1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/compat.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/uaccess.h> 37 #include <linux/io.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/completion.h> 40 #include <linux/moduleparam.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_device.h> 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_tcq.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "2.0.2-1" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 78 /* define the PCI info for the cards we can control */ 79 static const struct pci_device_id hpsa_pci_device_id[] = { 80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254}, 93 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 94 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 95 {0,} 96 }; 97 98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 99 100 /* board_id = Subsystem Device ID & Vendor ID 101 * product = Marketing Name for the board 102 * access = Address of the struct of function pointers 103 */ 104 static struct board_type products[] = { 105 {0x3241103C, "Smart Array P212", &SA5_access}, 106 {0x3243103C, "Smart Array P410", &SA5_access}, 107 {0x3245103C, "Smart Array P410i", &SA5_access}, 108 {0x3247103C, "Smart Array P411", &SA5_access}, 109 {0x3249103C, "Smart Array P812", &SA5_access}, 110 {0x324a103C, "Smart Array P712m", &SA5_access}, 111 {0x324b103C, "Smart Array P711m", &SA5_access}, 112 {0x3250103C, "Smart Array", &SA5_access}, 113 {0x3250113C, "Smart Array", &SA5_access}, 114 {0x3250123C, "Smart Array", &SA5_access}, 115 {0x3250133C, "Smart Array", &SA5_access}, 116 {0x3250143C, "Smart Array", &SA5_access}, 117 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 118 }; 119 120 static int number_of_controllers; 121 122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 125 static void start_io(struct ctlr_info *h); 126 127 #ifdef CONFIG_COMPAT 128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 129 #endif 130 131 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 133 static struct CommandList *cmd_alloc(struct ctlr_info *h); 134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 136 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 137 int cmd_type); 138 139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 140 static void hpsa_scan_start(struct Scsi_Host *); 141 static int hpsa_scan_finished(struct Scsi_Host *sh, 142 unsigned long elapsed_time); 143 static int hpsa_change_queue_depth(struct scsi_device *sdev, 144 int qdepth, int reason); 145 146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 147 static int hpsa_slave_alloc(struct scsi_device *sdev); 148 static void hpsa_slave_destroy(struct scsi_device *sdev); 149 150 static ssize_t raid_level_show(struct device *dev, 151 struct device_attribute *attr, char *buf); 152 static ssize_t lunid_show(struct device *dev, 153 struct device_attribute *attr, char *buf); 154 static ssize_t unique_id_show(struct device *dev, 155 struct device_attribute *attr, char *buf); 156 static ssize_t host_show_firmware_revision(struct device *dev, 157 struct device_attribute *attr, char *buf); 158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 159 static ssize_t host_store_rescan(struct device *dev, 160 struct device_attribute *attr, const char *buf, size_t count); 161 static int check_for_unit_attention(struct ctlr_info *h, 162 struct CommandList *c); 163 static void check_ioctl_unit_attention(struct ctlr_info *h, 164 struct CommandList *c); 165 /* performant mode helper functions */ 166 static void calc_bucket_map(int *bucket, int num_buckets, 167 int nsgs, int *bucket_map); 168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 169 static inline u32 next_command(struct ctlr_info *h); 170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 171 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 172 u64 *cfg_offset); 173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 174 unsigned long *memory_bar); 175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 176 177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 181 static DEVICE_ATTR(firmware_revision, S_IRUGO, 182 host_show_firmware_revision, NULL); 183 184 static struct device_attribute *hpsa_sdev_attrs[] = { 185 &dev_attr_raid_level, 186 &dev_attr_lunid, 187 &dev_attr_unique_id, 188 NULL, 189 }; 190 191 static struct device_attribute *hpsa_shost_attrs[] = { 192 &dev_attr_rescan, 193 &dev_attr_firmware_revision, 194 NULL, 195 }; 196 197 static struct scsi_host_template hpsa_driver_template = { 198 .module = THIS_MODULE, 199 .name = "hpsa", 200 .proc_name = "hpsa", 201 .queuecommand = hpsa_scsi_queue_command, 202 .scan_start = hpsa_scan_start, 203 .scan_finished = hpsa_scan_finished, 204 .change_queue_depth = hpsa_change_queue_depth, 205 .this_id = -1, 206 .use_clustering = ENABLE_CLUSTERING, 207 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 208 .ioctl = hpsa_ioctl, 209 .slave_alloc = hpsa_slave_alloc, 210 .slave_destroy = hpsa_slave_destroy, 211 #ifdef CONFIG_COMPAT 212 .compat_ioctl = hpsa_compat_ioctl, 213 #endif 214 .sdev_attrs = hpsa_sdev_attrs, 215 .shost_attrs = hpsa_shost_attrs, 216 }; 217 218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 219 { 220 unsigned long *priv = shost_priv(sdev->host); 221 return (struct ctlr_info *) *priv; 222 } 223 224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 225 { 226 unsigned long *priv = shost_priv(sh); 227 return (struct ctlr_info *) *priv; 228 } 229 230 static int check_for_unit_attention(struct ctlr_info *h, 231 struct CommandList *c) 232 { 233 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 234 return 0; 235 236 switch (c->err_info->SenseInfo[12]) { 237 case STATE_CHANGED: 238 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 239 "detected, command retried\n", h->ctlr); 240 break; 241 case LUN_FAILED: 242 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 243 "detected, action required\n", h->ctlr); 244 break; 245 case REPORT_LUNS_CHANGED: 246 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 247 "changed, action required\n", h->ctlr); 248 /* 249 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 250 */ 251 break; 252 case POWER_OR_RESET: 253 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 254 "or device reset detected\n", h->ctlr); 255 break; 256 case UNIT_ATTENTION_CLEARED: 257 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 258 "cleared by another initiator\n", h->ctlr); 259 break; 260 default: 261 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 262 "unit attention detected\n", h->ctlr); 263 break; 264 } 265 return 1; 266 } 267 268 static ssize_t host_store_rescan(struct device *dev, 269 struct device_attribute *attr, 270 const char *buf, size_t count) 271 { 272 struct ctlr_info *h; 273 struct Scsi_Host *shost = class_to_shost(dev); 274 h = shost_to_hba(shost); 275 hpsa_scan_start(h->scsi_host); 276 return count; 277 } 278 279 static ssize_t host_show_firmware_revision(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct ctlr_info *h; 283 struct Scsi_Host *shost = class_to_shost(dev); 284 unsigned char *fwrev; 285 286 h = shost_to_hba(shost); 287 if (!h->hba_inquiry_data) 288 return 0; 289 fwrev = &h->hba_inquiry_data[32]; 290 return snprintf(buf, 20, "%c%c%c%c\n", 291 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 292 } 293 294 /* Enqueuing and dequeuing functions for cmdlists. */ 295 static inline void addQ(struct hlist_head *list, struct CommandList *c) 296 { 297 hlist_add_head(&c->list, list); 298 } 299 300 static inline u32 next_command(struct ctlr_info *h) 301 { 302 u32 a; 303 304 if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) 305 return h->access.command_completed(h); 306 307 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 308 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 309 (h->reply_pool_head)++; 310 h->commands_outstanding--; 311 } else { 312 a = FIFO_EMPTY; 313 } 314 /* Check for wraparound */ 315 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 316 h->reply_pool_head = h->reply_pool; 317 h->reply_pool_wraparound ^= 1; 318 } 319 return a; 320 } 321 322 /* set_performant_mode: Modify the tag for cciss performant 323 * set bit 0 for pull model, bits 3-1 for block fetch 324 * register number 325 */ 326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 327 { 328 if (likely(h->transMethod == CFGTBL_Trans_Performant)) 329 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 330 } 331 332 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 333 struct CommandList *c) 334 { 335 unsigned long flags; 336 337 set_performant_mode(h, c); 338 spin_lock_irqsave(&h->lock, flags); 339 addQ(&h->reqQ, c); 340 h->Qdepth++; 341 start_io(h); 342 spin_unlock_irqrestore(&h->lock, flags); 343 } 344 345 static inline void removeQ(struct CommandList *c) 346 { 347 if (WARN_ON(hlist_unhashed(&c->list))) 348 return; 349 hlist_del_init(&c->list); 350 } 351 352 static inline int is_hba_lunid(unsigned char scsi3addr[]) 353 { 354 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 355 } 356 357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 358 { 359 return (scsi3addr[3] & 0xC0) == 0x40; 360 } 361 362 static inline int is_scsi_rev_5(struct ctlr_info *h) 363 { 364 if (!h->hba_inquiry_data) 365 return 0; 366 if ((h->hba_inquiry_data[2] & 0x07) == 5) 367 return 1; 368 return 0; 369 } 370 371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 372 "UNKNOWN" 373 }; 374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 375 376 static ssize_t raid_level_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 ssize_t l = 0; 380 unsigned char rlevel; 381 struct ctlr_info *h; 382 struct scsi_device *sdev; 383 struct hpsa_scsi_dev_t *hdev; 384 unsigned long flags; 385 386 sdev = to_scsi_device(dev); 387 h = sdev_to_hba(sdev); 388 spin_lock_irqsave(&h->lock, flags); 389 hdev = sdev->hostdata; 390 if (!hdev) { 391 spin_unlock_irqrestore(&h->lock, flags); 392 return -ENODEV; 393 } 394 395 /* Is this even a logical drive? */ 396 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 397 spin_unlock_irqrestore(&h->lock, flags); 398 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 399 return l; 400 } 401 402 rlevel = hdev->raid_level; 403 spin_unlock_irqrestore(&h->lock, flags); 404 if (rlevel > RAID_UNKNOWN) 405 rlevel = RAID_UNKNOWN; 406 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 407 return l; 408 } 409 410 static ssize_t lunid_show(struct device *dev, 411 struct device_attribute *attr, char *buf) 412 { 413 struct ctlr_info *h; 414 struct scsi_device *sdev; 415 struct hpsa_scsi_dev_t *hdev; 416 unsigned long flags; 417 unsigned char lunid[8]; 418 419 sdev = to_scsi_device(dev); 420 h = sdev_to_hba(sdev); 421 spin_lock_irqsave(&h->lock, flags); 422 hdev = sdev->hostdata; 423 if (!hdev) { 424 spin_unlock_irqrestore(&h->lock, flags); 425 return -ENODEV; 426 } 427 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 428 spin_unlock_irqrestore(&h->lock, flags); 429 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 430 lunid[0], lunid[1], lunid[2], lunid[3], 431 lunid[4], lunid[5], lunid[6], lunid[7]); 432 } 433 434 static ssize_t unique_id_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 struct ctlr_info *h; 438 struct scsi_device *sdev; 439 struct hpsa_scsi_dev_t *hdev; 440 unsigned long flags; 441 unsigned char sn[16]; 442 443 sdev = to_scsi_device(dev); 444 h = sdev_to_hba(sdev); 445 spin_lock_irqsave(&h->lock, flags); 446 hdev = sdev->hostdata; 447 if (!hdev) { 448 spin_unlock_irqrestore(&h->lock, flags); 449 return -ENODEV; 450 } 451 memcpy(sn, hdev->device_id, sizeof(sn)); 452 spin_unlock_irqrestore(&h->lock, flags); 453 return snprintf(buf, 16 * 2 + 2, 454 "%02X%02X%02X%02X%02X%02X%02X%02X" 455 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 456 sn[0], sn[1], sn[2], sn[3], 457 sn[4], sn[5], sn[6], sn[7], 458 sn[8], sn[9], sn[10], sn[11], 459 sn[12], sn[13], sn[14], sn[15]); 460 } 461 462 static int hpsa_find_target_lun(struct ctlr_info *h, 463 unsigned char scsi3addr[], int bus, int *target, int *lun) 464 { 465 /* finds an unused bus, target, lun for a new physical device 466 * assumes h->devlock is held 467 */ 468 int i, found = 0; 469 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 470 471 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 472 473 for (i = 0; i < h->ndevices; i++) { 474 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 475 set_bit(h->dev[i]->target, lun_taken); 476 } 477 478 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 479 if (!test_bit(i, lun_taken)) { 480 /* *bus = 1; */ 481 *target = i; 482 *lun = 0; 483 found = 1; 484 break; 485 } 486 } 487 return !found; 488 } 489 490 /* Add an entry into h->dev[] array. */ 491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 492 struct hpsa_scsi_dev_t *device, 493 struct hpsa_scsi_dev_t *added[], int *nadded) 494 { 495 /* assumes h->devlock is held */ 496 int n = h->ndevices; 497 int i; 498 unsigned char addr1[8], addr2[8]; 499 struct hpsa_scsi_dev_t *sd; 500 501 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 502 dev_err(&h->pdev->dev, "too many devices, some will be " 503 "inaccessible.\n"); 504 return -1; 505 } 506 507 /* physical devices do not have lun or target assigned until now. */ 508 if (device->lun != -1) 509 /* Logical device, lun is already assigned. */ 510 goto lun_assigned; 511 512 /* If this device a non-zero lun of a multi-lun device 513 * byte 4 of the 8-byte LUN addr will contain the logical 514 * unit no, zero otherise. 515 */ 516 if (device->scsi3addr[4] == 0) { 517 /* This is not a non-zero lun of a multi-lun device */ 518 if (hpsa_find_target_lun(h, device->scsi3addr, 519 device->bus, &device->target, &device->lun) != 0) 520 return -1; 521 goto lun_assigned; 522 } 523 524 /* This is a non-zero lun of a multi-lun device. 525 * Search through our list and find the device which 526 * has the same 8 byte LUN address, excepting byte 4. 527 * Assign the same bus and target for this new LUN. 528 * Use the logical unit number from the firmware. 529 */ 530 memcpy(addr1, device->scsi3addr, 8); 531 addr1[4] = 0; 532 for (i = 0; i < n; i++) { 533 sd = h->dev[i]; 534 memcpy(addr2, sd->scsi3addr, 8); 535 addr2[4] = 0; 536 /* differ only in byte 4? */ 537 if (memcmp(addr1, addr2, 8) == 0) { 538 device->bus = sd->bus; 539 device->target = sd->target; 540 device->lun = device->scsi3addr[4]; 541 break; 542 } 543 } 544 if (device->lun == -1) { 545 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 546 " suspect firmware bug or unsupported hardware " 547 "configuration.\n"); 548 return -1; 549 } 550 551 lun_assigned: 552 553 h->dev[n] = device; 554 h->ndevices++; 555 added[*nadded] = device; 556 (*nadded)++; 557 558 /* initially, (before registering with scsi layer) we don't 559 * know our hostno and we don't want to print anything first 560 * time anyway (the scsi layer's inquiries will show that info) 561 */ 562 /* if (hostno != -1) */ 563 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 564 scsi_device_type(device->devtype), hostno, 565 device->bus, device->target, device->lun); 566 return 0; 567 } 568 569 /* Replace an entry from h->dev[] array. */ 570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 571 int entry, struct hpsa_scsi_dev_t *new_entry, 572 struct hpsa_scsi_dev_t *added[], int *nadded, 573 struct hpsa_scsi_dev_t *removed[], int *nremoved) 574 { 575 /* assumes h->devlock is held */ 576 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 577 removed[*nremoved] = h->dev[entry]; 578 (*nremoved)++; 579 h->dev[entry] = new_entry; 580 added[*nadded] = new_entry; 581 (*nadded)++; 582 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 583 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 584 new_entry->target, new_entry->lun); 585 } 586 587 /* Remove an entry from h->dev[] array. */ 588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 589 struct hpsa_scsi_dev_t *removed[], int *nremoved) 590 { 591 /* assumes h->devlock is held */ 592 int i; 593 struct hpsa_scsi_dev_t *sd; 594 595 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 596 597 sd = h->dev[entry]; 598 removed[*nremoved] = h->dev[entry]; 599 (*nremoved)++; 600 601 for (i = entry; i < h->ndevices-1; i++) 602 h->dev[i] = h->dev[i+1]; 603 h->ndevices--; 604 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 605 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 606 sd->lun); 607 } 608 609 #define SCSI3ADDR_EQ(a, b) ( \ 610 (a)[7] == (b)[7] && \ 611 (a)[6] == (b)[6] && \ 612 (a)[5] == (b)[5] && \ 613 (a)[4] == (b)[4] && \ 614 (a)[3] == (b)[3] && \ 615 (a)[2] == (b)[2] && \ 616 (a)[1] == (b)[1] && \ 617 (a)[0] == (b)[0]) 618 619 static void fixup_botched_add(struct ctlr_info *h, 620 struct hpsa_scsi_dev_t *added) 621 { 622 /* called when scsi_add_device fails in order to re-adjust 623 * h->dev[] to match the mid layer's view. 624 */ 625 unsigned long flags; 626 int i, j; 627 628 spin_lock_irqsave(&h->lock, flags); 629 for (i = 0; i < h->ndevices; i++) { 630 if (h->dev[i] == added) { 631 for (j = i; j < h->ndevices-1; j++) 632 h->dev[j] = h->dev[j+1]; 633 h->ndevices--; 634 break; 635 } 636 } 637 spin_unlock_irqrestore(&h->lock, flags); 638 kfree(added); 639 } 640 641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 642 struct hpsa_scsi_dev_t *dev2) 643 { 644 /* we compare everything except lun and target as these 645 * are not yet assigned. Compare parts likely 646 * to differ first 647 */ 648 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 649 sizeof(dev1->scsi3addr)) != 0) 650 return 0; 651 if (memcmp(dev1->device_id, dev2->device_id, 652 sizeof(dev1->device_id)) != 0) 653 return 0; 654 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 655 return 0; 656 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 657 return 0; 658 if (dev1->devtype != dev2->devtype) 659 return 0; 660 if (dev1->bus != dev2->bus) 661 return 0; 662 return 1; 663 } 664 665 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 666 * and return needle location in *index. If scsi3addr matches, but not 667 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 668 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 669 */ 670 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 671 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 672 int *index) 673 { 674 int i; 675 #define DEVICE_NOT_FOUND 0 676 #define DEVICE_CHANGED 1 677 #define DEVICE_SAME 2 678 for (i = 0; i < haystack_size; i++) { 679 if (haystack[i] == NULL) /* previously removed. */ 680 continue; 681 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 682 *index = i; 683 if (device_is_the_same(needle, haystack[i])) 684 return DEVICE_SAME; 685 else 686 return DEVICE_CHANGED; 687 } 688 } 689 *index = -1; 690 return DEVICE_NOT_FOUND; 691 } 692 693 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 694 struct hpsa_scsi_dev_t *sd[], int nsds) 695 { 696 /* sd contains scsi3 addresses and devtypes, and inquiry 697 * data. This function takes what's in sd to be the current 698 * reality and updates h->dev[] to reflect that reality. 699 */ 700 int i, entry, device_change, changes = 0; 701 struct hpsa_scsi_dev_t *csd; 702 unsigned long flags; 703 struct hpsa_scsi_dev_t **added, **removed; 704 int nadded, nremoved; 705 struct Scsi_Host *sh = NULL; 706 707 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 708 GFP_KERNEL); 709 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 710 GFP_KERNEL); 711 712 if (!added || !removed) { 713 dev_warn(&h->pdev->dev, "out of memory in " 714 "adjust_hpsa_scsi_table\n"); 715 goto free_and_out; 716 } 717 718 spin_lock_irqsave(&h->devlock, flags); 719 720 /* find any devices in h->dev[] that are not in 721 * sd[] and remove them from h->dev[], and for any 722 * devices which have changed, remove the old device 723 * info and add the new device info. 724 */ 725 i = 0; 726 nremoved = 0; 727 nadded = 0; 728 while (i < h->ndevices) { 729 csd = h->dev[i]; 730 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 731 if (device_change == DEVICE_NOT_FOUND) { 732 changes++; 733 hpsa_scsi_remove_entry(h, hostno, i, 734 removed, &nremoved); 735 continue; /* remove ^^^, hence i not incremented */ 736 } else if (device_change == DEVICE_CHANGED) { 737 changes++; 738 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 739 added, &nadded, removed, &nremoved); 740 /* Set it to NULL to prevent it from being freed 741 * at the bottom of hpsa_update_scsi_devices() 742 */ 743 sd[entry] = NULL; 744 } 745 i++; 746 } 747 748 /* Now, make sure every device listed in sd[] is also 749 * listed in h->dev[], adding them if they aren't found 750 */ 751 752 for (i = 0; i < nsds; i++) { 753 if (!sd[i]) /* if already added above. */ 754 continue; 755 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 756 h->ndevices, &entry); 757 if (device_change == DEVICE_NOT_FOUND) { 758 changes++; 759 if (hpsa_scsi_add_entry(h, hostno, sd[i], 760 added, &nadded) != 0) 761 break; 762 sd[i] = NULL; /* prevent from being freed later. */ 763 } else if (device_change == DEVICE_CHANGED) { 764 /* should never happen... */ 765 changes++; 766 dev_warn(&h->pdev->dev, 767 "device unexpectedly changed.\n"); 768 /* but if it does happen, we just ignore that device */ 769 } 770 } 771 spin_unlock_irqrestore(&h->devlock, flags); 772 773 /* Don't notify scsi mid layer of any changes the first time through 774 * (or if there are no changes) scsi_scan_host will do it later the 775 * first time through. 776 */ 777 if (hostno == -1 || !changes) 778 goto free_and_out; 779 780 sh = h->scsi_host; 781 /* Notify scsi mid layer of any removed devices */ 782 for (i = 0; i < nremoved; i++) { 783 struct scsi_device *sdev = 784 scsi_device_lookup(sh, removed[i]->bus, 785 removed[i]->target, removed[i]->lun); 786 if (sdev != NULL) { 787 scsi_remove_device(sdev); 788 scsi_device_put(sdev); 789 } else { 790 /* We don't expect to get here. 791 * future cmds to this device will get selection 792 * timeout as if the device was gone. 793 */ 794 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 795 " for removal.", hostno, removed[i]->bus, 796 removed[i]->target, removed[i]->lun); 797 } 798 kfree(removed[i]); 799 removed[i] = NULL; 800 } 801 802 /* Notify scsi mid layer of any added devices */ 803 for (i = 0; i < nadded; i++) { 804 if (scsi_add_device(sh, added[i]->bus, 805 added[i]->target, added[i]->lun) == 0) 806 continue; 807 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 808 "device not added.\n", hostno, added[i]->bus, 809 added[i]->target, added[i]->lun); 810 /* now we have to remove it from h->dev, 811 * since it didn't get added to scsi mid layer 812 */ 813 fixup_botched_add(h, added[i]); 814 } 815 816 free_and_out: 817 kfree(added); 818 kfree(removed); 819 } 820 821 /* 822 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 823 * Assume's h->devlock is held. 824 */ 825 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 826 int bus, int target, int lun) 827 { 828 int i; 829 struct hpsa_scsi_dev_t *sd; 830 831 for (i = 0; i < h->ndevices; i++) { 832 sd = h->dev[i]; 833 if (sd->bus == bus && sd->target == target && sd->lun == lun) 834 return sd; 835 } 836 return NULL; 837 } 838 839 /* link sdev->hostdata to our per-device structure. */ 840 static int hpsa_slave_alloc(struct scsi_device *sdev) 841 { 842 struct hpsa_scsi_dev_t *sd; 843 unsigned long flags; 844 struct ctlr_info *h; 845 846 h = sdev_to_hba(sdev); 847 spin_lock_irqsave(&h->devlock, flags); 848 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 849 sdev_id(sdev), sdev->lun); 850 if (sd != NULL) 851 sdev->hostdata = sd; 852 spin_unlock_irqrestore(&h->devlock, flags); 853 return 0; 854 } 855 856 static void hpsa_slave_destroy(struct scsi_device *sdev) 857 { 858 /* nothing to do. */ 859 } 860 861 static void hpsa_scsi_setup(struct ctlr_info *h) 862 { 863 h->ndevices = 0; 864 h->scsi_host = NULL; 865 spin_lock_init(&h->devlock); 866 } 867 868 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 869 { 870 int i; 871 872 if (!h->cmd_sg_list) 873 return; 874 for (i = 0; i < h->nr_cmds; i++) { 875 kfree(h->cmd_sg_list[i]); 876 h->cmd_sg_list[i] = NULL; 877 } 878 kfree(h->cmd_sg_list); 879 h->cmd_sg_list = NULL; 880 } 881 882 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 883 { 884 int i; 885 886 if (h->chainsize <= 0) 887 return 0; 888 889 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 890 GFP_KERNEL); 891 if (!h->cmd_sg_list) 892 return -ENOMEM; 893 for (i = 0; i < h->nr_cmds; i++) { 894 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 895 h->chainsize, GFP_KERNEL); 896 if (!h->cmd_sg_list[i]) 897 goto clean; 898 } 899 return 0; 900 901 clean: 902 hpsa_free_sg_chain_blocks(h); 903 return -ENOMEM; 904 } 905 906 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 907 struct CommandList *c) 908 { 909 struct SGDescriptor *chain_sg, *chain_block; 910 u64 temp64; 911 912 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 913 chain_block = h->cmd_sg_list[c->cmdindex]; 914 chain_sg->Ext = HPSA_SG_CHAIN; 915 chain_sg->Len = sizeof(*chain_sg) * 916 (c->Header.SGTotal - h->max_cmd_sg_entries); 917 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 918 PCI_DMA_TODEVICE); 919 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 920 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 921 } 922 923 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 924 struct CommandList *c) 925 { 926 struct SGDescriptor *chain_sg; 927 union u64bit temp64; 928 929 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 930 return; 931 932 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 933 temp64.val32.lower = chain_sg->Addr.lower; 934 temp64.val32.upper = chain_sg->Addr.upper; 935 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 936 } 937 938 static void complete_scsi_command(struct CommandList *cp, 939 int timeout, u32 tag) 940 { 941 struct scsi_cmnd *cmd; 942 struct ctlr_info *h; 943 struct ErrorInfo *ei; 944 945 unsigned char sense_key; 946 unsigned char asc; /* additional sense code */ 947 unsigned char ascq; /* additional sense code qualifier */ 948 949 ei = cp->err_info; 950 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 951 h = cp->h; 952 953 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 954 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 955 hpsa_unmap_sg_chain_block(h, cp); 956 957 cmd->result = (DID_OK << 16); /* host byte */ 958 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 959 cmd->result |= ei->ScsiStatus; 960 961 /* copy the sense data whether we need to or not. */ 962 memcpy(cmd->sense_buffer, ei->SenseInfo, 963 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 964 SCSI_SENSE_BUFFERSIZE : 965 ei->SenseLen); 966 scsi_set_resid(cmd, ei->ResidualCnt); 967 968 if (ei->CommandStatus == 0) { 969 cmd->scsi_done(cmd); 970 cmd_free(h, cp); 971 return; 972 } 973 974 /* an error has occurred */ 975 switch (ei->CommandStatus) { 976 977 case CMD_TARGET_STATUS: 978 if (ei->ScsiStatus) { 979 /* Get sense key */ 980 sense_key = 0xf & ei->SenseInfo[2]; 981 /* Get additional sense code */ 982 asc = ei->SenseInfo[12]; 983 /* Get addition sense code qualifier */ 984 ascq = ei->SenseInfo[13]; 985 } 986 987 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 988 if (check_for_unit_attention(h, cp)) { 989 cmd->result = DID_SOFT_ERROR << 16; 990 break; 991 } 992 if (sense_key == ILLEGAL_REQUEST) { 993 /* 994 * SCSI REPORT_LUNS is commonly unsupported on 995 * Smart Array. Suppress noisy complaint. 996 */ 997 if (cp->Request.CDB[0] == REPORT_LUNS) 998 break; 999 1000 /* If ASC/ASCQ indicate Logical Unit 1001 * Not Supported condition, 1002 */ 1003 if ((asc == 0x25) && (ascq == 0x0)) { 1004 dev_warn(&h->pdev->dev, "cp %p " 1005 "has check condition\n", cp); 1006 break; 1007 } 1008 } 1009 1010 if (sense_key == NOT_READY) { 1011 /* If Sense is Not Ready, Logical Unit 1012 * Not ready, Manual Intervention 1013 * required 1014 */ 1015 if ((asc == 0x04) && (ascq == 0x03)) { 1016 dev_warn(&h->pdev->dev, "cp %p " 1017 "has check condition: unit " 1018 "not ready, manual " 1019 "intervention required\n", cp); 1020 break; 1021 } 1022 } 1023 if (sense_key == ABORTED_COMMAND) { 1024 /* Aborted command is retryable */ 1025 dev_warn(&h->pdev->dev, "cp %p " 1026 "has check condition: aborted command: " 1027 "ASC: 0x%x, ASCQ: 0x%x\n", 1028 cp, asc, ascq); 1029 cmd->result = DID_SOFT_ERROR << 16; 1030 break; 1031 } 1032 /* Must be some other type of check condition */ 1033 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1034 "unknown type: " 1035 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1036 "Returning result: 0x%x, " 1037 "cmd=[%02x %02x %02x %02x %02x " 1038 "%02x %02x %02x %02x %02x %02x " 1039 "%02x %02x %02x %02x %02x]\n", 1040 cp, sense_key, asc, ascq, 1041 cmd->result, 1042 cmd->cmnd[0], cmd->cmnd[1], 1043 cmd->cmnd[2], cmd->cmnd[3], 1044 cmd->cmnd[4], cmd->cmnd[5], 1045 cmd->cmnd[6], cmd->cmnd[7], 1046 cmd->cmnd[8], cmd->cmnd[9], 1047 cmd->cmnd[10], cmd->cmnd[11], 1048 cmd->cmnd[12], cmd->cmnd[13], 1049 cmd->cmnd[14], cmd->cmnd[15]); 1050 break; 1051 } 1052 1053 1054 /* Problem was not a check condition 1055 * Pass it up to the upper layers... 1056 */ 1057 if (ei->ScsiStatus) { 1058 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1059 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1060 "Returning result: 0x%x\n", 1061 cp, ei->ScsiStatus, 1062 sense_key, asc, ascq, 1063 cmd->result); 1064 } else { /* scsi status is zero??? How??? */ 1065 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1066 "Returning no connection.\n", cp), 1067 1068 /* Ordinarily, this case should never happen, 1069 * but there is a bug in some released firmware 1070 * revisions that allows it to happen if, for 1071 * example, a 4100 backplane loses power and 1072 * the tape drive is in it. We assume that 1073 * it's a fatal error of some kind because we 1074 * can't show that it wasn't. We will make it 1075 * look like selection timeout since that is 1076 * the most common reason for this to occur, 1077 * and it's severe enough. 1078 */ 1079 1080 cmd->result = DID_NO_CONNECT << 16; 1081 } 1082 break; 1083 1084 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1085 break; 1086 case CMD_DATA_OVERRUN: 1087 dev_warn(&h->pdev->dev, "cp %p has" 1088 " completed with data overrun " 1089 "reported\n", cp); 1090 break; 1091 case CMD_INVALID: { 1092 /* print_bytes(cp, sizeof(*cp), 1, 0); 1093 print_cmd(cp); */ 1094 /* We get CMD_INVALID if you address a non-existent device 1095 * instead of a selection timeout (no response). You will 1096 * see this if you yank out a drive, then try to access it. 1097 * This is kind of a shame because it means that any other 1098 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1099 * missing target. */ 1100 cmd->result = DID_NO_CONNECT << 16; 1101 } 1102 break; 1103 case CMD_PROTOCOL_ERR: 1104 dev_warn(&h->pdev->dev, "cp %p has " 1105 "protocol error \n", cp); 1106 break; 1107 case CMD_HARDWARE_ERR: 1108 cmd->result = DID_ERROR << 16; 1109 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1110 break; 1111 case CMD_CONNECTION_LOST: 1112 cmd->result = DID_ERROR << 16; 1113 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1114 break; 1115 case CMD_ABORTED: 1116 cmd->result = DID_ABORT << 16; 1117 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1118 cp, ei->ScsiStatus); 1119 break; 1120 case CMD_ABORT_FAILED: 1121 cmd->result = DID_ERROR << 16; 1122 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1123 break; 1124 case CMD_UNSOLICITED_ABORT: 1125 cmd->result = DID_RESET << 16; 1126 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1127 "abort\n", cp); 1128 break; 1129 case CMD_TIMEOUT: 1130 cmd->result = DID_TIME_OUT << 16; 1131 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1132 break; 1133 default: 1134 cmd->result = DID_ERROR << 16; 1135 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1136 cp, ei->CommandStatus); 1137 } 1138 cmd->scsi_done(cmd); 1139 cmd_free(h, cp); 1140 } 1141 1142 static int hpsa_scsi_detect(struct ctlr_info *h) 1143 { 1144 struct Scsi_Host *sh; 1145 int error; 1146 1147 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1148 if (sh == NULL) 1149 goto fail; 1150 1151 sh->io_port = 0; 1152 sh->n_io_port = 0; 1153 sh->this_id = -1; 1154 sh->max_channel = 3; 1155 sh->max_cmd_len = MAX_COMMAND_SIZE; 1156 sh->max_lun = HPSA_MAX_LUN; 1157 sh->max_id = HPSA_MAX_LUN; 1158 sh->can_queue = h->nr_cmds; 1159 sh->cmd_per_lun = h->nr_cmds; 1160 sh->sg_tablesize = h->maxsgentries; 1161 h->scsi_host = sh; 1162 sh->hostdata[0] = (unsigned long) h; 1163 sh->irq = h->intr[PERF_MODE_INT]; 1164 sh->unique_id = sh->irq; 1165 error = scsi_add_host(sh, &h->pdev->dev); 1166 if (error) 1167 goto fail_host_put; 1168 scsi_scan_host(sh); 1169 return 0; 1170 1171 fail_host_put: 1172 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1173 " failed for controller %d\n", h->ctlr); 1174 scsi_host_put(sh); 1175 return error; 1176 fail: 1177 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1178 " failed for controller %d\n", h->ctlr); 1179 return -ENOMEM; 1180 } 1181 1182 static void hpsa_pci_unmap(struct pci_dev *pdev, 1183 struct CommandList *c, int sg_used, int data_direction) 1184 { 1185 int i; 1186 union u64bit addr64; 1187 1188 for (i = 0; i < sg_used; i++) { 1189 addr64.val32.lower = c->SG[i].Addr.lower; 1190 addr64.val32.upper = c->SG[i].Addr.upper; 1191 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1192 data_direction); 1193 } 1194 } 1195 1196 static void hpsa_map_one(struct pci_dev *pdev, 1197 struct CommandList *cp, 1198 unsigned char *buf, 1199 size_t buflen, 1200 int data_direction) 1201 { 1202 u64 addr64; 1203 1204 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1205 cp->Header.SGList = 0; 1206 cp->Header.SGTotal = 0; 1207 return; 1208 } 1209 1210 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1211 cp->SG[0].Addr.lower = 1212 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1213 cp->SG[0].Addr.upper = 1214 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1215 cp->SG[0].Len = buflen; 1216 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1217 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1218 } 1219 1220 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1221 struct CommandList *c) 1222 { 1223 DECLARE_COMPLETION_ONSTACK(wait); 1224 1225 c->waiting = &wait; 1226 enqueue_cmd_and_start_io(h, c); 1227 wait_for_completion(&wait); 1228 } 1229 1230 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1231 struct CommandList *c, int data_direction) 1232 { 1233 int retry_count = 0; 1234 1235 do { 1236 memset(c->err_info, 0, sizeof(c->err_info)); 1237 hpsa_scsi_do_simple_cmd_core(h, c); 1238 retry_count++; 1239 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1240 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1241 } 1242 1243 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1244 { 1245 struct ErrorInfo *ei; 1246 struct device *d = &cp->h->pdev->dev; 1247 1248 ei = cp->err_info; 1249 switch (ei->CommandStatus) { 1250 case CMD_TARGET_STATUS: 1251 dev_warn(d, "cmd %p has completed with errors\n", cp); 1252 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1253 ei->ScsiStatus); 1254 if (ei->ScsiStatus == 0) 1255 dev_warn(d, "SCSI status is abnormally zero. " 1256 "(probably indicates selection timeout " 1257 "reported incorrectly due to a known " 1258 "firmware bug, circa July, 2001.)\n"); 1259 break; 1260 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1261 dev_info(d, "UNDERRUN\n"); 1262 break; 1263 case CMD_DATA_OVERRUN: 1264 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1265 break; 1266 case CMD_INVALID: { 1267 /* controller unfortunately reports SCSI passthru's 1268 * to non-existent targets as invalid commands. 1269 */ 1270 dev_warn(d, "cp %p is reported invalid (probably means " 1271 "target device no longer present)\n", cp); 1272 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1273 print_cmd(cp); */ 1274 } 1275 break; 1276 case CMD_PROTOCOL_ERR: 1277 dev_warn(d, "cp %p has protocol error \n", cp); 1278 break; 1279 case CMD_HARDWARE_ERR: 1280 /* cmd->result = DID_ERROR << 16; */ 1281 dev_warn(d, "cp %p had hardware error\n", cp); 1282 break; 1283 case CMD_CONNECTION_LOST: 1284 dev_warn(d, "cp %p had connection lost\n", cp); 1285 break; 1286 case CMD_ABORTED: 1287 dev_warn(d, "cp %p was aborted\n", cp); 1288 break; 1289 case CMD_ABORT_FAILED: 1290 dev_warn(d, "cp %p reports abort failed\n", cp); 1291 break; 1292 case CMD_UNSOLICITED_ABORT: 1293 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1294 break; 1295 case CMD_TIMEOUT: 1296 dev_warn(d, "cp %p timed out\n", cp); 1297 break; 1298 default: 1299 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1300 ei->CommandStatus); 1301 } 1302 } 1303 1304 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1305 unsigned char page, unsigned char *buf, 1306 unsigned char bufsize) 1307 { 1308 int rc = IO_OK; 1309 struct CommandList *c; 1310 struct ErrorInfo *ei; 1311 1312 c = cmd_special_alloc(h); 1313 1314 if (c == NULL) { /* trouble... */ 1315 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1316 return -ENOMEM; 1317 } 1318 1319 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1320 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1321 ei = c->err_info; 1322 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1323 hpsa_scsi_interpret_error(c); 1324 rc = -1; 1325 } 1326 cmd_special_free(h, c); 1327 return rc; 1328 } 1329 1330 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1331 { 1332 int rc = IO_OK; 1333 struct CommandList *c; 1334 struct ErrorInfo *ei; 1335 1336 c = cmd_special_alloc(h); 1337 1338 if (c == NULL) { /* trouble... */ 1339 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1340 return -ENOMEM; 1341 } 1342 1343 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1344 hpsa_scsi_do_simple_cmd_core(h, c); 1345 /* no unmap needed here because no data xfer. */ 1346 1347 ei = c->err_info; 1348 if (ei->CommandStatus != 0) { 1349 hpsa_scsi_interpret_error(c); 1350 rc = -1; 1351 } 1352 cmd_special_free(h, c); 1353 return rc; 1354 } 1355 1356 static void hpsa_get_raid_level(struct ctlr_info *h, 1357 unsigned char *scsi3addr, unsigned char *raid_level) 1358 { 1359 int rc; 1360 unsigned char *buf; 1361 1362 *raid_level = RAID_UNKNOWN; 1363 buf = kzalloc(64, GFP_KERNEL); 1364 if (!buf) 1365 return; 1366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1367 if (rc == 0) 1368 *raid_level = buf[8]; 1369 if (*raid_level > RAID_UNKNOWN) 1370 *raid_level = RAID_UNKNOWN; 1371 kfree(buf); 1372 return; 1373 } 1374 1375 /* Get the device id from inquiry page 0x83 */ 1376 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1377 unsigned char *device_id, int buflen) 1378 { 1379 int rc; 1380 unsigned char *buf; 1381 1382 if (buflen > 16) 1383 buflen = 16; 1384 buf = kzalloc(64, GFP_KERNEL); 1385 if (!buf) 1386 return -1; 1387 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1388 if (rc == 0) 1389 memcpy(device_id, &buf[8], buflen); 1390 kfree(buf); 1391 return rc != 0; 1392 } 1393 1394 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1395 struct ReportLUNdata *buf, int bufsize, 1396 int extended_response) 1397 { 1398 int rc = IO_OK; 1399 struct CommandList *c; 1400 unsigned char scsi3addr[8]; 1401 struct ErrorInfo *ei; 1402 1403 c = cmd_special_alloc(h); 1404 if (c == NULL) { /* trouble... */ 1405 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1406 return -1; 1407 } 1408 /* address the controller */ 1409 memset(scsi3addr, 0, sizeof(scsi3addr)); 1410 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1411 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1412 if (extended_response) 1413 c->Request.CDB[1] = extended_response; 1414 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1415 ei = c->err_info; 1416 if (ei->CommandStatus != 0 && 1417 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1418 hpsa_scsi_interpret_error(c); 1419 rc = -1; 1420 } 1421 cmd_special_free(h, c); 1422 return rc; 1423 } 1424 1425 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1426 struct ReportLUNdata *buf, 1427 int bufsize, int extended_response) 1428 { 1429 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1430 } 1431 1432 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1433 struct ReportLUNdata *buf, int bufsize) 1434 { 1435 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1436 } 1437 1438 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1439 int bus, int target, int lun) 1440 { 1441 device->bus = bus; 1442 device->target = target; 1443 device->lun = lun; 1444 } 1445 1446 static int hpsa_update_device_info(struct ctlr_info *h, 1447 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1448 { 1449 #define OBDR_TAPE_INQ_SIZE 49 1450 unsigned char *inq_buff; 1451 1452 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1453 if (!inq_buff) 1454 goto bail_out; 1455 1456 /* Do an inquiry to the device to see what it is. */ 1457 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1458 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1459 /* Inquiry failed (msg printed already) */ 1460 dev_err(&h->pdev->dev, 1461 "hpsa_update_device_info: inquiry failed\n"); 1462 goto bail_out; 1463 } 1464 1465 this_device->devtype = (inq_buff[0] & 0x1f); 1466 memcpy(this_device->scsi3addr, scsi3addr, 8); 1467 memcpy(this_device->vendor, &inq_buff[8], 1468 sizeof(this_device->vendor)); 1469 memcpy(this_device->model, &inq_buff[16], 1470 sizeof(this_device->model)); 1471 memset(this_device->device_id, 0, 1472 sizeof(this_device->device_id)); 1473 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1474 sizeof(this_device->device_id)); 1475 1476 if (this_device->devtype == TYPE_DISK && 1477 is_logical_dev_addr_mode(scsi3addr)) 1478 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1479 else 1480 this_device->raid_level = RAID_UNKNOWN; 1481 1482 kfree(inq_buff); 1483 return 0; 1484 1485 bail_out: 1486 kfree(inq_buff); 1487 return 1; 1488 } 1489 1490 static unsigned char *msa2xxx_model[] = { 1491 "MSA2012", 1492 "MSA2024", 1493 "MSA2312", 1494 "MSA2324", 1495 NULL, 1496 }; 1497 1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1499 { 1500 int i; 1501 1502 for (i = 0; msa2xxx_model[i]; i++) 1503 if (strncmp(device->model, msa2xxx_model[i], 1504 strlen(msa2xxx_model[i])) == 0) 1505 return 1; 1506 return 0; 1507 } 1508 1509 /* Helper function to assign bus, target, lun mapping of devices. 1510 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1511 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1512 * Logical drive target and lun are assigned at this time, but 1513 * physical device lun and target assignment are deferred (assigned 1514 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1515 */ 1516 static void figure_bus_target_lun(struct ctlr_info *h, 1517 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1518 struct hpsa_scsi_dev_t *device) 1519 { 1520 u32 lunid; 1521 1522 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1523 /* logical device */ 1524 if (unlikely(is_scsi_rev_5(h))) { 1525 /* p1210m, logical drives lun assignments 1526 * match SCSI REPORT LUNS data. 1527 */ 1528 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1529 *bus = 0; 1530 *target = 0; 1531 *lun = (lunid & 0x3fff) + 1; 1532 } else { 1533 /* not p1210m... */ 1534 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1535 if (is_msa2xxx(h, device)) { 1536 /* msa2xxx way, put logicals on bus 1 1537 * and match target/lun numbers box 1538 * reports. 1539 */ 1540 *bus = 1; 1541 *target = (lunid >> 16) & 0x3fff; 1542 *lun = lunid & 0x00ff; 1543 } else { 1544 /* Traditional smart array way. */ 1545 *bus = 0; 1546 *lun = 0; 1547 *target = lunid & 0x3fff; 1548 } 1549 } 1550 } else { 1551 /* physical device */ 1552 if (is_hba_lunid(lunaddrbytes)) 1553 if (unlikely(is_scsi_rev_5(h))) { 1554 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1555 *target = 0; 1556 *lun = 0; 1557 return; 1558 } else 1559 *bus = 3; /* traditional smartarray */ 1560 else 1561 *bus = 2; /* physical disk */ 1562 *target = -1; 1563 *lun = -1; /* we will fill these in later. */ 1564 } 1565 } 1566 1567 /* 1568 * If there is no lun 0 on a target, linux won't find any devices. 1569 * For the MSA2xxx boxes, we have to manually detect the enclosure 1570 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1571 * it for some reason. *tmpdevice is the target we're adding, 1572 * this_device is a pointer into the current element of currentsd[] 1573 * that we're building up in update_scsi_devices(), below. 1574 * lunzerobits is a bitmap that tracks which targets already have a 1575 * lun 0 assigned. 1576 * Returns 1 if an enclosure was added, 0 if not. 1577 */ 1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1579 struct hpsa_scsi_dev_t *tmpdevice, 1580 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1581 int bus, int target, int lun, unsigned long lunzerobits[], 1582 int *nmsa2xxx_enclosures) 1583 { 1584 unsigned char scsi3addr[8]; 1585 1586 if (test_bit(target, lunzerobits)) 1587 return 0; /* There is already a lun 0 on this target. */ 1588 1589 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1590 return 0; /* It's the logical targets that may lack lun 0. */ 1591 1592 if (!is_msa2xxx(h, tmpdevice)) 1593 return 0; /* It's only the MSA2xxx that have this problem. */ 1594 1595 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1596 return 0; 1597 1598 if (is_hba_lunid(scsi3addr)) 1599 return 0; /* Don't add the RAID controller here. */ 1600 1601 if (is_scsi_rev_5(h)) 1602 return 0; /* p1210m doesn't need to do this. */ 1603 1604 #define MAX_MSA2XXX_ENCLOSURES 32 1605 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1606 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1607 "enclosures exceeded. Check your hardware " 1608 "configuration."); 1609 return 0; 1610 } 1611 1612 memset(scsi3addr, 0, 8); 1613 scsi3addr[3] = target; 1614 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1615 return 0; 1616 (*nmsa2xxx_enclosures)++; 1617 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1618 set_bit(target, lunzerobits); 1619 return 1; 1620 } 1621 1622 /* 1623 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1624 * logdev. The number of luns in physdev and logdev are returned in 1625 * *nphysicals and *nlogicals, respectively. 1626 * Returns 0 on success, -1 otherwise. 1627 */ 1628 static int hpsa_gather_lun_info(struct ctlr_info *h, 1629 int reportlunsize, 1630 struct ReportLUNdata *physdev, u32 *nphysicals, 1631 struct ReportLUNdata *logdev, u32 *nlogicals) 1632 { 1633 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1634 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1635 return -1; 1636 } 1637 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1638 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1639 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1640 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1641 *nphysicals - HPSA_MAX_PHYS_LUN); 1642 *nphysicals = HPSA_MAX_PHYS_LUN; 1643 } 1644 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1645 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1646 return -1; 1647 } 1648 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1649 /* Reject Logicals in excess of our max capability. */ 1650 if (*nlogicals > HPSA_MAX_LUN) { 1651 dev_warn(&h->pdev->dev, 1652 "maximum logical LUNs (%d) exceeded. " 1653 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1654 *nlogicals - HPSA_MAX_LUN); 1655 *nlogicals = HPSA_MAX_LUN; 1656 } 1657 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1658 dev_warn(&h->pdev->dev, 1659 "maximum logical + physical LUNs (%d) exceeded. " 1660 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1661 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1662 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1663 } 1664 return 0; 1665 } 1666 1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1668 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1669 struct ReportLUNdata *logdev_list) 1670 { 1671 /* Helper function, figure out where the LUN ID info is coming from 1672 * given index i, lists of physical and logical devices, where in 1673 * the list the raid controller is supposed to appear (first or last) 1674 */ 1675 1676 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1677 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1678 1679 if (i == raid_ctlr_position) 1680 return RAID_CTLR_LUNID; 1681 1682 if (i < logicals_start) 1683 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1684 1685 if (i < last_device) 1686 return &logdev_list->LUN[i - nphysicals - 1687 (raid_ctlr_position == 0)][0]; 1688 BUG(); 1689 return NULL; 1690 } 1691 1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1693 { 1694 /* the idea here is we could get notified 1695 * that some devices have changed, so we do a report 1696 * physical luns and report logical luns cmd, and adjust 1697 * our list of devices accordingly. 1698 * 1699 * The scsi3addr's of devices won't change so long as the 1700 * adapter is not reset. That means we can rescan and 1701 * tell which devices we already know about, vs. new 1702 * devices, vs. disappearing devices. 1703 */ 1704 struct ReportLUNdata *physdev_list = NULL; 1705 struct ReportLUNdata *logdev_list = NULL; 1706 unsigned char *inq_buff = NULL; 1707 u32 nphysicals = 0; 1708 u32 nlogicals = 0; 1709 u32 ndev_allocated = 0; 1710 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1711 int ncurrent = 0; 1712 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1713 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1714 int bus, target, lun; 1715 int raid_ctlr_position; 1716 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1717 1718 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1719 GFP_KERNEL); 1720 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1721 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1722 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1723 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1724 1725 if (!currentsd || !physdev_list || !logdev_list || 1726 !inq_buff || !tmpdevice) { 1727 dev_err(&h->pdev->dev, "out of memory\n"); 1728 goto out; 1729 } 1730 memset(lunzerobits, 0, sizeof(lunzerobits)); 1731 1732 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1733 logdev_list, &nlogicals)) 1734 goto out; 1735 1736 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1737 * but each of them 4 times through different paths. The plus 1 1738 * is for the RAID controller. 1739 */ 1740 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1741 1742 /* Allocate the per device structures */ 1743 for (i = 0; i < ndevs_to_allocate; i++) { 1744 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1745 if (!currentsd[i]) { 1746 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1747 __FILE__, __LINE__); 1748 goto out; 1749 } 1750 ndev_allocated++; 1751 } 1752 1753 if (unlikely(is_scsi_rev_5(h))) 1754 raid_ctlr_position = 0; 1755 else 1756 raid_ctlr_position = nphysicals + nlogicals; 1757 1758 /* adjust our table of devices */ 1759 nmsa2xxx_enclosures = 0; 1760 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1761 u8 *lunaddrbytes; 1762 1763 /* Figure out where the LUN ID info is coming from */ 1764 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1765 i, nphysicals, nlogicals, physdev_list, logdev_list); 1766 /* skip masked physical devices. */ 1767 if (lunaddrbytes[3] & 0xC0 && 1768 i < nphysicals + (raid_ctlr_position == 0)) 1769 continue; 1770 1771 /* Get device type, vendor, model, device id */ 1772 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1773 continue; /* skip it if we can't talk to it. */ 1774 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1775 tmpdevice); 1776 this_device = currentsd[ncurrent]; 1777 1778 /* 1779 * For the msa2xxx boxes, we have to insert a LUN 0 which 1780 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1781 * is nonetheless an enclosure device there. We have to 1782 * present that otherwise linux won't find anything if 1783 * there is no lun 0. 1784 */ 1785 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1786 lunaddrbytes, bus, target, lun, lunzerobits, 1787 &nmsa2xxx_enclosures)) { 1788 ncurrent++; 1789 this_device = currentsd[ncurrent]; 1790 } 1791 1792 *this_device = *tmpdevice; 1793 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1794 1795 switch (this_device->devtype) { 1796 case TYPE_ROM: { 1797 /* We don't *really* support actual CD-ROM devices, 1798 * just "One Button Disaster Recovery" tape drive 1799 * which temporarily pretends to be a CD-ROM drive. 1800 * So we check that the device is really an OBDR tape 1801 * device by checking for "$DR-10" in bytes 43-48 of 1802 * the inquiry data. 1803 */ 1804 char obdr_sig[7]; 1805 #define OBDR_TAPE_SIG "$DR-10" 1806 strncpy(obdr_sig, &inq_buff[43], 6); 1807 obdr_sig[6] = '\0'; 1808 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1809 /* Not OBDR device, ignore it. */ 1810 break; 1811 } 1812 ncurrent++; 1813 break; 1814 case TYPE_DISK: 1815 if (i < nphysicals) 1816 break; 1817 ncurrent++; 1818 break; 1819 case TYPE_TAPE: 1820 case TYPE_MEDIUM_CHANGER: 1821 ncurrent++; 1822 break; 1823 case TYPE_RAID: 1824 /* Only present the Smartarray HBA as a RAID controller. 1825 * If it's a RAID controller other than the HBA itself 1826 * (an external RAID controller, MSA500 or similar) 1827 * don't present it. 1828 */ 1829 if (!is_hba_lunid(lunaddrbytes)) 1830 break; 1831 ncurrent++; 1832 break; 1833 default: 1834 break; 1835 } 1836 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1837 break; 1838 } 1839 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1840 out: 1841 kfree(tmpdevice); 1842 for (i = 0; i < ndev_allocated; i++) 1843 kfree(currentsd[i]); 1844 kfree(currentsd); 1845 kfree(inq_buff); 1846 kfree(physdev_list); 1847 kfree(logdev_list); 1848 } 1849 1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1851 * dma mapping and fills in the scatter gather entries of the 1852 * hpsa command, cp. 1853 */ 1854 static int hpsa_scatter_gather(struct ctlr_info *h, 1855 struct CommandList *cp, 1856 struct scsi_cmnd *cmd) 1857 { 1858 unsigned int len; 1859 struct scatterlist *sg; 1860 u64 addr64; 1861 int use_sg, i, sg_index, chained; 1862 struct SGDescriptor *curr_sg; 1863 1864 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 1865 1866 use_sg = scsi_dma_map(cmd); 1867 if (use_sg < 0) 1868 return use_sg; 1869 1870 if (!use_sg) 1871 goto sglist_finished; 1872 1873 curr_sg = cp->SG; 1874 chained = 0; 1875 sg_index = 0; 1876 scsi_for_each_sg(cmd, sg, use_sg, i) { 1877 if (i == h->max_cmd_sg_entries - 1 && 1878 use_sg > h->max_cmd_sg_entries) { 1879 chained = 1; 1880 curr_sg = h->cmd_sg_list[cp->cmdindex]; 1881 sg_index = 0; 1882 } 1883 addr64 = (u64) sg_dma_address(sg); 1884 len = sg_dma_len(sg); 1885 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 1886 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 1887 curr_sg->Len = len; 1888 curr_sg->Ext = 0; /* we are not chaining */ 1889 curr_sg++; 1890 } 1891 1892 if (use_sg + chained > h->maxSG) 1893 h->maxSG = use_sg + chained; 1894 1895 if (chained) { 1896 cp->Header.SGList = h->max_cmd_sg_entries; 1897 cp->Header.SGTotal = (u16) (use_sg + 1); 1898 hpsa_map_sg_chain_block(h, cp); 1899 return 0; 1900 } 1901 1902 sglist_finished: 1903 1904 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 1905 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 1906 return 0; 1907 } 1908 1909 1910 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 1911 void (*done)(struct scsi_cmnd *)) 1912 { 1913 struct ctlr_info *h; 1914 struct hpsa_scsi_dev_t *dev; 1915 unsigned char scsi3addr[8]; 1916 struct CommandList *c; 1917 unsigned long flags; 1918 1919 /* Get the ptr to our adapter structure out of cmd->host. */ 1920 h = sdev_to_hba(cmd->device); 1921 dev = cmd->device->hostdata; 1922 if (!dev) { 1923 cmd->result = DID_NO_CONNECT << 16; 1924 done(cmd); 1925 return 0; 1926 } 1927 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 1928 1929 /* Need a lock as this is being allocated from the pool */ 1930 spin_lock_irqsave(&h->lock, flags); 1931 c = cmd_alloc(h); 1932 spin_unlock_irqrestore(&h->lock, flags); 1933 if (c == NULL) { /* trouble... */ 1934 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 1935 return SCSI_MLQUEUE_HOST_BUSY; 1936 } 1937 1938 /* Fill in the command list header */ 1939 1940 cmd->scsi_done = done; /* save this for use by completion code */ 1941 1942 /* save c in case we have to abort it */ 1943 cmd->host_scribble = (unsigned char *) c; 1944 1945 c->cmd_type = CMD_SCSI; 1946 c->scsi_cmd = cmd; 1947 c->Header.ReplyQueue = 0; /* unused in simple mode */ 1948 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 1949 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 1950 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 1951 1952 /* Fill in the request block... */ 1953 1954 c->Request.Timeout = 0; 1955 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 1956 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 1957 c->Request.CDBLen = cmd->cmd_len; 1958 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 1959 c->Request.Type.Type = TYPE_CMD; 1960 c->Request.Type.Attribute = ATTR_SIMPLE; 1961 switch (cmd->sc_data_direction) { 1962 case DMA_TO_DEVICE: 1963 c->Request.Type.Direction = XFER_WRITE; 1964 break; 1965 case DMA_FROM_DEVICE: 1966 c->Request.Type.Direction = XFER_READ; 1967 break; 1968 case DMA_NONE: 1969 c->Request.Type.Direction = XFER_NONE; 1970 break; 1971 case DMA_BIDIRECTIONAL: 1972 /* This can happen if a buggy application does a scsi passthru 1973 * and sets both inlen and outlen to non-zero. ( see 1974 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 1975 */ 1976 1977 c->Request.Type.Direction = XFER_RSVD; 1978 /* This is technically wrong, and hpsa controllers should 1979 * reject it with CMD_INVALID, which is the most correct 1980 * response, but non-fibre backends appear to let it 1981 * slide by, and give the same results as if this field 1982 * were set correctly. Either way is acceptable for 1983 * our purposes here. 1984 */ 1985 1986 break; 1987 1988 default: 1989 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 1990 cmd->sc_data_direction); 1991 BUG(); 1992 break; 1993 } 1994 1995 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 1996 cmd_free(h, c); 1997 return SCSI_MLQUEUE_HOST_BUSY; 1998 } 1999 enqueue_cmd_and_start_io(h, c); 2000 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2001 return 0; 2002 } 2003 2004 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2005 2006 static void hpsa_scan_start(struct Scsi_Host *sh) 2007 { 2008 struct ctlr_info *h = shost_to_hba(sh); 2009 unsigned long flags; 2010 2011 /* wait until any scan already in progress is finished. */ 2012 while (1) { 2013 spin_lock_irqsave(&h->scan_lock, flags); 2014 if (h->scan_finished) 2015 break; 2016 spin_unlock_irqrestore(&h->scan_lock, flags); 2017 wait_event(h->scan_wait_queue, h->scan_finished); 2018 /* Note: We don't need to worry about a race between this 2019 * thread and driver unload because the midlayer will 2020 * have incremented the reference count, so unload won't 2021 * happen if we're in here. 2022 */ 2023 } 2024 h->scan_finished = 0; /* mark scan as in progress */ 2025 spin_unlock_irqrestore(&h->scan_lock, flags); 2026 2027 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2028 2029 spin_lock_irqsave(&h->scan_lock, flags); 2030 h->scan_finished = 1; /* mark scan as finished. */ 2031 wake_up_all(&h->scan_wait_queue); 2032 spin_unlock_irqrestore(&h->scan_lock, flags); 2033 } 2034 2035 static int hpsa_scan_finished(struct Scsi_Host *sh, 2036 unsigned long elapsed_time) 2037 { 2038 struct ctlr_info *h = shost_to_hba(sh); 2039 unsigned long flags; 2040 int finished; 2041 2042 spin_lock_irqsave(&h->scan_lock, flags); 2043 finished = h->scan_finished; 2044 spin_unlock_irqrestore(&h->scan_lock, flags); 2045 return finished; 2046 } 2047 2048 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2049 int qdepth, int reason) 2050 { 2051 struct ctlr_info *h = sdev_to_hba(sdev); 2052 2053 if (reason != SCSI_QDEPTH_DEFAULT) 2054 return -ENOTSUPP; 2055 2056 if (qdepth < 1) 2057 qdepth = 1; 2058 else 2059 if (qdepth > h->nr_cmds) 2060 qdepth = h->nr_cmds; 2061 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2062 return sdev->queue_depth; 2063 } 2064 2065 static void hpsa_unregister_scsi(struct ctlr_info *h) 2066 { 2067 /* we are being forcibly unloaded, and may not refuse. */ 2068 scsi_remove_host(h->scsi_host); 2069 scsi_host_put(h->scsi_host); 2070 h->scsi_host = NULL; 2071 } 2072 2073 static int hpsa_register_scsi(struct ctlr_info *h) 2074 { 2075 int rc; 2076 2077 rc = hpsa_scsi_detect(h); 2078 if (rc != 0) 2079 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2080 " hpsa_scsi_detect(), rc is %d\n", rc); 2081 return rc; 2082 } 2083 2084 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2085 unsigned char lunaddr[]) 2086 { 2087 int rc = 0; 2088 int count = 0; 2089 int waittime = 1; /* seconds */ 2090 struct CommandList *c; 2091 2092 c = cmd_special_alloc(h); 2093 if (!c) { 2094 dev_warn(&h->pdev->dev, "out of memory in " 2095 "wait_for_device_to_become_ready.\n"); 2096 return IO_ERROR; 2097 } 2098 2099 /* Send test unit ready until device ready, or give up. */ 2100 while (count < HPSA_TUR_RETRY_LIMIT) { 2101 2102 /* Wait for a bit. do this first, because if we send 2103 * the TUR right away, the reset will just abort it. 2104 */ 2105 msleep(1000 * waittime); 2106 count++; 2107 2108 /* Increase wait time with each try, up to a point. */ 2109 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2110 waittime = waittime * 2; 2111 2112 /* Send the Test Unit Ready */ 2113 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2114 hpsa_scsi_do_simple_cmd_core(h, c); 2115 /* no unmap needed here because no data xfer. */ 2116 2117 if (c->err_info->CommandStatus == CMD_SUCCESS) 2118 break; 2119 2120 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2121 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2122 (c->err_info->SenseInfo[2] == NO_SENSE || 2123 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2124 break; 2125 2126 dev_warn(&h->pdev->dev, "waiting %d secs " 2127 "for device to become ready.\n", waittime); 2128 rc = 1; /* device not ready. */ 2129 } 2130 2131 if (rc) 2132 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2133 else 2134 dev_warn(&h->pdev->dev, "device is ready.\n"); 2135 2136 cmd_special_free(h, c); 2137 return rc; 2138 } 2139 2140 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2141 * complaining. Doing a host- or bus-reset can't do anything good here. 2142 */ 2143 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2144 { 2145 int rc; 2146 struct ctlr_info *h; 2147 struct hpsa_scsi_dev_t *dev; 2148 2149 /* find the controller to which the command to be aborted was sent */ 2150 h = sdev_to_hba(scsicmd->device); 2151 if (h == NULL) /* paranoia */ 2152 return FAILED; 2153 dev = scsicmd->device->hostdata; 2154 if (!dev) { 2155 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2156 "device lookup failed.\n"); 2157 return FAILED; 2158 } 2159 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2160 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2161 /* send a reset to the SCSI LUN which the command was sent to */ 2162 rc = hpsa_send_reset(h, dev->scsi3addr); 2163 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2164 return SUCCESS; 2165 2166 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2167 return FAILED; 2168 } 2169 2170 /* 2171 * For operations that cannot sleep, a command block is allocated at init, 2172 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2173 * which ones are free or in use. Lock must be held when calling this. 2174 * cmd_free() is the complement. 2175 */ 2176 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2177 { 2178 struct CommandList *c; 2179 int i; 2180 union u64bit temp64; 2181 dma_addr_t cmd_dma_handle, err_dma_handle; 2182 2183 do { 2184 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2185 if (i == h->nr_cmds) 2186 return NULL; 2187 } while (test_and_set_bit 2188 (i & (BITS_PER_LONG - 1), 2189 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2190 c = h->cmd_pool + i; 2191 memset(c, 0, sizeof(*c)); 2192 cmd_dma_handle = h->cmd_pool_dhandle 2193 + i * sizeof(*c); 2194 c->err_info = h->errinfo_pool + i; 2195 memset(c->err_info, 0, sizeof(*c->err_info)); 2196 err_dma_handle = h->errinfo_pool_dhandle 2197 + i * sizeof(*c->err_info); 2198 h->nr_allocs++; 2199 2200 c->cmdindex = i; 2201 2202 INIT_HLIST_NODE(&c->list); 2203 c->busaddr = (u32) cmd_dma_handle; 2204 temp64.val = (u64) err_dma_handle; 2205 c->ErrDesc.Addr.lower = temp64.val32.lower; 2206 c->ErrDesc.Addr.upper = temp64.val32.upper; 2207 c->ErrDesc.Len = sizeof(*c->err_info); 2208 2209 c->h = h; 2210 return c; 2211 } 2212 2213 /* For operations that can wait for kmalloc to possibly sleep, 2214 * this routine can be called. Lock need not be held to call 2215 * cmd_special_alloc. cmd_special_free() is the complement. 2216 */ 2217 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2218 { 2219 struct CommandList *c; 2220 union u64bit temp64; 2221 dma_addr_t cmd_dma_handle, err_dma_handle; 2222 2223 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2224 if (c == NULL) 2225 return NULL; 2226 memset(c, 0, sizeof(*c)); 2227 2228 c->cmdindex = -1; 2229 2230 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2231 &err_dma_handle); 2232 2233 if (c->err_info == NULL) { 2234 pci_free_consistent(h->pdev, 2235 sizeof(*c), c, cmd_dma_handle); 2236 return NULL; 2237 } 2238 memset(c->err_info, 0, sizeof(*c->err_info)); 2239 2240 INIT_HLIST_NODE(&c->list); 2241 c->busaddr = (u32) cmd_dma_handle; 2242 temp64.val = (u64) err_dma_handle; 2243 c->ErrDesc.Addr.lower = temp64.val32.lower; 2244 c->ErrDesc.Addr.upper = temp64.val32.upper; 2245 c->ErrDesc.Len = sizeof(*c->err_info); 2246 2247 c->h = h; 2248 return c; 2249 } 2250 2251 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2252 { 2253 int i; 2254 2255 i = c - h->cmd_pool; 2256 clear_bit(i & (BITS_PER_LONG - 1), 2257 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2258 h->nr_frees++; 2259 } 2260 2261 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2262 { 2263 union u64bit temp64; 2264 2265 temp64.val32.lower = c->ErrDesc.Addr.lower; 2266 temp64.val32.upper = c->ErrDesc.Addr.upper; 2267 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2268 c->err_info, (dma_addr_t) temp64.val); 2269 pci_free_consistent(h->pdev, sizeof(*c), 2270 c, (dma_addr_t) c->busaddr); 2271 } 2272 2273 #ifdef CONFIG_COMPAT 2274 2275 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2276 { 2277 IOCTL32_Command_struct __user *arg32 = 2278 (IOCTL32_Command_struct __user *) arg; 2279 IOCTL_Command_struct arg64; 2280 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2281 int err; 2282 u32 cp; 2283 2284 err = 0; 2285 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2286 sizeof(arg64.LUN_info)); 2287 err |= copy_from_user(&arg64.Request, &arg32->Request, 2288 sizeof(arg64.Request)); 2289 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2290 sizeof(arg64.error_info)); 2291 err |= get_user(arg64.buf_size, &arg32->buf_size); 2292 err |= get_user(cp, &arg32->buf); 2293 arg64.buf = compat_ptr(cp); 2294 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2295 2296 if (err) 2297 return -EFAULT; 2298 2299 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2300 if (err) 2301 return err; 2302 err |= copy_in_user(&arg32->error_info, &p->error_info, 2303 sizeof(arg32->error_info)); 2304 if (err) 2305 return -EFAULT; 2306 return err; 2307 } 2308 2309 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2310 int cmd, void *arg) 2311 { 2312 BIG_IOCTL32_Command_struct __user *arg32 = 2313 (BIG_IOCTL32_Command_struct __user *) arg; 2314 BIG_IOCTL_Command_struct arg64; 2315 BIG_IOCTL_Command_struct __user *p = 2316 compat_alloc_user_space(sizeof(arg64)); 2317 int err; 2318 u32 cp; 2319 2320 err = 0; 2321 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2322 sizeof(arg64.LUN_info)); 2323 err |= copy_from_user(&arg64.Request, &arg32->Request, 2324 sizeof(arg64.Request)); 2325 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2326 sizeof(arg64.error_info)); 2327 err |= get_user(arg64.buf_size, &arg32->buf_size); 2328 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2329 err |= get_user(cp, &arg32->buf); 2330 arg64.buf = compat_ptr(cp); 2331 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2332 2333 if (err) 2334 return -EFAULT; 2335 2336 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2337 if (err) 2338 return err; 2339 err |= copy_in_user(&arg32->error_info, &p->error_info, 2340 sizeof(arg32->error_info)); 2341 if (err) 2342 return -EFAULT; 2343 return err; 2344 } 2345 2346 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2347 { 2348 switch (cmd) { 2349 case CCISS_GETPCIINFO: 2350 case CCISS_GETINTINFO: 2351 case CCISS_SETINTINFO: 2352 case CCISS_GETNODENAME: 2353 case CCISS_SETNODENAME: 2354 case CCISS_GETHEARTBEAT: 2355 case CCISS_GETBUSTYPES: 2356 case CCISS_GETFIRMVER: 2357 case CCISS_GETDRIVVER: 2358 case CCISS_REVALIDVOLS: 2359 case CCISS_DEREGDISK: 2360 case CCISS_REGNEWDISK: 2361 case CCISS_REGNEWD: 2362 case CCISS_RESCANDISK: 2363 case CCISS_GETLUNINFO: 2364 return hpsa_ioctl(dev, cmd, arg); 2365 2366 case CCISS_PASSTHRU32: 2367 return hpsa_ioctl32_passthru(dev, cmd, arg); 2368 case CCISS_BIG_PASSTHRU32: 2369 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2370 2371 default: 2372 return -ENOIOCTLCMD; 2373 } 2374 } 2375 #endif 2376 2377 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2378 { 2379 struct hpsa_pci_info pciinfo; 2380 2381 if (!argp) 2382 return -EINVAL; 2383 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2384 pciinfo.bus = h->pdev->bus->number; 2385 pciinfo.dev_fn = h->pdev->devfn; 2386 pciinfo.board_id = h->board_id; 2387 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2388 return -EFAULT; 2389 return 0; 2390 } 2391 2392 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2393 { 2394 DriverVer_type DriverVer; 2395 unsigned char vmaj, vmin, vsubmin; 2396 int rc; 2397 2398 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2399 &vmaj, &vmin, &vsubmin); 2400 if (rc != 3) { 2401 dev_info(&h->pdev->dev, "driver version string '%s' " 2402 "unrecognized.", HPSA_DRIVER_VERSION); 2403 vmaj = 0; 2404 vmin = 0; 2405 vsubmin = 0; 2406 } 2407 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2408 if (!argp) 2409 return -EINVAL; 2410 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2411 return -EFAULT; 2412 return 0; 2413 } 2414 2415 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2416 { 2417 IOCTL_Command_struct iocommand; 2418 struct CommandList *c; 2419 char *buff = NULL; 2420 union u64bit temp64; 2421 2422 if (!argp) 2423 return -EINVAL; 2424 if (!capable(CAP_SYS_RAWIO)) 2425 return -EPERM; 2426 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2427 return -EFAULT; 2428 if ((iocommand.buf_size < 1) && 2429 (iocommand.Request.Type.Direction != XFER_NONE)) { 2430 return -EINVAL; 2431 } 2432 if (iocommand.buf_size > 0) { 2433 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2434 if (buff == NULL) 2435 return -EFAULT; 2436 } 2437 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2438 /* Copy the data into the buffer we created */ 2439 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { 2440 kfree(buff); 2441 return -EFAULT; 2442 } 2443 } else 2444 memset(buff, 0, iocommand.buf_size); 2445 c = cmd_special_alloc(h); 2446 if (c == NULL) { 2447 kfree(buff); 2448 return -ENOMEM; 2449 } 2450 /* Fill in the command type */ 2451 c->cmd_type = CMD_IOCTL_PEND; 2452 /* Fill in Command Header */ 2453 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2454 if (iocommand.buf_size > 0) { /* buffer to fill */ 2455 c->Header.SGList = 1; 2456 c->Header.SGTotal = 1; 2457 } else { /* no buffers to fill */ 2458 c->Header.SGList = 0; 2459 c->Header.SGTotal = 0; 2460 } 2461 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2462 /* use the kernel address the cmd block for tag */ 2463 c->Header.Tag.lower = c->busaddr; 2464 2465 /* Fill in Request block */ 2466 memcpy(&c->Request, &iocommand.Request, 2467 sizeof(c->Request)); 2468 2469 /* Fill in the scatter gather information */ 2470 if (iocommand.buf_size > 0) { 2471 temp64.val = pci_map_single(h->pdev, buff, 2472 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2473 c->SG[0].Addr.lower = temp64.val32.lower; 2474 c->SG[0].Addr.upper = temp64.val32.upper; 2475 c->SG[0].Len = iocommand.buf_size; 2476 c->SG[0].Ext = 0; /* we are not chaining*/ 2477 } 2478 hpsa_scsi_do_simple_cmd_core(h, c); 2479 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2480 check_ioctl_unit_attention(h, c); 2481 2482 /* Copy the error information out */ 2483 memcpy(&iocommand.error_info, c->err_info, 2484 sizeof(iocommand.error_info)); 2485 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2486 kfree(buff); 2487 cmd_special_free(h, c); 2488 return -EFAULT; 2489 } 2490 2491 if (iocommand.Request.Type.Direction == XFER_READ) { 2492 /* Copy the data out of the buffer we created */ 2493 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2494 kfree(buff); 2495 cmd_special_free(h, c); 2496 return -EFAULT; 2497 } 2498 } 2499 kfree(buff); 2500 cmd_special_free(h, c); 2501 return 0; 2502 } 2503 2504 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2505 { 2506 BIG_IOCTL_Command_struct *ioc; 2507 struct CommandList *c; 2508 unsigned char **buff = NULL; 2509 int *buff_size = NULL; 2510 union u64bit temp64; 2511 BYTE sg_used = 0; 2512 int status = 0; 2513 int i; 2514 u32 left; 2515 u32 sz; 2516 BYTE __user *data_ptr; 2517 2518 if (!argp) 2519 return -EINVAL; 2520 if (!capable(CAP_SYS_RAWIO)) 2521 return -EPERM; 2522 ioc = (BIG_IOCTL_Command_struct *) 2523 kmalloc(sizeof(*ioc), GFP_KERNEL); 2524 if (!ioc) { 2525 status = -ENOMEM; 2526 goto cleanup1; 2527 } 2528 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2529 status = -EFAULT; 2530 goto cleanup1; 2531 } 2532 if ((ioc->buf_size < 1) && 2533 (ioc->Request.Type.Direction != XFER_NONE)) { 2534 status = -EINVAL; 2535 goto cleanup1; 2536 } 2537 /* Check kmalloc limits using all SGs */ 2538 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2539 status = -EINVAL; 2540 goto cleanup1; 2541 } 2542 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2543 status = -EINVAL; 2544 goto cleanup1; 2545 } 2546 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2547 if (!buff) { 2548 status = -ENOMEM; 2549 goto cleanup1; 2550 } 2551 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2552 if (!buff_size) { 2553 status = -ENOMEM; 2554 goto cleanup1; 2555 } 2556 left = ioc->buf_size; 2557 data_ptr = ioc->buf; 2558 while (left) { 2559 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2560 buff_size[sg_used] = sz; 2561 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2562 if (buff[sg_used] == NULL) { 2563 status = -ENOMEM; 2564 goto cleanup1; 2565 } 2566 if (ioc->Request.Type.Direction == XFER_WRITE) { 2567 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2568 status = -ENOMEM; 2569 goto cleanup1; 2570 } 2571 } else 2572 memset(buff[sg_used], 0, sz); 2573 left -= sz; 2574 data_ptr += sz; 2575 sg_used++; 2576 } 2577 c = cmd_special_alloc(h); 2578 if (c == NULL) { 2579 status = -ENOMEM; 2580 goto cleanup1; 2581 } 2582 c->cmd_type = CMD_IOCTL_PEND; 2583 c->Header.ReplyQueue = 0; 2584 2585 if (ioc->buf_size > 0) { 2586 c->Header.SGList = sg_used; 2587 c->Header.SGTotal = sg_used; 2588 } else { 2589 c->Header.SGList = 0; 2590 c->Header.SGTotal = 0; 2591 } 2592 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2593 c->Header.Tag.lower = c->busaddr; 2594 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2595 if (ioc->buf_size > 0) { 2596 int i; 2597 for (i = 0; i < sg_used; i++) { 2598 temp64.val = pci_map_single(h->pdev, buff[i], 2599 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2600 c->SG[i].Addr.lower = temp64.val32.lower; 2601 c->SG[i].Addr.upper = temp64.val32.upper; 2602 c->SG[i].Len = buff_size[i]; 2603 /* we are not chaining */ 2604 c->SG[i].Ext = 0; 2605 } 2606 } 2607 hpsa_scsi_do_simple_cmd_core(h, c); 2608 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2609 check_ioctl_unit_attention(h, c); 2610 /* Copy the error information out */ 2611 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2612 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2613 cmd_special_free(h, c); 2614 status = -EFAULT; 2615 goto cleanup1; 2616 } 2617 if (ioc->Request.Type.Direction == XFER_READ) { 2618 /* Copy the data out of the buffer we created */ 2619 BYTE __user *ptr = ioc->buf; 2620 for (i = 0; i < sg_used; i++) { 2621 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2622 cmd_special_free(h, c); 2623 status = -EFAULT; 2624 goto cleanup1; 2625 } 2626 ptr += buff_size[i]; 2627 } 2628 } 2629 cmd_special_free(h, c); 2630 status = 0; 2631 cleanup1: 2632 if (buff) { 2633 for (i = 0; i < sg_used; i++) 2634 kfree(buff[i]); 2635 kfree(buff); 2636 } 2637 kfree(buff_size); 2638 kfree(ioc); 2639 return status; 2640 } 2641 2642 static void check_ioctl_unit_attention(struct ctlr_info *h, 2643 struct CommandList *c) 2644 { 2645 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2646 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2647 (void) check_for_unit_attention(h, c); 2648 } 2649 /* 2650 * ioctl 2651 */ 2652 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2653 { 2654 struct ctlr_info *h; 2655 void __user *argp = (void __user *)arg; 2656 2657 h = sdev_to_hba(dev); 2658 2659 switch (cmd) { 2660 case CCISS_DEREGDISK: 2661 case CCISS_REGNEWDISK: 2662 case CCISS_REGNEWD: 2663 hpsa_scan_start(h->scsi_host); 2664 return 0; 2665 case CCISS_GETPCIINFO: 2666 return hpsa_getpciinfo_ioctl(h, argp); 2667 case CCISS_GETDRIVVER: 2668 return hpsa_getdrivver_ioctl(h, argp); 2669 case CCISS_PASSTHRU: 2670 return hpsa_passthru_ioctl(h, argp); 2671 case CCISS_BIG_PASSTHRU: 2672 return hpsa_big_passthru_ioctl(h, argp); 2673 default: 2674 return -ENOTTY; 2675 } 2676 } 2677 2678 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2679 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2680 int cmd_type) 2681 { 2682 int pci_dir = XFER_NONE; 2683 2684 c->cmd_type = CMD_IOCTL_PEND; 2685 c->Header.ReplyQueue = 0; 2686 if (buff != NULL && size > 0) { 2687 c->Header.SGList = 1; 2688 c->Header.SGTotal = 1; 2689 } else { 2690 c->Header.SGList = 0; 2691 c->Header.SGTotal = 0; 2692 } 2693 c->Header.Tag.lower = c->busaddr; 2694 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2695 2696 c->Request.Type.Type = cmd_type; 2697 if (cmd_type == TYPE_CMD) { 2698 switch (cmd) { 2699 case HPSA_INQUIRY: 2700 /* are we trying to read a vital product page */ 2701 if (page_code != 0) { 2702 c->Request.CDB[1] = 0x01; 2703 c->Request.CDB[2] = page_code; 2704 } 2705 c->Request.CDBLen = 6; 2706 c->Request.Type.Attribute = ATTR_SIMPLE; 2707 c->Request.Type.Direction = XFER_READ; 2708 c->Request.Timeout = 0; 2709 c->Request.CDB[0] = HPSA_INQUIRY; 2710 c->Request.CDB[4] = size & 0xFF; 2711 break; 2712 case HPSA_REPORT_LOG: 2713 case HPSA_REPORT_PHYS: 2714 /* Talking to controller so It's a physical command 2715 mode = 00 target = 0. Nothing to write. 2716 */ 2717 c->Request.CDBLen = 12; 2718 c->Request.Type.Attribute = ATTR_SIMPLE; 2719 c->Request.Type.Direction = XFER_READ; 2720 c->Request.Timeout = 0; 2721 c->Request.CDB[0] = cmd; 2722 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2723 c->Request.CDB[7] = (size >> 16) & 0xFF; 2724 c->Request.CDB[8] = (size >> 8) & 0xFF; 2725 c->Request.CDB[9] = size & 0xFF; 2726 break; 2727 case HPSA_CACHE_FLUSH: 2728 c->Request.CDBLen = 12; 2729 c->Request.Type.Attribute = ATTR_SIMPLE; 2730 c->Request.Type.Direction = XFER_WRITE; 2731 c->Request.Timeout = 0; 2732 c->Request.CDB[0] = BMIC_WRITE; 2733 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2734 break; 2735 case TEST_UNIT_READY: 2736 c->Request.CDBLen = 6; 2737 c->Request.Type.Attribute = ATTR_SIMPLE; 2738 c->Request.Type.Direction = XFER_NONE; 2739 c->Request.Timeout = 0; 2740 break; 2741 default: 2742 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2743 BUG(); 2744 return; 2745 } 2746 } else if (cmd_type == TYPE_MSG) { 2747 switch (cmd) { 2748 2749 case HPSA_DEVICE_RESET_MSG: 2750 c->Request.CDBLen = 16; 2751 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2752 c->Request.Type.Attribute = ATTR_SIMPLE; 2753 c->Request.Type.Direction = XFER_NONE; 2754 c->Request.Timeout = 0; /* Don't time out */ 2755 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2756 c->Request.CDB[1] = 0x03; /* Reset target above */ 2757 /* If bytes 4-7 are zero, it means reset the */ 2758 /* LunID device */ 2759 c->Request.CDB[4] = 0x00; 2760 c->Request.CDB[5] = 0x00; 2761 c->Request.CDB[6] = 0x00; 2762 c->Request.CDB[7] = 0x00; 2763 break; 2764 2765 default: 2766 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2767 cmd); 2768 BUG(); 2769 } 2770 } else { 2771 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2772 BUG(); 2773 } 2774 2775 switch (c->Request.Type.Direction) { 2776 case XFER_READ: 2777 pci_dir = PCI_DMA_FROMDEVICE; 2778 break; 2779 case XFER_WRITE: 2780 pci_dir = PCI_DMA_TODEVICE; 2781 break; 2782 case XFER_NONE: 2783 pci_dir = PCI_DMA_NONE; 2784 break; 2785 default: 2786 pci_dir = PCI_DMA_BIDIRECTIONAL; 2787 } 2788 2789 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2790 2791 return; 2792 } 2793 2794 /* 2795 * Map (physical) PCI mem into (virtual) kernel space 2796 */ 2797 static void __iomem *remap_pci_mem(ulong base, ulong size) 2798 { 2799 ulong page_base = ((ulong) base) & PAGE_MASK; 2800 ulong page_offs = ((ulong) base) - page_base; 2801 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2802 2803 return page_remapped ? (page_remapped + page_offs) : NULL; 2804 } 2805 2806 /* Takes cmds off the submission queue and sends them to the hardware, 2807 * then puts them on the queue of cmds waiting for completion. 2808 */ 2809 static void start_io(struct ctlr_info *h) 2810 { 2811 struct CommandList *c; 2812 2813 while (!hlist_empty(&h->reqQ)) { 2814 c = hlist_entry(h->reqQ.first, struct CommandList, list); 2815 /* can't do anything if fifo is full */ 2816 if ((h->access.fifo_full(h))) { 2817 dev_warn(&h->pdev->dev, "fifo full\n"); 2818 break; 2819 } 2820 2821 /* Get the first entry from the Request Q */ 2822 removeQ(c); 2823 h->Qdepth--; 2824 2825 /* Tell the controller execute command */ 2826 h->access.submit_command(h, c); 2827 2828 /* Put job onto the completed Q */ 2829 addQ(&h->cmpQ, c); 2830 } 2831 } 2832 2833 static inline unsigned long get_next_completion(struct ctlr_info *h) 2834 { 2835 return h->access.command_completed(h); 2836 } 2837 2838 static inline bool interrupt_pending(struct ctlr_info *h) 2839 { 2840 return h->access.intr_pending(h); 2841 } 2842 2843 static inline long interrupt_not_for_us(struct ctlr_info *h) 2844 { 2845 return (h->access.intr_pending(h) == 0) || 2846 (h->interrupts_enabled == 0); 2847 } 2848 2849 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2850 u32 raw_tag) 2851 { 2852 if (unlikely(tag_index >= h->nr_cmds)) { 2853 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2854 return 1; 2855 } 2856 return 0; 2857 } 2858 2859 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2860 { 2861 removeQ(c); 2862 if (likely(c->cmd_type == CMD_SCSI)) 2863 complete_scsi_command(c, 0, raw_tag); 2864 else if (c->cmd_type == CMD_IOCTL_PEND) 2865 complete(c->waiting); 2866 } 2867 2868 static inline u32 hpsa_tag_contains_index(u32 tag) 2869 { 2870 #define DIRECT_LOOKUP_BIT 0x10 2871 return tag & DIRECT_LOOKUP_BIT; 2872 } 2873 2874 static inline u32 hpsa_tag_to_index(u32 tag) 2875 { 2876 #define DIRECT_LOOKUP_SHIFT 5 2877 return tag >> DIRECT_LOOKUP_SHIFT; 2878 } 2879 2880 static inline u32 hpsa_tag_discard_error_bits(u32 tag) 2881 { 2882 #define HPSA_ERROR_BITS 0x03 2883 return tag & ~HPSA_ERROR_BITS; 2884 } 2885 2886 /* process completion of an indexed ("direct lookup") command */ 2887 static inline u32 process_indexed_cmd(struct ctlr_info *h, 2888 u32 raw_tag) 2889 { 2890 u32 tag_index; 2891 struct CommandList *c; 2892 2893 tag_index = hpsa_tag_to_index(raw_tag); 2894 if (bad_tag(h, tag_index, raw_tag)) 2895 return next_command(h); 2896 c = h->cmd_pool + tag_index; 2897 finish_cmd(c, raw_tag); 2898 return next_command(h); 2899 } 2900 2901 /* process completion of a non-indexed command */ 2902 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 2903 u32 raw_tag) 2904 { 2905 u32 tag; 2906 struct CommandList *c = NULL; 2907 struct hlist_node *tmp; 2908 2909 tag = hpsa_tag_discard_error_bits(raw_tag); 2910 hlist_for_each_entry(c, tmp, &h->cmpQ, list) { 2911 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 2912 finish_cmd(c, raw_tag); 2913 return next_command(h); 2914 } 2915 } 2916 bad_tag(h, h->nr_cmds + 1, raw_tag); 2917 return next_command(h); 2918 } 2919 2920 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id) 2921 { 2922 struct ctlr_info *h = dev_id; 2923 unsigned long flags; 2924 u32 raw_tag; 2925 2926 if (interrupt_not_for_us(h)) 2927 return IRQ_NONE; 2928 spin_lock_irqsave(&h->lock, flags); 2929 while (interrupt_pending(h)) { 2930 raw_tag = get_next_completion(h); 2931 while (raw_tag != FIFO_EMPTY) { 2932 if (hpsa_tag_contains_index(raw_tag)) 2933 raw_tag = process_indexed_cmd(h, raw_tag); 2934 else 2935 raw_tag = process_nonindexed_cmd(h, raw_tag); 2936 } 2937 } 2938 spin_unlock_irqrestore(&h->lock, flags); 2939 return IRQ_HANDLED; 2940 } 2941 2942 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id) 2943 { 2944 struct ctlr_info *h = dev_id; 2945 unsigned long flags; 2946 u32 raw_tag; 2947 2948 spin_lock_irqsave(&h->lock, flags); 2949 raw_tag = get_next_completion(h); 2950 while (raw_tag != FIFO_EMPTY) { 2951 if (hpsa_tag_contains_index(raw_tag)) 2952 raw_tag = process_indexed_cmd(h, raw_tag); 2953 else 2954 raw_tag = process_nonindexed_cmd(h, raw_tag); 2955 } 2956 spin_unlock_irqrestore(&h->lock, flags); 2957 return IRQ_HANDLED; 2958 } 2959 2960 /* Send a message CDB to the firmware. */ 2961 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 2962 unsigned char type) 2963 { 2964 struct Command { 2965 struct CommandListHeader CommandHeader; 2966 struct RequestBlock Request; 2967 struct ErrDescriptor ErrorDescriptor; 2968 }; 2969 struct Command *cmd; 2970 static const size_t cmd_sz = sizeof(*cmd) + 2971 sizeof(cmd->ErrorDescriptor); 2972 dma_addr_t paddr64; 2973 uint32_t paddr32, tag; 2974 void __iomem *vaddr; 2975 int i, err; 2976 2977 vaddr = pci_ioremap_bar(pdev, 0); 2978 if (vaddr == NULL) 2979 return -ENOMEM; 2980 2981 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 2982 * CCISS commands, so they must be allocated from the lower 4GiB of 2983 * memory. 2984 */ 2985 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 2986 if (err) { 2987 iounmap(vaddr); 2988 return -ENOMEM; 2989 } 2990 2991 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 2992 if (cmd == NULL) { 2993 iounmap(vaddr); 2994 return -ENOMEM; 2995 } 2996 2997 /* This must fit, because of the 32-bit consistent DMA mask. Also, 2998 * although there's no guarantee, we assume that the address is at 2999 * least 4-byte aligned (most likely, it's page-aligned). 3000 */ 3001 paddr32 = paddr64; 3002 3003 cmd->CommandHeader.ReplyQueue = 0; 3004 cmd->CommandHeader.SGList = 0; 3005 cmd->CommandHeader.SGTotal = 0; 3006 cmd->CommandHeader.Tag.lower = paddr32; 3007 cmd->CommandHeader.Tag.upper = 0; 3008 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3009 3010 cmd->Request.CDBLen = 16; 3011 cmd->Request.Type.Type = TYPE_MSG; 3012 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3013 cmd->Request.Type.Direction = XFER_NONE; 3014 cmd->Request.Timeout = 0; /* Don't time out */ 3015 cmd->Request.CDB[0] = opcode; 3016 cmd->Request.CDB[1] = type; 3017 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3018 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3019 cmd->ErrorDescriptor.Addr.upper = 0; 3020 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3021 3022 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3023 3024 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3025 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3026 if (hpsa_tag_discard_error_bits(tag) == paddr32) 3027 break; 3028 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3029 } 3030 3031 iounmap(vaddr); 3032 3033 /* we leak the DMA buffer here ... no choice since the controller could 3034 * still complete the command. 3035 */ 3036 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3037 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3038 opcode, type); 3039 return -ETIMEDOUT; 3040 } 3041 3042 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3043 3044 if (tag & HPSA_ERROR_BIT) { 3045 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3046 opcode, type); 3047 return -EIO; 3048 } 3049 3050 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3051 opcode, type); 3052 return 0; 3053 } 3054 3055 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 3056 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3057 3058 static __devinit int hpsa_reset_msi(struct pci_dev *pdev) 3059 { 3060 /* the #defines are stolen from drivers/pci/msi.h. */ 3061 #define msi_control_reg(base) (base + PCI_MSI_FLAGS) 3062 #define PCI_MSIX_FLAGS_ENABLE (1 << 15) 3063 3064 int pos; 3065 u16 control = 0; 3066 3067 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); 3068 if (pos) { 3069 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3070 if (control & PCI_MSI_FLAGS_ENABLE) { 3071 dev_info(&pdev->dev, "resetting MSI\n"); 3072 pci_write_config_word(pdev, msi_control_reg(pos), 3073 control & ~PCI_MSI_FLAGS_ENABLE); 3074 } 3075 } 3076 3077 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 3078 if (pos) { 3079 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3080 if (control & PCI_MSIX_FLAGS_ENABLE) { 3081 dev_info(&pdev->dev, "resetting MSI-X\n"); 3082 pci_write_config_word(pdev, msi_control_reg(pos), 3083 control & ~PCI_MSIX_FLAGS_ENABLE); 3084 } 3085 } 3086 3087 return 0; 3088 } 3089 3090 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3091 void * __iomem vaddr, bool use_doorbell) 3092 { 3093 u16 pmcsr; 3094 int pos; 3095 3096 if (use_doorbell) { 3097 /* For everything after the P600, the PCI power state method 3098 * of resetting the controller doesn't work, so we have this 3099 * other way using the doorbell register. 3100 */ 3101 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3102 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL); 3103 msleep(1000); 3104 } else { /* Try to do it the PCI power state way */ 3105 3106 /* Quoting from the Open CISS Specification: "The Power 3107 * Management Control/Status Register (CSR) controls the power 3108 * state of the device. The normal operating state is D0, 3109 * CSR=00h. The software off state is D3, CSR=03h. To reset 3110 * the controller, place the interface device in D3 then to D0, 3111 * this causes a secondary PCI reset which will reset the 3112 * controller." */ 3113 3114 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3115 if (pos == 0) { 3116 dev_err(&pdev->dev, 3117 "hpsa_reset_controller: " 3118 "PCI PM not supported\n"); 3119 return -ENODEV; 3120 } 3121 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3122 /* enter the D3hot power management state */ 3123 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3124 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3125 pmcsr |= PCI_D3hot; 3126 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3127 3128 msleep(500); 3129 3130 /* enter the D0 power management state */ 3131 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3132 pmcsr |= PCI_D0; 3133 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3134 3135 msleep(500); 3136 } 3137 return 0; 3138 } 3139 3140 /* This does a hard reset of the controller using PCI power management 3141 * states or the using the doorbell register. 3142 */ 3143 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3144 { 3145 u16 saved_config_space[32]; 3146 u64 cfg_offset; 3147 u32 cfg_base_addr; 3148 u64 cfg_base_addr_index; 3149 void __iomem *vaddr; 3150 unsigned long paddr; 3151 u32 misc_fw_support, active_transport; 3152 int rc, i; 3153 struct CfgTable __iomem *cfgtable; 3154 bool use_doorbell; 3155 u32 board_id; 3156 3157 /* For controllers as old as the P600, this is very nearly 3158 * the same thing as 3159 * 3160 * pci_save_state(pci_dev); 3161 * pci_set_power_state(pci_dev, PCI_D3hot); 3162 * pci_set_power_state(pci_dev, PCI_D0); 3163 * pci_restore_state(pci_dev); 3164 * 3165 * but we can't use these nice canned kernel routines on 3166 * kexec, because they also check the MSI/MSI-X state in PCI 3167 * configuration space and do the wrong thing when it is 3168 * set/cleared. Also, the pci_save/restore_state functions 3169 * violate the ordering requirements for restoring the 3170 * configuration space from the CCISS document (see the 3171 * comment below). So we roll our own .... 3172 * 3173 * For controllers newer than the P600, the pci power state 3174 * method of resetting doesn't work so we have another way 3175 * using the doorbell register. 3176 */ 3177 3178 /* Exclude 640x boards. These are two pci devices in one slot 3179 * which share a battery backed cache module. One controls the 3180 * cache, the other accesses the cache through the one that controls 3181 * it. If we reset the one controlling the cache, the other will 3182 * likely not be happy. Just forbid resetting this conjoined mess. 3183 * The 640x isn't really supported by hpsa anyway. 3184 */ 3185 hpsa_lookup_board_id(pdev, &board_id); 3186 if (board_id == 0x409C0E11 || board_id == 0x409D0E11) 3187 return -ENOTSUPP; 3188 3189 for (i = 0; i < 32; i++) 3190 pci_read_config_word(pdev, 2*i, &saved_config_space[i]); 3191 3192 3193 /* find the first memory BAR, so we can find the cfg table */ 3194 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3195 if (rc) 3196 return rc; 3197 vaddr = remap_pci_mem(paddr, 0x250); 3198 if (!vaddr) 3199 return -ENOMEM; 3200 3201 /* find cfgtable in order to check if reset via doorbell is supported */ 3202 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3203 &cfg_base_addr_index, &cfg_offset); 3204 if (rc) 3205 goto unmap_vaddr; 3206 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3207 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3208 if (!cfgtable) { 3209 rc = -ENOMEM; 3210 goto unmap_vaddr; 3211 } 3212 3213 /* If reset via doorbell register is supported, use that. */ 3214 misc_fw_support = readl(&cfgtable->misc_fw_support); 3215 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3216 3217 /* The doorbell reset seems to cause lockups on some Smart 3218 * Arrays (e.g. P410, P410i, maybe others). Until this is 3219 * fixed or at least isolated, avoid the doorbell reset. 3220 */ 3221 use_doorbell = 0; 3222 3223 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3224 if (rc) 3225 goto unmap_cfgtable; 3226 3227 /* Restore the PCI configuration space. The Open CISS 3228 * Specification says, "Restore the PCI Configuration 3229 * Registers, offsets 00h through 60h. It is important to 3230 * restore the command register, 16-bits at offset 04h, 3231 * last. Do not restore the configuration status register, 3232 * 16-bits at offset 06h." Note that the offset is 2*i. 3233 */ 3234 for (i = 0; i < 32; i++) { 3235 if (i == 2 || i == 3) 3236 continue; 3237 pci_write_config_word(pdev, 2*i, saved_config_space[i]); 3238 } 3239 wmb(); 3240 pci_write_config_word(pdev, 4, saved_config_space[2]); 3241 3242 /* Some devices (notably the HP Smart Array 5i Controller) 3243 need a little pause here */ 3244 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3245 3246 /* Controller should be in simple mode at this point. If it's not, 3247 * It means we're on one of those controllers which doesn't support 3248 * the doorbell reset method and on which the PCI power management reset 3249 * method doesn't work (P800, for example.) 3250 * In those cases, pretend the reset worked and hope for the best. 3251 */ 3252 active_transport = readl(&cfgtable->TransportActive); 3253 if (active_transport & PERFORMANT_MODE) { 3254 dev_warn(&pdev->dev, "Unable to successfully reset controller," 3255 " proceeding anyway.\n"); 3256 rc = -ENOTSUPP; 3257 } 3258 3259 unmap_cfgtable: 3260 iounmap(cfgtable); 3261 3262 unmap_vaddr: 3263 iounmap(vaddr); 3264 return rc; 3265 } 3266 3267 /* 3268 * We cannot read the structure directly, for portability we must use 3269 * the io functions. 3270 * This is for debug only. 3271 */ 3272 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3273 { 3274 #ifdef HPSA_DEBUG 3275 int i; 3276 char temp_name[17]; 3277 3278 dev_info(dev, "Controller Configuration information\n"); 3279 dev_info(dev, "------------------------------------\n"); 3280 for (i = 0; i < 4; i++) 3281 temp_name[i] = readb(&(tb->Signature[i])); 3282 temp_name[4] = '\0'; 3283 dev_info(dev, " Signature = %s\n", temp_name); 3284 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3285 dev_info(dev, " Transport methods supported = 0x%x\n", 3286 readl(&(tb->TransportSupport))); 3287 dev_info(dev, " Transport methods active = 0x%x\n", 3288 readl(&(tb->TransportActive))); 3289 dev_info(dev, " Requested transport Method = 0x%x\n", 3290 readl(&(tb->HostWrite.TransportRequest))); 3291 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3292 readl(&(tb->HostWrite.CoalIntDelay))); 3293 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3294 readl(&(tb->HostWrite.CoalIntCount))); 3295 dev_info(dev, " Max outstanding commands = 0x%d\n", 3296 readl(&(tb->CmdsOutMax))); 3297 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3298 for (i = 0; i < 16; i++) 3299 temp_name[i] = readb(&(tb->ServerName[i])); 3300 temp_name[16] = '\0'; 3301 dev_info(dev, " Server Name = %s\n", temp_name); 3302 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3303 readl(&(tb->HeartBeat))); 3304 #endif /* HPSA_DEBUG */ 3305 } 3306 3307 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3308 { 3309 int i, offset, mem_type, bar_type; 3310 3311 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3312 return 0; 3313 offset = 0; 3314 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3315 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3316 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3317 offset += 4; 3318 else { 3319 mem_type = pci_resource_flags(pdev, i) & 3320 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3321 switch (mem_type) { 3322 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3323 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3324 offset += 4; /* 32 bit */ 3325 break; 3326 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3327 offset += 8; 3328 break; 3329 default: /* reserved in PCI 2.2 */ 3330 dev_warn(&pdev->dev, 3331 "base address is invalid\n"); 3332 return -1; 3333 break; 3334 } 3335 } 3336 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3337 return i + 1; 3338 } 3339 return -1; 3340 } 3341 3342 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3343 * controllers that are capable. If not, we use IO-APIC mode. 3344 */ 3345 3346 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3347 { 3348 #ifdef CONFIG_PCI_MSI 3349 int err; 3350 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3351 {0, 2}, {0, 3} 3352 }; 3353 3354 /* Some boards advertise MSI but don't really support it */ 3355 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3356 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3357 goto default_int_mode; 3358 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3359 dev_info(&h->pdev->dev, "MSIX\n"); 3360 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3361 if (!err) { 3362 h->intr[0] = hpsa_msix_entries[0].vector; 3363 h->intr[1] = hpsa_msix_entries[1].vector; 3364 h->intr[2] = hpsa_msix_entries[2].vector; 3365 h->intr[3] = hpsa_msix_entries[3].vector; 3366 h->msix_vector = 1; 3367 return; 3368 } 3369 if (err > 0) { 3370 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3371 "available\n", err); 3372 goto default_int_mode; 3373 } else { 3374 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3375 err); 3376 goto default_int_mode; 3377 } 3378 } 3379 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3380 dev_info(&h->pdev->dev, "MSI\n"); 3381 if (!pci_enable_msi(h->pdev)) 3382 h->msi_vector = 1; 3383 else 3384 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3385 } 3386 default_int_mode: 3387 #endif /* CONFIG_PCI_MSI */ 3388 /* if we get here we're going to use the default interrupt mode */ 3389 h->intr[PERF_MODE_INT] = h->pdev->irq; 3390 } 3391 3392 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3393 { 3394 int i; 3395 u32 subsystem_vendor_id, subsystem_device_id; 3396 3397 subsystem_vendor_id = pdev->subsystem_vendor; 3398 subsystem_device_id = pdev->subsystem_device; 3399 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3400 subsystem_vendor_id; 3401 3402 for (i = 0; i < ARRAY_SIZE(products); i++) 3403 if (*board_id == products[i].board_id) 3404 return i; 3405 3406 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 3407 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 3408 !hpsa_allow_any) { 3409 dev_warn(&pdev->dev, "unrecognized board ID: " 3410 "0x%08x, ignoring.\n", *board_id); 3411 return -ENODEV; 3412 } 3413 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 3414 } 3415 3416 static inline bool hpsa_board_disabled(struct pci_dev *pdev) 3417 { 3418 u16 command; 3419 3420 (void) pci_read_config_word(pdev, PCI_COMMAND, &command); 3421 return ((command & PCI_COMMAND_MEMORY) == 0); 3422 } 3423 3424 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 3425 unsigned long *memory_bar) 3426 { 3427 int i; 3428 3429 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 3430 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3431 /* addressing mode bits already removed */ 3432 *memory_bar = pci_resource_start(pdev, i); 3433 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 3434 *memory_bar); 3435 return 0; 3436 } 3437 dev_warn(&pdev->dev, "no memory BAR found\n"); 3438 return -ENODEV; 3439 } 3440 3441 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h) 3442 { 3443 int i; 3444 u32 scratchpad; 3445 3446 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { 3447 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 3448 if (scratchpad == HPSA_FIRMWARE_READY) 3449 return 0; 3450 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3451 } 3452 dev_warn(&h->pdev->dev, "board not ready, timed out.\n"); 3453 return -ENODEV; 3454 } 3455 3456 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 3457 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 3458 u64 *cfg_offset) 3459 { 3460 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 3461 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 3462 *cfg_base_addr &= (u32) 0x0000ffff; 3463 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 3464 if (*cfg_base_addr_index == -1) { 3465 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3466 return -ENODEV; 3467 } 3468 return 0; 3469 } 3470 3471 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 3472 { 3473 u64 cfg_offset; 3474 u32 cfg_base_addr; 3475 u64 cfg_base_addr_index; 3476 u32 trans_offset; 3477 int rc; 3478 3479 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 3480 &cfg_base_addr_index, &cfg_offset); 3481 if (rc) 3482 return rc; 3483 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 3484 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 3485 if (!h->cfgtable) 3486 return -ENOMEM; 3487 /* Find performant mode table. */ 3488 trans_offset = readl(&h->cfgtable->TransMethodOffset); 3489 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 3490 cfg_base_addr_index)+cfg_offset+trans_offset, 3491 sizeof(*h->transtable)); 3492 if (!h->transtable) 3493 return -ENOMEM; 3494 return 0; 3495 } 3496 3497 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 3498 { 3499 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3500 if (h->max_commands < 16) { 3501 dev_warn(&h->pdev->dev, "Controller reports " 3502 "max supported commands of %d, an obvious lie. " 3503 "Using 16. Ensure that firmware is up to date.\n", 3504 h->max_commands); 3505 h->max_commands = 16; 3506 } 3507 } 3508 3509 /* Interrogate the hardware for some limits: 3510 * max commands, max SG elements without chaining, and with chaining, 3511 * SG chain block size, etc. 3512 */ 3513 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 3514 { 3515 hpsa_get_max_perf_mode_cmds(h); 3516 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 3517 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 3518 /* 3519 * Limit in-command s/g elements to 32 save dma'able memory. 3520 * Howvever spec says if 0, use 31 3521 */ 3522 h->max_cmd_sg_entries = 31; 3523 if (h->maxsgentries > 512) { 3524 h->max_cmd_sg_entries = 32; 3525 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 3526 h->maxsgentries--; /* save one for chain pointer */ 3527 } else { 3528 h->maxsgentries = 31; /* default to traditional values */ 3529 h->chainsize = 0; 3530 } 3531 } 3532 3533 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 3534 { 3535 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3536 (readb(&h->cfgtable->Signature[1]) != 'I') || 3537 (readb(&h->cfgtable->Signature[2]) != 'S') || 3538 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3539 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 3540 return false; 3541 } 3542 return true; 3543 } 3544 3545 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3546 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 3547 { 3548 #ifdef CONFIG_X86 3549 u32 prefetch; 3550 3551 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3552 prefetch |= 0x100; 3553 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3554 #endif 3555 } 3556 3557 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 3558 * in a prefetch beyond physical memory. 3559 */ 3560 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 3561 { 3562 u32 dma_prefetch; 3563 3564 if (h->board_id != 0x3225103C) 3565 return; 3566 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3567 dma_prefetch |= 0x8000; 3568 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3569 } 3570 3571 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 3572 { 3573 int i; 3574 3575 /* under certain very rare conditions, this can take awhile. 3576 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3577 * as we enter this code.) 3578 */ 3579 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3580 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) 3581 break; 3582 /* delay and try again */ 3583 msleep(10); 3584 } 3585 } 3586 3587 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 3588 { 3589 u32 trans_support; 3590 3591 trans_support = readl(&(h->cfgtable->TransportSupport)); 3592 if (!(trans_support & SIMPLE_MODE)) 3593 return -ENOTSUPP; 3594 3595 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3596 /* Update the field, and then ring the doorbell */ 3597 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3598 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3599 hpsa_wait_for_mode_change_ack(h); 3600 print_cfg_table(&h->pdev->dev, h->cfgtable); 3601 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3602 dev_warn(&h->pdev->dev, 3603 "unable to get board into simple mode\n"); 3604 return -ENODEV; 3605 } 3606 return 0; 3607 } 3608 3609 static int __devinit hpsa_pci_init(struct ctlr_info *h) 3610 { 3611 int prod_index, err; 3612 3613 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 3614 if (prod_index < 0) 3615 return -ENODEV; 3616 h->product_name = products[prod_index].product_name; 3617 h->access = *(products[prod_index].access); 3618 3619 if (hpsa_board_disabled(h->pdev)) { 3620 dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); 3621 return -ENODEV; 3622 } 3623 err = pci_enable_device(h->pdev); 3624 if (err) { 3625 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 3626 return err; 3627 } 3628 3629 err = pci_request_regions(h->pdev, "hpsa"); 3630 if (err) { 3631 dev_err(&h->pdev->dev, 3632 "cannot obtain PCI resources, aborting\n"); 3633 return err; 3634 } 3635 hpsa_interrupt_mode(h); 3636 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 3637 if (err) 3638 goto err_out_free_res; 3639 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3640 if (!h->vaddr) { 3641 err = -ENOMEM; 3642 goto err_out_free_res; 3643 } 3644 err = hpsa_wait_for_board_ready(h); 3645 if (err) 3646 goto err_out_free_res; 3647 err = hpsa_find_cfgtables(h); 3648 if (err) 3649 goto err_out_free_res; 3650 hpsa_find_board_params(h); 3651 3652 if (!hpsa_CISS_signature_present(h)) { 3653 err = -ENODEV; 3654 goto err_out_free_res; 3655 } 3656 hpsa_enable_scsi_prefetch(h); 3657 hpsa_p600_dma_prefetch_quirk(h); 3658 err = hpsa_enter_simple_mode(h); 3659 if (err) 3660 goto err_out_free_res; 3661 return 0; 3662 3663 err_out_free_res: 3664 if (h->transtable) 3665 iounmap(h->transtable); 3666 if (h->cfgtable) 3667 iounmap(h->cfgtable); 3668 if (h->vaddr) 3669 iounmap(h->vaddr); 3670 /* 3671 * Deliberately omit pci_disable_device(): it does something nasty to 3672 * Smart Array controllers that pci_enable_device does not undo 3673 */ 3674 pci_release_regions(h->pdev); 3675 return err; 3676 } 3677 3678 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3679 { 3680 int rc; 3681 3682 #define HBA_INQUIRY_BYTE_COUNT 64 3683 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3684 if (!h->hba_inquiry_data) 3685 return; 3686 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3687 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3688 if (rc != 0) { 3689 kfree(h->hba_inquiry_data); 3690 h->hba_inquiry_data = NULL; 3691 } 3692 } 3693 3694 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 3695 { 3696 int rc, i; 3697 3698 if (!reset_devices) 3699 return 0; 3700 3701 /* Reset the controller with a PCI power-cycle or via doorbell */ 3702 rc = hpsa_kdump_hard_reset_controller(pdev); 3703 3704 /* -ENOTSUPP here means we cannot reset the controller 3705 * but it's already (and still) up and running in 3706 * "performant mode". Or, it might be 640x, which can't reset 3707 * due to concerns about shared bbwc between 6402/6404 pair. 3708 */ 3709 if (rc == -ENOTSUPP) 3710 return 0; /* just try to do the kdump anyhow. */ 3711 if (rc) 3712 return -ENODEV; 3713 if (hpsa_reset_msi(pdev)) 3714 return -ENODEV; 3715 3716 /* Now try to get the controller to respond to a no-op */ 3717 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3718 if (hpsa_noop(pdev) == 0) 3719 break; 3720 else 3721 dev_warn(&pdev->dev, "no-op failed%s\n", 3722 (i < 11 ? "; re-trying" : "")); 3723 } 3724 return 0; 3725 } 3726 3727 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3728 const struct pci_device_id *ent) 3729 { 3730 int dac, rc; 3731 struct ctlr_info *h; 3732 3733 if (number_of_controllers == 0) 3734 printk(KERN_INFO DRIVER_NAME "\n"); 3735 3736 rc = hpsa_init_reset_devices(pdev); 3737 if (rc) 3738 return rc; 3739 3740 /* Command structures must be aligned on a 32-byte boundary because 3741 * the 5 lower bits of the address are used by the hardware. and by 3742 * the driver. See comments in hpsa.h for more info. 3743 */ 3744 #define COMMANDLIST_ALIGNMENT 32 3745 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 3746 h = kzalloc(sizeof(*h), GFP_KERNEL); 3747 if (!h) 3748 return -ENOMEM; 3749 3750 h->pdev = pdev; 3751 h->busy_initializing = 1; 3752 INIT_HLIST_HEAD(&h->cmpQ); 3753 INIT_HLIST_HEAD(&h->reqQ); 3754 rc = hpsa_pci_init(h); 3755 if (rc != 0) 3756 goto clean1; 3757 3758 sprintf(h->devname, "hpsa%d", number_of_controllers); 3759 h->ctlr = number_of_controllers; 3760 number_of_controllers++; 3761 3762 /* configure PCI DMA stuff */ 3763 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 3764 if (rc == 0) { 3765 dac = 1; 3766 } else { 3767 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3768 if (rc == 0) { 3769 dac = 0; 3770 } else { 3771 dev_err(&pdev->dev, "no suitable DMA available\n"); 3772 goto clean1; 3773 } 3774 } 3775 3776 /* make sure the board interrupts are off */ 3777 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3778 3779 if (h->msix_vector || h->msi_vector) 3780 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi, 3781 IRQF_DISABLED, h->devname, h); 3782 else 3783 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx, 3784 IRQF_DISABLED, h->devname, h); 3785 if (rc) { 3786 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3787 h->intr[PERF_MODE_INT], h->devname); 3788 goto clean2; 3789 } 3790 3791 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 3792 h->devname, pdev->device, 3793 h->intr[PERF_MODE_INT], dac ? "" : " not"); 3794 3795 h->cmd_pool_bits = 3796 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3797 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3798 h->cmd_pool = pci_alloc_consistent(h->pdev, 3799 h->nr_cmds * sizeof(*h->cmd_pool), 3800 &(h->cmd_pool_dhandle)); 3801 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3802 h->nr_cmds * sizeof(*h->errinfo_pool), 3803 &(h->errinfo_pool_dhandle)); 3804 if ((h->cmd_pool_bits == NULL) 3805 || (h->cmd_pool == NULL) 3806 || (h->errinfo_pool == NULL)) { 3807 dev_err(&pdev->dev, "out of memory"); 3808 rc = -ENOMEM; 3809 goto clean4; 3810 } 3811 if (hpsa_allocate_sg_chain_blocks(h)) 3812 goto clean4; 3813 spin_lock_init(&h->lock); 3814 spin_lock_init(&h->scan_lock); 3815 init_waitqueue_head(&h->scan_wait_queue); 3816 h->scan_finished = 1; /* no scan currently in progress */ 3817 3818 pci_set_drvdata(pdev, h); 3819 memset(h->cmd_pool_bits, 0, 3820 ((h->nr_cmds + BITS_PER_LONG - 3821 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3822 3823 hpsa_scsi_setup(h); 3824 3825 /* Turn the interrupts on so we can service requests */ 3826 h->access.set_intr_mask(h, HPSA_INTR_ON); 3827 3828 hpsa_put_ctlr_into_performant_mode(h); 3829 hpsa_hba_inquiry(h); 3830 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3831 h->busy_initializing = 0; 3832 return 1; 3833 3834 clean4: 3835 hpsa_free_sg_chain_blocks(h); 3836 kfree(h->cmd_pool_bits); 3837 if (h->cmd_pool) 3838 pci_free_consistent(h->pdev, 3839 h->nr_cmds * sizeof(struct CommandList), 3840 h->cmd_pool, h->cmd_pool_dhandle); 3841 if (h->errinfo_pool) 3842 pci_free_consistent(h->pdev, 3843 h->nr_cmds * sizeof(struct ErrorInfo), 3844 h->errinfo_pool, 3845 h->errinfo_pool_dhandle); 3846 free_irq(h->intr[PERF_MODE_INT], h); 3847 clean2: 3848 clean1: 3849 h->busy_initializing = 0; 3850 kfree(h); 3851 return rc; 3852 } 3853 3854 static void hpsa_flush_cache(struct ctlr_info *h) 3855 { 3856 char *flush_buf; 3857 struct CommandList *c; 3858 3859 flush_buf = kzalloc(4, GFP_KERNEL); 3860 if (!flush_buf) 3861 return; 3862 3863 c = cmd_special_alloc(h); 3864 if (!c) { 3865 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3866 goto out_of_memory; 3867 } 3868 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3869 RAID_CTLR_LUNID, TYPE_CMD); 3870 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3871 if (c->err_info->CommandStatus != 0) 3872 dev_warn(&h->pdev->dev, 3873 "error flushing cache on controller\n"); 3874 cmd_special_free(h, c); 3875 out_of_memory: 3876 kfree(flush_buf); 3877 } 3878 3879 static void hpsa_shutdown(struct pci_dev *pdev) 3880 { 3881 struct ctlr_info *h; 3882 3883 h = pci_get_drvdata(pdev); 3884 /* Turn board interrupts off and send the flush cache command 3885 * sendcmd will turn off interrupt, and send the flush... 3886 * To write all data in the battery backed cache to disks 3887 */ 3888 hpsa_flush_cache(h); 3889 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3890 free_irq(h->intr[PERF_MODE_INT], h); 3891 #ifdef CONFIG_PCI_MSI 3892 if (h->msix_vector) 3893 pci_disable_msix(h->pdev); 3894 else if (h->msi_vector) 3895 pci_disable_msi(h->pdev); 3896 #endif /* CONFIG_PCI_MSI */ 3897 } 3898 3899 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3900 { 3901 struct ctlr_info *h; 3902 3903 if (pci_get_drvdata(pdev) == NULL) { 3904 dev_err(&pdev->dev, "unable to remove device \n"); 3905 return; 3906 } 3907 h = pci_get_drvdata(pdev); 3908 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3909 hpsa_shutdown(pdev); 3910 iounmap(h->vaddr); 3911 iounmap(h->transtable); 3912 iounmap(h->cfgtable); 3913 hpsa_free_sg_chain_blocks(h); 3914 pci_free_consistent(h->pdev, 3915 h->nr_cmds * sizeof(struct CommandList), 3916 h->cmd_pool, h->cmd_pool_dhandle); 3917 pci_free_consistent(h->pdev, 3918 h->nr_cmds * sizeof(struct ErrorInfo), 3919 h->errinfo_pool, h->errinfo_pool_dhandle); 3920 pci_free_consistent(h->pdev, h->reply_pool_size, 3921 h->reply_pool, h->reply_pool_dhandle); 3922 kfree(h->cmd_pool_bits); 3923 kfree(h->blockFetchTable); 3924 kfree(h->hba_inquiry_data); 3925 /* 3926 * Deliberately omit pci_disable_device(): it does something nasty to 3927 * Smart Array controllers that pci_enable_device does not undo 3928 */ 3929 pci_release_regions(pdev); 3930 pci_set_drvdata(pdev, NULL); 3931 kfree(h); 3932 } 3933 3934 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 3935 __attribute__((unused)) pm_message_t state) 3936 { 3937 return -ENOSYS; 3938 } 3939 3940 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 3941 { 3942 return -ENOSYS; 3943 } 3944 3945 static struct pci_driver hpsa_pci_driver = { 3946 .name = "hpsa", 3947 .probe = hpsa_init_one, 3948 .remove = __devexit_p(hpsa_remove_one), 3949 .id_table = hpsa_pci_device_id, /* id_table */ 3950 .shutdown = hpsa_shutdown, 3951 .suspend = hpsa_suspend, 3952 .resume = hpsa_resume, 3953 }; 3954 3955 /* Fill in bucket_map[], given nsgs (the max number of 3956 * scatter gather elements supported) and bucket[], 3957 * which is an array of 8 integers. The bucket[] array 3958 * contains 8 different DMA transfer sizes (in 16 3959 * byte increments) which the controller uses to fetch 3960 * commands. This function fills in bucket_map[], which 3961 * maps a given number of scatter gather elements to one of 3962 * the 8 DMA transfer sizes. The point of it is to allow the 3963 * controller to only do as much DMA as needed to fetch the 3964 * command, with the DMA transfer size encoded in the lower 3965 * bits of the command address. 3966 */ 3967 static void calc_bucket_map(int bucket[], int num_buckets, 3968 int nsgs, int *bucket_map) 3969 { 3970 int i, j, b, size; 3971 3972 /* even a command with 0 SGs requires 4 blocks */ 3973 #define MINIMUM_TRANSFER_BLOCKS 4 3974 #define NUM_BUCKETS 8 3975 /* Note, bucket_map must have nsgs+1 entries. */ 3976 for (i = 0; i <= nsgs; i++) { 3977 /* Compute size of a command with i SG entries */ 3978 size = i + MINIMUM_TRANSFER_BLOCKS; 3979 b = num_buckets; /* Assume the biggest bucket */ 3980 /* Find the bucket that is just big enough */ 3981 for (j = 0; j < 8; j++) { 3982 if (bucket[j] >= size) { 3983 b = j; 3984 break; 3985 } 3986 } 3987 /* for a command with i SG entries, use bucket b. */ 3988 bucket_map[i] = b; 3989 } 3990 } 3991 3992 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h) 3993 { 3994 int i; 3995 unsigned long register_value; 3996 3997 /* This is a bit complicated. There are 8 registers on 3998 * the controller which we write to to tell it 8 different 3999 * sizes of commands which there may be. It's a way of 4000 * reducing the DMA done to fetch each command. Encoded into 4001 * each command's tag are 3 bits which communicate to the controller 4002 * which of the eight sizes that command fits within. The size of 4003 * each command depends on how many scatter gather entries there are. 4004 * Each SG entry requires 16 bytes. The eight registers are programmed 4005 * with the number of 16-byte blocks a command of that size requires. 4006 * The smallest command possible requires 5 such 16 byte blocks. 4007 * the largest command possible requires MAXSGENTRIES + 4 16-byte 4008 * blocks. Note, this only extends to the SG entries contained 4009 * within the command block, and does not extend to chained blocks 4010 * of SG elements. bft[] contains the eight values we write to 4011 * the registers. They are not evenly distributed, but have more 4012 * sizes for small commands, and fewer sizes for larger commands. 4013 */ 4014 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; 4015 BUILD_BUG_ON(28 > MAXSGENTRIES + 4); 4016 /* 5 = 1 s/g entry or 4k 4017 * 6 = 2 s/g entry or 8k 4018 * 8 = 4 s/g entry or 16k 4019 * 10 = 6 s/g entry or 24k 4020 */ 4021 4022 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 4023 4024 /* Controller spec: zero out this buffer. */ 4025 memset(h->reply_pool, 0, h->reply_pool_size); 4026 h->reply_pool_head = h->reply_pool; 4027 4028 bft[7] = h->max_sg_entries + 4; 4029 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 4030 for (i = 0; i < 8; i++) 4031 writel(bft[i], &h->transtable->BlockFetch[i]); 4032 4033 /* size of controller ring buffer */ 4034 writel(h->max_commands, &h->transtable->RepQSize); 4035 writel(1, &h->transtable->RepQCount); 4036 writel(0, &h->transtable->RepQCtrAddrLow32); 4037 writel(0, &h->transtable->RepQCtrAddrHigh32); 4038 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 4039 writel(0, &h->transtable->RepQAddr0High32); 4040 writel(CFGTBL_Trans_Performant, 4041 &(h->cfgtable->HostWrite.TransportRequest)); 4042 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4043 hpsa_wait_for_mode_change_ack(h); 4044 register_value = readl(&(h->cfgtable->TransportActive)); 4045 if (!(register_value & CFGTBL_Trans_Performant)) { 4046 dev_warn(&h->pdev->dev, "unable to get board into" 4047 " performant mode\n"); 4048 return; 4049 } 4050 } 4051 4052 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 4053 { 4054 u32 trans_support; 4055 4056 trans_support = readl(&(h->cfgtable->TransportSupport)); 4057 if (!(trans_support & PERFORMANT_MODE)) 4058 return; 4059 4060 hpsa_get_max_perf_mode_cmds(h); 4061 h->max_sg_entries = 32; 4062 /* Performant mode ring buffer and supporting data structures */ 4063 h->reply_pool_size = h->max_commands * sizeof(u64); 4064 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 4065 &(h->reply_pool_dhandle)); 4066 4067 /* Need a block fetch table for performant mode */ 4068 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 4069 sizeof(u32)), GFP_KERNEL); 4070 4071 if ((h->reply_pool == NULL) 4072 || (h->blockFetchTable == NULL)) 4073 goto clean_up; 4074 4075 hpsa_enter_performant_mode(h); 4076 4077 /* Change the access methods to the performant access methods */ 4078 h->access = SA5_performant_access; 4079 h->transMethod = CFGTBL_Trans_Performant; 4080 4081 return; 4082 4083 clean_up: 4084 if (h->reply_pool) 4085 pci_free_consistent(h->pdev, h->reply_pool_size, 4086 h->reply_pool, h->reply_pool_dhandle); 4087 kfree(h->blockFetchTable); 4088 } 4089 4090 /* 4091 * This is it. Register the PCI driver information for the cards we control 4092 * the OS will call our registered routines when it finds one of our cards. 4093 */ 4094 static int __init hpsa_init(void) 4095 { 4096 return pci_register_driver(&hpsa_pci_driver); 4097 } 4098 4099 static void __exit hpsa_cleanup(void) 4100 { 4101 pci_unregister_driver(&hpsa_pci_driver); 4102 } 4103 4104 module_init(hpsa_init); 4105 module_exit(hpsa_cleanup); 4106