xref: /openbmc/linux/drivers/scsi/hpsa.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
93 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
94 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
95 	{0,}
96 };
97 
98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
99 
100 /*  board_id = Subsystem Device ID & Vendor ID
101  *  product = Marketing Name for the board
102  *  access = Address of the struct of function pointers
103  */
104 static struct board_type products[] = {
105 	{0x3241103C, "Smart Array P212", &SA5_access},
106 	{0x3243103C, "Smart Array P410", &SA5_access},
107 	{0x3245103C, "Smart Array P410i", &SA5_access},
108 	{0x3247103C, "Smart Array P411", &SA5_access},
109 	{0x3249103C, "Smart Array P812", &SA5_access},
110 	{0x324a103C, "Smart Array P712m", &SA5_access},
111 	{0x324b103C, "Smart Array P711m", &SA5_access},
112 	{0x3250103C, "Smart Array", &SA5_access},
113 	{0x3250113C, "Smart Array", &SA5_access},
114 	{0x3250123C, "Smart Array", &SA5_access},
115 	{0x3250133C, "Smart Array", &SA5_access},
116 	{0x3250143C, "Smart Array", &SA5_access},
117 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
118 };
119 
120 static int number_of_controllers;
121 
122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
125 static void start_io(struct ctlr_info *h);
126 
127 #ifdef CONFIG_COMPAT
128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 #endif
130 
131 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
133 static struct CommandList *cmd_alloc(struct ctlr_info *h);
134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
136 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
137 	int cmd_type);
138 
139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
140 static void hpsa_scan_start(struct Scsi_Host *);
141 static int hpsa_scan_finished(struct Scsi_Host *sh,
142 	unsigned long elapsed_time);
143 static int hpsa_change_queue_depth(struct scsi_device *sdev,
144 	int qdepth, int reason);
145 
146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
147 static int hpsa_slave_alloc(struct scsi_device *sdev);
148 static void hpsa_slave_destroy(struct scsi_device *sdev);
149 
150 static ssize_t raid_level_show(struct device *dev,
151 	struct device_attribute *attr, char *buf);
152 static ssize_t lunid_show(struct device *dev,
153 	struct device_attribute *attr, char *buf);
154 static ssize_t unique_id_show(struct device *dev,
155 	struct device_attribute *attr, char *buf);
156 static ssize_t host_show_firmware_revision(struct device *dev,
157 	     struct device_attribute *attr, char *buf);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static ssize_t host_store_rescan(struct device *dev,
160 	 struct device_attribute *attr, const char *buf, size_t count);
161 static int check_for_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 static void check_ioctl_unit_attention(struct ctlr_info *h,
164 	struct CommandList *c);
165 /* performant mode helper functions */
166 static void calc_bucket_map(int *bucket, int num_buckets,
167 	int nsgs, int *bucket_map);
168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
169 static inline u32 next_command(struct ctlr_info *h);
170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
171 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
172 	u64 *cfg_offset);
173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
174 	unsigned long *memory_bar);
175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
176 
177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
181 static DEVICE_ATTR(firmware_revision, S_IRUGO,
182 	host_show_firmware_revision, NULL);
183 
184 static struct device_attribute *hpsa_sdev_attrs[] = {
185 	&dev_attr_raid_level,
186 	&dev_attr_lunid,
187 	&dev_attr_unique_id,
188 	NULL,
189 };
190 
191 static struct device_attribute *hpsa_shost_attrs[] = {
192 	&dev_attr_rescan,
193 	&dev_attr_firmware_revision,
194 	NULL,
195 };
196 
197 static struct scsi_host_template hpsa_driver_template = {
198 	.module			= THIS_MODULE,
199 	.name			= "hpsa",
200 	.proc_name		= "hpsa",
201 	.queuecommand		= hpsa_scsi_queue_command,
202 	.scan_start		= hpsa_scan_start,
203 	.scan_finished		= hpsa_scan_finished,
204 	.change_queue_depth	= hpsa_change_queue_depth,
205 	.this_id		= -1,
206 	.use_clustering		= ENABLE_CLUSTERING,
207 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
208 	.ioctl			= hpsa_ioctl,
209 	.slave_alloc		= hpsa_slave_alloc,
210 	.slave_destroy		= hpsa_slave_destroy,
211 #ifdef CONFIG_COMPAT
212 	.compat_ioctl		= hpsa_compat_ioctl,
213 #endif
214 	.sdev_attrs = hpsa_sdev_attrs,
215 	.shost_attrs = hpsa_shost_attrs,
216 };
217 
218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
219 {
220 	unsigned long *priv = shost_priv(sdev->host);
221 	return (struct ctlr_info *) *priv;
222 }
223 
224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
225 {
226 	unsigned long *priv = shost_priv(sh);
227 	return (struct ctlr_info *) *priv;
228 }
229 
230 static int check_for_unit_attention(struct ctlr_info *h,
231 	struct CommandList *c)
232 {
233 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
234 		return 0;
235 
236 	switch (c->err_info->SenseInfo[12]) {
237 	case STATE_CHANGED:
238 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
239 			"detected, command retried\n", h->ctlr);
240 		break;
241 	case LUN_FAILED:
242 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
243 			"detected, action required\n", h->ctlr);
244 		break;
245 	case REPORT_LUNS_CHANGED:
246 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
247 			"changed, action required\n", h->ctlr);
248 	/*
249 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
250 	 */
251 		break;
252 	case POWER_OR_RESET:
253 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
254 			"or device reset detected\n", h->ctlr);
255 		break;
256 	case UNIT_ATTENTION_CLEARED:
257 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
258 		    "cleared by another initiator\n", h->ctlr);
259 		break;
260 	default:
261 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
262 			"unit attention detected\n", h->ctlr);
263 		break;
264 	}
265 	return 1;
266 }
267 
268 static ssize_t host_store_rescan(struct device *dev,
269 				 struct device_attribute *attr,
270 				 const char *buf, size_t count)
271 {
272 	struct ctlr_info *h;
273 	struct Scsi_Host *shost = class_to_shost(dev);
274 	h = shost_to_hba(shost);
275 	hpsa_scan_start(h->scsi_host);
276 	return count;
277 }
278 
279 static ssize_t host_show_firmware_revision(struct device *dev,
280 	     struct device_attribute *attr, char *buf)
281 {
282 	struct ctlr_info *h;
283 	struct Scsi_Host *shost = class_to_shost(dev);
284 	unsigned char *fwrev;
285 
286 	h = shost_to_hba(shost);
287 	if (!h->hba_inquiry_data)
288 		return 0;
289 	fwrev = &h->hba_inquiry_data[32];
290 	return snprintf(buf, 20, "%c%c%c%c\n",
291 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
292 }
293 
294 /* Enqueuing and dequeuing functions for cmdlists. */
295 static inline void addQ(struct hlist_head *list, struct CommandList *c)
296 {
297 	hlist_add_head(&c->list, list);
298 }
299 
300 static inline u32 next_command(struct ctlr_info *h)
301 {
302 	u32 a;
303 
304 	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
305 		return h->access.command_completed(h);
306 
307 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
308 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
309 		(h->reply_pool_head)++;
310 		h->commands_outstanding--;
311 	} else {
312 		a = FIFO_EMPTY;
313 	}
314 	/* Check for wraparound */
315 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
316 		h->reply_pool_head = h->reply_pool;
317 		h->reply_pool_wraparound ^= 1;
318 	}
319 	return a;
320 }
321 
322 /* set_performant_mode: Modify the tag for cciss performant
323  * set bit 0 for pull model, bits 3-1 for block fetch
324  * register number
325  */
326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
327 {
328 	if (likely(h->transMethod == CFGTBL_Trans_Performant))
329 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
330 }
331 
332 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
333 	struct CommandList *c)
334 {
335 	unsigned long flags;
336 
337 	set_performant_mode(h, c);
338 	spin_lock_irqsave(&h->lock, flags);
339 	addQ(&h->reqQ, c);
340 	h->Qdepth++;
341 	start_io(h);
342 	spin_unlock_irqrestore(&h->lock, flags);
343 }
344 
345 static inline void removeQ(struct CommandList *c)
346 {
347 	if (WARN_ON(hlist_unhashed(&c->list)))
348 		return;
349 	hlist_del_init(&c->list);
350 }
351 
352 static inline int is_hba_lunid(unsigned char scsi3addr[])
353 {
354 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
355 }
356 
357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
358 {
359 	return (scsi3addr[3] & 0xC0) == 0x40;
360 }
361 
362 static inline int is_scsi_rev_5(struct ctlr_info *h)
363 {
364 	if (!h->hba_inquiry_data)
365 		return 0;
366 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
367 		return 1;
368 	return 0;
369 }
370 
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372 	"UNKNOWN"
373 };
374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
375 
376 static ssize_t raid_level_show(struct device *dev,
377 	     struct device_attribute *attr, char *buf)
378 {
379 	ssize_t l = 0;
380 	unsigned char rlevel;
381 	struct ctlr_info *h;
382 	struct scsi_device *sdev;
383 	struct hpsa_scsi_dev_t *hdev;
384 	unsigned long flags;
385 
386 	sdev = to_scsi_device(dev);
387 	h = sdev_to_hba(sdev);
388 	spin_lock_irqsave(&h->lock, flags);
389 	hdev = sdev->hostdata;
390 	if (!hdev) {
391 		spin_unlock_irqrestore(&h->lock, flags);
392 		return -ENODEV;
393 	}
394 
395 	/* Is this even a logical drive? */
396 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
397 		spin_unlock_irqrestore(&h->lock, flags);
398 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
399 		return l;
400 	}
401 
402 	rlevel = hdev->raid_level;
403 	spin_unlock_irqrestore(&h->lock, flags);
404 	if (rlevel > RAID_UNKNOWN)
405 		rlevel = RAID_UNKNOWN;
406 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
407 	return l;
408 }
409 
410 static ssize_t lunid_show(struct device *dev,
411 	     struct device_attribute *attr, char *buf)
412 {
413 	struct ctlr_info *h;
414 	struct scsi_device *sdev;
415 	struct hpsa_scsi_dev_t *hdev;
416 	unsigned long flags;
417 	unsigned char lunid[8];
418 
419 	sdev = to_scsi_device(dev);
420 	h = sdev_to_hba(sdev);
421 	spin_lock_irqsave(&h->lock, flags);
422 	hdev = sdev->hostdata;
423 	if (!hdev) {
424 		spin_unlock_irqrestore(&h->lock, flags);
425 		return -ENODEV;
426 	}
427 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
428 	spin_unlock_irqrestore(&h->lock, flags);
429 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
430 		lunid[0], lunid[1], lunid[2], lunid[3],
431 		lunid[4], lunid[5], lunid[6], lunid[7]);
432 }
433 
434 static ssize_t unique_id_show(struct device *dev,
435 	     struct device_attribute *attr, char *buf)
436 {
437 	struct ctlr_info *h;
438 	struct scsi_device *sdev;
439 	struct hpsa_scsi_dev_t *hdev;
440 	unsigned long flags;
441 	unsigned char sn[16];
442 
443 	sdev = to_scsi_device(dev);
444 	h = sdev_to_hba(sdev);
445 	spin_lock_irqsave(&h->lock, flags);
446 	hdev = sdev->hostdata;
447 	if (!hdev) {
448 		spin_unlock_irqrestore(&h->lock, flags);
449 		return -ENODEV;
450 	}
451 	memcpy(sn, hdev->device_id, sizeof(sn));
452 	spin_unlock_irqrestore(&h->lock, flags);
453 	return snprintf(buf, 16 * 2 + 2,
454 			"%02X%02X%02X%02X%02X%02X%02X%02X"
455 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
456 			sn[0], sn[1], sn[2], sn[3],
457 			sn[4], sn[5], sn[6], sn[7],
458 			sn[8], sn[9], sn[10], sn[11],
459 			sn[12], sn[13], sn[14], sn[15]);
460 }
461 
462 static int hpsa_find_target_lun(struct ctlr_info *h,
463 	unsigned char scsi3addr[], int bus, int *target, int *lun)
464 {
465 	/* finds an unused bus, target, lun for a new physical device
466 	 * assumes h->devlock is held
467 	 */
468 	int i, found = 0;
469 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
470 
471 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
472 
473 	for (i = 0; i < h->ndevices; i++) {
474 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
475 			set_bit(h->dev[i]->target, lun_taken);
476 	}
477 
478 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
479 		if (!test_bit(i, lun_taken)) {
480 			/* *bus = 1; */
481 			*target = i;
482 			*lun = 0;
483 			found = 1;
484 			break;
485 		}
486 	}
487 	return !found;
488 }
489 
490 /* Add an entry into h->dev[] array. */
491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
492 		struct hpsa_scsi_dev_t *device,
493 		struct hpsa_scsi_dev_t *added[], int *nadded)
494 {
495 	/* assumes h->devlock is held */
496 	int n = h->ndevices;
497 	int i;
498 	unsigned char addr1[8], addr2[8];
499 	struct hpsa_scsi_dev_t *sd;
500 
501 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
502 		dev_err(&h->pdev->dev, "too many devices, some will be "
503 			"inaccessible.\n");
504 		return -1;
505 	}
506 
507 	/* physical devices do not have lun or target assigned until now. */
508 	if (device->lun != -1)
509 		/* Logical device, lun is already assigned. */
510 		goto lun_assigned;
511 
512 	/* If this device a non-zero lun of a multi-lun device
513 	 * byte 4 of the 8-byte LUN addr will contain the logical
514 	 * unit no, zero otherise.
515 	 */
516 	if (device->scsi3addr[4] == 0) {
517 		/* This is not a non-zero lun of a multi-lun device */
518 		if (hpsa_find_target_lun(h, device->scsi3addr,
519 			device->bus, &device->target, &device->lun) != 0)
520 			return -1;
521 		goto lun_assigned;
522 	}
523 
524 	/* This is a non-zero lun of a multi-lun device.
525 	 * Search through our list and find the device which
526 	 * has the same 8 byte LUN address, excepting byte 4.
527 	 * Assign the same bus and target for this new LUN.
528 	 * Use the logical unit number from the firmware.
529 	 */
530 	memcpy(addr1, device->scsi3addr, 8);
531 	addr1[4] = 0;
532 	for (i = 0; i < n; i++) {
533 		sd = h->dev[i];
534 		memcpy(addr2, sd->scsi3addr, 8);
535 		addr2[4] = 0;
536 		/* differ only in byte 4? */
537 		if (memcmp(addr1, addr2, 8) == 0) {
538 			device->bus = sd->bus;
539 			device->target = sd->target;
540 			device->lun = device->scsi3addr[4];
541 			break;
542 		}
543 	}
544 	if (device->lun == -1) {
545 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
546 			" suspect firmware bug or unsupported hardware "
547 			"configuration.\n");
548 			return -1;
549 	}
550 
551 lun_assigned:
552 
553 	h->dev[n] = device;
554 	h->ndevices++;
555 	added[*nadded] = device;
556 	(*nadded)++;
557 
558 	/* initially, (before registering with scsi layer) we don't
559 	 * know our hostno and we don't want to print anything first
560 	 * time anyway (the scsi layer's inquiries will show that info)
561 	 */
562 	/* if (hostno != -1) */
563 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
564 			scsi_device_type(device->devtype), hostno,
565 			device->bus, device->target, device->lun);
566 	return 0;
567 }
568 
569 /* Replace an entry from h->dev[] array. */
570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
571 	int entry, struct hpsa_scsi_dev_t *new_entry,
572 	struct hpsa_scsi_dev_t *added[], int *nadded,
573 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
574 {
575 	/* assumes h->devlock is held */
576 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
577 	removed[*nremoved] = h->dev[entry];
578 	(*nremoved)++;
579 	h->dev[entry] = new_entry;
580 	added[*nadded] = new_entry;
581 	(*nadded)++;
582 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
583 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
584 			new_entry->target, new_entry->lun);
585 }
586 
587 /* Remove an entry from h->dev[] array. */
588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
589 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
590 {
591 	/* assumes h->devlock is held */
592 	int i;
593 	struct hpsa_scsi_dev_t *sd;
594 
595 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
596 
597 	sd = h->dev[entry];
598 	removed[*nremoved] = h->dev[entry];
599 	(*nremoved)++;
600 
601 	for (i = entry; i < h->ndevices-1; i++)
602 		h->dev[i] = h->dev[i+1];
603 	h->ndevices--;
604 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
605 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
606 		sd->lun);
607 }
608 
609 #define SCSI3ADDR_EQ(a, b) ( \
610 	(a)[7] == (b)[7] && \
611 	(a)[6] == (b)[6] && \
612 	(a)[5] == (b)[5] && \
613 	(a)[4] == (b)[4] && \
614 	(a)[3] == (b)[3] && \
615 	(a)[2] == (b)[2] && \
616 	(a)[1] == (b)[1] && \
617 	(a)[0] == (b)[0])
618 
619 static void fixup_botched_add(struct ctlr_info *h,
620 	struct hpsa_scsi_dev_t *added)
621 {
622 	/* called when scsi_add_device fails in order to re-adjust
623 	 * h->dev[] to match the mid layer's view.
624 	 */
625 	unsigned long flags;
626 	int i, j;
627 
628 	spin_lock_irqsave(&h->lock, flags);
629 	for (i = 0; i < h->ndevices; i++) {
630 		if (h->dev[i] == added) {
631 			for (j = i; j < h->ndevices-1; j++)
632 				h->dev[j] = h->dev[j+1];
633 			h->ndevices--;
634 			break;
635 		}
636 	}
637 	spin_unlock_irqrestore(&h->lock, flags);
638 	kfree(added);
639 }
640 
641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
642 	struct hpsa_scsi_dev_t *dev2)
643 {
644 	/* we compare everything except lun and target as these
645 	 * are not yet assigned.  Compare parts likely
646 	 * to differ first
647 	 */
648 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
649 		sizeof(dev1->scsi3addr)) != 0)
650 		return 0;
651 	if (memcmp(dev1->device_id, dev2->device_id,
652 		sizeof(dev1->device_id)) != 0)
653 		return 0;
654 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
655 		return 0;
656 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
657 		return 0;
658 	if (dev1->devtype != dev2->devtype)
659 		return 0;
660 	if (dev1->bus != dev2->bus)
661 		return 0;
662 	return 1;
663 }
664 
665 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
666  * and return needle location in *index.  If scsi3addr matches, but not
667  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
668  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
669  */
670 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
671 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
672 	int *index)
673 {
674 	int i;
675 #define DEVICE_NOT_FOUND 0
676 #define DEVICE_CHANGED 1
677 #define DEVICE_SAME 2
678 	for (i = 0; i < haystack_size; i++) {
679 		if (haystack[i] == NULL) /* previously removed. */
680 			continue;
681 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
682 			*index = i;
683 			if (device_is_the_same(needle, haystack[i]))
684 				return DEVICE_SAME;
685 			else
686 				return DEVICE_CHANGED;
687 		}
688 	}
689 	*index = -1;
690 	return DEVICE_NOT_FOUND;
691 }
692 
693 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
694 	struct hpsa_scsi_dev_t *sd[], int nsds)
695 {
696 	/* sd contains scsi3 addresses and devtypes, and inquiry
697 	 * data.  This function takes what's in sd to be the current
698 	 * reality and updates h->dev[] to reflect that reality.
699 	 */
700 	int i, entry, device_change, changes = 0;
701 	struct hpsa_scsi_dev_t *csd;
702 	unsigned long flags;
703 	struct hpsa_scsi_dev_t **added, **removed;
704 	int nadded, nremoved;
705 	struct Scsi_Host *sh = NULL;
706 
707 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
708 		GFP_KERNEL);
709 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
710 		GFP_KERNEL);
711 
712 	if (!added || !removed) {
713 		dev_warn(&h->pdev->dev, "out of memory in "
714 			"adjust_hpsa_scsi_table\n");
715 		goto free_and_out;
716 	}
717 
718 	spin_lock_irqsave(&h->devlock, flags);
719 
720 	/* find any devices in h->dev[] that are not in
721 	 * sd[] and remove them from h->dev[], and for any
722 	 * devices which have changed, remove the old device
723 	 * info and add the new device info.
724 	 */
725 	i = 0;
726 	nremoved = 0;
727 	nadded = 0;
728 	while (i < h->ndevices) {
729 		csd = h->dev[i];
730 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
731 		if (device_change == DEVICE_NOT_FOUND) {
732 			changes++;
733 			hpsa_scsi_remove_entry(h, hostno, i,
734 				removed, &nremoved);
735 			continue; /* remove ^^^, hence i not incremented */
736 		} else if (device_change == DEVICE_CHANGED) {
737 			changes++;
738 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
739 				added, &nadded, removed, &nremoved);
740 			/* Set it to NULL to prevent it from being freed
741 			 * at the bottom of hpsa_update_scsi_devices()
742 			 */
743 			sd[entry] = NULL;
744 		}
745 		i++;
746 	}
747 
748 	/* Now, make sure every device listed in sd[] is also
749 	 * listed in h->dev[], adding them if they aren't found
750 	 */
751 
752 	for (i = 0; i < nsds; i++) {
753 		if (!sd[i]) /* if already added above. */
754 			continue;
755 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
756 					h->ndevices, &entry);
757 		if (device_change == DEVICE_NOT_FOUND) {
758 			changes++;
759 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
760 				added, &nadded) != 0)
761 				break;
762 			sd[i] = NULL; /* prevent from being freed later. */
763 		} else if (device_change == DEVICE_CHANGED) {
764 			/* should never happen... */
765 			changes++;
766 			dev_warn(&h->pdev->dev,
767 				"device unexpectedly changed.\n");
768 			/* but if it does happen, we just ignore that device */
769 		}
770 	}
771 	spin_unlock_irqrestore(&h->devlock, flags);
772 
773 	/* Don't notify scsi mid layer of any changes the first time through
774 	 * (or if there are no changes) scsi_scan_host will do it later the
775 	 * first time through.
776 	 */
777 	if (hostno == -1 || !changes)
778 		goto free_and_out;
779 
780 	sh = h->scsi_host;
781 	/* Notify scsi mid layer of any removed devices */
782 	for (i = 0; i < nremoved; i++) {
783 		struct scsi_device *sdev =
784 			scsi_device_lookup(sh, removed[i]->bus,
785 				removed[i]->target, removed[i]->lun);
786 		if (sdev != NULL) {
787 			scsi_remove_device(sdev);
788 			scsi_device_put(sdev);
789 		} else {
790 			/* We don't expect to get here.
791 			 * future cmds to this device will get selection
792 			 * timeout as if the device was gone.
793 			 */
794 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
795 				" for removal.", hostno, removed[i]->bus,
796 				removed[i]->target, removed[i]->lun);
797 		}
798 		kfree(removed[i]);
799 		removed[i] = NULL;
800 	}
801 
802 	/* Notify scsi mid layer of any added devices */
803 	for (i = 0; i < nadded; i++) {
804 		if (scsi_add_device(sh, added[i]->bus,
805 			added[i]->target, added[i]->lun) == 0)
806 			continue;
807 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
808 			"device not added.\n", hostno, added[i]->bus,
809 			added[i]->target, added[i]->lun);
810 		/* now we have to remove it from h->dev,
811 		 * since it didn't get added to scsi mid layer
812 		 */
813 		fixup_botched_add(h, added[i]);
814 	}
815 
816 free_and_out:
817 	kfree(added);
818 	kfree(removed);
819 }
820 
821 /*
822  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
823  * Assume's h->devlock is held.
824  */
825 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
826 	int bus, int target, int lun)
827 {
828 	int i;
829 	struct hpsa_scsi_dev_t *sd;
830 
831 	for (i = 0; i < h->ndevices; i++) {
832 		sd = h->dev[i];
833 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
834 			return sd;
835 	}
836 	return NULL;
837 }
838 
839 /* link sdev->hostdata to our per-device structure. */
840 static int hpsa_slave_alloc(struct scsi_device *sdev)
841 {
842 	struct hpsa_scsi_dev_t *sd;
843 	unsigned long flags;
844 	struct ctlr_info *h;
845 
846 	h = sdev_to_hba(sdev);
847 	spin_lock_irqsave(&h->devlock, flags);
848 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
849 		sdev_id(sdev), sdev->lun);
850 	if (sd != NULL)
851 		sdev->hostdata = sd;
852 	spin_unlock_irqrestore(&h->devlock, flags);
853 	return 0;
854 }
855 
856 static void hpsa_slave_destroy(struct scsi_device *sdev)
857 {
858 	/* nothing to do. */
859 }
860 
861 static void hpsa_scsi_setup(struct ctlr_info *h)
862 {
863 	h->ndevices = 0;
864 	h->scsi_host = NULL;
865 	spin_lock_init(&h->devlock);
866 }
867 
868 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
869 {
870 	int i;
871 
872 	if (!h->cmd_sg_list)
873 		return;
874 	for (i = 0; i < h->nr_cmds; i++) {
875 		kfree(h->cmd_sg_list[i]);
876 		h->cmd_sg_list[i] = NULL;
877 	}
878 	kfree(h->cmd_sg_list);
879 	h->cmd_sg_list = NULL;
880 }
881 
882 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
883 {
884 	int i;
885 
886 	if (h->chainsize <= 0)
887 		return 0;
888 
889 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
890 				GFP_KERNEL);
891 	if (!h->cmd_sg_list)
892 		return -ENOMEM;
893 	for (i = 0; i < h->nr_cmds; i++) {
894 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
895 						h->chainsize, GFP_KERNEL);
896 		if (!h->cmd_sg_list[i])
897 			goto clean;
898 	}
899 	return 0;
900 
901 clean:
902 	hpsa_free_sg_chain_blocks(h);
903 	return -ENOMEM;
904 }
905 
906 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
907 	struct CommandList *c)
908 {
909 	struct SGDescriptor *chain_sg, *chain_block;
910 	u64 temp64;
911 
912 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
913 	chain_block = h->cmd_sg_list[c->cmdindex];
914 	chain_sg->Ext = HPSA_SG_CHAIN;
915 	chain_sg->Len = sizeof(*chain_sg) *
916 		(c->Header.SGTotal - h->max_cmd_sg_entries);
917 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
918 				PCI_DMA_TODEVICE);
919 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
920 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
921 }
922 
923 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
924 	struct CommandList *c)
925 {
926 	struct SGDescriptor *chain_sg;
927 	union u64bit temp64;
928 
929 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
930 		return;
931 
932 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
933 	temp64.val32.lower = chain_sg->Addr.lower;
934 	temp64.val32.upper = chain_sg->Addr.upper;
935 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
936 }
937 
938 static void complete_scsi_command(struct CommandList *cp,
939 	int timeout, u32 tag)
940 {
941 	struct scsi_cmnd *cmd;
942 	struct ctlr_info *h;
943 	struct ErrorInfo *ei;
944 
945 	unsigned char sense_key;
946 	unsigned char asc;      /* additional sense code */
947 	unsigned char ascq;     /* additional sense code qualifier */
948 
949 	ei = cp->err_info;
950 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
951 	h = cp->h;
952 
953 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
954 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
955 		hpsa_unmap_sg_chain_block(h, cp);
956 
957 	cmd->result = (DID_OK << 16); 		/* host byte */
958 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
959 	cmd->result |= ei->ScsiStatus;
960 
961 	/* copy the sense data whether we need to or not. */
962 	memcpy(cmd->sense_buffer, ei->SenseInfo,
963 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
964 			SCSI_SENSE_BUFFERSIZE :
965 			ei->SenseLen);
966 	scsi_set_resid(cmd, ei->ResidualCnt);
967 
968 	if (ei->CommandStatus == 0) {
969 		cmd->scsi_done(cmd);
970 		cmd_free(h, cp);
971 		return;
972 	}
973 
974 	/* an error has occurred */
975 	switch (ei->CommandStatus) {
976 
977 	case CMD_TARGET_STATUS:
978 		if (ei->ScsiStatus) {
979 			/* Get sense key */
980 			sense_key = 0xf & ei->SenseInfo[2];
981 			/* Get additional sense code */
982 			asc = ei->SenseInfo[12];
983 			/* Get addition sense code qualifier */
984 			ascq = ei->SenseInfo[13];
985 		}
986 
987 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
988 			if (check_for_unit_attention(h, cp)) {
989 				cmd->result = DID_SOFT_ERROR << 16;
990 				break;
991 			}
992 			if (sense_key == ILLEGAL_REQUEST) {
993 				/*
994 				 * SCSI REPORT_LUNS is commonly unsupported on
995 				 * Smart Array.  Suppress noisy complaint.
996 				 */
997 				if (cp->Request.CDB[0] == REPORT_LUNS)
998 					break;
999 
1000 				/* If ASC/ASCQ indicate Logical Unit
1001 				 * Not Supported condition,
1002 				 */
1003 				if ((asc == 0x25) && (ascq == 0x0)) {
1004 					dev_warn(&h->pdev->dev, "cp %p "
1005 						"has check condition\n", cp);
1006 					break;
1007 				}
1008 			}
1009 
1010 			if (sense_key == NOT_READY) {
1011 				/* If Sense is Not Ready, Logical Unit
1012 				 * Not ready, Manual Intervention
1013 				 * required
1014 				 */
1015 				if ((asc == 0x04) && (ascq == 0x03)) {
1016 					dev_warn(&h->pdev->dev, "cp %p "
1017 						"has check condition: unit "
1018 						"not ready, manual "
1019 						"intervention required\n", cp);
1020 					break;
1021 				}
1022 			}
1023 			if (sense_key == ABORTED_COMMAND) {
1024 				/* Aborted command is retryable */
1025 				dev_warn(&h->pdev->dev, "cp %p "
1026 					"has check condition: aborted command: "
1027 					"ASC: 0x%x, ASCQ: 0x%x\n",
1028 					cp, asc, ascq);
1029 				cmd->result = DID_SOFT_ERROR << 16;
1030 				break;
1031 			}
1032 			/* Must be some other type of check condition */
1033 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1034 					"unknown type: "
1035 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1036 					"Returning result: 0x%x, "
1037 					"cmd=[%02x %02x %02x %02x %02x "
1038 					"%02x %02x %02x %02x %02x %02x "
1039 					"%02x %02x %02x %02x %02x]\n",
1040 					cp, sense_key, asc, ascq,
1041 					cmd->result,
1042 					cmd->cmnd[0], cmd->cmnd[1],
1043 					cmd->cmnd[2], cmd->cmnd[3],
1044 					cmd->cmnd[4], cmd->cmnd[5],
1045 					cmd->cmnd[6], cmd->cmnd[7],
1046 					cmd->cmnd[8], cmd->cmnd[9],
1047 					cmd->cmnd[10], cmd->cmnd[11],
1048 					cmd->cmnd[12], cmd->cmnd[13],
1049 					cmd->cmnd[14], cmd->cmnd[15]);
1050 			break;
1051 		}
1052 
1053 
1054 		/* Problem was not a check condition
1055 		 * Pass it up to the upper layers...
1056 		 */
1057 		if (ei->ScsiStatus) {
1058 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1059 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1060 				"Returning result: 0x%x\n",
1061 				cp, ei->ScsiStatus,
1062 				sense_key, asc, ascq,
1063 				cmd->result);
1064 		} else {  /* scsi status is zero??? How??? */
1065 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1066 				"Returning no connection.\n", cp),
1067 
1068 			/* Ordinarily, this case should never happen,
1069 			 * but there is a bug in some released firmware
1070 			 * revisions that allows it to happen if, for
1071 			 * example, a 4100 backplane loses power and
1072 			 * the tape drive is in it.  We assume that
1073 			 * it's a fatal error of some kind because we
1074 			 * can't show that it wasn't. We will make it
1075 			 * look like selection timeout since that is
1076 			 * the most common reason for this to occur,
1077 			 * and it's severe enough.
1078 			 */
1079 
1080 			cmd->result = DID_NO_CONNECT << 16;
1081 		}
1082 		break;
1083 
1084 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1085 		break;
1086 	case CMD_DATA_OVERRUN:
1087 		dev_warn(&h->pdev->dev, "cp %p has"
1088 			" completed with data overrun "
1089 			"reported\n", cp);
1090 		break;
1091 	case CMD_INVALID: {
1092 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1093 		print_cmd(cp); */
1094 		/* We get CMD_INVALID if you address a non-existent device
1095 		 * instead of a selection timeout (no response).  You will
1096 		 * see this if you yank out a drive, then try to access it.
1097 		 * This is kind of a shame because it means that any other
1098 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1099 		 * missing target. */
1100 		cmd->result = DID_NO_CONNECT << 16;
1101 	}
1102 		break;
1103 	case CMD_PROTOCOL_ERR:
1104 		dev_warn(&h->pdev->dev, "cp %p has "
1105 			"protocol error \n", cp);
1106 		break;
1107 	case CMD_HARDWARE_ERR:
1108 		cmd->result = DID_ERROR << 16;
1109 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1110 		break;
1111 	case CMD_CONNECTION_LOST:
1112 		cmd->result = DID_ERROR << 16;
1113 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1114 		break;
1115 	case CMD_ABORTED:
1116 		cmd->result = DID_ABORT << 16;
1117 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1118 				cp, ei->ScsiStatus);
1119 		break;
1120 	case CMD_ABORT_FAILED:
1121 		cmd->result = DID_ERROR << 16;
1122 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1123 		break;
1124 	case CMD_UNSOLICITED_ABORT:
1125 		cmd->result = DID_RESET << 16;
1126 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1127 			"abort\n", cp);
1128 		break;
1129 	case CMD_TIMEOUT:
1130 		cmd->result = DID_TIME_OUT << 16;
1131 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1132 		break;
1133 	default:
1134 		cmd->result = DID_ERROR << 16;
1135 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1136 				cp, ei->CommandStatus);
1137 	}
1138 	cmd->scsi_done(cmd);
1139 	cmd_free(h, cp);
1140 }
1141 
1142 static int hpsa_scsi_detect(struct ctlr_info *h)
1143 {
1144 	struct Scsi_Host *sh;
1145 	int error;
1146 
1147 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1148 	if (sh == NULL)
1149 		goto fail;
1150 
1151 	sh->io_port = 0;
1152 	sh->n_io_port = 0;
1153 	sh->this_id = -1;
1154 	sh->max_channel = 3;
1155 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1156 	sh->max_lun = HPSA_MAX_LUN;
1157 	sh->max_id = HPSA_MAX_LUN;
1158 	sh->can_queue = h->nr_cmds;
1159 	sh->cmd_per_lun = h->nr_cmds;
1160 	sh->sg_tablesize = h->maxsgentries;
1161 	h->scsi_host = sh;
1162 	sh->hostdata[0] = (unsigned long) h;
1163 	sh->irq = h->intr[PERF_MODE_INT];
1164 	sh->unique_id = sh->irq;
1165 	error = scsi_add_host(sh, &h->pdev->dev);
1166 	if (error)
1167 		goto fail_host_put;
1168 	scsi_scan_host(sh);
1169 	return 0;
1170 
1171  fail_host_put:
1172 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1173 		" failed for controller %d\n", h->ctlr);
1174 	scsi_host_put(sh);
1175 	return error;
1176  fail:
1177 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1178 		" failed for controller %d\n", h->ctlr);
1179 	return -ENOMEM;
1180 }
1181 
1182 static void hpsa_pci_unmap(struct pci_dev *pdev,
1183 	struct CommandList *c, int sg_used, int data_direction)
1184 {
1185 	int i;
1186 	union u64bit addr64;
1187 
1188 	for (i = 0; i < sg_used; i++) {
1189 		addr64.val32.lower = c->SG[i].Addr.lower;
1190 		addr64.val32.upper = c->SG[i].Addr.upper;
1191 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1192 			data_direction);
1193 	}
1194 }
1195 
1196 static void hpsa_map_one(struct pci_dev *pdev,
1197 		struct CommandList *cp,
1198 		unsigned char *buf,
1199 		size_t buflen,
1200 		int data_direction)
1201 {
1202 	u64 addr64;
1203 
1204 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1205 		cp->Header.SGList = 0;
1206 		cp->Header.SGTotal = 0;
1207 		return;
1208 	}
1209 
1210 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1211 	cp->SG[0].Addr.lower =
1212 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1213 	cp->SG[0].Addr.upper =
1214 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1215 	cp->SG[0].Len = buflen;
1216 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1217 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1218 }
1219 
1220 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1221 	struct CommandList *c)
1222 {
1223 	DECLARE_COMPLETION_ONSTACK(wait);
1224 
1225 	c->waiting = &wait;
1226 	enqueue_cmd_and_start_io(h, c);
1227 	wait_for_completion(&wait);
1228 }
1229 
1230 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1231 	struct CommandList *c, int data_direction)
1232 {
1233 	int retry_count = 0;
1234 
1235 	do {
1236 		memset(c->err_info, 0, sizeof(c->err_info));
1237 		hpsa_scsi_do_simple_cmd_core(h, c);
1238 		retry_count++;
1239 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1240 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1241 }
1242 
1243 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1244 {
1245 	struct ErrorInfo *ei;
1246 	struct device *d = &cp->h->pdev->dev;
1247 
1248 	ei = cp->err_info;
1249 	switch (ei->CommandStatus) {
1250 	case CMD_TARGET_STATUS:
1251 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1252 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1253 				ei->ScsiStatus);
1254 		if (ei->ScsiStatus == 0)
1255 			dev_warn(d, "SCSI status is abnormally zero.  "
1256 			"(probably indicates selection timeout "
1257 			"reported incorrectly due to a known "
1258 			"firmware bug, circa July, 2001.)\n");
1259 		break;
1260 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1261 			dev_info(d, "UNDERRUN\n");
1262 		break;
1263 	case CMD_DATA_OVERRUN:
1264 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1265 		break;
1266 	case CMD_INVALID: {
1267 		/* controller unfortunately reports SCSI passthru's
1268 		 * to non-existent targets as invalid commands.
1269 		 */
1270 		dev_warn(d, "cp %p is reported invalid (probably means "
1271 			"target device no longer present)\n", cp);
1272 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1273 		print_cmd(cp);  */
1274 		}
1275 		break;
1276 	case CMD_PROTOCOL_ERR:
1277 		dev_warn(d, "cp %p has protocol error \n", cp);
1278 		break;
1279 	case CMD_HARDWARE_ERR:
1280 		/* cmd->result = DID_ERROR << 16; */
1281 		dev_warn(d, "cp %p had hardware error\n", cp);
1282 		break;
1283 	case CMD_CONNECTION_LOST:
1284 		dev_warn(d, "cp %p had connection lost\n", cp);
1285 		break;
1286 	case CMD_ABORTED:
1287 		dev_warn(d, "cp %p was aborted\n", cp);
1288 		break;
1289 	case CMD_ABORT_FAILED:
1290 		dev_warn(d, "cp %p reports abort failed\n", cp);
1291 		break;
1292 	case CMD_UNSOLICITED_ABORT:
1293 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1294 		break;
1295 	case CMD_TIMEOUT:
1296 		dev_warn(d, "cp %p timed out\n", cp);
1297 		break;
1298 	default:
1299 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1300 				ei->CommandStatus);
1301 	}
1302 }
1303 
1304 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1305 			unsigned char page, unsigned char *buf,
1306 			unsigned char bufsize)
1307 {
1308 	int rc = IO_OK;
1309 	struct CommandList *c;
1310 	struct ErrorInfo *ei;
1311 
1312 	c = cmd_special_alloc(h);
1313 
1314 	if (c == NULL) {			/* trouble... */
1315 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1316 		return -ENOMEM;
1317 	}
1318 
1319 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1320 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1321 	ei = c->err_info;
1322 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1323 		hpsa_scsi_interpret_error(c);
1324 		rc = -1;
1325 	}
1326 	cmd_special_free(h, c);
1327 	return rc;
1328 }
1329 
1330 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1331 {
1332 	int rc = IO_OK;
1333 	struct CommandList *c;
1334 	struct ErrorInfo *ei;
1335 
1336 	c = cmd_special_alloc(h);
1337 
1338 	if (c == NULL) {			/* trouble... */
1339 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1340 		return -ENOMEM;
1341 	}
1342 
1343 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1344 	hpsa_scsi_do_simple_cmd_core(h, c);
1345 	/* no unmap needed here because no data xfer. */
1346 
1347 	ei = c->err_info;
1348 	if (ei->CommandStatus != 0) {
1349 		hpsa_scsi_interpret_error(c);
1350 		rc = -1;
1351 	}
1352 	cmd_special_free(h, c);
1353 	return rc;
1354 }
1355 
1356 static void hpsa_get_raid_level(struct ctlr_info *h,
1357 	unsigned char *scsi3addr, unsigned char *raid_level)
1358 {
1359 	int rc;
1360 	unsigned char *buf;
1361 
1362 	*raid_level = RAID_UNKNOWN;
1363 	buf = kzalloc(64, GFP_KERNEL);
1364 	if (!buf)
1365 		return;
1366 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1367 	if (rc == 0)
1368 		*raid_level = buf[8];
1369 	if (*raid_level > RAID_UNKNOWN)
1370 		*raid_level = RAID_UNKNOWN;
1371 	kfree(buf);
1372 	return;
1373 }
1374 
1375 /* Get the device id from inquiry page 0x83 */
1376 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1377 	unsigned char *device_id, int buflen)
1378 {
1379 	int rc;
1380 	unsigned char *buf;
1381 
1382 	if (buflen > 16)
1383 		buflen = 16;
1384 	buf = kzalloc(64, GFP_KERNEL);
1385 	if (!buf)
1386 		return -1;
1387 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1388 	if (rc == 0)
1389 		memcpy(device_id, &buf[8], buflen);
1390 	kfree(buf);
1391 	return rc != 0;
1392 }
1393 
1394 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1395 		struct ReportLUNdata *buf, int bufsize,
1396 		int extended_response)
1397 {
1398 	int rc = IO_OK;
1399 	struct CommandList *c;
1400 	unsigned char scsi3addr[8];
1401 	struct ErrorInfo *ei;
1402 
1403 	c = cmd_special_alloc(h);
1404 	if (c == NULL) {			/* trouble... */
1405 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1406 		return -1;
1407 	}
1408 	/* address the controller */
1409 	memset(scsi3addr, 0, sizeof(scsi3addr));
1410 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1411 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1412 	if (extended_response)
1413 		c->Request.CDB[1] = extended_response;
1414 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1415 	ei = c->err_info;
1416 	if (ei->CommandStatus != 0 &&
1417 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1418 		hpsa_scsi_interpret_error(c);
1419 		rc = -1;
1420 	}
1421 	cmd_special_free(h, c);
1422 	return rc;
1423 }
1424 
1425 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1426 		struct ReportLUNdata *buf,
1427 		int bufsize, int extended_response)
1428 {
1429 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1430 }
1431 
1432 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1433 		struct ReportLUNdata *buf, int bufsize)
1434 {
1435 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1436 }
1437 
1438 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1439 	int bus, int target, int lun)
1440 {
1441 	device->bus = bus;
1442 	device->target = target;
1443 	device->lun = lun;
1444 }
1445 
1446 static int hpsa_update_device_info(struct ctlr_info *h,
1447 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1448 {
1449 #define OBDR_TAPE_INQ_SIZE 49
1450 	unsigned char *inq_buff;
1451 
1452 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1453 	if (!inq_buff)
1454 		goto bail_out;
1455 
1456 	/* Do an inquiry to the device to see what it is. */
1457 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1458 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1459 		/* Inquiry failed (msg printed already) */
1460 		dev_err(&h->pdev->dev,
1461 			"hpsa_update_device_info: inquiry failed\n");
1462 		goto bail_out;
1463 	}
1464 
1465 	this_device->devtype = (inq_buff[0] & 0x1f);
1466 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1467 	memcpy(this_device->vendor, &inq_buff[8],
1468 		sizeof(this_device->vendor));
1469 	memcpy(this_device->model, &inq_buff[16],
1470 		sizeof(this_device->model));
1471 	memset(this_device->device_id, 0,
1472 		sizeof(this_device->device_id));
1473 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1474 		sizeof(this_device->device_id));
1475 
1476 	if (this_device->devtype == TYPE_DISK &&
1477 		is_logical_dev_addr_mode(scsi3addr))
1478 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1479 	else
1480 		this_device->raid_level = RAID_UNKNOWN;
1481 
1482 	kfree(inq_buff);
1483 	return 0;
1484 
1485 bail_out:
1486 	kfree(inq_buff);
1487 	return 1;
1488 }
1489 
1490 static unsigned char *msa2xxx_model[] = {
1491 	"MSA2012",
1492 	"MSA2024",
1493 	"MSA2312",
1494 	"MSA2324",
1495 	NULL,
1496 };
1497 
1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1499 {
1500 	int i;
1501 
1502 	for (i = 0; msa2xxx_model[i]; i++)
1503 		if (strncmp(device->model, msa2xxx_model[i],
1504 			strlen(msa2xxx_model[i])) == 0)
1505 			return 1;
1506 	return 0;
1507 }
1508 
1509 /* Helper function to assign bus, target, lun mapping of devices.
1510  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1511  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1512  * Logical drive target and lun are assigned at this time, but
1513  * physical device lun and target assignment are deferred (assigned
1514  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1515  */
1516 static void figure_bus_target_lun(struct ctlr_info *h,
1517 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1518 	struct hpsa_scsi_dev_t *device)
1519 {
1520 	u32 lunid;
1521 
1522 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1523 		/* logical device */
1524 		if (unlikely(is_scsi_rev_5(h))) {
1525 			/* p1210m, logical drives lun assignments
1526 			 * match SCSI REPORT LUNS data.
1527 			 */
1528 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1529 			*bus = 0;
1530 			*target = 0;
1531 			*lun = (lunid & 0x3fff) + 1;
1532 		} else {
1533 			/* not p1210m... */
1534 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1535 			if (is_msa2xxx(h, device)) {
1536 				/* msa2xxx way, put logicals on bus 1
1537 				 * and match target/lun numbers box
1538 				 * reports.
1539 				 */
1540 				*bus = 1;
1541 				*target = (lunid >> 16) & 0x3fff;
1542 				*lun = lunid & 0x00ff;
1543 			} else {
1544 				/* Traditional smart array way. */
1545 				*bus = 0;
1546 				*lun = 0;
1547 				*target = lunid & 0x3fff;
1548 			}
1549 		}
1550 	} else {
1551 		/* physical device */
1552 		if (is_hba_lunid(lunaddrbytes))
1553 			if (unlikely(is_scsi_rev_5(h))) {
1554 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1555 				*target = 0;
1556 				*lun = 0;
1557 				return;
1558 			} else
1559 				*bus = 3; /* traditional smartarray */
1560 		else
1561 			*bus = 2; /* physical disk */
1562 		*target = -1;
1563 		*lun = -1; /* we will fill these in later. */
1564 	}
1565 }
1566 
1567 /*
1568  * If there is no lun 0 on a target, linux won't find any devices.
1569  * For the MSA2xxx boxes, we have to manually detect the enclosure
1570  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1571  * it for some reason.  *tmpdevice is the target we're adding,
1572  * this_device is a pointer into the current element of currentsd[]
1573  * that we're building up in update_scsi_devices(), below.
1574  * lunzerobits is a bitmap that tracks which targets already have a
1575  * lun 0 assigned.
1576  * Returns 1 if an enclosure was added, 0 if not.
1577  */
1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1579 	struct hpsa_scsi_dev_t *tmpdevice,
1580 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1581 	int bus, int target, int lun, unsigned long lunzerobits[],
1582 	int *nmsa2xxx_enclosures)
1583 {
1584 	unsigned char scsi3addr[8];
1585 
1586 	if (test_bit(target, lunzerobits))
1587 		return 0; /* There is already a lun 0 on this target. */
1588 
1589 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1590 		return 0; /* It's the logical targets that may lack lun 0. */
1591 
1592 	if (!is_msa2xxx(h, tmpdevice))
1593 		return 0; /* It's only the MSA2xxx that have this problem. */
1594 
1595 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1596 		return 0;
1597 
1598 	if (is_hba_lunid(scsi3addr))
1599 		return 0; /* Don't add the RAID controller here. */
1600 
1601 	if (is_scsi_rev_5(h))
1602 		return 0; /* p1210m doesn't need to do this. */
1603 
1604 #define MAX_MSA2XXX_ENCLOSURES 32
1605 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1606 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1607 			"enclosures exceeded.  Check your hardware "
1608 			"configuration.");
1609 		return 0;
1610 	}
1611 
1612 	memset(scsi3addr, 0, 8);
1613 	scsi3addr[3] = target;
1614 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1615 		return 0;
1616 	(*nmsa2xxx_enclosures)++;
1617 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1618 	set_bit(target, lunzerobits);
1619 	return 1;
1620 }
1621 
1622 /*
1623  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1624  * logdev.  The number of luns in physdev and logdev are returned in
1625  * *nphysicals and *nlogicals, respectively.
1626  * Returns 0 on success, -1 otherwise.
1627  */
1628 static int hpsa_gather_lun_info(struct ctlr_info *h,
1629 	int reportlunsize,
1630 	struct ReportLUNdata *physdev, u32 *nphysicals,
1631 	struct ReportLUNdata *logdev, u32 *nlogicals)
1632 {
1633 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1634 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1635 		return -1;
1636 	}
1637 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1638 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1639 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1640 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1641 			*nphysicals - HPSA_MAX_PHYS_LUN);
1642 		*nphysicals = HPSA_MAX_PHYS_LUN;
1643 	}
1644 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1645 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1646 		return -1;
1647 	}
1648 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1649 	/* Reject Logicals in excess of our max capability. */
1650 	if (*nlogicals > HPSA_MAX_LUN) {
1651 		dev_warn(&h->pdev->dev,
1652 			"maximum logical LUNs (%d) exceeded.  "
1653 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1654 			*nlogicals - HPSA_MAX_LUN);
1655 			*nlogicals = HPSA_MAX_LUN;
1656 	}
1657 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1658 		dev_warn(&h->pdev->dev,
1659 			"maximum logical + physical LUNs (%d) exceeded. "
1660 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1661 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1662 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1663 	}
1664 	return 0;
1665 }
1666 
1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1668 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1669 	struct ReportLUNdata *logdev_list)
1670 {
1671 	/* Helper function, figure out where the LUN ID info is coming from
1672 	 * given index i, lists of physical and logical devices, where in
1673 	 * the list the raid controller is supposed to appear (first or last)
1674 	 */
1675 
1676 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1677 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1678 
1679 	if (i == raid_ctlr_position)
1680 		return RAID_CTLR_LUNID;
1681 
1682 	if (i < logicals_start)
1683 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1684 
1685 	if (i < last_device)
1686 		return &logdev_list->LUN[i - nphysicals -
1687 			(raid_ctlr_position == 0)][0];
1688 	BUG();
1689 	return NULL;
1690 }
1691 
1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1693 {
1694 	/* the idea here is we could get notified
1695 	 * that some devices have changed, so we do a report
1696 	 * physical luns and report logical luns cmd, and adjust
1697 	 * our list of devices accordingly.
1698 	 *
1699 	 * The scsi3addr's of devices won't change so long as the
1700 	 * adapter is not reset.  That means we can rescan and
1701 	 * tell which devices we already know about, vs. new
1702 	 * devices, vs.  disappearing devices.
1703 	 */
1704 	struct ReportLUNdata *physdev_list = NULL;
1705 	struct ReportLUNdata *logdev_list = NULL;
1706 	unsigned char *inq_buff = NULL;
1707 	u32 nphysicals = 0;
1708 	u32 nlogicals = 0;
1709 	u32 ndev_allocated = 0;
1710 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1711 	int ncurrent = 0;
1712 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1713 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1714 	int bus, target, lun;
1715 	int raid_ctlr_position;
1716 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1717 
1718 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1719 		GFP_KERNEL);
1720 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1721 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1722 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1723 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1724 
1725 	if (!currentsd || !physdev_list || !logdev_list ||
1726 		!inq_buff || !tmpdevice) {
1727 		dev_err(&h->pdev->dev, "out of memory\n");
1728 		goto out;
1729 	}
1730 	memset(lunzerobits, 0, sizeof(lunzerobits));
1731 
1732 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1733 			logdev_list, &nlogicals))
1734 		goto out;
1735 
1736 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1737 	 * but each of them 4 times through different paths.  The plus 1
1738 	 * is for the RAID controller.
1739 	 */
1740 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1741 
1742 	/* Allocate the per device structures */
1743 	for (i = 0; i < ndevs_to_allocate; i++) {
1744 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1745 		if (!currentsd[i]) {
1746 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1747 				__FILE__, __LINE__);
1748 			goto out;
1749 		}
1750 		ndev_allocated++;
1751 	}
1752 
1753 	if (unlikely(is_scsi_rev_5(h)))
1754 		raid_ctlr_position = 0;
1755 	else
1756 		raid_ctlr_position = nphysicals + nlogicals;
1757 
1758 	/* adjust our table of devices */
1759 	nmsa2xxx_enclosures = 0;
1760 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1761 		u8 *lunaddrbytes;
1762 
1763 		/* Figure out where the LUN ID info is coming from */
1764 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1765 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1766 		/* skip masked physical devices. */
1767 		if (lunaddrbytes[3] & 0xC0 &&
1768 			i < nphysicals + (raid_ctlr_position == 0))
1769 			continue;
1770 
1771 		/* Get device type, vendor, model, device id */
1772 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1773 			continue; /* skip it if we can't talk to it. */
1774 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1775 			tmpdevice);
1776 		this_device = currentsd[ncurrent];
1777 
1778 		/*
1779 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1780 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1781 		 * is nonetheless an enclosure device there.  We have to
1782 		 * present that otherwise linux won't find anything if
1783 		 * there is no lun 0.
1784 		 */
1785 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1786 				lunaddrbytes, bus, target, lun, lunzerobits,
1787 				&nmsa2xxx_enclosures)) {
1788 			ncurrent++;
1789 			this_device = currentsd[ncurrent];
1790 		}
1791 
1792 		*this_device = *tmpdevice;
1793 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1794 
1795 		switch (this_device->devtype) {
1796 		case TYPE_ROM: {
1797 			/* We don't *really* support actual CD-ROM devices,
1798 			 * just "One Button Disaster Recovery" tape drive
1799 			 * which temporarily pretends to be a CD-ROM drive.
1800 			 * So we check that the device is really an OBDR tape
1801 			 * device by checking for "$DR-10" in bytes 43-48 of
1802 			 * the inquiry data.
1803 			 */
1804 				char obdr_sig[7];
1805 #define OBDR_TAPE_SIG "$DR-10"
1806 				strncpy(obdr_sig, &inq_buff[43], 6);
1807 				obdr_sig[6] = '\0';
1808 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1809 					/* Not OBDR device, ignore it. */
1810 					break;
1811 			}
1812 			ncurrent++;
1813 			break;
1814 		case TYPE_DISK:
1815 			if (i < nphysicals)
1816 				break;
1817 			ncurrent++;
1818 			break;
1819 		case TYPE_TAPE:
1820 		case TYPE_MEDIUM_CHANGER:
1821 			ncurrent++;
1822 			break;
1823 		case TYPE_RAID:
1824 			/* Only present the Smartarray HBA as a RAID controller.
1825 			 * If it's a RAID controller other than the HBA itself
1826 			 * (an external RAID controller, MSA500 or similar)
1827 			 * don't present it.
1828 			 */
1829 			if (!is_hba_lunid(lunaddrbytes))
1830 				break;
1831 			ncurrent++;
1832 			break;
1833 		default:
1834 			break;
1835 		}
1836 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1837 			break;
1838 	}
1839 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1840 out:
1841 	kfree(tmpdevice);
1842 	for (i = 0; i < ndev_allocated; i++)
1843 		kfree(currentsd[i]);
1844 	kfree(currentsd);
1845 	kfree(inq_buff);
1846 	kfree(physdev_list);
1847 	kfree(logdev_list);
1848 }
1849 
1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1851  * dma mapping  and fills in the scatter gather entries of the
1852  * hpsa command, cp.
1853  */
1854 static int hpsa_scatter_gather(struct ctlr_info *h,
1855 		struct CommandList *cp,
1856 		struct scsi_cmnd *cmd)
1857 {
1858 	unsigned int len;
1859 	struct scatterlist *sg;
1860 	u64 addr64;
1861 	int use_sg, i, sg_index, chained;
1862 	struct SGDescriptor *curr_sg;
1863 
1864 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1865 
1866 	use_sg = scsi_dma_map(cmd);
1867 	if (use_sg < 0)
1868 		return use_sg;
1869 
1870 	if (!use_sg)
1871 		goto sglist_finished;
1872 
1873 	curr_sg = cp->SG;
1874 	chained = 0;
1875 	sg_index = 0;
1876 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1877 		if (i == h->max_cmd_sg_entries - 1 &&
1878 			use_sg > h->max_cmd_sg_entries) {
1879 			chained = 1;
1880 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1881 			sg_index = 0;
1882 		}
1883 		addr64 = (u64) sg_dma_address(sg);
1884 		len  = sg_dma_len(sg);
1885 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1886 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1887 		curr_sg->Len = len;
1888 		curr_sg->Ext = 0;  /* we are not chaining */
1889 		curr_sg++;
1890 	}
1891 
1892 	if (use_sg + chained > h->maxSG)
1893 		h->maxSG = use_sg + chained;
1894 
1895 	if (chained) {
1896 		cp->Header.SGList = h->max_cmd_sg_entries;
1897 		cp->Header.SGTotal = (u16) (use_sg + 1);
1898 		hpsa_map_sg_chain_block(h, cp);
1899 		return 0;
1900 	}
1901 
1902 sglist_finished:
1903 
1904 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1905 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1906 	return 0;
1907 }
1908 
1909 
1910 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1911 	void (*done)(struct scsi_cmnd *))
1912 {
1913 	struct ctlr_info *h;
1914 	struct hpsa_scsi_dev_t *dev;
1915 	unsigned char scsi3addr[8];
1916 	struct CommandList *c;
1917 	unsigned long flags;
1918 
1919 	/* Get the ptr to our adapter structure out of cmd->host. */
1920 	h = sdev_to_hba(cmd->device);
1921 	dev = cmd->device->hostdata;
1922 	if (!dev) {
1923 		cmd->result = DID_NO_CONNECT << 16;
1924 		done(cmd);
1925 		return 0;
1926 	}
1927 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1928 
1929 	/* Need a lock as this is being allocated from the pool */
1930 	spin_lock_irqsave(&h->lock, flags);
1931 	c = cmd_alloc(h);
1932 	spin_unlock_irqrestore(&h->lock, flags);
1933 	if (c == NULL) {			/* trouble... */
1934 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1935 		return SCSI_MLQUEUE_HOST_BUSY;
1936 	}
1937 
1938 	/* Fill in the command list header */
1939 
1940 	cmd->scsi_done = done;    /* save this for use by completion code */
1941 
1942 	/* save c in case we have to abort it  */
1943 	cmd->host_scribble = (unsigned char *) c;
1944 
1945 	c->cmd_type = CMD_SCSI;
1946 	c->scsi_cmd = cmd;
1947 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1948 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1949 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1950 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1951 
1952 	/* Fill in the request block... */
1953 
1954 	c->Request.Timeout = 0;
1955 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1956 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1957 	c->Request.CDBLen = cmd->cmd_len;
1958 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1959 	c->Request.Type.Type = TYPE_CMD;
1960 	c->Request.Type.Attribute = ATTR_SIMPLE;
1961 	switch (cmd->sc_data_direction) {
1962 	case DMA_TO_DEVICE:
1963 		c->Request.Type.Direction = XFER_WRITE;
1964 		break;
1965 	case DMA_FROM_DEVICE:
1966 		c->Request.Type.Direction = XFER_READ;
1967 		break;
1968 	case DMA_NONE:
1969 		c->Request.Type.Direction = XFER_NONE;
1970 		break;
1971 	case DMA_BIDIRECTIONAL:
1972 		/* This can happen if a buggy application does a scsi passthru
1973 		 * and sets both inlen and outlen to non-zero. ( see
1974 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1975 		 */
1976 
1977 		c->Request.Type.Direction = XFER_RSVD;
1978 		/* This is technically wrong, and hpsa controllers should
1979 		 * reject it with CMD_INVALID, which is the most correct
1980 		 * response, but non-fibre backends appear to let it
1981 		 * slide by, and give the same results as if this field
1982 		 * were set correctly.  Either way is acceptable for
1983 		 * our purposes here.
1984 		 */
1985 
1986 		break;
1987 
1988 	default:
1989 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1990 			cmd->sc_data_direction);
1991 		BUG();
1992 		break;
1993 	}
1994 
1995 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1996 		cmd_free(h, c);
1997 		return SCSI_MLQUEUE_HOST_BUSY;
1998 	}
1999 	enqueue_cmd_and_start_io(h, c);
2000 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2001 	return 0;
2002 }
2003 
2004 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2005 
2006 static void hpsa_scan_start(struct Scsi_Host *sh)
2007 {
2008 	struct ctlr_info *h = shost_to_hba(sh);
2009 	unsigned long flags;
2010 
2011 	/* wait until any scan already in progress is finished. */
2012 	while (1) {
2013 		spin_lock_irqsave(&h->scan_lock, flags);
2014 		if (h->scan_finished)
2015 			break;
2016 		spin_unlock_irqrestore(&h->scan_lock, flags);
2017 		wait_event(h->scan_wait_queue, h->scan_finished);
2018 		/* Note: We don't need to worry about a race between this
2019 		 * thread and driver unload because the midlayer will
2020 		 * have incremented the reference count, so unload won't
2021 		 * happen if we're in here.
2022 		 */
2023 	}
2024 	h->scan_finished = 0; /* mark scan as in progress */
2025 	spin_unlock_irqrestore(&h->scan_lock, flags);
2026 
2027 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2028 
2029 	spin_lock_irqsave(&h->scan_lock, flags);
2030 	h->scan_finished = 1; /* mark scan as finished. */
2031 	wake_up_all(&h->scan_wait_queue);
2032 	spin_unlock_irqrestore(&h->scan_lock, flags);
2033 }
2034 
2035 static int hpsa_scan_finished(struct Scsi_Host *sh,
2036 	unsigned long elapsed_time)
2037 {
2038 	struct ctlr_info *h = shost_to_hba(sh);
2039 	unsigned long flags;
2040 	int finished;
2041 
2042 	spin_lock_irqsave(&h->scan_lock, flags);
2043 	finished = h->scan_finished;
2044 	spin_unlock_irqrestore(&h->scan_lock, flags);
2045 	return finished;
2046 }
2047 
2048 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2049 	int qdepth, int reason)
2050 {
2051 	struct ctlr_info *h = sdev_to_hba(sdev);
2052 
2053 	if (reason != SCSI_QDEPTH_DEFAULT)
2054 		return -ENOTSUPP;
2055 
2056 	if (qdepth < 1)
2057 		qdepth = 1;
2058 	else
2059 		if (qdepth > h->nr_cmds)
2060 			qdepth = h->nr_cmds;
2061 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2062 	return sdev->queue_depth;
2063 }
2064 
2065 static void hpsa_unregister_scsi(struct ctlr_info *h)
2066 {
2067 	/* we are being forcibly unloaded, and may not refuse. */
2068 	scsi_remove_host(h->scsi_host);
2069 	scsi_host_put(h->scsi_host);
2070 	h->scsi_host = NULL;
2071 }
2072 
2073 static int hpsa_register_scsi(struct ctlr_info *h)
2074 {
2075 	int rc;
2076 
2077 	rc = hpsa_scsi_detect(h);
2078 	if (rc != 0)
2079 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2080 			" hpsa_scsi_detect(), rc is %d\n", rc);
2081 	return rc;
2082 }
2083 
2084 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2085 	unsigned char lunaddr[])
2086 {
2087 	int rc = 0;
2088 	int count = 0;
2089 	int waittime = 1; /* seconds */
2090 	struct CommandList *c;
2091 
2092 	c = cmd_special_alloc(h);
2093 	if (!c) {
2094 		dev_warn(&h->pdev->dev, "out of memory in "
2095 			"wait_for_device_to_become_ready.\n");
2096 		return IO_ERROR;
2097 	}
2098 
2099 	/* Send test unit ready until device ready, or give up. */
2100 	while (count < HPSA_TUR_RETRY_LIMIT) {
2101 
2102 		/* Wait for a bit.  do this first, because if we send
2103 		 * the TUR right away, the reset will just abort it.
2104 		 */
2105 		msleep(1000 * waittime);
2106 		count++;
2107 
2108 		/* Increase wait time with each try, up to a point. */
2109 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2110 			waittime = waittime * 2;
2111 
2112 		/* Send the Test Unit Ready */
2113 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2114 		hpsa_scsi_do_simple_cmd_core(h, c);
2115 		/* no unmap needed here because no data xfer. */
2116 
2117 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2118 			break;
2119 
2120 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2121 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2122 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2123 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2124 			break;
2125 
2126 		dev_warn(&h->pdev->dev, "waiting %d secs "
2127 			"for device to become ready.\n", waittime);
2128 		rc = 1; /* device not ready. */
2129 	}
2130 
2131 	if (rc)
2132 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2133 	else
2134 		dev_warn(&h->pdev->dev, "device is ready.\n");
2135 
2136 	cmd_special_free(h, c);
2137 	return rc;
2138 }
2139 
2140 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2141  * complaining.  Doing a host- or bus-reset can't do anything good here.
2142  */
2143 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2144 {
2145 	int rc;
2146 	struct ctlr_info *h;
2147 	struct hpsa_scsi_dev_t *dev;
2148 
2149 	/* find the controller to which the command to be aborted was sent */
2150 	h = sdev_to_hba(scsicmd->device);
2151 	if (h == NULL) /* paranoia */
2152 		return FAILED;
2153 	dev = scsicmd->device->hostdata;
2154 	if (!dev) {
2155 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2156 			"device lookup failed.\n");
2157 		return FAILED;
2158 	}
2159 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2160 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2161 	/* send a reset to the SCSI LUN which the command was sent to */
2162 	rc = hpsa_send_reset(h, dev->scsi3addr);
2163 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2164 		return SUCCESS;
2165 
2166 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2167 	return FAILED;
2168 }
2169 
2170 /*
2171  * For operations that cannot sleep, a command block is allocated at init,
2172  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2173  * which ones are free or in use.  Lock must be held when calling this.
2174  * cmd_free() is the complement.
2175  */
2176 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2177 {
2178 	struct CommandList *c;
2179 	int i;
2180 	union u64bit temp64;
2181 	dma_addr_t cmd_dma_handle, err_dma_handle;
2182 
2183 	do {
2184 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2185 		if (i == h->nr_cmds)
2186 			return NULL;
2187 	} while (test_and_set_bit
2188 		 (i & (BITS_PER_LONG - 1),
2189 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2190 	c = h->cmd_pool + i;
2191 	memset(c, 0, sizeof(*c));
2192 	cmd_dma_handle = h->cmd_pool_dhandle
2193 	    + i * sizeof(*c);
2194 	c->err_info = h->errinfo_pool + i;
2195 	memset(c->err_info, 0, sizeof(*c->err_info));
2196 	err_dma_handle = h->errinfo_pool_dhandle
2197 	    + i * sizeof(*c->err_info);
2198 	h->nr_allocs++;
2199 
2200 	c->cmdindex = i;
2201 
2202 	INIT_HLIST_NODE(&c->list);
2203 	c->busaddr = (u32) cmd_dma_handle;
2204 	temp64.val = (u64) err_dma_handle;
2205 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2206 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2207 	c->ErrDesc.Len = sizeof(*c->err_info);
2208 
2209 	c->h = h;
2210 	return c;
2211 }
2212 
2213 /* For operations that can wait for kmalloc to possibly sleep,
2214  * this routine can be called. Lock need not be held to call
2215  * cmd_special_alloc. cmd_special_free() is the complement.
2216  */
2217 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2218 {
2219 	struct CommandList *c;
2220 	union u64bit temp64;
2221 	dma_addr_t cmd_dma_handle, err_dma_handle;
2222 
2223 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2224 	if (c == NULL)
2225 		return NULL;
2226 	memset(c, 0, sizeof(*c));
2227 
2228 	c->cmdindex = -1;
2229 
2230 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2231 		    &err_dma_handle);
2232 
2233 	if (c->err_info == NULL) {
2234 		pci_free_consistent(h->pdev,
2235 			sizeof(*c), c, cmd_dma_handle);
2236 		return NULL;
2237 	}
2238 	memset(c->err_info, 0, sizeof(*c->err_info));
2239 
2240 	INIT_HLIST_NODE(&c->list);
2241 	c->busaddr = (u32) cmd_dma_handle;
2242 	temp64.val = (u64) err_dma_handle;
2243 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2244 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2245 	c->ErrDesc.Len = sizeof(*c->err_info);
2246 
2247 	c->h = h;
2248 	return c;
2249 }
2250 
2251 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2252 {
2253 	int i;
2254 
2255 	i = c - h->cmd_pool;
2256 	clear_bit(i & (BITS_PER_LONG - 1),
2257 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2258 	h->nr_frees++;
2259 }
2260 
2261 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2262 {
2263 	union u64bit temp64;
2264 
2265 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2266 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2267 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2268 			    c->err_info, (dma_addr_t) temp64.val);
2269 	pci_free_consistent(h->pdev, sizeof(*c),
2270 			    c, (dma_addr_t) c->busaddr);
2271 }
2272 
2273 #ifdef CONFIG_COMPAT
2274 
2275 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2276 {
2277 	IOCTL32_Command_struct __user *arg32 =
2278 	    (IOCTL32_Command_struct __user *) arg;
2279 	IOCTL_Command_struct arg64;
2280 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2281 	int err;
2282 	u32 cp;
2283 
2284 	err = 0;
2285 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2286 			   sizeof(arg64.LUN_info));
2287 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2288 			   sizeof(arg64.Request));
2289 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2290 			   sizeof(arg64.error_info));
2291 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2292 	err |= get_user(cp, &arg32->buf);
2293 	arg64.buf = compat_ptr(cp);
2294 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2295 
2296 	if (err)
2297 		return -EFAULT;
2298 
2299 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2300 	if (err)
2301 		return err;
2302 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2303 			 sizeof(arg32->error_info));
2304 	if (err)
2305 		return -EFAULT;
2306 	return err;
2307 }
2308 
2309 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2310 	int cmd, void *arg)
2311 {
2312 	BIG_IOCTL32_Command_struct __user *arg32 =
2313 	    (BIG_IOCTL32_Command_struct __user *) arg;
2314 	BIG_IOCTL_Command_struct arg64;
2315 	BIG_IOCTL_Command_struct __user *p =
2316 	    compat_alloc_user_space(sizeof(arg64));
2317 	int err;
2318 	u32 cp;
2319 
2320 	err = 0;
2321 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2322 			   sizeof(arg64.LUN_info));
2323 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2324 			   sizeof(arg64.Request));
2325 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2326 			   sizeof(arg64.error_info));
2327 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2328 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2329 	err |= get_user(cp, &arg32->buf);
2330 	arg64.buf = compat_ptr(cp);
2331 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2332 
2333 	if (err)
2334 		return -EFAULT;
2335 
2336 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2337 	if (err)
2338 		return err;
2339 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2340 			 sizeof(arg32->error_info));
2341 	if (err)
2342 		return -EFAULT;
2343 	return err;
2344 }
2345 
2346 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2347 {
2348 	switch (cmd) {
2349 	case CCISS_GETPCIINFO:
2350 	case CCISS_GETINTINFO:
2351 	case CCISS_SETINTINFO:
2352 	case CCISS_GETNODENAME:
2353 	case CCISS_SETNODENAME:
2354 	case CCISS_GETHEARTBEAT:
2355 	case CCISS_GETBUSTYPES:
2356 	case CCISS_GETFIRMVER:
2357 	case CCISS_GETDRIVVER:
2358 	case CCISS_REVALIDVOLS:
2359 	case CCISS_DEREGDISK:
2360 	case CCISS_REGNEWDISK:
2361 	case CCISS_REGNEWD:
2362 	case CCISS_RESCANDISK:
2363 	case CCISS_GETLUNINFO:
2364 		return hpsa_ioctl(dev, cmd, arg);
2365 
2366 	case CCISS_PASSTHRU32:
2367 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2368 	case CCISS_BIG_PASSTHRU32:
2369 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2370 
2371 	default:
2372 		return -ENOIOCTLCMD;
2373 	}
2374 }
2375 #endif
2376 
2377 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2378 {
2379 	struct hpsa_pci_info pciinfo;
2380 
2381 	if (!argp)
2382 		return -EINVAL;
2383 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2384 	pciinfo.bus = h->pdev->bus->number;
2385 	pciinfo.dev_fn = h->pdev->devfn;
2386 	pciinfo.board_id = h->board_id;
2387 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2388 		return -EFAULT;
2389 	return 0;
2390 }
2391 
2392 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394 	DriverVer_type DriverVer;
2395 	unsigned char vmaj, vmin, vsubmin;
2396 	int rc;
2397 
2398 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2399 		&vmaj, &vmin, &vsubmin);
2400 	if (rc != 3) {
2401 		dev_info(&h->pdev->dev, "driver version string '%s' "
2402 			"unrecognized.", HPSA_DRIVER_VERSION);
2403 		vmaj = 0;
2404 		vmin = 0;
2405 		vsubmin = 0;
2406 	}
2407 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2408 	if (!argp)
2409 		return -EINVAL;
2410 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2411 		return -EFAULT;
2412 	return 0;
2413 }
2414 
2415 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2416 {
2417 	IOCTL_Command_struct iocommand;
2418 	struct CommandList *c;
2419 	char *buff = NULL;
2420 	union u64bit temp64;
2421 
2422 	if (!argp)
2423 		return -EINVAL;
2424 	if (!capable(CAP_SYS_RAWIO))
2425 		return -EPERM;
2426 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2427 		return -EFAULT;
2428 	if ((iocommand.buf_size < 1) &&
2429 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2430 		return -EINVAL;
2431 	}
2432 	if (iocommand.buf_size > 0) {
2433 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2434 		if (buff == NULL)
2435 			return -EFAULT;
2436 	}
2437 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2438 		/* Copy the data into the buffer we created */
2439 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2440 			kfree(buff);
2441 			return -EFAULT;
2442 		}
2443 	} else
2444 		memset(buff, 0, iocommand.buf_size);
2445 	c = cmd_special_alloc(h);
2446 	if (c == NULL) {
2447 		kfree(buff);
2448 		return -ENOMEM;
2449 	}
2450 	/* Fill in the command type */
2451 	c->cmd_type = CMD_IOCTL_PEND;
2452 	/* Fill in Command Header */
2453 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2454 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2455 		c->Header.SGList = 1;
2456 		c->Header.SGTotal = 1;
2457 	} else	{ /* no buffers to fill */
2458 		c->Header.SGList = 0;
2459 		c->Header.SGTotal = 0;
2460 	}
2461 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2462 	/* use the kernel address the cmd block for tag */
2463 	c->Header.Tag.lower = c->busaddr;
2464 
2465 	/* Fill in Request block */
2466 	memcpy(&c->Request, &iocommand.Request,
2467 		sizeof(c->Request));
2468 
2469 	/* Fill in the scatter gather information */
2470 	if (iocommand.buf_size > 0) {
2471 		temp64.val = pci_map_single(h->pdev, buff,
2472 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2473 		c->SG[0].Addr.lower = temp64.val32.lower;
2474 		c->SG[0].Addr.upper = temp64.val32.upper;
2475 		c->SG[0].Len = iocommand.buf_size;
2476 		c->SG[0].Ext = 0; /* we are not chaining*/
2477 	}
2478 	hpsa_scsi_do_simple_cmd_core(h, c);
2479 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2480 	check_ioctl_unit_attention(h, c);
2481 
2482 	/* Copy the error information out */
2483 	memcpy(&iocommand.error_info, c->err_info,
2484 		sizeof(iocommand.error_info));
2485 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2486 		kfree(buff);
2487 		cmd_special_free(h, c);
2488 		return -EFAULT;
2489 	}
2490 
2491 	if (iocommand.Request.Type.Direction == XFER_READ) {
2492 		/* Copy the data out of the buffer we created */
2493 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2494 			kfree(buff);
2495 			cmd_special_free(h, c);
2496 			return -EFAULT;
2497 		}
2498 	}
2499 	kfree(buff);
2500 	cmd_special_free(h, c);
2501 	return 0;
2502 }
2503 
2504 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2505 {
2506 	BIG_IOCTL_Command_struct *ioc;
2507 	struct CommandList *c;
2508 	unsigned char **buff = NULL;
2509 	int *buff_size = NULL;
2510 	union u64bit temp64;
2511 	BYTE sg_used = 0;
2512 	int status = 0;
2513 	int i;
2514 	u32 left;
2515 	u32 sz;
2516 	BYTE __user *data_ptr;
2517 
2518 	if (!argp)
2519 		return -EINVAL;
2520 	if (!capable(CAP_SYS_RAWIO))
2521 		return -EPERM;
2522 	ioc = (BIG_IOCTL_Command_struct *)
2523 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2524 	if (!ioc) {
2525 		status = -ENOMEM;
2526 		goto cleanup1;
2527 	}
2528 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2529 		status = -EFAULT;
2530 		goto cleanup1;
2531 	}
2532 	if ((ioc->buf_size < 1) &&
2533 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2534 		status = -EINVAL;
2535 		goto cleanup1;
2536 	}
2537 	/* Check kmalloc limits  using all SGs */
2538 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2539 		status = -EINVAL;
2540 		goto cleanup1;
2541 	}
2542 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2543 		status = -EINVAL;
2544 		goto cleanup1;
2545 	}
2546 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2547 	if (!buff) {
2548 		status = -ENOMEM;
2549 		goto cleanup1;
2550 	}
2551 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2552 	if (!buff_size) {
2553 		status = -ENOMEM;
2554 		goto cleanup1;
2555 	}
2556 	left = ioc->buf_size;
2557 	data_ptr = ioc->buf;
2558 	while (left) {
2559 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2560 		buff_size[sg_used] = sz;
2561 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2562 		if (buff[sg_used] == NULL) {
2563 			status = -ENOMEM;
2564 			goto cleanup1;
2565 		}
2566 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2567 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2568 				status = -ENOMEM;
2569 				goto cleanup1;
2570 			}
2571 		} else
2572 			memset(buff[sg_used], 0, sz);
2573 		left -= sz;
2574 		data_ptr += sz;
2575 		sg_used++;
2576 	}
2577 	c = cmd_special_alloc(h);
2578 	if (c == NULL) {
2579 		status = -ENOMEM;
2580 		goto cleanup1;
2581 	}
2582 	c->cmd_type = CMD_IOCTL_PEND;
2583 	c->Header.ReplyQueue = 0;
2584 
2585 	if (ioc->buf_size > 0) {
2586 		c->Header.SGList = sg_used;
2587 		c->Header.SGTotal = sg_used;
2588 	} else {
2589 		c->Header.SGList = 0;
2590 		c->Header.SGTotal = 0;
2591 	}
2592 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2593 	c->Header.Tag.lower = c->busaddr;
2594 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2595 	if (ioc->buf_size > 0) {
2596 		int i;
2597 		for (i = 0; i < sg_used; i++) {
2598 			temp64.val = pci_map_single(h->pdev, buff[i],
2599 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2600 			c->SG[i].Addr.lower = temp64.val32.lower;
2601 			c->SG[i].Addr.upper = temp64.val32.upper;
2602 			c->SG[i].Len = buff_size[i];
2603 			/* we are not chaining */
2604 			c->SG[i].Ext = 0;
2605 		}
2606 	}
2607 	hpsa_scsi_do_simple_cmd_core(h, c);
2608 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2609 	check_ioctl_unit_attention(h, c);
2610 	/* Copy the error information out */
2611 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2612 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2613 		cmd_special_free(h, c);
2614 		status = -EFAULT;
2615 		goto cleanup1;
2616 	}
2617 	if (ioc->Request.Type.Direction == XFER_READ) {
2618 		/* Copy the data out of the buffer we created */
2619 		BYTE __user *ptr = ioc->buf;
2620 		for (i = 0; i < sg_used; i++) {
2621 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2622 				cmd_special_free(h, c);
2623 				status = -EFAULT;
2624 				goto cleanup1;
2625 			}
2626 			ptr += buff_size[i];
2627 		}
2628 	}
2629 	cmd_special_free(h, c);
2630 	status = 0;
2631 cleanup1:
2632 	if (buff) {
2633 		for (i = 0; i < sg_used; i++)
2634 			kfree(buff[i]);
2635 		kfree(buff);
2636 	}
2637 	kfree(buff_size);
2638 	kfree(ioc);
2639 	return status;
2640 }
2641 
2642 static void check_ioctl_unit_attention(struct ctlr_info *h,
2643 	struct CommandList *c)
2644 {
2645 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2646 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2647 		(void) check_for_unit_attention(h, c);
2648 }
2649 /*
2650  * ioctl
2651  */
2652 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2653 {
2654 	struct ctlr_info *h;
2655 	void __user *argp = (void __user *)arg;
2656 
2657 	h = sdev_to_hba(dev);
2658 
2659 	switch (cmd) {
2660 	case CCISS_DEREGDISK:
2661 	case CCISS_REGNEWDISK:
2662 	case CCISS_REGNEWD:
2663 		hpsa_scan_start(h->scsi_host);
2664 		return 0;
2665 	case CCISS_GETPCIINFO:
2666 		return hpsa_getpciinfo_ioctl(h, argp);
2667 	case CCISS_GETDRIVVER:
2668 		return hpsa_getdrivver_ioctl(h, argp);
2669 	case CCISS_PASSTHRU:
2670 		return hpsa_passthru_ioctl(h, argp);
2671 	case CCISS_BIG_PASSTHRU:
2672 		return hpsa_big_passthru_ioctl(h, argp);
2673 	default:
2674 		return -ENOTTY;
2675 	}
2676 }
2677 
2678 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2679 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2680 	int cmd_type)
2681 {
2682 	int pci_dir = XFER_NONE;
2683 
2684 	c->cmd_type = CMD_IOCTL_PEND;
2685 	c->Header.ReplyQueue = 0;
2686 	if (buff != NULL && size > 0) {
2687 		c->Header.SGList = 1;
2688 		c->Header.SGTotal = 1;
2689 	} else {
2690 		c->Header.SGList = 0;
2691 		c->Header.SGTotal = 0;
2692 	}
2693 	c->Header.Tag.lower = c->busaddr;
2694 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2695 
2696 	c->Request.Type.Type = cmd_type;
2697 	if (cmd_type == TYPE_CMD) {
2698 		switch (cmd) {
2699 		case HPSA_INQUIRY:
2700 			/* are we trying to read a vital product page */
2701 			if (page_code != 0) {
2702 				c->Request.CDB[1] = 0x01;
2703 				c->Request.CDB[2] = page_code;
2704 			}
2705 			c->Request.CDBLen = 6;
2706 			c->Request.Type.Attribute = ATTR_SIMPLE;
2707 			c->Request.Type.Direction = XFER_READ;
2708 			c->Request.Timeout = 0;
2709 			c->Request.CDB[0] = HPSA_INQUIRY;
2710 			c->Request.CDB[4] = size & 0xFF;
2711 			break;
2712 		case HPSA_REPORT_LOG:
2713 		case HPSA_REPORT_PHYS:
2714 			/* Talking to controller so It's a physical command
2715 			   mode = 00 target = 0.  Nothing to write.
2716 			 */
2717 			c->Request.CDBLen = 12;
2718 			c->Request.Type.Attribute = ATTR_SIMPLE;
2719 			c->Request.Type.Direction = XFER_READ;
2720 			c->Request.Timeout = 0;
2721 			c->Request.CDB[0] = cmd;
2722 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2723 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2724 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2725 			c->Request.CDB[9] = size & 0xFF;
2726 			break;
2727 		case HPSA_CACHE_FLUSH:
2728 			c->Request.CDBLen = 12;
2729 			c->Request.Type.Attribute = ATTR_SIMPLE;
2730 			c->Request.Type.Direction = XFER_WRITE;
2731 			c->Request.Timeout = 0;
2732 			c->Request.CDB[0] = BMIC_WRITE;
2733 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2734 			break;
2735 		case TEST_UNIT_READY:
2736 			c->Request.CDBLen = 6;
2737 			c->Request.Type.Attribute = ATTR_SIMPLE;
2738 			c->Request.Type.Direction = XFER_NONE;
2739 			c->Request.Timeout = 0;
2740 			break;
2741 		default:
2742 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2743 			BUG();
2744 			return;
2745 		}
2746 	} else if (cmd_type == TYPE_MSG) {
2747 		switch (cmd) {
2748 
2749 		case  HPSA_DEVICE_RESET_MSG:
2750 			c->Request.CDBLen = 16;
2751 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2752 			c->Request.Type.Attribute = ATTR_SIMPLE;
2753 			c->Request.Type.Direction = XFER_NONE;
2754 			c->Request.Timeout = 0; /* Don't time out */
2755 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2756 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2757 			/* If bytes 4-7 are zero, it means reset the */
2758 			/* LunID device */
2759 			c->Request.CDB[4] = 0x00;
2760 			c->Request.CDB[5] = 0x00;
2761 			c->Request.CDB[6] = 0x00;
2762 			c->Request.CDB[7] = 0x00;
2763 		break;
2764 
2765 		default:
2766 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2767 				cmd);
2768 			BUG();
2769 		}
2770 	} else {
2771 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2772 		BUG();
2773 	}
2774 
2775 	switch (c->Request.Type.Direction) {
2776 	case XFER_READ:
2777 		pci_dir = PCI_DMA_FROMDEVICE;
2778 		break;
2779 	case XFER_WRITE:
2780 		pci_dir = PCI_DMA_TODEVICE;
2781 		break;
2782 	case XFER_NONE:
2783 		pci_dir = PCI_DMA_NONE;
2784 		break;
2785 	default:
2786 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2787 	}
2788 
2789 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2790 
2791 	return;
2792 }
2793 
2794 /*
2795  * Map (physical) PCI mem into (virtual) kernel space
2796  */
2797 static void __iomem *remap_pci_mem(ulong base, ulong size)
2798 {
2799 	ulong page_base = ((ulong) base) & PAGE_MASK;
2800 	ulong page_offs = ((ulong) base) - page_base;
2801 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2802 
2803 	return page_remapped ? (page_remapped + page_offs) : NULL;
2804 }
2805 
2806 /* Takes cmds off the submission queue and sends them to the hardware,
2807  * then puts them on the queue of cmds waiting for completion.
2808  */
2809 static void start_io(struct ctlr_info *h)
2810 {
2811 	struct CommandList *c;
2812 
2813 	while (!hlist_empty(&h->reqQ)) {
2814 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2815 		/* can't do anything if fifo is full */
2816 		if ((h->access.fifo_full(h))) {
2817 			dev_warn(&h->pdev->dev, "fifo full\n");
2818 			break;
2819 		}
2820 
2821 		/* Get the first entry from the Request Q */
2822 		removeQ(c);
2823 		h->Qdepth--;
2824 
2825 		/* Tell the controller execute command */
2826 		h->access.submit_command(h, c);
2827 
2828 		/* Put job onto the completed Q */
2829 		addQ(&h->cmpQ, c);
2830 	}
2831 }
2832 
2833 static inline unsigned long get_next_completion(struct ctlr_info *h)
2834 {
2835 	return h->access.command_completed(h);
2836 }
2837 
2838 static inline bool interrupt_pending(struct ctlr_info *h)
2839 {
2840 	return h->access.intr_pending(h);
2841 }
2842 
2843 static inline long interrupt_not_for_us(struct ctlr_info *h)
2844 {
2845 	return (h->access.intr_pending(h) == 0) ||
2846 		(h->interrupts_enabled == 0);
2847 }
2848 
2849 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2850 	u32 raw_tag)
2851 {
2852 	if (unlikely(tag_index >= h->nr_cmds)) {
2853 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2854 		return 1;
2855 	}
2856 	return 0;
2857 }
2858 
2859 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2860 {
2861 	removeQ(c);
2862 	if (likely(c->cmd_type == CMD_SCSI))
2863 		complete_scsi_command(c, 0, raw_tag);
2864 	else if (c->cmd_type == CMD_IOCTL_PEND)
2865 		complete(c->waiting);
2866 }
2867 
2868 static inline u32 hpsa_tag_contains_index(u32 tag)
2869 {
2870 #define DIRECT_LOOKUP_BIT 0x10
2871 	return tag & DIRECT_LOOKUP_BIT;
2872 }
2873 
2874 static inline u32 hpsa_tag_to_index(u32 tag)
2875 {
2876 #define DIRECT_LOOKUP_SHIFT 5
2877 	return tag >> DIRECT_LOOKUP_SHIFT;
2878 }
2879 
2880 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2881 {
2882 #define HPSA_ERROR_BITS 0x03
2883 	return tag & ~HPSA_ERROR_BITS;
2884 }
2885 
2886 /* process completion of an indexed ("direct lookup") command */
2887 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2888 	u32 raw_tag)
2889 {
2890 	u32 tag_index;
2891 	struct CommandList *c;
2892 
2893 	tag_index = hpsa_tag_to_index(raw_tag);
2894 	if (bad_tag(h, tag_index, raw_tag))
2895 		return next_command(h);
2896 	c = h->cmd_pool + tag_index;
2897 	finish_cmd(c, raw_tag);
2898 	return next_command(h);
2899 }
2900 
2901 /* process completion of a non-indexed command */
2902 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2903 	u32 raw_tag)
2904 {
2905 	u32 tag;
2906 	struct CommandList *c = NULL;
2907 	struct hlist_node *tmp;
2908 
2909 	tag = hpsa_tag_discard_error_bits(raw_tag);
2910 	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2911 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2912 			finish_cmd(c, raw_tag);
2913 			return next_command(h);
2914 		}
2915 	}
2916 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2917 	return next_command(h);
2918 }
2919 
2920 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2921 {
2922 	struct ctlr_info *h = dev_id;
2923 	unsigned long flags;
2924 	u32 raw_tag;
2925 
2926 	if (interrupt_not_for_us(h))
2927 		return IRQ_NONE;
2928 	spin_lock_irqsave(&h->lock, flags);
2929 	while (interrupt_pending(h)) {
2930 		raw_tag = get_next_completion(h);
2931 		while (raw_tag != FIFO_EMPTY) {
2932 			if (hpsa_tag_contains_index(raw_tag))
2933 				raw_tag = process_indexed_cmd(h, raw_tag);
2934 			else
2935 				raw_tag = process_nonindexed_cmd(h, raw_tag);
2936 		}
2937 	}
2938 	spin_unlock_irqrestore(&h->lock, flags);
2939 	return IRQ_HANDLED;
2940 }
2941 
2942 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2943 {
2944 	struct ctlr_info *h = dev_id;
2945 	unsigned long flags;
2946 	u32 raw_tag;
2947 
2948 	spin_lock_irqsave(&h->lock, flags);
2949 	raw_tag = get_next_completion(h);
2950 	while (raw_tag != FIFO_EMPTY) {
2951 		if (hpsa_tag_contains_index(raw_tag))
2952 			raw_tag = process_indexed_cmd(h, raw_tag);
2953 		else
2954 			raw_tag = process_nonindexed_cmd(h, raw_tag);
2955 	}
2956 	spin_unlock_irqrestore(&h->lock, flags);
2957 	return IRQ_HANDLED;
2958 }
2959 
2960 /* Send a message CDB to the firmware. */
2961 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2962 						unsigned char type)
2963 {
2964 	struct Command {
2965 		struct CommandListHeader CommandHeader;
2966 		struct RequestBlock Request;
2967 		struct ErrDescriptor ErrorDescriptor;
2968 	};
2969 	struct Command *cmd;
2970 	static const size_t cmd_sz = sizeof(*cmd) +
2971 					sizeof(cmd->ErrorDescriptor);
2972 	dma_addr_t paddr64;
2973 	uint32_t paddr32, tag;
2974 	void __iomem *vaddr;
2975 	int i, err;
2976 
2977 	vaddr = pci_ioremap_bar(pdev, 0);
2978 	if (vaddr == NULL)
2979 		return -ENOMEM;
2980 
2981 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2982 	 * CCISS commands, so they must be allocated from the lower 4GiB of
2983 	 * memory.
2984 	 */
2985 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2986 	if (err) {
2987 		iounmap(vaddr);
2988 		return -ENOMEM;
2989 	}
2990 
2991 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2992 	if (cmd == NULL) {
2993 		iounmap(vaddr);
2994 		return -ENOMEM;
2995 	}
2996 
2997 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
2998 	 * although there's no guarantee, we assume that the address is at
2999 	 * least 4-byte aligned (most likely, it's page-aligned).
3000 	 */
3001 	paddr32 = paddr64;
3002 
3003 	cmd->CommandHeader.ReplyQueue = 0;
3004 	cmd->CommandHeader.SGList = 0;
3005 	cmd->CommandHeader.SGTotal = 0;
3006 	cmd->CommandHeader.Tag.lower = paddr32;
3007 	cmd->CommandHeader.Tag.upper = 0;
3008 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3009 
3010 	cmd->Request.CDBLen = 16;
3011 	cmd->Request.Type.Type = TYPE_MSG;
3012 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3013 	cmd->Request.Type.Direction = XFER_NONE;
3014 	cmd->Request.Timeout = 0; /* Don't time out */
3015 	cmd->Request.CDB[0] = opcode;
3016 	cmd->Request.CDB[1] = type;
3017 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3018 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3019 	cmd->ErrorDescriptor.Addr.upper = 0;
3020 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3021 
3022 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3023 
3024 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3025 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3026 		if (hpsa_tag_discard_error_bits(tag) == paddr32)
3027 			break;
3028 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3029 	}
3030 
3031 	iounmap(vaddr);
3032 
3033 	/* we leak the DMA buffer here ... no choice since the controller could
3034 	 *  still complete the command.
3035 	 */
3036 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3037 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3038 			opcode, type);
3039 		return -ETIMEDOUT;
3040 	}
3041 
3042 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3043 
3044 	if (tag & HPSA_ERROR_BIT) {
3045 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3046 			opcode, type);
3047 		return -EIO;
3048 	}
3049 
3050 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3051 		opcode, type);
3052 	return 0;
3053 }
3054 
3055 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3056 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3057 
3058 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3059 {
3060 /* the #defines are stolen from drivers/pci/msi.h. */
3061 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
3062 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
3063 
3064 	int pos;
3065 	u16 control = 0;
3066 
3067 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3068 	if (pos) {
3069 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3070 		if (control & PCI_MSI_FLAGS_ENABLE) {
3071 			dev_info(&pdev->dev, "resetting MSI\n");
3072 			pci_write_config_word(pdev, msi_control_reg(pos),
3073 					control & ~PCI_MSI_FLAGS_ENABLE);
3074 		}
3075 	}
3076 
3077 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3078 	if (pos) {
3079 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3080 		if (control & PCI_MSIX_FLAGS_ENABLE) {
3081 			dev_info(&pdev->dev, "resetting MSI-X\n");
3082 			pci_write_config_word(pdev, msi_control_reg(pos),
3083 					control & ~PCI_MSIX_FLAGS_ENABLE);
3084 		}
3085 	}
3086 
3087 	return 0;
3088 }
3089 
3090 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3091 	void * __iomem vaddr, bool use_doorbell)
3092 {
3093 	u16 pmcsr;
3094 	int pos;
3095 
3096 	if (use_doorbell) {
3097 		/* For everything after the P600, the PCI power state method
3098 		 * of resetting the controller doesn't work, so we have this
3099 		 * other way using the doorbell register.
3100 		 */
3101 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3102 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3103 		msleep(1000);
3104 	} else { /* Try to do it the PCI power state way */
3105 
3106 		/* Quoting from the Open CISS Specification: "The Power
3107 		 * Management Control/Status Register (CSR) controls the power
3108 		 * state of the device.  The normal operating state is D0,
3109 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3110 		 * the controller, place the interface device in D3 then to D0,
3111 		 * this causes a secondary PCI reset which will reset the
3112 		 * controller." */
3113 
3114 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3115 		if (pos == 0) {
3116 			dev_err(&pdev->dev,
3117 				"hpsa_reset_controller: "
3118 				"PCI PM not supported\n");
3119 			return -ENODEV;
3120 		}
3121 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3122 		/* enter the D3hot power management state */
3123 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3124 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3125 		pmcsr |= PCI_D3hot;
3126 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3127 
3128 		msleep(500);
3129 
3130 		/* enter the D0 power management state */
3131 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3132 		pmcsr |= PCI_D0;
3133 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3134 
3135 		msleep(500);
3136 	}
3137 	return 0;
3138 }
3139 
3140 /* This does a hard reset of the controller using PCI power management
3141  * states or the using the doorbell register.
3142  */
3143 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3144 {
3145 	u16 saved_config_space[32];
3146 	u64 cfg_offset;
3147 	u32 cfg_base_addr;
3148 	u64 cfg_base_addr_index;
3149 	void __iomem *vaddr;
3150 	unsigned long paddr;
3151 	u32 misc_fw_support, active_transport;
3152 	int rc, i;
3153 	struct CfgTable __iomem *cfgtable;
3154 	bool use_doorbell;
3155 	u32 board_id;
3156 
3157 	/* For controllers as old as the P600, this is very nearly
3158 	 * the same thing as
3159 	 *
3160 	 * pci_save_state(pci_dev);
3161 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3162 	 * pci_set_power_state(pci_dev, PCI_D0);
3163 	 * pci_restore_state(pci_dev);
3164 	 *
3165 	 * but we can't use these nice canned kernel routines on
3166 	 * kexec, because they also check the MSI/MSI-X state in PCI
3167 	 * configuration space and do the wrong thing when it is
3168 	 * set/cleared.  Also, the pci_save/restore_state functions
3169 	 * violate the ordering requirements for restoring the
3170 	 * configuration space from the CCISS document (see the
3171 	 * comment below).  So we roll our own ....
3172 	 *
3173 	 * For controllers newer than the P600, the pci power state
3174 	 * method of resetting doesn't work so we have another way
3175 	 * using the doorbell register.
3176 	 */
3177 
3178 	/* Exclude 640x boards.  These are two pci devices in one slot
3179 	 * which share a battery backed cache module.  One controls the
3180 	 * cache, the other accesses the cache through the one that controls
3181 	 * it.  If we reset the one controlling the cache, the other will
3182 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3183 	 * The 640x isn't really supported by hpsa anyway.
3184 	 */
3185 	hpsa_lookup_board_id(pdev, &board_id);
3186 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3187 		return -ENOTSUPP;
3188 
3189 	for (i = 0; i < 32; i++)
3190 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3191 
3192 
3193 	/* find the first memory BAR, so we can find the cfg table */
3194 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3195 	if (rc)
3196 		return rc;
3197 	vaddr = remap_pci_mem(paddr, 0x250);
3198 	if (!vaddr)
3199 		return -ENOMEM;
3200 
3201 	/* find cfgtable in order to check if reset via doorbell is supported */
3202 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3203 					&cfg_base_addr_index, &cfg_offset);
3204 	if (rc)
3205 		goto unmap_vaddr;
3206 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3207 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3208 	if (!cfgtable) {
3209 		rc = -ENOMEM;
3210 		goto unmap_vaddr;
3211 	}
3212 
3213 	/* If reset via doorbell register is supported, use that. */
3214 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3215 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3216 
3217 	/* The doorbell reset seems to cause lockups on some Smart
3218 	 * Arrays (e.g. P410, P410i, maybe others).  Until this is
3219 	 * fixed or at least isolated, avoid the doorbell reset.
3220 	 */
3221 	use_doorbell = 0;
3222 
3223 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3224 	if (rc)
3225 		goto unmap_cfgtable;
3226 
3227 	/* Restore the PCI configuration space.  The Open CISS
3228 	 * Specification says, "Restore the PCI Configuration
3229 	 * Registers, offsets 00h through 60h. It is important to
3230 	 * restore the command register, 16-bits at offset 04h,
3231 	 * last. Do not restore the configuration status register,
3232 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
3233 	 */
3234 	for (i = 0; i < 32; i++) {
3235 		if (i == 2 || i == 3)
3236 			continue;
3237 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3238 	}
3239 	wmb();
3240 	pci_write_config_word(pdev, 4, saved_config_space[2]);
3241 
3242 	/* Some devices (notably the HP Smart Array 5i Controller)
3243 	   need a little pause here */
3244 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3245 
3246 	/* Controller should be in simple mode at this point.  If it's not,
3247 	 * It means we're on one of those controllers which doesn't support
3248 	 * the doorbell reset method and on which the PCI power management reset
3249 	 * method doesn't work (P800, for example.)
3250 	 * In those cases, pretend the reset worked and hope for the best.
3251 	 */
3252 	active_transport = readl(&cfgtable->TransportActive);
3253 	if (active_transport & PERFORMANT_MODE) {
3254 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3255 			" proceeding anyway.\n");
3256 		rc = -ENOTSUPP;
3257 	}
3258 
3259 unmap_cfgtable:
3260 	iounmap(cfgtable);
3261 
3262 unmap_vaddr:
3263 	iounmap(vaddr);
3264 	return rc;
3265 }
3266 
3267 /*
3268  *  We cannot read the structure directly, for portability we must use
3269  *   the io functions.
3270  *   This is for debug only.
3271  */
3272 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3273 {
3274 #ifdef HPSA_DEBUG
3275 	int i;
3276 	char temp_name[17];
3277 
3278 	dev_info(dev, "Controller Configuration information\n");
3279 	dev_info(dev, "------------------------------------\n");
3280 	for (i = 0; i < 4; i++)
3281 		temp_name[i] = readb(&(tb->Signature[i]));
3282 	temp_name[4] = '\0';
3283 	dev_info(dev, "   Signature = %s\n", temp_name);
3284 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3285 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3286 	       readl(&(tb->TransportSupport)));
3287 	dev_info(dev, "   Transport methods active = 0x%x\n",
3288 	       readl(&(tb->TransportActive)));
3289 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3290 	       readl(&(tb->HostWrite.TransportRequest)));
3291 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3292 	       readl(&(tb->HostWrite.CoalIntDelay)));
3293 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3294 	       readl(&(tb->HostWrite.CoalIntCount)));
3295 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3296 	       readl(&(tb->CmdsOutMax)));
3297 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3298 	for (i = 0; i < 16; i++)
3299 		temp_name[i] = readb(&(tb->ServerName[i]));
3300 	temp_name[16] = '\0';
3301 	dev_info(dev, "   Server Name = %s\n", temp_name);
3302 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3303 		readl(&(tb->HeartBeat)));
3304 #endif				/* HPSA_DEBUG */
3305 }
3306 
3307 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3308 {
3309 	int i, offset, mem_type, bar_type;
3310 
3311 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3312 		return 0;
3313 	offset = 0;
3314 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3315 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3316 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3317 			offset += 4;
3318 		else {
3319 			mem_type = pci_resource_flags(pdev, i) &
3320 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3321 			switch (mem_type) {
3322 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3323 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3324 				offset += 4;	/* 32 bit */
3325 				break;
3326 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3327 				offset += 8;
3328 				break;
3329 			default:	/* reserved in PCI 2.2 */
3330 				dev_warn(&pdev->dev,
3331 				       "base address is invalid\n");
3332 				return -1;
3333 				break;
3334 			}
3335 		}
3336 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3337 			return i + 1;
3338 	}
3339 	return -1;
3340 }
3341 
3342 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3343  * controllers that are capable. If not, we use IO-APIC mode.
3344  */
3345 
3346 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3347 {
3348 #ifdef CONFIG_PCI_MSI
3349 	int err;
3350 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3351 	{0, 2}, {0, 3}
3352 	};
3353 
3354 	/* Some boards advertise MSI but don't really support it */
3355 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3356 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3357 		goto default_int_mode;
3358 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3359 		dev_info(&h->pdev->dev, "MSIX\n");
3360 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3361 		if (!err) {
3362 			h->intr[0] = hpsa_msix_entries[0].vector;
3363 			h->intr[1] = hpsa_msix_entries[1].vector;
3364 			h->intr[2] = hpsa_msix_entries[2].vector;
3365 			h->intr[3] = hpsa_msix_entries[3].vector;
3366 			h->msix_vector = 1;
3367 			return;
3368 		}
3369 		if (err > 0) {
3370 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3371 			       "available\n", err);
3372 			goto default_int_mode;
3373 		} else {
3374 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3375 			       err);
3376 			goto default_int_mode;
3377 		}
3378 	}
3379 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3380 		dev_info(&h->pdev->dev, "MSI\n");
3381 		if (!pci_enable_msi(h->pdev))
3382 			h->msi_vector = 1;
3383 		else
3384 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3385 	}
3386 default_int_mode:
3387 #endif				/* CONFIG_PCI_MSI */
3388 	/* if we get here we're going to use the default interrupt mode */
3389 	h->intr[PERF_MODE_INT] = h->pdev->irq;
3390 }
3391 
3392 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3393 {
3394 	int i;
3395 	u32 subsystem_vendor_id, subsystem_device_id;
3396 
3397 	subsystem_vendor_id = pdev->subsystem_vendor;
3398 	subsystem_device_id = pdev->subsystem_device;
3399 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3400 		    subsystem_vendor_id;
3401 
3402 	for (i = 0; i < ARRAY_SIZE(products); i++)
3403 		if (*board_id == products[i].board_id)
3404 			return i;
3405 
3406 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3407 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3408 		!hpsa_allow_any) {
3409 		dev_warn(&pdev->dev, "unrecognized board ID: "
3410 			"0x%08x, ignoring.\n", *board_id);
3411 			return -ENODEV;
3412 	}
3413 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3414 }
3415 
3416 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3417 {
3418 	u16 command;
3419 
3420 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3421 	return ((command & PCI_COMMAND_MEMORY) == 0);
3422 }
3423 
3424 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3425 	unsigned long *memory_bar)
3426 {
3427 	int i;
3428 
3429 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3430 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3431 			/* addressing mode bits already removed */
3432 			*memory_bar = pci_resource_start(pdev, i);
3433 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3434 				*memory_bar);
3435 			return 0;
3436 		}
3437 	dev_warn(&pdev->dev, "no memory BAR found\n");
3438 	return -ENODEV;
3439 }
3440 
3441 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3442 {
3443 	int i;
3444 	u32 scratchpad;
3445 
3446 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3447 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3448 		if (scratchpad == HPSA_FIRMWARE_READY)
3449 			return 0;
3450 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3451 	}
3452 	dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3453 	return -ENODEV;
3454 }
3455 
3456 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3457 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3458 	u64 *cfg_offset)
3459 {
3460 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3461 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3462 	*cfg_base_addr &= (u32) 0x0000ffff;
3463 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3464 	if (*cfg_base_addr_index == -1) {
3465 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3466 		return -ENODEV;
3467 	}
3468 	return 0;
3469 }
3470 
3471 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3472 {
3473 	u64 cfg_offset;
3474 	u32 cfg_base_addr;
3475 	u64 cfg_base_addr_index;
3476 	u32 trans_offset;
3477 	int rc;
3478 
3479 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3480 		&cfg_base_addr_index, &cfg_offset);
3481 	if (rc)
3482 		return rc;
3483 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3484 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3485 	if (!h->cfgtable)
3486 		return -ENOMEM;
3487 	/* Find performant mode table. */
3488 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3489 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3490 				cfg_base_addr_index)+cfg_offset+trans_offset,
3491 				sizeof(*h->transtable));
3492 	if (!h->transtable)
3493 		return -ENOMEM;
3494 	return 0;
3495 }
3496 
3497 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3498 {
3499 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3500 	if (h->max_commands < 16) {
3501 		dev_warn(&h->pdev->dev, "Controller reports "
3502 			"max supported commands of %d, an obvious lie. "
3503 			"Using 16.  Ensure that firmware is up to date.\n",
3504 			h->max_commands);
3505 		h->max_commands = 16;
3506 	}
3507 }
3508 
3509 /* Interrogate the hardware for some limits:
3510  * max commands, max SG elements without chaining, and with chaining,
3511  * SG chain block size, etc.
3512  */
3513 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3514 {
3515 	hpsa_get_max_perf_mode_cmds(h);
3516 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3517 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3518 	/*
3519 	 * Limit in-command s/g elements to 32 save dma'able memory.
3520 	 * Howvever spec says if 0, use 31
3521 	 */
3522 	h->max_cmd_sg_entries = 31;
3523 	if (h->maxsgentries > 512) {
3524 		h->max_cmd_sg_entries = 32;
3525 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3526 		h->maxsgentries--; /* save one for chain pointer */
3527 	} else {
3528 		h->maxsgentries = 31; /* default to traditional values */
3529 		h->chainsize = 0;
3530 	}
3531 }
3532 
3533 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3534 {
3535 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3536 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3537 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3538 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3539 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3540 		return false;
3541 	}
3542 	return true;
3543 }
3544 
3545 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3546 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3547 {
3548 #ifdef CONFIG_X86
3549 	u32 prefetch;
3550 
3551 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3552 	prefetch |= 0x100;
3553 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3554 #endif
3555 }
3556 
3557 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3558  * in a prefetch beyond physical memory.
3559  */
3560 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3561 {
3562 	u32 dma_prefetch;
3563 
3564 	if (h->board_id != 0x3225103C)
3565 		return;
3566 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3567 	dma_prefetch |= 0x8000;
3568 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3569 }
3570 
3571 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3572 {
3573 	int i;
3574 
3575 	/* under certain very rare conditions, this can take awhile.
3576 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3577 	 * as we enter this code.)
3578 	 */
3579 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3580 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3581 			break;
3582 		/* delay and try again */
3583 		msleep(10);
3584 	}
3585 }
3586 
3587 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3588 {
3589 	u32 trans_support;
3590 
3591 	trans_support = readl(&(h->cfgtable->TransportSupport));
3592 	if (!(trans_support & SIMPLE_MODE))
3593 		return -ENOTSUPP;
3594 
3595 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3596 	/* Update the field, and then ring the doorbell */
3597 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3598 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3599 	hpsa_wait_for_mode_change_ack(h);
3600 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3601 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3602 		dev_warn(&h->pdev->dev,
3603 			"unable to get board into simple mode\n");
3604 		return -ENODEV;
3605 	}
3606 	return 0;
3607 }
3608 
3609 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3610 {
3611 	int prod_index, err;
3612 
3613 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3614 	if (prod_index < 0)
3615 		return -ENODEV;
3616 	h->product_name = products[prod_index].product_name;
3617 	h->access = *(products[prod_index].access);
3618 
3619 	if (hpsa_board_disabled(h->pdev)) {
3620 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3621 		return -ENODEV;
3622 	}
3623 	err = pci_enable_device(h->pdev);
3624 	if (err) {
3625 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3626 		return err;
3627 	}
3628 
3629 	err = pci_request_regions(h->pdev, "hpsa");
3630 	if (err) {
3631 		dev_err(&h->pdev->dev,
3632 			"cannot obtain PCI resources, aborting\n");
3633 		return err;
3634 	}
3635 	hpsa_interrupt_mode(h);
3636 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3637 	if (err)
3638 		goto err_out_free_res;
3639 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3640 	if (!h->vaddr) {
3641 		err = -ENOMEM;
3642 		goto err_out_free_res;
3643 	}
3644 	err = hpsa_wait_for_board_ready(h);
3645 	if (err)
3646 		goto err_out_free_res;
3647 	err = hpsa_find_cfgtables(h);
3648 	if (err)
3649 		goto err_out_free_res;
3650 	hpsa_find_board_params(h);
3651 
3652 	if (!hpsa_CISS_signature_present(h)) {
3653 		err = -ENODEV;
3654 		goto err_out_free_res;
3655 	}
3656 	hpsa_enable_scsi_prefetch(h);
3657 	hpsa_p600_dma_prefetch_quirk(h);
3658 	err = hpsa_enter_simple_mode(h);
3659 	if (err)
3660 		goto err_out_free_res;
3661 	return 0;
3662 
3663 err_out_free_res:
3664 	if (h->transtable)
3665 		iounmap(h->transtable);
3666 	if (h->cfgtable)
3667 		iounmap(h->cfgtable);
3668 	if (h->vaddr)
3669 		iounmap(h->vaddr);
3670 	/*
3671 	 * Deliberately omit pci_disable_device(): it does something nasty to
3672 	 * Smart Array controllers that pci_enable_device does not undo
3673 	 */
3674 	pci_release_regions(h->pdev);
3675 	return err;
3676 }
3677 
3678 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3679 {
3680 	int rc;
3681 
3682 #define HBA_INQUIRY_BYTE_COUNT 64
3683 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3684 	if (!h->hba_inquiry_data)
3685 		return;
3686 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3687 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3688 	if (rc != 0) {
3689 		kfree(h->hba_inquiry_data);
3690 		h->hba_inquiry_data = NULL;
3691 	}
3692 }
3693 
3694 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3695 {
3696 	int rc, i;
3697 
3698 	if (!reset_devices)
3699 		return 0;
3700 
3701 	/* Reset the controller with a PCI power-cycle or via doorbell */
3702 	rc = hpsa_kdump_hard_reset_controller(pdev);
3703 
3704 	/* -ENOTSUPP here means we cannot reset the controller
3705 	 * but it's already (and still) up and running in
3706 	 * "performant mode".  Or, it might be 640x, which can't reset
3707 	 * due to concerns about shared bbwc between 6402/6404 pair.
3708 	 */
3709 	if (rc == -ENOTSUPP)
3710 		return 0; /* just try to do the kdump anyhow. */
3711 	if (rc)
3712 		return -ENODEV;
3713 	if (hpsa_reset_msi(pdev))
3714 		return -ENODEV;
3715 
3716 	/* Now try to get the controller to respond to a no-op */
3717 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3718 		if (hpsa_noop(pdev) == 0)
3719 			break;
3720 		else
3721 			dev_warn(&pdev->dev, "no-op failed%s\n",
3722 					(i < 11 ? "; re-trying" : ""));
3723 	}
3724 	return 0;
3725 }
3726 
3727 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3728 				    const struct pci_device_id *ent)
3729 {
3730 	int dac, rc;
3731 	struct ctlr_info *h;
3732 
3733 	if (number_of_controllers == 0)
3734 		printk(KERN_INFO DRIVER_NAME "\n");
3735 
3736 	rc = hpsa_init_reset_devices(pdev);
3737 	if (rc)
3738 		return rc;
3739 
3740 	/* Command structures must be aligned on a 32-byte boundary because
3741 	 * the 5 lower bits of the address are used by the hardware. and by
3742 	 * the driver.  See comments in hpsa.h for more info.
3743 	 */
3744 #define COMMANDLIST_ALIGNMENT 32
3745 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3746 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3747 	if (!h)
3748 		return -ENOMEM;
3749 
3750 	h->pdev = pdev;
3751 	h->busy_initializing = 1;
3752 	INIT_HLIST_HEAD(&h->cmpQ);
3753 	INIT_HLIST_HEAD(&h->reqQ);
3754 	rc = hpsa_pci_init(h);
3755 	if (rc != 0)
3756 		goto clean1;
3757 
3758 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3759 	h->ctlr = number_of_controllers;
3760 	number_of_controllers++;
3761 
3762 	/* configure PCI DMA stuff */
3763 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3764 	if (rc == 0) {
3765 		dac = 1;
3766 	} else {
3767 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3768 		if (rc == 0) {
3769 			dac = 0;
3770 		} else {
3771 			dev_err(&pdev->dev, "no suitable DMA available\n");
3772 			goto clean1;
3773 		}
3774 	}
3775 
3776 	/* make sure the board interrupts are off */
3777 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3778 
3779 	if (h->msix_vector || h->msi_vector)
3780 		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3781 				IRQF_DISABLED, h->devname, h);
3782 	else
3783 		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3784 				IRQF_DISABLED, h->devname, h);
3785 	if (rc) {
3786 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3787 		       h->intr[PERF_MODE_INT], h->devname);
3788 		goto clean2;
3789 	}
3790 
3791 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3792 	       h->devname, pdev->device,
3793 	       h->intr[PERF_MODE_INT], dac ? "" : " not");
3794 
3795 	h->cmd_pool_bits =
3796 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3797 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3798 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3799 		    h->nr_cmds * sizeof(*h->cmd_pool),
3800 		    &(h->cmd_pool_dhandle));
3801 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3802 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3803 		    &(h->errinfo_pool_dhandle));
3804 	if ((h->cmd_pool_bits == NULL)
3805 	    || (h->cmd_pool == NULL)
3806 	    || (h->errinfo_pool == NULL)) {
3807 		dev_err(&pdev->dev, "out of memory");
3808 		rc = -ENOMEM;
3809 		goto clean4;
3810 	}
3811 	if (hpsa_allocate_sg_chain_blocks(h))
3812 		goto clean4;
3813 	spin_lock_init(&h->lock);
3814 	spin_lock_init(&h->scan_lock);
3815 	init_waitqueue_head(&h->scan_wait_queue);
3816 	h->scan_finished = 1; /* no scan currently in progress */
3817 
3818 	pci_set_drvdata(pdev, h);
3819 	memset(h->cmd_pool_bits, 0,
3820 	       ((h->nr_cmds + BITS_PER_LONG -
3821 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3822 
3823 	hpsa_scsi_setup(h);
3824 
3825 	/* Turn the interrupts on so we can service requests */
3826 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3827 
3828 	hpsa_put_ctlr_into_performant_mode(h);
3829 	hpsa_hba_inquiry(h);
3830 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3831 	h->busy_initializing = 0;
3832 	return 1;
3833 
3834 clean4:
3835 	hpsa_free_sg_chain_blocks(h);
3836 	kfree(h->cmd_pool_bits);
3837 	if (h->cmd_pool)
3838 		pci_free_consistent(h->pdev,
3839 			    h->nr_cmds * sizeof(struct CommandList),
3840 			    h->cmd_pool, h->cmd_pool_dhandle);
3841 	if (h->errinfo_pool)
3842 		pci_free_consistent(h->pdev,
3843 			    h->nr_cmds * sizeof(struct ErrorInfo),
3844 			    h->errinfo_pool,
3845 			    h->errinfo_pool_dhandle);
3846 	free_irq(h->intr[PERF_MODE_INT], h);
3847 clean2:
3848 clean1:
3849 	h->busy_initializing = 0;
3850 	kfree(h);
3851 	return rc;
3852 }
3853 
3854 static void hpsa_flush_cache(struct ctlr_info *h)
3855 {
3856 	char *flush_buf;
3857 	struct CommandList *c;
3858 
3859 	flush_buf = kzalloc(4, GFP_KERNEL);
3860 	if (!flush_buf)
3861 		return;
3862 
3863 	c = cmd_special_alloc(h);
3864 	if (!c) {
3865 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3866 		goto out_of_memory;
3867 	}
3868 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3869 		RAID_CTLR_LUNID, TYPE_CMD);
3870 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3871 	if (c->err_info->CommandStatus != 0)
3872 		dev_warn(&h->pdev->dev,
3873 			"error flushing cache on controller\n");
3874 	cmd_special_free(h, c);
3875 out_of_memory:
3876 	kfree(flush_buf);
3877 }
3878 
3879 static void hpsa_shutdown(struct pci_dev *pdev)
3880 {
3881 	struct ctlr_info *h;
3882 
3883 	h = pci_get_drvdata(pdev);
3884 	/* Turn board interrupts off  and send the flush cache command
3885 	 * sendcmd will turn off interrupt, and send the flush...
3886 	 * To write all data in the battery backed cache to disks
3887 	 */
3888 	hpsa_flush_cache(h);
3889 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3890 	free_irq(h->intr[PERF_MODE_INT], h);
3891 #ifdef CONFIG_PCI_MSI
3892 	if (h->msix_vector)
3893 		pci_disable_msix(h->pdev);
3894 	else if (h->msi_vector)
3895 		pci_disable_msi(h->pdev);
3896 #endif				/* CONFIG_PCI_MSI */
3897 }
3898 
3899 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3900 {
3901 	struct ctlr_info *h;
3902 
3903 	if (pci_get_drvdata(pdev) == NULL) {
3904 		dev_err(&pdev->dev, "unable to remove device \n");
3905 		return;
3906 	}
3907 	h = pci_get_drvdata(pdev);
3908 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3909 	hpsa_shutdown(pdev);
3910 	iounmap(h->vaddr);
3911 	iounmap(h->transtable);
3912 	iounmap(h->cfgtable);
3913 	hpsa_free_sg_chain_blocks(h);
3914 	pci_free_consistent(h->pdev,
3915 		h->nr_cmds * sizeof(struct CommandList),
3916 		h->cmd_pool, h->cmd_pool_dhandle);
3917 	pci_free_consistent(h->pdev,
3918 		h->nr_cmds * sizeof(struct ErrorInfo),
3919 		h->errinfo_pool, h->errinfo_pool_dhandle);
3920 	pci_free_consistent(h->pdev, h->reply_pool_size,
3921 		h->reply_pool, h->reply_pool_dhandle);
3922 	kfree(h->cmd_pool_bits);
3923 	kfree(h->blockFetchTable);
3924 	kfree(h->hba_inquiry_data);
3925 	/*
3926 	 * Deliberately omit pci_disable_device(): it does something nasty to
3927 	 * Smart Array controllers that pci_enable_device does not undo
3928 	 */
3929 	pci_release_regions(pdev);
3930 	pci_set_drvdata(pdev, NULL);
3931 	kfree(h);
3932 }
3933 
3934 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3935 	__attribute__((unused)) pm_message_t state)
3936 {
3937 	return -ENOSYS;
3938 }
3939 
3940 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3941 {
3942 	return -ENOSYS;
3943 }
3944 
3945 static struct pci_driver hpsa_pci_driver = {
3946 	.name = "hpsa",
3947 	.probe = hpsa_init_one,
3948 	.remove = __devexit_p(hpsa_remove_one),
3949 	.id_table = hpsa_pci_device_id,	/* id_table */
3950 	.shutdown = hpsa_shutdown,
3951 	.suspend = hpsa_suspend,
3952 	.resume = hpsa_resume,
3953 };
3954 
3955 /* Fill in bucket_map[], given nsgs (the max number of
3956  * scatter gather elements supported) and bucket[],
3957  * which is an array of 8 integers.  The bucket[] array
3958  * contains 8 different DMA transfer sizes (in 16
3959  * byte increments) which the controller uses to fetch
3960  * commands.  This function fills in bucket_map[], which
3961  * maps a given number of scatter gather elements to one of
3962  * the 8 DMA transfer sizes.  The point of it is to allow the
3963  * controller to only do as much DMA as needed to fetch the
3964  * command, with the DMA transfer size encoded in the lower
3965  * bits of the command address.
3966  */
3967 static void  calc_bucket_map(int bucket[], int num_buckets,
3968 	int nsgs, int *bucket_map)
3969 {
3970 	int i, j, b, size;
3971 
3972 	/* even a command with 0 SGs requires 4 blocks */
3973 #define MINIMUM_TRANSFER_BLOCKS 4
3974 #define NUM_BUCKETS 8
3975 	/* Note, bucket_map must have nsgs+1 entries. */
3976 	for (i = 0; i <= nsgs; i++) {
3977 		/* Compute size of a command with i SG entries */
3978 		size = i + MINIMUM_TRANSFER_BLOCKS;
3979 		b = num_buckets; /* Assume the biggest bucket */
3980 		/* Find the bucket that is just big enough */
3981 		for (j = 0; j < 8; j++) {
3982 			if (bucket[j] >= size) {
3983 				b = j;
3984 				break;
3985 			}
3986 		}
3987 		/* for a command with i SG entries, use bucket b. */
3988 		bucket_map[i] = b;
3989 	}
3990 }
3991 
3992 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3993 {
3994 	int i;
3995 	unsigned long register_value;
3996 
3997 	/* This is a bit complicated.  There are 8 registers on
3998 	 * the controller which we write to to tell it 8 different
3999 	 * sizes of commands which there may be.  It's a way of
4000 	 * reducing the DMA done to fetch each command.  Encoded into
4001 	 * each command's tag are 3 bits which communicate to the controller
4002 	 * which of the eight sizes that command fits within.  The size of
4003 	 * each command depends on how many scatter gather entries there are.
4004 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4005 	 * with the number of 16-byte blocks a command of that size requires.
4006 	 * The smallest command possible requires 5 such 16 byte blocks.
4007 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4008 	 * blocks.  Note, this only extends to the SG entries contained
4009 	 * within the command block, and does not extend to chained blocks
4010 	 * of SG elements.   bft[] contains the eight values we write to
4011 	 * the registers.  They are not evenly distributed, but have more
4012 	 * sizes for small commands, and fewer sizes for larger commands.
4013 	 */
4014 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4015 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4016 	/*  5 = 1 s/g entry or 4k
4017 	 *  6 = 2 s/g entry or 8k
4018 	 *  8 = 4 s/g entry or 16k
4019 	 * 10 = 6 s/g entry or 24k
4020 	 */
4021 
4022 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4023 
4024 	/* Controller spec: zero out this buffer. */
4025 	memset(h->reply_pool, 0, h->reply_pool_size);
4026 	h->reply_pool_head = h->reply_pool;
4027 
4028 	bft[7] = h->max_sg_entries + 4;
4029 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4030 	for (i = 0; i < 8; i++)
4031 		writel(bft[i], &h->transtable->BlockFetch[i]);
4032 
4033 	/* size of controller ring buffer */
4034 	writel(h->max_commands, &h->transtable->RepQSize);
4035 	writel(1, &h->transtable->RepQCount);
4036 	writel(0, &h->transtable->RepQCtrAddrLow32);
4037 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4038 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4039 	writel(0, &h->transtable->RepQAddr0High32);
4040 	writel(CFGTBL_Trans_Performant,
4041 		&(h->cfgtable->HostWrite.TransportRequest));
4042 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4043 	hpsa_wait_for_mode_change_ack(h);
4044 	register_value = readl(&(h->cfgtable->TransportActive));
4045 	if (!(register_value & CFGTBL_Trans_Performant)) {
4046 		dev_warn(&h->pdev->dev, "unable to get board into"
4047 					" performant mode\n");
4048 		return;
4049 	}
4050 }
4051 
4052 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4053 {
4054 	u32 trans_support;
4055 
4056 	trans_support = readl(&(h->cfgtable->TransportSupport));
4057 	if (!(trans_support & PERFORMANT_MODE))
4058 		return;
4059 
4060 	hpsa_get_max_perf_mode_cmds(h);
4061 	h->max_sg_entries = 32;
4062 	/* Performant mode ring buffer and supporting data structures */
4063 	h->reply_pool_size = h->max_commands * sizeof(u64);
4064 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4065 				&(h->reply_pool_dhandle));
4066 
4067 	/* Need a block fetch table for performant mode */
4068 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4069 				sizeof(u32)), GFP_KERNEL);
4070 
4071 	if ((h->reply_pool == NULL)
4072 		|| (h->blockFetchTable == NULL))
4073 		goto clean_up;
4074 
4075 	hpsa_enter_performant_mode(h);
4076 
4077 	/* Change the access methods to the performant access methods */
4078 	h->access = SA5_performant_access;
4079 	h->transMethod = CFGTBL_Trans_Performant;
4080 
4081 	return;
4082 
4083 clean_up:
4084 	if (h->reply_pool)
4085 		pci_free_consistent(h->pdev, h->reply_pool_size,
4086 			h->reply_pool, h->reply_pool_dhandle);
4087 	kfree(h->blockFetchTable);
4088 }
4089 
4090 /*
4091  *  This is it.  Register the PCI driver information for the cards we control
4092  *  the OS will call our registered routines when it finds one of our cards.
4093  */
4094 static int __init hpsa_init(void)
4095 {
4096 	return pci_register_driver(&hpsa_pci_driver);
4097 }
4098 
4099 static void __exit hpsa_cleanup(void)
4100 {
4101 	pci_unregister_driver(&hpsa_pci_driver);
4102 }
4103 
4104 module_init(hpsa_init);
4105 module_exit(hpsa_cleanup);
4106