xref: /openbmc/linux/drivers/scsi/hpsa.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56 
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61 
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68 
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71 
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75 	HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79 
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83 		"Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87 	"Use 'simple mode' rather than 'performant mode'");
88 
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
143 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144 	{0,}
145 };
146 
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148 
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154 	{0x3241103C, "Smart Array P212", &SA5_access},
155 	{0x3243103C, "Smart Array P410", &SA5_access},
156 	{0x3245103C, "Smart Array P410i", &SA5_access},
157 	{0x3247103C, "Smart Array P411", &SA5_access},
158 	{0x3249103C, "Smart Array P812", &SA5_access},
159 	{0x324A103C, "Smart Array P712m", &SA5_access},
160 	{0x324B103C, "Smart Array P711m", &SA5_access},
161 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162 	{0x3350103C, "Smart Array P222", &SA5_access},
163 	{0x3351103C, "Smart Array P420", &SA5_access},
164 	{0x3352103C, "Smart Array P421", &SA5_access},
165 	{0x3353103C, "Smart Array P822", &SA5_access},
166 	{0x3354103C, "Smart Array P420i", &SA5_access},
167 	{0x3355103C, "Smart Array P220i", &SA5_access},
168 	{0x3356103C, "Smart Array P721m", &SA5_access},
169 	{0x1921103C, "Smart Array P830i", &SA5_access},
170 	{0x1922103C, "Smart Array P430", &SA5_access},
171 	{0x1923103C, "Smart Array P431", &SA5_access},
172 	{0x1924103C, "Smart Array P830", &SA5_access},
173 	{0x1926103C, "Smart Array P731m", &SA5_access},
174 	{0x1928103C, "Smart Array P230i", &SA5_access},
175 	{0x1929103C, "Smart Array P530", &SA5_access},
176 	{0x21BD103C, "Smart Array P244br", &SA5_access},
177 	{0x21BE103C, "Smart Array P741m", &SA5_access},
178 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
179 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
180 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
181 	{0x21C2103C, "Smart Array P440", &SA5_access},
182 	{0x21C3103C, "Smart Array P441", &SA5_access},
183 	{0x21C4103C, "Smart Array", &SA5_access},
184 	{0x21C5103C, "Smart Array P841", &SA5_access},
185 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
186 	{0x21C7103C, "Smart HBA H240", &SA5_access},
187 	{0x21C8103C, "Smart HBA H241", &SA5_access},
188 	{0x21C9103C, "Smart Array", &SA5_access},
189 	{0x21CA103C, "Smart Array P246br", &SA5_access},
190 	{0x21CB103C, "Smart Array P840", &SA5_access},
191 	{0x21CC103C, "Smart Array", &SA5_access},
192 	{0x21CD103C, "Smart Array", &SA5_access},
193 	{0x21CE103C, "Smart HBA", &SA5_access},
194 	{0x05809005, "SmartHBA-SA", &SA5_access},
195 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
196 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
198 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
199 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207 
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213 
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217 
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220 	void __user *arg);
221 #endif
222 
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227 					    struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230 	int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 
234 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
235 static void hpsa_scan_start(struct Scsi_Host *);
236 static int hpsa_scan_finished(struct Scsi_Host *sh,
237 	unsigned long elapsed_time);
238 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
239 
240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
241 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_slave_alloc(struct scsi_device *sdev);
243 static int hpsa_slave_configure(struct scsi_device *sdev);
244 static void hpsa_slave_destroy(struct scsi_device *sdev);
245 
246 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
247 static int check_for_unit_attention(struct ctlr_info *h,
248 	struct CommandList *c);
249 static void check_ioctl_unit_attention(struct ctlr_info *h,
250 	struct CommandList *c);
251 /* performant mode helper functions */
252 static void calc_bucket_map(int *bucket, int num_buckets,
253 	int nsgs, int min_blocks, u32 *bucket_map);
254 static void hpsa_free_performant_mode(struct ctlr_info *h);
255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
256 static inline u32 next_command(struct ctlr_info *h, u8 q);
257 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
258 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
259 			       u64 *cfg_offset);
260 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
261 				    unsigned long *memory_bar);
262 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
263 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
264 				     int wait_for_ready);
265 static inline void finish_cmd(struct CommandList *c);
266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
267 #define BOARD_NOT_READY 0
268 #define BOARD_READY 1
269 static void hpsa_drain_accel_commands(struct ctlr_info *h);
270 static void hpsa_flush_cache(struct ctlr_info *h);
271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
272 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
273 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
274 static void hpsa_command_resubmit_worker(struct work_struct *work);
275 static u32 lockup_detected(struct ctlr_info *h);
276 static int detect_controller_lockup(struct ctlr_info *h);
277 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
278 
279 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
280 {
281 	unsigned long *priv = shost_priv(sdev->host);
282 	return (struct ctlr_info *) *priv;
283 }
284 
285 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
286 {
287 	unsigned long *priv = shost_priv(sh);
288 	return (struct ctlr_info *) *priv;
289 }
290 
291 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
292 {
293 	return c->scsi_cmd == SCSI_CMD_IDLE;
294 }
295 
296 static inline bool hpsa_is_pending_event(struct CommandList *c)
297 {
298 	return c->abort_pending || c->reset_pending;
299 }
300 
301 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
302 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
303 			u8 *sense_key, u8 *asc, u8 *ascq)
304 {
305 	struct scsi_sense_hdr sshdr;
306 	bool rc;
307 
308 	*sense_key = -1;
309 	*asc = -1;
310 	*ascq = -1;
311 
312 	if (sense_data_len < 1)
313 		return;
314 
315 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
316 	if (rc) {
317 		*sense_key = sshdr.sense_key;
318 		*asc = sshdr.asc;
319 		*ascq = sshdr.ascq;
320 	}
321 }
322 
323 static int check_for_unit_attention(struct ctlr_info *h,
324 	struct CommandList *c)
325 {
326 	u8 sense_key, asc, ascq;
327 	int sense_len;
328 
329 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
330 		sense_len = sizeof(c->err_info->SenseInfo);
331 	else
332 		sense_len = c->err_info->SenseLen;
333 
334 	decode_sense_data(c->err_info->SenseInfo, sense_len,
335 				&sense_key, &asc, &ascq);
336 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
337 		return 0;
338 
339 	switch (asc) {
340 	case STATE_CHANGED:
341 		dev_warn(&h->pdev->dev,
342 			"%s: a state change detected, command retried\n",
343 			h->devname);
344 		break;
345 	case LUN_FAILED:
346 		dev_warn(&h->pdev->dev,
347 			"%s: LUN failure detected\n", h->devname);
348 		break;
349 	case REPORT_LUNS_CHANGED:
350 		dev_warn(&h->pdev->dev,
351 			"%s: report LUN data changed\n", h->devname);
352 	/*
353 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
354 	 * target (array) devices.
355 	 */
356 		break;
357 	case POWER_OR_RESET:
358 		dev_warn(&h->pdev->dev,
359 			"%s: a power on or device reset detected\n",
360 			h->devname);
361 		break;
362 	case UNIT_ATTENTION_CLEARED:
363 		dev_warn(&h->pdev->dev,
364 			"%s: unit attention cleared by another initiator\n",
365 			h->devname);
366 		break;
367 	default:
368 		dev_warn(&h->pdev->dev,
369 			"%s: unknown unit attention detected\n",
370 			h->devname);
371 		break;
372 	}
373 	return 1;
374 }
375 
376 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
377 {
378 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
379 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
380 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
381 		return 0;
382 	dev_warn(&h->pdev->dev, HPSA "device busy");
383 	return 1;
384 }
385 
386 static u32 lockup_detected(struct ctlr_info *h);
387 static ssize_t host_show_lockup_detected(struct device *dev,
388 		struct device_attribute *attr, char *buf)
389 {
390 	int ld;
391 	struct ctlr_info *h;
392 	struct Scsi_Host *shost = class_to_shost(dev);
393 
394 	h = shost_to_hba(shost);
395 	ld = lockup_detected(h);
396 
397 	return sprintf(buf, "ld=%d\n", ld);
398 }
399 
400 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
401 					 struct device_attribute *attr,
402 					 const char *buf, size_t count)
403 {
404 	int status, len;
405 	struct ctlr_info *h;
406 	struct Scsi_Host *shost = class_to_shost(dev);
407 	char tmpbuf[10];
408 
409 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
410 		return -EACCES;
411 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
412 	strncpy(tmpbuf, buf, len);
413 	tmpbuf[len] = '\0';
414 	if (sscanf(tmpbuf, "%d", &status) != 1)
415 		return -EINVAL;
416 	h = shost_to_hba(shost);
417 	h->acciopath_status = !!status;
418 	dev_warn(&h->pdev->dev,
419 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
420 		h->acciopath_status ? "enabled" : "disabled");
421 	return count;
422 }
423 
424 static ssize_t host_store_raid_offload_debug(struct device *dev,
425 					 struct device_attribute *attr,
426 					 const char *buf, size_t count)
427 {
428 	int debug_level, len;
429 	struct ctlr_info *h;
430 	struct Scsi_Host *shost = class_to_shost(dev);
431 	char tmpbuf[10];
432 
433 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434 		return -EACCES;
435 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436 	strncpy(tmpbuf, buf, len);
437 	tmpbuf[len] = '\0';
438 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
439 		return -EINVAL;
440 	if (debug_level < 0)
441 		debug_level = 0;
442 	h = shost_to_hba(shost);
443 	h->raid_offload_debug = debug_level;
444 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
445 		h->raid_offload_debug);
446 	return count;
447 }
448 
449 static ssize_t host_store_rescan(struct device *dev,
450 				 struct device_attribute *attr,
451 				 const char *buf, size_t count)
452 {
453 	struct ctlr_info *h;
454 	struct Scsi_Host *shost = class_to_shost(dev);
455 	h = shost_to_hba(shost);
456 	hpsa_scan_start(h->scsi_host);
457 	return count;
458 }
459 
460 static ssize_t host_show_firmware_revision(struct device *dev,
461 	     struct device_attribute *attr, char *buf)
462 {
463 	struct ctlr_info *h;
464 	struct Scsi_Host *shost = class_to_shost(dev);
465 	unsigned char *fwrev;
466 
467 	h = shost_to_hba(shost);
468 	if (!h->hba_inquiry_data)
469 		return 0;
470 	fwrev = &h->hba_inquiry_data[32];
471 	return snprintf(buf, 20, "%c%c%c%c\n",
472 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
473 }
474 
475 static ssize_t host_show_commands_outstanding(struct device *dev,
476 	     struct device_attribute *attr, char *buf)
477 {
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 	struct ctlr_info *h = shost_to_hba(shost);
480 
481 	return snprintf(buf, 20, "%d\n",
482 			atomic_read(&h->commands_outstanding));
483 }
484 
485 static ssize_t host_show_transport_mode(struct device *dev,
486 	struct device_attribute *attr, char *buf)
487 {
488 	struct ctlr_info *h;
489 	struct Scsi_Host *shost = class_to_shost(dev);
490 
491 	h = shost_to_hba(shost);
492 	return snprintf(buf, 20, "%s\n",
493 		h->transMethod & CFGTBL_Trans_Performant ?
494 			"performant" : "simple");
495 }
496 
497 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
498 	struct device_attribute *attr, char *buf)
499 {
500 	struct ctlr_info *h;
501 	struct Scsi_Host *shost = class_to_shost(dev);
502 
503 	h = shost_to_hba(shost);
504 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
505 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
506 }
507 
508 /* List of controllers which cannot be hard reset on kexec with reset_devices */
509 static u32 unresettable_controller[] = {
510 	0x324a103C, /* Smart Array P712m */
511 	0x324b103C, /* Smart Array P711m */
512 	0x3223103C, /* Smart Array P800 */
513 	0x3234103C, /* Smart Array P400 */
514 	0x3235103C, /* Smart Array P400i */
515 	0x3211103C, /* Smart Array E200i */
516 	0x3212103C, /* Smart Array E200 */
517 	0x3213103C, /* Smart Array E200i */
518 	0x3214103C, /* Smart Array E200i */
519 	0x3215103C, /* Smart Array E200i */
520 	0x3237103C, /* Smart Array E500 */
521 	0x323D103C, /* Smart Array P700m */
522 	0x40800E11, /* Smart Array 5i */
523 	0x409C0E11, /* Smart Array 6400 */
524 	0x409D0E11, /* Smart Array 6400 EM */
525 	0x40700E11, /* Smart Array 5300 */
526 	0x40820E11, /* Smart Array 532 */
527 	0x40830E11, /* Smart Array 5312 */
528 	0x409A0E11, /* Smart Array 641 */
529 	0x409B0E11, /* Smart Array 642 */
530 	0x40910E11, /* Smart Array 6i */
531 };
532 
533 /* List of controllers which cannot even be soft reset */
534 static u32 soft_unresettable_controller[] = {
535 	0x40800E11, /* Smart Array 5i */
536 	0x40700E11, /* Smart Array 5300 */
537 	0x40820E11, /* Smart Array 532 */
538 	0x40830E11, /* Smart Array 5312 */
539 	0x409A0E11, /* Smart Array 641 */
540 	0x409B0E11, /* Smart Array 642 */
541 	0x40910E11, /* Smart Array 6i */
542 	/* Exclude 640x boards.  These are two pci devices in one slot
543 	 * which share a battery backed cache module.  One controls the
544 	 * cache, the other accesses the cache through the one that controls
545 	 * it.  If we reset the one controlling the cache, the other will
546 	 * likely not be happy.  Just forbid resetting this conjoined mess.
547 	 * The 640x isn't really supported by hpsa anyway.
548 	 */
549 	0x409C0E11, /* Smart Array 6400 */
550 	0x409D0E11, /* Smart Array 6400 EM */
551 };
552 
553 static u32 needs_abort_tags_swizzled[] = {
554 	0x323D103C, /* Smart Array P700m */
555 	0x324a103C, /* Smart Array P712m */
556 	0x324b103C, /* SmartArray P711m */
557 };
558 
559 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
560 {
561 	int i;
562 
563 	for (i = 0; i < nelems; i++)
564 		if (a[i] == board_id)
565 			return 1;
566 	return 0;
567 }
568 
569 static int ctlr_is_hard_resettable(u32 board_id)
570 {
571 	return !board_id_in_array(unresettable_controller,
572 			ARRAY_SIZE(unresettable_controller), board_id);
573 }
574 
575 static int ctlr_is_soft_resettable(u32 board_id)
576 {
577 	return !board_id_in_array(soft_unresettable_controller,
578 			ARRAY_SIZE(soft_unresettable_controller), board_id);
579 }
580 
581 static int ctlr_is_resettable(u32 board_id)
582 {
583 	return ctlr_is_hard_resettable(board_id) ||
584 		ctlr_is_soft_resettable(board_id);
585 }
586 
587 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
588 {
589 	return board_id_in_array(needs_abort_tags_swizzled,
590 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
591 }
592 
593 static ssize_t host_show_resettable(struct device *dev,
594 	struct device_attribute *attr, char *buf)
595 {
596 	struct ctlr_info *h;
597 	struct Scsi_Host *shost = class_to_shost(dev);
598 
599 	h = shost_to_hba(shost);
600 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
601 }
602 
603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
604 {
605 	return (scsi3addr[3] & 0xC0) == 0x40;
606 }
607 
608 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
609 	"1(+0)ADM", "UNKNOWN"
610 };
611 #define HPSA_RAID_0	0
612 #define HPSA_RAID_4	1
613 #define HPSA_RAID_1	2	/* also used for RAID 10 */
614 #define HPSA_RAID_5	3	/* also used for RAID 50 */
615 #define HPSA_RAID_51	4
616 #define HPSA_RAID_6	5	/* also used for RAID 60 */
617 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
619 
620 static ssize_t raid_level_show(struct device *dev,
621 	     struct device_attribute *attr, char *buf)
622 {
623 	ssize_t l = 0;
624 	unsigned char rlevel;
625 	struct ctlr_info *h;
626 	struct scsi_device *sdev;
627 	struct hpsa_scsi_dev_t *hdev;
628 	unsigned long flags;
629 
630 	sdev = to_scsi_device(dev);
631 	h = sdev_to_hba(sdev);
632 	spin_lock_irqsave(&h->lock, flags);
633 	hdev = sdev->hostdata;
634 	if (!hdev) {
635 		spin_unlock_irqrestore(&h->lock, flags);
636 		return -ENODEV;
637 	}
638 
639 	/* Is this even a logical drive? */
640 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
641 		spin_unlock_irqrestore(&h->lock, flags);
642 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
643 		return l;
644 	}
645 
646 	rlevel = hdev->raid_level;
647 	spin_unlock_irqrestore(&h->lock, flags);
648 	if (rlevel > RAID_UNKNOWN)
649 		rlevel = RAID_UNKNOWN;
650 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
651 	return l;
652 }
653 
654 static ssize_t lunid_show(struct device *dev,
655 	     struct device_attribute *attr, char *buf)
656 {
657 	struct ctlr_info *h;
658 	struct scsi_device *sdev;
659 	struct hpsa_scsi_dev_t *hdev;
660 	unsigned long flags;
661 	unsigned char lunid[8];
662 
663 	sdev = to_scsi_device(dev);
664 	h = sdev_to_hba(sdev);
665 	spin_lock_irqsave(&h->lock, flags);
666 	hdev = sdev->hostdata;
667 	if (!hdev) {
668 		spin_unlock_irqrestore(&h->lock, flags);
669 		return -ENODEV;
670 	}
671 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
672 	spin_unlock_irqrestore(&h->lock, flags);
673 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
674 		lunid[0], lunid[1], lunid[2], lunid[3],
675 		lunid[4], lunid[5], lunid[6], lunid[7]);
676 }
677 
678 static ssize_t unique_id_show(struct device *dev,
679 	     struct device_attribute *attr, char *buf)
680 {
681 	struct ctlr_info *h;
682 	struct scsi_device *sdev;
683 	struct hpsa_scsi_dev_t *hdev;
684 	unsigned long flags;
685 	unsigned char sn[16];
686 
687 	sdev = to_scsi_device(dev);
688 	h = sdev_to_hba(sdev);
689 	spin_lock_irqsave(&h->lock, flags);
690 	hdev = sdev->hostdata;
691 	if (!hdev) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		return -ENODEV;
694 	}
695 	memcpy(sn, hdev->device_id, sizeof(sn));
696 	spin_unlock_irqrestore(&h->lock, flags);
697 	return snprintf(buf, 16 * 2 + 2,
698 			"%02X%02X%02X%02X%02X%02X%02X%02X"
699 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
700 			sn[0], sn[1], sn[2], sn[3],
701 			sn[4], sn[5], sn[6], sn[7],
702 			sn[8], sn[9], sn[10], sn[11],
703 			sn[12], sn[13], sn[14], sn[15]);
704 }
705 
706 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	int offload_enabled;
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	offload_enabled = hdev->offload_enabled;
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "%d\n", offload_enabled);
726 }
727 
728 #define MAX_PATHS 8
729 #define PATH_STRING_LEN 50
730 
731 static ssize_t path_info_show(struct device *dev,
732 	     struct device_attribute *attr, char *buf)
733 {
734 	struct ctlr_info *h;
735 	struct scsi_device *sdev;
736 	struct hpsa_scsi_dev_t *hdev;
737 	unsigned long flags;
738 	int i;
739 	int output_len = 0;
740 	u8 box;
741 	u8 bay;
742 	u8 path_map_index = 0;
743 	char *active;
744 	unsigned char phys_connector[2];
745 	unsigned char path[MAX_PATHS][PATH_STRING_LEN];
746 
747 	memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
748 	sdev = to_scsi_device(dev);
749 	h = sdev_to_hba(sdev);
750 	spin_lock_irqsave(&h->devlock, flags);
751 	hdev = sdev->hostdata;
752 	if (!hdev) {
753 		spin_unlock_irqrestore(&h->devlock, flags);
754 		return -ENODEV;
755 	}
756 
757 	bay = hdev->bay;
758 	for (i = 0; i < MAX_PATHS; i++) {
759 		path_map_index = 1<<i;
760 		if (i == hdev->active_path_index)
761 			active = "Active";
762 		else if (hdev->path_map & path_map_index)
763 			active = "Inactive";
764 		else
765 			continue;
766 
767 		output_len = snprintf(path[i],
768 				PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
769 				h->scsi_host->host_no,
770 				hdev->bus, hdev->target, hdev->lun,
771 				scsi_device_type(hdev->devtype));
772 
773 		if (is_ext_target(h, hdev) ||
774 			(hdev->devtype == TYPE_RAID) ||
775 			is_logical_dev_addr_mode(hdev->scsi3addr)) {
776 			output_len += snprintf(path[i] + output_len,
777 						PATH_STRING_LEN, "%s\n",
778 						active);
779 			continue;
780 		}
781 
782 		box = hdev->box[i];
783 		memcpy(&phys_connector, &hdev->phys_connector[i],
784 			sizeof(phys_connector));
785 		if (phys_connector[0] < '0')
786 			phys_connector[0] = '0';
787 		if (phys_connector[1] < '0')
788 			phys_connector[1] = '0';
789 		if (hdev->phys_connector[i] > 0)
790 			output_len += snprintf(path[i] + output_len,
791 				PATH_STRING_LEN,
792 				"PORT: %.2s ",
793 				phys_connector);
794 		if (hdev->devtype == TYPE_DISK &&
795 			hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
796 			if (box == 0 || box == 0xFF) {
797 				output_len += snprintf(path[i] + output_len,
798 					PATH_STRING_LEN,
799 					"BAY: %hhu %s\n",
800 					bay, active);
801 			} else {
802 				output_len += snprintf(path[i] + output_len,
803 					PATH_STRING_LEN,
804 					"BOX: %hhu BAY: %hhu %s\n",
805 					box, bay, active);
806 			}
807 		} else if (box != 0 && box != 0xFF) {
808 			output_len += snprintf(path[i] + output_len,
809 				PATH_STRING_LEN, "BOX: %hhu %s\n",
810 				box, active);
811 		} else
812 			output_len += snprintf(path[i] + output_len,
813 				PATH_STRING_LEN, "%s\n", active);
814 	}
815 
816 	spin_unlock_irqrestore(&h->devlock, flags);
817 	return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
818 		path[0], path[1], path[2], path[3],
819 		path[4], path[5], path[6], path[7]);
820 }
821 
822 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
823 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
824 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
825 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
826 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
827 			host_show_hp_ssd_smart_path_enabled, NULL);
828 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
829 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
830 		host_show_hp_ssd_smart_path_status,
831 		host_store_hp_ssd_smart_path_status);
832 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
833 			host_store_raid_offload_debug);
834 static DEVICE_ATTR(firmware_revision, S_IRUGO,
835 	host_show_firmware_revision, NULL);
836 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
837 	host_show_commands_outstanding, NULL);
838 static DEVICE_ATTR(transport_mode, S_IRUGO,
839 	host_show_transport_mode, NULL);
840 static DEVICE_ATTR(resettable, S_IRUGO,
841 	host_show_resettable, NULL);
842 static DEVICE_ATTR(lockup_detected, S_IRUGO,
843 	host_show_lockup_detected, NULL);
844 
845 static struct device_attribute *hpsa_sdev_attrs[] = {
846 	&dev_attr_raid_level,
847 	&dev_attr_lunid,
848 	&dev_attr_unique_id,
849 	&dev_attr_hp_ssd_smart_path_enabled,
850 	&dev_attr_path_info,
851 	&dev_attr_lockup_detected,
852 	NULL,
853 };
854 
855 static struct device_attribute *hpsa_shost_attrs[] = {
856 	&dev_attr_rescan,
857 	&dev_attr_firmware_revision,
858 	&dev_attr_commands_outstanding,
859 	&dev_attr_transport_mode,
860 	&dev_attr_resettable,
861 	&dev_attr_hp_ssd_smart_path_status,
862 	&dev_attr_raid_offload_debug,
863 	NULL,
864 };
865 
866 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
867 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
868 
869 static struct scsi_host_template hpsa_driver_template = {
870 	.module			= THIS_MODULE,
871 	.name			= HPSA,
872 	.proc_name		= HPSA,
873 	.queuecommand		= hpsa_scsi_queue_command,
874 	.scan_start		= hpsa_scan_start,
875 	.scan_finished		= hpsa_scan_finished,
876 	.change_queue_depth	= hpsa_change_queue_depth,
877 	.this_id		= -1,
878 	.use_clustering		= ENABLE_CLUSTERING,
879 	.eh_abort_handler	= hpsa_eh_abort_handler,
880 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
881 	.ioctl			= hpsa_ioctl,
882 	.slave_alloc		= hpsa_slave_alloc,
883 	.slave_configure	= hpsa_slave_configure,
884 	.slave_destroy		= hpsa_slave_destroy,
885 #ifdef CONFIG_COMPAT
886 	.compat_ioctl		= hpsa_compat_ioctl,
887 #endif
888 	.sdev_attrs = hpsa_sdev_attrs,
889 	.shost_attrs = hpsa_shost_attrs,
890 	.max_sectors = 8192,
891 	.no_write_same = 1,
892 };
893 
894 static inline u32 next_command(struct ctlr_info *h, u8 q)
895 {
896 	u32 a;
897 	struct reply_queue_buffer *rq = &h->reply_queue[q];
898 
899 	if (h->transMethod & CFGTBL_Trans_io_accel1)
900 		return h->access.command_completed(h, q);
901 
902 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
903 		return h->access.command_completed(h, q);
904 
905 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
906 		a = rq->head[rq->current_entry];
907 		rq->current_entry++;
908 		atomic_dec(&h->commands_outstanding);
909 	} else {
910 		a = FIFO_EMPTY;
911 	}
912 	/* Check for wraparound */
913 	if (rq->current_entry == h->max_commands) {
914 		rq->current_entry = 0;
915 		rq->wraparound ^= 1;
916 	}
917 	return a;
918 }
919 
920 /*
921  * There are some special bits in the bus address of the
922  * command that we have to set for the controller to know
923  * how to process the command:
924  *
925  * Normal performant mode:
926  * bit 0: 1 means performant mode, 0 means simple mode.
927  * bits 1-3 = block fetch table entry
928  * bits 4-6 = command type (== 0)
929  *
930  * ioaccel1 mode:
931  * bit 0 = "performant mode" bit.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 110)
934  * (command type is needed because ioaccel1 mode
935  * commands are submitted through the same register as normal
936  * mode commands, so this is how the controller knows whether
937  * the command is normal mode or ioaccel1 mode.)
938  *
939  * ioaccel2 mode:
940  * bit 0 = "performant mode" bit.
941  * bits 1-4 = block fetch table entry (note extra bit)
942  * bits 4-6 = not needed, because ioaccel2 mode has
943  * a separate special register for submitting commands.
944  */
945 
946 /*
947  * set_performant_mode: Modify the tag for cciss performant
948  * set bit 0 for pull model, bits 3-1 for block fetch
949  * register number
950  */
951 #define DEFAULT_REPLY_QUEUE (-1)
952 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
953 					int reply_queue)
954 {
955 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
956 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
957 		if (unlikely(!h->msix_vector))
958 			return;
959 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
960 			c->Header.ReplyQueue =
961 				raw_smp_processor_id() % h->nreply_queues;
962 		else
963 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
964 	}
965 }
966 
967 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
968 						struct CommandList *c,
969 						int reply_queue)
970 {
971 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
972 
973 	/*
974 	 * Tell the controller to post the reply to the queue for this
975 	 * processor.  This seems to give the best I/O throughput.
976 	 */
977 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
978 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
979 	else
980 		cp->ReplyQueue = reply_queue % h->nreply_queues;
981 	/*
982 	 * Set the bits in the address sent down to include:
983 	 *  - performant mode bit (bit 0)
984 	 *  - pull count (bits 1-3)
985 	 *  - command type (bits 4-6)
986 	 */
987 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
988 					IOACCEL1_BUSADDR_CMDTYPE;
989 }
990 
991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
992 						struct CommandList *c,
993 						int reply_queue)
994 {
995 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
996 		&h->ioaccel2_cmd_pool[c->cmdindex];
997 
998 	/* Tell the controller to post the reply to the queue for this
999 	 * processor.  This seems to give the best I/O throughput.
1000 	 */
1001 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1002 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1003 	else
1004 		cp->reply_queue = reply_queue % h->nreply_queues;
1005 	/* Set the bits in the address sent down to include:
1006 	 *  - performant mode bit not used in ioaccel mode 2
1007 	 *  - pull count (bits 0-3)
1008 	 *  - command type isn't needed for ioaccel2
1009 	 */
1010 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1011 }
1012 
1013 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1014 						struct CommandList *c,
1015 						int reply_queue)
1016 {
1017 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1018 
1019 	/*
1020 	 * Tell the controller to post the reply to the queue for this
1021 	 * processor.  This seems to give the best I/O throughput.
1022 	 */
1023 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1024 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1025 	else
1026 		cp->reply_queue = reply_queue % h->nreply_queues;
1027 	/*
1028 	 * Set the bits in the address sent down to include:
1029 	 *  - performant mode bit not used in ioaccel mode 2
1030 	 *  - pull count (bits 0-3)
1031 	 *  - command type isn't needed for ioaccel2
1032 	 */
1033 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1034 }
1035 
1036 static int is_firmware_flash_cmd(u8 *cdb)
1037 {
1038 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1039 }
1040 
1041 /*
1042  * During firmware flash, the heartbeat register may not update as frequently
1043  * as it should.  So we dial down lockup detection during firmware flash. and
1044  * dial it back up when firmware flash completes.
1045  */
1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1049 		struct CommandList *c)
1050 {
1051 	if (!is_firmware_flash_cmd(c->Request.CDB))
1052 		return;
1053 	atomic_inc(&h->firmware_flash_in_progress);
1054 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1055 }
1056 
1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1058 		struct CommandList *c)
1059 {
1060 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1061 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1062 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1063 }
1064 
1065 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1066 	struct CommandList *c, int reply_queue)
1067 {
1068 	dial_down_lockup_detection_during_fw_flash(h, c);
1069 	atomic_inc(&h->commands_outstanding);
1070 	switch (c->cmd_type) {
1071 	case CMD_IOACCEL1:
1072 		set_ioaccel1_performant_mode(h, c, reply_queue);
1073 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1074 		break;
1075 	case CMD_IOACCEL2:
1076 		set_ioaccel2_performant_mode(h, c, reply_queue);
1077 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1078 		break;
1079 	case IOACCEL2_TMF:
1080 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1081 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1082 		break;
1083 	default:
1084 		set_performant_mode(h, c, reply_queue);
1085 		h->access.submit_command(h, c);
1086 	}
1087 }
1088 
1089 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1090 {
1091 	if (unlikely(hpsa_is_pending_event(c)))
1092 		return finish_cmd(c);
1093 
1094 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1095 }
1096 
1097 static inline int is_hba_lunid(unsigned char scsi3addr[])
1098 {
1099 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1100 }
1101 
1102 static inline int is_scsi_rev_5(struct ctlr_info *h)
1103 {
1104 	if (!h->hba_inquiry_data)
1105 		return 0;
1106 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1107 		return 1;
1108 	return 0;
1109 }
1110 
1111 static int hpsa_find_target_lun(struct ctlr_info *h,
1112 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1113 {
1114 	/* finds an unused bus, target, lun for a new physical device
1115 	 * assumes h->devlock is held
1116 	 */
1117 	int i, found = 0;
1118 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1119 
1120 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1121 
1122 	for (i = 0; i < h->ndevices; i++) {
1123 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1124 			__set_bit(h->dev[i]->target, lun_taken);
1125 	}
1126 
1127 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1128 	if (i < HPSA_MAX_DEVICES) {
1129 		/* *bus = 1; */
1130 		*target = i;
1131 		*lun = 0;
1132 		found = 1;
1133 	}
1134 	return !found;
1135 }
1136 
1137 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1138 	struct hpsa_scsi_dev_t *dev, char *description)
1139 {
1140 	dev_printk(level, &h->pdev->dev,
1141 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1142 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1143 			description,
1144 			scsi_device_type(dev->devtype),
1145 			dev->vendor,
1146 			dev->model,
1147 			dev->raid_level > RAID_UNKNOWN ?
1148 				"RAID-?" : raid_label[dev->raid_level],
1149 			dev->offload_config ? '+' : '-',
1150 			dev->offload_enabled ? '+' : '-',
1151 			dev->expose_state);
1152 }
1153 
1154 /* Add an entry into h->dev[] array. */
1155 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1156 		struct hpsa_scsi_dev_t *device,
1157 		struct hpsa_scsi_dev_t *added[], int *nadded)
1158 {
1159 	/* assumes h->devlock is held */
1160 	int n = h->ndevices;
1161 	int i;
1162 	unsigned char addr1[8], addr2[8];
1163 	struct hpsa_scsi_dev_t *sd;
1164 
1165 	if (n >= HPSA_MAX_DEVICES) {
1166 		dev_err(&h->pdev->dev, "too many devices, some will be "
1167 			"inaccessible.\n");
1168 		return -1;
1169 	}
1170 
1171 	/* physical devices do not have lun or target assigned until now. */
1172 	if (device->lun != -1)
1173 		/* Logical device, lun is already assigned. */
1174 		goto lun_assigned;
1175 
1176 	/* If this device a non-zero lun of a multi-lun device
1177 	 * byte 4 of the 8-byte LUN addr will contain the logical
1178 	 * unit no, zero otherwise.
1179 	 */
1180 	if (device->scsi3addr[4] == 0) {
1181 		/* This is not a non-zero lun of a multi-lun device */
1182 		if (hpsa_find_target_lun(h, device->scsi3addr,
1183 			device->bus, &device->target, &device->lun) != 0)
1184 			return -1;
1185 		goto lun_assigned;
1186 	}
1187 
1188 	/* This is a non-zero lun of a multi-lun device.
1189 	 * Search through our list and find the device which
1190 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1191 	 * Assign the same bus and target for this new LUN.
1192 	 * Use the logical unit number from the firmware.
1193 	 */
1194 	memcpy(addr1, device->scsi3addr, 8);
1195 	addr1[4] = 0;
1196 	addr1[5] = 0;
1197 	for (i = 0; i < n; i++) {
1198 		sd = h->dev[i];
1199 		memcpy(addr2, sd->scsi3addr, 8);
1200 		addr2[4] = 0;
1201 		addr2[5] = 0;
1202 		/* differ only in byte 4 and 5? */
1203 		if (memcmp(addr1, addr2, 8) == 0) {
1204 			device->bus = sd->bus;
1205 			device->target = sd->target;
1206 			device->lun = device->scsi3addr[4];
1207 			break;
1208 		}
1209 	}
1210 	if (device->lun == -1) {
1211 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1212 			" suspect firmware bug or unsupported hardware "
1213 			"configuration.\n");
1214 			return -1;
1215 	}
1216 
1217 lun_assigned:
1218 
1219 	h->dev[n] = device;
1220 	h->ndevices++;
1221 	added[*nadded] = device;
1222 	(*nadded)++;
1223 	hpsa_show_dev_msg(KERN_INFO, h, device,
1224 		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1225 	device->offload_to_be_enabled = device->offload_enabled;
1226 	device->offload_enabled = 0;
1227 	return 0;
1228 }
1229 
1230 /* Update an entry in h->dev[] array. */
1231 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1232 	int entry, struct hpsa_scsi_dev_t *new_entry)
1233 {
1234 	int offload_enabled;
1235 	/* assumes h->devlock is held */
1236 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1237 
1238 	/* Raid level changed. */
1239 	h->dev[entry]->raid_level = new_entry->raid_level;
1240 
1241 	/* Raid offload parameters changed.  Careful about the ordering. */
1242 	if (new_entry->offload_config && new_entry->offload_enabled) {
1243 		/*
1244 		 * if drive is newly offload_enabled, we want to copy the
1245 		 * raid map data first.  If previously offload_enabled and
1246 		 * offload_config were set, raid map data had better be
1247 		 * the same as it was before.  if raid map data is changed
1248 		 * then it had better be the case that
1249 		 * h->dev[entry]->offload_enabled is currently 0.
1250 		 */
1251 		h->dev[entry]->raid_map = new_entry->raid_map;
1252 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1253 	}
1254 	if (new_entry->hba_ioaccel_enabled) {
1255 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1256 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1257 	}
1258 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1259 	h->dev[entry]->offload_config = new_entry->offload_config;
1260 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1261 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1262 
1263 	/*
1264 	 * We can turn off ioaccel offload now, but need to delay turning
1265 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1266 	 * can't do that until all the devices are updated.
1267 	 */
1268 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1269 	if (!new_entry->offload_enabled)
1270 		h->dev[entry]->offload_enabled = 0;
1271 
1272 	offload_enabled = h->dev[entry]->offload_enabled;
1273 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1274 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1275 	h->dev[entry]->offload_enabled = offload_enabled;
1276 }
1277 
1278 /* Replace an entry from h->dev[] array. */
1279 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1280 	int entry, struct hpsa_scsi_dev_t *new_entry,
1281 	struct hpsa_scsi_dev_t *added[], int *nadded,
1282 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1283 {
1284 	/* assumes h->devlock is held */
1285 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1286 	removed[*nremoved] = h->dev[entry];
1287 	(*nremoved)++;
1288 
1289 	/*
1290 	 * New physical devices won't have target/lun assigned yet
1291 	 * so we need to preserve the values in the slot we are replacing.
1292 	 */
1293 	if (new_entry->target == -1) {
1294 		new_entry->target = h->dev[entry]->target;
1295 		new_entry->lun = h->dev[entry]->lun;
1296 	}
1297 
1298 	h->dev[entry] = new_entry;
1299 	added[*nadded] = new_entry;
1300 	(*nadded)++;
1301 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1302 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1303 	new_entry->offload_enabled = 0;
1304 }
1305 
1306 /* Remove an entry from h->dev[] array. */
1307 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1308 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1309 {
1310 	/* assumes h->devlock is held */
1311 	int i;
1312 	struct hpsa_scsi_dev_t *sd;
1313 
1314 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1315 
1316 	sd = h->dev[entry];
1317 	removed[*nremoved] = h->dev[entry];
1318 	(*nremoved)++;
1319 
1320 	for (i = entry; i < h->ndevices-1; i++)
1321 		h->dev[i] = h->dev[i+1];
1322 	h->ndevices--;
1323 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1324 }
1325 
1326 #define SCSI3ADDR_EQ(a, b) ( \
1327 	(a)[7] == (b)[7] && \
1328 	(a)[6] == (b)[6] && \
1329 	(a)[5] == (b)[5] && \
1330 	(a)[4] == (b)[4] && \
1331 	(a)[3] == (b)[3] && \
1332 	(a)[2] == (b)[2] && \
1333 	(a)[1] == (b)[1] && \
1334 	(a)[0] == (b)[0])
1335 
1336 static void fixup_botched_add(struct ctlr_info *h,
1337 	struct hpsa_scsi_dev_t *added)
1338 {
1339 	/* called when scsi_add_device fails in order to re-adjust
1340 	 * h->dev[] to match the mid layer's view.
1341 	 */
1342 	unsigned long flags;
1343 	int i, j;
1344 
1345 	spin_lock_irqsave(&h->lock, flags);
1346 	for (i = 0; i < h->ndevices; i++) {
1347 		if (h->dev[i] == added) {
1348 			for (j = i; j < h->ndevices-1; j++)
1349 				h->dev[j] = h->dev[j+1];
1350 			h->ndevices--;
1351 			break;
1352 		}
1353 	}
1354 	spin_unlock_irqrestore(&h->lock, flags);
1355 	kfree(added);
1356 }
1357 
1358 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1359 	struct hpsa_scsi_dev_t *dev2)
1360 {
1361 	/* we compare everything except lun and target as these
1362 	 * are not yet assigned.  Compare parts likely
1363 	 * to differ first
1364 	 */
1365 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1366 		sizeof(dev1->scsi3addr)) != 0)
1367 		return 0;
1368 	if (memcmp(dev1->device_id, dev2->device_id,
1369 		sizeof(dev1->device_id)) != 0)
1370 		return 0;
1371 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1372 		return 0;
1373 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1374 		return 0;
1375 	if (dev1->devtype != dev2->devtype)
1376 		return 0;
1377 	if (dev1->bus != dev2->bus)
1378 		return 0;
1379 	return 1;
1380 }
1381 
1382 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1383 	struct hpsa_scsi_dev_t *dev2)
1384 {
1385 	/* Device attributes that can change, but don't mean
1386 	 * that the device is a different device, nor that the OS
1387 	 * needs to be told anything about the change.
1388 	 */
1389 	if (dev1->raid_level != dev2->raid_level)
1390 		return 1;
1391 	if (dev1->offload_config != dev2->offload_config)
1392 		return 1;
1393 	if (dev1->offload_enabled != dev2->offload_enabled)
1394 		return 1;
1395 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1396 		if (dev1->queue_depth != dev2->queue_depth)
1397 			return 1;
1398 	return 0;
1399 }
1400 
1401 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1402  * and return needle location in *index.  If scsi3addr matches, but not
1403  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1404  * location in *index.
1405  * In the case of a minor device attribute change, such as RAID level, just
1406  * return DEVICE_UPDATED, along with the updated device's location in index.
1407  * If needle not found, return DEVICE_NOT_FOUND.
1408  */
1409 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1410 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1411 	int *index)
1412 {
1413 	int i;
1414 #define DEVICE_NOT_FOUND 0
1415 #define DEVICE_CHANGED 1
1416 #define DEVICE_SAME 2
1417 #define DEVICE_UPDATED 3
1418 	for (i = 0; i < haystack_size; i++) {
1419 		if (haystack[i] == NULL) /* previously removed. */
1420 			continue;
1421 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1422 			*index = i;
1423 			if (device_is_the_same(needle, haystack[i])) {
1424 				if (device_updated(needle, haystack[i]))
1425 					return DEVICE_UPDATED;
1426 				return DEVICE_SAME;
1427 			} else {
1428 				/* Keep offline devices offline */
1429 				if (needle->volume_offline)
1430 					return DEVICE_NOT_FOUND;
1431 				return DEVICE_CHANGED;
1432 			}
1433 		}
1434 	}
1435 	*index = -1;
1436 	return DEVICE_NOT_FOUND;
1437 }
1438 
1439 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1440 					unsigned char scsi3addr[])
1441 {
1442 	struct offline_device_entry *device;
1443 	unsigned long flags;
1444 
1445 	/* Check to see if device is already on the list */
1446 	spin_lock_irqsave(&h->offline_device_lock, flags);
1447 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1448 		if (memcmp(device->scsi3addr, scsi3addr,
1449 			sizeof(device->scsi3addr)) == 0) {
1450 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1451 			return;
1452 		}
1453 	}
1454 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1455 
1456 	/* Device is not on the list, add it. */
1457 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1458 	if (!device) {
1459 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1460 		return;
1461 	}
1462 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1463 	spin_lock_irqsave(&h->offline_device_lock, flags);
1464 	list_add_tail(&device->offline_list, &h->offline_device_list);
1465 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466 }
1467 
1468 /* Print a message explaining various offline volume states */
1469 static void hpsa_show_volume_status(struct ctlr_info *h,
1470 	struct hpsa_scsi_dev_t *sd)
1471 {
1472 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1473 		dev_info(&h->pdev->dev,
1474 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1475 			h->scsi_host->host_no,
1476 			sd->bus, sd->target, sd->lun);
1477 	switch (sd->volume_offline) {
1478 	case HPSA_LV_OK:
1479 		break;
1480 	case HPSA_LV_UNDERGOING_ERASE:
1481 		dev_info(&h->pdev->dev,
1482 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1483 			h->scsi_host->host_no,
1484 			sd->bus, sd->target, sd->lun);
1485 		break;
1486 	case HPSA_LV_NOT_AVAILABLE:
1487 		dev_info(&h->pdev->dev,
1488 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1489 			h->scsi_host->host_no,
1490 			sd->bus, sd->target, sd->lun);
1491 		break;
1492 	case HPSA_LV_UNDERGOING_RPI:
1493 		dev_info(&h->pdev->dev,
1494 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1495 			h->scsi_host->host_no,
1496 			sd->bus, sd->target, sd->lun);
1497 		break;
1498 	case HPSA_LV_PENDING_RPI:
1499 		dev_info(&h->pdev->dev,
1500 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1501 			h->scsi_host->host_no,
1502 			sd->bus, sd->target, sd->lun);
1503 		break;
1504 	case HPSA_LV_ENCRYPTED_NO_KEY:
1505 		dev_info(&h->pdev->dev,
1506 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1507 			h->scsi_host->host_no,
1508 			sd->bus, sd->target, sd->lun);
1509 		break;
1510 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1511 		dev_info(&h->pdev->dev,
1512 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1513 			h->scsi_host->host_no,
1514 			sd->bus, sd->target, sd->lun);
1515 		break;
1516 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1517 		dev_info(&h->pdev->dev,
1518 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1519 			h->scsi_host->host_no,
1520 			sd->bus, sd->target, sd->lun);
1521 		break;
1522 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1523 		dev_info(&h->pdev->dev,
1524 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1525 			h->scsi_host->host_no,
1526 			sd->bus, sd->target, sd->lun);
1527 		break;
1528 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1529 		dev_info(&h->pdev->dev,
1530 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1531 			h->scsi_host->host_no,
1532 			sd->bus, sd->target, sd->lun);
1533 		break;
1534 	case HPSA_LV_PENDING_ENCRYPTION:
1535 		dev_info(&h->pdev->dev,
1536 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1537 			h->scsi_host->host_no,
1538 			sd->bus, sd->target, sd->lun);
1539 		break;
1540 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1541 		dev_info(&h->pdev->dev,
1542 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1543 			h->scsi_host->host_no,
1544 			sd->bus, sd->target, sd->lun);
1545 		break;
1546 	}
1547 }
1548 
1549 /*
1550  * Figure the list of physical drive pointers for a logical drive with
1551  * raid offload configured.
1552  */
1553 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1554 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1555 				struct hpsa_scsi_dev_t *logical_drive)
1556 {
1557 	struct raid_map_data *map = &logical_drive->raid_map;
1558 	struct raid_map_disk_data *dd = &map->data[0];
1559 	int i, j;
1560 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1561 				le16_to_cpu(map->metadata_disks_per_row);
1562 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1563 				le16_to_cpu(map->layout_map_count) *
1564 				total_disks_per_row;
1565 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1566 				total_disks_per_row;
1567 	int qdepth;
1568 
1569 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1570 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1571 
1572 	logical_drive->nphysical_disks = nraid_map_entries;
1573 
1574 	qdepth = 0;
1575 	for (i = 0; i < nraid_map_entries; i++) {
1576 		logical_drive->phys_disk[i] = NULL;
1577 		if (!logical_drive->offload_config)
1578 			continue;
1579 		for (j = 0; j < ndevices; j++) {
1580 			if (dev[j]->devtype != TYPE_DISK)
1581 				continue;
1582 			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1583 				continue;
1584 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1585 				continue;
1586 
1587 			logical_drive->phys_disk[i] = dev[j];
1588 			if (i < nphys_disk)
1589 				qdepth = min(h->nr_cmds, qdepth +
1590 				    logical_drive->phys_disk[i]->queue_depth);
1591 			break;
1592 		}
1593 
1594 		/*
1595 		 * This can happen if a physical drive is removed and
1596 		 * the logical drive is degraded.  In that case, the RAID
1597 		 * map data will refer to a physical disk which isn't actually
1598 		 * present.  And in that case offload_enabled should already
1599 		 * be 0, but we'll turn it off here just in case
1600 		 */
1601 		if (!logical_drive->phys_disk[i]) {
1602 			logical_drive->offload_enabled = 0;
1603 			logical_drive->offload_to_be_enabled = 0;
1604 			logical_drive->queue_depth = 8;
1605 		}
1606 	}
1607 	if (nraid_map_entries)
1608 		/*
1609 		 * This is correct for reads, too high for full stripe writes,
1610 		 * way too high for partial stripe writes
1611 		 */
1612 		logical_drive->queue_depth = qdepth;
1613 	else
1614 		logical_drive->queue_depth = h->nr_cmds;
1615 }
1616 
1617 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1618 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1619 {
1620 	int i;
1621 
1622 	for (i = 0; i < ndevices; i++) {
1623 		if (dev[i]->devtype != TYPE_DISK)
1624 			continue;
1625 		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1626 			continue;
1627 
1628 		/*
1629 		 * If offload is currently enabled, the RAID map and
1630 		 * phys_disk[] assignment *better* not be changing
1631 		 * and since it isn't changing, we do not need to
1632 		 * update it.
1633 		 */
1634 		if (dev[i]->offload_enabled)
1635 			continue;
1636 
1637 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1638 	}
1639 }
1640 
1641 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1642 	struct hpsa_scsi_dev_t *sd[], int nsds)
1643 {
1644 	/* sd contains scsi3 addresses and devtypes, and inquiry
1645 	 * data.  This function takes what's in sd to be the current
1646 	 * reality and updates h->dev[] to reflect that reality.
1647 	 */
1648 	int i, entry, device_change, changes = 0;
1649 	struct hpsa_scsi_dev_t *csd;
1650 	unsigned long flags;
1651 	struct hpsa_scsi_dev_t **added, **removed;
1652 	int nadded, nremoved;
1653 	struct Scsi_Host *sh = NULL;
1654 
1655 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1656 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1657 
1658 	if (!added || !removed) {
1659 		dev_warn(&h->pdev->dev, "out of memory in "
1660 			"adjust_hpsa_scsi_table\n");
1661 		goto free_and_out;
1662 	}
1663 
1664 	spin_lock_irqsave(&h->devlock, flags);
1665 
1666 	/* find any devices in h->dev[] that are not in
1667 	 * sd[] and remove them from h->dev[], and for any
1668 	 * devices which have changed, remove the old device
1669 	 * info and add the new device info.
1670 	 * If minor device attributes change, just update
1671 	 * the existing device structure.
1672 	 */
1673 	i = 0;
1674 	nremoved = 0;
1675 	nadded = 0;
1676 	while (i < h->ndevices) {
1677 		csd = h->dev[i];
1678 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1679 		if (device_change == DEVICE_NOT_FOUND) {
1680 			changes++;
1681 			hpsa_scsi_remove_entry(h, hostno, i,
1682 				removed, &nremoved);
1683 			continue; /* remove ^^^, hence i not incremented */
1684 		} else if (device_change == DEVICE_CHANGED) {
1685 			changes++;
1686 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1687 				added, &nadded, removed, &nremoved);
1688 			/* Set it to NULL to prevent it from being freed
1689 			 * at the bottom of hpsa_update_scsi_devices()
1690 			 */
1691 			sd[entry] = NULL;
1692 		} else if (device_change == DEVICE_UPDATED) {
1693 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1694 		}
1695 		i++;
1696 	}
1697 
1698 	/* Now, make sure every device listed in sd[] is also
1699 	 * listed in h->dev[], adding them if they aren't found
1700 	 */
1701 
1702 	for (i = 0; i < nsds; i++) {
1703 		if (!sd[i]) /* if already added above. */
1704 			continue;
1705 
1706 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1707 		 * as the SCSI mid-layer does not handle such devices well.
1708 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1709 		 * at 160Hz, and prevents the system from coming up.
1710 		 */
1711 		if (sd[i]->volume_offline) {
1712 			hpsa_show_volume_status(h, sd[i]);
1713 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1714 			continue;
1715 		}
1716 
1717 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1718 					h->ndevices, &entry);
1719 		if (device_change == DEVICE_NOT_FOUND) {
1720 			changes++;
1721 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1722 				added, &nadded) != 0)
1723 				break;
1724 			sd[i] = NULL; /* prevent from being freed later. */
1725 		} else if (device_change == DEVICE_CHANGED) {
1726 			/* should never happen... */
1727 			changes++;
1728 			dev_warn(&h->pdev->dev,
1729 				"device unexpectedly changed.\n");
1730 			/* but if it does happen, we just ignore that device */
1731 		}
1732 	}
1733 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1734 
1735 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1736 	 * any logical drives that need it enabled.
1737 	 */
1738 	for (i = 0; i < h->ndevices; i++)
1739 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1740 
1741 	spin_unlock_irqrestore(&h->devlock, flags);
1742 
1743 	/* Monitor devices which are in one of several NOT READY states to be
1744 	 * brought online later. This must be done without holding h->devlock,
1745 	 * so don't touch h->dev[]
1746 	 */
1747 	for (i = 0; i < nsds; i++) {
1748 		if (!sd[i]) /* if already added above. */
1749 			continue;
1750 		if (sd[i]->volume_offline)
1751 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1752 	}
1753 
1754 	/* Don't notify scsi mid layer of any changes the first time through
1755 	 * (or if there are no changes) scsi_scan_host will do it later the
1756 	 * first time through.
1757 	 */
1758 	if (hostno == -1 || !changes)
1759 		goto free_and_out;
1760 
1761 	sh = h->scsi_host;
1762 	/* Notify scsi mid layer of any removed devices */
1763 	for (i = 0; i < nremoved; i++) {
1764 		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1765 			struct scsi_device *sdev =
1766 				scsi_device_lookup(sh, removed[i]->bus,
1767 					removed[i]->target, removed[i]->lun);
1768 			if (sdev != NULL) {
1769 				scsi_remove_device(sdev);
1770 				scsi_device_put(sdev);
1771 			} else {
1772 				/*
1773 				 * We don't expect to get here.
1774 				 * future cmds to this device will get selection
1775 				 * timeout as if the device was gone.
1776 				 */
1777 				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1778 					"didn't find device for removal.");
1779 			}
1780 		}
1781 		kfree(removed[i]);
1782 		removed[i] = NULL;
1783 	}
1784 
1785 	/* Notify scsi mid layer of any added devices */
1786 	for (i = 0; i < nadded; i++) {
1787 		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1788 			continue;
1789 		if (scsi_add_device(sh, added[i]->bus,
1790 			added[i]->target, added[i]->lun) == 0)
1791 			continue;
1792 		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1793 					"addition failed, device not added.");
1794 		/* now we have to remove it from h->dev,
1795 		 * since it didn't get added to scsi mid layer
1796 		 */
1797 		fixup_botched_add(h, added[i]);
1798 		added[i] = NULL;
1799 	}
1800 
1801 free_and_out:
1802 	kfree(added);
1803 	kfree(removed);
1804 }
1805 
1806 /*
1807  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1808  * Assume's h->devlock is held.
1809  */
1810 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1811 	int bus, int target, int lun)
1812 {
1813 	int i;
1814 	struct hpsa_scsi_dev_t *sd;
1815 
1816 	for (i = 0; i < h->ndevices; i++) {
1817 		sd = h->dev[i];
1818 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1819 			return sd;
1820 	}
1821 	return NULL;
1822 }
1823 
1824 static int hpsa_slave_alloc(struct scsi_device *sdev)
1825 {
1826 	struct hpsa_scsi_dev_t *sd;
1827 	unsigned long flags;
1828 	struct ctlr_info *h;
1829 
1830 	h = sdev_to_hba(sdev);
1831 	spin_lock_irqsave(&h->devlock, flags);
1832 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1833 		sdev_id(sdev), sdev->lun);
1834 	if (likely(sd)) {
1835 		atomic_set(&sd->ioaccel_cmds_out, 0);
1836 		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1837 	} else
1838 		sdev->hostdata = NULL;
1839 	spin_unlock_irqrestore(&h->devlock, flags);
1840 	return 0;
1841 }
1842 
1843 /* configure scsi device based on internal per-device structure */
1844 static int hpsa_slave_configure(struct scsi_device *sdev)
1845 {
1846 	struct hpsa_scsi_dev_t *sd;
1847 	int queue_depth;
1848 
1849 	sd = sdev->hostdata;
1850 	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1851 
1852 	if (sd)
1853 		queue_depth = sd->queue_depth != 0 ?
1854 			sd->queue_depth : sdev->host->can_queue;
1855 	else
1856 		queue_depth = sdev->host->can_queue;
1857 
1858 	scsi_change_queue_depth(sdev, queue_depth);
1859 
1860 	return 0;
1861 }
1862 
1863 static void hpsa_slave_destroy(struct scsi_device *sdev)
1864 {
1865 	/* nothing to do. */
1866 }
1867 
1868 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1869 {
1870 	int i;
1871 
1872 	if (!h->ioaccel2_cmd_sg_list)
1873 		return;
1874 	for (i = 0; i < h->nr_cmds; i++) {
1875 		kfree(h->ioaccel2_cmd_sg_list[i]);
1876 		h->ioaccel2_cmd_sg_list[i] = NULL;
1877 	}
1878 	kfree(h->ioaccel2_cmd_sg_list);
1879 	h->ioaccel2_cmd_sg_list = NULL;
1880 }
1881 
1882 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1883 {
1884 	int i;
1885 
1886 	if (h->chainsize <= 0)
1887 		return 0;
1888 
1889 	h->ioaccel2_cmd_sg_list =
1890 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1891 					GFP_KERNEL);
1892 	if (!h->ioaccel2_cmd_sg_list)
1893 		return -ENOMEM;
1894 	for (i = 0; i < h->nr_cmds; i++) {
1895 		h->ioaccel2_cmd_sg_list[i] =
1896 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1897 					h->maxsgentries, GFP_KERNEL);
1898 		if (!h->ioaccel2_cmd_sg_list[i])
1899 			goto clean;
1900 	}
1901 	return 0;
1902 
1903 clean:
1904 	hpsa_free_ioaccel2_sg_chain_blocks(h);
1905 	return -ENOMEM;
1906 }
1907 
1908 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1909 {
1910 	int i;
1911 
1912 	if (!h->cmd_sg_list)
1913 		return;
1914 	for (i = 0; i < h->nr_cmds; i++) {
1915 		kfree(h->cmd_sg_list[i]);
1916 		h->cmd_sg_list[i] = NULL;
1917 	}
1918 	kfree(h->cmd_sg_list);
1919 	h->cmd_sg_list = NULL;
1920 }
1921 
1922 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1923 {
1924 	int i;
1925 
1926 	if (h->chainsize <= 0)
1927 		return 0;
1928 
1929 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1930 				GFP_KERNEL);
1931 	if (!h->cmd_sg_list) {
1932 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1933 		return -ENOMEM;
1934 	}
1935 	for (i = 0; i < h->nr_cmds; i++) {
1936 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1937 						h->chainsize, GFP_KERNEL);
1938 		if (!h->cmd_sg_list[i]) {
1939 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1940 			goto clean;
1941 		}
1942 	}
1943 	return 0;
1944 
1945 clean:
1946 	hpsa_free_sg_chain_blocks(h);
1947 	return -ENOMEM;
1948 }
1949 
1950 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1951 	struct io_accel2_cmd *cp, struct CommandList *c)
1952 {
1953 	struct ioaccel2_sg_element *chain_block;
1954 	u64 temp64;
1955 	u32 chain_size;
1956 
1957 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1958 	chain_size = le32_to_cpu(cp->data_len);
1959 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1960 				PCI_DMA_TODEVICE);
1961 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1962 		/* prevent subsequent unmapping */
1963 		cp->sg->address = 0;
1964 		return -1;
1965 	}
1966 	cp->sg->address = cpu_to_le64(temp64);
1967 	return 0;
1968 }
1969 
1970 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1971 	struct io_accel2_cmd *cp)
1972 {
1973 	struct ioaccel2_sg_element *chain_sg;
1974 	u64 temp64;
1975 	u32 chain_size;
1976 
1977 	chain_sg = cp->sg;
1978 	temp64 = le64_to_cpu(chain_sg->address);
1979 	chain_size = le32_to_cpu(cp->data_len);
1980 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1981 }
1982 
1983 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1984 	struct CommandList *c)
1985 {
1986 	struct SGDescriptor *chain_sg, *chain_block;
1987 	u64 temp64;
1988 	u32 chain_len;
1989 
1990 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1991 	chain_block = h->cmd_sg_list[c->cmdindex];
1992 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1993 	chain_len = sizeof(*chain_sg) *
1994 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1995 	chain_sg->Len = cpu_to_le32(chain_len);
1996 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1997 				PCI_DMA_TODEVICE);
1998 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1999 		/* prevent subsequent unmapping */
2000 		chain_sg->Addr = cpu_to_le64(0);
2001 		return -1;
2002 	}
2003 	chain_sg->Addr = cpu_to_le64(temp64);
2004 	return 0;
2005 }
2006 
2007 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2008 	struct CommandList *c)
2009 {
2010 	struct SGDescriptor *chain_sg;
2011 
2012 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2013 		return;
2014 
2015 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2016 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2017 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2018 }
2019 
2020 
2021 /* Decode the various types of errors on ioaccel2 path.
2022  * Return 1 for any error that should generate a RAID path retry.
2023  * Return 0 for errors that don't require a RAID path retry.
2024  */
2025 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2026 					struct CommandList *c,
2027 					struct scsi_cmnd *cmd,
2028 					struct io_accel2_cmd *c2)
2029 {
2030 	int data_len;
2031 	int retry = 0;
2032 	u32 ioaccel2_resid = 0;
2033 
2034 	switch (c2->error_data.serv_response) {
2035 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2036 		switch (c2->error_data.status) {
2037 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2038 			break;
2039 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2040 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2041 			if (c2->error_data.data_present !=
2042 					IOACCEL2_SENSE_DATA_PRESENT) {
2043 				memset(cmd->sense_buffer, 0,
2044 					SCSI_SENSE_BUFFERSIZE);
2045 				break;
2046 			}
2047 			/* copy the sense data */
2048 			data_len = c2->error_data.sense_data_len;
2049 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2050 				data_len = SCSI_SENSE_BUFFERSIZE;
2051 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2052 				data_len =
2053 					sizeof(c2->error_data.sense_data_buff);
2054 			memcpy(cmd->sense_buffer,
2055 				c2->error_data.sense_data_buff, data_len);
2056 			retry = 1;
2057 			break;
2058 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2059 			retry = 1;
2060 			break;
2061 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2062 			retry = 1;
2063 			break;
2064 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2065 			retry = 1;
2066 			break;
2067 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2068 			retry = 1;
2069 			break;
2070 		default:
2071 			retry = 1;
2072 			break;
2073 		}
2074 		break;
2075 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2076 		switch (c2->error_data.status) {
2077 		case IOACCEL2_STATUS_SR_IO_ERROR:
2078 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2079 		case IOACCEL2_STATUS_SR_OVERRUN:
2080 			retry = 1;
2081 			break;
2082 		case IOACCEL2_STATUS_SR_UNDERRUN:
2083 			cmd->result = (DID_OK << 16);		/* host byte */
2084 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2085 			ioaccel2_resid = get_unaligned_le32(
2086 						&c2->error_data.resid_cnt[0]);
2087 			scsi_set_resid(cmd, ioaccel2_resid);
2088 			break;
2089 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2090 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2091 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2092 			/* We will get an event from ctlr to trigger rescan */
2093 			retry = 1;
2094 			break;
2095 		default:
2096 			retry = 1;
2097 		}
2098 		break;
2099 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2100 		break;
2101 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2102 		break;
2103 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2104 		retry = 1;
2105 		break;
2106 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2107 		break;
2108 	default:
2109 		retry = 1;
2110 		break;
2111 	}
2112 
2113 	return retry;	/* retry on raid path? */
2114 }
2115 
2116 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2117 		struct CommandList *c)
2118 {
2119 	bool do_wake = false;
2120 
2121 	/*
2122 	 * Prevent the following race in the abort handler:
2123 	 *
2124 	 * 1. LLD is requested to abort a SCSI command
2125 	 * 2. The SCSI command completes
2126 	 * 3. The struct CommandList associated with step 2 is made available
2127 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2128 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2129 	 *    finds struct CommandList and tries to aborts it
2130 	 * Now we have aborted the wrong command.
2131 	 *
2132 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2133 	 * this command has completed.  Then, check to see if the handler is
2134 	 * waiting for this command, and, if so, wake it.
2135 	 */
2136 	c->scsi_cmd = SCSI_CMD_IDLE;
2137 	mb();	/* Declare command idle before checking for pending events. */
2138 	if (c->abort_pending) {
2139 		do_wake = true;
2140 		c->abort_pending = false;
2141 	}
2142 	if (c->reset_pending) {
2143 		unsigned long flags;
2144 		struct hpsa_scsi_dev_t *dev;
2145 
2146 		/*
2147 		 * There appears to be a reset pending; lock the lock and
2148 		 * reconfirm.  If so, then decrement the count of outstanding
2149 		 * commands and wake the reset command if this is the last one.
2150 		 */
2151 		spin_lock_irqsave(&h->lock, flags);
2152 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2153 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2154 			do_wake = true;
2155 		c->reset_pending = NULL;
2156 		spin_unlock_irqrestore(&h->lock, flags);
2157 	}
2158 
2159 	if (do_wake)
2160 		wake_up_all(&h->event_sync_wait_queue);
2161 }
2162 
2163 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2164 				      struct CommandList *c)
2165 {
2166 	hpsa_cmd_resolve_events(h, c);
2167 	cmd_tagged_free(h, c);
2168 }
2169 
2170 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2171 		struct CommandList *c, struct scsi_cmnd *cmd)
2172 {
2173 	hpsa_cmd_resolve_and_free(h, c);
2174 	cmd->scsi_done(cmd);
2175 }
2176 
2177 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2178 {
2179 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2180 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2181 }
2182 
2183 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2184 {
2185 	cmd->result = DID_ABORT << 16;
2186 }
2187 
2188 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2189 				    struct scsi_cmnd *cmd)
2190 {
2191 	hpsa_set_scsi_cmd_aborted(cmd);
2192 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2193 			 c->Request.CDB, c->err_info->ScsiStatus);
2194 	hpsa_cmd_resolve_and_free(h, c);
2195 }
2196 
2197 static void process_ioaccel2_completion(struct ctlr_info *h,
2198 		struct CommandList *c, struct scsi_cmnd *cmd,
2199 		struct hpsa_scsi_dev_t *dev)
2200 {
2201 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2202 
2203 	/* check for good status */
2204 	if (likely(c2->error_data.serv_response == 0 &&
2205 			c2->error_data.status == 0))
2206 		return hpsa_cmd_free_and_done(h, c, cmd);
2207 
2208 	/*
2209 	 * Any RAID offload error results in retry which will use
2210 	 * the normal I/O path so the controller can handle whatever's
2211 	 * wrong.
2212 	 */
2213 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2214 		c2->error_data.serv_response ==
2215 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2216 		if (c2->error_data.status ==
2217 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2218 			dev->offload_enabled = 0;
2219 
2220 		return hpsa_retry_cmd(h, c);
2221 	}
2222 
2223 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2224 		return hpsa_retry_cmd(h, c);
2225 
2226 	return hpsa_cmd_free_and_done(h, c, cmd);
2227 }
2228 
2229 /* Returns 0 on success, < 0 otherwise. */
2230 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2231 					struct CommandList *cp)
2232 {
2233 	u8 tmf_status = cp->err_info->ScsiStatus;
2234 
2235 	switch (tmf_status) {
2236 	case CISS_TMF_COMPLETE:
2237 		/*
2238 		 * CISS_TMF_COMPLETE never happens, instead,
2239 		 * ei->CommandStatus == 0 for this case.
2240 		 */
2241 	case CISS_TMF_SUCCESS:
2242 		return 0;
2243 	case CISS_TMF_INVALID_FRAME:
2244 	case CISS_TMF_NOT_SUPPORTED:
2245 	case CISS_TMF_FAILED:
2246 	case CISS_TMF_WRONG_LUN:
2247 	case CISS_TMF_OVERLAPPED_TAG:
2248 		break;
2249 	default:
2250 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2251 				tmf_status);
2252 		break;
2253 	}
2254 	return -tmf_status;
2255 }
2256 
2257 static void complete_scsi_command(struct CommandList *cp)
2258 {
2259 	struct scsi_cmnd *cmd;
2260 	struct ctlr_info *h;
2261 	struct ErrorInfo *ei;
2262 	struct hpsa_scsi_dev_t *dev;
2263 	struct io_accel2_cmd *c2;
2264 
2265 	u8 sense_key;
2266 	u8 asc;      /* additional sense code */
2267 	u8 ascq;     /* additional sense code qualifier */
2268 	unsigned long sense_data_size;
2269 
2270 	ei = cp->err_info;
2271 	cmd = cp->scsi_cmd;
2272 	h = cp->h;
2273 	dev = cmd->device->hostdata;
2274 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2275 
2276 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2277 	if ((cp->cmd_type == CMD_SCSI) &&
2278 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2279 		hpsa_unmap_sg_chain_block(h, cp);
2280 
2281 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2282 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2283 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2284 
2285 	cmd->result = (DID_OK << 16); 		/* host byte */
2286 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2287 
2288 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2289 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2290 
2291 	/*
2292 	 * We check for lockup status here as it may be set for
2293 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2294 	 * fail_all_oustanding_cmds()
2295 	 */
2296 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2297 		/* DID_NO_CONNECT will prevent a retry */
2298 		cmd->result = DID_NO_CONNECT << 16;
2299 		return hpsa_cmd_free_and_done(h, cp, cmd);
2300 	}
2301 
2302 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2303 		if (cp->reset_pending)
2304 			return hpsa_cmd_resolve_and_free(h, cp);
2305 		if (cp->abort_pending)
2306 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2307 	}
2308 
2309 	if (cp->cmd_type == CMD_IOACCEL2)
2310 		return process_ioaccel2_completion(h, cp, cmd, dev);
2311 
2312 	scsi_set_resid(cmd, ei->ResidualCnt);
2313 	if (ei->CommandStatus == 0)
2314 		return hpsa_cmd_free_and_done(h, cp, cmd);
2315 
2316 	/* For I/O accelerator commands, copy over some fields to the normal
2317 	 * CISS header used below for error handling.
2318 	 */
2319 	if (cp->cmd_type == CMD_IOACCEL1) {
2320 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2321 		cp->Header.SGList = scsi_sg_count(cmd);
2322 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2323 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2324 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2325 		cp->Header.tag = c->tag;
2326 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2327 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2328 
2329 		/* Any RAID offload error results in retry which will use
2330 		 * the normal I/O path so the controller can handle whatever's
2331 		 * wrong.
2332 		 */
2333 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2334 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2335 				dev->offload_enabled = 0;
2336 			return hpsa_retry_cmd(h, cp);
2337 		}
2338 	}
2339 
2340 	/* an error has occurred */
2341 	switch (ei->CommandStatus) {
2342 
2343 	case CMD_TARGET_STATUS:
2344 		cmd->result |= ei->ScsiStatus;
2345 		/* copy the sense data */
2346 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2347 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2348 		else
2349 			sense_data_size = sizeof(ei->SenseInfo);
2350 		if (ei->SenseLen < sense_data_size)
2351 			sense_data_size = ei->SenseLen;
2352 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2353 		if (ei->ScsiStatus)
2354 			decode_sense_data(ei->SenseInfo, sense_data_size,
2355 				&sense_key, &asc, &ascq);
2356 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2357 			if (sense_key == ABORTED_COMMAND) {
2358 				cmd->result |= DID_SOFT_ERROR << 16;
2359 				break;
2360 			}
2361 			break;
2362 		}
2363 		/* Problem was not a check condition
2364 		 * Pass it up to the upper layers...
2365 		 */
2366 		if (ei->ScsiStatus) {
2367 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2368 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2369 				"Returning result: 0x%x\n",
2370 				cp, ei->ScsiStatus,
2371 				sense_key, asc, ascq,
2372 				cmd->result);
2373 		} else {  /* scsi status is zero??? How??? */
2374 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2375 				"Returning no connection.\n", cp),
2376 
2377 			/* Ordinarily, this case should never happen,
2378 			 * but there is a bug in some released firmware
2379 			 * revisions that allows it to happen if, for
2380 			 * example, a 4100 backplane loses power and
2381 			 * the tape drive is in it.  We assume that
2382 			 * it's a fatal error of some kind because we
2383 			 * can't show that it wasn't. We will make it
2384 			 * look like selection timeout since that is
2385 			 * the most common reason for this to occur,
2386 			 * and it's severe enough.
2387 			 */
2388 
2389 			cmd->result = DID_NO_CONNECT << 16;
2390 		}
2391 		break;
2392 
2393 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2394 		break;
2395 	case CMD_DATA_OVERRUN:
2396 		dev_warn(&h->pdev->dev,
2397 			"CDB %16phN data overrun\n", cp->Request.CDB);
2398 		break;
2399 	case CMD_INVALID: {
2400 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2401 		print_cmd(cp); */
2402 		/* We get CMD_INVALID if you address a non-existent device
2403 		 * instead of a selection timeout (no response).  You will
2404 		 * see this if you yank out a drive, then try to access it.
2405 		 * This is kind of a shame because it means that any other
2406 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2407 		 * missing target. */
2408 		cmd->result = DID_NO_CONNECT << 16;
2409 	}
2410 		break;
2411 	case CMD_PROTOCOL_ERR:
2412 		cmd->result = DID_ERROR << 16;
2413 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2414 				cp->Request.CDB);
2415 		break;
2416 	case CMD_HARDWARE_ERR:
2417 		cmd->result = DID_ERROR << 16;
2418 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2419 			cp->Request.CDB);
2420 		break;
2421 	case CMD_CONNECTION_LOST:
2422 		cmd->result = DID_ERROR << 16;
2423 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2424 			cp->Request.CDB);
2425 		break;
2426 	case CMD_ABORTED:
2427 		/* Return now to avoid calling scsi_done(). */
2428 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2429 	case CMD_ABORT_FAILED:
2430 		cmd->result = DID_ERROR << 16;
2431 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2432 			cp->Request.CDB);
2433 		break;
2434 	case CMD_UNSOLICITED_ABORT:
2435 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2436 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2437 			cp->Request.CDB);
2438 		break;
2439 	case CMD_TIMEOUT:
2440 		cmd->result = DID_TIME_OUT << 16;
2441 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2442 			cp->Request.CDB);
2443 		break;
2444 	case CMD_UNABORTABLE:
2445 		cmd->result = DID_ERROR << 16;
2446 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2447 		break;
2448 	case CMD_TMF_STATUS:
2449 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2450 			cmd->result = DID_ERROR << 16;
2451 		break;
2452 	case CMD_IOACCEL_DISABLED:
2453 		/* This only handles the direct pass-through case since RAID
2454 		 * offload is handled above.  Just attempt a retry.
2455 		 */
2456 		cmd->result = DID_SOFT_ERROR << 16;
2457 		dev_warn(&h->pdev->dev,
2458 				"cp %p had HP SSD Smart Path error\n", cp);
2459 		break;
2460 	default:
2461 		cmd->result = DID_ERROR << 16;
2462 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2463 				cp, ei->CommandStatus);
2464 	}
2465 
2466 	return hpsa_cmd_free_and_done(h, cp, cmd);
2467 }
2468 
2469 static void hpsa_pci_unmap(struct pci_dev *pdev,
2470 	struct CommandList *c, int sg_used, int data_direction)
2471 {
2472 	int i;
2473 
2474 	for (i = 0; i < sg_used; i++)
2475 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2476 				le32_to_cpu(c->SG[i].Len),
2477 				data_direction);
2478 }
2479 
2480 static int hpsa_map_one(struct pci_dev *pdev,
2481 		struct CommandList *cp,
2482 		unsigned char *buf,
2483 		size_t buflen,
2484 		int data_direction)
2485 {
2486 	u64 addr64;
2487 
2488 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2489 		cp->Header.SGList = 0;
2490 		cp->Header.SGTotal = cpu_to_le16(0);
2491 		return 0;
2492 	}
2493 
2494 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2495 	if (dma_mapping_error(&pdev->dev, addr64)) {
2496 		/* Prevent subsequent unmap of something never mapped */
2497 		cp->Header.SGList = 0;
2498 		cp->Header.SGTotal = cpu_to_le16(0);
2499 		return -1;
2500 	}
2501 	cp->SG[0].Addr = cpu_to_le64(addr64);
2502 	cp->SG[0].Len = cpu_to_le32(buflen);
2503 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2504 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2505 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2506 	return 0;
2507 }
2508 
2509 #define NO_TIMEOUT ((unsigned long) -1)
2510 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2511 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2512 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2513 {
2514 	DECLARE_COMPLETION_ONSTACK(wait);
2515 
2516 	c->waiting = &wait;
2517 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2518 	if (timeout_msecs == NO_TIMEOUT) {
2519 		/* TODO: get rid of this no-timeout thing */
2520 		wait_for_completion_io(&wait);
2521 		return IO_OK;
2522 	}
2523 	if (!wait_for_completion_io_timeout(&wait,
2524 					msecs_to_jiffies(timeout_msecs))) {
2525 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2526 		return -ETIMEDOUT;
2527 	}
2528 	return IO_OK;
2529 }
2530 
2531 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2532 				   int reply_queue, unsigned long timeout_msecs)
2533 {
2534 	if (unlikely(lockup_detected(h))) {
2535 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2536 		return IO_OK;
2537 	}
2538 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2539 }
2540 
2541 static u32 lockup_detected(struct ctlr_info *h)
2542 {
2543 	int cpu;
2544 	u32 rc, *lockup_detected;
2545 
2546 	cpu = get_cpu();
2547 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2548 	rc = *lockup_detected;
2549 	put_cpu();
2550 	return rc;
2551 }
2552 
2553 #define MAX_DRIVER_CMD_RETRIES 25
2554 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2555 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2556 {
2557 	int backoff_time = 10, retry_count = 0;
2558 	int rc;
2559 
2560 	do {
2561 		memset(c->err_info, 0, sizeof(*c->err_info));
2562 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2563 						  timeout_msecs);
2564 		if (rc)
2565 			break;
2566 		retry_count++;
2567 		if (retry_count > 3) {
2568 			msleep(backoff_time);
2569 			if (backoff_time < 1000)
2570 				backoff_time *= 2;
2571 		}
2572 	} while ((check_for_unit_attention(h, c) ||
2573 			check_for_busy(h, c)) &&
2574 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2575 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2576 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2577 		rc = -EIO;
2578 	return rc;
2579 }
2580 
2581 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2582 				struct CommandList *c)
2583 {
2584 	const u8 *cdb = c->Request.CDB;
2585 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2586 
2587 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2588 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2589 		txt, lun[0], lun[1], lun[2], lun[3],
2590 		lun[4], lun[5], lun[6], lun[7],
2591 		cdb[0], cdb[1], cdb[2], cdb[3],
2592 		cdb[4], cdb[5], cdb[6], cdb[7],
2593 		cdb[8], cdb[9], cdb[10], cdb[11],
2594 		cdb[12], cdb[13], cdb[14], cdb[15]);
2595 }
2596 
2597 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2598 			struct CommandList *cp)
2599 {
2600 	const struct ErrorInfo *ei = cp->err_info;
2601 	struct device *d = &cp->h->pdev->dev;
2602 	u8 sense_key, asc, ascq;
2603 	int sense_len;
2604 
2605 	switch (ei->CommandStatus) {
2606 	case CMD_TARGET_STATUS:
2607 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2608 			sense_len = sizeof(ei->SenseInfo);
2609 		else
2610 			sense_len = ei->SenseLen;
2611 		decode_sense_data(ei->SenseInfo, sense_len,
2612 					&sense_key, &asc, &ascq);
2613 		hpsa_print_cmd(h, "SCSI status", cp);
2614 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2615 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2616 				sense_key, asc, ascq);
2617 		else
2618 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2619 		if (ei->ScsiStatus == 0)
2620 			dev_warn(d, "SCSI status is abnormally zero.  "
2621 			"(probably indicates selection timeout "
2622 			"reported incorrectly due to a known "
2623 			"firmware bug, circa July, 2001.)\n");
2624 		break;
2625 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2626 		break;
2627 	case CMD_DATA_OVERRUN:
2628 		hpsa_print_cmd(h, "overrun condition", cp);
2629 		break;
2630 	case CMD_INVALID: {
2631 		/* controller unfortunately reports SCSI passthru's
2632 		 * to non-existent targets as invalid commands.
2633 		 */
2634 		hpsa_print_cmd(h, "invalid command", cp);
2635 		dev_warn(d, "probably means device no longer present\n");
2636 		}
2637 		break;
2638 	case CMD_PROTOCOL_ERR:
2639 		hpsa_print_cmd(h, "protocol error", cp);
2640 		break;
2641 	case CMD_HARDWARE_ERR:
2642 		hpsa_print_cmd(h, "hardware error", cp);
2643 		break;
2644 	case CMD_CONNECTION_LOST:
2645 		hpsa_print_cmd(h, "connection lost", cp);
2646 		break;
2647 	case CMD_ABORTED:
2648 		hpsa_print_cmd(h, "aborted", cp);
2649 		break;
2650 	case CMD_ABORT_FAILED:
2651 		hpsa_print_cmd(h, "abort failed", cp);
2652 		break;
2653 	case CMD_UNSOLICITED_ABORT:
2654 		hpsa_print_cmd(h, "unsolicited abort", cp);
2655 		break;
2656 	case CMD_TIMEOUT:
2657 		hpsa_print_cmd(h, "timed out", cp);
2658 		break;
2659 	case CMD_UNABORTABLE:
2660 		hpsa_print_cmd(h, "unabortable", cp);
2661 		break;
2662 	case CMD_CTLR_LOCKUP:
2663 		hpsa_print_cmd(h, "controller lockup detected", cp);
2664 		break;
2665 	default:
2666 		hpsa_print_cmd(h, "unknown status", cp);
2667 		dev_warn(d, "Unknown command status %x\n",
2668 				ei->CommandStatus);
2669 	}
2670 }
2671 
2672 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2673 			u16 page, unsigned char *buf,
2674 			unsigned char bufsize)
2675 {
2676 	int rc = IO_OK;
2677 	struct CommandList *c;
2678 	struct ErrorInfo *ei;
2679 
2680 	c = cmd_alloc(h);
2681 
2682 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2683 			page, scsi3addr, TYPE_CMD)) {
2684 		rc = -1;
2685 		goto out;
2686 	}
2687 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2688 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2689 	if (rc)
2690 		goto out;
2691 	ei = c->err_info;
2692 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2693 		hpsa_scsi_interpret_error(h, c);
2694 		rc = -1;
2695 	}
2696 out:
2697 	cmd_free(h, c);
2698 	return rc;
2699 }
2700 
2701 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2702 	u8 reset_type, int reply_queue)
2703 {
2704 	int rc = IO_OK;
2705 	struct CommandList *c;
2706 	struct ErrorInfo *ei;
2707 
2708 	c = cmd_alloc(h);
2709 
2710 
2711 	/* fill_cmd can't fail here, no data buffer to map. */
2712 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2713 			scsi3addr, TYPE_MSG);
2714 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2715 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2716 	if (rc) {
2717 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2718 		goto out;
2719 	}
2720 	/* no unmap needed here because no data xfer. */
2721 
2722 	ei = c->err_info;
2723 	if (ei->CommandStatus != 0) {
2724 		hpsa_scsi_interpret_error(h, c);
2725 		rc = -1;
2726 	}
2727 out:
2728 	cmd_free(h, c);
2729 	return rc;
2730 }
2731 
2732 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2733 			       struct hpsa_scsi_dev_t *dev,
2734 			       unsigned char *scsi3addr)
2735 {
2736 	int i;
2737 	bool match = false;
2738 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2739 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2740 
2741 	if (hpsa_is_cmd_idle(c))
2742 		return false;
2743 
2744 	switch (c->cmd_type) {
2745 	case CMD_SCSI:
2746 	case CMD_IOCTL_PEND:
2747 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2748 				sizeof(c->Header.LUN.LunAddrBytes));
2749 		break;
2750 
2751 	case CMD_IOACCEL1:
2752 	case CMD_IOACCEL2:
2753 		if (c->phys_disk == dev) {
2754 			/* HBA mode match */
2755 			match = true;
2756 		} else {
2757 			/* Possible RAID mode -- check each phys dev. */
2758 			/* FIXME:  Do we need to take out a lock here?  If
2759 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2760 			 * instead. */
2761 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2762 				/* FIXME: an alternate test might be
2763 				 *
2764 				 * match = dev->phys_disk[i]->ioaccel_handle
2765 				 *              == c2->scsi_nexus;      */
2766 				match = dev->phys_disk[i] == c->phys_disk;
2767 			}
2768 		}
2769 		break;
2770 
2771 	case IOACCEL2_TMF:
2772 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2773 			match = dev->phys_disk[i]->ioaccel_handle ==
2774 					le32_to_cpu(ac->it_nexus);
2775 		}
2776 		break;
2777 
2778 	case 0:		/* The command is in the middle of being initialized. */
2779 		match = false;
2780 		break;
2781 
2782 	default:
2783 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2784 			c->cmd_type);
2785 		BUG();
2786 	}
2787 
2788 	return match;
2789 }
2790 
2791 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2792 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2793 {
2794 	int i;
2795 	int rc = 0;
2796 
2797 	/* We can really only handle one reset at a time */
2798 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2799 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2800 		return -EINTR;
2801 	}
2802 
2803 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2804 
2805 	for (i = 0; i < h->nr_cmds; i++) {
2806 		struct CommandList *c = h->cmd_pool + i;
2807 		int refcount = atomic_inc_return(&c->refcount);
2808 
2809 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2810 			unsigned long flags;
2811 
2812 			/*
2813 			 * Mark the target command as having a reset pending,
2814 			 * then lock a lock so that the command cannot complete
2815 			 * while we're considering it.  If the command is not
2816 			 * idle then count it; otherwise revoke the event.
2817 			 */
2818 			c->reset_pending = dev;
2819 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2820 			if (!hpsa_is_cmd_idle(c))
2821 				atomic_inc(&dev->reset_cmds_out);
2822 			else
2823 				c->reset_pending = NULL;
2824 			spin_unlock_irqrestore(&h->lock, flags);
2825 		}
2826 
2827 		cmd_free(h, c);
2828 	}
2829 
2830 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2831 	if (!rc)
2832 		wait_event(h->event_sync_wait_queue,
2833 			atomic_read(&dev->reset_cmds_out) == 0 ||
2834 			lockup_detected(h));
2835 
2836 	if (unlikely(lockup_detected(h))) {
2837 		dev_warn(&h->pdev->dev,
2838 			 "Controller lockup detected during reset wait\n");
2839 		rc = -ENODEV;
2840 	}
2841 
2842 	if (unlikely(rc))
2843 		atomic_set(&dev->reset_cmds_out, 0);
2844 
2845 	mutex_unlock(&h->reset_mutex);
2846 	return rc;
2847 }
2848 
2849 static void hpsa_get_raid_level(struct ctlr_info *h,
2850 	unsigned char *scsi3addr, unsigned char *raid_level)
2851 {
2852 	int rc;
2853 	unsigned char *buf;
2854 
2855 	*raid_level = RAID_UNKNOWN;
2856 	buf = kzalloc(64, GFP_KERNEL);
2857 	if (!buf)
2858 		return;
2859 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2860 	if (rc == 0)
2861 		*raid_level = buf[8];
2862 	if (*raid_level > RAID_UNKNOWN)
2863 		*raid_level = RAID_UNKNOWN;
2864 	kfree(buf);
2865 	return;
2866 }
2867 
2868 #define HPSA_MAP_DEBUG
2869 #ifdef HPSA_MAP_DEBUG
2870 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2871 				struct raid_map_data *map_buff)
2872 {
2873 	struct raid_map_disk_data *dd = &map_buff->data[0];
2874 	int map, row, col;
2875 	u16 map_cnt, row_cnt, disks_per_row;
2876 
2877 	if (rc != 0)
2878 		return;
2879 
2880 	/* Show details only if debugging has been activated. */
2881 	if (h->raid_offload_debug < 2)
2882 		return;
2883 
2884 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2885 				le32_to_cpu(map_buff->structure_size));
2886 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2887 			le32_to_cpu(map_buff->volume_blk_size));
2888 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2889 			le64_to_cpu(map_buff->volume_blk_cnt));
2890 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2891 			map_buff->phys_blk_shift);
2892 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2893 			map_buff->parity_rotation_shift);
2894 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2895 			le16_to_cpu(map_buff->strip_size));
2896 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2897 			le64_to_cpu(map_buff->disk_starting_blk));
2898 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2899 			le64_to_cpu(map_buff->disk_blk_cnt));
2900 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2901 			le16_to_cpu(map_buff->data_disks_per_row));
2902 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2903 			le16_to_cpu(map_buff->metadata_disks_per_row));
2904 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2905 			le16_to_cpu(map_buff->row_cnt));
2906 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2907 			le16_to_cpu(map_buff->layout_map_count));
2908 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2909 			le16_to_cpu(map_buff->flags));
2910 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2911 			le16_to_cpu(map_buff->flags) &
2912 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2913 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2914 			le16_to_cpu(map_buff->dekindex));
2915 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2916 	for (map = 0; map < map_cnt; map++) {
2917 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2918 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2919 		for (row = 0; row < row_cnt; row++) {
2920 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2921 			disks_per_row =
2922 				le16_to_cpu(map_buff->data_disks_per_row);
2923 			for (col = 0; col < disks_per_row; col++, dd++)
2924 				dev_info(&h->pdev->dev,
2925 					"    D%02u: h=0x%04x xor=%u,%u\n",
2926 					col, dd->ioaccel_handle,
2927 					dd->xor_mult[0], dd->xor_mult[1]);
2928 			disks_per_row =
2929 				le16_to_cpu(map_buff->metadata_disks_per_row);
2930 			for (col = 0; col < disks_per_row; col++, dd++)
2931 				dev_info(&h->pdev->dev,
2932 					"    M%02u: h=0x%04x xor=%u,%u\n",
2933 					col, dd->ioaccel_handle,
2934 					dd->xor_mult[0], dd->xor_mult[1]);
2935 		}
2936 	}
2937 }
2938 #else
2939 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2940 			__attribute__((unused)) int rc,
2941 			__attribute__((unused)) struct raid_map_data *map_buff)
2942 {
2943 }
2944 #endif
2945 
2946 static int hpsa_get_raid_map(struct ctlr_info *h,
2947 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2948 {
2949 	int rc = 0;
2950 	struct CommandList *c;
2951 	struct ErrorInfo *ei;
2952 
2953 	c = cmd_alloc(h);
2954 
2955 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2956 			sizeof(this_device->raid_map), 0,
2957 			scsi3addr, TYPE_CMD)) {
2958 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2959 		cmd_free(h, c);
2960 		return -1;
2961 	}
2962 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2963 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2964 	if (rc)
2965 		goto out;
2966 	ei = c->err_info;
2967 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2968 		hpsa_scsi_interpret_error(h, c);
2969 		rc = -1;
2970 		goto out;
2971 	}
2972 	cmd_free(h, c);
2973 
2974 	/* @todo in the future, dynamically allocate RAID map memory */
2975 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2976 				sizeof(this_device->raid_map)) {
2977 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2978 		rc = -1;
2979 	}
2980 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2981 	return rc;
2982 out:
2983 	cmd_free(h, c);
2984 	return rc;
2985 }
2986 
2987 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2988 		unsigned char scsi3addr[], u16 bmic_device_index,
2989 		struct bmic_identify_physical_device *buf, size_t bufsize)
2990 {
2991 	int rc = IO_OK;
2992 	struct CommandList *c;
2993 	struct ErrorInfo *ei;
2994 
2995 	c = cmd_alloc(h);
2996 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2997 		0, RAID_CTLR_LUNID, TYPE_CMD);
2998 	if (rc)
2999 		goto out;
3000 
3001 	c->Request.CDB[2] = bmic_device_index & 0xff;
3002 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3003 
3004 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3005 						NO_TIMEOUT);
3006 	ei = c->err_info;
3007 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008 		hpsa_scsi_interpret_error(h, c);
3009 		rc = -1;
3010 	}
3011 out:
3012 	cmd_free(h, c);
3013 	return rc;
3014 }
3015 
3016 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3017 	unsigned char scsi3addr[], u8 page)
3018 {
3019 	int rc;
3020 	int i;
3021 	int pages;
3022 	unsigned char *buf, bufsize;
3023 
3024 	buf = kzalloc(256, GFP_KERNEL);
3025 	if (!buf)
3026 		return 0;
3027 
3028 	/* Get the size of the page list first */
3029 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3030 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3031 				buf, HPSA_VPD_HEADER_SZ);
3032 	if (rc != 0)
3033 		goto exit_unsupported;
3034 	pages = buf[3];
3035 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3036 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3037 	else
3038 		bufsize = 255;
3039 
3040 	/* Get the whole VPD page list */
3041 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3042 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3043 				buf, bufsize);
3044 	if (rc != 0)
3045 		goto exit_unsupported;
3046 
3047 	pages = buf[3];
3048 	for (i = 1; i <= pages; i++)
3049 		if (buf[3 + i] == page)
3050 			goto exit_supported;
3051 exit_unsupported:
3052 	kfree(buf);
3053 	return 0;
3054 exit_supported:
3055 	kfree(buf);
3056 	return 1;
3057 }
3058 
3059 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3060 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062 	int rc;
3063 	unsigned char *buf;
3064 	u8 ioaccel_status;
3065 
3066 	this_device->offload_config = 0;
3067 	this_device->offload_enabled = 0;
3068 	this_device->offload_to_be_enabled = 0;
3069 
3070 	buf = kzalloc(64, GFP_KERNEL);
3071 	if (!buf)
3072 		return;
3073 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3074 		goto out;
3075 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3076 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3077 	if (rc != 0)
3078 		goto out;
3079 
3080 #define IOACCEL_STATUS_BYTE 4
3081 #define OFFLOAD_CONFIGURED_BIT 0x01
3082 #define OFFLOAD_ENABLED_BIT 0x02
3083 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3084 	this_device->offload_config =
3085 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3086 	if (this_device->offload_config) {
3087 		this_device->offload_enabled =
3088 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3089 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3090 			this_device->offload_enabled = 0;
3091 	}
3092 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3093 out:
3094 	kfree(buf);
3095 	return;
3096 }
3097 
3098 /* Get the device id from inquiry page 0x83 */
3099 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3100 	unsigned char *device_id, int buflen)
3101 {
3102 	int rc;
3103 	unsigned char *buf;
3104 
3105 	if (buflen > 16)
3106 		buflen = 16;
3107 	buf = kzalloc(64, GFP_KERNEL);
3108 	if (!buf)
3109 		return -ENOMEM;
3110 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3111 	if (rc == 0)
3112 		memcpy(device_id, &buf[8], buflen);
3113 	kfree(buf);
3114 	return rc != 0;
3115 }
3116 
3117 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3118 		void *buf, int bufsize,
3119 		int extended_response)
3120 {
3121 	int rc = IO_OK;
3122 	struct CommandList *c;
3123 	unsigned char scsi3addr[8];
3124 	struct ErrorInfo *ei;
3125 
3126 	c = cmd_alloc(h);
3127 
3128 	/* address the controller */
3129 	memset(scsi3addr, 0, sizeof(scsi3addr));
3130 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3131 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3132 		rc = -1;
3133 		goto out;
3134 	}
3135 	if (extended_response)
3136 		c->Request.CDB[1] = extended_response;
3137 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3138 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3139 	if (rc)
3140 		goto out;
3141 	ei = c->err_info;
3142 	if (ei->CommandStatus != 0 &&
3143 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3144 		hpsa_scsi_interpret_error(h, c);
3145 		rc = -1;
3146 	} else {
3147 		struct ReportLUNdata *rld = buf;
3148 
3149 		if (rld->extended_response_flag != extended_response) {
3150 			dev_err(&h->pdev->dev,
3151 				"report luns requested format %u, got %u\n",
3152 				extended_response,
3153 				rld->extended_response_flag);
3154 			rc = -1;
3155 		}
3156 	}
3157 out:
3158 	cmd_free(h, c);
3159 	return rc;
3160 }
3161 
3162 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3163 		struct ReportExtendedLUNdata *buf, int bufsize)
3164 {
3165 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3166 						HPSA_REPORT_PHYS_EXTENDED);
3167 }
3168 
3169 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3170 		struct ReportLUNdata *buf, int bufsize)
3171 {
3172 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3173 }
3174 
3175 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3176 	int bus, int target, int lun)
3177 {
3178 	device->bus = bus;
3179 	device->target = target;
3180 	device->lun = lun;
3181 }
3182 
3183 /* Use VPD inquiry to get details of volume status */
3184 static int hpsa_get_volume_status(struct ctlr_info *h,
3185 					unsigned char scsi3addr[])
3186 {
3187 	int rc;
3188 	int status;
3189 	int size;
3190 	unsigned char *buf;
3191 
3192 	buf = kzalloc(64, GFP_KERNEL);
3193 	if (!buf)
3194 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3195 
3196 	/* Does controller have VPD for logical volume status? */
3197 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3198 		goto exit_failed;
3199 
3200 	/* Get the size of the VPD return buffer */
3201 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3202 					buf, HPSA_VPD_HEADER_SZ);
3203 	if (rc != 0)
3204 		goto exit_failed;
3205 	size = buf[3];
3206 
3207 	/* Now get the whole VPD buffer */
3208 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3209 					buf, size + HPSA_VPD_HEADER_SZ);
3210 	if (rc != 0)
3211 		goto exit_failed;
3212 	status = buf[4]; /* status byte */
3213 
3214 	kfree(buf);
3215 	return status;
3216 exit_failed:
3217 	kfree(buf);
3218 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3219 }
3220 
3221 /* Determine offline status of a volume.
3222  * Return either:
3223  *  0 (not offline)
3224  *  0xff (offline for unknown reasons)
3225  *  # (integer code indicating one of several NOT READY states
3226  *     describing why a volume is to be kept offline)
3227  */
3228 static int hpsa_volume_offline(struct ctlr_info *h,
3229 					unsigned char scsi3addr[])
3230 {
3231 	struct CommandList *c;
3232 	unsigned char *sense;
3233 	u8 sense_key, asc, ascq;
3234 	int sense_len;
3235 	int rc, ldstat = 0;
3236 	u16 cmd_status;
3237 	u8 scsi_status;
3238 #define ASC_LUN_NOT_READY 0x04
3239 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3240 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3241 
3242 	c = cmd_alloc(h);
3243 
3244 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3245 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3246 	if (rc) {
3247 		cmd_free(h, c);
3248 		return 0;
3249 	}
3250 	sense = c->err_info->SenseInfo;
3251 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3252 		sense_len = sizeof(c->err_info->SenseInfo);
3253 	else
3254 		sense_len = c->err_info->SenseLen;
3255 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3256 	cmd_status = c->err_info->CommandStatus;
3257 	scsi_status = c->err_info->ScsiStatus;
3258 	cmd_free(h, c);
3259 	/* Is the volume 'not ready'? */
3260 	if (cmd_status != CMD_TARGET_STATUS ||
3261 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3262 		sense_key != NOT_READY ||
3263 		asc != ASC_LUN_NOT_READY)  {
3264 		return 0;
3265 	}
3266 
3267 	/* Determine the reason for not ready state */
3268 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3269 
3270 	/* Keep volume offline in certain cases: */
3271 	switch (ldstat) {
3272 	case HPSA_LV_UNDERGOING_ERASE:
3273 	case HPSA_LV_NOT_AVAILABLE:
3274 	case HPSA_LV_UNDERGOING_RPI:
3275 	case HPSA_LV_PENDING_RPI:
3276 	case HPSA_LV_ENCRYPTED_NO_KEY:
3277 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3278 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3279 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3280 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3281 		return ldstat;
3282 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3283 		/* If VPD status page isn't available,
3284 		 * use ASC/ASCQ to determine state
3285 		 */
3286 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3287 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3288 			return ldstat;
3289 		break;
3290 	default:
3291 		break;
3292 	}
3293 	return 0;
3294 }
3295 
3296 /*
3297  * Find out if a logical device supports aborts by simply trying one.
3298  * Smart Array may claim not to support aborts on logical drives, but
3299  * if a MSA2000 * is connected, the drives on that will be presented
3300  * by the Smart Array as logical drives, and aborts may be sent to
3301  * those devices successfully.  So the simplest way to find out is
3302  * to simply try an abort and see how the device responds.
3303  */
3304 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3305 					unsigned char *scsi3addr)
3306 {
3307 	struct CommandList *c;
3308 	struct ErrorInfo *ei;
3309 	int rc = 0;
3310 
3311 	u64 tag = (u64) -1; /* bogus tag */
3312 
3313 	/* Assume that physical devices support aborts */
3314 	if (!is_logical_dev_addr_mode(scsi3addr))
3315 		return 1;
3316 
3317 	c = cmd_alloc(h);
3318 
3319 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3320 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3321 	/* no unmap needed here because no data xfer. */
3322 	ei = c->err_info;
3323 	switch (ei->CommandStatus) {
3324 	case CMD_INVALID:
3325 		rc = 0;
3326 		break;
3327 	case CMD_UNABORTABLE:
3328 	case CMD_ABORT_FAILED:
3329 		rc = 1;
3330 		break;
3331 	case CMD_TMF_STATUS:
3332 		rc = hpsa_evaluate_tmf_status(h, c);
3333 		break;
3334 	default:
3335 		rc = 0;
3336 		break;
3337 	}
3338 	cmd_free(h, c);
3339 	return rc;
3340 }
3341 
3342 static int hpsa_update_device_info(struct ctlr_info *h,
3343 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3344 	unsigned char *is_OBDR_device)
3345 {
3346 
3347 #define OBDR_SIG_OFFSET 43
3348 #define OBDR_TAPE_SIG "$DR-10"
3349 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3350 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3351 
3352 	unsigned char *inq_buff;
3353 	unsigned char *obdr_sig;
3354 
3355 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3356 	if (!inq_buff)
3357 		goto bail_out;
3358 
3359 	/* Do an inquiry to the device to see what it is. */
3360 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3361 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3362 		/* Inquiry failed (msg printed already) */
3363 		dev_err(&h->pdev->dev,
3364 			"hpsa_update_device_info: inquiry failed\n");
3365 		goto bail_out;
3366 	}
3367 
3368 	this_device->devtype = (inq_buff[0] & 0x1f);
3369 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3370 	memcpy(this_device->vendor, &inq_buff[8],
3371 		sizeof(this_device->vendor));
3372 	memcpy(this_device->model, &inq_buff[16],
3373 		sizeof(this_device->model));
3374 	memset(this_device->device_id, 0,
3375 		sizeof(this_device->device_id));
3376 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3377 		sizeof(this_device->device_id));
3378 
3379 	if (this_device->devtype == TYPE_DISK &&
3380 		is_logical_dev_addr_mode(scsi3addr)) {
3381 		int volume_offline;
3382 
3383 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3384 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3385 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3386 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3387 		if (volume_offline < 0 || volume_offline > 0xff)
3388 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3389 		this_device->volume_offline = volume_offline & 0xff;
3390 	} else {
3391 		this_device->raid_level = RAID_UNKNOWN;
3392 		this_device->offload_config = 0;
3393 		this_device->offload_enabled = 0;
3394 		this_device->offload_to_be_enabled = 0;
3395 		this_device->hba_ioaccel_enabled = 0;
3396 		this_device->volume_offline = 0;
3397 		this_device->queue_depth = h->nr_cmds;
3398 	}
3399 
3400 	if (is_OBDR_device) {
3401 		/* See if this is a One-Button-Disaster-Recovery device
3402 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3403 		 */
3404 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3405 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3406 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3407 						OBDR_SIG_LEN) == 0);
3408 	}
3409 	kfree(inq_buff);
3410 	return 0;
3411 
3412 bail_out:
3413 	kfree(inq_buff);
3414 	return 1;
3415 }
3416 
3417 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3418 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3419 {
3420 	unsigned long flags;
3421 	int rc, entry;
3422 	/*
3423 	 * See if this device supports aborts.  If we already know
3424 	 * the device, we already know if it supports aborts, otherwise
3425 	 * we have to find out if it supports aborts by trying one.
3426 	 */
3427 	spin_lock_irqsave(&h->devlock, flags);
3428 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3429 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3430 		entry >= 0 && entry < h->ndevices) {
3431 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3432 		spin_unlock_irqrestore(&h->devlock, flags);
3433 	} else {
3434 		spin_unlock_irqrestore(&h->devlock, flags);
3435 		dev->supports_aborts =
3436 				hpsa_device_supports_aborts(h, scsi3addr);
3437 		if (dev->supports_aborts < 0)
3438 			dev->supports_aborts = 0;
3439 	}
3440 }
3441 
3442 static unsigned char *ext_target_model[] = {
3443 	"MSA2012",
3444 	"MSA2024",
3445 	"MSA2312",
3446 	"MSA2324",
3447 	"P2000 G3 SAS",
3448 	"MSA 2040 SAS",
3449 	NULL,
3450 };
3451 
3452 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3453 {
3454 	int i;
3455 
3456 	for (i = 0; ext_target_model[i]; i++)
3457 		if (strncmp(device->model, ext_target_model[i],
3458 			strlen(ext_target_model[i])) == 0)
3459 			return 1;
3460 	return 0;
3461 }
3462 
3463 /* Helper function to assign bus, target, lun mapping of devices.
3464  * Puts non-external target logical volumes on bus 0, external target logical
3465  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3466  * Logical drive target and lun are assigned at this time, but
3467  * physical device lun and target assignment are deferred (assigned
3468  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3469  */
3470 static void figure_bus_target_lun(struct ctlr_info *h,
3471 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3472 {
3473 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3474 
3475 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3476 		/* physical device, target and lun filled in later */
3477 		if (is_hba_lunid(lunaddrbytes))
3478 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3479 		else
3480 			/* defer target, lun assignment for physical devices */
3481 			hpsa_set_bus_target_lun(device, 2, -1, -1);
3482 		return;
3483 	}
3484 	/* It's a logical device */
3485 	if (is_ext_target(h, device)) {
3486 		/* external target way, put logicals on bus 1
3487 		 * and match target/lun numbers box
3488 		 * reports, other smart array, bus 0, target 0, match lunid
3489 		 */
3490 		hpsa_set_bus_target_lun(device,
3491 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3492 		return;
3493 	}
3494 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3495 }
3496 
3497 /*
3498  * If there is no lun 0 on a target, linux won't find any devices.
3499  * For the external targets (arrays), we have to manually detect the enclosure
3500  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3501  * it for some reason.  *tmpdevice is the target we're adding,
3502  * this_device is a pointer into the current element of currentsd[]
3503  * that we're building up in update_scsi_devices(), below.
3504  * lunzerobits is a bitmap that tracks which targets already have a
3505  * lun 0 assigned.
3506  * Returns 1 if an enclosure was added, 0 if not.
3507  */
3508 static int add_ext_target_dev(struct ctlr_info *h,
3509 	struct hpsa_scsi_dev_t *tmpdevice,
3510 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3511 	unsigned long lunzerobits[], int *n_ext_target_devs)
3512 {
3513 	unsigned char scsi3addr[8];
3514 
3515 	if (test_bit(tmpdevice->target, lunzerobits))
3516 		return 0; /* There is already a lun 0 on this target. */
3517 
3518 	if (!is_logical_dev_addr_mode(lunaddrbytes))
3519 		return 0; /* It's the logical targets that may lack lun 0. */
3520 
3521 	if (!is_ext_target(h, tmpdevice))
3522 		return 0; /* Only external target devices have this problem. */
3523 
3524 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3525 		return 0;
3526 
3527 	memset(scsi3addr, 0, 8);
3528 	scsi3addr[3] = tmpdevice->target;
3529 	if (is_hba_lunid(scsi3addr))
3530 		return 0; /* Don't add the RAID controller here. */
3531 
3532 	if (is_scsi_rev_5(h))
3533 		return 0; /* p1210m doesn't need to do this. */
3534 
3535 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3536 		dev_warn(&h->pdev->dev, "Maximum number of external "
3537 			"target devices exceeded.  Check your hardware "
3538 			"configuration.");
3539 		return 0;
3540 	}
3541 
3542 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3543 		return 0;
3544 	(*n_ext_target_devs)++;
3545 	hpsa_set_bus_target_lun(this_device,
3546 				tmpdevice->bus, tmpdevice->target, 0);
3547 	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3548 	set_bit(tmpdevice->target, lunzerobits);
3549 	return 1;
3550 }
3551 
3552 /*
3553  * Get address of physical disk used for an ioaccel2 mode command:
3554  *	1. Extract ioaccel2 handle from the command.
3555  *	2. Find a matching ioaccel2 handle from list of physical disks.
3556  *	3. Return:
3557  *		1 and set scsi3addr to address of matching physical
3558  *		0 if no matching physical disk was found.
3559  */
3560 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3561 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3562 {
3563 	struct io_accel2_cmd *c2 =
3564 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3565 	unsigned long flags;
3566 	int i;
3567 
3568 	spin_lock_irqsave(&h->devlock, flags);
3569 	for (i = 0; i < h->ndevices; i++)
3570 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3571 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3572 				sizeof(h->dev[i]->scsi3addr));
3573 			spin_unlock_irqrestore(&h->devlock, flags);
3574 			return 1;
3575 		}
3576 	spin_unlock_irqrestore(&h->devlock, flags);
3577 	return 0;
3578 }
3579 
3580 /*
3581  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3582  * logdev.  The number of luns in physdev and logdev are returned in
3583  * *nphysicals and *nlogicals, respectively.
3584  * Returns 0 on success, -1 otherwise.
3585  */
3586 static int hpsa_gather_lun_info(struct ctlr_info *h,
3587 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3588 	struct ReportLUNdata *logdev, u32 *nlogicals)
3589 {
3590 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3591 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3592 		return -1;
3593 	}
3594 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3595 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3596 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3597 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3598 		*nphysicals = HPSA_MAX_PHYS_LUN;
3599 	}
3600 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3601 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3602 		return -1;
3603 	}
3604 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3605 	/* Reject Logicals in excess of our max capability. */
3606 	if (*nlogicals > HPSA_MAX_LUN) {
3607 		dev_warn(&h->pdev->dev,
3608 			"maximum logical LUNs (%d) exceeded.  "
3609 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3610 			*nlogicals - HPSA_MAX_LUN);
3611 			*nlogicals = HPSA_MAX_LUN;
3612 	}
3613 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3614 		dev_warn(&h->pdev->dev,
3615 			"maximum logical + physical LUNs (%d) exceeded. "
3616 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3617 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3618 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3619 	}
3620 	return 0;
3621 }
3622 
3623 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3624 	int i, int nphysicals, int nlogicals,
3625 	struct ReportExtendedLUNdata *physdev_list,
3626 	struct ReportLUNdata *logdev_list)
3627 {
3628 	/* Helper function, figure out where the LUN ID info is coming from
3629 	 * given index i, lists of physical and logical devices, where in
3630 	 * the list the raid controller is supposed to appear (first or last)
3631 	 */
3632 
3633 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3634 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3635 
3636 	if (i == raid_ctlr_position)
3637 		return RAID_CTLR_LUNID;
3638 
3639 	if (i < logicals_start)
3640 		return &physdev_list->LUN[i -
3641 				(raid_ctlr_position == 0)].lunid[0];
3642 
3643 	if (i < last_device)
3644 		return &logdev_list->LUN[i - nphysicals -
3645 			(raid_ctlr_position == 0)][0];
3646 	BUG();
3647 	return NULL;
3648 }
3649 
3650 /* get physical drive ioaccel handle and queue depth */
3651 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3652 		struct hpsa_scsi_dev_t *dev,
3653 		u8 *lunaddrbytes,
3654 		struct bmic_identify_physical_device *id_phys)
3655 {
3656 	int rc;
3657 	struct ext_report_lun_entry *rle =
3658 		(struct ext_report_lun_entry *) lunaddrbytes;
3659 
3660 	dev->ioaccel_handle = rle->ioaccel_handle;
3661 	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3662 		dev->hba_ioaccel_enabled = 1;
3663 	memset(id_phys, 0, sizeof(*id_phys));
3664 	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3665 			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3666 			sizeof(*id_phys));
3667 	if (!rc)
3668 		/* Reserve space for FW operations */
3669 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3670 #define DRIVE_QUEUE_DEPTH 7
3671 		dev->queue_depth =
3672 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3673 				DRIVE_CMDS_RESERVED_FOR_FW;
3674 	else
3675 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3676 	atomic_set(&dev->ioaccel_cmds_out, 0);
3677 	atomic_set(&dev->reset_cmds_out, 0);
3678 }
3679 
3680 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3681 	u8 *lunaddrbytes,
3682 	struct bmic_identify_physical_device *id_phys)
3683 {
3684 	if (PHYS_IOACCEL(lunaddrbytes)
3685 		&& this_device->ioaccel_handle)
3686 		this_device->hba_ioaccel_enabled = 1;
3687 
3688 	memcpy(&this_device->active_path_index,
3689 		&id_phys->active_path_number,
3690 		sizeof(this_device->active_path_index));
3691 	memcpy(&this_device->path_map,
3692 		&id_phys->redundant_path_present_map,
3693 		sizeof(this_device->path_map));
3694 	memcpy(&this_device->box,
3695 		&id_phys->alternate_paths_phys_box_on_port,
3696 		sizeof(this_device->box));
3697 	memcpy(&this_device->phys_connector,
3698 		&id_phys->alternate_paths_phys_connector,
3699 		sizeof(this_device->phys_connector));
3700 	memcpy(&this_device->bay,
3701 		&id_phys->phys_bay_in_box,
3702 		sizeof(this_device->bay));
3703 }
3704 
3705 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3706 {
3707 	/* the idea here is we could get notified
3708 	 * that some devices have changed, so we do a report
3709 	 * physical luns and report logical luns cmd, and adjust
3710 	 * our list of devices accordingly.
3711 	 *
3712 	 * The scsi3addr's of devices won't change so long as the
3713 	 * adapter is not reset.  That means we can rescan and
3714 	 * tell which devices we already know about, vs. new
3715 	 * devices, vs.  disappearing devices.
3716 	 */
3717 	struct ReportExtendedLUNdata *physdev_list = NULL;
3718 	struct ReportLUNdata *logdev_list = NULL;
3719 	struct bmic_identify_physical_device *id_phys = NULL;
3720 	u32 nphysicals = 0;
3721 	u32 nlogicals = 0;
3722 	u32 ndev_allocated = 0;
3723 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3724 	int ncurrent = 0;
3725 	int i, n_ext_target_devs, ndevs_to_allocate;
3726 	int raid_ctlr_position;
3727 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3728 
3729 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3730 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3731 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3732 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3733 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3734 
3735 	if (!currentsd || !physdev_list || !logdev_list ||
3736 		!tmpdevice || !id_phys) {
3737 		dev_err(&h->pdev->dev, "out of memory\n");
3738 		goto out;
3739 	}
3740 	memset(lunzerobits, 0, sizeof(lunzerobits));
3741 
3742 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3743 			logdev_list, &nlogicals))
3744 		goto out;
3745 
3746 	/* We might see up to the maximum number of logical and physical disks
3747 	 * plus external target devices, and a device for the local RAID
3748 	 * controller.
3749 	 */
3750 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3751 
3752 	/* Allocate the per device structures */
3753 	for (i = 0; i < ndevs_to_allocate; i++) {
3754 		if (i >= HPSA_MAX_DEVICES) {
3755 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3756 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3757 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3758 			break;
3759 		}
3760 
3761 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3762 		if (!currentsd[i]) {
3763 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3764 				__FILE__, __LINE__);
3765 			goto out;
3766 		}
3767 		ndev_allocated++;
3768 	}
3769 
3770 	if (is_scsi_rev_5(h))
3771 		raid_ctlr_position = 0;
3772 	else
3773 		raid_ctlr_position = nphysicals + nlogicals;
3774 
3775 	/* adjust our table of devices */
3776 	n_ext_target_devs = 0;
3777 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3778 		u8 *lunaddrbytes, is_OBDR = 0;
3779 
3780 		/* Figure out where the LUN ID info is coming from */
3781 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3782 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3783 
3784 		/* skip masked non-disk devices */
3785 		if (MASKED_DEVICE(lunaddrbytes))
3786 			if (i < nphysicals + (raid_ctlr_position == 0) &&
3787 				NON_DISK_PHYS_DEV(lunaddrbytes))
3788 				continue;
3789 
3790 		/* Get device type, vendor, model, device id */
3791 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3792 							&is_OBDR))
3793 			continue; /* skip it if we can't talk to it. */
3794 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3795 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3796 		this_device = currentsd[ncurrent];
3797 
3798 		/*
3799 		 * For external target devices, we have to insert a LUN 0 which
3800 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3801 		 * is nonetheless an enclosure device there.  We have to
3802 		 * present that otherwise linux won't find anything if
3803 		 * there is no lun 0.
3804 		 */
3805 		if (add_ext_target_dev(h, tmpdevice, this_device,
3806 				lunaddrbytes, lunzerobits,
3807 				&n_ext_target_devs)) {
3808 			ncurrent++;
3809 			this_device = currentsd[ncurrent];
3810 		}
3811 
3812 		*this_device = *tmpdevice;
3813 
3814 		/* do not expose masked devices */
3815 		if (MASKED_DEVICE(lunaddrbytes) &&
3816 			i < nphysicals + (raid_ctlr_position == 0)) {
3817 			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3818 		} else {
3819 			this_device->expose_state =
3820 					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3821 		}
3822 
3823 		switch (this_device->devtype) {
3824 		case TYPE_ROM:
3825 			/* We don't *really* support actual CD-ROM devices,
3826 			 * just "One Button Disaster Recovery" tape drive
3827 			 * which temporarily pretends to be a CD-ROM drive.
3828 			 * So we check that the device is really an OBDR tape
3829 			 * device by checking for "$DR-10" in bytes 43-48 of
3830 			 * the inquiry data.
3831 			 */
3832 			if (is_OBDR)
3833 				ncurrent++;
3834 			break;
3835 		case TYPE_DISK:
3836 			if (i < nphysicals + (raid_ctlr_position == 0)) {
3837 				/* The disk is in HBA mode. */
3838 				/* Never use RAID mapper in HBA mode. */
3839 				this_device->offload_enabled = 0;
3840 				hpsa_get_ioaccel_drive_info(h, this_device,
3841 					lunaddrbytes, id_phys);
3842 				hpsa_get_path_info(this_device, lunaddrbytes,
3843 							id_phys);
3844 			}
3845 			ncurrent++;
3846 			break;
3847 		case TYPE_TAPE:
3848 		case TYPE_MEDIUM_CHANGER:
3849 		case TYPE_ENCLOSURE:
3850 			ncurrent++;
3851 			break;
3852 		case TYPE_RAID:
3853 			/* Only present the Smartarray HBA as a RAID controller.
3854 			 * If it's a RAID controller other than the HBA itself
3855 			 * (an external RAID controller, MSA500 or similar)
3856 			 * don't present it.
3857 			 */
3858 			if (!is_hba_lunid(lunaddrbytes))
3859 				break;
3860 			ncurrent++;
3861 			break;
3862 		default:
3863 			break;
3864 		}
3865 		if (ncurrent >= HPSA_MAX_DEVICES)
3866 			break;
3867 	}
3868 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3869 out:
3870 	kfree(tmpdevice);
3871 	for (i = 0; i < ndev_allocated; i++)
3872 		kfree(currentsd[i]);
3873 	kfree(currentsd);
3874 	kfree(physdev_list);
3875 	kfree(logdev_list);
3876 	kfree(id_phys);
3877 }
3878 
3879 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3880 				   struct scatterlist *sg)
3881 {
3882 	u64 addr64 = (u64) sg_dma_address(sg);
3883 	unsigned int len = sg_dma_len(sg);
3884 
3885 	desc->Addr = cpu_to_le64(addr64);
3886 	desc->Len = cpu_to_le32(len);
3887 	desc->Ext = 0;
3888 }
3889 
3890 /*
3891  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3892  * dma mapping  and fills in the scatter gather entries of the
3893  * hpsa command, cp.
3894  */
3895 static int hpsa_scatter_gather(struct ctlr_info *h,
3896 		struct CommandList *cp,
3897 		struct scsi_cmnd *cmd)
3898 {
3899 	struct scatterlist *sg;
3900 	int use_sg, i, sg_limit, chained, last_sg;
3901 	struct SGDescriptor *curr_sg;
3902 
3903 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3904 
3905 	use_sg = scsi_dma_map(cmd);
3906 	if (use_sg < 0)
3907 		return use_sg;
3908 
3909 	if (!use_sg)
3910 		goto sglist_finished;
3911 
3912 	/*
3913 	 * If the number of entries is greater than the max for a single list,
3914 	 * then we have a chained list; we will set up all but one entry in the
3915 	 * first list (the last entry is saved for link information);
3916 	 * otherwise, we don't have a chained list and we'll set up at each of
3917 	 * the entries in the one list.
3918 	 */
3919 	curr_sg = cp->SG;
3920 	chained = use_sg > h->max_cmd_sg_entries;
3921 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3922 	last_sg = scsi_sg_count(cmd) - 1;
3923 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3924 		hpsa_set_sg_descriptor(curr_sg, sg);
3925 		curr_sg++;
3926 	}
3927 
3928 	if (chained) {
3929 		/*
3930 		 * Continue with the chained list.  Set curr_sg to the chained
3931 		 * list.  Modify the limit to the total count less the entries
3932 		 * we've already set up.  Resume the scan at the list entry
3933 		 * where the previous loop left off.
3934 		 */
3935 		curr_sg = h->cmd_sg_list[cp->cmdindex];
3936 		sg_limit = use_sg - sg_limit;
3937 		for_each_sg(sg, sg, sg_limit, i) {
3938 			hpsa_set_sg_descriptor(curr_sg, sg);
3939 			curr_sg++;
3940 		}
3941 	}
3942 
3943 	/* Back the pointer up to the last entry and mark it as "last". */
3944 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3945 
3946 	if (use_sg + chained > h->maxSG)
3947 		h->maxSG = use_sg + chained;
3948 
3949 	if (chained) {
3950 		cp->Header.SGList = h->max_cmd_sg_entries;
3951 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3952 		if (hpsa_map_sg_chain_block(h, cp)) {
3953 			scsi_dma_unmap(cmd);
3954 			return -1;
3955 		}
3956 		return 0;
3957 	}
3958 
3959 sglist_finished:
3960 
3961 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3962 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3963 	return 0;
3964 }
3965 
3966 #define IO_ACCEL_INELIGIBLE (1)
3967 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3968 {
3969 	int is_write = 0;
3970 	u32 block;
3971 	u32 block_cnt;
3972 
3973 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3974 	switch (cdb[0]) {
3975 	case WRITE_6:
3976 	case WRITE_12:
3977 		is_write = 1;
3978 	case READ_6:
3979 	case READ_12:
3980 		if (*cdb_len == 6) {
3981 			block = (((u32) cdb[2]) << 8) | cdb[3];
3982 			block_cnt = cdb[4];
3983 		} else {
3984 			BUG_ON(*cdb_len != 12);
3985 			block = (((u32) cdb[2]) << 24) |
3986 				(((u32) cdb[3]) << 16) |
3987 				(((u32) cdb[4]) << 8) |
3988 				cdb[5];
3989 			block_cnt =
3990 				(((u32) cdb[6]) << 24) |
3991 				(((u32) cdb[7]) << 16) |
3992 				(((u32) cdb[8]) << 8) |
3993 				cdb[9];
3994 		}
3995 		if (block_cnt > 0xffff)
3996 			return IO_ACCEL_INELIGIBLE;
3997 
3998 		cdb[0] = is_write ? WRITE_10 : READ_10;
3999 		cdb[1] = 0;
4000 		cdb[2] = (u8) (block >> 24);
4001 		cdb[3] = (u8) (block >> 16);
4002 		cdb[4] = (u8) (block >> 8);
4003 		cdb[5] = (u8) (block);
4004 		cdb[6] = 0;
4005 		cdb[7] = (u8) (block_cnt >> 8);
4006 		cdb[8] = (u8) (block_cnt);
4007 		cdb[9] = 0;
4008 		*cdb_len = 10;
4009 		break;
4010 	}
4011 	return 0;
4012 }
4013 
4014 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4015 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4016 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4017 {
4018 	struct scsi_cmnd *cmd = c->scsi_cmd;
4019 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4020 	unsigned int len;
4021 	unsigned int total_len = 0;
4022 	struct scatterlist *sg;
4023 	u64 addr64;
4024 	int use_sg, i;
4025 	struct SGDescriptor *curr_sg;
4026 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4027 
4028 	/* TODO: implement chaining support */
4029 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4030 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4031 		return IO_ACCEL_INELIGIBLE;
4032 	}
4033 
4034 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4035 
4036 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4037 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4038 		return IO_ACCEL_INELIGIBLE;
4039 	}
4040 
4041 	c->cmd_type = CMD_IOACCEL1;
4042 
4043 	/* Adjust the DMA address to point to the accelerated command buffer */
4044 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4045 				(c->cmdindex * sizeof(*cp));
4046 	BUG_ON(c->busaddr & 0x0000007F);
4047 
4048 	use_sg = scsi_dma_map(cmd);
4049 	if (use_sg < 0) {
4050 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4051 		return use_sg;
4052 	}
4053 
4054 	if (use_sg) {
4055 		curr_sg = cp->SG;
4056 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4057 			addr64 = (u64) sg_dma_address(sg);
4058 			len  = sg_dma_len(sg);
4059 			total_len += len;
4060 			curr_sg->Addr = cpu_to_le64(addr64);
4061 			curr_sg->Len = cpu_to_le32(len);
4062 			curr_sg->Ext = cpu_to_le32(0);
4063 			curr_sg++;
4064 		}
4065 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4066 
4067 		switch (cmd->sc_data_direction) {
4068 		case DMA_TO_DEVICE:
4069 			control |= IOACCEL1_CONTROL_DATA_OUT;
4070 			break;
4071 		case DMA_FROM_DEVICE:
4072 			control |= IOACCEL1_CONTROL_DATA_IN;
4073 			break;
4074 		case DMA_NONE:
4075 			control |= IOACCEL1_CONTROL_NODATAXFER;
4076 			break;
4077 		default:
4078 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4079 			cmd->sc_data_direction);
4080 			BUG();
4081 			break;
4082 		}
4083 	} else {
4084 		control |= IOACCEL1_CONTROL_NODATAXFER;
4085 	}
4086 
4087 	c->Header.SGList = use_sg;
4088 	/* Fill out the command structure to submit */
4089 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4090 	cp->transfer_len = cpu_to_le32(total_len);
4091 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4092 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4093 	cp->control = cpu_to_le32(control);
4094 	memcpy(cp->CDB, cdb, cdb_len);
4095 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4096 	/* Tag was already set at init time. */
4097 	enqueue_cmd_and_start_io(h, c);
4098 	return 0;
4099 }
4100 
4101 /*
4102  * Queue a command directly to a device behind the controller using the
4103  * I/O accelerator path.
4104  */
4105 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4106 	struct CommandList *c)
4107 {
4108 	struct scsi_cmnd *cmd = c->scsi_cmd;
4109 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4110 
4111 	c->phys_disk = dev;
4112 
4113 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4114 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4115 }
4116 
4117 /*
4118  * Set encryption parameters for the ioaccel2 request
4119  */
4120 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4121 	struct CommandList *c, struct io_accel2_cmd *cp)
4122 {
4123 	struct scsi_cmnd *cmd = c->scsi_cmd;
4124 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4125 	struct raid_map_data *map = &dev->raid_map;
4126 	u64 first_block;
4127 
4128 	/* Are we doing encryption on this device */
4129 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4130 		return;
4131 	/* Set the data encryption key index. */
4132 	cp->dekindex = map->dekindex;
4133 
4134 	/* Set the encryption enable flag, encoded into direction field. */
4135 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4136 
4137 	/* Set encryption tweak values based on logical block address
4138 	 * If block size is 512, tweak value is LBA.
4139 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4140 	 */
4141 	switch (cmd->cmnd[0]) {
4142 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4143 	case WRITE_6:
4144 	case READ_6:
4145 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4146 		break;
4147 	case WRITE_10:
4148 	case READ_10:
4149 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4150 	case WRITE_12:
4151 	case READ_12:
4152 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4153 		break;
4154 	case WRITE_16:
4155 	case READ_16:
4156 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4157 		break;
4158 	default:
4159 		dev_err(&h->pdev->dev,
4160 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4161 			__func__, cmd->cmnd[0]);
4162 		BUG();
4163 		break;
4164 	}
4165 
4166 	if (le32_to_cpu(map->volume_blk_size) != 512)
4167 		first_block = first_block *
4168 				le32_to_cpu(map->volume_blk_size)/512;
4169 
4170 	cp->tweak_lower = cpu_to_le32(first_block);
4171 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4172 }
4173 
4174 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4175 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4176 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4177 {
4178 	struct scsi_cmnd *cmd = c->scsi_cmd;
4179 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4180 	struct ioaccel2_sg_element *curr_sg;
4181 	int use_sg, i;
4182 	struct scatterlist *sg;
4183 	u64 addr64;
4184 	u32 len;
4185 	u32 total_len = 0;
4186 
4187 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4188 
4189 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4190 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4191 		return IO_ACCEL_INELIGIBLE;
4192 	}
4193 
4194 	c->cmd_type = CMD_IOACCEL2;
4195 	/* Adjust the DMA address to point to the accelerated command buffer */
4196 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4197 				(c->cmdindex * sizeof(*cp));
4198 	BUG_ON(c->busaddr & 0x0000007F);
4199 
4200 	memset(cp, 0, sizeof(*cp));
4201 	cp->IU_type = IOACCEL2_IU_TYPE;
4202 
4203 	use_sg = scsi_dma_map(cmd);
4204 	if (use_sg < 0) {
4205 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4206 		return use_sg;
4207 	}
4208 
4209 	if (use_sg) {
4210 		curr_sg = cp->sg;
4211 		if (use_sg > h->ioaccel_maxsg) {
4212 			addr64 = le64_to_cpu(
4213 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4214 			curr_sg->address = cpu_to_le64(addr64);
4215 			curr_sg->length = 0;
4216 			curr_sg->reserved[0] = 0;
4217 			curr_sg->reserved[1] = 0;
4218 			curr_sg->reserved[2] = 0;
4219 			curr_sg->chain_indicator = 0x80;
4220 
4221 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4222 		}
4223 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4224 			addr64 = (u64) sg_dma_address(sg);
4225 			len  = sg_dma_len(sg);
4226 			total_len += len;
4227 			curr_sg->address = cpu_to_le64(addr64);
4228 			curr_sg->length = cpu_to_le32(len);
4229 			curr_sg->reserved[0] = 0;
4230 			curr_sg->reserved[1] = 0;
4231 			curr_sg->reserved[2] = 0;
4232 			curr_sg->chain_indicator = 0;
4233 			curr_sg++;
4234 		}
4235 
4236 		switch (cmd->sc_data_direction) {
4237 		case DMA_TO_DEVICE:
4238 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4239 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4240 			break;
4241 		case DMA_FROM_DEVICE:
4242 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4243 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4244 			break;
4245 		case DMA_NONE:
4246 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4247 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4248 			break;
4249 		default:
4250 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4251 				cmd->sc_data_direction);
4252 			BUG();
4253 			break;
4254 		}
4255 	} else {
4256 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4257 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4258 	}
4259 
4260 	/* Set encryption parameters, if necessary */
4261 	set_encrypt_ioaccel2(h, c, cp);
4262 
4263 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4264 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4265 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4266 
4267 	cp->data_len = cpu_to_le32(total_len);
4268 	cp->err_ptr = cpu_to_le64(c->busaddr +
4269 			offsetof(struct io_accel2_cmd, error_data));
4270 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4271 
4272 	/* fill in sg elements */
4273 	if (use_sg > h->ioaccel_maxsg) {
4274 		cp->sg_count = 1;
4275 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4276 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4277 			scsi_dma_unmap(cmd);
4278 			return -1;
4279 		}
4280 	} else
4281 		cp->sg_count = (u8) use_sg;
4282 
4283 	enqueue_cmd_and_start_io(h, c);
4284 	return 0;
4285 }
4286 
4287 /*
4288  * Queue a command to the correct I/O accelerator path.
4289  */
4290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4291 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4292 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4293 {
4294 	/* Try to honor the device's queue depth */
4295 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4296 					phys_disk->queue_depth) {
4297 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4298 		return IO_ACCEL_INELIGIBLE;
4299 	}
4300 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4301 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4302 						cdb, cdb_len, scsi3addr,
4303 						phys_disk);
4304 	else
4305 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4306 						cdb, cdb_len, scsi3addr,
4307 						phys_disk);
4308 }
4309 
4310 static void raid_map_helper(struct raid_map_data *map,
4311 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4312 {
4313 	if (offload_to_mirror == 0)  {
4314 		/* use physical disk in the first mirrored group. */
4315 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4316 		return;
4317 	}
4318 	do {
4319 		/* determine mirror group that *map_index indicates */
4320 		*current_group = *map_index /
4321 			le16_to_cpu(map->data_disks_per_row);
4322 		if (offload_to_mirror == *current_group)
4323 			continue;
4324 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4325 			/* select map index from next group */
4326 			*map_index += le16_to_cpu(map->data_disks_per_row);
4327 			(*current_group)++;
4328 		} else {
4329 			/* select map index from first group */
4330 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4331 			*current_group = 0;
4332 		}
4333 	} while (offload_to_mirror != *current_group);
4334 }
4335 
4336 /*
4337  * Attempt to perform offload RAID mapping for a logical volume I/O.
4338  */
4339 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4340 	struct CommandList *c)
4341 {
4342 	struct scsi_cmnd *cmd = c->scsi_cmd;
4343 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4344 	struct raid_map_data *map = &dev->raid_map;
4345 	struct raid_map_disk_data *dd = &map->data[0];
4346 	int is_write = 0;
4347 	u32 map_index;
4348 	u64 first_block, last_block;
4349 	u32 block_cnt;
4350 	u32 blocks_per_row;
4351 	u64 first_row, last_row;
4352 	u32 first_row_offset, last_row_offset;
4353 	u32 first_column, last_column;
4354 	u64 r0_first_row, r0_last_row;
4355 	u32 r5or6_blocks_per_row;
4356 	u64 r5or6_first_row, r5or6_last_row;
4357 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4358 	u32 r5or6_first_column, r5or6_last_column;
4359 	u32 total_disks_per_row;
4360 	u32 stripesize;
4361 	u32 first_group, last_group, current_group;
4362 	u32 map_row;
4363 	u32 disk_handle;
4364 	u64 disk_block;
4365 	u32 disk_block_cnt;
4366 	u8 cdb[16];
4367 	u8 cdb_len;
4368 	u16 strip_size;
4369 #if BITS_PER_LONG == 32
4370 	u64 tmpdiv;
4371 #endif
4372 	int offload_to_mirror;
4373 
4374 	/* check for valid opcode, get LBA and block count */
4375 	switch (cmd->cmnd[0]) {
4376 	case WRITE_6:
4377 		is_write = 1;
4378 	case READ_6:
4379 		first_block =
4380 			(((u64) cmd->cmnd[2]) << 8) |
4381 			cmd->cmnd[3];
4382 		block_cnt = cmd->cmnd[4];
4383 		if (block_cnt == 0)
4384 			block_cnt = 256;
4385 		break;
4386 	case WRITE_10:
4387 		is_write = 1;
4388 	case READ_10:
4389 		first_block =
4390 			(((u64) cmd->cmnd[2]) << 24) |
4391 			(((u64) cmd->cmnd[3]) << 16) |
4392 			(((u64) cmd->cmnd[4]) << 8) |
4393 			cmd->cmnd[5];
4394 		block_cnt =
4395 			(((u32) cmd->cmnd[7]) << 8) |
4396 			cmd->cmnd[8];
4397 		break;
4398 	case WRITE_12:
4399 		is_write = 1;
4400 	case READ_12:
4401 		first_block =
4402 			(((u64) cmd->cmnd[2]) << 24) |
4403 			(((u64) cmd->cmnd[3]) << 16) |
4404 			(((u64) cmd->cmnd[4]) << 8) |
4405 			cmd->cmnd[5];
4406 		block_cnt =
4407 			(((u32) cmd->cmnd[6]) << 24) |
4408 			(((u32) cmd->cmnd[7]) << 16) |
4409 			(((u32) cmd->cmnd[8]) << 8) |
4410 		cmd->cmnd[9];
4411 		break;
4412 	case WRITE_16:
4413 		is_write = 1;
4414 	case READ_16:
4415 		first_block =
4416 			(((u64) cmd->cmnd[2]) << 56) |
4417 			(((u64) cmd->cmnd[3]) << 48) |
4418 			(((u64) cmd->cmnd[4]) << 40) |
4419 			(((u64) cmd->cmnd[5]) << 32) |
4420 			(((u64) cmd->cmnd[6]) << 24) |
4421 			(((u64) cmd->cmnd[7]) << 16) |
4422 			(((u64) cmd->cmnd[8]) << 8) |
4423 			cmd->cmnd[9];
4424 		block_cnt =
4425 			(((u32) cmd->cmnd[10]) << 24) |
4426 			(((u32) cmd->cmnd[11]) << 16) |
4427 			(((u32) cmd->cmnd[12]) << 8) |
4428 			cmd->cmnd[13];
4429 		break;
4430 	default:
4431 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4432 	}
4433 	last_block = first_block + block_cnt - 1;
4434 
4435 	/* check for write to non-RAID-0 */
4436 	if (is_write && dev->raid_level != 0)
4437 		return IO_ACCEL_INELIGIBLE;
4438 
4439 	/* check for invalid block or wraparound */
4440 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4441 		last_block < first_block)
4442 		return IO_ACCEL_INELIGIBLE;
4443 
4444 	/* calculate stripe information for the request */
4445 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4446 				le16_to_cpu(map->strip_size);
4447 	strip_size = le16_to_cpu(map->strip_size);
4448 #if BITS_PER_LONG == 32
4449 	tmpdiv = first_block;
4450 	(void) do_div(tmpdiv, blocks_per_row);
4451 	first_row = tmpdiv;
4452 	tmpdiv = last_block;
4453 	(void) do_div(tmpdiv, blocks_per_row);
4454 	last_row = tmpdiv;
4455 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4456 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4457 	tmpdiv = first_row_offset;
4458 	(void) do_div(tmpdiv, strip_size);
4459 	first_column = tmpdiv;
4460 	tmpdiv = last_row_offset;
4461 	(void) do_div(tmpdiv, strip_size);
4462 	last_column = tmpdiv;
4463 #else
4464 	first_row = first_block / blocks_per_row;
4465 	last_row = last_block / blocks_per_row;
4466 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4467 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4468 	first_column = first_row_offset / strip_size;
4469 	last_column = last_row_offset / strip_size;
4470 #endif
4471 
4472 	/* if this isn't a single row/column then give to the controller */
4473 	if ((first_row != last_row) || (first_column != last_column))
4474 		return IO_ACCEL_INELIGIBLE;
4475 
4476 	/* proceeding with driver mapping */
4477 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4478 				le16_to_cpu(map->metadata_disks_per_row);
4479 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4480 				le16_to_cpu(map->row_cnt);
4481 	map_index = (map_row * total_disks_per_row) + first_column;
4482 
4483 	switch (dev->raid_level) {
4484 	case HPSA_RAID_0:
4485 		break; /* nothing special to do */
4486 	case HPSA_RAID_1:
4487 		/* Handles load balance across RAID 1 members.
4488 		 * (2-drive R1 and R10 with even # of drives.)
4489 		 * Appropriate for SSDs, not optimal for HDDs
4490 		 */
4491 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4492 		if (dev->offload_to_mirror)
4493 			map_index += le16_to_cpu(map->data_disks_per_row);
4494 		dev->offload_to_mirror = !dev->offload_to_mirror;
4495 		break;
4496 	case HPSA_RAID_ADM:
4497 		/* Handles N-way mirrors  (R1-ADM)
4498 		 * and R10 with # of drives divisible by 3.)
4499 		 */
4500 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4501 
4502 		offload_to_mirror = dev->offload_to_mirror;
4503 		raid_map_helper(map, offload_to_mirror,
4504 				&map_index, &current_group);
4505 		/* set mirror group to use next time */
4506 		offload_to_mirror =
4507 			(offload_to_mirror >=
4508 			le16_to_cpu(map->layout_map_count) - 1)
4509 			? 0 : offload_to_mirror + 1;
4510 		dev->offload_to_mirror = offload_to_mirror;
4511 		/* Avoid direct use of dev->offload_to_mirror within this
4512 		 * function since multiple threads might simultaneously
4513 		 * increment it beyond the range of dev->layout_map_count -1.
4514 		 */
4515 		break;
4516 	case HPSA_RAID_5:
4517 	case HPSA_RAID_6:
4518 		if (le16_to_cpu(map->layout_map_count) <= 1)
4519 			break;
4520 
4521 		/* Verify first and last block are in same RAID group */
4522 		r5or6_blocks_per_row =
4523 			le16_to_cpu(map->strip_size) *
4524 			le16_to_cpu(map->data_disks_per_row);
4525 		BUG_ON(r5or6_blocks_per_row == 0);
4526 		stripesize = r5or6_blocks_per_row *
4527 			le16_to_cpu(map->layout_map_count);
4528 #if BITS_PER_LONG == 32
4529 		tmpdiv = first_block;
4530 		first_group = do_div(tmpdiv, stripesize);
4531 		tmpdiv = first_group;
4532 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4533 		first_group = tmpdiv;
4534 		tmpdiv = last_block;
4535 		last_group = do_div(tmpdiv, stripesize);
4536 		tmpdiv = last_group;
4537 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4538 		last_group = tmpdiv;
4539 #else
4540 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4541 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4542 #endif
4543 		if (first_group != last_group)
4544 			return IO_ACCEL_INELIGIBLE;
4545 
4546 		/* Verify request is in a single row of RAID 5/6 */
4547 #if BITS_PER_LONG == 32
4548 		tmpdiv = first_block;
4549 		(void) do_div(tmpdiv, stripesize);
4550 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4551 		tmpdiv = last_block;
4552 		(void) do_div(tmpdiv, stripesize);
4553 		r5or6_last_row = r0_last_row = tmpdiv;
4554 #else
4555 		first_row = r5or6_first_row = r0_first_row =
4556 						first_block / stripesize;
4557 		r5or6_last_row = r0_last_row = last_block / stripesize;
4558 #endif
4559 		if (r5or6_first_row != r5or6_last_row)
4560 			return IO_ACCEL_INELIGIBLE;
4561 
4562 
4563 		/* Verify request is in a single column */
4564 #if BITS_PER_LONG == 32
4565 		tmpdiv = first_block;
4566 		first_row_offset = do_div(tmpdiv, stripesize);
4567 		tmpdiv = first_row_offset;
4568 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4569 		r5or6_first_row_offset = first_row_offset;
4570 		tmpdiv = last_block;
4571 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4572 		tmpdiv = r5or6_last_row_offset;
4573 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4574 		tmpdiv = r5or6_first_row_offset;
4575 		(void) do_div(tmpdiv, map->strip_size);
4576 		first_column = r5or6_first_column = tmpdiv;
4577 		tmpdiv = r5or6_last_row_offset;
4578 		(void) do_div(tmpdiv, map->strip_size);
4579 		r5or6_last_column = tmpdiv;
4580 #else
4581 		first_row_offset = r5or6_first_row_offset =
4582 			(u32)((first_block % stripesize) %
4583 						r5or6_blocks_per_row);
4584 
4585 		r5or6_last_row_offset =
4586 			(u32)((last_block % stripesize) %
4587 						r5or6_blocks_per_row);
4588 
4589 		first_column = r5or6_first_column =
4590 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4591 		r5or6_last_column =
4592 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4593 #endif
4594 		if (r5or6_first_column != r5or6_last_column)
4595 			return IO_ACCEL_INELIGIBLE;
4596 
4597 		/* Request is eligible */
4598 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4599 			le16_to_cpu(map->row_cnt);
4600 
4601 		map_index = (first_group *
4602 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4603 			(map_row * total_disks_per_row) + first_column;
4604 		break;
4605 	default:
4606 		return IO_ACCEL_INELIGIBLE;
4607 	}
4608 
4609 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4610 		return IO_ACCEL_INELIGIBLE;
4611 
4612 	c->phys_disk = dev->phys_disk[map_index];
4613 
4614 	disk_handle = dd[map_index].ioaccel_handle;
4615 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4616 			first_row * le16_to_cpu(map->strip_size) +
4617 			(first_row_offset - first_column *
4618 			le16_to_cpu(map->strip_size));
4619 	disk_block_cnt = block_cnt;
4620 
4621 	/* handle differing logical/physical block sizes */
4622 	if (map->phys_blk_shift) {
4623 		disk_block <<= map->phys_blk_shift;
4624 		disk_block_cnt <<= map->phys_blk_shift;
4625 	}
4626 	BUG_ON(disk_block_cnt > 0xffff);
4627 
4628 	/* build the new CDB for the physical disk I/O */
4629 	if (disk_block > 0xffffffff) {
4630 		cdb[0] = is_write ? WRITE_16 : READ_16;
4631 		cdb[1] = 0;
4632 		cdb[2] = (u8) (disk_block >> 56);
4633 		cdb[3] = (u8) (disk_block >> 48);
4634 		cdb[4] = (u8) (disk_block >> 40);
4635 		cdb[5] = (u8) (disk_block >> 32);
4636 		cdb[6] = (u8) (disk_block >> 24);
4637 		cdb[7] = (u8) (disk_block >> 16);
4638 		cdb[8] = (u8) (disk_block >> 8);
4639 		cdb[9] = (u8) (disk_block);
4640 		cdb[10] = (u8) (disk_block_cnt >> 24);
4641 		cdb[11] = (u8) (disk_block_cnt >> 16);
4642 		cdb[12] = (u8) (disk_block_cnt >> 8);
4643 		cdb[13] = (u8) (disk_block_cnt);
4644 		cdb[14] = 0;
4645 		cdb[15] = 0;
4646 		cdb_len = 16;
4647 	} else {
4648 		cdb[0] = is_write ? WRITE_10 : READ_10;
4649 		cdb[1] = 0;
4650 		cdb[2] = (u8) (disk_block >> 24);
4651 		cdb[3] = (u8) (disk_block >> 16);
4652 		cdb[4] = (u8) (disk_block >> 8);
4653 		cdb[5] = (u8) (disk_block);
4654 		cdb[6] = 0;
4655 		cdb[7] = (u8) (disk_block_cnt >> 8);
4656 		cdb[8] = (u8) (disk_block_cnt);
4657 		cdb[9] = 0;
4658 		cdb_len = 10;
4659 	}
4660 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4661 						dev->scsi3addr,
4662 						dev->phys_disk[map_index]);
4663 }
4664 
4665 /*
4666  * Submit commands down the "normal" RAID stack path
4667  * All callers to hpsa_ciss_submit must check lockup_detected
4668  * beforehand, before (opt.) and after calling cmd_alloc
4669  */
4670 static int hpsa_ciss_submit(struct ctlr_info *h,
4671 	struct CommandList *c, struct scsi_cmnd *cmd,
4672 	unsigned char scsi3addr[])
4673 {
4674 	cmd->host_scribble = (unsigned char *) c;
4675 	c->cmd_type = CMD_SCSI;
4676 	c->scsi_cmd = cmd;
4677 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4678 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4679 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4680 
4681 	/* Fill in the request block... */
4682 
4683 	c->Request.Timeout = 0;
4684 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4685 	c->Request.CDBLen = cmd->cmd_len;
4686 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4687 	switch (cmd->sc_data_direction) {
4688 	case DMA_TO_DEVICE:
4689 		c->Request.type_attr_dir =
4690 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4691 		break;
4692 	case DMA_FROM_DEVICE:
4693 		c->Request.type_attr_dir =
4694 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4695 		break;
4696 	case DMA_NONE:
4697 		c->Request.type_attr_dir =
4698 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4699 		break;
4700 	case DMA_BIDIRECTIONAL:
4701 		/* This can happen if a buggy application does a scsi passthru
4702 		 * and sets both inlen and outlen to non-zero. ( see
4703 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4704 		 */
4705 
4706 		c->Request.type_attr_dir =
4707 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4708 		/* This is technically wrong, and hpsa controllers should
4709 		 * reject it with CMD_INVALID, which is the most correct
4710 		 * response, but non-fibre backends appear to let it
4711 		 * slide by, and give the same results as if this field
4712 		 * were set correctly.  Either way is acceptable for
4713 		 * our purposes here.
4714 		 */
4715 
4716 		break;
4717 
4718 	default:
4719 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4720 			cmd->sc_data_direction);
4721 		BUG();
4722 		break;
4723 	}
4724 
4725 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4726 		hpsa_cmd_resolve_and_free(h, c);
4727 		return SCSI_MLQUEUE_HOST_BUSY;
4728 	}
4729 	enqueue_cmd_and_start_io(h, c);
4730 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4731 	return 0;
4732 }
4733 
4734 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4735 				struct CommandList *c)
4736 {
4737 	dma_addr_t cmd_dma_handle, err_dma_handle;
4738 
4739 	/* Zero out all of commandlist except the last field, refcount */
4740 	memset(c, 0, offsetof(struct CommandList, refcount));
4741 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4742 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4743 	c->err_info = h->errinfo_pool + index;
4744 	memset(c->err_info, 0, sizeof(*c->err_info));
4745 	err_dma_handle = h->errinfo_pool_dhandle
4746 	    + index * sizeof(*c->err_info);
4747 	c->cmdindex = index;
4748 	c->busaddr = (u32) cmd_dma_handle;
4749 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4750 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4751 	c->h = h;
4752 	c->scsi_cmd = SCSI_CMD_IDLE;
4753 }
4754 
4755 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4756 {
4757 	int i;
4758 
4759 	for (i = 0; i < h->nr_cmds; i++) {
4760 		struct CommandList *c = h->cmd_pool + i;
4761 
4762 		hpsa_cmd_init(h, i, c);
4763 		atomic_set(&c->refcount, 0);
4764 	}
4765 }
4766 
4767 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4768 				struct CommandList *c)
4769 {
4770 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4771 
4772 	BUG_ON(c->cmdindex != index);
4773 
4774 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4775 	memset(c->err_info, 0, sizeof(*c->err_info));
4776 	c->busaddr = (u32) cmd_dma_handle;
4777 }
4778 
4779 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4780 		struct CommandList *c, struct scsi_cmnd *cmd,
4781 		unsigned char *scsi3addr)
4782 {
4783 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4784 	int rc = IO_ACCEL_INELIGIBLE;
4785 
4786 	cmd->host_scribble = (unsigned char *) c;
4787 
4788 	if (dev->offload_enabled) {
4789 		hpsa_cmd_init(h, c->cmdindex, c);
4790 		c->cmd_type = CMD_SCSI;
4791 		c->scsi_cmd = cmd;
4792 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
4793 		if (rc < 0)     /* scsi_dma_map failed. */
4794 			rc = SCSI_MLQUEUE_HOST_BUSY;
4795 	} else if (dev->hba_ioaccel_enabled) {
4796 		hpsa_cmd_init(h, c->cmdindex, c);
4797 		c->cmd_type = CMD_SCSI;
4798 		c->scsi_cmd = cmd;
4799 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
4800 		if (rc < 0)     /* scsi_dma_map failed. */
4801 			rc = SCSI_MLQUEUE_HOST_BUSY;
4802 	}
4803 	return rc;
4804 }
4805 
4806 static void hpsa_command_resubmit_worker(struct work_struct *work)
4807 {
4808 	struct scsi_cmnd *cmd;
4809 	struct hpsa_scsi_dev_t *dev;
4810 	struct CommandList *c = container_of(work, struct CommandList, work);
4811 
4812 	cmd = c->scsi_cmd;
4813 	dev = cmd->device->hostdata;
4814 	if (!dev) {
4815 		cmd->result = DID_NO_CONNECT << 16;
4816 		return hpsa_cmd_free_and_done(c->h, c, cmd);
4817 	}
4818 	if (c->reset_pending)
4819 		return hpsa_cmd_resolve_and_free(c->h, c);
4820 	if (c->abort_pending)
4821 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4822 	if (c->cmd_type == CMD_IOACCEL2) {
4823 		struct ctlr_info *h = c->h;
4824 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4825 		int rc;
4826 
4827 		if (c2->error_data.serv_response ==
4828 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4829 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4830 			if (rc == 0)
4831 				return;
4832 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4833 				/*
4834 				 * If we get here, it means dma mapping failed.
4835 				 * Try again via scsi mid layer, which will
4836 				 * then get SCSI_MLQUEUE_HOST_BUSY.
4837 				 */
4838 				cmd->result = DID_IMM_RETRY << 16;
4839 				return hpsa_cmd_free_and_done(h, c, cmd);
4840 			}
4841 			/* else, fall thru and resubmit down CISS path */
4842 		}
4843 	}
4844 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4845 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4846 		/*
4847 		 * If we get here, it means dma mapping failed. Try
4848 		 * again via scsi mid layer, which will then get
4849 		 * SCSI_MLQUEUE_HOST_BUSY.
4850 		 *
4851 		 * hpsa_ciss_submit will have already freed c
4852 		 * if it encountered a dma mapping failure.
4853 		 */
4854 		cmd->result = DID_IMM_RETRY << 16;
4855 		cmd->scsi_done(cmd);
4856 	}
4857 }
4858 
4859 /* Running in struct Scsi_Host->host_lock less mode */
4860 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4861 {
4862 	struct ctlr_info *h;
4863 	struct hpsa_scsi_dev_t *dev;
4864 	unsigned char scsi3addr[8];
4865 	struct CommandList *c;
4866 	int rc = 0;
4867 
4868 	/* Get the ptr to our adapter structure out of cmd->host. */
4869 	h = sdev_to_hba(cmd->device);
4870 
4871 	BUG_ON(cmd->request->tag < 0);
4872 
4873 	dev = cmd->device->hostdata;
4874 	if (!dev) {
4875 		cmd->result = DID_NO_CONNECT << 16;
4876 		cmd->scsi_done(cmd);
4877 		return 0;
4878 	}
4879 
4880 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4881 
4882 	if (unlikely(lockup_detected(h))) {
4883 		cmd->result = DID_NO_CONNECT << 16;
4884 		cmd->scsi_done(cmd);
4885 		return 0;
4886 	}
4887 	c = cmd_tagged_alloc(h, cmd);
4888 
4889 	/*
4890 	 * Call alternate submit routine for I/O accelerated commands.
4891 	 * Retries always go down the normal I/O path.
4892 	 */
4893 	if (likely(cmd->retries == 0 &&
4894 		cmd->request->cmd_type == REQ_TYPE_FS &&
4895 		h->acciopath_status)) {
4896 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4897 		if (rc == 0)
4898 			return 0;
4899 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4900 			hpsa_cmd_resolve_and_free(h, c);
4901 			return SCSI_MLQUEUE_HOST_BUSY;
4902 		}
4903 	}
4904 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4905 }
4906 
4907 static void hpsa_scan_complete(struct ctlr_info *h)
4908 {
4909 	unsigned long flags;
4910 
4911 	spin_lock_irqsave(&h->scan_lock, flags);
4912 	h->scan_finished = 1;
4913 	wake_up_all(&h->scan_wait_queue);
4914 	spin_unlock_irqrestore(&h->scan_lock, flags);
4915 }
4916 
4917 static void hpsa_scan_start(struct Scsi_Host *sh)
4918 {
4919 	struct ctlr_info *h = shost_to_hba(sh);
4920 	unsigned long flags;
4921 
4922 	/*
4923 	 * Don't let rescans be initiated on a controller known to be locked
4924 	 * up.  If the controller locks up *during* a rescan, that thread is
4925 	 * probably hosed, but at least we can prevent new rescan threads from
4926 	 * piling up on a locked up controller.
4927 	 */
4928 	if (unlikely(lockup_detected(h)))
4929 		return hpsa_scan_complete(h);
4930 
4931 	/* wait until any scan already in progress is finished. */
4932 	while (1) {
4933 		spin_lock_irqsave(&h->scan_lock, flags);
4934 		if (h->scan_finished)
4935 			break;
4936 		spin_unlock_irqrestore(&h->scan_lock, flags);
4937 		wait_event(h->scan_wait_queue, h->scan_finished);
4938 		/* Note: We don't need to worry about a race between this
4939 		 * thread and driver unload because the midlayer will
4940 		 * have incremented the reference count, so unload won't
4941 		 * happen if we're in here.
4942 		 */
4943 	}
4944 	h->scan_finished = 0; /* mark scan as in progress */
4945 	spin_unlock_irqrestore(&h->scan_lock, flags);
4946 
4947 	if (unlikely(lockup_detected(h)))
4948 		return hpsa_scan_complete(h);
4949 
4950 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4951 
4952 	hpsa_scan_complete(h);
4953 }
4954 
4955 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4956 {
4957 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4958 
4959 	if (!logical_drive)
4960 		return -ENODEV;
4961 
4962 	if (qdepth < 1)
4963 		qdepth = 1;
4964 	else if (qdepth > logical_drive->queue_depth)
4965 		qdepth = logical_drive->queue_depth;
4966 
4967 	return scsi_change_queue_depth(sdev, qdepth);
4968 }
4969 
4970 static int hpsa_scan_finished(struct Scsi_Host *sh,
4971 	unsigned long elapsed_time)
4972 {
4973 	struct ctlr_info *h = shost_to_hba(sh);
4974 	unsigned long flags;
4975 	int finished;
4976 
4977 	spin_lock_irqsave(&h->scan_lock, flags);
4978 	finished = h->scan_finished;
4979 	spin_unlock_irqrestore(&h->scan_lock, flags);
4980 	return finished;
4981 }
4982 
4983 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4984 {
4985 	struct Scsi_Host *sh;
4986 	int error;
4987 
4988 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4989 	if (sh == NULL) {
4990 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4991 		return -ENOMEM;
4992 	}
4993 
4994 	sh->io_port = 0;
4995 	sh->n_io_port = 0;
4996 	sh->this_id = -1;
4997 	sh->max_channel = 3;
4998 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4999 	sh->max_lun = HPSA_MAX_LUN;
5000 	sh->max_id = HPSA_MAX_LUN;
5001 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5002 	sh->cmd_per_lun = sh->can_queue;
5003 	sh->sg_tablesize = h->maxsgentries;
5004 	sh->hostdata[0] = (unsigned long) h;
5005 	sh->irq = h->intr[h->intr_mode];
5006 	sh->unique_id = sh->irq;
5007 	error = scsi_init_shared_tag_map(sh, sh->can_queue);
5008 	if (error) {
5009 		dev_err(&h->pdev->dev,
5010 			"%s: scsi_init_shared_tag_map failed for controller %d\n",
5011 			__func__, h->ctlr);
5012 			scsi_host_put(sh);
5013 			return error;
5014 	}
5015 	h->scsi_host = sh;
5016 	return 0;
5017 }
5018 
5019 static int hpsa_scsi_add_host(struct ctlr_info *h)
5020 {
5021 	int rv;
5022 
5023 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5024 	if (rv) {
5025 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5026 		return rv;
5027 	}
5028 	scsi_scan_host(h->scsi_host);
5029 	return 0;
5030 }
5031 
5032 /*
5033  * The block layer has already gone to the trouble of picking out a unique,
5034  * small-integer tag for this request.  We use an offset from that value as
5035  * an index to select our command block.  (The offset allows us to reserve the
5036  * low-numbered entries for our own uses.)
5037  */
5038 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5039 {
5040 	int idx = scmd->request->tag;
5041 
5042 	if (idx < 0)
5043 		return idx;
5044 
5045 	/* Offset to leave space for internal cmds. */
5046 	return idx += HPSA_NRESERVED_CMDS;
5047 }
5048 
5049 /*
5050  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5051  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5052  */
5053 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5054 				struct CommandList *c, unsigned char lunaddr[],
5055 				int reply_queue)
5056 {
5057 	int rc;
5058 
5059 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5060 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5061 			NULL, 0, 0, lunaddr, TYPE_CMD);
5062 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5063 	if (rc)
5064 		return rc;
5065 	/* no unmap needed here because no data xfer. */
5066 
5067 	/* Check if the unit is already ready. */
5068 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5069 		return 0;
5070 
5071 	/*
5072 	 * The first command sent after reset will receive "unit attention" to
5073 	 * indicate that the LUN has been reset...this is actually what we're
5074 	 * looking for (but, success is good too).
5075 	 */
5076 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5077 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5078 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5079 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5080 		return 0;
5081 
5082 	return 1;
5083 }
5084 
5085 /*
5086  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5087  * returns zero when the unit is ready, and non-zero when giving up.
5088  */
5089 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5090 				struct CommandList *c,
5091 				unsigned char lunaddr[], int reply_queue)
5092 {
5093 	int rc;
5094 	int count = 0;
5095 	int waittime = 1; /* seconds */
5096 
5097 	/* Send test unit ready until device ready, or give up. */
5098 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5099 
5100 		/*
5101 		 * Wait for a bit.  do this first, because if we send
5102 		 * the TUR right away, the reset will just abort it.
5103 		 */
5104 		msleep(1000 * waittime);
5105 
5106 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5107 		if (!rc)
5108 			break;
5109 
5110 		/* Increase wait time with each try, up to a point. */
5111 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5112 			waittime *= 2;
5113 
5114 		dev_warn(&h->pdev->dev,
5115 			 "waiting %d secs for device to become ready.\n",
5116 			 waittime);
5117 	}
5118 
5119 	return rc;
5120 }
5121 
5122 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5123 					   unsigned char lunaddr[],
5124 					   int reply_queue)
5125 {
5126 	int first_queue;
5127 	int last_queue;
5128 	int rq;
5129 	int rc = 0;
5130 	struct CommandList *c;
5131 
5132 	c = cmd_alloc(h);
5133 
5134 	/*
5135 	 * If no specific reply queue was requested, then send the TUR
5136 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5137 	 * the loop exactly once using only the specified queue.
5138 	 */
5139 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5140 		first_queue = 0;
5141 		last_queue = h->nreply_queues - 1;
5142 	} else {
5143 		first_queue = reply_queue;
5144 		last_queue = reply_queue;
5145 	}
5146 
5147 	for (rq = first_queue; rq <= last_queue; rq++) {
5148 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5149 		if (rc)
5150 			break;
5151 	}
5152 
5153 	if (rc)
5154 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5155 	else
5156 		dev_warn(&h->pdev->dev, "device is ready.\n");
5157 
5158 	cmd_free(h, c);
5159 	return rc;
5160 }
5161 
5162 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5163  * complaining.  Doing a host- or bus-reset can't do anything good here.
5164  */
5165 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5166 {
5167 	int rc;
5168 	struct ctlr_info *h;
5169 	struct hpsa_scsi_dev_t *dev;
5170 	char msg[48];
5171 
5172 	/* find the controller to which the command to be aborted was sent */
5173 	h = sdev_to_hba(scsicmd->device);
5174 	if (h == NULL) /* paranoia */
5175 		return FAILED;
5176 
5177 	if (lockup_detected(h))
5178 		return FAILED;
5179 
5180 	dev = scsicmd->device->hostdata;
5181 	if (!dev) {
5182 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5183 		return FAILED;
5184 	}
5185 
5186 	/* if controller locked up, we can guarantee command won't complete */
5187 	if (lockup_detected(h)) {
5188 		snprintf(msg, sizeof(msg),
5189 			 "cmd %d RESET FAILED, lockup detected",
5190 			 hpsa_get_cmd_index(scsicmd));
5191 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5192 		return FAILED;
5193 	}
5194 
5195 	/* this reset request might be the result of a lockup; check */
5196 	if (detect_controller_lockup(h)) {
5197 		snprintf(msg, sizeof(msg),
5198 			 "cmd %d RESET FAILED, new lockup detected",
5199 			 hpsa_get_cmd_index(scsicmd));
5200 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5201 		return FAILED;
5202 	}
5203 
5204 	/* Do not attempt on controller */
5205 	if (is_hba_lunid(dev->scsi3addr))
5206 		return SUCCESS;
5207 
5208 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5209 
5210 	/* send a reset to the SCSI LUN which the command was sent to */
5211 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5212 			   DEFAULT_REPLY_QUEUE);
5213 	snprintf(msg, sizeof(msg), "reset %s",
5214 		 rc == 0 ? "completed successfully" : "failed");
5215 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5216 	return rc == 0 ? SUCCESS : FAILED;
5217 }
5218 
5219 static void swizzle_abort_tag(u8 *tag)
5220 {
5221 	u8 original_tag[8];
5222 
5223 	memcpy(original_tag, tag, 8);
5224 	tag[0] = original_tag[3];
5225 	tag[1] = original_tag[2];
5226 	tag[2] = original_tag[1];
5227 	tag[3] = original_tag[0];
5228 	tag[4] = original_tag[7];
5229 	tag[5] = original_tag[6];
5230 	tag[6] = original_tag[5];
5231 	tag[7] = original_tag[4];
5232 }
5233 
5234 static void hpsa_get_tag(struct ctlr_info *h,
5235 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5236 {
5237 	u64 tag;
5238 	if (c->cmd_type == CMD_IOACCEL1) {
5239 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5240 			&h->ioaccel_cmd_pool[c->cmdindex];
5241 		tag = le64_to_cpu(cm1->tag);
5242 		*tagupper = cpu_to_le32(tag >> 32);
5243 		*taglower = cpu_to_le32(tag);
5244 		return;
5245 	}
5246 	if (c->cmd_type == CMD_IOACCEL2) {
5247 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5248 			&h->ioaccel2_cmd_pool[c->cmdindex];
5249 		/* upper tag not used in ioaccel2 mode */
5250 		memset(tagupper, 0, sizeof(*tagupper));
5251 		*taglower = cm2->Tag;
5252 		return;
5253 	}
5254 	tag = le64_to_cpu(c->Header.tag);
5255 	*tagupper = cpu_to_le32(tag >> 32);
5256 	*taglower = cpu_to_le32(tag);
5257 }
5258 
5259 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5260 	struct CommandList *abort, int reply_queue)
5261 {
5262 	int rc = IO_OK;
5263 	struct CommandList *c;
5264 	struct ErrorInfo *ei;
5265 	__le32 tagupper, taglower;
5266 
5267 	c = cmd_alloc(h);
5268 
5269 	/* fill_cmd can't fail here, no buffer to map */
5270 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5271 		0, 0, scsi3addr, TYPE_MSG);
5272 	if (h->needs_abort_tags_swizzled)
5273 		swizzle_abort_tag(&c->Request.CDB[4]);
5274 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5275 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5276 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5277 		__func__, tagupper, taglower);
5278 	/* no unmap needed here because no data xfer. */
5279 
5280 	ei = c->err_info;
5281 	switch (ei->CommandStatus) {
5282 	case CMD_SUCCESS:
5283 		break;
5284 	case CMD_TMF_STATUS:
5285 		rc = hpsa_evaluate_tmf_status(h, c);
5286 		break;
5287 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5288 		rc = -1;
5289 		break;
5290 	default:
5291 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5292 			__func__, tagupper, taglower);
5293 		hpsa_scsi_interpret_error(h, c);
5294 		rc = -1;
5295 		break;
5296 	}
5297 	cmd_free(h, c);
5298 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5299 		__func__, tagupper, taglower);
5300 	return rc;
5301 }
5302 
5303 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5304 	struct CommandList *command_to_abort, int reply_queue)
5305 {
5306 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5307 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5308 	struct io_accel2_cmd *c2a =
5309 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5310 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5311 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5312 
5313 	/*
5314 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5315 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5316 	 * actually fits, and doesn't overrun the error info space.
5317 	 */
5318 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5319 			sizeof(struct io_accel2_cmd));
5320 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5321 			offsetof(struct hpsa_tmf_struct, error_len) +
5322 				sizeof(ac->error_len));
5323 
5324 	c->cmd_type = IOACCEL2_TMF;
5325 	c->scsi_cmd = SCSI_CMD_BUSY;
5326 
5327 	/* Adjust the DMA address to point to the accelerated command buffer */
5328 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5329 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5330 	BUG_ON(c->busaddr & 0x0000007F);
5331 
5332 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5333 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5334 	ac->reply_queue = reply_queue;
5335 	ac->tmf = IOACCEL2_TMF_ABORT;
5336 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5337 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5338 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5339 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5340 	ac->error_ptr = cpu_to_le64(c->busaddr +
5341 			offsetof(struct io_accel2_cmd, error_data));
5342 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5343 }
5344 
5345 /* ioaccel2 path firmware cannot handle abort task requests.
5346  * Change abort requests to physical target reset, and send to the
5347  * address of the physical disk used for the ioaccel 2 command.
5348  * Return 0 on success (IO_OK)
5349  *	 -1 on failure
5350  */
5351 
5352 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5353 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5354 {
5355 	int rc = IO_OK;
5356 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5357 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5358 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5359 	unsigned char *psa = &phys_scsi3addr[0];
5360 
5361 	/* Get a pointer to the hpsa logical device. */
5362 	scmd = abort->scsi_cmd;
5363 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5364 	if (dev == NULL) {
5365 		dev_warn(&h->pdev->dev,
5366 			"Cannot abort: no device pointer for command.\n");
5367 			return -1; /* not abortable */
5368 	}
5369 
5370 	if (h->raid_offload_debug > 0)
5371 		dev_info(&h->pdev->dev,
5372 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5373 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5374 			"Reset as abort",
5375 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5376 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5377 
5378 	if (!dev->offload_enabled) {
5379 		dev_warn(&h->pdev->dev,
5380 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5381 		return -1; /* not abortable */
5382 	}
5383 
5384 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5385 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5386 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5387 		return -1; /* not abortable */
5388 	}
5389 
5390 	/* send the reset */
5391 	if (h->raid_offload_debug > 0)
5392 		dev_info(&h->pdev->dev,
5393 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5394 			psa[0], psa[1], psa[2], psa[3],
5395 			psa[4], psa[5], psa[6], psa[7]);
5396 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5397 	if (rc != 0) {
5398 		dev_warn(&h->pdev->dev,
5399 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5400 			psa[0], psa[1], psa[2], psa[3],
5401 			psa[4], psa[5], psa[6], psa[7]);
5402 		return rc; /* failed to reset */
5403 	}
5404 
5405 	/* wait for device to recover */
5406 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5407 		dev_warn(&h->pdev->dev,
5408 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5409 			psa[0], psa[1], psa[2], psa[3],
5410 			psa[4], psa[5], psa[6], psa[7]);
5411 		return -1;  /* failed to recover */
5412 	}
5413 
5414 	/* device recovered */
5415 	dev_info(&h->pdev->dev,
5416 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5417 		psa[0], psa[1], psa[2], psa[3],
5418 		psa[4], psa[5], psa[6], psa[7]);
5419 
5420 	return rc; /* success */
5421 }
5422 
5423 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5424 	struct CommandList *abort, int reply_queue)
5425 {
5426 	int rc = IO_OK;
5427 	struct CommandList *c;
5428 	__le32 taglower, tagupper;
5429 	struct hpsa_scsi_dev_t *dev;
5430 	struct io_accel2_cmd *c2;
5431 
5432 	dev = abort->scsi_cmd->device->hostdata;
5433 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5434 		return -1;
5435 
5436 	c = cmd_alloc(h);
5437 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5438 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5439 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5440 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5441 	dev_dbg(&h->pdev->dev,
5442 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5443 		__func__, tagupper, taglower);
5444 	/* no unmap needed here because no data xfer. */
5445 
5446 	dev_dbg(&h->pdev->dev,
5447 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5448 		__func__, tagupper, taglower, c2->error_data.serv_response);
5449 	switch (c2->error_data.serv_response) {
5450 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5451 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5452 		rc = 0;
5453 		break;
5454 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5455 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5456 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5457 		rc = -1;
5458 		break;
5459 	default:
5460 		dev_warn(&h->pdev->dev,
5461 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5462 			__func__, tagupper, taglower,
5463 			c2->error_data.serv_response);
5464 		rc = -1;
5465 	}
5466 	cmd_free(h, c);
5467 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5468 		tagupper, taglower);
5469 	return rc;
5470 }
5471 
5472 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5473 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5474 {
5475 	/*
5476 	 * ioccelerator mode 2 commands should be aborted via the
5477 	 * accelerated path, since RAID path is unaware of these commands,
5478 	 * but not all underlying firmware can handle abort TMF.
5479 	 * Change abort to physical device reset when abort TMF is unsupported.
5480 	 */
5481 	if (abort->cmd_type == CMD_IOACCEL2) {
5482 		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5483 			return hpsa_send_abort_ioaccel2(h, abort,
5484 						reply_queue);
5485 		else
5486 			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5487 							abort, reply_queue);
5488 	}
5489 	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5490 }
5491 
5492 /* Find out which reply queue a command was meant to return on */
5493 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5494 					struct CommandList *c)
5495 {
5496 	if (c->cmd_type == CMD_IOACCEL2)
5497 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5498 	return c->Header.ReplyQueue;
5499 }
5500 
5501 /*
5502  * Limit concurrency of abort commands to prevent
5503  * over-subscription of commands
5504  */
5505 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5506 {
5507 #define ABORT_CMD_WAIT_MSECS 5000
5508 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5509 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5510 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5511 }
5512 
5513 /* Send an abort for the specified command.
5514  *	If the device and controller support it,
5515  *		send a task abort request.
5516  */
5517 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5518 {
5519 
5520 	int rc;
5521 	struct ctlr_info *h;
5522 	struct hpsa_scsi_dev_t *dev;
5523 	struct CommandList *abort; /* pointer to command to be aborted */
5524 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5525 	char msg[256];		/* For debug messaging. */
5526 	int ml = 0;
5527 	__le32 tagupper, taglower;
5528 	int refcount, reply_queue;
5529 
5530 	if (sc == NULL)
5531 		return FAILED;
5532 
5533 	if (sc->device == NULL)
5534 		return FAILED;
5535 
5536 	/* Find the controller of the command to be aborted */
5537 	h = sdev_to_hba(sc->device);
5538 	if (h == NULL)
5539 		return FAILED;
5540 
5541 	/* Find the device of the command to be aborted */
5542 	dev = sc->device->hostdata;
5543 	if (!dev) {
5544 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5545 				msg);
5546 		return FAILED;
5547 	}
5548 
5549 	/* If controller locked up, we can guarantee command won't complete */
5550 	if (lockup_detected(h)) {
5551 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5552 					"ABORT FAILED, lockup detected");
5553 		return FAILED;
5554 	}
5555 
5556 	/* This is a good time to check if controller lockup has occurred */
5557 	if (detect_controller_lockup(h)) {
5558 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5559 					"ABORT FAILED, new lockup detected");
5560 		return FAILED;
5561 	}
5562 
5563 	/* Check that controller supports some kind of task abort */
5564 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5565 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5566 		return FAILED;
5567 
5568 	memset(msg, 0, sizeof(msg));
5569 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5570 		h->scsi_host->host_no, sc->device->channel,
5571 		sc->device->id, sc->device->lun,
5572 		"Aborting command", sc);
5573 
5574 	/* Get SCSI command to be aborted */
5575 	abort = (struct CommandList *) sc->host_scribble;
5576 	if (abort == NULL) {
5577 		/* This can happen if the command already completed. */
5578 		return SUCCESS;
5579 	}
5580 	refcount = atomic_inc_return(&abort->refcount);
5581 	if (refcount == 1) { /* Command is done already. */
5582 		cmd_free(h, abort);
5583 		return SUCCESS;
5584 	}
5585 
5586 	/* Don't bother trying the abort if we know it won't work. */
5587 	if (abort->cmd_type != CMD_IOACCEL2 &&
5588 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5589 		cmd_free(h, abort);
5590 		return FAILED;
5591 	}
5592 
5593 	/*
5594 	 * Check that we're aborting the right command.
5595 	 * It's possible the CommandList already completed and got re-used.
5596 	 */
5597 	if (abort->scsi_cmd != sc) {
5598 		cmd_free(h, abort);
5599 		return SUCCESS;
5600 	}
5601 
5602 	abort->abort_pending = true;
5603 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5604 	reply_queue = hpsa_extract_reply_queue(h, abort);
5605 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5606 	as  = abort->scsi_cmd;
5607 	if (as != NULL)
5608 		ml += sprintf(msg+ml,
5609 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5610 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5611 			as->serial_number);
5612 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5613 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5614 
5615 	/*
5616 	 * Command is in flight, or possibly already completed
5617 	 * by the firmware (but not to the scsi mid layer) but we can't
5618 	 * distinguish which.  Send the abort down.
5619 	 */
5620 	if (wait_for_available_abort_cmd(h)) {
5621 		dev_warn(&h->pdev->dev,
5622 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5623 			msg);
5624 		cmd_free(h, abort);
5625 		return FAILED;
5626 	}
5627 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5628 	atomic_inc(&h->abort_cmds_available);
5629 	wake_up_all(&h->abort_cmd_wait_queue);
5630 	if (rc != 0) {
5631 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5632 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5633 				"FAILED to abort command");
5634 		cmd_free(h, abort);
5635 		return FAILED;
5636 	}
5637 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5638 	wait_event(h->event_sync_wait_queue,
5639 		   abort->scsi_cmd != sc || lockup_detected(h));
5640 	cmd_free(h, abort);
5641 	return !lockup_detected(h) ? SUCCESS : FAILED;
5642 }
5643 
5644 /*
5645  * For operations with an associated SCSI command, a command block is allocated
5646  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5647  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5648  * the complement, although cmd_free() may be called instead.
5649  */
5650 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5651 					    struct scsi_cmnd *scmd)
5652 {
5653 	int idx = hpsa_get_cmd_index(scmd);
5654 	struct CommandList *c = h->cmd_pool + idx;
5655 
5656 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5657 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5658 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5659 		/* The index value comes from the block layer, so if it's out of
5660 		 * bounds, it's probably not our bug.
5661 		 */
5662 		BUG();
5663 	}
5664 
5665 	atomic_inc(&c->refcount);
5666 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5667 		/*
5668 		 * We expect that the SCSI layer will hand us a unique tag
5669 		 * value.  Thus, there should never be a collision here between
5670 		 * two requests...because if the selected command isn't idle
5671 		 * then someone is going to be very disappointed.
5672 		 */
5673 		dev_err(&h->pdev->dev,
5674 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5675 			idx);
5676 		if (c->scsi_cmd != NULL)
5677 			scsi_print_command(c->scsi_cmd);
5678 		scsi_print_command(scmd);
5679 	}
5680 
5681 	hpsa_cmd_partial_init(h, idx, c);
5682 	return c;
5683 }
5684 
5685 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5686 {
5687 	/*
5688 	 * Release our reference to the block.  We don't need to do anything
5689 	 * else to free it, because it is accessed by index.  (There's no point
5690 	 * in checking the result of the decrement, since we cannot guarantee
5691 	 * that there isn't a concurrent abort which is also accessing it.)
5692 	 */
5693 	(void)atomic_dec(&c->refcount);
5694 }
5695 
5696 /*
5697  * For operations that cannot sleep, a command block is allocated at init,
5698  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5699  * which ones are free or in use.  Lock must be held when calling this.
5700  * cmd_free() is the complement.
5701  * This function never gives up and returns NULL.  If it hangs,
5702  * another thread must call cmd_free() to free some tags.
5703  */
5704 
5705 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5706 {
5707 	struct CommandList *c;
5708 	int refcount, i;
5709 	int offset = 0;
5710 
5711 	/*
5712 	 * There is some *extremely* small but non-zero chance that that
5713 	 * multiple threads could get in here, and one thread could
5714 	 * be scanning through the list of bits looking for a free
5715 	 * one, but the free ones are always behind him, and other
5716 	 * threads sneak in behind him and eat them before he can
5717 	 * get to them, so that while there is always a free one, a
5718 	 * very unlucky thread might be starved anyway, never able to
5719 	 * beat the other threads.  In reality, this happens so
5720 	 * infrequently as to be indistinguishable from never.
5721 	 *
5722 	 * Note that we start allocating commands before the SCSI host structure
5723 	 * is initialized.  Since the search starts at bit zero, this
5724 	 * all works, since we have at least one command structure available;
5725 	 * however, it means that the structures with the low indexes have to be
5726 	 * reserved for driver-initiated requests, while requests from the block
5727 	 * layer will use the higher indexes.
5728 	 */
5729 
5730 	for (;;) {
5731 		i = find_next_zero_bit(h->cmd_pool_bits,
5732 					HPSA_NRESERVED_CMDS,
5733 					offset);
5734 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5735 			offset = 0;
5736 			continue;
5737 		}
5738 		c = h->cmd_pool + i;
5739 		refcount = atomic_inc_return(&c->refcount);
5740 		if (unlikely(refcount > 1)) {
5741 			cmd_free(h, c); /* already in use */
5742 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5743 			continue;
5744 		}
5745 		set_bit(i & (BITS_PER_LONG - 1),
5746 			h->cmd_pool_bits + (i / BITS_PER_LONG));
5747 		break; /* it's ours now. */
5748 	}
5749 	hpsa_cmd_partial_init(h, i, c);
5750 	return c;
5751 }
5752 
5753 /*
5754  * This is the complementary operation to cmd_alloc().  Note, however, in some
5755  * corner cases it may also be used to free blocks allocated by
5756  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5757  * the clear-bit is harmless.
5758  */
5759 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5760 {
5761 	if (atomic_dec_and_test(&c->refcount)) {
5762 		int i;
5763 
5764 		i = c - h->cmd_pool;
5765 		clear_bit(i & (BITS_PER_LONG - 1),
5766 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
5767 	}
5768 }
5769 
5770 #ifdef CONFIG_COMPAT
5771 
5772 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5773 	void __user *arg)
5774 {
5775 	IOCTL32_Command_struct __user *arg32 =
5776 	    (IOCTL32_Command_struct __user *) arg;
5777 	IOCTL_Command_struct arg64;
5778 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5779 	int err;
5780 	u32 cp;
5781 
5782 	memset(&arg64, 0, sizeof(arg64));
5783 	err = 0;
5784 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5785 			   sizeof(arg64.LUN_info));
5786 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5787 			   sizeof(arg64.Request));
5788 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5789 			   sizeof(arg64.error_info));
5790 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5791 	err |= get_user(cp, &arg32->buf);
5792 	arg64.buf = compat_ptr(cp);
5793 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5794 
5795 	if (err)
5796 		return -EFAULT;
5797 
5798 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5799 	if (err)
5800 		return err;
5801 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5802 			 sizeof(arg32->error_info));
5803 	if (err)
5804 		return -EFAULT;
5805 	return err;
5806 }
5807 
5808 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5809 	int cmd, void __user *arg)
5810 {
5811 	BIG_IOCTL32_Command_struct __user *arg32 =
5812 	    (BIG_IOCTL32_Command_struct __user *) arg;
5813 	BIG_IOCTL_Command_struct arg64;
5814 	BIG_IOCTL_Command_struct __user *p =
5815 	    compat_alloc_user_space(sizeof(arg64));
5816 	int err;
5817 	u32 cp;
5818 
5819 	memset(&arg64, 0, sizeof(arg64));
5820 	err = 0;
5821 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5822 			   sizeof(arg64.LUN_info));
5823 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5824 			   sizeof(arg64.Request));
5825 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5826 			   sizeof(arg64.error_info));
5827 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5828 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5829 	err |= get_user(cp, &arg32->buf);
5830 	arg64.buf = compat_ptr(cp);
5831 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5832 
5833 	if (err)
5834 		return -EFAULT;
5835 
5836 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5837 	if (err)
5838 		return err;
5839 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5840 			 sizeof(arg32->error_info));
5841 	if (err)
5842 		return -EFAULT;
5843 	return err;
5844 }
5845 
5846 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5847 {
5848 	switch (cmd) {
5849 	case CCISS_GETPCIINFO:
5850 	case CCISS_GETINTINFO:
5851 	case CCISS_SETINTINFO:
5852 	case CCISS_GETNODENAME:
5853 	case CCISS_SETNODENAME:
5854 	case CCISS_GETHEARTBEAT:
5855 	case CCISS_GETBUSTYPES:
5856 	case CCISS_GETFIRMVER:
5857 	case CCISS_GETDRIVVER:
5858 	case CCISS_REVALIDVOLS:
5859 	case CCISS_DEREGDISK:
5860 	case CCISS_REGNEWDISK:
5861 	case CCISS_REGNEWD:
5862 	case CCISS_RESCANDISK:
5863 	case CCISS_GETLUNINFO:
5864 		return hpsa_ioctl(dev, cmd, arg);
5865 
5866 	case CCISS_PASSTHRU32:
5867 		return hpsa_ioctl32_passthru(dev, cmd, arg);
5868 	case CCISS_BIG_PASSTHRU32:
5869 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5870 
5871 	default:
5872 		return -ENOIOCTLCMD;
5873 	}
5874 }
5875 #endif
5876 
5877 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5878 {
5879 	struct hpsa_pci_info pciinfo;
5880 
5881 	if (!argp)
5882 		return -EINVAL;
5883 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
5884 	pciinfo.bus = h->pdev->bus->number;
5885 	pciinfo.dev_fn = h->pdev->devfn;
5886 	pciinfo.board_id = h->board_id;
5887 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5888 		return -EFAULT;
5889 	return 0;
5890 }
5891 
5892 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5893 {
5894 	DriverVer_type DriverVer;
5895 	unsigned char vmaj, vmin, vsubmin;
5896 	int rc;
5897 
5898 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5899 		&vmaj, &vmin, &vsubmin);
5900 	if (rc != 3) {
5901 		dev_info(&h->pdev->dev, "driver version string '%s' "
5902 			"unrecognized.", HPSA_DRIVER_VERSION);
5903 		vmaj = 0;
5904 		vmin = 0;
5905 		vsubmin = 0;
5906 	}
5907 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5908 	if (!argp)
5909 		return -EINVAL;
5910 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5911 		return -EFAULT;
5912 	return 0;
5913 }
5914 
5915 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5916 {
5917 	IOCTL_Command_struct iocommand;
5918 	struct CommandList *c;
5919 	char *buff = NULL;
5920 	u64 temp64;
5921 	int rc = 0;
5922 
5923 	if (!argp)
5924 		return -EINVAL;
5925 	if (!capable(CAP_SYS_RAWIO))
5926 		return -EPERM;
5927 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5928 		return -EFAULT;
5929 	if ((iocommand.buf_size < 1) &&
5930 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
5931 		return -EINVAL;
5932 	}
5933 	if (iocommand.buf_size > 0) {
5934 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5935 		if (buff == NULL)
5936 			return -ENOMEM;
5937 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5938 			/* Copy the data into the buffer we created */
5939 			if (copy_from_user(buff, iocommand.buf,
5940 				iocommand.buf_size)) {
5941 				rc = -EFAULT;
5942 				goto out_kfree;
5943 			}
5944 		} else {
5945 			memset(buff, 0, iocommand.buf_size);
5946 		}
5947 	}
5948 	c = cmd_alloc(h);
5949 
5950 	/* Fill in the command type */
5951 	c->cmd_type = CMD_IOCTL_PEND;
5952 	c->scsi_cmd = SCSI_CMD_BUSY;
5953 	/* Fill in Command Header */
5954 	c->Header.ReplyQueue = 0; /* unused in simple mode */
5955 	if (iocommand.buf_size > 0) {	/* buffer to fill */
5956 		c->Header.SGList = 1;
5957 		c->Header.SGTotal = cpu_to_le16(1);
5958 	} else	{ /* no buffers to fill */
5959 		c->Header.SGList = 0;
5960 		c->Header.SGTotal = cpu_to_le16(0);
5961 	}
5962 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5963 
5964 	/* Fill in Request block */
5965 	memcpy(&c->Request, &iocommand.Request,
5966 		sizeof(c->Request));
5967 
5968 	/* Fill in the scatter gather information */
5969 	if (iocommand.buf_size > 0) {
5970 		temp64 = pci_map_single(h->pdev, buff,
5971 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5972 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5973 			c->SG[0].Addr = cpu_to_le64(0);
5974 			c->SG[0].Len = cpu_to_le32(0);
5975 			rc = -ENOMEM;
5976 			goto out;
5977 		}
5978 		c->SG[0].Addr = cpu_to_le64(temp64);
5979 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5980 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5981 	}
5982 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5983 	if (iocommand.buf_size > 0)
5984 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5985 	check_ioctl_unit_attention(h, c);
5986 	if (rc) {
5987 		rc = -EIO;
5988 		goto out;
5989 	}
5990 
5991 	/* Copy the error information out */
5992 	memcpy(&iocommand.error_info, c->err_info,
5993 		sizeof(iocommand.error_info));
5994 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5995 		rc = -EFAULT;
5996 		goto out;
5997 	}
5998 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5999 		iocommand.buf_size > 0) {
6000 		/* Copy the data out of the buffer we created */
6001 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6002 			rc = -EFAULT;
6003 			goto out;
6004 		}
6005 	}
6006 out:
6007 	cmd_free(h, c);
6008 out_kfree:
6009 	kfree(buff);
6010 	return rc;
6011 }
6012 
6013 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6014 {
6015 	BIG_IOCTL_Command_struct *ioc;
6016 	struct CommandList *c;
6017 	unsigned char **buff = NULL;
6018 	int *buff_size = NULL;
6019 	u64 temp64;
6020 	BYTE sg_used = 0;
6021 	int status = 0;
6022 	u32 left;
6023 	u32 sz;
6024 	BYTE __user *data_ptr;
6025 
6026 	if (!argp)
6027 		return -EINVAL;
6028 	if (!capable(CAP_SYS_RAWIO))
6029 		return -EPERM;
6030 	ioc = (BIG_IOCTL_Command_struct *)
6031 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6032 	if (!ioc) {
6033 		status = -ENOMEM;
6034 		goto cleanup1;
6035 	}
6036 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6037 		status = -EFAULT;
6038 		goto cleanup1;
6039 	}
6040 	if ((ioc->buf_size < 1) &&
6041 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6042 		status = -EINVAL;
6043 		goto cleanup1;
6044 	}
6045 	/* Check kmalloc limits  using all SGs */
6046 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6047 		status = -EINVAL;
6048 		goto cleanup1;
6049 	}
6050 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6051 		status = -EINVAL;
6052 		goto cleanup1;
6053 	}
6054 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6055 	if (!buff) {
6056 		status = -ENOMEM;
6057 		goto cleanup1;
6058 	}
6059 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6060 	if (!buff_size) {
6061 		status = -ENOMEM;
6062 		goto cleanup1;
6063 	}
6064 	left = ioc->buf_size;
6065 	data_ptr = ioc->buf;
6066 	while (left) {
6067 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6068 		buff_size[sg_used] = sz;
6069 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6070 		if (buff[sg_used] == NULL) {
6071 			status = -ENOMEM;
6072 			goto cleanup1;
6073 		}
6074 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6075 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6076 				status = -EFAULT;
6077 				goto cleanup1;
6078 			}
6079 		} else
6080 			memset(buff[sg_used], 0, sz);
6081 		left -= sz;
6082 		data_ptr += sz;
6083 		sg_used++;
6084 	}
6085 	c = cmd_alloc(h);
6086 
6087 	c->cmd_type = CMD_IOCTL_PEND;
6088 	c->scsi_cmd = SCSI_CMD_BUSY;
6089 	c->Header.ReplyQueue = 0;
6090 	c->Header.SGList = (u8) sg_used;
6091 	c->Header.SGTotal = cpu_to_le16(sg_used);
6092 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6093 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6094 	if (ioc->buf_size > 0) {
6095 		int i;
6096 		for (i = 0; i < sg_used; i++) {
6097 			temp64 = pci_map_single(h->pdev, buff[i],
6098 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6099 			if (dma_mapping_error(&h->pdev->dev,
6100 							(dma_addr_t) temp64)) {
6101 				c->SG[i].Addr = cpu_to_le64(0);
6102 				c->SG[i].Len = cpu_to_le32(0);
6103 				hpsa_pci_unmap(h->pdev, c, i,
6104 					PCI_DMA_BIDIRECTIONAL);
6105 				status = -ENOMEM;
6106 				goto cleanup0;
6107 			}
6108 			c->SG[i].Addr = cpu_to_le64(temp64);
6109 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6110 			c->SG[i].Ext = cpu_to_le32(0);
6111 		}
6112 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6113 	}
6114 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6115 	if (sg_used)
6116 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6117 	check_ioctl_unit_attention(h, c);
6118 	if (status) {
6119 		status = -EIO;
6120 		goto cleanup0;
6121 	}
6122 
6123 	/* Copy the error information out */
6124 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6125 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6126 		status = -EFAULT;
6127 		goto cleanup0;
6128 	}
6129 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6130 		int i;
6131 
6132 		/* Copy the data out of the buffer we created */
6133 		BYTE __user *ptr = ioc->buf;
6134 		for (i = 0; i < sg_used; i++) {
6135 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6136 				status = -EFAULT;
6137 				goto cleanup0;
6138 			}
6139 			ptr += buff_size[i];
6140 		}
6141 	}
6142 	status = 0;
6143 cleanup0:
6144 	cmd_free(h, c);
6145 cleanup1:
6146 	if (buff) {
6147 		int i;
6148 
6149 		for (i = 0; i < sg_used; i++)
6150 			kfree(buff[i]);
6151 		kfree(buff);
6152 	}
6153 	kfree(buff_size);
6154 	kfree(ioc);
6155 	return status;
6156 }
6157 
6158 static void check_ioctl_unit_attention(struct ctlr_info *h,
6159 	struct CommandList *c)
6160 {
6161 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6162 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6163 		(void) check_for_unit_attention(h, c);
6164 }
6165 
6166 /*
6167  * ioctl
6168  */
6169 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6170 {
6171 	struct ctlr_info *h;
6172 	void __user *argp = (void __user *)arg;
6173 	int rc;
6174 
6175 	h = sdev_to_hba(dev);
6176 
6177 	switch (cmd) {
6178 	case CCISS_DEREGDISK:
6179 	case CCISS_REGNEWDISK:
6180 	case CCISS_REGNEWD:
6181 		hpsa_scan_start(h->scsi_host);
6182 		return 0;
6183 	case CCISS_GETPCIINFO:
6184 		return hpsa_getpciinfo_ioctl(h, argp);
6185 	case CCISS_GETDRIVVER:
6186 		return hpsa_getdrivver_ioctl(h, argp);
6187 	case CCISS_PASSTHRU:
6188 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6189 			return -EAGAIN;
6190 		rc = hpsa_passthru_ioctl(h, argp);
6191 		atomic_inc(&h->passthru_cmds_avail);
6192 		return rc;
6193 	case CCISS_BIG_PASSTHRU:
6194 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6195 			return -EAGAIN;
6196 		rc = hpsa_big_passthru_ioctl(h, argp);
6197 		atomic_inc(&h->passthru_cmds_avail);
6198 		return rc;
6199 	default:
6200 		return -ENOTTY;
6201 	}
6202 }
6203 
6204 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6205 				u8 reset_type)
6206 {
6207 	struct CommandList *c;
6208 
6209 	c = cmd_alloc(h);
6210 
6211 	/* fill_cmd can't fail here, no data buffer to map */
6212 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6213 		RAID_CTLR_LUNID, TYPE_MSG);
6214 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6215 	c->waiting = NULL;
6216 	enqueue_cmd_and_start_io(h, c);
6217 	/* Don't wait for completion, the reset won't complete.  Don't free
6218 	 * the command either.  This is the last command we will send before
6219 	 * re-initializing everything, so it doesn't matter and won't leak.
6220 	 */
6221 	return;
6222 }
6223 
6224 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6225 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6226 	int cmd_type)
6227 {
6228 	int pci_dir = XFER_NONE;
6229 	u64 tag; /* for commands to be aborted */
6230 
6231 	c->cmd_type = CMD_IOCTL_PEND;
6232 	c->scsi_cmd = SCSI_CMD_BUSY;
6233 	c->Header.ReplyQueue = 0;
6234 	if (buff != NULL && size > 0) {
6235 		c->Header.SGList = 1;
6236 		c->Header.SGTotal = cpu_to_le16(1);
6237 	} else {
6238 		c->Header.SGList = 0;
6239 		c->Header.SGTotal = cpu_to_le16(0);
6240 	}
6241 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6242 
6243 	if (cmd_type == TYPE_CMD) {
6244 		switch (cmd) {
6245 		case HPSA_INQUIRY:
6246 			/* are we trying to read a vital product page */
6247 			if (page_code & VPD_PAGE) {
6248 				c->Request.CDB[1] = 0x01;
6249 				c->Request.CDB[2] = (page_code & 0xff);
6250 			}
6251 			c->Request.CDBLen = 6;
6252 			c->Request.type_attr_dir =
6253 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6254 			c->Request.Timeout = 0;
6255 			c->Request.CDB[0] = HPSA_INQUIRY;
6256 			c->Request.CDB[4] = size & 0xFF;
6257 			break;
6258 		case HPSA_REPORT_LOG:
6259 		case HPSA_REPORT_PHYS:
6260 			/* Talking to controller so It's a physical command
6261 			   mode = 00 target = 0.  Nothing to write.
6262 			 */
6263 			c->Request.CDBLen = 12;
6264 			c->Request.type_attr_dir =
6265 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6266 			c->Request.Timeout = 0;
6267 			c->Request.CDB[0] = cmd;
6268 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6269 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6270 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6271 			c->Request.CDB[9] = size & 0xFF;
6272 			break;
6273 		case HPSA_CACHE_FLUSH:
6274 			c->Request.CDBLen = 12;
6275 			c->Request.type_attr_dir =
6276 					TYPE_ATTR_DIR(cmd_type,
6277 						ATTR_SIMPLE, XFER_WRITE);
6278 			c->Request.Timeout = 0;
6279 			c->Request.CDB[0] = BMIC_WRITE;
6280 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6281 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6282 			c->Request.CDB[8] = size & 0xFF;
6283 			break;
6284 		case TEST_UNIT_READY:
6285 			c->Request.CDBLen = 6;
6286 			c->Request.type_attr_dir =
6287 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6288 			c->Request.Timeout = 0;
6289 			break;
6290 		case HPSA_GET_RAID_MAP:
6291 			c->Request.CDBLen = 12;
6292 			c->Request.type_attr_dir =
6293 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6294 			c->Request.Timeout = 0;
6295 			c->Request.CDB[0] = HPSA_CISS_READ;
6296 			c->Request.CDB[1] = cmd;
6297 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6298 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6299 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6300 			c->Request.CDB[9] = size & 0xFF;
6301 			break;
6302 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6303 			c->Request.CDBLen = 10;
6304 			c->Request.type_attr_dir =
6305 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6306 			c->Request.Timeout = 0;
6307 			c->Request.CDB[0] = BMIC_READ;
6308 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6309 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6310 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6311 			break;
6312 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6313 			c->Request.CDBLen = 10;
6314 			c->Request.type_attr_dir =
6315 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6316 			c->Request.Timeout = 0;
6317 			c->Request.CDB[0] = BMIC_READ;
6318 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6319 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6320 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6321 			break;
6322 		default:
6323 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6324 			BUG();
6325 			return -1;
6326 		}
6327 	} else if (cmd_type == TYPE_MSG) {
6328 		switch (cmd) {
6329 
6330 		case  HPSA_DEVICE_RESET_MSG:
6331 			c->Request.CDBLen = 16;
6332 			c->Request.type_attr_dir =
6333 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6334 			c->Request.Timeout = 0; /* Don't time out */
6335 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6336 			c->Request.CDB[0] =  cmd;
6337 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6338 			/* If bytes 4-7 are zero, it means reset the */
6339 			/* LunID device */
6340 			c->Request.CDB[4] = 0x00;
6341 			c->Request.CDB[5] = 0x00;
6342 			c->Request.CDB[6] = 0x00;
6343 			c->Request.CDB[7] = 0x00;
6344 			break;
6345 		case  HPSA_ABORT_MSG:
6346 			memcpy(&tag, buff, sizeof(tag));
6347 			dev_dbg(&h->pdev->dev,
6348 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6349 				tag, c->Header.tag);
6350 			c->Request.CDBLen = 16;
6351 			c->Request.type_attr_dir =
6352 					TYPE_ATTR_DIR(cmd_type,
6353 						ATTR_SIMPLE, XFER_WRITE);
6354 			c->Request.Timeout = 0; /* Don't time out */
6355 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6356 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6357 			c->Request.CDB[2] = 0x00; /* reserved */
6358 			c->Request.CDB[3] = 0x00; /* reserved */
6359 			/* Tag to abort goes in CDB[4]-CDB[11] */
6360 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6361 			c->Request.CDB[12] = 0x00; /* reserved */
6362 			c->Request.CDB[13] = 0x00; /* reserved */
6363 			c->Request.CDB[14] = 0x00; /* reserved */
6364 			c->Request.CDB[15] = 0x00; /* reserved */
6365 		break;
6366 		default:
6367 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6368 				cmd);
6369 			BUG();
6370 		}
6371 	} else {
6372 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6373 		BUG();
6374 	}
6375 
6376 	switch (GET_DIR(c->Request.type_attr_dir)) {
6377 	case XFER_READ:
6378 		pci_dir = PCI_DMA_FROMDEVICE;
6379 		break;
6380 	case XFER_WRITE:
6381 		pci_dir = PCI_DMA_TODEVICE;
6382 		break;
6383 	case XFER_NONE:
6384 		pci_dir = PCI_DMA_NONE;
6385 		break;
6386 	default:
6387 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6388 	}
6389 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6390 		return -1;
6391 	return 0;
6392 }
6393 
6394 /*
6395  * Map (physical) PCI mem into (virtual) kernel space
6396  */
6397 static void __iomem *remap_pci_mem(ulong base, ulong size)
6398 {
6399 	ulong page_base = ((ulong) base) & PAGE_MASK;
6400 	ulong page_offs = ((ulong) base) - page_base;
6401 	void __iomem *page_remapped = ioremap_nocache(page_base,
6402 		page_offs + size);
6403 
6404 	return page_remapped ? (page_remapped + page_offs) : NULL;
6405 }
6406 
6407 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6408 {
6409 	return h->access.command_completed(h, q);
6410 }
6411 
6412 static inline bool interrupt_pending(struct ctlr_info *h)
6413 {
6414 	return h->access.intr_pending(h);
6415 }
6416 
6417 static inline long interrupt_not_for_us(struct ctlr_info *h)
6418 {
6419 	return (h->access.intr_pending(h) == 0) ||
6420 		(h->interrupts_enabled == 0);
6421 }
6422 
6423 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6424 	u32 raw_tag)
6425 {
6426 	if (unlikely(tag_index >= h->nr_cmds)) {
6427 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6428 		return 1;
6429 	}
6430 	return 0;
6431 }
6432 
6433 static inline void finish_cmd(struct CommandList *c)
6434 {
6435 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6436 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6437 			|| c->cmd_type == CMD_IOACCEL2))
6438 		complete_scsi_command(c);
6439 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6440 		complete(c->waiting);
6441 }
6442 
6443 
6444 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6445 {
6446 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6447 #define HPSA_SIMPLE_ERROR_BITS 0x03
6448 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6449 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
6450 	return tag & ~HPSA_PERF_ERROR_BITS;
6451 }
6452 
6453 /* process completion of an indexed ("direct lookup") command */
6454 static inline void process_indexed_cmd(struct ctlr_info *h,
6455 	u32 raw_tag)
6456 {
6457 	u32 tag_index;
6458 	struct CommandList *c;
6459 
6460 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6461 	if (!bad_tag(h, tag_index, raw_tag)) {
6462 		c = h->cmd_pool + tag_index;
6463 		finish_cmd(c);
6464 	}
6465 }
6466 
6467 /* Some controllers, like p400, will give us one interrupt
6468  * after a soft reset, even if we turned interrupts off.
6469  * Only need to check for this in the hpsa_xxx_discard_completions
6470  * functions.
6471  */
6472 static int ignore_bogus_interrupt(struct ctlr_info *h)
6473 {
6474 	if (likely(!reset_devices))
6475 		return 0;
6476 
6477 	if (likely(h->interrupts_enabled))
6478 		return 0;
6479 
6480 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6481 		"(known firmware bug.)  Ignoring.\n");
6482 
6483 	return 1;
6484 }
6485 
6486 /*
6487  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6488  * Relies on (h-q[x] == x) being true for x such that
6489  * 0 <= x < MAX_REPLY_QUEUES.
6490  */
6491 static struct ctlr_info *queue_to_hba(u8 *queue)
6492 {
6493 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6494 }
6495 
6496 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6497 {
6498 	struct ctlr_info *h = queue_to_hba(queue);
6499 	u8 q = *(u8 *) queue;
6500 	u32 raw_tag;
6501 
6502 	if (ignore_bogus_interrupt(h))
6503 		return IRQ_NONE;
6504 
6505 	if (interrupt_not_for_us(h))
6506 		return IRQ_NONE;
6507 	h->last_intr_timestamp = get_jiffies_64();
6508 	while (interrupt_pending(h)) {
6509 		raw_tag = get_next_completion(h, q);
6510 		while (raw_tag != FIFO_EMPTY)
6511 			raw_tag = next_command(h, q);
6512 	}
6513 	return IRQ_HANDLED;
6514 }
6515 
6516 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6517 {
6518 	struct ctlr_info *h = queue_to_hba(queue);
6519 	u32 raw_tag;
6520 	u8 q = *(u8 *) queue;
6521 
6522 	if (ignore_bogus_interrupt(h))
6523 		return IRQ_NONE;
6524 
6525 	h->last_intr_timestamp = get_jiffies_64();
6526 	raw_tag = get_next_completion(h, q);
6527 	while (raw_tag != FIFO_EMPTY)
6528 		raw_tag = next_command(h, q);
6529 	return IRQ_HANDLED;
6530 }
6531 
6532 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6533 {
6534 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6535 	u32 raw_tag;
6536 	u8 q = *(u8 *) queue;
6537 
6538 	if (interrupt_not_for_us(h))
6539 		return IRQ_NONE;
6540 	h->last_intr_timestamp = get_jiffies_64();
6541 	while (interrupt_pending(h)) {
6542 		raw_tag = get_next_completion(h, q);
6543 		while (raw_tag != FIFO_EMPTY) {
6544 			process_indexed_cmd(h, raw_tag);
6545 			raw_tag = next_command(h, q);
6546 		}
6547 	}
6548 	return IRQ_HANDLED;
6549 }
6550 
6551 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6552 {
6553 	struct ctlr_info *h = queue_to_hba(queue);
6554 	u32 raw_tag;
6555 	u8 q = *(u8 *) queue;
6556 
6557 	h->last_intr_timestamp = get_jiffies_64();
6558 	raw_tag = get_next_completion(h, q);
6559 	while (raw_tag != FIFO_EMPTY) {
6560 		process_indexed_cmd(h, raw_tag);
6561 		raw_tag = next_command(h, q);
6562 	}
6563 	return IRQ_HANDLED;
6564 }
6565 
6566 /* Send a message CDB to the firmware. Careful, this only works
6567  * in simple mode, not performant mode due to the tag lookup.
6568  * We only ever use this immediately after a controller reset.
6569  */
6570 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6571 			unsigned char type)
6572 {
6573 	struct Command {
6574 		struct CommandListHeader CommandHeader;
6575 		struct RequestBlock Request;
6576 		struct ErrDescriptor ErrorDescriptor;
6577 	};
6578 	struct Command *cmd;
6579 	static const size_t cmd_sz = sizeof(*cmd) +
6580 					sizeof(cmd->ErrorDescriptor);
6581 	dma_addr_t paddr64;
6582 	__le32 paddr32;
6583 	u32 tag;
6584 	void __iomem *vaddr;
6585 	int i, err;
6586 
6587 	vaddr = pci_ioremap_bar(pdev, 0);
6588 	if (vaddr == NULL)
6589 		return -ENOMEM;
6590 
6591 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6592 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6593 	 * memory.
6594 	 */
6595 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6596 	if (err) {
6597 		iounmap(vaddr);
6598 		return err;
6599 	}
6600 
6601 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6602 	if (cmd == NULL) {
6603 		iounmap(vaddr);
6604 		return -ENOMEM;
6605 	}
6606 
6607 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6608 	 * although there's no guarantee, we assume that the address is at
6609 	 * least 4-byte aligned (most likely, it's page-aligned).
6610 	 */
6611 	paddr32 = cpu_to_le32(paddr64);
6612 
6613 	cmd->CommandHeader.ReplyQueue = 0;
6614 	cmd->CommandHeader.SGList = 0;
6615 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6616 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6617 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6618 
6619 	cmd->Request.CDBLen = 16;
6620 	cmd->Request.type_attr_dir =
6621 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6622 	cmd->Request.Timeout = 0; /* Don't time out */
6623 	cmd->Request.CDB[0] = opcode;
6624 	cmd->Request.CDB[1] = type;
6625 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6626 	cmd->ErrorDescriptor.Addr =
6627 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6628 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6629 
6630 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6631 
6632 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6633 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6634 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6635 			break;
6636 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6637 	}
6638 
6639 	iounmap(vaddr);
6640 
6641 	/* we leak the DMA buffer here ... no choice since the controller could
6642 	 *  still complete the command.
6643 	 */
6644 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6645 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6646 			opcode, type);
6647 		return -ETIMEDOUT;
6648 	}
6649 
6650 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6651 
6652 	if (tag & HPSA_ERROR_BIT) {
6653 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6654 			opcode, type);
6655 		return -EIO;
6656 	}
6657 
6658 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6659 		opcode, type);
6660 	return 0;
6661 }
6662 
6663 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6664 
6665 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6666 	void __iomem *vaddr, u32 use_doorbell)
6667 {
6668 
6669 	if (use_doorbell) {
6670 		/* For everything after the P600, the PCI power state method
6671 		 * of resetting the controller doesn't work, so we have this
6672 		 * other way using the doorbell register.
6673 		 */
6674 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6675 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6676 
6677 		/* PMC hardware guys tell us we need a 10 second delay after
6678 		 * doorbell reset and before any attempt to talk to the board
6679 		 * at all to ensure that this actually works and doesn't fall
6680 		 * over in some weird corner cases.
6681 		 */
6682 		msleep(10000);
6683 	} else { /* Try to do it the PCI power state way */
6684 
6685 		/* Quoting from the Open CISS Specification: "The Power
6686 		 * Management Control/Status Register (CSR) controls the power
6687 		 * state of the device.  The normal operating state is D0,
6688 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6689 		 * the controller, place the interface device in D3 then to D0,
6690 		 * this causes a secondary PCI reset which will reset the
6691 		 * controller." */
6692 
6693 		int rc = 0;
6694 
6695 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6696 
6697 		/* enter the D3hot power management state */
6698 		rc = pci_set_power_state(pdev, PCI_D3hot);
6699 		if (rc)
6700 			return rc;
6701 
6702 		msleep(500);
6703 
6704 		/* enter the D0 power management state */
6705 		rc = pci_set_power_state(pdev, PCI_D0);
6706 		if (rc)
6707 			return rc;
6708 
6709 		/*
6710 		 * The P600 requires a small delay when changing states.
6711 		 * Otherwise we may think the board did not reset and we bail.
6712 		 * This for kdump only and is particular to the P600.
6713 		 */
6714 		msleep(500);
6715 	}
6716 	return 0;
6717 }
6718 
6719 static void init_driver_version(char *driver_version, int len)
6720 {
6721 	memset(driver_version, 0, len);
6722 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6723 }
6724 
6725 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6726 {
6727 	char *driver_version;
6728 	int i, size = sizeof(cfgtable->driver_version);
6729 
6730 	driver_version = kmalloc(size, GFP_KERNEL);
6731 	if (!driver_version)
6732 		return -ENOMEM;
6733 
6734 	init_driver_version(driver_version, size);
6735 	for (i = 0; i < size; i++)
6736 		writeb(driver_version[i], &cfgtable->driver_version[i]);
6737 	kfree(driver_version);
6738 	return 0;
6739 }
6740 
6741 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6742 					  unsigned char *driver_ver)
6743 {
6744 	int i;
6745 
6746 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6747 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
6748 }
6749 
6750 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6751 {
6752 
6753 	char *driver_ver, *old_driver_ver;
6754 	int rc, size = sizeof(cfgtable->driver_version);
6755 
6756 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6757 	if (!old_driver_ver)
6758 		return -ENOMEM;
6759 	driver_ver = old_driver_ver + size;
6760 
6761 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
6762 	 * should have been changed, otherwise we know the reset failed.
6763 	 */
6764 	init_driver_version(old_driver_ver, size);
6765 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6766 	rc = !memcmp(driver_ver, old_driver_ver, size);
6767 	kfree(old_driver_ver);
6768 	return rc;
6769 }
6770 /* This does a hard reset of the controller using PCI power management
6771  * states or the using the doorbell register.
6772  */
6773 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6774 {
6775 	u64 cfg_offset;
6776 	u32 cfg_base_addr;
6777 	u64 cfg_base_addr_index;
6778 	void __iomem *vaddr;
6779 	unsigned long paddr;
6780 	u32 misc_fw_support;
6781 	int rc;
6782 	struct CfgTable __iomem *cfgtable;
6783 	u32 use_doorbell;
6784 	u16 command_register;
6785 
6786 	/* For controllers as old as the P600, this is very nearly
6787 	 * the same thing as
6788 	 *
6789 	 * pci_save_state(pci_dev);
6790 	 * pci_set_power_state(pci_dev, PCI_D3hot);
6791 	 * pci_set_power_state(pci_dev, PCI_D0);
6792 	 * pci_restore_state(pci_dev);
6793 	 *
6794 	 * For controllers newer than the P600, the pci power state
6795 	 * method of resetting doesn't work so we have another way
6796 	 * using the doorbell register.
6797 	 */
6798 
6799 	if (!ctlr_is_resettable(board_id)) {
6800 		dev_warn(&pdev->dev, "Controller not resettable\n");
6801 		return -ENODEV;
6802 	}
6803 
6804 	/* if controller is soft- but not hard resettable... */
6805 	if (!ctlr_is_hard_resettable(board_id))
6806 		return -ENOTSUPP; /* try soft reset later. */
6807 
6808 	/* Save the PCI command register */
6809 	pci_read_config_word(pdev, 4, &command_register);
6810 	pci_save_state(pdev);
6811 
6812 	/* find the first memory BAR, so we can find the cfg table */
6813 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6814 	if (rc)
6815 		return rc;
6816 	vaddr = remap_pci_mem(paddr, 0x250);
6817 	if (!vaddr)
6818 		return -ENOMEM;
6819 
6820 	/* find cfgtable in order to check if reset via doorbell is supported */
6821 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6822 					&cfg_base_addr_index, &cfg_offset);
6823 	if (rc)
6824 		goto unmap_vaddr;
6825 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
6826 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6827 	if (!cfgtable) {
6828 		rc = -ENOMEM;
6829 		goto unmap_vaddr;
6830 	}
6831 	rc = write_driver_ver_to_cfgtable(cfgtable);
6832 	if (rc)
6833 		goto unmap_cfgtable;
6834 
6835 	/* If reset via doorbell register is supported, use that.
6836 	 * There are two such methods.  Favor the newest method.
6837 	 */
6838 	misc_fw_support = readl(&cfgtable->misc_fw_support);
6839 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6840 	if (use_doorbell) {
6841 		use_doorbell = DOORBELL_CTLR_RESET2;
6842 	} else {
6843 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6844 		if (use_doorbell) {
6845 			dev_warn(&pdev->dev,
6846 				"Soft reset not supported. Firmware update is required.\n");
6847 			rc = -ENOTSUPP; /* try soft reset */
6848 			goto unmap_cfgtable;
6849 		}
6850 	}
6851 
6852 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6853 	if (rc)
6854 		goto unmap_cfgtable;
6855 
6856 	pci_restore_state(pdev);
6857 	pci_write_config_word(pdev, 4, command_register);
6858 
6859 	/* Some devices (notably the HP Smart Array 5i Controller)
6860 	   need a little pause here */
6861 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6862 
6863 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6864 	if (rc) {
6865 		dev_warn(&pdev->dev,
6866 			"Failed waiting for board to become ready after hard reset\n");
6867 		goto unmap_cfgtable;
6868 	}
6869 
6870 	rc = controller_reset_failed(vaddr);
6871 	if (rc < 0)
6872 		goto unmap_cfgtable;
6873 	if (rc) {
6874 		dev_warn(&pdev->dev, "Unable to successfully reset "
6875 			"controller. Will try soft reset.\n");
6876 		rc = -ENOTSUPP;
6877 	} else {
6878 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6879 	}
6880 
6881 unmap_cfgtable:
6882 	iounmap(cfgtable);
6883 
6884 unmap_vaddr:
6885 	iounmap(vaddr);
6886 	return rc;
6887 }
6888 
6889 /*
6890  *  We cannot read the structure directly, for portability we must use
6891  *   the io functions.
6892  *   This is for debug only.
6893  */
6894 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6895 {
6896 #ifdef HPSA_DEBUG
6897 	int i;
6898 	char temp_name[17];
6899 
6900 	dev_info(dev, "Controller Configuration information\n");
6901 	dev_info(dev, "------------------------------------\n");
6902 	for (i = 0; i < 4; i++)
6903 		temp_name[i] = readb(&(tb->Signature[i]));
6904 	temp_name[4] = '\0';
6905 	dev_info(dev, "   Signature = %s\n", temp_name);
6906 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6907 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6908 	       readl(&(tb->TransportSupport)));
6909 	dev_info(dev, "   Transport methods active = 0x%x\n",
6910 	       readl(&(tb->TransportActive)));
6911 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6912 	       readl(&(tb->HostWrite.TransportRequest)));
6913 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6914 	       readl(&(tb->HostWrite.CoalIntDelay)));
6915 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6916 	       readl(&(tb->HostWrite.CoalIntCount)));
6917 	dev_info(dev, "   Max outstanding commands = %d\n",
6918 	       readl(&(tb->CmdsOutMax)));
6919 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6920 	for (i = 0; i < 16; i++)
6921 		temp_name[i] = readb(&(tb->ServerName[i]));
6922 	temp_name[16] = '\0';
6923 	dev_info(dev, "   Server Name = %s\n", temp_name);
6924 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6925 		readl(&(tb->HeartBeat)));
6926 #endif				/* HPSA_DEBUG */
6927 }
6928 
6929 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6930 {
6931 	int i, offset, mem_type, bar_type;
6932 
6933 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6934 		return 0;
6935 	offset = 0;
6936 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6937 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6938 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6939 			offset += 4;
6940 		else {
6941 			mem_type = pci_resource_flags(pdev, i) &
6942 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6943 			switch (mem_type) {
6944 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6945 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6946 				offset += 4;	/* 32 bit */
6947 				break;
6948 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6949 				offset += 8;
6950 				break;
6951 			default:	/* reserved in PCI 2.2 */
6952 				dev_warn(&pdev->dev,
6953 				       "base address is invalid\n");
6954 				return -1;
6955 				break;
6956 			}
6957 		}
6958 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6959 			return i + 1;
6960 	}
6961 	return -1;
6962 }
6963 
6964 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6965 {
6966 	if (h->msix_vector) {
6967 		if (h->pdev->msix_enabled)
6968 			pci_disable_msix(h->pdev);
6969 		h->msix_vector = 0;
6970 	} else if (h->msi_vector) {
6971 		if (h->pdev->msi_enabled)
6972 			pci_disable_msi(h->pdev);
6973 		h->msi_vector = 0;
6974 	}
6975 }
6976 
6977 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6978  * controllers that are capable. If not, we use legacy INTx mode.
6979  */
6980 static void hpsa_interrupt_mode(struct ctlr_info *h)
6981 {
6982 #ifdef CONFIG_PCI_MSI
6983 	int err, i;
6984 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6985 
6986 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6987 		hpsa_msix_entries[i].vector = 0;
6988 		hpsa_msix_entries[i].entry = i;
6989 	}
6990 
6991 	/* Some boards advertise MSI but don't really support it */
6992 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6993 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6994 		goto default_int_mode;
6995 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6996 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6997 		h->msix_vector = MAX_REPLY_QUEUES;
6998 		if (h->msix_vector > num_online_cpus())
6999 			h->msix_vector = num_online_cpus();
7000 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7001 					    1, h->msix_vector);
7002 		if (err < 0) {
7003 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7004 			h->msix_vector = 0;
7005 			goto single_msi_mode;
7006 		} else if (err < h->msix_vector) {
7007 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7008 			       "available\n", err);
7009 		}
7010 		h->msix_vector = err;
7011 		for (i = 0; i < h->msix_vector; i++)
7012 			h->intr[i] = hpsa_msix_entries[i].vector;
7013 		return;
7014 	}
7015 single_msi_mode:
7016 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7017 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7018 		if (!pci_enable_msi(h->pdev))
7019 			h->msi_vector = 1;
7020 		else
7021 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7022 	}
7023 default_int_mode:
7024 #endif				/* CONFIG_PCI_MSI */
7025 	/* if we get here we're going to use the default interrupt mode */
7026 	h->intr[h->intr_mode] = h->pdev->irq;
7027 }
7028 
7029 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7030 {
7031 	int i;
7032 	u32 subsystem_vendor_id, subsystem_device_id;
7033 
7034 	subsystem_vendor_id = pdev->subsystem_vendor;
7035 	subsystem_device_id = pdev->subsystem_device;
7036 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7037 		    subsystem_vendor_id;
7038 
7039 	for (i = 0; i < ARRAY_SIZE(products); i++)
7040 		if (*board_id == products[i].board_id)
7041 			return i;
7042 
7043 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7044 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7045 		!hpsa_allow_any) {
7046 		dev_warn(&pdev->dev, "unrecognized board ID: "
7047 			"0x%08x, ignoring.\n", *board_id);
7048 			return -ENODEV;
7049 	}
7050 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7051 }
7052 
7053 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7054 				    unsigned long *memory_bar)
7055 {
7056 	int i;
7057 
7058 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7059 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7060 			/* addressing mode bits already removed */
7061 			*memory_bar = pci_resource_start(pdev, i);
7062 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7063 				*memory_bar);
7064 			return 0;
7065 		}
7066 	dev_warn(&pdev->dev, "no memory BAR found\n");
7067 	return -ENODEV;
7068 }
7069 
7070 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7071 				     int wait_for_ready)
7072 {
7073 	int i, iterations;
7074 	u32 scratchpad;
7075 	if (wait_for_ready)
7076 		iterations = HPSA_BOARD_READY_ITERATIONS;
7077 	else
7078 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7079 
7080 	for (i = 0; i < iterations; i++) {
7081 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7082 		if (wait_for_ready) {
7083 			if (scratchpad == HPSA_FIRMWARE_READY)
7084 				return 0;
7085 		} else {
7086 			if (scratchpad != HPSA_FIRMWARE_READY)
7087 				return 0;
7088 		}
7089 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7090 	}
7091 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7092 	return -ENODEV;
7093 }
7094 
7095 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7096 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7097 			       u64 *cfg_offset)
7098 {
7099 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7100 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7101 	*cfg_base_addr &= (u32) 0x0000ffff;
7102 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7103 	if (*cfg_base_addr_index == -1) {
7104 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7105 		return -ENODEV;
7106 	}
7107 	return 0;
7108 }
7109 
7110 static void hpsa_free_cfgtables(struct ctlr_info *h)
7111 {
7112 	if (h->transtable) {
7113 		iounmap(h->transtable);
7114 		h->transtable = NULL;
7115 	}
7116 	if (h->cfgtable) {
7117 		iounmap(h->cfgtable);
7118 		h->cfgtable = NULL;
7119 	}
7120 }
7121 
7122 /* Find and map CISS config table and transfer table
7123 + * several items must be unmapped (freed) later
7124 + * */
7125 static int hpsa_find_cfgtables(struct ctlr_info *h)
7126 {
7127 	u64 cfg_offset;
7128 	u32 cfg_base_addr;
7129 	u64 cfg_base_addr_index;
7130 	u32 trans_offset;
7131 	int rc;
7132 
7133 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7134 		&cfg_base_addr_index, &cfg_offset);
7135 	if (rc)
7136 		return rc;
7137 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7138 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7139 	if (!h->cfgtable) {
7140 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7141 		return -ENOMEM;
7142 	}
7143 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7144 	if (rc)
7145 		return rc;
7146 	/* Find performant mode table. */
7147 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7148 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7149 				cfg_base_addr_index)+cfg_offset+trans_offset,
7150 				sizeof(*h->transtable));
7151 	if (!h->transtable) {
7152 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7153 		hpsa_free_cfgtables(h);
7154 		return -ENOMEM;
7155 	}
7156 	return 0;
7157 }
7158 
7159 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7160 {
7161 #define MIN_MAX_COMMANDS 16
7162 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7163 
7164 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7165 
7166 	/* Limit commands in memory limited kdump scenario. */
7167 	if (reset_devices && h->max_commands > 32)
7168 		h->max_commands = 32;
7169 
7170 	if (h->max_commands < MIN_MAX_COMMANDS) {
7171 		dev_warn(&h->pdev->dev,
7172 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7173 			h->max_commands,
7174 			MIN_MAX_COMMANDS);
7175 		h->max_commands = MIN_MAX_COMMANDS;
7176 	}
7177 }
7178 
7179 /* If the controller reports that the total max sg entries is greater than 512,
7180  * then we know that chained SG blocks work.  (Original smart arrays did not
7181  * support chained SG blocks and would return zero for max sg entries.)
7182  */
7183 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7184 {
7185 	return h->maxsgentries > 512;
7186 }
7187 
7188 /* Interrogate the hardware for some limits:
7189  * max commands, max SG elements without chaining, and with chaining,
7190  * SG chain block size, etc.
7191  */
7192 static void hpsa_find_board_params(struct ctlr_info *h)
7193 {
7194 	hpsa_get_max_perf_mode_cmds(h);
7195 	h->nr_cmds = h->max_commands;
7196 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7197 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7198 	if (hpsa_supports_chained_sg_blocks(h)) {
7199 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7200 		h->max_cmd_sg_entries = 32;
7201 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7202 		h->maxsgentries--; /* save one for chain pointer */
7203 	} else {
7204 		/*
7205 		 * Original smart arrays supported at most 31 s/g entries
7206 		 * embedded inline in the command (trying to use more
7207 		 * would lock up the controller)
7208 		 */
7209 		h->max_cmd_sg_entries = 31;
7210 		h->maxsgentries = 31; /* default to traditional values */
7211 		h->chainsize = 0;
7212 	}
7213 
7214 	/* Find out what task management functions are supported and cache */
7215 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7216 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7217 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7218 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7219 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7220 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7221 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7222 }
7223 
7224 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7225 {
7226 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7227 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7228 		return false;
7229 	}
7230 	return true;
7231 }
7232 
7233 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7234 {
7235 	u32 driver_support;
7236 
7237 	driver_support = readl(&(h->cfgtable->driver_support));
7238 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7239 #ifdef CONFIG_X86
7240 	driver_support |= ENABLE_SCSI_PREFETCH;
7241 #endif
7242 	driver_support |= ENABLE_UNIT_ATTN;
7243 	writel(driver_support, &(h->cfgtable->driver_support));
7244 }
7245 
7246 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7247  * in a prefetch beyond physical memory.
7248  */
7249 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7250 {
7251 	u32 dma_prefetch;
7252 
7253 	if (h->board_id != 0x3225103C)
7254 		return;
7255 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7256 	dma_prefetch |= 0x8000;
7257 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7258 }
7259 
7260 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7261 {
7262 	int i;
7263 	u32 doorbell_value;
7264 	unsigned long flags;
7265 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7266 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7267 		spin_lock_irqsave(&h->lock, flags);
7268 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7269 		spin_unlock_irqrestore(&h->lock, flags);
7270 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7271 			goto done;
7272 		/* delay and try again */
7273 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7274 	}
7275 	return -ENODEV;
7276 done:
7277 	return 0;
7278 }
7279 
7280 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7281 {
7282 	int i;
7283 	u32 doorbell_value;
7284 	unsigned long flags;
7285 
7286 	/* under certain very rare conditions, this can take awhile.
7287 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7288 	 * as we enter this code.)
7289 	 */
7290 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7291 		if (h->remove_in_progress)
7292 			goto done;
7293 		spin_lock_irqsave(&h->lock, flags);
7294 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7295 		spin_unlock_irqrestore(&h->lock, flags);
7296 		if (!(doorbell_value & CFGTBL_ChangeReq))
7297 			goto done;
7298 		/* delay and try again */
7299 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7300 	}
7301 	return -ENODEV;
7302 done:
7303 	return 0;
7304 }
7305 
7306 /* return -ENODEV or other reason on error, 0 on success */
7307 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7308 {
7309 	u32 trans_support;
7310 
7311 	trans_support = readl(&(h->cfgtable->TransportSupport));
7312 	if (!(trans_support & SIMPLE_MODE))
7313 		return -ENOTSUPP;
7314 
7315 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7316 
7317 	/* Update the field, and then ring the doorbell */
7318 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7319 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7320 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7321 	if (hpsa_wait_for_mode_change_ack(h))
7322 		goto error;
7323 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7324 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7325 		goto error;
7326 	h->transMethod = CFGTBL_Trans_Simple;
7327 	return 0;
7328 error:
7329 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7330 	return -ENODEV;
7331 }
7332 
7333 /* free items allocated or mapped by hpsa_pci_init */
7334 static void hpsa_free_pci_init(struct ctlr_info *h)
7335 {
7336 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7337 	iounmap(h->vaddr);			/* pci_init 3 */
7338 	h->vaddr = NULL;
7339 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7340 	/*
7341 	 * call pci_disable_device before pci_release_regions per
7342 	 * Documentation/PCI/pci.txt
7343 	 */
7344 	pci_disable_device(h->pdev);		/* pci_init 1 */
7345 	pci_release_regions(h->pdev);		/* pci_init 2 */
7346 }
7347 
7348 /* several items must be freed later */
7349 static int hpsa_pci_init(struct ctlr_info *h)
7350 {
7351 	int prod_index, err;
7352 
7353 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7354 	if (prod_index < 0)
7355 		return prod_index;
7356 	h->product_name = products[prod_index].product_name;
7357 	h->access = *(products[prod_index].access);
7358 
7359 	h->needs_abort_tags_swizzled =
7360 		ctlr_needs_abort_tags_swizzled(h->board_id);
7361 
7362 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7363 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7364 
7365 	err = pci_enable_device(h->pdev);
7366 	if (err) {
7367 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7368 		pci_disable_device(h->pdev);
7369 		return err;
7370 	}
7371 
7372 	err = pci_request_regions(h->pdev, HPSA);
7373 	if (err) {
7374 		dev_err(&h->pdev->dev,
7375 			"failed to obtain PCI resources\n");
7376 		pci_disable_device(h->pdev);
7377 		return err;
7378 	}
7379 
7380 	pci_set_master(h->pdev);
7381 
7382 	hpsa_interrupt_mode(h);
7383 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7384 	if (err)
7385 		goto clean2;	/* intmode+region, pci */
7386 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7387 	if (!h->vaddr) {
7388 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7389 		err = -ENOMEM;
7390 		goto clean2;	/* intmode+region, pci */
7391 	}
7392 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7393 	if (err)
7394 		goto clean3;	/* vaddr, intmode+region, pci */
7395 	err = hpsa_find_cfgtables(h);
7396 	if (err)
7397 		goto clean3;	/* vaddr, intmode+region, pci */
7398 	hpsa_find_board_params(h);
7399 
7400 	if (!hpsa_CISS_signature_present(h)) {
7401 		err = -ENODEV;
7402 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7403 	}
7404 	hpsa_set_driver_support_bits(h);
7405 	hpsa_p600_dma_prefetch_quirk(h);
7406 	err = hpsa_enter_simple_mode(h);
7407 	if (err)
7408 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7409 	return 0;
7410 
7411 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7412 	hpsa_free_cfgtables(h);
7413 clean3:	/* vaddr, intmode+region, pci */
7414 	iounmap(h->vaddr);
7415 	h->vaddr = NULL;
7416 clean2:	/* intmode+region, pci */
7417 	hpsa_disable_interrupt_mode(h);
7418 	/*
7419 	 * call pci_disable_device before pci_release_regions per
7420 	 * Documentation/PCI/pci.txt
7421 	 */
7422 	pci_disable_device(h->pdev);
7423 	pci_release_regions(h->pdev);
7424 	return err;
7425 }
7426 
7427 static void hpsa_hba_inquiry(struct ctlr_info *h)
7428 {
7429 	int rc;
7430 
7431 #define HBA_INQUIRY_BYTE_COUNT 64
7432 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7433 	if (!h->hba_inquiry_data)
7434 		return;
7435 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7436 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7437 	if (rc != 0) {
7438 		kfree(h->hba_inquiry_data);
7439 		h->hba_inquiry_data = NULL;
7440 	}
7441 }
7442 
7443 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7444 {
7445 	int rc, i;
7446 	void __iomem *vaddr;
7447 
7448 	if (!reset_devices)
7449 		return 0;
7450 
7451 	/* kdump kernel is loading, we don't know in which state is
7452 	 * the pci interface. The dev->enable_cnt is equal zero
7453 	 * so we call enable+disable, wait a while and switch it on.
7454 	 */
7455 	rc = pci_enable_device(pdev);
7456 	if (rc) {
7457 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7458 		return -ENODEV;
7459 	}
7460 	pci_disable_device(pdev);
7461 	msleep(260);			/* a randomly chosen number */
7462 	rc = pci_enable_device(pdev);
7463 	if (rc) {
7464 		dev_warn(&pdev->dev, "failed to enable device.\n");
7465 		return -ENODEV;
7466 	}
7467 
7468 	pci_set_master(pdev);
7469 
7470 	vaddr = pci_ioremap_bar(pdev, 0);
7471 	if (vaddr == NULL) {
7472 		rc = -ENOMEM;
7473 		goto out_disable;
7474 	}
7475 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7476 	iounmap(vaddr);
7477 
7478 	/* Reset the controller with a PCI power-cycle or via doorbell */
7479 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7480 
7481 	/* -ENOTSUPP here means we cannot reset the controller
7482 	 * but it's already (and still) up and running in
7483 	 * "performant mode".  Or, it might be 640x, which can't reset
7484 	 * due to concerns about shared bbwc between 6402/6404 pair.
7485 	 */
7486 	if (rc)
7487 		goto out_disable;
7488 
7489 	/* Now try to get the controller to respond to a no-op */
7490 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7491 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7492 		if (hpsa_noop(pdev) == 0)
7493 			break;
7494 		else
7495 			dev_warn(&pdev->dev, "no-op failed%s\n",
7496 					(i < 11 ? "; re-trying" : ""));
7497 	}
7498 
7499 out_disable:
7500 
7501 	pci_disable_device(pdev);
7502 	return rc;
7503 }
7504 
7505 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7506 {
7507 	kfree(h->cmd_pool_bits);
7508 	h->cmd_pool_bits = NULL;
7509 	if (h->cmd_pool) {
7510 		pci_free_consistent(h->pdev,
7511 				h->nr_cmds * sizeof(struct CommandList),
7512 				h->cmd_pool,
7513 				h->cmd_pool_dhandle);
7514 		h->cmd_pool = NULL;
7515 		h->cmd_pool_dhandle = 0;
7516 	}
7517 	if (h->errinfo_pool) {
7518 		pci_free_consistent(h->pdev,
7519 				h->nr_cmds * sizeof(struct ErrorInfo),
7520 				h->errinfo_pool,
7521 				h->errinfo_pool_dhandle);
7522 		h->errinfo_pool = NULL;
7523 		h->errinfo_pool_dhandle = 0;
7524 	}
7525 }
7526 
7527 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7528 {
7529 	h->cmd_pool_bits = kzalloc(
7530 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7531 		sizeof(unsigned long), GFP_KERNEL);
7532 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7533 		    h->nr_cmds * sizeof(*h->cmd_pool),
7534 		    &(h->cmd_pool_dhandle));
7535 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7536 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7537 		    &(h->errinfo_pool_dhandle));
7538 	if ((h->cmd_pool_bits == NULL)
7539 	    || (h->cmd_pool == NULL)
7540 	    || (h->errinfo_pool == NULL)) {
7541 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7542 		goto clean_up;
7543 	}
7544 	hpsa_preinitialize_commands(h);
7545 	return 0;
7546 clean_up:
7547 	hpsa_free_cmd_pool(h);
7548 	return -ENOMEM;
7549 }
7550 
7551 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7552 {
7553 	int i, cpu;
7554 
7555 	cpu = cpumask_first(cpu_online_mask);
7556 	for (i = 0; i < h->msix_vector; i++) {
7557 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7558 		cpu = cpumask_next(cpu, cpu_online_mask);
7559 	}
7560 }
7561 
7562 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7563 static void hpsa_free_irqs(struct ctlr_info *h)
7564 {
7565 	int i;
7566 
7567 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7568 		/* Single reply queue, only one irq to free */
7569 		i = h->intr_mode;
7570 		irq_set_affinity_hint(h->intr[i], NULL);
7571 		free_irq(h->intr[i], &h->q[i]);
7572 		h->q[i] = 0;
7573 		return;
7574 	}
7575 
7576 	for (i = 0; i < h->msix_vector; i++) {
7577 		irq_set_affinity_hint(h->intr[i], NULL);
7578 		free_irq(h->intr[i], &h->q[i]);
7579 		h->q[i] = 0;
7580 	}
7581 	for (; i < MAX_REPLY_QUEUES; i++)
7582 		h->q[i] = 0;
7583 }
7584 
7585 /* returns 0 on success; cleans up and returns -Enn on error */
7586 static int hpsa_request_irqs(struct ctlr_info *h,
7587 	irqreturn_t (*msixhandler)(int, void *),
7588 	irqreturn_t (*intxhandler)(int, void *))
7589 {
7590 	int rc, i;
7591 
7592 	/*
7593 	 * initialize h->q[x] = x so that interrupt handlers know which
7594 	 * queue to process.
7595 	 */
7596 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7597 		h->q[i] = (u8) i;
7598 
7599 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7600 		/* If performant mode and MSI-X, use multiple reply queues */
7601 		for (i = 0; i < h->msix_vector; i++) {
7602 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7603 			rc = request_irq(h->intr[i], msixhandler,
7604 					0, h->intrname[i],
7605 					&h->q[i]);
7606 			if (rc) {
7607 				int j;
7608 
7609 				dev_err(&h->pdev->dev,
7610 					"failed to get irq %d for %s\n",
7611 				       h->intr[i], h->devname);
7612 				for (j = 0; j < i; j++) {
7613 					free_irq(h->intr[j], &h->q[j]);
7614 					h->q[j] = 0;
7615 				}
7616 				for (; j < MAX_REPLY_QUEUES; j++)
7617 					h->q[j] = 0;
7618 				return rc;
7619 			}
7620 		}
7621 		hpsa_irq_affinity_hints(h);
7622 	} else {
7623 		/* Use single reply pool */
7624 		if (h->msix_vector > 0 || h->msi_vector) {
7625 			if (h->msix_vector)
7626 				sprintf(h->intrname[h->intr_mode],
7627 					"%s-msix", h->devname);
7628 			else
7629 				sprintf(h->intrname[h->intr_mode],
7630 					"%s-msi", h->devname);
7631 			rc = request_irq(h->intr[h->intr_mode],
7632 				msixhandler, 0,
7633 				h->intrname[h->intr_mode],
7634 				&h->q[h->intr_mode]);
7635 		} else {
7636 			sprintf(h->intrname[h->intr_mode],
7637 				"%s-intx", h->devname);
7638 			rc = request_irq(h->intr[h->intr_mode],
7639 				intxhandler, IRQF_SHARED,
7640 				h->intrname[h->intr_mode],
7641 				&h->q[h->intr_mode]);
7642 		}
7643 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7644 	}
7645 	if (rc) {
7646 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7647 		       h->intr[h->intr_mode], h->devname);
7648 		hpsa_free_irqs(h);
7649 		return -ENODEV;
7650 	}
7651 	return 0;
7652 }
7653 
7654 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7655 {
7656 	int rc;
7657 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7658 
7659 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7660 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7661 	if (rc) {
7662 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7663 		return rc;
7664 	}
7665 
7666 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7667 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7668 	if (rc) {
7669 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7670 			"after soft reset.\n");
7671 		return rc;
7672 	}
7673 
7674 	return 0;
7675 }
7676 
7677 static void hpsa_free_reply_queues(struct ctlr_info *h)
7678 {
7679 	int i;
7680 
7681 	for (i = 0; i < h->nreply_queues; i++) {
7682 		if (!h->reply_queue[i].head)
7683 			continue;
7684 		pci_free_consistent(h->pdev,
7685 					h->reply_queue_size,
7686 					h->reply_queue[i].head,
7687 					h->reply_queue[i].busaddr);
7688 		h->reply_queue[i].head = NULL;
7689 		h->reply_queue[i].busaddr = 0;
7690 	}
7691 	h->reply_queue_size = 0;
7692 }
7693 
7694 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7695 {
7696 	hpsa_free_performant_mode(h);		/* init_one 7 */
7697 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7698 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7699 	hpsa_free_irqs(h);			/* init_one 4 */
7700 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7701 	h->scsi_host = NULL;			/* init_one 3 */
7702 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7703 	free_percpu(h->lockup_detected);	/* init_one 2 */
7704 	h->lockup_detected = NULL;		/* init_one 2 */
7705 	if (h->resubmit_wq) {
7706 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7707 		h->resubmit_wq = NULL;
7708 	}
7709 	if (h->rescan_ctlr_wq) {
7710 		destroy_workqueue(h->rescan_ctlr_wq);
7711 		h->rescan_ctlr_wq = NULL;
7712 	}
7713 	kfree(h);				/* init_one 1 */
7714 }
7715 
7716 /* Called when controller lockup detected. */
7717 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7718 {
7719 	int i, refcount;
7720 	struct CommandList *c;
7721 	int failcount = 0;
7722 
7723 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7724 	for (i = 0; i < h->nr_cmds; i++) {
7725 		c = h->cmd_pool + i;
7726 		refcount = atomic_inc_return(&c->refcount);
7727 		if (refcount > 1) {
7728 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7729 			finish_cmd(c);
7730 			atomic_dec(&h->commands_outstanding);
7731 			failcount++;
7732 		}
7733 		cmd_free(h, c);
7734 	}
7735 	dev_warn(&h->pdev->dev,
7736 		"failed %d commands in fail_all\n", failcount);
7737 }
7738 
7739 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7740 {
7741 	int cpu;
7742 
7743 	for_each_online_cpu(cpu) {
7744 		u32 *lockup_detected;
7745 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7746 		*lockup_detected = value;
7747 	}
7748 	wmb(); /* be sure the per-cpu variables are out to memory */
7749 }
7750 
7751 static void controller_lockup_detected(struct ctlr_info *h)
7752 {
7753 	unsigned long flags;
7754 	u32 lockup_detected;
7755 
7756 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7757 	spin_lock_irqsave(&h->lock, flags);
7758 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7759 	if (!lockup_detected) {
7760 		/* no heartbeat, but controller gave us a zero. */
7761 		dev_warn(&h->pdev->dev,
7762 			"lockup detected after %d but scratchpad register is zero\n",
7763 			h->heartbeat_sample_interval / HZ);
7764 		lockup_detected = 0xffffffff;
7765 	}
7766 	set_lockup_detected_for_all_cpus(h, lockup_detected);
7767 	spin_unlock_irqrestore(&h->lock, flags);
7768 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7769 			lockup_detected, h->heartbeat_sample_interval / HZ);
7770 	pci_disable_device(h->pdev);
7771 	fail_all_outstanding_cmds(h);
7772 }
7773 
7774 static int detect_controller_lockup(struct ctlr_info *h)
7775 {
7776 	u64 now;
7777 	u32 heartbeat;
7778 	unsigned long flags;
7779 
7780 	now = get_jiffies_64();
7781 	/* If we've received an interrupt recently, we're ok. */
7782 	if (time_after64(h->last_intr_timestamp +
7783 				(h->heartbeat_sample_interval), now))
7784 		return false;
7785 
7786 	/*
7787 	 * If we've already checked the heartbeat recently, we're ok.
7788 	 * This could happen if someone sends us a signal. We
7789 	 * otherwise don't care about signals in this thread.
7790 	 */
7791 	if (time_after64(h->last_heartbeat_timestamp +
7792 				(h->heartbeat_sample_interval), now))
7793 		return false;
7794 
7795 	/* If heartbeat has not changed since we last looked, we're not ok. */
7796 	spin_lock_irqsave(&h->lock, flags);
7797 	heartbeat = readl(&h->cfgtable->HeartBeat);
7798 	spin_unlock_irqrestore(&h->lock, flags);
7799 	if (h->last_heartbeat == heartbeat) {
7800 		controller_lockup_detected(h);
7801 		return true;
7802 	}
7803 
7804 	/* We're ok. */
7805 	h->last_heartbeat = heartbeat;
7806 	h->last_heartbeat_timestamp = now;
7807 	return false;
7808 }
7809 
7810 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7811 {
7812 	int i;
7813 	char *event_type;
7814 
7815 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7816 		return;
7817 
7818 	/* Ask the controller to clear the events we're handling. */
7819 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
7820 			| CFGTBL_Trans_io_accel2)) &&
7821 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7822 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7823 
7824 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7825 			event_type = "state change";
7826 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7827 			event_type = "configuration change";
7828 		/* Stop sending new RAID offload reqs via the IO accelerator */
7829 		scsi_block_requests(h->scsi_host);
7830 		for (i = 0; i < h->ndevices; i++)
7831 			h->dev[i]->offload_enabled = 0;
7832 		hpsa_drain_accel_commands(h);
7833 		/* Set 'accelerator path config change' bit */
7834 		dev_warn(&h->pdev->dev,
7835 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7836 			h->events, event_type);
7837 		writel(h->events, &(h->cfgtable->clear_event_notify));
7838 		/* Set the "clear event notify field update" bit 6 */
7839 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7840 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
7841 		hpsa_wait_for_clear_event_notify_ack(h);
7842 		scsi_unblock_requests(h->scsi_host);
7843 	} else {
7844 		/* Acknowledge controller notification events. */
7845 		writel(h->events, &(h->cfgtable->clear_event_notify));
7846 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7847 		hpsa_wait_for_clear_event_notify_ack(h);
7848 #if 0
7849 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7850 		hpsa_wait_for_mode_change_ack(h);
7851 #endif
7852 	}
7853 	return;
7854 }
7855 
7856 /* Check a register on the controller to see if there are configuration
7857  * changes (added/changed/removed logical drives, etc.) which mean that
7858  * we should rescan the controller for devices.
7859  * Also check flag for driver-initiated rescan.
7860  */
7861 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7862 {
7863 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7864 		return 0;
7865 
7866 	h->events = readl(&(h->cfgtable->event_notify));
7867 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
7868 }
7869 
7870 /*
7871  * Check if any of the offline devices have become ready
7872  */
7873 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7874 {
7875 	unsigned long flags;
7876 	struct offline_device_entry *d;
7877 	struct list_head *this, *tmp;
7878 
7879 	spin_lock_irqsave(&h->offline_device_lock, flags);
7880 	list_for_each_safe(this, tmp, &h->offline_device_list) {
7881 		d = list_entry(this, struct offline_device_entry,
7882 				offline_list);
7883 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7884 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
7885 			spin_lock_irqsave(&h->offline_device_lock, flags);
7886 			list_del(&d->offline_list);
7887 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7888 			return 1;
7889 		}
7890 		spin_lock_irqsave(&h->offline_device_lock, flags);
7891 	}
7892 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
7893 	return 0;
7894 }
7895 
7896 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7897 {
7898 	unsigned long flags;
7899 	struct ctlr_info *h = container_of(to_delayed_work(work),
7900 					struct ctlr_info, rescan_ctlr_work);
7901 
7902 
7903 	if (h->remove_in_progress)
7904 		return;
7905 
7906 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7907 		scsi_host_get(h->scsi_host);
7908 		hpsa_ack_ctlr_events(h);
7909 		hpsa_scan_start(h->scsi_host);
7910 		scsi_host_put(h->scsi_host);
7911 	}
7912 	spin_lock_irqsave(&h->lock, flags);
7913 	if (!h->remove_in_progress)
7914 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7915 				h->heartbeat_sample_interval);
7916 	spin_unlock_irqrestore(&h->lock, flags);
7917 }
7918 
7919 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7920 {
7921 	unsigned long flags;
7922 	struct ctlr_info *h = container_of(to_delayed_work(work),
7923 					struct ctlr_info, monitor_ctlr_work);
7924 
7925 	detect_controller_lockup(h);
7926 	if (lockup_detected(h))
7927 		return;
7928 
7929 	spin_lock_irqsave(&h->lock, flags);
7930 	if (!h->remove_in_progress)
7931 		schedule_delayed_work(&h->monitor_ctlr_work,
7932 				h->heartbeat_sample_interval);
7933 	spin_unlock_irqrestore(&h->lock, flags);
7934 }
7935 
7936 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7937 						char *name)
7938 {
7939 	struct workqueue_struct *wq = NULL;
7940 
7941 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7942 	if (!wq)
7943 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7944 
7945 	return wq;
7946 }
7947 
7948 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7949 {
7950 	int dac, rc;
7951 	struct ctlr_info *h;
7952 	int try_soft_reset = 0;
7953 	unsigned long flags;
7954 	u32 board_id;
7955 
7956 	if (number_of_controllers == 0)
7957 		printk(KERN_INFO DRIVER_NAME "\n");
7958 
7959 	rc = hpsa_lookup_board_id(pdev, &board_id);
7960 	if (rc < 0) {
7961 		dev_warn(&pdev->dev, "Board ID not found\n");
7962 		return rc;
7963 	}
7964 
7965 	rc = hpsa_init_reset_devices(pdev, board_id);
7966 	if (rc) {
7967 		if (rc != -ENOTSUPP)
7968 			return rc;
7969 		/* If the reset fails in a particular way (it has no way to do
7970 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7971 		 * a soft reset once we get the controller configured up to the
7972 		 * point that it can accept a command.
7973 		 */
7974 		try_soft_reset = 1;
7975 		rc = 0;
7976 	}
7977 
7978 reinit_after_soft_reset:
7979 
7980 	/* Command structures must be aligned on a 32-byte boundary because
7981 	 * the 5 lower bits of the address are used by the hardware. and by
7982 	 * the driver.  See comments in hpsa.h for more info.
7983 	 */
7984 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7985 	h = kzalloc(sizeof(*h), GFP_KERNEL);
7986 	if (!h) {
7987 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7988 		return -ENOMEM;
7989 	}
7990 
7991 	h->pdev = pdev;
7992 
7993 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7994 	INIT_LIST_HEAD(&h->offline_device_list);
7995 	spin_lock_init(&h->lock);
7996 	spin_lock_init(&h->offline_device_lock);
7997 	spin_lock_init(&h->scan_lock);
7998 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7999 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8000 
8001 	/* Allocate and clear per-cpu variable lockup_detected */
8002 	h->lockup_detected = alloc_percpu(u32);
8003 	if (!h->lockup_detected) {
8004 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8005 		rc = -ENOMEM;
8006 		goto clean1;	/* aer/h */
8007 	}
8008 	set_lockup_detected_for_all_cpus(h, 0);
8009 
8010 	rc = hpsa_pci_init(h);
8011 	if (rc)
8012 		goto clean2;	/* lu, aer/h */
8013 
8014 	/* relies on h-> settings made by hpsa_pci_init, including
8015 	 * interrupt_mode h->intr */
8016 	rc = hpsa_scsi_host_alloc(h);
8017 	if (rc)
8018 		goto clean2_5;	/* pci, lu, aer/h */
8019 
8020 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8021 	h->ctlr = number_of_controllers;
8022 	number_of_controllers++;
8023 
8024 	/* configure PCI DMA stuff */
8025 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8026 	if (rc == 0) {
8027 		dac = 1;
8028 	} else {
8029 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8030 		if (rc == 0) {
8031 			dac = 0;
8032 		} else {
8033 			dev_err(&pdev->dev, "no suitable DMA available\n");
8034 			goto clean3;	/* shost, pci, lu, aer/h */
8035 		}
8036 	}
8037 
8038 	/* make sure the board interrupts are off */
8039 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8040 
8041 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8042 	if (rc)
8043 		goto clean3;	/* shost, pci, lu, aer/h */
8044 	rc = hpsa_alloc_cmd_pool(h);
8045 	if (rc)
8046 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8047 	rc = hpsa_alloc_sg_chain_blocks(h);
8048 	if (rc)
8049 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8050 	init_waitqueue_head(&h->scan_wait_queue);
8051 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8052 	init_waitqueue_head(&h->event_sync_wait_queue);
8053 	mutex_init(&h->reset_mutex);
8054 	h->scan_finished = 1; /* no scan currently in progress */
8055 
8056 	pci_set_drvdata(pdev, h);
8057 	h->ndevices = 0;
8058 
8059 	spin_lock_init(&h->devlock);
8060 	rc = hpsa_put_ctlr_into_performant_mode(h);
8061 	if (rc)
8062 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8063 
8064 	/* hook into SCSI subsystem */
8065 	rc = hpsa_scsi_add_host(h);
8066 	if (rc)
8067 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8068 
8069 	/* create the resubmit workqueue */
8070 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8071 	if (!h->rescan_ctlr_wq) {
8072 		rc = -ENOMEM;
8073 		goto clean7;
8074 	}
8075 
8076 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8077 	if (!h->resubmit_wq) {
8078 		rc = -ENOMEM;
8079 		goto clean7;	/* aer/h */
8080 	}
8081 
8082 	/*
8083 	 * At this point, the controller is ready to take commands.
8084 	 * Now, if reset_devices and the hard reset didn't work, try
8085 	 * the soft reset and see if that works.
8086 	 */
8087 	if (try_soft_reset) {
8088 
8089 		/* This is kind of gross.  We may or may not get a completion
8090 		 * from the soft reset command, and if we do, then the value
8091 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8092 		 * after the reset throwing away any completions we get during
8093 		 * that time.  Unregister the interrupt handler and register
8094 		 * fake ones to scoop up any residual completions.
8095 		 */
8096 		spin_lock_irqsave(&h->lock, flags);
8097 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8098 		spin_unlock_irqrestore(&h->lock, flags);
8099 		hpsa_free_irqs(h);
8100 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8101 					hpsa_intx_discard_completions);
8102 		if (rc) {
8103 			dev_warn(&h->pdev->dev,
8104 				"Failed to request_irq after soft reset.\n");
8105 			/*
8106 			 * cannot goto clean7 or free_irqs will be called
8107 			 * again. Instead, do its work
8108 			 */
8109 			hpsa_free_performant_mode(h);	/* clean7 */
8110 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8111 			hpsa_free_cmd_pool(h);		/* clean5 */
8112 			/*
8113 			 * skip hpsa_free_irqs(h) clean4 since that
8114 			 * was just called before request_irqs failed
8115 			 */
8116 			goto clean3;
8117 		}
8118 
8119 		rc = hpsa_kdump_soft_reset(h);
8120 		if (rc)
8121 			/* Neither hard nor soft reset worked, we're hosed. */
8122 			goto clean7;
8123 
8124 		dev_info(&h->pdev->dev, "Board READY.\n");
8125 		dev_info(&h->pdev->dev,
8126 			"Waiting for stale completions to drain.\n");
8127 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8128 		msleep(10000);
8129 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8130 
8131 		rc = controller_reset_failed(h->cfgtable);
8132 		if (rc)
8133 			dev_info(&h->pdev->dev,
8134 				"Soft reset appears to have failed.\n");
8135 
8136 		/* since the controller's reset, we have to go back and re-init
8137 		 * everything.  Easiest to just forget what we've done and do it
8138 		 * all over again.
8139 		 */
8140 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8141 		try_soft_reset = 0;
8142 		if (rc)
8143 			/* don't goto clean, we already unallocated */
8144 			return -ENODEV;
8145 
8146 		goto reinit_after_soft_reset;
8147 	}
8148 
8149 	/* Enable Accelerated IO path at driver layer */
8150 	h->acciopath_status = 1;
8151 
8152 
8153 	/* Turn the interrupts on so we can service requests */
8154 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8155 
8156 	hpsa_hba_inquiry(h);
8157 
8158 	/* Monitor the controller for firmware lockups */
8159 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8160 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8161 	schedule_delayed_work(&h->monitor_ctlr_work,
8162 				h->heartbeat_sample_interval);
8163 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8164 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8165 				h->heartbeat_sample_interval);
8166 	return 0;
8167 
8168 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8169 	hpsa_free_performant_mode(h);
8170 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8171 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8172 	hpsa_free_sg_chain_blocks(h);
8173 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8174 	hpsa_free_cmd_pool(h);
8175 clean4: /* irq, shost, pci, lu, aer/h */
8176 	hpsa_free_irqs(h);
8177 clean3: /* shost, pci, lu, aer/h */
8178 	scsi_host_put(h->scsi_host);
8179 	h->scsi_host = NULL;
8180 clean2_5: /* pci, lu, aer/h */
8181 	hpsa_free_pci_init(h);
8182 clean2: /* lu, aer/h */
8183 	if (h->lockup_detected) {
8184 		free_percpu(h->lockup_detected);
8185 		h->lockup_detected = NULL;
8186 	}
8187 clean1:	/* wq/aer/h */
8188 	if (h->resubmit_wq) {
8189 		destroy_workqueue(h->resubmit_wq);
8190 		h->resubmit_wq = NULL;
8191 	}
8192 	if (h->rescan_ctlr_wq) {
8193 		destroy_workqueue(h->rescan_ctlr_wq);
8194 		h->rescan_ctlr_wq = NULL;
8195 	}
8196 	kfree(h);
8197 	return rc;
8198 }
8199 
8200 static void hpsa_flush_cache(struct ctlr_info *h)
8201 {
8202 	char *flush_buf;
8203 	struct CommandList *c;
8204 	int rc;
8205 
8206 	if (unlikely(lockup_detected(h)))
8207 		return;
8208 	flush_buf = kzalloc(4, GFP_KERNEL);
8209 	if (!flush_buf)
8210 		return;
8211 
8212 	c = cmd_alloc(h);
8213 
8214 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8215 		RAID_CTLR_LUNID, TYPE_CMD)) {
8216 		goto out;
8217 	}
8218 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8219 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8220 	if (rc)
8221 		goto out;
8222 	if (c->err_info->CommandStatus != 0)
8223 out:
8224 		dev_warn(&h->pdev->dev,
8225 			"error flushing cache on controller\n");
8226 	cmd_free(h, c);
8227 	kfree(flush_buf);
8228 }
8229 
8230 static void hpsa_shutdown(struct pci_dev *pdev)
8231 {
8232 	struct ctlr_info *h;
8233 
8234 	h = pci_get_drvdata(pdev);
8235 	/* Turn board interrupts off  and send the flush cache command
8236 	 * sendcmd will turn off interrupt, and send the flush...
8237 	 * To write all data in the battery backed cache to disks
8238 	 */
8239 	hpsa_flush_cache(h);
8240 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8241 	hpsa_free_irqs(h);			/* init_one 4 */
8242 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8243 }
8244 
8245 static void hpsa_free_device_info(struct ctlr_info *h)
8246 {
8247 	int i;
8248 
8249 	for (i = 0; i < h->ndevices; i++) {
8250 		kfree(h->dev[i]);
8251 		h->dev[i] = NULL;
8252 	}
8253 }
8254 
8255 static void hpsa_remove_one(struct pci_dev *pdev)
8256 {
8257 	struct ctlr_info *h;
8258 	unsigned long flags;
8259 
8260 	if (pci_get_drvdata(pdev) == NULL) {
8261 		dev_err(&pdev->dev, "unable to remove device\n");
8262 		return;
8263 	}
8264 	h = pci_get_drvdata(pdev);
8265 
8266 	/* Get rid of any controller monitoring work items */
8267 	spin_lock_irqsave(&h->lock, flags);
8268 	h->remove_in_progress = 1;
8269 	spin_unlock_irqrestore(&h->lock, flags);
8270 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8271 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8272 	destroy_workqueue(h->rescan_ctlr_wq);
8273 	destroy_workqueue(h->resubmit_wq);
8274 
8275 	/*
8276 	 * Call before disabling interrupts.
8277 	 * scsi_remove_host can trigger I/O operations especially
8278 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8279 	 * operations which cannot complete and will hang the system.
8280 	 */
8281 	if (h->scsi_host)
8282 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8283 	/* includes hpsa_free_irqs - init_one 4 */
8284 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8285 	hpsa_shutdown(pdev);
8286 
8287 	hpsa_free_device_info(h);		/* scan */
8288 
8289 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8290 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8291 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8292 	hpsa_free_performant_mode(h);			/* init_one 7 */
8293 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8294 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8295 
8296 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8297 
8298 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8299 	h->scsi_host = NULL;				/* init_one 3 */
8300 
8301 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8302 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8303 
8304 	free_percpu(h->lockup_detected);		/* init_one 2 */
8305 	h->lockup_detected = NULL;			/* init_one 2 */
8306 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8307 	kfree(h);					/* init_one 1 */
8308 }
8309 
8310 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8311 	__attribute__((unused)) pm_message_t state)
8312 {
8313 	return -ENOSYS;
8314 }
8315 
8316 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8317 {
8318 	return -ENOSYS;
8319 }
8320 
8321 static struct pci_driver hpsa_pci_driver = {
8322 	.name = HPSA,
8323 	.probe = hpsa_init_one,
8324 	.remove = hpsa_remove_one,
8325 	.id_table = hpsa_pci_device_id,	/* id_table */
8326 	.shutdown = hpsa_shutdown,
8327 	.suspend = hpsa_suspend,
8328 	.resume = hpsa_resume,
8329 };
8330 
8331 /* Fill in bucket_map[], given nsgs (the max number of
8332  * scatter gather elements supported) and bucket[],
8333  * which is an array of 8 integers.  The bucket[] array
8334  * contains 8 different DMA transfer sizes (in 16
8335  * byte increments) which the controller uses to fetch
8336  * commands.  This function fills in bucket_map[], which
8337  * maps a given number of scatter gather elements to one of
8338  * the 8 DMA transfer sizes.  The point of it is to allow the
8339  * controller to only do as much DMA as needed to fetch the
8340  * command, with the DMA transfer size encoded in the lower
8341  * bits of the command address.
8342  */
8343 static void  calc_bucket_map(int bucket[], int num_buckets,
8344 	int nsgs, int min_blocks, u32 *bucket_map)
8345 {
8346 	int i, j, b, size;
8347 
8348 	/* Note, bucket_map must have nsgs+1 entries. */
8349 	for (i = 0; i <= nsgs; i++) {
8350 		/* Compute size of a command with i SG entries */
8351 		size = i + min_blocks;
8352 		b = num_buckets; /* Assume the biggest bucket */
8353 		/* Find the bucket that is just big enough */
8354 		for (j = 0; j < num_buckets; j++) {
8355 			if (bucket[j] >= size) {
8356 				b = j;
8357 				break;
8358 			}
8359 		}
8360 		/* for a command with i SG entries, use bucket b. */
8361 		bucket_map[i] = b;
8362 	}
8363 }
8364 
8365 /*
8366  * return -ENODEV on err, 0 on success (or no action)
8367  * allocates numerous items that must be freed later
8368  */
8369 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8370 {
8371 	int i;
8372 	unsigned long register_value;
8373 	unsigned long transMethod = CFGTBL_Trans_Performant |
8374 			(trans_support & CFGTBL_Trans_use_short_tags) |
8375 				CFGTBL_Trans_enable_directed_msix |
8376 			(trans_support & (CFGTBL_Trans_io_accel1 |
8377 				CFGTBL_Trans_io_accel2));
8378 	struct access_method access = SA5_performant_access;
8379 
8380 	/* This is a bit complicated.  There are 8 registers on
8381 	 * the controller which we write to to tell it 8 different
8382 	 * sizes of commands which there may be.  It's a way of
8383 	 * reducing the DMA done to fetch each command.  Encoded into
8384 	 * each command's tag are 3 bits which communicate to the controller
8385 	 * which of the eight sizes that command fits within.  The size of
8386 	 * each command depends on how many scatter gather entries there are.
8387 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8388 	 * with the number of 16-byte blocks a command of that size requires.
8389 	 * The smallest command possible requires 5 such 16 byte blocks.
8390 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8391 	 * blocks.  Note, this only extends to the SG entries contained
8392 	 * within the command block, and does not extend to chained blocks
8393 	 * of SG elements.   bft[] contains the eight values we write to
8394 	 * the registers.  They are not evenly distributed, but have more
8395 	 * sizes for small commands, and fewer sizes for larger commands.
8396 	 */
8397 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8398 #define MIN_IOACCEL2_BFT_ENTRY 5
8399 #define HPSA_IOACCEL2_HEADER_SZ 4
8400 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8401 			13, 14, 15, 16, 17, 18, 19,
8402 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8403 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8404 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8405 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8406 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8407 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8408 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8409 	/*  5 = 1 s/g entry or 4k
8410 	 *  6 = 2 s/g entry or 8k
8411 	 *  8 = 4 s/g entry or 16k
8412 	 * 10 = 6 s/g entry or 24k
8413 	 */
8414 
8415 	/* If the controller supports either ioaccel method then
8416 	 * we can also use the RAID stack submit path that does not
8417 	 * perform the superfluous readl() after each command submission.
8418 	 */
8419 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8420 		access = SA5_performant_access_no_read;
8421 
8422 	/* Controller spec: zero out this buffer. */
8423 	for (i = 0; i < h->nreply_queues; i++)
8424 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8425 
8426 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8427 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8428 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8429 	for (i = 0; i < 8; i++)
8430 		writel(bft[i], &h->transtable->BlockFetch[i]);
8431 
8432 	/* size of controller ring buffer */
8433 	writel(h->max_commands, &h->transtable->RepQSize);
8434 	writel(h->nreply_queues, &h->transtable->RepQCount);
8435 	writel(0, &h->transtable->RepQCtrAddrLow32);
8436 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8437 
8438 	for (i = 0; i < h->nreply_queues; i++) {
8439 		writel(0, &h->transtable->RepQAddr[i].upper);
8440 		writel(h->reply_queue[i].busaddr,
8441 			&h->transtable->RepQAddr[i].lower);
8442 	}
8443 
8444 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8445 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8446 	/*
8447 	 * enable outbound interrupt coalescing in accelerator mode;
8448 	 */
8449 	if (trans_support & CFGTBL_Trans_io_accel1) {
8450 		access = SA5_ioaccel_mode1_access;
8451 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8452 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8453 	} else {
8454 		if (trans_support & CFGTBL_Trans_io_accel2) {
8455 			access = SA5_ioaccel_mode2_access;
8456 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8457 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8458 		}
8459 	}
8460 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8461 	if (hpsa_wait_for_mode_change_ack(h)) {
8462 		dev_err(&h->pdev->dev,
8463 			"performant mode problem - doorbell timeout\n");
8464 		return -ENODEV;
8465 	}
8466 	register_value = readl(&(h->cfgtable->TransportActive));
8467 	if (!(register_value & CFGTBL_Trans_Performant)) {
8468 		dev_err(&h->pdev->dev,
8469 			"performant mode problem - transport not active\n");
8470 		return -ENODEV;
8471 	}
8472 	/* Change the access methods to the performant access methods */
8473 	h->access = access;
8474 	h->transMethod = transMethod;
8475 
8476 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8477 		(trans_support & CFGTBL_Trans_io_accel2)))
8478 		return 0;
8479 
8480 	if (trans_support & CFGTBL_Trans_io_accel1) {
8481 		/* Set up I/O accelerator mode */
8482 		for (i = 0; i < h->nreply_queues; i++) {
8483 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8484 			h->reply_queue[i].current_entry =
8485 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8486 		}
8487 		bft[7] = h->ioaccel_maxsg + 8;
8488 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8489 				h->ioaccel1_blockFetchTable);
8490 
8491 		/* initialize all reply queue entries to unused */
8492 		for (i = 0; i < h->nreply_queues; i++)
8493 			memset(h->reply_queue[i].head,
8494 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8495 				h->reply_queue_size);
8496 
8497 		/* set all the constant fields in the accelerator command
8498 		 * frames once at init time to save CPU cycles later.
8499 		 */
8500 		for (i = 0; i < h->nr_cmds; i++) {
8501 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8502 
8503 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8504 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8505 					(i * sizeof(struct ErrorInfo)));
8506 			cp->err_info_len = sizeof(struct ErrorInfo);
8507 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8508 			cp->host_context_flags =
8509 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8510 			cp->timeout_sec = 0;
8511 			cp->ReplyQueue = 0;
8512 			cp->tag =
8513 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8514 			cp->host_addr =
8515 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8516 					(i * sizeof(struct io_accel1_cmd)));
8517 		}
8518 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8519 		u64 cfg_offset, cfg_base_addr_index;
8520 		u32 bft2_offset, cfg_base_addr;
8521 		int rc;
8522 
8523 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8524 			&cfg_base_addr_index, &cfg_offset);
8525 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8526 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8527 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8528 				4, h->ioaccel2_blockFetchTable);
8529 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8530 		BUILD_BUG_ON(offsetof(struct CfgTable,
8531 				io_accel_request_size_offset) != 0xb8);
8532 		h->ioaccel2_bft2_regs =
8533 			remap_pci_mem(pci_resource_start(h->pdev,
8534 					cfg_base_addr_index) +
8535 					cfg_offset + bft2_offset,
8536 					ARRAY_SIZE(bft2) *
8537 					sizeof(*h->ioaccel2_bft2_regs));
8538 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8539 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8540 	}
8541 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8542 	if (hpsa_wait_for_mode_change_ack(h)) {
8543 		dev_err(&h->pdev->dev,
8544 			"performant mode problem - enabling ioaccel mode\n");
8545 		return -ENODEV;
8546 	}
8547 	return 0;
8548 }
8549 
8550 /* Free ioaccel1 mode command blocks and block fetch table */
8551 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8552 {
8553 	if (h->ioaccel_cmd_pool) {
8554 		pci_free_consistent(h->pdev,
8555 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8556 			h->ioaccel_cmd_pool,
8557 			h->ioaccel_cmd_pool_dhandle);
8558 		h->ioaccel_cmd_pool = NULL;
8559 		h->ioaccel_cmd_pool_dhandle = 0;
8560 	}
8561 	kfree(h->ioaccel1_blockFetchTable);
8562 	h->ioaccel1_blockFetchTable = NULL;
8563 }
8564 
8565 /* Allocate ioaccel1 mode command blocks and block fetch table */
8566 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8567 {
8568 	h->ioaccel_maxsg =
8569 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8570 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8571 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8572 
8573 	/* Command structures must be aligned on a 128-byte boundary
8574 	 * because the 7 lower bits of the address are used by the
8575 	 * hardware.
8576 	 */
8577 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8578 			IOACCEL1_COMMANDLIST_ALIGNMENT);
8579 	h->ioaccel_cmd_pool =
8580 		pci_alloc_consistent(h->pdev,
8581 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8582 			&(h->ioaccel_cmd_pool_dhandle));
8583 
8584 	h->ioaccel1_blockFetchTable =
8585 		kmalloc(((h->ioaccel_maxsg + 1) *
8586 				sizeof(u32)), GFP_KERNEL);
8587 
8588 	if ((h->ioaccel_cmd_pool == NULL) ||
8589 		(h->ioaccel1_blockFetchTable == NULL))
8590 		goto clean_up;
8591 
8592 	memset(h->ioaccel_cmd_pool, 0,
8593 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8594 	return 0;
8595 
8596 clean_up:
8597 	hpsa_free_ioaccel1_cmd_and_bft(h);
8598 	return -ENOMEM;
8599 }
8600 
8601 /* Free ioaccel2 mode command blocks and block fetch table */
8602 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8603 {
8604 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8605 
8606 	if (h->ioaccel2_cmd_pool) {
8607 		pci_free_consistent(h->pdev,
8608 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8609 			h->ioaccel2_cmd_pool,
8610 			h->ioaccel2_cmd_pool_dhandle);
8611 		h->ioaccel2_cmd_pool = NULL;
8612 		h->ioaccel2_cmd_pool_dhandle = 0;
8613 	}
8614 	kfree(h->ioaccel2_blockFetchTable);
8615 	h->ioaccel2_blockFetchTable = NULL;
8616 }
8617 
8618 /* Allocate ioaccel2 mode command blocks and block fetch table */
8619 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8620 {
8621 	int rc;
8622 
8623 	/* Allocate ioaccel2 mode command blocks and block fetch table */
8624 
8625 	h->ioaccel_maxsg =
8626 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8627 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8628 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8629 
8630 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8631 			IOACCEL2_COMMANDLIST_ALIGNMENT);
8632 	h->ioaccel2_cmd_pool =
8633 		pci_alloc_consistent(h->pdev,
8634 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8635 			&(h->ioaccel2_cmd_pool_dhandle));
8636 
8637 	h->ioaccel2_blockFetchTable =
8638 		kmalloc(((h->ioaccel_maxsg + 1) *
8639 				sizeof(u32)), GFP_KERNEL);
8640 
8641 	if ((h->ioaccel2_cmd_pool == NULL) ||
8642 		(h->ioaccel2_blockFetchTable == NULL)) {
8643 		rc = -ENOMEM;
8644 		goto clean_up;
8645 	}
8646 
8647 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8648 	if (rc)
8649 		goto clean_up;
8650 
8651 	memset(h->ioaccel2_cmd_pool, 0,
8652 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8653 	return 0;
8654 
8655 clean_up:
8656 	hpsa_free_ioaccel2_cmd_and_bft(h);
8657 	return rc;
8658 }
8659 
8660 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8661 static void hpsa_free_performant_mode(struct ctlr_info *h)
8662 {
8663 	kfree(h->blockFetchTable);
8664 	h->blockFetchTable = NULL;
8665 	hpsa_free_reply_queues(h);
8666 	hpsa_free_ioaccel1_cmd_and_bft(h);
8667 	hpsa_free_ioaccel2_cmd_and_bft(h);
8668 }
8669 
8670 /* return -ENODEV on error, 0 on success (or no action)
8671  * allocates numerous items that must be freed later
8672  */
8673 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8674 {
8675 	u32 trans_support;
8676 	unsigned long transMethod = CFGTBL_Trans_Performant |
8677 					CFGTBL_Trans_use_short_tags;
8678 	int i, rc;
8679 
8680 	if (hpsa_simple_mode)
8681 		return 0;
8682 
8683 	trans_support = readl(&(h->cfgtable->TransportSupport));
8684 	if (!(trans_support & PERFORMANT_MODE))
8685 		return 0;
8686 
8687 	/* Check for I/O accelerator mode support */
8688 	if (trans_support & CFGTBL_Trans_io_accel1) {
8689 		transMethod |= CFGTBL_Trans_io_accel1 |
8690 				CFGTBL_Trans_enable_directed_msix;
8691 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8692 		if (rc)
8693 			return rc;
8694 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8695 		transMethod |= CFGTBL_Trans_io_accel2 |
8696 				CFGTBL_Trans_enable_directed_msix;
8697 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8698 		if (rc)
8699 			return rc;
8700 	}
8701 
8702 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8703 	hpsa_get_max_perf_mode_cmds(h);
8704 	/* Performant mode ring buffer and supporting data structures */
8705 	h->reply_queue_size = h->max_commands * sizeof(u64);
8706 
8707 	for (i = 0; i < h->nreply_queues; i++) {
8708 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8709 						h->reply_queue_size,
8710 						&(h->reply_queue[i].busaddr));
8711 		if (!h->reply_queue[i].head) {
8712 			rc = -ENOMEM;
8713 			goto clean1;	/* rq, ioaccel */
8714 		}
8715 		h->reply_queue[i].size = h->max_commands;
8716 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8717 		h->reply_queue[i].current_entry = 0;
8718 	}
8719 
8720 	/* Need a block fetch table for performant mode */
8721 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8722 				sizeof(u32)), GFP_KERNEL);
8723 	if (!h->blockFetchTable) {
8724 		rc = -ENOMEM;
8725 		goto clean1;	/* rq, ioaccel */
8726 	}
8727 
8728 	rc = hpsa_enter_performant_mode(h, trans_support);
8729 	if (rc)
8730 		goto clean2;	/* bft, rq, ioaccel */
8731 	return 0;
8732 
8733 clean2:	/* bft, rq, ioaccel */
8734 	kfree(h->blockFetchTable);
8735 	h->blockFetchTable = NULL;
8736 clean1:	/* rq, ioaccel */
8737 	hpsa_free_reply_queues(h);
8738 	hpsa_free_ioaccel1_cmd_and_bft(h);
8739 	hpsa_free_ioaccel2_cmd_and_bft(h);
8740 	return rc;
8741 }
8742 
8743 static int is_accelerated_cmd(struct CommandList *c)
8744 {
8745 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8746 }
8747 
8748 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8749 {
8750 	struct CommandList *c = NULL;
8751 	int i, accel_cmds_out;
8752 	int refcount;
8753 
8754 	do { /* wait for all outstanding ioaccel commands to drain out */
8755 		accel_cmds_out = 0;
8756 		for (i = 0; i < h->nr_cmds; i++) {
8757 			c = h->cmd_pool + i;
8758 			refcount = atomic_inc_return(&c->refcount);
8759 			if (refcount > 1) /* Command is allocated */
8760 				accel_cmds_out += is_accelerated_cmd(c);
8761 			cmd_free(h, c);
8762 		}
8763 		if (accel_cmds_out <= 0)
8764 			break;
8765 		msleep(100);
8766 	} while (1);
8767 }
8768 
8769 /*
8770  *  This is it.  Register the PCI driver information for the cards we control
8771  *  the OS will call our registered routines when it finds one of our cards.
8772  */
8773 static int __init hpsa_init(void)
8774 {
8775 	return pci_register_driver(&hpsa_pci_driver);
8776 }
8777 
8778 static void __exit hpsa_cleanup(void)
8779 {
8780 	pci_unregister_driver(&hpsa_pci_driver);
8781 }
8782 
8783 static void __attribute__((unused)) verify_offsets(void)
8784 {
8785 #define VERIFY_OFFSET(member, offset) \
8786 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8787 
8788 	VERIFY_OFFSET(structure_size, 0);
8789 	VERIFY_OFFSET(volume_blk_size, 4);
8790 	VERIFY_OFFSET(volume_blk_cnt, 8);
8791 	VERIFY_OFFSET(phys_blk_shift, 16);
8792 	VERIFY_OFFSET(parity_rotation_shift, 17);
8793 	VERIFY_OFFSET(strip_size, 18);
8794 	VERIFY_OFFSET(disk_starting_blk, 20);
8795 	VERIFY_OFFSET(disk_blk_cnt, 28);
8796 	VERIFY_OFFSET(data_disks_per_row, 36);
8797 	VERIFY_OFFSET(metadata_disks_per_row, 38);
8798 	VERIFY_OFFSET(row_cnt, 40);
8799 	VERIFY_OFFSET(layout_map_count, 42);
8800 	VERIFY_OFFSET(flags, 44);
8801 	VERIFY_OFFSET(dekindex, 46);
8802 	/* VERIFY_OFFSET(reserved, 48 */
8803 	VERIFY_OFFSET(data, 64);
8804 
8805 #undef VERIFY_OFFSET
8806 
8807 #define VERIFY_OFFSET(member, offset) \
8808 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8809 
8810 	VERIFY_OFFSET(IU_type, 0);
8811 	VERIFY_OFFSET(direction, 1);
8812 	VERIFY_OFFSET(reply_queue, 2);
8813 	/* VERIFY_OFFSET(reserved1, 3);  */
8814 	VERIFY_OFFSET(scsi_nexus, 4);
8815 	VERIFY_OFFSET(Tag, 8);
8816 	VERIFY_OFFSET(cdb, 16);
8817 	VERIFY_OFFSET(cciss_lun, 32);
8818 	VERIFY_OFFSET(data_len, 40);
8819 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
8820 	VERIFY_OFFSET(sg_count, 45);
8821 	/* VERIFY_OFFSET(reserved3 */
8822 	VERIFY_OFFSET(err_ptr, 48);
8823 	VERIFY_OFFSET(err_len, 56);
8824 	/* VERIFY_OFFSET(reserved4  */
8825 	VERIFY_OFFSET(sg, 64);
8826 
8827 #undef VERIFY_OFFSET
8828 
8829 #define VERIFY_OFFSET(member, offset) \
8830 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8831 
8832 	VERIFY_OFFSET(dev_handle, 0x00);
8833 	VERIFY_OFFSET(reserved1, 0x02);
8834 	VERIFY_OFFSET(function, 0x03);
8835 	VERIFY_OFFSET(reserved2, 0x04);
8836 	VERIFY_OFFSET(err_info, 0x0C);
8837 	VERIFY_OFFSET(reserved3, 0x10);
8838 	VERIFY_OFFSET(err_info_len, 0x12);
8839 	VERIFY_OFFSET(reserved4, 0x13);
8840 	VERIFY_OFFSET(sgl_offset, 0x14);
8841 	VERIFY_OFFSET(reserved5, 0x15);
8842 	VERIFY_OFFSET(transfer_len, 0x1C);
8843 	VERIFY_OFFSET(reserved6, 0x20);
8844 	VERIFY_OFFSET(io_flags, 0x24);
8845 	VERIFY_OFFSET(reserved7, 0x26);
8846 	VERIFY_OFFSET(LUN, 0x34);
8847 	VERIFY_OFFSET(control, 0x3C);
8848 	VERIFY_OFFSET(CDB, 0x40);
8849 	VERIFY_OFFSET(reserved8, 0x50);
8850 	VERIFY_OFFSET(host_context_flags, 0x60);
8851 	VERIFY_OFFSET(timeout_sec, 0x62);
8852 	VERIFY_OFFSET(ReplyQueue, 0x64);
8853 	VERIFY_OFFSET(reserved9, 0x65);
8854 	VERIFY_OFFSET(tag, 0x68);
8855 	VERIFY_OFFSET(host_addr, 0x70);
8856 	VERIFY_OFFSET(CISS_LUN, 0x78);
8857 	VERIFY_OFFSET(SG, 0x78 + 8);
8858 #undef VERIFY_OFFSET
8859 }
8860 
8861 module_init(hpsa_init);
8862 module_exit(hpsa_cleanup);
8863