xref: /openbmc/linux/drivers/scsi/hpsa.c (revision f3a8b664)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 				     int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 	struct ReportExtendedLUNdata *buf, int bufsize);
296 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
297 	unsigned char scsi3addr[], u8 page);
298 static int hpsa_luns_changed(struct ctlr_info *h);
299 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
300 			       struct hpsa_scsi_dev_t *dev,
301 			       unsigned char *scsi3addr);
302 
303 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
304 {
305 	unsigned long *priv = shost_priv(sdev->host);
306 	return (struct ctlr_info *) *priv;
307 }
308 
309 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
310 {
311 	unsigned long *priv = shost_priv(sh);
312 	return (struct ctlr_info *) *priv;
313 }
314 
315 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
316 {
317 	return c->scsi_cmd == SCSI_CMD_IDLE;
318 }
319 
320 static inline bool hpsa_is_pending_event(struct CommandList *c)
321 {
322 	return c->abort_pending || c->reset_pending;
323 }
324 
325 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
326 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
327 			u8 *sense_key, u8 *asc, u8 *ascq)
328 {
329 	struct scsi_sense_hdr sshdr;
330 	bool rc;
331 
332 	*sense_key = -1;
333 	*asc = -1;
334 	*ascq = -1;
335 
336 	if (sense_data_len < 1)
337 		return;
338 
339 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
340 	if (rc) {
341 		*sense_key = sshdr.sense_key;
342 		*asc = sshdr.asc;
343 		*ascq = sshdr.ascq;
344 	}
345 }
346 
347 static int check_for_unit_attention(struct ctlr_info *h,
348 	struct CommandList *c)
349 {
350 	u8 sense_key, asc, ascq;
351 	int sense_len;
352 
353 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
354 		sense_len = sizeof(c->err_info->SenseInfo);
355 	else
356 		sense_len = c->err_info->SenseLen;
357 
358 	decode_sense_data(c->err_info->SenseInfo, sense_len,
359 				&sense_key, &asc, &ascq);
360 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
361 		return 0;
362 
363 	switch (asc) {
364 	case STATE_CHANGED:
365 		dev_warn(&h->pdev->dev,
366 			"%s: a state change detected, command retried\n",
367 			h->devname);
368 		break;
369 	case LUN_FAILED:
370 		dev_warn(&h->pdev->dev,
371 			"%s: LUN failure detected\n", h->devname);
372 		break;
373 	case REPORT_LUNS_CHANGED:
374 		dev_warn(&h->pdev->dev,
375 			"%s: report LUN data changed\n", h->devname);
376 	/*
377 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
378 	 * target (array) devices.
379 	 */
380 		break;
381 	case POWER_OR_RESET:
382 		dev_warn(&h->pdev->dev,
383 			"%s: a power on or device reset detected\n",
384 			h->devname);
385 		break;
386 	case UNIT_ATTENTION_CLEARED:
387 		dev_warn(&h->pdev->dev,
388 			"%s: unit attention cleared by another initiator\n",
389 			h->devname);
390 		break;
391 	default:
392 		dev_warn(&h->pdev->dev,
393 			"%s: unknown unit attention detected\n",
394 			h->devname);
395 		break;
396 	}
397 	return 1;
398 }
399 
400 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
401 {
402 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
403 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
404 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
405 		return 0;
406 	dev_warn(&h->pdev->dev, HPSA "device busy");
407 	return 1;
408 }
409 
410 static u32 lockup_detected(struct ctlr_info *h);
411 static ssize_t host_show_lockup_detected(struct device *dev,
412 		struct device_attribute *attr, char *buf)
413 {
414 	int ld;
415 	struct ctlr_info *h;
416 	struct Scsi_Host *shost = class_to_shost(dev);
417 
418 	h = shost_to_hba(shost);
419 	ld = lockup_detected(h);
420 
421 	return sprintf(buf, "ld=%d\n", ld);
422 }
423 
424 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
425 					 struct device_attribute *attr,
426 					 const char *buf, size_t count)
427 {
428 	int status, len;
429 	struct ctlr_info *h;
430 	struct Scsi_Host *shost = class_to_shost(dev);
431 	char tmpbuf[10];
432 
433 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434 		return -EACCES;
435 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436 	strncpy(tmpbuf, buf, len);
437 	tmpbuf[len] = '\0';
438 	if (sscanf(tmpbuf, "%d", &status) != 1)
439 		return -EINVAL;
440 	h = shost_to_hba(shost);
441 	h->acciopath_status = !!status;
442 	dev_warn(&h->pdev->dev,
443 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
444 		h->acciopath_status ? "enabled" : "disabled");
445 	return count;
446 }
447 
448 static ssize_t host_store_raid_offload_debug(struct device *dev,
449 					 struct device_attribute *attr,
450 					 const char *buf, size_t count)
451 {
452 	int debug_level, len;
453 	struct ctlr_info *h;
454 	struct Scsi_Host *shost = class_to_shost(dev);
455 	char tmpbuf[10];
456 
457 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458 		return -EACCES;
459 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460 	strncpy(tmpbuf, buf, len);
461 	tmpbuf[len] = '\0';
462 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
463 		return -EINVAL;
464 	if (debug_level < 0)
465 		debug_level = 0;
466 	h = shost_to_hba(shost);
467 	h->raid_offload_debug = debug_level;
468 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
469 		h->raid_offload_debug);
470 	return count;
471 }
472 
473 static ssize_t host_store_rescan(struct device *dev,
474 				 struct device_attribute *attr,
475 				 const char *buf, size_t count)
476 {
477 	struct ctlr_info *h;
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 	h = shost_to_hba(shost);
480 	hpsa_scan_start(h->scsi_host);
481 	return count;
482 }
483 
484 static ssize_t host_show_firmware_revision(struct device *dev,
485 	     struct device_attribute *attr, char *buf)
486 {
487 	struct ctlr_info *h;
488 	struct Scsi_Host *shost = class_to_shost(dev);
489 	unsigned char *fwrev;
490 
491 	h = shost_to_hba(shost);
492 	if (!h->hba_inquiry_data)
493 		return 0;
494 	fwrev = &h->hba_inquiry_data[32];
495 	return snprintf(buf, 20, "%c%c%c%c\n",
496 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
497 }
498 
499 static ssize_t host_show_commands_outstanding(struct device *dev,
500 	     struct device_attribute *attr, char *buf)
501 {
502 	struct Scsi_Host *shost = class_to_shost(dev);
503 	struct ctlr_info *h = shost_to_hba(shost);
504 
505 	return snprintf(buf, 20, "%d\n",
506 			atomic_read(&h->commands_outstanding));
507 }
508 
509 static ssize_t host_show_transport_mode(struct device *dev,
510 	struct device_attribute *attr, char *buf)
511 {
512 	struct ctlr_info *h;
513 	struct Scsi_Host *shost = class_to_shost(dev);
514 
515 	h = shost_to_hba(shost);
516 	return snprintf(buf, 20, "%s\n",
517 		h->transMethod & CFGTBL_Trans_Performant ?
518 			"performant" : "simple");
519 }
520 
521 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
522 	struct device_attribute *attr, char *buf)
523 {
524 	struct ctlr_info *h;
525 	struct Scsi_Host *shost = class_to_shost(dev);
526 
527 	h = shost_to_hba(shost);
528 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
529 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
530 }
531 
532 /* List of controllers which cannot be hard reset on kexec with reset_devices */
533 static u32 unresettable_controller[] = {
534 	0x324a103C, /* Smart Array P712m */
535 	0x324b103C, /* Smart Array P711m */
536 	0x3223103C, /* Smart Array P800 */
537 	0x3234103C, /* Smart Array P400 */
538 	0x3235103C, /* Smart Array P400i */
539 	0x3211103C, /* Smart Array E200i */
540 	0x3212103C, /* Smart Array E200 */
541 	0x3213103C, /* Smart Array E200i */
542 	0x3214103C, /* Smart Array E200i */
543 	0x3215103C, /* Smart Array E200i */
544 	0x3237103C, /* Smart Array E500 */
545 	0x323D103C, /* Smart Array P700m */
546 	0x40800E11, /* Smart Array 5i */
547 	0x409C0E11, /* Smart Array 6400 */
548 	0x409D0E11, /* Smart Array 6400 EM */
549 	0x40700E11, /* Smart Array 5300 */
550 	0x40820E11, /* Smart Array 532 */
551 	0x40830E11, /* Smart Array 5312 */
552 	0x409A0E11, /* Smart Array 641 */
553 	0x409B0E11, /* Smart Array 642 */
554 	0x40910E11, /* Smart Array 6i */
555 };
556 
557 /* List of controllers which cannot even be soft reset */
558 static u32 soft_unresettable_controller[] = {
559 	0x40800E11, /* Smart Array 5i */
560 	0x40700E11, /* Smart Array 5300 */
561 	0x40820E11, /* Smart Array 532 */
562 	0x40830E11, /* Smart Array 5312 */
563 	0x409A0E11, /* Smart Array 641 */
564 	0x409B0E11, /* Smart Array 642 */
565 	0x40910E11, /* Smart Array 6i */
566 	/* Exclude 640x boards.  These are two pci devices in one slot
567 	 * which share a battery backed cache module.  One controls the
568 	 * cache, the other accesses the cache through the one that controls
569 	 * it.  If we reset the one controlling the cache, the other will
570 	 * likely not be happy.  Just forbid resetting this conjoined mess.
571 	 * The 640x isn't really supported by hpsa anyway.
572 	 */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 };
576 
577 static u32 needs_abort_tags_swizzled[] = {
578 	0x323D103C, /* Smart Array P700m */
579 	0x324a103C, /* Smart Array P712m */
580 	0x324b103C, /* SmartArray P711m */
581 };
582 
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585 	int i;
586 
587 	for (i = 0; i < nelems; i++)
588 		if (a[i] == board_id)
589 			return 1;
590 	return 0;
591 }
592 
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595 	return !board_id_in_array(unresettable_controller,
596 			ARRAY_SIZE(unresettable_controller), board_id);
597 }
598 
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601 	return !board_id_in_array(soft_unresettable_controller,
602 			ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604 
605 static int ctlr_is_resettable(u32 board_id)
606 {
607 	return ctlr_is_hard_resettable(board_id) ||
608 		ctlr_is_soft_resettable(board_id);
609 }
610 
611 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
612 {
613 	return board_id_in_array(needs_abort_tags_swizzled,
614 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
615 }
616 
617 static ssize_t host_show_resettable(struct device *dev,
618 	struct device_attribute *attr, char *buf)
619 {
620 	struct ctlr_info *h;
621 	struct Scsi_Host *shost = class_to_shost(dev);
622 
623 	h = shost_to_hba(shost);
624 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
625 }
626 
627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
628 {
629 	return (scsi3addr[3] & 0xC0) == 0x40;
630 }
631 
632 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
633 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
634 };
635 #define HPSA_RAID_0	0
636 #define HPSA_RAID_4	1
637 #define HPSA_RAID_1	2	/* also used for RAID 10 */
638 #define HPSA_RAID_5	3	/* also used for RAID 50 */
639 #define HPSA_RAID_51	4
640 #define HPSA_RAID_6	5	/* also used for RAID 60 */
641 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
644 
645 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
646 {
647 	return !device->physical_device;
648 }
649 
650 static ssize_t raid_level_show(struct device *dev,
651 	     struct device_attribute *attr, char *buf)
652 {
653 	ssize_t l = 0;
654 	unsigned char rlevel;
655 	struct ctlr_info *h;
656 	struct scsi_device *sdev;
657 	struct hpsa_scsi_dev_t *hdev;
658 	unsigned long flags;
659 
660 	sdev = to_scsi_device(dev);
661 	h = sdev_to_hba(sdev);
662 	spin_lock_irqsave(&h->lock, flags);
663 	hdev = sdev->hostdata;
664 	if (!hdev) {
665 		spin_unlock_irqrestore(&h->lock, flags);
666 		return -ENODEV;
667 	}
668 
669 	/* Is this even a logical drive? */
670 	if (!is_logical_device(hdev)) {
671 		spin_unlock_irqrestore(&h->lock, flags);
672 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
673 		return l;
674 	}
675 
676 	rlevel = hdev->raid_level;
677 	spin_unlock_irqrestore(&h->lock, flags);
678 	if (rlevel > RAID_UNKNOWN)
679 		rlevel = RAID_UNKNOWN;
680 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
681 	return l;
682 }
683 
684 static ssize_t lunid_show(struct device *dev,
685 	     struct device_attribute *attr, char *buf)
686 {
687 	struct ctlr_info *h;
688 	struct scsi_device *sdev;
689 	struct hpsa_scsi_dev_t *hdev;
690 	unsigned long flags;
691 	unsigned char lunid[8];
692 
693 	sdev = to_scsi_device(dev);
694 	h = sdev_to_hba(sdev);
695 	spin_lock_irqsave(&h->lock, flags);
696 	hdev = sdev->hostdata;
697 	if (!hdev) {
698 		spin_unlock_irqrestore(&h->lock, flags);
699 		return -ENODEV;
700 	}
701 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
702 	spin_unlock_irqrestore(&h->lock, flags);
703 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
704 		lunid[0], lunid[1], lunid[2], lunid[3],
705 		lunid[4], lunid[5], lunid[6], lunid[7]);
706 }
707 
708 static ssize_t unique_id_show(struct device *dev,
709 	     struct device_attribute *attr, char *buf)
710 {
711 	struct ctlr_info *h;
712 	struct scsi_device *sdev;
713 	struct hpsa_scsi_dev_t *hdev;
714 	unsigned long flags;
715 	unsigned char sn[16];
716 
717 	sdev = to_scsi_device(dev);
718 	h = sdev_to_hba(sdev);
719 	spin_lock_irqsave(&h->lock, flags);
720 	hdev = sdev->hostdata;
721 	if (!hdev) {
722 		spin_unlock_irqrestore(&h->lock, flags);
723 		return -ENODEV;
724 	}
725 	memcpy(sn, hdev->device_id, sizeof(sn));
726 	spin_unlock_irqrestore(&h->lock, flags);
727 	return snprintf(buf, 16 * 2 + 2,
728 			"%02X%02X%02X%02X%02X%02X%02X%02X"
729 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
730 			sn[0], sn[1], sn[2], sn[3],
731 			sn[4], sn[5], sn[6], sn[7],
732 			sn[8], sn[9], sn[10], sn[11],
733 			sn[12], sn[13], sn[14], sn[15]);
734 }
735 
736 static ssize_t sas_address_show(struct device *dev,
737 	      struct device_attribute *attr, char *buf)
738 {
739 	struct ctlr_info *h;
740 	struct scsi_device *sdev;
741 	struct hpsa_scsi_dev_t *hdev;
742 	unsigned long flags;
743 	u64 sas_address;
744 
745 	sdev = to_scsi_device(dev);
746 	h = sdev_to_hba(sdev);
747 	spin_lock_irqsave(&h->lock, flags);
748 	hdev = sdev->hostdata;
749 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
750 		spin_unlock_irqrestore(&h->lock, flags);
751 		return -ENODEV;
752 	}
753 	sas_address = hdev->sas_address;
754 	spin_unlock_irqrestore(&h->lock, flags);
755 
756 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
757 }
758 
759 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
760 	     struct device_attribute *attr, char *buf)
761 {
762 	struct ctlr_info *h;
763 	struct scsi_device *sdev;
764 	struct hpsa_scsi_dev_t *hdev;
765 	unsigned long flags;
766 	int offload_enabled;
767 
768 	sdev = to_scsi_device(dev);
769 	h = sdev_to_hba(sdev);
770 	spin_lock_irqsave(&h->lock, flags);
771 	hdev = sdev->hostdata;
772 	if (!hdev) {
773 		spin_unlock_irqrestore(&h->lock, flags);
774 		return -ENODEV;
775 	}
776 	offload_enabled = hdev->offload_enabled;
777 	spin_unlock_irqrestore(&h->lock, flags);
778 	return snprintf(buf, 20, "%d\n", offload_enabled);
779 }
780 
781 #define MAX_PATHS 8
782 static ssize_t path_info_show(struct device *dev,
783 	     struct device_attribute *attr, char *buf)
784 {
785 	struct ctlr_info *h;
786 	struct scsi_device *sdev;
787 	struct hpsa_scsi_dev_t *hdev;
788 	unsigned long flags;
789 	int i;
790 	int output_len = 0;
791 	u8 box;
792 	u8 bay;
793 	u8 path_map_index = 0;
794 	char *active;
795 	unsigned char phys_connector[2];
796 
797 	sdev = to_scsi_device(dev);
798 	h = sdev_to_hba(sdev);
799 	spin_lock_irqsave(&h->devlock, flags);
800 	hdev = sdev->hostdata;
801 	if (!hdev) {
802 		spin_unlock_irqrestore(&h->devlock, flags);
803 		return -ENODEV;
804 	}
805 
806 	bay = hdev->bay;
807 	for (i = 0; i < MAX_PATHS; i++) {
808 		path_map_index = 1<<i;
809 		if (i == hdev->active_path_index)
810 			active = "Active";
811 		else if (hdev->path_map & path_map_index)
812 			active = "Inactive";
813 		else
814 			continue;
815 
816 		output_len += scnprintf(buf + output_len,
817 				PAGE_SIZE - output_len,
818 				"[%d:%d:%d:%d] %20.20s ",
819 				h->scsi_host->host_no,
820 				hdev->bus, hdev->target, hdev->lun,
821 				scsi_device_type(hdev->devtype));
822 
823 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
824 			output_len += scnprintf(buf + output_len,
825 						PAGE_SIZE - output_len,
826 						"%s\n", active);
827 			continue;
828 		}
829 
830 		box = hdev->box[i];
831 		memcpy(&phys_connector, &hdev->phys_connector[i],
832 			sizeof(phys_connector));
833 		if (phys_connector[0] < '0')
834 			phys_connector[0] = '0';
835 		if (phys_connector[1] < '0')
836 			phys_connector[1] = '0';
837 		output_len += scnprintf(buf + output_len,
838 				PAGE_SIZE - output_len,
839 				"PORT: %.2s ",
840 				phys_connector);
841 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
842 			hdev->expose_device) {
843 			if (box == 0 || box == 0xFF) {
844 				output_len += scnprintf(buf + output_len,
845 					PAGE_SIZE - output_len,
846 					"BAY: %hhu %s\n",
847 					bay, active);
848 			} else {
849 				output_len += scnprintf(buf + output_len,
850 					PAGE_SIZE - output_len,
851 					"BOX: %hhu BAY: %hhu %s\n",
852 					box, bay, active);
853 			}
854 		} else if (box != 0 && box != 0xFF) {
855 			output_len += scnprintf(buf + output_len,
856 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
857 				box, active);
858 		} else
859 			output_len += scnprintf(buf + output_len,
860 				PAGE_SIZE - output_len, "%s\n", active);
861 	}
862 
863 	spin_unlock_irqrestore(&h->devlock, flags);
864 	return output_len;
865 }
866 
867 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
868 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
869 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
870 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
871 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
872 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
873 			host_show_hp_ssd_smart_path_enabled, NULL);
874 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
875 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
876 		host_show_hp_ssd_smart_path_status,
877 		host_store_hp_ssd_smart_path_status);
878 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
879 			host_store_raid_offload_debug);
880 static DEVICE_ATTR(firmware_revision, S_IRUGO,
881 	host_show_firmware_revision, NULL);
882 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
883 	host_show_commands_outstanding, NULL);
884 static DEVICE_ATTR(transport_mode, S_IRUGO,
885 	host_show_transport_mode, NULL);
886 static DEVICE_ATTR(resettable, S_IRUGO,
887 	host_show_resettable, NULL);
888 static DEVICE_ATTR(lockup_detected, S_IRUGO,
889 	host_show_lockup_detected, NULL);
890 
891 static struct device_attribute *hpsa_sdev_attrs[] = {
892 	&dev_attr_raid_level,
893 	&dev_attr_lunid,
894 	&dev_attr_unique_id,
895 	&dev_attr_hp_ssd_smart_path_enabled,
896 	&dev_attr_path_info,
897 	&dev_attr_sas_address,
898 	NULL,
899 };
900 
901 static struct device_attribute *hpsa_shost_attrs[] = {
902 	&dev_attr_rescan,
903 	&dev_attr_firmware_revision,
904 	&dev_attr_commands_outstanding,
905 	&dev_attr_transport_mode,
906 	&dev_attr_resettable,
907 	&dev_attr_hp_ssd_smart_path_status,
908 	&dev_attr_raid_offload_debug,
909 	&dev_attr_lockup_detected,
910 	NULL,
911 };
912 
913 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
914 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
915 
916 static struct scsi_host_template hpsa_driver_template = {
917 	.module			= THIS_MODULE,
918 	.name			= HPSA,
919 	.proc_name		= HPSA,
920 	.queuecommand		= hpsa_scsi_queue_command,
921 	.scan_start		= hpsa_scan_start,
922 	.scan_finished		= hpsa_scan_finished,
923 	.change_queue_depth	= hpsa_change_queue_depth,
924 	.this_id		= -1,
925 	.use_clustering		= ENABLE_CLUSTERING,
926 	.eh_abort_handler	= hpsa_eh_abort_handler,
927 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
928 	.ioctl			= hpsa_ioctl,
929 	.slave_alloc		= hpsa_slave_alloc,
930 	.slave_configure	= hpsa_slave_configure,
931 	.slave_destroy		= hpsa_slave_destroy,
932 #ifdef CONFIG_COMPAT
933 	.compat_ioctl		= hpsa_compat_ioctl,
934 #endif
935 	.sdev_attrs = hpsa_sdev_attrs,
936 	.shost_attrs = hpsa_shost_attrs,
937 	.max_sectors = 8192,
938 	.no_write_same = 1,
939 };
940 
941 static inline u32 next_command(struct ctlr_info *h, u8 q)
942 {
943 	u32 a;
944 	struct reply_queue_buffer *rq = &h->reply_queue[q];
945 
946 	if (h->transMethod & CFGTBL_Trans_io_accel1)
947 		return h->access.command_completed(h, q);
948 
949 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
950 		return h->access.command_completed(h, q);
951 
952 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
953 		a = rq->head[rq->current_entry];
954 		rq->current_entry++;
955 		atomic_dec(&h->commands_outstanding);
956 	} else {
957 		a = FIFO_EMPTY;
958 	}
959 	/* Check for wraparound */
960 	if (rq->current_entry == h->max_commands) {
961 		rq->current_entry = 0;
962 		rq->wraparound ^= 1;
963 	}
964 	return a;
965 }
966 
967 /*
968  * There are some special bits in the bus address of the
969  * command that we have to set for the controller to know
970  * how to process the command:
971  *
972  * Normal performant mode:
973  * bit 0: 1 means performant mode, 0 means simple mode.
974  * bits 1-3 = block fetch table entry
975  * bits 4-6 = command type (== 0)
976  *
977  * ioaccel1 mode:
978  * bit 0 = "performant mode" bit.
979  * bits 1-3 = block fetch table entry
980  * bits 4-6 = command type (== 110)
981  * (command type is needed because ioaccel1 mode
982  * commands are submitted through the same register as normal
983  * mode commands, so this is how the controller knows whether
984  * the command is normal mode or ioaccel1 mode.)
985  *
986  * ioaccel2 mode:
987  * bit 0 = "performant mode" bit.
988  * bits 1-4 = block fetch table entry (note extra bit)
989  * bits 4-6 = not needed, because ioaccel2 mode has
990  * a separate special register for submitting commands.
991  */
992 
993 /*
994  * set_performant_mode: Modify the tag for cciss performant
995  * set bit 0 for pull model, bits 3-1 for block fetch
996  * register number
997  */
998 #define DEFAULT_REPLY_QUEUE (-1)
999 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1000 					int reply_queue)
1001 {
1002 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1003 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1004 		if (unlikely(!h->msix_vector))
1005 			return;
1006 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007 			c->Header.ReplyQueue =
1008 				raw_smp_processor_id() % h->nreply_queues;
1009 		else
1010 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1011 	}
1012 }
1013 
1014 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1015 						struct CommandList *c,
1016 						int reply_queue)
1017 {
1018 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1019 
1020 	/*
1021 	 * Tell the controller to post the reply to the queue for this
1022 	 * processor.  This seems to give the best I/O throughput.
1023 	 */
1024 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1026 	else
1027 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1028 	/*
1029 	 * Set the bits in the address sent down to include:
1030 	 *  - performant mode bit (bit 0)
1031 	 *  - pull count (bits 1-3)
1032 	 *  - command type (bits 4-6)
1033 	 */
1034 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1035 					IOACCEL1_BUSADDR_CMDTYPE;
1036 }
1037 
1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1039 						struct CommandList *c,
1040 						int reply_queue)
1041 {
1042 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1043 		&h->ioaccel2_cmd_pool[c->cmdindex];
1044 
1045 	/* Tell the controller to post the reply to the queue for this
1046 	 * processor.  This seems to give the best I/O throughput.
1047 	 */
1048 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1050 	else
1051 		cp->reply_queue = reply_queue % h->nreply_queues;
1052 	/* Set the bits in the address sent down to include:
1053 	 *  - performant mode bit not used in ioaccel mode 2
1054 	 *  - pull count (bits 0-3)
1055 	 *  - command type isn't needed for ioaccel2
1056 	 */
1057 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1058 }
1059 
1060 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1061 						struct CommandList *c,
1062 						int reply_queue)
1063 {
1064 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1065 
1066 	/*
1067 	 * Tell the controller to post the reply to the queue for this
1068 	 * processor.  This seems to give the best I/O throughput.
1069 	 */
1070 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1071 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1072 	else
1073 		cp->reply_queue = reply_queue % h->nreply_queues;
1074 	/*
1075 	 * Set the bits in the address sent down to include:
1076 	 *  - performant mode bit not used in ioaccel mode 2
1077 	 *  - pull count (bits 0-3)
1078 	 *  - command type isn't needed for ioaccel2
1079 	 */
1080 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1081 }
1082 
1083 static int is_firmware_flash_cmd(u8 *cdb)
1084 {
1085 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1086 }
1087 
1088 /*
1089  * During firmware flash, the heartbeat register may not update as frequently
1090  * as it should.  So we dial down lockup detection during firmware flash. and
1091  * dial it back up when firmware flash completes.
1092  */
1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1096 		struct CommandList *c)
1097 {
1098 	if (!is_firmware_flash_cmd(c->Request.CDB))
1099 		return;
1100 	atomic_inc(&h->firmware_flash_in_progress);
1101 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1102 }
1103 
1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1105 		struct CommandList *c)
1106 {
1107 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1108 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1109 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1110 }
1111 
1112 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1113 	struct CommandList *c, int reply_queue)
1114 {
1115 	dial_down_lockup_detection_during_fw_flash(h, c);
1116 	atomic_inc(&h->commands_outstanding);
1117 	switch (c->cmd_type) {
1118 	case CMD_IOACCEL1:
1119 		set_ioaccel1_performant_mode(h, c, reply_queue);
1120 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1121 		break;
1122 	case CMD_IOACCEL2:
1123 		set_ioaccel2_performant_mode(h, c, reply_queue);
1124 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1125 		break;
1126 	case IOACCEL2_TMF:
1127 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1128 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1129 		break;
1130 	default:
1131 		set_performant_mode(h, c, reply_queue);
1132 		h->access.submit_command(h, c);
1133 	}
1134 }
1135 
1136 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1137 {
1138 	if (unlikely(hpsa_is_pending_event(c)))
1139 		return finish_cmd(c);
1140 
1141 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1142 }
1143 
1144 static inline int is_hba_lunid(unsigned char scsi3addr[])
1145 {
1146 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1147 }
1148 
1149 static inline int is_scsi_rev_5(struct ctlr_info *h)
1150 {
1151 	if (!h->hba_inquiry_data)
1152 		return 0;
1153 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1154 		return 1;
1155 	return 0;
1156 }
1157 
1158 static int hpsa_find_target_lun(struct ctlr_info *h,
1159 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1160 {
1161 	/* finds an unused bus, target, lun for a new physical device
1162 	 * assumes h->devlock is held
1163 	 */
1164 	int i, found = 0;
1165 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1166 
1167 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1168 
1169 	for (i = 0; i < h->ndevices; i++) {
1170 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1171 			__set_bit(h->dev[i]->target, lun_taken);
1172 	}
1173 
1174 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1175 	if (i < HPSA_MAX_DEVICES) {
1176 		/* *bus = 1; */
1177 		*target = i;
1178 		*lun = 0;
1179 		found = 1;
1180 	}
1181 	return !found;
1182 }
1183 
1184 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1185 	struct hpsa_scsi_dev_t *dev, char *description)
1186 {
1187 #define LABEL_SIZE 25
1188 	char label[LABEL_SIZE];
1189 
1190 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1191 		return;
1192 
1193 	switch (dev->devtype) {
1194 	case TYPE_RAID:
1195 		snprintf(label, LABEL_SIZE, "controller");
1196 		break;
1197 	case TYPE_ENCLOSURE:
1198 		snprintf(label, LABEL_SIZE, "enclosure");
1199 		break;
1200 	case TYPE_DISK:
1201 	case TYPE_ZBC:
1202 		if (dev->external)
1203 			snprintf(label, LABEL_SIZE, "external");
1204 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1205 			snprintf(label, LABEL_SIZE, "%s",
1206 				raid_label[PHYSICAL_DRIVE]);
1207 		else
1208 			snprintf(label, LABEL_SIZE, "RAID-%s",
1209 				dev->raid_level > RAID_UNKNOWN ? "?" :
1210 				raid_label[dev->raid_level]);
1211 		break;
1212 	case TYPE_ROM:
1213 		snprintf(label, LABEL_SIZE, "rom");
1214 		break;
1215 	case TYPE_TAPE:
1216 		snprintf(label, LABEL_SIZE, "tape");
1217 		break;
1218 	case TYPE_MEDIUM_CHANGER:
1219 		snprintf(label, LABEL_SIZE, "changer");
1220 		break;
1221 	default:
1222 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1223 		break;
1224 	}
1225 
1226 	dev_printk(level, &h->pdev->dev,
1227 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1228 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1229 			description,
1230 			scsi_device_type(dev->devtype),
1231 			dev->vendor,
1232 			dev->model,
1233 			label,
1234 			dev->offload_config ? '+' : '-',
1235 			dev->offload_enabled ? '+' : '-',
1236 			dev->expose_device);
1237 }
1238 
1239 /* Add an entry into h->dev[] array. */
1240 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1241 		struct hpsa_scsi_dev_t *device,
1242 		struct hpsa_scsi_dev_t *added[], int *nadded)
1243 {
1244 	/* assumes h->devlock is held */
1245 	int n = h->ndevices;
1246 	int i;
1247 	unsigned char addr1[8], addr2[8];
1248 	struct hpsa_scsi_dev_t *sd;
1249 
1250 	if (n >= HPSA_MAX_DEVICES) {
1251 		dev_err(&h->pdev->dev, "too many devices, some will be "
1252 			"inaccessible.\n");
1253 		return -1;
1254 	}
1255 
1256 	/* physical devices do not have lun or target assigned until now. */
1257 	if (device->lun != -1)
1258 		/* Logical device, lun is already assigned. */
1259 		goto lun_assigned;
1260 
1261 	/* If this device a non-zero lun of a multi-lun device
1262 	 * byte 4 of the 8-byte LUN addr will contain the logical
1263 	 * unit no, zero otherwise.
1264 	 */
1265 	if (device->scsi3addr[4] == 0) {
1266 		/* This is not a non-zero lun of a multi-lun device */
1267 		if (hpsa_find_target_lun(h, device->scsi3addr,
1268 			device->bus, &device->target, &device->lun) != 0)
1269 			return -1;
1270 		goto lun_assigned;
1271 	}
1272 
1273 	/* This is a non-zero lun of a multi-lun device.
1274 	 * Search through our list and find the device which
1275 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1276 	 * Assign the same bus and target for this new LUN.
1277 	 * Use the logical unit number from the firmware.
1278 	 */
1279 	memcpy(addr1, device->scsi3addr, 8);
1280 	addr1[4] = 0;
1281 	addr1[5] = 0;
1282 	for (i = 0; i < n; i++) {
1283 		sd = h->dev[i];
1284 		memcpy(addr2, sd->scsi3addr, 8);
1285 		addr2[4] = 0;
1286 		addr2[5] = 0;
1287 		/* differ only in byte 4 and 5? */
1288 		if (memcmp(addr1, addr2, 8) == 0) {
1289 			device->bus = sd->bus;
1290 			device->target = sd->target;
1291 			device->lun = device->scsi3addr[4];
1292 			break;
1293 		}
1294 	}
1295 	if (device->lun == -1) {
1296 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1297 			" suspect firmware bug or unsupported hardware "
1298 			"configuration.\n");
1299 			return -1;
1300 	}
1301 
1302 lun_assigned:
1303 
1304 	h->dev[n] = device;
1305 	h->ndevices++;
1306 	added[*nadded] = device;
1307 	(*nadded)++;
1308 	hpsa_show_dev_msg(KERN_INFO, h, device,
1309 		device->expose_device ? "added" : "masked");
1310 	device->offload_to_be_enabled = device->offload_enabled;
1311 	device->offload_enabled = 0;
1312 	return 0;
1313 }
1314 
1315 /* Update an entry in h->dev[] array. */
1316 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1317 	int entry, struct hpsa_scsi_dev_t *new_entry)
1318 {
1319 	int offload_enabled;
1320 	/* assumes h->devlock is held */
1321 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1322 
1323 	/* Raid level changed. */
1324 	h->dev[entry]->raid_level = new_entry->raid_level;
1325 
1326 	/* Raid offload parameters changed.  Careful about the ordering. */
1327 	if (new_entry->offload_config && new_entry->offload_enabled) {
1328 		/*
1329 		 * if drive is newly offload_enabled, we want to copy the
1330 		 * raid map data first.  If previously offload_enabled and
1331 		 * offload_config were set, raid map data had better be
1332 		 * the same as it was before.  if raid map data is changed
1333 		 * then it had better be the case that
1334 		 * h->dev[entry]->offload_enabled is currently 0.
1335 		 */
1336 		h->dev[entry]->raid_map = new_entry->raid_map;
1337 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1338 	}
1339 	if (new_entry->hba_ioaccel_enabled) {
1340 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1341 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1342 	}
1343 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1344 	h->dev[entry]->offload_config = new_entry->offload_config;
1345 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1346 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1347 
1348 	/*
1349 	 * We can turn off ioaccel offload now, but need to delay turning
1350 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1351 	 * can't do that until all the devices are updated.
1352 	 */
1353 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1354 	if (!new_entry->offload_enabled)
1355 		h->dev[entry]->offload_enabled = 0;
1356 
1357 	offload_enabled = h->dev[entry]->offload_enabled;
1358 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1359 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1360 	h->dev[entry]->offload_enabled = offload_enabled;
1361 }
1362 
1363 /* Replace an entry from h->dev[] array. */
1364 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1365 	int entry, struct hpsa_scsi_dev_t *new_entry,
1366 	struct hpsa_scsi_dev_t *added[], int *nadded,
1367 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1368 {
1369 	/* assumes h->devlock is held */
1370 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371 	removed[*nremoved] = h->dev[entry];
1372 	(*nremoved)++;
1373 
1374 	/*
1375 	 * New physical devices won't have target/lun assigned yet
1376 	 * so we need to preserve the values in the slot we are replacing.
1377 	 */
1378 	if (new_entry->target == -1) {
1379 		new_entry->target = h->dev[entry]->target;
1380 		new_entry->lun = h->dev[entry]->lun;
1381 	}
1382 
1383 	h->dev[entry] = new_entry;
1384 	added[*nadded] = new_entry;
1385 	(*nadded)++;
1386 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1387 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1388 	new_entry->offload_enabled = 0;
1389 }
1390 
1391 /* Remove an entry from h->dev[] array. */
1392 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1393 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1394 {
1395 	/* assumes h->devlock is held */
1396 	int i;
1397 	struct hpsa_scsi_dev_t *sd;
1398 
1399 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1400 
1401 	sd = h->dev[entry];
1402 	removed[*nremoved] = h->dev[entry];
1403 	(*nremoved)++;
1404 
1405 	for (i = entry; i < h->ndevices-1; i++)
1406 		h->dev[i] = h->dev[i+1];
1407 	h->ndevices--;
1408 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1409 }
1410 
1411 #define SCSI3ADDR_EQ(a, b) ( \
1412 	(a)[7] == (b)[7] && \
1413 	(a)[6] == (b)[6] && \
1414 	(a)[5] == (b)[5] && \
1415 	(a)[4] == (b)[4] && \
1416 	(a)[3] == (b)[3] && \
1417 	(a)[2] == (b)[2] && \
1418 	(a)[1] == (b)[1] && \
1419 	(a)[0] == (b)[0])
1420 
1421 static void fixup_botched_add(struct ctlr_info *h,
1422 	struct hpsa_scsi_dev_t *added)
1423 {
1424 	/* called when scsi_add_device fails in order to re-adjust
1425 	 * h->dev[] to match the mid layer's view.
1426 	 */
1427 	unsigned long flags;
1428 	int i, j;
1429 
1430 	spin_lock_irqsave(&h->lock, flags);
1431 	for (i = 0; i < h->ndevices; i++) {
1432 		if (h->dev[i] == added) {
1433 			for (j = i; j < h->ndevices-1; j++)
1434 				h->dev[j] = h->dev[j+1];
1435 			h->ndevices--;
1436 			break;
1437 		}
1438 	}
1439 	spin_unlock_irqrestore(&h->lock, flags);
1440 	kfree(added);
1441 }
1442 
1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1444 	struct hpsa_scsi_dev_t *dev2)
1445 {
1446 	/* we compare everything except lun and target as these
1447 	 * are not yet assigned.  Compare parts likely
1448 	 * to differ first
1449 	 */
1450 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1451 		sizeof(dev1->scsi3addr)) != 0)
1452 		return 0;
1453 	if (memcmp(dev1->device_id, dev2->device_id,
1454 		sizeof(dev1->device_id)) != 0)
1455 		return 0;
1456 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1457 		return 0;
1458 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1459 		return 0;
1460 	if (dev1->devtype != dev2->devtype)
1461 		return 0;
1462 	if (dev1->bus != dev2->bus)
1463 		return 0;
1464 	return 1;
1465 }
1466 
1467 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1468 	struct hpsa_scsi_dev_t *dev2)
1469 {
1470 	/* Device attributes that can change, but don't mean
1471 	 * that the device is a different device, nor that the OS
1472 	 * needs to be told anything about the change.
1473 	 */
1474 	if (dev1->raid_level != dev2->raid_level)
1475 		return 1;
1476 	if (dev1->offload_config != dev2->offload_config)
1477 		return 1;
1478 	if (dev1->offload_enabled != dev2->offload_enabled)
1479 		return 1;
1480 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1481 		if (dev1->queue_depth != dev2->queue_depth)
1482 			return 1;
1483 	return 0;
1484 }
1485 
1486 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1487  * and return needle location in *index.  If scsi3addr matches, but not
1488  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1489  * location in *index.
1490  * In the case of a minor device attribute change, such as RAID level, just
1491  * return DEVICE_UPDATED, along with the updated device's location in index.
1492  * If needle not found, return DEVICE_NOT_FOUND.
1493  */
1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1495 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1496 	int *index)
1497 {
1498 	int i;
1499 #define DEVICE_NOT_FOUND 0
1500 #define DEVICE_CHANGED 1
1501 #define DEVICE_SAME 2
1502 #define DEVICE_UPDATED 3
1503 	if (needle == NULL)
1504 		return DEVICE_NOT_FOUND;
1505 
1506 	for (i = 0; i < haystack_size; i++) {
1507 		if (haystack[i] == NULL) /* previously removed. */
1508 			continue;
1509 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1510 			*index = i;
1511 			if (device_is_the_same(needle, haystack[i])) {
1512 				if (device_updated(needle, haystack[i]))
1513 					return DEVICE_UPDATED;
1514 				return DEVICE_SAME;
1515 			} else {
1516 				/* Keep offline devices offline */
1517 				if (needle->volume_offline)
1518 					return DEVICE_NOT_FOUND;
1519 				return DEVICE_CHANGED;
1520 			}
1521 		}
1522 	}
1523 	*index = -1;
1524 	return DEVICE_NOT_FOUND;
1525 }
1526 
1527 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1528 					unsigned char scsi3addr[])
1529 {
1530 	struct offline_device_entry *device;
1531 	unsigned long flags;
1532 
1533 	/* Check to see if device is already on the list */
1534 	spin_lock_irqsave(&h->offline_device_lock, flags);
1535 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1536 		if (memcmp(device->scsi3addr, scsi3addr,
1537 			sizeof(device->scsi3addr)) == 0) {
1538 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1539 			return;
1540 		}
1541 	}
1542 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1543 
1544 	/* Device is not on the list, add it. */
1545 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1546 	if (!device) {
1547 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1548 		return;
1549 	}
1550 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1551 	spin_lock_irqsave(&h->offline_device_lock, flags);
1552 	list_add_tail(&device->offline_list, &h->offline_device_list);
1553 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1554 }
1555 
1556 /* Print a message explaining various offline volume states */
1557 static void hpsa_show_volume_status(struct ctlr_info *h,
1558 	struct hpsa_scsi_dev_t *sd)
1559 {
1560 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1561 		dev_info(&h->pdev->dev,
1562 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1563 			h->scsi_host->host_no,
1564 			sd->bus, sd->target, sd->lun);
1565 	switch (sd->volume_offline) {
1566 	case HPSA_LV_OK:
1567 		break;
1568 	case HPSA_LV_UNDERGOING_ERASE:
1569 		dev_info(&h->pdev->dev,
1570 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1571 			h->scsi_host->host_no,
1572 			sd->bus, sd->target, sd->lun);
1573 		break;
1574 	case HPSA_LV_NOT_AVAILABLE:
1575 		dev_info(&h->pdev->dev,
1576 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1577 			h->scsi_host->host_no,
1578 			sd->bus, sd->target, sd->lun);
1579 		break;
1580 	case HPSA_LV_UNDERGOING_RPI:
1581 		dev_info(&h->pdev->dev,
1582 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1583 			h->scsi_host->host_no,
1584 			sd->bus, sd->target, sd->lun);
1585 		break;
1586 	case HPSA_LV_PENDING_RPI:
1587 		dev_info(&h->pdev->dev,
1588 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1589 			h->scsi_host->host_no,
1590 			sd->bus, sd->target, sd->lun);
1591 		break;
1592 	case HPSA_LV_ENCRYPTED_NO_KEY:
1593 		dev_info(&h->pdev->dev,
1594 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1595 			h->scsi_host->host_no,
1596 			sd->bus, sd->target, sd->lun);
1597 		break;
1598 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1599 		dev_info(&h->pdev->dev,
1600 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1601 			h->scsi_host->host_no,
1602 			sd->bus, sd->target, sd->lun);
1603 		break;
1604 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1605 		dev_info(&h->pdev->dev,
1606 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1607 			h->scsi_host->host_no,
1608 			sd->bus, sd->target, sd->lun);
1609 		break;
1610 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1611 		dev_info(&h->pdev->dev,
1612 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1613 			h->scsi_host->host_no,
1614 			sd->bus, sd->target, sd->lun);
1615 		break;
1616 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_PENDING_ENCRYPTION:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	}
1635 }
1636 
1637 /*
1638  * Figure the list of physical drive pointers for a logical drive with
1639  * raid offload configured.
1640  */
1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1642 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1643 				struct hpsa_scsi_dev_t *logical_drive)
1644 {
1645 	struct raid_map_data *map = &logical_drive->raid_map;
1646 	struct raid_map_disk_data *dd = &map->data[0];
1647 	int i, j;
1648 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1649 				le16_to_cpu(map->metadata_disks_per_row);
1650 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1651 				le16_to_cpu(map->layout_map_count) *
1652 				total_disks_per_row;
1653 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1654 				total_disks_per_row;
1655 	int qdepth;
1656 
1657 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1658 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1659 
1660 	logical_drive->nphysical_disks = nraid_map_entries;
1661 
1662 	qdepth = 0;
1663 	for (i = 0; i < nraid_map_entries; i++) {
1664 		logical_drive->phys_disk[i] = NULL;
1665 		if (!logical_drive->offload_config)
1666 			continue;
1667 		for (j = 0; j < ndevices; j++) {
1668 			if (dev[j] == NULL)
1669 				continue;
1670 			if (dev[j]->devtype != TYPE_DISK &&
1671 			    dev[j]->devtype != TYPE_ZBC)
1672 				continue;
1673 			if (is_logical_device(dev[j]))
1674 				continue;
1675 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1676 				continue;
1677 
1678 			logical_drive->phys_disk[i] = dev[j];
1679 			if (i < nphys_disk)
1680 				qdepth = min(h->nr_cmds, qdepth +
1681 				    logical_drive->phys_disk[i]->queue_depth);
1682 			break;
1683 		}
1684 
1685 		/*
1686 		 * This can happen if a physical drive is removed and
1687 		 * the logical drive is degraded.  In that case, the RAID
1688 		 * map data will refer to a physical disk which isn't actually
1689 		 * present.  And in that case offload_enabled should already
1690 		 * be 0, but we'll turn it off here just in case
1691 		 */
1692 		if (!logical_drive->phys_disk[i]) {
1693 			logical_drive->offload_enabled = 0;
1694 			logical_drive->offload_to_be_enabled = 0;
1695 			logical_drive->queue_depth = 8;
1696 		}
1697 	}
1698 	if (nraid_map_entries)
1699 		/*
1700 		 * This is correct for reads, too high for full stripe writes,
1701 		 * way too high for partial stripe writes
1702 		 */
1703 		logical_drive->queue_depth = qdepth;
1704 	else
1705 		logical_drive->queue_depth = h->nr_cmds;
1706 }
1707 
1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1709 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < ndevices; i++) {
1714 		if (dev[i] == NULL)
1715 			continue;
1716 		if (dev[i]->devtype != TYPE_DISK &&
1717 		    dev[i]->devtype != TYPE_ZBC)
1718 			continue;
1719 		if (!is_logical_device(dev[i]))
1720 			continue;
1721 
1722 		/*
1723 		 * If offload is currently enabled, the RAID map and
1724 		 * phys_disk[] assignment *better* not be changing
1725 		 * and since it isn't changing, we do not need to
1726 		 * update it.
1727 		 */
1728 		if (dev[i]->offload_enabled)
1729 			continue;
1730 
1731 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1732 	}
1733 }
1734 
1735 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1736 {
1737 	int rc = 0;
1738 
1739 	if (!h->scsi_host)
1740 		return 1;
1741 
1742 	if (is_logical_device(device)) /* RAID */
1743 		rc = scsi_add_device(h->scsi_host, device->bus,
1744 					device->target, device->lun);
1745 	else /* HBA */
1746 		rc = hpsa_add_sas_device(h->sas_host, device);
1747 
1748 	return rc;
1749 }
1750 
1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1752 						struct hpsa_scsi_dev_t *dev)
1753 {
1754 	int i;
1755 	int count = 0;
1756 
1757 	for (i = 0; i < h->nr_cmds; i++) {
1758 		struct CommandList *c = h->cmd_pool + i;
1759 		int refcount = atomic_inc_return(&c->refcount);
1760 
1761 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1762 				dev->scsi3addr)) {
1763 			unsigned long flags;
1764 
1765 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1766 			if (!hpsa_is_cmd_idle(c))
1767 				++count;
1768 			spin_unlock_irqrestore(&h->lock, flags);
1769 		}
1770 
1771 		cmd_free(h, c);
1772 	}
1773 
1774 	return count;
1775 }
1776 
1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1778 						struct hpsa_scsi_dev_t *device)
1779 {
1780 	int cmds = 0;
1781 	int waits = 0;
1782 
1783 	while (1) {
1784 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1785 		if (cmds == 0)
1786 			break;
1787 		if (++waits > 20)
1788 			break;
1789 		dev_warn(&h->pdev->dev,
1790 			"%s: removing device with %d outstanding commands!\n",
1791 			__func__, cmds);
1792 		msleep(1000);
1793 	}
1794 }
1795 
1796 static void hpsa_remove_device(struct ctlr_info *h,
1797 			struct hpsa_scsi_dev_t *device)
1798 {
1799 	struct scsi_device *sdev = NULL;
1800 
1801 	if (!h->scsi_host)
1802 		return;
1803 
1804 	if (is_logical_device(device)) { /* RAID */
1805 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1806 						device->target, device->lun);
1807 		if (sdev) {
1808 			scsi_remove_device(sdev);
1809 			scsi_device_put(sdev);
1810 		} else {
1811 			/*
1812 			 * We don't expect to get here.  Future commands
1813 			 * to this device will get a selection timeout as
1814 			 * if the device were gone.
1815 			 */
1816 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1817 					"didn't find device for removal.");
1818 		}
1819 	} else { /* HBA */
1820 
1821 		device->removed = 1;
1822 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1823 
1824 		hpsa_remove_sas_device(device);
1825 	}
1826 }
1827 
1828 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1829 	struct hpsa_scsi_dev_t *sd[], int nsds)
1830 {
1831 	/* sd contains scsi3 addresses and devtypes, and inquiry
1832 	 * data.  This function takes what's in sd to be the current
1833 	 * reality and updates h->dev[] to reflect that reality.
1834 	 */
1835 	int i, entry, device_change, changes = 0;
1836 	struct hpsa_scsi_dev_t *csd;
1837 	unsigned long flags;
1838 	struct hpsa_scsi_dev_t **added, **removed;
1839 	int nadded, nremoved;
1840 
1841 	/*
1842 	 * A reset can cause a device status to change
1843 	 * re-schedule the scan to see what happened.
1844 	 */
1845 	if (h->reset_in_progress) {
1846 		h->drv_req_rescan = 1;
1847 		return;
1848 	}
1849 
1850 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1851 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1852 
1853 	if (!added || !removed) {
1854 		dev_warn(&h->pdev->dev, "out of memory in "
1855 			"adjust_hpsa_scsi_table\n");
1856 		goto free_and_out;
1857 	}
1858 
1859 	spin_lock_irqsave(&h->devlock, flags);
1860 
1861 	/* find any devices in h->dev[] that are not in
1862 	 * sd[] and remove them from h->dev[], and for any
1863 	 * devices which have changed, remove the old device
1864 	 * info and add the new device info.
1865 	 * If minor device attributes change, just update
1866 	 * the existing device structure.
1867 	 */
1868 	i = 0;
1869 	nremoved = 0;
1870 	nadded = 0;
1871 	while (i < h->ndevices) {
1872 		csd = h->dev[i];
1873 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1874 		if (device_change == DEVICE_NOT_FOUND) {
1875 			changes++;
1876 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1877 			continue; /* remove ^^^, hence i not incremented */
1878 		} else if (device_change == DEVICE_CHANGED) {
1879 			changes++;
1880 			hpsa_scsi_replace_entry(h, i, sd[entry],
1881 				added, &nadded, removed, &nremoved);
1882 			/* Set it to NULL to prevent it from being freed
1883 			 * at the bottom of hpsa_update_scsi_devices()
1884 			 */
1885 			sd[entry] = NULL;
1886 		} else if (device_change == DEVICE_UPDATED) {
1887 			hpsa_scsi_update_entry(h, i, sd[entry]);
1888 		}
1889 		i++;
1890 	}
1891 
1892 	/* Now, make sure every device listed in sd[] is also
1893 	 * listed in h->dev[], adding them if they aren't found
1894 	 */
1895 
1896 	for (i = 0; i < nsds; i++) {
1897 		if (!sd[i]) /* if already added above. */
1898 			continue;
1899 
1900 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1901 		 * as the SCSI mid-layer does not handle such devices well.
1902 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1903 		 * at 160Hz, and prevents the system from coming up.
1904 		 */
1905 		if (sd[i]->volume_offline) {
1906 			hpsa_show_volume_status(h, sd[i]);
1907 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1908 			continue;
1909 		}
1910 
1911 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1912 					h->ndevices, &entry);
1913 		if (device_change == DEVICE_NOT_FOUND) {
1914 			changes++;
1915 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1916 				break;
1917 			sd[i] = NULL; /* prevent from being freed later. */
1918 		} else if (device_change == DEVICE_CHANGED) {
1919 			/* should never happen... */
1920 			changes++;
1921 			dev_warn(&h->pdev->dev,
1922 				"device unexpectedly changed.\n");
1923 			/* but if it does happen, we just ignore that device */
1924 		}
1925 	}
1926 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1927 
1928 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1929 	 * any logical drives that need it enabled.
1930 	 */
1931 	for (i = 0; i < h->ndevices; i++) {
1932 		if (h->dev[i] == NULL)
1933 			continue;
1934 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1935 	}
1936 
1937 	spin_unlock_irqrestore(&h->devlock, flags);
1938 
1939 	/* Monitor devices which are in one of several NOT READY states to be
1940 	 * brought online later. This must be done without holding h->devlock,
1941 	 * so don't touch h->dev[]
1942 	 */
1943 	for (i = 0; i < nsds; i++) {
1944 		if (!sd[i]) /* if already added above. */
1945 			continue;
1946 		if (sd[i]->volume_offline)
1947 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1948 	}
1949 
1950 	/* Don't notify scsi mid layer of any changes the first time through
1951 	 * (or if there are no changes) scsi_scan_host will do it later the
1952 	 * first time through.
1953 	 */
1954 	if (!changes)
1955 		goto free_and_out;
1956 
1957 	/* Notify scsi mid layer of any removed devices */
1958 	for (i = 0; i < nremoved; i++) {
1959 		if (removed[i] == NULL)
1960 			continue;
1961 		if (removed[i]->expose_device)
1962 			hpsa_remove_device(h, removed[i]);
1963 		kfree(removed[i]);
1964 		removed[i] = NULL;
1965 	}
1966 
1967 	/* Notify scsi mid layer of any added devices */
1968 	for (i = 0; i < nadded; i++) {
1969 		int rc = 0;
1970 
1971 		if (added[i] == NULL)
1972 			continue;
1973 		if (!(added[i]->expose_device))
1974 			continue;
1975 		rc = hpsa_add_device(h, added[i]);
1976 		if (!rc)
1977 			continue;
1978 		dev_warn(&h->pdev->dev,
1979 			"addition failed %d, device not added.", rc);
1980 		/* now we have to remove it from h->dev,
1981 		 * since it didn't get added to scsi mid layer
1982 		 */
1983 		fixup_botched_add(h, added[i]);
1984 		h->drv_req_rescan = 1;
1985 	}
1986 
1987 free_and_out:
1988 	kfree(added);
1989 	kfree(removed);
1990 }
1991 
1992 /*
1993  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1994  * Assume's h->devlock is held.
1995  */
1996 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1997 	int bus, int target, int lun)
1998 {
1999 	int i;
2000 	struct hpsa_scsi_dev_t *sd;
2001 
2002 	for (i = 0; i < h->ndevices; i++) {
2003 		sd = h->dev[i];
2004 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2005 			return sd;
2006 	}
2007 	return NULL;
2008 }
2009 
2010 static int hpsa_slave_alloc(struct scsi_device *sdev)
2011 {
2012 	struct hpsa_scsi_dev_t *sd;
2013 	unsigned long flags;
2014 	struct ctlr_info *h;
2015 
2016 	h = sdev_to_hba(sdev);
2017 	spin_lock_irqsave(&h->devlock, flags);
2018 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2019 		struct scsi_target *starget;
2020 		struct sas_rphy *rphy;
2021 
2022 		starget = scsi_target(sdev);
2023 		rphy = target_to_rphy(starget);
2024 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2025 		if (sd) {
2026 			sd->target = sdev_id(sdev);
2027 			sd->lun = sdev->lun;
2028 		}
2029 	} else
2030 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2031 					sdev_id(sdev), sdev->lun);
2032 
2033 	if (sd && sd->expose_device) {
2034 		atomic_set(&sd->ioaccel_cmds_out, 0);
2035 		sdev->hostdata = sd;
2036 	} else
2037 		sdev->hostdata = NULL;
2038 	spin_unlock_irqrestore(&h->devlock, flags);
2039 	return 0;
2040 }
2041 
2042 /* configure scsi device based on internal per-device structure */
2043 static int hpsa_slave_configure(struct scsi_device *sdev)
2044 {
2045 	struct hpsa_scsi_dev_t *sd;
2046 	int queue_depth;
2047 
2048 	sd = sdev->hostdata;
2049 	sdev->no_uld_attach = !sd || !sd->expose_device;
2050 
2051 	if (sd)
2052 		queue_depth = sd->queue_depth != 0 ?
2053 			sd->queue_depth : sdev->host->can_queue;
2054 	else
2055 		queue_depth = sdev->host->can_queue;
2056 
2057 	scsi_change_queue_depth(sdev, queue_depth);
2058 
2059 	return 0;
2060 }
2061 
2062 static void hpsa_slave_destroy(struct scsi_device *sdev)
2063 {
2064 	/* nothing to do. */
2065 }
2066 
2067 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2068 {
2069 	int i;
2070 
2071 	if (!h->ioaccel2_cmd_sg_list)
2072 		return;
2073 	for (i = 0; i < h->nr_cmds; i++) {
2074 		kfree(h->ioaccel2_cmd_sg_list[i]);
2075 		h->ioaccel2_cmd_sg_list[i] = NULL;
2076 	}
2077 	kfree(h->ioaccel2_cmd_sg_list);
2078 	h->ioaccel2_cmd_sg_list = NULL;
2079 }
2080 
2081 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083 	int i;
2084 
2085 	if (h->chainsize <= 0)
2086 		return 0;
2087 
2088 	h->ioaccel2_cmd_sg_list =
2089 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2090 					GFP_KERNEL);
2091 	if (!h->ioaccel2_cmd_sg_list)
2092 		return -ENOMEM;
2093 	for (i = 0; i < h->nr_cmds; i++) {
2094 		h->ioaccel2_cmd_sg_list[i] =
2095 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2096 					h->maxsgentries, GFP_KERNEL);
2097 		if (!h->ioaccel2_cmd_sg_list[i])
2098 			goto clean;
2099 	}
2100 	return 0;
2101 
2102 clean:
2103 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2104 	return -ENOMEM;
2105 }
2106 
2107 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2108 {
2109 	int i;
2110 
2111 	if (!h->cmd_sg_list)
2112 		return;
2113 	for (i = 0; i < h->nr_cmds; i++) {
2114 		kfree(h->cmd_sg_list[i]);
2115 		h->cmd_sg_list[i] = NULL;
2116 	}
2117 	kfree(h->cmd_sg_list);
2118 	h->cmd_sg_list = NULL;
2119 }
2120 
2121 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123 	int i;
2124 
2125 	if (h->chainsize <= 0)
2126 		return 0;
2127 
2128 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2129 				GFP_KERNEL);
2130 	if (!h->cmd_sg_list) {
2131 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2132 		return -ENOMEM;
2133 	}
2134 	for (i = 0; i < h->nr_cmds; i++) {
2135 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2136 						h->chainsize, GFP_KERNEL);
2137 		if (!h->cmd_sg_list[i]) {
2138 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2139 			goto clean;
2140 		}
2141 	}
2142 	return 0;
2143 
2144 clean:
2145 	hpsa_free_sg_chain_blocks(h);
2146 	return -ENOMEM;
2147 }
2148 
2149 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2150 	struct io_accel2_cmd *cp, struct CommandList *c)
2151 {
2152 	struct ioaccel2_sg_element *chain_block;
2153 	u64 temp64;
2154 	u32 chain_size;
2155 
2156 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2157 	chain_size = le32_to_cpu(cp->sg[0].length);
2158 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2159 				PCI_DMA_TODEVICE);
2160 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2161 		/* prevent subsequent unmapping */
2162 		cp->sg->address = 0;
2163 		return -1;
2164 	}
2165 	cp->sg->address = cpu_to_le64(temp64);
2166 	return 0;
2167 }
2168 
2169 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2170 	struct io_accel2_cmd *cp)
2171 {
2172 	struct ioaccel2_sg_element *chain_sg;
2173 	u64 temp64;
2174 	u32 chain_size;
2175 
2176 	chain_sg = cp->sg;
2177 	temp64 = le64_to_cpu(chain_sg->address);
2178 	chain_size = le32_to_cpu(cp->sg[0].length);
2179 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2180 }
2181 
2182 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2183 	struct CommandList *c)
2184 {
2185 	struct SGDescriptor *chain_sg, *chain_block;
2186 	u64 temp64;
2187 	u32 chain_len;
2188 
2189 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2190 	chain_block = h->cmd_sg_list[c->cmdindex];
2191 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2192 	chain_len = sizeof(*chain_sg) *
2193 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2194 	chain_sg->Len = cpu_to_le32(chain_len);
2195 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2196 				PCI_DMA_TODEVICE);
2197 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2198 		/* prevent subsequent unmapping */
2199 		chain_sg->Addr = cpu_to_le64(0);
2200 		return -1;
2201 	}
2202 	chain_sg->Addr = cpu_to_le64(temp64);
2203 	return 0;
2204 }
2205 
2206 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2207 	struct CommandList *c)
2208 {
2209 	struct SGDescriptor *chain_sg;
2210 
2211 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2212 		return;
2213 
2214 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2215 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2216 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2217 }
2218 
2219 
2220 /* Decode the various types of errors on ioaccel2 path.
2221  * Return 1 for any error that should generate a RAID path retry.
2222  * Return 0 for errors that don't require a RAID path retry.
2223  */
2224 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2225 					struct CommandList *c,
2226 					struct scsi_cmnd *cmd,
2227 					struct io_accel2_cmd *c2,
2228 					struct hpsa_scsi_dev_t *dev)
2229 {
2230 	int data_len;
2231 	int retry = 0;
2232 	u32 ioaccel2_resid = 0;
2233 
2234 	switch (c2->error_data.serv_response) {
2235 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2236 		switch (c2->error_data.status) {
2237 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2238 			break;
2239 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2240 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2241 			if (c2->error_data.data_present !=
2242 					IOACCEL2_SENSE_DATA_PRESENT) {
2243 				memset(cmd->sense_buffer, 0,
2244 					SCSI_SENSE_BUFFERSIZE);
2245 				break;
2246 			}
2247 			/* copy the sense data */
2248 			data_len = c2->error_data.sense_data_len;
2249 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2250 				data_len = SCSI_SENSE_BUFFERSIZE;
2251 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2252 				data_len =
2253 					sizeof(c2->error_data.sense_data_buff);
2254 			memcpy(cmd->sense_buffer,
2255 				c2->error_data.sense_data_buff, data_len);
2256 			retry = 1;
2257 			break;
2258 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2259 			retry = 1;
2260 			break;
2261 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2262 			retry = 1;
2263 			break;
2264 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2265 			retry = 1;
2266 			break;
2267 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2268 			retry = 1;
2269 			break;
2270 		default:
2271 			retry = 1;
2272 			break;
2273 		}
2274 		break;
2275 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2276 		switch (c2->error_data.status) {
2277 		case IOACCEL2_STATUS_SR_IO_ERROR:
2278 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2279 		case IOACCEL2_STATUS_SR_OVERRUN:
2280 			retry = 1;
2281 			break;
2282 		case IOACCEL2_STATUS_SR_UNDERRUN:
2283 			cmd->result = (DID_OK << 16);		/* host byte */
2284 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2285 			ioaccel2_resid = get_unaligned_le32(
2286 						&c2->error_data.resid_cnt[0]);
2287 			scsi_set_resid(cmd, ioaccel2_resid);
2288 			break;
2289 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2290 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2291 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2292 			/*
2293 			 * Did an HBA disk disappear? We will eventually
2294 			 * get a state change event from the controller but
2295 			 * in the meantime, we need to tell the OS that the
2296 			 * HBA disk is no longer there and stop I/O
2297 			 * from going down. This allows the potential re-insert
2298 			 * of the disk to get the same device node.
2299 			 */
2300 			if (dev->physical_device && dev->expose_device) {
2301 				cmd->result = DID_NO_CONNECT << 16;
2302 				dev->removed = 1;
2303 				h->drv_req_rescan = 1;
2304 				dev_warn(&h->pdev->dev,
2305 					"%s: device is gone!\n", __func__);
2306 			} else
2307 				/*
2308 				 * Retry by sending down the RAID path.
2309 				 * We will get an event from ctlr to
2310 				 * trigger rescan regardless.
2311 				 */
2312 				retry = 1;
2313 			break;
2314 		default:
2315 			retry = 1;
2316 		}
2317 		break;
2318 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2319 		break;
2320 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2321 		break;
2322 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2323 		retry = 1;
2324 		break;
2325 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2326 		break;
2327 	default:
2328 		retry = 1;
2329 		break;
2330 	}
2331 
2332 	return retry;	/* retry on raid path? */
2333 }
2334 
2335 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2336 		struct CommandList *c)
2337 {
2338 	bool do_wake = false;
2339 
2340 	/*
2341 	 * Prevent the following race in the abort handler:
2342 	 *
2343 	 * 1. LLD is requested to abort a SCSI command
2344 	 * 2. The SCSI command completes
2345 	 * 3. The struct CommandList associated with step 2 is made available
2346 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2347 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2348 	 *    finds struct CommandList and tries to aborts it
2349 	 * Now we have aborted the wrong command.
2350 	 *
2351 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2352 	 * this command has completed.  Then, check to see if the handler is
2353 	 * waiting for this command, and, if so, wake it.
2354 	 */
2355 	c->scsi_cmd = SCSI_CMD_IDLE;
2356 	mb();	/* Declare command idle before checking for pending events. */
2357 	if (c->abort_pending) {
2358 		do_wake = true;
2359 		c->abort_pending = false;
2360 	}
2361 	if (c->reset_pending) {
2362 		unsigned long flags;
2363 		struct hpsa_scsi_dev_t *dev;
2364 
2365 		/*
2366 		 * There appears to be a reset pending; lock the lock and
2367 		 * reconfirm.  If so, then decrement the count of outstanding
2368 		 * commands and wake the reset command if this is the last one.
2369 		 */
2370 		spin_lock_irqsave(&h->lock, flags);
2371 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2372 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2373 			do_wake = true;
2374 		c->reset_pending = NULL;
2375 		spin_unlock_irqrestore(&h->lock, flags);
2376 	}
2377 
2378 	if (do_wake)
2379 		wake_up_all(&h->event_sync_wait_queue);
2380 }
2381 
2382 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2383 				      struct CommandList *c)
2384 {
2385 	hpsa_cmd_resolve_events(h, c);
2386 	cmd_tagged_free(h, c);
2387 }
2388 
2389 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2390 		struct CommandList *c, struct scsi_cmnd *cmd)
2391 {
2392 	hpsa_cmd_resolve_and_free(h, c);
2393 	if (cmd && cmd->scsi_done)
2394 		cmd->scsi_done(cmd);
2395 }
2396 
2397 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2398 {
2399 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2400 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2401 }
2402 
2403 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2404 {
2405 	cmd->result = DID_ABORT << 16;
2406 }
2407 
2408 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2409 				    struct scsi_cmnd *cmd)
2410 {
2411 	hpsa_set_scsi_cmd_aborted(cmd);
2412 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2413 			 c->Request.CDB, c->err_info->ScsiStatus);
2414 	hpsa_cmd_resolve_and_free(h, c);
2415 }
2416 
2417 static void process_ioaccel2_completion(struct ctlr_info *h,
2418 		struct CommandList *c, struct scsi_cmnd *cmd,
2419 		struct hpsa_scsi_dev_t *dev)
2420 {
2421 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2422 
2423 	/* check for good status */
2424 	if (likely(c2->error_data.serv_response == 0 &&
2425 			c2->error_data.status == 0))
2426 		return hpsa_cmd_free_and_done(h, c, cmd);
2427 
2428 	/*
2429 	 * Any RAID offload error results in retry which will use
2430 	 * the normal I/O path so the controller can handle whatever's
2431 	 * wrong.
2432 	 */
2433 	if (is_logical_device(dev) &&
2434 		c2->error_data.serv_response ==
2435 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2436 		if (c2->error_data.status ==
2437 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2438 			dev->offload_enabled = 0;
2439 			dev->offload_to_be_enabled = 0;
2440 		}
2441 
2442 		return hpsa_retry_cmd(h, c);
2443 	}
2444 
2445 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2446 		return hpsa_retry_cmd(h, c);
2447 
2448 	return hpsa_cmd_free_and_done(h, c, cmd);
2449 }
2450 
2451 /* Returns 0 on success, < 0 otherwise. */
2452 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2453 					struct CommandList *cp)
2454 {
2455 	u8 tmf_status = cp->err_info->ScsiStatus;
2456 
2457 	switch (tmf_status) {
2458 	case CISS_TMF_COMPLETE:
2459 		/*
2460 		 * CISS_TMF_COMPLETE never happens, instead,
2461 		 * ei->CommandStatus == 0 for this case.
2462 		 */
2463 	case CISS_TMF_SUCCESS:
2464 		return 0;
2465 	case CISS_TMF_INVALID_FRAME:
2466 	case CISS_TMF_NOT_SUPPORTED:
2467 	case CISS_TMF_FAILED:
2468 	case CISS_TMF_WRONG_LUN:
2469 	case CISS_TMF_OVERLAPPED_TAG:
2470 		break;
2471 	default:
2472 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2473 				tmf_status);
2474 		break;
2475 	}
2476 	return -tmf_status;
2477 }
2478 
2479 static void complete_scsi_command(struct CommandList *cp)
2480 {
2481 	struct scsi_cmnd *cmd;
2482 	struct ctlr_info *h;
2483 	struct ErrorInfo *ei;
2484 	struct hpsa_scsi_dev_t *dev;
2485 	struct io_accel2_cmd *c2;
2486 
2487 	u8 sense_key;
2488 	u8 asc;      /* additional sense code */
2489 	u8 ascq;     /* additional sense code qualifier */
2490 	unsigned long sense_data_size;
2491 
2492 	ei = cp->err_info;
2493 	cmd = cp->scsi_cmd;
2494 	h = cp->h;
2495 
2496 	if (!cmd->device) {
2497 		cmd->result = DID_NO_CONNECT << 16;
2498 		return hpsa_cmd_free_and_done(h, cp, cmd);
2499 	}
2500 
2501 	dev = cmd->device->hostdata;
2502 	if (!dev) {
2503 		cmd->result = DID_NO_CONNECT << 16;
2504 		return hpsa_cmd_free_and_done(h, cp, cmd);
2505 	}
2506 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2507 
2508 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2509 	if ((cp->cmd_type == CMD_SCSI) &&
2510 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2511 		hpsa_unmap_sg_chain_block(h, cp);
2512 
2513 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2514 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2515 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2516 
2517 	cmd->result = (DID_OK << 16); 		/* host byte */
2518 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2519 
2520 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2521 		if (dev->physical_device && dev->expose_device &&
2522 			dev->removed) {
2523 			cmd->result = DID_NO_CONNECT << 16;
2524 			return hpsa_cmd_free_and_done(h, cp, cmd);
2525 		}
2526 		if (likely(cp->phys_disk != NULL))
2527 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2528 	}
2529 
2530 	/*
2531 	 * We check for lockup status here as it may be set for
2532 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2533 	 * fail_all_oustanding_cmds()
2534 	 */
2535 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2536 		/* DID_NO_CONNECT will prevent a retry */
2537 		cmd->result = DID_NO_CONNECT << 16;
2538 		return hpsa_cmd_free_and_done(h, cp, cmd);
2539 	}
2540 
2541 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2542 		if (cp->reset_pending)
2543 			return hpsa_cmd_resolve_and_free(h, cp);
2544 		if (cp->abort_pending)
2545 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2546 	}
2547 
2548 	if (cp->cmd_type == CMD_IOACCEL2)
2549 		return process_ioaccel2_completion(h, cp, cmd, dev);
2550 
2551 	scsi_set_resid(cmd, ei->ResidualCnt);
2552 	if (ei->CommandStatus == 0)
2553 		return hpsa_cmd_free_and_done(h, cp, cmd);
2554 
2555 	/* For I/O accelerator commands, copy over some fields to the normal
2556 	 * CISS header used below for error handling.
2557 	 */
2558 	if (cp->cmd_type == CMD_IOACCEL1) {
2559 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2560 		cp->Header.SGList = scsi_sg_count(cmd);
2561 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2562 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2563 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2564 		cp->Header.tag = c->tag;
2565 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2566 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2567 
2568 		/* Any RAID offload error results in retry which will use
2569 		 * the normal I/O path so the controller can handle whatever's
2570 		 * wrong.
2571 		 */
2572 		if (is_logical_device(dev)) {
2573 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2574 				dev->offload_enabled = 0;
2575 			return hpsa_retry_cmd(h, cp);
2576 		}
2577 	}
2578 
2579 	/* an error has occurred */
2580 	switch (ei->CommandStatus) {
2581 
2582 	case CMD_TARGET_STATUS:
2583 		cmd->result |= ei->ScsiStatus;
2584 		/* copy the sense data */
2585 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2586 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2587 		else
2588 			sense_data_size = sizeof(ei->SenseInfo);
2589 		if (ei->SenseLen < sense_data_size)
2590 			sense_data_size = ei->SenseLen;
2591 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2592 		if (ei->ScsiStatus)
2593 			decode_sense_data(ei->SenseInfo, sense_data_size,
2594 				&sense_key, &asc, &ascq);
2595 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2596 			if (sense_key == ABORTED_COMMAND) {
2597 				cmd->result |= DID_SOFT_ERROR << 16;
2598 				break;
2599 			}
2600 			break;
2601 		}
2602 		/* Problem was not a check condition
2603 		 * Pass it up to the upper layers...
2604 		 */
2605 		if (ei->ScsiStatus) {
2606 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2607 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2608 				"Returning result: 0x%x\n",
2609 				cp, ei->ScsiStatus,
2610 				sense_key, asc, ascq,
2611 				cmd->result);
2612 		} else {  /* scsi status is zero??? How??? */
2613 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2614 				"Returning no connection.\n", cp),
2615 
2616 			/* Ordinarily, this case should never happen,
2617 			 * but there is a bug in some released firmware
2618 			 * revisions that allows it to happen if, for
2619 			 * example, a 4100 backplane loses power and
2620 			 * the tape drive is in it.  We assume that
2621 			 * it's a fatal error of some kind because we
2622 			 * can't show that it wasn't. We will make it
2623 			 * look like selection timeout since that is
2624 			 * the most common reason for this to occur,
2625 			 * and it's severe enough.
2626 			 */
2627 
2628 			cmd->result = DID_NO_CONNECT << 16;
2629 		}
2630 		break;
2631 
2632 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2633 		break;
2634 	case CMD_DATA_OVERRUN:
2635 		dev_warn(&h->pdev->dev,
2636 			"CDB %16phN data overrun\n", cp->Request.CDB);
2637 		break;
2638 	case CMD_INVALID: {
2639 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2640 		print_cmd(cp); */
2641 		/* We get CMD_INVALID if you address a non-existent device
2642 		 * instead of a selection timeout (no response).  You will
2643 		 * see this if you yank out a drive, then try to access it.
2644 		 * This is kind of a shame because it means that any other
2645 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2646 		 * missing target. */
2647 		cmd->result = DID_NO_CONNECT << 16;
2648 	}
2649 		break;
2650 	case CMD_PROTOCOL_ERR:
2651 		cmd->result = DID_ERROR << 16;
2652 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2653 				cp->Request.CDB);
2654 		break;
2655 	case CMD_HARDWARE_ERR:
2656 		cmd->result = DID_ERROR << 16;
2657 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2658 			cp->Request.CDB);
2659 		break;
2660 	case CMD_CONNECTION_LOST:
2661 		cmd->result = DID_ERROR << 16;
2662 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2663 			cp->Request.CDB);
2664 		break;
2665 	case CMD_ABORTED:
2666 		/* Return now to avoid calling scsi_done(). */
2667 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2668 	case CMD_ABORT_FAILED:
2669 		cmd->result = DID_ERROR << 16;
2670 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2671 			cp->Request.CDB);
2672 		break;
2673 	case CMD_UNSOLICITED_ABORT:
2674 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2675 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2676 			cp->Request.CDB);
2677 		break;
2678 	case CMD_TIMEOUT:
2679 		cmd->result = DID_TIME_OUT << 16;
2680 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2681 			cp->Request.CDB);
2682 		break;
2683 	case CMD_UNABORTABLE:
2684 		cmd->result = DID_ERROR << 16;
2685 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2686 		break;
2687 	case CMD_TMF_STATUS:
2688 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2689 			cmd->result = DID_ERROR << 16;
2690 		break;
2691 	case CMD_IOACCEL_DISABLED:
2692 		/* This only handles the direct pass-through case since RAID
2693 		 * offload is handled above.  Just attempt a retry.
2694 		 */
2695 		cmd->result = DID_SOFT_ERROR << 16;
2696 		dev_warn(&h->pdev->dev,
2697 				"cp %p had HP SSD Smart Path error\n", cp);
2698 		break;
2699 	default:
2700 		cmd->result = DID_ERROR << 16;
2701 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2702 				cp, ei->CommandStatus);
2703 	}
2704 
2705 	return hpsa_cmd_free_and_done(h, cp, cmd);
2706 }
2707 
2708 static void hpsa_pci_unmap(struct pci_dev *pdev,
2709 	struct CommandList *c, int sg_used, int data_direction)
2710 {
2711 	int i;
2712 
2713 	for (i = 0; i < sg_used; i++)
2714 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2715 				le32_to_cpu(c->SG[i].Len),
2716 				data_direction);
2717 }
2718 
2719 static int hpsa_map_one(struct pci_dev *pdev,
2720 		struct CommandList *cp,
2721 		unsigned char *buf,
2722 		size_t buflen,
2723 		int data_direction)
2724 {
2725 	u64 addr64;
2726 
2727 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2728 		cp->Header.SGList = 0;
2729 		cp->Header.SGTotal = cpu_to_le16(0);
2730 		return 0;
2731 	}
2732 
2733 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2734 	if (dma_mapping_error(&pdev->dev, addr64)) {
2735 		/* Prevent subsequent unmap of something never mapped */
2736 		cp->Header.SGList = 0;
2737 		cp->Header.SGTotal = cpu_to_le16(0);
2738 		return -1;
2739 	}
2740 	cp->SG[0].Addr = cpu_to_le64(addr64);
2741 	cp->SG[0].Len = cpu_to_le32(buflen);
2742 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2743 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2744 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2745 	return 0;
2746 }
2747 
2748 #define NO_TIMEOUT ((unsigned long) -1)
2749 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2750 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2751 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2752 {
2753 	DECLARE_COMPLETION_ONSTACK(wait);
2754 
2755 	c->waiting = &wait;
2756 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2757 	if (timeout_msecs == NO_TIMEOUT) {
2758 		/* TODO: get rid of this no-timeout thing */
2759 		wait_for_completion_io(&wait);
2760 		return IO_OK;
2761 	}
2762 	if (!wait_for_completion_io_timeout(&wait,
2763 					msecs_to_jiffies(timeout_msecs))) {
2764 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2765 		return -ETIMEDOUT;
2766 	}
2767 	return IO_OK;
2768 }
2769 
2770 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2771 				   int reply_queue, unsigned long timeout_msecs)
2772 {
2773 	if (unlikely(lockup_detected(h))) {
2774 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2775 		return IO_OK;
2776 	}
2777 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2778 }
2779 
2780 static u32 lockup_detected(struct ctlr_info *h)
2781 {
2782 	int cpu;
2783 	u32 rc, *lockup_detected;
2784 
2785 	cpu = get_cpu();
2786 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2787 	rc = *lockup_detected;
2788 	put_cpu();
2789 	return rc;
2790 }
2791 
2792 #define MAX_DRIVER_CMD_RETRIES 25
2793 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2794 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2795 {
2796 	int backoff_time = 10, retry_count = 0;
2797 	int rc;
2798 
2799 	do {
2800 		memset(c->err_info, 0, sizeof(*c->err_info));
2801 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2802 						  timeout_msecs);
2803 		if (rc)
2804 			break;
2805 		retry_count++;
2806 		if (retry_count > 3) {
2807 			msleep(backoff_time);
2808 			if (backoff_time < 1000)
2809 				backoff_time *= 2;
2810 		}
2811 	} while ((check_for_unit_attention(h, c) ||
2812 			check_for_busy(h, c)) &&
2813 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2814 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2815 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2816 		rc = -EIO;
2817 	return rc;
2818 }
2819 
2820 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2821 				struct CommandList *c)
2822 {
2823 	const u8 *cdb = c->Request.CDB;
2824 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2825 
2826 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2827 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2828 		txt, lun[0], lun[1], lun[2], lun[3],
2829 		lun[4], lun[5], lun[6], lun[7],
2830 		cdb[0], cdb[1], cdb[2], cdb[3],
2831 		cdb[4], cdb[5], cdb[6], cdb[7],
2832 		cdb[8], cdb[9], cdb[10], cdb[11],
2833 		cdb[12], cdb[13], cdb[14], cdb[15]);
2834 }
2835 
2836 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2837 			struct CommandList *cp)
2838 {
2839 	const struct ErrorInfo *ei = cp->err_info;
2840 	struct device *d = &cp->h->pdev->dev;
2841 	u8 sense_key, asc, ascq;
2842 	int sense_len;
2843 
2844 	switch (ei->CommandStatus) {
2845 	case CMD_TARGET_STATUS:
2846 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2847 			sense_len = sizeof(ei->SenseInfo);
2848 		else
2849 			sense_len = ei->SenseLen;
2850 		decode_sense_data(ei->SenseInfo, sense_len,
2851 					&sense_key, &asc, &ascq);
2852 		hpsa_print_cmd(h, "SCSI status", cp);
2853 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2854 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2855 				sense_key, asc, ascq);
2856 		else
2857 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2858 		if (ei->ScsiStatus == 0)
2859 			dev_warn(d, "SCSI status is abnormally zero.  "
2860 			"(probably indicates selection timeout "
2861 			"reported incorrectly due to a known "
2862 			"firmware bug, circa July, 2001.)\n");
2863 		break;
2864 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2865 		break;
2866 	case CMD_DATA_OVERRUN:
2867 		hpsa_print_cmd(h, "overrun condition", cp);
2868 		break;
2869 	case CMD_INVALID: {
2870 		/* controller unfortunately reports SCSI passthru's
2871 		 * to non-existent targets as invalid commands.
2872 		 */
2873 		hpsa_print_cmd(h, "invalid command", cp);
2874 		dev_warn(d, "probably means device no longer present\n");
2875 		}
2876 		break;
2877 	case CMD_PROTOCOL_ERR:
2878 		hpsa_print_cmd(h, "protocol error", cp);
2879 		break;
2880 	case CMD_HARDWARE_ERR:
2881 		hpsa_print_cmd(h, "hardware error", cp);
2882 		break;
2883 	case CMD_CONNECTION_LOST:
2884 		hpsa_print_cmd(h, "connection lost", cp);
2885 		break;
2886 	case CMD_ABORTED:
2887 		hpsa_print_cmd(h, "aborted", cp);
2888 		break;
2889 	case CMD_ABORT_FAILED:
2890 		hpsa_print_cmd(h, "abort failed", cp);
2891 		break;
2892 	case CMD_UNSOLICITED_ABORT:
2893 		hpsa_print_cmd(h, "unsolicited abort", cp);
2894 		break;
2895 	case CMD_TIMEOUT:
2896 		hpsa_print_cmd(h, "timed out", cp);
2897 		break;
2898 	case CMD_UNABORTABLE:
2899 		hpsa_print_cmd(h, "unabortable", cp);
2900 		break;
2901 	case CMD_CTLR_LOCKUP:
2902 		hpsa_print_cmd(h, "controller lockup detected", cp);
2903 		break;
2904 	default:
2905 		hpsa_print_cmd(h, "unknown status", cp);
2906 		dev_warn(d, "Unknown command status %x\n",
2907 				ei->CommandStatus);
2908 	}
2909 }
2910 
2911 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2912 			u16 page, unsigned char *buf,
2913 			unsigned char bufsize)
2914 {
2915 	int rc = IO_OK;
2916 	struct CommandList *c;
2917 	struct ErrorInfo *ei;
2918 
2919 	c = cmd_alloc(h);
2920 
2921 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2922 			page, scsi3addr, TYPE_CMD)) {
2923 		rc = -1;
2924 		goto out;
2925 	}
2926 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2927 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2928 	if (rc)
2929 		goto out;
2930 	ei = c->err_info;
2931 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2932 		hpsa_scsi_interpret_error(h, c);
2933 		rc = -1;
2934 	}
2935 out:
2936 	cmd_free(h, c);
2937 	return rc;
2938 }
2939 
2940 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2941 	u8 reset_type, int reply_queue)
2942 {
2943 	int rc = IO_OK;
2944 	struct CommandList *c;
2945 	struct ErrorInfo *ei;
2946 
2947 	c = cmd_alloc(h);
2948 
2949 
2950 	/* fill_cmd can't fail here, no data buffer to map. */
2951 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2952 			scsi3addr, TYPE_MSG);
2953 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2954 	if (rc) {
2955 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2956 		goto out;
2957 	}
2958 	/* no unmap needed here because no data xfer. */
2959 
2960 	ei = c->err_info;
2961 	if (ei->CommandStatus != 0) {
2962 		hpsa_scsi_interpret_error(h, c);
2963 		rc = -1;
2964 	}
2965 out:
2966 	cmd_free(h, c);
2967 	return rc;
2968 }
2969 
2970 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2971 			       struct hpsa_scsi_dev_t *dev,
2972 			       unsigned char *scsi3addr)
2973 {
2974 	int i;
2975 	bool match = false;
2976 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2977 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2978 
2979 	if (hpsa_is_cmd_idle(c))
2980 		return false;
2981 
2982 	switch (c->cmd_type) {
2983 	case CMD_SCSI:
2984 	case CMD_IOCTL_PEND:
2985 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2986 				sizeof(c->Header.LUN.LunAddrBytes));
2987 		break;
2988 
2989 	case CMD_IOACCEL1:
2990 	case CMD_IOACCEL2:
2991 		if (c->phys_disk == dev) {
2992 			/* HBA mode match */
2993 			match = true;
2994 		} else {
2995 			/* Possible RAID mode -- check each phys dev. */
2996 			/* FIXME:  Do we need to take out a lock here?  If
2997 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2998 			 * instead. */
2999 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3000 				/* FIXME: an alternate test might be
3001 				 *
3002 				 * match = dev->phys_disk[i]->ioaccel_handle
3003 				 *              == c2->scsi_nexus;      */
3004 				match = dev->phys_disk[i] == c->phys_disk;
3005 			}
3006 		}
3007 		break;
3008 
3009 	case IOACCEL2_TMF:
3010 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3011 			match = dev->phys_disk[i]->ioaccel_handle ==
3012 					le32_to_cpu(ac->it_nexus);
3013 		}
3014 		break;
3015 
3016 	case 0:		/* The command is in the middle of being initialized. */
3017 		match = false;
3018 		break;
3019 
3020 	default:
3021 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3022 			c->cmd_type);
3023 		BUG();
3024 	}
3025 
3026 	return match;
3027 }
3028 
3029 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3030 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3031 {
3032 	int i;
3033 	int rc = 0;
3034 
3035 	/* We can really only handle one reset at a time */
3036 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3037 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3038 		return -EINTR;
3039 	}
3040 
3041 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3042 
3043 	for (i = 0; i < h->nr_cmds; i++) {
3044 		struct CommandList *c = h->cmd_pool + i;
3045 		int refcount = atomic_inc_return(&c->refcount);
3046 
3047 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3048 			unsigned long flags;
3049 
3050 			/*
3051 			 * Mark the target command as having a reset pending,
3052 			 * then lock a lock so that the command cannot complete
3053 			 * while we're considering it.  If the command is not
3054 			 * idle then count it; otherwise revoke the event.
3055 			 */
3056 			c->reset_pending = dev;
3057 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3058 			if (!hpsa_is_cmd_idle(c))
3059 				atomic_inc(&dev->reset_cmds_out);
3060 			else
3061 				c->reset_pending = NULL;
3062 			spin_unlock_irqrestore(&h->lock, flags);
3063 		}
3064 
3065 		cmd_free(h, c);
3066 	}
3067 
3068 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3069 	if (!rc)
3070 		wait_event(h->event_sync_wait_queue,
3071 			atomic_read(&dev->reset_cmds_out) == 0 ||
3072 			lockup_detected(h));
3073 
3074 	if (unlikely(lockup_detected(h))) {
3075 		dev_warn(&h->pdev->dev,
3076 			 "Controller lockup detected during reset wait\n");
3077 		rc = -ENODEV;
3078 	}
3079 
3080 	if (unlikely(rc))
3081 		atomic_set(&dev->reset_cmds_out, 0);
3082 
3083 	mutex_unlock(&h->reset_mutex);
3084 	return rc;
3085 }
3086 
3087 static void hpsa_get_raid_level(struct ctlr_info *h,
3088 	unsigned char *scsi3addr, unsigned char *raid_level)
3089 {
3090 	int rc;
3091 	unsigned char *buf;
3092 
3093 	*raid_level = RAID_UNKNOWN;
3094 	buf = kzalloc(64, GFP_KERNEL);
3095 	if (!buf)
3096 		return;
3097 
3098 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3099 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3100 		goto exit;
3101 
3102 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3103 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3104 
3105 	if (rc == 0)
3106 		*raid_level = buf[8];
3107 	if (*raid_level > RAID_UNKNOWN)
3108 		*raid_level = RAID_UNKNOWN;
3109 exit:
3110 	kfree(buf);
3111 	return;
3112 }
3113 
3114 #define HPSA_MAP_DEBUG
3115 #ifdef HPSA_MAP_DEBUG
3116 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3117 				struct raid_map_data *map_buff)
3118 {
3119 	struct raid_map_disk_data *dd = &map_buff->data[0];
3120 	int map, row, col;
3121 	u16 map_cnt, row_cnt, disks_per_row;
3122 
3123 	if (rc != 0)
3124 		return;
3125 
3126 	/* Show details only if debugging has been activated. */
3127 	if (h->raid_offload_debug < 2)
3128 		return;
3129 
3130 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3131 				le32_to_cpu(map_buff->structure_size));
3132 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3133 			le32_to_cpu(map_buff->volume_blk_size));
3134 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3135 			le64_to_cpu(map_buff->volume_blk_cnt));
3136 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3137 			map_buff->phys_blk_shift);
3138 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3139 			map_buff->parity_rotation_shift);
3140 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3141 			le16_to_cpu(map_buff->strip_size));
3142 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3143 			le64_to_cpu(map_buff->disk_starting_blk));
3144 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3145 			le64_to_cpu(map_buff->disk_blk_cnt));
3146 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3147 			le16_to_cpu(map_buff->data_disks_per_row));
3148 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3149 			le16_to_cpu(map_buff->metadata_disks_per_row));
3150 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3151 			le16_to_cpu(map_buff->row_cnt));
3152 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3153 			le16_to_cpu(map_buff->layout_map_count));
3154 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3155 			le16_to_cpu(map_buff->flags));
3156 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3157 			le16_to_cpu(map_buff->flags) &
3158 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3159 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3160 			le16_to_cpu(map_buff->dekindex));
3161 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3162 	for (map = 0; map < map_cnt; map++) {
3163 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3164 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3165 		for (row = 0; row < row_cnt; row++) {
3166 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3167 			disks_per_row =
3168 				le16_to_cpu(map_buff->data_disks_per_row);
3169 			for (col = 0; col < disks_per_row; col++, dd++)
3170 				dev_info(&h->pdev->dev,
3171 					"    D%02u: h=0x%04x xor=%u,%u\n",
3172 					col, dd->ioaccel_handle,
3173 					dd->xor_mult[0], dd->xor_mult[1]);
3174 			disks_per_row =
3175 				le16_to_cpu(map_buff->metadata_disks_per_row);
3176 			for (col = 0; col < disks_per_row; col++, dd++)
3177 				dev_info(&h->pdev->dev,
3178 					"    M%02u: h=0x%04x xor=%u,%u\n",
3179 					col, dd->ioaccel_handle,
3180 					dd->xor_mult[0], dd->xor_mult[1]);
3181 		}
3182 	}
3183 }
3184 #else
3185 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3186 			__attribute__((unused)) int rc,
3187 			__attribute__((unused)) struct raid_map_data *map_buff)
3188 {
3189 }
3190 #endif
3191 
3192 static int hpsa_get_raid_map(struct ctlr_info *h,
3193 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3194 {
3195 	int rc = 0;
3196 	struct CommandList *c;
3197 	struct ErrorInfo *ei;
3198 
3199 	c = cmd_alloc(h);
3200 
3201 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3202 			sizeof(this_device->raid_map), 0,
3203 			scsi3addr, TYPE_CMD)) {
3204 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3205 		cmd_free(h, c);
3206 		return -1;
3207 	}
3208 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3209 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3210 	if (rc)
3211 		goto out;
3212 	ei = c->err_info;
3213 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3214 		hpsa_scsi_interpret_error(h, c);
3215 		rc = -1;
3216 		goto out;
3217 	}
3218 	cmd_free(h, c);
3219 
3220 	/* @todo in the future, dynamically allocate RAID map memory */
3221 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3222 				sizeof(this_device->raid_map)) {
3223 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3224 		rc = -1;
3225 	}
3226 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3227 	return rc;
3228 out:
3229 	cmd_free(h, c);
3230 	return rc;
3231 }
3232 
3233 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3234 		unsigned char scsi3addr[], u16 bmic_device_index,
3235 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3236 {
3237 	int rc = IO_OK;
3238 	struct CommandList *c;
3239 	struct ErrorInfo *ei;
3240 
3241 	c = cmd_alloc(h);
3242 
3243 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3244 		0, RAID_CTLR_LUNID, TYPE_CMD);
3245 	if (rc)
3246 		goto out;
3247 
3248 	c->Request.CDB[2] = bmic_device_index & 0xff;
3249 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3250 
3251 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253 	if (rc)
3254 		goto out;
3255 	ei = c->err_info;
3256 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257 		hpsa_scsi_interpret_error(h, c);
3258 		rc = -1;
3259 	}
3260 out:
3261 	cmd_free(h, c);
3262 	return rc;
3263 }
3264 
3265 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3266 	struct bmic_identify_controller *buf, size_t bufsize)
3267 {
3268 	int rc = IO_OK;
3269 	struct CommandList *c;
3270 	struct ErrorInfo *ei;
3271 
3272 	c = cmd_alloc(h);
3273 
3274 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3275 		0, RAID_CTLR_LUNID, TYPE_CMD);
3276 	if (rc)
3277 		goto out;
3278 
3279 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3280 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3281 	if (rc)
3282 		goto out;
3283 	ei = c->err_info;
3284 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3285 		hpsa_scsi_interpret_error(h, c);
3286 		rc = -1;
3287 	}
3288 out:
3289 	cmd_free(h, c);
3290 	return rc;
3291 }
3292 
3293 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3294 		unsigned char scsi3addr[], u16 bmic_device_index,
3295 		struct bmic_identify_physical_device *buf, size_t bufsize)
3296 {
3297 	int rc = IO_OK;
3298 	struct CommandList *c;
3299 	struct ErrorInfo *ei;
3300 
3301 	c = cmd_alloc(h);
3302 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3303 		0, RAID_CTLR_LUNID, TYPE_CMD);
3304 	if (rc)
3305 		goto out;
3306 
3307 	c->Request.CDB[2] = bmic_device_index & 0xff;
3308 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3309 
3310 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3311 						DEFAULT_TIMEOUT);
3312 	ei = c->err_info;
3313 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314 		hpsa_scsi_interpret_error(h, c);
3315 		rc = -1;
3316 	}
3317 out:
3318 	cmd_free(h, c);
3319 
3320 	return rc;
3321 }
3322 
3323 /*
3324  * get enclosure information
3325  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3326  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3327  * Uses id_physical_device to determine the box_index.
3328  */
3329 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3330 			unsigned char *scsi3addr,
3331 			struct ReportExtendedLUNdata *rlep, int rle_index,
3332 			struct hpsa_scsi_dev_t *encl_dev)
3333 {
3334 	int rc = -1;
3335 	struct CommandList *c = NULL;
3336 	struct ErrorInfo *ei = NULL;
3337 	struct bmic_sense_storage_box_params *bssbp = NULL;
3338 	struct bmic_identify_physical_device *id_phys = NULL;
3339 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3340 	u16 bmic_device_index = 0;
3341 
3342 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3343 
3344 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3345 		rc = IO_OK;
3346 		goto out;
3347 	}
3348 
3349 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3350 	if (!bssbp)
3351 		goto out;
3352 
3353 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3354 	if (!id_phys)
3355 		goto out;
3356 
3357 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3358 						id_phys, sizeof(*id_phys));
3359 	if (rc) {
3360 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3361 			__func__, encl_dev->external, bmic_device_index);
3362 		goto out;
3363 	}
3364 
3365 	c = cmd_alloc(h);
3366 
3367 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3368 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3369 
3370 	if (rc)
3371 		goto out;
3372 
3373 	if (id_phys->phys_connector[1] == 'E')
3374 		c->Request.CDB[5] = id_phys->box_index;
3375 	else
3376 		c->Request.CDB[5] = 0;
3377 
3378 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3379 						DEFAULT_TIMEOUT);
3380 	if (rc)
3381 		goto out;
3382 
3383 	ei = c->err_info;
3384 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385 		rc = -1;
3386 		goto out;
3387 	}
3388 
3389 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3390 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3391 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3392 
3393 	rc = IO_OK;
3394 out:
3395 	kfree(bssbp);
3396 	kfree(id_phys);
3397 
3398 	if (c)
3399 		cmd_free(h, c);
3400 
3401 	if (rc != IO_OK)
3402 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3403 			"Error, could not get enclosure information\n");
3404 }
3405 
3406 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3407 						unsigned char *scsi3addr)
3408 {
3409 	struct ReportExtendedLUNdata *physdev;
3410 	u32 nphysicals;
3411 	u64 sa = 0;
3412 	int i;
3413 
3414 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3415 	if (!physdev)
3416 		return 0;
3417 
3418 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3419 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3420 		kfree(physdev);
3421 		return 0;
3422 	}
3423 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3424 
3425 	for (i = 0; i < nphysicals; i++)
3426 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3427 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3428 			break;
3429 		}
3430 
3431 	kfree(physdev);
3432 
3433 	return sa;
3434 }
3435 
3436 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3437 					struct hpsa_scsi_dev_t *dev)
3438 {
3439 	int rc;
3440 	u64 sa = 0;
3441 
3442 	if (is_hba_lunid(scsi3addr)) {
3443 		struct bmic_sense_subsystem_info *ssi;
3444 
3445 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3446 		if (ssi == NULL) {
3447 			dev_warn(&h->pdev->dev,
3448 				"%s: out of memory\n", __func__);
3449 			return;
3450 		}
3451 
3452 		rc = hpsa_bmic_sense_subsystem_information(h,
3453 					scsi3addr, 0, ssi, sizeof(*ssi));
3454 		if (rc == 0) {
3455 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3456 			h->sas_address = sa;
3457 		}
3458 
3459 		kfree(ssi);
3460 	} else
3461 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3462 
3463 	dev->sas_address = sa;
3464 }
3465 
3466 /* Get a device id from inquiry page 0x83 */
3467 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3468 	unsigned char scsi3addr[], u8 page)
3469 {
3470 	int rc;
3471 	int i;
3472 	int pages;
3473 	unsigned char *buf, bufsize;
3474 
3475 	buf = kzalloc(256, GFP_KERNEL);
3476 	if (!buf)
3477 		return false;
3478 
3479 	/* Get the size of the page list first */
3480 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3481 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3482 				buf, HPSA_VPD_HEADER_SZ);
3483 	if (rc != 0)
3484 		goto exit_unsupported;
3485 	pages = buf[3];
3486 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3487 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3488 	else
3489 		bufsize = 255;
3490 
3491 	/* Get the whole VPD page list */
3492 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3493 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3494 				buf, bufsize);
3495 	if (rc != 0)
3496 		goto exit_unsupported;
3497 
3498 	pages = buf[3];
3499 	for (i = 1; i <= pages; i++)
3500 		if (buf[3 + i] == page)
3501 			goto exit_supported;
3502 exit_unsupported:
3503 	kfree(buf);
3504 	return false;
3505 exit_supported:
3506 	kfree(buf);
3507 	return true;
3508 }
3509 
3510 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3511 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3512 {
3513 	int rc;
3514 	unsigned char *buf;
3515 	u8 ioaccel_status;
3516 
3517 	this_device->offload_config = 0;
3518 	this_device->offload_enabled = 0;
3519 	this_device->offload_to_be_enabled = 0;
3520 
3521 	buf = kzalloc(64, GFP_KERNEL);
3522 	if (!buf)
3523 		return;
3524 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3525 		goto out;
3526 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3527 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3528 	if (rc != 0)
3529 		goto out;
3530 
3531 #define IOACCEL_STATUS_BYTE 4
3532 #define OFFLOAD_CONFIGURED_BIT 0x01
3533 #define OFFLOAD_ENABLED_BIT 0x02
3534 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3535 	this_device->offload_config =
3536 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3537 	if (this_device->offload_config) {
3538 		this_device->offload_enabled =
3539 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3540 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3541 			this_device->offload_enabled = 0;
3542 	}
3543 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3544 out:
3545 	kfree(buf);
3546 	return;
3547 }
3548 
3549 /* Get the device id from inquiry page 0x83 */
3550 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3551 	unsigned char *device_id, int index, int buflen)
3552 {
3553 	int rc;
3554 	unsigned char *buf;
3555 
3556 	/* Does controller have VPD for device id? */
3557 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3558 		return 1; /* not supported */
3559 
3560 	buf = kzalloc(64, GFP_KERNEL);
3561 	if (!buf)
3562 		return -ENOMEM;
3563 
3564 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3565 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3566 	if (rc == 0) {
3567 		if (buflen > 16)
3568 			buflen = 16;
3569 		memcpy(device_id, &buf[8], buflen);
3570 	}
3571 
3572 	kfree(buf);
3573 
3574 	return rc; /*0 - got id,  otherwise, didn't */
3575 }
3576 
3577 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3578 		void *buf, int bufsize,
3579 		int extended_response)
3580 {
3581 	int rc = IO_OK;
3582 	struct CommandList *c;
3583 	unsigned char scsi3addr[8];
3584 	struct ErrorInfo *ei;
3585 
3586 	c = cmd_alloc(h);
3587 
3588 	/* address the controller */
3589 	memset(scsi3addr, 0, sizeof(scsi3addr));
3590 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3591 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3592 		rc = -1;
3593 		goto out;
3594 	}
3595 	if (extended_response)
3596 		c->Request.CDB[1] = extended_response;
3597 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3598 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3599 	if (rc)
3600 		goto out;
3601 	ei = c->err_info;
3602 	if (ei->CommandStatus != 0 &&
3603 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3604 		hpsa_scsi_interpret_error(h, c);
3605 		rc = -1;
3606 	} else {
3607 		struct ReportLUNdata *rld = buf;
3608 
3609 		if (rld->extended_response_flag != extended_response) {
3610 			dev_err(&h->pdev->dev,
3611 				"report luns requested format %u, got %u\n",
3612 				extended_response,
3613 				rld->extended_response_flag);
3614 			rc = -1;
3615 		}
3616 	}
3617 out:
3618 	cmd_free(h, c);
3619 	return rc;
3620 }
3621 
3622 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3623 		struct ReportExtendedLUNdata *buf, int bufsize)
3624 {
3625 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3626 						HPSA_REPORT_PHYS_EXTENDED);
3627 }
3628 
3629 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3630 		struct ReportLUNdata *buf, int bufsize)
3631 {
3632 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3633 }
3634 
3635 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3636 	int bus, int target, int lun)
3637 {
3638 	device->bus = bus;
3639 	device->target = target;
3640 	device->lun = lun;
3641 }
3642 
3643 /* Use VPD inquiry to get details of volume status */
3644 static int hpsa_get_volume_status(struct ctlr_info *h,
3645 					unsigned char scsi3addr[])
3646 {
3647 	int rc;
3648 	int status;
3649 	int size;
3650 	unsigned char *buf;
3651 
3652 	buf = kzalloc(64, GFP_KERNEL);
3653 	if (!buf)
3654 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3655 
3656 	/* Does controller have VPD for logical volume status? */
3657 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3658 		goto exit_failed;
3659 
3660 	/* Get the size of the VPD return buffer */
3661 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3662 					buf, HPSA_VPD_HEADER_SZ);
3663 	if (rc != 0)
3664 		goto exit_failed;
3665 	size = buf[3];
3666 
3667 	/* Now get the whole VPD buffer */
3668 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3669 					buf, size + HPSA_VPD_HEADER_SZ);
3670 	if (rc != 0)
3671 		goto exit_failed;
3672 	status = buf[4]; /* status byte */
3673 
3674 	kfree(buf);
3675 	return status;
3676 exit_failed:
3677 	kfree(buf);
3678 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3679 }
3680 
3681 /* Determine offline status of a volume.
3682  * Return either:
3683  *  0 (not offline)
3684  *  0xff (offline for unknown reasons)
3685  *  # (integer code indicating one of several NOT READY states
3686  *     describing why a volume is to be kept offline)
3687  */
3688 static int hpsa_volume_offline(struct ctlr_info *h,
3689 					unsigned char scsi3addr[])
3690 {
3691 	struct CommandList *c;
3692 	unsigned char *sense;
3693 	u8 sense_key, asc, ascq;
3694 	int sense_len;
3695 	int rc, ldstat = 0;
3696 	u16 cmd_status;
3697 	u8 scsi_status;
3698 #define ASC_LUN_NOT_READY 0x04
3699 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3700 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3701 
3702 	c = cmd_alloc(h);
3703 
3704 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3705 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3706 					DEFAULT_TIMEOUT);
3707 	if (rc) {
3708 		cmd_free(h, c);
3709 		return 0;
3710 	}
3711 	sense = c->err_info->SenseInfo;
3712 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3713 		sense_len = sizeof(c->err_info->SenseInfo);
3714 	else
3715 		sense_len = c->err_info->SenseLen;
3716 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3717 	cmd_status = c->err_info->CommandStatus;
3718 	scsi_status = c->err_info->ScsiStatus;
3719 	cmd_free(h, c);
3720 	/* Is the volume 'not ready'? */
3721 	if (cmd_status != CMD_TARGET_STATUS ||
3722 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3723 		sense_key != NOT_READY ||
3724 		asc != ASC_LUN_NOT_READY)  {
3725 		return 0;
3726 	}
3727 
3728 	/* Determine the reason for not ready state */
3729 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3730 
3731 	/* Keep volume offline in certain cases: */
3732 	switch (ldstat) {
3733 	case HPSA_LV_UNDERGOING_ERASE:
3734 	case HPSA_LV_NOT_AVAILABLE:
3735 	case HPSA_LV_UNDERGOING_RPI:
3736 	case HPSA_LV_PENDING_RPI:
3737 	case HPSA_LV_ENCRYPTED_NO_KEY:
3738 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3739 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3740 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3741 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3742 		return ldstat;
3743 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3744 		/* If VPD status page isn't available,
3745 		 * use ASC/ASCQ to determine state
3746 		 */
3747 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3748 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3749 			return ldstat;
3750 		break;
3751 	default:
3752 		break;
3753 	}
3754 	return 0;
3755 }
3756 
3757 /*
3758  * Find out if a logical device supports aborts by simply trying one.
3759  * Smart Array may claim not to support aborts on logical drives, but
3760  * if a MSA2000 * is connected, the drives on that will be presented
3761  * by the Smart Array as logical drives, and aborts may be sent to
3762  * those devices successfully.  So the simplest way to find out is
3763  * to simply try an abort and see how the device responds.
3764  */
3765 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3766 					unsigned char *scsi3addr)
3767 {
3768 	struct CommandList *c;
3769 	struct ErrorInfo *ei;
3770 	int rc = 0;
3771 
3772 	u64 tag = (u64) -1; /* bogus tag */
3773 
3774 	/* Assume that physical devices support aborts */
3775 	if (!is_logical_dev_addr_mode(scsi3addr))
3776 		return 1;
3777 
3778 	c = cmd_alloc(h);
3779 
3780 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3781 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3782 					DEFAULT_TIMEOUT);
3783 	/* no unmap needed here because no data xfer. */
3784 	ei = c->err_info;
3785 	switch (ei->CommandStatus) {
3786 	case CMD_INVALID:
3787 		rc = 0;
3788 		break;
3789 	case CMD_UNABORTABLE:
3790 	case CMD_ABORT_FAILED:
3791 		rc = 1;
3792 		break;
3793 	case CMD_TMF_STATUS:
3794 		rc = hpsa_evaluate_tmf_status(h, c);
3795 		break;
3796 	default:
3797 		rc = 0;
3798 		break;
3799 	}
3800 	cmd_free(h, c);
3801 	return rc;
3802 }
3803 
3804 static int hpsa_update_device_info(struct ctlr_info *h,
3805 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3806 	unsigned char *is_OBDR_device)
3807 {
3808 
3809 #define OBDR_SIG_OFFSET 43
3810 #define OBDR_TAPE_SIG "$DR-10"
3811 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3812 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3813 
3814 	unsigned char *inq_buff;
3815 	unsigned char *obdr_sig;
3816 	int rc = 0;
3817 
3818 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3819 	if (!inq_buff) {
3820 		rc = -ENOMEM;
3821 		goto bail_out;
3822 	}
3823 
3824 	/* Do an inquiry to the device to see what it is. */
3825 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3826 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3827 		/* Inquiry failed (msg printed already) */
3828 		dev_err(&h->pdev->dev,
3829 			"hpsa_update_device_info: inquiry failed\n");
3830 		rc = -EIO;
3831 		goto bail_out;
3832 	}
3833 
3834 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3835 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3836 
3837 	this_device->devtype = (inq_buff[0] & 0x1f);
3838 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3839 	memcpy(this_device->vendor, &inq_buff[8],
3840 		sizeof(this_device->vendor));
3841 	memcpy(this_device->model, &inq_buff[16],
3842 		sizeof(this_device->model));
3843 	memset(this_device->device_id, 0,
3844 		sizeof(this_device->device_id));
3845 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3846 		sizeof(this_device->device_id)))
3847 		dev_err(&h->pdev->dev,
3848 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3849 			h->ctlr, __func__,
3850 			h->scsi_host->host_no,
3851 			this_device->target, this_device->lun,
3852 			scsi_device_type(this_device->devtype),
3853 			this_device->model);
3854 
3855 	if ((this_device->devtype == TYPE_DISK ||
3856 		this_device->devtype == TYPE_ZBC) &&
3857 		is_logical_dev_addr_mode(scsi3addr)) {
3858 		int volume_offline;
3859 
3860 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3861 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3862 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3863 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3864 		if (volume_offline < 0 || volume_offline > 0xff)
3865 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3866 		this_device->volume_offline = volume_offline & 0xff;
3867 	} else {
3868 		this_device->raid_level = RAID_UNKNOWN;
3869 		this_device->offload_config = 0;
3870 		this_device->offload_enabled = 0;
3871 		this_device->offload_to_be_enabled = 0;
3872 		this_device->hba_ioaccel_enabled = 0;
3873 		this_device->volume_offline = 0;
3874 		this_device->queue_depth = h->nr_cmds;
3875 	}
3876 
3877 	if (is_OBDR_device) {
3878 		/* See if this is a One-Button-Disaster-Recovery device
3879 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3880 		 */
3881 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3882 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3883 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3884 						OBDR_SIG_LEN) == 0);
3885 	}
3886 	kfree(inq_buff);
3887 	return 0;
3888 
3889 bail_out:
3890 	kfree(inq_buff);
3891 	return rc;
3892 }
3893 
3894 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3895 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3896 {
3897 	unsigned long flags;
3898 	int rc, entry;
3899 	/*
3900 	 * See if this device supports aborts.  If we already know
3901 	 * the device, we already know if it supports aborts, otherwise
3902 	 * we have to find out if it supports aborts by trying one.
3903 	 */
3904 	spin_lock_irqsave(&h->devlock, flags);
3905 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3906 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3907 		entry >= 0 && entry < h->ndevices) {
3908 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3909 		spin_unlock_irqrestore(&h->devlock, flags);
3910 	} else {
3911 		spin_unlock_irqrestore(&h->devlock, flags);
3912 		dev->supports_aborts =
3913 				hpsa_device_supports_aborts(h, scsi3addr);
3914 		if (dev->supports_aborts < 0)
3915 			dev->supports_aborts = 0;
3916 	}
3917 }
3918 
3919 /*
3920  * Helper function to assign bus, target, lun mapping of devices.
3921  * Logical drive target and lun are assigned at this time, but
3922  * physical device lun and target assignment are deferred (assigned
3923  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3924 */
3925 static void figure_bus_target_lun(struct ctlr_info *h,
3926 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3927 {
3928 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3929 
3930 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3931 		/* physical device, target and lun filled in later */
3932 		if (is_hba_lunid(lunaddrbytes))
3933 			hpsa_set_bus_target_lun(device,
3934 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3935 		else
3936 			/* defer target, lun assignment for physical devices */
3937 			hpsa_set_bus_target_lun(device,
3938 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3939 		return;
3940 	}
3941 	/* It's a logical device */
3942 	if (device->external) {
3943 		hpsa_set_bus_target_lun(device,
3944 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3945 			lunid & 0x00ff);
3946 		return;
3947 	}
3948 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3949 				0, lunid & 0x3fff);
3950 }
3951 
3952 
3953 /*
3954  * Get address of physical disk used for an ioaccel2 mode command:
3955  *	1. Extract ioaccel2 handle from the command.
3956  *	2. Find a matching ioaccel2 handle from list of physical disks.
3957  *	3. Return:
3958  *		1 and set scsi3addr to address of matching physical
3959  *		0 if no matching physical disk was found.
3960  */
3961 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3962 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3963 {
3964 	struct io_accel2_cmd *c2 =
3965 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3966 	unsigned long flags;
3967 	int i;
3968 
3969 	spin_lock_irqsave(&h->devlock, flags);
3970 	for (i = 0; i < h->ndevices; i++)
3971 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3972 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3973 				sizeof(h->dev[i]->scsi3addr));
3974 			spin_unlock_irqrestore(&h->devlock, flags);
3975 			return 1;
3976 		}
3977 	spin_unlock_irqrestore(&h->devlock, flags);
3978 	return 0;
3979 }
3980 
3981 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3982 	int i, int nphysicals, int nlocal_logicals)
3983 {
3984 	/* In report logicals, local logicals are listed first,
3985 	* then any externals.
3986 	*/
3987 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3988 
3989 	if (i == raid_ctlr_position)
3990 		return 0;
3991 
3992 	if (i < logicals_start)
3993 		return 0;
3994 
3995 	/* i is in logicals range, but still within local logicals */
3996 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3997 		return 0;
3998 
3999 	return 1; /* it's an external lun */
4000 }
4001 
4002 /*
4003  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4004  * logdev.  The number of luns in physdev and logdev are returned in
4005  * *nphysicals and *nlogicals, respectively.
4006  * Returns 0 on success, -1 otherwise.
4007  */
4008 static int hpsa_gather_lun_info(struct ctlr_info *h,
4009 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4010 	struct ReportLUNdata *logdev, u32 *nlogicals)
4011 {
4012 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4013 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4014 		return -1;
4015 	}
4016 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4017 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4018 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4019 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4020 		*nphysicals = HPSA_MAX_PHYS_LUN;
4021 	}
4022 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4023 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4024 		return -1;
4025 	}
4026 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4027 	/* Reject Logicals in excess of our max capability. */
4028 	if (*nlogicals > HPSA_MAX_LUN) {
4029 		dev_warn(&h->pdev->dev,
4030 			"maximum logical LUNs (%d) exceeded.  "
4031 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4032 			*nlogicals - HPSA_MAX_LUN);
4033 			*nlogicals = HPSA_MAX_LUN;
4034 	}
4035 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4036 		dev_warn(&h->pdev->dev,
4037 			"maximum logical + physical LUNs (%d) exceeded. "
4038 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4039 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4040 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4041 	}
4042 	return 0;
4043 }
4044 
4045 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4046 	int i, int nphysicals, int nlogicals,
4047 	struct ReportExtendedLUNdata *physdev_list,
4048 	struct ReportLUNdata *logdev_list)
4049 {
4050 	/* Helper function, figure out where the LUN ID info is coming from
4051 	 * given index i, lists of physical and logical devices, where in
4052 	 * the list the raid controller is supposed to appear (first or last)
4053 	 */
4054 
4055 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4056 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4057 
4058 	if (i == raid_ctlr_position)
4059 		return RAID_CTLR_LUNID;
4060 
4061 	if (i < logicals_start)
4062 		return &physdev_list->LUN[i -
4063 				(raid_ctlr_position == 0)].lunid[0];
4064 
4065 	if (i < last_device)
4066 		return &logdev_list->LUN[i - nphysicals -
4067 			(raid_ctlr_position == 0)][0];
4068 	BUG();
4069 	return NULL;
4070 }
4071 
4072 /* get physical drive ioaccel handle and queue depth */
4073 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4074 		struct hpsa_scsi_dev_t *dev,
4075 		struct ReportExtendedLUNdata *rlep, int rle_index,
4076 		struct bmic_identify_physical_device *id_phys)
4077 {
4078 	int rc;
4079 	struct ext_report_lun_entry *rle;
4080 
4081 	/*
4082 	 * external targets don't support BMIC
4083 	 */
4084 	if (dev->external) {
4085 		dev->queue_depth = 7;
4086 		return;
4087 	}
4088 
4089 	rle = &rlep->LUN[rle_index];
4090 
4091 	dev->ioaccel_handle = rle->ioaccel_handle;
4092 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4093 		dev->hba_ioaccel_enabled = 1;
4094 	memset(id_phys, 0, sizeof(*id_phys));
4095 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4096 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4097 			sizeof(*id_phys));
4098 	if (!rc)
4099 		/* Reserve space for FW operations */
4100 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4101 #define DRIVE_QUEUE_DEPTH 7
4102 		dev->queue_depth =
4103 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4104 				DRIVE_CMDS_RESERVED_FOR_FW;
4105 	else
4106 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4107 }
4108 
4109 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4110 	struct ReportExtendedLUNdata *rlep, int rle_index,
4111 	struct bmic_identify_physical_device *id_phys)
4112 {
4113 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4114 
4115 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4116 		this_device->hba_ioaccel_enabled = 1;
4117 
4118 	memcpy(&this_device->active_path_index,
4119 		&id_phys->active_path_number,
4120 		sizeof(this_device->active_path_index));
4121 	memcpy(&this_device->path_map,
4122 		&id_phys->redundant_path_present_map,
4123 		sizeof(this_device->path_map));
4124 	memcpy(&this_device->box,
4125 		&id_phys->alternate_paths_phys_box_on_port,
4126 		sizeof(this_device->box));
4127 	memcpy(&this_device->phys_connector,
4128 		&id_phys->alternate_paths_phys_connector,
4129 		sizeof(this_device->phys_connector));
4130 	memcpy(&this_device->bay,
4131 		&id_phys->phys_bay_in_box,
4132 		sizeof(this_device->bay));
4133 }
4134 
4135 /* get number of local logical disks. */
4136 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4137 	struct bmic_identify_controller *id_ctlr,
4138 	u32 *nlocals)
4139 {
4140 	int rc;
4141 
4142 	if (!id_ctlr) {
4143 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4144 			__func__);
4145 		return -ENOMEM;
4146 	}
4147 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4148 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4149 	if (!rc)
4150 		if (id_ctlr->configured_logical_drive_count < 256)
4151 			*nlocals = id_ctlr->configured_logical_drive_count;
4152 		else
4153 			*nlocals = le16_to_cpu(
4154 					id_ctlr->extended_logical_unit_count);
4155 	else
4156 		*nlocals = -1;
4157 	return rc;
4158 }
4159 
4160 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4161 {
4162 	struct bmic_identify_physical_device *id_phys;
4163 	bool is_spare = false;
4164 	int rc;
4165 
4166 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4167 	if (!id_phys)
4168 		return false;
4169 
4170 	rc = hpsa_bmic_id_physical_device(h,
4171 					lunaddrbytes,
4172 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4173 					id_phys, sizeof(*id_phys));
4174 	if (rc == 0)
4175 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4176 
4177 	kfree(id_phys);
4178 	return is_spare;
4179 }
4180 
4181 #define RPL_DEV_FLAG_NON_DISK                           0x1
4182 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4183 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4184 
4185 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4186 
4187 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4188 				struct ext_report_lun_entry *rle)
4189 {
4190 	u8 device_flags;
4191 	u8 device_type;
4192 
4193 	if (!MASKED_DEVICE(lunaddrbytes))
4194 		return false;
4195 
4196 	device_flags = rle->device_flags;
4197 	device_type = rle->device_type;
4198 
4199 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4200 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4201 			return false;
4202 		return true;
4203 	}
4204 
4205 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4206 		return false;
4207 
4208 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4209 		return false;
4210 
4211 	/*
4212 	 * Spares may be spun down, we do not want to
4213 	 * do an Inquiry to a RAID set spare drive as
4214 	 * that would have them spun up, that is a
4215 	 * performance hit because I/O to the RAID device
4216 	 * stops while the spin up occurs which can take
4217 	 * over 50 seconds.
4218 	 */
4219 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4220 		return true;
4221 
4222 	return false;
4223 }
4224 
4225 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4226 {
4227 	/* the idea here is we could get notified
4228 	 * that some devices have changed, so we do a report
4229 	 * physical luns and report logical luns cmd, and adjust
4230 	 * our list of devices accordingly.
4231 	 *
4232 	 * The scsi3addr's of devices won't change so long as the
4233 	 * adapter is not reset.  That means we can rescan and
4234 	 * tell which devices we already know about, vs. new
4235 	 * devices, vs.  disappearing devices.
4236 	 */
4237 	struct ReportExtendedLUNdata *physdev_list = NULL;
4238 	struct ReportLUNdata *logdev_list = NULL;
4239 	struct bmic_identify_physical_device *id_phys = NULL;
4240 	struct bmic_identify_controller *id_ctlr = NULL;
4241 	u32 nphysicals = 0;
4242 	u32 nlogicals = 0;
4243 	u32 nlocal_logicals = 0;
4244 	u32 ndev_allocated = 0;
4245 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4246 	int ncurrent = 0;
4247 	int i, n_ext_target_devs, ndevs_to_allocate;
4248 	int raid_ctlr_position;
4249 	bool physical_device;
4250 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4251 
4252 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4253 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4254 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4255 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4256 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4257 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4258 
4259 	if (!currentsd || !physdev_list || !logdev_list ||
4260 		!tmpdevice || !id_phys || !id_ctlr) {
4261 		dev_err(&h->pdev->dev, "out of memory\n");
4262 		goto out;
4263 	}
4264 	memset(lunzerobits, 0, sizeof(lunzerobits));
4265 
4266 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4267 
4268 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4269 			logdev_list, &nlogicals)) {
4270 		h->drv_req_rescan = 1;
4271 		goto out;
4272 	}
4273 
4274 	/* Set number of local logicals (non PTRAID) */
4275 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4276 		dev_warn(&h->pdev->dev,
4277 			"%s: Can't determine number of local logical devices.\n",
4278 			__func__);
4279 	}
4280 
4281 	/* We might see up to the maximum number of logical and physical disks
4282 	 * plus external target devices, and a device for the local RAID
4283 	 * controller.
4284 	 */
4285 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4286 
4287 	/* Allocate the per device structures */
4288 	for (i = 0; i < ndevs_to_allocate; i++) {
4289 		if (i >= HPSA_MAX_DEVICES) {
4290 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4291 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4292 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4293 			break;
4294 		}
4295 
4296 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4297 		if (!currentsd[i]) {
4298 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4299 				__FILE__, __LINE__);
4300 			h->drv_req_rescan = 1;
4301 			goto out;
4302 		}
4303 		ndev_allocated++;
4304 	}
4305 
4306 	if (is_scsi_rev_5(h))
4307 		raid_ctlr_position = 0;
4308 	else
4309 		raid_ctlr_position = nphysicals + nlogicals;
4310 
4311 	/* adjust our table of devices */
4312 	n_ext_target_devs = 0;
4313 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4314 		u8 *lunaddrbytes, is_OBDR = 0;
4315 		int rc = 0;
4316 		int phys_dev_index = i - (raid_ctlr_position == 0);
4317 		bool skip_device = false;
4318 
4319 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4320 
4321 		/* Figure out where the LUN ID info is coming from */
4322 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4323 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4324 
4325 		/* Determine if this is a lun from an external target array */
4326 		tmpdevice->external =
4327 			figure_external_status(h, raid_ctlr_position, i,
4328 						nphysicals, nlocal_logicals);
4329 
4330 		/*
4331 		 * Skip over some devices such as a spare.
4332 		 */
4333 		if (!tmpdevice->external && physical_device) {
4334 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4335 					&physdev_list->LUN[phys_dev_index]);
4336 			if (skip_device)
4337 				continue;
4338 		}
4339 
4340 		/* Get device type, vendor, model, device id */
4341 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4342 							&is_OBDR);
4343 		if (rc == -ENOMEM) {
4344 			dev_warn(&h->pdev->dev,
4345 				"Out of memory, rescan deferred.\n");
4346 			h->drv_req_rescan = 1;
4347 			goto out;
4348 		}
4349 		if (rc) {
4350 			dev_warn(&h->pdev->dev,
4351 				"Inquiry failed, skipping device.\n");
4352 			continue;
4353 		}
4354 
4355 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4356 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4357 		this_device = currentsd[ncurrent];
4358 
4359 		/* Turn on discovery_polling if there are ext target devices.
4360 		 * Event-based change notification is unreliable for those.
4361 		 */
4362 		if (!h->discovery_polling) {
4363 			if (tmpdevice->external) {
4364 				h->discovery_polling = 1;
4365 				dev_info(&h->pdev->dev,
4366 					"External target, activate discovery polling.\n");
4367 			}
4368 		}
4369 
4370 
4371 		*this_device = *tmpdevice;
4372 		this_device->physical_device = physical_device;
4373 
4374 		/*
4375 		 * Expose all devices except for physical devices that
4376 		 * are masked.
4377 		 */
4378 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4379 			this_device->expose_device = 0;
4380 		else
4381 			this_device->expose_device = 1;
4382 
4383 
4384 		/*
4385 		 * Get the SAS address for physical devices that are exposed.
4386 		 */
4387 		if (this_device->physical_device && this_device->expose_device)
4388 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4389 
4390 		switch (this_device->devtype) {
4391 		case TYPE_ROM:
4392 			/* We don't *really* support actual CD-ROM devices,
4393 			 * just "One Button Disaster Recovery" tape drive
4394 			 * which temporarily pretends to be a CD-ROM drive.
4395 			 * So we check that the device is really an OBDR tape
4396 			 * device by checking for "$DR-10" in bytes 43-48 of
4397 			 * the inquiry data.
4398 			 */
4399 			if (is_OBDR)
4400 				ncurrent++;
4401 			break;
4402 		case TYPE_DISK:
4403 		case TYPE_ZBC:
4404 			if (this_device->physical_device) {
4405 				/* The disk is in HBA mode. */
4406 				/* Never use RAID mapper in HBA mode. */
4407 				this_device->offload_enabled = 0;
4408 				hpsa_get_ioaccel_drive_info(h, this_device,
4409 					physdev_list, phys_dev_index, id_phys);
4410 				hpsa_get_path_info(this_device,
4411 					physdev_list, phys_dev_index, id_phys);
4412 			}
4413 			ncurrent++;
4414 			break;
4415 		case TYPE_TAPE:
4416 		case TYPE_MEDIUM_CHANGER:
4417 			ncurrent++;
4418 			break;
4419 		case TYPE_ENCLOSURE:
4420 			if (!this_device->external)
4421 				hpsa_get_enclosure_info(h, lunaddrbytes,
4422 						physdev_list, phys_dev_index,
4423 						this_device);
4424 			ncurrent++;
4425 			break;
4426 		case TYPE_RAID:
4427 			/* Only present the Smartarray HBA as a RAID controller.
4428 			 * If it's a RAID controller other than the HBA itself
4429 			 * (an external RAID controller, MSA500 or similar)
4430 			 * don't present it.
4431 			 */
4432 			if (!is_hba_lunid(lunaddrbytes))
4433 				break;
4434 			ncurrent++;
4435 			break;
4436 		default:
4437 			break;
4438 		}
4439 		if (ncurrent >= HPSA_MAX_DEVICES)
4440 			break;
4441 	}
4442 
4443 	if (h->sas_host == NULL) {
4444 		int rc = 0;
4445 
4446 		rc = hpsa_add_sas_host(h);
4447 		if (rc) {
4448 			dev_warn(&h->pdev->dev,
4449 				"Could not add sas host %d\n", rc);
4450 			goto out;
4451 		}
4452 	}
4453 
4454 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4455 out:
4456 	kfree(tmpdevice);
4457 	for (i = 0; i < ndev_allocated; i++)
4458 		kfree(currentsd[i]);
4459 	kfree(currentsd);
4460 	kfree(physdev_list);
4461 	kfree(logdev_list);
4462 	kfree(id_ctlr);
4463 	kfree(id_phys);
4464 }
4465 
4466 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4467 				   struct scatterlist *sg)
4468 {
4469 	u64 addr64 = (u64) sg_dma_address(sg);
4470 	unsigned int len = sg_dma_len(sg);
4471 
4472 	desc->Addr = cpu_to_le64(addr64);
4473 	desc->Len = cpu_to_le32(len);
4474 	desc->Ext = 0;
4475 }
4476 
4477 /*
4478  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4479  * dma mapping  and fills in the scatter gather entries of the
4480  * hpsa command, cp.
4481  */
4482 static int hpsa_scatter_gather(struct ctlr_info *h,
4483 		struct CommandList *cp,
4484 		struct scsi_cmnd *cmd)
4485 {
4486 	struct scatterlist *sg;
4487 	int use_sg, i, sg_limit, chained, last_sg;
4488 	struct SGDescriptor *curr_sg;
4489 
4490 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4491 
4492 	use_sg = scsi_dma_map(cmd);
4493 	if (use_sg < 0)
4494 		return use_sg;
4495 
4496 	if (!use_sg)
4497 		goto sglist_finished;
4498 
4499 	/*
4500 	 * If the number of entries is greater than the max for a single list,
4501 	 * then we have a chained list; we will set up all but one entry in the
4502 	 * first list (the last entry is saved for link information);
4503 	 * otherwise, we don't have a chained list and we'll set up at each of
4504 	 * the entries in the one list.
4505 	 */
4506 	curr_sg = cp->SG;
4507 	chained = use_sg > h->max_cmd_sg_entries;
4508 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4509 	last_sg = scsi_sg_count(cmd) - 1;
4510 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4511 		hpsa_set_sg_descriptor(curr_sg, sg);
4512 		curr_sg++;
4513 	}
4514 
4515 	if (chained) {
4516 		/*
4517 		 * Continue with the chained list.  Set curr_sg to the chained
4518 		 * list.  Modify the limit to the total count less the entries
4519 		 * we've already set up.  Resume the scan at the list entry
4520 		 * where the previous loop left off.
4521 		 */
4522 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4523 		sg_limit = use_sg - sg_limit;
4524 		for_each_sg(sg, sg, sg_limit, i) {
4525 			hpsa_set_sg_descriptor(curr_sg, sg);
4526 			curr_sg++;
4527 		}
4528 	}
4529 
4530 	/* Back the pointer up to the last entry and mark it as "last". */
4531 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4532 
4533 	if (use_sg + chained > h->maxSG)
4534 		h->maxSG = use_sg + chained;
4535 
4536 	if (chained) {
4537 		cp->Header.SGList = h->max_cmd_sg_entries;
4538 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4539 		if (hpsa_map_sg_chain_block(h, cp)) {
4540 			scsi_dma_unmap(cmd);
4541 			return -1;
4542 		}
4543 		return 0;
4544 	}
4545 
4546 sglist_finished:
4547 
4548 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4549 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4550 	return 0;
4551 }
4552 
4553 #define IO_ACCEL_INELIGIBLE (1)
4554 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4555 {
4556 	int is_write = 0;
4557 	u32 block;
4558 	u32 block_cnt;
4559 
4560 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4561 	switch (cdb[0]) {
4562 	case WRITE_6:
4563 	case WRITE_12:
4564 		is_write = 1;
4565 	case READ_6:
4566 	case READ_12:
4567 		if (*cdb_len == 6) {
4568 			block = (((cdb[1] & 0x1F) << 16) |
4569 				(cdb[2] << 8) |
4570 				cdb[3]);
4571 			block_cnt = cdb[4];
4572 			if (block_cnt == 0)
4573 				block_cnt = 256;
4574 		} else {
4575 			BUG_ON(*cdb_len != 12);
4576 			block = get_unaligned_be32(&cdb[2]);
4577 			block_cnt = get_unaligned_be32(&cdb[6]);
4578 		}
4579 		if (block_cnt > 0xffff)
4580 			return IO_ACCEL_INELIGIBLE;
4581 
4582 		cdb[0] = is_write ? WRITE_10 : READ_10;
4583 		cdb[1] = 0;
4584 		cdb[2] = (u8) (block >> 24);
4585 		cdb[3] = (u8) (block >> 16);
4586 		cdb[4] = (u8) (block >> 8);
4587 		cdb[5] = (u8) (block);
4588 		cdb[6] = 0;
4589 		cdb[7] = (u8) (block_cnt >> 8);
4590 		cdb[8] = (u8) (block_cnt);
4591 		cdb[9] = 0;
4592 		*cdb_len = 10;
4593 		break;
4594 	}
4595 	return 0;
4596 }
4597 
4598 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4599 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4600 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4601 {
4602 	struct scsi_cmnd *cmd = c->scsi_cmd;
4603 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4604 	unsigned int len;
4605 	unsigned int total_len = 0;
4606 	struct scatterlist *sg;
4607 	u64 addr64;
4608 	int use_sg, i;
4609 	struct SGDescriptor *curr_sg;
4610 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4611 
4612 	/* TODO: implement chaining support */
4613 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4614 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4615 		return IO_ACCEL_INELIGIBLE;
4616 	}
4617 
4618 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4619 
4620 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4621 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4622 		return IO_ACCEL_INELIGIBLE;
4623 	}
4624 
4625 	c->cmd_type = CMD_IOACCEL1;
4626 
4627 	/* Adjust the DMA address to point to the accelerated command buffer */
4628 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4629 				(c->cmdindex * sizeof(*cp));
4630 	BUG_ON(c->busaddr & 0x0000007F);
4631 
4632 	use_sg = scsi_dma_map(cmd);
4633 	if (use_sg < 0) {
4634 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4635 		return use_sg;
4636 	}
4637 
4638 	if (use_sg) {
4639 		curr_sg = cp->SG;
4640 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4641 			addr64 = (u64) sg_dma_address(sg);
4642 			len  = sg_dma_len(sg);
4643 			total_len += len;
4644 			curr_sg->Addr = cpu_to_le64(addr64);
4645 			curr_sg->Len = cpu_to_le32(len);
4646 			curr_sg->Ext = cpu_to_le32(0);
4647 			curr_sg++;
4648 		}
4649 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4650 
4651 		switch (cmd->sc_data_direction) {
4652 		case DMA_TO_DEVICE:
4653 			control |= IOACCEL1_CONTROL_DATA_OUT;
4654 			break;
4655 		case DMA_FROM_DEVICE:
4656 			control |= IOACCEL1_CONTROL_DATA_IN;
4657 			break;
4658 		case DMA_NONE:
4659 			control |= IOACCEL1_CONTROL_NODATAXFER;
4660 			break;
4661 		default:
4662 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4663 			cmd->sc_data_direction);
4664 			BUG();
4665 			break;
4666 		}
4667 	} else {
4668 		control |= IOACCEL1_CONTROL_NODATAXFER;
4669 	}
4670 
4671 	c->Header.SGList = use_sg;
4672 	/* Fill out the command structure to submit */
4673 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4674 	cp->transfer_len = cpu_to_le32(total_len);
4675 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4676 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4677 	cp->control = cpu_to_le32(control);
4678 	memcpy(cp->CDB, cdb, cdb_len);
4679 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4680 	/* Tag was already set at init time. */
4681 	enqueue_cmd_and_start_io(h, c);
4682 	return 0;
4683 }
4684 
4685 /*
4686  * Queue a command directly to a device behind the controller using the
4687  * I/O accelerator path.
4688  */
4689 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4690 	struct CommandList *c)
4691 {
4692 	struct scsi_cmnd *cmd = c->scsi_cmd;
4693 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4694 
4695 	if (!dev)
4696 		return -1;
4697 
4698 	c->phys_disk = dev;
4699 
4700 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4701 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4702 }
4703 
4704 /*
4705  * Set encryption parameters for the ioaccel2 request
4706  */
4707 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4708 	struct CommandList *c, struct io_accel2_cmd *cp)
4709 {
4710 	struct scsi_cmnd *cmd = c->scsi_cmd;
4711 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4712 	struct raid_map_data *map = &dev->raid_map;
4713 	u64 first_block;
4714 
4715 	/* Are we doing encryption on this device */
4716 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4717 		return;
4718 	/* Set the data encryption key index. */
4719 	cp->dekindex = map->dekindex;
4720 
4721 	/* Set the encryption enable flag, encoded into direction field. */
4722 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4723 
4724 	/* Set encryption tweak values based on logical block address
4725 	 * If block size is 512, tweak value is LBA.
4726 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4727 	 */
4728 	switch (cmd->cmnd[0]) {
4729 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4730 	case READ_6:
4731 	case WRITE_6:
4732 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4733 				(cmd->cmnd[2] << 8) |
4734 				cmd->cmnd[3]);
4735 		break;
4736 	case WRITE_10:
4737 	case READ_10:
4738 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4739 	case WRITE_12:
4740 	case READ_12:
4741 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4742 		break;
4743 	case WRITE_16:
4744 	case READ_16:
4745 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4746 		break;
4747 	default:
4748 		dev_err(&h->pdev->dev,
4749 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4750 			__func__, cmd->cmnd[0]);
4751 		BUG();
4752 		break;
4753 	}
4754 
4755 	if (le32_to_cpu(map->volume_blk_size) != 512)
4756 		first_block = first_block *
4757 				le32_to_cpu(map->volume_blk_size)/512;
4758 
4759 	cp->tweak_lower = cpu_to_le32(first_block);
4760 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4761 }
4762 
4763 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4764 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4765 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4766 {
4767 	struct scsi_cmnd *cmd = c->scsi_cmd;
4768 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4769 	struct ioaccel2_sg_element *curr_sg;
4770 	int use_sg, i;
4771 	struct scatterlist *sg;
4772 	u64 addr64;
4773 	u32 len;
4774 	u32 total_len = 0;
4775 
4776 	if (!cmd->device)
4777 		return -1;
4778 
4779 	if (!cmd->device->hostdata)
4780 		return -1;
4781 
4782 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4783 
4784 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4785 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4786 		return IO_ACCEL_INELIGIBLE;
4787 	}
4788 
4789 	c->cmd_type = CMD_IOACCEL2;
4790 	/* Adjust the DMA address to point to the accelerated command buffer */
4791 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4792 				(c->cmdindex * sizeof(*cp));
4793 	BUG_ON(c->busaddr & 0x0000007F);
4794 
4795 	memset(cp, 0, sizeof(*cp));
4796 	cp->IU_type = IOACCEL2_IU_TYPE;
4797 
4798 	use_sg = scsi_dma_map(cmd);
4799 	if (use_sg < 0) {
4800 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4801 		return use_sg;
4802 	}
4803 
4804 	if (use_sg) {
4805 		curr_sg = cp->sg;
4806 		if (use_sg > h->ioaccel_maxsg) {
4807 			addr64 = le64_to_cpu(
4808 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4809 			curr_sg->address = cpu_to_le64(addr64);
4810 			curr_sg->length = 0;
4811 			curr_sg->reserved[0] = 0;
4812 			curr_sg->reserved[1] = 0;
4813 			curr_sg->reserved[2] = 0;
4814 			curr_sg->chain_indicator = 0x80;
4815 
4816 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4817 		}
4818 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4819 			addr64 = (u64) sg_dma_address(sg);
4820 			len  = sg_dma_len(sg);
4821 			total_len += len;
4822 			curr_sg->address = cpu_to_le64(addr64);
4823 			curr_sg->length = cpu_to_le32(len);
4824 			curr_sg->reserved[0] = 0;
4825 			curr_sg->reserved[1] = 0;
4826 			curr_sg->reserved[2] = 0;
4827 			curr_sg->chain_indicator = 0;
4828 			curr_sg++;
4829 		}
4830 
4831 		switch (cmd->sc_data_direction) {
4832 		case DMA_TO_DEVICE:
4833 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4834 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4835 			break;
4836 		case DMA_FROM_DEVICE:
4837 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4838 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4839 			break;
4840 		case DMA_NONE:
4841 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4842 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4843 			break;
4844 		default:
4845 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4846 				cmd->sc_data_direction);
4847 			BUG();
4848 			break;
4849 		}
4850 	} else {
4851 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4852 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4853 	}
4854 
4855 	/* Set encryption parameters, if necessary */
4856 	set_encrypt_ioaccel2(h, c, cp);
4857 
4858 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4859 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4860 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4861 
4862 	cp->data_len = cpu_to_le32(total_len);
4863 	cp->err_ptr = cpu_to_le64(c->busaddr +
4864 			offsetof(struct io_accel2_cmd, error_data));
4865 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4866 
4867 	/* fill in sg elements */
4868 	if (use_sg > h->ioaccel_maxsg) {
4869 		cp->sg_count = 1;
4870 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4871 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4872 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4873 			scsi_dma_unmap(cmd);
4874 			return -1;
4875 		}
4876 	} else
4877 		cp->sg_count = (u8) use_sg;
4878 
4879 	enqueue_cmd_and_start_io(h, c);
4880 	return 0;
4881 }
4882 
4883 /*
4884  * Queue a command to the correct I/O accelerator path.
4885  */
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4887 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 	if (!c->scsi_cmd->device)
4891 		return -1;
4892 
4893 	if (!c->scsi_cmd->device->hostdata)
4894 		return -1;
4895 
4896 	/* Try to honor the device's queue depth */
4897 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4898 					phys_disk->queue_depth) {
4899 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 		return IO_ACCEL_INELIGIBLE;
4901 	}
4902 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4903 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4904 						cdb, cdb_len, scsi3addr,
4905 						phys_disk);
4906 	else
4907 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4908 						cdb, cdb_len, scsi3addr,
4909 						phys_disk);
4910 }
4911 
4912 static void raid_map_helper(struct raid_map_data *map,
4913 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4914 {
4915 	if (offload_to_mirror == 0)  {
4916 		/* use physical disk in the first mirrored group. */
4917 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4918 		return;
4919 	}
4920 	do {
4921 		/* determine mirror group that *map_index indicates */
4922 		*current_group = *map_index /
4923 			le16_to_cpu(map->data_disks_per_row);
4924 		if (offload_to_mirror == *current_group)
4925 			continue;
4926 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4927 			/* select map index from next group */
4928 			*map_index += le16_to_cpu(map->data_disks_per_row);
4929 			(*current_group)++;
4930 		} else {
4931 			/* select map index from first group */
4932 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4933 			*current_group = 0;
4934 		}
4935 	} while (offload_to_mirror != *current_group);
4936 }
4937 
4938 /*
4939  * Attempt to perform offload RAID mapping for a logical volume I/O.
4940  */
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4942 	struct CommandList *c)
4943 {
4944 	struct scsi_cmnd *cmd = c->scsi_cmd;
4945 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4946 	struct raid_map_data *map = &dev->raid_map;
4947 	struct raid_map_disk_data *dd = &map->data[0];
4948 	int is_write = 0;
4949 	u32 map_index;
4950 	u64 first_block, last_block;
4951 	u32 block_cnt;
4952 	u32 blocks_per_row;
4953 	u64 first_row, last_row;
4954 	u32 first_row_offset, last_row_offset;
4955 	u32 first_column, last_column;
4956 	u64 r0_first_row, r0_last_row;
4957 	u32 r5or6_blocks_per_row;
4958 	u64 r5or6_first_row, r5or6_last_row;
4959 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4960 	u32 r5or6_first_column, r5or6_last_column;
4961 	u32 total_disks_per_row;
4962 	u32 stripesize;
4963 	u32 first_group, last_group, current_group;
4964 	u32 map_row;
4965 	u32 disk_handle;
4966 	u64 disk_block;
4967 	u32 disk_block_cnt;
4968 	u8 cdb[16];
4969 	u8 cdb_len;
4970 	u16 strip_size;
4971 #if BITS_PER_LONG == 32
4972 	u64 tmpdiv;
4973 #endif
4974 	int offload_to_mirror;
4975 
4976 	if (!dev)
4977 		return -1;
4978 
4979 	/* check for valid opcode, get LBA and block count */
4980 	switch (cmd->cmnd[0]) {
4981 	case WRITE_6:
4982 		is_write = 1;
4983 	case READ_6:
4984 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4985 				(cmd->cmnd[2] << 8) |
4986 				cmd->cmnd[3]);
4987 		block_cnt = cmd->cmnd[4];
4988 		if (block_cnt == 0)
4989 			block_cnt = 256;
4990 		break;
4991 	case WRITE_10:
4992 		is_write = 1;
4993 	case READ_10:
4994 		first_block =
4995 			(((u64) cmd->cmnd[2]) << 24) |
4996 			(((u64) cmd->cmnd[3]) << 16) |
4997 			(((u64) cmd->cmnd[4]) << 8) |
4998 			cmd->cmnd[5];
4999 		block_cnt =
5000 			(((u32) cmd->cmnd[7]) << 8) |
5001 			cmd->cmnd[8];
5002 		break;
5003 	case WRITE_12:
5004 		is_write = 1;
5005 	case READ_12:
5006 		first_block =
5007 			(((u64) cmd->cmnd[2]) << 24) |
5008 			(((u64) cmd->cmnd[3]) << 16) |
5009 			(((u64) cmd->cmnd[4]) << 8) |
5010 			cmd->cmnd[5];
5011 		block_cnt =
5012 			(((u32) cmd->cmnd[6]) << 24) |
5013 			(((u32) cmd->cmnd[7]) << 16) |
5014 			(((u32) cmd->cmnd[8]) << 8) |
5015 		cmd->cmnd[9];
5016 		break;
5017 	case WRITE_16:
5018 		is_write = 1;
5019 	case READ_16:
5020 		first_block =
5021 			(((u64) cmd->cmnd[2]) << 56) |
5022 			(((u64) cmd->cmnd[3]) << 48) |
5023 			(((u64) cmd->cmnd[4]) << 40) |
5024 			(((u64) cmd->cmnd[5]) << 32) |
5025 			(((u64) cmd->cmnd[6]) << 24) |
5026 			(((u64) cmd->cmnd[7]) << 16) |
5027 			(((u64) cmd->cmnd[8]) << 8) |
5028 			cmd->cmnd[9];
5029 		block_cnt =
5030 			(((u32) cmd->cmnd[10]) << 24) |
5031 			(((u32) cmd->cmnd[11]) << 16) |
5032 			(((u32) cmd->cmnd[12]) << 8) |
5033 			cmd->cmnd[13];
5034 		break;
5035 	default:
5036 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5037 	}
5038 	last_block = first_block + block_cnt - 1;
5039 
5040 	/* check for write to non-RAID-0 */
5041 	if (is_write && dev->raid_level != 0)
5042 		return IO_ACCEL_INELIGIBLE;
5043 
5044 	/* check for invalid block or wraparound */
5045 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5046 		last_block < first_block)
5047 		return IO_ACCEL_INELIGIBLE;
5048 
5049 	/* calculate stripe information for the request */
5050 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5051 				le16_to_cpu(map->strip_size);
5052 	strip_size = le16_to_cpu(map->strip_size);
5053 #if BITS_PER_LONG == 32
5054 	tmpdiv = first_block;
5055 	(void) do_div(tmpdiv, blocks_per_row);
5056 	first_row = tmpdiv;
5057 	tmpdiv = last_block;
5058 	(void) do_div(tmpdiv, blocks_per_row);
5059 	last_row = tmpdiv;
5060 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5061 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5062 	tmpdiv = first_row_offset;
5063 	(void) do_div(tmpdiv, strip_size);
5064 	first_column = tmpdiv;
5065 	tmpdiv = last_row_offset;
5066 	(void) do_div(tmpdiv, strip_size);
5067 	last_column = tmpdiv;
5068 #else
5069 	first_row = first_block / blocks_per_row;
5070 	last_row = last_block / blocks_per_row;
5071 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5072 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5073 	first_column = first_row_offset / strip_size;
5074 	last_column = last_row_offset / strip_size;
5075 #endif
5076 
5077 	/* if this isn't a single row/column then give to the controller */
5078 	if ((first_row != last_row) || (first_column != last_column))
5079 		return IO_ACCEL_INELIGIBLE;
5080 
5081 	/* proceeding with driver mapping */
5082 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5083 				le16_to_cpu(map->metadata_disks_per_row);
5084 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5085 				le16_to_cpu(map->row_cnt);
5086 	map_index = (map_row * total_disks_per_row) + first_column;
5087 
5088 	switch (dev->raid_level) {
5089 	case HPSA_RAID_0:
5090 		break; /* nothing special to do */
5091 	case HPSA_RAID_1:
5092 		/* Handles load balance across RAID 1 members.
5093 		 * (2-drive R1 and R10 with even # of drives.)
5094 		 * Appropriate for SSDs, not optimal for HDDs
5095 		 */
5096 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5097 		if (dev->offload_to_mirror)
5098 			map_index += le16_to_cpu(map->data_disks_per_row);
5099 		dev->offload_to_mirror = !dev->offload_to_mirror;
5100 		break;
5101 	case HPSA_RAID_ADM:
5102 		/* Handles N-way mirrors  (R1-ADM)
5103 		 * and R10 with # of drives divisible by 3.)
5104 		 */
5105 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5106 
5107 		offload_to_mirror = dev->offload_to_mirror;
5108 		raid_map_helper(map, offload_to_mirror,
5109 				&map_index, &current_group);
5110 		/* set mirror group to use next time */
5111 		offload_to_mirror =
5112 			(offload_to_mirror >=
5113 			le16_to_cpu(map->layout_map_count) - 1)
5114 			? 0 : offload_to_mirror + 1;
5115 		dev->offload_to_mirror = offload_to_mirror;
5116 		/* Avoid direct use of dev->offload_to_mirror within this
5117 		 * function since multiple threads might simultaneously
5118 		 * increment it beyond the range of dev->layout_map_count -1.
5119 		 */
5120 		break;
5121 	case HPSA_RAID_5:
5122 	case HPSA_RAID_6:
5123 		if (le16_to_cpu(map->layout_map_count) <= 1)
5124 			break;
5125 
5126 		/* Verify first and last block are in same RAID group */
5127 		r5or6_blocks_per_row =
5128 			le16_to_cpu(map->strip_size) *
5129 			le16_to_cpu(map->data_disks_per_row);
5130 		BUG_ON(r5or6_blocks_per_row == 0);
5131 		stripesize = r5or6_blocks_per_row *
5132 			le16_to_cpu(map->layout_map_count);
5133 #if BITS_PER_LONG == 32
5134 		tmpdiv = first_block;
5135 		first_group = do_div(tmpdiv, stripesize);
5136 		tmpdiv = first_group;
5137 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5138 		first_group = tmpdiv;
5139 		tmpdiv = last_block;
5140 		last_group = do_div(tmpdiv, stripesize);
5141 		tmpdiv = last_group;
5142 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5143 		last_group = tmpdiv;
5144 #else
5145 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5146 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5147 #endif
5148 		if (first_group != last_group)
5149 			return IO_ACCEL_INELIGIBLE;
5150 
5151 		/* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153 		tmpdiv = first_block;
5154 		(void) do_div(tmpdiv, stripesize);
5155 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5156 		tmpdiv = last_block;
5157 		(void) do_div(tmpdiv, stripesize);
5158 		r5or6_last_row = r0_last_row = tmpdiv;
5159 #else
5160 		first_row = r5or6_first_row = r0_first_row =
5161 						first_block / stripesize;
5162 		r5or6_last_row = r0_last_row = last_block / stripesize;
5163 #endif
5164 		if (r5or6_first_row != r5or6_last_row)
5165 			return IO_ACCEL_INELIGIBLE;
5166 
5167 
5168 		/* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170 		tmpdiv = first_block;
5171 		first_row_offset = do_div(tmpdiv, stripesize);
5172 		tmpdiv = first_row_offset;
5173 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5174 		r5or6_first_row_offset = first_row_offset;
5175 		tmpdiv = last_block;
5176 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5177 		tmpdiv = r5or6_last_row_offset;
5178 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5179 		tmpdiv = r5or6_first_row_offset;
5180 		(void) do_div(tmpdiv, map->strip_size);
5181 		first_column = r5or6_first_column = tmpdiv;
5182 		tmpdiv = r5or6_last_row_offset;
5183 		(void) do_div(tmpdiv, map->strip_size);
5184 		r5or6_last_column = tmpdiv;
5185 #else
5186 		first_row_offset = r5or6_first_row_offset =
5187 			(u32)((first_block % stripesize) %
5188 						r5or6_blocks_per_row);
5189 
5190 		r5or6_last_row_offset =
5191 			(u32)((last_block % stripesize) %
5192 						r5or6_blocks_per_row);
5193 
5194 		first_column = r5or6_first_column =
5195 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5196 		r5or6_last_column =
5197 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5198 #endif
5199 		if (r5or6_first_column != r5or6_last_column)
5200 			return IO_ACCEL_INELIGIBLE;
5201 
5202 		/* Request is eligible */
5203 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5204 			le16_to_cpu(map->row_cnt);
5205 
5206 		map_index = (first_group *
5207 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5208 			(map_row * total_disks_per_row) + first_column;
5209 		break;
5210 	default:
5211 		return IO_ACCEL_INELIGIBLE;
5212 	}
5213 
5214 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5215 		return IO_ACCEL_INELIGIBLE;
5216 
5217 	c->phys_disk = dev->phys_disk[map_index];
5218 	if (!c->phys_disk)
5219 		return IO_ACCEL_INELIGIBLE;
5220 
5221 	disk_handle = dd[map_index].ioaccel_handle;
5222 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5223 			first_row * le16_to_cpu(map->strip_size) +
5224 			(first_row_offset - first_column *
5225 			le16_to_cpu(map->strip_size));
5226 	disk_block_cnt = block_cnt;
5227 
5228 	/* handle differing logical/physical block sizes */
5229 	if (map->phys_blk_shift) {
5230 		disk_block <<= map->phys_blk_shift;
5231 		disk_block_cnt <<= map->phys_blk_shift;
5232 	}
5233 	BUG_ON(disk_block_cnt > 0xffff);
5234 
5235 	/* build the new CDB for the physical disk I/O */
5236 	if (disk_block > 0xffffffff) {
5237 		cdb[0] = is_write ? WRITE_16 : READ_16;
5238 		cdb[1] = 0;
5239 		cdb[2] = (u8) (disk_block >> 56);
5240 		cdb[3] = (u8) (disk_block >> 48);
5241 		cdb[4] = (u8) (disk_block >> 40);
5242 		cdb[5] = (u8) (disk_block >> 32);
5243 		cdb[6] = (u8) (disk_block >> 24);
5244 		cdb[7] = (u8) (disk_block >> 16);
5245 		cdb[8] = (u8) (disk_block >> 8);
5246 		cdb[9] = (u8) (disk_block);
5247 		cdb[10] = (u8) (disk_block_cnt >> 24);
5248 		cdb[11] = (u8) (disk_block_cnt >> 16);
5249 		cdb[12] = (u8) (disk_block_cnt >> 8);
5250 		cdb[13] = (u8) (disk_block_cnt);
5251 		cdb[14] = 0;
5252 		cdb[15] = 0;
5253 		cdb_len = 16;
5254 	} else {
5255 		cdb[0] = is_write ? WRITE_10 : READ_10;
5256 		cdb[1] = 0;
5257 		cdb[2] = (u8) (disk_block >> 24);
5258 		cdb[3] = (u8) (disk_block >> 16);
5259 		cdb[4] = (u8) (disk_block >> 8);
5260 		cdb[5] = (u8) (disk_block);
5261 		cdb[6] = 0;
5262 		cdb[7] = (u8) (disk_block_cnt >> 8);
5263 		cdb[8] = (u8) (disk_block_cnt);
5264 		cdb[9] = 0;
5265 		cdb_len = 10;
5266 	}
5267 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5268 						dev->scsi3addr,
5269 						dev->phys_disk[map_index]);
5270 }
5271 
5272 /*
5273  * Submit commands down the "normal" RAID stack path
5274  * All callers to hpsa_ciss_submit must check lockup_detected
5275  * beforehand, before (opt.) and after calling cmd_alloc
5276  */
5277 static int hpsa_ciss_submit(struct ctlr_info *h,
5278 	struct CommandList *c, struct scsi_cmnd *cmd,
5279 	unsigned char scsi3addr[])
5280 {
5281 	cmd->host_scribble = (unsigned char *) c;
5282 	c->cmd_type = CMD_SCSI;
5283 	c->scsi_cmd = cmd;
5284 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5285 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5286 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5287 
5288 	/* Fill in the request block... */
5289 
5290 	c->Request.Timeout = 0;
5291 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5292 	c->Request.CDBLen = cmd->cmd_len;
5293 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5294 	switch (cmd->sc_data_direction) {
5295 	case DMA_TO_DEVICE:
5296 		c->Request.type_attr_dir =
5297 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5298 		break;
5299 	case DMA_FROM_DEVICE:
5300 		c->Request.type_attr_dir =
5301 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5302 		break;
5303 	case DMA_NONE:
5304 		c->Request.type_attr_dir =
5305 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5306 		break;
5307 	case DMA_BIDIRECTIONAL:
5308 		/* This can happen if a buggy application does a scsi passthru
5309 		 * and sets both inlen and outlen to non-zero. ( see
5310 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5311 		 */
5312 
5313 		c->Request.type_attr_dir =
5314 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5315 		/* This is technically wrong, and hpsa controllers should
5316 		 * reject it with CMD_INVALID, which is the most correct
5317 		 * response, but non-fibre backends appear to let it
5318 		 * slide by, and give the same results as if this field
5319 		 * were set correctly.  Either way is acceptable for
5320 		 * our purposes here.
5321 		 */
5322 
5323 		break;
5324 
5325 	default:
5326 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5327 			cmd->sc_data_direction);
5328 		BUG();
5329 		break;
5330 	}
5331 
5332 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5333 		hpsa_cmd_resolve_and_free(h, c);
5334 		return SCSI_MLQUEUE_HOST_BUSY;
5335 	}
5336 	enqueue_cmd_and_start_io(h, c);
5337 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5338 	return 0;
5339 }
5340 
5341 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5342 				struct CommandList *c)
5343 {
5344 	dma_addr_t cmd_dma_handle, err_dma_handle;
5345 
5346 	/* Zero out all of commandlist except the last field, refcount */
5347 	memset(c, 0, offsetof(struct CommandList, refcount));
5348 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5349 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5350 	c->err_info = h->errinfo_pool + index;
5351 	memset(c->err_info, 0, sizeof(*c->err_info));
5352 	err_dma_handle = h->errinfo_pool_dhandle
5353 	    + index * sizeof(*c->err_info);
5354 	c->cmdindex = index;
5355 	c->busaddr = (u32) cmd_dma_handle;
5356 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5357 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5358 	c->h = h;
5359 	c->scsi_cmd = SCSI_CMD_IDLE;
5360 }
5361 
5362 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5363 {
5364 	int i;
5365 
5366 	for (i = 0; i < h->nr_cmds; i++) {
5367 		struct CommandList *c = h->cmd_pool + i;
5368 
5369 		hpsa_cmd_init(h, i, c);
5370 		atomic_set(&c->refcount, 0);
5371 	}
5372 }
5373 
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5375 				struct CommandList *c)
5376 {
5377 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5378 
5379 	BUG_ON(c->cmdindex != index);
5380 
5381 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5382 	memset(c->err_info, 0, sizeof(*c->err_info));
5383 	c->busaddr = (u32) cmd_dma_handle;
5384 }
5385 
5386 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5387 		struct CommandList *c, struct scsi_cmnd *cmd,
5388 		unsigned char *scsi3addr)
5389 {
5390 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5391 	int rc = IO_ACCEL_INELIGIBLE;
5392 
5393 	if (!dev)
5394 		return SCSI_MLQUEUE_HOST_BUSY;
5395 
5396 	cmd->host_scribble = (unsigned char *) c;
5397 
5398 	if (dev->offload_enabled) {
5399 		hpsa_cmd_init(h, c->cmdindex, c);
5400 		c->cmd_type = CMD_SCSI;
5401 		c->scsi_cmd = cmd;
5402 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5403 		if (rc < 0)     /* scsi_dma_map failed. */
5404 			rc = SCSI_MLQUEUE_HOST_BUSY;
5405 	} else if (dev->hba_ioaccel_enabled) {
5406 		hpsa_cmd_init(h, c->cmdindex, c);
5407 		c->cmd_type = CMD_SCSI;
5408 		c->scsi_cmd = cmd;
5409 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5410 		if (rc < 0)     /* scsi_dma_map failed. */
5411 			rc = SCSI_MLQUEUE_HOST_BUSY;
5412 	}
5413 	return rc;
5414 }
5415 
5416 static void hpsa_command_resubmit_worker(struct work_struct *work)
5417 {
5418 	struct scsi_cmnd *cmd;
5419 	struct hpsa_scsi_dev_t *dev;
5420 	struct CommandList *c = container_of(work, struct CommandList, work);
5421 
5422 	cmd = c->scsi_cmd;
5423 	dev = cmd->device->hostdata;
5424 	if (!dev) {
5425 		cmd->result = DID_NO_CONNECT << 16;
5426 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5427 	}
5428 	if (c->reset_pending)
5429 		return hpsa_cmd_resolve_and_free(c->h, c);
5430 	if (c->abort_pending)
5431 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5432 	if (c->cmd_type == CMD_IOACCEL2) {
5433 		struct ctlr_info *h = c->h;
5434 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5435 		int rc;
5436 
5437 		if (c2->error_data.serv_response ==
5438 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5439 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5440 			if (rc == 0)
5441 				return;
5442 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5443 				/*
5444 				 * If we get here, it means dma mapping failed.
5445 				 * Try again via scsi mid layer, which will
5446 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5447 				 */
5448 				cmd->result = DID_IMM_RETRY << 16;
5449 				return hpsa_cmd_free_and_done(h, c, cmd);
5450 			}
5451 			/* else, fall thru and resubmit down CISS path */
5452 		}
5453 	}
5454 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5455 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5456 		/*
5457 		 * If we get here, it means dma mapping failed. Try
5458 		 * again via scsi mid layer, which will then get
5459 		 * SCSI_MLQUEUE_HOST_BUSY.
5460 		 *
5461 		 * hpsa_ciss_submit will have already freed c
5462 		 * if it encountered a dma mapping failure.
5463 		 */
5464 		cmd->result = DID_IMM_RETRY << 16;
5465 		cmd->scsi_done(cmd);
5466 	}
5467 }
5468 
5469 /* Running in struct Scsi_Host->host_lock less mode */
5470 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5471 {
5472 	struct ctlr_info *h;
5473 	struct hpsa_scsi_dev_t *dev;
5474 	unsigned char scsi3addr[8];
5475 	struct CommandList *c;
5476 	int rc = 0;
5477 
5478 	/* Get the ptr to our adapter structure out of cmd->host. */
5479 	h = sdev_to_hba(cmd->device);
5480 
5481 	BUG_ON(cmd->request->tag < 0);
5482 
5483 	dev = cmd->device->hostdata;
5484 	if (!dev) {
5485 		cmd->result = NOT_READY << 16; /* host byte */
5486 		cmd->scsi_done(cmd);
5487 		return 0;
5488 	}
5489 
5490 	if (dev->removed) {
5491 		cmd->result = DID_NO_CONNECT << 16;
5492 		cmd->scsi_done(cmd);
5493 		return 0;
5494 	}
5495 
5496 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5497 
5498 	if (unlikely(lockup_detected(h))) {
5499 		cmd->result = DID_NO_CONNECT << 16;
5500 		cmd->scsi_done(cmd);
5501 		return 0;
5502 	}
5503 	c = cmd_tagged_alloc(h, cmd);
5504 
5505 	/*
5506 	 * Call alternate submit routine for I/O accelerated commands.
5507 	 * Retries always go down the normal I/O path.
5508 	 */
5509 	if (likely(cmd->retries == 0 &&
5510 		cmd->request->cmd_type == REQ_TYPE_FS &&
5511 		h->acciopath_status)) {
5512 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5513 		if (rc == 0)
5514 			return 0;
5515 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5516 			hpsa_cmd_resolve_and_free(h, c);
5517 			return SCSI_MLQUEUE_HOST_BUSY;
5518 		}
5519 	}
5520 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5521 }
5522 
5523 static void hpsa_scan_complete(struct ctlr_info *h)
5524 {
5525 	unsigned long flags;
5526 
5527 	spin_lock_irqsave(&h->scan_lock, flags);
5528 	h->scan_finished = 1;
5529 	wake_up_all(&h->scan_wait_queue);
5530 	spin_unlock_irqrestore(&h->scan_lock, flags);
5531 }
5532 
5533 static void hpsa_scan_start(struct Scsi_Host *sh)
5534 {
5535 	struct ctlr_info *h = shost_to_hba(sh);
5536 	unsigned long flags;
5537 
5538 	/*
5539 	 * Don't let rescans be initiated on a controller known to be locked
5540 	 * up.  If the controller locks up *during* a rescan, that thread is
5541 	 * probably hosed, but at least we can prevent new rescan threads from
5542 	 * piling up on a locked up controller.
5543 	 */
5544 	if (unlikely(lockup_detected(h)))
5545 		return hpsa_scan_complete(h);
5546 
5547 	/* wait until any scan already in progress is finished. */
5548 	while (1) {
5549 		spin_lock_irqsave(&h->scan_lock, flags);
5550 		if (h->scan_finished)
5551 			break;
5552 		spin_unlock_irqrestore(&h->scan_lock, flags);
5553 		wait_event(h->scan_wait_queue, h->scan_finished);
5554 		/* Note: We don't need to worry about a race between this
5555 		 * thread and driver unload because the midlayer will
5556 		 * have incremented the reference count, so unload won't
5557 		 * happen if we're in here.
5558 		 */
5559 	}
5560 	h->scan_finished = 0; /* mark scan as in progress */
5561 	spin_unlock_irqrestore(&h->scan_lock, flags);
5562 
5563 	if (unlikely(lockup_detected(h)))
5564 		return hpsa_scan_complete(h);
5565 
5566 	hpsa_update_scsi_devices(h);
5567 
5568 	hpsa_scan_complete(h);
5569 }
5570 
5571 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5572 {
5573 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5574 
5575 	if (!logical_drive)
5576 		return -ENODEV;
5577 
5578 	if (qdepth < 1)
5579 		qdepth = 1;
5580 	else if (qdepth > logical_drive->queue_depth)
5581 		qdepth = logical_drive->queue_depth;
5582 
5583 	return scsi_change_queue_depth(sdev, qdepth);
5584 }
5585 
5586 static int hpsa_scan_finished(struct Scsi_Host *sh,
5587 	unsigned long elapsed_time)
5588 {
5589 	struct ctlr_info *h = shost_to_hba(sh);
5590 	unsigned long flags;
5591 	int finished;
5592 
5593 	spin_lock_irqsave(&h->scan_lock, flags);
5594 	finished = h->scan_finished;
5595 	spin_unlock_irqrestore(&h->scan_lock, flags);
5596 	return finished;
5597 }
5598 
5599 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5600 {
5601 	struct Scsi_Host *sh;
5602 
5603 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5604 	if (sh == NULL) {
5605 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5606 		return -ENOMEM;
5607 	}
5608 
5609 	sh->io_port = 0;
5610 	sh->n_io_port = 0;
5611 	sh->this_id = -1;
5612 	sh->max_channel = 3;
5613 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5614 	sh->max_lun = HPSA_MAX_LUN;
5615 	sh->max_id = HPSA_MAX_LUN;
5616 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5617 	sh->cmd_per_lun = sh->can_queue;
5618 	sh->sg_tablesize = h->maxsgentries;
5619 	sh->transportt = hpsa_sas_transport_template;
5620 	sh->hostdata[0] = (unsigned long) h;
5621 	sh->irq = h->intr[h->intr_mode];
5622 	sh->unique_id = sh->irq;
5623 
5624 	h->scsi_host = sh;
5625 	return 0;
5626 }
5627 
5628 static int hpsa_scsi_add_host(struct ctlr_info *h)
5629 {
5630 	int rv;
5631 
5632 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5633 	if (rv) {
5634 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5635 		return rv;
5636 	}
5637 	scsi_scan_host(h->scsi_host);
5638 	return 0;
5639 }
5640 
5641 /*
5642  * The block layer has already gone to the trouble of picking out a unique,
5643  * small-integer tag for this request.  We use an offset from that value as
5644  * an index to select our command block.  (The offset allows us to reserve the
5645  * low-numbered entries for our own uses.)
5646  */
5647 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5648 {
5649 	int idx = scmd->request->tag;
5650 
5651 	if (idx < 0)
5652 		return idx;
5653 
5654 	/* Offset to leave space for internal cmds. */
5655 	return idx += HPSA_NRESERVED_CMDS;
5656 }
5657 
5658 /*
5659  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5660  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5661  */
5662 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5663 				struct CommandList *c, unsigned char lunaddr[],
5664 				int reply_queue)
5665 {
5666 	int rc;
5667 
5668 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5669 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5670 			NULL, 0, 0, lunaddr, TYPE_CMD);
5671 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5672 	if (rc)
5673 		return rc;
5674 	/* no unmap needed here because no data xfer. */
5675 
5676 	/* Check if the unit is already ready. */
5677 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5678 		return 0;
5679 
5680 	/*
5681 	 * The first command sent after reset will receive "unit attention" to
5682 	 * indicate that the LUN has been reset...this is actually what we're
5683 	 * looking for (but, success is good too).
5684 	 */
5685 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5686 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5687 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5688 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5689 		return 0;
5690 
5691 	return 1;
5692 }
5693 
5694 /*
5695  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5696  * returns zero when the unit is ready, and non-zero when giving up.
5697  */
5698 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5699 				struct CommandList *c,
5700 				unsigned char lunaddr[], int reply_queue)
5701 {
5702 	int rc;
5703 	int count = 0;
5704 	int waittime = 1; /* seconds */
5705 
5706 	/* Send test unit ready until device ready, or give up. */
5707 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5708 
5709 		/*
5710 		 * Wait for a bit.  do this first, because if we send
5711 		 * the TUR right away, the reset will just abort it.
5712 		 */
5713 		msleep(1000 * waittime);
5714 
5715 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5716 		if (!rc)
5717 			break;
5718 
5719 		/* Increase wait time with each try, up to a point. */
5720 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5721 			waittime *= 2;
5722 
5723 		dev_warn(&h->pdev->dev,
5724 			 "waiting %d secs for device to become ready.\n",
5725 			 waittime);
5726 	}
5727 
5728 	return rc;
5729 }
5730 
5731 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5732 					   unsigned char lunaddr[],
5733 					   int reply_queue)
5734 {
5735 	int first_queue;
5736 	int last_queue;
5737 	int rq;
5738 	int rc = 0;
5739 	struct CommandList *c;
5740 
5741 	c = cmd_alloc(h);
5742 
5743 	/*
5744 	 * If no specific reply queue was requested, then send the TUR
5745 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5746 	 * the loop exactly once using only the specified queue.
5747 	 */
5748 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5749 		first_queue = 0;
5750 		last_queue = h->nreply_queues - 1;
5751 	} else {
5752 		first_queue = reply_queue;
5753 		last_queue = reply_queue;
5754 	}
5755 
5756 	for (rq = first_queue; rq <= last_queue; rq++) {
5757 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5758 		if (rc)
5759 			break;
5760 	}
5761 
5762 	if (rc)
5763 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5764 	else
5765 		dev_warn(&h->pdev->dev, "device is ready.\n");
5766 
5767 	cmd_free(h, c);
5768 	return rc;
5769 }
5770 
5771 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5772  * complaining.  Doing a host- or bus-reset can't do anything good here.
5773  */
5774 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5775 {
5776 	int rc;
5777 	struct ctlr_info *h;
5778 	struct hpsa_scsi_dev_t *dev;
5779 	u8 reset_type;
5780 	char msg[48];
5781 
5782 	/* find the controller to which the command to be aborted was sent */
5783 	h = sdev_to_hba(scsicmd->device);
5784 	if (h == NULL) /* paranoia */
5785 		return FAILED;
5786 
5787 	if (lockup_detected(h))
5788 		return FAILED;
5789 
5790 	dev = scsicmd->device->hostdata;
5791 	if (!dev) {
5792 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5793 		return FAILED;
5794 	}
5795 
5796 	/* if controller locked up, we can guarantee command won't complete */
5797 	if (lockup_detected(h)) {
5798 		snprintf(msg, sizeof(msg),
5799 			 "cmd %d RESET FAILED, lockup detected",
5800 			 hpsa_get_cmd_index(scsicmd));
5801 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5802 		return FAILED;
5803 	}
5804 
5805 	/* this reset request might be the result of a lockup; check */
5806 	if (detect_controller_lockup(h)) {
5807 		snprintf(msg, sizeof(msg),
5808 			 "cmd %d RESET FAILED, new lockup detected",
5809 			 hpsa_get_cmd_index(scsicmd));
5810 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5811 		return FAILED;
5812 	}
5813 
5814 	/* Do not attempt on controller */
5815 	if (is_hba_lunid(dev->scsi3addr))
5816 		return SUCCESS;
5817 
5818 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5819 		reset_type = HPSA_DEVICE_RESET_MSG;
5820 	else
5821 		reset_type = HPSA_PHYS_TARGET_RESET;
5822 
5823 	sprintf(msg, "resetting %s",
5824 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5825 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5826 
5827 	h->reset_in_progress = 1;
5828 
5829 	/* send a reset to the SCSI LUN which the command was sent to */
5830 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5831 			   DEFAULT_REPLY_QUEUE);
5832 	sprintf(msg, "reset %s %s",
5833 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5834 		rc == 0 ? "completed successfully" : "failed");
5835 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5836 	h->reset_in_progress = 0;
5837 	return rc == 0 ? SUCCESS : FAILED;
5838 }
5839 
5840 static void swizzle_abort_tag(u8 *tag)
5841 {
5842 	u8 original_tag[8];
5843 
5844 	memcpy(original_tag, tag, 8);
5845 	tag[0] = original_tag[3];
5846 	tag[1] = original_tag[2];
5847 	tag[2] = original_tag[1];
5848 	tag[3] = original_tag[0];
5849 	tag[4] = original_tag[7];
5850 	tag[5] = original_tag[6];
5851 	tag[6] = original_tag[5];
5852 	tag[7] = original_tag[4];
5853 }
5854 
5855 static void hpsa_get_tag(struct ctlr_info *h,
5856 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5857 {
5858 	u64 tag;
5859 	if (c->cmd_type == CMD_IOACCEL1) {
5860 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5861 			&h->ioaccel_cmd_pool[c->cmdindex];
5862 		tag = le64_to_cpu(cm1->tag);
5863 		*tagupper = cpu_to_le32(tag >> 32);
5864 		*taglower = cpu_to_le32(tag);
5865 		return;
5866 	}
5867 	if (c->cmd_type == CMD_IOACCEL2) {
5868 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5869 			&h->ioaccel2_cmd_pool[c->cmdindex];
5870 		/* upper tag not used in ioaccel2 mode */
5871 		memset(tagupper, 0, sizeof(*tagupper));
5872 		*taglower = cm2->Tag;
5873 		return;
5874 	}
5875 	tag = le64_to_cpu(c->Header.tag);
5876 	*tagupper = cpu_to_le32(tag >> 32);
5877 	*taglower = cpu_to_le32(tag);
5878 }
5879 
5880 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5881 	struct CommandList *abort, int reply_queue)
5882 {
5883 	int rc = IO_OK;
5884 	struct CommandList *c;
5885 	struct ErrorInfo *ei;
5886 	__le32 tagupper, taglower;
5887 
5888 	c = cmd_alloc(h);
5889 
5890 	/* fill_cmd can't fail here, no buffer to map */
5891 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5892 		0, 0, scsi3addr, TYPE_MSG);
5893 	if (h->needs_abort_tags_swizzled)
5894 		swizzle_abort_tag(&c->Request.CDB[4]);
5895 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5896 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5897 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5898 		__func__, tagupper, taglower);
5899 	/* no unmap needed here because no data xfer. */
5900 
5901 	ei = c->err_info;
5902 	switch (ei->CommandStatus) {
5903 	case CMD_SUCCESS:
5904 		break;
5905 	case CMD_TMF_STATUS:
5906 		rc = hpsa_evaluate_tmf_status(h, c);
5907 		break;
5908 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5909 		rc = -1;
5910 		break;
5911 	default:
5912 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5913 			__func__, tagupper, taglower);
5914 		hpsa_scsi_interpret_error(h, c);
5915 		rc = -1;
5916 		break;
5917 	}
5918 	cmd_free(h, c);
5919 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5920 		__func__, tagupper, taglower);
5921 	return rc;
5922 }
5923 
5924 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5925 	struct CommandList *command_to_abort, int reply_queue)
5926 {
5927 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5928 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5929 	struct io_accel2_cmd *c2a =
5930 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5931 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5932 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5933 
5934 	if (!dev)
5935 		return;
5936 
5937 	/*
5938 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5939 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5940 	 * actually fits, and doesn't overrun the error info space.
5941 	 */
5942 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5943 			sizeof(struct io_accel2_cmd));
5944 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5945 			offsetof(struct hpsa_tmf_struct, error_len) +
5946 				sizeof(ac->error_len));
5947 
5948 	c->cmd_type = IOACCEL2_TMF;
5949 	c->scsi_cmd = SCSI_CMD_BUSY;
5950 
5951 	/* Adjust the DMA address to point to the accelerated command buffer */
5952 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5953 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5954 	BUG_ON(c->busaddr & 0x0000007F);
5955 
5956 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5957 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5958 	ac->reply_queue = reply_queue;
5959 	ac->tmf = IOACCEL2_TMF_ABORT;
5960 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5961 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5962 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5963 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5964 	ac->error_ptr = cpu_to_le64(c->busaddr +
5965 			offsetof(struct io_accel2_cmd, error_data));
5966 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5967 }
5968 
5969 /* ioaccel2 path firmware cannot handle abort task requests.
5970  * Change abort requests to physical target reset, and send to the
5971  * address of the physical disk used for the ioaccel 2 command.
5972  * Return 0 on success (IO_OK)
5973  *	 -1 on failure
5974  */
5975 
5976 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5977 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5978 {
5979 	int rc = IO_OK;
5980 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5981 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5982 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5983 	unsigned char *psa = &phys_scsi3addr[0];
5984 
5985 	/* Get a pointer to the hpsa logical device. */
5986 	scmd = abort->scsi_cmd;
5987 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5988 	if (dev == NULL) {
5989 		dev_warn(&h->pdev->dev,
5990 			"Cannot abort: no device pointer for command.\n");
5991 			return -1; /* not abortable */
5992 	}
5993 
5994 	if (h->raid_offload_debug > 0)
5995 		dev_info(&h->pdev->dev,
5996 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5997 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5998 			"Reset as abort",
5999 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
6000 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
6001 
6002 	if (!dev->offload_enabled) {
6003 		dev_warn(&h->pdev->dev,
6004 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6005 		return -1; /* not abortable */
6006 	}
6007 
6008 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6009 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6010 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6011 		return -1; /* not abortable */
6012 	}
6013 
6014 	/* send the reset */
6015 	if (h->raid_offload_debug > 0)
6016 		dev_info(&h->pdev->dev,
6017 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6018 			psa[0], psa[1], psa[2], psa[3],
6019 			psa[4], psa[5], psa[6], psa[7]);
6020 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6021 	if (rc != 0) {
6022 		dev_warn(&h->pdev->dev,
6023 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6024 			psa[0], psa[1], psa[2], psa[3],
6025 			psa[4], psa[5], psa[6], psa[7]);
6026 		return rc; /* failed to reset */
6027 	}
6028 
6029 	/* wait for device to recover */
6030 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6031 		dev_warn(&h->pdev->dev,
6032 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6033 			psa[0], psa[1], psa[2], psa[3],
6034 			psa[4], psa[5], psa[6], psa[7]);
6035 		return -1;  /* failed to recover */
6036 	}
6037 
6038 	/* device recovered */
6039 	dev_info(&h->pdev->dev,
6040 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6041 		psa[0], psa[1], psa[2], psa[3],
6042 		psa[4], psa[5], psa[6], psa[7]);
6043 
6044 	return rc; /* success */
6045 }
6046 
6047 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6048 	struct CommandList *abort, int reply_queue)
6049 {
6050 	int rc = IO_OK;
6051 	struct CommandList *c;
6052 	__le32 taglower, tagupper;
6053 	struct hpsa_scsi_dev_t *dev;
6054 	struct io_accel2_cmd *c2;
6055 
6056 	dev = abort->scsi_cmd->device->hostdata;
6057 	if (!dev)
6058 		return -1;
6059 
6060 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6061 		return -1;
6062 
6063 	c = cmd_alloc(h);
6064 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6065 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6066 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6067 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6068 	dev_dbg(&h->pdev->dev,
6069 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6070 		__func__, tagupper, taglower);
6071 	/* no unmap needed here because no data xfer. */
6072 
6073 	dev_dbg(&h->pdev->dev,
6074 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6075 		__func__, tagupper, taglower, c2->error_data.serv_response);
6076 	switch (c2->error_data.serv_response) {
6077 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6078 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6079 		rc = 0;
6080 		break;
6081 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6082 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6083 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6084 		rc = -1;
6085 		break;
6086 	default:
6087 		dev_warn(&h->pdev->dev,
6088 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6089 			__func__, tagupper, taglower,
6090 			c2->error_data.serv_response);
6091 		rc = -1;
6092 	}
6093 	cmd_free(h, c);
6094 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6095 		tagupper, taglower);
6096 	return rc;
6097 }
6098 
6099 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6100 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6101 {
6102 	/*
6103 	 * ioccelerator mode 2 commands should be aborted via the
6104 	 * accelerated path, since RAID path is unaware of these commands,
6105 	 * but not all underlying firmware can handle abort TMF.
6106 	 * Change abort to physical device reset when abort TMF is unsupported.
6107 	 */
6108 	if (abort->cmd_type == CMD_IOACCEL2) {
6109 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6110 			dev->physical_device)
6111 			return hpsa_send_abort_ioaccel2(h, abort,
6112 						reply_queue);
6113 		else
6114 			return hpsa_send_reset_as_abort_ioaccel2(h,
6115 							dev->scsi3addr,
6116 							abort, reply_queue);
6117 	}
6118 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6119 }
6120 
6121 /* Find out which reply queue a command was meant to return on */
6122 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6123 					struct CommandList *c)
6124 {
6125 	if (c->cmd_type == CMD_IOACCEL2)
6126 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6127 	return c->Header.ReplyQueue;
6128 }
6129 
6130 /*
6131  * Limit concurrency of abort commands to prevent
6132  * over-subscription of commands
6133  */
6134 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6135 {
6136 #define ABORT_CMD_WAIT_MSECS 5000
6137 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6138 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6139 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6140 }
6141 
6142 /* Send an abort for the specified command.
6143  *	If the device and controller support it,
6144  *		send a task abort request.
6145  */
6146 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6147 {
6148 
6149 	int rc;
6150 	struct ctlr_info *h;
6151 	struct hpsa_scsi_dev_t *dev;
6152 	struct CommandList *abort; /* pointer to command to be aborted */
6153 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6154 	char msg[256];		/* For debug messaging. */
6155 	int ml = 0;
6156 	__le32 tagupper, taglower;
6157 	int refcount, reply_queue;
6158 
6159 	if (sc == NULL)
6160 		return FAILED;
6161 
6162 	if (sc->device == NULL)
6163 		return FAILED;
6164 
6165 	/* Find the controller of the command to be aborted */
6166 	h = sdev_to_hba(sc->device);
6167 	if (h == NULL)
6168 		return FAILED;
6169 
6170 	/* Find the device of the command to be aborted */
6171 	dev = sc->device->hostdata;
6172 	if (!dev) {
6173 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6174 				msg);
6175 		return FAILED;
6176 	}
6177 
6178 	/* If controller locked up, we can guarantee command won't complete */
6179 	if (lockup_detected(h)) {
6180 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6181 					"ABORT FAILED, lockup detected");
6182 		return FAILED;
6183 	}
6184 
6185 	/* This is a good time to check if controller lockup has occurred */
6186 	if (detect_controller_lockup(h)) {
6187 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6188 					"ABORT FAILED, new lockup detected");
6189 		return FAILED;
6190 	}
6191 
6192 	/* Check that controller supports some kind of task abort */
6193 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6194 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6195 		return FAILED;
6196 
6197 	memset(msg, 0, sizeof(msg));
6198 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6199 		h->scsi_host->host_no, sc->device->channel,
6200 		sc->device->id, sc->device->lun,
6201 		"Aborting command", sc);
6202 
6203 	/* Get SCSI command to be aborted */
6204 	abort = (struct CommandList *) sc->host_scribble;
6205 	if (abort == NULL) {
6206 		/* This can happen if the command already completed. */
6207 		return SUCCESS;
6208 	}
6209 	refcount = atomic_inc_return(&abort->refcount);
6210 	if (refcount == 1) { /* Command is done already. */
6211 		cmd_free(h, abort);
6212 		return SUCCESS;
6213 	}
6214 
6215 	/* Don't bother trying the abort if we know it won't work. */
6216 	if (abort->cmd_type != CMD_IOACCEL2 &&
6217 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6218 		cmd_free(h, abort);
6219 		return FAILED;
6220 	}
6221 
6222 	/*
6223 	 * Check that we're aborting the right command.
6224 	 * It's possible the CommandList already completed and got re-used.
6225 	 */
6226 	if (abort->scsi_cmd != sc) {
6227 		cmd_free(h, abort);
6228 		return SUCCESS;
6229 	}
6230 
6231 	abort->abort_pending = true;
6232 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6233 	reply_queue = hpsa_extract_reply_queue(h, abort);
6234 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6235 	as  = abort->scsi_cmd;
6236 	if (as != NULL)
6237 		ml += sprintf(msg+ml,
6238 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6239 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6240 			as->serial_number);
6241 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6242 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6243 
6244 	/*
6245 	 * Command is in flight, or possibly already completed
6246 	 * by the firmware (but not to the scsi mid layer) but we can't
6247 	 * distinguish which.  Send the abort down.
6248 	 */
6249 	if (wait_for_available_abort_cmd(h)) {
6250 		dev_warn(&h->pdev->dev,
6251 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6252 			msg);
6253 		cmd_free(h, abort);
6254 		return FAILED;
6255 	}
6256 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6257 	atomic_inc(&h->abort_cmds_available);
6258 	wake_up_all(&h->abort_cmd_wait_queue);
6259 	if (rc != 0) {
6260 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6261 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6262 				"FAILED to abort command");
6263 		cmd_free(h, abort);
6264 		return FAILED;
6265 	}
6266 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6267 	wait_event(h->event_sync_wait_queue,
6268 		   abort->scsi_cmd != sc || lockup_detected(h));
6269 	cmd_free(h, abort);
6270 	return !lockup_detected(h) ? SUCCESS : FAILED;
6271 }
6272 
6273 /*
6274  * For operations with an associated SCSI command, a command block is allocated
6275  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6276  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6277  * the complement, although cmd_free() may be called instead.
6278  */
6279 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6280 					    struct scsi_cmnd *scmd)
6281 {
6282 	int idx = hpsa_get_cmd_index(scmd);
6283 	struct CommandList *c = h->cmd_pool + idx;
6284 
6285 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6286 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6287 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6288 		/* The index value comes from the block layer, so if it's out of
6289 		 * bounds, it's probably not our bug.
6290 		 */
6291 		BUG();
6292 	}
6293 
6294 	atomic_inc(&c->refcount);
6295 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6296 		/*
6297 		 * We expect that the SCSI layer will hand us a unique tag
6298 		 * value.  Thus, there should never be a collision here between
6299 		 * two requests...because if the selected command isn't idle
6300 		 * then someone is going to be very disappointed.
6301 		 */
6302 		dev_err(&h->pdev->dev,
6303 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6304 			idx);
6305 		if (c->scsi_cmd != NULL)
6306 			scsi_print_command(c->scsi_cmd);
6307 		scsi_print_command(scmd);
6308 	}
6309 
6310 	hpsa_cmd_partial_init(h, idx, c);
6311 	return c;
6312 }
6313 
6314 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6315 {
6316 	/*
6317 	 * Release our reference to the block.  We don't need to do anything
6318 	 * else to free it, because it is accessed by index.  (There's no point
6319 	 * in checking the result of the decrement, since we cannot guarantee
6320 	 * that there isn't a concurrent abort which is also accessing it.)
6321 	 */
6322 	(void)atomic_dec(&c->refcount);
6323 }
6324 
6325 /*
6326  * For operations that cannot sleep, a command block is allocated at init,
6327  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6328  * which ones are free or in use.  Lock must be held when calling this.
6329  * cmd_free() is the complement.
6330  * This function never gives up and returns NULL.  If it hangs,
6331  * another thread must call cmd_free() to free some tags.
6332  */
6333 
6334 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6335 {
6336 	struct CommandList *c;
6337 	int refcount, i;
6338 	int offset = 0;
6339 
6340 	/*
6341 	 * There is some *extremely* small but non-zero chance that that
6342 	 * multiple threads could get in here, and one thread could
6343 	 * be scanning through the list of bits looking for a free
6344 	 * one, but the free ones are always behind him, and other
6345 	 * threads sneak in behind him and eat them before he can
6346 	 * get to them, so that while there is always a free one, a
6347 	 * very unlucky thread might be starved anyway, never able to
6348 	 * beat the other threads.  In reality, this happens so
6349 	 * infrequently as to be indistinguishable from never.
6350 	 *
6351 	 * Note that we start allocating commands before the SCSI host structure
6352 	 * is initialized.  Since the search starts at bit zero, this
6353 	 * all works, since we have at least one command structure available;
6354 	 * however, it means that the structures with the low indexes have to be
6355 	 * reserved for driver-initiated requests, while requests from the block
6356 	 * layer will use the higher indexes.
6357 	 */
6358 
6359 	for (;;) {
6360 		i = find_next_zero_bit(h->cmd_pool_bits,
6361 					HPSA_NRESERVED_CMDS,
6362 					offset);
6363 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6364 			offset = 0;
6365 			continue;
6366 		}
6367 		c = h->cmd_pool + i;
6368 		refcount = atomic_inc_return(&c->refcount);
6369 		if (unlikely(refcount > 1)) {
6370 			cmd_free(h, c); /* already in use */
6371 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6372 			continue;
6373 		}
6374 		set_bit(i & (BITS_PER_LONG - 1),
6375 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6376 		break; /* it's ours now. */
6377 	}
6378 	hpsa_cmd_partial_init(h, i, c);
6379 	return c;
6380 }
6381 
6382 /*
6383  * This is the complementary operation to cmd_alloc().  Note, however, in some
6384  * corner cases it may also be used to free blocks allocated by
6385  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6386  * the clear-bit is harmless.
6387  */
6388 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6389 {
6390 	if (atomic_dec_and_test(&c->refcount)) {
6391 		int i;
6392 
6393 		i = c - h->cmd_pool;
6394 		clear_bit(i & (BITS_PER_LONG - 1),
6395 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6396 	}
6397 }
6398 
6399 #ifdef CONFIG_COMPAT
6400 
6401 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6402 	void __user *arg)
6403 {
6404 	IOCTL32_Command_struct __user *arg32 =
6405 	    (IOCTL32_Command_struct __user *) arg;
6406 	IOCTL_Command_struct arg64;
6407 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6408 	int err;
6409 	u32 cp;
6410 
6411 	memset(&arg64, 0, sizeof(arg64));
6412 	err = 0;
6413 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6414 			   sizeof(arg64.LUN_info));
6415 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6416 			   sizeof(arg64.Request));
6417 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6418 			   sizeof(arg64.error_info));
6419 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6420 	err |= get_user(cp, &arg32->buf);
6421 	arg64.buf = compat_ptr(cp);
6422 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6423 
6424 	if (err)
6425 		return -EFAULT;
6426 
6427 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6428 	if (err)
6429 		return err;
6430 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6431 			 sizeof(arg32->error_info));
6432 	if (err)
6433 		return -EFAULT;
6434 	return err;
6435 }
6436 
6437 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6438 	int cmd, void __user *arg)
6439 {
6440 	BIG_IOCTL32_Command_struct __user *arg32 =
6441 	    (BIG_IOCTL32_Command_struct __user *) arg;
6442 	BIG_IOCTL_Command_struct arg64;
6443 	BIG_IOCTL_Command_struct __user *p =
6444 	    compat_alloc_user_space(sizeof(arg64));
6445 	int err;
6446 	u32 cp;
6447 
6448 	memset(&arg64, 0, sizeof(arg64));
6449 	err = 0;
6450 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6451 			   sizeof(arg64.LUN_info));
6452 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6453 			   sizeof(arg64.Request));
6454 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6455 			   sizeof(arg64.error_info));
6456 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6457 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6458 	err |= get_user(cp, &arg32->buf);
6459 	arg64.buf = compat_ptr(cp);
6460 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6461 
6462 	if (err)
6463 		return -EFAULT;
6464 
6465 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6466 	if (err)
6467 		return err;
6468 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6469 			 sizeof(arg32->error_info));
6470 	if (err)
6471 		return -EFAULT;
6472 	return err;
6473 }
6474 
6475 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6476 {
6477 	switch (cmd) {
6478 	case CCISS_GETPCIINFO:
6479 	case CCISS_GETINTINFO:
6480 	case CCISS_SETINTINFO:
6481 	case CCISS_GETNODENAME:
6482 	case CCISS_SETNODENAME:
6483 	case CCISS_GETHEARTBEAT:
6484 	case CCISS_GETBUSTYPES:
6485 	case CCISS_GETFIRMVER:
6486 	case CCISS_GETDRIVVER:
6487 	case CCISS_REVALIDVOLS:
6488 	case CCISS_DEREGDISK:
6489 	case CCISS_REGNEWDISK:
6490 	case CCISS_REGNEWD:
6491 	case CCISS_RESCANDISK:
6492 	case CCISS_GETLUNINFO:
6493 		return hpsa_ioctl(dev, cmd, arg);
6494 
6495 	case CCISS_PASSTHRU32:
6496 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6497 	case CCISS_BIG_PASSTHRU32:
6498 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6499 
6500 	default:
6501 		return -ENOIOCTLCMD;
6502 	}
6503 }
6504 #endif
6505 
6506 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6507 {
6508 	struct hpsa_pci_info pciinfo;
6509 
6510 	if (!argp)
6511 		return -EINVAL;
6512 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6513 	pciinfo.bus = h->pdev->bus->number;
6514 	pciinfo.dev_fn = h->pdev->devfn;
6515 	pciinfo.board_id = h->board_id;
6516 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6517 		return -EFAULT;
6518 	return 0;
6519 }
6520 
6521 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6522 {
6523 	DriverVer_type DriverVer;
6524 	unsigned char vmaj, vmin, vsubmin;
6525 	int rc;
6526 
6527 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6528 		&vmaj, &vmin, &vsubmin);
6529 	if (rc != 3) {
6530 		dev_info(&h->pdev->dev, "driver version string '%s' "
6531 			"unrecognized.", HPSA_DRIVER_VERSION);
6532 		vmaj = 0;
6533 		vmin = 0;
6534 		vsubmin = 0;
6535 	}
6536 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6537 	if (!argp)
6538 		return -EINVAL;
6539 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6540 		return -EFAULT;
6541 	return 0;
6542 }
6543 
6544 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6545 {
6546 	IOCTL_Command_struct iocommand;
6547 	struct CommandList *c;
6548 	char *buff = NULL;
6549 	u64 temp64;
6550 	int rc = 0;
6551 
6552 	if (!argp)
6553 		return -EINVAL;
6554 	if (!capable(CAP_SYS_RAWIO))
6555 		return -EPERM;
6556 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6557 		return -EFAULT;
6558 	if ((iocommand.buf_size < 1) &&
6559 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6560 		return -EINVAL;
6561 	}
6562 	if (iocommand.buf_size > 0) {
6563 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6564 		if (buff == NULL)
6565 			return -ENOMEM;
6566 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6567 			/* Copy the data into the buffer we created */
6568 			if (copy_from_user(buff, iocommand.buf,
6569 				iocommand.buf_size)) {
6570 				rc = -EFAULT;
6571 				goto out_kfree;
6572 			}
6573 		} else {
6574 			memset(buff, 0, iocommand.buf_size);
6575 		}
6576 	}
6577 	c = cmd_alloc(h);
6578 
6579 	/* Fill in the command type */
6580 	c->cmd_type = CMD_IOCTL_PEND;
6581 	c->scsi_cmd = SCSI_CMD_BUSY;
6582 	/* Fill in Command Header */
6583 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6584 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6585 		c->Header.SGList = 1;
6586 		c->Header.SGTotal = cpu_to_le16(1);
6587 	} else	{ /* no buffers to fill */
6588 		c->Header.SGList = 0;
6589 		c->Header.SGTotal = cpu_to_le16(0);
6590 	}
6591 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6592 
6593 	/* Fill in Request block */
6594 	memcpy(&c->Request, &iocommand.Request,
6595 		sizeof(c->Request));
6596 
6597 	/* Fill in the scatter gather information */
6598 	if (iocommand.buf_size > 0) {
6599 		temp64 = pci_map_single(h->pdev, buff,
6600 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6601 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6602 			c->SG[0].Addr = cpu_to_le64(0);
6603 			c->SG[0].Len = cpu_to_le32(0);
6604 			rc = -ENOMEM;
6605 			goto out;
6606 		}
6607 		c->SG[0].Addr = cpu_to_le64(temp64);
6608 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6609 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6610 	}
6611 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6612 					NO_TIMEOUT);
6613 	if (iocommand.buf_size > 0)
6614 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6615 	check_ioctl_unit_attention(h, c);
6616 	if (rc) {
6617 		rc = -EIO;
6618 		goto out;
6619 	}
6620 
6621 	/* Copy the error information out */
6622 	memcpy(&iocommand.error_info, c->err_info,
6623 		sizeof(iocommand.error_info));
6624 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6625 		rc = -EFAULT;
6626 		goto out;
6627 	}
6628 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6629 		iocommand.buf_size > 0) {
6630 		/* Copy the data out of the buffer we created */
6631 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6632 			rc = -EFAULT;
6633 			goto out;
6634 		}
6635 	}
6636 out:
6637 	cmd_free(h, c);
6638 out_kfree:
6639 	kfree(buff);
6640 	return rc;
6641 }
6642 
6643 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6644 {
6645 	BIG_IOCTL_Command_struct *ioc;
6646 	struct CommandList *c;
6647 	unsigned char **buff = NULL;
6648 	int *buff_size = NULL;
6649 	u64 temp64;
6650 	BYTE sg_used = 0;
6651 	int status = 0;
6652 	u32 left;
6653 	u32 sz;
6654 	BYTE __user *data_ptr;
6655 
6656 	if (!argp)
6657 		return -EINVAL;
6658 	if (!capable(CAP_SYS_RAWIO))
6659 		return -EPERM;
6660 	ioc = (BIG_IOCTL_Command_struct *)
6661 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6662 	if (!ioc) {
6663 		status = -ENOMEM;
6664 		goto cleanup1;
6665 	}
6666 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6667 		status = -EFAULT;
6668 		goto cleanup1;
6669 	}
6670 	if ((ioc->buf_size < 1) &&
6671 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6672 		status = -EINVAL;
6673 		goto cleanup1;
6674 	}
6675 	/* Check kmalloc limits  using all SGs */
6676 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6677 		status = -EINVAL;
6678 		goto cleanup1;
6679 	}
6680 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6681 		status = -EINVAL;
6682 		goto cleanup1;
6683 	}
6684 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6685 	if (!buff) {
6686 		status = -ENOMEM;
6687 		goto cleanup1;
6688 	}
6689 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6690 	if (!buff_size) {
6691 		status = -ENOMEM;
6692 		goto cleanup1;
6693 	}
6694 	left = ioc->buf_size;
6695 	data_ptr = ioc->buf;
6696 	while (left) {
6697 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6698 		buff_size[sg_used] = sz;
6699 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6700 		if (buff[sg_used] == NULL) {
6701 			status = -ENOMEM;
6702 			goto cleanup1;
6703 		}
6704 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6705 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6706 				status = -EFAULT;
6707 				goto cleanup1;
6708 			}
6709 		} else
6710 			memset(buff[sg_used], 0, sz);
6711 		left -= sz;
6712 		data_ptr += sz;
6713 		sg_used++;
6714 	}
6715 	c = cmd_alloc(h);
6716 
6717 	c->cmd_type = CMD_IOCTL_PEND;
6718 	c->scsi_cmd = SCSI_CMD_BUSY;
6719 	c->Header.ReplyQueue = 0;
6720 	c->Header.SGList = (u8) sg_used;
6721 	c->Header.SGTotal = cpu_to_le16(sg_used);
6722 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6723 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6724 	if (ioc->buf_size > 0) {
6725 		int i;
6726 		for (i = 0; i < sg_used; i++) {
6727 			temp64 = pci_map_single(h->pdev, buff[i],
6728 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6729 			if (dma_mapping_error(&h->pdev->dev,
6730 							(dma_addr_t) temp64)) {
6731 				c->SG[i].Addr = cpu_to_le64(0);
6732 				c->SG[i].Len = cpu_to_le32(0);
6733 				hpsa_pci_unmap(h->pdev, c, i,
6734 					PCI_DMA_BIDIRECTIONAL);
6735 				status = -ENOMEM;
6736 				goto cleanup0;
6737 			}
6738 			c->SG[i].Addr = cpu_to_le64(temp64);
6739 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6740 			c->SG[i].Ext = cpu_to_le32(0);
6741 		}
6742 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6743 	}
6744 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6745 						NO_TIMEOUT);
6746 	if (sg_used)
6747 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6748 	check_ioctl_unit_attention(h, c);
6749 	if (status) {
6750 		status = -EIO;
6751 		goto cleanup0;
6752 	}
6753 
6754 	/* Copy the error information out */
6755 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6756 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6757 		status = -EFAULT;
6758 		goto cleanup0;
6759 	}
6760 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6761 		int i;
6762 
6763 		/* Copy the data out of the buffer we created */
6764 		BYTE __user *ptr = ioc->buf;
6765 		for (i = 0; i < sg_used; i++) {
6766 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6767 				status = -EFAULT;
6768 				goto cleanup0;
6769 			}
6770 			ptr += buff_size[i];
6771 		}
6772 	}
6773 	status = 0;
6774 cleanup0:
6775 	cmd_free(h, c);
6776 cleanup1:
6777 	if (buff) {
6778 		int i;
6779 
6780 		for (i = 0; i < sg_used; i++)
6781 			kfree(buff[i]);
6782 		kfree(buff);
6783 	}
6784 	kfree(buff_size);
6785 	kfree(ioc);
6786 	return status;
6787 }
6788 
6789 static void check_ioctl_unit_attention(struct ctlr_info *h,
6790 	struct CommandList *c)
6791 {
6792 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6793 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6794 		(void) check_for_unit_attention(h, c);
6795 }
6796 
6797 /*
6798  * ioctl
6799  */
6800 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6801 {
6802 	struct ctlr_info *h;
6803 	void __user *argp = (void __user *)arg;
6804 	int rc;
6805 
6806 	h = sdev_to_hba(dev);
6807 
6808 	switch (cmd) {
6809 	case CCISS_DEREGDISK:
6810 	case CCISS_REGNEWDISK:
6811 	case CCISS_REGNEWD:
6812 		hpsa_scan_start(h->scsi_host);
6813 		return 0;
6814 	case CCISS_GETPCIINFO:
6815 		return hpsa_getpciinfo_ioctl(h, argp);
6816 	case CCISS_GETDRIVVER:
6817 		return hpsa_getdrivver_ioctl(h, argp);
6818 	case CCISS_PASSTHRU:
6819 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6820 			return -EAGAIN;
6821 		rc = hpsa_passthru_ioctl(h, argp);
6822 		atomic_inc(&h->passthru_cmds_avail);
6823 		return rc;
6824 	case CCISS_BIG_PASSTHRU:
6825 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6826 			return -EAGAIN;
6827 		rc = hpsa_big_passthru_ioctl(h, argp);
6828 		atomic_inc(&h->passthru_cmds_avail);
6829 		return rc;
6830 	default:
6831 		return -ENOTTY;
6832 	}
6833 }
6834 
6835 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6836 				u8 reset_type)
6837 {
6838 	struct CommandList *c;
6839 
6840 	c = cmd_alloc(h);
6841 
6842 	/* fill_cmd can't fail here, no data buffer to map */
6843 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6844 		RAID_CTLR_LUNID, TYPE_MSG);
6845 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6846 	c->waiting = NULL;
6847 	enqueue_cmd_and_start_io(h, c);
6848 	/* Don't wait for completion, the reset won't complete.  Don't free
6849 	 * the command either.  This is the last command we will send before
6850 	 * re-initializing everything, so it doesn't matter and won't leak.
6851 	 */
6852 	return;
6853 }
6854 
6855 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6856 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6857 	int cmd_type)
6858 {
6859 	int pci_dir = XFER_NONE;
6860 	u64 tag; /* for commands to be aborted */
6861 
6862 	c->cmd_type = CMD_IOCTL_PEND;
6863 	c->scsi_cmd = SCSI_CMD_BUSY;
6864 	c->Header.ReplyQueue = 0;
6865 	if (buff != NULL && size > 0) {
6866 		c->Header.SGList = 1;
6867 		c->Header.SGTotal = cpu_to_le16(1);
6868 	} else {
6869 		c->Header.SGList = 0;
6870 		c->Header.SGTotal = cpu_to_le16(0);
6871 	}
6872 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6873 
6874 	if (cmd_type == TYPE_CMD) {
6875 		switch (cmd) {
6876 		case HPSA_INQUIRY:
6877 			/* are we trying to read a vital product page */
6878 			if (page_code & VPD_PAGE) {
6879 				c->Request.CDB[1] = 0x01;
6880 				c->Request.CDB[2] = (page_code & 0xff);
6881 			}
6882 			c->Request.CDBLen = 6;
6883 			c->Request.type_attr_dir =
6884 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6885 			c->Request.Timeout = 0;
6886 			c->Request.CDB[0] = HPSA_INQUIRY;
6887 			c->Request.CDB[4] = size & 0xFF;
6888 			break;
6889 		case HPSA_REPORT_LOG:
6890 		case HPSA_REPORT_PHYS:
6891 			/* Talking to controller so It's a physical command
6892 			   mode = 00 target = 0.  Nothing to write.
6893 			 */
6894 			c->Request.CDBLen = 12;
6895 			c->Request.type_attr_dir =
6896 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6897 			c->Request.Timeout = 0;
6898 			c->Request.CDB[0] = cmd;
6899 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6900 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6901 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6902 			c->Request.CDB[9] = size & 0xFF;
6903 			break;
6904 		case BMIC_SENSE_DIAG_OPTIONS:
6905 			c->Request.CDBLen = 16;
6906 			c->Request.type_attr_dir =
6907 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6908 			c->Request.Timeout = 0;
6909 			/* Spec says this should be BMIC_WRITE */
6910 			c->Request.CDB[0] = BMIC_READ;
6911 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6912 			break;
6913 		case BMIC_SET_DIAG_OPTIONS:
6914 			c->Request.CDBLen = 16;
6915 			c->Request.type_attr_dir =
6916 					TYPE_ATTR_DIR(cmd_type,
6917 						ATTR_SIMPLE, XFER_WRITE);
6918 			c->Request.Timeout = 0;
6919 			c->Request.CDB[0] = BMIC_WRITE;
6920 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6921 			break;
6922 		case HPSA_CACHE_FLUSH:
6923 			c->Request.CDBLen = 12;
6924 			c->Request.type_attr_dir =
6925 					TYPE_ATTR_DIR(cmd_type,
6926 						ATTR_SIMPLE, XFER_WRITE);
6927 			c->Request.Timeout = 0;
6928 			c->Request.CDB[0] = BMIC_WRITE;
6929 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6930 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6931 			c->Request.CDB[8] = size & 0xFF;
6932 			break;
6933 		case TEST_UNIT_READY:
6934 			c->Request.CDBLen = 6;
6935 			c->Request.type_attr_dir =
6936 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6937 			c->Request.Timeout = 0;
6938 			break;
6939 		case HPSA_GET_RAID_MAP:
6940 			c->Request.CDBLen = 12;
6941 			c->Request.type_attr_dir =
6942 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6943 			c->Request.Timeout = 0;
6944 			c->Request.CDB[0] = HPSA_CISS_READ;
6945 			c->Request.CDB[1] = cmd;
6946 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6947 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6948 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6949 			c->Request.CDB[9] = size & 0xFF;
6950 			break;
6951 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6952 			c->Request.CDBLen = 10;
6953 			c->Request.type_attr_dir =
6954 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6955 			c->Request.Timeout = 0;
6956 			c->Request.CDB[0] = BMIC_READ;
6957 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6958 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6959 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6960 			break;
6961 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6962 			c->Request.CDBLen = 10;
6963 			c->Request.type_attr_dir =
6964 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6965 			c->Request.Timeout = 0;
6966 			c->Request.CDB[0] = BMIC_READ;
6967 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6968 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6969 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6970 			break;
6971 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6972 			c->Request.CDBLen = 10;
6973 			c->Request.type_attr_dir =
6974 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6975 			c->Request.Timeout = 0;
6976 			c->Request.CDB[0] = BMIC_READ;
6977 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6978 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6979 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6980 			break;
6981 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6982 			c->Request.CDBLen = 10;
6983 			c->Request.type_attr_dir =
6984 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6985 			c->Request.Timeout = 0;
6986 			c->Request.CDB[0] = BMIC_READ;
6987 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6988 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6989 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6990 			break;
6991 		case BMIC_IDENTIFY_CONTROLLER:
6992 			c->Request.CDBLen = 10;
6993 			c->Request.type_attr_dir =
6994 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6995 			c->Request.Timeout = 0;
6996 			c->Request.CDB[0] = BMIC_READ;
6997 			c->Request.CDB[1] = 0;
6998 			c->Request.CDB[2] = 0;
6999 			c->Request.CDB[3] = 0;
7000 			c->Request.CDB[4] = 0;
7001 			c->Request.CDB[5] = 0;
7002 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7003 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7004 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7005 			c->Request.CDB[9] = 0;
7006 			break;
7007 		default:
7008 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7009 			BUG();
7010 			return -1;
7011 		}
7012 	} else if (cmd_type == TYPE_MSG) {
7013 		switch (cmd) {
7014 
7015 		case  HPSA_PHYS_TARGET_RESET:
7016 			c->Request.CDBLen = 16;
7017 			c->Request.type_attr_dir =
7018 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7019 			c->Request.Timeout = 0; /* Don't time out */
7020 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7021 			c->Request.CDB[0] = HPSA_RESET;
7022 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7023 			/* Physical target reset needs no control bytes 4-7*/
7024 			c->Request.CDB[4] = 0x00;
7025 			c->Request.CDB[5] = 0x00;
7026 			c->Request.CDB[6] = 0x00;
7027 			c->Request.CDB[7] = 0x00;
7028 			break;
7029 		case  HPSA_DEVICE_RESET_MSG:
7030 			c->Request.CDBLen = 16;
7031 			c->Request.type_attr_dir =
7032 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7033 			c->Request.Timeout = 0; /* Don't time out */
7034 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7035 			c->Request.CDB[0] =  cmd;
7036 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7037 			/* If bytes 4-7 are zero, it means reset the */
7038 			/* LunID device */
7039 			c->Request.CDB[4] = 0x00;
7040 			c->Request.CDB[5] = 0x00;
7041 			c->Request.CDB[6] = 0x00;
7042 			c->Request.CDB[7] = 0x00;
7043 			break;
7044 		case  HPSA_ABORT_MSG:
7045 			memcpy(&tag, buff, sizeof(tag));
7046 			dev_dbg(&h->pdev->dev,
7047 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7048 				tag, c->Header.tag);
7049 			c->Request.CDBLen = 16;
7050 			c->Request.type_attr_dir =
7051 					TYPE_ATTR_DIR(cmd_type,
7052 						ATTR_SIMPLE, XFER_WRITE);
7053 			c->Request.Timeout = 0; /* Don't time out */
7054 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7055 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7056 			c->Request.CDB[2] = 0x00; /* reserved */
7057 			c->Request.CDB[3] = 0x00; /* reserved */
7058 			/* Tag to abort goes in CDB[4]-CDB[11] */
7059 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7060 			c->Request.CDB[12] = 0x00; /* reserved */
7061 			c->Request.CDB[13] = 0x00; /* reserved */
7062 			c->Request.CDB[14] = 0x00; /* reserved */
7063 			c->Request.CDB[15] = 0x00; /* reserved */
7064 		break;
7065 		default:
7066 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7067 				cmd);
7068 			BUG();
7069 		}
7070 	} else {
7071 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7072 		BUG();
7073 	}
7074 
7075 	switch (GET_DIR(c->Request.type_attr_dir)) {
7076 	case XFER_READ:
7077 		pci_dir = PCI_DMA_FROMDEVICE;
7078 		break;
7079 	case XFER_WRITE:
7080 		pci_dir = PCI_DMA_TODEVICE;
7081 		break;
7082 	case XFER_NONE:
7083 		pci_dir = PCI_DMA_NONE;
7084 		break;
7085 	default:
7086 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7087 	}
7088 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7089 		return -1;
7090 	return 0;
7091 }
7092 
7093 /*
7094  * Map (physical) PCI mem into (virtual) kernel space
7095  */
7096 static void __iomem *remap_pci_mem(ulong base, ulong size)
7097 {
7098 	ulong page_base = ((ulong) base) & PAGE_MASK;
7099 	ulong page_offs = ((ulong) base) - page_base;
7100 	void __iomem *page_remapped = ioremap_nocache(page_base,
7101 		page_offs + size);
7102 
7103 	return page_remapped ? (page_remapped + page_offs) : NULL;
7104 }
7105 
7106 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7107 {
7108 	return h->access.command_completed(h, q);
7109 }
7110 
7111 static inline bool interrupt_pending(struct ctlr_info *h)
7112 {
7113 	return h->access.intr_pending(h);
7114 }
7115 
7116 static inline long interrupt_not_for_us(struct ctlr_info *h)
7117 {
7118 	return (h->access.intr_pending(h) == 0) ||
7119 		(h->interrupts_enabled == 0);
7120 }
7121 
7122 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7123 	u32 raw_tag)
7124 {
7125 	if (unlikely(tag_index >= h->nr_cmds)) {
7126 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7127 		return 1;
7128 	}
7129 	return 0;
7130 }
7131 
7132 static inline void finish_cmd(struct CommandList *c)
7133 {
7134 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7135 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7136 			|| c->cmd_type == CMD_IOACCEL2))
7137 		complete_scsi_command(c);
7138 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7139 		complete(c->waiting);
7140 }
7141 
7142 /* process completion of an indexed ("direct lookup") command */
7143 static inline void process_indexed_cmd(struct ctlr_info *h,
7144 	u32 raw_tag)
7145 {
7146 	u32 tag_index;
7147 	struct CommandList *c;
7148 
7149 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7150 	if (!bad_tag(h, tag_index, raw_tag)) {
7151 		c = h->cmd_pool + tag_index;
7152 		finish_cmd(c);
7153 	}
7154 }
7155 
7156 /* Some controllers, like p400, will give us one interrupt
7157  * after a soft reset, even if we turned interrupts off.
7158  * Only need to check for this in the hpsa_xxx_discard_completions
7159  * functions.
7160  */
7161 static int ignore_bogus_interrupt(struct ctlr_info *h)
7162 {
7163 	if (likely(!reset_devices))
7164 		return 0;
7165 
7166 	if (likely(h->interrupts_enabled))
7167 		return 0;
7168 
7169 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7170 		"(known firmware bug.)  Ignoring.\n");
7171 
7172 	return 1;
7173 }
7174 
7175 /*
7176  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7177  * Relies on (h-q[x] == x) being true for x such that
7178  * 0 <= x < MAX_REPLY_QUEUES.
7179  */
7180 static struct ctlr_info *queue_to_hba(u8 *queue)
7181 {
7182 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7183 }
7184 
7185 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7186 {
7187 	struct ctlr_info *h = queue_to_hba(queue);
7188 	u8 q = *(u8 *) queue;
7189 	u32 raw_tag;
7190 
7191 	if (ignore_bogus_interrupt(h))
7192 		return IRQ_NONE;
7193 
7194 	if (interrupt_not_for_us(h))
7195 		return IRQ_NONE;
7196 	h->last_intr_timestamp = get_jiffies_64();
7197 	while (interrupt_pending(h)) {
7198 		raw_tag = get_next_completion(h, q);
7199 		while (raw_tag != FIFO_EMPTY)
7200 			raw_tag = next_command(h, q);
7201 	}
7202 	return IRQ_HANDLED;
7203 }
7204 
7205 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7206 {
7207 	struct ctlr_info *h = queue_to_hba(queue);
7208 	u32 raw_tag;
7209 	u8 q = *(u8 *) queue;
7210 
7211 	if (ignore_bogus_interrupt(h))
7212 		return IRQ_NONE;
7213 
7214 	h->last_intr_timestamp = get_jiffies_64();
7215 	raw_tag = get_next_completion(h, q);
7216 	while (raw_tag != FIFO_EMPTY)
7217 		raw_tag = next_command(h, q);
7218 	return IRQ_HANDLED;
7219 }
7220 
7221 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7222 {
7223 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7224 	u32 raw_tag;
7225 	u8 q = *(u8 *) queue;
7226 
7227 	if (interrupt_not_for_us(h))
7228 		return IRQ_NONE;
7229 	h->last_intr_timestamp = get_jiffies_64();
7230 	while (interrupt_pending(h)) {
7231 		raw_tag = get_next_completion(h, q);
7232 		while (raw_tag != FIFO_EMPTY) {
7233 			process_indexed_cmd(h, raw_tag);
7234 			raw_tag = next_command(h, q);
7235 		}
7236 	}
7237 	return IRQ_HANDLED;
7238 }
7239 
7240 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7241 {
7242 	struct ctlr_info *h = queue_to_hba(queue);
7243 	u32 raw_tag;
7244 	u8 q = *(u8 *) queue;
7245 
7246 	h->last_intr_timestamp = get_jiffies_64();
7247 	raw_tag = get_next_completion(h, q);
7248 	while (raw_tag != FIFO_EMPTY) {
7249 		process_indexed_cmd(h, raw_tag);
7250 		raw_tag = next_command(h, q);
7251 	}
7252 	return IRQ_HANDLED;
7253 }
7254 
7255 /* Send a message CDB to the firmware. Careful, this only works
7256  * in simple mode, not performant mode due to the tag lookup.
7257  * We only ever use this immediately after a controller reset.
7258  */
7259 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7260 			unsigned char type)
7261 {
7262 	struct Command {
7263 		struct CommandListHeader CommandHeader;
7264 		struct RequestBlock Request;
7265 		struct ErrDescriptor ErrorDescriptor;
7266 	};
7267 	struct Command *cmd;
7268 	static const size_t cmd_sz = sizeof(*cmd) +
7269 					sizeof(cmd->ErrorDescriptor);
7270 	dma_addr_t paddr64;
7271 	__le32 paddr32;
7272 	u32 tag;
7273 	void __iomem *vaddr;
7274 	int i, err;
7275 
7276 	vaddr = pci_ioremap_bar(pdev, 0);
7277 	if (vaddr == NULL)
7278 		return -ENOMEM;
7279 
7280 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7281 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7282 	 * memory.
7283 	 */
7284 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7285 	if (err) {
7286 		iounmap(vaddr);
7287 		return err;
7288 	}
7289 
7290 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7291 	if (cmd == NULL) {
7292 		iounmap(vaddr);
7293 		return -ENOMEM;
7294 	}
7295 
7296 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7297 	 * although there's no guarantee, we assume that the address is at
7298 	 * least 4-byte aligned (most likely, it's page-aligned).
7299 	 */
7300 	paddr32 = cpu_to_le32(paddr64);
7301 
7302 	cmd->CommandHeader.ReplyQueue = 0;
7303 	cmd->CommandHeader.SGList = 0;
7304 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7305 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7306 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7307 
7308 	cmd->Request.CDBLen = 16;
7309 	cmd->Request.type_attr_dir =
7310 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7311 	cmd->Request.Timeout = 0; /* Don't time out */
7312 	cmd->Request.CDB[0] = opcode;
7313 	cmd->Request.CDB[1] = type;
7314 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7315 	cmd->ErrorDescriptor.Addr =
7316 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7317 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7318 
7319 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7320 
7321 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7322 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7323 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7324 			break;
7325 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7326 	}
7327 
7328 	iounmap(vaddr);
7329 
7330 	/* we leak the DMA buffer here ... no choice since the controller could
7331 	 *  still complete the command.
7332 	 */
7333 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7334 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7335 			opcode, type);
7336 		return -ETIMEDOUT;
7337 	}
7338 
7339 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7340 
7341 	if (tag & HPSA_ERROR_BIT) {
7342 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7343 			opcode, type);
7344 		return -EIO;
7345 	}
7346 
7347 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7348 		opcode, type);
7349 	return 0;
7350 }
7351 
7352 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7353 
7354 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7355 	void __iomem *vaddr, u32 use_doorbell)
7356 {
7357 
7358 	if (use_doorbell) {
7359 		/* For everything after the P600, the PCI power state method
7360 		 * of resetting the controller doesn't work, so we have this
7361 		 * other way using the doorbell register.
7362 		 */
7363 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7364 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7365 
7366 		/* PMC hardware guys tell us we need a 10 second delay after
7367 		 * doorbell reset and before any attempt to talk to the board
7368 		 * at all to ensure that this actually works and doesn't fall
7369 		 * over in some weird corner cases.
7370 		 */
7371 		msleep(10000);
7372 	} else { /* Try to do it the PCI power state way */
7373 
7374 		/* Quoting from the Open CISS Specification: "The Power
7375 		 * Management Control/Status Register (CSR) controls the power
7376 		 * state of the device.  The normal operating state is D0,
7377 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7378 		 * the controller, place the interface device in D3 then to D0,
7379 		 * this causes a secondary PCI reset which will reset the
7380 		 * controller." */
7381 
7382 		int rc = 0;
7383 
7384 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7385 
7386 		/* enter the D3hot power management state */
7387 		rc = pci_set_power_state(pdev, PCI_D3hot);
7388 		if (rc)
7389 			return rc;
7390 
7391 		msleep(500);
7392 
7393 		/* enter the D0 power management state */
7394 		rc = pci_set_power_state(pdev, PCI_D0);
7395 		if (rc)
7396 			return rc;
7397 
7398 		/*
7399 		 * The P600 requires a small delay when changing states.
7400 		 * Otherwise we may think the board did not reset and we bail.
7401 		 * This for kdump only and is particular to the P600.
7402 		 */
7403 		msleep(500);
7404 	}
7405 	return 0;
7406 }
7407 
7408 static void init_driver_version(char *driver_version, int len)
7409 {
7410 	memset(driver_version, 0, len);
7411 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7412 }
7413 
7414 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7415 {
7416 	char *driver_version;
7417 	int i, size = sizeof(cfgtable->driver_version);
7418 
7419 	driver_version = kmalloc(size, GFP_KERNEL);
7420 	if (!driver_version)
7421 		return -ENOMEM;
7422 
7423 	init_driver_version(driver_version, size);
7424 	for (i = 0; i < size; i++)
7425 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7426 	kfree(driver_version);
7427 	return 0;
7428 }
7429 
7430 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7431 					  unsigned char *driver_ver)
7432 {
7433 	int i;
7434 
7435 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7436 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7437 }
7438 
7439 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7440 {
7441 
7442 	char *driver_ver, *old_driver_ver;
7443 	int rc, size = sizeof(cfgtable->driver_version);
7444 
7445 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7446 	if (!old_driver_ver)
7447 		return -ENOMEM;
7448 	driver_ver = old_driver_ver + size;
7449 
7450 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7451 	 * should have been changed, otherwise we know the reset failed.
7452 	 */
7453 	init_driver_version(old_driver_ver, size);
7454 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7455 	rc = !memcmp(driver_ver, old_driver_ver, size);
7456 	kfree(old_driver_ver);
7457 	return rc;
7458 }
7459 /* This does a hard reset of the controller using PCI power management
7460  * states or the using the doorbell register.
7461  */
7462 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7463 {
7464 	u64 cfg_offset;
7465 	u32 cfg_base_addr;
7466 	u64 cfg_base_addr_index;
7467 	void __iomem *vaddr;
7468 	unsigned long paddr;
7469 	u32 misc_fw_support;
7470 	int rc;
7471 	struct CfgTable __iomem *cfgtable;
7472 	u32 use_doorbell;
7473 	u16 command_register;
7474 
7475 	/* For controllers as old as the P600, this is very nearly
7476 	 * the same thing as
7477 	 *
7478 	 * pci_save_state(pci_dev);
7479 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7480 	 * pci_set_power_state(pci_dev, PCI_D0);
7481 	 * pci_restore_state(pci_dev);
7482 	 *
7483 	 * For controllers newer than the P600, the pci power state
7484 	 * method of resetting doesn't work so we have another way
7485 	 * using the doorbell register.
7486 	 */
7487 
7488 	if (!ctlr_is_resettable(board_id)) {
7489 		dev_warn(&pdev->dev, "Controller not resettable\n");
7490 		return -ENODEV;
7491 	}
7492 
7493 	/* if controller is soft- but not hard resettable... */
7494 	if (!ctlr_is_hard_resettable(board_id))
7495 		return -ENOTSUPP; /* try soft reset later. */
7496 
7497 	/* Save the PCI command register */
7498 	pci_read_config_word(pdev, 4, &command_register);
7499 	pci_save_state(pdev);
7500 
7501 	/* find the first memory BAR, so we can find the cfg table */
7502 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7503 	if (rc)
7504 		return rc;
7505 	vaddr = remap_pci_mem(paddr, 0x250);
7506 	if (!vaddr)
7507 		return -ENOMEM;
7508 
7509 	/* find cfgtable in order to check if reset via doorbell is supported */
7510 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7511 					&cfg_base_addr_index, &cfg_offset);
7512 	if (rc)
7513 		goto unmap_vaddr;
7514 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7515 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7516 	if (!cfgtable) {
7517 		rc = -ENOMEM;
7518 		goto unmap_vaddr;
7519 	}
7520 	rc = write_driver_ver_to_cfgtable(cfgtable);
7521 	if (rc)
7522 		goto unmap_cfgtable;
7523 
7524 	/* If reset via doorbell register is supported, use that.
7525 	 * There are two such methods.  Favor the newest method.
7526 	 */
7527 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7528 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7529 	if (use_doorbell) {
7530 		use_doorbell = DOORBELL_CTLR_RESET2;
7531 	} else {
7532 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7533 		if (use_doorbell) {
7534 			dev_warn(&pdev->dev,
7535 				"Soft reset not supported. Firmware update is required.\n");
7536 			rc = -ENOTSUPP; /* try soft reset */
7537 			goto unmap_cfgtable;
7538 		}
7539 	}
7540 
7541 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7542 	if (rc)
7543 		goto unmap_cfgtable;
7544 
7545 	pci_restore_state(pdev);
7546 	pci_write_config_word(pdev, 4, command_register);
7547 
7548 	/* Some devices (notably the HP Smart Array 5i Controller)
7549 	   need a little pause here */
7550 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7551 
7552 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7553 	if (rc) {
7554 		dev_warn(&pdev->dev,
7555 			"Failed waiting for board to become ready after hard reset\n");
7556 		goto unmap_cfgtable;
7557 	}
7558 
7559 	rc = controller_reset_failed(vaddr);
7560 	if (rc < 0)
7561 		goto unmap_cfgtable;
7562 	if (rc) {
7563 		dev_warn(&pdev->dev, "Unable to successfully reset "
7564 			"controller. Will try soft reset.\n");
7565 		rc = -ENOTSUPP;
7566 	} else {
7567 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7568 	}
7569 
7570 unmap_cfgtable:
7571 	iounmap(cfgtable);
7572 
7573 unmap_vaddr:
7574 	iounmap(vaddr);
7575 	return rc;
7576 }
7577 
7578 /*
7579  *  We cannot read the structure directly, for portability we must use
7580  *   the io functions.
7581  *   This is for debug only.
7582  */
7583 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7584 {
7585 #ifdef HPSA_DEBUG
7586 	int i;
7587 	char temp_name[17];
7588 
7589 	dev_info(dev, "Controller Configuration information\n");
7590 	dev_info(dev, "------------------------------------\n");
7591 	for (i = 0; i < 4; i++)
7592 		temp_name[i] = readb(&(tb->Signature[i]));
7593 	temp_name[4] = '\0';
7594 	dev_info(dev, "   Signature = %s\n", temp_name);
7595 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7596 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7597 	       readl(&(tb->TransportSupport)));
7598 	dev_info(dev, "   Transport methods active = 0x%x\n",
7599 	       readl(&(tb->TransportActive)));
7600 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7601 	       readl(&(tb->HostWrite.TransportRequest)));
7602 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7603 	       readl(&(tb->HostWrite.CoalIntDelay)));
7604 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7605 	       readl(&(tb->HostWrite.CoalIntCount)));
7606 	dev_info(dev, "   Max outstanding commands = %d\n",
7607 	       readl(&(tb->CmdsOutMax)));
7608 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7609 	for (i = 0; i < 16; i++)
7610 		temp_name[i] = readb(&(tb->ServerName[i]));
7611 	temp_name[16] = '\0';
7612 	dev_info(dev, "   Server Name = %s\n", temp_name);
7613 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7614 		readl(&(tb->HeartBeat)));
7615 #endif				/* HPSA_DEBUG */
7616 }
7617 
7618 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7619 {
7620 	int i, offset, mem_type, bar_type;
7621 
7622 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7623 		return 0;
7624 	offset = 0;
7625 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7626 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7627 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7628 			offset += 4;
7629 		else {
7630 			mem_type = pci_resource_flags(pdev, i) &
7631 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7632 			switch (mem_type) {
7633 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7634 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7635 				offset += 4;	/* 32 bit */
7636 				break;
7637 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7638 				offset += 8;
7639 				break;
7640 			default:	/* reserved in PCI 2.2 */
7641 				dev_warn(&pdev->dev,
7642 				       "base address is invalid\n");
7643 				return -1;
7644 				break;
7645 			}
7646 		}
7647 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7648 			return i + 1;
7649 	}
7650 	return -1;
7651 }
7652 
7653 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7654 {
7655 	if (h->msix_vector) {
7656 		if (h->pdev->msix_enabled)
7657 			pci_disable_msix(h->pdev);
7658 		h->msix_vector = 0;
7659 	} else if (h->msi_vector) {
7660 		if (h->pdev->msi_enabled)
7661 			pci_disable_msi(h->pdev);
7662 		h->msi_vector = 0;
7663 	}
7664 }
7665 
7666 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7667  * controllers that are capable. If not, we use legacy INTx mode.
7668  */
7669 static void hpsa_interrupt_mode(struct ctlr_info *h)
7670 {
7671 #ifdef CONFIG_PCI_MSI
7672 	int err, i;
7673 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7674 
7675 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7676 		hpsa_msix_entries[i].vector = 0;
7677 		hpsa_msix_entries[i].entry = i;
7678 	}
7679 
7680 	/* Some boards advertise MSI but don't really support it */
7681 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7682 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7683 		goto default_int_mode;
7684 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7685 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7686 		h->msix_vector = MAX_REPLY_QUEUES;
7687 		if (h->msix_vector > num_online_cpus())
7688 			h->msix_vector = num_online_cpus();
7689 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7690 					    1, h->msix_vector);
7691 		if (err < 0) {
7692 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7693 			h->msix_vector = 0;
7694 			goto single_msi_mode;
7695 		} else if (err < h->msix_vector) {
7696 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7697 			       "available\n", err);
7698 		}
7699 		h->msix_vector = err;
7700 		for (i = 0; i < h->msix_vector; i++)
7701 			h->intr[i] = hpsa_msix_entries[i].vector;
7702 		return;
7703 	}
7704 single_msi_mode:
7705 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7706 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7707 		if (!pci_enable_msi(h->pdev))
7708 			h->msi_vector = 1;
7709 		else
7710 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7711 	}
7712 default_int_mode:
7713 #endif				/* CONFIG_PCI_MSI */
7714 	/* if we get here we're going to use the default interrupt mode */
7715 	h->intr[h->intr_mode] = h->pdev->irq;
7716 }
7717 
7718 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7719 {
7720 	int i;
7721 	u32 subsystem_vendor_id, subsystem_device_id;
7722 
7723 	subsystem_vendor_id = pdev->subsystem_vendor;
7724 	subsystem_device_id = pdev->subsystem_device;
7725 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7726 		    subsystem_vendor_id;
7727 
7728 	for (i = 0; i < ARRAY_SIZE(products); i++)
7729 		if (*board_id == products[i].board_id)
7730 			return i;
7731 
7732 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7733 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7734 		!hpsa_allow_any) {
7735 		dev_warn(&pdev->dev, "unrecognized board ID: "
7736 			"0x%08x, ignoring.\n", *board_id);
7737 			return -ENODEV;
7738 	}
7739 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7740 }
7741 
7742 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7743 				    unsigned long *memory_bar)
7744 {
7745 	int i;
7746 
7747 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7748 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7749 			/* addressing mode bits already removed */
7750 			*memory_bar = pci_resource_start(pdev, i);
7751 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7752 				*memory_bar);
7753 			return 0;
7754 		}
7755 	dev_warn(&pdev->dev, "no memory BAR found\n");
7756 	return -ENODEV;
7757 }
7758 
7759 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7760 				     int wait_for_ready)
7761 {
7762 	int i, iterations;
7763 	u32 scratchpad;
7764 	if (wait_for_ready)
7765 		iterations = HPSA_BOARD_READY_ITERATIONS;
7766 	else
7767 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7768 
7769 	for (i = 0; i < iterations; i++) {
7770 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7771 		if (wait_for_ready) {
7772 			if (scratchpad == HPSA_FIRMWARE_READY)
7773 				return 0;
7774 		} else {
7775 			if (scratchpad != HPSA_FIRMWARE_READY)
7776 				return 0;
7777 		}
7778 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7779 	}
7780 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7781 	return -ENODEV;
7782 }
7783 
7784 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7785 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7786 			       u64 *cfg_offset)
7787 {
7788 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7789 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7790 	*cfg_base_addr &= (u32) 0x0000ffff;
7791 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7792 	if (*cfg_base_addr_index == -1) {
7793 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7794 		return -ENODEV;
7795 	}
7796 	return 0;
7797 }
7798 
7799 static void hpsa_free_cfgtables(struct ctlr_info *h)
7800 {
7801 	if (h->transtable) {
7802 		iounmap(h->transtable);
7803 		h->transtable = NULL;
7804 	}
7805 	if (h->cfgtable) {
7806 		iounmap(h->cfgtable);
7807 		h->cfgtable = NULL;
7808 	}
7809 }
7810 
7811 /* Find and map CISS config table and transfer table
7812 + * several items must be unmapped (freed) later
7813 + * */
7814 static int hpsa_find_cfgtables(struct ctlr_info *h)
7815 {
7816 	u64 cfg_offset;
7817 	u32 cfg_base_addr;
7818 	u64 cfg_base_addr_index;
7819 	u32 trans_offset;
7820 	int rc;
7821 
7822 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7823 		&cfg_base_addr_index, &cfg_offset);
7824 	if (rc)
7825 		return rc;
7826 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7827 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7828 	if (!h->cfgtable) {
7829 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7830 		return -ENOMEM;
7831 	}
7832 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7833 	if (rc)
7834 		return rc;
7835 	/* Find performant mode table. */
7836 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7837 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7838 				cfg_base_addr_index)+cfg_offset+trans_offset,
7839 				sizeof(*h->transtable));
7840 	if (!h->transtable) {
7841 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7842 		hpsa_free_cfgtables(h);
7843 		return -ENOMEM;
7844 	}
7845 	return 0;
7846 }
7847 
7848 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7849 {
7850 #define MIN_MAX_COMMANDS 16
7851 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7852 
7853 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7854 
7855 	/* Limit commands in memory limited kdump scenario. */
7856 	if (reset_devices && h->max_commands > 32)
7857 		h->max_commands = 32;
7858 
7859 	if (h->max_commands < MIN_MAX_COMMANDS) {
7860 		dev_warn(&h->pdev->dev,
7861 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7862 			h->max_commands,
7863 			MIN_MAX_COMMANDS);
7864 		h->max_commands = MIN_MAX_COMMANDS;
7865 	}
7866 }
7867 
7868 /* If the controller reports that the total max sg entries is greater than 512,
7869  * then we know that chained SG blocks work.  (Original smart arrays did not
7870  * support chained SG blocks and would return zero for max sg entries.)
7871  */
7872 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7873 {
7874 	return h->maxsgentries > 512;
7875 }
7876 
7877 /* Interrogate the hardware for some limits:
7878  * max commands, max SG elements without chaining, and with chaining,
7879  * SG chain block size, etc.
7880  */
7881 static void hpsa_find_board_params(struct ctlr_info *h)
7882 {
7883 	hpsa_get_max_perf_mode_cmds(h);
7884 	h->nr_cmds = h->max_commands;
7885 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7886 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7887 	if (hpsa_supports_chained_sg_blocks(h)) {
7888 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7889 		h->max_cmd_sg_entries = 32;
7890 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7891 		h->maxsgentries--; /* save one for chain pointer */
7892 	} else {
7893 		/*
7894 		 * Original smart arrays supported at most 31 s/g entries
7895 		 * embedded inline in the command (trying to use more
7896 		 * would lock up the controller)
7897 		 */
7898 		h->max_cmd_sg_entries = 31;
7899 		h->maxsgentries = 31; /* default to traditional values */
7900 		h->chainsize = 0;
7901 	}
7902 
7903 	/* Find out what task management functions are supported and cache */
7904 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7905 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7906 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7907 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7908 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7909 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7910 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7911 }
7912 
7913 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7914 {
7915 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7916 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7917 		return false;
7918 	}
7919 	return true;
7920 }
7921 
7922 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7923 {
7924 	u32 driver_support;
7925 
7926 	driver_support = readl(&(h->cfgtable->driver_support));
7927 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7928 #ifdef CONFIG_X86
7929 	driver_support |= ENABLE_SCSI_PREFETCH;
7930 #endif
7931 	driver_support |= ENABLE_UNIT_ATTN;
7932 	writel(driver_support, &(h->cfgtable->driver_support));
7933 }
7934 
7935 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7936  * in a prefetch beyond physical memory.
7937  */
7938 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7939 {
7940 	u32 dma_prefetch;
7941 
7942 	if (h->board_id != 0x3225103C)
7943 		return;
7944 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7945 	dma_prefetch |= 0x8000;
7946 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7947 }
7948 
7949 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7950 {
7951 	int i;
7952 	u32 doorbell_value;
7953 	unsigned long flags;
7954 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7955 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7956 		spin_lock_irqsave(&h->lock, flags);
7957 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7958 		spin_unlock_irqrestore(&h->lock, flags);
7959 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7960 			goto done;
7961 		/* delay and try again */
7962 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7963 	}
7964 	return -ENODEV;
7965 done:
7966 	return 0;
7967 }
7968 
7969 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7970 {
7971 	int i;
7972 	u32 doorbell_value;
7973 	unsigned long flags;
7974 
7975 	/* under certain very rare conditions, this can take awhile.
7976 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7977 	 * as we enter this code.)
7978 	 */
7979 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7980 		if (h->remove_in_progress)
7981 			goto done;
7982 		spin_lock_irqsave(&h->lock, flags);
7983 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7984 		spin_unlock_irqrestore(&h->lock, flags);
7985 		if (!(doorbell_value & CFGTBL_ChangeReq))
7986 			goto done;
7987 		/* delay and try again */
7988 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7989 	}
7990 	return -ENODEV;
7991 done:
7992 	return 0;
7993 }
7994 
7995 /* return -ENODEV or other reason on error, 0 on success */
7996 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7997 {
7998 	u32 trans_support;
7999 
8000 	trans_support = readl(&(h->cfgtable->TransportSupport));
8001 	if (!(trans_support & SIMPLE_MODE))
8002 		return -ENOTSUPP;
8003 
8004 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8005 
8006 	/* Update the field, and then ring the doorbell */
8007 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8008 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8009 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8010 	if (hpsa_wait_for_mode_change_ack(h))
8011 		goto error;
8012 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8013 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8014 		goto error;
8015 	h->transMethod = CFGTBL_Trans_Simple;
8016 	return 0;
8017 error:
8018 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8019 	return -ENODEV;
8020 }
8021 
8022 /* free items allocated or mapped by hpsa_pci_init */
8023 static void hpsa_free_pci_init(struct ctlr_info *h)
8024 {
8025 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8026 	iounmap(h->vaddr);			/* pci_init 3 */
8027 	h->vaddr = NULL;
8028 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8029 	/*
8030 	 * call pci_disable_device before pci_release_regions per
8031 	 * Documentation/PCI/pci.txt
8032 	 */
8033 	pci_disable_device(h->pdev);		/* pci_init 1 */
8034 	pci_release_regions(h->pdev);		/* pci_init 2 */
8035 }
8036 
8037 /* several items must be freed later */
8038 static int hpsa_pci_init(struct ctlr_info *h)
8039 {
8040 	int prod_index, err;
8041 
8042 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8043 	if (prod_index < 0)
8044 		return prod_index;
8045 	h->product_name = products[prod_index].product_name;
8046 	h->access = *(products[prod_index].access);
8047 
8048 	h->needs_abort_tags_swizzled =
8049 		ctlr_needs_abort_tags_swizzled(h->board_id);
8050 
8051 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8052 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8053 
8054 	err = pci_enable_device(h->pdev);
8055 	if (err) {
8056 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8057 		pci_disable_device(h->pdev);
8058 		return err;
8059 	}
8060 
8061 	err = pci_request_regions(h->pdev, HPSA);
8062 	if (err) {
8063 		dev_err(&h->pdev->dev,
8064 			"failed to obtain PCI resources\n");
8065 		pci_disable_device(h->pdev);
8066 		return err;
8067 	}
8068 
8069 	pci_set_master(h->pdev);
8070 
8071 	hpsa_interrupt_mode(h);
8072 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8073 	if (err)
8074 		goto clean2;	/* intmode+region, pci */
8075 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8076 	if (!h->vaddr) {
8077 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8078 		err = -ENOMEM;
8079 		goto clean2;	/* intmode+region, pci */
8080 	}
8081 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8082 	if (err)
8083 		goto clean3;	/* vaddr, intmode+region, pci */
8084 	err = hpsa_find_cfgtables(h);
8085 	if (err)
8086 		goto clean3;	/* vaddr, intmode+region, pci */
8087 	hpsa_find_board_params(h);
8088 
8089 	if (!hpsa_CISS_signature_present(h)) {
8090 		err = -ENODEV;
8091 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8092 	}
8093 	hpsa_set_driver_support_bits(h);
8094 	hpsa_p600_dma_prefetch_quirk(h);
8095 	err = hpsa_enter_simple_mode(h);
8096 	if (err)
8097 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8098 	return 0;
8099 
8100 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8101 	hpsa_free_cfgtables(h);
8102 clean3:	/* vaddr, intmode+region, pci */
8103 	iounmap(h->vaddr);
8104 	h->vaddr = NULL;
8105 clean2:	/* intmode+region, pci */
8106 	hpsa_disable_interrupt_mode(h);
8107 	/*
8108 	 * call pci_disable_device before pci_release_regions per
8109 	 * Documentation/PCI/pci.txt
8110 	 */
8111 	pci_disable_device(h->pdev);
8112 	pci_release_regions(h->pdev);
8113 	return err;
8114 }
8115 
8116 static void hpsa_hba_inquiry(struct ctlr_info *h)
8117 {
8118 	int rc;
8119 
8120 #define HBA_INQUIRY_BYTE_COUNT 64
8121 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8122 	if (!h->hba_inquiry_data)
8123 		return;
8124 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8125 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8126 	if (rc != 0) {
8127 		kfree(h->hba_inquiry_data);
8128 		h->hba_inquiry_data = NULL;
8129 	}
8130 }
8131 
8132 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8133 {
8134 	int rc, i;
8135 	void __iomem *vaddr;
8136 
8137 	if (!reset_devices)
8138 		return 0;
8139 
8140 	/* kdump kernel is loading, we don't know in which state is
8141 	 * the pci interface. The dev->enable_cnt is equal zero
8142 	 * so we call enable+disable, wait a while and switch it on.
8143 	 */
8144 	rc = pci_enable_device(pdev);
8145 	if (rc) {
8146 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8147 		return -ENODEV;
8148 	}
8149 	pci_disable_device(pdev);
8150 	msleep(260);			/* a randomly chosen number */
8151 	rc = pci_enable_device(pdev);
8152 	if (rc) {
8153 		dev_warn(&pdev->dev, "failed to enable device.\n");
8154 		return -ENODEV;
8155 	}
8156 
8157 	pci_set_master(pdev);
8158 
8159 	vaddr = pci_ioremap_bar(pdev, 0);
8160 	if (vaddr == NULL) {
8161 		rc = -ENOMEM;
8162 		goto out_disable;
8163 	}
8164 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8165 	iounmap(vaddr);
8166 
8167 	/* Reset the controller with a PCI power-cycle or via doorbell */
8168 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8169 
8170 	/* -ENOTSUPP here means we cannot reset the controller
8171 	 * but it's already (and still) up and running in
8172 	 * "performant mode".  Or, it might be 640x, which can't reset
8173 	 * due to concerns about shared bbwc between 6402/6404 pair.
8174 	 */
8175 	if (rc)
8176 		goto out_disable;
8177 
8178 	/* Now try to get the controller to respond to a no-op */
8179 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8180 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8181 		if (hpsa_noop(pdev) == 0)
8182 			break;
8183 		else
8184 			dev_warn(&pdev->dev, "no-op failed%s\n",
8185 					(i < 11 ? "; re-trying" : ""));
8186 	}
8187 
8188 out_disable:
8189 
8190 	pci_disable_device(pdev);
8191 	return rc;
8192 }
8193 
8194 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8195 {
8196 	kfree(h->cmd_pool_bits);
8197 	h->cmd_pool_bits = NULL;
8198 	if (h->cmd_pool) {
8199 		pci_free_consistent(h->pdev,
8200 				h->nr_cmds * sizeof(struct CommandList),
8201 				h->cmd_pool,
8202 				h->cmd_pool_dhandle);
8203 		h->cmd_pool = NULL;
8204 		h->cmd_pool_dhandle = 0;
8205 	}
8206 	if (h->errinfo_pool) {
8207 		pci_free_consistent(h->pdev,
8208 				h->nr_cmds * sizeof(struct ErrorInfo),
8209 				h->errinfo_pool,
8210 				h->errinfo_pool_dhandle);
8211 		h->errinfo_pool = NULL;
8212 		h->errinfo_pool_dhandle = 0;
8213 	}
8214 }
8215 
8216 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8217 {
8218 	h->cmd_pool_bits = kzalloc(
8219 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8220 		sizeof(unsigned long), GFP_KERNEL);
8221 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8222 		    h->nr_cmds * sizeof(*h->cmd_pool),
8223 		    &(h->cmd_pool_dhandle));
8224 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8225 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8226 		    &(h->errinfo_pool_dhandle));
8227 	if ((h->cmd_pool_bits == NULL)
8228 	    || (h->cmd_pool == NULL)
8229 	    || (h->errinfo_pool == NULL)) {
8230 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8231 		goto clean_up;
8232 	}
8233 	hpsa_preinitialize_commands(h);
8234 	return 0;
8235 clean_up:
8236 	hpsa_free_cmd_pool(h);
8237 	return -ENOMEM;
8238 }
8239 
8240 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8241 {
8242 	int i, cpu;
8243 
8244 	cpu = cpumask_first(cpu_online_mask);
8245 	for (i = 0; i < h->msix_vector; i++) {
8246 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8247 		cpu = cpumask_next(cpu, cpu_online_mask);
8248 	}
8249 }
8250 
8251 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8252 static void hpsa_free_irqs(struct ctlr_info *h)
8253 {
8254 	int i;
8255 
8256 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8257 		/* Single reply queue, only one irq to free */
8258 		i = h->intr_mode;
8259 		irq_set_affinity_hint(h->intr[i], NULL);
8260 		free_irq(h->intr[i], &h->q[i]);
8261 		h->q[i] = 0;
8262 		return;
8263 	}
8264 
8265 	for (i = 0; i < h->msix_vector; i++) {
8266 		irq_set_affinity_hint(h->intr[i], NULL);
8267 		free_irq(h->intr[i], &h->q[i]);
8268 		h->q[i] = 0;
8269 	}
8270 	for (; i < MAX_REPLY_QUEUES; i++)
8271 		h->q[i] = 0;
8272 }
8273 
8274 /* returns 0 on success; cleans up and returns -Enn on error */
8275 static int hpsa_request_irqs(struct ctlr_info *h,
8276 	irqreturn_t (*msixhandler)(int, void *),
8277 	irqreturn_t (*intxhandler)(int, void *))
8278 {
8279 	int rc, i;
8280 
8281 	/*
8282 	 * initialize h->q[x] = x so that interrupt handlers know which
8283 	 * queue to process.
8284 	 */
8285 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8286 		h->q[i] = (u8) i;
8287 
8288 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8289 		/* If performant mode and MSI-X, use multiple reply queues */
8290 		for (i = 0; i < h->msix_vector; i++) {
8291 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8292 			rc = request_irq(h->intr[i], msixhandler,
8293 					0, h->intrname[i],
8294 					&h->q[i]);
8295 			if (rc) {
8296 				int j;
8297 
8298 				dev_err(&h->pdev->dev,
8299 					"failed to get irq %d for %s\n",
8300 				       h->intr[i], h->devname);
8301 				for (j = 0; j < i; j++) {
8302 					free_irq(h->intr[j], &h->q[j]);
8303 					h->q[j] = 0;
8304 				}
8305 				for (; j < MAX_REPLY_QUEUES; j++)
8306 					h->q[j] = 0;
8307 				return rc;
8308 			}
8309 		}
8310 		hpsa_irq_affinity_hints(h);
8311 	} else {
8312 		/* Use single reply pool */
8313 		if (h->msix_vector > 0 || h->msi_vector) {
8314 			if (h->msix_vector)
8315 				sprintf(h->intrname[h->intr_mode],
8316 					"%s-msix", h->devname);
8317 			else
8318 				sprintf(h->intrname[h->intr_mode],
8319 					"%s-msi", h->devname);
8320 			rc = request_irq(h->intr[h->intr_mode],
8321 				msixhandler, 0,
8322 				h->intrname[h->intr_mode],
8323 				&h->q[h->intr_mode]);
8324 		} else {
8325 			sprintf(h->intrname[h->intr_mode],
8326 				"%s-intx", h->devname);
8327 			rc = request_irq(h->intr[h->intr_mode],
8328 				intxhandler, IRQF_SHARED,
8329 				h->intrname[h->intr_mode],
8330 				&h->q[h->intr_mode]);
8331 		}
8332 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8333 	}
8334 	if (rc) {
8335 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8336 		       h->intr[h->intr_mode], h->devname);
8337 		hpsa_free_irqs(h);
8338 		return -ENODEV;
8339 	}
8340 	return 0;
8341 }
8342 
8343 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8344 {
8345 	int rc;
8346 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8347 
8348 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8349 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8350 	if (rc) {
8351 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8352 		return rc;
8353 	}
8354 
8355 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8356 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8357 	if (rc) {
8358 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8359 			"after soft reset.\n");
8360 		return rc;
8361 	}
8362 
8363 	return 0;
8364 }
8365 
8366 static void hpsa_free_reply_queues(struct ctlr_info *h)
8367 {
8368 	int i;
8369 
8370 	for (i = 0; i < h->nreply_queues; i++) {
8371 		if (!h->reply_queue[i].head)
8372 			continue;
8373 		pci_free_consistent(h->pdev,
8374 					h->reply_queue_size,
8375 					h->reply_queue[i].head,
8376 					h->reply_queue[i].busaddr);
8377 		h->reply_queue[i].head = NULL;
8378 		h->reply_queue[i].busaddr = 0;
8379 	}
8380 	h->reply_queue_size = 0;
8381 }
8382 
8383 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8384 {
8385 	hpsa_free_performant_mode(h);		/* init_one 7 */
8386 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8387 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8388 	hpsa_free_irqs(h);			/* init_one 4 */
8389 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8390 	h->scsi_host = NULL;			/* init_one 3 */
8391 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8392 	free_percpu(h->lockup_detected);	/* init_one 2 */
8393 	h->lockup_detected = NULL;		/* init_one 2 */
8394 	if (h->resubmit_wq) {
8395 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8396 		h->resubmit_wq = NULL;
8397 	}
8398 	if (h->rescan_ctlr_wq) {
8399 		destroy_workqueue(h->rescan_ctlr_wq);
8400 		h->rescan_ctlr_wq = NULL;
8401 	}
8402 	kfree(h);				/* init_one 1 */
8403 }
8404 
8405 /* Called when controller lockup detected. */
8406 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8407 {
8408 	int i, refcount;
8409 	struct CommandList *c;
8410 	int failcount = 0;
8411 
8412 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8413 	for (i = 0; i < h->nr_cmds; i++) {
8414 		c = h->cmd_pool + i;
8415 		refcount = atomic_inc_return(&c->refcount);
8416 		if (refcount > 1) {
8417 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8418 			finish_cmd(c);
8419 			atomic_dec(&h->commands_outstanding);
8420 			failcount++;
8421 		}
8422 		cmd_free(h, c);
8423 	}
8424 	dev_warn(&h->pdev->dev,
8425 		"failed %d commands in fail_all\n", failcount);
8426 }
8427 
8428 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8429 {
8430 	int cpu;
8431 
8432 	for_each_online_cpu(cpu) {
8433 		u32 *lockup_detected;
8434 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8435 		*lockup_detected = value;
8436 	}
8437 	wmb(); /* be sure the per-cpu variables are out to memory */
8438 }
8439 
8440 static void controller_lockup_detected(struct ctlr_info *h)
8441 {
8442 	unsigned long flags;
8443 	u32 lockup_detected;
8444 
8445 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8446 	spin_lock_irqsave(&h->lock, flags);
8447 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8448 	if (!lockup_detected) {
8449 		/* no heartbeat, but controller gave us a zero. */
8450 		dev_warn(&h->pdev->dev,
8451 			"lockup detected after %d but scratchpad register is zero\n",
8452 			h->heartbeat_sample_interval / HZ);
8453 		lockup_detected = 0xffffffff;
8454 	}
8455 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8456 	spin_unlock_irqrestore(&h->lock, flags);
8457 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8458 			lockup_detected, h->heartbeat_sample_interval / HZ);
8459 	pci_disable_device(h->pdev);
8460 	fail_all_outstanding_cmds(h);
8461 }
8462 
8463 static int detect_controller_lockup(struct ctlr_info *h)
8464 {
8465 	u64 now;
8466 	u32 heartbeat;
8467 	unsigned long flags;
8468 
8469 	now = get_jiffies_64();
8470 	/* If we've received an interrupt recently, we're ok. */
8471 	if (time_after64(h->last_intr_timestamp +
8472 				(h->heartbeat_sample_interval), now))
8473 		return false;
8474 
8475 	/*
8476 	 * If we've already checked the heartbeat recently, we're ok.
8477 	 * This could happen if someone sends us a signal. We
8478 	 * otherwise don't care about signals in this thread.
8479 	 */
8480 	if (time_after64(h->last_heartbeat_timestamp +
8481 				(h->heartbeat_sample_interval), now))
8482 		return false;
8483 
8484 	/* If heartbeat has not changed since we last looked, we're not ok. */
8485 	spin_lock_irqsave(&h->lock, flags);
8486 	heartbeat = readl(&h->cfgtable->HeartBeat);
8487 	spin_unlock_irqrestore(&h->lock, flags);
8488 	if (h->last_heartbeat == heartbeat) {
8489 		controller_lockup_detected(h);
8490 		return true;
8491 	}
8492 
8493 	/* We're ok. */
8494 	h->last_heartbeat = heartbeat;
8495 	h->last_heartbeat_timestamp = now;
8496 	return false;
8497 }
8498 
8499 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8500 {
8501 	int i;
8502 	char *event_type;
8503 
8504 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8505 		return;
8506 
8507 	/* Ask the controller to clear the events we're handling. */
8508 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8509 			| CFGTBL_Trans_io_accel2)) &&
8510 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8511 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8512 
8513 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8514 			event_type = "state change";
8515 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8516 			event_type = "configuration change";
8517 		/* Stop sending new RAID offload reqs via the IO accelerator */
8518 		scsi_block_requests(h->scsi_host);
8519 		for (i = 0; i < h->ndevices; i++) {
8520 			h->dev[i]->offload_enabled = 0;
8521 			h->dev[i]->offload_to_be_enabled = 0;
8522 		}
8523 		hpsa_drain_accel_commands(h);
8524 		/* Set 'accelerator path config change' bit */
8525 		dev_warn(&h->pdev->dev,
8526 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8527 			h->events, event_type);
8528 		writel(h->events, &(h->cfgtable->clear_event_notify));
8529 		/* Set the "clear event notify field update" bit 6 */
8530 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8531 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8532 		hpsa_wait_for_clear_event_notify_ack(h);
8533 		scsi_unblock_requests(h->scsi_host);
8534 	} else {
8535 		/* Acknowledge controller notification events. */
8536 		writel(h->events, &(h->cfgtable->clear_event_notify));
8537 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8538 		hpsa_wait_for_clear_event_notify_ack(h);
8539 #if 0
8540 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8541 		hpsa_wait_for_mode_change_ack(h);
8542 #endif
8543 	}
8544 	return;
8545 }
8546 
8547 /* Check a register on the controller to see if there are configuration
8548  * changes (added/changed/removed logical drives, etc.) which mean that
8549  * we should rescan the controller for devices.
8550  * Also check flag for driver-initiated rescan.
8551  */
8552 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8553 {
8554 	if (h->drv_req_rescan) {
8555 		h->drv_req_rescan = 0;
8556 		return 1;
8557 	}
8558 
8559 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8560 		return 0;
8561 
8562 	h->events = readl(&(h->cfgtable->event_notify));
8563 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8564 }
8565 
8566 /*
8567  * Check if any of the offline devices have become ready
8568  */
8569 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8570 {
8571 	unsigned long flags;
8572 	struct offline_device_entry *d;
8573 	struct list_head *this, *tmp;
8574 
8575 	spin_lock_irqsave(&h->offline_device_lock, flags);
8576 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8577 		d = list_entry(this, struct offline_device_entry,
8578 				offline_list);
8579 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8580 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8581 			spin_lock_irqsave(&h->offline_device_lock, flags);
8582 			list_del(&d->offline_list);
8583 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8584 			return 1;
8585 		}
8586 		spin_lock_irqsave(&h->offline_device_lock, flags);
8587 	}
8588 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589 	return 0;
8590 }
8591 
8592 static int hpsa_luns_changed(struct ctlr_info *h)
8593 {
8594 	int rc = 1; /* assume there are changes */
8595 	struct ReportLUNdata *logdev = NULL;
8596 
8597 	/* if we can't find out if lun data has changed,
8598 	 * assume that it has.
8599 	 */
8600 
8601 	if (!h->lastlogicals)
8602 		goto out;
8603 
8604 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8605 	if (!logdev) {
8606 		dev_warn(&h->pdev->dev,
8607 			"Out of memory, can't track lun changes.\n");
8608 		goto out;
8609 	}
8610 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8611 		dev_warn(&h->pdev->dev,
8612 			"report luns failed, can't track lun changes.\n");
8613 		goto out;
8614 	}
8615 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8616 		dev_info(&h->pdev->dev,
8617 			"Lun changes detected.\n");
8618 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8619 		goto out;
8620 	} else
8621 		rc = 0; /* no changes detected. */
8622 out:
8623 	kfree(logdev);
8624 	return rc;
8625 }
8626 
8627 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8628 {
8629 	unsigned long flags;
8630 	struct ctlr_info *h = container_of(to_delayed_work(work),
8631 					struct ctlr_info, rescan_ctlr_work);
8632 
8633 
8634 	if (h->remove_in_progress)
8635 		return;
8636 
8637 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8638 		scsi_host_get(h->scsi_host);
8639 		hpsa_ack_ctlr_events(h);
8640 		hpsa_scan_start(h->scsi_host);
8641 		scsi_host_put(h->scsi_host);
8642 	} else if (h->discovery_polling) {
8643 		hpsa_disable_rld_caching(h);
8644 		if (hpsa_luns_changed(h)) {
8645 			struct Scsi_Host *sh = NULL;
8646 
8647 			dev_info(&h->pdev->dev,
8648 				"driver discovery polling rescan.\n");
8649 			sh = scsi_host_get(h->scsi_host);
8650 			if (sh != NULL) {
8651 				hpsa_scan_start(sh);
8652 				scsi_host_put(sh);
8653 			}
8654 		}
8655 	}
8656 	spin_lock_irqsave(&h->lock, flags);
8657 	if (!h->remove_in_progress)
8658 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8659 				h->heartbeat_sample_interval);
8660 	spin_unlock_irqrestore(&h->lock, flags);
8661 }
8662 
8663 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8664 {
8665 	unsigned long flags;
8666 	struct ctlr_info *h = container_of(to_delayed_work(work),
8667 					struct ctlr_info, monitor_ctlr_work);
8668 
8669 	detect_controller_lockup(h);
8670 	if (lockup_detected(h))
8671 		return;
8672 
8673 	spin_lock_irqsave(&h->lock, flags);
8674 	if (!h->remove_in_progress)
8675 		schedule_delayed_work(&h->monitor_ctlr_work,
8676 				h->heartbeat_sample_interval);
8677 	spin_unlock_irqrestore(&h->lock, flags);
8678 }
8679 
8680 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8681 						char *name)
8682 {
8683 	struct workqueue_struct *wq = NULL;
8684 
8685 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8686 	if (!wq)
8687 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8688 
8689 	return wq;
8690 }
8691 
8692 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8693 {
8694 	int dac, rc;
8695 	struct ctlr_info *h;
8696 	int try_soft_reset = 0;
8697 	unsigned long flags;
8698 	u32 board_id;
8699 
8700 	if (number_of_controllers == 0)
8701 		printk(KERN_INFO DRIVER_NAME "\n");
8702 
8703 	rc = hpsa_lookup_board_id(pdev, &board_id);
8704 	if (rc < 0) {
8705 		dev_warn(&pdev->dev, "Board ID not found\n");
8706 		return rc;
8707 	}
8708 
8709 	rc = hpsa_init_reset_devices(pdev, board_id);
8710 	if (rc) {
8711 		if (rc != -ENOTSUPP)
8712 			return rc;
8713 		/* If the reset fails in a particular way (it has no way to do
8714 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8715 		 * a soft reset once we get the controller configured up to the
8716 		 * point that it can accept a command.
8717 		 */
8718 		try_soft_reset = 1;
8719 		rc = 0;
8720 	}
8721 
8722 reinit_after_soft_reset:
8723 
8724 	/* Command structures must be aligned on a 32-byte boundary because
8725 	 * the 5 lower bits of the address are used by the hardware. and by
8726 	 * the driver.  See comments in hpsa.h for more info.
8727 	 */
8728 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8729 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8730 	if (!h) {
8731 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8732 		return -ENOMEM;
8733 	}
8734 
8735 	h->pdev = pdev;
8736 
8737 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8738 	INIT_LIST_HEAD(&h->offline_device_list);
8739 	spin_lock_init(&h->lock);
8740 	spin_lock_init(&h->offline_device_lock);
8741 	spin_lock_init(&h->scan_lock);
8742 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8743 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8744 
8745 	/* Allocate and clear per-cpu variable lockup_detected */
8746 	h->lockup_detected = alloc_percpu(u32);
8747 	if (!h->lockup_detected) {
8748 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8749 		rc = -ENOMEM;
8750 		goto clean1;	/* aer/h */
8751 	}
8752 	set_lockup_detected_for_all_cpus(h, 0);
8753 
8754 	rc = hpsa_pci_init(h);
8755 	if (rc)
8756 		goto clean2;	/* lu, aer/h */
8757 
8758 	/* relies on h-> settings made by hpsa_pci_init, including
8759 	 * interrupt_mode h->intr */
8760 	rc = hpsa_scsi_host_alloc(h);
8761 	if (rc)
8762 		goto clean2_5;	/* pci, lu, aer/h */
8763 
8764 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8765 	h->ctlr = number_of_controllers;
8766 	number_of_controllers++;
8767 
8768 	/* configure PCI DMA stuff */
8769 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8770 	if (rc == 0) {
8771 		dac = 1;
8772 	} else {
8773 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8774 		if (rc == 0) {
8775 			dac = 0;
8776 		} else {
8777 			dev_err(&pdev->dev, "no suitable DMA available\n");
8778 			goto clean3;	/* shost, pci, lu, aer/h */
8779 		}
8780 	}
8781 
8782 	/* make sure the board interrupts are off */
8783 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8784 
8785 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8786 	if (rc)
8787 		goto clean3;	/* shost, pci, lu, aer/h */
8788 	rc = hpsa_alloc_cmd_pool(h);
8789 	if (rc)
8790 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8791 	rc = hpsa_alloc_sg_chain_blocks(h);
8792 	if (rc)
8793 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8794 	init_waitqueue_head(&h->scan_wait_queue);
8795 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8796 	init_waitqueue_head(&h->event_sync_wait_queue);
8797 	mutex_init(&h->reset_mutex);
8798 	h->scan_finished = 1; /* no scan currently in progress */
8799 
8800 	pci_set_drvdata(pdev, h);
8801 	h->ndevices = 0;
8802 
8803 	spin_lock_init(&h->devlock);
8804 	rc = hpsa_put_ctlr_into_performant_mode(h);
8805 	if (rc)
8806 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8807 
8808 	/* create the resubmit workqueue */
8809 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8810 	if (!h->rescan_ctlr_wq) {
8811 		rc = -ENOMEM;
8812 		goto clean7;
8813 	}
8814 
8815 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8816 	if (!h->resubmit_wq) {
8817 		rc = -ENOMEM;
8818 		goto clean7;	/* aer/h */
8819 	}
8820 
8821 	/*
8822 	 * At this point, the controller is ready to take commands.
8823 	 * Now, if reset_devices and the hard reset didn't work, try
8824 	 * the soft reset and see if that works.
8825 	 */
8826 	if (try_soft_reset) {
8827 
8828 		/* This is kind of gross.  We may or may not get a completion
8829 		 * from the soft reset command, and if we do, then the value
8830 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8831 		 * after the reset throwing away any completions we get during
8832 		 * that time.  Unregister the interrupt handler and register
8833 		 * fake ones to scoop up any residual completions.
8834 		 */
8835 		spin_lock_irqsave(&h->lock, flags);
8836 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837 		spin_unlock_irqrestore(&h->lock, flags);
8838 		hpsa_free_irqs(h);
8839 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8840 					hpsa_intx_discard_completions);
8841 		if (rc) {
8842 			dev_warn(&h->pdev->dev,
8843 				"Failed to request_irq after soft reset.\n");
8844 			/*
8845 			 * cannot goto clean7 or free_irqs will be called
8846 			 * again. Instead, do its work
8847 			 */
8848 			hpsa_free_performant_mode(h);	/* clean7 */
8849 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8850 			hpsa_free_cmd_pool(h);		/* clean5 */
8851 			/*
8852 			 * skip hpsa_free_irqs(h) clean4 since that
8853 			 * was just called before request_irqs failed
8854 			 */
8855 			goto clean3;
8856 		}
8857 
8858 		rc = hpsa_kdump_soft_reset(h);
8859 		if (rc)
8860 			/* Neither hard nor soft reset worked, we're hosed. */
8861 			goto clean7;
8862 
8863 		dev_info(&h->pdev->dev, "Board READY.\n");
8864 		dev_info(&h->pdev->dev,
8865 			"Waiting for stale completions to drain.\n");
8866 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8867 		msleep(10000);
8868 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8869 
8870 		rc = controller_reset_failed(h->cfgtable);
8871 		if (rc)
8872 			dev_info(&h->pdev->dev,
8873 				"Soft reset appears to have failed.\n");
8874 
8875 		/* since the controller's reset, we have to go back and re-init
8876 		 * everything.  Easiest to just forget what we've done and do it
8877 		 * all over again.
8878 		 */
8879 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8880 		try_soft_reset = 0;
8881 		if (rc)
8882 			/* don't goto clean, we already unallocated */
8883 			return -ENODEV;
8884 
8885 		goto reinit_after_soft_reset;
8886 	}
8887 
8888 	/* Enable Accelerated IO path at driver layer */
8889 	h->acciopath_status = 1;
8890 	/* Disable discovery polling.*/
8891 	h->discovery_polling = 0;
8892 
8893 
8894 	/* Turn the interrupts on so we can service requests */
8895 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8896 
8897 	hpsa_hba_inquiry(h);
8898 
8899 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8900 	if (!h->lastlogicals)
8901 		dev_info(&h->pdev->dev,
8902 			"Can't track change to report lun data\n");
8903 
8904 	/* hook into SCSI subsystem */
8905 	rc = hpsa_scsi_add_host(h);
8906 	if (rc)
8907 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8908 
8909 	/* Monitor the controller for firmware lockups */
8910 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8911 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8912 	schedule_delayed_work(&h->monitor_ctlr_work,
8913 				h->heartbeat_sample_interval);
8914 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8915 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8916 				h->heartbeat_sample_interval);
8917 	return 0;
8918 
8919 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920 	hpsa_free_performant_mode(h);
8921 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8922 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8923 	hpsa_free_sg_chain_blocks(h);
8924 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8925 	hpsa_free_cmd_pool(h);
8926 clean4: /* irq, shost, pci, lu, aer/h */
8927 	hpsa_free_irqs(h);
8928 clean3: /* shost, pci, lu, aer/h */
8929 	scsi_host_put(h->scsi_host);
8930 	h->scsi_host = NULL;
8931 clean2_5: /* pci, lu, aer/h */
8932 	hpsa_free_pci_init(h);
8933 clean2: /* lu, aer/h */
8934 	if (h->lockup_detected) {
8935 		free_percpu(h->lockup_detected);
8936 		h->lockup_detected = NULL;
8937 	}
8938 clean1:	/* wq/aer/h */
8939 	if (h->resubmit_wq) {
8940 		destroy_workqueue(h->resubmit_wq);
8941 		h->resubmit_wq = NULL;
8942 	}
8943 	if (h->rescan_ctlr_wq) {
8944 		destroy_workqueue(h->rescan_ctlr_wq);
8945 		h->rescan_ctlr_wq = NULL;
8946 	}
8947 	kfree(h);
8948 	return rc;
8949 }
8950 
8951 static void hpsa_flush_cache(struct ctlr_info *h)
8952 {
8953 	char *flush_buf;
8954 	struct CommandList *c;
8955 	int rc;
8956 
8957 	if (unlikely(lockup_detected(h)))
8958 		return;
8959 	flush_buf = kzalloc(4, GFP_KERNEL);
8960 	if (!flush_buf)
8961 		return;
8962 
8963 	c = cmd_alloc(h);
8964 
8965 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8966 		RAID_CTLR_LUNID, TYPE_CMD)) {
8967 		goto out;
8968 	}
8969 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8970 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8971 	if (rc)
8972 		goto out;
8973 	if (c->err_info->CommandStatus != 0)
8974 out:
8975 		dev_warn(&h->pdev->dev,
8976 			"error flushing cache on controller\n");
8977 	cmd_free(h, c);
8978 	kfree(flush_buf);
8979 }
8980 
8981 /* Make controller gather fresh report lun data each time we
8982  * send down a report luns request
8983  */
8984 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8985 {
8986 	u32 *options;
8987 	struct CommandList *c;
8988 	int rc;
8989 
8990 	/* Don't bother trying to set diag options if locked up */
8991 	if (unlikely(h->lockup_detected))
8992 		return;
8993 
8994 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8995 	if (!options) {
8996 		dev_err(&h->pdev->dev,
8997 			"Error: failed to disable rld caching, during alloc.\n");
8998 		return;
8999 	}
9000 
9001 	c = cmd_alloc(h);
9002 
9003 	/* first, get the current diag options settings */
9004 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9005 		RAID_CTLR_LUNID, TYPE_CMD))
9006 		goto errout;
9007 
9008 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9009 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9010 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9011 		goto errout;
9012 
9013 	/* Now, set the bit for disabling the RLD caching */
9014 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9015 
9016 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9017 		RAID_CTLR_LUNID, TYPE_CMD))
9018 		goto errout;
9019 
9020 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9021 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9022 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9023 		goto errout;
9024 
9025 	/* Now verify that it got set: */
9026 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9027 		RAID_CTLR_LUNID, TYPE_CMD))
9028 		goto errout;
9029 
9030 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9031 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9032 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9033 		goto errout;
9034 
9035 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9036 		goto out;
9037 
9038 errout:
9039 	dev_err(&h->pdev->dev,
9040 			"Error: failed to disable report lun data caching.\n");
9041 out:
9042 	cmd_free(h, c);
9043 	kfree(options);
9044 }
9045 
9046 static void hpsa_shutdown(struct pci_dev *pdev)
9047 {
9048 	struct ctlr_info *h;
9049 
9050 	h = pci_get_drvdata(pdev);
9051 	/* Turn board interrupts off  and send the flush cache command
9052 	 * sendcmd will turn off interrupt, and send the flush...
9053 	 * To write all data in the battery backed cache to disks
9054 	 */
9055 	hpsa_flush_cache(h);
9056 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9057 	hpsa_free_irqs(h);			/* init_one 4 */
9058 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9059 }
9060 
9061 static void hpsa_free_device_info(struct ctlr_info *h)
9062 {
9063 	int i;
9064 
9065 	for (i = 0; i < h->ndevices; i++) {
9066 		kfree(h->dev[i]);
9067 		h->dev[i] = NULL;
9068 	}
9069 }
9070 
9071 static void hpsa_remove_one(struct pci_dev *pdev)
9072 {
9073 	struct ctlr_info *h;
9074 	unsigned long flags;
9075 
9076 	if (pci_get_drvdata(pdev) == NULL) {
9077 		dev_err(&pdev->dev, "unable to remove device\n");
9078 		return;
9079 	}
9080 	h = pci_get_drvdata(pdev);
9081 
9082 	/* Get rid of any controller monitoring work items */
9083 	spin_lock_irqsave(&h->lock, flags);
9084 	h->remove_in_progress = 1;
9085 	spin_unlock_irqrestore(&h->lock, flags);
9086 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9087 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9088 	destroy_workqueue(h->rescan_ctlr_wq);
9089 	destroy_workqueue(h->resubmit_wq);
9090 
9091 	/*
9092 	 * Call before disabling interrupts.
9093 	 * scsi_remove_host can trigger I/O operations especially
9094 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9095 	 * operations which cannot complete and will hang the system.
9096 	 */
9097 	if (h->scsi_host)
9098 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9099 	/* includes hpsa_free_irqs - init_one 4 */
9100 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9101 	hpsa_shutdown(pdev);
9102 
9103 	hpsa_free_device_info(h);		/* scan */
9104 
9105 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9106 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9107 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9108 	hpsa_free_performant_mode(h);			/* init_one 7 */
9109 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9110 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9111 	kfree(h->lastlogicals);
9112 
9113 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9114 
9115 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9116 	h->scsi_host = NULL;				/* init_one 3 */
9117 
9118 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9119 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9120 
9121 	free_percpu(h->lockup_detected);		/* init_one 2 */
9122 	h->lockup_detected = NULL;			/* init_one 2 */
9123 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9124 
9125 	hpsa_delete_sas_host(h);
9126 
9127 	kfree(h);					/* init_one 1 */
9128 }
9129 
9130 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9131 	__attribute__((unused)) pm_message_t state)
9132 {
9133 	return -ENOSYS;
9134 }
9135 
9136 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9137 {
9138 	return -ENOSYS;
9139 }
9140 
9141 static struct pci_driver hpsa_pci_driver = {
9142 	.name = HPSA,
9143 	.probe = hpsa_init_one,
9144 	.remove = hpsa_remove_one,
9145 	.id_table = hpsa_pci_device_id,	/* id_table */
9146 	.shutdown = hpsa_shutdown,
9147 	.suspend = hpsa_suspend,
9148 	.resume = hpsa_resume,
9149 };
9150 
9151 /* Fill in bucket_map[], given nsgs (the max number of
9152  * scatter gather elements supported) and bucket[],
9153  * which is an array of 8 integers.  The bucket[] array
9154  * contains 8 different DMA transfer sizes (in 16
9155  * byte increments) which the controller uses to fetch
9156  * commands.  This function fills in bucket_map[], which
9157  * maps a given number of scatter gather elements to one of
9158  * the 8 DMA transfer sizes.  The point of it is to allow the
9159  * controller to only do as much DMA as needed to fetch the
9160  * command, with the DMA transfer size encoded in the lower
9161  * bits of the command address.
9162  */
9163 static void  calc_bucket_map(int bucket[], int num_buckets,
9164 	int nsgs, int min_blocks, u32 *bucket_map)
9165 {
9166 	int i, j, b, size;
9167 
9168 	/* Note, bucket_map must have nsgs+1 entries. */
9169 	for (i = 0; i <= nsgs; i++) {
9170 		/* Compute size of a command with i SG entries */
9171 		size = i + min_blocks;
9172 		b = num_buckets; /* Assume the biggest bucket */
9173 		/* Find the bucket that is just big enough */
9174 		for (j = 0; j < num_buckets; j++) {
9175 			if (bucket[j] >= size) {
9176 				b = j;
9177 				break;
9178 			}
9179 		}
9180 		/* for a command with i SG entries, use bucket b. */
9181 		bucket_map[i] = b;
9182 	}
9183 }
9184 
9185 /*
9186  * return -ENODEV on err, 0 on success (or no action)
9187  * allocates numerous items that must be freed later
9188  */
9189 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9190 {
9191 	int i;
9192 	unsigned long register_value;
9193 	unsigned long transMethod = CFGTBL_Trans_Performant |
9194 			(trans_support & CFGTBL_Trans_use_short_tags) |
9195 				CFGTBL_Trans_enable_directed_msix |
9196 			(trans_support & (CFGTBL_Trans_io_accel1 |
9197 				CFGTBL_Trans_io_accel2));
9198 	struct access_method access = SA5_performant_access;
9199 
9200 	/* This is a bit complicated.  There are 8 registers on
9201 	 * the controller which we write to to tell it 8 different
9202 	 * sizes of commands which there may be.  It's a way of
9203 	 * reducing the DMA done to fetch each command.  Encoded into
9204 	 * each command's tag are 3 bits which communicate to the controller
9205 	 * which of the eight sizes that command fits within.  The size of
9206 	 * each command depends on how many scatter gather entries there are.
9207 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9208 	 * with the number of 16-byte blocks a command of that size requires.
9209 	 * The smallest command possible requires 5 such 16 byte blocks.
9210 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9211 	 * blocks.  Note, this only extends to the SG entries contained
9212 	 * within the command block, and does not extend to chained blocks
9213 	 * of SG elements.   bft[] contains the eight values we write to
9214 	 * the registers.  They are not evenly distributed, but have more
9215 	 * sizes for small commands, and fewer sizes for larger commands.
9216 	 */
9217 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9218 #define MIN_IOACCEL2_BFT_ENTRY 5
9219 #define HPSA_IOACCEL2_HEADER_SZ 4
9220 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9221 			13, 14, 15, 16, 17, 18, 19,
9222 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9223 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9224 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9225 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9226 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9227 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9228 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9229 	/*  5 = 1 s/g entry or 4k
9230 	 *  6 = 2 s/g entry or 8k
9231 	 *  8 = 4 s/g entry or 16k
9232 	 * 10 = 6 s/g entry or 24k
9233 	 */
9234 
9235 	/* If the controller supports either ioaccel method then
9236 	 * we can also use the RAID stack submit path that does not
9237 	 * perform the superfluous readl() after each command submission.
9238 	 */
9239 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9240 		access = SA5_performant_access_no_read;
9241 
9242 	/* Controller spec: zero out this buffer. */
9243 	for (i = 0; i < h->nreply_queues; i++)
9244 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9245 
9246 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9247 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9248 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9249 	for (i = 0; i < 8; i++)
9250 		writel(bft[i], &h->transtable->BlockFetch[i]);
9251 
9252 	/* size of controller ring buffer */
9253 	writel(h->max_commands, &h->transtable->RepQSize);
9254 	writel(h->nreply_queues, &h->transtable->RepQCount);
9255 	writel(0, &h->transtable->RepQCtrAddrLow32);
9256 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9257 
9258 	for (i = 0; i < h->nreply_queues; i++) {
9259 		writel(0, &h->transtable->RepQAddr[i].upper);
9260 		writel(h->reply_queue[i].busaddr,
9261 			&h->transtable->RepQAddr[i].lower);
9262 	}
9263 
9264 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9265 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9266 	/*
9267 	 * enable outbound interrupt coalescing in accelerator mode;
9268 	 */
9269 	if (trans_support & CFGTBL_Trans_io_accel1) {
9270 		access = SA5_ioaccel_mode1_access;
9271 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9272 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9273 	} else {
9274 		if (trans_support & CFGTBL_Trans_io_accel2) {
9275 			access = SA5_ioaccel_mode2_access;
9276 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9277 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9278 		}
9279 	}
9280 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9281 	if (hpsa_wait_for_mode_change_ack(h)) {
9282 		dev_err(&h->pdev->dev,
9283 			"performant mode problem - doorbell timeout\n");
9284 		return -ENODEV;
9285 	}
9286 	register_value = readl(&(h->cfgtable->TransportActive));
9287 	if (!(register_value & CFGTBL_Trans_Performant)) {
9288 		dev_err(&h->pdev->dev,
9289 			"performant mode problem - transport not active\n");
9290 		return -ENODEV;
9291 	}
9292 	/* Change the access methods to the performant access methods */
9293 	h->access = access;
9294 	h->transMethod = transMethod;
9295 
9296 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9297 		(trans_support & CFGTBL_Trans_io_accel2)))
9298 		return 0;
9299 
9300 	if (trans_support & CFGTBL_Trans_io_accel1) {
9301 		/* Set up I/O accelerator mode */
9302 		for (i = 0; i < h->nreply_queues; i++) {
9303 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9304 			h->reply_queue[i].current_entry =
9305 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9306 		}
9307 		bft[7] = h->ioaccel_maxsg + 8;
9308 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9309 				h->ioaccel1_blockFetchTable);
9310 
9311 		/* initialize all reply queue entries to unused */
9312 		for (i = 0; i < h->nreply_queues; i++)
9313 			memset(h->reply_queue[i].head,
9314 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9315 				h->reply_queue_size);
9316 
9317 		/* set all the constant fields in the accelerator command
9318 		 * frames once at init time to save CPU cycles later.
9319 		 */
9320 		for (i = 0; i < h->nr_cmds; i++) {
9321 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9322 
9323 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9324 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9325 					(i * sizeof(struct ErrorInfo)));
9326 			cp->err_info_len = sizeof(struct ErrorInfo);
9327 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9328 			cp->host_context_flags =
9329 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9330 			cp->timeout_sec = 0;
9331 			cp->ReplyQueue = 0;
9332 			cp->tag =
9333 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9334 			cp->host_addr =
9335 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9336 					(i * sizeof(struct io_accel1_cmd)));
9337 		}
9338 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9339 		u64 cfg_offset, cfg_base_addr_index;
9340 		u32 bft2_offset, cfg_base_addr;
9341 		int rc;
9342 
9343 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9344 			&cfg_base_addr_index, &cfg_offset);
9345 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9346 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9347 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9348 				4, h->ioaccel2_blockFetchTable);
9349 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9350 		BUILD_BUG_ON(offsetof(struct CfgTable,
9351 				io_accel_request_size_offset) != 0xb8);
9352 		h->ioaccel2_bft2_regs =
9353 			remap_pci_mem(pci_resource_start(h->pdev,
9354 					cfg_base_addr_index) +
9355 					cfg_offset + bft2_offset,
9356 					ARRAY_SIZE(bft2) *
9357 					sizeof(*h->ioaccel2_bft2_regs));
9358 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9359 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9360 	}
9361 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9362 	if (hpsa_wait_for_mode_change_ack(h)) {
9363 		dev_err(&h->pdev->dev,
9364 			"performant mode problem - enabling ioaccel mode\n");
9365 		return -ENODEV;
9366 	}
9367 	return 0;
9368 }
9369 
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373 	if (h->ioaccel_cmd_pool) {
9374 		pci_free_consistent(h->pdev,
9375 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9376 			h->ioaccel_cmd_pool,
9377 			h->ioaccel_cmd_pool_dhandle);
9378 		h->ioaccel_cmd_pool = NULL;
9379 		h->ioaccel_cmd_pool_dhandle = 0;
9380 	}
9381 	kfree(h->ioaccel1_blockFetchTable);
9382 	h->ioaccel1_blockFetchTable = NULL;
9383 }
9384 
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9387 {
9388 	h->ioaccel_maxsg =
9389 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9390 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9391 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9392 
9393 	/* Command structures must be aligned on a 128-byte boundary
9394 	 * because the 7 lower bits of the address are used by the
9395 	 * hardware.
9396 	 */
9397 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9398 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9399 	h->ioaccel_cmd_pool =
9400 		pci_alloc_consistent(h->pdev,
9401 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9402 			&(h->ioaccel_cmd_pool_dhandle));
9403 
9404 	h->ioaccel1_blockFetchTable =
9405 		kmalloc(((h->ioaccel_maxsg + 1) *
9406 				sizeof(u32)), GFP_KERNEL);
9407 
9408 	if ((h->ioaccel_cmd_pool == NULL) ||
9409 		(h->ioaccel1_blockFetchTable == NULL))
9410 		goto clean_up;
9411 
9412 	memset(h->ioaccel_cmd_pool, 0,
9413 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9414 	return 0;
9415 
9416 clean_up:
9417 	hpsa_free_ioaccel1_cmd_and_bft(h);
9418 	return -ENOMEM;
9419 }
9420 
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9423 {
9424 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9425 
9426 	if (h->ioaccel2_cmd_pool) {
9427 		pci_free_consistent(h->pdev,
9428 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9429 			h->ioaccel2_cmd_pool,
9430 			h->ioaccel2_cmd_pool_dhandle);
9431 		h->ioaccel2_cmd_pool = NULL;
9432 		h->ioaccel2_cmd_pool_dhandle = 0;
9433 	}
9434 	kfree(h->ioaccel2_blockFetchTable);
9435 	h->ioaccel2_blockFetchTable = NULL;
9436 }
9437 
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9440 {
9441 	int rc;
9442 
9443 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9444 
9445 	h->ioaccel_maxsg =
9446 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9447 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9448 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9449 
9450 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9451 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9452 	h->ioaccel2_cmd_pool =
9453 		pci_alloc_consistent(h->pdev,
9454 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9455 			&(h->ioaccel2_cmd_pool_dhandle));
9456 
9457 	h->ioaccel2_blockFetchTable =
9458 		kmalloc(((h->ioaccel_maxsg + 1) *
9459 				sizeof(u32)), GFP_KERNEL);
9460 
9461 	if ((h->ioaccel2_cmd_pool == NULL) ||
9462 		(h->ioaccel2_blockFetchTable == NULL)) {
9463 		rc = -ENOMEM;
9464 		goto clean_up;
9465 	}
9466 
9467 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9468 	if (rc)
9469 		goto clean_up;
9470 
9471 	memset(h->ioaccel2_cmd_pool, 0,
9472 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9473 	return 0;
9474 
9475 clean_up:
9476 	hpsa_free_ioaccel2_cmd_and_bft(h);
9477 	return rc;
9478 }
9479 
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info *h)
9482 {
9483 	kfree(h->blockFetchTable);
9484 	h->blockFetchTable = NULL;
9485 	hpsa_free_reply_queues(h);
9486 	hpsa_free_ioaccel1_cmd_and_bft(h);
9487 	hpsa_free_ioaccel2_cmd_and_bft(h);
9488 }
9489 
9490 /* return -ENODEV on error, 0 on success (or no action)
9491  * allocates numerous items that must be freed later
9492  */
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9494 {
9495 	u32 trans_support;
9496 	unsigned long transMethod = CFGTBL_Trans_Performant |
9497 					CFGTBL_Trans_use_short_tags;
9498 	int i, rc;
9499 
9500 	if (hpsa_simple_mode)
9501 		return 0;
9502 
9503 	trans_support = readl(&(h->cfgtable->TransportSupport));
9504 	if (!(trans_support & PERFORMANT_MODE))
9505 		return 0;
9506 
9507 	/* Check for I/O accelerator mode support */
9508 	if (trans_support & CFGTBL_Trans_io_accel1) {
9509 		transMethod |= CFGTBL_Trans_io_accel1 |
9510 				CFGTBL_Trans_enable_directed_msix;
9511 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9512 		if (rc)
9513 			return rc;
9514 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9515 		transMethod |= CFGTBL_Trans_io_accel2 |
9516 				CFGTBL_Trans_enable_directed_msix;
9517 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9518 		if (rc)
9519 			return rc;
9520 	}
9521 
9522 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9523 	hpsa_get_max_perf_mode_cmds(h);
9524 	/* Performant mode ring buffer and supporting data structures */
9525 	h->reply_queue_size = h->max_commands * sizeof(u64);
9526 
9527 	for (i = 0; i < h->nreply_queues; i++) {
9528 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9529 						h->reply_queue_size,
9530 						&(h->reply_queue[i].busaddr));
9531 		if (!h->reply_queue[i].head) {
9532 			rc = -ENOMEM;
9533 			goto clean1;	/* rq, ioaccel */
9534 		}
9535 		h->reply_queue[i].size = h->max_commands;
9536 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9537 		h->reply_queue[i].current_entry = 0;
9538 	}
9539 
9540 	/* Need a block fetch table for performant mode */
9541 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9542 				sizeof(u32)), GFP_KERNEL);
9543 	if (!h->blockFetchTable) {
9544 		rc = -ENOMEM;
9545 		goto clean1;	/* rq, ioaccel */
9546 	}
9547 
9548 	rc = hpsa_enter_performant_mode(h, trans_support);
9549 	if (rc)
9550 		goto clean2;	/* bft, rq, ioaccel */
9551 	return 0;
9552 
9553 clean2:	/* bft, rq, ioaccel */
9554 	kfree(h->blockFetchTable);
9555 	h->blockFetchTable = NULL;
9556 clean1:	/* rq, ioaccel */
9557 	hpsa_free_reply_queues(h);
9558 	hpsa_free_ioaccel1_cmd_and_bft(h);
9559 	hpsa_free_ioaccel2_cmd_and_bft(h);
9560 	return rc;
9561 }
9562 
9563 static int is_accelerated_cmd(struct CommandList *c)
9564 {
9565 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9566 }
9567 
9568 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9569 {
9570 	struct CommandList *c = NULL;
9571 	int i, accel_cmds_out;
9572 	int refcount;
9573 
9574 	do { /* wait for all outstanding ioaccel commands to drain out */
9575 		accel_cmds_out = 0;
9576 		for (i = 0; i < h->nr_cmds; i++) {
9577 			c = h->cmd_pool + i;
9578 			refcount = atomic_inc_return(&c->refcount);
9579 			if (refcount > 1) /* Command is allocated */
9580 				accel_cmds_out += is_accelerated_cmd(c);
9581 			cmd_free(h, c);
9582 		}
9583 		if (accel_cmds_out <= 0)
9584 			break;
9585 		msleep(100);
9586 	} while (1);
9587 }
9588 
9589 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9590 				struct hpsa_sas_port *hpsa_sas_port)
9591 {
9592 	struct hpsa_sas_phy *hpsa_sas_phy;
9593 	struct sas_phy *phy;
9594 
9595 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9596 	if (!hpsa_sas_phy)
9597 		return NULL;
9598 
9599 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9600 		hpsa_sas_port->next_phy_index);
9601 	if (!phy) {
9602 		kfree(hpsa_sas_phy);
9603 		return NULL;
9604 	}
9605 
9606 	hpsa_sas_port->next_phy_index++;
9607 	hpsa_sas_phy->phy = phy;
9608 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9609 
9610 	return hpsa_sas_phy;
9611 }
9612 
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 {
9615 	struct sas_phy *phy = hpsa_sas_phy->phy;
9616 
9617 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9618 	sas_phy_free(phy);
9619 	if (hpsa_sas_phy->added_to_port)
9620 		list_del(&hpsa_sas_phy->phy_list_entry);
9621 	kfree(hpsa_sas_phy);
9622 }
9623 
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9625 {
9626 	int rc;
9627 	struct hpsa_sas_port *hpsa_sas_port;
9628 	struct sas_phy *phy;
9629 	struct sas_identify *identify;
9630 
9631 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9632 	phy = hpsa_sas_phy->phy;
9633 
9634 	identify = &phy->identify;
9635 	memset(identify, 0, sizeof(*identify));
9636 	identify->sas_address = hpsa_sas_port->sas_address;
9637 	identify->device_type = SAS_END_DEVICE;
9638 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9639 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9640 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9641 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9642 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9643 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9644 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9645 
9646 	rc = sas_phy_add(hpsa_sas_phy->phy);
9647 	if (rc)
9648 		return rc;
9649 
9650 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9651 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9652 			&hpsa_sas_port->phy_list_head);
9653 	hpsa_sas_phy->added_to_port = true;
9654 
9655 	return 0;
9656 }
9657 
9658 static int
9659 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9660 				struct sas_rphy *rphy)
9661 {
9662 	struct sas_identify *identify;
9663 
9664 	identify = &rphy->identify;
9665 	identify->sas_address = hpsa_sas_port->sas_address;
9666 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9667 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9668 
9669 	return sas_rphy_add(rphy);
9670 }
9671 
9672 static struct hpsa_sas_port
9673 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9674 				u64 sas_address)
9675 {
9676 	int rc;
9677 	struct hpsa_sas_port *hpsa_sas_port;
9678 	struct sas_port *port;
9679 
9680 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9681 	if (!hpsa_sas_port)
9682 		return NULL;
9683 
9684 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9685 	hpsa_sas_port->parent_node = hpsa_sas_node;
9686 
9687 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9688 	if (!port)
9689 		goto free_hpsa_port;
9690 
9691 	rc = sas_port_add(port);
9692 	if (rc)
9693 		goto free_sas_port;
9694 
9695 	hpsa_sas_port->port = port;
9696 	hpsa_sas_port->sas_address = sas_address;
9697 	list_add_tail(&hpsa_sas_port->port_list_entry,
9698 			&hpsa_sas_node->port_list_head);
9699 
9700 	return hpsa_sas_port;
9701 
9702 free_sas_port:
9703 	sas_port_free(port);
9704 free_hpsa_port:
9705 	kfree(hpsa_sas_port);
9706 
9707 	return NULL;
9708 }
9709 
9710 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9711 {
9712 	struct hpsa_sas_phy *hpsa_sas_phy;
9713 	struct hpsa_sas_phy *next;
9714 
9715 	list_for_each_entry_safe(hpsa_sas_phy, next,
9716 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9717 		hpsa_free_sas_phy(hpsa_sas_phy);
9718 
9719 	sas_port_delete(hpsa_sas_port->port);
9720 	list_del(&hpsa_sas_port->port_list_entry);
9721 	kfree(hpsa_sas_port);
9722 }
9723 
9724 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9725 {
9726 	struct hpsa_sas_node *hpsa_sas_node;
9727 
9728 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9729 	if (hpsa_sas_node) {
9730 		hpsa_sas_node->parent_dev = parent_dev;
9731 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9732 	}
9733 
9734 	return hpsa_sas_node;
9735 }
9736 
9737 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9738 {
9739 	struct hpsa_sas_port *hpsa_sas_port;
9740 	struct hpsa_sas_port *next;
9741 
9742 	if (!hpsa_sas_node)
9743 		return;
9744 
9745 	list_for_each_entry_safe(hpsa_sas_port, next,
9746 			&hpsa_sas_node->port_list_head, port_list_entry)
9747 		hpsa_free_sas_port(hpsa_sas_port);
9748 
9749 	kfree(hpsa_sas_node);
9750 }
9751 
9752 static struct hpsa_scsi_dev_t
9753 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9754 					struct sas_rphy *rphy)
9755 {
9756 	int i;
9757 	struct hpsa_scsi_dev_t *device;
9758 
9759 	for (i = 0; i < h->ndevices; i++) {
9760 		device = h->dev[i];
9761 		if (!device->sas_port)
9762 			continue;
9763 		if (device->sas_port->rphy == rphy)
9764 			return device;
9765 	}
9766 
9767 	return NULL;
9768 }
9769 
9770 static int hpsa_add_sas_host(struct ctlr_info *h)
9771 {
9772 	int rc;
9773 	struct device *parent_dev;
9774 	struct hpsa_sas_node *hpsa_sas_node;
9775 	struct hpsa_sas_port *hpsa_sas_port;
9776 	struct hpsa_sas_phy *hpsa_sas_phy;
9777 
9778 	parent_dev = &h->scsi_host->shost_gendev;
9779 
9780 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9781 	if (!hpsa_sas_node)
9782 		return -ENOMEM;
9783 
9784 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9785 	if (!hpsa_sas_port) {
9786 		rc = -ENODEV;
9787 		goto free_sas_node;
9788 	}
9789 
9790 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9791 	if (!hpsa_sas_phy) {
9792 		rc = -ENODEV;
9793 		goto free_sas_port;
9794 	}
9795 
9796 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9797 	if (rc)
9798 		goto free_sas_phy;
9799 
9800 	h->sas_host = hpsa_sas_node;
9801 
9802 	return 0;
9803 
9804 free_sas_phy:
9805 	hpsa_free_sas_phy(hpsa_sas_phy);
9806 free_sas_port:
9807 	hpsa_free_sas_port(hpsa_sas_port);
9808 free_sas_node:
9809 	hpsa_free_sas_node(hpsa_sas_node);
9810 
9811 	return rc;
9812 }
9813 
9814 static void hpsa_delete_sas_host(struct ctlr_info *h)
9815 {
9816 	hpsa_free_sas_node(h->sas_host);
9817 }
9818 
9819 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9820 				struct hpsa_scsi_dev_t *device)
9821 {
9822 	int rc;
9823 	struct hpsa_sas_port *hpsa_sas_port;
9824 	struct sas_rphy *rphy;
9825 
9826 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9827 	if (!hpsa_sas_port)
9828 		return -ENOMEM;
9829 
9830 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9831 	if (!rphy) {
9832 		rc = -ENODEV;
9833 		goto free_sas_port;
9834 	}
9835 
9836 	hpsa_sas_port->rphy = rphy;
9837 	device->sas_port = hpsa_sas_port;
9838 
9839 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9840 	if (rc)
9841 		goto free_sas_port;
9842 
9843 	return 0;
9844 
9845 free_sas_port:
9846 	hpsa_free_sas_port(hpsa_sas_port);
9847 	device->sas_port = NULL;
9848 
9849 	return rc;
9850 }
9851 
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9853 {
9854 	if (device->sas_port) {
9855 		hpsa_free_sas_port(device->sas_port);
9856 		device->sas_port = NULL;
9857 	}
9858 }
9859 
9860 static int
9861 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9862 {
9863 	return 0;
9864 }
9865 
9866 static int
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9868 {
9869 	*identifier = 0;
9870 	return 0;
9871 }
9872 
9873 static int
9874 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9875 {
9876 	return -ENXIO;
9877 }
9878 
9879 static int
9880 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9881 {
9882 	return 0;
9883 }
9884 
9885 static int
9886 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9887 {
9888 	return 0;
9889 }
9890 
9891 static int
9892 hpsa_sas_phy_setup(struct sas_phy *phy)
9893 {
9894 	return 0;
9895 }
9896 
9897 static void
9898 hpsa_sas_phy_release(struct sas_phy *phy)
9899 {
9900 }
9901 
9902 static int
9903 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9904 {
9905 	return -EINVAL;
9906 }
9907 
9908 /* SMP = Serial Management Protocol */
9909 static int
9910 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9911 struct request *req)
9912 {
9913 	return -EINVAL;
9914 }
9915 
9916 static struct sas_function_template hpsa_sas_transport_functions = {
9917 	.get_linkerrors = hpsa_sas_get_linkerrors,
9918 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9919 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9920 	.phy_reset = hpsa_sas_phy_reset,
9921 	.phy_enable = hpsa_sas_phy_enable,
9922 	.phy_setup = hpsa_sas_phy_setup,
9923 	.phy_release = hpsa_sas_phy_release,
9924 	.set_phy_speed = hpsa_sas_phy_speed,
9925 	.smp_handler = hpsa_sas_smp_handler,
9926 };
9927 
9928 /*
9929  *  This is it.  Register the PCI driver information for the cards we control
9930  *  the OS will call our registered routines when it finds one of our cards.
9931  */
9932 static int __init hpsa_init(void)
9933 {
9934 	int rc;
9935 
9936 	hpsa_sas_transport_template =
9937 		sas_attach_transport(&hpsa_sas_transport_functions);
9938 	if (!hpsa_sas_transport_template)
9939 		return -ENODEV;
9940 
9941 	rc = pci_register_driver(&hpsa_pci_driver);
9942 
9943 	if (rc)
9944 		sas_release_transport(hpsa_sas_transport_template);
9945 
9946 	return rc;
9947 }
9948 
9949 static void __exit hpsa_cleanup(void)
9950 {
9951 	pci_unregister_driver(&hpsa_pci_driver);
9952 	sas_release_transport(hpsa_sas_transport_template);
9953 }
9954 
9955 static void __attribute__((unused)) verify_offsets(void)
9956 {
9957 #define VERIFY_OFFSET(member, offset) \
9958 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9959 
9960 	VERIFY_OFFSET(structure_size, 0);
9961 	VERIFY_OFFSET(volume_blk_size, 4);
9962 	VERIFY_OFFSET(volume_blk_cnt, 8);
9963 	VERIFY_OFFSET(phys_blk_shift, 16);
9964 	VERIFY_OFFSET(parity_rotation_shift, 17);
9965 	VERIFY_OFFSET(strip_size, 18);
9966 	VERIFY_OFFSET(disk_starting_blk, 20);
9967 	VERIFY_OFFSET(disk_blk_cnt, 28);
9968 	VERIFY_OFFSET(data_disks_per_row, 36);
9969 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9970 	VERIFY_OFFSET(row_cnt, 40);
9971 	VERIFY_OFFSET(layout_map_count, 42);
9972 	VERIFY_OFFSET(flags, 44);
9973 	VERIFY_OFFSET(dekindex, 46);
9974 	/* VERIFY_OFFSET(reserved, 48 */
9975 	VERIFY_OFFSET(data, 64);
9976 
9977 #undef VERIFY_OFFSET
9978 
9979 #define VERIFY_OFFSET(member, offset) \
9980 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9981 
9982 	VERIFY_OFFSET(IU_type, 0);
9983 	VERIFY_OFFSET(direction, 1);
9984 	VERIFY_OFFSET(reply_queue, 2);
9985 	/* VERIFY_OFFSET(reserved1, 3);  */
9986 	VERIFY_OFFSET(scsi_nexus, 4);
9987 	VERIFY_OFFSET(Tag, 8);
9988 	VERIFY_OFFSET(cdb, 16);
9989 	VERIFY_OFFSET(cciss_lun, 32);
9990 	VERIFY_OFFSET(data_len, 40);
9991 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9992 	VERIFY_OFFSET(sg_count, 45);
9993 	/* VERIFY_OFFSET(reserved3 */
9994 	VERIFY_OFFSET(err_ptr, 48);
9995 	VERIFY_OFFSET(err_len, 56);
9996 	/* VERIFY_OFFSET(reserved4  */
9997 	VERIFY_OFFSET(sg, 64);
9998 
9999 #undef VERIFY_OFFSET
10000 
10001 #define VERIFY_OFFSET(member, offset) \
10002 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10003 
10004 	VERIFY_OFFSET(dev_handle, 0x00);
10005 	VERIFY_OFFSET(reserved1, 0x02);
10006 	VERIFY_OFFSET(function, 0x03);
10007 	VERIFY_OFFSET(reserved2, 0x04);
10008 	VERIFY_OFFSET(err_info, 0x0C);
10009 	VERIFY_OFFSET(reserved3, 0x10);
10010 	VERIFY_OFFSET(err_info_len, 0x12);
10011 	VERIFY_OFFSET(reserved4, 0x13);
10012 	VERIFY_OFFSET(sgl_offset, 0x14);
10013 	VERIFY_OFFSET(reserved5, 0x15);
10014 	VERIFY_OFFSET(transfer_len, 0x1C);
10015 	VERIFY_OFFSET(reserved6, 0x20);
10016 	VERIFY_OFFSET(io_flags, 0x24);
10017 	VERIFY_OFFSET(reserved7, 0x26);
10018 	VERIFY_OFFSET(LUN, 0x34);
10019 	VERIFY_OFFSET(control, 0x3C);
10020 	VERIFY_OFFSET(CDB, 0x40);
10021 	VERIFY_OFFSET(reserved8, 0x50);
10022 	VERIFY_OFFSET(host_context_flags, 0x60);
10023 	VERIFY_OFFSET(timeout_sec, 0x62);
10024 	VERIFY_OFFSET(ReplyQueue, 0x64);
10025 	VERIFY_OFFSET(reserved9, 0x65);
10026 	VERIFY_OFFSET(tag, 0x68);
10027 	VERIFY_OFFSET(host_addr, 0x70);
10028 	VERIFY_OFFSET(CISS_LUN, 0x78);
10029 	VERIFY_OFFSET(SG, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10031 }
10032 
10033 module_init(hpsa_init);
10034 module_exit(hpsa_cleanup);
10035