738 		 * missing target. */
2739 		cmd->result = DID_NO_CONNECT << 16;
2740 	}
2741 		break;
2742 	case CMD_PROTOCOL_ERR:
2743 		cmd->result = DID_ERROR << 16;
2744 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2745 				cp->Request.CDB);
2746 		break;
2747 	case CMD_HARDWARE_ERR:
2748 		cmd->result = DID_ERROR << 16;
2749 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2750 			cp->Request.CDB);
2751 		break;
2752 	case CMD_CONNECTION_LOST:
2753 		cmd->result = DID_ERROR << 16;
2754 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2755 			cp->Request.CDB);
2756 		break;
2757 	case CMD_ABORTED:
2758 		cmd->result = DID_ABORT << 16;
2759 		break;
2760 	case CMD_ABORT_FAILED:
2761 		cmd->result = DID_ERROR << 16;
2762 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2763 			cp->Request.CDB);
2764 		break;
2765 	case CMD_UNSOLICITED_ABORT:
2766 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2767 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2768 			cp->Request.CDB);
2769 		break;
2770 	case CMD_TIMEOUT:
2771 		cmd->result = DID_TIME_OUT << 16;
2772 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2773 			cp->Request.CDB);
2774 		break;
2775 	case CMD_UNABORTABLE:
2776 		cmd->result = DID_ERROR << 16;
2777 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2778 		break;
2779 	case CMD_TMF_STATUS:
2780 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2781 			cmd->result = DID_ERROR << 16;
2782 		break;
2783 	case CMD_IOACCEL_DISABLED:
2784 		/* This only handles the direct pass-through case since RAID
2785 		 * offload is handled above.  Just attempt a retry.
2786 		 */
2787 		cmd->result = DID_SOFT_ERROR << 16;
2788 		dev_warn(&h->pdev->dev,
2789 				"cp %p had HP SSD Smart Path error\n", cp);
2790 		break;
2791 	default:
2792 		cmd->result = DID_ERROR << 16;
2793 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2794 				cp, ei->CommandStatus);
2795 	}
2796 
2797 	return hpsa_cmd_free_and_done(h, cp, cmd);
2798 }
2799 
2800 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2801 		int sg_used, enum dma_data_direction data_direction)
2802 {
2803 	int i;
2804 
2805 	for (i = 0; i < sg_used; i++)
2806 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2807 				le32_to_cpu(c->SG[i].Len),
2808 				data_direction);
2809 }
2810 
2811 static int hpsa_map_one(struct pci_dev *pdev,
2812 		struct CommandList *cp,
2813 		unsigned char *buf,
2814 		size_t buflen,
2815 		enum dma_data_direction data_direction)
2816 {
2817 	u64 addr64;
2818 
2819 	if (buflen == 0 || data_direction == DMA_NONE) {
2820 		cp->Header.SGList = 0;
2821 		cp->Header.SGTotal = cpu_to_le16(0);
2822 		return 0;
2823 	}
2824 
2825 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2826 	if (dma_mapping_error(&pdev->dev, addr64)) {
2827 		/* Prevent subsequent unmap of something never mapped */
2828 		cp->Header.SGList = 0;
2829 		cp->Header.SGTotal = cpu_to_le16(0);
2830 		return -1;
2831 	}
2832 	cp->SG[0].Addr = cpu_to_le64(addr64);
2833 	cp->SG[0].Len = cpu_to_le32(buflen);
2834 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2835 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2836 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2837 	return 0;
2838 }
2839 
2840 #define NO_TIMEOUT ((unsigned long) -1)
2841 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2842 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2843 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2844 {
2845 	DECLARE_COMPLETION_ONSTACK(wait);
2846 
2847 	c->waiting = &wait;
2848 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2849 	if (timeout_msecs == NO_TIMEOUT) {
2850 		/* TODO: get rid of this no-timeout thing */
2851 		wait_for_completion_io(&wait);
2852 		return IO_OK;
2853 	}
2854 	if (!wait_for_completion_io_timeout(&wait,
2855 					msecs_to_jiffies(timeout_msecs))) {
2856 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2857 		return -ETIMEDOUT;
2858 	}
2859 	return IO_OK;
2860 }
2861 
2862 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2863 				   int reply_queue, unsigned long timeout_msecs)
2864 {
2865 	if (unlikely(lockup_detected(h))) {
2866 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2867 		return IO_OK;
2868 	}
2869 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2870 }
2871 
2872 static u32 lockup_detected(struct ctlr_info *h)
2873 {
2874 	int cpu;
2875 	u32 rc, *lockup_detected;
2876 
2877 	cpu = get_cpu();
2878 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2879 	rc = *lockup_detected;
2880 	put_cpu();
2881 	return rc;
2882 }
2883 
2884 #define MAX_DRIVER_CMD_RETRIES 25
2885 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2886 		struct CommandList *c, enum dma_data_direction data_direction,
2887 		unsigned long timeout_msecs)
2888 {
2889 	int backoff_time = 10, retry_count = 0;
2890 	int rc;
2891 
2892 	do {
2893 		memset(c->err_info, 0, sizeof(*c->err_info));
2894 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2895 						  timeout_msecs);
2896 		if (rc)
2897 			break;
2898 		retry_count++;
2899 		if (retry_count > 3) {
2900 			msleep(backoff_time);
2901 			if (backoff_time < 1000)
2902 				backoff_time *= 2;
2903 		}
2904 	} while ((check_for_unit_attention(h, c) ||
2905 			check_for_busy(h, c)) &&
2906 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2907 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2908 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2909 		rc = -EIO;
2910 	return rc;
2911 }
2912 
2913 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2914 				struct CommandList *c)
2915 {
2916 	const u8 *cdb = c->Request.CDB;
2917 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2918 
2919 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2920 		 txt, lun, cdb);
2921 }
2922 
2923 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2924 			struct CommandList *cp)
2925 {
2926 	const struct ErrorInfo *ei = cp->err_info;
2927 	struct device *d = &cp->h->pdev->dev;
2928 	u8 sense_key, asc, ascq;
2929 	int sense_len;
2930 
2931 	switch (ei->CommandStatus) {
2932 	case CMD_TARGET_STATUS:
2933 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2934 			sense_len = sizeof(ei->SenseInfo);
2935 		else
2936 			sense_len = ei->SenseLen;
2937 		decode_sense_data(ei->SenseInfo, sense_len,
2938 					&sense_key, &asc, &ascq);
2939 		hpsa_print_cmd(h, "SCSI status", cp);
2940 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2941 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2942 				sense_key, asc, ascq);
2943 		else
2944 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2945 		if (ei->ScsiStatus == 0)
2946 			dev_warn(d, "SCSI status is abnormally zero.  "
2947 			"(probably indicates selection timeout "
2948 			"reported incorrectly due to a known "
2949 			"firmware bug, circa July, 2001.)\n");
2950 		break;
2951 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2952 		break;
2953 	case CMD_DATA_OVERRUN:
2954 		hpsa_print_cmd(h, "overrun condition", cp);
2955 		break;
2956 	case CMD_INVALID: {
2957 		/* controller unfortunately reports SCSI passthru's
2958 		 * to non-existent targets as invalid commands.
2959 		 */
2960 		hpsa_print_cmd(h, "invalid command", cp);
2961 		dev_warn(d, "probably means device no longer present\n");
2962 		}
2963 		break;
2964 	case CMD_PROTOCOL_ERR:
2965 		hpsa_print_cmd(h, "protocol error", cp);
2966 		break;
2967 	case CMD_HARDWARE_ERR:
2968 		hpsa_print_cmd(h, "hardware error", cp);
2969 		break;
2970 	case CMD_CONNECTION_LOST:
2971 		hpsa_print_cmd(h, "connection lost", cp);
2972 		break;
2973 	case CMD_ABORTED:
2974 		hpsa_print_cmd(h, "aborted", cp);
2975 		break;
2976 	case CMD_ABORT_FAILED:
2977 		hpsa_print_cmd(h, "abort failed", cp);
2978 		break;
2979 	case CMD_UNSOLICITED_ABORT:
2980 		hpsa_print_cmd(h, "unsolicited abort", cp);
2981 		break;
2982 	case CMD_TIMEOUT:
2983 		hpsa_print_cmd(h, "timed out", cp);
2984 		break;
2985 	case CMD_UNABORTABLE:
2986 		hpsa_print_cmd(h, "unabortable", cp);
2987 		break;
2988 	case CMD_CTLR_LOCKUP:
2989 		hpsa_print_cmd(h, "controller lockup detected", cp);
2990 		break;
2991 	default:
2992 		hpsa_print_cmd(h, "unknown status", cp);
2993 		dev_warn(d, "Unknown command status %x\n",
2994 				ei->CommandStatus);
2995 	}
2996 }
2997 
2998 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2999 					u8 page, u8 *buf, size_t bufsize)
3000 {
3001 	int rc = IO_OK;
3002 	struct CommandList *c;
3003 	struct ErrorInfo *ei;
3004 
3005 	c = cmd_alloc(h);
3006 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3007 			page, scsi3addr, TYPE_CMD)) {
3008 		rc = -1;
3009 		goto out;
3010 	}
3011 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3012 			NO_TIMEOUT);
3013 	if (rc)
3014 		goto out;
3015 	ei = c->err_info;
3016 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3017 		hpsa_scsi_interpret_error(h, c);
3018 		rc = -1;
3019 	}
3020 out:
3021 	cmd_free(h, c);
3022 	return rc;
3023 }
3024 
3025 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3026 						u8 *scsi3addr)
3027 {
3028 	u8 *buf;
3029 	u64 sa = 0;
3030 	int rc = 0;
3031 
3032 	buf = kzalloc(1024, GFP_KERNEL);
3033 	if (!buf)
3034 		return 0;
3035 
3036 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3037 					buf, 1024);
3038 
3039 	if (rc)
3040 		goto out;
3041 
3042 	sa = get_unaligned_be64(buf+12);
3043 
3044 out:
3045 	kfree(buf);
3046 	return sa;
3047 }
3048 
3049 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3050 			u16 page, unsigned char *buf,
3051 			unsigned char bufsize)
3052 {
3053 	int rc = IO_OK;
3054 	struct CommandList *c;
3055 	struct ErrorInfo *ei;
3056 
3057 	c = cmd_alloc(h);
3058 
3059 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3060 			page, scsi3addr, TYPE_CMD)) {
3061 		rc = -1;
3062 		goto out;
3063 	}
3064 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3065 			NO_TIMEOUT);
3066 	if (rc)
3067 		goto out;
3068 	ei = c->err_info;
3069 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3070 		hpsa_scsi_interpret_error(h, c);
3071 		rc = -1;
3072 	}
3073 out:
3074 	cmd_free(h, c);
3075 	return rc;
3076 }
3077 
3078 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3079 	u8 reset_type, int reply_queue)
3080 {
3081 	int rc = IO_OK;
3082 	struct CommandList *c;
3083 	struct ErrorInfo *ei;
3084 
3085 	c = cmd_alloc(h);
3086 	c->device = dev;
3087 
3088 	/* fill_cmd can't fail here, no data buffer to map. */
3089 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3090 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3091 	if (rc) {
3092 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3093 		goto out;
3094 	}
3095 	/* no unmap needed here because no data xfer. */
3096 
3097 	ei = c->err_info;
3098 	if (ei->CommandStatus != 0) {
3099 		hpsa_scsi_interpret_error(h, c);
3100 		rc = -1;
3101 	}
3102 out:
3103 	cmd_free(h, c);
3104 	return rc;
3105 }
3106 
3107 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3108 			       struct hpsa_scsi_dev_t *dev,
3109 			       unsigned char *scsi3addr)
3110 {
3111 	int i;
3112 	bool match = false;
3113 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3114 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3115 
3116 	if (hpsa_is_cmd_idle(c))
3117 		return false;
3118 
3119 	switch (c->cmd_type) {
3120 	case CMD_SCSI:
3121 	case CMD_IOCTL_PEND:
3122 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3123 				sizeof(c->Header.LUN.LunAddrBytes));
3124 		break;
3125 
3126 	case CMD_IOACCEL1:
3127 	case CMD_IOACCEL2:
3128 		if (c->phys_disk == dev) {
3129 			/* HBA mode match */
3130 			match = true;
3131 		} else {
3132 			/* Possible RAID mode -- check each phys dev. */
3133 			/* FIXME:  Do we need to take out a lock here?  If
3134 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3135 			 * instead. */
3136 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3137 				/* FIXME: an alternate test might be
3138 				 *
3139 				 * match = dev->phys_disk[i]->ioaccel_handle
3140 				 *              == c2->scsi_nexus;      */
3141 				match = dev->phys_disk[i] == c->phys_disk;
3142 			}
3143 		}
3144 		break;
3145 
3146 	case IOACCEL2_TMF:
3147 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3148 			match = dev->phys_disk[i]->ioaccel_handle ==
3149 					le32_to_cpu(ac->it_nexus);
3150 		}
3151 		break;
3152 
3153 	case 0:		/* The command is in the middle of being initialized. */
3154 		match = false;
3155 		break;
3156 
3157 	default:
3158 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3159 			c->cmd_type);
3160 		BUG();
3161 	}
3162 
3163 	return match;
3164 }
3165 
3166 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3167 	u8 reset_type, int reply_queue)
3168 {
3169 	int rc = 0;
3170 
3171 	/* We can really only handle one reset at a time */
3172 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3173 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3174 		return -EINTR;
3175 	}
3176 
3177 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3178 	if (!rc) {
3179 		/* incremented by sending the reset request */
3180 		atomic_dec(&dev->commands_outstanding);
3181 		wait_event(h->event_sync_wait_queue,
3182 			atomic_read(&dev->commands_outstanding) <= 0 ||
3183 			lockup_detected(h));
3184 	}
3185 
3186 	if (unlikely(lockup_detected(h))) {
3187 		dev_warn(&h->pdev->dev,
3188 			 "Controller lockup detected during reset wait\n");
3189 		rc = -ENODEV;
3190 	}
3191 
3192 	if (!rc)
3193 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3194 
3195 	mutex_unlock(&h->reset_mutex);
3196 	return rc;
3197 }
3198 
3199 static void hpsa_get_raid_level(struct ctlr_info *h,
3200 	unsigned char *scsi3addr, unsigned char *raid_level)
3201 {
3202 	int rc;
3203 	unsigned char *buf;
3204 
3205 	*raid_level = RAID_UNKNOWN;
3206 	buf = kzalloc(64, GFP_KERNEL);
3207 	if (!buf)
3208 		return;
3209 
3210 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3211 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3212 		goto exit;
3213 
3214 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3215 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3216 
3217 	if (rc == 0)
3218 		*raid_level = buf[8];
3219 	if (*raid_level > RAID_UNKNOWN)
3220 		*raid_level = RAID_UNKNOWN;
3221 exit:
3222 	kfree(buf);
3223 	return;
3224 }
3225 
3226 #define HPSA_MAP_DEBUG
3227 #ifdef HPSA_MAP_DEBUG
3228 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3229 				struct raid_map_data *map_buff)
3230 {
3231 	struct raid_map_disk_data *dd = &map_buff->data[0];
3232 	int map, row, col;
3233 	u16 map_cnt, row_cnt, disks_per_row;
3234 
3235 	if (rc != 0)
3236 		return;
3237 
3238 	/* Show details only if debugging has been activated. */
3239 	if (h->raid_offload_debug < 2)
3240 		return;
3241 
3242 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3243 				le32_to_cpu(map_buff->structure_size));
3244 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3245 			le32_to_cpu(map_buff->volume_blk_size));
3246 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3247 			le64_to_cpu(map_buff->volume_blk_cnt));
3248 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3249 			map_buff->phys_blk_shift);
3250 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3251 			map_buff->parity_rotation_shift);
3252 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3253 			le16_to_cpu(map_buff->strip_size));
3254 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3255 			le64_to_cpu(map_buff->disk_starting_blk));
3256 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3257 			le64_to_cpu(map_buff->disk_blk_cnt));
3258 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3259 			le16_to_cpu(map_buff->data_disks_per_row));
3260 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3261 			le16_to_cpu(map_buff->metadata_disks_per_row));
3262 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3263 			le16_to_cpu(map_buff->row_cnt));
3264 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3265 			le16_to_cpu(map_buff->layout_map_count));
3266 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3267 			le16_to_cpu(map_buff->flags));
3268 	dev_info(&h->pdev->dev, "encryption = %s\n",
3269 			le16_to_cpu(map_buff->flags) &
3270 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3271 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3272 			le16_to_cpu(map_buff->dekindex));
3273 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3274 	for (map = 0; map < map_cnt; map++) {
3275 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3276 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3277 		for (row = 0; row < row_cnt; row++) {
3278 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3279 			disks_per_row =
3280 				le16_to_cpu(map_buff->data_disks_per_row);
3281 			for (col = 0; col < disks_per_row; col++, dd++)
3282 				dev_info(&h->pdev->dev,
3283 					"    D%02u: h=0x%04x xor=%u,%u\n",
3284 					col, dd->ioaccel_handle,
3285 					dd->xor_mult[0], dd->xor_mult[1]);
3286 			disks_per_row =
3287 				le16_to_cpu(map_buff->metadata_disks_per_row);
3288 			for (col = 0; col < disks_per_row; col++, dd++)
3289 				dev_info(&h->pdev->dev,
3290 					"    M%02u: h=0x%04x xor=%u,%u\n",
3291 					col, dd->ioaccel_handle,
3292 					dd->xor_mult[0], dd->xor_mult[1]);
3293 		}
3294 	}
3295 }
3296 #else
3297 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3298 			__attribute__((unused)) int rc,
3299 			__attribute__((unused)) struct raid_map_data *map_buff)
3300 {
3301 }
3302 #endif
3303 
3304 static int hpsa_get_raid_map(struct ctlr_info *h,
3305 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3306 {
3307 	int rc = 0;
3308 	struct CommandList *c;
3309 	struct ErrorInfo *ei;
3310 
3311 	c = cmd_alloc(h);
3312 
3313 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3314 			sizeof(this_device->raid_map), 0,
3315 			scsi3addr, TYPE_CMD)) {
3316 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3317 		cmd_free(h, c);
3318 		return -1;
3319 	}
3320 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3321 			NO_TIMEOUT);
3322 	if (rc)
3323 		goto out;
3324 	ei = c->err_info;
3325 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326 		hpsa_scsi_interpret_error(h, c);
3327 		rc = -1;
3328 		goto out;
3329 	}
3330 	cmd_free(h, c);
3331 
3332 	/* @todo in the future, dynamically allocate RAID map memory */
3333 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3334 				sizeof(this_device->raid_map)) {
3335 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3336 		rc = -1;
3337 	}
3338 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3339 	return rc;
3340 out:
3341 	cmd_free(h, c);
3342 	return rc;
3343 }
3344 
3345 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3346 		unsigned char scsi3addr[], u16 bmic_device_index,
3347 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3348 {
3349 	int rc = IO_OK;
3350 	struct CommandList *c;
3351 	struct ErrorInfo *ei;
3352 
3353 	c = cmd_alloc(h);
3354 
3355 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3356 		0, RAID_CTLR_LUNID, TYPE_CMD);
3357 	if (rc)
3358 		goto out;
3359 
3360 	c->Request.CDB[2] = bmic_device_index & 0xff;
3361 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3362 
3363 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3364 			NO_TIMEOUT);
3365 	if (rc)
3366 		goto out;
3367 	ei = c->err_info;
3368 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3369 		hpsa_scsi_interpret_error(h, c);
3370 		rc = -1;
3371 	}
3372 out:
3373 	cmd_free(h, c);
3374 	return rc;
3375 }
3376 
3377 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3378 	struct bmic_identify_controller *buf, size_t bufsize)
3379 {
3380 	int rc = IO_OK;
3381 	struct CommandList *c;
3382 	struct ErrorInfo *ei;
3383 
3384 	c = cmd_alloc(h);
3385 
3386 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3387 		0, RAID_CTLR_LUNID, TYPE_CMD);
3388 	if (rc)
3389 		goto out;
3390 
3391 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3392 			NO_TIMEOUT);
3393 	if (rc)
3394 		goto out;
3395 	ei = c->err_info;
3396 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 		hpsa_scsi_interpret_error(h, c);
3398 		rc = -1;
3399 	}
3400 out:
3401 	cmd_free(h, c);
3402 	return rc;
3403 }
3404 
3405 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3406 		unsigned char scsi3addr[], u16 bmic_device_index,
3407 		struct bmic_identify_physical_device *buf, size_t bufsize)
3408 {
3409 	int rc = IO_OK;
3410 	struct CommandList *c;
3411 	struct ErrorInfo *ei;
3412 
3413 	c = cmd_alloc(h);
3414 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3415 		0, RAID_CTLR_LUNID, TYPE_CMD);
3416 	if (rc)
3417 		goto out;
3418 
3419 	c->Request.CDB[2] = bmic_device_index & 0xff;
3420 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3421 
3422 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3423 						NO_TIMEOUT);
3424 	ei = c->err_info;
3425 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3426 		hpsa_scsi_interpret_error(h, c);
3427 		rc = -1;
3428 	}
3429 out:
3430 	cmd_free(h, c);
3431 
3432 	return rc;
3433 }
3434 
3435 /*
3436  * get enclosure information
3437  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3438  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3439  * Uses id_physical_device to determine the box_index.
3440  */
3441 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3442 			unsigned char *scsi3addr,
3443 			struct ReportExtendedLUNdata *rlep, int rle_index,
3444 			struct hpsa_scsi_dev_t *encl_dev)
3445 {
3446 	int rc = -1;
3447 	struct CommandList *c = NULL;
3448 	struct ErrorInfo *ei = NULL;
3449 	struct bmic_sense_storage_box_params *bssbp = NULL;
3450 	struct bmic_identify_physical_device *id_phys = NULL;
3451 	struct ext_report_lun_entry *rle;
3452 	u16 bmic_device_index = 0;
3453 
3454 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3455 		return;
3456 
3457 	rle = &rlep->LUN[rle_index];
3458 
3459 	encl_dev->eli =
3460 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3461 
3462 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3463 
3464 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3465 		rc = IO_OK;
3466 		goto out;
3467 	}
3468 
3469 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3470 		rc = IO_OK;
3471 		goto out;
3472 	}
3473 
3474 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3475 	if (!bssbp)
3476 		goto out;
3477 
3478 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3479 	if (!id_phys)
3480 		goto out;
3481 
3482 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3483 						id_phys, sizeof(*id_phys));
3484 	if (rc) {
3485 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3486 			__func__, encl_dev->external, bmic_device_index);
3487 		goto out;
3488 	}
3489 
3490 	c = cmd_alloc(h);
3491 
3492 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3493 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3494 
3495 	if (rc)
3496 		goto out;
3497 
3498 	if (id_phys->phys_connector[1] == 'E')
3499 		c->Request.CDB[5] = id_phys->box_index;
3500 	else
3501 		c->Request.CDB[5] = 0;
3502 
3503 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3504 						NO_TIMEOUT);
3505 	if (rc)
3506 		goto out;
3507 
3508 	ei = c->err_info;
3509 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3510 		rc = -1;
3511 		goto out;
3512 	}
3513 
3514 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3515 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3516 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3517 
3518 	rc = IO_OK;
3519 out:
3520 	kfree(bssbp);
3521 	kfree(id_phys);
3522 
3523 	if (c)
3524 		cmd_free(h, c);
3525 
3526 	if (rc != IO_OK)
3527 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3528 			"Error, could not get enclosure information");
3529 }
3530 
3531 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3532 						unsigned char *scsi3addr)
3533 {
3534 	struct ReportExtendedLUNdata *physdev;
3535 	u32 nphysicals;
3536 	u64 sa = 0;
3537 	int i;
3538 
3539 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3540 	if (!physdev)
3541 		return 0;
3542 
3543 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3544 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3545 		kfree(physdev);
3546 		return 0;
3547 	}
3548 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3549 
3550 	for (i = 0; i < nphysicals; i++)
3551 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3552 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3553 			break;
3554 		}
3555 
3556 	kfree(physdev);
3557 
3558 	return sa;
3559 }
3560 
3561 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3562 					struct hpsa_scsi_dev_t *dev)
3563 {
3564 	int rc;
3565 	u64 sa = 0;
3566 
3567 	if (is_hba_lunid(scsi3addr)) {
3568 		struct bmic_sense_subsystem_info *ssi;
3569 
3570 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3571 		if (!ssi)
3572 			return;
3573 
3574 		rc = hpsa_bmic_sense_subsystem_information(h,
3575 					scsi3addr, 0, ssi, sizeof(*ssi));
3576 		if (rc == 0) {
3577 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3578 			h->sas_address = sa;
3579 		}
3580 
3581 		kfree(ssi);
3582 	} else
3583 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3584 
3585 	dev->sas_address = sa;
3586 }
3587 
3588 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3589 	struct ReportExtendedLUNdata *physdev)
3590 {
3591 	u32 nphysicals;
3592 	int i;
3593 
3594 	if (h->discovery_polling)
3595 		return;
3596 
3597 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3598 
3599 	for (i = 0; i < nphysicals; i++) {
3600 		if (physdev->LUN[i].device_type ==
3601 			BMIC_DEVICE_TYPE_CONTROLLER
3602 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3603 			dev_info(&h->pdev->dev,
3604 				"External controller present, activate discovery polling and disable rld caching\n");
3605 			hpsa_disable_rld_caching(h);
3606 			h->discovery_polling = 1;
3607 			break;
3608 		}
3609 	}
3610 }
3611 
3612 /* Get a device id from inquiry page 0x83 */
3613 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3614 	unsigned char scsi3addr[], u8 page)
3615 {
3616 	int rc;
3617 	int i;
3618 	int pages;
3619 	unsigned char *buf, bufsize;
3620 
3621 	buf = kzalloc(256, GFP_KERNEL);
3622 	if (!buf)
3623 		return false;
3624 
3625 	/* Get the size of the page list first */
3626 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3627 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3628 				buf, HPSA_VPD_HEADER_SZ);
3629 	if (rc != 0)
3630 		goto exit_unsupported;
3631 	pages = buf[3];
3632 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3633 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3634 	else
3635 		bufsize = 255;
3636 
3637 	/* Get the whole VPD page list */
3638 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3639 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3640 				buf, bufsize);
3641 	if (rc != 0)
3642 		goto exit_unsupported;
3643 
3644 	pages = buf[3];
3645 	for (i = 1; i <= pages; i++)
3646 		if (buf[3 + i] == page)
3647 			goto exit_supported;
3648 exit_unsupported:
3649 	kfree(buf);
3650 	return false;
3651 exit_supported:
3652 	kfree(buf);
3653 	return true;
3654 }
3655 
3656 /*
3657  * Called during a scan operation.
3658  * Sets ioaccel status on the new device list, not the existing device list
3659  *
3660  * The device list used during I/O will be updated later in
3661  * adjust_hpsa_scsi_table.
3662  */
3663 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3664 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3665 {
3666 	int rc;
3667 	unsigned char *buf;
3668 	u8 ioaccel_status;
3669 
3670 	this_device->offload_config = 0;
3671 	this_device->offload_enabled = 0;
3672 	this_device->offload_to_be_enabled = 0;
3673 
3674 	buf = kzalloc(64, GFP_KERNEL);
3675 	if (!buf)
3676 		return;
3677 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3678 		goto out;
3679 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3680 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3681 	if (rc != 0)
3682 		goto out;
3683 
3684 #define IOACCEL_STATUS_BYTE 4
3685 #define OFFLOAD_CONFIGURED_BIT 0x01
3686 #define OFFLOAD_ENABLED_BIT 0x02
3687 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3688 	this_device->offload_config =
3689 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3690 	if (this_device->offload_config) {
3691 		bool offload_enabled =
3692 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3693 		/*
3694 		 * Check to see if offload can be enabled.
3695 		 */
3696 		if (offload_enabled) {
3697 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3698 			if (rc) /* could not load raid_map */
3699 				goto out;
3700 			this_device->offload_to_be_enabled = 1;
3701 		}
3702 	}
3703 
3704 out:
3705 	kfree(buf);
3706 	return;
3707 }
3708 
3709 /* Get the device id from inquiry page 0x83 */
3710 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3711 	unsigned char *device_id, int index, int buflen)
3712 {
3713 	int rc;
3714 	unsigned char *buf;
3715 
3716 	/* Does controller have VPD for device id? */
3717 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3718 		return 1; /* not supported */
3719 
3720 	buf = kzalloc(64, GFP_KERNEL);
3721 	if (!buf)
3722 		return -ENOMEM;
3723 
3724 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3725 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3726 	if (rc == 0) {
3727 		if (buflen > 16)
3728 			buflen = 16;
3729 		memcpy(device_id, &buf[8], buflen);
3730 	}
3731 
3732 	kfree(buf);
3733 
3734 	return rc; /*0 - got id,  otherwise, didn't */
3735 }
3736 
3737 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3738 		void *buf, int bufsize,
3739 		int extended_response)
3740 {
3741 	int rc = IO_OK;
3742 	struct CommandList *c;
3743 	unsigned char scsi3addr[8];
3744 	struct ErrorInfo *ei;
3745 
3746 	c = cmd_alloc(h);
3747 
3748 	/* address the controller */
3749 	memset(scsi3addr, 0, sizeof(scsi3addr));
3750 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3751 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3752 		rc = -EAGAIN;
3753 		goto out;
3754 	}
3755 	if (extended_response)
3756 		c->Request.CDB[1] = extended_response;
3757 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3758 			NO_TIMEOUT);
3759 	if (rc)
3760 		goto out;
3761 	ei = c->err_info;
3762 	if (ei->CommandStatus != 0 &&
3763 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3764 		hpsa_scsi_interpret_error(h, c);
3765 		rc = -EIO;
3766 	} else {
3767 		struct ReportLUNdata *rld = buf;
3768 
3769 		if (rld->extended_response_flag != extended_response) {
3770 			if (!h->legacy_board) {
3771 				dev_err(&h->pdev->dev,
3772 					"report luns requested format %u, got %u\n",
3773 					extended_response,
3774 					rld->extended_response_flag);
3775 				rc = -EINVAL;
3776 			} else
3777 				rc = -EOPNOTSUPP;
3778 		}
3779 	}
3780 out:
3781 	cmd_free(h, c);
3782 	return rc;
3783 }
3784 
3785 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3786 		struct ReportExtendedLUNdata *buf, int bufsize)
3787 {
3788 	int rc;
3789 	struct ReportLUNdata *lbuf;
3790 
3791 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3792 				      HPSA_REPORT_PHYS_EXTENDED);
3793 	if (!rc || rc != -EOPNOTSUPP)
3794 		return rc;
3795 
3796 	/* REPORT PHYS EXTENDED is not supported */
3797 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3798 	if (!lbuf)
3799 		return -ENOMEM;
3800 
3801 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3802 	if (!rc) {
3803 		int i;
3804 		u32 nphys;
3805 
3806 		/* Copy ReportLUNdata header */
3807 		memcpy(buf, lbuf, 8);
3808 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3809 		for (i = 0; i < nphys; i++)
3810 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3811 	}
3812 	kfree(lbuf);
3813 	return rc;
3814 }
3815 
3816 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3817 		struct ReportLUNdata *buf, int bufsize)
3818 {
3819 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3820 }
3821 
3822 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3823 	int bus, int target, int lun)
3824 {
3825 	device->bus = bus;
3826 	device->target = target;
3827 	device->lun = lun;
3828 }
3829 
3830 /* Use VPD inquiry to get details of volume status */
3831 static int hpsa_get_volume_status(struct ctlr_info *h,
3832 					unsigned char scsi3addr[])
3833 {
3834 	int rc;
3835 	int status;
3836 	int size;
3837 	unsigned char *buf;
3838 
3839 	buf = kzalloc(64, GFP_KERNEL);
3840 	if (!buf)
3841 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3842 
3843 	/* Does controller have VPD for logical volume status? */
3844 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3845 		goto exit_failed;
3846 
3847 	/* Get the size of the VPD return buffer */
3848 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3849 					buf, HPSA_VPD_HEADER_SZ);
3850 	if (rc != 0)
3851 		goto exit_failed;
3852 	size = buf[3];
3853 
3854 	/* Now get the whole VPD buffer */
3855 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3856 					buf, size + HPSA_VPD_HEADER_SZ);
3857 	if (rc != 0)
3858 		goto exit_failed;
3859 	status = buf[4]; /* status byte */
3860 
3861 	kfree(buf);
3862 	return status;
3863 exit_failed:
3864 	kfree(buf);
3865 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3866 }
3867 
3868 /* Determine offline status of a volume.
3869  * Return either:
3870  *  0 (not offline)
3871  *  0xff (offline for unknown reasons)
3872  *  # (integer code indicating one of several NOT READY states
3873  *     describing why a volume is to be kept offline)
3874  */
3875 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3876 					unsigned char scsi3addr[])
3877 {
3878 	struct CommandList *c;
3879 	unsigned char *sense;
3880 	u8 sense_key, asc, ascq;
3881 	int sense_len;
3882 	int rc, ldstat = 0;
3883 	u16 cmd_status;
3884 	u8 scsi_status;
3885 #define ASC_LUN_NOT_READY 0x04
3886 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3887 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3888 
3889 	c = cmd_alloc(h);
3890 
3891 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3892 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3893 					NO_TIMEOUT);
3894 	if (rc) {
3895 		cmd_free(h, c);
3896 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3897 	}
3898 	sense = c->err_info->SenseInfo;
3899 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3900 		sense_len = sizeof(c->err_info->SenseInfo);
3901 	else
3902 		sense_len = c->err_info->SenseLen;
3903 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3904 	cmd_status = c->err_info->CommandStatus;
3905 	scsi_status = c->err_info->ScsiStatus;
3906 	cmd_free(h, c);
3907 
3908 	/* Determine the reason for not ready state */
3909 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3910 
3911 	/* Keep volume offline in certain cases: */
3912 	switch (ldstat) {
3913 	case HPSA_LV_FAILED:
3914 	case HPSA_LV_UNDERGOING_ERASE:
3915 	case HPSA_LV_NOT_AVAILABLE:
3916 	case HPSA_LV_UNDERGOING_RPI:
3917 	case HPSA_LV_PENDING_RPI:
3918 	case HPSA_LV_ENCRYPTED_NO_KEY:
3919 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3920 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3921 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3922 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3923 		return ldstat;
3924 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3925 		/* If VPD status page isn't available,
3926 		 * use ASC/ASCQ to determine state
3927 		 */
3928 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3929 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3930 			return ldstat;
3931 		break;
3932 	default:
3933 		break;
3934 	}
3935 	return HPSA_LV_OK;
3936 }
3937 
3938 static int hpsa_update_device_info(struct ctlr_info *h,
3939 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3940 	unsigned char *is_OBDR_device)
3941 {
3942 
3943 #define OBDR_SIG_OFFSET 43
3944 #define OBDR_TAPE_SIG "$DR-10"
3945 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3946 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3947 
3948 	unsigned char *inq_buff;
3949 	unsigned char *obdr_sig;
3950 	int rc = 0;
3951 
3952 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3953 	if (!inq_buff) {
3954 		rc = -ENOMEM;
3955 		goto bail_out;
3956 	}
3957 
3958 	/* Do an inquiry to the device to see what it is. */
3959 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3960 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3961 		dev_err(&h->pdev->dev,
3962 			"%s: inquiry failed, device will be skipped.\n",
3963 			__func__);
3964 		rc = HPSA_INQUIRY_FAILED;
3965 		goto bail_out;
3966 	}
3967 
3968 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3969 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3970 
3971 	this_device->devtype = (inq_buff[0] & 0x1f);
3972 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3973 	memcpy(this_device->vendor, &inq_buff[8],
3974 		sizeof(this_device->vendor));
3975 	memcpy(this_device->model, &inq_buff[16],
3976 		sizeof(this_device->model));
3977 	this_device->rev = inq_buff[2];
3978 	memset(this_device->device_id, 0,
3979 		sizeof(this_device->device_id));
3980 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3981 		sizeof(this_device->device_id)) < 0) {
3982 		dev_err(&h->pdev->dev,
3983 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3984 			h->ctlr, __func__,
3985 			h->scsi_host->host_no,
3986 			this_device->bus, this_device->target,
3987 			this_device->lun,
3988 			scsi_device_type(this_device->devtype),
3989 			this_device->model);
3990 		rc = HPSA_LV_FAILED;
3991 		goto bail_out;
3992 	}
3993 
3994 	if ((this_device->devtype == TYPE_DISK ||
3995 		this_device->devtype == TYPE_ZBC) &&
3996 		is_logical_dev_addr_mode(scsi3addr)) {
3997 		unsigned char volume_offline;
3998 
3999 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4000 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4001 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4002 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4003 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4004 		    h->legacy_board) {
4005 			/*
4006 			 * Legacy boards might not support volume status
4007 			 */
4008 			dev_info(&h->pdev->dev,
4009 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4010 				 this_device->target, this_device->lun);
4011 			volume_offline = 0;
4012 		}
4013 		this_device->volume_offline = volume_offline;
4014 		if (volume_offline == HPSA_LV_FAILED) {
4015 			rc = HPSA_LV_FAILED;
4016 			dev_err(&h->pdev->dev,
4017 				"%s: LV failed, device will be skipped.\n",
4018 				__func__);
4019 			goto bail_out;
4020 		}
4021 	} else {
4022 		this_device->raid_level = RAID_UNKNOWN;
4023 		this_device->offload_config = 0;
4024 		hpsa_turn_off_ioaccel_for_device(this_device);
4025 		this_device->hba_ioaccel_enabled = 0;
4026 		this_device->volume_offline = 0;
4027 		this_device->queue_depth = h->nr_cmds;
4028 	}
4029 
4030 	if (this_device->external)
4031 		this_device->queue_depth = EXTERNAL_QD;
4032 
4033 	if (is_OBDR_device) {
4034 		/* See if this is a One-Button-Disaster-Recovery device
4035 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4036 		 */
4037 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4038 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4039 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4040 						OBDR_SIG_LEN) == 0);
4041 	}
4042 	kfree(inq_buff);
4043 	return 0;
4044 
4045 bail_out:
4046 	kfree(inq_buff);
4047 	return rc;
4048 }
4049 
4050 /*
4051  * Helper function to assign bus, target, lun mapping of devices.
4052  * Logical drive target and lun are assigned at this time, but
4053  * physical device lun and target assignment are deferred (assigned
4054  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4055 */
4056 static void figure_bus_target_lun(struct ctlr_info *h,
4057 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4058 {
4059 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4060 
4061 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4062 		/* physical device, target and lun filled in later */
4063 		if (is_hba_lunid(lunaddrbytes)) {
4064 			int bus = HPSA_HBA_BUS;
4065 
4066 			if (!device->rev)
4067 				bus = HPSA_LEGACY_HBA_BUS;
4068 			hpsa_set_bus_target_lun(device,
4069 					bus, 0, lunid & 0x3fff);
4070 		} else
4071 			/* defer target, lun assignment for physical devices */
4072 			hpsa_set_bus_target_lun(device,
4073 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4074 		return;
4075 	}
4076 	/* It's a logical device */
4077 	if (device->external) {
4078 		hpsa_set_bus_target_lun(device,
4079 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4080 			lunid & 0x00ff);
4081 		return;
4082 	}
4083 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4084 				0, lunid & 0x3fff);
4085 }
4086 
4087 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4088 	int i, int nphysicals, int nlocal_logicals)
4089 {
4090 	/* In report logicals, local logicals are listed first,
4091 	* then any externals.
4092 	*/
4093 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4094 
4095 	if (i == raid_ctlr_position)
4096 		return 0;
4097 
4098 	if (i < logicals_start)
4099 		return 0;
4100 
4101 	/* i is in logicals range, but still within local logicals */
4102 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4103 		return 0;
4104 
4105 	return 1; /* it's an external lun */
4106 }
4107 
4108 /*
4109  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4110  * logdev.  The number of luns in physdev and logdev are returned in
4111  * *nphysicals and *nlogicals, respectively.
4112  * Returns 0 on success, -1 otherwise.
4113  */
4114 static int hpsa_gather_lun_info(struct ctlr_info *h,
4115 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4116 	struct ReportLUNdata *logdev, u32 *nlogicals)
4117 {
4118 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4119 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4120 		return -1;
4121 	}
4122 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4123 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4124 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4125 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4126 		*nphysicals = HPSA_MAX_PHYS_LUN;
4127 	}
4128 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4129 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4130 		return -1;
4131 	}
4132 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4133 	/* Reject Logicals in excess of our max capability. */
4134 	if (*nlogicals > HPSA_MAX_LUN) {
4135 		dev_warn(&h->pdev->dev,
4136 			"maximum logical LUNs (%d) exceeded.  "
4137 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4138 			*nlogicals - HPSA_MAX_LUN);
4139 		*nlogicals = HPSA_MAX_LUN;
4140 	}
4141 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4142 		dev_warn(&h->pdev->dev,
4143 			"maximum logical + physical LUNs (%d) exceeded. "
4144 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4145 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4146 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4147 	}
4148 	return 0;
4149 }
4150 
4151 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4152 	int i, int nphysicals, int nlogicals,
4153 	struct ReportExtendedLUNdata *physdev_list,
4154 	struct ReportLUNdata *logdev_list)
4155 {
4156 	/* Helper function, figure out where the LUN ID info is coming from
4157 	 * given index i, lists of physical and logical devices, where in
4158 	 * the list the raid controller is supposed to appear (first or last)
4159 	 */
4160 
4161 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4162 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4163 
4164 	if (i == raid_ctlr_position)
4165 		return RAID_CTLR_LUNID;
4166 
4167 	if (i < logicals_start)
4168 		return &physdev_list->LUN[i -
4169 				(raid_ctlr_position == 0)].lunid[0];
4170 
4171 	if (i < last_device)
4172 		return &logdev_list->LUN[i - nphysicals -
4173 			(raid_ctlr_position == 0)][0];
4174 	BUG();
4175 	return NULL;
4176 }
4177 
4178 /* get physical drive ioaccel handle and queue depth */
4179 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4180 		struct hpsa_scsi_dev_t *dev,
4181 		struct ReportExtendedLUNdata *rlep, int rle_index,
4182 		struct bmic_identify_physical_device *id_phys)
4183 {
4184 	int rc;
4185 	struct ext_report_lun_entry *rle;
4186 
4187 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4188 		return;
4189 
4190 	rle = &rlep->LUN[rle_index];
4191 
4192 	dev->ioaccel_handle = rle->ioaccel_handle;
4193 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4194 		dev->hba_ioaccel_enabled = 1;
4195 	memset(id_phys, 0, sizeof(*id_phys));
4196 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4197 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4198 			sizeof(*id_phys));
4199 	if (!rc)
4200 		/* Reserve space for FW operations */
4201 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4202 #define DRIVE_QUEUE_DEPTH 7
4203 		dev->queue_depth =
4204 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4205 				DRIVE_CMDS_RESERVED_FOR_FW;
4206 	else
4207 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4208 }
4209 
4210 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4211 	struct ReportExtendedLUNdata *rlep, int rle_index,
4212 	struct bmic_identify_physical_device *id_phys)
4213 {
4214 	struct ext_report_lun_entry *rle;
4215 
4216 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4217 		return;
4218 
4219 	rle = &rlep->LUN[rle_index];
4220 
4221 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4222 		this_device->hba_ioaccel_enabled = 1;
4223 
4224 	memcpy(&this_device->active_path_index,
4225 		&id_phys->active_path_number,
4226 		sizeof(this_device->active_path_index));
4227 	memcpy(&this_device->path_map,
4228 		&id_phys->redundant_path_present_map,
4229 		sizeof(this_device->path_map));
4230 	memcpy(&this_device->box,
4231 		&id_phys->alternate_paths_phys_box_on_port,
4232 		sizeof(this_device->box));
4233 	memcpy(&this_device->phys_connector,
4234 		&id_phys->alternate_paths_phys_connector,
4235 		sizeof(this_device->phys_connector));
4236 	memcpy(&this_device->bay,
4237 		&id_phys->phys_bay_in_box,
4238 		sizeof(this_device->bay));
4239 }
4240 
4241 /* get number of local logical disks. */
4242 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4243 	struct bmic_identify_controller *id_ctlr,
4244 	u32 *nlocals)
4245 {
4246 	int rc;
4247 
4248 	if (!id_ctlr) {
4249 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4250 			__func__);
4251 		return -ENOMEM;
4252 	}
4253 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4254 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4255 	if (!rc)
4256 		if (id_ctlr->configured_logical_drive_count < 255)
4257 			*nlocals = id_ctlr->configured_logical_drive_count;
4258 		else
4259 			*nlocals = le16_to_cpu(
4260 					id_ctlr->extended_logical_unit_count);
4261 	else
4262 		*nlocals = -1;
4263 	return rc;
4264 }
4265 
4266 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4267 {
4268 	struct bmic_identify_physical_device *id_phys;
4269 	bool is_spare = false;
4270 	int rc;
4271 
4272 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4273 	if (!id_phys)
4274 		return false;
4275 
4276 	rc = hpsa_bmic_id_physical_device(h,
4277 					lunaddrbytes,
4278 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4279 					id_phys, sizeof(*id_phys));
4280 	if (rc == 0)
4281 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4282 
4283 	kfree(id_phys);
4284 	return is_spare;
4285 }
4286 
4287 #define RPL_DEV_FLAG_NON_DISK                           0x1
4288 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4290 
4291 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4292 
4293 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4294 				struct ext_report_lun_entry *rle)
4295 {
4296 	u8 device_flags;
4297 	u8 device_type;
4298 
4299 	if (!MASKED_DEVICE(lunaddrbytes))
4300 		return false;
4301 
4302 	device_flags = rle->device_flags;
4303 	device_type = rle->device_type;
4304 
4305 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4306 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4307 			return false;
4308 		return true;
4309 	}
4310 
4311 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4312 		return false;
4313 
4314 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4315 		return false;
4316 
4317 	/*
4318 	 * Spares may be spun down, we do not want to
4319 	 * do an Inquiry to a RAID set spare drive as
4320 	 * that would have them spun up, that is a
4321 	 * performance hit because I/O to the RAID device
4322 	 * stops while the spin up occurs which can take
4323 	 * over 50 seconds.
4324 	 */
4325 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4326 		return true;
4327 
4328 	return false;
4329 }
4330 
4331 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4332 {
4333 	/* the idea here is we could get notified
4334 	 * that some devices have changed, so we do a report
4335 	 * physical luns and report logical luns cmd, and adjust
4336 	 * our list of devices accordingly.
4337 	 *
4338 	 * The scsi3addr's of devices won't change so long as the
4339 	 * adapter is not reset.  That means we can rescan and
4340 	 * tell which devices we already know about, vs. new
4341 	 * devices, vs.  disappearing devices.
4342 	 */
4343 	struct ReportExtendedLUNdata *physdev_list = NULL;
4344 	struct ReportLUNdata *logdev_list = NULL;
4345 	struct bmic_identify_physical_device *id_phys = NULL;
4346 	struct bmic_identify_controller *id_ctlr = NULL;
4347 	u32 nphysicals = 0;
4348 	u32 nlogicals = 0;
4349 	u32 nlocal_logicals = 0;
4350 	u32 ndev_allocated = 0;
4351 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4352 	int ncurrent = 0;
4353 	int i, n_ext_target_devs, ndevs_to_allocate;
4354 	int raid_ctlr_position;
4355 	bool physical_device;
4356 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4357 
4358 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364 
4365 	if (!currentsd || !physdev_list || !logdev_list ||
4366 		!tmpdevice || !id_phys || !id_ctlr) {
4367 		dev_err(&h->pdev->dev, "out of memory\n");
4368 		goto out;
4369 	}
4370 	memset(lunzerobits, 0, sizeof(lunzerobits));
4371 
4372 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4373 
4374 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4375 			logdev_list, &nlogicals)) {
4376 		h->drv_req_rescan = 1;
4377 		goto out;
4378 	}
4379 
4380 	/* Set number of local logicals (non PTRAID) */
4381 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4382 		dev_warn(&h->pdev->dev,
4383 			"%s: Can't determine number of local logical devices.\n",
4384 			__func__);
4385 	}
4386 
4387 	/* We might see up to the maximum number of logical and physical disks
4388 	 * plus external target devices, and a device for the local RAID
4389 	 * controller.
4390 	 */
4391 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4392 
4393 	hpsa_ext_ctrl_present(h, physdev_list);
4394 
4395 	/* Allocate the per device structures */
4396 	for (i = 0; i < ndevs_to_allocate; i++) {
4397 		if (i >= HPSA_MAX_DEVICES) {
4398 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4399 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4400 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4401 			break;
4402 		}
4403 
4404 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4405 		if (!currentsd[i]) {
4406 			h->drv_req_rescan = 1;
4407 			goto out;
4408 		}
4409 		ndev_allocated++;
4410 	}
4411 
4412 	if (is_scsi_rev_5(h))
4413 		raid_ctlr_position = 0;
4414 	else
4415 		raid_ctlr_position = nphysicals + nlogicals;
4416 
4417 	/* adjust our table of devices */
4418 	n_ext_target_devs = 0;
4419 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4420 		u8 *lunaddrbytes, is_OBDR = 0;
4421 		int rc = 0;
4422 		int phys_dev_index = i - (raid_ctlr_position == 0);
4423 		bool skip_device = false;
4424 
4425 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4426 
4427 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4428 
4429 		/* Figure out where the LUN ID info is coming from */
4430 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4431 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4432 
4433 		/* Determine if this is a lun from an external target array */
4434 		tmpdevice->external =
4435 			figure_external_status(h, raid_ctlr_position, i,
4436 						nphysicals, nlocal_logicals);
4437 
4438 		/*
4439 		 * Skip over some devices such as a spare.
4440 		 */
4441 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4442 			physical_device) {
4443 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4444 					&physdev_list->LUN[phys_dev_index]);
4445 			if (skip_device)
4446 				continue;
4447 		}
4448 
4449 		/* Get device type, vendor, model, device id, raid_map */
4450 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4451 							&is_OBDR);
4452 		if (rc == -ENOMEM) {
4453 			dev_warn(&h->pdev->dev,
4454 				"Out of memory, rescan deferred.\n");
4455 			h->drv_req_rescan = 1;
4456 			goto out;
4457 		}
4458 		if (rc) {
4459 			h->drv_req_rescan = 1;
4460 			continue;
4461 		}
4462 
4463 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4464 		this_device = currentsd[ncurrent];
4465 
4466 		*this_device = *tmpdevice;
4467 		this_device->physical_device = physical_device;
4468 
4469 		/*
4470 		 * Expose all devices except for physical devices that
4471 		 * are masked.
4472 		 */
4473 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4474 			this_device->expose_device = 0;
4475 		else
4476 			this_device->expose_device = 1;
4477 
4478 
4479 		/*
4480 		 * Get the SAS address for physical devices that are exposed.
4481 		 */
4482 		if (this_device->physical_device && this_device->expose_device)
4483 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4484 
4485 		switch (this_device->devtype) {
4486 		case TYPE_ROM:
4487 			/* We don't *really* support actual CD-ROM devices,
4488 			 * just "One Button Disaster Recovery" tape drive
4489 			 * which temporarily pretends to be a CD-ROM drive.
4490 			 * So we check that the device is really an OBDR tape
4491 			 * device by checking for "$DR-10" in bytes 43-48 of
4492 			 * the inquiry data.
4493 			 */
4494 			if (is_OBDR)
4495 				ncurrent++;
4496 			break;
4497 		case TYPE_DISK:
4498 		case TYPE_ZBC:
4499 			if (this_device->physical_device) {
4500 				/* The disk is in HBA mode. */
4501 				/* Never use RAID mapper in HBA mode. */
4502 				this_device->offload_enabled = 0;
4503 				hpsa_get_ioaccel_drive_info(h, this_device,
4504 					physdev_list, phys_dev_index, id_phys);
4505 				hpsa_get_path_info(this_device,
4506 					physdev_list, phys_dev_index, id_phys);
4507 			}
4508 			ncurrent++;
4509 			break;
4510 		case TYPE_TAPE:
4511 		case TYPE_MEDIUM_CHANGER:
4512 			ncurrent++;
4513 			break;
4514 		case TYPE_ENCLOSURE:
4515 			if (!this_device->external)
4516 				hpsa_get_enclosure_info(h, lunaddrbytes,
4517 						physdev_list, phys_dev_index,
4518 						this_device);
4519 			ncurrent++;
4520 			break;
4521 		case TYPE_RAID:
4522 			/* Only present the Smartarray HBA as a RAID controller.
4523 			 * If it's a RAID controller other than the HBA itself
4524 			 * (an external RAID controller, MSA500 or similar)
4525 			 * don't present it.
4526 			 */
4527 			if (!is_hba_lunid(lunaddrbytes))
4528 				break;
4529 			ncurrent++;
4530 			break;
4531 		default:
4532 			break;
4533 		}
4534 		if (ncurrent >= HPSA_MAX_DEVICES)
4535 			break;
4536 	}
4537 
4538 	if (h->sas_host == NULL) {
4539 		int rc = 0;
4540 
4541 		rc = hpsa_add_sas_host(h);
4542 		if (rc) {
4543 			dev_warn(&h->pdev->dev,
4544 				"Could not add sas host %d\n", rc);
4545 			goto out;
4546 		}
4547 	}
4548 
4549 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4550 out:
4551 	kfree(tmpdevice);
4552 	for (i = 0; i < ndev_allocated; i++)
4553 		kfree(currentsd[i]);
4554 	kfree(currentsd);
4555 	kfree(physdev_list);
4556 	kfree(logdev_list);
4557 	kfree(id_ctlr);
4558 	kfree(id_phys);
4559 }
4560 
4561 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4562 				   struct scatterlist *sg)
4563 {
4564 	u64 addr64 = (u64) sg_dma_address(sg);
4565 	unsigned int len = sg_dma_len(sg);
4566 
4567 	desc->Addr = cpu_to_le64(addr64);
4568 	desc->Len = cpu_to_le32(len);
4569 	desc->Ext = 0;
4570 }
4571 
4572 /*
4573  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4574  * dma mapping  and fills in the scatter gather entries of the
4575  * hpsa command, cp.
4576  */
4577 static int hpsa_scatter_gather(struct ctlr_info *h,
4578 		struct CommandList *cp,
4579 		struct scsi_cmnd *cmd)
4580 {
4581 	struct scatterlist *sg;
4582 	int use_sg, i, sg_limit, chained, last_sg;
4583 	struct SGDescriptor *curr_sg;
4584 
4585 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4586 
4587 	use_sg = scsi_dma_map(cmd);
4588 	if (use_sg < 0)
4589 		return use_sg;
4590 
4591 	if (!use_sg)
4592 		goto sglist_finished;
4593 
4594 	/*
4595 	 * If the number of entries is greater than the max for a single list,
4596 	 * then we have a chained list; we will set up all but one entry in the
4597 	 * first list (the last entry is saved for link information);
4598 	 * otherwise, we don't have a chained list and we'll set up at each of
4599 	 * the entries in the one list.
4600 	 */
4601 	curr_sg = cp->SG;
4602 	chained = use_sg > h->max_cmd_sg_entries;
4603 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4604 	last_sg = scsi_sg_count(cmd) - 1;
4605 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4606 		hpsa_set_sg_descriptor(curr_sg, sg);
4607 		curr_sg++;
4608 	}
4609 
4610 	if (chained) {
4611 		/*
4612 		 * Continue with the chained list.  Set curr_sg to the chained
4613 		 * list.  Modify the limit to the total count less the entries
4614 		 * we've already set up.  Resume the scan at the list entry
4615 		 * where the previous loop left off.
4616 		 */
4617 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4618 		sg_limit = use_sg - sg_limit;
4619 		for_each_sg(sg, sg, sg_limit, i) {
4620 			hpsa_set_sg_descriptor(curr_sg, sg);
4621 			curr_sg++;
4622 		}
4623 	}
4624 
4625 	/* Back the pointer up to the last entry and mark it as "last". */
4626 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4627 
4628 	if (use_sg + chained > h->maxSG)
4629 		h->maxSG = use_sg + chained;
4630 
4631 	if (chained) {
4632 		cp->Header.SGList = h->max_cmd_sg_entries;
4633 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4634 		if (hpsa_map_sg_chain_block(h, cp)) {
4635 			scsi_dma_unmap(cmd);
4636 			return -1;
4637 		}
4638 		return 0;
4639 	}
4640 
4641 sglist_finished:
4642 
4643 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4644 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4645 	return 0;
4646 }
4647 
4648 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4649 						u8 *cdb, int cdb_len,
4650 						const char *func)
4651 {
4652 	dev_warn(&h->pdev->dev,
4653 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4654 		 func, cdb_len, cdb);
4655 }
4656 
4657 #define IO_ACCEL_INELIGIBLE 1
4658 /* zero-length transfers trigger hardware errors. */
4659 static bool is_zero_length_transfer(u8 *cdb)
4660 {
4661 	u32 block_cnt;
4662 
4663 	/* Block zero-length transfer sizes on certain commands. */
4664 	switch (cdb[0]) {
4665 	case READ_10:
4666 	case WRITE_10:
4667 	case VERIFY:		/* 0x2F */
4668 	case WRITE_VERIFY:	/* 0x2E */
4669 		block_cnt = get_unaligned_be16(&cdb[7]);
4670 		break;
4671 	case READ_12:
4672 	case WRITE_12:
4673 	case VERIFY_12: /* 0xAF */
4674 	case WRITE_VERIFY_12:	/* 0xAE */
4675 		block_cnt = get_unaligned_be32(&cdb[6]);
4676 		break;
4677 	case READ_16:
4678 	case WRITE_16:
4679 	case VERIFY_16:		/* 0x8F */
4680 		block_cnt = get_unaligned_be32(&cdb[10]);
4681 		break;
4682 	default:
4683 		return false;
4684 	}
4685 
4686 	return block_cnt == 0;
4687 }
4688 
4689 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4690 {
4691 	int is_write = 0;
4692 	u32 block;
4693 	u32 block_cnt;
4694 
4695 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4696 	switch (cdb[0]) {
4697 	case WRITE_6:
4698 	case WRITE_12:
4699 		is_write = 1;
4700 		fallthrough;
4701 	case READ_6:
4702 	case READ_12:
4703 		if (*cdb_len == 6) {
4704 			block = (((cdb[1] & 0x1F) << 16) |
4705 				(cdb[2] << 8) |
4706 				cdb[3]);
4707 			block_cnt = cdb[4];
4708 			if (block_cnt == 0)
4709 				block_cnt = 256;
4710 		} else {
4711 			BUG_ON(*cdb_len != 12);
4712 			block = get_unaligned_be32(&cdb[2]);
4713 			block_cnt = get_unaligned_be32(&cdb[6]);
4714 		}
4715 		if (block_cnt > 0xffff)
4716 			return IO_ACCEL_INELIGIBLE;
4717 
4718 		cdb[0] = is_write ? WRITE_10 : READ_10;
4719 		cdb[1] = 0;
4720 		cdb[2] = (u8) (block >> 24);
4721 		cdb[3] = (u8) (block >> 16);
4722 		cdb[4] = (u8) (block >> 8);
4723 		cdb[5] = (u8) (block);
4724 		cdb[6] = 0;
4725 		cdb[7] = (u8) (block_cnt >> 8);
4726 		cdb[8] = (u8) (block_cnt);
4727 		cdb[9] = 0;
4728 		*cdb_len = 10;
4729 		break;
4730 	}
4731 	return 0;
4732 }
4733 
4734 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4735 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4736 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4737 {
4738 	struct scsi_cmnd *cmd = c->scsi_cmd;
4739 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4740 	unsigned int len;
4741 	unsigned int total_len = 0;
4742 	struct scatterlist *sg;
4743 	u64 addr64;
4744 	int use_sg, i;
4745 	struct SGDescriptor *curr_sg;
4746 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4747 
4748 	/* TODO: implement chaining support */
4749 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4750 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4751 		return IO_ACCEL_INELIGIBLE;
4752 	}
4753 
4754 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4755 
4756 	if (is_zero_length_transfer(cdb)) {
4757 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4758 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4759 		return IO_ACCEL_INELIGIBLE;
4760 	}
4761 
4762 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4763 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4764 		return IO_ACCEL_INELIGIBLE;
4765 	}
4766 
4767 	c->cmd_type = CMD_IOACCEL1;
4768 
4769 	/* Adjust the DMA address to point to the accelerated command buffer */
4770 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4771 				(c->cmdindex * sizeof(*cp));
4772 	BUG_ON(c->busaddr & 0x0000007F);
4773 
4774 	use_sg = scsi_dma_map(cmd);
4775 	if (use_sg < 0) {
4776 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4777 		return use_sg;
4778 	}
4779 
4780 	if (use_sg) {
4781 		curr_sg = cp->SG;
4782 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4783 			addr64 = (u64) sg_dma_address(sg);
4784 			len  = sg_dma_len(sg);
4785 			total_len += len;
4786 			curr_sg->Addr = cpu_to_le64(addr64);
4787 			curr_sg->Len = cpu_to_le32(len);
4788 			curr_sg->Ext = cpu_to_le32(0);
4789 			curr_sg++;
4790 		}
4791 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4792 
4793 		switch (cmd->sc_data_direction) {
4794 		case DMA_TO_DEVICE:
4795 			control |= IOACCEL1_CONTROL_DATA_OUT;
4796 			break;
4797 		case DMA_FROM_DEVICE:
4798 			control |= IOACCEL1_CONTROL_DATA_IN;
4799 			break;
4800 		case DMA_NONE:
4801 			control |= IOACCEL1_CONTROL_NODATAXFER;
4802 			break;
4803 		default:
4804 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4805 			cmd->sc_data_direction);
4806 			BUG();
4807 			break;
4808 		}
4809 	} else {
4810 		control |= IOACCEL1_CONTROL_NODATAXFER;
4811 	}
4812 
4813 	c->Header.SGList = use_sg;
4814 	/* Fill out the command structure to submit */
4815 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4816 	cp->transfer_len = cpu_to_le32(total_len);
4817 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4818 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4819 	cp->control = cpu_to_le32(control);
4820 	memcpy(cp->CDB, cdb, cdb_len);
4821 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4822 	/* Tag was already set at init time. */
4823 	enqueue_cmd_and_start_io(h, c);
4824 	return 0;
4825 }
4826 
4827 /*
4828  * Queue a command directly to a device behind the controller using the
4829  * I/O accelerator path.
4830  */
4831 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4832 	struct CommandList *c)
4833 {
4834 	struct scsi_cmnd *cmd = c->scsi_cmd;
4835 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4836 
4837 	if (!dev)
4838 		return -1;
4839 
4840 	c->phys_disk = dev;
4841 
4842 	if (dev->in_reset)
4843 		return -1;
4844 
4845 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4846 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4847 }
4848 
4849 /*
4850  * Set encryption parameters for the ioaccel2 request
4851  */
4852 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4853 	struct CommandList *c, struct io_accel2_cmd *cp)
4854 {
4855 	struct scsi_cmnd *cmd = c->scsi_cmd;
4856 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4857 	struct raid_map_data *map = &dev->raid_map;
4858 	u64 first_block;
4859 
4860 	/* Are we doing encryption on this device */
4861 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4862 		return;
4863 	/* Set the data encryption key index. */
4864 	cp->dekindex = map->dekindex;
4865 
4866 	/* Set the encryption enable flag, encoded into direction field. */
4867 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4868 
4869 	/* Set encryption tweak values based on logical block address
4870 	 * If block size is 512, tweak value is LBA.
4871 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4872 	 */
4873 	switch (cmd->cmnd[0]) {
4874 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4875 	case READ_6:
4876 	case WRITE_6:
4877 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4878 				(cmd->cmnd[2] << 8) |
4879 				cmd->cmnd[3]);
4880 		break;
4881 	case WRITE_10:
4882 	case READ_10:
4883 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4884 	case WRITE_12:
4885 	case READ_12:
4886 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4887 		break;
4888 	case WRITE_16:
4889 	case READ_16:
4890 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4891 		break;
4892 	default:
4893 		dev_err(&h->pdev->dev,
4894 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4895 			__func__, cmd->cmnd[0]);
4896 		BUG();
4897 		break;
4898 	}
4899 
4900 	if (le32_to_cpu(map->volume_blk_size) != 512)
4901 		first_block = first_block *
4902 				le32_to_cpu(map->volume_blk_size)/512;
4903 
4904 	cp->tweak_lower = cpu_to_le32(first_block);
4905 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4906 }
4907 
4908 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4909 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4910 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4911 {
4912 	struct scsi_cmnd *cmd = c->scsi_cmd;
4913 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4914 	struct ioaccel2_sg_element *curr_sg;
4915 	int use_sg, i;
4916 	struct scatterlist *sg;
4917 	u64 addr64;
4918 	u32 len;
4919 	u32 total_len = 0;
4920 
4921 	if (!cmd->device)
4922 		return -1;
4923 
4924 	if (!cmd->device->hostdata)
4925 		return -1;
4926 
4927 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4928 
4929 	if (is_zero_length_transfer(cdb)) {
4930 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4931 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4932 		return IO_ACCEL_INELIGIBLE;
4933 	}
4934 
4935 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4936 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4937 		return IO_ACCEL_INELIGIBLE;
4938 	}
4939 
4940 	c->cmd_type = CMD_IOACCEL2;
4941 	/* Adjust the DMA address to point to the accelerated command buffer */
4942 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4943 				(c->cmdindex * sizeof(*cp));
4944 	BUG_ON(c->busaddr & 0x0000007F);
4945 
4946 	memset(cp, 0, sizeof(*cp));
4947 	cp->IU_type = IOACCEL2_IU_TYPE;
4948 
4949 	use_sg = scsi_dma_map(cmd);
4950 	if (use_sg < 0) {
4951 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4952 		return use_sg;
4953 	}
4954 
4955 	if (use_sg) {
4956 		curr_sg = cp->sg;
4957 		if (use_sg > h->ioaccel_maxsg) {
4958 			addr64 = le64_to_cpu(
4959 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4960 			curr_sg->address = cpu_to_le64(addr64);
4961 			curr_sg->length = 0;
4962 			curr_sg->reserved[0] = 0;
4963 			curr_sg->reserved[1] = 0;
4964 			curr_sg->reserved[2] = 0;
4965 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4966 
4967 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4968 		}
4969 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4970 			addr64 = (u64) sg_dma_address(sg);
4971 			len  = sg_dma_len(sg);
4972 			total_len += len;
4973 			curr_sg->address = cpu_to_le64(addr64);
4974 			curr_sg->length = cpu_to_le32(len);
4975 			curr_sg->reserved[0] = 0;
4976 			curr_sg->reserved[1] = 0;
4977 			curr_sg->reserved[2] = 0;
4978 			curr_sg->chain_indicator = 0;
4979 			curr_sg++;
4980 		}
4981 
4982 		/*
4983 		 * Set the last s/g element bit
4984 		 */
4985 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4986 
4987 		switch (cmd->sc_data_direction) {
4988 		case DMA_TO_DEVICE:
4989 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4990 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4991 			break;
4992 		case DMA_FROM_DEVICE:
4993 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4994 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4995 			break;
4996 		case DMA_NONE:
4997 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4998 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4999 			break;
5000 		default:
5001 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5002 				cmd->sc_data_direction);
5003 			BUG();
5004 			break;
5005 		}
5006 	} else {
5007 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5008 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5009 	}
5010 
5011 	/* Set encryption parameters, if necessary */
5012 	set_encrypt_ioaccel2(h, c, cp);
5013 
5014 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5015 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5016 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5017 
5018 	cp->data_len = cpu_to_le32(total_len);
5019 	cp->err_ptr = cpu_to_le64(c->busaddr +
5020 			offsetof(struct io_accel2_cmd, error_data));
5021 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5022 
5023 	/* fill in sg elements */
5024 	if (use_sg > h->ioaccel_maxsg) {
5025 		cp->sg_count = 1;
5026 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5027 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5028 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5029 			scsi_dma_unmap(cmd);
5030 			return -1;
5031 		}
5032 	} else
5033 		cp->sg_count = (u8) use_sg;
5034 
5035 	if (phys_disk->in_reset) {
5036 		cmd->result = DID_RESET << 16;
5037 		return -1;
5038 	}
5039 
5040 	enqueue_cmd_and_start_io(h, c);
5041 	return 0;
5042 }
5043 
5044 /*
5045  * Queue a command to the correct I/O accelerator path.
5046  */
5047 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5048 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5049 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5050 {
5051 	if (!c->scsi_cmd->device)
5052 		return -1;
5053 
5054 	if (!c->scsi_cmd->device->hostdata)
5055 		return -1;
5056 
5057 	if (phys_disk->in_reset)
5058 		return -1;
5059 
5060 	/* Try to honor the device's queue depth */
5061 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5062 					phys_disk->queue_depth) {
5063 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5064 		return IO_ACCEL_INELIGIBLE;
5065 	}
5066 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5067 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5068 						cdb, cdb_len, scsi3addr,
5069 						phys_disk);
5070 	else
5071 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5072 						cdb, cdb_len, scsi3addr,
5073 						phys_disk);
5074 }
5075 
5076 static void raid_map_helper(struct raid_map_data *map,
5077 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5078 {
5079 	if (offload_to_mirror == 0)  {
5080 		/* use physical disk in the first mirrored group. */
5081 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5082 		return;
5083 	}
5084 	do {
5085 		/* determine mirror group that *map_index indicates */
5086 		*current_group = *map_index /
5087 			le16_to_cpu(map->data_disks_per_row);
5088 		if (offload_to_mirror == *current_group)
5089 			continue;
5090 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5091 			/* select map index from next group */
5092 			*map_index += le16_to_cpu(map->data_disks_per_row);
5093 			(*current_group)++;
5094 		} else {
5095 			/* select map index from first group */
5096 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5097 			*current_group = 0;
5098 		}
5099 	} while (offload_to_mirror != *current_group);
5100 }
5101 
5102 /*
5103  * Attempt to perform offload RAID mapping for a logical volume I/O.
5104  */
5105 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5106 	struct CommandList *c)
5107 {
5108 	struct scsi_cmnd *cmd = c->scsi_cmd;
5109 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5110 	struct raid_map_data *map = &dev->raid_map;
5111 	struct raid_map_disk_data *dd = &map->data[0];
5112 	int is_write = 0;
5113 	u32 map_index;
5114 	u64 first_block, last_block;
5115 	u32 block_cnt;
5116 	u32 blocks_per_row;
5117 	u64 first_row, last_row;
5118 	u32 first_row_offset, last_row_offset;
5119 	u32 first_column, last_column;
5120 	u64 r0_first_row, r0_last_row;
5121 	u32 r5or6_blocks_per_row;
5122 	u64 r5or6_first_row, r5or6_last_row;
5123 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5124 	u32 r5or6_first_column, r5or6_last_column;
5125 	u32 total_disks_per_row;
5126 	u32 stripesize;
5127 	u32 first_group, last_group, current_group;
5128 	u32 map_row;
5129 	u32 disk_handle;
5130 	u64 disk_block;
5131 	u32 disk_block_cnt;
5132 	u8 cdb[16];
5133 	u8 cdb_len;
5134 	u16 strip_size;
5135 #if BITS_PER_LONG == 32
5136 	u64 tmpdiv;
5137 #endif
5138 	int offload_to_mirror;
5139 
5140 	if (!dev)
5141 		return -1;
5142 
5143 	if (dev->in_reset)
5144 		return -1;
5145 
5146 	/* check for valid opcode, get LBA and block count */
5147 	switch (cmd->cmnd[0]) {
5148 	case WRITE_6:
5149 		is_write = 1;
5150 		fallthrough;
5151 	case READ_6:
5152 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5153 				(cmd->cmnd[2] << 8) |
5154 				cmd->cmnd[3]);
5155 		block_cnt = cmd->cmnd[4];
5156 		if (block_cnt == 0)
5157 			block_cnt = 256;
5158 		break;
5159 	case WRITE_10:
5160 		is_write = 1;
5161 		fallthrough;
5162 	case READ_10:
5163 		first_block =
5164 			(((u64) cmd->cmnd[2]) << 24) |
5165 			(((u64) cmd->cmnd[3]) << 16) |
5166 			(((u64) cmd->cmnd[4]) << 8) |
5167 			cmd->cmnd[5];
5168 		block_cnt =
5169 			(((u32) cmd->cmnd[7]) << 8) |
5170 			cmd->cmnd[8];
5171 		break;
5172 	case WRITE_12:
5173 		is_write = 1;
5174 		fallthrough;
5175 	case READ_12:
5176 		first_block =
5177 			(((u64) cmd->cmnd[2]) << 24) |
5178 			(((u64) cmd->cmnd[3]) << 16) |
5179 			(((u64) cmd->cmnd[4]) << 8) |
5180 			cmd->cmnd[5];
5181 		block_cnt =
5182 			(((u32) cmd->cmnd[6]) << 24) |
5183 			(((u32) cmd->cmnd[7]) << 16) |
5184 			(((u32) cmd->cmnd[8]) << 8) |
5185 		cmd->cmnd[9];
5186 		break;
5187 	case WRITE_16:
5188 		is_write = 1;
5189 		fallthrough;
5190 	case READ_16:
5191 		first_block =
5192 			(((u64) cmd->cmnd[2]) << 56) |
5193 			(((u64) cmd->cmnd[3]) << 48) |
5194 			(((u64) cmd->cmnd[4]) << 40) |
5195 			(((u64) cmd->cmnd[5]) << 32) |
5196 			(((u64) cmd->cmnd[6]) << 24) |
5197 			(((u64) cmd->cmnd[7]) << 16) |
5198 			(((u64) cmd->cmnd[8]) << 8) |
5199 			cmd->cmnd[9];
5200 		block_cnt =
5201 			(((u32) cmd->cmnd[10]) << 24) |
5202 			(((u32) cmd->cmnd[11]) << 16) |
5203 			(((u32) cmd->cmnd[12]) << 8) |
5204 			cmd->cmnd[13];
5205 		break;
5206 	default:
5207 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5208 	}
5209 	last_block = first_block + block_cnt - 1;
5210 
5211 	/* check for write to non-RAID-0 */
5212 	if (is_write && dev->raid_level != 0)
5213 		return IO_ACCEL_INELIGIBLE;
5214 
5215 	/* check for invalid block or wraparound */
5216 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5217 		last_block < first_block)
5218 		return IO_ACCEL_INELIGIBLE;
5219 
5220 	/* calculate stripe information for the request */
5221 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5222 				le16_to_cpu(map->strip_size);
5223 	strip_size = le16_to_cpu(map->strip_size);
5224 #if BITS_PER_LONG == 32
5225 	tmpdiv = first_block;
5226 	(void) do_div(tmpdiv, blocks_per_row);
5227 	first_row = tmpdiv;
5228 	tmpdiv = last_block;
5229 	(void) do_div(tmpdiv, blocks_per_row);
5230 	last_row = tmpdiv;
5231 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5232 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5233 	tmpdiv = first_row_offset;
5234 	(void) do_div(tmpdiv, strip_size);
5235 	first_column = tmpdiv;
5236 	tmpdiv = last_row_offset;
5237 	(void) do_div(tmpdiv, strip_size);
5238 	last_column = tmpdiv;
5239 #else
5240 	first_row = first_block / blocks_per_row;
5241 	last_row = last_block / blocks_per_row;
5242 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5243 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5244 	first_column = first_row_offset / strip_size;
5245 	last_column = last_row_offset / strip_size;
5246 #endif
5247 
5248 	/* if this isn't a single row/column then give to the controller */
5249 	if ((first_row != last_row) || (first_column != last_column))
5250 		return IO_ACCEL_INELIGIBLE;
5251 
5252 	/* proceeding with driver mapping */
5253 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5254 				le16_to_cpu(map->metadata_disks_per_row);
5255 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5256 				le16_to_cpu(map->row_cnt);
5257 	map_index = (map_row * total_disks_per_row) + first_column;
5258 
5259 	switch (dev->raid_level) {
5260 	case HPSA_RAID_0:
5261 		break; /* nothing special to do */
5262 	case HPSA_RAID_1:
5263 		/* Handles load balance across RAID 1 members.
5264 		 * (2-drive R1 and R10 with even # of drives.)
5265 		 * Appropriate for SSDs, not optimal for HDDs
5266 		 * Ensure we have the correct raid_map.
5267 		 */
5268 		if (le16_to_cpu(map->layout_map_count) != 2) {
5269 			hpsa_turn_off_ioaccel_for_device(dev);
5270 			return IO_ACCEL_INELIGIBLE;
5271 		}
5272 		if (dev->offload_to_mirror)
5273 			map_index += le16_to_cpu(map->data_disks_per_row);
5274 		dev->offload_to_mirror = !dev->offload_to_mirror;
5275 		break;
5276 	case HPSA_RAID_ADM:
5277 		/* Handles N-way mirrors  (R1-ADM)
5278 		 * and R10 with # of drives divisible by 3.)
5279 		 * Ensure we have the correct raid_map.
5280 		 */
5281 		if (le16_to_cpu(map->layout_map_count) != 3) {
5282 			hpsa_turn_off_ioaccel_for_device(dev);
5283 			return IO_ACCEL_INELIGIBLE;
5284 		}
5285 
5286 		offload_to_mirror = dev->offload_to_mirror;
5287 		raid_map_helper(map, offload_to_mirror,
5288 				&map_index, &current_group);
5289 		/* set mirror group to use next time */
5290 		offload_to_mirror =
5291 			(offload_to_mirror >=
5292 			le16_to_cpu(map->layout_map_count) - 1)
5293 			? 0 : offload_to_mirror + 1;
5294 		dev->offload_to_mirror = offload_to_mirror;
5295 		/* Avoid direct use of dev->offload_to_mirror within this
5296 		 * function since multiple threads might simultaneously
5297 		 * increment it beyond the range of dev->layout_map_count -1.
5298 		 */
5299 		break;
5300 	case HPSA_RAID_5:
5301 	case HPSA_RAID_6:
5302 		if (le16_to_cpu(map->layout_map_count) <= 1)
5303 			break;
5304 
5305 		/* Verify first and last block are in same RAID group */
5306 		r5or6_blocks_per_row =
5307 			le16_to_cpu(map->strip_size) *
5308 			le16_to_cpu(map->data_disks_per_row);
5309 		if (r5or6_blocks_per_row == 0) {
5310 			hpsa_turn_off_ioaccel_for_device(dev);
5311 			return IO_ACCEL_INELIGIBLE;
5312 		}
5313 		stripesize = r5or6_blocks_per_row *
5314 			le16_to_cpu(map->layout_map_count);
5315 #if BITS_PER_LONG == 32
5316 		tmpdiv = first_block;
5317 		first_group = do_div(tmpdiv, stripesize);
5318 		tmpdiv = first_group;
5319 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5320 		first_group = tmpdiv;
5321 		tmpdiv = last_block;
5322 		last_group = do_div(tmpdiv, stripesize);
5323 		tmpdiv = last_group;
5324 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5325 		last_group = tmpdiv;
5326 #else
5327 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5328 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5329 #endif
5330 		if (first_group != last_group)
5331 			return IO_ACCEL_INELIGIBLE;
5332 
5333 		/* Verify request is in a single row of RAID 5/6 */
5334 #if BITS_PER_LONG == 32
5335 		tmpdiv = first_block;
5336 		(void) do_div(tmpdiv, stripesize);
5337 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5338 		tmpdiv = last_block;
5339 		(void) do_div(tmpdiv, stripesize);
5340 		r5or6_last_row = r0_last_row = tmpdiv;
5341 #else
5342 		first_row = r5or6_first_row = r0_first_row =
5343 						first_block / stripesize;
5344 		r5or6_last_row = r0_last_row = last_block / stripesize;
5345 #endif
5346 		if (r5or6_first_row != r5or6_last_row)
5347 			return IO_ACCEL_INELIGIBLE;
5348 
5349 
5350 		/* Verify request is in a single column */
5351 #if BITS_PER_LONG == 32
5352 		tmpdiv = first_block;
5353 		first_row_offset = do_div(tmpdiv, stripesize);
5354 		tmpdiv = first_row_offset;
5355 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5356 		r5or6_first_row_offset = first_row_offset;
5357 		tmpdiv = last_block;
5358 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5359 		tmpdiv = r5or6_last_row_offset;
5360 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5361 		tmpdiv = r5or6_first_row_offset;
5362 		(void) do_div(tmpdiv, map->strip_size);
5363 		first_column = r5or6_first_column = tmpdiv;
5364 		tmpdiv = r5or6_last_row_offset;
5365 		(void) do_div(tmpdiv, map->strip_size);
5366 		r5or6_last_column = tmpdiv;
5367 #else
5368 		first_row_offset = r5or6_first_row_offset =
5369 			(u32)((first_block % stripesize) %
5370 						r5or6_blocks_per_row);
5371 
5372 		r5or6_last_row_offset =
5373 			(u32)((last_block % stripesize) %
5374 						r5or6_blocks_per_row);
5375 
5376 		first_column = r5or6_first_column =
5377 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5378 		r5or6_last_column =
5379 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5380 #endif
5381 		if (r5or6_first_column != r5or6_last_column)
5382 			return IO_ACCEL_INELIGIBLE;
5383 
5384 		/* Request is eligible */
5385 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5386 			le16_to_cpu(map->row_cnt);
5387 
5388 		map_index = (first_group *
5389 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5390 			(map_row * total_disks_per_row) + first_column;
5391 		break;
5392 	default:
5393 		return IO_ACCEL_INELIGIBLE;
5394 	}
5395 
5396 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5397 		return IO_ACCEL_INELIGIBLE;
5398 
5399 	c->phys_disk = dev->phys_disk[map_index];
5400 	if (!c->phys_disk)
5401 		return IO_ACCEL_INELIGIBLE;
5402 
5403 	disk_handle = dd[map_index].ioaccel_handle;
5404 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5405 			first_row * le16_to_cpu(map->strip_size) +
5406 			(first_row_offset - first_column *
5407 			le16_to_cpu(map->strip_size));
5408 	disk_block_cnt = block_cnt;
5409 
5410 	/* handle differing logical/physical block sizes */
5411 	if (map->phys_blk_shift) {
5412 		disk_block <<= map->phys_blk_shift;
5413 		disk_block_cnt <<= map->phys_blk_shift;
5414 	}
5415 	BUG_ON(disk_block_cnt > 0xffff);
5416 
5417 	/* build the new CDB for the physical disk I/O */
5418 	if (disk_block > 0xffffffff) {
5419 		cdb[0] = is_write ? WRITE_16 : READ_16;
5420 		cdb[1] = 0;
5421 		cdb[2] = (u8) (disk_block >> 56);
5422 		cdb[3] = (u8) (disk_block >> 48);
5423 		cdb[4] = (u8) (disk_block >> 40);
5424 		cdb[5] = (u8) (disk_block >> 32);
5425 		cdb[6] = (u8) (disk_block >> 24);
5426 		cdb[7] = (u8) (disk_block >> 16);
5427 		cdb[8] = (u8) (disk_block >> 8);
5428 		cdb[9] = (u8) (disk_block);
5429 		cdb[10] = (u8) (disk_block_cnt >> 24);
5430 		cdb[11] = (u8) (disk_block_cnt >> 16);
5431 		cdb[12] = (u8) (disk_block_cnt >> 8);
5432 		cdb[13] = (u8) (disk_block_cnt);
5433 		cdb[14] = 0;
5434 		cdb[15] = 0;
5435 		cdb_len = 16;
5436 	} else {
5437 		cdb[0] = is_write ? WRITE_10 : READ_10;
5438 		cdb[1] = 0;
5439 		cdb[2] = (u8) (disk_block >> 24);
5440 		cdb[3] = (u8) (disk_block >> 16);
5441 		cdb[4] = (u8) (disk_block >> 8);
5442 		cdb[5] = (u8) (disk_block);
5443 		cdb[6] = 0;
5444 		cdb[7] = (u8) (disk_block_cnt >> 8);
5445 		cdb[8] = (u8) (disk_block_cnt);
5446 		cdb[9] = 0;
5447 		cdb_len = 10;
5448 	}
5449 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5450 						dev->scsi3addr,
5451 						dev->phys_disk[map_index]);
5452 }
5453 
5454 /*
5455  * Submit commands down the "normal" RAID stack path
5456  * All callers to hpsa_ciss_submit must check lockup_detected
5457  * beforehand, before (opt.) and after calling cmd_alloc
5458  */
5459 static int hpsa_ciss_submit(struct ctlr_info *h,
5460 	struct CommandList *c, struct scsi_cmnd *cmd,
5461 	struct hpsa_scsi_dev_t *dev)
5462 {
5463 	cmd->host_scribble = (unsigned char *) c;
5464 	c->cmd_type = CMD_SCSI;
5465 	c->scsi_cmd = cmd;
5466 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5467 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5468 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5469 
5470 	/* Fill in the request block... */
5471 
5472 	c->Request.Timeout = 0;
5473 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5474 	c->Request.CDBLen = cmd->cmd_len;
5475 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5476 	switch (cmd->sc_data_direction) {
5477 	case DMA_TO_DEVICE:
5478 		c->Request.type_attr_dir =
5479 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5480 		break;
5481 	case DMA_FROM_DEVICE:
5482 		c->Request.type_attr_dir =
5483 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5484 		break;
5485 	case DMA_NONE:
5486 		c->Request.type_attr_dir =
5487 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5488 		break;
5489 	case DMA_BIDIRECTIONAL:
5490 		/* This can happen if a buggy application does a scsi passthru
5491 		 * and sets both inlen and outlen to non-zero. ( see
5492 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5493 		 */
5494 
5495 		c->Request.type_attr_dir =
5496 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5497 		/* This is technically wrong, and hpsa controllers should
5498 		 * reject it with CMD_INVALID, which is the most correct
5499 		 * response, but non-fibre backends appear to let it
5500 		 * slide by, and give the same results as if this field
5501 		 * were set correctly.  Either way is acceptable for
5502 		 * our purposes here.
5503 		 */
5504 
5505 		break;
5506 
5507 	default:
5508 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5509 			cmd->sc_data_direction);
5510 		BUG();
5511 		break;
5512 	}
5513 
5514 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5515 		hpsa_cmd_resolve_and_free(h, c);
5516 		return SCSI_MLQUEUE_HOST_BUSY;
5517 	}
5518 
5519 	if (dev->in_reset) {
5520 		hpsa_cmd_resolve_and_free(h, c);
5521 		return SCSI_MLQUEUE_HOST_BUSY;
5522 	}
5523 
5524 	c->device = dev;
5525 
5526 	enqueue_cmd_and_start_io(h, c);
5527 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5528 	return 0;
5529 }
5530 
5531 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5532 				struct CommandList *c)
5533 {
5534 	dma_addr_t cmd_dma_handle, err_dma_handle;
5535 
5536 	/* Zero out all of commandlist except the last field, refcount */
5537 	memset(c, 0, offsetof(struct CommandList, refcount));
5538 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5539 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5540 	c->err_info = h->errinfo_pool + index;
5541 	memset(c->err_info, 0, sizeof(*c->err_info));
5542 	err_dma_handle = h->errinfo_pool_dhandle
5543 	    + index * sizeof(*c->err_info);
5544 	c->cmdindex = index;
5545 	c->busaddr = (u32) cmd_dma_handle;
5546 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5547 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5548 	c->h = h;
5549 	c->scsi_cmd = SCSI_CMD_IDLE;
5550 }
5551 
5552 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5553 {
5554 	int i;
5555 
5556 	for (i = 0; i < h->nr_cmds; i++) {
5557 		struct CommandList *c = h->cmd_pool + i;
5558 
5559 		hpsa_cmd_init(h, i, c);
5560 		atomic_set(&c->refcount, 0);
5561 	}
5562 }
5563 
5564 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5565 				struct CommandList *c)
5566 {
5567 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5568 
5569 	BUG_ON(c->cmdindex != index);
5570 
5571 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5572 	memset(c->err_info, 0, sizeof(*c->err_info));
5573 	c->busaddr = (u32) cmd_dma_handle;
5574 }
5575 
5576 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5577 		struct CommandList *c, struct scsi_cmnd *cmd)
5578 {
5579 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5580 	int rc = IO_ACCEL_INELIGIBLE;
5581 
5582 	if (!dev)
5583 		return SCSI_MLQUEUE_HOST_BUSY;
5584 
5585 	if (dev->in_reset)
5586 		return SCSI_MLQUEUE_HOST_BUSY;
5587 
5588 	if (hpsa_simple_mode)
5589 		return IO_ACCEL_INELIGIBLE;
5590 
5591 	cmd->host_scribble = (unsigned char *) c;
5592 
5593 	if (dev->offload_enabled) {
5594 		hpsa_cmd_init(h, c->cmdindex, c);
5595 		c->cmd_type = CMD_SCSI;
5596 		c->scsi_cmd = cmd;
5597 		c->device = dev;
5598 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599 		if (rc < 0)     /* scsi_dma_map failed. */
5600 			rc = SCSI_MLQUEUE_HOST_BUSY;
5601 	} else if (dev->hba_ioaccel_enabled) {
5602 		hpsa_cmd_init(h, c->cmdindex, c);
5603 		c->cmd_type = CMD_SCSI;
5604 		c->scsi_cmd = cmd;
5605 		c->device = dev;
5606 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607 		if (rc < 0)     /* scsi_dma_map failed. */
5608 			rc = SCSI_MLQUEUE_HOST_BUSY;
5609 	}
5610 	return rc;
5611 }
5612 
5613 static void hpsa_command_resubmit_worker(struct work_struct *work)
5614 {
5615 	struct scsi_cmnd *cmd;
5616 	struct hpsa_scsi_dev_t *dev;
5617 	struct CommandList *c = container_of(work, struct CommandList, work);
5618 
5619 	cmd = c->scsi_cmd;
5620 	dev = cmd->device->hostdata;
5621 	if (!dev) {
5622 		cmd->result = DID_NO_CONNECT << 16;
5623 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5624 	}
5625 
5626 	if (dev->in_reset) {
5627 		cmd->result = DID_RESET << 16;
5628 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5629 	}
5630 
5631 	if (c->cmd_type == CMD_IOACCEL2) {
5632 		struct ctlr_info *h = c->h;
5633 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634 		int rc;
5635 
5636 		if (c2->error_data.serv_response ==
5637 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638 			rc = hpsa_ioaccel_submit(h, c, cmd);
5639 			if (rc == 0)
5640 				return;
5641 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5642 				/*
5643 				 * If we get here, it means dma mapping failed.
5644 				 * Try again via scsi mid layer, which will
5645 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5646 				 */
5647 				cmd->result = DID_IMM_RETRY << 16;
5648 				return hpsa_cmd_free_and_done(h, c, cmd);
5649 			}
5650 			/* else, fall thru and resubmit down CISS path */
5651 		}
5652 	}
5653 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5654 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5655 		/*
5656 		 * If we get here, it means dma mapping failed. Try
5657 		 * again via scsi mid layer, which will then get
5658 		 * SCSI_MLQUEUE_HOST_BUSY.
5659 		 *
5660 		 * hpsa_ciss_submit will have already freed c
5661 		 * if it encountered a dma mapping failure.
5662 		 */
5663 		cmd->result = DID_IMM_RETRY << 16;
5664 		cmd->scsi_done(cmd);
5665 	}
5666 }
5667 
5668 /* Running in struct Scsi_Host->host_lock less mode */
5669 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5670 {
5671 	struct ctlr_info *h;
5672 	struct hpsa_scsi_dev_t *dev;
5673 	struct CommandList *c;
5674 	int rc = 0;
5675 
5676 	/* Get the ptr to our adapter structure out of cmd->host. */
5677 	h = sdev_to_hba(cmd->device);
5678 
5679 	BUG_ON(cmd->request->tag < 0);
5680 
5681 	dev = cmd->device->hostdata;
5682 	if (!dev) {
5683 		cmd->result = DID_NO_CONNECT << 16;
5684 		cmd->scsi_done(cmd);
5685 		return 0;
5686 	}
5687 
5688 	if (dev->removed) {
5689 		cmd->result = DID_NO_CONNECT << 16;
5690 		cmd->scsi_done(cmd);
5691 		return 0;
5692 	}
5693 
5694 	if (unlikely(lockup_detected(h))) {
5695 		cmd->result = DID_NO_CONNECT << 16;
5696 		cmd->scsi_done(cmd);
5697 		return 0;
5698 	}
5699 
5700 	if (dev->in_reset)
5701 		return SCSI_MLQUEUE_DEVICE_BUSY;
5702 
5703 	c = cmd_tagged_alloc(h, cmd);
5704 	if (c == NULL)
5705 		return SCSI_MLQUEUE_DEVICE_BUSY;
5706 
5707 	/*
5708 	 * This is necessary because the SML doesn't zero out this field during
5709 	 * error recovery.
5710 	 */
5711 	cmd->result = 0;
5712 
5713 	/*
5714 	 * Call alternate submit routine for I/O accelerated commands.
5715 	 * Retries always go down the normal I/O path.
5716 	 */
5717 	if (likely(cmd->retries == 0 &&
5718 			!blk_rq_is_passthrough(cmd->request) &&
5719 			h->acciopath_status)) {
5720 		rc = hpsa_ioaccel_submit(h, c, cmd);
5721 		if (rc == 0)
5722 			return 0;
5723 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5724 			hpsa_cmd_resolve_and_free(h, c);
5725 			return SCSI_MLQUEUE_HOST_BUSY;
5726 		}
5727 	}
5728 	return hpsa_ciss_submit(h, c, cmd, dev);
5729 }
5730 
5731 static void hpsa_scan_complete(struct ctlr_info *h)
5732 {
5733 	unsigned long flags;
5734 
5735 	spin_lock_irqsave(&h->scan_lock, flags);
5736 	h->scan_finished = 1;
5737 	wake_up(&h->scan_wait_queue);
5738 	spin_unlock_irqrestore(&h->scan_lock, flags);
5739 }
5740 
5741 static void hpsa_scan_start(struct Scsi_Host *sh)
5742 {
5743 	struct ctlr_info *h = shost_to_hba(sh);
5744 	unsigned long flags;
5745 
5746 	/*
5747 	 * Don't let rescans be initiated on a controller known to be locked
5748 	 * up.  If the controller locks up *during* a rescan, that thread is
5749 	 * probably hosed, but at least we can prevent new rescan threads from
5750 	 * piling up on a locked up controller.
5751 	 */
5752 	if (unlikely(lockup_detected(h)))
5753 		return hpsa_scan_complete(h);
5754 
5755 	/*
5756 	 * If a scan is already waiting to run, no need to add another
5757 	 */
5758 	spin_lock_irqsave(&h->scan_lock, flags);
5759 	if (h->scan_waiting) {
5760 		spin_unlock_irqrestore(&h->scan_lock, flags);
5761 		return;
5762 	}
5763 
5764 	spin_unlock_irqrestore(&h->scan_lock, flags);
5765 
5766 	/* wait until any scan already in progress is finished. */
5767 	while (1) {
5768 		spin_lock_irqsave(&h->scan_lock, flags);
5769 		if (h->scan_finished)
5770 			break;
5771 		h->scan_waiting = 1;
5772 		spin_unlock_irqrestore(&h->scan_lock, flags);
5773 		wait_event(h->scan_wait_queue, h->scan_finished);
5774 		/* Note: We don't need to worry about a race between this
5775 		 * thread and driver unload because the midlayer will
5776 		 * have incremented the reference count, so unload won't
5777 		 * happen if we're in here.
5778 		 */
5779 	}
5780 	h->scan_finished = 0; /* mark scan as in progress */
5781 	h->scan_waiting = 0;
5782 	spin_unlock_irqrestore(&h->scan_lock, flags);
5783 
5784 	if (unlikely(lockup_detected(h)))
5785 		return hpsa_scan_complete(h);
5786 
5787 	/*
5788 	 * Do the scan after a reset completion
5789 	 */
5790 	spin_lock_irqsave(&h->reset_lock, flags);
5791 	if (h->reset_in_progress) {
5792 		h->drv_req_rescan = 1;
5793 		spin_unlock_irqrestore(&h->reset_lock, flags);
5794 		hpsa_scan_complete(h);
5795 		return;
5796 	}
5797 	spin_unlock_irqrestore(&h->reset_lock, flags);
5798 
5799 	hpsa_update_scsi_devices(h);
5800 
5801 	hpsa_scan_complete(h);
5802 }
5803 
5804 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5805 {
5806 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5807 
5808 	if (!logical_drive)
5809 		return -ENODEV;
5810 
5811 	if (qdepth < 1)
5812 		qdepth = 1;
5813 	else if (qdepth > logical_drive->queue_depth)
5814 		qdepth = logical_drive->queue_depth;
5815 
5816 	return scsi_change_queue_depth(sdev, qdepth);
5817 }
5818 
5819 static int hpsa_scan_finished(struct Scsi_Host *sh,
5820 	unsigned long elapsed_time)
5821 {
5822 	struct ctlr_info *h = shost_to_hba(sh);
5823 	unsigned long flags;
5824 	int finished;
5825 
5826 	spin_lock_irqsave(&h->scan_lock, flags);
5827 	finished = h->scan_finished;
5828 	spin_unlock_irqrestore(&h->scan_lock, flags);
5829 	return finished;
5830 }
5831 
5832 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5833 {
5834 	struct Scsi_Host *sh;
5835 
5836 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5837 	if (sh == NULL) {
5838 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5839 		return -ENOMEM;
5840 	}
5841 
5842 	sh->io_port = 0;
5843 	sh->n_io_port = 0;
5844 	sh->this_id = -1;
5845 	sh->max_channel = 3;
5846 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5847 	sh->max_lun = HPSA_MAX_LUN;
5848 	sh->max_id = HPSA_MAX_LUN;
5849 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5850 	sh->cmd_per_lun = sh->can_queue;
5851 	sh->sg_tablesize = h->maxsgentries;
5852 	sh->transportt = hpsa_sas_transport_template;
5853 	sh->hostdata[0] = (unsigned long) h;
5854 	sh->irq = pci_irq_vector(h->pdev, 0);
5855 	sh->unique_id = sh->irq;
5856 
5857 	h->scsi_host = sh;
5858 	return 0;
5859 }
5860 
5861 static int hpsa_scsi_add_host(struct ctlr_info *h)
5862 {
5863 	int rv;
5864 
5865 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5866 	if (rv) {
5867 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5868 		return rv;
5869 	}
5870 	scsi_scan_host(h->scsi_host);
5871 	return 0;
5872 }
5873 
5874 /*
5875  * The block layer has already gone to the trouble of picking out a unique,
5876  * small-integer tag for this request.  We use an offset from that value as
5877  * an index to select our command block.  (The offset allows us to reserve the
5878  * low-numbered entries for our own uses.)
5879  */
5880 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5881 {
5882 	int idx = scmd->request->tag;
5883 
5884 	if (idx < 0)
5885 		return idx;
5886 
5887 	/* Offset to leave space for internal cmds. */
5888 	return idx += HPSA_NRESERVED_CMDS;
5889 }
5890 
5891 /*
5892  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5893  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5894  */
5895 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5896 				struct CommandList *c, unsigned char lunaddr[],
5897 				int reply_queue)
5898 {
5899 	int rc;
5900 
5901 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5902 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5903 			NULL, 0, 0, lunaddr, TYPE_CMD);
5904 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5905 	if (rc)
5906 		return rc;
5907 	/* no unmap needed here because no data xfer. */
5908 
5909 	/* Check if the unit is already ready. */
5910 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5911 		return 0;
5912 
5913 	/*
5914 	 * The first command sent after reset will receive "unit attention" to
5915 	 * indicate that the LUN has been reset...this is actually what we're
5916 	 * looking for (but, success is good too).
5917 	 */
5918 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5919 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5920 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5921 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5922 		return 0;
5923 
5924 	return 1;
5925 }
5926 
5927 /*
5928  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5929  * returns zero when the unit is ready, and non-zero when giving up.
5930  */
5931 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5932 				struct CommandList *c,
5933 				unsigned char lunaddr[], int reply_queue)
5934 {
5935 	int rc;
5936 	int count = 0;
5937 	int waittime = 1; /* seconds */
5938 
5939 	/* Send test unit ready until device ready, or give up. */
5940 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5941 
5942 		/*
5943 		 * Wait for a bit.  do this first, because if we send
5944 		 * the TUR right away, the reset will just abort it.
5945 		 */
5946 		msleep(1000 * waittime);
5947 
5948 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5949 		if (!rc)
5950 			break;
5951 
5952 		/* Increase wait time with each try, up to a point. */
5953 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5954 			waittime *= 2;
5955 
5956 		dev_warn(&h->pdev->dev,
5957 			 "waiting %d secs for device to become ready.\n",
5958 			 waittime);
5959 	}
5960 
5961 	return rc;
5962 }
5963 
5964 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5965 					   unsigned char lunaddr[],
5966 					   int reply_queue)
5967 {
5968 	int first_queue;
5969 	int last_queue;
5970 	int rq;
5971 	int rc = 0;
5972 	struct CommandList *c;
5973 
5974 	c = cmd_alloc(h);
5975 
5976 	/*
5977 	 * If no specific reply queue was requested, then send the TUR
5978 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5979 	 * the loop exactly once using only the specified queue.
5980 	 */
5981 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5982 		first_queue = 0;
5983 		last_queue = h->nreply_queues - 1;
5984 	} else {
5985 		first_queue = reply_queue;
5986 		last_queue = reply_queue;
5987 	}
5988 
5989 	for (rq = first_queue; rq <= last_queue; rq++) {
5990 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5991 		if (rc)
5992 			break;
5993 	}
5994 
5995 	if (rc)
5996 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5997 	else
5998 		dev_warn(&h->pdev->dev, "device is ready.\n");
5999 
6000 	cmd_free(h, c);
6001 	return rc;
6002 }
6003 
6004 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6005  * complaining.  Doing a host- or bus-reset can't do anything good here.
6006  */
6007 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6008 {
6009 	int rc = SUCCESS;
6010 	int i;
6011 	struct ctlr_info *h;
6012 	struct hpsa_scsi_dev_t *dev = NULL;
6013 	u8 reset_type;
6014 	char msg[48];
6015 	unsigned long flags;
6016 
6017 	/* find the controller to which the command to be aborted was sent */
6018 	h = sdev_to_hba(scsicmd->device);
6019 	if (h == NULL) /* paranoia */
6020 		return FAILED;
6021 
6022 	spin_lock_irqsave(&h->reset_lock, flags);
6023 	h->reset_in_progress = 1;
6024 	spin_unlock_irqrestore(&h->reset_lock, flags);
6025 
6026 	if (lockup_detected(h)) {
6027 		rc = FAILED;
6028 		goto return_reset_status;
6029 	}
6030 
6031 	dev = scsicmd->device->hostdata;
6032 	if (!dev) {
6033 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6034 		rc = FAILED;
6035 		goto return_reset_status;
6036 	}
6037 
6038 	if (dev->devtype == TYPE_ENCLOSURE) {
6039 		rc = SUCCESS;
6040 		goto return_reset_status;
6041 	}
6042 
6043 	/* if controller locked up, we can guarantee command won't complete */
6044 	if (lockup_detected(h)) {
6045 		snprintf(msg, sizeof(msg),
6046 			 "cmd %d RESET FAILED, lockup detected",
6047 			 hpsa_get_cmd_index(scsicmd));
6048 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6049 		rc = FAILED;
6050 		goto return_reset_status;
6051 	}
6052 
6053 	/* this reset request might be the result of a lockup; check */
6054 	if (detect_controller_lockup(h)) {
6055 		snprintf(msg, sizeof(msg),
6056 			 "cmd %d RESET FAILED, new lockup detected",
6057 			 hpsa_get_cmd_index(scsicmd));
6058 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6059 		rc = FAILED;
6060 		goto return_reset_status;
6061 	}
6062 
6063 	/* Do not attempt on controller */
6064 	if (is_hba_lunid(dev->scsi3addr)) {
6065 		rc = SUCCESS;
6066 		goto return_reset_status;
6067 	}
6068 
6069 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6070 		reset_type = HPSA_DEVICE_RESET_MSG;
6071 	else
6072 		reset_type = HPSA_PHYS_TARGET_RESET;
6073 
6074 	sprintf(msg, "resetting %s",
6075 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6076 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6077 
6078 	/*
6079 	 * wait to see if any commands will complete before sending reset
6080 	 */
6081 	dev->in_reset = true; /* block any new cmds from OS for this device */
6082 	for (i = 0; i < 10; i++) {
6083 		if (atomic_read(&dev->commands_outstanding) > 0)
6084 			msleep(1000);
6085 		else
6086 			break;
6087 	}
6088 
6089 	/* send a reset to the SCSI LUN which the command was sent to */
6090 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6091 	if (rc == 0)
6092 		rc = SUCCESS;
6093 	else
6094 		rc = FAILED;
6095 
6096 	sprintf(msg, "reset %s %s",
6097 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6098 		rc == SUCCESS ? "completed successfully" : "failed");
6099 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6100 
6101 return_reset_status:
6102 	spin_lock_irqsave(&h->reset_lock, flags);
6103 	h->reset_in_progress = 0;
6104 	if (dev)
6105 		dev->in_reset = false;
6106 	spin_unlock_irqrestore(&h->reset_lock, flags);
6107 	return rc;
6108 }
6109 
6110 /*
6111  * For operations with an associated SCSI command, a command block is allocated
6112  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6113  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6114  * the complement, although cmd_free() may be called instead.
6115  */
6116 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6117 					    struct scsi_cmnd *scmd)
6118 {
6119 	int idx = hpsa_get_cmd_index(scmd);
6120 	struct CommandList *c = h->cmd_pool + idx;
6121 
6122 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6123 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6124 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6125 		/* The index value comes from the block layer, so if it's out of
6126 		 * bounds, it's probably not our bug.
6127 		 */
6128 		BUG();
6129 	}
6130 
6131 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6132 		/*
6133 		 * We expect that the SCSI layer will hand us a unique tag
6134 		 * value.  Thus, there should never be a collision here between
6135 		 * two requests...because if the selected command isn't idle
6136 		 * then someone is going to be very disappointed.
6137 		 */
6138 		if (idx != h->last_collision_tag) { /* Print once per tag */
6139 			dev_warn(&h->pdev->dev,
6140 				"%s: tag collision (tag=%d)\n", __func__, idx);
6141 			if (scmd)
6142 				scsi_print_command(scmd);
6143 			h->last_collision_tag = idx;
6144 		}
6145 		return NULL;
6146 	}
6147 
6148 	atomic_inc(&c->refcount);
6149 
6150 	hpsa_cmd_partial_init(h, idx, c);
6151 	return c;
6152 }
6153 
6154 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6155 {
6156 	/*
6157 	 * Release our reference to the block.  We don't need to do anything
6158 	 * else to free it, because it is accessed by index.
6159 	 */
6160 	(void)atomic_dec(&c->refcount);
6161 }
6162 
6163 /*
6164  * For operations that cannot sleep, a command block is allocated at init,
6165  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6166  * which ones are free or in use.  Lock must be held when calling this.
6167  * cmd_free() is the complement.
6168  * This function never gives up and returns NULL.  If it hangs,
6169  * another thread must call cmd_free() to free some tags.
6170  */
6171 
6172 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6173 {
6174 	struct CommandList *c;
6175 	int refcount, i;
6176 	int offset = 0;
6177 
6178 	/*
6179 	 * There is some *extremely* small but non-zero chance that that
6180 	 * multiple threads could get in here, and one thread could
6181 	 * be scanning through the list of bits looking for a free
6182 	 * one, but the free ones are always behind him, and other
6183 	 * threads sneak in behind him and eat them before he can
6184 	 * get to them, so that while there is always a free one, a
6185 	 * very unlucky thread might be starved anyway, never able to
6186 	 * beat the other threads.  In reality, this happens so
6187 	 * infrequently as to be indistinguishable from never.
6188 	 *
6189 	 * Note that we start allocating commands before the SCSI host structure
6190 	 * is initialized.  Since the search starts at bit zero, this
6191 	 * all works, since we have at least one command structure available;
6192 	 * however, it means that the structures with the low indexes have to be
6193 	 * reserved for driver-initiated requests, while requests from the block
6194 	 * layer will use the higher indexes.
6195 	 */
6196 
6197 	for (;;) {
6198 		i = find_next_zero_bit(h->cmd_pool_bits,
6199 					HPSA_NRESERVED_CMDS,
6200 					offset);
6201 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6202 			offset = 0;
6203 			continue;
6204 		}
6205 		c = h->cmd_pool + i;
6206 		refcount = atomic_inc_return(&c->refcount);
6207 		if (unlikely(refcount > 1)) {
6208 			cmd_free(h, c); /* already in use */
6209 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6210 			continue;
6211 		}
6212 		set_bit(i & (BITS_PER_LONG - 1),
6213 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6214 		break; /* it's ours now. */
6215 	}
6216 	hpsa_cmd_partial_init(h, i, c);
6217 	c->device = NULL;
6218 	return c;
6219 }
6220 
6221 /*
6222  * This is the complementary operation to cmd_alloc().  Note, however, in some
6223  * corner cases it may also be used to free blocks allocated by
6224  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6225  * the clear-bit is harmless.
6226  */
6227 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6228 {
6229 	if (atomic_dec_and_test(&c->refcount)) {
6230 		int i;
6231 
6232 		i = c - h->cmd_pool;
6233 		clear_bit(i & (BITS_PER_LONG - 1),
6234 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6235 	}
6236 }
6237 
6238 #ifdef CONFIG_COMPAT
6239 
6240 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6241 	void __user *arg)
6242 {
6243 	struct ctlr_info *h = sdev_to_hba(dev);
6244 	IOCTL32_Command_struct __user *arg32 = arg;
6245 	IOCTL_Command_struct arg64;
6246 	int err;
6247 	u32 cp;
6248 
6249 	if (!arg)
6250 		return -EINVAL;
6251 
6252 	memset(&arg64, 0, sizeof(arg64));
6253 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6254 		return -EFAULT;
6255 	if (get_user(cp, &arg32->buf))
6256 		return -EFAULT;
6257 	arg64.buf = compat_ptr(cp);
6258 
6259 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6260 		return -EAGAIN;
6261 	err = hpsa_passthru_ioctl(h, &arg64);
6262 	atomic_inc(&h->passthru_cmds_avail);
6263 	if (err)
6264 		return err;
6265 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6266 			 sizeof(arg32->error_info)))
6267 		return -EFAULT;
6268 	return 0;
6269 }
6270 
6271 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6272 	unsigned int cmd, void __user *arg)
6273 {
6274 	struct ctlr_info *h = sdev_to_hba(dev);
6275 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6276 	BIG_IOCTL_Command_struct arg64;
6277 	int err;
6278 	u32 cp;
6279 
6280 	if (!arg)
6281 		return -EINVAL;
6282 	memset(&arg64, 0, sizeof(arg64));
6283 	if (copy_from_user(&arg64, arg32,
6284 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6285 		return -EFAULT;
6286 	if (get_user(cp, &arg32->buf))
6287 		return -EFAULT;
6288 	arg64.buf = compat_ptr(cp);
6289 
6290 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291 		return -EAGAIN;
6292 	err = hpsa_big_passthru_ioctl(h, &arg64);
6293 	atomic_inc(&h->passthru_cmds_avail);
6294 	if (err)
6295 		return err;
6296 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297 			 sizeof(arg32->error_info)))
6298 		return -EFAULT;
6299 	return 0;
6300 }
6301 
6302 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6303 			     void __user *arg)
6304 {
6305 	switch (cmd) {
6306 	case CCISS_GETPCIINFO:
6307 	case CCISS_GETINTINFO:
6308 	case CCISS_SETINTINFO:
6309 	case CCISS_GETNODENAME:
6310 	case CCISS_SETNODENAME:
6311 	case CCISS_GETHEARTBEAT:
6312 	case CCISS_GETBUSTYPES:
6313 	case CCISS_GETFIRMVER:
6314 	case CCISS_GETDRIVVER:
6315 	case CCISS_REVALIDVOLS:
6316 	case CCISS_DEREGDISK:
6317 	case CCISS_REGNEWDISK:
6318 	case CCISS_REGNEWD:
6319 	case CCISS_RESCANDISK:
6320 	case CCISS_GETLUNINFO:
6321 		return hpsa_ioctl(dev, cmd, arg);
6322 
6323 	case CCISS_PASSTHRU32:
6324 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6325 	case CCISS_BIG_PASSTHRU32:
6326 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6327 
6328 	default:
6329 		return -ENOIOCTLCMD;
6330 	}
6331 }
6332 #endif
6333 
6334 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6335 {
6336 	struct hpsa_pci_info pciinfo;
6337 
6338 	if (!argp)
6339 		return -EINVAL;
6340 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6341 	pciinfo.bus = h->pdev->bus->number;
6342 	pciinfo.dev_fn = h->pdev->devfn;
6343 	pciinfo.board_id = h->board_id;
6344 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6345 		return -EFAULT;
6346 	return 0;
6347 }
6348 
6349 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6350 {
6351 	DriverVer_type DriverVer;
6352 	unsigned char vmaj, vmin, vsubmin;
6353 	int rc;
6354 
6355 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6356 		&vmaj, &vmin, &vsubmin);
6357 	if (rc != 3) {
6358 		dev_info(&h->pdev->dev, "driver version string '%s' "
6359 			"unrecognized.", HPSA_DRIVER_VERSION);
6360 		vmaj = 0;
6361 		vmin = 0;
6362 		vsubmin = 0;
6363 	}
6364 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6365 	if (!argp)
6366 		return -EINVAL;
6367 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6368 		return -EFAULT;
6369 	return 0;
6370 }
6371 
6372 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6373 			       IOCTL_Command_struct *iocommand)
6374 {
6375 	struct CommandList *c;
6376 	char *buff = NULL;
6377 	u64 temp64;
6378 	int rc = 0;
6379 
6380 	if (!capable(CAP_SYS_RAWIO))
6381 		return -EPERM;
6382 	if ((iocommand->buf_size < 1) &&
6383 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6384 		return -EINVAL;
6385 	}
6386 	if (iocommand->buf_size > 0) {
6387 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6388 		if (buff == NULL)
6389 			return -ENOMEM;
6390 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6391 			/* Copy the data into the buffer we created */
6392 			if (copy_from_user(buff, iocommand->buf,
6393 				iocommand->buf_size)) {
6394 				rc = -EFAULT;
6395 				goto out_kfree;
6396 			}
6397 		} else {
6398 			memset(buff, 0, iocommand->buf_size);
6399 		}
6400 	}
6401 	c = cmd_alloc(h);
6402 
6403 	/* Fill in the command type */
6404 	c->cmd_type = CMD_IOCTL_PEND;
6405 	c->scsi_cmd = SCSI_CMD_BUSY;
6406 	/* Fill in Command Header */
6407 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6408 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6409 		c->Header.SGList = 1;
6410 		c->Header.SGTotal = cpu_to_le16(1);
6411 	} else	{ /* no buffers to fill */
6412 		c->Header.SGList = 0;
6413 		c->Header.SGTotal = cpu_to_le16(0);
6414 	}
6415 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6416 
6417 	/* Fill in Request block */
6418 	memcpy(&c->Request, &iocommand->Request,
6419 		sizeof(c->Request));
6420 
6421 	/* Fill in the scatter gather information */
6422 	if (iocommand->buf_size > 0) {
6423 		temp64 = dma_map_single(&h->pdev->dev, buff,
6424 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6425 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6426 			c->SG[0].Addr = cpu_to_le64(0);
6427 			c->SG[0].Len = cpu_to_le32(0);
6428 			rc = -ENOMEM;
6429 			goto out;
6430 		}
6431 		c->SG[0].Addr = cpu_to_le64(temp64);
6432 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6433 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6434 	}
6435 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6436 					NO_TIMEOUT);
6437 	if (iocommand->buf_size > 0)
6438 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6439 	check_ioctl_unit_attention(h, c);
6440 	if (rc) {
6441 		rc = -EIO;
6442 		goto out;
6443 	}
6444 
6445 	/* Copy the error information out */
6446 	memcpy(&iocommand->error_info, c->err_info,
6447 		sizeof(iocommand->error_info));
6448 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6449 		iocommand->buf_size > 0) {
6450 		/* Copy the data out of the buffer we created */
6451 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6452 			rc = -EFAULT;
6453 			goto out;
6454 		}
6455 	}
6456 out:
6457 	cmd_free(h, c);
6458 out_kfree:
6459 	kfree(buff);
6460 	return rc;
6461 }
6462 
6463 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6464 				   BIG_IOCTL_Command_struct *ioc)
6465 {
6466 	struct CommandList *c;
6467 	unsigned char **buff = NULL;
6468 	int *buff_size = NULL;
6469 	u64 temp64;
6470 	BYTE sg_used = 0;
6471 	int status = 0;
6472 	u32 left;
6473 	u32 sz;
6474 	BYTE __user *data_ptr;
6475 
6476 	if (!capable(CAP_SYS_RAWIO))
6477 		return -EPERM;
6478 
6479 	if ((ioc->buf_size < 1) &&
6480 	    (ioc->Request.Type.Direction != XFER_NONE))
6481 		return -EINVAL;
6482 	/* Check kmalloc limits  using all SGs */
6483 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6484 		return -EINVAL;
6485 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6486 		return -EINVAL;
6487 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6488 	if (!buff) {
6489 		status = -ENOMEM;
6490 		goto cleanup1;
6491 	}
6492 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6493 	if (!buff_size) {
6494 		status = -ENOMEM;
6495 		goto cleanup1;
6496 	}
6497 	left = ioc->buf_size;
6498 	data_ptr = ioc->buf;
6499 	while (left) {
6500 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6501 		buff_size[sg_used] = sz;
6502 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6503 		if (buff[sg_used] == NULL) {
6504 			status = -ENOMEM;
6505 			goto cleanup1;
6506 		}
6507 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6508 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6509 				status = -EFAULT;
6510 				goto cleanup1;
6511 			}
6512 		} else
6513 			memset(buff[sg_used], 0, sz);
6514 		left -= sz;
6515 		data_ptr += sz;
6516 		sg_used++;
6517 	}
6518 	c = cmd_alloc(h);
6519 
6520 	c->cmd_type = CMD_IOCTL_PEND;
6521 	c->scsi_cmd = SCSI_CMD_BUSY;
6522 	c->Header.ReplyQueue = 0;
6523 	c->Header.SGList = (u8) sg_used;
6524 	c->Header.SGTotal = cpu_to_le16(sg_used);
6525 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6526 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6527 	if (ioc->buf_size > 0) {
6528 		int i;
6529 		for (i = 0; i < sg_used; i++) {
6530 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6531 				    buff_size[i], DMA_BIDIRECTIONAL);
6532 			if (dma_mapping_error(&h->pdev->dev,
6533 							(dma_addr_t) temp64)) {
6534 				c->SG[i].Addr = cpu_to_le64(0);
6535 				c->SG[i].Len = cpu_to_le32(0);
6536 				hpsa_pci_unmap(h->pdev, c, i,
6537 					DMA_BIDIRECTIONAL);
6538 				status = -ENOMEM;
6539 				goto cleanup0;
6540 			}
6541 			c->SG[i].Addr = cpu_to_le64(temp64);
6542 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6543 			c->SG[i].Ext = cpu_to_le32(0);
6544 		}
6545 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6546 	}
6547 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6548 						NO_TIMEOUT);
6549 	if (sg_used)
6550 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6551 	check_ioctl_unit_attention(h, c);
6552 	if (status) {
6553 		status = -EIO;
6554 		goto cleanup0;
6555 	}
6556 
6557 	/* Copy the error information out */
6558 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6559 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6560 		int i;
6561 
6562 		/* Copy the data out of the buffer we created */
6563 		BYTE __user *ptr = ioc->buf;
6564 		for (i = 0; i < sg_used; i++) {
6565 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6566 				status = -EFAULT;
6567 				goto cleanup0;
6568 			}
6569 			ptr += buff_size[i];
6570 		}
6571 	}
6572 	status = 0;
6573 cleanup0:
6574 	cmd_free(h, c);
6575 cleanup1:
6576 	if (buff) {
6577 		int i;
6578 
6579 		for (i = 0; i < sg_used; i++)
6580 			kfree(buff[i]);
6581 		kfree(buff);
6582 	}
6583 	kfree(buff_size);
6584 	return status;
6585 }
6586 
6587 static void check_ioctl_unit_attention(struct ctlr_info *h,
6588 	struct CommandList *c)
6589 {
6590 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6591 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6592 		(void) check_for_unit_attention(h, c);
6593 }
6594 
6595 /*
6596  * ioctl
6597  */
6598 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6599 		      void __user *argp)
6600 {
6601 	struct ctlr_info *h = sdev_to_hba(dev);
6602 	int rc;
6603 
6604 	switch (cmd) {
6605 	case CCISS_DEREGDISK:
6606 	case CCISS_REGNEWDISK:
6607 	case CCISS_REGNEWD:
6608 		hpsa_scan_start(h->scsi_host);
6609 		return 0;
6610 	case CCISS_GETPCIINFO:
6611 		return hpsa_getpciinfo_ioctl(h, argp);
6612 	case CCISS_GETDRIVVER:
6613 		return hpsa_getdrivver_ioctl(h, argp);
6614 	case CCISS_PASSTHRU: {
6615 		IOCTL_Command_struct iocommand;
6616 
6617 		if (!argp)
6618 			return -EINVAL;
6619 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6620 			return -EFAULT;
6621 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6622 			return -EAGAIN;
6623 		rc = hpsa_passthru_ioctl(h, &iocommand);
6624 		atomic_inc(&h->passthru_cmds_avail);
6625 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6626 			rc = -EFAULT;
6627 		return rc;
6628 	}
6629 	case CCISS_BIG_PASSTHRU: {
6630 		BIG_IOCTL_Command_struct ioc;
6631 		if (!argp)
6632 			return -EINVAL;
6633 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6634 			return -EFAULT;
6635 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6636 			return -EAGAIN;
6637 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6638 		atomic_inc(&h->passthru_cmds_avail);
6639 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6640 			rc = -EFAULT;
6641 		return rc;
6642 	}
6643 	default:
6644 		return -ENOTTY;
6645 	}
6646 }
6647 
6648 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6649 {
6650 	struct CommandList *c;
6651 
6652 	c = cmd_alloc(h);
6653 
6654 	/* fill_cmd can't fail here, no data buffer to map */
6655 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6656 		RAID_CTLR_LUNID, TYPE_MSG);
6657 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6658 	c->waiting = NULL;
6659 	enqueue_cmd_and_start_io(h, c);
6660 	/* Don't wait for completion, the reset won't complete.  Don't free
6661 	 * the command either.  This is the last command we will send before
6662 	 * re-initializing everything, so it doesn't matter and won't leak.
6663 	 */
6664 	return;
6665 }
6666 
6667 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6668 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6669 	int cmd_type)
6670 {
6671 	enum dma_data_direction dir = DMA_NONE;
6672 
6673 	c->cmd_type = CMD_IOCTL_PEND;
6674 	c->scsi_cmd = SCSI_CMD_BUSY;
6675 	c->Header.ReplyQueue = 0;
6676 	if (buff != NULL && size > 0) {
6677 		c->Header.SGList = 1;
6678 		c->Header.SGTotal = cpu_to_le16(1);
6679 	} else {
6680 		c->Header.SGList = 0;
6681 		c->Header.SGTotal = cpu_to_le16(0);
6682 	}
6683 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6684 
6685 	if (cmd_type == TYPE_CMD) {
6686 		switch (cmd) {
6687 		case HPSA_INQUIRY:
6688 			/* are we trying to read a vital product page */
6689 			if (page_code & VPD_PAGE) {
6690 				c->Request.CDB[1] = 0x01;
6691 				c->Request.CDB[2] = (page_code & 0xff);
6692 			}
6693 			c->Request.CDBLen = 6;
6694 			c->Request.type_attr_dir =
6695 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696 			c->Request.Timeout = 0;
6697 			c->Request.CDB[0] = HPSA_INQUIRY;
6698 			c->Request.CDB[4] = size & 0xFF;
6699 			break;
6700 		case RECEIVE_DIAGNOSTIC:
6701 			c->Request.CDBLen = 6;
6702 			c->Request.type_attr_dir =
6703 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6704 			c->Request.Timeout = 0;
6705 			c->Request.CDB[0] = cmd;
6706 			c->Request.CDB[1] = 1;
6707 			c->Request.CDB[2] = 1;
6708 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6709 			c->Request.CDB[4] = size & 0xFF;
6710 			break;
6711 		case HPSA_REPORT_LOG:
6712 		case HPSA_REPORT_PHYS:
6713 			/* Talking to controller so It's a physical command
6714 			   mode = 00 target = 0.  Nothing to write.
6715 			 */
6716 			c->Request.CDBLen = 12;
6717 			c->Request.type_attr_dir =
6718 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = cmd;
6721 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6722 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6724 			c->Request.CDB[9] = size & 0xFF;
6725 			break;
6726 		case BMIC_SENSE_DIAG_OPTIONS:
6727 			c->Request.CDBLen = 16;
6728 			c->Request.type_attr_dir =
6729 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6730 			c->Request.Timeout = 0;
6731 			/* Spec says this should be BMIC_WRITE */
6732 			c->Request.CDB[0] = BMIC_READ;
6733 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6734 			break;
6735 		case BMIC_SET_DIAG_OPTIONS:
6736 			c->Request.CDBLen = 16;
6737 			c->Request.type_attr_dir =
6738 					TYPE_ATTR_DIR(cmd_type,
6739 						ATTR_SIMPLE, XFER_WRITE);
6740 			c->Request.Timeout = 0;
6741 			c->Request.CDB[0] = BMIC_WRITE;
6742 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6743 			break;
6744 		case HPSA_CACHE_FLUSH:
6745 			c->Request.CDBLen = 12;
6746 			c->Request.type_attr_dir =
6747 					TYPE_ATTR_DIR(cmd_type,
6748 						ATTR_SIMPLE, XFER_WRITE);
6749 			c->Request.Timeout = 0;
6750 			c->Request.CDB[0] = BMIC_WRITE;
6751 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6752 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6753 			c->Request.CDB[8] = size & 0xFF;
6754 			break;
6755 		case TEST_UNIT_READY:
6756 			c->Request.CDBLen = 6;
6757 			c->Request.type_attr_dir =
6758 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6759 			c->Request.Timeout = 0;
6760 			break;
6761 		case HPSA_GET_RAID_MAP:
6762 			c->Request.CDBLen = 12;
6763 			c->Request.type_attr_dir =
6764 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765 			c->Request.Timeout = 0;
6766 			c->Request.CDB[0] = HPSA_CISS_READ;
6767 			c->Request.CDB[1] = cmd;
6768 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6769 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6770 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6771 			c->Request.CDB[9] = size & 0xFF;
6772 			break;
6773 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6774 			c->Request.CDBLen = 10;
6775 			c->Request.type_attr_dir =
6776 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6777 			c->Request.Timeout = 0;
6778 			c->Request.CDB[0] = BMIC_READ;
6779 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6780 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6781 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6782 			break;
6783 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6784 			c->Request.CDBLen = 10;
6785 			c->Request.type_attr_dir =
6786 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6787 			c->Request.Timeout = 0;
6788 			c->Request.CDB[0] = BMIC_READ;
6789 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6790 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6791 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6792 			break;
6793 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6794 			c->Request.CDBLen = 10;
6795 			c->Request.type_attr_dir =
6796 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6797 			c->Request.Timeout = 0;
6798 			c->Request.CDB[0] = BMIC_READ;
6799 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6800 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6801 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6802 			break;
6803 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6804 			c->Request.CDBLen = 10;
6805 			c->Request.type_attr_dir =
6806 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807 			c->Request.Timeout = 0;
6808 			c->Request.CDB[0] = BMIC_READ;
6809 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6810 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6811 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6812 			break;
6813 		case BMIC_IDENTIFY_CONTROLLER:
6814 			c->Request.CDBLen = 10;
6815 			c->Request.type_attr_dir =
6816 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817 			c->Request.Timeout = 0;
6818 			c->Request.CDB[0] = BMIC_READ;
6819 			c->Request.CDB[1] = 0;
6820 			c->Request.CDB[2] = 0;
6821 			c->Request.CDB[3] = 0;
6822 			c->Request.CDB[4] = 0;
6823 			c->Request.CDB[5] = 0;
6824 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6825 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6826 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6827 			c->Request.CDB[9] = 0;
6828 			break;
6829 		default:
6830 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6831 			BUG();
6832 		}
6833 	} else if (cmd_type == TYPE_MSG) {
6834 		switch (cmd) {
6835 
6836 		case  HPSA_PHYS_TARGET_RESET:
6837 			c->Request.CDBLen = 16;
6838 			c->Request.type_attr_dir =
6839 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6840 			c->Request.Timeout = 0; /* Don't time out */
6841 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6842 			c->Request.CDB[0] = HPSA_RESET;
6843 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6844 			/* Physical target reset needs no control bytes 4-7*/
6845 			c->Request.CDB[4] = 0x00;
6846 			c->Request.CDB[5] = 0x00;
6847 			c->Request.CDB[6] = 0x00;
6848 			c->Request.CDB[7] = 0x00;
6849 			break;
6850 		case  HPSA_DEVICE_RESET_MSG:
6851 			c->Request.CDBLen = 16;
6852 			c->Request.type_attr_dir =
6853 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6854 			c->Request.Timeout = 0; /* Don't time out */
6855 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6856 			c->Request.CDB[0] =  cmd;
6857 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6858 			/* If bytes 4-7 are zero, it means reset the */
6859 			/* LunID device */
6860 			c->Request.CDB[4] = 0x00;
6861 			c->Request.CDB[5] = 0x00;
6862 			c->Request.CDB[6] = 0x00;
6863 			c->Request.CDB[7] = 0x00;
6864 			break;
6865 		default:
6866 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6867 				cmd);
6868 			BUG();
6869 		}
6870 	} else {
6871 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6872 		BUG();
6873 	}
6874 
6875 	switch (GET_DIR(c->Request.type_attr_dir)) {
6876 	case XFER_READ:
6877 		dir = DMA_FROM_DEVICE;
6878 		break;
6879 	case XFER_WRITE:
6880 		dir = DMA_TO_DEVICE;
6881 		break;
6882 	case XFER_NONE:
6883 		dir = DMA_NONE;
6884 		break;
6885 	default:
6886 		dir = DMA_BIDIRECTIONAL;
6887 	}
6888 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6889 		return -1;
6890 	return 0;
6891 }
6892 
6893 /*
6894  * Map (physical) PCI mem into (virtual) kernel space
6895  */
6896 static void __iomem *remap_pci_mem(ulong base, ulong size)
6897 {
6898 	ulong page_base = ((ulong) base) & PAGE_MASK;
6899 	ulong page_offs = ((ulong) base) - page_base;
6900 	void __iomem *page_remapped = ioremap(page_base,
6901 		page_offs + size);
6902 
6903 	return page_remapped ? (page_remapped + page_offs) : NULL;
6904 }
6905 
6906 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6907 {
6908 	return h->access.command_completed(h, q);
6909 }
6910 
6911 static inline bool interrupt_pending(struct ctlr_info *h)
6912 {
6913 	return h->access.intr_pending(h);
6914 }
6915 
6916 static inline long interrupt_not_for_us(struct ctlr_info *h)
6917 {
6918 	return (h->access.intr_pending(h) == 0) ||
6919 		(h->interrupts_enabled == 0);
6920 }
6921 
6922 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6923 	u32 raw_tag)
6924 {
6925 	if (unlikely(tag_index >= h->nr_cmds)) {
6926 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6927 		return 1;
6928 	}
6929 	return 0;
6930 }
6931 
6932 static inline void finish_cmd(struct CommandList *c)
6933 {
6934 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6935 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6936 			|| c->cmd_type == CMD_IOACCEL2))
6937 		complete_scsi_command(c);
6938 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6939 		complete(c->waiting);
6940 }
6941 
6942 /* process completion of an indexed ("direct lookup") command */
6943 static inline void process_indexed_cmd(struct ctlr_info *h,
6944 	u32 raw_tag)
6945 {
6946 	u32 tag_index;
6947 	struct CommandList *c;
6948 
6949 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6950 	if (!bad_tag(h, tag_index, raw_tag)) {
6951 		c = h->cmd_pool + tag_index;
6952 		finish_cmd(c);
6953 	}
6954 }
6955 
6956 /* Some controllers, like p400, will give us one interrupt
6957  * after a soft reset, even if we turned interrupts off.
6958  * Only need to check for this in the hpsa_xxx_discard_completions
6959  * functions.
6960  */
6961 static int ignore_bogus_interrupt(struct ctlr_info *h)
6962 {
6963 	if (likely(!reset_devices))
6964 		return 0;
6965 
6966 	if (likely(h->interrupts_enabled))
6967 		return 0;
6968 
6969 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6970 		"(known firmware bug.)  Ignoring.\n");
6971 
6972 	return 1;
6973 }
6974 
6975 /*
6976  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6977  * Relies on (h-q[x] == x) being true for x such that
6978  * 0 <= x < MAX_REPLY_QUEUES.
6979  */
6980 static struct ctlr_info *queue_to_hba(u8 *queue)
6981 {
6982 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6983 }
6984 
6985 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6986 {
6987 	struct ctlr_info *h = queue_to_hba(queue);
6988 	u8 q = *(u8 *) queue;
6989 	u32 raw_tag;
6990 
6991 	if (ignore_bogus_interrupt(h))
6992 		return IRQ_NONE;
6993 
6994 	if (interrupt_not_for_us(h))
6995 		return IRQ_NONE;
6996 	h->last_intr_timestamp = get_jiffies_64();
6997 	while (interrupt_pending(h)) {
6998 		raw_tag = get_next_completion(h, q);
6999 		while (raw_tag != FIFO_EMPTY)
7000 			raw_tag = next_command(h, q);
7001 	}
7002 	return IRQ_HANDLED;
7003 }
7004 
7005 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7006 {
7007 	struct ctlr_info *h = queue_to_hba(queue);
7008 	u32 raw_tag;
7009 	u8 q = *(u8 *) queue;
7010 
7011 	if (ignore_bogus_interrupt(h))
7012 		return IRQ_NONE;
7013 
7014 	h->last_intr_timestamp = get_jiffies_64();
7015 	raw_tag = get_next_completion(h, q);
7016 	while (raw_tag != FIFO_EMPTY)
7017 		raw_tag = next_command(h, q);
7018 	return IRQ_HANDLED;
7019 }
7020 
7021 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7022 {
7023 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7024 	u32 raw_tag;
7025 	u8 q = *(u8 *) queue;
7026 
7027 	if (interrupt_not_for_us(h))
7028 		return IRQ_NONE;
7029 	h->last_intr_timestamp = get_jiffies_64();
7030 	while (interrupt_pending(h)) {
7031 		raw_tag = get_next_completion(h, q);
7032 		while (raw_tag != FIFO_EMPTY) {
7033 			process_indexed_cmd(h, raw_tag);
7034 			raw_tag = next_command(h, q);
7035 		}
7036 	}
7037 	return IRQ_HANDLED;
7038 }
7039 
7040 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7041 {
7042 	struct ctlr_info *h = queue_to_hba(queue);
7043 	u32 raw_tag;
7044 	u8 q = *(u8 *) queue;
7045 
7046 	h->last_intr_timestamp = get_jiffies_64();
7047 	raw_tag = get_next_completion(h, q);
7048 	while (raw_tag != FIFO_EMPTY) {
7049 		process_indexed_cmd(h, raw_tag);
7050 		raw_tag = next_command(h, q);
7051 	}
7052 	return IRQ_HANDLED;
7053 }
7054 
7055 /* Send a message CDB to the firmware. Careful, this only works
7056  * in simple mode, not performant mode due to the tag lookup.
7057  * We only ever use this immediately after a controller reset.
7058  */
7059 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7060 			unsigned char type)
7061 {
7062 	struct Command {
7063 		struct CommandListHeader CommandHeader;
7064 		struct RequestBlock Request;
7065 		struct ErrDescriptor ErrorDescriptor;
7066 	};
7067 	struct Command *cmd;
7068 	static const size_t cmd_sz = sizeof(*cmd) +
7069 					sizeof(cmd->ErrorDescriptor);
7070 	dma_addr_t paddr64;
7071 	__le32 paddr32;
7072 	u32 tag;
7073 	void __iomem *vaddr;
7074 	int i, err;
7075 
7076 	vaddr = pci_ioremap_bar(pdev, 0);
7077 	if (vaddr == NULL)
7078 		return -ENOMEM;
7079 
7080 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7081 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7082 	 * memory.
7083 	 */
7084 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7085 	if (err) {
7086 		iounmap(vaddr);
7087 		return err;
7088 	}
7089 
7090 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7091 	if (cmd == NULL) {
7092 		iounmap(vaddr);
7093 		return -ENOMEM;
7094 	}
7095 
7096 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7097 	 * although there's no guarantee, we assume that the address is at
7098 	 * least 4-byte aligned (most likely, it's page-aligned).
7099 	 */
7100 	paddr32 = cpu_to_le32(paddr64);
7101 
7102 	cmd->CommandHeader.ReplyQueue = 0;
7103 	cmd->CommandHeader.SGList = 0;
7104 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7105 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7106 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7107 
7108 	cmd->Request.CDBLen = 16;
7109 	cmd->Request.type_attr_dir =
7110 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7111 	cmd->Request.Timeout = 0; /* Don't time out */
7112 	cmd->Request.CDB[0] = opcode;
7113 	cmd->Request.CDB[1] = type;
7114 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7115 	cmd->ErrorDescriptor.Addr =
7116 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7117 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7118 
7119 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7120 
7121 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7122 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7123 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7124 			break;
7125 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7126 	}
7127 
7128 	iounmap(vaddr);
7129 
7130 	/* we leak the DMA buffer here ... no choice since the controller could
7131 	 *  still complete the command.
7132 	 */
7133 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7134 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7135 			opcode, type);
7136 		return -ETIMEDOUT;
7137 	}
7138 
7139 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7140 
7141 	if (tag & HPSA_ERROR_BIT) {
7142 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7143 			opcode, type);
7144 		return -EIO;
7145 	}
7146 
7147 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7148 		opcode, type);
7149 	return 0;
7150 }
7151 
7152 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7153 
7154 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7155 	void __iomem *vaddr, u32 use_doorbell)
7156 {
7157 
7158 	if (use_doorbell) {
7159 		/* For everything after the P600, the PCI power state method
7160 		 * of resetting the controller doesn't work, so we have this
7161 		 * other way using the doorbell register.
7162 		 */
7163 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7164 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7165 
7166 		/* PMC hardware guys tell us we need a 10 second delay after
7167 		 * doorbell reset and before any attempt to talk to the board
7168 		 * at all to ensure that this actually works and doesn't fall
7169 		 * over in some weird corner cases.
7170 		 */
7171 		msleep(10000);
7172 	} else { /* Try to do it the PCI power state way */
7173 
7174 		/* Quoting from the Open CISS Specification: "The Power
7175 		 * Management Control/Status Register (CSR) controls the power
7176 		 * state of the device.  The normal operating state is D0,
7177 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7178 		 * the controller, place the interface device in D3 then to D0,
7179 		 * this causes a secondary PCI reset which will reset the
7180 		 * controller." */
7181 
7182 		int rc = 0;
7183 
7184 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7185 
7186 		/* enter the D3hot power management state */
7187 		rc = pci_set_power_state(pdev, PCI_D3hot);
7188 		if (rc)
7189 			return rc;
7190 
7191 		msleep(500);
7192 
7193 		/* enter the D0 power management state */
7194 		rc = pci_set_power_state(pdev, PCI_D0);
7195 		if (rc)
7196 			return rc;
7197 
7198 		/*
7199 		 * The P600 requires a small delay when changing states.
7200 		 * Otherwise we may think the board did not reset and we bail.
7201 		 * This for kdump only and is particular to the P600.
7202 		 */
7203 		msleep(500);
7204 	}
7205 	return 0;
7206 }
7207 
7208 static void init_driver_version(char *driver_version, int len)
7209 {
7210 	memset(driver_version, 0, len);
7211 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7212 }
7213 
7214 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7215 {
7216 	char *driver_version;
7217 	int i, size = sizeof(cfgtable->driver_version);
7218 
7219 	driver_version = kmalloc(size, GFP_KERNEL);
7220 	if (!driver_version)
7221 		return -ENOMEM;
7222 
7223 	init_driver_version(driver_version, size);
7224 	for (i = 0; i < size; i++)
7225 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7226 	kfree(driver_version);
7227 	return 0;
7228 }
7229 
7230 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7231 					  unsigned char *driver_ver)
7232 {
7233 	int i;
7234 
7235 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7236 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7237 }
7238 
7239 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7240 {
7241 
7242 	char *driver_ver, *old_driver_ver;
7243 	int rc, size = sizeof(cfgtable->driver_version);
7244 
7245 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7246 	if (!old_driver_ver)
7247 		return -ENOMEM;
7248 	driver_ver = old_driver_ver + size;
7249 
7250 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7251 	 * should have been changed, otherwise we know the reset failed.
7252 	 */
7253 	init_driver_version(old_driver_ver, size);
7254 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7255 	rc = !memcmp(driver_ver, old_driver_ver, size);
7256 	kfree(old_driver_ver);
7257 	return rc;
7258 }
7259 /* This does a hard reset of the controller using PCI power management
7260  * states or the using the doorbell register.
7261  */
7262 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7263 {
7264 	u64 cfg_offset;
7265 	u32 cfg_base_addr;
7266 	u64 cfg_base_addr_index;
7267 	void __iomem *vaddr;
7268 	unsigned long paddr;
7269 	u32 misc_fw_support;
7270 	int rc;
7271 	struct CfgTable __iomem *cfgtable;
7272 	u32 use_doorbell;
7273 	u16 command_register;
7274 
7275 	/* For controllers as old as the P600, this is very nearly
7276 	 * the same thing as
7277 	 *
7278 	 * pci_save_state(pci_dev);
7279 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7280 	 * pci_set_power_state(pci_dev, PCI_D0);
7281 	 * pci_restore_state(pci_dev);
7282 	 *
7283 	 * For controllers newer than the P600, the pci power state
7284 	 * method of resetting doesn't work so we have another way
7285 	 * using the doorbell register.
7286 	 */
7287 
7288 	if (!ctlr_is_resettable(board_id)) {
7289 		dev_warn(&pdev->dev, "Controller not resettable\n");
7290 		return -ENODEV;
7291 	}
7292 
7293 	/* if controller is soft- but not hard resettable... */
7294 	if (!ctlr_is_hard_resettable(board_id))
7295 		return -ENOTSUPP; /* try soft reset later. */
7296 
7297 	/* Save the PCI command register */
7298 	pci_read_config_word(pdev, 4, &command_register);
7299 	pci_save_state(pdev);
7300 
7301 	/* find the first memory BAR, so we can find the cfg table */
7302 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7303 	if (rc)
7304 		return rc;
7305 	vaddr = remap_pci_mem(paddr, 0x250);
7306 	if (!vaddr)
7307 		return -ENOMEM;
7308 
7309 	/* find cfgtable in order to check if reset via doorbell is supported */
7310 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7311 					&cfg_base_addr_index, &cfg_offset);
7312 	if (rc)
7313 		goto unmap_vaddr;
7314 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7315 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7316 	if (!cfgtable) {
7317 		rc = -ENOMEM;
7318 		goto unmap_vaddr;
7319 	}
7320 	rc = write_driver_ver_to_cfgtable(cfgtable);
7321 	if (rc)
7322 		goto unmap_cfgtable;
7323 
7324 	/* If reset via doorbell register is supported, use that.
7325 	 * There are two such methods.  Favor the newest method.
7326 	 */
7327 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7328 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7329 	if (use_doorbell) {
7330 		use_doorbell = DOORBELL_CTLR_RESET2;
7331 	} else {
7332 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7333 		if (use_doorbell) {
7334 			dev_warn(&pdev->dev,
7335 				"Soft reset not supported. Firmware update is required.\n");
7336 			rc = -ENOTSUPP; /* try soft reset */
7337 			goto unmap_cfgtable;
7338 		}
7339 	}
7340 
7341 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7342 	if (rc)
7343 		goto unmap_cfgtable;
7344 
7345 	pci_restore_state(pdev);
7346 	pci_write_config_word(pdev, 4, command_register);
7347 
7348 	/* Some devices (notably the HP Smart Array 5i Controller)
7349 	   need a little pause here */
7350 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7351 
7352 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7353 	if (rc) {
7354 		dev_warn(&pdev->dev,
7355 			"Failed waiting for board to become ready after hard reset\n");
7356 		goto unmap_cfgtable;
7357 	}
7358 
7359 	rc = controller_reset_failed(vaddr);
7360 	if (rc < 0)
7361 		goto unmap_cfgtable;
7362 	if (rc) {
7363 		dev_warn(&pdev->dev, "Unable to successfully reset "
7364 			"controller. Will try soft reset.\n");
7365 		rc = -ENOTSUPP;
7366 	} else {
7367 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7368 	}
7369 
7370 unmap_cfgtable:
7371 	iounmap(cfgtable);
7372 
7373 unmap_vaddr:
7374 	iounmap(vaddr);
7375 	return rc;
7376 }
7377 
7378 /*
7379  *  We cannot read the structure directly, for portability we must use
7380  *   the io functions.
7381  *   This is for debug only.
7382  */
7383 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7384 {
7385 #ifdef HPSA_DEBUG
7386 	int i;
7387 	char temp_name[17];
7388 
7389 	dev_info(dev, "Controller Configuration information\n");
7390 	dev_info(dev, "------------------------------------\n");
7391 	for (i = 0; i < 4; i++)
7392 		temp_name[i] = readb(&(tb->Signature[i]));
7393 	temp_name[4] = '\0';
7394 	dev_info(dev, "   Signature = %s\n", temp_name);
7395 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7396 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7397 	       readl(&(tb->TransportSupport)));
7398 	dev_info(dev, "   Transport methods active = 0x%x\n",
7399 	       readl(&(tb->TransportActive)));
7400 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7401 	       readl(&(tb->HostWrite.TransportRequest)));
7402 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7403 	       readl(&(tb->HostWrite.CoalIntDelay)));
7404 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7405 	       readl(&(tb->HostWrite.CoalIntCount)));
7406 	dev_info(dev, "   Max outstanding commands = %d\n",
7407 	       readl(&(tb->CmdsOutMax)));
7408 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7409 	for (i = 0; i < 16; i++)
7410 		temp_name[i] = readb(&(tb->ServerName[i]));
7411 	temp_name[16] = '\0';
7412 	dev_info(dev, "   Server Name = %s\n", temp_name);
7413 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7414 		readl(&(tb->HeartBeat)));
7415 #endif				/* HPSA_DEBUG */
7416 }
7417 
7418 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7419 {
7420 	int i, offset, mem_type, bar_type;
7421 
7422 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7423 		return 0;
7424 	offset = 0;
7425 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7426 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7427 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7428 			offset += 4;
7429 		else {
7430 			mem_type = pci_resource_flags(pdev, i) &
7431 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7432 			switch (mem_type) {
7433 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7434 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7435 				offset += 4;	/* 32 bit */
7436 				break;
7437 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7438 				offset += 8;
7439 				break;
7440 			default:	/* reserved in PCI 2.2 */
7441 				dev_warn(&pdev->dev,
7442 				       "base address is invalid\n");
7443 				return -1;
7444 				break;
7445 			}
7446 		}
7447 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7448 			return i + 1;
7449 	}
7450 	return -1;
7451 }
7452 
7453 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7454 {
7455 	pci_free_irq_vectors(h->pdev);
7456 	h->msix_vectors = 0;
7457 }
7458 
7459 static void hpsa_setup_reply_map(struct ctlr_info *h)
7460 {
7461 	const struct cpumask *mask;
7462 	unsigned int queue, cpu;
7463 
7464 	for (queue = 0; queue < h->msix_vectors; queue++) {
7465 		mask = pci_irq_get_affinity(h->pdev, queue);
7466 		if (!mask)
7467 			goto fallback;
7468 
7469 		for_each_cpu(cpu, mask)
7470 			h->reply_map[cpu] = queue;
7471 	}
7472 	return;
7473 
7474 fallback:
7475 	for_each_possible_cpu(cpu)
7476 		h->reply_map[cpu] = 0;
7477 }
7478 
7479 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7480  * controllers that are capable. If not, we use legacy INTx mode.
7481  */
7482 static int hpsa_interrupt_mode(struct ctlr_info *h)
7483 {
7484 	unsigned int flags = PCI_IRQ_LEGACY;
7485 	int ret;
7486 
7487 	/* Some boards advertise MSI but don't really support it */
7488 	switch (h->board_id) {
7489 	case 0x40700E11:
7490 	case 0x40800E11:
7491 	case 0x40820E11:
7492 	case 0x40830E11:
7493 		break;
7494 	default:
7495 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7496 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7497 		if (ret > 0) {
7498 			h->msix_vectors = ret;
7499 			return 0;
7500 		}
7501 
7502 		flags |= PCI_IRQ_MSI;
7503 		break;
7504 	}
7505 
7506 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7507 	if (ret < 0)
7508 		return ret;
7509 	return 0;
7510 }
7511 
7512 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7513 				bool *legacy_board)
7514 {
7515 	int i;
7516 	u32 subsystem_vendor_id, subsystem_device_id;
7517 
7518 	subsystem_vendor_id = pdev->subsystem_vendor;
7519 	subsystem_device_id = pdev->subsystem_device;
7520 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7521 		    subsystem_vendor_id;
7522 
7523 	if (legacy_board)
7524 		*legacy_board = false;
7525 	for (i = 0; i < ARRAY_SIZE(products); i++)
7526 		if (*board_id == products[i].board_id) {
7527 			if (products[i].access != &SA5A_access &&
7528 			    products[i].access != &SA5B_access)
7529 				return i;
7530 			dev_warn(&pdev->dev,
7531 				 "legacy board ID: 0x%08x\n",
7532 				 *board_id);
7533 			if (legacy_board)
7534 			    *legacy_board = true;
7535 			return i;
7536 		}
7537 
7538 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7539 	if (legacy_board)
7540 		*legacy_board = true;
7541 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7542 }
7543 
7544 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7545 				    unsigned long *memory_bar)
7546 {
7547 	int i;
7548 
7549 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7550 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7551 			/* addressing mode bits already removed */
7552 			*memory_bar = pci_resource_start(pdev, i);
7553 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7554 				*memory_bar);
7555 			return 0;
7556 		}
7557 	dev_warn(&pdev->dev, "no memory BAR found\n");
7558 	return -ENODEV;
7559 }
7560 
7561 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7562 				     int wait_for_ready)
7563 {
7564 	int i, iterations;
7565 	u32 scratchpad;
7566 	if (wait_for_ready)
7567 		iterations = HPSA_BOARD_READY_ITERATIONS;
7568 	else
7569 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7570 
7571 	for (i = 0; i < iterations; i++) {
7572 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7573 		if (wait_for_ready) {
7574 			if (scratchpad == HPSA_FIRMWARE_READY)
7575 				return 0;
7576 		} else {
7577 			if (scratchpad != HPSA_FIRMWARE_READY)
7578 				return 0;
7579 		}
7580 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7581 	}
7582 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7583 	return -ENODEV;
7584 }
7585 
7586 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7587 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7588 			       u64 *cfg_offset)
7589 {
7590 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7591 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7592 	*cfg_base_addr &= (u32) 0x0000ffff;
7593 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7594 	if (*cfg_base_addr_index == -1) {
7595 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7596 		return -ENODEV;
7597 	}
7598 	return 0;
7599 }
7600 
7601 static void hpsa_free_cfgtables(struct ctlr_info *h)
7602 {
7603 	if (h->transtable) {
7604 		iounmap(h->transtable);
7605 		h->transtable = NULL;
7606 	}
7607 	if (h->cfgtable) {
7608 		iounmap(h->cfgtable);
7609 		h->cfgtable = NULL;
7610 	}
7611 }
7612 
7613 /* Find and map CISS config table and transfer table
7614 + * several items must be unmapped (freed) later
7615 + * */
7616 static int hpsa_find_cfgtables(struct ctlr_info *h)
7617 {
7618 	u64 cfg_offset;
7619 	u32 cfg_base_addr;
7620 	u64 cfg_base_addr_index;
7621 	u32 trans_offset;
7622 	int rc;
7623 
7624 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7625 		&cfg_base_addr_index, &cfg_offset);
7626 	if (rc)
7627 		return rc;
7628 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7629 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7630 	if (!h->cfgtable) {
7631 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7632 		return -ENOMEM;
7633 	}
7634 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7635 	if (rc)
7636 		return rc;
7637 	/* Find performant mode table. */
7638 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7639 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7640 				cfg_base_addr_index)+cfg_offset+trans_offset,
7641 				sizeof(*h->transtable));
7642 	if (!h->transtable) {
7643 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7644 		hpsa_free_cfgtables(h);
7645 		return -ENOMEM;
7646 	}
7647 	return 0;
7648 }
7649 
7650 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7651 {
7652 #define MIN_MAX_COMMANDS 16
7653 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7654 
7655 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7656 
7657 	/* Limit commands in memory limited kdump scenario. */
7658 	if (reset_devices && h->max_commands > 32)
7659 		h->max_commands = 32;
7660 
7661 	if (h->max_commands < MIN_MAX_COMMANDS) {
7662 		dev_warn(&h->pdev->dev,
7663 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7664 			h->max_commands,
7665 			MIN_MAX_COMMANDS);
7666 		h->max_commands = MIN_MAX_COMMANDS;
7667 	}
7668 }
7669 
7670 /* If the controller reports that the total max sg entries is greater than 512,
7671  * then we know that chained SG blocks work.  (Original smart arrays did not
7672  * support chained SG blocks and would return zero for max sg entries.)
7673  */
7674 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7675 {
7676 	return h->maxsgentries > 512;
7677 }
7678 
7679 /* Interrogate the hardware for some limits:
7680  * max commands, max SG elements without chaining, and with chaining,
7681  * SG chain block size, etc.
7682  */
7683 static void hpsa_find_board_params(struct ctlr_info *h)
7684 {
7685 	hpsa_get_max_perf_mode_cmds(h);
7686 	h->nr_cmds = h->max_commands;
7687 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7688 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7689 	if (hpsa_supports_chained_sg_blocks(h)) {
7690 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7691 		h->max_cmd_sg_entries = 32;
7692 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7693 		h->maxsgentries--; /* save one for chain pointer */
7694 	} else {
7695 		/*
7696 		 * Original smart arrays supported at most 31 s/g entries
7697 		 * embedded inline in the command (trying to use more
7698 		 * would lock up the controller)
7699 		 */
7700 		h->max_cmd_sg_entries = 31;
7701 		h->maxsgentries = 31; /* default to traditional values */
7702 		h->chainsize = 0;
7703 	}
7704 
7705 	/* Find out what task management functions are supported and cache */
7706 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7707 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7708 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7709 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7710 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7711 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7712 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7713 }
7714 
7715 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7716 {
7717 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7718 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7719 		return false;
7720 	}
7721 	return true;
7722 }
7723 
7724 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7725 {
7726 	u32 driver_support;
7727 
7728 	driver_support = readl(&(h->cfgtable->driver_support));
7729 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7730 #ifdef CONFIG_X86
7731 	driver_support |= ENABLE_SCSI_PREFETCH;
7732 #endif
7733 	driver_support |= ENABLE_UNIT_ATTN;
7734 	writel(driver_support, &(h->cfgtable->driver_support));
7735 }
7736 
7737 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7738  * in a prefetch beyond physical memory.
7739  */
7740 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7741 {
7742 	u32 dma_prefetch;
7743 
7744 	if (h->board_id != 0x3225103C)
7745 		return;
7746 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7747 	dma_prefetch |= 0x8000;
7748 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7749 }
7750 
7751 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7752 {
7753 	int i;
7754 	u32 doorbell_value;
7755 	unsigned long flags;
7756 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7757 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7758 		spin_lock_irqsave(&h->lock, flags);
7759 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7760 		spin_unlock_irqrestore(&h->lock, flags);
7761 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7762 			goto done;
7763 		/* delay and try again */
7764 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7765 	}
7766 	return -ENODEV;
7767 done:
7768 	return 0;
7769 }
7770 
7771 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7772 {
7773 	int i;
7774 	u32 doorbell_value;
7775 	unsigned long flags;
7776 
7777 	/* under certain very rare conditions, this can take awhile.
7778 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7779 	 * as we enter this code.)
7780 	 */
7781 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7782 		if (h->remove_in_progress)
7783 			goto done;
7784 		spin_lock_irqsave(&h->lock, flags);
7785 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7786 		spin_unlock_irqrestore(&h->lock, flags);
7787 		if (!(doorbell_value & CFGTBL_ChangeReq))
7788 			goto done;
7789 		/* delay and try again */
7790 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7791 	}
7792 	return -ENODEV;
7793 done:
7794 	return 0;
7795 }
7796 
7797 /* return -ENODEV or other reason on error, 0 on success */
7798 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7799 {
7800 	u32 trans_support;
7801 
7802 	trans_support = readl(&(h->cfgtable->TransportSupport));
7803 	if (!(trans_support & SIMPLE_MODE))
7804 		return -ENOTSUPP;
7805 
7806 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7807 
7808 	/* Update the field, and then ring the doorbell */
7809 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7810 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7811 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7812 	if (hpsa_wait_for_mode_change_ack(h))
7813 		goto error;
7814 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7815 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7816 		goto error;
7817 	h->transMethod = CFGTBL_Trans_Simple;
7818 	return 0;
7819 error:
7820 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7821 	return -ENODEV;
7822 }
7823 
7824 /* free items allocated or mapped by hpsa_pci_init */
7825 static void hpsa_free_pci_init(struct ctlr_info *h)
7826 {
7827 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7828 	iounmap(h->vaddr);			/* pci_init 3 */
7829 	h->vaddr = NULL;
7830 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7831 	/*
7832 	 * call pci_disable_device before pci_release_regions per
7833 	 * Documentation/driver-api/pci/pci.rst
7834 	 */
7835 	pci_disable_device(h->pdev);		/* pci_init 1 */
7836 	pci_release_regions(h->pdev);		/* pci_init 2 */
7837 }
7838 
7839 /* several items must be freed later */
7840 static int hpsa_pci_init(struct ctlr_info *h)
7841 {
7842 	int prod_index, err;
7843 	bool legacy_board;
7844 
7845 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7846 	if (prod_index < 0)
7847 		return prod_index;
7848 	h->product_name = products[prod_index].product_name;
7849 	h->access = *(products[prod_index].access);
7850 	h->legacy_board = legacy_board;
7851 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7852 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7853 
7854 	err = pci_enable_device(h->pdev);
7855 	if (err) {
7856 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7857 		pci_disable_device(h->pdev);
7858 		return err;
7859 	}
7860 
7861 	err = pci_request_regions(h->pdev, HPSA);
7862 	if (err) {
7863 		dev_err(&h->pdev->dev,
7864 			"failed to obtain PCI resources\n");
7865 		pci_disable_device(h->pdev);
7866 		return err;
7867 	}
7868 
7869 	pci_set_master(h->pdev);
7870 
7871 	err = hpsa_interrupt_mode(h);
7872 	if (err)
7873 		goto clean1;
7874 
7875 	/* setup mapping between CPU and reply queue */
7876 	hpsa_setup_reply_map(h);
7877 
7878 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7879 	if (err)
7880 		goto clean2;	/* intmode+region, pci */
7881 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7882 	if (!h->vaddr) {
7883 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7884 		err = -ENOMEM;
7885 		goto clean2;	/* intmode+region, pci */
7886 	}
7887 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7888 	if (err)
7889 		goto clean3;	/* vaddr, intmode+region, pci */
7890 	err = hpsa_find_cfgtables(h);
7891 	if (err)
7892 		goto clean3;	/* vaddr, intmode+region, pci */
7893 	hpsa_find_board_params(h);
7894 
7895 	if (!hpsa_CISS_signature_present(h)) {
7896 		err = -ENODEV;
7897 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7898 	}
7899 	hpsa_set_driver_support_bits(h);
7900 	hpsa_p600_dma_prefetch_quirk(h);
7901 	err = hpsa_enter_simple_mode(h);
7902 	if (err)
7903 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7904 	return 0;
7905 
7906 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7907 	hpsa_free_cfgtables(h);
7908 clean3:	/* vaddr, intmode+region, pci */
7909 	iounmap(h->vaddr);
7910 	h->vaddr = NULL;
7911 clean2:	/* intmode+region, pci */
7912 	hpsa_disable_interrupt_mode(h);
7913 clean1:
7914 	/*
7915 	 * call pci_disable_device before pci_release_regions per
7916 	 * Documentation/driver-api/pci/pci.rst
7917 	 */
7918 	pci_disable_device(h->pdev);
7919 	pci_release_regions(h->pdev);
7920 	return err;
7921 }
7922 
7923 static void hpsa_hba_inquiry(struct ctlr_info *h)
7924 {
7925 	int rc;
7926 
7927 #define HBA_INQUIRY_BYTE_COUNT 64
7928 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7929 	if (!h->hba_inquiry_data)
7930 		return;
7931 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7932 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7933 	if (rc != 0) {
7934 		kfree(h->hba_inquiry_data);
7935 		h->hba_inquiry_data = NULL;
7936 	}
7937 }
7938 
7939 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7940 {
7941 	int rc, i;
7942 	void __iomem *vaddr;
7943 
7944 	if (!reset_devices)
7945 		return 0;
7946 
7947 	/* kdump kernel is loading, we don't know in which state is
7948 	 * the pci interface. The dev->enable_cnt is equal zero
7949 	 * so we call enable+disable, wait a while and switch it on.
7950 	 */
7951 	rc = pci_enable_device(pdev);
7952 	if (rc) {
7953 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7954 		return -ENODEV;
7955 	}
7956 	pci_disable_device(pdev);
7957 	msleep(260);			/* a randomly chosen number */
7958 	rc = pci_enable_device(pdev);
7959 	if (rc) {
7960 		dev_warn(&pdev->dev, "failed to enable device.\n");
7961 		return -ENODEV;
7962 	}
7963 
7964 	pci_set_master(pdev);
7965 
7966 	vaddr = pci_ioremap_bar(pdev, 0);
7967 	if (vaddr == NULL) {
7968 		rc = -ENOMEM;
7969 		goto out_disable;
7970 	}
7971 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7972 	iounmap(vaddr);
7973 
7974 	/* Reset the controller with a PCI power-cycle or via doorbell */
7975 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7976 
7977 	/* -ENOTSUPP here means we cannot reset the controller
7978 	 * but it's already (and still) up and running in
7979 	 * "performant mode".  Or, it might be 640x, which can't reset
7980 	 * due to concerns about shared bbwc between 6402/6404 pair.
7981 	 */
7982 	if (rc)
7983 		goto out_disable;
7984 
7985 	/* Now try to get the controller to respond to a no-op */
7986 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7987 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7988 		if (hpsa_noop(pdev) == 0)
7989 			break;
7990 		else
7991 			dev_warn(&pdev->dev, "no-op failed%s\n",
7992 					(i < 11 ? "; re-trying" : ""));
7993 	}
7994 
7995 out_disable:
7996 
7997 	pci_disable_device(pdev);
7998 	return rc;
7999 }
8000 
8001 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8002 {
8003 	kfree(h->cmd_pool_bits);
8004 	h->cmd_pool_bits = NULL;
8005 	if (h->cmd_pool) {
8006 		dma_free_coherent(&h->pdev->dev,
8007 				h->nr_cmds * sizeof(struct CommandList),
8008 				h->cmd_pool,
8009 				h->cmd_pool_dhandle);
8010 		h->cmd_pool = NULL;
8011 		h->cmd_pool_dhandle = 0;
8012 	}
8013 	if (h->errinfo_pool) {
8014 		dma_free_coherent(&h->pdev->dev,
8015 				h->nr_cmds * sizeof(struct ErrorInfo),
8016 				h->errinfo_pool,
8017 				h->errinfo_pool_dhandle);
8018 		h->errinfo_pool = NULL;
8019 		h->errinfo_pool_dhandle = 0;
8020 	}
8021 }
8022 
8023 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8024 {
8025 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8026 				   sizeof(unsigned long),
8027 				   GFP_KERNEL);
8028 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8029 		    h->nr_cmds * sizeof(*h->cmd_pool),
8030 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8031 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8032 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8033 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8034 	if ((h->cmd_pool_bits == NULL)
8035 	    || (h->cmd_pool == NULL)
8036 	    || (h->errinfo_pool == NULL)) {
8037 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8038 		goto clean_up;
8039 	}
8040 	hpsa_preinitialize_commands(h);
8041 	return 0;
8042 clean_up:
8043 	hpsa_free_cmd_pool(h);
8044 	return -ENOMEM;
8045 }
8046 
8047 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8048 static void hpsa_free_irqs(struct ctlr_info *h)
8049 {
8050 	int i;
8051 	int irq_vector = 0;
8052 
8053 	if (hpsa_simple_mode)
8054 		irq_vector = h->intr_mode;
8055 
8056 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8057 		/* Single reply queue, only one irq to free */
8058 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8059 				&h->q[h->intr_mode]);
8060 		h->q[h->intr_mode] = 0;
8061 		return;
8062 	}
8063 
8064 	for (i = 0; i < h->msix_vectors; i++) {
8065 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8066 		h->q[i] = 0;
8067 	}
8068 	for (; i < MAX_REPLY_QUEUES; i++)
8069 		h->q[i] = 0;
8070 }
8071 
8072 /* returns 0 on success; cleans up and returns -Enn on error */
8073 static int hpsa_request_irqs(struct ctlr_info *h,
8074 	irqreturn_t (*msixhandler)(int, void *),
8075 	irqreturn_t (*intxhandler)(int, void *))
8076 {
8077 	int rc, i;
8078 	int irq_vector = 0;
8079 
8080 	if (hpsa_simple_mode)
8081 		irq_vector = h->intr_mode;
8082 
8083 	/*
8084 	 * initialize h->q[x] = x so that interrupt handlers know which
8085 	 * queue to process.
8086 	 */
8087 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8088 		h->q[i] = (u8) i;
8089 
8090 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8091 		/* If performant mode and MSI-X, use multiple reply queues */
8092 		for (i = 0; i < h->msix_vectors; i++) {
8093 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8094 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8095 					0, h->intrname[i],
8096 					&h->q[i]);
8097 			if (rc) {
8098 				int j;
8099 
8100 				dev_err(&h->pdev->dev,
8101 					"failed to get irq %d for %s\n",
8102 				       pci_irq_vector(h->pdev, i), h->devname);
8103 				for (j = 0; j < i; j++) {
8104 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8105 					h->q[j] = 0;
8106 				}
8107 				for (; j < MAX_REPLY_QUEUES; j++)
8108 					h->q[j] = 0;
8109 				return rc;
8110 			}
8111 		}
8112 	} else {
8113 		/* Use single reply pool */
8114 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8115 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8116 				h->msix_vectors ? "x" : "");
8117 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8118 				msixhandler, 0,
8119 				h->intrname[0],
8120 				&h->q[h->intr_mode]);
8121 		} else {
8122 			sprintf(h->intrname[h->intr_mode],
8123 				"%s-intx", h->devname);
8124 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8125 				intxhandler, IRQF_SHARED,
8126 				h->intrname[0],
8127 				&h->q[h->intr_mode]);
8128 		}
8129 	}
8130 	if (rc) {
8131 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8132 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8133 		hpsa_free_irqs(h);
8134 		return -ENODEV;
8135 	}
8136 	return 0;
8137 }
8138 
8139 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8140 {
8141 	int rc;
8142 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8143 
8144 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8145 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8146 	if (rc) {
8147 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8148 		return rc;
8149 	}
8150 
8151 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8152 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8153 	if (rc) {
8154 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8155 			"after soft reset.\n");
8156 		return rc;
8157 	}
8158 
8159 	return 0;
8160 }
8161 
8162 static void hpsa_free_reply_queues(struct ctlr_info *h)
8163 {
8164 	int i;
8165 
8166 	for (i = 0; i < h->nreply_queues; i++) {
8167 		if (!h->reply_queue[i].head)
8168 			continue;
8169 		dma_free_coherent(&h->pdev->dev,
8170 					h->reply_queue_size,
8171 					h->reply_queue[i].head,
8172 					h->reply_queue[i].busaddr);
8173 		h->reply_queue[i].head = NULL;
8174 		h->reply_queue[i].busaddr = 0;
8175 	}
8176 	h->reply_queue_size = 0;
8177 }
8178 
8179 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8180 {
8181 	hpsa_free_performant_mode(h);		/* init_one 7 */
8182 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8183 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8184 	hpsa_free_irqs(h);			/* init_one 4 */
8185 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8186 	h->scsi_host = NULL;			/* init_one 3 */
8187 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8188 	free_percpu(h->lockup_detected);	/* init_one 2 */
8189 	h->lockup_detected = NULL;		/* init_one 2 */
8190 	if (h->resubmit_wq) {
8191 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8192 		h->resubmit_wq = NULL;
8193 	}
8194 	if (h->rescan_ctlr_wq) {
8195 		destroy_workqueue(h->rescan_ctlr_wq);
8196 		h->rescan_ctlr_wq = NULL;
8197 	}
8198 	if (h->monitor_ctlr_wq) {
8199 		destroy_workqueue(h->monitor_ctlr_wq);
8200 		h->monitor_ctlr_wq = NULL;
8201 	}
8202 
8203 	kfree(h);				/* init_one 1 */
8204 }
8205 
8206 /* Called when controller lockup detected. */
8207 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8208 {
8209 	int i, refcount;
8210 	struct CommandList *c;
8211 	int failcount = 0;
8212 
8213 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8214 	for (i = 0; i < h->nr_cmds; i++) {
8215 		c = h->cmd_pool + i;
8216 		refcount = atomic_inc_return(&c->refcount);
8217 		if (refcount > 1) {
8218 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8219 			finish_cmd(c);
8220 			atomic_dec(&h->commands_outstanding);
8221 			failcount++;
8222 		}
8223 		cmd_free(h, c);
8224 	}
8225 	dev_warn(&h->pdev->dev,
8226 		"failed %d commands in fail_all\n", failcount);
8227 }
8228 
8229 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8230 {
8231 	int cpu;
8232 
8233 	for_each_online_cpu(cpu) {
8234 		u32 *lockup_detected;
8235 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8236 		*lockup_detected = value;
8237 	}
8238 	wmb(); /* be sure the per-cpu variables are out to memory */
8239 }
8240 
8241 static void controller_lockup_detected(struct ctlr_info *h)
8242 {
8243 	unsigned long flags;
8244 	u32 lockup_detected;
8245 
8246 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8247 	spin_lock_irqsave(&h->lock, flags);
8248 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8249 	if (!lockup_detected) {
8250 		/* no heartbeat, but controller gave us a zero. */
8251 		dev_warn(&h->pdev->dev,
8252 			"lockup detected after %d but scratchpad register is zero\n",
8253 			h->heartbeat_sample_interval / HZ);
8254 		lockup_detected = 0xffffffff;
8255 	}
8256 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8257 	spin_unlock_irqrestore(&h->lock, flags);
8258 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8259 			lockup_detected, h->heartbeat_sample_interval / HZ);
8260 	if (lockup_detected == 0xffff0000) {
8261 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8262 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8263 	}
8264 	pci_disable_device(h->pdev);
8265 	fail_all_outstanding_cmds(h);
8266 }
8267 
8268 static int detect_controller_lockup(struct ctlr_info *h)
8269 {
8270 	u64 now;
8271 	u32 heartbeat;
8272 	unsigned long flags;
8273 
8274 	now = get_jiffies_64();
8275 	/* If we've received an interrupt recently, we're ok. */
8276 	if (time_after64(h->last_intr_timestamp +
8277 				(h->heartbeat_sample_interval), now))
8278 		return false;
8279 
8280 	/*
8281 	 * If we've already checked the heartbeat recently, we're ok.
8282 	 * This could happen if someone sends us a signal. We
8283 	 * otherwise don't care about signals in this thread.
8284 	 */
8285 	if (time_after64(h->last_heartbeat_timestamp +
8286 				(h->heartbeat_sample_interval), now))
8287 		return false;
8288 
8289 	/* If heartbeat has not changed since we last looked, we're not ok. */
8290 	spin_lock_irqsave(&h->lock, flags);
8291 	heartbeat = readl(&h->cfgtable->HeartBeat);
8292 	spin_unlock_irqrestore(&h->lock, flags);
8293 	if (h->last_heartbeat == heartbeat) {
8294 		controller_lockup_detected(h);
8295 		return true;
8296 	}
8297 
8298 	/* We're ok. */
8299 	h->last_heartbeat = heartbeat;
8300 	h->last_heartbeat_timestamp = now;
8301 	return false;
8302 }
8303 
8304 /*
8305  * Set ioaccel status for all ioaccel volumes.
8306  *
8307  * Called from monitor controller worker (hpsa_event_monitor_worker)
8308  *
8309  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8310  * transformation, so we will be turning off ioaccel for all volumes that
8311  * make up the Array.
8312  */
8313 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8314 {
8315 	int rc;
8316 	int i;
8317 	u8 ioaccel_status;
8318 	unsigned char *buf;
8319 	struct hpsa_scsi_dev_t *device;
8320 
8321 	if (!h)
8322 		return;
8323 
8324 	buf = kmalloc(64, GFP_KERNEL);
8325 	if (!buf)
8326 		return;
8327 
8328 	/*
8329 	 * Run through current device list used during I/O requests.
8330 	 */
8331 	for (i = 0; i < h->ndevices; i++) {
8332 		int offload_to_be_enabled = 0;
8333 		int offload_config = 0;
8334 
8335 		device = h->dev[i];
8336 
8337 		if (!device)
8338 			continue;
8339 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8340 						HPSA_VPD_LV_IOACCEL_STATUS))
8341 			continue;
8342 
8343 		memset(buf, 0, 64);
8344 
8345 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8346 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8347 					buf, 64);
8348 		if (rc != 0)
8349 			continue;
8350 
8351 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8352 
8353 		/*
8354 		 * Check if offload is still configured on
8355 		 */
8356 		offload_config =
8357 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8358 		/*
8359 		 * If offload is configured on, check to see if ioaccel
8360 		 * needs to be enabled.
8361 		 */
8362 		if (offload_config)
8363 			offload_to_be_enabled =
8364 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8365 
8366 		/*
8367 		 * If ioaccel is to be re-enabled, re-enable later during the
8368 		 * scan operation so the driver can get a fresh raidmap
8369 		 * before turning ioaccel back on.
8370 		 */
8371 		if (offload_to_be_enabled)
8372 			continue;
8373 
8374 		/*
8375 		 * Immediately turn off ioaccel for any volume the
8376 		 * controller tells us to. Some of the reasons could be:
8377 		 *    transformation - change to the LVs of an Array.
8378 		 *    degraded volume - component failure
8379 		 */
8380 		hpsa_turn_off_ioaccel_for_device(device);
8381 	}
8382 
8383 	kfree(buf);
8384 }
8385 
8386 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8387 {
8388 	char *event_type;
8389 
8390 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8391 		return;
8392 
8393 	/* Ask the controller to clear the events we're handling. */
8394 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8395 			| CFGTBL_Trans_io_accel2)) &&
8396 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8397 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8398 
8399 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8400 			event_type = "state change";
8401 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8402 			event_type = "configuration change";
8403 		/* Stop sending new RAID offload reqs via the IO accelerator */
8404 		scsi_block_requests(h->scsi_host);
8405 		hpsa_set_ioaccel_status(h);
8406 		hpsa_drain_accel_commands(h);
8407 		/* Set 'accelerator path config change' bit */
8408 		dev_warn(&h->pdev->dev,
8409 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8410 			h->events, event_type);
8411 		writel(h->events, &(h->cfgtable->clear_event_notify));
8412 		/* Set the "clear event notify field update" bit 6 */
8413 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8414 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8415 		hpsa_wait_for_clear_event_notify_ack(h);
8416 		scsi_unblock_requests(h->scsi_host);
8417 	} else {
8418 		/* Acknowledge controller notification events. */
8419 		writel(h->events, &(h->cfgtable->clear_event_notify));
8420 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8421 		hpsa_wait_for_clear_event_notify_ack(h);
8422 	}
8423 	return;
8424 }
8425 
8426 /* Check a register on the controller to see if there are configuration
8427  * changes (added/changed/removed logical drives, etc.) which mean that
8428  * we should rescan the controller for devices.
8429  * Also check flag for driver-initiated rescan.
8430  */
8431 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8432 {
8433 	if (h->drv_req_rescan) {
8434 		h->drv_req_rescan = 0;
8435 		return 1;
8436 	}
8437 
8438 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8439 		return 0;
8440 
8441 	h->events = readl(&(h->cfgtable->event_notify));
8442 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8443 }
8444 
8445 /*
8446  * Check if any of the offline devices have become ready
8447  */
8448 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8449 {
8450 	unsigned long flags;
8451 	struct offline_device_entry *d;
8452 	struct list_head *this, *tmp;
8453 
8454 	spin_lock_irqsave(&h->offline_device_lock, flags);
8455 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8456 		d = list_entry(this, struct offline_device_entry,
8457 				offline_list);
8458 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8459 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8460 			spin_lock_irqsave(&h->offline_device_lock, flags);
8461 			list_del(&d->offline_list);
8462 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8463 			return 1;
8464 		}
8465 		spin_lock_irqsave(&h->offline_device_lock, flags);
8466 	}
8467 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8468 	return 0;
8469 }
8470 
8471 static int hpsa_luns_changed(struct ctlr_info *h)
8472 {
8473 	int rc = 1; /* assume there are changes */
8474 	struct ReportLUNdata *logdev = NULL;
8475 
8476 	/* if we can't find out if lun data has changed,
8477 	 * assume that it has.
8478 	 */
8479 
8480 	if (!h->lastlogicals)
8481 		return rc;
8482 
8483 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8484 	if (!logdev)
8485 		return rc;
8486 
8487 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8488 		dev_warn(&h->pdev->dev,
8489 			"report luns failed, can't track lun changes.\n");
8490 		goto out;
8491 	}
8492 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8493 		dev_info(&h->pdev->dev,
8494 			"Lun changes detected.\n");
8495 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8496 		goto out;
8497 	} else
8498 		rc = 0; /* no changes detected. */
8499 out:
8500 	kfree(logdev);
8501 	return rc;
8502 }
8503 
8504 static void hpsa_perform_rescan(struct ctlr_info *h)
8505 {
8506 	struct Scsi_Host *sh = NULL;
8507 	unsigned long flags;
8508 
8509 	/*
8510 	 * Do the scan after the reset
8511 	 */
8512 	spin_lock_irqsave(&h->reset_lock, flags);
8513 	if (h->reset_in_progress) {
8514 		h->drv_req_rescan = 1;
8515 		spin_unlock_irqrestore(&h->reset_lock, flags);
8516 		return;
8517 	}
8518 	spin_unlock_irqrestore(&h->reset_lock, flags);
8519 
8520 	sh = scsi_host_get(h->scsi_host);
8521 	if (sh != NULL) {
8522 		hpsa_scan_start(sh);
8523 		scsi_host_put(sh);
8524 		h->drv_req_rescan = 0;
8525 	}
8526 }
8527 
8528 /*
8529  * watch for controller events
8530  */
8531 static void hpsa_event_monitor_worker(struct work_struct *work)
8532 {
8533 	struct ctlr_info *h = container_of(to_delayed_work(work),
8534 					struct ctlr_info, event_monitor_work);
8535 	unsigned long flags;
8536 
8537 	spin_lock_irqsave(&h->lock, flags);
8538 	if (h->remove_in_progress) {
8539 		spin_unlock_irqrestore(&h->lock, flags);
8540 		return;
8541 	}
8542 	spin_unlock_irqrestore(&h->lock, flags);
8543 
8544 	if (hpsa_ctlr_needs_rescan(h)) {
8545 		hpsa_ack_ctlr_events(h);
8546 		hpsa_perform_rescan(h);
8547 	}
8548 
8549 	spin_lock_irqsave(&h->lock, flags);
8550 	if (!h->remove_in_progress)
8551 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8552 				HPSA_EVENT_MONITOR_INTERVAL);
8553 	spin_unlock_irqrestore(&h->lock, flags);
8554 }
8555 
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8557 {
8558 	unsigned long flags;
8559 	struct ctlr_info *h = container_of(to_delayed_work(work),
8560 					struct ctlr_info, rescan_ctlr_work);
8561 
8562 	spin_lock_irqsave(&h->lock, flags);
8563 	if (h->remove_in_progress) {
8564 		spin_unlock_irqrestore(&h->lock, flags);
8565 		return;
8566 	}
8567 	spin_unlock_irqrestore(&h->lock, flags);
8568 
8569 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8570 		hpsa_perform_rescan(h);
8571 	} else if (h->discovery_polling) {
8572 		if (hpsa_luns_changed(h)) {
8573 			dev_info(&h->pdev->dev,
8574 				"driver discovery polling rescan.\n");
8575 			hpsa_perform_rescan(h);
8576 		}
8577 	}
8578 	spin_lock_irqsave(&h->lock, flags);
8579 	if (!h->remove_in_progress)
8580 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8581 				h->heartbeat_sample_interval);
8582 	spin_unlock_irqrestore(&h->lock, flags);
8583 }
8584 
8585 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8586 {
8587 	unsigned long flags;
8588 	struct ctlr_info *h = container_of(to_delayed_work(work),
8589 					struct ctlr_info, monitor_ctlr_work);
8590 
8591 	detect_controller_lockup(h);
8592 	if (lockup_detected(h))
8593 		return;
8594 
8595 	spin_lock_irqsave(&h->lock, flags);
8596 	if (!h->remove_in_progress)
8597 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8598 				h->heartbeat_sample_interval);
8599 	spin_unlock_irqrestore(&h->lock, flags);
8600 }
8601 
8602 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8603 						char *name)
8604 {
8605 	struct workqueue_struct *wq = NULL;
8606 
8607 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8608 	if (!wq)
8609 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8610 
8611 	return wq;
8612 }
8613 
8614 static void hpda_free_ctlr_info(struct ctlr_info *h)
8615 {
8616 	kfree(h->reply_map);
8617 	kfree(h);
8618 }
8619 
8620 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8621 {
8622 	struct ctlr_info *h;
8623 
8624 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8625 	if (!h)
8626 		return NULL;
8627 
8628 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8629 	if (!h->reply_map) {
8630 		kfree(h);
8631 		return NULL;
8632 	}
8633 	return h;
8634 }
8635 
8636 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8637 {
8638 	int dac, rc;
8639 	struct ctlr_info *h;
8640 	int try_soft_reset = 0;
8641 	unsigned long flags;
8642 	u32 board_id;
8643 
8644 	if (number_of_controllers == 0)
8645 		printk(KERN_INFO DRIVER_NAME "\n");
8646 
8647 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8648 	if (rc < 0) {
8649 		dev_warn(&pdev->dev, "Board ID not found\n");
8650 		return rc;
8651 	}
8652 
8653 	rc = hpsa_init_reset_devices(pdev, board_id);
8654 	if (rc) {
8655 		if (rc != -ENOTSUPP)
8656 			return rc;
8657 		/* If the reset fails in a particular way (it has no way to do
8658 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8659 		 * a soft reset once we get the controller configured up to the
8660 		 * point that it can accept a command.
8661 		 */
8662 		try_soft_reset = 1;
8663 		rc = 0;
8664 	}
8665 
8666 reinit_after_soft_reset:
8667 
8668 	/* Command structures must be aligned on a 32-byte boundary because
8669 	 * the 5 lower bits of the address are used by the hardware. and by
8670 	 * the driver.  See comments in hpsa.h for more info.
8671 	 */
8672 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8673 	h = hpda_alloc_ctlr_info();
8674 	if (!h) {
8675 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8676 		return -ENOMEM;
8677 	}
8678 
8679 	h->pdev = pdev;
8680 
8681 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8682 	INIT_LIST_HEAD(&h->offline_device_list);
8683 	spin_lock_init(&h->lock);
8684 	spin_lock_init(&h->offline_device_lock);
8685 	spin_lock_init(&h->scan_lock);
8686 	spin_lock_init(&h->reset_lock);
8687 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8688 
8689 	/* Allocate and clear per-cpu variable lockup_detected */
8690 	h->lockup_detected = alloc_percpu(u32);
8691 	if (!h->lockup_detected) {
8692 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8693 		rc = -ENOMEM;
8694 		goto clean1;	/* aer/h */
8695 	}
8696 	set_lockup_detected_for_all_cpus(h, 0);
8697 
8698 	rc = hpsa_pci_init(h);
8699 	if (rc)
8700 		goto clean2;	/* lu, aer/h */
8701 
8702 	/* relies on h-> settings made by hpsa_pci_init, including
8703 	 * interrupt_mode h->intr */
8704 	rc = hpsa_scsi_host_alloc(h);
8705 	if (rc)
8706 		goto clean2_5;	/* pci, lu, aer/h */
8707 
8708 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8709 	h->ctlr = number_of_controllers;
8710 	number_of_controllers++;
8711 
8712 	/* configure PCI DMA stuff */
8713 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8714 	if (rc == 0) {
8715 		dac = 1;
8716 	} else {
8717 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8718 		if (rc == 0) {
8719 			dac = 0;
8720 		} else {
8721 			dev_err(&pdev->dev, "no suitable DMA available\n");
8722 			goto clean3;	/* shost, pci, lu, aer/h */
8723 		}
8724 	}
8725 
8726 	/* make sure the board interrupts are off */
8727 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8728 
8729 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8730 	if (rc)
8731 		goto clean3;	/* shost, pci, lu, aer/h */
8732 	rc = hpsa_alloc_cmd_pool(h);
8733 	if (rc)
8734 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8735 	rc = hpsa_alloc_sg_chain_blocks(h);
8736 	if (rc)
8737 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8738 	init_waitqueue_head(&h->scan_wait_queue);
8739 	init_waitqueue_head(&h->event_sync_wait_queue);
8740 	mutex_init(&h->reset_mutex);
8741 	h->scan_finished = 1; /* no scan currently in progress */
8742 	h->scan_waiting = 0;
8743 
8744 	pci_set_drvdata(pdev, h);
8745 	h->ndevices = 0;
8746 
8747 	spin_lock_init(&h->devlock);
8748 	rc = hpsa_put_ctlr_into_performant_mode(h);
8749 	if (rc)
8750 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8751 
8752 	/* create the resubmit workqueue */
8753 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8754 	if (!h->rescan_ctlr_wq) {
8755 		rc = -ENOMEM;
8756 		goto clean7;
8757 	}
8758 
8759 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8760 	if (!h->resubmit_wq) {
8761 		rc = -ENOMEM;
8762 		goto clean7;	/* aer/h */
8763 	}
8764 
8765 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8766 	if (!h->monitor_ctlr_wq) {
8767 		rc = -ENOMEM;
8768 		goto clean7;
8769 	}
8770 
8771 	/*
8772 	 * At this point, the controller is ready to take commands.
8773 	 * Now, if reset_devices and the hard reset didn't work, try
8774 	 * the soft reset and see if that works.
8775 	 */
8776 	if (try_soft_reset) {
8777 
8778 		/* This is kind of gross.  We may or may not get a completion
8779 		 * from the soft reset command, and if we do, then the value
8780 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8781 		 * after the reset throwing away any completions we get during
8782 		 * that time.  Unregister the interrupt handler and register
8783 		 * fake ones to scoop up any residual completions.
8784 		 */
8785 		spin_lock_irqsave(&h->lock, flags);
8786 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8787 		spin_unlock_irqrestore(&h->lock, flags);
8788 		hpsa_free_irqs(h);
8789 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8790 					hpsa_intx_discard_completions);
8791 		if (rc) {
8792 			dev_warn(&h->pdev->dev,
8793 				"Failed to request_irq after soft reset.\n");
8794 			/*
8795 			 * cannot goto clean7 or free_irqs will be called
8796 			 * again. Instead, do its work
8797 			 */
8798 			hpsa_free_performant_mode(h);	/* clean7 */
8799 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8800 			hpsa_free_cmd_pool(h);		/* clean5 */
8801 			/*
8802 			 * skip hpsa_free_irqs(h) clean4 since that
8803 			 * was just called before request_irqs failed
8804 			 */
8805 			goto clean3;
8806 		}
8807 
8808 		rc = hpsa_kdump_soft_reset(h);
8809 		if (rc)
8810 			/* Neither hard nor soft reset worked, we're hosed. */
8811 			goto clean7;
8812 
8813 		dev_info(&h->pdev->dev, "Board READY.\n");
8814 		dev_info(&h->pdev->dev,
8815 			"Waiting for stale completions to drain.\n");
8816 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8817 		msleep(10000);
8818 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8819 
8820 		rc = controller_reset_failed(h->cfgtable);
8821 		if (rc)
8822 			dev_info(&h->pdev->dev,
8823 				"Soft reset appears to have failed.\n");
8824 
8825 		/* since the controller's reset, we have to go back and re-init
8826 		 * everything.  Easiest to just forget what we've done and do it
8827 		 * all over again.
8828 		 */
8829 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8830 		try_soft_reset = 0;
8831 		if (rc)
8832 			/* don't goto clean, we already unallocated */
8833 			return -ENODEV;
8834 
8835 		goto reinit_after_soft_reset;
8836 	}
8837 
8838 	/* Enable Accelerated IO path at driver layer */
8839 	h->acciopath_status = 1;
8840 	/* Disable discovery polling.*/
8841 	h->discovery_polling = 0;
8842 
8843 
8844 	/* Turn the interrupts on so we can service requests */
8845 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8846 
8847 	hpsa_hba_inquiry(h);
8848 
8849 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8850 	if (!h->lastlogicals)
8851 		dev_info(&h->pdev->dev,
8852 			"Can't track change to report lun data\n");
8853 
8854 	/* hook into SCSI subsystem */
8855 	rc = hpsa_scsi_add_host(h);
8856 	if (rc)
8857 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8858 
8859 	/* Monitor the controller for firmware lockups */
8860 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8861 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8862 	schedule_delayed_work(&h->monitor_ctlr_work,
8863 				h->heartbeat_sample_interval);
8864 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8865 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8866 				h->heartbeat_sample_interval);
8867 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8868 	schedule_delayed_work(&h->event_monitor_work,
8869 				HPSA_EVENT_MONITOR_INTERVAL);
8870 	return 0;
8871 
8872 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873 	hpsa_free_performant_mode(h);
8874 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8876 	hpsa_free_sg_chain_blocks(h);
8877 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8878 	hpsa_free_cmd_pool(h);
8879 clean4: /* irq, shost, pci, lu, aer/h */
8880 	hpsa_free_irqs(h);
8881 clean3: /* shost, pci, lu, aer/h */
8882 	scsi_host_put(h->scsi_host);
8883 	h->scsi_host = NULL;
8884 clean2_5: /* pci, lu, aer/h */
8885 	hpsa_free_pci_init(h);
8886 clean2: /* lu, aer/h */
8887 	if (h->lockup_detected) {
8888 		free_percpu(h->lockup_detected);
8889 		h->lockup_detected = NULL;
8890 	}
8891 clean1:	/* wq/aer/h */
8892 	if (h->resubmit_wq) {
8893 		destroy_workqueue(h->resubmit_wq);
8894 		h->resubmit_wq = NULL;
8895 	}
8896 	if (h->rescan_ctlr_wq) {
8897 		destroy_workqueue(h->rescan_ctlr_wq);
8898 		h->rescan_ctlr_wq = NULL;
8899 	}
8900 	if (h->monitor_ctlr_wq) {
8901 		destroy_workqueue(h->monitor_ctlr_wq);
8902 		h->monitor_ctlr_wq = NULL;
8903 	}
8904 	kfree(h);
8905 	return rc;
8906 }
8907 
8908 static void hpsa_flush_cache(struct ctlr_info *h)
8909 {
8910 	char *flush_buf;
8911 	struct CommandList *c;
8912 	int rc;
8913 
8914 	if (unlikely(lockup_detected(h)))
8915 		return;
8916 	flush_buf = kzalloc(4, GFP_KERNEL);
8917 	if (!flush_buf)
8918 		return;
8919 
8920 	c = cmd_alloc(h);
8921 
8922 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8923 		RAID_CTLR_LUNID, TYPE_CMD)) {
8924 		goto out;
8925 	}
8926 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8927 			DEFAULT_TIMEOUT);
8928 	if (rc)
8929 		goto out;
8930 	if (c->err_info->CommandStatus != 0)
8931 out:
8932 		dev_warn(&h->pdev->dev,
8933 			"error flushing cache on controller\n");
8934 	cmd_free(h, c);
8935 	kfree(flush_buf);
8936 }
8937 
8938 /* Make controller gather fresh report lun data each time we
8939  * send down a report luns request
8940  */
8941 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8942 {
8943 	u32 *options;
8944 	struct CommandList *c;
8945 	int rc;
8946 
8947 	/* Don't bother trying to set diag options if locked up */
8948 	if (unlikely(h->lockup_detected))
8949 		return;
8950 
8951 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8952 	if (!options)
8953 		return;
8954 
8955 	c = cmd_alloc(h);
8956 
8957 	/* first, get the current diag options settings */
8958 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8959 		RAID_CTLR_LUNID, TYPE_CMD))
8960 		goto errout;
8961 
8962 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8963 			NO_TIMEOUT);
8964 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8965 		goto errout;
8966 
8967 	/* Now, set the bit for disabling the RLD caching */
8968 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8969 
8970 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8971 		RAID_CTLR_LUNID, TYPE_CMD))
8972 		goto errout;
8973 
8974 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8975 			NO_TIMEOUT);
8976 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8977 		goto errout;
8978 
8979 	/* Now verify that it got set: */
8980 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8981 		RAID_CTLR_LUNID, TYPE_CMD))
8982 		goto errout;
8983 
8984 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8985 			NO_TIMEOUT);
8986 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8987 		goto errout;
8988 
8989 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8990 		goto out;
8991 
8992 errout:
8993 	dev_err(&h->pdev->dev,
8994 			"Error: failed to disable report lun data caching.\n");
8995 out:
8996 	cmd_free(h, c);
8997 	kfree(options);
8998 }
8999 
9000 static void __hpsa_shutdown(struct pci_dev *pdev)
9001 {
9002 	struct ctlr_info *h;
9003 
9004 	h = pci_get_drvdata(pdev);
9005 	/* Turn board interrupts off  and send the flush cache command
9006 	 * sendcmd will turn off interrupt, and send the flush...
9007 	 * To write all data in the battery backed cache to disks
9008 	 */
9009 	hpsa_flush_cache(h);
9010 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011 	hpsa_free_irqs(h);			/* init_one 4 */
9012 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9013 }
9014 
9015 static void hpsa_shutdown(struct pci_dev *pdev)
9016 {
9017 	__hpsa_shutdown(pdev);
9018 	pci_disable_device(pdev);
9019 }
9020 
9021 static void hpsa_free_device_info(struct ctlr_info *h)
9022 {
9023 	int i;
9024 
9025 	for (i = 0; i < h->ndevices; i++) {
9026 		kfree(h->dev[i]);
9027 		h->dev[i] = NULL;
9028 	}
9029 }
9030 
9031 static void hpsa_remove_one(struct pci_dev *pdev)
9032 {
9033 	struct ctlr_info *h;
9034 	unsigned long flags;
9035 
9036 	if (pci_get_drvdata(pdev) == NULL) {
9037 		dev_err(&pdev->dev, "unable to remove device\n");
9038 		return;
9039 	}
9040 	h = pci_get_drvdata(pdev);
9041 
9042 	/* Get rid of any controller monitoring work items */
9043 	spin_lock_irqsave(&h->lock, flags);
9044 	h->remove_in_progress = 1;
9045 	spin_unlock_irqrestore(&h->lock, flags);
9046 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9047 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9048 	cancel_delayed_work_sync(&h->event_monitor_work);
9049 	destroy_workqueue(h->rescan_ctlr_wq);
9050 	destroy_workqueue(h->resubmit_wq);
9051 	destroy_workqueue(h->monitor_ctlr_wq);
9052 
9053 	hpsa_delete_sas_host(h);
9054 
9055 	/*
9056 	 * Call before disabling interrupts.
9057 	 * scsi_remove_host can trigger I/O operations especially
9058 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9059 	 * operations which cannot complete and will hang the system.
9060 	 */
9061 	if (h->scsi_host)
9062 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9063 	/* includes hpsa_free_irqs - init_one 4 */
9064 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9065 	__hpsa_shutdown(pdev);
9066 
9067 	hpsa_free_device_info(h);		/* scan */
9068 
9069 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9070 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9071 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9072 	hpsa_free_performant_mode(h);			/* init_one 7 */
9073 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9074 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9075 	kfree(h->lastlogicals);
9076 
9077 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9078 
9079 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9080 	h->scsi_host = NULL;				/* init_one 3 */
9081 
9082 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9083 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9084 
9085 	free_percpu(h->lockup_detected);		/* init_one 2 */
9086 	h->lockup_detected = NULL;			/* init_one 2 */
9087 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9088 
9089 	hpda_free_ctlr_info(h);				/* init_one 1 */
9090 }
9091 
9092 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9093 	__attribute__((unused)) pm_message_t state)
9094 {
9095 	return -ENOSYS;
9096 }
9097 
9098 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9099 {
9100 	return -ENOSYS;
9101 }
9102 
9103 static struct pci_driver hpsa_pci_driver = {
9104 	.name = HPSA,
9105 	.probe = hpsa_init_one,
9106 	.remove = hpsa_remove_one,
9107 	.id_table = hpsa_pci_device_id,	/* id_table */
9108 	.shutdown = hpsa_shutdown,
9109 	.suspend = hpsa_suspend,
9110 	.resume = hpsa_resume,
9111 };
9112 
9113 /* Fill in bucket_map[], given nsgs (the max number of
9114  * scatter gather elements supported) and bucket[],
9115  * which is an array of 8 integers.  The bucket[] array
9116  * contains 8 different DMA transfer sizes (in 16
9117  * byte increments) which the controller uses to fetch
9118  * commands.  This function fills in bucket_map[], which
9119  * maps a given number of scatter gather elements to one of
9120  * the 8 DMA transfer sizes.  The point of it is to allow the
9121  * controller to only do as much DMA as needed to fetch the
9122  * command, with the DMA transfer size encoded in the lower
9123  * bits of the command address.
9124  */
9125 static void  calc_bucket_map(int bucket[], int num_buckets,
9126 	int nsgs, int min_blocks, u32 *bucket_map)
9127 {
9128 	int i, j, b, size;
9129 
9130 	/* Note, bucket_map must have nsgs+1 entries. */
9131 	for (i = 0; i <= nsgs; i++) {
9132 		/* Compute size of a command with i SG entries */
9133 		size = i + min_blocks;
9134 		b = num_buckets; /* Assume the biggest bucket */
9135 		/* Find the bucket that is just big enough */
9136 		for (j = 0; j < num_buckets; j++) {
9137 			if (bucket[j] >= size) {
9138 				b = j;
9139 				break;
9140 			}
9141 		}
9142 		/* for a command with i SG entries, use bucket b. */
9143 		bucket_map[i] = b;
9144 	}
9145 }
9146 
9147 /*
9148  * return -ENODEV on err, 0 on success (or no action)
9149  * allocates numerous items that must be freed later
9150  */
9151 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9152 {
9153 	int i;
9154 	unsigned long register_value;
9155 	unsigned long transMethod = CFGTBL_Trans_Performant |
9156 			(trans_support & CFGTBL_Trans_use_short_tags) |
9157 				CFGTBL_Trans_enable_directed_msix |
9158 			(trans_support & (CFGTBL_Trans_io_accel1 |
9159 				CFGTBL_Trans_io_accel2));
9160 	struct access_method access = SA5_performant_access;
9161 
9162 	/* This is a bit complicated.  There are 8 registers on
9163 	 * the controller which we write to to tell it 8 different
9164 	 * sizes of commands which there may be.  It's a way of
9165 	 * reducing the DMA done to fetch each command.  Encoded into
9166 	 * each command's tag are 3 bits which communicate to the controller
9167 	 * which of the eight sizes that command fits within.  The size of
9168 	 * each command depends on how many scatter gather entries there are.
9169 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9170 	 * with the number of 16-byte blocks a command of that size requires.
9171 	 * The smallest command possible requires 5 such 16 byte blocks.
9172 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9173 	 * blocks.  Note, this only extends to the SG entries contained
9174 	 * within the command block, and does not extend to chained blocks
9175 	 * of SG elements.   bft[] contains the eight values we write to
9176 	 * the registers.  They are not evenly distributed, but have more
9177 	 * sizes for small commands, and fewer sizes for larger commands.
9178 	 */
9179 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9180 #define MIN_IOACCEL2_BFT_ENTRY 5
9181 #define HPSA_IOACCEL2_HEADER_SZ 4
9182 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9183 			13, 14, 15, 16, 17, 18, 19,
9184 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9185 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9186 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9187 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9188 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9189 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9190 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9191 	/*  5 = 1 s/g entry or 4k
9192 	 *  6 = 2 s/g entry or 8k
9193 	 *  8 = 4 s/g entry or 16k
9194 	 * 10 = 6 s/g entry or 24k
9195 	 */
9196 
9197 	/* If the controller supports either ioaccel method then
9198 	 * we can also use the RAID stack submit path that does not
9199 	 * perform the superfluous readl() after each command submission.
9200 	 */
9201 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9202 		access = SA5_performant_access_no_read;
9203 
9204 	/* Controller spec: zero out this buffer. */
9205 	for (i = 0; i < h->nreply_queues; i++)
9206 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9207 
9208 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9209 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9210 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9211 	for (i = 0; i < 8; i++)
9212 		writel(bft[i], &h->transtable->BlockFetch[i]);
9213 
9214 	/* size of controller ring buffer */
9215 	writel(h->max_commands, &h->transtable->RepQSize);
9216 	writel(h->nreply_queues, &h->transtable->RepQCount);
9217 	writel(0, &h->transtable->RepQCtrAddrLow32);
9218 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9219 
9220 	for (i = 0; i < h->nreply_queues; i++) {
9221 		writel(0, &h->transtable->RepQAddr[i].upper);
9222 		writel(h->reply_queue[i].busaddr,
9223 			&h->transtable->RepQAddr[i].lower);
9224 	}
9225 
9226 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9227 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9228 	/*
9229 	 * enable outbound interrupt coalescing in accelerator mode;
9230 	 */
9231 	if (trans_support & CFGTBL_Trans_io_accel1) {
9232 		access = SA5_ioaccel_mode1_access;
9233 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9234 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9235 	} else
9236 		if (trans_support & CFGTBL_Trans_io_accel2)
9237 			access = SA5_ioaccel_mode2_access;
9238 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9239 	if (hpsa_wait_for_mode_change_ack(h)) {
9240 		dev_err(&h->pdev->dev,
9241 			"performant mode problem - doorbell timeout\n");
9242 		return -ENODEV;
9243 	}
9244 	register_value = readl(&(h->cfgtable->TransportActive));
9245 	if (!(register_value & CFGTBL_Trans_Performant)) {
9246 		dev_err(&h->pdev->dev,
9247 			"performant mode problem - transport not active\n");
9248 		return -ENODEV;
9249 	}
9250 	/* Change the access methods to the performant access methods */
9251 	h->access = access;
9252 	h->transMethod = transMethod;
9253 
9254 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9255 		(trans_support & CFGTBL_Trans_io_accel2)))
9256 		return 0;
9257 
9258 	if (trans_support & CFGTBL_Trans_io_accel1) {
9259 		/* Set up I/O accelerator mode */
9260 		for (i = 0; i < h->nreply_queues; i++) {
9261 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9262 			h->reply_queue[i].current_entry =
9263 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9264 		}
9265 		bft[7] = h->ioaccel_maxsg + 8;
9266 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9267 				h->ioaccel1_blockFetchTable);
9268 
9269 		/* initialize all reply queue entries to unused */
9270 		for (i = 0; i < h->nreply_queues; i++)
9271 			memset(h->reply_queue[i].head,
9272 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9273 				h->reply_queue_size);
9274 
9275 		/* set all the constant fields in the accelerator command
9276 		 * frames once at init time to save CPU cycles later.
9277 		 */
9278 		for (i = 0; i < h->nr_cmds; i++) {
9279 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9280 
9281 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9282 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9283 					(i * sizeof(struct ErrorInfo)));
9284 			cp->err_info_len = sizeof(struct ErrorInfo);
9285 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9286 			cp->host_context_flags =
9287 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9288 			cp->timeout_sec = 0;
9289 			cp->ReplyQueue = 0;
9290 			cp->tag =
9291 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9292 			cp->host_addr =
9293 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9294 					(i * sizeof(struct io_accel1_cmd)));
9295 		}
9296 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9297 		u64 cfg_offset, cfg_base_addr_index;
9298 		u32 bft2_offset, cfg_base_addr;
9299 		int rc;
9300 
9301 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9302 			&cfg_base_addr_index, &cfg_offset);
9303 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9304 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9305 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9306 				4, h->ioaccel2_blockFetchTable);
9307 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9308 		BUILD_BUG_ON(offsetof(struct CfgTable,
9309 				io_accel_request_size_offset) != 0xb8);
9310 		h->ioaccel2_bft2_regs =
9311 			remap_pci_mem(pci_resource_start(h->pdev,
9312 					cfg_base_addr_index) +
9313 					cfg_offset + bft2_offset,
9314 					ARRAY_SIZE(bft2) *
9315 					sizeof(*h->ioaccel2_bft2_regs));
9316 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9317 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9318 	}
9319 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9320 	if (hpsa_wait_for_mode_change_ack(h)) {
9321 		dev_err(&h->pdev->dev,
9322 			"performant mode problem - enabling ioaccel mode\n");
9323 		return -ENODEV;
9324 	}
9325 	return 0;
9326 }
9327 
9328 /* Free ioaccel1 mode command blocks and block fetch table */
9329 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9330 {
9331 	if (h->ioaccel_cmd_pool) {
9332 		pci_free_consistent(h->pdev,
9333 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9334 			h->ioaccel_cmd_pool,
9335 			h->ioaccel_cmd_pool_dhandle);
9336 		h->ioaccel_cmd_pool = NULL;
9337 		h->ioaccel_cmd_pool_dhandle = 0;
9338 	}
9339 	kfree(h->ioaccel1_blockFetchTable);
9340 	h->ioaccel1_blockFetchTable = NULL;
9341 }
9342 
9343 /* Allocate ioaccel1 mode command blocks and block fetch table */
9344 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9345 {
9346 	h->ioaccel_maxsg =
9347 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9348 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9349 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9350 
9351 	/* Command structures must be aligned on a 128-byte boundary
9352 	 * because the 7 lower bits of the address are used by the
9353 	 * hardware.
9354 	 */
9355 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9356 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9357 	h->ioaccel_cmd_pool =
9358 		dma_alloc_coherent(&h->pdev->dev,
9359 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9361 
9362 	h->ioaccel1_blockFetchTable =
9363 		kmalloc(((h->ioaccel_maxsg + 1) *
9364 				sizeof(u32)), GFP_KERNEL);
9365 
9366 	if ((h->ioaccel_cmd_pool == NULL) ||
9367 		(h->ioaccel1_blockFetchTable == NULL))
9368 		goto clean_up;
9369 
9370 	memset(h->ioaccel_cmd_pool, 0,
9371 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9372 	return 0;
9373 
9374 clean_up:
9375 	hpsa_free_ioaccel1_cmd_and_bft(h);
9376 	return -ENOMEM;
9377 }
9378 
9379 /* Free ioaccel2 mode command blocks and block fetch table */
9380 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9381 {
9382 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9383 
9384 	if (h->ioaccel2_cmd_pool) {
9385 		pci_free_consistent(h->pdev,
9386 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9387 			h->ioaccel2_cmd_pool,
9388 			h->ioaccel2_cmd_pool_dhandle);
9389 		h->ioaccel2_cmd_pool = NULL;
9390 		h->ioaccel2_cmd_pool_dhandle = 0;
9391 	}
9392 	kfree(h->ioaccel2_blockFetchTable);
9393 	h->ioaccel2_blockFetchTable = NULL;
9394 }
9395 
9396 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9398 {
9399 	int rc;
9400 
9401 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9402 
9403 	h->ioaccel_maxsg =
9404 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9405 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9406 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9407 
9408 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9409 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9410 	h->ioaccel2_cmd_pool =
9411 		dma_alloc_coherent(&h->pdev->dev,
9412 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9414 
9415 	h->ioaccel2_blockFetchTable =
9416 		kmalloc(((h->ioaccel_maxsg + 1) *
9417 				sizeof(u32)), GFP_KERNEL);
9418 
9419 	if ((h->ioaccel2_cmd_pool == NULL) ||
9420 		(h->ioaccel2_blockFetchTable == NULL)) {
9421 		rc = -ENOMEM;
9422 		goto clean_up;
9423 	}
9424 
9425 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9426 	if (rc)
9427 		goto clean_up;
9428 
9429 	memset(h->ioaccel2_cmd_pool, 0,
9430 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9431 	return 0;
9432 
9433 clean_up:
9434 	hpsa_free_ioaccel2_cmd_and_bft(h);
9435 	return rc;
9436 }
9437 
9438 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9439 static void hpsa_free_performant_mode(struct ctlr_info *h)
9440 {
9441 	kfree(h->blockFetchTable);
9442 	h->blockFetchTable = NULL;
9443 	hpsa_free_reply_queues(h);
9444 	hpsa_free_ioaccel1_cmd_and_bft(h);
9445 	hpsa_free_ioaccel2_cmd_and_bft(h);
9446 }
9447 
9448 /* return -ENODEV on error, 0 on success (or no action)
9449  * allocates numerous items that must be freed later
9450  */
9451 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9452 {
9453 	u32 trans_support;
9454 	unsigned long transMethod = CFGTBL_Trans_Performant |
9455 					CFGTBL_Trans_use_short_tags;
9456 	int i, rc;
9457 
9458 	if (hpsa_simple_mode)
9459 		return 0;
9460 
9461 	trans_support = readl(&(h->cfgtable->TransportSupport));
9462 	if (!(trans_support & PERFORMANT_MODE))
9463 		return 0;
9464 
9465 	/* Check for I/O accelerator mode support */
9466 	if (trans_support & CFGTBL_Trans_io_accel1) {
9467 		transMethod |= CFGTBL_Trans_io_accel1 |
9468 				CFGTBL_Trans_enable_directed_msix;
9469 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9470 		if (rc)
9471 			return rc;
9472 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9473 		transMethod |= CFGTBL_Trans_io_accel2 |
9474 				CFGTBL_Trans_enable_directed_msix;
9475 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9476 		if (rc)
9477 			return rc;
9478 	}
9479 
9480 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9481 	hpsa_get_max_perf_mode_cmds(h);
9482 	/* Performant mode ring buffer and supporting data structures */
9483 	h->reply_queue_size = h->max_commands * sizeof(u64);
9484 
9485 	for (i = 0; i < h->nreply_queues; i++) {
9486 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9487 						h->reply_queue_size,
9488 						&h->reply_queue[i].busaddr,
9489 						GFP_KERNEL);
9490 		if (!h->reply_queue[i].head) {
9491 			rc = -ENOMEM;
9492 			goto clean1;	/* rq, ioaccel */
9493 		}
9494 		h->reply_queue[i].size = h->max_commands;
9495 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9496 		h->reply_queue[i].current_entry = 0;
9497 	}
9498 
9499 	/* Need a block fetch table for performant mode */
9500 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9501 				sizeof(u32)), GFP_KERNEL);
9502 	if (!h->blockFetchTable) {
9503 		rc = -ENOMEM;
9504 		goto clean1;	/* rq, ioaccel */
9505 	}
9506 
9507 	rc = hpsa_enter_performant_mode(h, trans_support);
9508 	if (rc)
9509 		goto clean2;	/* bft, rq, ioaccel */
9510 	return 0;
9511 
9512 clean2:	/* bft, rq, ioaccel */
9513 	kfree(h->blockFetchTable);
9514 	h->blockFetchTable = NULL;
9515 clean1:	/* rq, ioaccel */
9516 	hpsa_free_reply_queues(h);
9517 	hpsa_free_ioaccel1_cmd_and_bft(h);
9518 	hpsa_free_ioaccel2_cmd_and_bft(h);
9519 	return rc;
9520 }
9521 
9522 static int is_accelerated_cmd(struct CommandList *c)
9523 {
9524 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9525 }
9526 
9527 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9528 {
9529 	struct CommandList *c = NULL;
9530 	int i, accel_cmds_out;
9531 	int refcount;
9532 
9533 	do { /* wait for all outstanding ioaccel commands to drain out */
9534 		accel_cmds_out = 0;
9535 		for (i = 0; i < h->nr_cmds; i++) {
9536 			c = h->cmd_pool + i;
9537 			refcount = atomic_inc_return(&c->refcount);
9538 			if (refcount > 1) /* Command is allocated */
9539 				accel_cmds_out += is_accelerated_cmd(c);
9540 			cmd_free(h, c);
9541 		}
9542 		if (accel_cmds_out <= 0)
9543 			break;
9544 		msleep(100);
9545 	} while (1);
9546 }
9547 
9548 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9549 				struct hpsa_sas_port *hpsa_sas_port)
9550 {
9551 	struct hpsa_sas_phy *hpsa_sas_phy;
9552 	struct sas_phy *phy;
9553 
9554 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9555 	if (!hpsa_sas_phy)
9556 		return NULL;
9557 
9558 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9559 		hpsa_sas_port->next_phy_index);
9560 	if (!phy) {
9561 		kfree(hpsa_sas_phy);
9562 		return NULL;
9563 	}
9564 
9565 	hpsa_sas_port->next_phy_index++;
9566 	hpsa_sas_phy->phy = phy;
9567 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9568 
9569 	return hpsa_sas_phy;
9570 }
9571 
9572 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9573 {
9574 	struct sas_phy *phy = hpsa_sas_phy->phy;
9575 
9576 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9577 	if (hpsa_sas_phy->added_to_port)
9578 		list_del(&hpsa_sas_phy->phy_list_entry);
9579 	sas_phy_delete(phy);
9580 	kfree(hpsa_sas_phy);
9581 }
9582 
9583 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9584 {
9585 	int rc;
9586 	struct hpsa_sas_port *hpsa_sas_port;
9587 	struct sas_phy *phy;
9588 	struct sas_identify *identify;
9589 
9590 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9591 	phy = hpsa_sas_phy->phy;
9592 
9593 	identify = &phy->identify;
9594 	memset(identify, 0, sizeof(*identify));
9595 	identify->sas_address = hpsa_sas_port->sas_address;
9596 	identify->device_type = SAS_END_DEVICE;
9597 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9598 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9599 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9600 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9601 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9602 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9603 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9604 
9605 	rc = sas_phy_add(hpsa_sas_phy->phy);
9606 	if (rc)
9607 		return rc;
9608 
9609 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9610 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9611 			&hpsa_sas_port->phy_list_head);
9612 	hpsa_sas_phy->added_to_port = true;
9613 
9614 	return 0;
9615 }
9616 
9617 static int
9618 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9619 				struct sas_rphy *rphy)
9620 {
9621 	struct sas_identify *identify;
9622 
9623 	identify = &rphy->identify;
9624 	identify->sas_address = hpsa_sas_port->sas_address;
9625 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9627 
9628 	return sas_rphy_add(rphy);
9629 }
9630 
9631 static struct hpsa_sas_port
9632 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9633 				u64 sas_address)
9634 {
9635 	int rc;
9636 	struct hpsa_sas_port *hpsa_sas_port;
9637 	struct sas_port *port;
9638 
9639 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9640 	if (!hpsa_sas_port)
9641 		return NULL;
9642 
9643 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9644 	hpsa_sas_port->parent_node = hpsa_sas_node;
9645 
9646 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9647 	if (!port)
9648 		goto free_hpsa_port;
9649 
9650 	rc = sas_port_add(port);
9651 	if (rc)
9652 		goto free_sas_port;
9653 
9654 	hpsa_sas_port->port = port;
9655 	hpsa_sas_port->sas_address = sas_address;
9656 	list_add_tail(&hpsa_sas_port->port_list_entry,
9657 			&hpsa_sas_node->port_list_head);
9658 
9659 	return hpsa_sas_port;
9660 
9661 free_sas_port:
9662 	sas_port_free(port);
9663 free_hpsa_port:
9664 	kfree(hpsa_sas_port);
9665 
9666 	return NULL;
9667 }
9668 
9669 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9670 {
9671 	struct hpsa_sas_phy *hpsa_sas_phy;
9672 	struct hpsa_sas_phy *next;
9673 
9674 	list_for_each_entry_safe(hpsa_sas_phy, next,
9675 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9676 		hpsa_free_sas_phy(hpsa_sas_phy);
9677 
9678 	sas_port_delete(hpsa_sas_port->port);
9679 	list_del(&hpsa_sas_port->port_list_entry);
9680 	kfree(hpsa_sas_port);
9681 }
9682 
9683 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9684 {
9685 	struct hpsa_sas_node *hpsa_sas_node;
9686 
9687 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9688 	if (hpsa_sas_node) {
9689 		hpsa_sas_node->parent_dev = parent_dev;
9690 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9691 	}
9692 
9693 	return hpsa_sas_node;
9694 }
9695 
9696 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9697 {
9698 	struct hpsa_sas_port *hpsa_sas_port;
9699 	struct hpsa_sas_port *next;
9700 
9701 	if (!hpsa_sas_node)
9702 		return;
9703 
9704 	list_for_each_entry_safe(hpsa_sas_port, next,
9705 			&hpsa_sas_node->port_list_head, port_list_entry)
9706 		hpsa_free_sas_port(hpsa_sas_port);
9707 
9708 	kfree(hpsa_sas_node);
9709 }
9710 
9711 static struct hpsa_scsi_dev_t
9712 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9713 					struct sas_rphy *rphy)
9714 {
9715 	int i;
9716 	struct hpsa_scsi_dev_t *device;
9717 
9718 	for (i = 0; i < h->ndevices; i++) {
9719 		device = h->dev[i];
9720 		if (!device->sas_port)
9721 			continue;
9722 		if (device->sas_port->rphy == rphy)
9723 			return device;
9724 	}
9725 
9726 	return NULL;
9727 }
9728 
9729 static int hpsa_add_sas_host(struct ctlr_info *h)
9730 {
9731 	int rc;
9732 	struct device *parent_dev;
9733 	struct hpsa_sas_node *hpsa_sas_node;
9734 	struct hpsa_sas_port *hpsa_sas_port;
9735 	struct hpsa_sas_phy *hpsa_sas_phy;
9736 
9737 	parent_dev = &h->scsi_host->shost_dev;
9738 
9739 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9740 	if (!hpsa_sas_node)
9741 		return -ENOMEM;
9742 
9743 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9744 	if (!hpsa_sas_port) {
9745 		rc = -ENODEV;
9746 		goto free_sas_node;
9747 	}
9748 
9749 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9750 	if (!hpsa_sas_phy) {
9751 		rc = -ENODEV;
9752 		goto free_sas_port;
9753 	}
9754 
9755 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9756 	if (rc)
9757 		goto free_sas_phy;
9758 
9759 	h->sas_host = hpsa_sas_node;
9760 
9761 	return 0;
9762 
9763 free_sas_phy:
9764 	hpsa_free_sas_phy(hpsa_sas_phy);
9765 free_sas_port:
9766 	hpsa_free_sas_port(hpsa_sas_port);
9767 free_sas_node:
9768 	hpsa_free_sas_node(hpsa_sas_node);
9769 
9770 	return rc;
9771 }
9772 
9773 static void hpsa_delete_sas_host(struct ctlr_info *h)
9774 {
9775 	hpsa_free_sas_node(h->sas_host);
9776 }
9777 
9778 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9779 				struct hpsa_scsi_dev_t *device)
9780 {
9781 	int rc;
9782 	struct hpsa_sas_port *hpsa_sas_port;
9783 	struct sas_rphy *rphy;
9784 
9785 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9786 	if (!hpsa_sas_port)
9787 		return -ENOMEM;
9788 
9789 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9790 	if (!rphy) {
9791 		rc = -ENODEV;
9792 		goto free_sas_port;
9793 	}
9794 
9795 	hpsa_sas_port->rphy = rphy;
9796 	device->sas_port = hpsa_sas_port;
9797 
9798 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9799 	if (rc)
9800 		goto free_sas_port;
9801 
9802 	return 0;
9803 
9804 free_sas_port:
9805 	hpsa_free_sas_port(hpsa_sas_port);
9806 	device->sas_port = NULL;
9807 
9808 	return rc;
9809 }
9810 
9811 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9812 {
9813 	if (device->sas_port) {
9814 		hpsa_free_sas_port(device->sas_port);
9815 		device->sas_port = NULL;
9816 	}
9817 }
9818 
9819 static int
9820 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9821 {
9822 	return 0;
9823 }
9824 
9825 static int
9826 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9827 {
9828 	struct Scsi_Host *shost = phy_to_shost(rphy);
9829 	struct ctlr_info *h;
9830 	struct hpsa_scsi_dev_t *sd;
9831 
9832 	if (!shost)
9833 		return -ENXIO;
9834 
9835 	h = shost_to_hba(shost);
9836 
9837 	if (!h)
9838 		return -ENXIO;
9839 
9840 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9841 	if (!sd)
9842 		return -ENXIO;
9843 
9844 	*identifier = sd->eli;
9845 
9846 	return 0;
9847 }
9848 
9849 static int
9850 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9851 {
9852 	return -ENXIO;
9853 }
9854 
9855 static int
9856 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9857 {
9858 	return 0;
9859 }
9860 
9861 static int
9862 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9863 {
9864 	return 0;
9865 }
9866 
9867 static int
9868 hpsa_sas_phy_setup(struct sas_phy *phy)
9869 {
9870 	return 0;
9871 }
9872 
9873 static void
9874 hpsa_sas_phy_release(struct sas_phy *phy)
9875 {
9876 }
9877 
9878 static int
9879 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9880 {
9881 	return -EINVAL;
9882 }
9883 
9884 static struct sas_function_template hpsa_sas_transport_functions = {
9885 	.get_linkerrors = hpsa_sas_get_linkerrors,
9886 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9887 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9888 	.phy_reset = hpsa_sas_phy_reset,
9889 	.phy_enable = hpsa_sas_phy_enable,
9890 	.phy_setup = hpsa_sas_phy_setup,
9891 	.phy_release = hpsa_sas_phy_release,
9892 	.set_phy_speed = hpsa_sas_phy_speed,
9893 };
9894 
9895 /*
9896  *  This is it.  Register the PCI driver information for the cards we control
9897  *  the OS will call our registered routines when it finds one of our cards.
9898  */
9899 static int __init hpsa_init(void)
9900 {
9901 	int rc;
9902 
9903 	hpsa_sas_transport_template =
9904 		sas_attach_transport(&hpsa_sas_transport_functions);
9905 	if (!hpsa_sas_transport_template)
9906 		return -ENODEV;
9907 
9908 	rc = pci_register_driver(&hpsa_pci_driver);
9909 
9910 	if (rc)
9911 		sas_release_transport(hpsa_sas_transport_template);
9912 
9913 	return rc;
9914 }
9915 
9916 static void __exit hpsa_cleanup(void)
9917 {
9918 	pci_unregister_driver(&hpsa_pci_driver);
9919 	sas_release_transport(hpsa_sas_transport_template);
9920 }
9921 
9922 static void __attribute__((unused)) verify_offsets(void)
9923 {
9924 #define VERIFY_OFFSET(member, offset) \
9925 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9926 
9927 	VERIFY_OFFSET(structure_size, 0);
9928 	VERIFY_OFFSET(volume_blk_size, 4);
9929 	VERIFY_OFFSET(volume_blk_cnt, 8);
9930 	VERIFY_OFFSET(phys_blk_shift, 16);
9931 	VERIFY_OFFSET(parity_rotation_shift, 17);
9932 	VERIFY_OFFSET(strip_size, 18);
9933 	VERIFY_OFFSET(disk_starting_blk, 20);
9934 	VERIFY_OFFSET(disk_blk_cnt, 28);
9935 	VERIFY_OFFSET(data_disks_per_row, 36);
9936 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9937 	VERIFY_OFFSET(row_cnt, 40);
9938 	VERIFY_OFFSET(layout_map_count, 42);
9939 	VERIFY_OFFSET(flags, 44);
9940 	VERIFY_OFFSET(dekindex, 46);
9941 	/* VERIFY_OFFSET(reserved, 48 */
9942 	VERIFY_OFFSET(data, 64);
9943 
9944 #undef VERIFY_OFFSET
9945 
9946 #define VERIFY_OFFSET(member, offset) \
9947 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9948 
9949 	VERIFY_OFFSET(IU_type, 0);
9950 	VERIFY_OFFSET(direction, 1);
9951 	VERIFY_OFFSET(reply_queue, 2);
9952 	/* VERIFY_OFFSET(reserved1, 3);  */
9953 	VERIFY_OFFSET(scsi_nexus, 4);
9954 	VERIFY_OFFSET(Tag, 8);
9955 	VERIFY_OFFSET(cdb, 16);
9956 	VERIFY_OFFSET(cciss_lun, 32);
9957 	VERIFY_OFFSET(data_len, 40);
9958 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9959 	VERIFY_OFFSET(sg_count, 45);
9960 	/* VERIFY_OFFSET(reserved3 */
9961 	VERIFY_OFFSET(err_ptr, 48);
9962 	VERIFY_OFFSET(err_len, 56);
9963 	/* VERIFY_OFFSET(reserved4  */
9964 	VERIFY_OFFSET(sg, 64);
9965 
9966 #undef VERIFY_OFFSET
9967 
9968 #define VERIFY_OFFSET(member, offset) \
9969 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9970 
9971 	VERIFY_OFFSET(dev_handle, 0x00);
9972 	VERIFY_OFFSET(reserved1, 0x02);
9973 	VERIFY_OFFSET(function, 0x03);
9974 	VERIFY_OFFSET(reserved2, 0x04);
9975 	VERIFY_OFFSET(err_info, 0x0C);
9976 	VERIFY_OFFSET(reserved3, 0x10);
9977 	VERIFY_OFFSET(err_info_len, 0x12);
9978 	VERIFY_OFFSET(reserved4, 0x13);
9979 	VERIFY_OFFSET(sgl_offset, 0x14);
9980 	VERIFY_OFFSET(reserved5, 0x15);
9981 	VERIFY_OFFSET(transfer_len, 0x1C);
9982 	VERIFY_OFFSET(reserved6, 0x20);
9983 	VERIFY_OFFSET(io_flags, 0x24);
9984 	VERIFY_OFFSET(reserved7, 0x26);
9985 	VERIFY_OFFSET(LUN, 0x34);
9986 	VERIFY_OFFSET(control, 0x3C);
9987 	VERIFY_OFFSET(CDB, 0x40);
9988 	VERIFY_OFFSET(reserved8, 0x50);
9989 	VERIFY_OFFSET(host_context_flags, 0x60);
9990 	VERIFY_OFFSET(timeout_sec, 0x62);
9991 	VERIFY_OFFSET(ReplyQueue, 0x64);
9992 	VERIFY_OFFSET(reserved9, 0x65);
9993 	VERIFY_OFFSET(tag, 0x68);
9994 	VERIFY_OFFSET(host_addr, 0x70);
9995 	VERIFY_OFFSET(CISS_LUN, 0x78);
9996 	VERIFY_OFFSET(SG, 0x78 + 8);
9997 #undef VERIFY_OFFSET
9998 }
9999 
10000 module_init(hpsa_init);
10001 module_exit(hpsa_cleanup);
10002