xref: /openbmc/linux/drivers/scsi/hpsa.c (revision d9fd5a71)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259 			       IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261 				   BIG_IOCTL_Command_struct *ioc);
262 
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265 	void __user *arg);
266 #endif
267 
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272 					    struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275 	int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283 	unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285 
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status, len;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 	char tmpbuf[10];
460 
461 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 		return -EACCES;
463 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 	strncpy(tmpbuf, buf, len);
465 	tmpbuf[len] = '\0';
466 	if (sscanf(tmpbuf, "%d", &status) != 1)
467 		return -EINVAL;
468 	h = shost_to_hba(shost);
469 	h->acciopath_status = !!status;
470 	dev_warn(&h->pdev->dev,
471 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 		h->acciopath_status ? "enabled" : "disabled");
473 	return count;
474 }
475 
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 					 struct device_attribute *attr,
478 					 const char *buf, size_t count)
479 {
480 	int debug_level, len;
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	char tmpbuf[10];
484 
485 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 		return -EACCES;
487 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 	strncpy(tmpbuf, buf, len);
489 	tmpbuf[len] = '\0';
490 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491 		return -EINVAL;
492 	if (debug_level < 0)
493 		debug_level = 0;
494 	h = shost_to_hba(shost);
495 	h->raid_offload_debug = debug_level;
496 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 		h->raid_offload_debug);
498 	return count;
499 }
500 
501 static ssize_t host_store_rescan(struct device *dev,
502 				 struct device_attribute *attr,
503 				 const char *buf, size_t count)
504 {
505 	struct ctlr_info *h;
506 	struct Scsi_Host *shost = class_to_shost(dev);
507 	h = shost_to_hba(shost);
508 	hpsa_scan_start(h->scsi_host);
509 	return count;
510 }
511 
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514 	device->offload_enabled = 0;
515 	device->offload_to_be_enabled = 0;
516 }
517 
518 static ssize_t host_show_firmware_revision(struct device *dev,
519 	     struct device_attribute *attr, char *buf)
520 {
521 	struct ctlr_info *h;
522 	struct Scsi_Host *shost = class_to_shost(dev);
523 	unsigned char *fwrev;
524 
525 	h = shost_to_hba(shost);
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	fwrev = &h->hba_inquiry_data[32];
529 	return snprintf(buf, 20, "%c%c%c%c\n",
530 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532 
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 	     struct device_attribute *attr, char *buf)
535 {
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 	struct ctlr_info *h = shost_to_hba(shost);
538 
539 	return snprintf(buf, 20, "%d\n",
540 			atomic_read(&h->commands_outstanding));
541 }
542 
543 static ssize_t host_show_transport_mode(struct device *dev,
544 	struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct Scsi_Host *shost = class_to_shost(dev);
548 
549 	h = shost_to_hba(shost);
550 	return snprintf(buf, 20, "%s\n",
551 		h->transMethod & CFGTBL_Trans_Performant ?
552 			"performant" : "simple");
553 }
554 
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 	struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct Scsi_Host *shost = class_to_shost(dev);
560 
561 	h = shost_to_hba(shost);
562 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565 
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 	0x324a103C, /* Smart Array P712m */
569 	0x324b103C, /* Smart Array P711m */
570 	0x3223103C, /* Smart Array P800 */
571 	0x3234103C, /* Smart Array P400 */
572 	0x3235103C, /* Smart Array P400i */
573 	0x3211103C, /* Smart Array E200i */
574 	0x3212103C, /* Smart Array E200 */
575 	0x3213103C, /* Smart Array E200i */
576 	0x3214103C, /* Smart Array E200i */
577 	0x3215103C, /* Smart Array E200i */
578 	0x3237103C, /* Smart Array E500 */
579 	0x323D103C, /* Smart Array P700m */
580 	0x40800E11, /* Smart Array 5i */
581 	0x409C0E11, /* Smart Array 6400 */
582 	0x409D0E11, /* Smart Array 6400 EM */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 };
590 
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 	0x40800E11, /* Smart Array 5i */
594 	0x40700E11, /* Smart Array 5300 */
595 	0x40820E11, /* Smart Array 532 */
596 	0x40830E11, /* Smart Array 5312 */
597 	0x409A0E11, /* Smart Array 641 */
598 	0x409B0E11, /* Smart Array 642 */
599 	0x40910E11, /* Smart Array 6i */
600 	/* Exclude 640x boards.  These are two pci devices in one slot
601 	 * which share a battery backed cache module.  One controls the
602 	 * cache, the other accesses the cache through the one that controls
603 	 * it.  If we reset the one controlling the cache, the other will
604 	 * likely not be happy.  Just forbid resetting this conjoined mess.
605 	 * The 640x isn't really supported by hpsa anyway.
606 	 */
607 	0x409C0E11, /* Smart Array 6400 */
608 	0x409D0E11, /* Smart Array 6400 EM */
609 };
610 
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613 	int i;
614 
615 	for (i = 0; i < nelems; i++)
616 		if (a[i] == board_id)
617 			return 1;
618 	return 0;
619 }
620 
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623 	return !board_id_in_array(unresettable_controller,
624 			ARRAY_SIZE(unresettable_controller), board_id);
625 }
626 
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629 	return !board_id_in_array(soft_unresettable_controller,
630 			ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632 
633 static int ctlr_is_resettable(u32 board_id)
634 {
635 	return ctlr_is_hard_resettable(board_id) ||
636 		ctlr_is_soft_resettable(board_id);
637 }
638 
639 static ssize_t host_show_resettable(struct device *dev,
640 	struct device_attribute *attr, char *buf)
641 {
642 	struct ctlr_info *h;
643 	struct Scsi_Host *shost = class_to_shost(dev);
644 
645 	h = shost_to_hba(shost);
646 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648 
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651 	return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653 
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0	0
658 #define HPSA_RAID_4	1
659 #define HPSA_RAID_1	2	/* also used for RAID 10 */
660 #define HPSA_RAID_5	3	/* also used for RAID 50 */
661 #define HPSA_RAID_51	4
662 #define HPSA_RAID_6	5	/* also used for RAID 60 */
663 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669 	return !device->physical_device;
670 }
671 
672 static ssize_t raid_level_show(struct device *dev,
673 	     struct device_attribute *attr, char *buf)
674 {
675 	ssize_t l = 0;
676 	unsigned char rlevel;
677 	struct ctlr_info *h;
678 	struct scsi_device *sdev;
679 	struct hpsa_scsi_dev_t *hdev;
680 	unsigned long flags;
681 
682 	sdev = to_scsi_device(dev);
683 	h = sdev_to_hba(sdev);
684 	spin_lock_irqsave(&h->lock, flags);
685 	hdev = sdev->hostdata;
686 	if (!hdev) {
687 		spin_unlock_irqrestore(&h->lock, flags);
688 		return -ENODEV;
689 	}
690 
691 	/* Is this even a logical drive? */
692 	if (!is_logical_device(hdev)) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
695 		return l;
696 	}
697 
698 	rlevel = hdev->raid_level;
699 	spin_unlock_irqrestore(&h->lock, flags);
700 	if (rlevel > RAID_UNKNOWN)
701 		rlevel = RAID_UNKNOWN;
702 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703 	return l;
704 }
705 
706 static ssize_t lunid_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char lunid[8];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727 
728 static ssize_t unique_id_show(struct device *dev,
729 	     struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	unsigned char sn[16];
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	memcpy(sn, hdev->device_id, sizeof(sn));
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	return snprintf(buf, 16 * 2 + 2,
748 			"%02X%02X%02X%02X%02X%02X%02X%02X"
749 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 			sn[0], sn[1], sn[2], sn[3],
751 			sn[4], sn[5], sn[6], sn[7],
752 			sn[8], sn[9], sn[10], sn[11],
753 			sn[12], sn[13], sn[14], sn[15]);
754 }
755 
756 static ssize_t sas_address_show(struct device *dev,
757 	      struct device_attribute *attr, char *buf)
758 {
759 	struct ctlr_info *h;
760 	struct scsi_device *sdev;
761 	struct hpsa_scsi_dev_t *hdev;
762 	unsigned long flags;
763 	u64 sas_address;
764 
765 	sdev = to_scsi_device(dev);
766 	h = sdev_to_hba(sdev);
767 	spin_lock_irqsave(&h->lock, flags);
768 	hdev = sdev->hostdata;
769 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 		spin_unlock_irqrestore(&h->lock, flags);
771 		return -ENODEV;
772 	}
773 	sas_address = hdev->sas_address;
774 	spin_unlock_irqrestore(&h->lock, flags);
775 
776 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778 
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 	     struct device_attribute *attr, char *buf)
781 {
782 	struct ctlr_info *h;
783 	struct scsi_device *sdev;
784 	struct hpsa_scsi_dev_t *hdev;
785 	unsigned long flags;
786 	int offload_enabled;
787 
788 	sdev = to_scsi_device(dev);
789 	h = sdev_to_hba(sdev);
790 	spin_lock_irqsave(&h->lock, flags);
791 	hdev = sdev->hostdata;
792 	if (!hdev) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENODEV;
795 	}
796 	offload_enabled = hdev->offload_enabled;
797 	spin_unlock_irqrestore(&h->lock, flags);
798 
799 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 		return snprintf(buf, 20, "%d\n", offload_enabled);
801 	else
802 		return snprintf(buf, 40, "%s\n",
803 				"Not applicable for a controller");
804 }
805 
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808 	     struct device_attribute *attr, char *buf)
809 {
810 	struct ctlr_info *h;
811 	struct scsi_device *sdev;
812 	struct hpsa_scsi_dev_t *hdev;
813 	unsigned long flags;
814 	int i;
815 	int output_len = 0;
816 	u8 box;
817 	u8 bay;
818 	u8 path_map_index = 0;
819 	char *active;
820 	unsigned char phys_connector[2];
821 
822 	sdev = to_scsi_device(dev);
823 	h = sdev_to_hba(sdev);
824 	spin_lock_irqsave(&h->devlock, flags);
825 	hdev = sdev->hostdata;
826 	if (!hdev) {
827 		spin_unlock_irqrestore(&h->devlock, flags);
828 		return -ENODEV;
829 	}
830 
831 	bay = hdev->bay;
832 	for (i = 0; i < MAX_PATHS; i++) {
833 		path_map_index = 1<<i;
834 		if (i == hdev->active_path_index)
835 			active = "Active";
836 		else if (hdev->path_map & path_map_index)
837 			active = "Inactive";
838 		else
839 			continue;
840 
841 		output_len += scnprintf(buf + output_len,
842 				PAGE_SIZE - output_len,
843 				"[%d:%d:%d:%d] %20.20s ",
844 				h->scsi_host->host_no,
845 				hdev->bus, hdev->target, hdev->lun,
846 				scsi_device_type(hdev->devtype));
847 
848 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 			output_len += scnprintf(buf + output_len,
850 						PAGE_SIZE - output_len,
851 						"%s\n", active);
852 			continue;
853 		}
854 
855 		box = hdev->box[i];
856 		memcpy(&phys_connector, &hdev->phys_connector[i],
857 			sizeof(phys_connector));
858 		if (phys_connector[0] < '0')
859 			phys_connector[0] = '0';
860 		if (phys_connector[1] < '0')
861 			phys_connector[1] = '0';
862 		output_len += scnprintf(buf + output_len,
863 				PAGE_SIZE - output_len,
864 				"PORT: %.2s ",
865 				phys_connector);
866 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 			hdev->expose_device) {
868 			if (box == 0 || box == 0xFF) {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BAY: %hhu %s\n",
872 					bay, active);
873 			} else {
874 				output_len += scnprintf(buf + output_len,
875 					PAGE_SIZE - output_len,
876 					"BOX: %hhu BAY: %hhu %s\n",
877 					box, bay, active);
878 			}
879 		} else if (box != 0 && box != 0xFF) {
880 			output_len += scnprintf(buf + output_len,
881 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882 				box, active);
883 		} else
884 			output_len += scnprintf(buf + output_len,
885 				PAGE_SIZE - output_len, "%s\n", active);
886 	}
887 
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 	return output_len;
890 }
891 
892 static ssize_t host_show_ctlr_num(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901 
902 static ssize_t host_show_legacy_board(struct device *dev,
903 	struct device_attribute *attr, char *buf)
904 {
905 	struct ctlr_info *h;
906 	struct Scsi_Host *shost = class_to_shost(dev);
907 
908 	h = shost_to_hba(shost);
909 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911 
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 			host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 		host_show_hp_ssd_smart_path_status,
922 		host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 			host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 	host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 	host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 	host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 	host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 	host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 	host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 	host_show_legacy_board, NULL);
939 
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941 	&dev_attr_raid_level,
942 	&dev_attr_lunid,
943 	&dev_attr_unique_id,
944 	&dev_attr_hp_ssd_smart_path_enabled,
945 	&dev_attr_path_info,
946 	&dev_attr_sas_address,
947 	NULL,
948 };
949 
950 static struct device_attribute *hpsa_shost_attrs[] = {
951 	&dev_attr_rescan,
952 	&dev_attr_firmware_revision,
953 	&dev_attr_commands_outstanding,
954 	&dev_attr_transport_mode,
955 	&dev_attr_resettable,
956 	&dev_attr_hp_ssd_smart_path_status,
957 	&dev_attr_raid_offload_debug,
958 	&dev_attr_lockup_detected,
959 	&dev_attr_ctlr_num,
960 	&dev_attr_legacy_board,
961 	NULL,
962 };
963 
964 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
966 
967 static struct scsi_host_template hpsa_driver_template = {
968 	.module			= THIS_MODULE,
969 	.name			= HPSA,
970 	.proc_name		= HPSA,
971 	.queuecommand		= hpsa_scsi_queue_command,
972 	.scan_start		= hpsa_scan_start,
973 	.scan_finished		= hpsa_scan_finished,
974 	.change_queue_depth	= hpsa_change_queue_depth,
975 	.this_id		= -1,
976 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
977 	.ioctl			= hpsa_ioctl,
978 	.slave_alloc		= hpsa_slave_alloc,
979 	.slave_configure	= hpsa_slave_configure,
980 	.slave_destroy		= hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982 	.compat_ioctl		= hpsa_compat_ioctl,
983 #endif
984 	.sdev_attrs = hpsa_sdev_attrs,
985 	.shost_attrs = hpsa_shost_attrs,
986 	.max_sectors = 2048,
987 	.no_write_same = 1,
988 };
989 
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992 	u32 a;
993 	struct reply_queue_buffer *rq = &h->reply_queue[q];
994 
995 	if (h->transMethod & CFGTBL_Trans_io_accel1)
996 		return h->access.command_completed(h, q);
997 
998 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999 		return h->access.command_completed(h, q);
1000 
1001 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002 		a = rq->head[rq->current_entry];
1003 		rq->current_entry++;
1004 		atomic_dec(&h->commands_outstanding);
1005 	} else {
1006 		a = FIFO_EMPTY;
1007 	}
1008 	/* Check for wraparound */
1009 	if (rq->current_entry == h->max_commands) {
1010 		rq->current_entry = 0;
1011 		rq->wraparound ^= 1;
1012 	}
1013 	return a;
1014 }
1015 
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041 
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049 					int reply_queue)
1050 {
1051 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053 		if (unlikely(!h->msix_vectors))
1054 			return;
1055 		c->Header.ReplyQueue = reply_queue;
1056 	}
1057 }
1058 
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060 						struct CommandList *c,
1061 						int reply_queue)
1062 {
1063 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064 
1065 	/*
1066 	 * Tell the controller to post the reply to the queue for this
1067 	 * processor.  This seems to give the best I/O throughput.
1068 	 */
1069 	cp->ReplyQueue = reply_queue;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	cp->reply_queue = reply_queue;
1091 	/* Set the bits in the address sent down to include:
1092 	 *  - performant mode bit not used in ioaccel mode 2
1093 	 *  - pull count (bits 0-3)
1094 	 *  - command type isn't needed for ioaccel2
1095 	 */
1096 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098 
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100 						struct CommandList *c,
1101 						int reply_queue)
1102 {
1103 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104 
1105 	/*
1106 	 * Tell the controller to post the reply to the queue for this
1107 	 * processor.  This seems to give the best I/O throughput.
1108 	 */
1109 	cp->reply_queue = reply_queue;
1110 	/*
1111 	 * Set the bits in the address sent down to include:
1112 	 *  - performant mode bit not used in ioaccel mode 2
1113 	 *  - pull count (bits 0-3)
1114 	 *  - command type isn't needed for ioaccel2
1115 	 */
1116 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118 
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123 
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133 		struct CommandList *c)
1134 {
1135 	if (!is_firmware_flash_cmd(c->Request.CDB))
1136 		return;
1137 	atomic_inc(&h->firmware_flash_in_progress);
1138 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140 
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142 		struct CommandList *c)
1143 {
1144 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1145 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1146 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148 
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150 	struct CommandList *c, int reply_queue)
1151 {
1152 	dial_down_lockup_detection_during_fw_flash(h, c);
1153 	atomic_inc(&h->commands_outstanding);
1154 	if (c->device)
1155 		atomic_inc(&c->device->commands_outstanding);
1156 
1157 	reply_queue = h->reply_map[raw_smp_processor_id()];
1158 	switch (c->cmd_type) {
1159 	case CMD_IOACCEL1:
1160 		set_ioaccel1_performant_mode(h, c, reply_queue);
1161 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162 		break;
1163 	case CMD_IOACCEL2:
1164 		set_ioaccel2_performant_mode(h, c, reply_queue);
1165 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166 		break;
1167 	case IOACCEL2_TMF:
1168 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170 		break;
1171 	default:
1172 		set_performant_mode(h, c, reply_queue);
1173 		h->access.submit_command(h, c);
1174 	}
1175 }
1176 
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181 
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186 
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 	if (!h->hba_inquiry_data)
1190 		return 0;
1191 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 	/* finds an unused bus, target, lun for a new physical device
1200 	 * assumes h->devlock is held
1201 	 */
1202 	int i, found = 0;
1203 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204 
1205 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	for (i = 0; i < h->ndevices; i++) {
1208 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 			__set_bit(h->dev[i]->target, lun_taken);
1210 	}
1211 
1212 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 	if (i < HPSA_MAX_DEVICES) {
1214 		/* *bus = 1; */
1215 		*target = i;
1216 		*lun = 0;
1217 		found = 1;
1218 	}
1219 	return !found;
1220 }
1221 
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 	struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 	char label[LABEL_SIZE];
1227 
1228 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 		return;
1230 
1231 	switch (dev->devtype) {
1232 	case TYPE_RAID:
1233 		snprintf(label, LABEL_SIZE, "controller");
1234 		break;
1235 	case TYPE_ENCLOSURE:
1236 		snprintf(label, LABEL_SIZE, "enclosure");
1237 		break;
1238 	case TYPE_DISK:
1239 	case TYPE_ZBC:
1240 		if (dev->external)
1241 			snprintf(label, LABEL_SIZE, "external");
1242 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 			snprintf(label, LABEL_SIZE, "%s",
1244 				raid_label[PHYSICAL_DRIVE]);
1245 		else
1246 			snprintf(label, LABEL_SIZE, "RAID-%s",
1247 				dev->raid_level > RAID_UNKNOWN ? "?" :
1248 				raid_label[dev->raid_level]);
1249 		break;
1250 	case TYPE_ROM:
1251 		snprintf(label, LABEL_SIZE, "rom");
1252 		break;
1253 	case TYPE_TAPE:
1254 		snprintf(label, LABEL_SIZE, "tape");
1255 		break;
1256 	case TYPE_MEDIUM_CHANGER:
1257 		snprintf(label, LABEL_SIZE, "changer");
1258 		break;
1259 	default:
1260 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 		break;
1262 	}
1263 
1264 	dev_printk(level, &h->pdev->dev,
1265 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 			description,
1268 			scsi_device_type(dev->devtype),
1269 			dev->vendor,
1270 			dev->model,
1271 			label,
1272 			dev->offload_config ? '+' : '-',
1273 			dev->offload_to_be_enabled ? '+' : '-',
1274 			dev->expose_device);
1275 }
1276 
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 		struct hpsa_scsi_dev_t *device,
1280 		struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 	/* assumes h->devlock is held */
1283 	int n = h->ndevices;
1284 	int i;
1285 	unsigned char addr1[8], addr2[8];
1286 	struct hpsa_scsi_dev_t *sd;
1287 
1288 	if (n >= HPSA_MAX_DEVICES) {
1289 		dev_err(&h->pdev->dev, "too many devices, some will be "
1290 			"inaccessible.\n");
1291 		return -1;
1292 	}
1293 
1294 	/* physical devices do not have lun or target assigned until now. */
1295 	if (device->lun != -1)
1296 		/* Logical device, lun is already assigned. */
1297 		goto lun_assigned;
1298 
1299 	/* If this device a non-zero lun of a multi-lun device
1300 	 * byte 4 of the 8-byte LUN addr will contain the logical
1301 	 * unit no, zero otherwise.
1302 	 */
1303 	if (device->scsi3addr[4] == 0) {
1304 		/* This is not a non-zero lun of a multi-lun device */
1305 		if (hpsa_find_target_lun(h, device->scsi3addr,
1306 			device->bus, &device->target, &device->lun) != 0)
1307 			return -1;
1308 		goto lun_assigned;
1309 	}
1310 
1311 	/* This is a non-zero lun of a multi-lun device.
1312 	 * Search through our list and find the device which
1313 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 	 * Assign the same bus and target for this new LUN.
1315 	 * Use the logical unit number from the firmware.
1316 	 */
1317 	memcpy(addr1, device->scsi3addr, 8);
1318 	addr1[4] = 0;
1319 	addr1[5] = 0;
1320 	for (i = 0; i < n; i++) {
1321 		sd = h->dev[i];
1322 		memcpy(addr2, sd->scsi3addr, 8);
1323 		addr2[4] = 0;
1324 		addr2[5] = 0;
1325 		/* differ only in byte 4 and 5? */
1326 		if (memcmp(addr1, addr2, 8) == 0) {
1327 			device->bus = sd->bus;
1328 			device->target = sd->target;
1329 			device->lun = device->scsi3addr[4];
1330 			break;
1331 		}
1332 	}
1333 	if (device->lun == -1) {
1334 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 			" suspect firmware bug or unsupported hardware "
1336 			"configuration.\n");
1337 		return -1;
1338 	}
1339 
1340 lun_assigned:
1341 
1342 	h->dev[n] = device;
1343 	h->ndevices++;
1344 	added[*nadded] = device;
1345 	(*nadded)++;
1346 	hpsa_show_dev_msg(KERN_INFO, h, device,
1347 		device->expose_device ? "added" : "masked");
1348 	return 0;
1349 }
1350 
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357 	int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359 	/* assumes h->devlock is held */
1360 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361 
1362 	/* Raid level changed. */
1363 	h->dev[entry]->raid_level = new_entry->raid_level;
1364 
1365 	/*
1366 	 * ioacccel_handle may have changed for a dual domain disk
1367 	 */
1368 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369 
1370 	/* Raid offload parameters changed.  Careful about the ordering. */
1371 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372 		/*
1373 		 * if drive is newly offload_enabled, we want to copy the
1374 		 * raid map data first.  If previously offload_enabled and
1375 		 * offload_config were set, raid map data had better be
1376 		 * the same as it was before. If raid map data has changed
1377 		 * then it had better be the case that
1378 		 * h->dev[entry]->offload_enabled is currently 0.
1379 		 */
1380 		h->dev[entry]->raid_map = new_entry->raid_map;
1381 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382 	}
1383 	if (new_entry->offload_to_be_enabled) {
1384 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386 	}
1387 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388 	h->dev[entry]->offload_config = new_entry->offload_config;
1389 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1391 
1392 	/*
1393 	 * We can turn off ioaccel offload now, but need to delay turning
1394 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395 	 * can't do that until all the devices are updated.
1396 	 */
1397 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398 
1399 	/*
1400 	 * turn ioaccel off immediately if told to do so.
1401 	 */
1402 	if (!new_entry->offload_to_be_enabled)
1403 		h->dev[entry]->offload_enabled = 0;
1404 
1405 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407 
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410 	int entry, struct hpsa_scsi_dev_t *new_entry,
1411 	struct hpsa_scsi_dev_t *added[], int *nadded,
1412 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414 	/* assumes h->devlock is held */
1415 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416 	removed[*nremoved] = h->dev[entry];
1417 	(*nremoved)++;
1418 
1419 	/*
1420 	 * New physical devices won't have target/lun assigned yet
1421 	 * so we need to preserve the values in the slot we are replacing.
1422 	 */
1423 	if (new_entry->target == -1) {
1424 		new_entry->target = h->dev[entry]->target;
1425 		new_entry->lun = h->dev[entry]->lun;
1426 	}
1427 
1428 	h->dev[entry] = new_entry;
1429 	added[*nadded] = new_entry;
1430 	(*nadded)++;
1431 
1432 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434 
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439 	/* assumes h->devlock is held */
1440 	int i;
1441 	struct hpsa_scsi_dev_t *sd;
1442 
1443 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444 
1445 	sd = h->dev[entry];
1446 	removed[*nremoved] = h->dev[entry];
1447 	(*nremoved)++;
1448 
1449 	for (i = entry; i < h->ndevices-1; i++)
1450 		h->dev[i] = h->dev[i+1];
1451 	h->ndevices--;
1452 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454 
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456 	(a)[7] == (b)[7] && \
1457 	(a)[6] == (b)[6] && \
1458 	(a)[5] == (b)[5] && \
1459 	(a)[4] == (b)[4] && \
1460 	(a)[3] == (b)[3] && \
1461 	(a)[2] == (b)[2] && \
1462 	(a)[1] == (b)[1] && \
1463 	(a)[0] == (b)[0])
1464 
1465 static void fixup_botched_add(struct ctlr_info *h,
1466 	struct hpsa_scsi_dev_t *added)
1467 {
1468 	/* called when scsi_add_device fails in order to re-adjust
1469 	 * h->dev[] to match the mid layer's view.
1470 	 */
1471 	unsigned long flags;
1472 	int i, j;
1473 
1474 	spin_lock_irqsave(&h->lock, flags);
1475 	for (i = 0; i < h->ndevices; i++) {
1476 		if (h->dev[i] == added) {
1477 			for (j = i; j < h->ndevices-1; j++)
1478 				h->dev[j] = h->dev[j+1];
1479 			h->ndevices--;
1480 			break;
1481 		}
1482 	}
1483 	spin_unlock_irqrestore(&h->lock, flags);
1484 	kfree(added);
1485 }
1486 
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488 	struct hpsa_scsi_dev_t *dev2)
1489 {
1490 	/* we compare everything except lun and target as these
1491 	 * are not yet assigned.  Compare parts likely
1492 	 * to differ first
1493 	 */
1494 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495 		sizeof(dev1->scsi3addr)) != 0)
1496 		return 0;
1497 	if (memcmp(dev1->device_id, dev2->device_id,
1498 		sizeof(dev1->device_id)) != 0)
1499 		return 0;
1500 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503 		return 0;
1504 	if (dev1->devtype != dev2->devtype)
1505 		return 0;
1506 	if (dev1->bus != dev2->bus)
1507 		return 0;
1508 	return 1;
1509 }
1510 
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512 	struct hpsa_scsi_dev_t *dev2)
1513 {
1514 	/* Device attributes that can change, but don't mean
1515 	 * that the device is a different device, nor that the OS
1516 	 * needs to be told anything about the change.
1517 	 */
1518 	if (dev1->raid_level != dev2->raid_level)
1519 		return 1;
1520 	if (dev1->offload_config != dev2->offload_config)
1521 		return 1;
1522 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523 		return 1;
1524 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525 		if (dev1->queue_depth != dev2->queue_depth)
1526 			return 1;
1527 	/*
1528 	 * This can happen for dual domain devices. An active
1529 	 * path change causes the ioaccel handle to change
1530 	 *
1531 	 * for example note the handle differences between p0 and p1
1532 	 * Device                    WWN               ,WWN hash,Handle
1533 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535 	 */
1536 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537 		return 1;
1538 	return 0;
1539 }
1540 
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551 	int *index)
1552 {
1553 	int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558 	if (needle == NULL)
1559 		return DEVICE_NOT_FOUND;
1560 
1561 	for (i = 0; i < haystack_size; i++) {
1562 		if (haystack[i] == NULL) /* previously removed. */
1563 			continue;
1564 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565 			*index = i;
1566 			if (device_is_the_same(needle, haystack[i])) {
1567 				if (device_updated(needle, haystack[i]))
1568 					return DEVICE_UPDATED;
1569 				return DEVICE_SAME;
1570 			} else {
1571 				/* Keep offline devices offline */
1572 				if (needle->volume_offline)
1573 					return DEVICE_NOT_FOUND;
1574 				return DEVICE_CHANGED;
1575 			}
1576 		}
1577 	}
1578 	*index = -1;
1579 	return DEVICE_NOT_FOUND;
1580 }
1581 
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583 					unsigned char scsi3addr[])
1584 {
1585 	struct offline_device_entry *device;
1586 	unsigned long flags;
1587 
1588 	/* Check to see if device is already on the list */
1589 	spin_lock_irqsave(&h->offline_device_lock, flags);
1590 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591 		if (memcmp(device->scsi3addr, scsi3addr,
1592 			sizeof(device->scsi3addr)) == 0) {
1593 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594 			return;
1595 		}
1596 	}
1597 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 
1599 	/* Device is not on the list, add it. */
1600 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1601 	if (!device)
1602 		return;
1603 
1604 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605 	spin_lock_irqsave(&h->offline_device_lock, flags);
1606 	list_add_tail(&device->offline_list, &h->offline_device_list);
1607 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609 
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612 	struct hpsa_scsi_dev_t *sd)
1613 {
1614 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 	switch (sd->volume_offline) {
1620 	case HPSA_LV_OK:
1621 		break;
1622 	case HPSA_LV_UNDERGOING_ERASE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_NOT_AVAILABLE:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_UNDERGOING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_PENDING_RPI:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_ENCRYPTED_NO_KEY:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683 		dev_info(&h->pdev->dev,
1684 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685 			h->scsi_host->host_no,
1686 			sd->bus, sd->target, sd->lun);
1687 		break;
1688 	}
1689 }
1690 
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1697 				struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699 	struct raid_map_data *map = &logical_drive->raid_map;
1700 	struct raid_map_disk_data *dd = &map->data[0];
1701 	int i, j;
1702 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703 				le16_to_cpu(map->metadata_disks_per_row);
1704 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705 				le16_to_cpu(map->layout_map_count) *
1706 				total_disks_per_row;
1707 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708 				total_disks_per_row;
1709 	int qdepth;
1710 
1711 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713 
1714 	logical_drive->nphysical_disks = nraid_map_entries;
1715 
1716 	qdepth = 0;
1717 	for (i = 0; i < nraid_map_entries; i++) {
1718 		logical_drive->phys_disk[i] = NULL;
1719 		if (!logical_drive->offload_config)
1720 			continue;
1721 		for (j = 0; j < ndevices; j++) {
1722 			if (dev[j] == NULL)
1723 				continue;
1724 			if (dev[j]->devtype != TYPE_DISK &&
1725 			    dev[j]->devtype != TYPE_ZBC)
1726 				continue;
1727 			if (is_logical_device(dev[j]))
1728 				continue;
1729 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730 				continue;
1731 
1732 			logical_drive->phys_disk[i] = dev[j];
1733 			if (i < nphys_disk)
1734 				qdepth = min(h->nr_cmds, qdepth +
1735 				    logical_drive->phys_disk[i]->queue_depth);
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * This can happen if a physical drive is removed and
1741 		 * the logical drive is degraded.  In that case, the RAID
1742 		 * map data will refer to a physical disk which isn't actually
1743 		 * present.  And in that case offload_enabled should already
1744 		 * be 0, but we'll turn it off here just in case
1745 		 */
1746 		if (!logical_drive->phys_disk[i]) {
1747 			dev_warn(&h->pdev->dev,
1748 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749 				__func__,
1750 				h->scsi_host->host_no, logical_drive->bus,
1751 				logical_drive->target, logical_drive->lun);
1752 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1753 			logical_drive->queue_depth = 8;
1754 		}
1755 	}
1756 	if (nraid_map_entries)
1757 		/*
1758 		 * This is correct for reads, too high for full stripe writes,
1759 		 * way too high for partial stripe writes
1760 		 */
1761 		logical_drive->queue_depth = qdepth;
1762 	else {
1763 		if (logical_drive->external)
1764 			logical_drive->queue_depth = EXTERNAL_QD;
1765 		else
1766 			logical_drive->queue_depth = h->nr_cmds;
1767 	}
1768 }
1769 
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < ndevices; i++) {
1776 		if (dev[i] == NULL)
1777 			continue;
1778 		if (dev[i]->devtype != TYPE_DISK &&
1779 		    dev[i]->devtype != TYPE_ZBC)
1780 			continue;
1781 		if (!is_logical_device(dev[i]))
1782 			continue;
1783 
1784 		/*
1785 		 * If offload is currently enabled, the RAID map and
1786 		 * phys_disk[] assignment *better* not be changing
1787 		 * because we would be changing ioaccel phsy_disk[] pointers
1788 		 * on a ioaccel volume processing I/O requests.
1789 		 *
1790 		 * If an ioaccel volume status changed, initially because it was
1791 		 * re-configured and thus underwent a transformation, or
1792 		 * a drive failed, we would have received a state change
1793 		 * request and ioaccel should have been turned off. When the
1794 		 * transformation completes, we get another state change
1795 		 * request to turn ioaccel back on. In this case, we need
1796 		 * to update the ioaccel information.
1797 		 *
1798 		 * Thus: If it is not currently enabled, but will be after
1799 		 * the scan completes, make sure the ioaccel pointers
1800 		 * are up to date.
1801 		 */
1802 
1803 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805 	}
1806 }
1807 
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810 	int rc = 0;
1811 
1812 	if (!h->scsi_host)
1813 		return 1;
1814 
1815 	if (is_logical_device(device)) /* RAID */
1816 		rc = scsi_add_device(h->scsi_host, device->bus,
1817 					device->target, device->lun);
1818 	else /* HBA */
1819 		rc = hpsa_add_sas_device(h->sas_host, device);
1820 
1821 	return rc;
1822 }
1823 
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825 						struct hpsa_scsi_dev_t *dev)
1826 {
1827 	int i;
1828 	int count = 0;
1829 
1830 	for (i = 0; i < h->nr_cmds; i++) {
1831 		struct CommandList *c = h->cmd_pool + i;
1832 		int refcount = atomic_inc_return(&c->refcount);
1833 
1834 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835 				dev->scsi3addr)) {
1836 			unsigned long flags;
1837 
1838 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1839 			if (!hpsa_is_cmd_idle(c))
1840 				++count;
1841 			spin_unlock_irqrestore(&h->lock, flags);
1842 		}
1843 
1844 		cmd_free(h, c);
1845 	}
1846 
1847 	return count;
1848 }
1849 
1850 #define NUM_WAIT 20
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852 						struct hpsa_scsi_dev_t *device)
1853 {
1854 	int cmds = 0;
1855 	int waits = 0;
1856 	int num_wait = NUM_WAIT;
1857 
1858 	if (device->external)
1859 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860 
1861 	while (1) {
1862 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863 		if (cmds == 0)
1864 			break;
1865 		if (++waits > num_wait)
1866 			break;
1867 		msleep(1000);
1868 	}
1869 
1870 	if (waits > num_wait) {
1871 		dev_warn(&h->pdev->dev,
1872 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873 			__func__,
1874 			h->scsi_host->host_no,
1875 			device->bus, device->target, device->lun, cmds);
1876 	}
1877 }
1878 
1879 static void hpsa_remove_device(struct ctlr_info *h,
1880 			struct hpsa_scsi_dev_t *device)
1881 {
1882 	struct scsi_device *sdev = NULL;
1883 
1884 	if (!h->scsi_host)
1885 		return;
1886 
1887 	/*
1888 	 * Allow for commands to drain
1889 	 */
1890 	device->removed = 1;
1891 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892 
1893 	if (is_logical_device(device)) { /* RAID */
1894 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895 						device->target, device->lun);
1896 		if (sdev) {
1897 			scsi_remove_device(sdev);
1898 			scsi_device_put(sdev);
1899 		} else {
1900 			/*
1901 			 * We don't expect to get here.  Future commands
1902 			 * to this device will get a selection timeout as
1903 			 * if the device were gone.
1904 			 */
1905 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1906 					"didn't find device for removal.");
1907 		}
1908 	} else { /* HBA */
1909 
1910 		hpsa_remove_sas_device(device);
1911 	}
1912 }
1913 
1914 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915 	struct hpsa_scsi_dev_t *sd[], int nsds)
1916 {
1917 	/* sd contains scsi3 addresses and devtypes, and inquiry
1918 	 * data.  This function takes what's in sd to be the current
1919 	 * reality and updates h->dev[] to reflect that reality.
1920 	 */
1921 	int i, entry, device_change, changes = 0;
1922 	struct hpsa_scsi_dev_t *csd;
1923 	unsigned long flags;
1924 	struct hpsa_scsi_dev_t **added, **removed;
1925 	int nadded, nremoved;
1926 
1927 	/*
1928 	 * A reset can cause a device status to change
1929 	 * re-schedule the scan to see what happened.
1930 	 */
1931 	spin_lock_irqsave(&h->reset_lock, flags);
1932 	if (h->reset_in_progress) {
1933 		h->drv_req_rescan = 1;
1934 		spin_unlock_irqrestore(&h->reset_lock, flags);
1935 		return;
1936 	}
1937 	spin_unlock_irqrestore(&h->reset_lock, flags);
1938 
1939 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941 
1942 	if (!added || !removed) {
1943 		dev_warn(&h->pdev->dev, "out of memory in "
1944 			"adjust_hpsa_scsi_table\n");
1945 		goto free_and_out;
1946 	}
1947 
1948 	spin_lock_irqsave(&h->devlock, flags);
1949 
1950 	/* find any devices in h->dev[] that are not in
1951 	 * sd[] and remove them from h->dev[], and for any
1952 	 * devices which have changed, remove the old device
1953 	 * info and add the new device info.
1954 	 * If minor device attributes change, just update
1955 	 * the existing device structure.
1956 	 */
1957 	i = 0;
1958 	nremoved = 0;
1959 	nadded = 0;
1960 	while (i < h->ndevices) {
1961 		csd = h->dev[i];
1962 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963 		if (device_change == DEVICE_NOT_FOUND) {
1964 			changes++;
1965 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966 			continue; /* remove ^^^, hence i not incremented */
1967 		} else if (device_change == DEVICE_CHANGED) {
1968 			changes++;
1969 			hpsa_scsi_replace_entry(h, i, sd[entry],
1970 				added, &nadded, removed, &nremoved);
1971 			/* Set it to NULL to prevent it from being freed
1972 			 * at the bottom of hpsa_update_scsi_devices()
1973 			 */
1974 			sd[entry] = NULL;
1975 		} else if (device_change == DEVICE_UPDATED) {
1976 			hpsa_scsi_update_entry(h, i, sd[entry]);
1977 		}
1978 		i++;
1979 	}
1980 
1981 	/* Now, make sure every device listed in sd[] is also
1982 	 * listed in h->dev[], adding them if they aren't found
1983 	 */
1984 
1985 	for (i = 0; i < nsds; i++) {
1986 		if (!sd[i]) /* if already added above. */
1987 			continue;
1988 
1989 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990 		 * as the SCSI mid-layer does not handle such devices well.
1991 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992 		 * at 160Hz, and prevents the system from coming up.
1993 		 */
1994 		if (sd[i]->volume_offline) {
1995 			hpsa_show_volume_status(h, sd[i]);
1996 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997 			continue;
1998 		}
1999 
2000 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001 					h->ndevices, &entry);
2002 		if (device_change == DEVICE_NOT_FOUND) {
2003 			changes++;
2004 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005 				break;
2006 			sd[i] = NULL; /* prevent from being freed later. */
2007 		} else if (device_change == DEVICE_CHANGED) {
2008 			/* should never happen... */
2009 			changes++;
2010 			dev_warn(&h->pdev->dev,
2011 				"device unexpectedly changed.\n");
2012 			/* but if it does happen, we just ignore that device */
2013 		}
2014 	}
2015 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016 
2017 	/*
2018 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019 	 * any logical drives that need it enabled.
2020 	 *
2021 	 * The raid map should be current by now.
2022 	 *
2023 	 * We are updating the device list used for I/O requests.
2024 	 */
2025 	for (i = 0; i < h->ndevices; i++) {
2026 		if (h->dev[i] == NULL)
2027 			continue;
2028 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029 	}
2030 
2031 	spin_unlock_irqrestore(&h->devlock, flags);
2032 
2033 	/* Monitor devices which are in one of several NOT READY states to be
2034 	 * brought online later. This must be done without holding h->devlock,
2035 	 * so don't touch h->dev[]
2036 	 */
2037 	for (i = 0; i < nsds; i++) {
2038 		if (!sd[i]) /* if already added above. */
2039 			continue;
2040 		if (sd[i]->volume_offline)
2041 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042 	}
2043 
2044 	/* Don't notify scsi mid layer of any changes the first time through
2045 	 * (or if there are no changes) scsi_scan_host will do it later the
2046 	 * first time through.
2047 	 */
2048 	if (!changes)
2049 		goto free_and_out;
2050 
2051 	/* Notify scsi mid layer of any removed devices */
2052 	for (i = 0; i < nremoved; i++) {
2053 		if (removed[i] == NULL)
2054 			continue;
2055 		if (removed[i]->expose_device)
2056 			hpsa_remove_device(h, removed[i]);
2057 		kfree(removed[i]);
2058 		removed[i] = NULL;
2059 	}
2060 
2061 	/* Notify scsi mid layer of any added devices */
2062 	for (i = 0; i < nadded; i++) {
2063 		int rc = 0;
2064 
2065 		if (added[i] == NULL)
2066 			continue;
2067 		if (!(added[i]->expose_device))
2068 			continue;
2069 		rc = hpsa_add_device(h, added[i]);
2070 		if (!rc)
2071 			continue;
2072 		dev_warn(&h->pdev->dev,
2073 			"addition failed %d, device not added.", rc);
2074 		/* now we have to remove it from h->dev,
2075 		 * since it didn't get added to scsi mid layer
2076 		 */
2077 		fixup_botched_add(h, added[i]);
2078 		h->drv_req_rescan = 1;
2079 	}
2080 
2081 free_and_out:
2082 	kfree(added);
2083 	kfree(removed);
2084 }
2085 
2086 /*
2087  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088  * Assume's h->devlock is held.
2089  */
2090 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091 	int bus, int target, int lun)
2092 {
2093 	int i;
2094 	struct hpsa_scsi_dev_t *sd;
2095 
2096 	for (i = 0; i < h->ndevices; i++) {
2097 		sd = h->dev[i];
2098 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099 			return sd;
2100 	}
2101 	return NULL;
2102 }
2103 
2104 static int hpsa_slave_alloc(struct scsi_device *sdev)
2105 {
2106 	struct hpsa_scsi_dev_t *sd = NULL;
2107 	unsigned long flags;
2108 	struct ctlr_info *h;
2109 
2110 	h = sdev_to_hba(sdev);
2111 	spin_lock_irqsave(&h->devlock, flags);
2112 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113 		struct scsi_target *starget;
2114 		struct sas_rphy *rphy;
2115 
2116 		starget = scsi_target(sdev);
2117 		rphy = target_to_rphy(starget);
2118 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119 		if (sd) {
2120 			sd->target = sdev_id(sdev);
2121 			sd->lun = sdev->lun;
2122 		}
2123 	}
2124 	if (!sd)
2125 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126 					sdev_id(sdev), sdev->lun);
2127 
2128 	if (sd && sd->expose_device) {
2129 		atomic_set(&sd->ioaccel_cmds_out, 0);
2130 		sdev->hostdata = sd;
2131 	} else
2132 		sdev->hostdata = NULL;
2133 	spin_unlock_irqrestore(&h->devlock, flags);
2134 	return 0;
2135 }
2136 
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device *sdev)
2140 {
2141 	struct hpsa_scsi_dev_t *sd;
2142 	int queue_depth;
2143 
2144 	sd = sdev->hostdata;
2145 	sdev->no_uld_attach = !sd || !sd->expose_device;
2146 
2147 	if (sd) {
2148 		sd->was_removed = 0;
2149 		queue_depth = sd->queue_depth != 0 ?
2150 				sd->queue_depth : sdev->host->can_queue;
2151 		if (sd->external) {
2152 			queue_depth = EXTERNAL_QD;
2153 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154 			blk_queue_rq_timeout(sdev->request_queue,
2155 						HPSA_EH_PTRAID_TIMEOUT);
2156 		}
2157 		if (is_hba_lunid(sd->scsi3addr)) {
2158 			sdev->eh_timeout = CTLR_TIMEOUT;
2159 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160 		}
2161 	} else {
2162 		queue_depth = sdev->host->can_queue;
2163 	}
2164 
2165 	scsi_change_queue_depth(sdev, queue_depth);
2166 
2167 	return 0;
2168 }
2169 
2170 static void hpsa_slave_destroy(struct scsi_device *sdev)
2171 {
2172 	struct hpsa_scsi_dev_t *hdev = NULL;
2173 
2174 	hdev = sdev->hostdata;
2175 
2176 	if (hdev)
2177 		hdev->was_removed = 1;
2178 }
2179 
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (!h->ioaccel2_cmd_sg_list)
2185 		return;
2186 	for (i = 0; i < h->nr_cmds; i++) {
2187 		kfree(h->ioaccel2_cmd_sg_list[i]);
2188 		h->ioaccel2_cmd_sg_list[i] = NULL;
2189 	}
2190 	kfree(h->ioaccel2_cmd_sg_list);
2191 	h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193 
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196 	int i;
2197 
2198 	if (h->chainsize <= 0)
2199 		return 0;
2200 
2201 	h->ioaccel2_cmd_sg_list =
2202 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203 					GFP_KERNEL);
2204 	if (!h->ioaccel2_cmd_sg_list)
2205 		return -ENOMEM;
2206 	for (i = 0; i < h->nr_cmds; i++) {
2207 		h->ioaccel2_cmd_sg_list[i] =
2208 			kmalloc_array(h->maxsgentries,
2209 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210 				      GFP_KERNEL);
2211 		if (!h->ioaccel2_cmd_sg_list[i])
2212 			goto clean;
2213 	}
2214 	return 0;
2215 
2216 clean:
2217 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2218 	return -ENOMEM;
2219 }
2220 
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (!h->cmd_sg_list)
2226 		return;
2227 	for (i = 0; i < h->nr_cmds; i++) {
2228 		kfree(h->cmd_sg_list[i]);
2229 		h->cmd_sg_list[i] = NULL;
2230 	}
2231 	kfree(h->cmd_sg_list);
2232 	h->cmd_sg_list = NULL;
2233 }
2234 
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237 	int i;
2238 
2239 	if (h->chainsize <= 0)
2240 		return 0;
2241 
2242 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243 				 GFP_KERNEL);
2244 	if (!h->cmd_sg_list)
2245 		return -ENOMEM;
2246 
2247 	for (i = 0; i < h->nr_cmds; i++) {
2248 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249 						  sizeof(*h->cmd_sg_list[i]),
2250 						  GFP_KERNEL);
2251 		if (!h->cmd_sg_list[i])
2252 			goto clean;
2253 
2254 	}
2255 	return 0;
2256 
2257 clean:
2258 	hpsa_free_sg_chain_blocks(h);
2259 	return -ENOMEM;
2260 }
2261 
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263 	struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265 	struct ioaccel2_sg_element *chain_block;
2266 	u64 temp64;
2267 	u32 chain_size;
2268 
2269 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270 	chain_size = le32_to_cpu(cp->sg[0].length);
2271 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272 				DMA_TO_DEVICE);
2273 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274 		/* prevent subsequent unmapping */
2275 		cp->sg->address = 0;
2276 		return -1;
2277 	}
2278 	cp->sg->address = cpu_to_le64(temp64);
2279 	return 0;
2280 }
2281 
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283 	struct io_accel2_cmd *cp)
2284 {
2285 	struct ioaccel2_sg_element *chain_sg;
2286 	u64 temp64;
2287 	u32 chain_size;
2288 
2289 	chain_sg = cp->sg;
2290 	temp64 = le64_to_cpu(chain_sg->address);
2291 	chain_size = le32_to_cpu(cp->sg[0].length);
2292 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294 
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296 	struct CommandList *c)
2297 {
2298 	struct SGDescriptor *chain_sg, *chain_block;
2299 	u64 temp64;
2300 	u32 chain_len;
2301 
2302 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303 	chain_block = h->cmd_sg_list[c->cmdindex];
2304 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305 	chain_len = sizeof(*chain_sg) *
2306 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307 	chain_sg->Len = cpu_to_le32(chain_len);
2308 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309 				DMA_TO_DEVICE);
2310 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311 		/* prevent subsequent unmapping */
2312 		chain_sg->Addr = cpu_to_le64(0);
2313 		return -1;
2314 	}
2315 	chain_sg->Addr = cpu_to_le64(temp64);
2316 	return 0;
2317 }
2318 
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320 	struct CommandList *c)
2321 {
2322 	struct SGDescriptor *chain_sg;
2323 
2324 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325 		return;
2326 
2327 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331 
2332 
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338 					struct CommandList *c,
2339 					struct scsi_cmnd *cmd,
2340 					struct io_accel2_cmd *c2,
2341 					struct hpsa_scsi_dev_t *dev)
2342 {
2343 	int data_len;
2344 	int retry = 0;
2345 	u32 ioaccel2_resid = 0;
2346 
2347 	switch (c2->error_data.serv_response) {
2348 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349 		switch (c2->error_data.status) {
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351 			if (cmd)
2352 				cmd->result = 0;
2353 			break;
2354 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2356 			if (c2->error_data.data_present !=
2357 					IOACCEL2_SENSE_DATA_PRESENT) {
2358 				memset(cmd->sense_buffer, 0,
2359 					SCSI_SENSE_BUFFERSIZE);
2360 				break;
2361 			}
2362 			/* copy the sense data */
2363 			data_len = c2->error_data.sense_data_len;
2364 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2365 				data_len = SCSI_SENSE_BUFFERSIZE;
2366 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2367 				data_len =
2368 					sizeof(c2->error_data.sense_data_buff);
2369 			memcpy(cmd->sense_buffer,
2370 				c2->error_data.sense_data_buff, data_len);
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383 			retry = 1;
2384 			break;
2385 		default:
2386 			retry = 1;
2387 			break;
2388 		}
2389 		break;
2390 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2391 		switch (c2->error_data.status) {
2392 		case IOACCEL2_STATUS_SR_IO_ERROR:
2393 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2394 		case IOACCEL2_STATUS_SR_OVERRUN:
2395 			retry = 1;
2396 			break;
2397 		case IOACCEL2_STATUS_SR_UNDERRUN:
2398 			cmd->result = (DID_OK << 16);		/* host byte */
2399 			ioaccel2_resid = get_unaligned_le32(
2400 						&c2->error_data.resid_cnt[0]);
2401 			scsi_set_resid(cmd, ioaccel2_resid);
2402 			break;
2403 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2404 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2405 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2406 			/*
2407 			 * Did an HBA disk disappear? We will eventually
2408 			 * get a state change event from the controller but
2409 			 * in the meantime, we need to tell the OS that the
2410 			 * HBA disk is no longer there and stop I/O
2411 			 * from going down. This allows the potential re-insert
2412 			 * of the disk to get the same device node.
2413 			 */
2414 			if (dev->physical_device && dev->expose_device) {
2415 				cmd->result = DID_NO_CONNECT << 16;
2416 				dev->removed = 1;
2417 				h->drv_req_rescan = 1;
2418 				dev_warn(&h->pdev->dev,
2419 					"%s: device is gone!\n", __func__);
2420 			} else
2421 				/*
2422 				 * Retry by sending down the RAID path.
2423 				 * We will get an event from ctlr to
2424 				 * trigger rescan regardless.
2425 				 */
2426 				retry = 1;
2427 			break;
2428 		default:
2429 			retry = 1;
2430 		}
2431 		break;
2432 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2435 		break;
2436 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2437 		retry = 1;
2438 		break;
2439 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2440 		break;
2441 	default:
2442 		retry = 1;
2443 		break;
2444 	}
2445 
2446 	if (dev->in_reset)
2447 		retry = 0;
2448 
2449 	return retry;	/* retry on raid path? */
2450 }
2451 
2452 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2453 		struct CommandList *c)
2454 {
2455 	struct hpsa_scsi_dev_t *dev = c->device;
2456 
2457 	/*
2458 	 * Reset c->scsi_cmd here so that the reset handler will know
2459 	 * this command has completed.  Then, check to see if the handler is
2460 	 * waiting for this command, and, if so, wake it.
2461 	 */
2462 	c->scsi_cmd = SCSI_CMD_IDLE;
2463 	mb();	/* Declare command idle before checking for pending events. */
2464 	if (dev) {
2465 		atomic_dec(&dev->commands_outstanding);
2466 		if (dev->in_reset &&
2467 			atomic_read(&dev->commands_outstanding) <= 0)
2468 			wake_up_all(&h->event_sync_wait_queue);
2469 	}
2470 }
2471 
2472 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2473 				      struct CommandList *c)
2474 {
2475 	hpsa_cmd_resolve_events(h, c);
2476 	cmd_tagged_free(h, c);
2477 }
2478 
2479 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2480 		struct CommandList *c, struct scsi_cmnd *cmd)
2481 {
2482 	hpsa_cmd_resolve_and_free(h, c);
2483 	if (cmd && cmd->scsi_done)
2484 		cmd->scsi_done(cmd);
2485 }
2486 
2487 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2488 {
2489 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2490 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2491 }
2492 
2493 static void process_ioaccel2_completion(struct ctlr_info *h,
2494 		struct CommandList *c, struct scsi_cmnd *cmd,
2495 		struct hpsa_scsi_dev_t *dev)
2496 {
2497 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2498 
2499 	/* check for good status */
2500 	if (likely(c2->error_data.serv_response == 0 &&
2501 			c2->error_data.status == 0)) {
2502 		cmd->result = 0;
2503 		return hpsa_cmd_free_and_done(h, c, cmd);
2504 	}
2505 
2506 	/*
2507 	 * Any RAID offload error results in retry which will use
2508 	 * the normal I/O path so the controller can handle whatever is
2509 	 * wrong.
2510 	 */
2511 	if (is_logical_device(dev) &&
2512 		c2->error_data.serv_response ==
2513 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2514 		if (c2->error_data.status ==
2515 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2516 			hpsa_turn_off_ioaccel_for_device(dev);
2517 		}
2518 
2519 		if (dev->in_reset) {
2520 			cmd->result = DID_RESET << 16;
2521 			return hpsa_cmd_free_and_done(h, c, cmd);
2522 		}
2523 
2524 		return hpsa_retry_cmd(h, c);
2525 	}
2526 
2527 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2528 		return hpsa_retry_cmd(h, c);
2529 
2530 	return hpsa_cmd_free_and_done(h, c, cmd);
2531 }
2532 
2533 /* Returns 0 on success, < 0 otherwise. */
2534 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2535 					struct CommandList *cp)
2536 {
2537 	u8 tmf_status = cp->err_info->ScsiStatus;
2538 
2539 	switch (tmf_status) {
2540 	case CISS_TMF_COMPLETE:
2541 		/*
2542 		 * CISS_TMF_COMPLETE never happens, instead,
2543 		 * ei->CommandStatus == 0 for this case.
2544 		 */
2545 	case CISS_TMF_SUCCESS:
2546 		return 0;
2547 	case CISS_TMF_INVALID_FRAME:
2548 	case CISS_TMF_NOT_SUPPORTED:
2549 	case CISS_TMF_FAILED:
2550 	case CISS_TMF_WRONG_LUN:
2551 	case CISS_TMF_OVERLAPPED_TAG:
2552 		break;
2553 	default:
2554 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2555 				tmf_status);
2556 		break;
2557 	}
2558 	return -tmf_status;
2559 }
2560 
2561 static void complete_scsi_command(struct CommandList *cp)
2562 {
2563 	struct scsi_cmnd *cmd;
2564 	struct ctlr_info *h;
2565 	struct ErrorInfo *ei;
2566 	struct hpsa_scsi_dev_t *dev;
2567 	struct io_accel2_cmd *c2;
2568 
2569 	u8 sense_key;
2570 	u8 asc;      /* additional sense code */
2571 	u8 ascq;     /* additional sense code qualifier */
2572 	unsigned long sense_data_size;
2573 
2574 	ei = cp->err_info;
2575 	cmd = cp->scsi_cmd;
2576 	h = cp->h;
2577 
2578 	if (!cmd->device) {
2579 		cmd->result = DID_NO_CONNECT << 16;
2580 		return hpsa_cmd_free_and_done(h, cp, cmd);
2581 	}
2582 
2583 	dev = cmd->device->hostdata;
2584 	if (!dev) {
2585 		cmd->result = DID_NO_CONNECT << 16;
2586 		return hpsa_cmd_free_and_done(h, cp, cmd);
2587 	}
2588 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2589 
2590 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2591 	if ((cp->cmd_type == CMD_SCSI) &&
2592 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2593 		hpsa_unmap_sg_chain_block(h, cp);
2594 
2595 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2596 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2597 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2598 
2599 	cmd->result = (DID_OK << 16);		/* host byte */
2600 
2601 	/* SCSI command has already been cleaned up in SML */
2602 	if (dev->was_removed) {
2603 		hpsa_cmd_resolve_and_free(h, cp);
2604 		return;
2605 	}
2606 
2607 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2608 		if (dev->physical_device && dev->expose_device &&
2609 			dev->removed) {
2610 			cmd->result = DID_NO_CONNECT << 16;
2611 			return hpsa_cmd_free_and_done(h, cp, cmd);
2612 		}
2613 		if (likely(cp->phys_disk != NULL))
2614 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2615 	}
2616 
2617 	/*
2618 	 * We check for lockup status here as it may be set for
2619 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2620 	 * fail_all_oustanding_cmds()
2621 	 */
2622 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2623 		/* DID_NO_CONNECT will prevent a retry */
2624 		cmd->result = DID_NO_CONNECT << 16;
2625 		return hpsa_cmd_free_and_done(h, cp, cmd);
2626 	}
2627 
2628 	if (cp->cmd_type == CMD_IOACCEL2)
2629 		return process_ioaccel2_completion(h, cp, cmd, dev);
2630 
2631 	scsi_set_resid(cmd, ei->ResidualCnt);
2632 	if (ei->CommandStatus == 0)
2633 		return hpsa_cmd_free_and_done(h, cp, cmd);
2634 
2635 	/* For I/O accelerator commands, copy over some fields to the normal
2636 	 * CISS header used below for error handling.
2637 	 */
2638 	if (cp->cmd_type == CMD_IOACCEL1) {
2639 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2640 		cp->Header.SGList = scsi_sg_count(cmd);
2641 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2642 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2643 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2644 		cp->Header.tag = c->tag;
2645 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2646 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2647 
2648 		/* Any RAID offload error results in retry which will use
2649 		 * the normal I/O path so the controller can handle whatever's
2650 		 * wrong.
2651 		 */
2652 		if (is_logical_device(dev)) {
2653 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2654 				dev->offload_enabled = 0;
2655 			return hpsa_retry_cmd(h, cp);
2656 		}
2657 	}
2658 
2659 	/* an error has occurred */
2660 	switch (ei->CommandStatus) {
2661 
2662 	case CMD_TARGET_STATUS:
2663 		cmd->result |= ei->ScsiStatus;
2664 		/* copy the sense data */
2665 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2666 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2667 		else
2668 			sense_data_size = sizeof(ei->SenseInfo);
2669 		if (ei->SenseLen < sense_data_size)
2670 			sense_data_size = ei->SenseLen;
2671 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2672 		if (ei->ScsiStatus)
2673 			decode_sense_data(ei->SenseInfo, sense_data_size,
2674 				&sense_key, &asc, &ascq);
2675 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2676 			switch (sense_key) {
2677 			case ABORTED_COMMAND:
2678 				cmd->result |= DID_SOFT_ERROR << 16;
2679 				break;
2680 			case UNIT_ATTENTION:
2681 				if (asc == 0x3F && ascq == 0x0E)
2682 					h->drv_req_rescan = 1;
2683 				break;
2684 			case ILLEGAL_REQUEST:
2685 				if (asc == 0x25 && ascq == 0x00) {
2686 					dev->removed = 1;
2687 					cmd->result = DID_NO_CONNECT << 16;
2688 				}
2689 				break;
2690 			}
2691 			break;
2692 		}
2693 		/* Problem was not a check condition
2694 		 * Pass it up to the upper layers...
2695 		 */
2696 		if (ei->ScsiStatus) {
2697 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2698 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2699 				"Returning result: 0x%x\n",
2700 				cp, ei->ScsiStatus,
2701 				sense_key, asc, ascq,
2702 				cmd->result);
2703 		} else {  /* scsi status is zero??? How??? */
2704 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2705 				"Returning no connection.\n", cp),
2706 
2707 			/* Ordinarily, this case should never happen,
2708 			 * but there is a bug in some released firmware
2709 			 * revisions that allows it to happen if, for
2710 			 * example, a 4100 backplane loses power and
2711 			 * the tape drive is in it.  We assume that
2712 			 * it's a fatal error of some kind because we
2713 			 * can't show that it wasn't. We will make it
2714 			 * look like selection timeout since that is
2715 			 * the most common reason for this to occur,
2716 			 * and it's severe enough.
2717 			 */
2718 
2719 			cmd->result = DID_NO_CONNECT << 16;
2720 		}
2721 		break;
2722 
2723 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2724 		break;
2725 	case CMD_DATA_OVERRUN:
2726 		dev_warn(&h->pdev->dev,
2727 			"CDB %16phN data overrun\n", cp->Request.CDB);
2728 		break;
2729 	case CMD_INVALID: {
2730 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2731 		print_cmd(cp); */
2732 		/* We get CMD_INVALID if you address a non-existent device
2733 		 * instead of a selection timeout (no response).  You will
2734 		 * see this if you yank out a drive, then try to access it.
2735 		 * This is kind of a shame because it means that any other
2736 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2737 		 * missing target. */
2738 		cmd->result = DID_NO_CONNECT << 16;
2739 	}
2740 		break;
2741 	case CMD_PROTOCOL_ERR:
2742 		cmd->result = DID_ERROR << 16;
2743 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2744 				cp->Request.CDB);
2745 		break;
2746 	case CMD_HARDWARE_ERR:
2747 		cmd->result = DID_ERROR << 16;
2748 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2749 			cp->Request.CDB);
2750 		break;
2751 	case CMD_CONNECTION_LOST:
2752 		cmd->result = DID_ERROR << 16;
2753 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2754 			cp->Request.CDB);
2755 		break;
2756 	case CMD_ABORTED:
2757 		cmd->result = DID_ABORT << 16;
2758 		break;
2759 	case CMD_ABORT_FAILED:
2760 		cmd->result = DID_ERROR << 16;
2761 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2762 			cp->Request.CDB);
2763 		break;
2764 	case CMD_UNSOLICITED_ABORT:
2765 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2766 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2767 			cp->Request.CDB);
2768 		break;
2769 	case CMD_TIMEOUT:
2770 		cmd->result = DID_TIME_OUT << 16;
2771 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2772 			cp->Request.CDB);
2773 		break;
2774 	case CMD_UNABORTABLE:
2775 		cmd->result = DID_ERROR << 16;
2776 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2777 		break;
2778 	case CMD_TMF_STATUS:
2779 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2780 			cmd->result = DID_ERROR << 16;
2781 		break;
2782 	case CMD_IOACCEL_DISABLED:
2783 		/* This only handles the direct pass-through case since RAID
2784 		 * offload is handled above.  Just attempt a retry.
2785 		 */
2786 		cmd->result = DID_SOFT_ERROR << 16;
2787 		dev_warn(&h->pdev->dev,
2788 				"cp %p had HP SSD Smart Path error\n", cp);
2789 		break;
2790 	default:
2791 		cmd->result = DID_ERROR << 16;
2792 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2793 				cp, ei->CommandStatus);
2794 	}
2795 
2796 	return hpsa_cmd_free_and_done(h, cp, cmd);
2797 }
2798 
2799 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2800 		int sg_used, enum dma_data_direction data_direction)
2801 {
2802 	int i;
2803 
2804 	for (i = 0; i < sg_used; i++)
2805 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2806 				le32_to_cpu(c->SG[i].Len),
2807 				data_direction);
2808 }
2809 
2810 static int hpsa_map_one(struct pci_dev *pdev,
2811 		struct CommandList *cp,
2812 		unsigned char *buf,
2813 		size_t buflen,
2814 		enum dma_data_direction data_direction)
2815 {
2816 	u64 addr64;
2817 
2818 	if (buflen == 0 || data_direction == DMA_NONE) {
2819 		cp->Header.SGList = 0;
2820 		cp->Header.SGTotal = cpu_to_le16(0);
2821 		return 0;
2822 	}
2823 
2824 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2825 	if (dma_mapping_error(&pdev->dev, addr64)) {
2826 		/* Prevent subsequent unmap of something never mapped */
2827 		cp->Header.SGList = 0;
2828 		cp->Header.SGTotal = cpu_to_le16(0);
2829 		return -1;
2830 	}
2831 	cp->SG[0].Addr = cpu_to_le64(addr64);
2832 	cp->SG[0].Len = cpu_to_le32(buflen);
2833 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2834 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2835 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2836 	return 0;
2837 }
2838 
2839 #define NO_TIMEOUT ((unsigned long) -1)
2840 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2841 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2842 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2843 {
2844 	DECLARE_COMPLETION_ONSTACK(wait);
2845 
2846 	c->waiting = &wait;
2847 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2848 	if (timeout_msecs == NO_TIMEOUT) {
2849 		/* TODO: get rid of this no-timeout thing */
2850 		wait_for_completion_io(&wait);
2851 		return IO_OK;
2852 	}
2853 	if (!wait_for_completion_io_timeout(&wait,
2854 					msecs_to_jiffies(timeout_msecs))) {
2855 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2856 		return -ETIMEDOUT;
2857 	}
2858 	return IO_OK;
2859 }
2860 
2861 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2862 				   int reply_queue, unsigned long timeout_msecs)
2863 {
2864 	if (unlikely(lockup_detected(h))) {
2865 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2866 		return IO_OK;
2867 	}
2868 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2869 }
2870 
2871 static u32 lockup_detected(struct ctlr_info *h)
2872 {
2873 	int cpu;
2874 	u32 rc, *lockup_detected;
2875 
2876 	cpu = get_cpu();
2877 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2878 	rc = *lockup_detected;
2879 	put_cpu();
2880 	return rc;
2881 }
2882 
2883 #define MAX_DRIVER_CMD_RETRIES 25
2884 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2885 		struct CommandList *c, enum dma_data_direction data_direction,
2886 		unsigned long timeout_msecs)
2887 {
2888 	int backoff_time = 10, retry_count = 0;
2889 	int rc;
2890 
2891 	do {
2892 		memset(c->err_info, 0, sizeof(*c->err_info));
2893 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2894 						  timeout_msecs);
2895 		if (rc)
2896 			break;
2897 		retry_count++;
2898 		if (retry_count > 3) {
2899 			msleep(backoff_time);
2900 			if (backoff_time < 1000)
2901 				backoff_time *= 2;
2902 		}
2903 	} while ((check_for_unit_attention(h, c) ||
2904 			check_for_busy(h, c)) &&
2905 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2906 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2907 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2908 		rc = -EIO;
2909 	return rc;
2910 }
2911 
2912 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2913 				struct CommandList *c)
2914 {
2915 	const u8 *cdb = c->Request.CDB;
2916 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2917 
2918 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2919 		 txt, lun, cdb);
2920 }
2921 
2922 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2923 			struct CommandList *cp)
2924 {
2925 	const struct ErrorInfo *ei = cp->err_info;
2926 	struct device *d = &cp->h->pdev->dev;
2927 	u8 sense_key, asc, ascq;
2928 	int sense_len;
2929 
2930 	switch (ei->CommandStatus) {
2931 	case CMD_TARGET_STATUS:
2932 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2933 			sense_len = sizeof(ei->SenseInfo);
2934 		else
2935 			sense_len = ei->SenseLen;
2936 		decode_sense_data(ei->SenseInfo, sense_len,
2937 					&sense_key, &asc, &ascq);
2938 		hpsa_print_cmd(h, "SCSI status", cp);
2939 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2940 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2941 				sense_key, asc, ascq);
2942 		else
2943 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2944 		if (ei->ScsiStatus == 0)
2945 			dev_warn(d, "SCSI status is abnormally zero.  "
2946 			"(probably indicates selection timeout "
2947 			"reported incorrectly due to a known "
2948 			"firmware bug, circa July, 2001.)\n");
2949 		break;
2950 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2951 		break;
2952 	case CMD_DATA_OVERRUN:
2953 		hpsa_print_cmd(h, "overrun condition", cp);
2954 		break;
2955 	case CMD_INVALID: {
2956 		/* controller unfortunately reports SCSI passthru's
2957 		 * to non-existent targets as invalid commands.
2958 		 */
2959 		hpsa_print_cmd(h, "invalid command", cp);
2960 		dev_warn(d, "probably means device no longer present\n");
2961 		}
2962 		break;
2963 	case CMD_PROTOCOL_ERR:
2964 		hpsa_print_cmd(h, "protocol error", cp);
2965 		break;
2966 	case CMD_HARDWARE_ERR:
2967 		hpsa_print_cmd(h, "hardware error", cp);
2968 		break;
2969 	case CMD_CONNECTION_LOST:
2970 		hpsa_print_cmd(h, "connection lost", cp);
2971 		break;
2972 	case CMD_ABORTED:
2973 		hpsa_print_cmd(h, "aborted", cp);
2974 		break;
2975 	case CMD_ABORT_FAILED:
2976 		hpsa_print_cmd(h, "abort failed", cp);
2977 		break;
2978 	case CMD_UNSOLICITED_ABORT:
2979 		hpsa_print_cmd(h, "unsolicited abort", cp);
2980 		break;
2981 	case CMD_TIMEOUT:
2982 		hpsa_print_cmd(h, "timed out", cp);
2983 		break;
2984 	case CMD_UNABORTABLE:
2985 		hpsa_print_cmd(h, "unabortable", cp);
2986 		break;
2987 	case CMD_CTLR_LOCKUP:
2988 		hpsa_print_cmd(h, "controller lockup detected", cp);
2989 		break;
2990 	default:
2991 		hpsa_print_cmd(h, "unknown status", cp);
2992 		dev_warn(d, "Unknown command status %x\n",
2993 				ei->CommandStatus);
2994 	}
2995 }
2996 
2997 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2998 					u8 page, u8 *buf, size_t bufsize)
2999 {
3000 	int rc = IO_OK;
3001 	struct CommandList *c;
3002 	struct ErrorInfo *ei;
3003 
3004 	c = cmd_alloc(h);
3005 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3006 			page, scsi3addr, TYPE_CMD)) {
3007 		rc = -1;
3008 		goto out;
3009 	}
3010 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3011 			NO_TIMEOUT);
3012 	if (rc)
3013 		goto out;
3014 	ei = c->err_info;
3015 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3016 		hpsa_scsi_interpret_error(h, c);
3017 		rc = -1;
3018 	}
3019 out:
3020 	cmd_free(h, c);
3021 	return rc;
3022 }
3023 
3024 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3025 						u8 *scsi3addr)
3026 {
3027 	u8 *buf;
3028 	u64 sa = 0;
3029 	int rc = 0;
3030 
3031 	buf = kzalloc(1024, GFP_KERNEL);
3032 	if (!buf)
3033 		return 0;
3034 
3035 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3036 					buf, 1024);
3037 
3038 	if (rc)
3039 		goto out;
3040 
3041 	sa = get_unaligned_be64(buf+12);
3042 
3043 out:
3044 	kfree(buf);
3045 	return sa;
3046 }
3047 
3048 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3049 			u16 page, unsigned char *buf,
3050 			unsigned char bufsize)
3051 {
3052 	int rc = IO_OK;
3053 	struct CommandList *c;
3054 	struct ErrorInfo *ei;
3055 
3056 	c = cmd_alloc(h);
3057 
3058 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3059 			page, scsi3addr, TYPE_CMD)) {
3060 		rc = -1;
3061 		goto out;
3062 	}
3063 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3064 			NO_TIMEOUT);
3065 	if (rc)
3066 		goto out;
3067 	ei = c->err_info;
3068 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3069 		hpsa_scsi_interpret_error(h, c);
3070 		rc = -1;
3071 	}
3072 out:
3073 	cmd_free(h, c);
3074 	return rc;
3075 }
3076 
3077 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3078 	u8 reset_type, int reply_queue)
3079 {
3080 	int rc = IO_OK;
3081 	struct CommandList *c;
3082 	struct ErrorInfo *ei;
3083 
3084 	c = cmd_alloc(h);
3085 	c->device = dev;
3086 
3087 	/* fill_cmd can't fail here, no data buffer to map. */
3088 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3089 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3090 	if (rc) {
3091 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3092 		goto out;
3093 	}
3094 	/* no unmap needed here because no data xfer. */
3095 
3096 	ei = c->err_info;
3097 	if (ei->CommandStatus != 0) {
3098 		hpsa_scsi_interpret_error(h, c);
3099 		rc = -1;
3100 	}
3101 out:
3102 	cmd_free(h, c);
3103 	return rc;
3104 }
3105 
3106 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3107 			       struct hpsa_scsi_dev_t *dev,
3108 			       unsigned char *scsi3addr)
3109 {
3110 	int i;
3111 	bool match = false;
3112 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3113 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3114 
3115 	if (hpsa_is_cmd_idle(c))
3116 		return false;
3117 
3118 	switch (c->cmd_type) {
3119 	case CMD_SCSI:
3120 	case CMD_IOCTL_PEND:
3121 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3122 				sizeof(c->Header.LUN.LunAddrBytes));
3123 		break;
3124 
3125 	case CMD_IOACCEL1:
3126 	case CMD_IOACCEL2:
3127 		if (c->phys_disk == dev) {
3128 			/* HBA mode match */
3129 			match = true;
3130 		} else {
3131 			/* Possible RAID mode -- check each phys dev. */
3132 			/* FIXME:  Do we need to take out a lock here?  If
3133 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3134 			 * instead. */
3135 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3136 				/* FIXME: an alternate test might be
3137 				 *
3138 				 * match = dev->phys_disk[i]->ioaccel_handle
3139 				 *              == c2->scsi_nexus;      */
3140 				match = dev->phys_disk[i] == c->phys_disk;
3141 			}
3142 		}
3143 		break;
3144 
3145 	case IOACCEL2_TMF:
3146 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3147 			match = dev->phys_disk[i]->ioaccel_handle ==
3148 					le32_to_cpu(ac->it_nexus);
3149 		}
3150 		break;
3151 
3152 	case 0:		/* The command is in the middle of being initialized. */
3153 		match = false;
3154 		break;
3155 
3156 	default:
3157 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3158 			c->cmd_type);
3159 		BUG();
3160 	}
3161 
3162 	return match;
3163 }
3164 
3165 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3166 	u8 reset_type, int reply_queue)
3167 {
3168 	int rc = 0;
3169 
3170 	/* We can really only handle one reset at a time */
3171 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3172 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3173 		return -EINTR;
3174 	}
3175 
3176 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3177 	if (!rc) {
3178 		/* incremented by sending the reset request */
3179 		atomic_dec(&dev->commands_outstanding);
3180 		wait_event(h->event_sync_wait_queue,
3181 			atomic_read(&dev->commands_outstanding) <= 0 ||
3182 			lockup_detected(h));
3183 	}
3184 
3185 	if (unlikely(lockup_detected(h))) {
3186 		dev_warn(&h->pdev->dev,
3187 			 "Controller lockup detected during reset wait\n");
3188 		rc = -ENODEV;
3189 	}
3190 
3191 	if (!rc)
3192 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3193 
3194 	mutex_unlock(&h->reset_mutex);
3195 	return rc;
3196 }
3197 
3198 static void hpsa_get_raid_level(struct ctlr_info *h,
3199 	unsigned char *scsi3addr, unsigned char *raid_level)
3200 {
3201 	int rc;
3202 	unsigned char *buf;
3203 
3204 	*raid_level = RAID_UNKNOWN;
3205 	buf = kzalloc(64, GFP_KERNEL);
3206 	if (!buf)
3207 		return;
3208 
3209 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3210 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3211 		goto exit;
3212 
3213 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3214 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3215 
3216 	if (rc == 0)
3217 		*raid_level = buf[8];
3218 	if (*raid_level > RAID_UNKNOWN)
3219 		*raid_level = RAID_UNKNOWN;
3220 exit:
3221 	kfree(buf);
3222 	return;
3223 }
3224 
3225 #define HPSA_MAP_DEBUG
3226 #ifdef HPSA_MAP_DEBUG
3227 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3228 				struct raid_map_data *map_buff)
3229 {
3230 	struct raid_map_disk_data *dd = &map_buff->data[0];
3231 	int map, row, col;
3232 	u16 map_cnt, row_cnt, disks_per_row;
3233 
3234 	if (rc != 0)
3235 		return;
3236 
3237 	/* Show details only if debugging has been activated. */
3238 	if (h->raid_offload_debug < 2)
3239 		return;
3240 
3241 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3242 				le32_to_cpu(map_buff->structure_size));
3243 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3244 			le32_to_cpu(map_buff->volume_blk_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3246 			le64_to_cpu(map_buff->volume_blk_cnt));
3247 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3248 			map_buff->phys_blk_shift);
3249 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3250 			map_buff->parity_rotation_shift);
3251 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3252 			le16_to_cpu(map_buff->strip_size));
3253 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3254 			le64_to_cpu(map_buff->disk_starting_blk));
3255 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_blk_cnt));
3257 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3258 			le16_to_cpu(map_buff->data_disks_per_row));
3259 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->metadata_disks_per_row));
3261 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3262 			le16_to_cpu(map_buff->row_cnt));
3263 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3264 			le16_to_cpu(map_buff->layout_map_count));
3265 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3266 			le16_to_cpu(map_buff->flags));
3267 	dev_info(&h->pdev->dev, "encryption = %s\n",
3268 			le16_to_cpu(map_buff->flags) &
3269 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3270 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3271 			le16_to_cpu(map_buff->dekindex));
3272 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3273 	for (map = 0; map < map_cnt; map++) {
3274 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3275 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3276 		for (row = 0; row < row_cnt; row++) {
3277 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3278 			disks_per_row =
3279 				le16_to_cpu(map_buff->data_disks_per_row);
3280 			for (col = 0; col < disks_per_row; col++, dd++)
3281 				dev_info(&h->pdev->dev,
3282 					"    D%02u: h=0x%04x xor=%u,%u\n",
3283 					col, dd->ioaccel_handle,
3284 					dd->xor_mult[0], dd->xor_mult[1]);
3285 			disks_per_row =
3286 				le16_to_cpu(map_buff->metadata_disks_per_row);
3287 			for (col = 0; col < disks_per_row; col++, dd++)
3288 				dev_info(&h->pdev->dev,
3289 					"    M%02u: h=0x%04x xor=%u,%u\n",
3290 					col, dd->ioaccel_handle,
3291 					dd->xor_mult[0], dd->xor_mult[1]);
3292 		}
3293 	}
3294 }
3295 #else
3296 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3297 			__attribute__((unused)) int rc,
3298 			__attribute__((unused)) struct raid_map_data *map_buff)
3299 {
3300 }
3301 #endif
3302 
3303 static int hpsa_get_raid_map(struct ctlr_info *h,
3304 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3305 {
3306 	int rc = 0;
3307 	struct CommandList *c;
3308 	struct ErrorInfo *ei;
3309 
3310 	c = cmd_alloc(h);
3311 
3312 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3313 			sizeof(this_device->raid_map), 0,
3314 			scsi3addr, TYPE_CMD)) {
3315 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3316 		cmd_free(h, c);
3317 		return -1;
3318 	}
3319 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3320 			NO_TIMEOUT);
3321 	if (rc)
3322 		goto out;
3323 	ei = c->err_info;
3324 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3325 		hpsa_scsi_interpret_error(h, c);
3326 		rc = -1;
3327 		goto out;
3328 	}
3329 	cmd_free(h, c);
3330 
3331 	/* @todo in the future, dynamically allocate RAID map memory */
3332 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3333 				sizeof(this_device->raid_map)) {
3334 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3335 		rc = -1;
3336 	}
3337 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3338 	return rc;
3339 out:
3340 	cmd_free(h, c);
3341 	return rc;
3342 }
3343 
3344 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3345 		unsigned char scsi3addr[], u16 bmic_device_index,
3346 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3347 {
3348 	int rc = IO_OK;
3349 	struct CommandList *c;
3350 	struct ErrorInfo *ei;
3351 
3352 	c = cmd_alloc(h);
3353 
3354 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3355 		0, RAID_CTLR_LUNID, TYPE_CMD);
3356 	if (rc)
3357 		goto out;
3358 
3359 	c->Request.CDB[2] = bmic_device_index & 0xff;
3360 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3361 
3362 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3363 			NO_TIMEOUT);
3364 	if (rc)
3365 		goto out;
3366 	ei = c->err_info;
3367 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3368 		hpsa_scsi_interpret_error(h, c);
3369 		rc = -1;
3370 	}
3371 out:
3372 	cmd_free(h, c);
3373 	return rc;
3374 }
3375 
3376 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3377 	struct bmic_identify_controller *buf, size_t bufsize)
3378 {
3379 	int rc = IO_OK;
3380 	struct CommandList *c;
3381 	struct ErrorInfo *ei;
3382 
3383 	c = cmd_alloc(h);
3384 
3385 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3386 		0, RAID_CTLR_LUNID, TYPE_CMD);
3387 	if (rc)
3388 		goto out;
3389 
3390 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3391 			NO_TIMEOUT);
3392 	if (rc)
3393 		goto out;
3394 	ei = c->err_info;
3395 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3396 		hpsa_scsi_interpret_error(h, c);
3397 		rc = -1;
3398 	}
3399 out:
3400 	cmd_free(h, c);
3401 	return rc;
3402 }
3403 
3404 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3405 		unsigned char scsi3addr[], u16 bmic_device_index,
3406 		struct bmic_identify_physical_device *buf, size_t bufsize)
3407 {
3408 	int rc = IO_OK;
3409 	struct CommandList *c;
3410 	struct ErrorInfo *ei;
3411 
3412 	c = cmd_alloc(h);
3413 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3414 		0, RAID_CTLR_LUNID, TYPE_CMD);
3415 	if (rc)
3416 		goto out;
3417 
3418 	c->Request.CDB[2] = bmic_device_index & 0xff;
3419 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3420 
3421 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3422 						NO_TIMEOUT);
3423 	ei = c->err_info;
3424 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3425 		hpsa_scsi_interpret_error(h, c);
3426 		rc = -1;
3427 	}
3428 out:
3429 	cmd_free(h, c);
3430 
3431 	return rc;
3432 }
3433 
3434 /*
3435  * get enclosure information
3436  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3437  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3438  * Uses id_physical_device to determine the box_index.
3439  */
3440 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3441 			unsigned char *scsi3addr,
3442 			struct ReportExtendedLUNdata *rlep, int rle_index,
3443 			struct hpsa_scsi_dev_t *encl_dev)
3444 {
3445 	int rc = -1;
3446 	struct CommandList *c = NULL;
3447 	struct ErrorInfo *ei = NULL;
3448 	struct bmic_sense_storage_box_params *bssbp = NULL;
3449 	struct bmic_identify_physical_device *id_phys = NULL;
3450 	struct ext_report_lun_entry *rle;
3451 	u16 bmic_device_index = 0;
3452 
3453 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3454 		return;
3455 
3456 	rle = &rlep->LUN[rle_index];
3457 
3458 	encl_dev->eli =
3459 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3460 
3461 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3462 
3463 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3464 		rc = IO_OK;
3465 		goto out;
3466 	}
3467 
3468 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3469 		rc = IO_OK;
3470 		goto out;
3471 	}
3472 
3473 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3474 	if (!bssbp)
3475 		goto out;
3476 
3477 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3478 	if (!id_phys)
3479 		goto out;
3480 
3481 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3482 						id_phys, sizeof(*id_phys));
3483 	if (rc) {
3484 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3485 			__func__, encl_dev->external, bmic_device_index);
3486 		goto out;
3487 	}
3488 
3489 	c = cmd_alloc(h);
3490 
3491 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3492 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3493 
3494 	if (rc)
3495 		goto out;
3496 
3497 	if (id_phys->phys_connector[1] == 'E')
3498 		c->Request.CDB[5] = id_phys->box_index;
3499 	else
3500 		c->Request.CDB[5] = 0;
3501 
3502 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3503 						NO_TIMEOUT);
3504 	if (rc)
3505 		goto out;
3506 
3507 	ei = c->err_info;
3508 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3509 		rc = -1;
3510 		goto out;
3511 	}
3512 
3513 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3514 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3515 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3516 
3517 	rc = IO_OK;
3518 out:
3519 	kfree(bssbp);
3520 	kfree(id_phys);
3521 
3522 	if (c)
3523 		cmd_free(h, c);
3524 
3525 	if (rc != IO_OK)
3526 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3527 			"Error, could not get enclosure information");
3528 }
3529 
3530 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3531 						unsigned char *scsi3addr)
3532 {
3533 	struct ReportExtendedLUNdata *physdev;
3534 	u32 nphysicals;
3535 	u64 sa = 0;
3536 	int i;
3537 
3538 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3539 	if (!physdev)
3540 		return 0;
3541 
3542 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3543 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3544 		kfree(physdev);
3545 		return 0;
3546 	}
3547 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3548 
3549 	for (i = 0; i < nphysicals; i++)
3550 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3551 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3552 			break;
3553 		}
3554 
3555 	kfree(physdev);
3556 
3557 	return sa;
3558 }
3559 
3560 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3561 					struct hpsa_scsi_dev_t *dev)
3562 {
3563 	int rc;
3564 	u64 sa = 0;
3565 
3566 	if (is_hba_lunid(scsi3addr)) {
3567 		struct bmic_sense_subsystem_info *ssi;
3568 
3569 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3570 		if (!ssi)
3571 			return;
3572 
3573 		rc = hpsa_bmic_sense_subsystem_information(h,
3574 					scsi3addr, 0, ssi, sizeof(*ssi));
3575 		if (rc == 0) {
3576 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3577 			h->sas_address = sa;
3578 		}
3579 
3580 		kfree(ssi);
3581 	} else
3582 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3583 
3584 	dev->sas_address = sa;
3585 }
3586 
3587 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3588 	struct ReportExtendedLUNdata *physdev)
3589 {
3590 	u32 nphysicals;
3591 	int i;
3592 
3593 	if (h->discovery_polling)
3594 		return;
3595 
3596 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3597 
3598 	for (i = 0; i < nphysicals; i++) {
3599 		if (physdev->LUN[i].device_type ==
3600 			BMIC_DEVICE_TYPE_CONTROLLER
3601 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3602 			dev_info(&h->pdev->dev,
3603 				"External controller present, activate discovery polling and disable rld caching\n");
3604 			hpsa_disable_rld_caching(h);
3605 			h->discovery_polling = 1;
3606 			break;
3607 		}
3608 	}
3609 }
3610 
3611 /* Get a device id from inquiry page 0x83 */
3612 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3613 	unsigned char scsi3addr[], u8 page)
3614 {
3615 	int rc;
3616 	int i;
3617 	int pages;
3618 	unsigned char *buf, bufsize;
3619 
3620 	buf = kzalloc(256, GFP_KERNEL);
3621 	if (!buf)
3622 		return false;
3623 
3624 	/* Get the size of the page list first */
3625 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3626 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3627 				buf, HPSA_VPD_HEADER_SZ);
3628 	if (rc != 0)
3629 		goto exit_unsupported;
3630 	pages = buf[3];
3631 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3632 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3633 	else
3634 		bufsize = 255;
3635 
3636 	/* Get the whole VPD page list */
3637 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3638 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3639 				buf, bufsize);
3640 	if (rc != 0)
3641 		goto exit_unsupported;
3642 
3643 	pages = buf[3];
3644 	for (i = 1; i <= pages; i++)
3645 		if (buf[3 + i] == page)
3646 			goto exit_supported;
3647 exit_unsupported:
3648 	kfree(buf);
3649 	return false;
3650 exit_supported:
3651 	kfree(buf);
3652 	return true;
3653 }
3654 
3655 /*
3656  * Called during a scan operation.
3657  * Sets ioaccel status on the new device list, not the existing device list
3658  *
3659  * The device list used during I/O will be updated later in
3660  * adjust_hpsa_scsi_table.
3661  */
3662 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3663 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3664 {
3665 	int rc;
3666 	unsigned char *buf;
3667 	u8 ioaccel_status;
3668 
3669 	this_device->offload_config = 0;
3670 	this_device->offload_enabled = 0;
3671 	this_device->offload_to_be_enabled = 0;
3672 
3673 	buf = kzalloc(64, GFP_KERNEL);
3674 	if (!buf)
3675 		return;
3676 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3677 		goto out;
3678 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3679 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3680 	if (rc != 0)
3681 		goto out;
3682 
3683 #define IOACCEL_STATUS_BYTE 4
3684 #define OFFLOAD_CONFIGURED_BIT 0x01
3685 #define OFFLOAD_ENABLED_BIT 0x02
3686 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3687 	this_device->offload_config =
3688 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3689 	if (this_device->offload_config) {
3690 		bool offload_enabled =
3691 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3692 		/*
3693 		 * Check to see if offload can be enabled.
3694 		 */
3695 		if (offload_enabled) {
3696 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3697 			if (rc) /* could not load raid_map */
3698 				goto out;
3699 			this_device->offload_to_be_enabled = 1;
3700 		}
3701 	}
3702 
3703 out:
3704 	kfree(buf);
3705 	return;
3706 }
3707 
3708 /* Get the device id from inquiry page 0x83 */
3709 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3710 	unsigned char *device_id, int index, int buflen)
3711 {
3712 	int rc;
3713 	unsigned char *buf;
3714 
3715 	/* Does controller have VPD for device id? */
3716 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3717 		return 1; /* not supported */
3718 
3719 	buf = kzalloc(64, GFP_KERNEL);
3720 	if (!buf)
3721 		return -ENOMEM;
3722 
3723 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3724 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3725 	if (rc == 0) {
3726 		if (buflen > 16)
3727 			buflen = 16;
3728 		memcpy(device_id, &buf[8], buflen);
3729 	}
3730 
3731 	kfree(buf);
3732 
3733 	return rc; /*0 - got id,  otherwise, didn't */
3734 }
3735 
3736 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3737 		void *buf, int bufsize,
3738 		int extended_response)
3739 {
3740 	int rc = IO_OK;
3741 	struct CommandList *c;
3742 	unsigned char scsi3addr[8];
3743 	struct ErrorInfo *ei;
3744 
3745 	c = cmd_alloc(h);
3746 
3747 	/* address the controller */
3748 	memset(scsi3addr, 0, sizeof(scsi3addr));
3749 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3750 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3751 		rc = -EAGAIN;
3752 		goto out;
3753 	}
3754 	if (extended_response)
3755 		c->Request.CDB[1] = extended_response;
3756 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3757 			NO_TIMEOUT);
3758 	if (rc)
3759 		goto out;
3760 	ei = c->err_info;
3761 	if (ei->CommandStatus != 0 &&
3762 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3763 		hpsa_scsi_interpret_error(h, c);
3764 		rc = -EIO;
3765 	} else {
3766 		struct ReportLUNdata *rld = buf;
3767 
3768 		if (rld->extended_response_flag != extended_response) {
3769 			if (!h->legacy_board) {
3770 				dev_err(&h->pdev->dev,
3771 					"report luns requested format %u, got %u\n",
3772 					extended_response,
3773 					rld->extended_response_flag);
3774 				rc = -EINVAL;
3775 			} else
3776 				rc = -EOPNOTSUPP;
3777 		}
3778 	}
3779 out:
3780 	cmd_free(h, c);
3781 	return rc;
3782 }
3783 
3784 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3785 		struct ReportExtendedLUNdata *buf, int bufsize)
3786 {
3787 	int rc;
3788 	struct ReportLUNdata *lbuf;
3789 
3790 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3791 				      HPSA_REPORT_PHYS_EXTENDED);
3792 	if (!rc || rc != -EOPNOTSUPP)
3793 		return rc;
3794 
3795 	/* REPORT PHYS EXTENDED is not supported */
3796 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3797 	if (!lbuf)
3798 		return -ENOMEM;
3799 
3800 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3801 	if (!rc) {
3802 		int i;
3803 		u32 nphys;
3804 
3805 		/* Copy ReportLUNdata header */
3806 		memcpy(buf, lbuf, 8);
3807 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3808 		for (i = 0; i < nphys; i++)
3809 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3810 	}
3811 	kfree(lbuf);
3812 	return rc;
3813 }
3814 
3815 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3816 		struct ReportLUNdata *buf, int bufsize)
3817 {
3818 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3819 }
3820 
3821 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3822 	int bus, int target, int lun)
3823 {
3824 	device->bus = bus;
3825 	device->target = target;
3826 	device->lun = lun;
3827 }
3828 
3829 /* Use VPD inquiry to get details of volume status */
3830 static int hpsa_get_volume_status(struct ctlr_info *h,
3831 					unsigned char scsi3addr[])
3832 {
3833 	int rc;
3834 	int status;
3835 	int size;
3836 	unsigned char *buf;
3837 
3838 	buf = kzalloc(64, GFP_KERNEL);
3839 	if (!buf)
3840 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 
3842 	/* Does controller have VPD for logical volume status? */
3843 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3844 		goto exit_failed;
3845 
3846 	/* Get the size of the VPD return buffer */
3847 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3848 					buf, HPSA_VPD_HEADER_SZ);
3849 	if (rc != 0)
3850 		goto exit_failed;
3851 	size = buf[3];
3852 
3853 	/* Now get the whole VPD buffer */
3854 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3855 					buf, size + HPSA_VPD_HEADER_SZ);
3856 	if (rc != 0)
3857 		goto exit_failed;
3858 	status = buf[4]; /* status byte */
3859 
3860 	kfree(buf);
3861 	return status;
3862 exit_failed:
3863 	kfree(buf);
3864 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3865 }
3866 
3867 /* Determine offline status of a volume.
3868  * Return either:
3869  *  0 (not offline)
3870  *  0xff (offline for unknown reasons)
3871  *  # (integer code indicating one of several NOT READY states
3872  *     describing why a volume is to be kept offline)
3873  */
3874 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3875 					unsigned char scsi3addr[])
3876 {
3877 	struct CommandList *c;
3878 	unsigned char *sense;
3879 	u8 sense_key, asc, ascq;
3880 	int sense_len;
3881 	int rc, ldstat = 0;
3882 #define ASC_LUN_NOT_READY 0x04
3883 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3884 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3885 
3886 	c = cmd_alloc(h);
3887 
3888 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3889 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3890 					NO_TIMEOUT);
3891 	if (rc) {
3892 		cmd_free(h, c);
3893 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3894 	}
3895 	sense = c->err_info->SenseInfo;
3896 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3897 		sense_len = sizeof(c->err_info->SenseInfo);
3898 	else
3899 		sense_len = c->err_info->SenseLen;
3900 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3901 	cmd_free(h, c);
3902 
3903 	/* Determine the reason for not ready state */
3904 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3905 
3906 	/* Keep volume offline in certain cases: */
3907 	switch (ldstat) {
3908 	case HPSA_LV_FAILED:
3909 	case HPSA_LV_UNDERGOING_ERASE:
3910 	case HPSA_LV_NOT_AVAILABLE:
3911 	case HPSA_LV_UNDERGOING_RPI:
3912 	case HPSA_LV_PENDING_RPI:
3913 	case HPSA_LV_ENCRYPTED_NO_KEY:
3914 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3915 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3916 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3917 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3918 		return ldstat;
3919 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3920 		/* If VPD status page isn't available,
3921 		 * use ASC/ASCQ to determine state
3922 		 */
3923 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3924 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3925 			return ldstat;
3926 		break;
3927 	default:
3928 		break;
3929 	}
3930 	return HPSA_LV_OK;
3931 }
3932 
3933 static int hpsa_update_device_info(struct ctlr_info *h,
3934 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3935 	unsigned char *is_OBDR_device)
3936 {
3937 
3938 #define OBDR_SIG_OFFSET 43
3939 #define OBDR_TAPE_SIG "$DR-10"
3940 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3941 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3942 
3943 	unsigned char *inq_buff;
3944 	unsigned char *obdr_sig;
3945 	int rc = 0;
3946 
3947 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3948 	if (!inq_buff) {
3949 		rc = -ENOMEM;
3950 		goto bail_out;
3951 	}
3952 
3953 	/* Do an inquiry to the device to see what it is. */
3954 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3955 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3956 		dev_err(&h->pdev->dev,
3957 			"%s: inquiry failed, device will be skipped.\n",
3958 			__func__);
3959 		rc = HPSA_INQUIRY_FAILED;
3960 		goto bail_out;
3961 	}
3962 
3963 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3964 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3965 
3966 	this_device->devtype = (inq_buff[0] & 0x1f);
3967 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3968 	memcpy(this_device->vendor, &inq_buff[8],
3969 		sizeof(this_device->vendor));
3970 	memcpy(this_device->model, &inq_buff[16],
3971 		sizeof(this_device->model));
3972 	this_device->rev = inq_buff[2];
3973 	memset(this_device->device_id, 0,
3974 		sizeof(this_device->device_id));
3975 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3976 		sizeof(this_device->device_id)) < 0) {
3977 		dev_err(&h->pdev->dev,
3978 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3979 			h->ctlr, __func__,
3980 			h->scsi_host->host_no,
3981 			this_device->bus, this_device->target,
3982 			this_device->lun,
3983 			scsi_device_type(this_device->devtype),
3984 			this_device->model);
3985 		rc = HPSA_LV_FAILED;
3986 		goto bail_out;
3987 	}
3988 
3989 	if ((this_device->devtype == TYPE_DISK ||
3990 		this_device->devtype == TYPE_ZBC) &&
3991 		is_logical_dev_addr_mode(scsi3addr)) {
3992 		unsigned char volume_offline;
3993 
3994 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3995 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3996 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3997 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3998 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3999 		    h->legacy_board) {
4000 			/*
4001 			 * Legacy boards might not support volume status
4002 			 */
4003 			dev_info(&h->pdev->dev,
4004 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4005 				 this_device->target, this_device->lun);
4006 			volume_offline = 0;
4007 		}
4008 		this_device->volume_offline = volume_offline;
4009 		if (volume_offline == HPSA_LV_FAILED) {
4010 			rc = HPSA_LV_FAILED;
4011 			dev_err(&h->pdev->dev,
4012 				"%s: LV failed, device will be skipped.\n",
4013 				__func__);
4014 			goto bail_out;
4015 		}
4016 	} else {
4017 		this_device->raid_level = RAID_UNKNOWN;
4018 		this_device->offload_config = 0;
4019 		hpsa_turn_off_ioaccel_for_device(this_device);
4020 		this_device->hba_ioaccel_enabled = 0;
4021 		this_device->volume_offline = 0;
4022 		this_device->queue_depth = h->nr_cmds;
4023 	}
4024 
4025 	if (this_device->external)
4026 		this_device->queue_depth = EXTERNAL_QD;
4027 
4028 	if (is_OBDR_device) {
4029 		/* See if this is a One-Button-Disaster-Recovery device
4030 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4031 		 */
4032 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4033 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4034 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4035 						OBDR_SIG_LEN) == 0);
4036 	}
4037 	kfree(inq_buff);
4038 	return 0;
4039 
4040 bail_out:
4041 	kfree(inq_buff);
4042 	return rc;
4043 }
4044 
4045 /*
4046  * Helper function to assign bus, target, lun mapping of devices.
4047  * Logical drive target and lun are assigned at this time, but
4048  * physical device lun and target assignment are deferred (assigned
4049  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4050 */
4051 static void figure_bus_target_lun(struct ctlr_info *h,
4052 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4053 {
4054 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4055 
4056 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4057 		/* physical device, target and lun filled in later */
4058 		if (is_hba_lunid(lunaddrbytes)) {
4059 			int bus = HPSA_HBA_BUS;
4060 
4061 			if (!device->rev)
4062 				bus = HPSA_LEGACY_HBA_BUS;
4063 			hpsa_set_bus_target_lun(device,
4064 					bus, 0, lunid & 0x3fff);
4065 		} else
4066 			/* defer target, lun assignment for physical devices */
4067 			hpsa_set_bus_target_lun(device,
4068 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4069 		return;
4070 	}
4071 	/* It's a logical device */
4072 	if (device->external) {
4073 		hpsa_set_bus_target_lun(device,
4074 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4075 			lunid & 0x00ff);
4076 		return;
4077 	}
4078 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4079 				0, lunid & 0x3fff);
4080 }
4081 
4082 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4083 	int i, int nphysicals, int nlocal_logicals)
4084 {
4085 	/* In report logicals, local logicals are listed first,
4086 	* then any externals.
4087 	*/
4088 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4089 
4090 	if (i == raid_ctlr_position)
4091 		return 0;
4092 
4093 	if (i < logicals_start)
4094 		return 0;
4095 
4096 	/* i is in logicals range, but still within local logicals */
4097 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4098 		return 0;
4099 
4100 	return 1; /* it's an external lun */
4101 }
4102 
4103 /*
4104  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4105  * logdev.  The number of luns in physdev and logdev are returned in
4106  * *nphysicals and *nlogicals, respectively.
4107  * Returns 0 on success, -1 otherwise.
4108  */
4109 static int hpsa_gather_lun_info(struct ctlr_info *h,
4110 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4111 	struct ReportLUNdata *logdev, u32 *nlogicals)
4112 {
4113 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4114 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4115 		return -1;
4116 	}
4117 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4118 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4119 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4120 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4121 		*nphysicals = HPSA_MAX_PHYS_LUN;
4122 	}
4123 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4124 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4125 		return -1;
4126 	}
4127 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4128 	/* Reject Logicals in excess of our max capability. */
4129 	if (*nlogicals > HPSA_MAX_LUN) {
4130 		dev_warn(&h->pdev->dev,
4131 			"maximum logical LUNs (%d) exceeded.  "
4132 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4133 			*nlogicals - HPSA_MAX_LUN);
4134 		*nlogicals = HPSA_MAX_LUN;
4135 	}
4136 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4137 		dev_warn(&h->pdev->dev,
4138 			"maximum logical + physical LUNs (%d) exceeded. "
4139 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4140 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4141 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4142 	}
4143 	return 0;
4144 }
4145 
4146 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4147 	int i, int nphysicals, int nlogicals,
4148 	struct ReportExtendedLUNdata *physdev_list,
4149 	struct ReportLUNdata *logdev_list)
4150 {
4151 	/* Helper function, figure out where the LUN ID info is coming from
4152 	 * given index i, lists of physical and logical devices, where in
4153 	 * the list the raid controller is supposed to appear (first or last)
4154 	 */
4155 
4156 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4157 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4158 
4159 	if (i == raid_ctlr_position)
4160 		return RAID_CTLR_LUNID;
4161 
4162 	if (i < logicals_start)
4163 		return &physdev_list->LUN[i -
4164 				(raid_ctlr_position == 0)].lunid[0];
4165 
4166 	if (i < last_device)
4167 		return &logdev_list->LUN[i - nphysicals -
4168 			(raid_ctlr_position == 0)][0];
4169 	BUG();
4170 	return NULL;
4171 }
4172 
4173 /* get physical drive ioaccel handle and queue depth */
4174 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4175 		struct hpsa_scsi_dev_t *dev,
4176 		struct ReportExtendedLUNdata *rlep, int rle_index,
4177 		struct bmic_identify_physical_device *id_phys)
4178 {
4179 	int rc;
4180 	struct ext_report_lun_entry *rle;
4181 
4182 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4183 		return;
4184 
4185 	rle = &rlep->LUN[rle_index];
4186 
4187 	dev->ioaccel_handle = rle->ioaccel_handle;
4188 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4189 		dev->hba_ioaccel_enabled = 1;
4190 	memset(id_phys, 0, sizeof(*id_phys));
4191 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4192 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4193 			sizeof(*id_phys));
4194 	if (!rc)
4195 		/* Reserve space for FW operations */
4196 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4197 #define DRIVE_QUEUE_DEPTH 7
4198 		dev->queue_depth =
4199 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4200 				DRIVE_CMDS_RESERVED_FOR_FW;
4201 	else
4202 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4203 }
4204 
4205 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4206 	struct ReportExtendedLUNdata *rlep, int rle_index,
4207 	struct bmic_identify_physical_device *id_phys)
4208 {
4209 	struct ext_report_lun_entry *rle;
4210 
4211 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4212 		return;
4213 
4214 	rle = &rlep->LUN[rle_index];
4215 
4216 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4217 		this_device->hba_ioaccel_enabled = 1;
4218 
4219 	memcpy(&this_device->active_path_index,
4220 		&id_phys->active_path_number,
4221 		sizeof(this_device->active_path_index));
4222 	memcpy(&this_device->path_map,
4223 		&id_phys->redundant_path_present_map,
4224 		sizeof(this_device->path_map));
4225 	memcpy(&this_device->box,
4226 		&id_phys->alternate_paths_phys_box_on_port,
4227 		sizeof(this_device->box));
4228 	memcpy(&this_device->phys_connector,
4229 		&id_phys->alternate_paths_phys_connector,
4230 		sizeof(this_device->phys_connector));
4231 	memcpy(&this_device->bay,
4232 		&id_phys->phys_bay_in_box,
4233 		sizeof(this_device->bay));
4234 }
4235 
4236 /* get number of local logical disks. */
4237 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4238 	struct bmic_identify_controller *id_ctlr,
4239 	u32 *nlocals)
4240 {
4241 	int rc;
4242 
4243 	if (!id_ctlr) {
4244 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4245 			__func__);
4246 		return -ENOMEM;
4247 	}
4248 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4249 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4250 	if (!rc)
4251 		if (id_ctlr->configured_logical_drive_count < 255)
4252 			*nlocals = id_ctlr->configured_logical_drive_count;
4253 		else
4254 			*nlocals = le16_to_cpu(
4255 					id_ctlr->extended_logical_unit_count);
4256 	else
4257 		*nlocals = -1;
4258 	return rc;
4259 }
4260 
4261 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4262 {
4263 	struct bmic_identify_physical_device *id_phys;
4264 	bool is_spare = false;
4265 	int rc;
4266 
4267 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4268 	if (!id_phys)
4269 		return false;
4270 
4271 	rc = hpsa_bmic_id_physical_device(h,
4272 					lunaddrbytes,
4273 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4274 					id_phys, sizeof(*id_phys));
4275 	if (rc == 0)
4276 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4277 
4278 	kfree(id_phys);
4279 	return is_spare;
4280 }
4281 
4282 #define RPL_DEV_FLAG_NON_DISK                           0x1
4283 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4284 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4285 
4286 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4287 
4288 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4289 				struct ext_report_lun_entry *rle)
4290 {
4291 	u8 device_flags;
4292 	u8 device_type;
4293 
4294 	if (!MASKED_DEVICE(lunaddrbytes))
4295 		return false;
4296 
4297 	device_flags = rle->device_flags;
4298 	device_type = rle->device_type;
4299 
4300 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4301 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4302 			return false;
4303 		return true;
4304 	}
4305 
4306 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4307 		return false;
4308 
4309 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4310 		return false;
4311 
4312 	/*
4313 	 * Spares may be spun down, we do not want to
4314 	 * do an Inquiry to a RAID set spare drive as
4315 	 * that would have them spun up, that is a
4316 	 * performance hit because I/O to the RAID device
4317 	 * stops while the spin up occurs which can take
4318 	 * over 50 seconds.
4319 	 */
4320 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4321 		return true;
4322 
4323 	return false;
4324 }
4325 
4326 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4327 {
4328 	/* the idea here is we could get notified
4329 	 * that some devices have changed, so we do a report
4330 	 * physical luns and report logical luns cmd, and adjust
4331 	 * our list of devices accordingly.
4332 	 *
4333 	 * The scsi3addr's of devices won't change so long as the
4334 	 * adapter is not reset.  That means we can rescan and
4335 	 * tell which devices we already know about, vs. new
4336 	 * devices, vs.  disappearing devices.
4337 	 */
4338 	struct ReportExtendedLUNdata *physdev_list = NULL;
4339 	struct ReportLUNdata *logdev_list = NULL;
4340 	struct bmic_identify_physical_device *id_phys = NULL;
4341 	struct bmic_identify_controller *id_ctlr = NULL;
4342 	u32 nphysicals = 0;
4343 	u32 nlogicals = 0;
4344 	u32 nlocal_logicals = 0;
4345 	u32 ndev_allocated = 0;
4346 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4347 	int ncurrent = 0;
4348 	int i, ndevs_to_allocate;
4349 	int raid_ctlr_position;
4350 	bool physical_device;
4351 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4352 
4353 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4354 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4355 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4356 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4357 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4358 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4359 
4360 	if (!currentsd || !physdev_list || !logdev_list ||
4361 		!tmpdevice || !id_phys || !id_ctlr) {
4362 		dev_err(&h->pdev->dev, "out of memory\n");
4363 		goto out;
4364 	}
4365 	memset(lunzerobits, 0, sizeof(lunzerobits));
4366 
4367 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4368 
4369 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4370 			logdev_list, &nlogicals)) {
4371 		h->drv_req_rescan = 1;
4372 		goto out;
4373 	}
4374 
4375 	/* Set number of local logicals (non PTRAID) */
4376 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4377 		dev_warn(&h->pdev->dev,
4378 			"%s: Can't determine number of local logical devices.\n",
4379 			__func__);
4380 	}
4381 
4382 	/* We might see up to the maximum number of logical and physical disks
4383 	 * plus external target devices, and a device for the local RAID
4384 	 * controller.
4385 	 */
4386 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4387 
4388 	hpsa_ext_ctrl_present(h, physdev_list);
4389 
4390 	/* Allocate the per device structures */
4391 	for (i = 0; i < ndevs_to_allocate; i++) {
4392 		if (i >= HPSA_MAX_DEVICES) {
4393 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4394 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4395 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4396 			break;
4397 		}
4398 
4399 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4400 		if (!currentsd[i]) {
4401 			h->drv_req_rescan = 1;
4402 			goto out;
4403 		}
4404 		ndev_allocated++;
4405 	}
4406 
4407 	if (is_scsi_rev_5(h))
4408 		raid_ctlr_position = 0;
4409 	else
4410 		raid_ctlr_position = nphysicals + nlogicals;
4411 
4412 	/* adjust our table of devices */
4413 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4414 		u8 *lunaddrbytes, is_OBDR = 0;
4415 		int rc = 0;
4416 		int phys_dev_index = i - (raid_ctlr_position == 0);
4417 		bool skip_device = false;
4418 
4419 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4420 
4421 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4422 
4423 		/* Figure out where the LUN ID info is coming from */
4424 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4425 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4426 
4427 		/* Determine if this is a lun from an external target array */
4428 		tmpdevice->external =
4429 			figure_external_status(h, raid_ctlr_position, i,
4430 						nphysicals, nlocal_logicals);
4431 
4432 		/*
4433 		 * Skip over some devices such as a spare.
4434 		 */
4435 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4436 			physical_device) {
4437 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4438 					&physdev_list->LUN[phys_dev_index]);
4439 			if (skip_device)
4440 				continue;
4441 		}
4442 
4443 		/* Get device type, vendor, model, device id, raid_map */
4444 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4445 							&is_OBDR);
4446 		if (rc == -ENOMEM) {
4447 			dev_warn(&h->pdev->dev,
4448 				"Out of memory, rescan deferred.\n");
4449 			h->drv_req_rescan = 1;
4450 			goto out;
4451 		}
4452 		if (rc) {
4453 			h->drv_req_rescan = 1;
4454 			continue;
4455 		}
4456 
4457 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4458 		this_device = currentsd[ncurrent];
4459 
4460 		*this_device = *tmpdevice;
4461 		this_device->physical_device = physical_device;
4462 
4463 		/*
4464 		 * Expose all devices except for physical devices that
4465 		 * are masked.
4466 		 */
4467 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4468 			this_device->expose_device = 0;
4469 		else
4470 			this_device->expose_device = 1;
4471 
4472 
4473 		/*
4474 		 * Get the SAS address for physical devices that are exposed.
4475 		 */
4476 		if (this_device->physical_device && this_device->expose_device)
4477 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4478 
4479 		switch (this_device->devtype) {
4480 		case TYPE_ROM:
4481 			/* We don't *really* support actual CD-ROM devices,
4482 			 * just "One Button Disaster Recovery" tape drive
4483 			 * which temporarily pretends to be a CD-ROM drive.
4484 			 * So we check that the device is really an OBDR tape
4485 			 * device by checking for "$DR-10" in bytes 43-48 of
4486 			 * the inquiry data.
4487 			 */
4488 			if (is_OBDR)
4489 				ncurrent++;
4490 			break;
4491 		case TYPE_DISK:
4492 		case TYPE_ZBC:
4493 			if (this_device->physical_device) {
4494 				/* The disk is in HBA mode. */
4495 				/* Never use RAID mapper in HBA mode. */
4496 				this_device->offload_enabled = 0;
4497 				hpsa_get_ioaccel_drive_info(h, this_device,
4498 					physdev_list, phys_dev_index, id_phys);
4499 				hpsa_get_path_info(this_device,
4500 					physdev_list, phys_dev_index, id_phys);
4501 			}
4502 			ncurrent++;
4503 			break;
4504 		case TYPE_TAPE:
4505 		case TYPE_MEDIUM_CHANGER:
4506 			ncurrent++;
4507 			break;
4508 		case TYPE_ENCLOSURE:
4509 			if (!this_device->external)
4510 				hpsa_get_enclosure_info(h, lunaddrbytes,
4511 						physdev_list, phys_dev_index,
4512 						this_device);
4513 			ncurrent++;
4514 			break;
4515 		case TYPE_RAID:
4516 			/* Only present the Smartarray HBA as a RAID controller.
4517 			 * If it's a RAID controller other than the HBA itself
4518 			 * (an external RAID controller, MSA500 or similar)
4519 			 * don't present it.
4520 			 */
4521 			if (!is_hba_lunid(lunaddrbytes))
4522 				break;
4523 			ncurrent++;
4524 			break;
4525 		default:
4526 			break;
4527 		}
4528 		if (ncurrent >= HPSA_MAX_DEVICES)
4529 			break;
4530 	}
4531 
4532 	if (h->sas_host == NULL) {
4533 		int rc = 0;
4534 
4535 		rc = hpsa_add_sas_host(h);
4536 		if (rc) {
4537 			dev_warn(&h->pdev->dev,
4538 				"Could not add sas host %d\n", rc);
4539 			goto out;
4540 		}
4541 	}
4542 
4543 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4544 out:
4545 	kfree(tmpdevice);
4546 	for (i = 0; i < ndev_allocated; i++)
4547 		kfree(currentsd[i]);
4548 	kfree(currentsd);
4549 	kfree(physdev_list);
4550 	kfree(logdev_list);
4551 	kfree(id_ctlr);
4552 	kfree(id_phys);
4553 }
4554 
4555 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4556 				   struct scatterlist *sg)
4557 {
4558 	u64 addr64 = (u64) sg_dma_address(sg);
4559 	unsigned int len = sg_dma_len(sg);
4560 
4561 	desc->Addr = cpu_to_le64(addr64);
4562 	desc->Len = cpu_to_le32(len);
4563 	desc->Ext = 0;
4564 }
4565 
4566 /*
4567  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4568  * dma mapping  and fills in the scatter gather entries of the
4569  * hpsa command, cp.
4570  */
4571 static int hpsa_scatter_gather(struct ctlr_info *h,
4572 		struct CommandList *cp,
4573 		struct scsi_cmnd *cmd)
4574 {
4575 	struct scatterlist *sg;
4576 	int use_sg, i, sg_limit, chained;
4577 	struct SGDescriptor *curr_sg;
4578 
4579 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4580 
4581 	use_sg = scsi_dma_map(cmd);
4582 	if (use_sg < 0)
4583 		return use_sg;
4584 
4585 	if (!use_sg)
4586 		goto sglist_finished;
4587 
4588 	/*
4589 	 * If the number of entries is greater than the max for a single list,
4590 	 * then we have a chained list; we will set up all but one entry in the
4591 	 * first list (the last entry is saved for link information);
4592 	 * otherwise, we don't have a chained list and we'll set up at each of
4593 	 * the entries in the one list.
4594 	 */
4595 	curr_sg = cp->SG;
4596 	chained = use_sg > h->max_cmd_sg_entries;
4597 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4598 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4599 		hpsa_set_sg_descriptor(curr_sg, sg);
4600 		curr_sg++;
4601 	}
4602 
4603 	if (chained) {
4604 		/*
4605 		 * Continue with the chained list.  Set curr_sg to the chained
4606 		 * list.  Modify the limit to the total count less the entries
4607 		 * we've already set up.  Resume the scan at the list entry
4608 		 * where the previous loop left off.
4609 		 */
4610 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4611 		sg_limit = use_sg - sg_limit;
4612 		for_each_sg(sg, sg, sg_limit, i) {
4613 			hpsa_set_sg_descriptor(curr_sg, sg);
4614 			curr_sg++;
4615 		}
4616 	}
4617 
4618 	/* Back the pointer up to the last entry and mark it as "last". */
4619 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4620 
4621 	if (use_sg + chained > h->maxSG)
4622 		h->maxSG = use_sg + chained;
4623 
4624 	if (chained) {
4625 		cp->Header.SGList = h->max_cmd_sg_entries;
4626 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4627 		if (hpsa_map_sg_chain_block(h, cp)) {
4628 			scsi_dma_unmap(cmd);
4629 			return -1;
4630 		}
4631 		return 0;
4632 	}
4633 
4634 sglist_finished:
4635 
4636 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4637 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4638 	return 0;
4639 }
4640 
4641 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4642 						u8 *cdb, int cdb_len,
4643 						const char *func)
4644 {
4645 	dev_warn(&h->pdev->dev,
4646 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4647 		 func, cdb_len, cdb);
4648 }
4649 
4650 #define IO_ACCEL_INELIGIBLE 1
4651 /* zero-length transfers trigger hardware errors. */
4652 static bool is_zero_length_transfer(u8 *cdb)
4653 {
4654 	u32 block_cnt;
4655 
4656 	/* Block zero-length transfer sizes on certain commands. */
4657 	switch (cdb[0]) {
4658 	case READ_10:
4659 	case WRITE_10:
4660 	case VERIFY:		/* 0x2F */
4661 	case WRITE_VERIFY:	/* 0x2E */
4662 		block_cnt = get_unaligned_be16(&cdb[7]);
4663 		break;
4664 	case READ_12:
4665 	case WRITE_12:
4666 	case VERIFY_12: /* 0xAF */
4667 	case WRITE_VERIFY_12:	/* 0xAE */
4668 		block_cnt = get_unaligned_be32(&cdb[6]);
4669 		break;
4670 	case READ_16:
4671 	case WRITE_16:
4672 	case VERIFY_16:		/* 0x8F */
4673 		block_cnt = get_unaligned_be32(&cdb[10]);
4674 		break;
4675 	default:
4676 		return false;
4677 	}
4678 
4679 	return block_cnt == 0;
4680 }
4681 
4682 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4683 {
4684 	int is_write = 0;
4685 	u32 block;
4686 	u32 block_cnt;
4687 
4688 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4689 	switch (cdb[0]) {
4690 	case WRITE_6:
4691 	case WRITE_12:
4692 		is_write = 1;
4693 		fallthrough;
4694 	case READ_6:
4695 	case READ_12:
4696 		if (*cdb_len == 6) {
4697 			block = (((cdb[1] & 0x1F) << 16) |
4698 				(cdb[2] << 8) |
4699 				cdb[3]);
4700 			block_cnt = cdb[4];
4701 			if (block_cnt == 0)
4702 				block_cnt = 256;
4703 		} else {
4704 			BUG_ON(*cdb_len != 12);
4705 			block = get_unaligned_be32(&cdb[2]);
4706 			block_cnt = get_unaligned_be32(&cdb[6]);
4707 		}
4708 		if (block_cnt > 0xffff)
4709 			return IO_ACCEL_INELIGIBLE;
4710 
4711 		cdb[0] = is_write ? WRITE_10 : READ_10;
4712 		cdb[1] = 0;
4713 		cdb[2] = (u8) (block >> 24);
4714 		cdb[3] = (u8) (block >> 16);
4715 		cdb[4] = (u8) (block >> 8);
4716 		cdb[5] = (u8) (block);
4717 		cdb[6] = 0;
4718 		cdb[7] = (u8) (block_cnt >> 8);
4719 		cdb[8] = (u8) (block_cnt);
4720 		cdb[9] = 0;
4721 		*cdb_len = 10;
4722 		break;
4723 	}
4724 	return 0;
4725 }
4726 
4727 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4728 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4729 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4730 {
4731 	struct scsi_cmnd *cmd = c->scsi_cmd;
4732 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4733 	unsigned int len;
4734 	unsigned int total_len = 0;
4735 	struct scatterlist *sg;
4736 	u64 addr64;
4737 	int use_sg, i;
4738 	struct SGDescriptor *curr_sg;
4739 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4740 
4741 	/* TODO: implement chaining support */
4742 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4743 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4744 		return IO_ACCEL_INELIGIBLE;
4745 	}
4746 
4747 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4748 
4749 	if (is_zero_length_transfer(cdb)) {
4750 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4751 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4752 		return IO_ACCEL_INELIGIBLE;
4753 	}
4754 
4755 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4756 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4757 		return IO_ACCEL_INELIGIBLE;
4758 	}
4759 
4760 	c->cmd_type = CMD_IOACCEL1;
4761 
4762 	/* Adjust the DMA address to point to the accelerated command buffer */
4763 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4764 				(c->cmdindex * sizeof(*cp));
4765 	BUG_ON(c->busaddr & 0x0000007F);
4766 
4767 	use_sg = scsi_dma_map(cmd);
4768 	if (use_sg < 0) {
4769 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4770 		return use_sg;
4771 	}
4772 
4773 	if (use_sg) {
4774 		curr_sg = cp->SG;
4775 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4776 			addr64 = (u64) sg_dma_address(sg);
4777 			len  = sg_dma_len(sg);
4778 			total_len += len;
4779 			curr_sg->Addr = cpu_to_le64(addr64);
4780 			curr_sg->Len = cpu_to_le32(len);
4781 			curr_sg->Ext = cpu_to_le32(0);
4782 			curr_sg++;
4783 		}
4784 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4785 
4786 		switch (cmd->sc_data_direction) {
4787 		case DMA_TO_DEVICE:
4788 			control |= IOACCEL1_CONTROL_DATA_OUT;
4789 			break;
4790 		case DMA_FROM_DEVICE:
4791 			control |= IOACCEL1_CONTROL_DATA_IN;
4792 			break;
4793 		case DMA_NONE:
4794 			control |= IOACCEL1_CONTROL_NODATAXFER;
4795 			break;
4796 		default:
4797 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4798 			cmd->sc_data_direction);
4799 			BUG();
4800 			break;
4801 		}
4802 	} else {
4803 		control |= IOACCEL1_CONTROL_NODATAXFER;
4804 	}
4805 
4806 	c->Header.SGList = use_sg;
4807 	/* Fill out the command structure to submit */
4808 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4809 	cp->transfer_len = cpu_to_le32(total_len);
4810 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4811 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4812 	cp->control = cpu_to_le32(control);
4813 	memcpy(cp->CDB, cdb, cdb_len);
4814 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4815 	/* Tag was already set at init time. */
4816 	enqueue_cmd_and_start_io(h, c);
4817 	return 0;
4818 }
4819 
4820 /*
4821  * Queue a command directly to a device behind the controller using the
4822  * I/O accelerator path.
4823  */
4824 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4825 	struct CommandList *c)
4826 {
4827 	struct scsi_cmnd *cmd = c->scsi_cmd;
4828 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4829 
4830 	if (!dev)
4831 		return -1;
4832 
4833 	c->phys_disk = dev;
4834 
4835 	if (dev->in_reset)
4836 		return -1;
4837 
4838 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4839 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4840 }
4841 
4842 /*
4843  * Set encryption parameters for the ioaccel2 request
4844  */
4845 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4846 	struct CommandList *c, struct io_accel2_cmd *cp)
4847 {
4848 	struct scsi_cmnd *cmd = c->scsi_cmd;
4849 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4850 	struct raid_map_data *map = &dev->raid_map;
4851 	u64 first_block;
4852 
4853 	/* Are we doing encryption on this device */
4854 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4855 		return;
4856 	/* Set the data encryption key index. */
4857 	cp->dekindex = map->dekindex;
4858 
4859 	/* Set the encryption enable flag, encoded into direction field. */
4860 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4861 
4862 	/* Set encryption tweak values based on logical block address
4863 	 * If block size is 512, tweak value is LBA.
4864 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4865 	 */
4866 	switch (cmd->cmnd[0]) {
4867 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4868 	case READ_6:
4869 	case WRITE_6:
4870 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4871 				(cmd->cmnd[2] << 8) |
4872 				cmd->cmnd[3]);
4873 		break;
4874 	case WRITE_10:
4875 	case READ_10:
4876 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4877 	case WRITE_12:
4878 	case READ_12:
4879 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4880 		break;
4881 	case WRITE_16:
4882 	case READ_16:
4883 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4884 		break;
4885 	default:
4886 		dev_err(&h->pdev->dev,
4887 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4888 			__func__, cmd->cmnd[0]);
4889 		BUG();
4890 		break;
4891 	}
4892 
4893 	if (le32_to_cpu(map->volume_blk_size) != 512)
4894 		first_block = first_block *
4895 				le32_to_cpu(map->volume_blk_size)/512;
4896 
4897 	cp->tweak_lower = cpu_to_le32(first_block);
4898 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4899 }
4900 
4901 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4902 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4903 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4904 {
4905 	struct scsi_cmnd *cmd = c->scsi_cmd;
4906 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4907 	struct ioaccel2_sg_element *curr_sg;
4908 	int use_sg, i;
4909 	struct scatterlist *sg;
4910 	u64 addr64;
4911 	u32 len;
4912 	u32 total_len = 0;
4913 
4914 	if (!cmd->device)
4915 		return -1;
4916 
4917 	if (!cmd->device->hostdata)
4918 		return -1;
4919 
4920 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4921 
4922 	if (is_zero_length_transfer(cdb)) {
4923 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4924 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4925 		return IO_ACCEL_INELIGIBLE;
4926 	}
4927 
4928 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4929 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 		return IO_ACCEL_INELIGIBLE;
4931 	}
4932 
4933 	c->cmd_type = CMD_IOACCEL2;
4934 	/* Adjust the DMA address to point to the accelerated command buffer */
4935 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4936 				(c->cmdindex * sizeof(*cp));
4937 	BUG_ON(c->busaddr & 0x0000007F);
4938 
4939 	memset(cp, 0, sizeof(*cp));
4940 	cp->IU_type = IOACCEL2_IU_TYPE;
4941 
4942 	use_sg = scsi_dma_map(cmd);
4943 	if (use_sg < 0) {
4944 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4945 		return use_sg;
4946 	}
4947 
4948 	if (use_sg) {
4949 		curr_sg = cp->sg;
4950 		if (use_sg > h->ioaccel_maxsg) {
4951 			addr64 = le64_to_cpu(
4952 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4953 			curr_sg->address = cpu_to_le64(addr64);
4954 			curr_sg->length = 0;
4955 			curr_sg->reserved[0] = 0;
4956 			curr_sg->reserved[1] = 0;
4957 			curr_sg->reserved[2] = 0;
4958 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4959 
4960 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4961 		}
4962 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4963 			addr64 = (u64) sg_dma_address(sg);
4964 			len  = sg_dma_len(sg);
4965 			total_len += len;
4966 			curr_sg->address = cpu_to_le64(addr64);
4967 			curr_sg->length = cpu_to_le32(len);
4968 			curr_sg->reserved[0] = 0;
4969 			curr_sg->reserved[1] = 0;
4970 			curr_sg->reserved[2] = 0;
4971 			curr_sg->chain_indicator = 0;
4972 			curr_sg++;
4973 		}
4974 
4975 		/*
4976 		 * Set the last s/g element bit
4977 		 */
4978 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4979 
4980 		switch (cmd->sc_data_direction) {
4981 		case DMA_TO_DEVICE:
4982 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4983 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4984 			break;
4985 		case DMA_FROM_DEVICE:
4986 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4988 			break;
4989 		case DMA_NONE:
4990 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4992 			break;
4993 		default:
4994 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4995 				cmd->sc_data_direction);
4996 			BUG();
4997 			break;
4998 		}
4999 	} else {
5000 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5001 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5002 	}
5003 
5004 	/* Set encryption parameters, if necessary */
5005 	set_encrypt_ioaccel2(h, c, cp);
5006 
5007 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5008 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5009 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5010 
5011 	cp->data_len = cpu_to_le32(total_len);
5012 	cp->err_ptr = cpu_to_le64(c->busaddr +
5013 			offsetof(struct io_accel2_cmd, error_data));
5014 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5015 
5016 	/* fill in sg elements */
5017 	if (use_sg > h->ioaccel_maxsg) {
5018 		cp->sg_count = 1;
5019 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5020 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5021 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5022 			scsi_dma_unmap(cmd);
5023 			return -1;
5024 		}
5025 	} else
5026 		cp->sg_count = (u8) use_sg;
5027 
5028 	if (phys_disk->in_reset) {
5029 		cmd->result = DID_RESET << 16;
5030 		return -1;
5031 	}
5032 
5033 	enqueue_cmd_and_start_io(h, c);
5034 	return 0;
5035 }
5036 
5037 /*
5038  * Queue a command to the correct I/O accelerator path.
5039  */
5040 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5041 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5042 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5043 {
5044 	if (!c->scsi_cmd->device)
5045 		return -1;
5046 
5047 	if (!c->scsi_cmd->device->hostdata)
5048 		return -1;
5049 
5050 	if (phys_disk->in_reset)
5051 		return -1;
5052 
5053 	/* Try to honor the device's queue depth */
5054 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5055 					phys_disk->queue_depth) {
5056 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5057 		return IO_ACCEL_INELIGIBLE;
5058 	}
5059 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5060 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5061 						cdb, cdb_len, scsi3addr,
5062 						phys_disk);
5063 	else
5064 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5065 						cdb, cdb_len, scsi3addr,
5066 						phys_disk);
5067 }
5068 
5069 static void raid_map_helper(struct raid_map_data *map,
5070 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5071 {
5072 	if (offload_to_mirror == 0)  {
5073 		/* use physical disk in the first mirrored group. */
5074 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5075 		return;
5076 	}
5077 	do {
5078 		/* determine mirror group that *map_index indicates */
5079 		*current_group = *map_index /
5080 			le16_to_cpu(map->data_disks_per_row);
5081 		if (offload_to_mirror == *current_group)
5082 			continue;
5083 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5084 			/* select map index from next group */
5085 			*map_index += le16_to_cpu(map->data_disks_per_row);
5086 			(*current_group)++;
5087 		} else {
5088 			/* select map index from first group */
5089 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5090 			*current_group = 0;
5091 		}
5092 	} while (offload_to_mirror != *current_group);
5093 }
5094 
5095 /*
5096  * Attempt to perform offload RAID mapping for a logical volume I/O.
5097  */
5098 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5099 	struct CommandList *c)
5100 {
5101 	struct scsi_cmnd *cmd = c->scsi_cmd;
5102 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5103 	struct raid_map_data *map = &dev->raid_map;
5104 	struct raid_map_disk_data *dd = &map->data[0];
5105 	int is_write = 0;
5106 	u32 map_index;
5107 	u64 first_block, last_block;
5108 	u32 block_cnt;
5109 	u32 blocks_per_row;
5110 	u64 first_row, last_row;
5111 	u32 first_row_offset, last_row_offset;
5112 	u32 first_column, last_column;
5113 	u64 r0_first_row, r0_last_row;
5114 	u32 r5or6_blocks_per_row;
5115 	u64 r5or6_first_row, r5or6_last_row;
5116 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5117 	u32 r5or6_first_column, r5or6_last_column;
5118 	u32 total_disks_per_row;
5119 	u32 stripesize;
5120 	u32 first_group, last_group, current_group;
5121 	u32 map_row;
5122 	u32 disk_handle;
5123 	u64 disk_block;
5124 	u32 disk_block_cnt;
5125 	u8 cdb[16];
5126 	u8 cdb_len;
5127 	u16 strip_size;
5128 #if BITS_PER_LONG == 32
5129 	u64 tmpdiv;
5130 #endif
5131 	int offload_to_mirror;
5132 
5133 	if (!dev)
5134 		return -1;
5135 
5136 	if (dev->in_reset)
5137 		return -1;
5138 
5139 	/* check for valid opcode, get LBA and block count */
5140 	switch (cmd->cmnd[0]) {
5141 	case WRITE_6:
5142 		is_write = 1;
5143 		fallthrough;
5144 	case READ_6:
5145 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5146 				(cmd->cmnd[2] << 8) |
5147 				cmd->cmnd[3]);
5148 		block_cnt = cmd->cmnd[4];
5149 		if (block_cnt == 0)
5150 			block_cnt = 256;
5151 		break;
5152 	case WRITE_10:
5153 		is_write = 1;
5154 		fallthrough;
5155 	case READ_10:
5156 		first_block =
5157 			(((u64) cmd->cmnd[2]) << 24) |
5158 			(((u64) cmd->cmnd[3]) << 16) |
5159 			(((u64) cmd->cmnd[4]) << 8) |
5160 			cmd->cmnd[5];
5161 		block_cnt =
5162 			(((u32) cmd->cmnd[7]) << 8) |
5163 			cmd->cmnd[8];
5164 		break;
5165 	case WRITE_12:
5166 		is_write = 1;
5167 		fallthrough;
5168 	case READ_12:
5169 		first_block =
5170 			(((u64) cmd->cmnd[2]) << 24) |
5171 			(((u64) cmd->cmnd[3]) << 16) |
5172 			(((u64) cmd->cmnd[4]) << 8) |
5173 			cmd->cmnd[5];
5174 		block_cnt =
5175 			(((u32) cmd->cmnd[6]) << 24) |
5176 			(((u32) cmd->cmnd[7]) << 16) |
5177 			(((u32) cmd->cmnd[8]) << 8) |
5178 		cmd->cmnd[9];
5179 		break;
5180 	case WRITE_16:
5181 		is_write = 1;
5182 		fallthrough;
5183 	case READ_16:
5184 		first_block =
5185 			(((u64) cmd->cmnd[2]) << 56) |
5186 			(((u64) cmd->cmnd[3]) << 48) |
5187 			(((u64) cmd->cmnd[4]) << 40) |
5188 			(((u64) cmd->cmnd[5]) << 32) |
5189 			(((u64) cmd->cmnd[6]) << 24) |
5190 			(((u64) cmd->cmnd[7]) << 16) |
5191 			(((u64) cmd->cmnd[8]) << 8) |
5192 			cmd->cmnd[9];
5193 		block_cnt =
5194 			(((u32) cmd->cmnd[10]) << 24) |
5195 			(((u32) cmd->cmnd[11]) << 16) |
5196 			(((u32) cmd->cmnd[12]) << 8) |
5197 			cmd->cmnd[13];
5198 		break;
5199 	default:
5200 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5201 	}
5202 	last_block = first_block + block_cnt - 1;
5203 
5204 	/* check for write to non-RAID-0 */
5205 	if (is_write && dev->raid_level != 0)
5206 		return IO_ACCEL_INELIGIBLE;
5207 
5208 	/* check for invalid block or wraparound */
5209 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5210 		last_block < first_block)
5211 		return IO_ACCEL_INELIGIBLE;
5212 
5213 	/* calculate stripe information for the request */
5214 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5215 				le16_to_cpu(map->strip_size);
5216 	strip_size = le16_to_cpu(map->strip_size);
5217 #if BITS_PER_LONG == 32
5218 	tmpdiv = first_block;
5219 	(void) do_div(tmpdiv, blocks_per_row);
5220 	first_row = tmpdiv;
5221 	tmpdiv = last_block;
5222 	(void) do_div(tmpdiv, blocks_per_row);
5223 	last_row = tmpdiv;
5224 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5225 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5226 	tmpdiv = first_row_offset;
5227 	(void) do_div(tmpdiv, strip_size);
5228 	first_column = tmpdiv;
5229 	tmpdiv = last_row_offset;
5230 	(void) do_div(tmpdiv, strip_size);
5231 	last_column = tmpdiv;
5232 #else
5233 	first_row = first_block / blocks_per_row;
5234 	last_row = last_block / blocks_per_row;
5235 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5236 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5237 	first_column = first_row_offset / strip_size;
5238 	last_column = last_row_offset / strip_size;
5239 #endif
5240 
5241 	/* if this isn't a single row/column then give to the controller */
5242 	if ((first_row != last_row) || (first_column != last_column))
5243 		return IO_ACCEL_INELIGIBLE;
5244 
5245 	/* proceeding with driver mapping */
5246 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5247 				le16_to_cpu(map->metadata_disks_per_row);
5248 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5249 				le16_to_cpu(map->row_cnt);
5250 	map_index = (map_row * total_disks_per_row) + first_column;
5251 
5252 	switch (dev->raid_level) {
5253 	case HPSA_RAID_0:
5254 		break; /* nothing special to do */
5255 	case HPSA_RAID_1:
5256 		/* Handles load balance across RAID 1 members.
5257 		 * (2-drive R1 and R10 with even # of drives.)
5258 		 * Appropriate for SSDs, not optimal for HDDs
5259 		 * Ensure we have the correct raid_map.
5260 		 */
5261 		if (le16_to_cpu(map->layout_map_count) != 2) {
5262 			hpsa_turn_off_ioaccel_for_device(dev);
5263 			return IO_ACCEL_INELIGIBLE;
5264 		}
5265 		if (dev->offload_to_mirror)
5266 			map_index += le16_to_cpu(map->data_disks_per_row);
5267 		dev->offload_to_mirror = !dev->offload_to_mirror;
5268 		break;
5269 	case HPSA_RAID_ADM:
5270 		/* Handles N-way mirrors  (R1-ADM)
5271 		 * and R10 with # of drives divisible by 3.)
5272 		 * Ensure we have the correct raid_map.
5273 		 */
5274 		if (le16_to_cpu(map->layout_map_count) != 3) {
5275 			hpsa_turn_off_ioaccel_for_device(dev);
5276 			return IO_ACCEL_INELIGIBLE;
5277 		}
5278 
5279 		offload_to_mirror = dev->offload_to_mirror;
5280 		raid_map_helper(map, offload_to_mirror,
5281 				&map_index, &current_group);
5282 		/* set mirror group to use next time */
5283 		offload_to_mirror =
5284 			(offload_to_mirror >=
5285 			le16_to_cpu(map->layout_map_count) - 1)
5286 			? 0 : offload_to_mirror + 1;
5287 		dev->offload_to_mirror = offload_to_mirror;
5288 		/* Avoid direct use of dev->offload_to_mirror within this
5289 		 * function since multiple threads might simultaneously
5290 		 * increment it beyond the range of dev->layout_map_count -1.
5291 		 */
5292 		break;
5293 	case HPSA_RAID_5:
5294 	case HPSA_RAID_6:
5295 		if (le16_to_cpu(map->layout_map_count) <= 1)
5296 			break;
5297 
5298 		/* Verify first and last block are in same RAID group */
5299 		r5or6_blocks_per_row =
5300 			le16_to_cpu(map->strip_size) *
5301 			le16_to_cpu(map->data_disks_per_row);
5302 		if (r5or6_blocks_per_row == 0) {
5303 			hpsa_turn_off_ioaccel_for_device(dev);
5304 			return IO_ACCEL_INELIGIBLE;
5305 		}
5306 		stripesize = r5or6_blocks_per_row *
5307 			le16_to_cpu(map->layout_map_count);
5308 #if BITS_PER_LONG == 32
5309 		tmpdiv = first_block;
5310 		first_group = do_div(tmpdiv, stripesize);
5311 		tmpdiv = first_group;
5312 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5313 		first_group = tmpdiv;
5314 		tmpdiv = last_block;
5315 		last_group = do_div(tmpdiv, stripesize);
5316 		tmpdiv = last_group;
5317 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5318 		last_group = tmpdiv;
5319 #else
5320 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5321 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5322 #endif
5323 		if (first_group != last_group)
5324 			return IO_ACCEL_INELIGIBLE;
5325 
5326 		/* Verify request is in a single row of RAID 5/6 */
5327 #if BITS_PER_LONG == 32
5328 		tmpdiv = first_block;
5329 		(void) do_div(tmpdiv, stripesize);
5330 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5331 		tmpdiv = last_block;
5332 		(void) do_div(tmpdiv, stripesize);
5333 		r5or6_last_row = r0_last_row = tmpdiv;
5334 #else
5335 		first_row = r5or6_first_row = r0_first_row =
5336 						first_block / stripesize;
5337 		r5or6_last_row = r0_last_row = last_block / stripesize;
5338 #endif
5339 		if (r5or6_first_row != r5or6_last_row)
5340 			return IO_ACCEL_INELIGIBLE;
5341 
5342 
5343 		/* Verify request is in a single column */
5344 #if BITS_PER_LONG == 32
5345 		tmpdiv = first_block;
5346 		first_row_offset = do_div(tmpdiv, stripesize);
5347 		tmpdiv = first_row_offset;
5348 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5349 		r5or6_first_row_offset = first_row_offset;
5350 		tmpdiv = last_block;
5351 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5352 		tmpdiv = r5or6_last_row_offset;
5353 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5354 		tmpdiv = r5or6_first_row_offset;
5355 		(void) do_div(tmpdiv, map->strip_size);
5356 		first_column = r5or6_first_column = tmpdiv;
5357 		tmpdiv = r5or6_last_row_offset;
5358 		(void) do_div(tmpdiv, map->strip_size);
5359 		r5or6_last_column = tmpdiv;
5360 #else
5361 		first_row_offset = r5or6_first_row_offset =
5362 			(u32)((first_block % stripesize) %
5363 						r5or6_blocks_per_row);
5364 
5365 		r5or6_last_row_offset =
5366 			(u32)((last_block % stripesize) %
5367 						r5or6_blocks_per_row);
5368 
5369 		first_column = r5or6_first_column =
5370 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5371 		r5or6_last_column =
5372 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5373 #endif
5374 		if (r5or6_first_column != r5or6_last_column)
5375 			return IO_ACCEL_INELIGIBLE;
5376 
5377 		/* Request is eligible */
5378 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5379 			le16_to_cpu(map->row_cnt);
5380 
5381 		map_index = (first_group *
5382 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5383 			(map_row * total_disks_per_row) + first_column;
5384 		break;
5385 	default:
5386 		return IO_ACCEL_INELIGIBLE;
5387 	}
5388 
5389 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5390 		return IO_ACCEL_INELIGIBLE;
5391 
5392 	c->phys_disk = dev->phys_disk[map_index];
5393 	if (!c->phys_disk)
5394 		return IO_ACCEL_INELIGIBLE;
5395 
5396 	disk_handle = dd[map_index].ioaccel_handle;
5397 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5398 			first_row * le16_to_cpu(map->strip_size) +
5399 			(first_row_offset - first_column *
5400 			le16_to_cpu(map->strip_size));
5401 	disk_block_cnt = block_cnt;
5402 
5403 	/* handle differing logical/physical block sizes */
5404 	if (map->phys_blk_shift) {
5405 		disk_block <<= map->phys_blk_shift;
5406 		disk_block_cnt <<= map->phys_blk_shift;
5407 	}
5408 	BUG_ON(disk_block_cnt > 0xffff);
5409 
5410 	/* build the new CDB for the physical disk I/O */
5411 	if (disk_block > 0xffffffff) {
5412 		cdb[0] = is_write ? WRITE_16 : READ_16;
5413 		cdb[1] = 0;
5414 		cdb[2] = (u8) (disk_block >> 56);
5415 		cdb[3] = (u8) (disk_block >> 48);
5416 		cdb[4] = (u8) (disk_block >> 40);
5417 		cdb[5] = (u8) (disk_block >> 32);
5418 		cdb[6] = (u8) (disk_block >> 24);
5419 		cdb[7] = (u8) (disk_block >> 16);
5420 		cdb[8] = (u8) (disk_block >> 8);
5421 		cdb[9] = (u8) (disk_block);
5422 		cdb[10] = (u8) (disk_block_cnt >> 24);
5423 		cdb[11] = (u8) (disk_block_cnt >> 16);
5424 		cdb[12] = (u8) (disk_block_cnt >> 8);
5425 		cdb[13] = (u8) (disk_block_cnt);
5426 		cdb[14] = 0;
5427 		cdb[15] = 0;
5428 		cdb_len = 16;
5429 	} else {
5430 		cdb[0] = is_write ? WRITE_10 : READ_10;
5431 		cdb[1] = 0;
5432 		cdb[2] = (u8) (disk_block >> 24);
5433 		cdb[3] = (u8) (disk_block >> 16);
5434 		cdb[4] = (u8) (disk_block >> 8);
5435 		cdb[5] = (u8) (disk_block);
5436 		cdb[6] = 0;
5437 		cdb[7] = (u8) (disk_block_cnt >> 8);
5438 		cdb[8] = (u8) (disk_block_cnt);
5439 		cdb[9] = 0;
5440 		cdb_len = 10;
5441 	}
5442 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5443 						dev->scsi3addr,
5444 						dev->phys_disk[map_index]);
5445 }
5446 
5447 /*
5448  * Submit commands down the "normal" RAID stack path
5449  * All callers to hpsa_ciss_submit must check lockup_detected
5450  * beforehand, before (opt.) and after calling cmd_alloc
5451  */
5452 static int hpsa_ciss_submit(struct ctlr_info *h,
5453 	struct CommandList *c, struct scsi_cmnd *cmd,
5454 	struct hpsa_scsi_dev_t *dev)
5455 {
5456 	cmd->host_scribble = (unsigned char *) c;
5457 	c->cmd_type = CMD_SCSI;
5458 	c->scsi_cmd = cmd;
5459 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5460 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5461 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5462 
5463 	/* Fill in the request block... */
5464 
5465 	c->Request.Timeout = 0;
5466 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5467 	c->Request.CDBLen = cmd->cmd_len;
5468 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5469 	switch (cmd->sc_data_direction) {
5470 	case DMA_TO_DEVICE:
5471 		c->Request.type_attr_dir =
5472 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5473 		break;
5474 	case DMA_FROM_DEVICE:
5475 		c->Request.type_attr_dir =
5476 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5477 		break;
5478 	case DMA_NONE:
5479 		c->Request.type_attr_dir =
5480 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5481 		break;
5482 	case DMA_BIDIRECTIONAL:
5483 		/* This can happen if a buggy application does a scsi passthru
5484 		 * and sets both inlen and outlen to non-zero. ( see
5485 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5486 		 */
5487 
5488 		c->Request.type_attr_dir =
5489 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5490 		/* This is technically wrong, and hpsa controllers should
5491 		 * reject it with CMD_INVALID, which is the most correct
5492 		 * response, but non-fibre backends appear to let it
5493 		 * slide by, and give the same results as if this field
5494 		 * were set correctly.  Either way is acceptable for
5495 		 * our purposes here.
5496 		 */
5497 
5498 		break;
5499 
5500 	default:
5501 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5502 			cmd->sc_data_direction);
5503 		BUG();
5504 		break;
5505 	}
5506 
5507 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5508 		hpsa_cmd_resolve_and_free(h, c);
5509 		return SCSI_MLQUEUE_HOST_BUSY;
5510 	}
5511 
5512 	if (dev->in_reset) {
5513 		hpsa_cmd_resolve_and_free(h, c);
5514 		return SCSI_MLQUEUE_HOST_BUSY;
5515 	}
5516 
5517 	c->device = dev;
5518 
5519 	enqueue_cmd_and_start_io(h, c);
5520 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5521 	return 0;
5522 }
5523 
5524 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5525 				struct CommandList *c)
5526 {
5527 	dma_addr_t cmd_dma_handle, err_dma_handle;
5528 
5529 	/* Zero out all of commandlist except the last field, refcount */
5530 	memset(c, 0, offsetof(struct CommandList, refcount));
5531 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5532 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5533 	c->err_info = h->errinfo_pool + index;
5534 	memset(c->err_info, 0, sizeof(*c->err_info));
5535 	err_dma_handle = h->errinfo_pool_dhandle
5536 	    + index * sizeof(*c->err_info);
5537 	c->cmdindex = index;
5538 	c->busaddr = (u32) cmd_dma_handle;
5539 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5540 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5541 	c->h = h;
5542 	c->scsi_cmd = SCSI_CMD_IDLE;
5543 }
5544 
5545 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5546 {
5547 	int i;
5548 
5549 	for (i = 0; i < h->nr_cmds; i++) {
5550 		struct CommandList *c = h->cmd_pool + i;
5551 
5552 		hpsa_cmd_init(h, i, c);
5553 		atomic_set(&c->refcount, 0);
5554 	}
5555 }
5556 
5557 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5558 				struct CommandList *c)
5559 {
5560 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5561 
5562 	BUG_ON(c->cmdindex != index);
5563 
5564 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5565 	memset(c->err_info, 0, sizeof(*c->err_info));
5566 	c->busaddr = (u32) cmd_dma_handle;
5567 }
5568 
5569 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5570 		struct CommandList *c, struct scsi_cmnd *cmd)
5571 {
5572 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5573 	int rc = IO_ACCEL_INELIGIBLE;
5574 
5575 	if (!dev)
5576 		return SCSI_MLQUEUE_HOST_BUSY;
5577 
5578 	if (dev->in_reset)
5579 		return SCSI_MLQUEUE_HOST_BUSY;
5580 
5581 	if (hpsa_simple_mode)
5582 		return IO_ACCEL_INELIGIBLE;
5583 
5584 	cmd->host_scribble = (unsigned char *) c;
5585 
5586 	if (dev->offload_enabled) {
5587 		hpsa_cmd_init(h, c->cmdindex, c);
5588 		c->cmd_type = CMD_SCSI;
5589 		c->scsi_cmd = cmd;
5590 		c->device = dev;
5591 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5592 		if (rc < 0)     /* scsi_dma_map failed. */
5593 			rc = SCSI_MLQUEUE_HOST_BUSY;
5594 	} else if (dev->hba_ioaccel_enabled) {
5595 		hpsa_cmd_init(h, c->cmdindex, c);
5596 		c->cmd_type = CMD_SCSI;
5597 		c->scsi_cmd = cmd;
5598 		c->device = dev;
5599 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5600 		if (rc < 0)     /* scsi_dma_map failed. */
5601 			rc = SCSI_MLQUEUE_HOST_BUSY;
5602 	}
5603 	return rc;
5604 }
5605 
5606 static void hpsa_command_resubmit_worker(struct work_struct *work)
5607 {
5608 	struct scsi_cmnd *cmd;
5609 	struct hpsa_scsi_dev_t *dev;
5610 	struct CommandList *c = container_of(work, struct CommandList, work);
5611 
5612 	cmd = c->scsi_cmd;
5613 	dev = cmd->device->hostdata;
5614 	if (!dev) {
5615 		cmd->result = DID_NO_CONNECT << 16;
5616 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5617 	}
5618 
5619 	if (dev->in_reset) {
5620 		cmd->result = DID_RESET << 16;
5621 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5622 	}
5623 
5624 	if (c->cmd_type == CMD_IOACCEL2) {
5625 		struct ctlr_info *h = c->h;
5626 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5627 		int rc;
5628 
5629 		if (c2->error_data.serv_response ==
5630 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5631 			rc = hpsa_ioaccel_submit(h, c, cmd);
5632 			if (rc == 0)
5633 				return;
5634 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5635 				/*
5636 				 * If we get here, it means dma mapping failed.
5637 				 * Try again via scsi mid layer, which will
5638 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5639 				 */
5640 				cmd->result = DID_IMM_RETRY << 16;
5641 				return hpsa_cmd_free_and_done(h, c, cmd);
5642 			}
5643 			/* else, fall thru and resubmit down CISS path */
5644 		}
5645 	}
5646 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5647 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5648 		/*
5649 		 * If we get here, it means dma mapping failed. Try
5650 		 * again via scsi mid layer, which will then get
5651 		 * SCSI_MLQUEUE_HOST_BUSY.
5652 		 *
5653 		 * hpsa_ciss_submit will have already freed c
5654 		 * if it encountered a dma mapping failure.
5655 		 */
5656 		cmd->result = DID_IMM_RETRY << 16;
5657 		cmd->scsi_done(cmd);
5658 	}
5659 }
5660 
5661 /* Running in struct Scsi_Host->host_lock less mode */
5662 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5663 {
5664 	struct ctlr_info *h;
5665 	struct hpsa_scsi_dev_t *dev;
5666 	struct CommandList *c;
5667 	int rc = 0;
5668 
5669 	/* Get the ptr to our adapter structure out of cmd->host. */
5670 	h = sdev_to_hba(cmd->device);
5671 
5672 	BUG_ON(cmd->request->tag < 0);
5673 
5674 	dev = cmd->device->hostdata;
5675 	if (!dev) {
5676 		cmd->result = DID_NO_CONNECT << 16;
5677 		cmd->scsi_done(cmd);
5678 		return 0;
5679 	}
5680 
5681 	if (dev->removed) {
5682 		cmd->result = DID_NO_CONNECT << 16;
5683 		cmd->scsi_done(cmd);
5684 		return 0;
5685 	}
5686 
5687 	if (unlikely(lockup_detected(h))) {
5688 		cmd->result = DID_NO_CONNECT << 16;
5689 		cmd->scsi_done(cmd);
5690 		return 0;
5691 	}
5692 
5693 	if (dev->in_reset)
5694 		return SCSI_MLQUEUE_DEVICE_BUSY;
5695 
5696 	c = cmd_tagged_alloc(h, cmd);
5697 	if (c == NULL)
5698 		return SCSI_MLQUEUE_DEVICE_BUSY;
5699 
5700 	/*
5701 	 * This is necessary because the SML doesn't zero out this field during
5702 	 * error recovery.
5703 	 */
5704 	cmd->result = 0;
5705 
5706 	/*
5707 	 * Call alternate submit routine for I/O accelerated commands.
5708 	 * Retries always go down the normal I/O path.
5709 	 */
5710 	if (likely(cmd->retries == 0 &&
5711 			!blk_rq_is_passthrough(cmd->request) &&
5712 			h->acciopath_status)) {
5713 		rc = hpsa_ioaccel_submit(h, c, cmd);
5714 		if (rc == 0)
5715 			return 0;
5716 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5717 			hpsa_cmd_resolve_and_free(h, c);
5718 			return SCSI_MLQUEUE_HOST_BUSY;
5719 		}
5720 	}
5721 	return hpsa_ciss_submit(h, c, cmd, dev);
5722 }
5723 
5724 static void hpsa_scan_complete(struct ctlr_info *h)
5725 {
5726 	unsigned long flags;
5727 
5728 	spin_lock_irqsave(&h->scan_lock, flags);
5729 	h->scan_finished = 1;
5730 	wake_up(&h->scan_wait_queue);
5731 	spin_unlock_irqrestore(&h->scan_lock, flags);
5732 }
5733 
5734 static void hpsa_scan_start(struct Scsi_Host *sh)
5735 {
5736 	struct ctlr_info *h = shost_to_hba(sh);
5737 	unsigned long flags;
5738 
5739 	/*
5740 	 * Don't let rescans be initiated on a controller known to be locked
5741 	 * up.  If the controller locks up *during* a rescan, that thread is
5742 	 * probably hosed, but at least we can prevent new rescan threads from
5743 	 * piling up on a locked up controller.
5744 	 */
5745 	if (unlikely(lockup_detected(h)))
5746 		return hpsa_scan_complete(h);
5747 
5748 	/*
5749 	 * If a scan is already waiting to run, no need to add another
5750 	 */
5751 	spin_lock_irqsave(&h->scan_lock, flags);
5752 	if (h->scan_waiting) {
5753 		spin_unlock_irqrestore(&h->scan_lock, flags);
5754 		return;
5755 	}
5756 
5757 	spin_unlock_irqrestore(&h->scan_lock, flags);
5758 
5759 	/* wait until any scan already in progress is finished. */
5760 	while (1) {
5761 		spin_lock_irqsave(&h->scan_lock, flags);
5762 		if (h->scan_finished)
5763 			break;
5764 		h->scan_waiting = 1;
5765 		spin_unlock_irqrestore(&h->scan_lock, flags);
5766 		wait_event(h->scan_wait_queue, h->scan_finished);
5767 		/* Note: We don't need to worry about a race between this
5768 		 * thread and driver unload because the midlayer will
5769 		 * have incremented the reference count, so unload won't
5770 		 * happen if we're in here.
5771 		 */
5772 	}
5773 	h->scan_finished = 0; /* mark scan as in progress */
5774 	h->scan_waiting = 0;
5775 	spin_unlock_irqrestore(&h->scan_lock, flags);
5776 
5777 	if (unlikely(lockup_detected(h)))
5778 		return hpsa_scan_complete(h);
5779 
5780 	/*
5781 	 * Do the scan after a reset completion
5782 	 */
5783 	spin_lock_irqsave(&h->reset_lock, flags);
5784 	if (h->reset_in_progress) {
5785 		h->drv_req_rescan = 1;
5786 		spin_unlock_irqrestore(&h->reset_lock, flags);
5787 		hpsa_scan_complete(h);
5788 		return;
5789 	}
5790 	spin_unlock_irqrestore(&h->reset_lock, flags);
5791 
5792 	hpsa_update_scsi_devices(h);
5793 
5794 	hpsa_scan_complete(h);
5795 }
5796 
5797 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5798 {
5799 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5800 
5801 	if (!logical_drive)
5802 		return -ENODEV;
5803 
5804 	if (qdepth < 1)
5805 		qdepth = 1;
5806 	else if (qdepth > logical_drive->queue_depth)
5807 		qdepth = logical_drive->queue_depth;
5808 
5809 	return scsi_change_queue_depth(sdev, qdepth);
5810 }
5811 
5812 static int hpsa_scan_finished(struct Scsi_Host *sh,
5813 	unsigned long elapsed_time)
5814 {
5815 	struct ctlr_info *h = shost_to_hba(sh);
5816 	unsigned long flags;
5817 	int finished;
5818 
5819 	spin_lock_irqsave(&h->scan_lock, flags);
5820 	finished = h->scan_finished;
5821 	spin_unlock_irqrestore(&h->scan_lock, flags);
5822 	return finished;
5823 }
5824 
5825 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5826 {
5827 	struct Scsi_Host *sh;
5828 
5829 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5830 	if (sh == NULL) {
5831 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5832 		return -ENOMEM;
5833 	}
5834 
5835 	sh->io_port = 0;
5836 	sh->n_io_port = 0;
5837 	sh->this_id = -1;
5838 	sh->max_channel = 3;
5839 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5840 	sh->max_lun = HPSA_MAX_LUN;
5841 	sh->max_id = HPSA_MAX_LUN;
5842 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5843 	sh->cmd_per_lun = sh->can_queue;
5844 	sh->sg_tablesize = h->maxsgentries;
5845 	sh->transportt = hpsa_sas_transport_template;
5846 	sh->hostdata[0] = (unsigned long) h;
5847 	sh->irq = pci_irq_vector(h->pdev, 0);
5848 	sh->unique_id = sh->irq;
5849 
5850 	h->scsi_host = sh;
5851 	return 0;
5852 }
5853 
5854 static int hpsa_scsi_add_host(struct ctlr_info *h)
5855 {
5856 	int rv;
5857 
5858 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5859 	if (rv) {
5860 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5861 		return rv;
5862 	}
5863 	scsi_scan_host(h->scsi_host);
5864 	return 0;
5865 }
5866 
5867 /*
5868  * The block layer has already gone to the trouble of picking out a unique,
5869  * small-integer tag for this request.  We use an offset from that value as
5870  * an index to select our command block.  (The offset allows us to reserve the
5871  * low-numbered entries for our own uses.)
5872  */
5873 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5874 {
5875 	int idx = scmd->request->tag;
5876 
5877 	if (idx < 0)
5878 		return idx;
5879 
5880 	/* Offset to leave space for internal cmds. */
5881 	return idx += HPSA_NRESERVED_CMDS;
5882 }
5883 
5884 /*
5885  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5886  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5887  */
5888 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5889 				struct CommandList *c, unsigned char lunaddr[],
5890 				int reply_queue)
5891 {
5892 	int rc;
5893 
5894 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5895 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5896 			NULL, 0, 0, lunaddr, TYPE_CMD);
5897 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5898 	if (rc)
5899 		return rc;
5900 	/* no unmap needed here because no data xfer. */
5901 
5902 	/* Check if the unit is already ready. */
5903 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5904 		return 0;
5905 
5906 	/*
5907 	 * The first command sent after reset will receive "unit attention" to
5908 	 * indicate that the LUN has been reset...this is actually what we're
5909 	 * looking for (but, success is good too).
5910 	 */
5911 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5912 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5913 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5914 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5915 		return 0;
5916 
5917 	return 1;
5918 }
5919 
5920 /*
5921  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5922  * returns zero when the unit is ready, and non-zero when giving up.
5923  */
5924 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5925 				struct CommandList *c,
5926 				unsigned char lunaddr[], int reply_queue)
5927 {
5928 	int rc;
5929 	int count = 0;
5930 	int waittime = 1; /* seconds */
5931 
5932 	/* Send test unit ready until device ready, or give up. */
5933 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5934 
5935 		/*
5936 		 * Wait for a bit.  do this first, because if we send
5937 		 * the TUR right away, the reset will just abort it.
5938 		 */
5939 		msleep(1000 * waittime);
5940 
5941 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5942 		if (!rc)
5943 			break;
5944 
5945 		/* Increase wait time with each try, up to a point. */
5946 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5947 			waittime *= 2;
5948 
5949 		dev_warn(&h->pdev->dev,
5950 			 "waiting %d secs for device to become ready.\n",
5951 			 waittime);
5952 	}
5953 
5954 	return rc;
5955 }
5956 
5957 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5958 					   unsigned char lunaddr[],
5959 					   int reply_queue)
5960 {
5961 	int first_queue;
5962 	int last_queue;
5963 	int rq;
5964 	int rc = 0;
5965 	struct CommandList *c;
5966 
5967 	c = cmd_alloc(h);
5968 
5969 	/*
5970 	 * If no specific reply queue was requested, then send the TUR
5971 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5972 	 * the loop exactly once using only the specified queue.
5973 	 */
5974 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5975 		first_queue = 0;
5976 		last_queue = h->nreply_queues - 1;
5977 	} else {
5978 		first_queue = reply_queue;
5979 		last_queue = reply_queue;
5980 	}
5981 
5982 	for (rq = first_queue; rq <= last_queue; rq++) {
5983 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5984 		if (rc)
5985 			break;
5986 	}
5987 
5988 	if (rc)
5989 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5990 	else
5991 		dev_warn(&h->pdev->dev, "device is ready.\n");
5992 
5993 	cmd_free(h, c);
5994 	return rc;
5995 }
5996 
5997 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5998  * complaining.  Doing a host- or bus-reset can't do anything good here.
5999  */
6000 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6001 {
6002 	int rc = SUCCESS;
6003 	int i;
6004 	struct ctlr_info *h;
6005 	struct hpsa_scsi_dev_t *dev = NULL;
6006 	u8 reset_type;
6007 	char msg[48];
6008 	unsigned long flags;
6009 
6010 	/* find the controller to which the command to be aborted was sent */
6011 	h = sdev_to_hba(scsicmd->device);
6012 	if (h == NULL) /* paranoia */
6013 		return FAILED;
6014 
6015 	spin_lock_irqsave(&h->reset_lock, flags);
6016 	h->reset_in_progress = 1;
6017 	spin_unlock_irqrestore(&h->reset_lock, flags);
6018 
6019 	if (lockup_detected(h)) {
6020 		rc = FAILED;
6021 		goto return_reset_status;
6022 	}
6023 
6024 	dev = scsicmd->device->hostdata;
6025 	if (!dev) {
6026 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6027 		rc = FAILED;
6028 		goto return_reset_status;
6029 	}
6030 
6031 	if (dev->devtype == TYPE_ENCLOSURE) {
6032 		rc = SUCCESS;
6033 		goto return_reset_status;
6034 	}
6035 
6036 	/* if controller locked up, we can guarantee command won't complete */
6037 	if (lockup_detected(h)) {
6038 		snprintf(msg, sizeof(msg),
6039 			 "cmd %d RESET FAILED, lockup detected",
6040 			 hpsa_get_cmd_index(scsicmd));
6041 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6042 		rc = FAILED;
6043 		goto return_reset_status;
6044 	}
6045 
6046 	/* this reset request might be the result of a lockup; check */
6047 	if (detect_controller_lockup(h)) {
6048 		snprintf(msg, sizeof(msg),
6049 			 "cmd %d RESET FAILED, new lockup detected",
6050 			 hpsa_get_cmd_index(scsicmd));
6051 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6052 		rc = FAILED;
6053 		goto return_reset_status;
6054 	}
6055 
6056 	/* Do not attempt on controller */
6057 	if (is_hba_lunid(dev->scsi3addr)) {
6058 		rc = SUCCESS;
6059 		goto return_reset_status;
6060 	}
6061 
6062 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6063 		reset_type = HPSA_DEVICE_RESET_MSG;
6064 	else
6065 		reset_type = HPSA_PHYS_TARGET_RESET;
6066 
6067 	sprintf(msg, "resetting %s",
6068 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6069 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6070 
6071 	/*
6072 	 * wait to see if any commands will complete before sending reset
6073 	 */
6074 	dev->in_reset = true; /* block any new cmds from OS for this device */
6075 	for (i = 0; i < 10; i++) {
6076 		if (atomic_read(&dev->commands_outstanding) > 0)
6077 			msleep(1000);
6078 		else
6079 			break;
6080 	}
6081 
6082 	/* send a reset to the SCSI LUN which the command was sent to */
6083 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6084 	if (rc == 0)
6085 		rc = SUCCESS;
6086 	else
6087 		rc = FAILED;
6088 
6089 	sprintf(msg, "reset %s %s",
6090 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6091 		rc == SUCCESS ? "completed successfully" : "failed");
6092 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6093 
6094 return_reset_status:
6095 	spin_lock_irqsave(&h->reset_lock, flags);
6096 	h->reset_in_progress = 0;
6097 	if (dev)
6098 		dev->in_reset = false;
6099 	spin_unlock_irqrestore(&h->reset_lock, flags);
6100 	return rc;
6101 }
6102 
6103 /*
6104  * For operations with an associated SCSI command, a command block is allocated
6105  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6106  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6107  * the complement, although cmd_free() may be called instead.
6108  */
6109 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6110 					    struct scsi_cmnd *scmd)
6111 {
6112 	int idx = hpsa_get_cmd_index(scmd);
6113 	struct CommandList *c = h->cmd_pool + idx;
6114 
6115 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6116 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6117 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6118 		/* The index value comes from the block layer, so if it's out of
6119 		 * bounds, it's probably not our bug.
6120 		 */
6121 		BUG();
6122 	}
6123 
6124 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6125 		/*
6126 		 * We expect that the SCSI layer will hand us a unique tag
6127 		 * value.  Thus, there should never be a collision here between
6128 		 * two requests...because if the selected command isn't idle
6129 		 * then someone is going to be very disappointed.
6130 		 */
6131 		if (idx != h->last_collision_tag) { /* Print once per tag */
6132 			dev_warn(&h->pdev->dev,
6133 				"%s: tag collision (tag=%d)\n", __func__, idx);
6134 			if (scmd)
6135 				scsi_print_command(scmd);
6136 			h->last_collision_tag = idx;
6137 		}
6138 		return NULL;
6139 	}
6140 
6141 	atomic_inc(&c->refcount);
6142 
6143 	hpsa_cmd_partial_init(h, idx, c);
6144 	return c;
6145 }
6146 
6147 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6148 {
6149 	/*
6150 	 * Release our reference to the block.  We don't need to do anything
6151 	 * else to free it, because it is accessed by index.
6152 	 */
6153 	(void)atomic_dec(&c->refcount);
6154 }
6155 
6156 /*
6157  * For operations that cannot sleep, a command block is allocated at init,
6158  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6159  * which ones are free or in use.  Lock must be held when calling this.
6160  * cmd_free() is the complement.
6161  * This function never gives up and returns NULL.  If it hangs,
6162  * another thread must call cmd_free() to free some tags.
6163  */
6164 
6165 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6166 {
6167 	struct CommandList *c;
6168 	int refcount, i;
6169 	int offset = 0;
6170 
6171 	/*
6172 	 * There is some *extremely* small but non-zero chance that that
6173 	 * multiple threads could get in here, and one thread could
6174 	 * be scanning through the list of bits looking for a free
6175 	 * one, but the free ones are always behind him, and other
6176 	 * threads sneak in behind him and eat them before he can
6177 	 * get to them, so that while there is always a free one, a
6178 	 * very unlucky thread might be starved anyway, never able to
6179 	 * beat the other threads.  In reality, this happens so
6180 	 * infrequently as to be indistinguishable from never.
6181 	 *
6182 	 * Note that we start allocating commands before the SCSI host structure
6183 	 * is initialized.  Since the search starts at bit zero, this
6184 	 * all works, since we have at least one command structure available;
6185 	 * however, it means that the structures with the low indexes have to be
6186 	 * reserved for driver-initiated requests, while requests from the block
6187 	 * layer will use the higher indexes.
6188 	 */
6189 
6190 	for (;;) {
6191 		i = find_next_zero_bit(h->cmd_pool_bits,
6192 					HPSA_NRESERVED_CMDS,
6193 					offset);
6194 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6195 			offset = 0;
6196 			continue;
6197 		}
6198 		c = h->cmd_pool + i;
6199 		refcount = atomic_inc_return(&c->refcount);
6200 		if (unlikely(refcount > 1)) {
6201 			cmd_free(h, c); /* already in use */
6202 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6203 			continue;
6204 		}
6205 		set_bit(i & (BITS_PER_LONG - 1),
6206 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6207 		break; /* it's ours now. */
6208 	}
6209 	hpsa_cmd_partial_init(h, i, c);
6210 	c->device = NULL;
6211 	return c;
6212 }
6213 
6214 /*
6215  * This is the complementary operation to cmd_alloc().  Note, however, in some
6216  * corner cases it may also be used to free blocks allocated by
6217  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6218  * the clear-bit is harmless.
6219  */
6220 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6221 {
6222 	if (atomic_dec_and_test(&c->refcount)) {
6223 		int i;
6224 
6225 		i = c - h->cmd_pool;
6226 		clear_bit(i & (BITS_PER_LONG - 1),
6227 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6228 	}
6229 }
6230 
6231 #ifdef CONFIG_COMPAT
6232 
6233 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6234 	void __user *arg)
6235 {
6236 	struct ctlr_info *h = sdev_to_hba(dev);
6237 	IOCTL32_Command_struct __user *arg32 = arg;
6238 	IOCTL_Command_struct arg64;
6239 	int err;
6240 	u32 cp;
6241 
6242 	if (!arg)
6243 		return -EINVAL;
6244 
6245 	memset(&arg64, 0, sizeof(arg64));
6246 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6247 		return -EFAULT;
6248 	if (get_user(cp, &arg32->buf))
6249 		return -EFAULT;
6250 	arg64.buf = compat_ptr(cp);
6251 
6252 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6253 		return -EAGAIN;
6254 	err = hpsa_passthru_ioctl(h, &arg64);
6255 	atomic_inc(&h->passthru_cmds_avail);
6256 	if (err)
6257 		return err;
6258 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6259 			 sizeof(arg32->error_info)))
6260 		return -EFAULT;
6261 	return 0;
6262 }
6263 
6264 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6265 	unsigned int cmd, void __user *arg)
6266 {
6267 	struct ctlr_info *h = sdev_to_hba(dev);
6268 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6269 	BIG_IOCTL_Command_struct arg64;
6270 	int err;
6271 	u32 cp;
6272 
6273 	if (!arg)
6274 		return -EINVAL;
6275 	memset(&arg64, 0, sizeof(arg64));
6276 	if (copy_from_user(&arg64, arg32,
6277 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6278 		return -EFAULT;
6279 	if (get_user(cp, &arg32->buf))
6280 		return -EFAULT;
6281 	arg64.buf = compat_ptr(cp);
6282 
6283 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6284 		return -EAGAIN;
6285 	err = hpsa_big_passthru_ioctl(h, &arg64);
6286 	atomic_inc(&h->passthru_cmds_avail);
6287 	if (err)
6288 		return err;
6289 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6290 			 sizeof(arg32->error_info)))
6291 		return -EFAULT;
6292 	return 0;
6293 }
6294 
6295 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6296 			     void __user *arg)
6297 {
6298 	switch (cmd) {
6299 	case CCISS_GETPCIINFO:
6300 	case CCISS_GETINTINFO:
6301 	case CCISS_SETINTINFO:
6302 	case CCISS_GETNODENAME:
6303 	case CCISS_SETNODENAME:
6304 	case CCISS_GETHEARTBEAT:
6305 	case CCISS_GETBUSTYPES:
6306 	case CCISS_GETFIRMVER:
6307 	case CCISS_GETDRIVVER:
6308 	case CCISS_REVALIDVOLS:
6309 	case CCISS_DEREGDISK:
6310 	case CCISS_REGNEWDISK:
6311 	case CCISS_REGNEWD:
6312 	case CCISS_RESCANDISK:
6313 	case CCISS_GETLUNINFO:
6314 		return hpsa_ioctl(dev, cmd, arg);
6315 
6316 	case CCISS_PASSTHRU32:
6317 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6318 	case CCISS_BIG_PASSTHRU32:
6319 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6320 
6321 	default:
6322 		return -ENOIOCTLCMD;
6323 	}
6324 }
6325 #endif
6326 
6327 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6328 {
6329 	struct hpsa_pci_info pciinfo;
6330 
6331 	if (!argp)
6332 		return -EINVAL;
6333 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6334 	pciinfo.bus = h->pdev->bus->number;
6335 	pciinfo.dev_fn = h->pdev->devfn;
6336 	pciinfo.board_id = h->board_id;
6337 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6338 		return -EFAULT;
6339 	return 0;
6340 }
6341 
6342 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6343 {
6344 	DriverVer_type DriverVer;
6345 	unsigned char vmaj, vmin, vsubmin;
6346 	int rc;
6347 
6348 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6349 		&vmaj, &vmin, &vsubmin);
6350 	if (rc != 3) {
6351 		dev_info(&h->pdev->dev, "driver version string '%s' "
6352 			"unrecognized.", HPSA_DRIVER_VERSION);
6353 		vmaj = 0;
6354 		vmin = 0;
6355 		vsubmin = 0;
6356 	}
6357 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6358 	if (!argp)
6359 		return -EINVAL;
6360 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6361 		return -EFAULT;
6362 	return 0;
6363 }
6364 
6365 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6366 			       IOCTL_Command_struct *iocommand)
6367 {
6368 	struct CommandList *c;
6369 	char *buff = NULL;
6370 	u64 temp64;
6371 	int rc = 0;
6372 
6373 	if (!capable(CAP_SYS_RAWIO))
6374 		return -EPERM;
6375 	if ((iocommand->buf_size < 1) &&
6376 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6377 		return -EINVAL;
6378 	}
6379 	if (iocommand->buf_size > 0) {
6380 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6381 		if (buff == NULL)
6382 			return -ENOMEM;
6383 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6384 			/* Copy the data into the buffer we created */
6385 			if (copy_from_user(buff, iocommand->buf,
6386 				iocommand->buf_size)) {
6387 				rc = -EFAULT;
6388 				goto out_kfree;
6389 			}
6390 		} else {
6391 			memset(buff, 0, iocommand->buf_size);
6392 		}
6393 	}
6394 	c = cmd_alloc(h);
6395 
6396 	/* Fill in the command type */
6397 	c->cmd_type = CMD_IOCTL_PEND;
6398 	c->scsi_cmd = SCSI_CMD_BUSY;
6399 	/* Fill in Command Header */
6400 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6401 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6402 		c->Header.SGList = 1;
6403 		c->Header.SGTotal = cpu_to_le16(1);
6404 	} else	{ /* no buffers to fill */
6405 		c->Header.SGList = 0;
6406 		c->Header.SGTotal = cpu_to_le16(0);
6407 	}
6408 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6409 
6410 	/* Fill in Request block */
6411 	memcpy(&c->Request, &iocommand->Request,
6412 		sizeof(c->Request));
6413 
6414 	/* Fill in the scatter gather information */
6415 	if (iocommand->buf_size > 0) {
6416 		temp64 = dma_map_single(&h->pdev->dev, buff,
6417 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6418 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6419 			c->SG[0].Addr = cpu_to_le64(0);
6420 			c->SG[0].Len = cpu_to_le32(0);
6421 			rc = -ENOMEM;
6422 			goto out;
6423 		}
6424 		c->SG[0].Addr = cpu_to_le64(temp64);
6425 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6426 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6427 	}
6428 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6429 					NO_TIMEOUT);
6430 	if (iocommand->buf_size > 0)
6431 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6432 	check_ioctl_unit_attention(h, c);
6433 	if (rc) {
6434 		rc = -EIO;
6435 		goto out;
6436 	}
6437 
6438 	/* Copy the error information out */
6439 	memcpy(&iocommand->error_info, c->err_info,
6440 		sizeof(iocommand->error_info));
6441 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6442 		iocommand->buf_size > 0) {
6443 		/* Copy the data out of the buffer we created */
6444 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6445 			rc = -EFAULT;
6446 			goto out;
6447 		}
6448 	}
6449 out:
6450 	cmd_free(h, c);
6451 out_kfree:
6452 	kfree(buff);
6453 	return rc;
6454 }
6455 
6456 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6457 				   BIG_IOCTL_Command_struct *ioc)
6458 {
6459 	struct CommandList *c;
6460 	unsigned char **buff = NULL;
6461 	int *buff_size = NULL;
6462 	u64 temp64;
6463 	BYTE sg_used = 0;
6464 	int status = 0;
6465 	u32 left;
6466 	u32 sz;
6467 	BYTE __user *data_ptr;
6468 
6469 	if (!capable(CAP_SYS_RAWIO))
6470 		return -EPERM;
6471 
6472 	if ((ioc->buf_size < 1) &&
6473 	    (ioc->Request.Type.Direction != XFER_NONE))
6474 		return -EINVAL;
6475 	/* Check kmalloc limits  using all SGs */
6476 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6477 		return -EINVAL;
6478 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6479 		return -EINVAL;
6480 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6481 	if (!buff) {
6482 		status = -ENOMEM;
6483 		goto cleanup1;
6484 	}
6485 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6486 	if (!buff_size) {
6487 		status = -ENOMEM;
6488 		goto cleanup1;
6489 	}
6490 	left = ioc->buf_size;
6491 	data_ptr = ioc->buf;
6492 	while (left) {
6493 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6494 		buff_size[sg_used] = sz;
6495 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6496 		if (buff[sg_used] == NULL) {
6497 			status = -ENOMEM;
6498 			goto cleanup1;
6499 		}
6500 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6501 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6502 				status = -EFAULT;
6503 				goto cleanup1;
6504 			}
6505 		} else
6506 			memset(buff[sg_used], 0, sz);
6507 		left -= sz;
6508 		data_ptr += sz;
6509 		sg_used++;
6510 	}
6511 	c = cmd_alloc(h);
6512 
6513 	c->cmd_type = CMD_IOCTL_PEND;
6514 	c->scsi_cmd = SCSI_CMD_BUSY;
6515 	c->Header.ReplyQueue = 0;
6516 	c->Header.SGList = (u8) sg_used;
6517 	c->Header.SGTotal = cpu_to_le16(sg_used);
6518 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6519 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6520 	if (ioc->buf_size > 0) {
6521 		int i;
6522 		for (i = 0; i < sg_used; i++) {
6523 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6524 				    buff_size[i], DMA_BIDIRECTIONAL);
6525 			if (dma_mapping_error(&h->pdev->dev,
6526 							(dma_addr_t) temp64)) {
6527 				c->SG[i].Addr = cpu_to_le64(0);
6528 				c->SG[i].Len = cpu_to_le32(0);
6529 				hpsa_pci_unmap(h->pdev, c, i,
6530 					DMA_BIDIRECTIONAL);
6531 				status = -ENOMEM;
6532 				goto cleanup0;
6533 			}
6534 			c->SG[i].Addr = cpu_to_le64(temp64);
6535 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6536 			c->SG[i].Ext = cpu_to_le32(0);
6537 		}
6538 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6539 	}
6540 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6541 						NO_TIMEOUT);
6542 	if (sg_used)
6543 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6544 	check_ioctl_unit_attention(h, c);
6545 	if (status) {
6546 		status = -EIO;
6547 		goto cleanup0;
6548 	}
6549 
6550 	/* Copy the error information out */
6551 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6552 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6553 		int i;
6554 
6555 		/* Copy the data out of the buffer we created */
6556 		BYTE __user *ptr = ioc->buf;
6557 		for (i = 0; i < sg_used; i++) {
6558 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6559 				status = -EFAULT;
6560 				goto cleanup0;
6561 			}
6562 			ptr += buff_size[i];
6563 		}
6564 	}
6565 	status = 0;
6566 cleanup0:
6567 	cmd_free(h, c);
6568 cleanup1:
6569 	if (buff) {
6570 		int i;
6571 
6572 		for (i = 0; i < sg_used; i++)
6573 			kfree(buff[i]);
6574 		kfree(buff);
6575 	}
6576 	kfree(buff_size);
6577 	return status;
6578 }
6579 
6580 static void check_ioctl_unit_attention(struct ctlr_info *h,
6581 	struct CommandList *c)
6582 {
6583 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6584 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6585 		(void) check_for_unit_attention(h, c);
6586 }
6587 
6588 /*
6589  * ioctl
6590  */
6591 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6592 		      void __user *argp)
6593 {
6594 	struct ctlr_info *h = sdev_to_hba(dev);
6595 	int rc;
6596 
6597 	switch (cmd) {
6598 	case CCISS_DEREGDISK:
6599 	case CCISS_REGNEWDISK:
6600 	case CCISS_REGNEWD:
6601 		hpsa_scan_start(h->scsi_host);
6602 		return 0;
6603 	case CCISS_GETPCIINFO:
6604 		return hpsa_getpciinfo_ioctl(h, argp);
6605 	case CCISS_GETDRIVVER:
6606 		return hpsa_getdrivver_ioctl(h, argp);
6607 	case CCISS_PASSTHRU: {
6608 		IOCTL_Command_struct iocommand;
6609 
6610 		if (!argp)
6611 			return -EINVAL;
6612 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6613 			return -EFAULT;
6614 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6615 			return -EAGAIN;
6616 		rc = hpsa_passthru_ioctl(h, &iocommand);
6617 		atomic_inc(&h->passthru_cmds_avail);
6618 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6619 			rc = -EFAULT;
6620 		return rc;
6621 	}
6622 	case CCISS_BIG_PASSTHRU: {
6623 		BIG_IOCTL_Command_struct ioc;
6624 		if (!argp)
6625 			return -EINVAL;
6626 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6627 			return -EFAULT;
6628 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6629 			return -EAGAIN;
6630 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6631 		atomic_inc(&h->passthru_cmds_avail);
6632 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6633 			rc = -EFAULT;
6634 		return rc;
6635 	}
6636 	default:
6637 		return -ENOTTY;
6638 	}
6639 }
6640 
6641 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6642 {
6643 	struct CommandList *c;
6644 
6645 	c = cmd_alloc(h);
6646 
6647 	/* fill_cmd can't fail here, no data buffer to map */
6648 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6649 		RAID_CTLR_LUNID, TYPE_MSG);
6650 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6651 	c->waiting = NULL;
6652 	enqueue_cmd_and_start_io(h, c);
6653 	/* Don't wait for completion, the reset won't complete.  Don't free
6654 	 * the command either.  This is the last command we will send before
6655 	 * re-initializing everything, so it doesn't matter and won't leak.
6656 	 */
6657 	return;
6658 }
6659 
6660 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6661 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6662 	int cmd_type)
6663 {
6664 	enum dma_data_direction dir = DMA_NONE;
6665 
6666 	c->cmd_type = CMD_IOCTL_PEND;
6667 	c->scsi_cmd = SCSI_CMD_BUSY;
6668 	c->Header.ReplyQueue = 0;
6669 	if (buff != NULL && size > 0) {
6670 		c->Header.SGList = 1;
6671 		c->Header.SGTotal = cpu_to_le16(1);
6672 	} else {
6673 		c->Header.SGList = 0;
6674 		c->Header.SGTotal = cpu_to_le16(0);
6675 	}
6676 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6677 
6678 	if (cmd_type == TYPE_CMD) {
6679 		switch (cmd) {
6680 		case HPSA_INQUIRY:
6681 			/* are we trying to read a vital product page */
6682 			if (page_code & VPD_PAGE) {
6683 				c->Request.CDB[1] = 0x01;
6684 				c->Request.CDB[2] = (page_code & 0xff);
6685 			}
6686 			c->Request.CDBLen = 6;
6687 			c->Request.type_attr_dir =
6688 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689 			c->Request.Timeout = 0;
6690 			c->Request.CDB[0] = HPSA_INQUIRY;
6691 			c->Request.CDB[4] = size & 0xFF;
6692 			break;
6693 		case RECEIVE_DIAGNOSTIC:
6694 			c->Request.CDBLen = 6;
6695 			c->Request.type_attr_dir =
6696 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697 			c->Request.Timeout = 0;
6698 			c->Request.CDB[0] = cmd;
6699 			c->Request.CDB[1] = 1;
6700 			c->Request.CDB[2] = 1;
6701 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6702 			c->Request.CDB[4] = size & 0xFF;
6703 			break;
6704 		case HPSA_REPORT_LOG:
6705 		case HPSA_REPORT_PHYS:
6706 			/* Talking to controller so It's a physical command
6707 			   mode = 00 target = 0.  Nothing to write.
6708 			 */
6709 			c->Request.CDBLen = 12;
6710 			c->Request.type_attr_dir =
6711 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 			c->Request.Timeout = 0;
6713 			c->Request.CDB[0] = cmd;
6714 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6715 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6717 			c->Request.CDB[9] = size & 0xFF;
6718 			break;
6719 		case BMIC_SENSE_DIAG_OPTIONS:
6720 			c->Request.CDBLen = 16;
6721 			c->Request.type_attr_dir =
6722 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6723 			c->Request.Timeout = 0;
6724 			/* Spec says this should be BMIC_WRITE */
6725 			c->Request.CDB[0] = BMIC_READ;
6726 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6727 			break;
6728 		case BMIC_SET_DIAG_OPTIONS:
6729 			c->Request.CDBLen = 16;
6730 			c->Request.type_attr_dir =
6731 					TYPE_ATTR_DIR(cmd_type,
6732 						ATTR_SIMPLE, XFER_WRITE);
6733 			c->Request.Timeout = 0;
6734 			c->Request.CDB[0] = BMIC_WRITE;
6735 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6736 			break;
6737 		case HPSA_CACHE_FLUSH:
6738 			c->Request.CDBLen = 12;
6739 			c->Request.type_attr_dir =
6740 					TYPE_ATTR_DIR(cmd_type,
6741 						ATTR_SIMPLE, XFER_WRITE);
6742 			c->Request.Timeout = 0;
6743 			c->Request.CDB[0] = BMIC_WRITE;
6744 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6745 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6746 			c->Request.CDB[8] = size & 0xFF;
6747 			break;
6748 		case TEST_UNIT_READY:
6749 			c->Request.CDBLen = 6;
6750 			c->Request.type_attr_dir =
6751 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6752 			c->Request.Timeout = 0;
6753 			break;
6754 		case HPSA_GET_RAID_MAP:
6755 			c->Request.CDBLen = 12;
6756 			c->Request.type_attr_dir =
6757 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6758 			c->Request.Timeout = 0;
6759 			c->Request.CDB[0] = HPSA_CISS_READ;
6760 			c->Request.CDB[1] = cmd;
6761 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6762 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6763 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6764 			c->Request.CDB[9] = size & 0xFF;
6765 			break;
6766 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6767 			c->Request.CDBLen = 10;
6768 			c->Request.type_attr_dir =
6769 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6770 			c->Request.Timeout = 0;
6771 			c->Request.CDB[0] = BMIC_READ;
6772 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6773 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6774 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6775 			break;
6776 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6777 			c->Request.CDBLen = 10;
6778 			c->Request.type_attr_dir =
6779 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6780 			c->Request.Timeout = 0;
6781 			c->Request.CDB[0] = BMIC_READ;
6782 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6783 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6784 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6785 			break;
6786 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6787 			c->Request.CDBLen = 10;
6788 			c->Request.type_attr_dir =
6789 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6790 			c->Request.Timeout = 0;
6791 			c->Request.CDB[0] = BMIC_READ;
6792 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6793 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6794 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6795 			break;
6796 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6797 			c->Request.CDBLen = 10;
6798 			c->Request.type_attr_dir =
6799 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6800 			c->Request.Timeout = 0;
6801 			c->Request.CDB[0] = BMIC_READ;
6802 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6803 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6804 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6805 			break;
6806 		case BMIC_IDENTIFY_CONTROLLER:
6807 			c->Request.CDBLen = 10;
6808 			c->Request.type_attr_dir =
6809 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6810 			c->Request.Timeout = 0;
6811 			c->Request.CDB[0] = BMIC_READ;
6812 			c->Request.CDB[1] = 0;
6813 			c->Request.CDB[2] = 0;
6814 			c->Request.CDB[3] = 0;
6815 			c->Request.CDB[4] = 0;
6816 			c->Request.CDB[5] = 0;
6817 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6818 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6819 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6820 			c->Request.CDB[9] = 0;
6821 			break;
6822 		default:
6823 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6824 			BUG();
6825 		}
6826 	} else if (cmd_type == TYPE_MSG) {
6827 		switch (cmd) {
6828 
6829 		case  HPSA_PHYS_TARGET_RESET:
6830 			c->Request.CDBLen = 16;
6831 			c->Request.type_attr_dir =
6832 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6833 			c->Request.Timeout = 0; /* Don't time out */
6834 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6835 			c->Request.CDB[0] = HPSA_RESET;
6836 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6837 			/* Physical target reset needs no control bytes 4-7*/
6838 			c->Request.CDB[4] = 0x00;
6839 			c->Request.CDB[5] = 0x00;
6840 			c->Request.CDB[6] = 0x00;
6841 			c->Request.CDB[7] = 0x00;
6842 			break;
6843 		case  HPSA_DEVICE_RESET_MSG:
6844 			c->Request.CDBLen = 16;
6845 			c->Request.type_attr_dir =
6846 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6847 			c->Request.Timeout = 0; /* Don't time out */
6848 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6849 			c->Request.CDB[0] =  cmd;
6850 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6851 			/* If bytes 4-7 are zero, it means reset the */
6852 			/* LunID device */
6853 			c->Request.CDB[4] = 0x00;
6854 			c->Request.CDB[5] = 0x00;
6855 			c->Request.CDB[6] = 0x00;
6856 			c->Request.CDB[7] = 0x00;
6857 			break;
6858 		default:
6859 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6860 				cmd);
6861 			BUG();
6862 		}
6863 	} else {
6864 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6865 		BUG();
6866 	}
6867 
6868 	switch (GET_DIR(c->Request.type_attr_dir)) {
6869 	case XFER_READ:
6870 		dir = DMA_FROM_DEVICE;
6871 		break;
6872 	case XFER_WRITE:
6873 		dir = DMA_TO_DEVICE;
6874 		break;
6875 	case XFER_NONE:
6876 		dir = DMA_NONE;
6877 		break;
6878 	default:
6879 		dir = DMA_BIDIRECTIONAL;
6880 	}
6881 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6882 		return -1;
6883 	return 0;
6884 }
6885 
6886 /*
6887  * Map (physical) PCI mem into (virtual) kernel space
6888  */
6889 static void __iomem *remap_pci_mem(ulong base, ulong size)
6890 {
6891 	ulong page_base = ((ulong) base) & PAGE_MASK;
6892 	ulong page_offs = ((ulong) base) - page_base;
6893 	void __iomem *page_remapped = ioremap(page_base,
6894 		page_offs + size);
6895 
6896 	return page_remapped ? (page_remapped + page_offs) : NULL;
6897 }
6898 
6899 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6900 {
6901 	return h->access.command_completed(h, q);
6902 }
6903 
6904 static inline bool interrupt_pending(struct ctlr_info *h)
6905 {
6906 	return h->access.intr_pending(h);
6907 }
6908 
6909 static inline long interrupt_not_for_us(struct ctlr_info *h)
6910 {
6911 	return (h->access.intr_pending(h) == 0) ||
6912 		(h->interrupts_enabled == 0);
6913 }
6914 
6915 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6916 	u32 raw_tag)
6917 {
6918 	if (unlikely(tag_index >= h->nr_cmds)) {
6919 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6920 		return 1;
6921 	}
6922 	return 0;
6923 }
6924 
6925 static inline void finish_cmd(struct CommandList *c)
6926 {
6927 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6928 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6929 			|| c->cmd_type == CMD_IOACCEL2))
6930 		complete_scsi_command(c);
6931 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6932 		complete(c->waiting);
6933 }
6934 
6935 /* process completion of an indexed ("direct lookup") command */
6936 static inline void process_indexed_cmd(struct ctlr_info *h,
6937 	u32 raw_tag)
6938 {
6939 	u32 tag_index;
6940 	struct CommandList *c;
6941 
6942 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6943 	if (!bad_tag(h, tag_index, raw_tag)) {
6944 		c = h->cmd_pool + tag_index;
6945 		finish_cmd(c);
6946 	}
6947 }
6948 
6949 /* Some controllers, like p400, will give us one interrupt
6950  * after a soft reset, even if we turned interrupts off.
6951  * Only need to check for this in the hpsa_xxx_discard_completions
6952  * functions.
6953  */
6954 static int ignore_bogus_interrupt(struct ctlr_info *h)
6955 {
6956 	if (likely(!reset_devices))
6957 		return 0;
6958 
6959 	if (likely(h->interrupts_enabled))
6960 		return 0;
6961 
6962 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6963 		"(known firmware bug.)  Ignoring.\n");
6964 
6965 	return 1;
6966 }
6967 
6968 /*
6969  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6970  * Relies on (h-q[x] == x) being true for x such that
6971  * 0 <= x < MAX_REPLY_QUEUES.
6972  */
6973 static struct ctlr_info *queue_to_hba(u8 *queue)
6974 {
6975 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6976 }
6977 
6978 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6979 {
6980 	struct ctlr_info *h = queue_to_hba(queue);
6981 	u8 q = *(u8 *) queue;
6982 	u32 raw_tag;
6983 
6984 	if (ignore_bogus_interrupt(h))
6985 		return IRQ_NONE;
6986 
6987 	if (interrupt_not_for_us(h))
6988 		return IRQ_NONE;
6989 	h->last_intr_timestamp = get_jiffies_64();
6990 	while (interrupt_pending(h)) {
6991 		raw_tag = get_next_completion(h, q);
6992 		while (raw_tag != FIFO_EMPTY)
6993 			raw_tag = next_command(h, q);
6994 	}
6995 	return IRQ_HANDLED;
6996 }
6997 
6998 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6999 {
7000 	struct ctlr_info *h = queue_to_hba(queue);
7001 	u32 raw_tag;
7002 	u8 q = *(u8 *) queue;
7003 
7004 	if (ignore_bogus_interrupt(h))
7005 		return IRQ_NONE;
7006 
7007 	h->last_intr_timestamp = get_jiffies_64();
7008 	raw_tag = get_next_completion(h, q);
7009 	while (raw_tag != FIFO_EMPTY)
7010 		raw_tag = next_command(h, q);
7011 	return IRQ_HANDLED;
7012 }
7013 
7014 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7015 {
7016 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7017 	u32 raw_tag;
7018 	u8 q = *(u8 *) queue;
7019 
7020 	if (interrupt_not_for_us(h))
7021 		return IRQ_NONE;
7022 	h->last_intr_timestamp = get_jiffies_64();
7023 	while (interrupt_pending(h)) {
7024 		raw_tag = get_next_completion(h, q);
7025 		while (raw_tag != FIFO_EMPTY) {
7026 			process_indexed_cmd(h, raw_tag);
7027 			raw_tag = next_command(h, q);
7028 		}
7029 	}
7030 	return IRQ_HANDLED;
7031 }
7032 
7033 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7034 {
7035 	struct ctlr_info *h = queue_to_hba(queue);
7036 	u32 raw_tag;
7037 	u8 q = *(u8 *) queue;
7038 
7039 	h->last_intr_timestamp = get_jiffies_64();
7040 	raw_tag = get_next_completion(h, q);
7041 	while (raw_tag != FIFO_EMPTY) {
7042 		process_indexed_cmd(h, raw_tag);
7043 		raw_tag = next_command(h, q);
7044 	}
7045 	return IRQ_HANDLED;
7046 }
7047 
7048 /* Send a message CDB to the firmware. Careful, this only works
7049  * in simple mode, not performant mode due to the tag lookup.
7050  * We only ever use this immediately after a controller reset.
7051  */
7052 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7053 			unsigned char type)
7054 {
7055 	struct Command {
7056 		struct CommandListHeader CommandHeader;
7057 		struct RequestBlock Request;
7058 		struct ErrDescriptor ErrorDescriptor;
7059 	};
7060 	struct Command *cmd;
7061 	static const size_t cmd_sz = sizeof(*cmd) +
7062 					sizeof(cmd->ErrorDescriptor);
7063 	dma_addr_t paddr64;
7064 	__le32 paddr32;
7065 	u32 tag;
7066 	void __iomem *vaddr;
7067 	int i, err;
7068 
7069 	vaddr = pci_ioremap_bar(pdev, 0);
7070 	if (vaddr == NULL)
7071 		return -ENOMEM;
7072 
7073 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7074 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7075 	 * memory.
7076 	 */
7077 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7078 	if (err) {
7079 		iounmap(vaddr);
7080 		return err;
7081 	}
7082 
7083 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7084 	if (cmd == NULL) {
7085 		iounmap(vaddr);
7086 		return -ENOMEM;
7087 	}
7088 
7089 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7090 	 * although there's no guarantee, we assume that the address is at
7091 	 * least 4-byte aligned (most likely, it's page-aligned).
7092 	 */
7093 	paddr32 = cpu_to_le32(paddr64);
7094 
7095 	cmd->CommandHeader.ReplyQueue = 0;
7096 	cmd->CommandHeader.SGList = 0;
7097 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7098 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7099 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7100 
7101 	cmd->Request.CDBLen = 16;
7102 	cmd->Request.type_attr_dir =
7103 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7104 	cmd->Request.Timeout = 0; /* Don't time out */
7105 	cmd->Request.CDB[0] = opcode;
7106 	cmd->Request.CDB[1] = type;
7107 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7108 	cmd->ErrorDescriptor.Addr =
7109 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7110 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7111 
7112 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7113 
7114 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7115 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7116 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7117 			break;
7118 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7119 	}
7120 
7121 	iounmap(vaddr);
7122 
7123 	/* we leak the DMA buffer here ... no choice since the controller could
7124 	 *  still complete the command.
7125 	 */
7126 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7127 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7128 			opcode, type);
7129 		return -ETIMEDOUT;
7130 	}
7131 
7132 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7133 
7134 	if (tag & HPSA_ERROR_BIT) {
7135 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7136 			opcode, type);
7137 		return -EIO;
7138 	}
7139 
7140 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7141 		opcode, type);
7142 	return 0;
7143 }
7144 
7145 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7146 
7147 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7148 	void __iomem *vaddr, u32 use_doorbell)
7149 {
7150 
7151 	if (use_doorbell) {
7152 		/* For everything after the P600, the PCI power state method
7153 		 * of resetting the controller doesn't work, so we have this
7154 		 * other way using the doorbell register.
7155 		 */
7156 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7157 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7158 
7159 		/* PMC hardware guys tell us we need a 10 second delay after
7160 		 * doorbell reset and before any attempt to talk to the board
7161 		 * at all to ensure that this actually works and doesn't fall
7162 		 * over in some weird corner cases.
7163 		 */
7164 		msleep(10000);
7165 	} else { /* Try to do it the PCI power state way */
7166 
7167 		/* Quoting from the Open CISS Specification: "The Power
7168 		 * Management Control/Status Register (CSR) controls the power
7169 		 * state of the device.  The normal operating state is D0,
7170 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7171 		 * the controller, place the interface device in D3 then to D0,
7172 		 * this causes a secondary PCI reset which will reset the
7173 		 * controller." */
7174 
7175 		int rc = 0;
7176 
7177 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7178 
7179 		/* enter the D3hot power management state */
7180 		rc = pci_set_power_state(pdev, PCI_D3hot);
7181 		if (rc)
7182 			return rc;
7183 
7184 		msleep(500);
7185 
7186 		/* enter the D0 power management state */
7187 		rc = pci_set_power_state(pdev, PCI_D0);
7188 		if (rc)
7189 			return rc;
7190 
7191 		/*
7192 		 * The P600 requires a small delay when changing states.
7193 		 * Otherwise we may think the board did not reset and we bail.
7194 		 * This for kdump only and is particular to the P600.
7195 		 */
7196 		msleep(500);
7197 	}
7198 	return 0;
7199 }
7200 
7201 static void init_driver_version(char *driver_version, int len)
7202 {
7203 	memset(driver_version, 0, len);
7204 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7205 }
7206 
7207 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7208 {
7209 	char *driver_version;
7210 	int i, size = sizeof(cfgtable->driver_version);
7211 
7212 	driver_version = kmalloc(size, GFP_KERNEL);
7213 	if (!driver_version)
7214 		return -ENOMEM;
7215 
7216 	init_driver_version(driver_version, size);
7217 	for (i = 0; i < size; i++)
7218 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7219 	kfree(driver_version);
7220 	return 0;
7221 }
7222 
7223 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7224 					  unsigned char *driver_ver)
7225 {
7226 	int i;
7227 
7228 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7229 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7230 }
7231 
7232 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7233 {
7234 
7235 	char *driver_ver, *old_driver_ver;
7236 	int rc, size = sizeof(cfgtable->driver_version);
7237 
7238 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7239 	if (!old_driver_ver)
7240 		return -ENOMEM;
7241 	driver_ver = old_driver_ver + size;
7242 
7243 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7244 	 * should have been changed, otherwise we know the reset failed.
7245 	 */
7246 	init_driver_version(old_driver_ver, size);
7247 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7248 	rc = !memcmp(driver_ver, old_driver_ver, size);
7249 	kfree(old_driver_ver);
7250 	return rc;
7251 }
7252 /* This does a hard reset of the controller using PCI power management
7253  * states or the using the doorbell register.
7254  */
7255 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7256 {
7257 	u64 cfg_offset;
7258 	u32 cfg_base_addr;
7259 	u64 cfg_base_addr_index;
7260 	void __iomem *vaddr;
7261 	unsigned long paddr;
7262 	u32 misc_fw_support;
7263 	int rc;
7264 	struct CfgTable __iomem *cfgtable;
7265 	u32 use_doorbell;
7266 	u16 command_register;
7267 
7268 	/* For controllers as old as the P600, this is very nearly
7269 	 * the same thing as
7270 	 *
7271 	 * pci_save_state(pci_dev);
7272 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7273 	 * pci_set_power_state(pci_dev, PCI_D0);
7274 	 * pci_restore_state(pci_dev);
7275 	 *
7276 	 * For controllers newer than the P600, the pci power state
7277 	 * method of resetting doesn't work so we have another way
7278 	 * using the doorbell register.
7279 	 */
7280 
7281 	if (!ctlr_is_resettable(board_id)) {
7282 		dev_warn(&pdev->dev, "Controller not resettable\n");
7283 		return -ENODEV;
7284 	}
7285 
7286 	/* if controller is soft- but not hard resettable... */
7287 	if (!ctlr_is_hard_resettable(board_id))
7288 		return -ENOTSUPP; /* try soft reset later. */
7289 
7290 	/* Save the PCI command register */
7291 	pci_read_config_word(pdev, 4, &command_register);
7292 	pci_save_state(pdev);
7293 
7294 	/* find the first memory BAR, so we can find the cfg table */
7295 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7296 	if (rc)
7297 		return rc;
7298 	vaddr = remap_pci_mem(paddr, 0x250);
7299 	if (!vaddr)
7300 		return -ENOMEM;
7301 
7302 	/* find cfgtable in order to check if reset via doorbell is supported */
7303 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7304 					&cfg_base_addr_index, &cfg_offset);
7305 	if (rc)
7306 		goto unmap_vaddr;
7307 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7308 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7309 	if (!cfgtable) {
7310 		rc = -ENOMEM;
7311 		goto unmap_vaddr;
7312 	}
7313 	rc = write_driver_ver_to_cfgtable(cfgtable);
7314 	if (rc)
7315 		goto unmap_cfgtable;
7316 
7317 	/* If reset via doorbell register is supported, use that.
7318 	 * There are two such methods.  Favor the newest method.
7319 	 */
7320 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7321 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7322 	if (use_doorbell) {
7323 		use_doorbell = DOORBELL_CTLR_RESET2;
7324 	} else {
7325 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7326 		if (use_doorbell) {
7327 			dev_warn(&pdev->dev,
7328 				"Soft reset not supported. Firmware update is required.\n");
7329 			rc = -ENOTSUPP; /* try soft reset */
7330 			goto unmap_cfgtable;
7331 		}
7332 	}
7333 
7334 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7335 	if (rc)
7336 		goto unmap_cfgtable;
7337 
7338 	pci_restore_state(pdev);
7339 	pci_write_config_word(pdev, 4, command_register);
7340 
7341 	/* Some devices (notably the HP Smart Array 5i Controller)
7342 	   need a little pause here */
7343 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7344 
7345 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7346 	if (rc) {
7347 		dev_warn(&pdev->dev,
7348 			"Failed waiting for board to become ready after hard reset\n");
7349 		goto unmap_cfgtable;
7350 	}
7351 
7352 	rc = controller_reset_failed(vaddr);
7353 	if (rc < 0)
7354 		goto unmap_cfgtable;
7355 	if (rc) {
7356 		dev_warn(&pdev->dev, "Unable to successfully reset "
7357 			"controller. Will try soft reset.\n");
7358 		rc = -ENOTSUPP;
7359 	} else {
7360 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7361 	}
7362 
7363 unmap_cfgtable:
7364 	iounmap(cfgtable);
7365 
7366 unmap_vaddr:
7367 	iounmap(vaddr);
7368 	return rc;
7369 }
7370 
7371 /*
7372  *  We cannot read the structure directly, for portability we must use
7373  *   the io functions.
7374  *   This is for debug only.
7375  */
7376 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7377 {
7378 #ifdef HPSA_DEBUG
7379 	int i;
7380 	char temp_name[17];
7381 
7382 	dev_info(dev, "Controller Configuration information\n");
7383 	dev_info(dev, "------------------------------------\n");
7384 	for (i = 0; i < 4; i++)
7385 		temp_name[i] = readb(&(tb->Signature[i]));
7386 	temp_name[4] = '\0';
7387 	dev_info(dev, "   Signature = %s\n", temp_name);
7388 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7389 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7390 	       readl(&(tb->TransportSupport)));
7391 	dev_info(dev, "   Transport methods active = 0x%x\n",
7392 	       readl(&(tb->TransportActive)));
7393 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7394 	       readl(&(tb->HostWrite.TransportRequest)));
7395 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7396 	       readl(&(tb->HostWrite.CoalIntDelay)));
7397 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7398 	       readl(&(tb->HostWrite.CoalIntCount)));
7399 	dev_info(dev, "   Max outstanding commands = %d\n",
7400 	       readl(&(tb->CmdsOutMax)));
7401 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7402 	for (i = 0; i < 16; i++)
7403 		temp_name[i] = readb(&(tb->ServerName[i]));
7404 	temp_name[16] = '\0';
7405 	dev_info(dev, "   Server Name = %s\n", temp_name);
7406 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7407 		readl(&(tb->HeartBeat)));
7408 #endif				/* HPSA_DEBUG */
7409 }
7410 
7411 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7412 {
7413 	int i, offset, mem_type, bar_type;
7414 
7415 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7416 		return 0;
7417 	offset = 0;
7418 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7419 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7420 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7421 			offset += 4;
7422 		else {
7423 			mem_type = pci_resource_flags(pdev, i) &
7424 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7425 			switch (mem_type) {
7426 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7427 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7428 				offset += 4;	/* 32 bit */
7429 				break;
7430 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7431 				offset += 8;
7432 				break;
7433 			default:	/* reserved in PCI 2.2 */
7434 				dev_warn(&pdev->dev,
7435 				       "base address is invalid\n");
7436 				return -1;
7437 			}
7438 		}
7439 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7440 			return i + 1;
7441 	}
7442 	return -1;
7443 }
7444 
7445 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7446 {
7447 	pci_free_irq_vectors(h->pdev);
7448 	h->msix_vectors = 0;
7449 }
7450 
7451 static void hpsa_setup_reply_map(struct ctlr_info *h)
7452 {
7453 	const struct cpumask *mask;
7454 	unsigned int queue, cpu;
7455 
7456 	for (queue = 0; queue < h->msix_vectors; queue++) {
7457 		mask = pci_irq_get_affinity(h->pdev, queue);
7458 		if (!mask)
7459 			goto fallback;
7460 
7461 		for_each_cpu(cpu, mask)
7462 			h->reply_map[cpu] = queue;
7463 	}
7464 	return;
7465 
7466 fallback:
7467 	for_each_possible_cpu(cpu)
7468 		h->reply_map[cpu] = 0;
7469 }
7470 
7471 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7472  * controllers that are capable. If not, we use legacy INTx mode.
7473  */
7474 static int hpsa_interrupt_mode(struct ctlr_info *h)
7475 {
7476 	unsigned int flags = PCI_IRQ_LEGACY;
7477 	int ret;
7478 
7479 	/* Some boards advertise MSI but don't really support it */
7480 	switch (h->board_id) {
7481 	case 0x40700E11:
7482 	case 0x40800E11:
7483 	case 0x40820E11:
7484 	case 0x40830E11:
7485 		break;
7486 	default:
7487 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7488 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7489 		if (ret > 0) {
7490 			h->msix_vectors = ret;
7491 			return 0;
7492 		}
7493 
7494 		flags |= PCI_IRQ_MSI;
7495 		break;
7496 	}
7497 
7498 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7499 	if (ret < 0)
7500 		return ret;
7501 	return 0;
7502 }
7503 
7504 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7505 				bool *legacy_board)
7506 {
7507 	int i;
7508 	u32 subsystem_vendor_id, subsystem_device_id;
7509 
7510 	subsystem_vendor_id = pdev->subsystem_vendor;
7511 	subsystem_device_id = pdev->subsystem_device;
7512 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7513 		    subsystem_vendor_id;
7514 
7515 	if (legacy_board)
7516 		*legacy_board = false;
7517 	for (i = 0; i < ARRAY_SIZE(products); i++)
7518 		if (*board_id == products[i].board_id) {
7519 			if (products[i].access != &SA5A_access &&
7520 			    products[i].access != &SA5B_access)
7521 				return i;
7522 			dev_warn(&pdev->dev,
7523 				 "legacy board ID: 0x%08x\n",
7524 				 *board_id);
7525 			if (legacy_board)
7526 			    *legacy_board = true;
7527 			return i;
7528 		}
7529 
7530 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7531 	if (legacy_board)
7532 		*legacy_board = true;
7533 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7534 }
7535 
7536 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7537 				    unsigned long *memory_bar)
7538 {
7539 	int i;
7540 
7541 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7542 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7543 			/* addressing mode bits already removed */
7544 			*memory_bar = pci_resource_start(pdev, i);
7545 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7546 				*memory_bar);
7547 			return 0;
7548 		}
7549 	dev_warn(&pdev->dev, "no memory BAR found\n");
7550 	return -ENODEV;
7551 }
7552 
7553 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7554 				     int wait_for_ready)
7555 {
7556 	int i, iterations;
7557 	u32 scratchpad;
7558 	if (wait_for_ready)
7559 		iterations = HPSA_BOARD_READY_ITERATIONS;
7560 	else
7561 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7562 
7563 	for (i = 0; i < iterations; i++) {
7564 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7565 		if (wait_for_ready) {
7566 			if (scratchpad == HPSA_FIRMWARE_READY)
7567 				return 0;
7568 		} else {
7569 			if (scratchpad != HPSA_FIRMWARE_READY)
7570 				return 0;
7571 		}
7572 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7573 	}
7574 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7575 	return -ENODEV;
7576 }
7577 
7578 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7579 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7580 			       u64 *cfg_offset)
7581 {
7582 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7583 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7584 	*cfg_base_addr &= (u32) 0x0000ffff;
7585 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7586 	if (*cfg_base_addr_index == -1) {
7587 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7588 		return -ENODEV;
7589 	}
7590 	return 0;
7591 }
7592 
7593 static void hpsa_free_cfgtables(struct ctlr_info *h)
7594 {
7595 	if (h->transtable) {
7596 		iounmap(h->transtable);
7597 		h->transtable = NULL;
7598 	}
7599 	if (h->cfgtable) {
7600 		iounmap(h->cfgtable);
7601 		h->cfgtable = NULL;
7602 	}
7603 }
7604 
7605 /* Find and map CISS config table and transfer table
7606 + * several items must be unmapped (freed) later
7607 + * */
7608 static int hpsa_find_cfgtables(struct ctlr_info *h)
7609 {
7610 	u64 cfg_offset;
7611 	u32 cfg_base_addr;
7612 	u64 cfg_base_addr_index;
7613 	u32 trans_offset;
7614 	int rc;
7615 
7616 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7617 		&cfg_base_addr_index, &cfg_offset);
7618 	if (rc)
7619 		return rc;
7620 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7621 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7622 	if (!h->cfgtable) {
7623 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7624 		return -ENOMEM;
7625 	}
7626 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7627 	if (rc)
7628 		return rc;
7629 	/* Find performant mode table. */
7630 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7631 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7632 				cfg_base_addr_index)+cfg_offset+trans_offset,
7633 				sizeof(*h->transtable));
7634 	if (!h->transtable) {
7635 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7636 		hpsa_free_cfgtables(h);
7637 		return -ENOMEM;
7638 	}
7639 	return 0;
7640 }
7641 
7642 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7643 {
7644 #define MIN_MAX_COMMANDS 16
7645 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7646 
7647 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7648 
7649 	/* Limit commands in memory limited kdump scenario. */
7650 	if (reset_devices && h->max_commands > 32)
7651 		h->max_commands = 32;
7652 
7653 	if (h->max_commands < MIN_MAX_COMMANDS) {
7654 		dev_warn(&h->pdev->dev,
7655 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7656 			h->max_commands,
7657 			MIN_MAX_COMMANDS);
7658 		h->max_commands = MIN_MAX_COMMANDS;
7659 	}
7660 }
7661 
7662 /* If the controller reports that the total max sg entries is greater than 512,
7663  * then we know that chained SG blocks work.  (Original smart arrays did not
7664  * support chained SG blocks and would return zero for max sg entries.)
7665  */
7666 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7667 {
7668 	return h->maxsgentries > 512;
7669 }
7670 
7671 /* Interrogate the hardware for some limits:
7672  * max commands, max SG elements without chaining, and with chaining,
7673  * SG chain block size, etc.
7674  */
7675 static void hpsa_find_board_params(struct ctlr_info *h)
7676 {
7677 	hpsa_get_max_perf_mode_cmds(h);
7678 	h->nr_cmds = h->max_commands;
7679 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7680 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7681 	if (hpsa_supports_chained_sg_blocks(h)) {
7682 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7683 		h->max_cmd_sg_entries = 32;
7684 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7685 		h->maxsgentries--; /* save one for chain pointer */
7686 	} else {
7687 		/*
7688 		 * Original smart arrays supported at most 31 s/g entries
7689 		 * embedded inline in the command (trying to use more
7690 		 * would lock up the controller)
7691 		 */
7692 		h->max_cmd_sg_entries = 31;
7693 		h->maxsgentries = 31; /* default to traditional values */
7694 		h->chainsize = 0;
7695 	}
7696 
7697 	/* Find out what task management functions are supported and cache */
7698 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7699 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7700 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7701 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7702 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7703 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7704 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7705 }
7706 
7707 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7708 {
7709 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7710 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7711 		return false;
7712 	}
7713 	return true;
7714 }
7715 
7716 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7717 {
7718 	u32 driver_support;
7719 
7720 	driver_support = readl(&(h->cfgtable->driver_support));
7721 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7722 #ifdef CONFIG_X86
7723 	driver_support |= ENABLE_SCSI_PREFETCH;
7724 #endif
7725 	driver_support |= ENABLE_UNIT_ATTN;
7726 	writel(driver_support, &(h->cfgtable->driver_support));
7727 }
7728 
7729 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7730  * in a prefetch beyond physical memory.
7731  */
7732 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7733 {
7734 	u32 dma_prefetch;
7735 
7736 	if (h->board_id != 0x3225103C)
7737 		return;
7738 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7739 	dma_prefetch |= 0x8000;
7740 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7741 }
7742 
7743 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7744 {
7745 	int i;
7746 	u32 doorbell_value;
7747 	unsigned long flags;
7748 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7749 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7750 		spin_lock_irqsave(&h->lock, flags);
7751 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7752 		spin_unlock_irqrestore(&h->lock, flags);
7753 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7754 			goto done;
7755 		/* delay and try again */
7756 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7757 	}
7758 	return -ENODEV;
7759 done:
7760 	return 0;
7761 }
7762 
7763 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7764 {
7765 	int i;
7766 	u32 doorbell_value;
7767 	unsigned long flags;
7768 
7769 	/* under certain very rare conditions, this can take awhile.
7770 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7771 	 * as we enter this code.)
7772 	 */
7773 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7774 		if (h->remove_in_progress)
7775 			goto done;
7776 		spin_lock_irqsave(&h->lock, flags);
7777 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7778 		spin_unlock_irqrestore(&h->lock, flags);
7779 		if (!(doorbell_value & CFGTBL_ChangeReq))
7780 			goto done;
7781 		/* delay and try again */
7782 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7783 	}
7784 	return -ENODEV;
7785 done:
7786 	return 0;
7787 }
7788 
7789 /* return -ENODEV or other reason on error, 0 on success */
7790 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7791 {
7792 	u32 trans_support;
7793 
7794 	trans_support = readl(&(h->cfgtable->TransportSupport));
7795 	if (!(trans_support & SIMPLE_MODE))
7796 		return -ENOTSUPP;
7797 
7798 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7799 
7800 	/* Update the field, and then ring the doorbell */
7801 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7802 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7803 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7804 	if (hpsa_wait_for_mode_change_ack(h))
7805 		goto error;
7806 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7807 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7808 		goto error;
7809 	h->transMethod = CFGTBL_Trans_Simple;
7810 	return 0;
7811 error:
7812 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7813 	return -ENODEV;
7814 }
7815 
7816 /* free items allocated or mapped by hpsa_pci_init */
7817 static void hpsa_free_pci_init(struct ctlr_info *h)
7818 {
7819 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7820 	iounmap(h->vaddr);			/* pci_init 3 */
7821 	h->vaddr = NULL;
7822 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7823 	/*
7824 	 * call pci_disable_device before pci_release_regions per
7825 	 * Documentation/driver-api/pci/pci.rst
7826 	 */
7827 	pci_disable_device(h->pdev);		/* pci_init 1 */
7828 	pci_release_regions(h->pdev);		/* pci_init 2 */
7829 }
7830 
7831 /* several items must be freed later */
7832 static int hpsa_pci_init(struct ctlr_info *h)
7833 {
7834 	int prod_index, err;
7835 	bool legacy_board;
7836 
7837 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7838 	if (prod_index < 0)
7839 		return prod_index;
7840 	h->product_name = products[prod_index].product_name;
7841 	h->access = *(products[prod_index].access);
7842 	h->legacy_board = legacy_board;
7843 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7844 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7845 
7846 	err = pci_enable_device(h->pdev);
7847 	if (err) {
7848 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7849 		pci_disable_device(h->pdev);
7850 		return err;
7851 	}
7852 
7853 	err = pci_request_regions(h->pdev, HPSA);
7854 	if (err) {
7855 		dev_err(&h->pdev->dev,
7856 			"failed to obtain PCI resources\n");
7857 		pci_disable_device(h->pdev);
7858 		return err;
7859 	}
7860 
7861 	pci_set_master(h->pdev);
7862 
7863 	err = hpsa_interrupt_mode(h);
7864 	if (err)
7865 		goto clean1;
7866 
7867 	/* setup mapping between CPU and reply queue */
7868 	hpsa_setup_reply_map(h);
7869 
7870 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7871 	if (err)
7872 		goto clean2;	/* intmode+region, pci */
7873 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7874 	if (!h->vaddr) {
7875 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7876 		err = -ENOMEM;
7877 		goto clean2;	/* intmode+region, pci */
7878 	}
7879 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7880 	if (err)
7881 		goto clean3;	/* vaddr, intmode+region, pci */
7882 	err = hpsa_find_cfgtables(h);
7883 	if (err)
7884 		goto clean3;	/* vaddr, intmode+region, pci */
7885 	hpsa_find_board_params(h);
7886 
7887 	if (!hpsa_CISS_signature_present(h)) {
7888 		err = -ENODEV;
7889 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7890 	}
7891 	hpsa_set_driver_support_bits(h);
7892 	hpsa_p600_dma_prefetch_quirk(h);
7893 	err = hpsa_enter_simple_mode(h);
7894 	if (err)
7895 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7896 	return 0;
7897 
7898 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7899 	hpsa_free_cfgtables(h);
7900 clean3:	/* vaddr, intmode+region, pci */
7901 	iounmap(h->vaddr);
7902 	h->vaddr = NULL;
7903 clean2:	/* intmode+region, pci */
7904 	hpsa_disable_interrupt_mode(h);
7905 clean1:
7906 	/*
7907 	 * call pci_disable_device before pci_release_regions per
7908 	 * Documentation/driver-api/pci/pci.rst
7909 	 */
7910 	pci_disable_device(h->pdev);
7911 	pci_release_regions(h->pdev);
7912 	return err;
7913 }
7914 
7915 static void hpsa_hba_inquiry(struct ctlr_info *h)
7916 {
7917 	int rc;
7918 
7919 #define HBA_INQUIRY_BYTE_COUNT 64
7920 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7921 	if (!h->hba_inquiry_data)
7922 		return;
7923 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7924 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7925 	if (rc != 0) {
7926 		kfree(h->hba_inquiry_data);
7927 		h->hba_inquiry_data = NULL;
7928 	}
7929 }
7930 
7931 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7932 {
7933 	int rc, i;
7934 	void __iomem *vaddr;
7935 
7936 	if (!reset_devices)
7937 		return 0;
7938 
7939 	/* kdump kernel is loading, we don't know in which state is
7940 	 * the pci interface. The dev->enable_cnt is equal zero
7941 	 * so we call enable+disable, wait a while and switch it on.
7942 	 */
7943 	rc = pci_enable_device(pdev);
7944 	if (rc) {
7945 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7946 		return -ENODEV;
7947 	}
7948 	pci_disable_device(pdev);
7949 	msleep(260);			/* a randomly chosen number */
7950 	rc = pci_enable_device(pdev);
7951 	if (rc) {
7952 		dev_warn(&pdev->dev, "failed to enable device.\n");
7953 		return -ENODEV;
7954 	}
7955 
7956 	pci_set_master(pdev);
7957 
7958 	vaddr = pci_ioremap_bar(pdev, 0);
7959 	if (vaddr == NULL) {
7960 		rc = -ENOMEM;
7961 		goto out_disable;
7962 	}
7963 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7964 	iounmap(vaddr);
7965 
7966 	/* Reset the controller with a PCI power-cycle or via doorbell */
7967 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7968 
7969 	/* -ENOTSUPP here means we cannot reset the controller
7970 	 * but it's already (and still) up and running in
7971 	 * "performant mode".  Or, it might be 640x, which can't reset
7972 	 * due to concerns about shared bbwc between 6402/6404 pair.
7973 	 */
7974 	if (rc)
7975 		goto out_disable;
7976 
7977 	/* Now try to get the controller to respond to a no-op */
7978 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7979 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7980 		if (hpsa_noop(pdev) == 0)
7981 			break;
7982 		else
7983 			dev_warn(&pdev->dev, "no-op failed%s\n",
7984 					(i < 11 ? "; re-trying" : ""));
7985 	}
7986 
7987 out_disable:
7988 
7989 	pci_disable_device(pdev);
7990 	return rc;
7991 }
7992 
7993 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7994 {
7995 	kfree(h->cmd_pool_bits);
7996 	h->cmd_pool_bits = NULL;
7997 	if (h->cmd_pool) {
7998 		dma_free_coherent(&h->pdev->dev,
7999 				h->nr_cmds * sizeof(struct CommandList),
8000 				h->cmd_pool,
8001 				h->cmd_pool_dhandle);
8002 		h->cmd_pool = NULL;
8003 		h->cmd_pool_dhandle = 0;
8004 	}
8005 	if (h->errinfo_pool) {
8006 		dma_free_coherent(&h->pdev->dev,
8007 				h->nr_cmds * sizeof(struct ErrorInfo),
8008 				h->errinfo_pool,
8009 				h->errinfo_pool_dhandle);
8010 		h->errinfo_pool = NULL;
8011 		h->errinfo_pool_dhandle = 0;
8012 	}
8013 }
8014 
8015 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8016 {
8017 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8018 				   sizeof(unsigned long),
8019 				   GFP_KERNEL);
8020 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8021 		    h->nr_cmds * sizeof(*h->cmd_pool),
8022 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8023 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8024 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8025 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8026 	if ((h->cmd_pool_bits == NULL)
8027 	    || (h->cmd_pool == NULL)
8028 	    || (h->errinfo_pool == NULL)) {
8029 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8030 		goto clean_up;
8031 	}
8032 	hpsa_preinitialize_commands(h);
8033 	return 0;
8034 clean_up:
8035 	hpsa_free_cmd_pool(h);
8036 	return -ENOMEM;
8037 }
8038 
8039 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8040 static void hpsa_free_irqs(struct ctlr_info *h)
8041 {
8042 	int i;
8043 	int irq_vector = 0;
8044 
8045 	if (hpsa_simple_mode)
8046 		irq_vector = h->intr_mode;
8047 
8048 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8049 		/* Single reply queue, only one irq to free */
8050 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8051 				&h->q[h->intr_mode]);
8052 		h->q[h->intr_mode] = 0;
8053 		return;
8054 	}
8055 
8056 	for (i = 0; i < h->msix_vectors; i++) {
8057 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8058 		h->q[i] = 0;
8059 	}
8060 	for (; i < MAX_REPLY_QUEUES; i++)
8061 		h->q[i] = 0;
8062 }
8063 
8064 /* returns 0 on success; cleans up and returns -Enn on error */
8065 static int hpsa_request_irqs(struct ctlr_info *h,
8066 	irqreturn_t (*msixhandler)(int, void *),
8067 	irqreturn_t (*intxhandler)(int, void *))
8068 {
8069 	int rc, i;
8070 	int irq_vector = 0;
8071 
8072 	if (hpsa_simple_mode)
8073 		irq_vector = h->intr_mode;
8074 
8075 	/*
8076 	 * initialize h->q[x] = x so that interrupt handlers know which
8077 	 * queue to process.
8078 	 */
8079 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8080 		h->q[i] = (u8) i;
8081 
8082 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8083 		/* If performant mode and MSI-X, use multiple reply queues */
8084 		for (i = 0; i < h->msix_vectors; i++) {
8085 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8086 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8087 					0, h->intrname[i],
8088 					&h->q[i]);
8089 			if (rc) {
8090 				int j;
8091 
8092 				dev_err(&h->pdev->dev,
8093 					"failed to get irq %d for %s\n",
8094 				       pci_irq_vector(h->pdev, i), h->devname);
8095 				for (j = 0; j < i; j++) {
8096 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8097 					h->q[j] = 0;
8098 				}
8099 				for (; j < MAX_REPLY_QUEUES; j++)
8100 					h->q[j] = 0;
8101 				return rc;
8102 			}
8103 		}
8104 	} else {
8105 		/* Use single reply pool */
8106 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8107 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8108 				h->msix_vectors ? "x" : "");
8109 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8110 				msixhandler, 0,
8111 				h->intrname[0],
8112 				&h->q[h->intr_mode]);
8113 		} else {
8114 			sprintf(h->intrname[h->intr_mode],
8115 				"%s-intx", h->devname);
8116 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8117 				intxhandler, IRQF_SHARED,
8118 				h->intrname[0],
8119 				&h->q[h->intr_mode]);
8120 		}
8121 	}
8122 	if (rc) {
8123 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8124 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8125 		hpsa_free_irqs(h);
8126 		return -ENODEV;
8127 	}
8128 	return 0;
8129 }
8130 
8131 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8132 {
8133 	int rc;
8134 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8135 
8136 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8137 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8138 	if (rc) {
8139 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8140 		return rc;
8141 	}
8142 
8143 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8144 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8145 	if (rc) {
8146 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8147 			"after soft reset.\n");
8148 		return rc;
8149 	}
8150 
8151 	return 0;
8152 }
8153 
8154 static void hpsa_free_reply_queues(struct ctlr_info *h)
8155 {
8156 	int i;
8157 
8158 	for (i = 0; i < h->nreply_queues; i++) {
8159 		if (!h->reply_queue[i].head)
8160 			continue;
8161 		dma_free_coherent(&h->pdev->dev,
8162 					h->reply_queue_size,
8163 					h->reply_queue[i].head,
8164 					h->reply_queue[i].busaddr);
8165 		h->reply_queue[i].head = NULL;
8166 		h->reply_queue[i].busaddr = 0;
8167 	}
8168 	h->reply_queue_size = 0;
8169 }
8170 
8171 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8172 {
8173 	hpsa_free_performant_mode(h);		/* init_one 7 */
8174 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8175 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8176 	hpsa_free_irqs(h);			/* init_one 4 */
8177 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8178 	h->scsi_host = NULL;			/* init_one 3 */
8179 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8180 	free_percpu(h->lockup_detected);	/* init_one 2 */
8181 	h->lockup_detected = NULL;		/* init_one 2 */
8182 	if (h->resubmit_wq) {
8183 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8184 		h->resubmit_wq = NULL;
8185 	}
8186 	if (h->rescan_ctlr_wq) {
8187 		destroy_workqueue(h->rescan_ctlr_wq);
8188 		h->rescan_ctlr_wq = NULL;
8189 	}
8190 	if (h->monitor_ctlr_wq) {
8191 		destroy_workqueue(h->monitor_ctlr_wq);
8192 		h->monitor_ctlr_wq = NULL;
8193 	}
8194 
8195 	kfree(h);				/* init_one 1 */
8196 }
8197 
8198 /* Called when controller lockup detected. */
8199 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8200 {
8201 	int i, refcount;
8202 	struct CommandList *c;
8203 	int failcount = 0;
8204 
8205 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8206 	for (i = 0; i < h->nr_cmds; i++) {
8207 		c = h->cmd_pool + i;
8208 		refcount = atomic_inc_return(&c->refcount);
8209 		if (refcount > 1) {
8210 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8211 			finish_cmd(c);
8212 			atomic_dec(&h->commands_outstanding);
8213 			failcount++;
8214 		}
8215 		cmd_free(h, c);
8216 	}
8217 	dev_warn(&h->pdev->dev,
8218 		"failed %d commands in fail_all\n", failcount);
8219 }
8220 
8221 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8222 {
8223 	int cpu;
8224 
8225 	for_each_online_cpu(cpu) {
8226 		u32 *lockup_detected;
8227 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8228 		*lockup_detected = value;
8229 	}
8230 	wmb(); /* be sure the per-cpu variables are out to memory */
8231 }
8232 
8233 static void controller_lockup_detected(struct ctlr_info *h)
8234 {
8235 	unsigned long flags;
8236 	u32 lockup_detected;
8237 
8238 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8239 	spin_lock_irqsave(&h->lock, flags);
8240 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8241 	if (!lockup_detected) {
8242 		/* no heartbeat, but controller gave us a zero. */
8243 		dev_warn(&h->pdev->dev,
8244 			"lockup detected after %d but scratchpad register is zero\n",
8245 			h->heartbeat_sample_interval / HZ);
8246 		lockup_detected = 0xffffffff;
8247 	}
8248 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8249 	spin_unlock_irqrestore(&h->lock, flags);
8250 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8251 			lockup_detected, h->heartbeat_sample_interval / HZ);
8252 	if (lockup_detected == 0xffff0000) {
8253 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8254 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8255 	}
8256 	pci_disable_device(h->pdev);
8257 	fail_all_outstanding_cmds(h);
8258 }
8259 
8260 static int detect_controller_lockup(struct ctlr_info *h)
8261 {
8262 	u64 now;
8263 	u32 heartbeat;
8264 	unsigned long flags;
8265 
8266 	now = get_jiffies_64();
8267 	/* If we've received an interrupt recently, we're ok. */
8268 	if (time_after64(h->last_intr_timestamp +
8269 				(h->heartbeat_sample_interval), now))
8270 		return false;
8271 
8272 	/*
8273 	 * If we've already checked the heartbeat recently, we're ok.
8274 	 * This could happen if someone sends us a signal. We
8275 	 * otherwise don't care about signals in this thread.
8276 	 */
8277 	if (time_after64(h->last_heartbeat_timestamp +
8278 				(h->heartbeat_sample_interval), now))
8279 		return false;
8280 
8281 	/* If heartbeat has not changed since we last looked, we're not ok. */
8282 	spin_lock_irqsave(&h->lock, flags);
8283 	heartbeat = readl(&h->cfgtable->HeartBeat);
8284 	spin_unlock_irqrestore(&h->lock, flags);
8285 	if (h->last_heartbeat == heartbeat) {
8286 		controller_lockup_detected(h);
8287 		return true;
8288 	}
8289 
8290 	/* We're ok. */
8291 	h->last_heartbeat = heartbeat;
8292 	h->last_heartbeat_timestamp = now;
8293 	return false;
8294 }
8295 
8296 /*
8297  * Set ioaccel status for all ioaccel volumes.
8298  *
8299  * Called from monitor controller worker (hpsa_event_monitor_worker)
8300  *
8301  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8302  * transformation, so we will be turning off ioaccel for all volumes that
8303  * make up the Array.
8304  */
8305 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8306 {
8307 	int rc;
8308 	int i;
8309 	u8 ioaccel_status;
8310 	unsigned char *buf;
8311 	struct hpsa_scsi_dev_t *device;
8312 
8313 	if (!h)
8314 		return;
8315 
8316 	buf = kmalloc(64, GFP_KERNEL);
8317 	if (!buf)
8318 		return;
8319 
8320 	/*
8321 	 * Run through current device list used during I/O requests.
8322 	 */
8323 	for (i = 0; i < h->ndevices; i++) {
8324 		int offload_to_be_enabled = 0;
8325 		int offload_config = 0;
8326 
8327 		device = h->dev[i];
8328 
8329 		if (!device)
8330 			continue;
8331 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8332 						HPSA_VPD_LV_IOACCEL_STATUS))
8333 			continue;
8334 
8335 		memset(buf, 0, 64);
8336 
8337 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8338 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8339 					buf, 64);
8340 		if (rc != 0)
8341 			continue;
8342 
8343 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8344 
8345 		/*
8346 		 * Check if offload is still configured on
8347 		 */
8348 		offload_config =
8349 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8350 		/*
8351 		 * If offload is configured on, check to see if ioaccel
8352 		 * needs to be enabled.
8353 		 */
8354 		if (offload_config)
8355 			offload_to_be_enabled =
8356 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8357 
8358 		/*
8359 		 * If ioaccel is to be re-enabled, re-enable later during the
8360 		 * scan operation so the driver can get a fresh raidmap
8361 		 * before turning ioaccel back on.
8362 		 */
8363 		if (offload_to_be_enabled)
8364 			continue;
8365 
8366 		/*
8367 		 * Immediately turn off ioaccel for any volume the
8368 		 * controller tells us to. Some of the reasons could be:
8369 		 *    transformation - change to the LVs of an Array.
8370 		 *    degraded volume - component failure
8371 		 */
8372 		hpsa_turn_off_ioaccel_for_device(device);
8373 	}
8374 
8375 	kfree(buf);
8376 }
8377 
8378 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8379 {
8380 	char *event_type;
8381 
8382 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8383 		return;
8384 
8385 	/* Ask the controller to clear the events we're handling. */
8386 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8387 			| CFGTBL_Trans_io_accel2)) &&
8388 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8389 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8390 
8391 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8392 			event_type = "state change";
8393 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8394 			event_type = "configuration change";
8395 		/* Stop sending new RAID offload reqs via the IO accelerator */
8396 		scsi_block_requests(h->scsi_host);
8397 		hpsa_set_ioaccel_status(h);
8398 		hpsa_drain_accel_commands(h);
8399 		/* Set 'accelerator path config change' bit */
8400 		dev_warn(&h->pdev->dev,
8401 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8402 			h->events, event_type);
8403 		writel(h->events, &(h->cfgtable->clear_event_notify));
8404 		/* Set the "clear event notify field update" bit 6 */
8405 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8406 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8407 		hpsa_wait_for_clear_event_notify_ack(h);
8408 		scsi_unblock_requests(h->scsi_host);
8409 	} else {
8410 		/* Acknowledge controller notification events. */
8411 		writel(h->events, &(h->cfgtable->clear_event_notify));
8412 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8413 		hpsa_wait_for_clear_event_notify_ack(h);
8414 	}
8415 	return;
8416 }
8417 
8418 /* Check a register on the controller to see if there are configuration
8419  * changes (added/changed/removed logical drives, etc.) which mean that
8420  * we should rescan the controller for devices.
8421  * Also check flag for driver-initiated rescan.
8422  */
8423 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8424 {
8425 	if (h->drv_req_rescan) {
8426 		h->drv_req_rescan = 0;
8427 		return 1;
8428 	}
8429 
8430 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8431 		return 0;
8432 
8433 	h->events = readl(&(h->cfgtable->event_notify));
8434 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8435 }
8436 
8437 /*
8438  * Check if any of the offline devices have become ready
8439  */
8440 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8441 {
8442 	unsigned long flags;
8443 	struct offline_device_entry *d;
8444 	struct list_head *this, *tmp;
8445 
8446 	spin_lock_irqsave(&h->offline_device_lock, flags);
8447 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8448 		d = list_entry(this, struct offline_device_entry,
8449 				offline_list);
8450 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8451 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8452 			spin_lock_irqsave(&h->offline_device_lock, flags);
8453 			list_del(&d->offline_list);
8454 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8455 			return 1;
8456 		}
8457 		spin_lock_irqsave(&h->offline_device_lock, flags);
8458 	}
8459 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8460 	return 0;
8461 }
8462 
8463 static int hpsa_luns_changed(struct ctlr_info *h)
8464 {
8465 	int rc = 1; /* assume there are changes */
8466 	struct ReportLUNdata *logdev = NULL;
8467 
8468 	/* if we can't find out if lun data has changed,
8469 	 * assume that it has.
8470 	 */
8471 
8472 	if (!h->lastlogicals)
8473 		return rc;
8474 
8475 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8476 	if (!logdev)
8477 		return rc;
8478 
8479 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8480 		dev_warn(&h->pdev->dev,
8481 			"report luns failed, can't track lun changes.\n");
8482 		goto out;
8483 	}
8484 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8485 		dev_info(&h->pdev->dev,
8486 			"Lun changes detected.\n");
8487 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8488 		goto out;
8489 	} else
8490 		rc = 0; /* no changes detected. */
8491 out:
8492 	kfree(logdev);
8493 	return rc;
8494 }
8495 
8496 static void hpsa_perform_rescan(struct ctlr_info *h)
8497 {
8498 	struct Scsi_Host *sh = NULL;
8499 	unsigned long flags;
8500 
8501 	/*
8502 	 * Do the scan after the reset
8503 	 */
8504 	spin_lock_irqsave(&h->reset_lock, flags);
8505 	if (h->reset_in_progress) {
8506 		h->drv_req_rescan = 1;
8507 		spin_unlock_irqrestore(&h->reset_lock, flags);
8508 		return;
8509 	}
8510 	spin_unlock_irqrestore(&h->reset_lock, flags);
8511 
8512 	sh = scsi_host_get(h->scsi_host);
8513 	if (sh != NULL) {
8514 		hpsa_scan_start(sh);
8515 		scsi_host_put(sh);
8516 		h->drv_req_rescan = 0;
8517 	}
8518 }
8519 
8520 /*
8521  * watch for controller events
8522  */
8523 static void hpsa_event_monitor_worker(struct work_struct *work)
8524 {
8525 	struct ctlr_info *h = container_of(to_delayed_work(work),
8526 					struct ctlr_info, event_monitor_work);
8527 	unsigned long flags;
8528 
8529 	spin_lock_irqsave(&h->lock, flags);
8530 	if (h->remove_in_progress) {
8531 		spin_unlock_irqrestore(&h->lock, flags);
8532 		return;
8533 	}
8534 	spin_unlock_irqrestore(&h->lock, flags);
8535 
8536 	if (hpsa_ctlr_needs_rescan(h)) {
8537 		hpsa_ack_ctlr_events(h);
8538 		hpsa_perform_rescan(h);
8539 	}
8540 
8541 	spin_lock_irqsave(&h->lock, flags);
8542 	if (!h->remove_in_progress)
8543 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8544 				HPSA_EVENT_MONITOR_INTERVAL);
8545 	spin_unlock_irqrestore(&h->lock, flags);
8546 }
8547 
8548 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8549 {
8550 	unsigned long flags;
8551 	struct ctlr_info *h = container_of(to_delayed_work(work),
8552 					struct ctlr_info, rescan_ctlr_work);
8553 
8554 	spin_lock_irqsave(&h->lock, flags);
8555 	if (h->remove_in_progress) {
8556 		spin_unlock_irqrestore(&h->lock, flags);
8557 		return;
8558 	}
8559 	spin_unlock_irqrestore(&h->lock, flags);
8560 
8561 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8562 		hpsa_perform_rescan(h);
8563 	} else if (h->discovery_polling) {
8564 		if (hpsa_luns_changed(h)) {
8565 			dev_info(&h->pdev->dev,
8566 				"driver discovery polling rescan.\n");
8567 			hpsa_perform_rescan(h);
8568 		}
8569 	}
8570 	spin_lock_irqsave(&h->lock, flags);
8571 	if (!h->remove_in_progress)
8572 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8573 				h->heartbeat_sample_interval);
8574 	spin_unlock_irqrestore(&h->lock, flags);
8575 }
8576 
8577 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8578 {
8579 	unsigned long flags;
8580 	struct ctlr_info *h = container_of(to_delayed_work(work),
8581 					struct ctlr_info, monitor_ctlr_work);
8582 
8583 	detect_controller_lockup(h);
8584 	if (lockup_detected(h))
8585 		return;
8586 
8587 	spin_lock_irqsave(&h->lock, flags);
8588 	if (!h->remove_in_progress)
8589 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8590 				h->heartbeat_sample_interval);
8591 	spin_unlock_irqrestore(&h->lock, flags);
8592 }
8593 
8594 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8595 						char *name)
8596 {
8597 	struct workqueue_struct *wq = NULL;
8598 
8599 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8600 	if (!wq)
8601 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8602 
8603 	return wq;
8604 }
8605 
8606 static void hpda_free_ctlr_info(struct ctlr_info *h)
8607 {
8608 	kfree(h->reply_map);
8609 	kfree(h);
8610 }
8611 
8612 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8613 {
8614 	struct ctlr_info *h;
8615 
8616 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8617 	if (!h)
8618 		return NULL;
8619 
8620 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8621 	if (!h->reply_map) {
8622 		kfree(h);
8623 		return NULL;
8624 	}
8625 	return h;
8626 }
8627 
8628 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8629 {
8630 	int rc;
8631 	struct ctlr_info *h;
8632 	int try_soft_reset = 0;
8633 	unsigned long flags;
8634 	u32 board_id;
8635 
8636 	if (number_of_controllers == 0)
8637 		printk(KERN_INFO DRIVER_NAME "\n");
8638 
8639 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8640 	if (rc < 0) {
8641 		dev_warn(&pdev->dev, "Board ID not found\n");
8642 		return rc;
8643 	}
8644 
8645 	rc = hpsa_init_reset_devices(pdev, board_id);
8646 	if (rc) {
8647 		if (rc != -ENOTSUPP)
8648 			return rc;
8649 		/* If the reset fails in a particular way (it has no way to do
8650 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8651 		 * a soft reset once we get the controller configured up to the
8652 		 * point that it can accept a command.
8653 		 */
8654 		try_soft_reset = 1;
8655 		rc = 0;
8656 	}
8657 
8658 reinit_after_soft_reset:
8659 
8660 	/* Command structures must be aligned on a 32-byte boundary because
8661 	 * the 5 lower bits of the address are used by the hardware. and by
8662 	 * the driver.  See comments in hpsa.h for more info.
8663 	 */
8664 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8665 	h = hpda_alloc_ctlr_info();
8666 	if (!h) {
8667 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8668 		return -ENOMEM;
8669 	}
8670 
8671 	h->pdev = pdev;
8672 
8673 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8674 	INIT_LIST_HEAD(&h->offline_device_list);
8675 	spin_lock_init(&h->lock);
8676 	spin_lock_init(&h->offline_device_lock);
8677 	spin_lock_init(&h->scan_lock);
8678 	spin_lock_init(&h->reset_lock);
8679 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8680 
8681 	/* Allocate and clear per-cpu variable lockup_detected */
8682 	h->lockup_detected = alloc_percpu(u32);
8683 	if (!h->lockup_detected) {
8684 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8685 		rc = -ENOMEM;
8686 		goto clean1;	/* aer/h */
8687 	}
8688 	set_lockup_detected_for_all_cpus(h, 0);
8689 
8690 	rc = hpsa_pci_init(h);
8691 	if (rc)
8692 		goto clean2;	/* lu, aer/h */
8693 
8694 	/* relies on h-> settings made by hpsa_pci_init, including
8695 	 * interrupt_mode h->intr */
8696 	rc = hpsa_scsi_host_alloc(h);
8697 	if (rc)
8698 		goto clean2_5;	/* pci, lu, aer/h */
8699 
8700 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8701 	h->ctlr = number_of_controllers;
8702 	number_of_controllers++;
8703 
8704 	/* configure PCI DMA stuff */
8705 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8706 	if (rc != 0) {
8707 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8708 		if (rc != 0) {
8709 			dev_err(&pdev->dev, "no suitable DMA available\n");
8710 			goto clean3;	/* shost, pci, lu, aer/h */
8711 		}
8712 	}
8713 
8714 	/* make sure the board interrupts are off */
8715 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 
8717 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8718 	if (rc)
8719 		goto clean3;	/* shost, pci, lu, aer/h */
8720 	rc = hpsa_alloc_cmd_pool(h);
8721 	if (rc)
8722 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8723 	rc = hpsa_alloc_sg_chain_blocks(h);
8724 	if (rc)
8725 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8726 	init_waitqueue_head(&h->scan_wait_queue);
8727 	init_waitqueue_head(&h->event_sync_wait_queue);
8728 	mutex_init(&h->reset_mutex);
8729 	h->scan_finished = 1; /* no scan currently in progress */
8730 	h->scan_waiting = 0;
8731 
8732 	pci_set_drvdata(pdev, h);
8733 	h->ndevices = 0;
8734 
8735 	spin_lock_init(&h->devlock);
8736 	rc = hpsa_put_ctlr_into_performant_mode(h);
8737 	if (rc)
8738 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8739 
8740 	/* create the resubmit workqueue */
8741 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8742 	if (!h->rescan_ctlr_wq) {
8743 		rc = -ENOMEM;
8744 		goto clean7;
8745 	}
8746 
8747 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8748 	if (!h->resubmit_wq) {
8749 		rc = -ENOMEM;
8750 		goto clean7;	/* aer/h */
8751 	}
8752 
8753 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8754 	if (!h->monitor_ctlr_wq) {
8755 		rc = -ENOMEM;
8756 		goto clean7;
8757 	}
8758 
8759 	/*
8760 	 * At this point, the controller is ready to take commands.
8761 	 * Now, if reset_devices and the hard reset didn't work, try
8762 	 * the soft reset and see if that works.
8763 	 */
8764 	if (try_soft_reset) {
8765 
8766 		/* This is kind of gross.  We may or may not get a completion
8767 		 * from the soft reset command, and if we do, then the value
8768 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8769 		 * after the reset throwing away any completions we get during
8770 		 * that time.  Unregister the interrupt handler and register
8771 		 * fake ones to scoop up any residual completions.
8772 		 */
8773 		spin_lock_irqsave(&h->lock, flags);
8774 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8775 		spin_unlock_irqrestore(&h->lock, flags);
8776 		hpsa_free_irqs(h);
8777 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8778 					hpsa_intx_discard_completions);
8779 		if (rc) {
8780 			dev_warn(&h->pdev->dev,
8781 				"Failed to request_irq after soft reset.\n");
8782 			/*
8783 			 * cannot goto clean7 or free_irqs will be called
8784 			 * again. Instead, do its work
8785 			 */
8786 			hpsa_free_performant_mode(h);	/* clean7 */
8787 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8788 			hpsa_free_cmd_pool(h);		/* clean5 */
8789 			/*
8790 			 * skip hpsa_free_irqs(h) clean4 since that
8791 			 * was just called before request_irqs failed
8792 			 */
8793 			goto clean3;
8794 		}
8795 
8796 		rc = hpsa_kdump_soft_reset(h);
8797 		if (rc)
8798 			/* Neither hard nor soft reset worked, we're hosed. */
8799 			goto clean7;
8800 
8801 		dev_info(&h->pdev->dev, "Board READY.\n");
8802 		dev_info(&h->pdev->dev,
8803 			"Waiting for stale completions to drain.\n");
8804 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8805 		msleep(10000);
8806 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8807 
8808 		rc = controller_reset_failed(h->cfgtable);
8809 		if (rc)
8810 			dev_info(&h->pdev->dev,
8811 				"Soft reset appears to have failed.\n");
8812 
8813 		/* since the controller's reset, we have to go back and re-init
8814 		 * everything.  Easiest to just forget what we've done and do it
8815 		 * all over again.
8816 		 */
8817 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8818 		try_soft_reset = 0;
8819 		if (rc)
8820 			/* don't goto clean, we already unallocated */
8821 			return -ENODEV;
8822 
8823 		goto reinit_after_soft_reset;
8824 	}
8825 
8826 	/* Enable Accelerated IO path at driver layer */
8827 	h->acciopath_status = 1;
8828 	/* Disable discovery polling.*/
8829 	h->discovery_polling = 0;
8830 
8831 
8832 	/* Turn the interrupts on so we can service requests */
8833 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8834 
8835 	hpsa_hba_inquiry(h);
8836 
8837 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8838 	if (!h->lastlogicals)
8839 		dev_info(&h->pdev->dev,
8840 			"Can't track change to report lun data\n");
8841 
8842 	/* hook into SCSI subsystem */
8843 	rc = hpsa_scsi_add_host(h);
8844 	if (rc)
8845 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8846 
8847 	/* Monitor the controller for firmware lockups */
8848 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8849 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8850 	schedule_delayed_work(&h->monitor_ctlr_work,
8851 				h->heartbeat_sample_interval);
8852 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8853 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8854 				h->heartbeat_sample_interval);
8855 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8856 	schedule_delayed_work(&h->event_monitor_work,
8857 				HPSA_EVENT_MONITOR_INTERVAL);
8858 	return 0;
8859 
8860 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8861 	kfree(h->lastlogicals);
8862 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8863 	hpsa_free_performant_mode(h);
8864 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8865 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8866 	hpsa_free_sg_chain_blocks(h);
8867 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8868 	hpsa_free_cmd_pool(h);
8869 clean4: /* irq, shost, pci, lu, aer/h */
8870 	hpsa_free_irqs(h);
8871 clean3: /* shost, pci, lu, aer/h */
8872 	scsi_host_put(h->scsi_host);
8873 	h->scsi_host = NULL;
8874 clean2_5: /* pci, lu, aer/h */
8875 	hpsa_free_pci_init(h);
8876 clean2: /* lu, aer/h */
8877 	if (h->lockup_detected) {
8878 		free_percpu(h->lockup_detected);
8879 		h->lockup_detected = NULL;
8880 	}
8881 clean1:	/* wq/aer/h */
8882 	if (h->resubmit_wq) {
8883 		destroy_workqueue(h->resubmit_wq);
8884 		h->resubmit_wq = NULL;
8885 	}
8886 	if (h->rescan_ctlr_wq) {
8887 		destroy_workqueue(h->rescan_ctlr_wq);
8888 		h->rescan_ctlr_wq = NULL;
8889 	}
8890 	if (h->monitor_ctlr_wq) {
8891 		destroy_workqueue(h->monitor_ctlr_wq);
8892 		h->monitor_ctlr_wq = NULL;
8893 	}
8894 	kfree(h);
8895 	return rc;
8896 }
8897 
8898 static void hpsa_flush_cache(struct ctlr_info *h)
8899 {
8900 	char *flush_buf;
8901 	struct CommandList *c;
8902 	int rc;
8903 
8904 	if (unlikely(lockup_detected(h)))
8905 		return;
8906 	flush_buf = kzalloc(4, GFP_KERNEL);
8907 	if (!flush_buf)
8908 		return;
8909 
8910 	c = cmd_alloc(h);
8911 
8912 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8913 		RAID_CTLR_LUNID, TYPE_CMD)) {
8914 		goto out;
8915 	}
8916 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8917 			DEFAULT_TIMEOUT);
8918 	if (rc)
8919 		goto out;
8920 	if (c->err_info->CommandStatus != 0)
8921 out:
8922 		dev_warn(&h->pdev->dev,
8923 			"error flushing cache on controller\n");
8924 	cmd_free(h, c);
8925 	kfree(flush_buf);
8926 }
8927 
8928 /* Make controller gather fresh report lun data each time we
8929  * send down a report luns request
8930  */
8931 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8932 {
8933 	u32 *options;
8934 	struct CommandList *c;
8935 	int rc;
8936 
8937 	/* Don't bother trying to set diag options if locked up */
8938 	if (unlikely(h->lockup_detected))
8939 		return;
8940 
8941 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8942 	if (!options)
8943 		return;
8944 
8945 	c = cmd_alloc(h);
8946 
8947 	/* first, get the current diag options settings */
8948 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8949 		RAID_CTLR_LUNID, TYPE_CMD))
8950 		goto errout;
8951 
8952 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8953 			NO_TIMEOUT);
8954 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8955 		goto errout;
8956 
8957 	/* Now, set the bit for disabling the RLD caching */
8958 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8959 
8960 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8961 		RAID_CTLR_LUNID, TYPE_CMD))
8962 		goto errout;
8963 
8964 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8965 			NO_TIMEOUT);
8966 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8967 		goto errout;
8968 
8969 	/* Now verify that it got set: */
8970 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8971 		RAID_CTLR_LUNID, TYPE_CMD))
8972 		goto errout;
8973 
8974 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8975 			NO_TIMEOUT);
8976 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8977 		goto errout;
8978 
8979 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8980 		goto out;
8981 
8982 errout:
8983 	dev_err(&h->pdev->dev,
8984 			"Error: failed to disable report lun data caching.\n");
8985 out:
8986 	cmd_free(h, c);
8987 	kfree(options);
8988 }
8989 
8990 static void __hpsa_shutdown(struct pci_dev *pdev)
8991 {
8992 	struct ctlr_info *h;
8993 
8994 	h = pci_get_drvdata(pdev);
8995 	/* Turn board interrupts off  and send the flush cache command
8996 	 * sendcmd will turn off interrupt, and send the flush...
8997 	 * To write all data in the battery backed cache to disks
8998 	 */
8999 	hpsa_flush_cache(h);
9000 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9001 	hpsa_free_irqs(h);			/* init_one 4 */
9002 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9003 }
9004 
9005 static void hpsa_shutdown(struct pci_dev *pdev)
9006 {
9007 	__hpsa_shutdown(pdev);
9008 	pci_disable_device(pdev);
9009 }
9010 
9011 static void hpsa_free_device_info(struct ctlr_info *h)
9012 {
9013 	int i;
9014 
9015 	for (i = 0; i < h->ndevices; i++) {
9016 		kfree(h->dev[i]);
9017 		h->dev[i] = NULL;
9018 	}
9019 }
9020 
9021 static void hpsa_remove_one(struct pci_dev *pdev)
9022 {
9023 	struct ctlr_info *h;
9024 	unsigned long flags;
9025 
9026 	if (pci_get_drvdata(pdev) == NULL) {
9027 		dev_err(&pdev->dev, "unable to remove device\n");
9028 		return;
9029 	}
9030 	h = pci_get_drvdata(pdev);
9031 
9032 	/* Get rid of any controller monitoring work items */
9033 	spin_lock_irqsave(&h->lock, flags);
9034 	h->remove_in_progress = 1;
9035 	spin_unlock_irqrestore(&h->lock, flags);
9036 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9037 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9038 	cancel_delayed_work_sync(&h->event_monitor_work);
9039 	destroy_workqueue(h->rescan_ctlr_wq);
9040 	destroy_workqueue(h->resubmit_wq);
9041 	destroy_workqueue(h->monitor_ctlr_wq);
9042 
9043 	hpsa_delete_sas_host(h);
9044 
9045 	/*
9046 	 * Call before disabling interrupts.
9047 	 * scsi_remove_host can trigger I/O operations especially
9048 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9049 	 * operations which cannot complete and will hang the system.
9050 	 */
9051 	if (h->scsi_host)
9052 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9053 	/* includes hpsa_free_irqs - init_one 4 */
9054 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9055 	__hpsa_shutdown(pdev);
9056 
9057 	hpsa_free_device_info(h);		/* scan */
9058 
9059 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9060 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9061 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9062 	hpsa_free_performant_mode(h);			/* init_one 7 */
9063 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9064 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9065 	kfree(h->lastlogicals);
9066 
9067 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9068 
9069 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9070 	h->scsi_host = NULL;				/* init_one 3 */
9071 
9072 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9073 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9074 
9075 	free_percpu(h->lockup_detected);		/* init_one 2 */
9076 	h->lockup_detected = NULL;			/* init_one 2 */
9077 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9078 
9079 	hpda_free_ctlr_info(h);				/* init_one 1 */
9080 }
9081 
9082 static int __maybe_unused hpsa_suspend(
9083 	__attribute__((unused)) struct device *dev)
9084 {
9085 	return -ENOSYS;
9086 }
9087 
9088 static int __maybe_unused hpsa_resume
9089 	(__attribute__((unused)) struct device *dev)
9090 {
9091 	return -ENOSYS;
9092 }
9093 
9094 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9095 
9096 static struct pci_driver hpsa_pci_driver = {
9097 	.name = HPSA,
9098 	.probe = hpsa_init_one,
9099 	.remove = hpsa_remove_one,
9100 	.id_table = hpsa_pci_device_id,	/* id_table */
9101 	.shutdown = hpsa_shutdown,
9102 	.driver.pm = &hpsa_pm_ops,
9103 };
9104 
9105 /* Fill in bucket_map[], given nsgs (the max number of
9106  * scatter gather elements supported) and bucket[],
9107  * which is an array of 8 integers.  The bucket[] array
9108  * contains 8 different DMA transfer sizes (in 16
9109  * byte increments) which the controller uses to fetch
9110  * commands.  This function fills in bucket_map[], which
9111  * maps a given number of scatter gather elements to one of
9112  * the 8 DMA transfer sizes.  The point of it is to allow the
9113  * controller to only do as much DMA as needed to fetch the
9114  * command, with the DMA transfer size encoded in the lower
9115  * bits of the command address.
9116  */
9117 static void  calc_bucket_map(int bucket[], int num_buckets,
9118 	int nsgs, int min_blocks, u32 *bucket_map)
9119 {
9120 	int i, j, b, size;
9121 
9122 	/* Note, bucket_map must have nsgs+1 entries. */
9123 	for (i = 0; i <= nsgs; i++) {
9124 		/* Compute size of a command with i SG entries */
9125 		size = i + min_blocks;
9126 		b = num_buckets; /* Assume the biggest bucket */
9127 		/* Find the bucket that is just big enough */
9128 		for (j = 0; j < num_buckets; j++) {
9129 			if (bucket[j] >= size) {
9130 				b = j;
9131 				break;
9132 			}
9133 		}
9134 		/* for a command with i SG entries, use bucket b. */
9135 		bucket_map[i] = b;
9136 	}
9137 }
9138 
9139 /*
9140  * return -ENODEV on err, 0 on success (or no action)
9141  * allocates numerous items that must be freed later
9142  */
9143 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9144 {
9145 	int i;
9146 	unsigned long register_value;
9147 	unsigned long transMethod = CFGTBL_Trans_Performant |
9148 			(trans_support & CFGTBL_Trans_use_short_tags) |
9149 				CFGTBL_Trans_enable_directed_msix |
9150 			(trans_support & (CFGTBL_Trans_io_accel1 |
9151 				CFGTBL_Trans_io_accel2));
9152 	struct access_method access = SA5_performant_access;
9153 
9154 	/* This is a bit complicated.  There are 8 registers on
9155 	 * the controller which we write to to tell it 8 different
9156 	 * sizes of commands which there may be.  It's a way of
9157 	 * reducing the DMA done to fetch each command.  Encoded into
9158 	 * each command's tag are 3 bits which communicate to the controller
9159 	 * which of the eight sizes that command fits within.  The size of
9160 	 * each command depends on how many scatter gather entries there are.
9161 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9162 	 * with the number of 16-byte blocks a command of that size requires.
9163 	 * The smallest command possible requires 5 such 16 byte blocks.
9164 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9165 	 * blocks.  Note, this only extends to the SG entries contained
9166 	 * within the command block, and does not extend to chained blocks
9167 	 * of SG elements.   bft[] contains the eight values we write to
9168 	 * the registers.  They are not evenly distributed, but have more
9169 	 * sizes for small commands, and fewer sizes for larger commands.
9170 	 */
9171 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9172 #define MIN_IOACCEL2_BFT_ENTRY 5
9173 #define HPSA_IOACCEL2_HEADER_SZ 4
9174 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9175 			13, 14, 15, 16, 17, 18, 19,
9176 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9177 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9178 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9179 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9180 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9181 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9182 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9183 	/*  5 = 1 s/g entry or 4k
9184 	 *  6 = 2 s/g entry or 8k
9185 	 *  8 = 4 s/g entry or 16k
9186 	 * 10 = 6 s/g entry or 24k
9187 	 */
9188 
9189 	/* If the controller supports either ioaccel method then
9190 	 * we can also use the RAID stack submit path that does not
9191 	 * perform the superfluous readl() after each command submission.
9192 	 */
9193 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9194 		access = SA5_performant_access_no_read;
9195 
9196 	/* Controller spec: zero out this buffer. */
9197 	for (i = 0; i < h->nreply_queues; i++)
9198 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9199 
9200 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9201 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9202 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9203 	for (i = 0; i < 8; i++)
9204 		writel(bft[i], &h->transtable->BlockFetch[i]);
9205 
9206 	/* size of controller ring buffer */
9207 	writel(h->max_commands, &h->transtable->RepQSize);
9208 	writel(h->nreply_queues, &h->transtable->RepQCount);
9209 	writel(0, &h->transtable->RepQCtrAddrLow32);
9210 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9211 
9212 	for (i = 0; i < h->nreply_queues; i++) {
9213 		writel(0, &h->transtable->RepQAddr[i].upper);
9214 		writel(h->reply_queue[i].busaddr,
9215 			&h->transtable->RepQAddr[i].lower);
9216 	}
9217 
9218 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9219 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9220 	/*
9221 	 * enable outbound interrupt coalescing in accelerator mode;
9222 	 */
9223 	if (trans_support & CFGTBL_Trans_io_accel1) {
9224 		access = SA5_ioaccel_mode1_access;
9225 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9226 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9227 	} else
9228 		if (trans_support & CFGTBL_Trans_io_accel2)
9229 			access = SA5_ioaccel_mode2_access;
9230 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9231 	if (hpsa_wait_for_mode_change_ack(h)) {
9232 		dev_err(&h->pdev->dev,
9233 			"performant mode problem - doorbell timeout\n");
9234 		return -ENODEV;
9235 	}
9236 	register_value = readl(&(h->cfgtable->TransportActive));
9237 	if (!(register_value & CFGTBL_Trans_Performant)) {
9238 		dev_err(&h->pdev->dev,
9239 			"performant mode problem - transport not active\n");
9240 		return -ENODEV;
9241 	}
9242 	/* Change the access methods to the performant access methods */
9243 	h->access = access;
9244 	h->transMethod = transMethod;
9245 
9246 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9247 		(trans_support & CFGTBL_Trans_io_accel2)))
9248 		return 0;
9249 
9250 	if (trans_support & CFGTBL_Trans_io_accel1) {
9251 		/* Set up I/O accelerator mode */
9252 		for (i = 0; i < h->nreply_queues; i++) {
9253 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9254 			h->reply_queue[i].current_entry =
9255 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9256 		}
9257 		bft[7] = h->ioaccel_maxsg + 8;
9258 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9259 				h->ioaccel1_blockFetchTable);
9260 
9261 		/* initialize all reply queue entries to unused */
9262 		for (i = 0; i < h->nreply_queues; i++)
9263 			memset(h->reply_queue[i].head,
9264 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9265 				h->reply_queue_size);
9266 
9267 		/* set all the constant fields in the accelerator command
9268 		 * frames once at init time to save CPU cycles later.
9269 		 */
9270 		for (i = 0; i < h->nr_cmds; i++) {
9271 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9272 
9273 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9274 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9275 					(i * sizeof(struct ErrorInfo)));
9276 			cp->err_info_len = sizeof(struct ErrorInfo);
9277 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9278 			cp->host_context_flags =
9279 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9280 			cp->timeout_sec = 0;
9281 			cp->ReplyQueue = 0;
9282 			cp->tag =
9283 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9284 			cp->host_addr =
9285 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9286 					(i * sizeof(struct io_accel1_cmd)));
9287 		}
9288 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9289 		u64 cfg_offset, cfg_base_addr_index;
9290 		u32 bft2_offset, cfg_base_addr;
9291 
9292 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9293 				    &cfg_base_addr_index, &cfg_offset);
9294 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9295 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9296 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9297 				4, h->ioaccel2_blockFetchTable);
9298 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9299 		BUILD_BUG_ON(offsetof(struct CfgTable,
9300 				io_accel_request_size_offset) != 0xb8);
9301 		h->ioaccel2_bft2_regs =
9302 			remap_pci_mem(pci_resource_start(h->pdev,
9303 					cfg_base_addr_index) +
9304 					cfg_offset + bft2_offset,
9305 					ARRAY_SIZE(bft2) *
9306 					sizeof(*h->ioaccel2_bft2_regs));
9307 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9308 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9309 	}
9310 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9311 	if (hpsa_wait_for_mode_change_ack(h)) {
9312 		dev_err(&h->pdev->dev,
9313 			"performant mode problem - enabling ioaccel mode\n");
9314 		return -ENODEV;
9315 	}
9316 	return 0;
9317 }
9318 
9319 /* Free ioaccel1 mode command blocks and block fetch table */
9320 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9321 {
9322 	if (h->ioaccel_cmd_pool) {
9323 		dma_free_coherent(&h->pdev->dev,
9324 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9325 				  h->ioaccel_cmd_pool,
9326 				  h->ioaccel_cmd_pool_dhandle);
9327 		h->ioaccel_cmd_pool = NULL;
9328 		h->ioaccel_cmd_pool_dhandle = 0;
9329 	}
9330 	kfree(h->ioaccel1_blockFetchTable);
9331 	h->ioaccel1_blockFetchTable = NULL;
9332 }
9333 
9334 /* Allocate ioaccel1 mode command blocks and block fetch table */
9335 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9336 {
9337 	h->ioaccel_maxsg =
9338 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9339 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9340 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9341 
9342 	/* Command structures must be aligned on a 128-byte boundary
9343 	 * because the 7 lower bits of the address are used by the
9344 	 * hardware.
9345 	 */
9346 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9347 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9348 	h->ioaccel_cmd_pool =
9349 		dma_alloc_coherent(&h->pdev->dev,
9350 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9351 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9352 
9353 	h->ioaccel1_blockFetchTable =
9354 		kmalloc(((h->ioaccel_maxsg + 1) *
9355 				sizeof(u32)), GFP_KERNEL);
9356 
9357 	if ((h->ioaccel_cmd_pool == NULL) ||
9358 		(h->ioaccel1_blockFetchTable == NULL))
9359 		goto clean_up;
9360 
9361 	memset(h->ioaccel_cmd_pool, 0,
9362 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9363 	return 0;
9364 
9365 clean_up:
9366 	hpsa_free_ioaccel1_cmd_and_bft(h);
9367 	return -ENOMEM;
9368 }
9369 
9370 /* Free ioaccel2 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9372 {
9373 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9374 
9375 	if (h->ioaccel2_cmd_pool) {
9376 		dma_free_coherent(&h->pdev->dev,
9377 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9378 				  h->ioaccel2_cmd_pool,
9379 				  h->ioaccel2_cmd_pool_dhandle);
9380 		h->ioaccel2_cmd_pool = NULL;
9381 		h->ioaccel2_cmd_pool_dhandle = 0;
9382 	}
9383 	kfree(h->ioaccel2_blockFetchTable);
9384 	h->ioaccel2_blockFetchTable = NULL;
9385 }
9386 
9387 /* Allocate ioaccel2 mode command blocks and block fetch table */
9388 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9389 {
9390 	int rc;
9391 
9392 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9393 
9394 	h->ioaccel_maxsg =
9395 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9396 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9397 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9398 
9399 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9400 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9401 	h->ioaccel2_cmd_pool =
9402 		dma_alloc_coherent(&h->pdev->dev,
9403 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9404 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9405 
9406 	h->ioaccel2_blockFetchTable =
9407 		kmalloc(((h->ioaccel_maxsg + 1) *
9408 				sizeof(u32)), GFP_KERNEL);
9409 
9410 	if ((h->ioaccel2_cmd_pool == NULL) ||
9411 		(h->ioaccel2_blockFetchTable == NULL)) {
9412 		rc = -ENOMEM;
9413 		goto clean_up;
9414 	}
9415 
9416 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9417 	if (rc)
9418 		goto clean_up;
9419 
9420 	memset(h->ioaccel2_cmd_pool, 0,
9421 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9422 	return 0;
9423 
9424 clean_up:
9425 	hpsa_free_ioaccel2_cmd_and_bft(h);
9426 	return rc;
9427 }
9428 
9429 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9430 static void hpsa_free_performant_mode(struct ctlr_info *h)
9431 {
9432 	kfree(h->blockFetchTable);
9433 	h->blockFetchTable = NULL;
9434 	hpsa_free_reply_queues(h);
9435 	hpsa_free_ioaccel1_cmd_and_bft(h);
9436 	hpsa_free_ioaccel2_cmd_and_bft(h);
9437 }
9438 
9439 /* return -ENODEV on error, 0 on success (or no action)
9440  * allocates numerous items that must be freed later
9441  */
9442 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9443 {
9444 	u32 trans_support;
9445 	unsigned long transMethod = CFGTBL_Trans_Performant |
9446 					CFGTBL_Trans_use_short_tags;
9447 	int i, rc;
9448 
9449 	if (hpsa_simple_mode)
9450 		return 0;
9451 
9452 	trans_support = readl(&(h->cfgtable->TransportSupport));
9453 	if (!(trans_support & PERFORMANT_MODE))
9454 		return 0;
9455 
9456 	/* Check for I/O accelerator mode support */
9457 	if (trans_support & CFGTBL_Trans_io_accel1) {
9458 		transMethod |= CFGTBL_Trans_io_accel1 |
9459 				CFGTBL_Trans_enable_directed_msix;
9460 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9461 		if (rc)
9462 			return rc;
9463 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9464 		transMethod |= CFGTBL_Trans_io_accel2 |
9465 				CFGTBL_Trans_enable_directed_msix;
9466 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9467 		if (rc)
9468 			return rc;
9469 	}
9470 
9471 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9472 	hpsa_get_max_perf_mode_cmds(h);
9473 	/* Performant mode ring buffer and supporting data structures */
9474 	h->reply_queue_size = h->max_commands * sizeof(u64);
9475 
9476 	for (i = 0; i < h->nreply_queues; i++) {
9477 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9478 						h->reply_queue_size,
9479 						&h->reply_queue[i].busaddr,
9480 						GFP_KERNEL);
9481 		if (!h->reply_queue[i].head) {
9482 			rc = -ENOMEM;
9483 			goto clean1;	/* rq, ioaccel */
9484 		}
9485 		h->reply_queue[i].size = h->max_commands;
9486 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9487 		h->reply_queue[i].current_entry = 0;
9488 	}
9489 
9490 	/* Need a block fetch table for performant mode */
9491 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9492 				sizeof(u32)), GFP_KERNEL);
9493 	if (!h->blockFetchTable) {
9494 		rc = -ENOMEM;
9495 		goto clean1;	/* rq, ioaccel */
9496 	}
9497 
9498 	rc = hpsa_enter_performant_mode(h, trans_support);
9499 	if (rc)
9500 		goto clean2;	/* bft, rq, ioaccel */
9501 	return 0;
9502 
9503 clean2:	/* bft, rq, ioaccel */
9504 	kfree(h->blockFetchTable);
9505 	h->blockFetchTable = NULL;
9506 clean1:	/* rq, ioaccel */
9507 	hpsa_free_reply_queues(h);
9508 	hpsa_free_ioaccel1_cmd_and_bft(h);
9509 	hpsa_free_ioaccel2_cmd_and_bft(h);
9510 	return rc;
9511 }
9512 
9513 static int is_accelerated_cmd(struct CommandList *c)
9514 {
9515 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9516 }
9517 
9518 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9519 {
9520 	struct CommandList *c = NULL;
9521 	int i, accel_cmds_out;
9522 	int refcount;
9523 
9524 	do { /* wait for all outstanding ioaccel commands to drain out */
9525 		accel_cmds_out = 0;
9526 		for (i = 0; i < h->nr_cmds; i++) {
9527 			c = h->cmd_pool + i;
9528 			refcount = atomic_inc_return(&c->refcount);
9529 			if (refcount > 1) /* Command is allocated */
9530 				accel_cmds_out += is_accelerated_cmd(c);
9531 			cmd_free(h, c);
9532 		}
9533 		if (accel_cmds_out <= 0)
9534 			break;
9535 		msleep(100);
9536 	} while (1);
9537 }
9538 
9539 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9540 				struct hpsa_sas_port *hpsa_sas_port)
9541 {
9542 	struct hpsa_sas_phy *hpsa_sas_phy;
9543 	struct sas_phy *phy;
9544 
9545 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9546 	if (!hpsa_sas_phy)
9547 		return NULL;
9548 
9549 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9550 		hpsa_sas_port->next_phy_index);
9551 	if (!phy) {
9552 		kfree(hpsa_sas_phy);
9553 		return NULL;
9554 	}
9555 
9556 	hpsa_sas_port->next_phy_index++;
9557 	hpsa_sas_phy->phy = phy;
9558 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9559 
9560 	return hpsa_sas_phy;
9561 }
9562 
9563 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9564 {
9565 	struct sas_phy *phy = hpsa_sas_phy->phy;
9566 
9567 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9568 	if (hpsa_sas_phy->added_to_port)
9569 		list_del(&hpsa_sas_phy->phy_list_entry);
9570 	sas_phy_delete(phy);
9571 	kfree(hpsa_sas_phy);
9572 }
9573 
9574 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9575 {
9576 	int rc;
9577 	struct hpsa_sas_port *hpsa_sas_port;
9578 	struct sas_phy *phy;
9579 	struct sas_identify *identify;
9580 
9581 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9582 	phy = hpsa_sas_phy->phy;
9583 
9584 	identify = &phy->identify;
9585 	memset(identify, 0, sizeof(*identify));
9586 	identify->sas_address = hpsa_sas_port->sas_address;
9587 	identify->device_type = SAS_END_DEVICE;
9588 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9589 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9590 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9591 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9592 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9593 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9594 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9595 
9596 	rc = sas_phy_add(hpsa_sas_phy->phy);
9597 	if (rc)
9598 		return rc;
9599 
9600 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9601 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9602 			&hpsa_sas_port->phy_list_head);
9603 	hpsa_sas_phy->added_to_port = true;
9604 
9605 	return 0;
9606 }
9607 
9608 static int
9609 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9610 				struct sas_rphy *rphy)
9611 {
9612 	struct sas_identify *identify;
9613 
9614 	identify = &rphy->identify;
9615 	identify->sas_address = hpsa_sas_port->sas_address;
9616 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9617 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9618 
9619 	return sas_rphy_add(rphy);
9620 }
9621 
9622 static struct hpsa_sas_port
9623 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9624 				u64 sas_address)
9625 {
9626 	int rc;
9627 	struct hpsa_sas_port *hpsa_sas_port;
9628 	struct sas_port *port;
9629 
9630 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9631 	if (!hpsa_sas_port)
9632 		return NULL;
9633 
9634 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9635 	hpsa_sas_port->parent_node = hpsa_sas_node;
9636 
9637 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9638 	if (!port)
9639 		goto free_hpsa_port;
9640 
9641 	rc = sas_port_add(port);
9642 	if (rc)
9643 		goto free_sas_port;
9644 
9645 	hpsa_sas_port->port = port;
9646 	hpsa_sas_port->sas_address = sas_address;
9647 	list_add_tail(&hpsa_sas_port->port_list_entry,
9648 			&hpsa_sas_node->port_list_head);
9649 
9650 	return hpsa_sas_port;
9651 
9652 free_sas_port:
9653 	sas_port_free(port);
9654 free_hpsa_port:
9655 	kfree(hpsa_sas_port);
9656 
9657 	return NULL;
9658 }
9659 
9660 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9661 {
9662 	struct hpsa_sas_phy *hpsa_sas_phy;
9663 	struct hpsa_sas_phy *next;
9664 
9665 	list_for_each_entry_safe(hpsa_sas_phy, next,
9666 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9667 		hpsa_free_sas_phy(hpsa_sas_phy);
9668 
9669 	sas_port_delete(hpsa_sas_port->port);
9670 	list_del(&hpsa_sas_port->port_list_entry);
9671 	kfree(hpsa_sas_port);
9672 }
9673 
9674 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9675 {
9676 	struct hpsa_sas_node *hpsa_sas_node;
9677 
9678 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9679 	if (hpsa_sas_node) {
9680 		hpsa_sas_node->parent_dev = parent_dev;
9681 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9682 	}
9683 
9684 	return hpsa_sas_node;
9685 }
9686 
9687 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9688 {
9689 	struct hpsa_sas_port *hpsa_sas_port;
9690 	struct hpsa_sas_port *next;
9691 
9692 	if (!hpsa_sas_node)
9693 		return;
9694 
9695 	list_for_each_entry_safe(hpsa_sas_port, next,
9696 			&hpsa_sas_node->port_list_head, port_list_entry)
9697 		hpsa_free_sas_port(hpsa_sas_port);
9698 
9699 	kfree(hpsa_sas_node);
9700 }
9701 
9702 static struct hpsa_scsi_dev_t
9703 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9704 					struct sas_rphy *rphy)
9705 {
9706 	int i;
9707 	struct hpsa_scsi_dev_t *device;
9708 
9709 	for (i = 0; i < h->ndevices; i++) {
9710 		device = h->dev[i];
9711 		if (!device->sas_port)
9712 			continue;
9713 		if (device->sas_port->rphy == rphy)
9714 			return device;
9715 	}
9716 
9717 	return NULL;
9718 }
9719 
9720 static int hpsa_add_sas_host(struct ctlr_info *h)
9721 {
9722 	int rc;
9723 	struct device *parent_dev;
9724 	struct hpsa_sas_node *hpsa_sas_node;
9725 	struct hpsa_sas_port *hpsa_sas_port;
9726 	struct hpsa_sas_phy *hpsa_sas_phy;
9727 
9728 	parent_dev = &h->scsi_host->shost_dev;
9729 
9730 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9731 	if (!hpsa_sas_node)
9732 		return -ENOMEM;
9733 
9734 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9735 	if (!hpsa_sas_port) {
9736 		rc = -ENODEV;
9737 		goto free_sas_node;
9738 	}
9739 
9740 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9741 	if (!hpsa_sas_phy) {
9742 		rc = -ENODEV;
9743 		goto free_sas_port;
9744 	}
9745 
9746 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9747 	if (rc)
9748 		goto free_sas_phy;
9749 
9750 	h->sas_host = hpsa_sas_node;
9751 
9752 	return 0;
9753 
9754 free_sas_phy:
9755 	hpsa_free_sas_phy(hpsa_sas_phy);
9756 free_sas_port:
9757 	hpsa_free_sas_port(hpsa_sas_port);
9758 free_sas_node:
9759 	hpsa_free_sas_node(hpsa_sas_node);
9760 
9761 	return rc;
9762 }
9763 
9764 static void hpsa_delete_sas_host(struct ctlr_info *h)
9765 {
9766 	hpsa_free_sas_node(h->sas_host);
9767 }
9768 
9769 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9770 				struct hpsa_scsi_dev_t *device)
9771 {
9772 	int rc;
9773 	struct hpsa_sas_port *hpsa_sas_port;
9774 	struct sas_rphy *rphy;
9775 
9776 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9777 	if (!hpsa_sas_port)
9778 		return -ENOMEM;
9779 
9780 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9781 	if (!rphy) {
9782 		rc = -ENODEV;
9783 		goto free_sas_port;
9784 	}
9785 
9786 	hpsa_sas_port->rphy = rphy;
9787 	device->sas_port = hpsa_sas_port;
9788 
9789 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9790 	if (rc)
9791 		goto free_sas_port;
9792 
9793 	return 0;
9794 
9795 free_sas_port:
9796 	hpsa_free_sas_port(hpsa_sas_port);
9797 	device->sas_port = NULL;
9798 
9799 	return rc;
9800 }
9801 
9802 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9803 {
9804 	if (device->sas_port) {
9805 		hpsa_free_sas_port(device->sas_port);
9806 		device->sas_port = NULL;
9807 	}
9808 }
9809 
9810 static int
9811 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9812 {
9813 	return 0;
9814 }
9815 
9816 static int
9817 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9818 {
9819 	struct Scsi_Host *shost = phy_to_shost(rphy);
9820 	struct ctlr_info *h;
9821 	struct hpsa_scsi_dev_t *sd;
9822 
9823 	if (!shost)
9824 		return -ENXIO;
9825 
9826 	h = shost_to_hba(shost);
9827 
9828 	if (!h)
9829 		return -ENXIO;
9830 
9831 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9832 	if (!sd)
9833 		return -ENXIO;
9834 
9835 	*identifier = sd->eli;
9836 
9837 	return 0;
9838 }
9839 
9840 static int
9841 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9842 {
9843 	return -ENXIO;
9844 }
9845 
9846 static int
9847 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9848 {
9849 	return 0;
9850 }
9851 
9852 static int
9853 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9854 {
9855 	return 0;
9856 }
9857 
9858 static int
9859 hpsa_sas_phy_setup(struct sas_phy *phy)
9860 {
9861 	return 0;
9862 }
9863 
9864 static void
9865 hpsa_sas_phy_release(struct sas_phy *phy)
9866 {
9867 }
9868 
9869 static int
9870 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9871 {
9872 	return -EINVAL;
9873 }
9874 
9875 static struct sas_function_template hpsa_sas_transport_functions = {
9876 	.get_linkerrors = hpsa_sas_get_linkerrors,
9877 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9878 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9879 	.phy_reset = hpsa_sas_phy_reset,
9880 	.phy_enable = hpsa_sas_phy_enable,
9881 	.phy_setup = hpsa_sas_phy_setup,
9882 	.phy_release = hpsa_sas_phy_release,
9883 	.set_phy_speed = hpsa_sas_phy_speed,
9884 };
9885 
9886 /*
9887  *  This is it.  Register the PCI driver information for the cards we control
9888  *  the OS will call our registered routines when it finds one of our cards.
9889  */
9890 static int __init hpsa_init(void)
9891 {
9892 	int rc;
9893 
9894 	hpsa_sas_transport_template =
9895 		sas_attach_transport(&hpsa_sas_transport_functions);
9896 	if (!hpsa_sas_transport_template)
9897 		return -ENODEV;
9898 
9899 	rc = pci_register_driver(&hpsa_pci_driver);
9900 
9901 	if (rc)
9902 		sas_release_transport(hpsa_sas_transport_template);
9903 
9904 	return rc;
9905 }
9906 
9907 static void __exit hpsa_cleanup(void)
9908 {
9909 	pci_unregister_driver(&hpsa_pci_driver);
9910 	sas_release_transport(hpsa_sas_transport_template);
9911 }
9912 
9913 static void __attribute__((unused)) verify_offsets(void)
9914 {
9915 #define VERIFY_OFFSET(member, offset) \
9916 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9917 
9918 	VERIFY_OFFSET(structure_size, 0);
9919 	VERIFY_OFFSET(volume_blk_size, 4);
9920 	VERIFY_OFFSET(volume_blk_cnt, 8);
9921 	VERIFY_OFFSET(phys_blk_shift, 16);
9922 	VERIFY_OFFSET(parity_rotation_shift, 17);
9923 	VERIFY_OFFSET(strip_size, 18);
9924 	VERIFY_OFFSET(disk_starting_blk, 20);
9925 	VERIFY_OFFSET(disk_blk_cnt, 28);
9926 	VERIFY_OFFSET(data_disks_per_row, 36);
9927 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9928 	VERIFY_OFFSET(row_cnt, 40);
9929 	VERIFY_OFFSET(layout_map_count, 42);
9930 	VERIFY_OFFSET(flags, 44);
9931 	VERIFY_OFFSET(dekindex, 46);
9932 	/* VERIFY_OFFSET(reserved, 48 */
9933 	VERIFY_OFFSET(data, 64);
9934 
9935 #undef VERIFY_OFFSET
9936 
9937 #define VERIFY_OFFSET(member, offset) \
9938 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9939 
9940 	VERIFY_OFFSET(IU_type, 0);
9941 	VERIFY_OFFSET(direction, 1);
9942 	VERIFY_OFFSET(reply_queue, 2);
9943 	/* VERIFY_OFFSET(reserved1, 3);  */
9944 	VERIFY_OFFSET(scsi_nexus, 4);
9945 	VERIFY_OFFSET(Tag, 8);
9946 	VERIFY_OFFSET(cdb, 16);
9947 	VERIFY_OFFSET(cciss_lun, 32);
9948 	VERIFY_OFFSET(data_len, 40);
9949 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9950 	VERIFY_OFFSET(sg_count, 45);
9951 	/* VERIFY_OFFSET(reserved3 */
9952 	VERIFY_OFFSET(err_ptr, 48);
9953 	VERIFY_OFFSET(err_len, 56);
9954 	/* VERIFY_OFFSET(reserved4  */
9955 	VERIFY_OFFSET(sg, 64);
9956 
9957 #undef VERIFY_OFFSET
9958 
9959 #define VERIFY_OFFSET(member, offset) \
9960 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9961 
9962 	VERIFY_OFFSET(dev_handle, 0x00);
9963 	VERIFY_OFFSET(reserved1, 0x02);
9964 	VERIFY_OFFSET(function, 0x03);
9965 	VERIFY_OFFSET(reserved2, 0x04);
9966 	VERIFY_OFFSET(err_info, 0x0C);
9967 	VERIFY_OFFSET(reserved3, 0x10);
9968 	VERIFY_OFFSET(err_info_len, 0x12);
9969 	VERIFY_OFFSET(reserved4, 0x13);
9970 	VERIFY_OFFSET(sgl_offset, 0x14);
9971 	VERIFY_OFFSET(reserved5, 0x15);
9972 	VERIFY_OFFSET(transfer_len, 0x1C);
9973 	VERIFY_OFFSET(reserved6, 0x20);
9974 	VERIFY_OFFSET(io_flags, 0x24);
9975 	VERIFY_OFFSET(reserved7, 0x26);
9976 	VERIFY_OFFSET(LUN, 0x34);
9977 	VERIFY_OFFSET(control, 0x3C);
9978 	VERIFY_OFFSET(CDB, 0x40);
9979 	VERIFY_OFFSET(reserved8, 0x50);
9980 	VERIFY_OFFSET(host_context_flags, 0x60);
9981 	VERIFY_OFFSET(timeout_sec, 0x62);
9982 	VERIFY_OFFSET(ReplyQueue, 0x64);
9983 	VERIFY_OFFSET(reserved9, 0x65);
9984 	VERIFY_OFFSET(tag, 0x68);
9985 	VERIFY_OFFSET(host_addr, 0x70);
9986 	VERIFY_OFFSET(CISS_LUN, 0x78);
9987 	VERIFY_OFFSET(SG, 0x78 + 8);
9988 #undef VERIFY_OFFSET
9989 }
9990 
9991 module_init(hpsa_init);
9992 module_exit(hpsa_cleanup);
9993