xref: /openbmc/linux/drivers/scsi/hpsa.c (revision d2999e1b)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu.h>
52 #include <asm/div64.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.4-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
128 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
134 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135 	{0,}
136 };
137 
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
139 
140 /*  board_id = Subsystem Device ID & Vendor ID
141  *  product = Marketing Name for the board
142  *  access = Address of the struct of function pointers
143  */
144 static struct board_type products[] = {
145 	{0x3241103C, "Smart Array P212", &SA5_access},
146 	{0x3243103C, "Smart Array P410", &SA5_access},
147 	{0x3245103C, "Smart Array P410i", &SA5_access},
148 	{0x3247103C, "Smart Array P411", &SA5_access},
149 	{0x3249103C, "Smart Array P812", &SA5_access},
150 	{0x324A103C, "Smart Array P712m", &SA5_access},
151 	{0x324B103C, "Smart Array P711m", &SA5_access},
152 	{0x3350103C, "Smart Array P222", &SA5_access},
153 	{0x3351103C, "Smart Array P420", &SA5_access},
154 	{0x3352103C, "Smart Array P421", &SA5_access},
155 	{0x3353103C, "Smart Array P822", &SA5_access},
156 	{0x3354103C, "Smart Array P420i", &SA5_access},
157 	{0x3355103C, "Smart Array P220i", &SA5_access},
158 	{0x3356103C, "Smart Array P721m", &SA5_access},
159 	{0x1921103C, "Smart Array P830i", &SA5_access},
160 	{0x1922103C, "Smart Array P430", &SA5_access},
161 	{0x1923103C, "Smart Array P431", &SA5_access},
162 	{0x1924103C, "Smart Array P830", &SA5_access},
163 	{0x1926103C, "Smart Array P731m", &SA5_access},
164 	{0x1928103C, "Smart Array P230i", &SA5_access},
165 	{0x1929103C, "Smart Array P530", &SA5_access},
166 	{0x21BD103C, "Smart Array", &SA5_access},
167 	{0x21BE103C, "Smart Array", &SA5_access},
168 	{0x21BF103C, "Smart Array", &SA5_access},
169 	{0x21C0103C, "Smart Array", &SA5_access},
170 	{0x21C1103C, "Smart Array", &SA5_access},
171 	{0x21C2103C, "Smart Array", &SA5_access},
172 	{0x21C3103C, "Smart Array", &SA5_access},
173 	{0x21C4103C, "Smart Array", &SA5_access},
174 	{0x21C5103C, "Smart Array", &SA5_access},
175 	{0x21C6103C, "Smart Array", &SA5_access},
176 	{0x21C7103C, "Smart Array", &SA5_access},
177 	{0x21C8103C, "Smart Array", &SA5_access},
178 	{0x21C9103C, "Smart Array", &SA5_access},
179 	{0x21CA103C, "Smart Array", &SA5_access},
180 	{0x21CB103C, "Smart Array", &SA5_access},
181 	{0x21CC103C, "Smart Array", &SA5_access},
182 	{0x21CD103C, "Smart Array", &SA5_access},
183 	{0x21CE103C, "Smart Array", &SA5_access},
184 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
185 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
186 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
187 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
188 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
189 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
190 };
191 
192 static int number_of_controllers;
193 
194 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
195 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
196 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
197 static void lock_and_start_io(struct ctlr_info *h);
198 static void start_io(struct ctlr_info *h, unsigned long *flags);
199 
200 #ifdef CONFIG_COMPAT
201 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
202 #endif
203 
204 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
205 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
206 static struct CommandList *cmd_alloc(struct ctlr_info *h);
207 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
208 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
209 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
210 	int cmd_type);
211 #define VPD_PAGE (1 << 8)
212 
213 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 static void hpsa_scan_start(struct Scsi_Host *);
215 static int hpsa_scan_finished(struct Scsi_Host *sh,
216 	unsigned long elapsed_time);
217 static int hpsa_change_queue_depth(struct scsi_device *sdev,
218 	int qdepth, int reason);
219 
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_slave_alloc(struct scsi_device *sdev);
223 static void hpsa_slave_destroy(struct scsi_device *sdev);
224 
225 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
226 static int check_for_unit_attention(struct ctlr_info *h,
227 	struct CommandList *c);
228 static void check_ioctl_unit_attention(struct ctlr_info *h,
229 	struct CommandList *c);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket, int num_buckets,
232 	int nsgs, int min_blocks, int *bucket_map);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
234 static inline u32 next_command(struct ctlr_info *h, u8 q);
235 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
236 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
237 			       u64 *cfg_offset);
238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
239 				    unsigned long *memory_bar);
240 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
241 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
242 				     int wait_for_ready);
243 static inline void finish_cmd(struct CommandList *c);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info *h);
248 static void hpsa_flush_cache(struct ctlr_info *h);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
250 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
251 	u8 *scsi3addr);
252 
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255 	unsigned long *priv = shost_priv(sdev->host);
256 	return (struct ctlr_info *) *priv;
257 }
258 
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261 	unsigned long *priv = shost_priv(sh);
262 	return (struct ctlr_info *) *priv;
263 }
264 
265 static int check_for_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c)
267 {
268 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269 		return 0;
270 
271 	switch (c->err_info->SenseInfo[12]) {
272 	case STATE_CHANGED:
273 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 			"detected, command retried\n", h->ctlr);
275 		break;
276 	case LUN_FAILED:
277 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
278 			"detected, action required\n", h->ctlr);
279 		break;
280 	case REPORT_LUNS_CHANGED:
281 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
282 			"changed, action required\n", h->ctlr);
283 	/*
284 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 	 * target (array) devices.
286 	 */
287 		break;
288 	case POWER_OR_RESET:
289 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 			"or device reset detected\n", h->ctlr);
291 		break;
292 	case UNIT_ATTENTION_CLEARED:
293 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 		    "cleared by another initiator\n", h->ctlr);
295 		break;
296 	default:
297 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 			"unit attention detected\n", h->ctlr);
299 		break;
300 	}
301 	return 1;
302 }
303 
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309 		return 0;
310 	dev_warn(&h->pdev->dev, HPSA "device busy");
311 	return 1;
312 }
313 
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 					 struct device_attribute *attr,
316 					 const char *buf, size_t count)
317 {
318 	int status, len;
319 	struct ctlr_info *h;
320 	struct Scsi_Host *shost = class_to_shost(dev);
321 	char tmpbuf[10];
322 
323 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324 		return -EACCES;
325 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 	strncpy(tmpbuf, buf, len);
327 	tmpbuf[len] = '\0';
328 	if (sscanf(tmpbuf, "%d", &status) != 1)
329 		return -EINVAL;
330 	h = shost_to_hba(shost);
331 	h->acciopath_status = !!status;
332 	dev_warn(&h->pdev->dev,
333 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 		h->acciopath_status ? "enabled" : "disabled");
335 	return count;
336 }
337 
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 					 struct device_attribute *attr,
340 					 const char *buf, size_t count)
341 {
342 	int debug_level, len;
343 	struct ctlr_info *h;
344 	struct Scsi_Host *shost = class_to_shost(dev);
345 	char tmpbuf[10];
346 
347 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348 		return -EACCES;
349 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 	strncpy(tmpbuf, buf, len);
351 	tmpbuf[len] = '\0';
352 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353 		return -EINVAL;
354 	if (debug_level < 0)
355 		debug_level = 0;
356 	h = shost_to_hba(shost);
357 	h->raid_offload_debug = debug_level;
358 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 		h->raid_offload_debug);
360 	return count;
361 }
362 
363 static ssize_t host_store_rescan(struct device *dev,
364 				 struct device_attribute *attr,
365 				 const char *buf, size_t count)
366 {
367 	struct ctlr_info *h;
368 	struct Scsi_Host *shost = class_to_shost(dev);
369 	h = shost_to_hba(shost);
370 	hpsa_scan_start(h->scsi_host);
371 	return count;
372 }
373 
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 	     struct device_attribute *attr, char *buf)
376 {
377 	struct ctlr_info *h;
378 	struct Scsi_Host *shost = class_to_shost(dev);
379 	unsigned char *fwrev;
380 
381 	h = shost_to_hba(shost);
382 	if (!h->hba_inquiry_data)
383 		return 0;
384 	fwrev = &h->hba_inquiry_data[32];
385 	return snprintf(buf, 20, "%c%c%c%c\n",
386 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388 
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 	     struct device_attribute *attr, char *buf)
391 {
392 	struct Scsi_Host *shost = class_to_shost(dev);
393 	struct ctlr_info *h = shost_to_hba(shost);
394 
395 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
396 }
397 
398 static ssize_t host_show_transport_mode(struct device *dev,
399 	struct device_attribute *attr, char *buf)
400 {
401 	struct ctlr_info *h;
402 	struct Scsi_Host *shost = class_to_shost(dev);
403 
404 	h = shost_to_hba(shost);
405 	return snprintf(buf, 20, "%s\n",
406 		h->transMethod & CFGTBL_Trans_Performant ?
407 			"performant" : "simple");
408 }
409 
410 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
411 	struct device_attribute *attr, char *buf)
412 {
413 	struct ctlr_info *h;
414 	struct Scsi_Host *shost = class_to_shost(dev);
415 
416 	h = shost_to_hba(shost);
417 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
418 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
419 }
420 
421 /* List of controllers which cannot be hard reset on kexec with reset_devices */
422 static u32 unresettable_controller[] = {
423 	0x324a103C, /* Smart Array P712m */
424 	0x324b103C, /* SmartArray P711m */
425 	0x3223103C, /* Smart Array P800 */
426 	0x3234103C, /* Smart Array P400 */
427 	0x3235103C, /* Smart Array P400i */
428 	0x3211103C, /* Smart Array E200i */
429 	0x3212103C, /* Smart Array E200 */
430 	0x3213103C, /* Smart Array E200i */
431 	0x3214103C, /* Smart Array E200i */
432 	0x3215103C, /* Smart Array E200i */
433 	0x3237103C, /* Smart Array E500 */
434 	0x323D103C, /* Smart Array P700m */
435 	0x40800E11, /* Smart Array 5i */
436 	0x409C0E11, /* Smart Array 6400 */
437 	0x409D0E11, /* Smart Array 6400 EM */
438 	0x40700E11, /* Smart Array 5300 */
439 	0x40820E11, /* Smart Array 532 */
440 	0x40830E11, /* Smart Array 5312 */
441 	0x409A0E11, /* Smart Array 641 */
442 	0x409B0E11, /* Smart Array 642 */
443 	0x40910E11, /* Smart Array 6i */
444 };
445 
446 /* List of controllers which cannot even be soft reset */
447 static u32 soft_unresettable_controller[] = {
448 	0x40800E11, /* Smart Array 5i */
449 	0x40700E11, /* Smart Array 5300 */
450 	0x40820E11, /* Smart Array 532 */
451 	0x40830E11, /* Smart Array 5312 */
452 	0x409A0E11, /* Smart Array 641 */
453 	0x409B0E11, /* Smart Array 642 */
454 	0x40910E11, /* Smart Array 6i */
455 	/* Exclude 640x boards.  These are two pci devices in one slot
456 	 * which share a battery backed cache module.  One controls the
457 	 * cache, the other accesses the cache through the one that controls
458 	 * it.  If we reset the one controlling the cache, the other will
459 	 * likely not be happy.  Just forbid resetting this conjoined mess.
460 	 * The 640x isn't really supported by hpsa anyway.
461 	 */
462 	0x409C0E11, /* Smart Array 6400 */
463 	0x409D0E11, /* Smart Array 6400 EM */
464 };
465 
466 static int ctlr_is_hard_resettable(u32 board_id)
467 {
468 	int i;
469 
470 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
471 		if (unresettable_controller[i] == board_id)
472 			return 0;
473 	return 1;
474 }
475 
476 static int ctlr_is_soft_resettable(u32 board_id)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
481 		if (soft_unresettable_controller[i] == board_id)
482 			return 0;
483 	return 1;
484 }
485 
486 static int ctlr_is_resettable(u32 board_id)
487 {
488 	return ctlr_is_hard_resettable(board_id) ||
489 		ctlr_is_soft_resettable(board_id);
490 }
491 
492 static ssize_t host_show_resettable(struct device *dev,
493 	struct device_attribute *attr, char *buf)
494 {
495 	struct ctlr_info *h;
496 	struct Scsi_Host *shost = class_to_shost(dev);
497 
498 	h = shost_to_hba(shost);
499 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
500 }
501 
502 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
503 {
504 	return (scsi3addr[3] & 0xC0) == 0x40;
505 }
506 
507 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
508 	"1(ADM)", "UNKNOWN"
509 };
510 #define HPSA_RAID_0	0
511 #define HPSA_RAID_4	1
512 #define HPSA_RAID_1	2	/* also used for RAID 10 */
513 #define HPSA_RAID_5	3	/* also used for RAID 50 */
514 #define HPSA_RAID_51	4
515 #define HPSA_RAID_6	5	/* also used for RAID 60 */
516 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
517 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
518 
519 static ssize_t raid_level_show(struct device *dev,
520 	     struct device_attribute *attr, char *buf)
521 {
522 	ssize_t l = 0;
523 	unsigned char rlevel;
524 	struct ctlr_info *h;
525 	struct scsi_device *sdev;
526 	struct hpsa_scsi_dev_t *hdev;
527 	unsigned long flags;
528 
529 	sdev = to_scsi_device(dev);
530 	h = sdev_to_hba(sdev);
531 	spin_lock_irqsave(&h->lock, flags);
532 	hdev = sdev->hostdata;
533 	if (!hdev) {
534 		spin_unlock_irqrestore(&h->lock, flags);
535 		return -ENODEV;
536 	}
537 
538 	/* Is this even a logical drive? */
539 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
540 		spin_unlock_irqrestore(&h->lock, flags);
541 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
542 		return l;
543 	}
544 
545 	rlevel = hdev->raid_level;
546 	spin_unlock_irqrestore(&h->lock, flags);
547 	if (rlevel > RAID_UNKNOWN)
548 		rlevel = RAID_UNKNOWN;
549 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
550 	return l;
551 }
552 
553 static ssize_t lunid_show(struct device *dev,
554 	     struct device_attribute *attr, char *buf)
555 {
556 	struct ctlr_info *h;
557 	struct scsi_device *sdev;
558 	struct hpsa_scsi_dev_t *hdev;
559 	unsigned long flags;
560 	unsigned char lunid[8];
561 
562 	sdev = to_scsi_device(dev);
563 	h = sdev_to_hba(sdev);
564 	spin_lock_irqsave(&h->lock, flags);
565 	hdev = sdev->hostdata;
566 	if (!hdev) {
567 		spin_unlock_irqrestore(&h->lock, flags);
568 		return -ENODEV;
569 	}
570 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
571 	spin_unlock_irqrestore(&h->lock, flags);
572 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
573 		lunid[0], lunid[1], lunid[2], lunid[3],
574 		lunid[4], lunid[5], lunid[6], lunid[7]);
575 }
576 
577 static ssize_t unique_id_show(struct device *dev,
578 	     struct device_attribute *attr, char *buf)
579 {
580 	struct ctlr_info *h;
581 	struct scsi_device *sdev;
582 	struct hpsa_scsi_dev_t *hdev;
583 	unsigned long flags;
584 	unsigned char sn[16];
585 
586 	sdev = to_scsi_device(dev);
587 	h = sdev_to_hba(sdev);
588 	spin_lock_irqsave(&h->lock, flags);
589 	hdev = sdev->hostdata;
590 	if (!hdev) {
591 		spin_unlock_irqrestore(&h->lock, flags);
592 		return -ENODEV;
593 	}
594 	memcpy(sn, hdev->device_id, sizeof(sn));
595 	spin_unlock_irqrestore(&h->lock, flags);
596 	return snprintf(buf, 16 * 2 + 2,
597 			"%02X%02X%02X%02X%02X%02X%02X%02X"
598 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
599 			sn[0], sn[1], sn[2], sn[3],
600 			sn[4], sn[5], sn[6], sn[7],
601 			sn[8], sn[9], sn[10], sn[11],
602 			sn[12], sn[13], sn[14], sn[15]);
603 }
604 
605 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
606 	     struct device_attribute *attr, char *buf)
607 {
608 	struct ctlr_info *h;
609 	struct scsi_device *sdev;
610 	struct hpsa_scsi_dev_t *hdev;
611 	unsigned long flags;
612 	int offload_enabled;
613 
614 	sdev = to_scsi_device(dev);
615 	h = sdev_to_hba(sdev);
616 	spin_lock_irqsave(&h->lock, flags);
617 	hdev = sdev->hostdata;
618 	if (!hdev) {
619 		spin_unlock_irqrestore(&h->lock, flags);
620 		return -ENODEV;
621 	}
622 	offload_enabled = hdev->offload_enabled;
623 	spin_unlock_irqrestore(&h->lock, flags);
624 	return snprintf(buf, 20, "%d\n", offload_enabled);
625 }
626 
627 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
628 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
629 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
630 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
631 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
632 			host_show_hp_ssd_smart_path_enabled, NULL);
633 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
634 		host_show_hp_ssd_smart_path_status,
635 		host_store_hp_ssd_smart_path_status);
636 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
637 			host_store_raid_offload_debug);
638 static DEVICE_ATTR(firmware_revision, S_IRUGO,
639 	host_show_firmware_revision, NULL);
640 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
641 	host_show_commands_outstanding, NULL);
642 static DEVICE_ATTR(transport_mode, S_IRUGO,
643 	host_show_transport_mode, NULL);
644 static DEVICE_ATTR(resettable, S_IRUGO,
645 	host_show_resettable, NULL);
646 
647 static struct device_attribute *hpsa_sdev_attrs[] = {
648 	&dev_attr_raid_level,
649 	&dev_attr_lunid,
650 	&dev_attr_unique_id,
651 	&dev_attr_hp_ssd_smart_path_enabled,
652 	NULL,
653 };
654 
655 static struct device_attribute *hpsa_shost_attrs[] = {
656 	&dev_attr_rescan,
657 	&dev_attr_firmware_revision,
658 	&dev_attr_commands_outstanding,
659 	&dev_attr_transport_mode,
660 	&dev_attr_resettable,
661 	&dev_attr_hp_ssd_smart_path_status,
662 	&dev_attr_raid_offload_debug,
663 	NULL,
664 };
665 
666 static struct scsi_host_template hpsa_driver_template = {
667 	.module			= THIS_MODULE,
668 	.name			= HPSA,
669 	.proc_name		= HPSA,
670 	.queuecommand		= hpsa_scsi_queue_command,
671 	.scan_start		= hpsa_scan_start,
672 	.scan_finished		= hpsa_scan_finished,
673 	.change_queue_depth	= hpsa_change_queue_depth,
674 	.this_id		= -1,
675 	.use_clustering		= ENABLE_CLUSTERING,
676 	.eh_abort_handler	= hpsa_eh_abort_handler,
677 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
678 	.ioctl			= hpsa_ioctl,
679 	.slave_alloc		= hpsa_slave_alloc,
680 	.slave_destroy		= hpsa_slave_destroy,
681 #ifdef CONFIG_COMPAT
682 	.compat_ioctl		= hpsa_compat_ioctl,
683 #endif
684 	.sdev_attrs = hpsa_sdev_attrs,
685 	.shost_attrs = hpsa_shost_attrs,
686 	.max_sectors = 8192,
687 	.no_write_same = 1,
688 };
689 
690 
691 /* Enqueuing and dequeuing functions for cmdlists. */
692 static inline void addQ(struct list_head *list, struct CommandList *c)
693 {
694 	list_add_tail(&c->list, list);
695 }
696 
697 static inline u32 next_command(struct ctlr_info *h, u8 q)
698 {
699 	u32 a;
700 	struct reply_queue_buffer *rq = &h->reply_queue[q];
701 	unsigned long flags;
702 
703 	if (h->transMethod & CFGTBL_Trans_io_accel1)
704 		return h->access.command_completed(h, q);
705 
706 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
707 		return h->access.command_completed(h, q);
708 
709 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
710 		a = rq->head[rq->current_entry];
711 		rq->current_entry++;
712 		spin_lock_irqsave(&h->lock, flags);
713 		h->commands_outstanding--;
714 		spin_unlock_irqrestore(&h->lock, flags);
715 	} else {
716 		a = FIFO_EMPTY;
717 	}
718 	/* Check for wraparound */
719 	if (rq->current_entry == h->max_commands) {
720 		rq->current_entry = 0;
721 		rq->wraparound ^= 1;
722 	}
723 	return a;
724 }
725 
726 /*
727  * There are some special bits in the bus address of the
728  * command that we have to set for the controller to know
729  * how to process the command:
730  *
731  * Normal performant mode:
732  * bit 0: 1 means performant mode, 0 means simple mode.
733  * bits 1-3 = block fetch table entry
734  * bits 4-6 = command type (== 0)
735  *
736  * ioaccel1 mode:
737  * bit 0 = "performant mode" bit.
738  * bits 1-3 = block fetch table entry
739  * bits 4-6 = command type (== 110)
740  * (command type is needed because ioaccel1 mode
741  * commands are submitted through the same register as normal
742  * mode commands, so this is how the controller knows whether
743  * the command is normal mode or ioaccel1 mode.)
744  *
745  * ioaccel2 mode:
746  * bit 0 = "performant mode" bit.
747  * bits 1-4 = block fetch table entry (note extra bit)
748  * bits 4-6 = not needed, because ioaccel2 mode has
749  * a separate special register for submitting commands.
750  */
751 
752 /* set_performant_mode: Modify the tag for cciss performant
753  * set bit 0 for pull model, bits 3-1 for block fetch
754  * register number
755  */
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
757 {
758 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760 		if (likely(h->msix_vector > 0))
761 			c->Header.ReplyQueue =
762 				raw_smp_processor_id() % h->nreply_queues;
763 	}
764 }
765 
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 						struct CommandList *c)
768 {
769 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
770 
771 	/* Tell the controller to post the reply to the queue for this
772 	 * processor.  This seems to give the best I/O throughput.
773 	 */
774 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 	/* Set the bits in the address sent down to include:
776 	 *  - performant mode bit (bit 0)
777 	 *  - pull count (bits 1-3)
778 	 *  - command type (bits 4-6)
779 	 */
780 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 					IOACCEL1_BUSADDR_CMDTYPE;
782 }
783 
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 						struct CommandList *c)
786 {
787 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
788 
789 	/* Tell the controller to post the reply to the queue for this
790 	 * processor.  This seems to give the best I/O throughput.
791 	 */
792 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 	/* Set the bits in the address sent down to include:
794 	 *  - performant mode bit not used in ioaccel mode 2
795 	 *  - pull count (bits 0-3)
796 	 *  - command type isn't needed for ioaccel2
797 	 */
798 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799 }
800 
801 static int is_firmware_flash_cmd(u8 *cdb)
802 {
803 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
804 }
805 
806 /*
807  * During firmware flash, the heartbeat register may not update as frequently
808  * as it should.  So we dial down lockup detection during firmware flash. and
809  * dial it back up when firmware flash completes.
810  */
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 		struct CommandList *c)
815 {
816 	if (!is_firmware_flash_cmd(c->Request.CDB))
817 		return;
818 	atomic_inc(&h->firmware_flash_in_progress);
819 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820 }
821 
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 		struct CommandList *c)
824 {
825 	if (is_firmware_flash_cmd(c->Request.CDB) &&
826 		atomic_dec_and_test(&h->firmware_flash_in_progress))
827 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828 }
829 
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 	struct CommandList *c)
832 {
833 	unsigned long flags;
834 
835 	switch (c->cmd_type) {
836 	case CMD_IOACCEL1:
837 		set_ioaccel1_performant_mode(h, c);
838 		break;
839 	case CMD_IOACCEL2:
840 		set_ioaccel2_performant_mode(h, c);
841 		break;
842 	default:
843 		set_performant_mode(h, c);
844 	}
845 	dial_down_lockup_detection_during_fw_flash(h, c);
846 	spin_lock_irqsave(&h->lock, flags);
847 	addQ(&h->reqQ, c);
848 	h->Qdepth++;
849 	start_io(h, &flags);
850 	spin_unlock_irqrestore(&h->lock, flags);
851 }
852 
853 static inline void removeQ(struct CommandList *c)
854 {
855 	if (WARN_ON(list_empty(&c->list)))
856 		return;
857 	list_del_init(&c->list);
858 }
859 
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
861 {
862 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863 }
864 
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
866 {
867 	if (!h->hba_inquiry_data)
868 		return 0;
869 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
870 		return 1;
871 	return 0;
872 }
873 
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875 	unsigned char scsi3addr[], int bus, int *target, int *lun)
876 {
877 	/* finds an unused bus, target, lun for a new physical device
878 	 * assumes h->devlock is held
879 	 */
880 	int i, found = 0;
881 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
882 
883 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
884 
885 	for (i = 0; i < h->ndevices; i++) {
886 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887 			__set_bit(h->dev[i]->target, lun_taken);
888 	}
889 
890 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 	if (i < HPSA_MAX_DEVICES) {
892 		/* *bus = 1; */
893 		*target = i;
894 		*lun = 0;
895 		found = 1;
896 	}
897 	return !found;
898 }
899 
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 		struct hpsa_scsi_dev_t *device,
903 		struct hpsa_scsi_dev_t *added[], int *nadded)
904 {
905 	/* assumes h->devlock is held */
906 	int n = h->ndevices;
907 	int i;
908 	unsigned char addr1[8], addr2[8];
909 	struct hpsa_scsi_dev_t *sd;
910 
911 	if (n >= HPSA_MAX_DEVICES) {
912 		dev_err(&h->pdev->dev, "too many devices, some will be "
913 			"inaccessible.\n");
914 		return -1;
915 	}
916 
917 	/* physical devices do not have lun or target assigned until now. */
918 	if (device->lun != -1)
919 		/* Logical device, lun is already assigned. */
920 		goto lun_assigned;
921 
922 	/* If this device a non-zero lun of a multi-lun device
923 	 * byte 4 of the 8-byte LUN addr will contain the logical
924 	 * unit no, zero otherise.
925 	 */
926 	if (device->scsi3addr[4] == 0) {
927 		/* This is not a non-zero lun of a multi-lun device */
928 		if (hpsa_find_target_lun(h, device->scsi3addr,
929 			device->bus, &device->target, &device->lun) != 0)
930 			return -1;
931 		goto lun_assigned;
932 	}
933 
934 	/* This is a non-zero lun of a multi-lun device.
935 	 * Search through our list and find the device which
936 	 * has the same 8 byte LUN address, excepting byte 4.
937 	 * Assign the same bus and target for this new LUN.
938 	 * Use the logical unit number from the firmware.
939 	 */
940 	memcpy(addr1, device->scsi3addr, 8);
941 	addr1[4] = 0;
942 	for (i = 0; i < n; i++) {
943 		sd = h->dev[i];
944 		memcpy(addr2, sd->scsi3addr, 8);
945 		addr2[4] = 0;
946 		/* differ only in byte 4? */
947 		if (memcmp(addr1, addr2, 8) == 0) {
948 			device->bus = sd->bus;
949 			device->target = sd->target;
950 			device->lun = device->scsi3addr[4];
951 			break;
952 		}
953 	}
954 	if (device->lun == -1) {
955 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 			" suspect firmware bug or unsupported hardware "
957 			"configuration.\n");
958 			return -1;
959 	}
960 
961 lun_assigned:
962 
963 	h->dev[n] = device;
964 	h->ndevices++;
965 	added[*nadded] = device;
966 	(*nadded)++;
967 
968 	/* initially, (before registering with scsi layer) we don't
969 	 * know our hostno and we don't want to print anything first
970 	 * time anyway (the scsi layer's inquiries will show that info)
971 	 */
972 	/* if (hostno != -1) */
973 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 			scsi_device_type(device->devtype), hostno,
975 			device->bus, device->target, device->lun);
976 	return 0;
977 }
978 
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 	int entry, struct hpsa_scsi_dev_t *new_entry)
982 {
983 	/* assumes h->devlock is held */
984 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
985 
986 	/* Raid level changed. */
987 	h->dev[entry]->raid_level = new_entry->raid_level;
988 
989 	/* Raid offload parameters changed. */
990 	h->dev[entry]->offload_config = new_entry->offload_config;
991 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 	h->dev[entry]->raid_map = new_entry->raid_map;
995 
996 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 		new_entry->target, new_entry->lun);
999 }
1000 
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 	int entry, struct hpsa_scsi_dev_t *new_entry,
1004 	struct hpsa_scsi_dev_t *added[], int *nadded,
1005 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1006 {
1007 	/* assumes h->devlock is held */
1008 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009 	removed[*nremoved] = h->dev[entry];
1010 	(*nremoved)++;
1011 
1012 	/*
1013 	 * New physical devices won't have target/lun assigned yet
1014 	 * so we need to preserve the values in the slot we are replacing.
1015 	 */
1016 	if (new_entry->target == -1) {
1017 		new_entry->target = h->dev[entry]->target;
1018 		new_entry->lun = h->dev[entry]->lun;
1019 	}
1020 
1021 	h->dev[entry] = new_entry;
1022 	added[*nadded] = new_entry;
1023 	(*nadded)++;
1024 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 			new_entry->target, new_entry->lun);
1027 }
1028 
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1032 {
1033 	/* assumes h->devlock is held */
1034 	int i;
1035 	struct hpsa_scsi_dev_t *sd;
1036 
1037 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1038 
1039 	sd = h->dev[entry];
1040 	removed[*nremoved] = h->dev[entry];
1041 	(*nremoved)++;
1042 
1043 	for (i = entry; i < h->ndevices-1; i++)
1044 		h->dev[i] = h->dev[i+1];
1045 	h->ndevices--;
1046 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1048 		sd->lun);
1049 }
1050 
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052 	(a)[7] == (b)[7] && \
1053 	(a)[6] == (b)[6] && \
1054 	(a)[5] == (b)[5] && \
1055 	(a)[4] == (b)[4] && \
1056 	(a)[3] == (b)[3] && \
1057 	(a)[2] == (b)[2] && \
1058 	(a)[1] == (b)[1] && \
1059 	(a)[0] == (b)[0])
1060 
1061 static void fixup_botched_add(struct ctlr_info *h,
1062 	struct hpsa_scsi_dev_t *added)
1063 {
1064 	/* called when scsi_add_device fails in order to re-adjust
1065 	 * h->dev[] to match the mid layer's view.
1066 	 */
1067 	unsigned long flags;
1068 	int i, j;
1069 
1070 	spin_lock_irqsave(&h->lock, flags);
1071 	for (i = 0; i < h->ndevices; i++) {
1072 		if (h->dev[i] == added) {
1073 			for (j = i; j < h->ndevices-1; j++)
1074 				h->dev[j] = h->dev[j+1];
1075 			h->ndevices--;
1076 			break;
1077 		}
1078 	}
1079 	spin_unlock_irqrestore(&h->lock, flags);
1080 	kfree(added);
1081 }
1082 
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 	struct hpsa_scsi_dev_t *dev2)
1085 {
1086 	/* we compare everything except lun and target as these
1087 	 * are not yet assigned.  Compare parts likely
1088 	 * to differ first
1089 	 */
1090 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 		sizeof(dev1->scsi3addr)) != 0)
1092 		return 0;
1093 	if (memcmp(dev1->device_id, dev2->device_id,
1094 		sizeof(dev1->device_id)) != 0)
1095 		return 0;
1096 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1097 		return 0;
1098 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1099 		return 0;
1100 	if (dev1->devtype != dev2->devtype)
1101 		return 0;
1102 	if (dev1->bus != dev2->bus)
1103 		return 0;
1104 	return 1;
1105 }
1106 
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 	struct hpsa_scsi_dev_t *dev2)
1109 {
1110 	/* Device attributes that can change, but don't mean
1111 	 * that the device is a different device, nor that the OS
1112 	 * needs to be told anything about the change.
1113 	 */
1114 	if (dev1->raid_level != dev2->raid_level)
1115 		return 1;
1116 	if (dev1->offload_config != dev2->offload_config)
1117 		return 1;
1118 	if (dev1->offload_enabled != dev2->offload_enabled)
1119 		return 1;
1120 	return 0;
1121 }
1122 
1123 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1124  * and return needle location in *index.  If scsi3addr matches, but not
1125  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126  * location in *index.
1127  * In the case of a minor device attribute change, such as RAID level, just
1128  * return DEVICE_UPDATED, along with the updated device's location in index.
1129  * If needle not found, return DEVICE_NOT_FOUND.
1130  */
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1133 	int *index)
1134 {
1135 	int i;
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140 	for (i = 0; i < haystack_size; i++) {
1141 		if (haystack[i] == NULL) /* previously removed. */
1142 			continue;
1143 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1144 			*index = i;
1145 			if (device_is_the_same(needle, haystack[i])) {
1146 				if (device_updated(needle, haystack[i]))
1147 					return DEVICE_UPDATED;
1148 				return DEVICE_SAME;
1149 			} else {
1150 				/* Keep offline devices offline */
1151 				if (needle->volume_offline)
1152 					return DEVICE_NOT_FOUND;
1153 				return DEVICE_CHANGED;
1154 			}
1155 		}
1156 	}
1157 	*index = -1;
1158 	return DEVICE_NOT_FOUND;
1159 }
1160 
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 					unsigned char scsi3addr[])
1163 {
1164 	struct offline_device_entry *device;
1165 	unsigned long flags;
1166 
1167 	/* Check to see if device is already on the list */
1168 	spin_lock_irqsave(&h->offline_device_lock, flags);
1169 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 		if (memcmp(device->scsi3addr, scsi3addr,
1171 			sizeof(device->scsi3addr)) == 0) {
1172 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1173 			return;
1174 		}
1175 	}
1176 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1177 
1178 	/* Device is not on the list, add it. */
1179 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1180 	if (!device) {
1181 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1182 		return;
1183 	}
1184 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 	spin_lock_irqsave(&h->offline_device_lock, flags);
1186 	list_add_tail(&device->offline_list, &h->offline_device_list);
1187 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188 }
1189 
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192 	struct hpsa_scsi_dev_t *sd)
1193 {
1194 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 		dev_info(&h->pdev->dev,
1196 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 			h->scsi_host->host_no,
1198 			sd->bus, sd->target, sd->lun);
1199 	switch (sd->volume_offline) {
1200 	case HPSA_LV_OK:
1201 		break;
1202 	case HPSA_LV_UNDERGOING_ERASE:
1203 		dev_info(&h->pdev->dev,
1204 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 			h->scsi_host->host_no,
1206 			sd->bus, sd->target, sd->lun);
1207 		break;
1208 	case HPSA_LV_UNDERGOING_RPI:
1209 		dev_info(&h->pdev->dev,
1210 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 			h->scsi_host->host_no,
1212 			sd->bus, sd->target, sd->lun);
1213 		break;
1214 	case HPSA_LV_PENDING_RPI:
1215 		dev_info(&h->pdev->dev,
1216 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 				h->scsi_host->host_no,
1218 				sd->bus, sd->target, sd->lun);
1219 		break;
1220 	case HPSA_LV_ENCRYPTED_NO_KEY:
1221 		dev_info(&h->pdev->dev,
1222 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 			h->scsi_host->host_no,
1224 			sd->bus, sd->target, sd->lun);
1225 		break;
1226 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 		dev_info(&h->pdev->dev,
1228 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 			h->scsi_host->host_no,
1230 			sd->bus, sd->target, sd->lun);
1231 		break;
1232 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 		dev_info(&h->pdev->dev,
1234 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 			h->scsi_host->host_no,
1236 			sd->bus, sd->target, sd->lun);
1237 		break;
1238 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 		dev_info(&h->pdev->dev,
1240 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 			h->scsi_host->host_no,
1242 			sd->bus, sd->target, sd->lun);
1243 		break;
1244 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 		dev_info(&h->pdev->dev,
1246 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 			h->scsi_host->host_no,
1248 			sd->bus, sd->target, sd->lun);
1249 		break;
1250 	case HPSA_LV_PENDING_ENCRYPTION:
1251 		dev_info(&h->pdev->dev,
1252 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 			h->scsi_host->host_no,
1254 			sd->bus, sd->target, sd->lun);
1255 		break;
1256 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 		dev_info(&h->pdev->dev,
1258 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 			h->scsi_host->host_no,
1260 			sd->bus, sd->target, sd->lun);
1261 		break;
1262 	}
1263 }
1264 
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266 	struct hpsa_scsi_dev_t *sd[], int nsds)
1267 {
1268 	/* sd contains scsi3 addresses and devtypes, and inquiry
1269 	 * data.  This function takes what's in sd to be the current
1270 	 * reality and updates h->dev[] to reflect that reality.
1271 	 */
1272 	int i, entry, device_change, changes = 0;
1273 	struct hpsa_scsi_dev_t *csd;
1274 	unsigned long flags;
1275 	struct hpsa_scsi_dev_t **added, **removed;
1276 	int nadded, nremoved;
1277 	struct Scsi_Host *sh = NULL;
1278 
1279 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1281 
1282 	if (!added || !removed) {
1283 		dev_warn(&h->pdev->dev, "out of memory in "
1284 			"adjust_hpsa_scsi_table\n");
1285 		goto free_and_out;
1286 	}
1287 
1288 	spin_lock_irqsave(&h->devlock, flags);
1289 
1290 	/* find any devices in h->dev[] that are not in
1291 	 * sd[] and remove them from h->dev[], and for any
1292 	 * devices which have changed, remove the old device
1293 	 * info and add the new device info.
1294 	 * If minor device attributes change, just update
1295 	 * the existing device structure.
1296 	 */
1297 	i = 0;
1298 	nremoved = 0;
1299 	nadded = 0;
1300 	while (i < h->ndevices) {
1301 		csd = h->dev[i];
1302 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 		if (device_change == DEVICE_NOT_FOUND) {
1304 			changes++;
1305 			hpsa_scsi_remove_entry(h, hostno, i,
1306 				removed, &nremoved);
1307 			continue; /* remove ^^^, hence i not incremented */
1308 		} else if (device_change == DEVICE_CHANGED) {
1309 			changes++;
1310 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 				added, &nadded, removed, &nremoved);
1312 			/* Set it to NULL to prevent it from being freed
1313 			 * at the bottom of hpsa_update_scsi_devices()
1314 			 */
1315 			sd[entry] = NULL;
1316 		} else if (device_change == DEVICE_UPDATED) {
1317 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1318 		}
1319 		i++;
1320 	}
1321 
1322 	/* Now, make sure every device listed in sd[] is also
1323 	 * listed in h->dev[], adding them if they aren't found
1324 	 */
1325 
1326 	for (i = 0; i < nsds; i++) {
1327 		if (!sd[i]) /* if already added above. */
1328 			continue;
1329 
1330 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 		 * as the SCSI mid-layer does not handle such devices well.
1332 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 		 * at 160Hz, and prevents the system from coming up.
1334 		 */
1335 		if (sd[i]->volume_offline) {
1336 			hpsa_show_volume_status(h, sd[i]);
1337 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 				h->scsi_host->host_no,
1339 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1340 			continue;
1341 		}
1342 
1343 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 					h->ndevices, &entry);
1345 		if (device_change == DEVICE_NOT_FOUND) {
1346 			changes++;
1347 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 				added, &nadded) != 0)
1349 				break;
1350 			sd[i] = NULL; /* prevent from being freed later. */
1351 		} else if (device_change == DEVICE_CHANGED) {
1352 			/* should never happen... */
1353 			changes++;
1354 			dev_warn(&h->pdev->dev,
1355 				"device unexpectedly changed.\n");
1356 			/* but if it does happen, we just ignore that device */
1357 		}
1358 	}
1359 	spin_unlock_irqrestore(&h->devlock, flags);
1360 
1361 	/* Monitor devices which are in one of several NOT READY states to be
1362 	 * brought online later. This must be done without holding h->devlock,
1363 	 * so don't touch h->dev[]
1364 	 */
1365 	for (i = 0; i < nsds; i++) {
1366 		if (!sd[i]) /* if already added above. */
1367 			continue;
1368 		if (sd[i]->volume_offline)
1369 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370 	}
1371 
1372 	/* Don't notify scsi mid layer of any changes the first time through
1373 	 * (or if there are no changes) scsi_scan_host will do it later the
1374 	 * first time through.
1375 	 */
1376 	if (hostno == -1 || !changes)
1377 		goto free_and_out;
1378 
1379 	sh = h->scsi_host;
1380 	/* Notify scsi mid layer of any removed devices */
1381 	for (i = 0; i < nremoved; i++) {
1382 		struct scsi_device *sdev =
1383 			scsi_device_lookup(sh, removed[i]->bus,
1384 				removed[i]->target, removed[i]->lun);
1385 		if (sdev != NULL) {
1386 			scsi_remove_device(sdev);
1387 			scsi_device_put(sdev);
1388 		} else {
1389 			/* We don't expect to get here.
1390 			 * future cmds to this device will get selection
1391 			 * timeout as if the device was gone.
1392 			 */
1393 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 				" for removal.", hostno, removed[i]->bus,
1395 				removed[i]->target, removed[i]->lun);
1396 		}
1397 		kfree(removed[i]);
1398 		removed[i] = NULL;
1399 	}
1400 
1401 	/* Notify scsi mid layer of any added devices */
1402 	for (i = 0; i < nadded; i++) {
1403 		if (scsi_add_device(sh, added[i]->bus,
1404 			added[i]->target, added[i]->lun) == 0)
1405 			continue;
1406 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 			"device not added.\n", hostno, added[i]->bus,
1408 			added[i]->target, added[i]->lun);
1409 		/* now we have to remove it from h->dev,
1410 		 * since it didn't get added to scsi mid layer
1411 		 */
1412 		fixup_botched_add(h, added[i]);
1413 	}
1414 
1415 free_and_out:
1416 	kfree(added);
1417 	kfree(removed);
1418 }
1419 
1420 /*
1421  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422  * Assume's h->devlock is held.
1423  */
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 	int bus, int target, int lun)
1426 {
1427 	int i;
1428 	struct hpsa_scsi_dev_t *sd;
1429 
1430 	for (i = 0; i < h->ndevices; i++) {
1431 		sd = h->dev[i];
1432 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1433 			return sd;
1434 	}
1435 	return NULL;
1436 }
1437 
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1440 {
1441 	struct hpsa_scsi_dev_t *sd;
1442 	unsigned long flags;
1443 	struct ctlr_info *h;
1444 
1445 	h = sdev_to_hba(sdev);
1446 	spin_lock_irqsave(&h->devlock, flags);
1447 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 		sdev_id(sdev), sdev->lun);
1449 	if (sd != NULL)
1450 		sdev->hostdata = sd;
1451 	spin_unlock_irqrestore(&h->devlock, flags);
1452 	return 0;
1453 }
1454 
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1456 {
1457 	/* nothing to do. */
1458 }
1459 
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462 	int i;
1463 
1464 	if (!h->cmd_sg_list)
1465 		return;
1466 	for (i = 0; i < h->nr_cmds; i++) {
1467 		kfree(h->cmd_sg_list[i]);
1468 		h->cmd_sg_list[i] = NULL;
1469 	}
1470 	kfree(h->cmd_sg_list);
1471 	h->cmd_sg_list = NULL;
1472 }
1473 
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1475 {
1476 	int i;
1477 
1478 	if (h->chainsize <= 0)
1479 		return 0;
1480 
1481 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1482 				GFP_KERNEL);
1483 	if (!h->cmd_sg_list)
1484 		return -ENOMEM;
1485 	for (i = 0; i < h->nr_cmds; i++) {
1486 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 						h->chainsize, GFP_KERNEL);
1488 		if (!h->cmd_sg_list[i])
1489 			goto clean;
1490 	}
1491 	return 0;
1492 
1493 clean:
1494 	hpsa_free_sg_chain_blocks(h);
1495 	return -ENOMEM;
1496 }
1497 
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499 	struct CommandList *c)
1500 {
1501 	struct SGDescriptor *chain_sg, *chain_block;
1502 	u64 temp64;
1503 
1504 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1505 	chain_block = h->cmd_sg_list[c->cmdindex];
1506 	chain_sg->Ext = HPSA_SG_CHAIN;
1507 	chain_sg->Len = sizeof(*chain_sg) *
1508 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1509 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1510 				PCI_DMA_TODEVICE);
1511 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1512 		/* prevent subsequent unmapping */
1513 		chain_sg->Addr.lower = 0;
1514 		chain_sg->Addr.upper = 0;
1515 		return -1;
1516 	}
1517 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1518 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1519 	return 0;
1520 }
1521 
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 	struct CommandList *c)
1524 {
1525 	struct SGDescriptor *chain_sg;
1526 	union u64bit temp64;
1527 
1528 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1529 		return;
1530 
1531 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1532 	temp64.val32.lower = chain_sg->Addr.lower;
1533 	temp64.val32.upper = chain_sg->Addr.upper;
1534 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1535 }
1536 
1537 
1538 /* Decode the various types of errors on ioaccel2 path.
1539  * Return 1 for any error that should generate a RAID path retry.
1540  * Return 0 for errors that don't require a RAID path retry.
1541  */
1542 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1543 					struct CommandList *c,
1544 					struct scsi_cmnd *cmd,
1545 					struct io_accel2_cmd *c2)
1546 {
1547 	int data_len;
1548 	int retry = 0;
1549 
1550 	switch (c2->error_data.serv_response) {
1551 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1552 		switch (c2->error_data.status) {
1553 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1554 			break;
1555 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1556 			dev_warn(&h->pdev->dev,
1557 				"%s: task complete with check condition.\n",
1558 				"HP SSD Smart Path");
1559 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1560 			if (c2->error_data.data_present !=
1561 					IOACCEL2_SENSE_DATA_PRESENT) {
1562 				memset(cmd->sense_buffer, 0,
1563 					SCSI_SENSE_BUFFERSIZE);
1564 				break;
1565 			}
1566 			/* copy the sense data */
1567 			data_len = c2->error_data.sense_data_len;
1568 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1569 				data_len = SCSI_SENSE_BUFFERSIZE;
1570 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1571 				data_len =
1572 					sizeof(c2->error_data.sense_data_buff);
1573 			memcpy(cmd->sense_buffer,
1574 				c2->error_data.sense_data_buff, data_len);
1575 			retry = 1;
1576 			break;
1577 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1578 			dev_warn(&h->pdev->dev,
1579 				"%s: task complete with BUSY status.\n",
1580 				"HP SSD Smart Path");
1581 			retry = 1;
1582 			break;
1583 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1584 			dev_warn(&h->pdev->dev,
1585 				"%s: task complete with reservation conflict.\n",
1586 				"HP SSD Smart Path");
1587 			retry = 1;
1588 			break;
1589 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1590 			/* Make scsi midlayer do unlimited retries */
1591 			cmd->result = DID_IMM_RETRY << 16;
1592 			break;
1593 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1594 			dev_warn(&h->pdev->dev,
1595 				"%s: task complete with aborted status.\n",
1596 				"HP SSD Smart Path");
1597 			retry = 1;
1598 			break;
1599 		default:
1600 			dev_warn(&h->pdev->dev,
1601 				"%s: task complete with unrecognized status: 0x%02x\n",
1602 				"HP SSD Smart Path", c2->error_data.status);
1603 			retry = 1;
1604 			break;
1605 		}
1606 		break;
1607 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1608 		/* don't expect to get here. */
1609 		dev_warn(&h->pdev->dev,
1610 			"unexpected delivery or target failure, status = 0x%02x\n",
1611 			c2->error_data.status);
1612 		retry = 1;
1613 		break;
1614 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1615 		break;
1616 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1617 		break;
1618 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1619 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1620 		retry = 1;
1621 		break;
1622 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1623 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1624 		break;
1625 	default:
1626 		dev_warn(&h->pdev->dev,
1627 			"%s: Unrecognized server response: 0x%02x\n",
1628 			"HP SSD Smart Path",
1629 			c2->error_data.serv_response);
1630 		retry = 1;
1631 		break;
1632 	}
1633 
1634 	return retry;	/* retry on raid path? */
1635 }
1636 
1637 static void process_ioaccel2_completion(struct ctlr_info *h,
1638 		struct CommandList *c, struct scsi_cmnd *cmd,
1639 		struct hpsa_scsi_dev_t *dev)
1640 {
1641 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1642 	int raid_retry = 0;
1643 
1644 	/* check for good status */
1645 	if (likely(c2->error_data.serv_response == 0 &&
1646 			c2->error_data.status == 0)) {
1647 		cmd_free(h, c);
1648 		cmd->scsi_done(cmd);
1649 		return;
1650 	}
1651 
1652 	/* Any RAID offload error results in retry which will use
1653 	 * the normal I/O path so the controller can handle whatever's
1654 	 * wrong.
1655 	 */
1656 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1657 		c2->error_data.serv_response ==
1658 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1659 		dev->offload_enabled = 0;
1660 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1661 		cmd->result = DID_SOFT_ERROR << 16;
1662 		cmd_free(h, c);
1663 		cmd->scsi_done(cmd);
1664 		return;
1665 	}
1666 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1667 	/* If error found, disable Smart Path, schedule a rescan,
1668 	 * and force a retry on the standard path.
1669 	 */
1670 	if (raid_retry) {
1671 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1672 			"HP SSD Smart Path");
1673 		dev->offload_enabled = 0; /* Disable Smart Path */
1674 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1675 		cmd->result = DID_SOFT_ERROR << 16;
1676 	}
1677 	cmd_free(h, c);
1678 	cmd->scsi_done(cmd);
1679 }
1680 
1681 static void complete_scsi_command(struct CommandList *cp)
1682 {
1683 	struct scsi_cmnd *cmd;
1684 	struct ctlr_info *h;
1685 	struct ErrorInfo *ei;
1686 	struct hpsa_scsi_dev_t *dev;
1687 
1688 	unsigned char sense_key;
1689 	unsigned char asc;      /* additional sense code */
1690 	unsigned char ascq;     /* additional sense code qualifier */
1691 	unsigned long sense_data_size;
1692 
1693 	ei = cp->err_info;
1694 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1695 	h = cp->h;
1696 	dev = cmd->device->hostdata;
1697 
1698 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1699 	if ((cp->cmd_type == CMD_SCSI) &&
1700 		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1701 		hpsa_unmap_sg_chain_block(h, cp);
1702 
1703 	cmd->result = (DID_OK << 16); 		/* host byte */
1704 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1705 
1706 	if (cp->cmd_type == CMD_IOACCEL2)
1707 		return process_ioaccel2_completion(h, cp, cmd, dev);
1708 
1709 	cmd->result |= ei->ScsiStatus;
1710 
1711 	/* copy the sense data whether we need to or not. */
1712 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1713 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1714 	else
1715 		sense_data_size = sizeof(ei->SenseInfo);
1716 	if (ei->SenseLen < sense_data_size)
1717 		sense_data_size = ei->SenseLen;
1718 
1719 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1720 	scsi_set_resid(cmd, ei->ResidualCnt);
1721 
1722 	if (ei->CommandStatus == 0) {
1723 		cmd_free(h, cp);
1724 		cmd->scsi_done(cmd);
1725 		return;
1726 	}
1727 
1728 	/* For I/O accelerator commands, copy over some fields to the normal
1729 	 * CISS header used below for error handling.
1730 	 */
1731 	if (cp->cmd_type == CMD_IOACCEL1) {
1732 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1733 		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1734 		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 		cp->Header.Tag.lower = c->Tag.lower;
1736 		cp->Header.Tag.upper = c->Tag.upper;
1737 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1738 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1739 
1740 		/* Any RAID offload error results in retry which will use
1741 		 * the normal I/O path so the controller can handle whatever's
1742 		 * wrong.
1743 		 */
1744 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1745 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1746 				dev->offload_enabled = 0;
1747 			cmd->result = DID_SOFT_ERROR << 16;
1748 			cmd_free(h, cp);
1749 			cmd->scsi_done(cmd);
1750 			return;
1751 		}
1752 	}
1753 
1754 	/* an error has occurred */
1755 	switch (ei->CommandStatus) {
1756 
1757 	case CMD_TARGET_STATUS:
1758 		if (ei->ScsiStatus) {
1759 			/* Get sense key */
1760 			sense_key = 0xf & ei->SenseInfo[2];
1761 			/* Get additional sense code */
1762 			asc = ei->SenseInfo[12];
1763 			/* Get addition sense code qualifier */
1764 			ascq = ei->SenseInfo[13];
1765 		}
1766 
1767 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1768 			if (check_for_unit_attention(h, cp))
1769 				break;
1770 			if (sense_key == ILLEGAL_REQUEST) {
1771 				/*
1772 				 * SCSI REPORT_LUNS is commonly unsupported on
1773 				 * Smart Array.  Suppress noisy complaint.
1774 				 */
1775 				if (cp->Request.CDB[0] == REPORT_LUNS)
1776 					break;
1777 
1778 				/* If ASC/ASCQ indicate Logical Unit
1779 				 * Not Supported condition,
1780 				 */
1781 				if ((asc == 0x25) && (ascq == 0x0)) {
1782 					dev_warn(&h->pdev->dev, "cp %p "
1783 						"has check condition\n", cp);
1784 					break;
1785 				}
1786 			}
1787 
1788 			if (sense_key == NOT_READY) {
1789 				/* If Sense is Not Ready, Logical Unit
1790 				 * Not ready, Manual Intervention
1791 				 * required
1792 				 */
1793 				if ((asc == 0x04) && (ascq == 0x03)) {
1794 					dev_warn(&h->pdev->dev, "cp %p "
1795 						"has check condition: unit "
1796 						"not ready, manual "
1797 						"intervention required\n", cp);
1798 					break;
1799 				}
1800 			}
1801 			if (sense_key == ABORTED_COMMAND) {
1802 				/* Aborted command is retryable */
1803 				dev_warn(&h->pdev->dev, "cp %p "
1804 					"has check condition: aborted command: "
1805 					"ASC: 0x%x, ASCQ: 0x%x\n",
1806 					cp, asc, ascq);
1807 				cmd->result |= DID_SOFT_ERROR << 16;
1808 				break;
1809 			}
1810 			/* Must be some other type of check condition */
1811 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1812 					"unknown type: "
1813 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1814 					"Returning result: 0x%x, "
1815 					"cmd=[%02x %02x %02x %02x %02x "
1816 					"%02x %02x %02x %02x %02x %02x "
1817 					"%02x %02x %02x %02x %02x]\n",
1818 					cp, sense_key, asc, ascq,
1819 					cmd->result,
1820 					cmd->cmnd[0], cmd->cmnd[1],
1821 					cmd->cmnd[2], cmd->cmnd[3],
1822 					cmd->cmnd[4], cmd->cmnd[5],
1823 					cmd->cmnd[6], cmd->cmnd[7],
1824 					cmd->cmnd[8], cmd->cmnd[9],
1825 					cmd->cmnd[10], cmd->cmnd[11],
1826 					cmd->cmnd[12], cmd->cmnd[13],
1827 					cmd->cmnd[14], cmd->cmnd[15]);
1828 			break;
1829 		}
1830 
1831 
1832 		/* Problem was not a check condition
1833 		 * Pass it up to the upper layers...
1834 		 */
1835 		if (ei->ScsiStatus) {
1836 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1837 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1838 				"Returning result: 0x%x\n",
1839 				cp, ei->ScsiStatus,
1840 				sense_key, asc, ascq,
1841 				cmd->result);
1842 		} else {  /* scsi status is zero??? How??? */
1843 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1844 				"Returning no connection.\n", cp),
1845 
1846 			/* Ordinarily, this case should never happen,
1847 			 * but there is a bug in some released firmware
1848 			 * revisions that allows it to happen if, for
1849 			 * example, a 4100 backplane loses power and
1850 			 * the tape drive is in it.  We assume that
1851 			 * it's a fatal error of some kind because we
1852 			 * can't show that it wasn't. We will make it
1853 			 * look like selection timeout since that is
1854 			 * the most common reason for this to occur,
1855 			 * and it's severe enough.
1856 			 */
1857 
1858 			cmd->result = DID_NO_CONNECT << 16;
1859 		}
1860 		break;
1861 
1862 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1863 		break;
1864 	case CMD_DATA_OVERRUN:
1865 		dev_warn(&h->pdev->dev, "cp %p has"
1866 			" completed with data overrun "
1867 			"reported\n", cp);
1868 		break;
1869 	case CMD_INVALID: {
1870 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1871 		print_cmd(cp); */
1872 		/* We get CMD_INVALID if you address a non-existent device
1873 		 * instead of a selection timeout (no response).  You will
1874 		 * see this if you yank out a drive, then try to access it.
1875 		 * This is kind of a shame because it means that any other
1876 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1877 		 * missing target. */
1878 		cmd->result = DID_NO_CONNECT << 16;
1879 	}
1880 		break;
1881 	case CMD_PROTOCOL_ERR:
1882 		cmd->result = DID_ERROR << 16;
1883 		dev_warn(&h->pdev->dev, "cp %p has "
1884 			"protocol error\n", cp);
1885 		break;
1886 	case CMD_HARDWARE_ERR:
1887 		cmd->result = DID_ERROR << 16;
1888 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1889 		break;
1890 	case CMD_CONNECTION_LOST:
1891 		cmd->result = DID_ERROR << 16;
1892 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1893 		break;
1894 	case CMD_ABORTED:
1895 		cmd->result = DID_ABORT << 16;
1896 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1897 				cp, ei->ScsiStatus);
1898 		break;
1899 	case CMD_ABORT_FAILED:
1900 		cmd->result = DID_ERROR << 16;
1901 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1902 		break;
1903 	case CMD_UNSOLICITED_ABORT:
1904 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1905 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1906 			"abort\n", cp);
1907 		break;
1908 	case CMD_TIMEOUT:
1909 		cmd->result = DID_TIME_OUT << 16;
1910 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1911 		break;
1912 	case CMD_UNABORTABLE:
1913 		cmd->result = DID_ERROR << 16;
1914 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1915 		break;
1916 	case CMD_IOACCEL_DISABLED:
1917 		/* This only handles the direct pass-through case since RAID
1918 		 * offload is handled above.  Just attempt a retry.
1919 		 */
1920 		cmd->result = DID_SOFT_ERROR << 16;
1921 		dev_warn(&h->pdev->dev,
1922 				"cp %p had HP SSD Smart Path error\n", cp);
1923 		break;
1924 	default:
1925 		cmd->result = DID_ERROR << 16;
1926 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1927 				cp, ei->CommandStatus);
1928 	}
1929 	cmd_free(h, cp);
1930 	cmd->scsi_done(cmd);
1931 }
1932 
1933 static void hpsa_pci_unmap(struct pci_dev *pdev,
1934 	struct CommandList *c, int sg_used, int data_direction)
1935 {
1936 	int i;
1937 	union u64bit addr64;
1938 
1939 	for (i = 0; i < sg_used; i++) {
1940 		addr64.val32.lower = c->SG[i].Addr.lower;
1941 		addr64.val32.upper = c->SG[i].Addr.upper;
1942 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1943 			data_direction);
1944 	}
1945 }
1946 
1947 static int hpsa_map_one(struct pci_dev *pdev,
1948 		struct CommandList *cp,
1949 		unsigned char *buf,
1950 		size_t buflen,
1951 		int data_direction)
1952 {
1953 	u64 addr64;
1954 
1955 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1956 		cp->Header.SGList = 0;
1957 		cp->Header.SGTotal = 0;
1958 		return 0;
1959 	}
1960 
1961 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1962 	if (dma_mapping_error(&pdev->dev, addr64)) {
1963 		/* Prevent subsequent unmap of something never mapped */
1964 		cp->Header.SGList = 0;
1965 		cp->Header.SGTotal = 0;
1966 		return -1;
1967 	}
1968 	cp->SG[0].Addr.lower =
1969 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1970 	cp->SG[0].Addr.upper =
1971 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1972 	cp->SG[0].Len = buflen;
1973 	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1974 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1975 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1976 	return 0;
1977 }
1978 
1979 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1980 	struct CommandList *c)
1981 {
1982 	DECLARE_COMPLETION_ONSTACK(wait);
1983 
1984 	c->waiting = &wait;
1985 	enqueue_cmd_and_start_io(h, c);
1986 	wait_for_completion(&wait);
1987 }
1988 
1989 static u32 lockup_detected(struct ctlr_info *h)
1990 {
1991 	int cpu;
1992 	u32 rc, *lockup_detected;
1993 
1994 	cpu = get_cpu();
1995 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1996 	rc = *lockup_detected;
1997 	put_cpu();
1998 	return rc;
1999 }
2000 
2001 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2002 	struct CommandList *c)
2003 {
2004 	/* If controller lockup detected, fake a hardware error. */
2005 	if (unlikely(lockup_detected(h)))
2006 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2007 	else
2008 		hpsa_scsi_do_simple_cmd_core(h, c);
2009 }
2010 
2011 #define MAX_DRIVER_CMD_RETRIES 25
2012 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2013 	struct CommandList *c, int data_direction)
2014 {
2015 	int backoff_time = 10, retry_count = 0;
2016 
2017 	do {
2018 		memset(c->err_info, 0, sizeof(*c->err_info));
2019 		hpsa_scsi_do_simple_cmd_core(h, c);
2020 		retry_count++;
2021 		if (retry_count > 3) {
2022 			msleep(backoff_time);
2023 			if (backoff_time < 1000)
2024 				backoff_time *= 2;
2025 		}
2026 	} while ((check_for_unit_attention(h, c) ||
2027 			check_for_busy(h, c)) &&
2028 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2029 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2030 }
2031 
2032 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2033 				struct CommandList *c)
2034 {
2035 	const u8 *cdb = c->Request.CDB;
2036 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2037 
2038 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2039 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2040 		txt, lun[0], lun[1], lun[2], lun[3],
2041 		lun[4], lun[5], lun[6], lun[7],
2042 		cdb[0], cdb[1], cdb[2], cdb[3],
2043 		cdb[4], cdb[5], cdb[6], cdb[7],
2044 		cdb[8], cdb[9], cdb[10], cdb[11],
2045 		cdb[12], cdb[13], cdb[14], cdb[15]);
2046 }
2047 
2048 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2049 			struct CommandList *cp)
2050 {
2051 	const struct ErrorInfo *ei = cp->err_info;
2052 	struct device *d = &cp->h->pdev->dev;
2053 	const u8 *sd = ei->SenseInfo;
2054 
2055 	switch (ei->CommandStatus) {
2056 	case CMD_TARGET_STATUS:
2057 		hpsa_print_cmd(h, "SCSI status", cp);
2058 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2059 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2060 				sd[2] & 0x0f, sd[12], sd[13]);
2061 		else
2062 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2063 		if (ei->ScsiStatus == 0)
2064 			dev_warn(d, "SCSI status is abnormally zero.  "
2065 			"(probably indicates selection timeout "
2066 			"reported incorrectly due to a known "
2067 			"firmware bug, circa July, 2001.)\n");
2068 		break;
2069 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2070 		break;
2071 	case CMD_DATA_OVERRUN:
2072 		hpsa_print_cmd(h, "overrun condition", cp);
2073 		break;
2074 	case CMD_INVALID: {
2075 		/* controller unfortunately reports SCSI passthru's
2076 		 * to non-existent targets as invalid commands.
2077 		 */
2078 		hpsa_print_cmd(h, "invalid command", cp);
2079 		dev_warn(d, "probably means device no longer present\n");
2080 		}
2081 		break;
2082 	case CMD_PROTOCOL_ERR:
2083 		hpsa_print_cmd(h, "protocol error", cp);
2084 		break;
2085 	case CMD_HARDWARE_ERR:
2086 		hpsa_print_cmd(h, "hardware error", cp);
2087 		break;
2088 	case CMD_CONNECTION_LOST:
2089 		hpsa_print_cmd(h, "connection lost", cp);
2090 		break;
2091 	case CMD_ABORTED:
2092 		hpsa_print_cmd(h, "aborted", cp);
2093 		break;
2094 	case CMD_ABORT_FAILED:
2095 		hpsa_print_cmd(h, "abort failed", cp);
2096 		break;
2097 	case CMD_UNSOLICITED_ABORT:
2098 		hpsa_print_cmd(h, "unsolicited abort", cp);
2099 		break;
2100 	case CMD_TIMEOUT:
2101 		hpsa_print_cmd(h, "timed out", cp);
2102 		break;
2103 	case CMD_UNABORTABLE:
2104 		hpsa_print_cmd(h, "unabortable", cp);
2105 		break;
2106 	default:
2107 		hpsa_print_cmd(h, "unknown status", cp);
2108 		dev_warn(d, "Unknown command status %x\n",
2109 				ei->CommandStatus);
2110 	}
2111 }
2112 
2113 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2114 			u16 page, unsigned char *buf,
2115 			unsigned char bufsize)
2116 {
2117 	int rc = IO_OK;
2118 	struct CommandList *c;
2119 	struct ErrorInfo *ei;
2120 
2121 	c = cmd_special_alloc(h);
2122 
2123 	if (c == NULL) {			/* trouble... */
2124 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2125 		return -ENOMEM;
2126 	}
2127 
2128 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2129 			page, scsi3addr, TYPE_CMD)) {
2130 		rc = -1;
2131 		goto out;
2132 	}
2133 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2134 	ei = c->err_info;
2135 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2136 		hpsa_scsi_interpret_error(h, c);
2137 		rc = -1;
2138 	}
2139 out:
2140 	cmd_special_free(h, c);
2141 	return rc;
2142 }
2143 
2144 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2145 		unsigned char *scsi3addr, unsigned char page,
2146 		struct bmic_controller_parameters *buf, size_t bufsize)
2147 {
2148 	int rc = IO_OK;
2149 	struct CommandList *c;
2150 	struct ErrorInfo *ei;
2151 
2152 	c = cmd_special_alloc(h);
2153 
2154 	if (c == NULL) {			/* trouble... */
2155 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2156 		return -ENOMEM;
2157 	}
2158 
2159 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2160 			page, scsi3addr, TYPE_CMD)) {
2161 		rc = -1;
2162 		goto out;
2163 	}
2164 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2165 	ei = c->err_info;
2166 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2167 		hpsa_scsi_interpret_error(h, c);
2168 		rc = -1;
2169 	}
2170 out:
2171 	cmd_special_free(h, c);
2172 	return rc;
2173 	}
2174 
2175 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2176 	u8 reset_type)
2177 {
2178 	int rc = IO_OK;
2179 	struct CommandList *c;
2180 	struct ErrorInfo *ei;
2181 
2182 	c = cmd_special_alloc(h);
2183 
2184 	if (c == NULL) {			/* trouble... */
2185 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2186 		return -ENOMEM;
2187 	}
2188 
2189 	/* fill_cmd can't fail here, no data buffer to map. */
2190 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2191 			scsi3addr, TYPE_MSG);
2192 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2193 	hpsa_scsi_do_simple_cmd_core(h, c);
2194 	/* no unmap needed here because no data xfer. */
2195 
2196 	ei = c->err_info;
2197 	if (ei->CommandStatus != 0) {
2198 		hpsa_scsi_interpret_error(h, c);
2199 		rc = -1;
2200 	}
2201 	cmd_special_free(h, c);
2202 	return rc;
2203 }
2204 
2205 static void hpsa_get_raid_level(struct ctlr_info *h,
2206 	unsigned char *scsi3addr, unsigned char *raid_level)
2207 {
2208 	int rc;
2209 	unsigned char *buf;
2210 
2211 	*raid_level = RAID_UNKNOWN;
2212 	buf = kzalloc(64, GFP_KERNEL);
2213 	if (!buf)
2214 		return;
2215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2216 	if (rc == 0)
2217 		*raid_level = buf[8];
2218 	if (*raid_level > RAID_UNKNOWN)
2219 		*raid_level = RAID_UNKNOWN;
2220 	kfree(buf);
2221 	return;
2222 }
2223 
2224 #define HPSA_MAP_DEBUG
2225 #ifdef HPSA_MAP_DEBUG
2226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2227 				struct raid_map_data *map_buff)
2228 {
2229 	struct raid_map_disk_data *dd = &map_buff->data[0];
2230 	int map, row, col;
2231 	u16 map_cnt, row_cnt, disks_per_row;
2232 
2233 	if (rc != 0)
2234 		return;
2235 
2236 	/* Show details only if debugging has been activated. */
2237 	if (h->raid_offload_debug < 2)
2238 		return;
2239 
2240 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2241 				le32_to_cpu(map_buff->structure_size));
2242 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2243 			le32_to_cpu(map_buff->volume_blk_size));
2244 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2245 			le64_to_cpu(map_buff->volume_blk_cnt));
2246 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2247 			map_buff->phys_blk_shift);
2248 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2249 			map_buff->parity_rotation_shift);
2250 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2251 			le16_to_cpu(map_buff->strip_size));
2252 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2253 			le64_to_cpu(map_buff->disk_starting_blk));
2254 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2255 			le64_to_cpu(map_buff->disk_blk_cnt));
2256 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2257 			le16_to_cpu(map_buff->data_disks_per_row));
2258 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2259 			le16_to_cpu(map_buff->metadata_disks_per_row));
2260 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2261 			le16_to_cpu(map_buff->row_cnt));
2262 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2263 			le16_to_cpu(map_buff->layout_map_count));
2264 	dev_info(&h->pdev->dev, "flags = %u\n",
2265 			le16_to_cpu(map_buff->flags));
2266 	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2267 		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2268 	else
2269 		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2270 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2271 			le16_to_cpu(map_buff->dekindex));
2272 
2273 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2274 	for (map = 0; map < map_cnt; map++) {
2275 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2276 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2277 		for (row = 0; row < row_cnt; row++) {
2278 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2279 			disks_per_row =
2280 				le16_to_cpu(map_buff->data_disks_per_row);
2281 			for (col = 0; col < disks_per_row; col++, dd++)
2282 				dev_info(&h->pdev->dev,
2283 					"    D%02u: h=0x%04x xor=%u,%u\n",
2284 					col, dd->ioaccel_handle,
2285 					dd->xor_mult[0], dd->xor_mult[1]);
2286 			disks_per_row =
2287 				le16_to_cpu(map_buff->metadata_disks_per_row);
2288 			for (col = 0; col < disks_per_row; col++, dd++)
2289 				dev_info(&h->pdev->dev,
2290 					"    M%02u: h=0x%04x xor=%u,%u\n",
2291 					col, dd->ioaccel_handle,
2292 					dd->xor_mult[0], dd->xor_mult[1]);
2293 		}
2294 	}
2295 }
2296 #else
2297 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2298 			__attribute__((unused)) int rc,
2299 			__attribute__((unused)) struct raid_map_data *map_buff)
2300 {
2301 }
2302 #endif
2303 
2304 static int hpsa_get_raid_map(struct ctlr_info *h,
2305 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2306 {
2307 	int rc = 0;
2308 	struct CommandList *c;
2309 	struct ErrorInfo *ei;
2310 
2311 	c = cmd_special_alloc(h);
2312 	if (c == NULL) {
2313 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2314 		return -ENOMEM;
2315 	}
2316 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2317 			sizeof(this_device->raid_map), 0,
2318 			scsi3addr, TYPE_CMD)) {
2319 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2320 		cmd_special_free(h, c);
2321 		return -ENOMEM;
2322 	}
2323 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2324 	ei = c->err_info;
2325 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2326 		hpsa_scsi_interpret_error(h, c);
2327 		cmd_special_free(h, c);
2328 		return -1;
2329 	}
2330 	cmd_special_free(h, c);
2331 
2332 	/* @todo in the future, dynamically allocate RAID map memory */
2333 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2334 				sizeof(this_device->raid_map)) {
2335 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2336 		rc = -1;
2337 	}
2338 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2339 	return rc;
2340 }
2341 
2342 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2343 	unsigned char scsi3addr[], u8 page)
2344 {
2345 	int rc;
2346 	int i;
2347 	int pages;
2348 	unsigned char *buf, bufsize;
2349 
2350 	buf = kzalloc(256, GFP_KERNEL);
2351 	if (!buf)
2352 		return 0;
2353 
2354 	/* Get the size of the page list first */
2355 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2356 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2357 				buf, HPSA_VPD_HEADER_SZ);
2358 	if (rc != 0)
2359 		goto exit_unsupported;
2360 	pages = buf[3];
2361 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2362 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2363 	else
2364 		bufsize = 255;
2365 
2366 	/* Get the whole VPD page list */
2367 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2368 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2369 				buf, bufsize);
2370 	if (rc != 0)
2371 		goto exit_unsupported;
2372 
2373 	pages = buf[3];
2374 	for (i = 1; i <= pages; i++)
2375 		if (buf[3 + i] == page)
2376 			goto exit_supported;
2377 exit_unsupported:
2378 	kfree(buf);
2379 	return 0;
2380 exit_supported:
2381 	kfree(buf);
2382 	return 1;
2383 }
2384 
2385 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2386 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2387 {
2388 	int rc;
2389 	unsigned char *buf;
2390 	u8 ioaccel_status;
2391 
2392 	this_device->offload_config = 0;
2393 	this_device->offload_enabled = 0;
2394 
2395 	buf = kzalloc(64, GFP_KERNEL);
2396 	if (!buf)
2397 		return;
2398 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2399 		goto out;
2400 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2401 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2402 	if (rc != 0)
2403 		goto out;
2404 
2405 #define IOACCEL_STATUS_BYTE 4
2406 #define OFFLOAD_CONFIGURED_BIT 0x01
2407 #define OFFLOAD_ENABLED_BIT 0x02
2408 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2409 	this_device->offload_config =
2410 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2411 	if (this_device->offload_config) {
2412 		this_device->offload_enabled =
2413 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2414 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2415 			this_device->offload_enabled = 0;
2416 	}
2417 out:
2418 	kfree(buf);
2419 	return;
2420 }
2421 
2422 /* Get the device id from inquiry page 0x83 */
2423 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2424 	unsigned char *device_id, int buflen)
2425 {
2426 	int rc;
2427 	unsigned char *buf;
2428 
2429 	if (buflen > 16)
2430 		buflen = 16;
2431 	buf = kzalloc(64, GFP_KERNEL);
2432 	if (!buf)
2433 		return -ENOMEM;
2434 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2435 	if (rc == 0)
2436 		memcpy(device_id, &buf[8], buflen);
2437 	kfree(buf);
2438 	return rc != 0;
2439 }
2440 
2441 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2442 		struct ReportLUNdata *buf, int bufsize,
2443 		int extended_response)
2444 {
2445 	int rc = IO_OK;
2446 	struct CommandList *c;
2447 	unsigned char scsi3addr[8];
2448 	struct ErrorInfo *ei;
2449 
2450 	c = cmd_special_alloc(h);
2451 	if (c == NULL) {			/* trouble... */
2452 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2453 		return -1;
2454 	}
2455 	/* address the controller */
2456 	memset(scsi3addr, 0, sizeof(scsi3addr));
2457 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2458 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2459 		rc = -1;
2460 		goto out;
2461 	}
2462 	if (extended_response)
2463 		c->Request.CDB[1] = extended_response;
2464 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2465 	ei = c->err_info;
2466 	if (ei->CommandStatus != 0 &&
2467 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2468 		hpsa_scsi_interpret_error(h, c);
2469 		rc = -1;
2470 	} else {
2471 		if (buf->extended_response_flag != extended_response) {
2472 			dev_err(&h->pdev->dev,
2473 				"report luns requested format %u, got %u\n",
2474 				extended_response,
2475 				buf->extended_response_flag);
2476 			rc = -1;
2477 		}
2478 	}
2479 out:
2480 	cmd_special_free(h, c);
2481 	return rc;
2482 }
2483 
2484 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2485 		struct ReportLUNdata *buf,
2486 		int bufsize, int extended_response)
2487 {
2488 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2489 }
2490 
2491 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2492 		struct ReportLUNdata *buf, int bufsize)
2493 {
2494 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2495 }
2496 
2497 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2498 	int bus, int target, int lun)
2499 {
2500 	device->bus = bus;
2501 	device->target = target;
2502 	device->lun = lun;
2503 }
2504 
2505 /* Use VPD inquiry to get details of volume status */
2506 static int hpsa_get_volume_status(struct ctlr_info *h,
2507 					unsigned char scsi3addr[])
2508 {
2509 	int rc;
2510 	int status;
2511 	int size;
2512 	unsigned char *buf;
2513 
2514 	buf = kzalloc(64, GFP_KERNEL);
2515 	if (!buf)
2516 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2517 
2518 	/* Does controller have VPD for logical volume status? */
2519 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2520 		goto exit_failed;
2521 
2522 	/* Get the size of the VPD return buffer */
2523 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2524 					buf, HPSA_VPD_HEADER_SZ);
2525 	if (rc != 0)
2526 		goto exit_failed;
2527 	size = buf[3];
2528 
2529 	/* Now get the whole VPD buffer */
2530 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2531 					buf, size + HPSA_VPD_HEADER_SZ);
2532 	if (rc != 0)
2533 		goto exit_failed;
2534 	status = buf[4]; /* status byte */
2535 
2536 	kfree(buf);
2537 	return status;
2538 exit_failed:
2539 	kfree(buf);
2540 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2541 }
2542 
2543 /* Determine offline status of a volume.
2544  * Return either:
2545  *  0 (not offline)
2546  *  0xff (offline for unknown reasons)
2547  *  # (integer code indicating one of several NOT READY states
2548  *     describing why a volume is to be kept offline)
2549  */
2550 static int hpsa_volume_offline(struct ctlr_info *h,
2551 					unsigned char scsi3addr[])
2552 {
2553 	struct CommandList *c;
2554 	unsigned char *sense, sense_key, asc, ascq;
2555 	int ldstat = 0;
2556 	u16 cmd_status;
2557 	u8 scsi_status;
2558 #define ASC_LUN_NOT_READY 0x04
2559 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2560 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2561 
2562 	c = cmd_alloc(h);
2563 	if (!c)
2564 		return 0;
2565 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2566 	hpsa_scsi_do_simple_cmd_core(h, c);
2567 	sense = c->err_info->SenseInfo;
2568 	sense_key = sense[2];
2569 	asc = sense[12];
2570 	ascq = sense[13];
2571 	cmd_status = c->err_info->CommandStatus;
2572 	scsi_status = c->err_info->ScsiStatus;
2573 	cmd_free(h, c);
2574 	/* Is the volume 'not ready'? */
2575 	if (cmd_status != CMD_TARGET_STATUS ||
2576 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2577 		sense_key != NOT_READY ||
2578 		asc != ASC_LUN_NOT_READY)  {
2579 		return 0;
2580 	}
2581 
2582 	/* Determine the reason for not ready state */
2583 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2584 
2585 	/* Keep volume offline in certain cases: */
2586 	switch (ldstat) {
2587 	case HPSA_LV_UNDERGOING_ERASE:
2588 	case HPSA_LV_UNDERGOING_RPI:
2589 	case HPSA_LV_PENDING_RPI:
2590 	case HPSA_LV_ENCRYPTED_NO_KEY:
2591 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2592 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2593 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2594 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2595 		return ldstat;
2596 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2597 		/* If VPD status page isn't available,
2598 		 * use ASC/ASCQ to determine state
2599 		 */
2600 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2601 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2602 			return ldstat;
2603 		break;
2604 	default:
2605 		break;
2606 	}
2607 	return 0;
2608 }
2609 
2610 static int hpsa_update_device_info(struct ctlr_info *h,
2611 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2612 	unsigned char *is_OBDR_device)
2613 {
2614 
2615 #define OBDR_SIG_OFFSET 43
2616 #define OBDR_TAPE_SIG "$DR-10"
2617 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2618 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2619 
2620 	unsigned char *inq_buff;
2621 	unsigned char *obdr_sig;
2622 
2623 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2624 	if (!inq_buff)
2625 		goto bail_out;
2626 
2627 	/* Do an inquiry to the device to see what it is. */
2628 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2629 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2630 		/* Inquiry failed (msg printed already) */
2631 		dev_err(&h->pdev->dev,
2632 			"hpsa_update_device_info: inquiry failed\n");
2633 		goto bail_out;
2634 	}
2635 
2636 	this_device->devtype = (inq_buff[0] & 0x1f);
2637 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2638 	memcpy(this_device->vendor, &inq_buff[8],
2639 		sizeof(this_device->vendor));
2640 	memcpy(this_device->model, &inq_buff[16],
2641 		sizeof(this_device->model));
2642 	memset(this_device->device_id, 0,
2643 		sizeof(this_device->device_id));
2644 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2645 		sizeof(this_device->device_id));
2646 
2647 	if (this_device->devtype == TYPE_DISK &&
2648 		is_logical_dev_addr_mode(scsi3addr)) {
2649 		int volume_offline;
2650 
2651 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2652 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2653 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2654 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2655 		if (volume_offline < 0 || volume_offline > 0xff)
2656 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2657 		this_device->volume_offline = volume_offline & 0xff;
2658 	} else {
2659 		this_device->raid_level = RAID_UNKNOWN;
2660 		this_device->offload_config = 0;
2661 		this_device->offload_enabled = 0;
2662 		this_device->volume_offline = 0;
2663 	}
2664 
2665 	if (is_OBDR_device) {
2666 		/* See if this is a One-Button-Disaster-Recovery device
2667 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2668 		 */
2669 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2670 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2671 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2672 						OBDR_SIG_LEN) == 0);
2673 	}
2674 
2675 	kfree(inq_buff);
2676 	return 0;
2677 
2678 bail_out:
2679 	kfree(inq_buff);
2680 	return 1;
2681 }
2682 
2683 static unsigned char *ext_target_model[] = {
2684 	"MSA2012",
2685 	"MSA2024",
2686 	"MSA2312",
2687 	"MSA2324",
2688 	"P2000 G3 SAS",
2689 	"MSA 2040 SAS",
2690 	NULL,
2691 };
2692 
2693 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2694 {
2695 	int i;
2696 
2697 	for (i = 0; ext_target_model[i]; i++)
2698 		if (strncmp(device->model, ext_target_model[i],
2699 			strlen(ext_target_model[i])) == 0)
2700 			return 1;
2701 	return 0;
2702 }
2703 
2704 /* Helper function to assign bus, target, lun mapping of devices.
2705  * Puts non-external target logical volumes on bus 0, external target logical
2706  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2707  * Logical drive target and lun are assigned at this time, but
2708  * physical device lun and target assignment are deferred (assigned
2709  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2710  */
2711 static void figure_bus_target_lun(struct ctlr_info *h,
2712 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2713 {
2714 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2715 
2716 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2717 		/* physical device, target and lun filled in later */
2718 		if (is_hba_lunid(lunaddrbytes))
2719 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2720 		else
2721 			/* defer target, lun assignment for physical devices */
2722 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2723 		return;
2724 	}
2725 	/* It's a logical device */
2726 	if (is_ext_target(h, device)) {
2727 		/* external target way, put logicals on bus 1
2728 		 * and match target/lun numbers box
2729 		 * reports, other smart array, bus 0, target 0, match lunid
2730 		 */
2731 		hpsa_set_bus_target_lun(device,
2732 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2733 		return;
2734 	}
2735 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2736 }
2737 
2738 /*
2739  * If there is no lun 0 on a target, linux won't find any devices.
2740  * For the external targets (arrays), we have to manually detect the enclosure
2741  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2742  * it for some reason.  *tmpdevice is the target we're adding,
2743  * this_device is a pointer into the current element of currentsd[]
2744  * that we're building up in update_scsi_devices(), below.
2745  * lunzerobits is a bitmap that tracks which targets already have a
2746  * lun 0 assigned.
2747  * Returns 1 if an enclosure was added, 0 if not.
2748  */
2749 static int add_ext_target_dev(struct ctlr_info *h,
2750 	struct hpsa_scsi_dev_t *tmpdevice,
2751 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2752 	unsigned long lunzerobits[], int *n_ext_target_devs)
2753 {
2754 	unsigned char scsi3addr[8];
2755 
2756 	if (test_bit(tmpdevice->target, lunzerobits))
2757 		return 0; /* There is already a lun 0 on this target. */
2758 
2759 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2760 		return 0; /* It's the logical targets that may lack lun 0. */
2761 
2762 	if (!is_ext_target(h, tmpdevice))
2763 		return 0; /* Only external target devices have this problem. */
2764 
2765 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2766 		return 0;
2767 
2768 	memset(scsi3addr, 0, 8);
2769 	scsi3addr[3] = tmpdevice->target;
2770 	if (is_hba_lunid(scsi3addr))
2771 		return 0; /* Don't add the RAID controller here. */
2772 
2773 	if (is_scsi_rev_5(h))
2774 		return 0; /* p1210m doesn't need to do this. */
2775 
2776 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2777 		dev_warn(&h->pdev->dev, "Maximum number of external "
2778 			"target devices exceeded.  Check your hardware "
2779 			"configuration.");
2780 		return 0;
2781 	}
2782 
2783 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2784 		return 0;
2785 	(*n_ext_target_devs)++;
2786 	hpsa_set_bus_target_lun(this_device,
2787 				tmpdevice->bus, tmpdevice->target, 0);
2788 	set_bit(tmpdevice->target, lunzerobits);
2789 	return 1;
2790 }
2791 
2792 /*
2793  * Get address of physical disk used for an ioaccel2 mode command:
2794  *	1. Extract ioaccel2 handle from the command.
2795  *	2. Find a matching ioaccel2 handle from list of physical disks.
2796  *	3. Return:
2797  *		1 and set scsi3addr to address of matching physical
2798  *		0 if no matching physical disk was found.
2799  */
2800 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2801 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2802 {
2803 	struct ReportExtendedLUNdata *physicals = NULL;
2804 	int responsesize = 24;	/* size of physical extended response */
2805 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2806 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2807 	u32 nphysicals = 0;	/* number of reported physical devs */
2808 	int found = 0;		/* found match (1) or not (0) */
2809 	u32 find;		/* handle we need to match */
2810 	int i;
2811 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2812 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2813 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2814 	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2815 	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2816 
2817 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2818 		return 0; /* no match */
2819 
2820 	/* point to the ioaccel2 device handle */
2821 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2822 	if (c2a == NULL)
2823 		return 0; /* no match */
2824 
2825 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2826 	if (scmd == NULL)
2827 		return 0; /* no match */
2828 
2829 	d = scmd->device->hostdata;
2830 	if (d == NULL)
2831 		return 0; /* no match */
2832 
2833 	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2834 	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2835 	find = c2a->scsi_nexus;
2836 
2837 	if (h->raid_offload_debug > 0)
2838 		dev_info(&h->pdev->dev,
2839 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2840 			__func__, scsi_nexus,
2841 			d->device_id[0], d->device_id[1], d->device_id[2],
2842 			d->device_id[3], d->device_id[4], d->device_id[5],
2843 			d->device_id[6], d->device_id[7], d->device_id[8],
2844 			d->device_id[9], d->device_id[10], d->device_id[11],
2845 			d->device_id[12], d->device_id[13], d->device_id[14],
2846 			d->device_id[15]);
2847 
2848 	/* Get the list of physical devices */
2849 	physicals = kzalloc(reportsize, GFP_KERNEL);
2850 	if (physicals == NULL)
2851 		return 0;
2852 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2853 		reportsize, extended)) {
2854 		dev_err(&h->pdev->dev,
2855 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2856 			"HP SSD Smart Path");
2857 		kfree(physicals);
2858 		return 0;
2859 	}
2860 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2861 							responsesize;
2862 
2863 	/* find ioaccel2 handle in list of physicals: */
2864 	for (i = 0; i < nphysicals; i++) {
2865 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2866 
2867 		/* handle is in bytes 28-31 of each lun */
2868 		if (entry->ioaccel_handle != find)
2869 			continue; /* didn't match */
2870 		found = 1;
2871 		memcpy(scsi3addr, entry->lunid, 8);
2872 		if (h->raid_offload_debug > 0)
2873 			dev_info(&h->pdev->dev,
2874 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2875 				__func__, find,
2876 				entry->ioaccel_handle, scsi3addr);
2877 		break; /* found it */
2878 	}
2879 
2880 	kfree(physicals);
2881 	if (found)
2882 		return 1;
2883 	else
2884 		return 0;
2885 
2886 }
2887 /*
2888  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2889  * logdev.  The number of luns in physdev and logdev are returned in
2890  * *nphysicals and *nlogicals, respectively.
2891  * Returns 0 on success, -1 otherwise.
2892  */
2893 static int hpsa_gather_lun_info(struct ctlr_info *h,
2894 	int reportlunsize,
2895 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2896 	struct ReportLUNdata *logdev, u32 *nlogicals)
2897 {
2898 	int physical_entry_size = 8;
2899 
2900 	*physical_mode = 0;
2901 
2902 	/* For I/O accelerator mode we need to read physical device handles */
2903 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2904 		h->transMethod & CFGTBL_Trans_io_accel2) {
2905 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2906 		physical_entry_size = 24;
2907 	}
2908 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2909 							*physical_mode)) {
2910 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2911 		return -1;
2912 	}
2913 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2914 							physical_entry_size;
2915 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2916 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2917 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2918 			*nphysicals - HPSA_MAX_PHYS_LUN);
2919 		*nphysicals = HPSA_MAX_PHYS_LUN;
2920 	}
2921 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2922 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2923 		return -1;
2924 	}
2925 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2926 	/* Reject Logicals in excess of our max capability. */
2927 	if (*nlogicals > HPSA_MAX_LUN) {
2928 		dev_warn(&h->pdev->dev,
2929 			"maximum logical LUNs (%d) exceeded.  "
2930 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2931 			*nlogicals - HPSA_MAX_LUN);
2932 			*nlogicals = HPSA_MAX_LUN;
2933 	}
2934 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2935 		dev_warn(&h->pdev->dev,
2936 			"maximum logical + physical LUNs (%d) exceeded. "
2937 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2938 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2939 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2940 	}
2941 	return 0;
2942 }
2943 
2944 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2945 	int nphysicals, int nlogicals,
2946 	struct ReportExtendedLUNdata *physdev_list,
2947 	struct ReportLUNdata *logdev_list)
2948 {
2949 	/* Helper function, figure out where the LUN ID info is coming from
2950 	 * given index i, lists of physical and logical devices, where in
2951 	 * the list the raid controller is supposed to appear (first or last)
2952 	 */
2953 
2954 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2955 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2956 
2957 	if (i == raid_ctlr_position)
2958 		return RAID_CTLR_LUNID;
2959 
2960 	if (i < logicals_start)
2961 		return &physdev_list->LUN[i -
2962 				(raid_ctlr_position == 0)].lunid[0];
2963 
2964 	if (i < last_device)
2965 		return &logdev_list->LUN[i - nphysicals -
2966 			(raid_ctlr_position == 0)][0];
2967 	BUG();
2968 	return NULL;
2969 }
2970 
2971 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2972 {
2973 	int rc;
2974 	int hba_mode_enabled;
2975 	struct bmic_controller_parameters *ctlr_params;
2976 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2977 		GFP_KERNEL);
2978 
2979 	if (!ctlr_params)
2980 		return -ENOMEM;
2981 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2982 		sizeof(struct bmic_controller_parameters));
2983 	if (rc) {
2984 		kfree(ctlr_params);
2985 		return rc;
2986 	}
2987 
2988 	hba_mode_enabled =
2989 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2990 	kfree(ctlr_params);
2991 	return hba_mode_enabled;
2992 }
2993 
2994 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2995 {
2996 	/* the idea here is we could get notified
2997 	 * that some devices have changed, so we do a report
2998 	 * physical luns and report logical luns cmd, and adjust
2999 	 * our list of devices accordingly.
3000 	 *
3001 	 * The scsi3addr's of devices won't change so long as the
3002 	 * adapter is not reset.  That means we can rescan and
3003 	 * tell which devices we already know about, vs. new
3004 	 * devices, vs.  disappearing devices.
3005 	 */
3006 	struct ReportExtendedLUNdata *physdev_list = NULL;
3007 	struct ReportLUNdata *logdev_list = NULL;
3008 	u32 nphysicals = 0;
3009 	u32 nlogicals = 0;
3010 	int physical_mode = 0;
3011 	u32 ndev_allocated = 0;
3012 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3013 	int ncurrent = 0;
3014 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3015 	int i, n_ext_target_devs, ndevs_to_allocate;
3016 	int raid_ctlr_position;
3017 	int rescan_hba_mode;
3018 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3019 
3020 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3021 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3022 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3023 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3024 
3025 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3026 		dev_err(&h->pdev->dev, "out of memory\n");
3027 		goto out;
3028 	}
3029 	memset(lunzerobits, 0, sizeof(lunzerobits));
3030 
3031 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3032 	if (rescan_hba_mode < 0)
3033 		goto out;
3034 
3035 	if (!h->hba_mode_enabled && rescan_hba_mode)
3036 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3037 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3038 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3039 
3040 	h->hba_mode_enabled = rescan_hba_mode;
3041 
3042 	if (hpsa_gather_lun_info(h, reportlunsize,
3043 			(struct ReportLUNdata *) physdev_list, &nphysicals,
3044 			&physical_mode, logdev_list, &nlogicals))
3045 		goto out;
3046 
3047 	/* We might see up to the maximum number of logical and physical disks
3048 	 * plus external target devices, and a device for the local RAID
3049 	 * controller.
3050 	 */
3051 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3052 
3053 	/* Allocate the per device structures */
3054 	for (i = 0; i < ndevs_to_allocate; i++) {
3055 		if (i >= HPSA_MAX_DEVICES) {
3056 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3057 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3058 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3059 			break;
3060 		}
3061 
3062 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3063 		if (!currentsd[i]) {
3064 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3065 				__FILE__, __LINE__);
3066 			goto out;
3067 		}
3068 		ndev_allocated++;
3069 	}
3070 
3071 	if (is_scsi_rev_5(h))
3072 		raid_ctlr_position = 0;
3073 	else
3074 		raid_ctlr_position = nphysicals + nlogicals;
3075 
3076 	/* adjust our table of devices */
3077 	n_ext_target_devs = 0;
3078 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3079 		u8 *lunaddrbytes, is_OBDR = 0;
3080 
3081 		/* Figure out where the LUN ID info is coming from */
3082 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3083 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3084 		/* skip masked physical devices. */
3085 		if (lunaddrbytes[3] & 0xC0 &&
3086 			i < nphysicals + (raid_ctlr_position == 0))
3087 			continue;
3088 
3089 		/* Get device type, vendor, model, device id */
3090 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3091 							&is_OBDR))
3092 			continue; /* skip it if we can't talk to it. */
3093 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3094 		this_device = currentsd[ncurrent];
3095 
3096 		/*
3097 		 * For external target devices, we have to insert a LUN 0 which
3098 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3099 		 * is nonetheless an enclosure device there.  We have to
3100 		 * present that otherwise linux won't find anything if
3101 		 * there is no lun 0.
3102 		 */
3103 		if (add_ext_target_dev(h, tmpdevice, this_device,
3104 				lunaddrbytes, lunzerobits,
3105 				&n_ext_target_devs)) {
3106 			ncurrent++;
3107 			this_device = currentsd[ncurrent];
3108 		}
3109 
3110 		*this_device = *tmpdevice;
3111 
3112 		switch (this_device->devtype) {
3113 		case TYPE_ROM:
3114 			/* We don't *really* support actual CD-ROM devices,
3115 			 * just "One Button Disaster Recovery" tape drive
3116 			 * which temporarily pretends to be a CD-ROM drive.
3117 			 * So we check that the device is really an OBDR tape
3118 			 * device by checking for "$DR-10" in bytes 43-48 of
3119 			 * the inquiry data.
3120 			 */
3121 			if (is_OBDR)
3122 				ncurrent++;
3123 			break;
3124 		case TYPE_DISK:
3125 			if (h->hba_mode_enabled) {
3126 				/* never use raid mapper in HBA mode */
3127 				this_device->offload_enabled = 0;
3128 				ncurrent++;
3129 				break;
3130 			} else if (h->acciopath_status) {
3131 				if (i >= nphysicals) {
3132 					ncurrent++;
3133 					break;
3134 				}
3135 			} else {
3136 				if (i < nphysicals)
3137 					break;
3138 				ncurrent++;
3139 				break;
3140 			}
3141 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3142 				memcpy(&this_device->ioaccel_handle,
3143 					&lunaddrbytes[20],
3144 					sizeof(this_device->ioaccel_handle));
3145 				ncurrent++;
3146 			}
3147 			break;
3148 		case TYPE_TAPE:
3149 		case TYPE_MEDIUM_CHANGER:
3150 			ncurrent++;
3151 			break;
3152 		case TYPE_RAID:
3153 			/* Only present the Smartarray HBA as a RAID controller.
3154 			 * If it's a RAID controller other than the HBA itself
3155 			 * (an external RAID controller, MSA500 or similar)
3156 			 * don't present it.
3157 			 */
3158 			if (!is_hba_lunid(lunaddrbytes))
3159 				break;
3160 			ncurrent++;
3161 			break;
3162 		default:
3163 			break;
3164 		}
3165 		if (ncurrent >= HPSA_MAX_DEVICES)
3166 			break;
3167 	}
3168 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3169 out:
3170 	kfree(tmpdevice);
3171 	for (i = 0; i < ndev_allocated; i++)
3172 		kfree(currentsd[i]);
3173 	kfree(currentsd);
3174 	kfree(physdev_list);
3175 	kfree(logdev_list);
3176 }
3177 
3178 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3179  * dma mapping  and fills in the scatter gather entries of the
3180  * hpsa command, cp.
3181  */
3182 static int hpsa_scatter_gather(struct ctlr_info *h,
3183 		struct CommandList *cp,
3184 		struct scsi_cmnd *cmd)
3185 {
3186 	unsigned int len;
3187 	struct scatterlist *sg;
3188 	u64 addr64;
3189 	int use_sg, i, sg_index, chained;
3190 	struct SGDescriptor *curr_sg;
3191 
3192 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3193 
3194 	use_sg = scsi_dma_map(cmd);
3195 	if (use_sg < 0)
3196 		return use_sg;
3197 
3198 	if (!use_sg)
3199 		goto sglist_finished;
3200 
3201 	curr_sg = cp->SG;
3202 	chained = 0;
3203 	sg_index = 0;
3204 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3205 		if (i == h->max_cmd_sg_entries - 1 &&
3206 			use_sg > h->max_cmd_sg_entries) {
3207 			chained = 1;
3208 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3209 			sg_index = 0;
3210 		}
3211 		addr64 = (u64) sg_dma_address(sg);
3212 		len  = sg_dma_len(sg);
3213 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3214 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3215 		curr_sg->Len = len;
3216 		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3217 		curr_sg++;
3218 	}
3219 
3220 	if (use_sg + chained > h->maxSG)
3221 		h->maxSG = use_sg + chained;
3222 
3223 	if (chained) {
3224 		cp->Header.SGList = h->max_cmd_sg_entries;
3225 		cp->Header.SGTotal = (u16) (use_sg + 1);
3226 		if (hpsa_map_sg_chain_block(h, cp)) {
3227 			scsi_dma_unmap(cmd);
3228 			return -1;
3229 		}
3230 		return 0;
3231 	}
3232 
3233 sglist_finished:
3234 
3235 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3236 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3237 	return 0;
3238 }
3239 
3240 #define IO_ACCEL_INELIGIBLE (1)
3241 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3242 {
3243 	int is_write = 0;
3244 	u32 block;
3245 	u32 block_cnt;
3246 
3247 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3248 	switch (cdb[0]) {
3249 	case WRITE_6:
3250 	case WRITE_12:
3251 		is_write = 1;
3252 	case READ_6:
3253 	case READ_12:
3254 		if (*cdb_len == 6) {
3255 			block = (((u32) cdb[2]) << 8) | cdb[3];
3256 			block_cnt = cdb[4];
3257 		} else {
3258 			BUG_ON(*cdb_len != 12);
3259 			block = (((u32) cdb[2]) << 24) |
3260 				(((u32) cdb[3]) << 16) |
3261 				(((u32) cdb[4]) << 8) |
3262 				cdb[5];
3263 			block_cnt =
3264 				(((u32) cdb[6]) << 24) |
3265 				(((u32) cdb[7]) << 16) |
3266 				(((u32) cdb[8]) << 8) |
3267 				cdb[9];
3268 		}
3269 		if (block_cnt > 0xffff)
3270 			return IO_ACCEL_INELIGIBLE;
3271 
3272 		cdb[0] = is_write ? WRITE_10 : READ_10;
3273 		cdb[1] = 0;
3274 		cdb[2] = (u8) (block >> 24);
3275 		cdb[3] = (u8) (block >> 16);
3276 		cdb[4] = (u8) (block >> 8);
3277 		cdb[5] = (u8) (block);
3278 		cdb[6] = 0;
3279 		cdb[7] = (u8) (block_cnt >> 8);
3280 		cdb[8] = (u8) (block_cnt);
3281 		cdb[9] = 0;
3282 		*cdb_len = 10;
3283 		break;
3284 	}
3285 	return 0;
3286 }
3287 
3288 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3289 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3290 	u8 *scsi3addr)
3291 {
3292 	struct scsi_cmnd *cmd = c->scsi_cmd;
3293 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3294 	unsigned int len;
3295 	unsigned int total_len = 0;
3296 	struct scatterlist *sg;
3297 	u64 addr64;
3298 	int use_sg, i;
3299 	struct SGDescriptor *curr_sg;
3300 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3301 
3302 	/* TODO: implement chaining support */
3303 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3304 		return IO_ACCEL_INELIGIBLE;
3305 
3306 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3307 
3308 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3309 		return IO_ACCEL_INELIGIBLE;
3310 
3311 	c->cmd_type = CMD_IOACCEL1;
3312 
3313 	/* Adjust the DMA address to point to the accelerated command buffer */
3314 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3315 				(c->cmdindex * sizeof(*cp));
3316 	BUG_ON(c->busaddr & 0x0000007F);
3317 
3318 	use_sg = scsi_dma_map(cmd);
3319 	if (use_sg < 0)
3320 		return use_sg;
3321 
3322 	if (use_sg) {
3323 		curr_sg = cp->SG;
3324 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3325 			addr64 = (u64) sg_dma_address(sg);
3326 			len  = sg_dma_len(sg);
3327 			total_len += len;
3328 			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3329 			curr_sg->Addr.upper =
3330 				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3331 			curr_sg->Len = len;
3332 
3333 			if (i == (scsi_sg_count(cmd) - 1))
3334 				curr_sg->Ext = HPSA_SG_LAST;
3335 			else
3336 				curr_sg->Ext = 0;  /* we are not chaining */
3337 			curr_sg++;
3338 		}
3339 
3340 		switch (cmd->sc_data_direction) {
3341 		case DMA_TO_DEVICE:
3342 			control |= IOACCEL1_CONTROL_DATA_OUT;
3343 			break;
3344 		case DMA_FROM_DEVICE:
3345 			control |= IOACCEL1_CONTROL_DATA_IN;
3346 			break;
3347 		case DMA_NONE:
3348 			control |= IOACCEL1_CONTROL_NODATAXFER;
3349 			break;
3350 		default:
3351 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3352 			cmd->sc_data_direction);
3353 			BUG();
3354 			break;
3355 		}
3356 	} else {
3357 		control |= IOACCEL1_CONTROL_NODATAXFER;
3358 	}
3359 
3360 	c->Header.SGList = use_sg;
3361 	/* Fill out the command structure to submit */
3362 	cp->dev_handle = ioaccel_handle & 0xFFFF;
3363 	cp->transfer_len = total_len;
3364 	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3365 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3366 	cp->control = control;
3367 	memcpy(cp->CDB, cdb, cdb_len);
3368 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3369 	/* Tag was already set at init time. */
3370 	enqueue_cmd_and_start_io(h, c);
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Queue a command directly to a device behind the controller using the
3376  * I/O accelerator path.
3377  */
3378 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3379 	struct CommandList *c)
3380 {
3381 	struct scsi_cmnd *cmd = c->scsi_cmd;
3382 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3383 
3384 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3385 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3386 }
3387 
3388 /*
3389  * Set encryption parameters for the ioaccel2 request
3390  */
3391 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3392 	struct CommandList *c, struct io_accel2_cmd *cp)
3393 {
3394 	struct scsi_cmnd *cmd = c->scsi_cmd;
3395 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3396 	struct raid_map_data *map = &dev->raid_map;
3397 	u64 first_block;
3398 
3399 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3400 
3401 	/* Are we doing encryption on this device */
3402 	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3403 		return;
3404 	/* Set the data encryption key index. */
3405 	cp->dekindex = map->dekindex;
3406 
3407 	/* Set the encryption enable flag, encoded into direction field. */
3408 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3409 
3410 	/* Set encryption tweak values based on logical block address
3411 	 * If block size is 512, tweak value is LBA.
3412 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3413 	 */
3414 	switch (cmd->cmnd[0]) {
3415 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3416 	case WRITE_6:
3417 	case READ_6:
3418 		if (map->volume_blk_size == 512) {
3419 			cp->tweak_lower =
3420 				(((u32) cmd->cmnd[2]) << 8) |
3421 					cmd->cmnd[3];
3422 			cp->tweak_upper = 0;
3423 		} else {
3424 			first_block =
3425 				(((u64) cmd->cmnd[2]) << 8) |
3426 					cmd->cmnd[3];
3427 			first_block = (first_block * map->volume_blk_size)/512;
3428 			cp->tweak_lower = (u32)first_block;
3429 			cp->tweak_upper = (u32)(first_block >> 32);
3430 		}
3431 		break;
3432 	case WRITE_10:
3433 	case READ_10:
3434 		if (map->volume_blk_size == 512) {
3435 			cp->tweak_lower =
3436 				(((u32) cmd->cmnd[2]) << 24) |
3437 				(((u32) cmd->cmnd[3]) << 16) |
3438 				(((u32) cmd->cmnd[4]) << 8) |
3439 					cmd->cmnd[5];
3440 			cp->tweak_upper = 0;
3441 		} else {
3442 			first_block =
3443 				(((u64) cmd->cmnd[2]) << 24) |
3444 				(((u64) cmd->cmnd[3]) << 16) |
3445 				(((u64) cmd->cmnd[4]) << 8) |
3446 					cmd->cmnd[5];
3447 			first_block = (first_block * map->volume_blk_size)/512;
3448 			cp->tweak_lower = (u32)first_block;
3449 			cp->tweak_upper = (u32)(first_block >> 32);
3450 		}
3451 		break;
3452 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3453 	case WRITE_12:
3454 	case READ_12:
3455 		if (map->volume_blk_size == 512) {
3456 			cp->tweak_lower =
3457 				(((u32) cmd->cmnd[2]) << 24) |
3458 				(((u32) cmd->cmnd[3]) << 16) |
3459 				(((u32) cmd->cmnd[4]) << 8) |
3460 					cmd->cmnd[5];
3461 			cp->tweak_upper = 0;
3462 		} else {
3463 			first_block =
3464 				(((u64) cmd->cmnd[2]) << 24) |
3465 				(((u64) cmd->cmnd[3]) << 16) |
3466 				(((u64) cmd->cmnd[4]) << 8) |
3467 					cmd->cmnd[5];
3468 			first_block = (first_block * map->volume_blk_size)/512;
3469 			cp->tweak_lower = (u32)first_block;
3470 			cp->tweak_upper = (u32)(first_block >> 32);
3471 		}
3472 		break;
3473 	case WRITE_16:
3474 	case READ_16:
3475 		if (map->volume_blk_size == 512) {
3476 			cp->tweak_lower =
3477 				(((u32) cmd->cmnd[6]) << 24) |
3478 				(((u32) cmd->cmnd[7]) << 16) |
3479 				(((u32) cmd->cmnd[8]) << 8) |
3480 					cmd->cmnd[9];
3481 			cp->tweak_upper =
3482 				(((u32) cmd->cmnd[2]) << 24) |
3483 				(((u32) cmd->cmnd[3]) << 16) |
3484 				(((u32) cmd->cmnd[4]) << 8) |
3485 					cmd->cmnd[5];
3486 		} else {
3487 			first_block =
3488 				(((u64) cmd->cmnd[2]) << 56) |
3489 				(((u64) cmd->cmnd[3]) << 48) |
3490 				(((u64) cmd->cmnd[4]) << 40) |
3491 				(((u64) cmd->cmnd[5]) << 32) |
3492 				(((u64) cmd->cmnd[6]) << 24) |
3493 				(((u64) cmd->cmnd[7]) << 16) |
3494 				(((u64) cmd->cmnd[8]) << 8) |
3495 					cmd->cmnd[9];
3496 			first_block = (first_block * map->volume_blk_size)/512;
3497 			cp->tweak_lower = (u32)first_block;
3498 			cp->tweak_upper = (u32)(first_block >> 32);
3499 		}
3500 		break;
3501 	default:
3502 		dev_err(&h->pdev->dev,
3503 			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3504 			__func__);
3505 		BUG();
3506 		break;
3507 	}
3508 }
3509 
3510 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3511 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3512 	u8 *scsi3addr)
3513 {
3514 	struct scsi_cmnd *cmd = c->scsi_cmd;
3515 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3516 	struct ioaccel2_sg_element *curr_sg;
3517 	int use_sg, i;
3518 	struct scatterlist *sg;
3519 	u64 addr64;
3520 	u32 len;
3521 	u32 total_len = 0;
3522 
3523 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3524 		return IO_ACCEL_INELIGIBLE;
3525 
3526 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3527 		return IO_ACCEL_INELIGIBLE;
3528 	c->cmd_type = CMD_IOACCEL2;
3529 	/* Adjust the DMA address to point to the accelerated command buffer */
3530 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3531 				(c->cmdindex * sizeof(*cp));
3532 	BUG_ON(c->busaddr & 0x0000007F);
3533 
3534 	memset(cp, 0, sizeof(*cp));
3535 	cp->IU_type = IOACCEL2_IU_TYPE;
3536 
3537 	use_sg = scsi_dma_map(cmd);
3538 	if (use_sg < 0)
3539 		return use_sg;
3540 
3541 	if (use_sg) {
3542 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3543 		curr_sg = cp->sg;
3544 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3545 			addr64 = (u64) sg_dma_address(sg);
3546 			len  = sg_dma_len(sg);
3547 			total_len += len;
3548 			curr_sg->address = cpu_to_le64(addr64);
3549 			curr_sg->length = cpu_to_le32(len);
3550 			curr_sg->reserved[0] = 0;
3551 			curr_sg->reserved[1] = 0;
3552 			curr_sg->reserved[2] = 0;
3553 			curr_sg->chain_indicator = 0;
3554 			curr_sg++;
3555 		}
3556 
3557 		switch (cmd->sc_data_direction) {
3558 		case DMA_TO_DEVICE:
3559 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3560 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3561 			break;
3562 		case DMA_FROM_DEVICE:
3563 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3564 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3565 			break;
3566 		case DMA_NONE:
3567 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3568 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3569 			break;
3570 		default:
3571 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3572 				cmd->sc_data_direction);
3573 			BUG();
3574 			break;
3575 		}
3576 	} else {
3577 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3578 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3579 	}
3580 
3581 	/* Set encryption parameters, if necessary */
3582 	set_encrypt_ioaccel2(h, c, cp);
3583 
3584 	cp->scsi_nexus = ioaccel_handle;
3585 	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3586 				DIRECT_LOOKUP_BIT;
3587 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3588 
3589 	/* fill in sg elements */
3590 	cp->sg_count = (u8) use_sg;
3591 
3592 	cp->data_len = cpu_to_le32(total_len);
3593 	cp->err_ptr = cpu_to_le64(c->busaddr +
3594 			offsetof(struct io_accel2_cmd, error_data));
3595 	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3596 
3597 	enqueue_cmd_and_start_io(h, c);
3598 	return 0;
3599 }
3600 
3601 /*
3602  * Queue a command to the correct I/O accelerator path.
3603  */
3604 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3605 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3606 	u8 *scsi3addr)
3607 {
3608 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3609 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3610 						cdb, cdb_len, scsi3addr);
3611 	else
3612 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3613 						cdb, cdb_len, scsi3addr);
3614 }
3615 
3616 static void raid_map_helper(struct raid_map_data *map,
3617 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3618 {
3619 	if (offload_to_mirror == 0)  {
3620 		/* use physical disk in the first mirrored group. */
3621 		*map_index %= map->data_disks_per_row;
3622 		return;
3623 	}
3624 	do {
3625 		/* determine mirror group that *map_index indicates */
3626 		*current_group = *map_index / map->data_disks_per_row;
3627 		if (offload_to_mirror == *current_group)
3628 			continue;
3629 		if (*current_group < (map->layout_map_count - 1)) {
3630 			/* select map index from next group */
3631 			*map_index += map->data_disks_per_row;
3632 			(*current_group)++;
3633 		} else {
3634 			/* select map index from first group */
3635 			*map_index %= map->data_disks_per_row;
3636 			*current_group = 0;
3637 		}
3638 	} while (offload_to_mirror != *current_group);
3639 }
3640 
3641 /*
3642  * Attempt to perform offload RAID mapping for a logical volume I/O.
3643  */
3644 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3645 	struct CommandList *c)
3646 {
3647 	struct scsi_cmnd *cmd = c->scsi_cmd;
3648 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3649 	struct raid_map_data *map = &dev->raid_map;
3650 	struct raid_map_disk_data *dd = &map->data[0];
3651 	int is_write = 0;
3652 	u32 map_index;
3653 	u64 first_block, last_block;
3654 	u32 block_cnt;
3655 	u32 blocks_per_row;
3656 	u64 first_row, last_row;
3657 	u32 first_row_offset, last_row_offset;
3658 	u32 first_column, last_column;
3659 	u64 r0_first_row, r0_last_row;
3660 	u32 r5or6_blocks_per_row;
3661 	u64 r5or6_first_row, r5or6_last_row;
3662 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3663 	u32 r5or6_first_column, r5or6_last_column;
3664 	u32 total_disks_per_row;
3665 	u32 stripesize;
3666 	u32 first_group, last_group, current_group;
3667 	u32 map_row;
3668 	u32 disk_handle;
3669 	u64 disk_block;
3670 	u32 disk_block_cnt;
3671 	u8 cdb[16];
3672 	u8 cdb_len;
3673 #if BITS_PER_LONG == 32
3674 	u64 tmpdiv;
3675 #endif
3676 	int offload_to_mirror;
3677 
3678 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3679 
3680 	/* check for valid opcode, get LBA and block count */
3681 	switch (cmd->cmnd[0]) {
3682 	case WRITE_6:
3683 		is_write = 1;
3684 	case READ_6:
3685 		first_block =
3686 			(((u64) cmd->cmnd[2]) << 8) |
3687 			cmd->cmnd[3];
3688 		block_cnt = cmd->cmnd[4];
3689 		break;
3690 	case WRITE_10:
3691 		is_write = 1;
3692 	case READ_10:
3693 		first_block =
3694 			(((u64) cmd->cmnd[2]) << 24) |
3695 			(((u64) cmd->cmnd[3]) << 16) |
3696 			(((u64) cmd->cmnd[4]) << 8) |
3697 			cmd->cmnd[5];
3698 		block_cnt =
3699 			(((u32) cmd->cmnd[7]) << 8) |
3700 			cmd->cmnd[8];
3701 		break;
3702 	case WRITE_12:
3703 		is_write = 1;
3704 	case READ_12:
3705 		first_block =
3706 			(((u64) cmd->cmnd[2]) << 24) |
3707 			(((u64) cmd->cmnd[3]) << 16) |
3708 			(((u64) cmd->cmnd[4]) << 8) |
3709 			cmd->cmnd[5];
3710 		block_cnt =
3711 			(((u32) cmd->cmnd[6]) << 24) |
3712 			(((u32) cmd->cmnd[7]) << 16) |
3713 			(((u32) cmd->cmnd[8]) << 8) |
3714 		cmd->cmnd[9];
3715 		break;
3716 	case WRITE_16:
3717 		is_write = 1;
3718 	case READ_16:
3719 		first_block =
3720 			(((u64) cmd->cmnd[2]) << 56) |
3721 			(((u64) cmd->cmnd[3]) << 48) |
3722 			(((u64) cmd->cmnd[4]) << 40) |
3723 			(((u64) cmd->cmnd[5]) << 32) |
3724 			(((u64) cmd->cmnd[6]) << 24) |
3725 			(((u64) cmd->cmnd[7]) << 16) |
3726 			(((u64) cmd->cmnd[8]) << 8) |
3727 			cmd->cmnd[9];
3728 		block_cnt =
3729 			(((u32) cmd->cmnd[10]) << 24) |
3730 			(((u32) cmd->cmnd[11]) << 16) |
3731 			(((u32) cmd->cmnd[12]) << 8) |
3732 			cmd->cmnd[13];
3733 		break;
3734 	default:
3735 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3736 	}
3737 	BUG_ON(block_cnt == 0);
3738 	last_block = first_block + block_cnt - 1;
3739 
3740 	/* check for write to non-RAID-0 */
3741 	if (is_write && dev->raid_level != 0)
3742 		return IO_ACCEL_INELIGIBLE;
3743 
3744 	/* check for invalid block or wraparound */
3745 	if (last_block >= map->volume_blk_cnt || last_block < first_block)
3746 		return IO_ACCEL_INELIGIBLE;
3747 
3748 	/* calculate stripe information for the request */
3749 	blocks_per_row = map->data_disks_per_row * map->strip_size;
3750 #if BITS_PER_LONG == 32
3751 	tmpdiv = first_block;
3752 	(void) do_div(tmpdiv, blocks_per_row);
3753 	first_row = tmpdiv;
3754 	tmpdiv = last_block;
3755 	(void) do_div(tmpdiv, blocks_per_row);
3756 	last_row = tmpdiv;
3757 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3758 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3759 	tmpdiv = first_row_offset;
3760 	(void) do_div(tmpdiv,  map->strip_size);
3761 	first_column = tmpdiv;
3762 	tmpdiv = last_row_offset;
3763 	(void) do_div(tmpdiv, map->strip_size);
3764 	last_column = tmpdiv;
3765 #else
3766 	first_row = first_block / blocks_per_row;
3767 	last_row = last_block / blocks_per_row;
3768 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3769 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3770 	first_column = first_row_offset / map->strip_size;
3771 	last_column = last_row_offset / map->strip_size;
3772 #endif
3773 
3774 	/* if this isn't a single row/column then give to the controller */
3775 	if ((first_row != last_row) || (first_column != last_column))
3776 		return IO_ACCEL_INELIGIBLE;
3777 
3778 	/* proceeding with driver mapping */
3779 	total_disks_per_row = map->data_disks_per_row +
3780 				map->metadata_disks_per_row;
3781 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3782 				map->row_cnt;
3783 	map_index = (map_row * total_disks_per_row) + first_column;
3784 
3785 	switch (dev->raid_level) {
3786 	case HPSA_RAID_0:
3787 		break; /* nothing special to do */
3788 	case HPSA_RAID_1:
3789 		/* Handles load balance across RAID 1 members.
3790 		 * (2-drive R1 and R10 with even # of drives.)
3791 		 * Appropriate for SSDs, not optimal for HDDs
3792 		 */
3793 		BUG_ON(map->layout_map_count != 2);
3794 		if (dev->offload_to_mirror)
3795 			map_index += map->data_disks_per_row;
3796 		dev->offload_to_mirror = !dev->offload_to_mirror;
3797 		break;
3798 	case HPSA_RAID_ADM:
3799 		/* Handles N-way mirrors  (R1-ADM)
3800 		 * and R10 with # of drives divisible by 3.)
3801 		 */
3802 		BUG_ON(map->layout_map_count != 3);
3803 
3804 		offload_to_mirror = dev->offload_to_mirror;
3805 		raid_map_helper(map, offload_to_mirror,
3806 				&map_index, &current_group);
3807 		/* set mirror group to use next time */
3808 		offload_to_mirror =
3809 			(offload_to_mirror >= map->layout_map_count - 1)
3810 			? 0 : offload_to_mirror + 1;
3811 		/* FIXME: remove after debug/dev */
3812 		BUG_ON(offload_to_mirror >= map->layout_map_count);
3813 		dev_warn(&h->pdev->dev,
3814 			"DEBUG: Using physical disk map index %d from mirror group %d\n",
3815 			map_index, offload_to_mirror);
3816 		dev->offload_to_mirror = offload_to_mirror;
3817 		/* Avoid direct use of dev->offload_to_mirror within this
3818 		 * function since multiple threads might simultaneously
3819 		 * increment it beyond the range of dev->layout_map_count -1.
3820 		 */
3821 		break;
3822 	case HPSA_RAID_5:
3823 	case HPSA_RAID_6:
3824 		if (map->layout_map_count <= 1)
3825 			break;
3826 
3827 		/* Verify first and last block are in same RAID group */
3828 		r5or6_blocks_per_row =
3829 			map->strip_size * map->data_disks_per_row;
3830 		BUG_ON(r5or6_blocks_per_row == 0);
3831 		stripesize = r5or6_blocks_per_row * map->layout_map_count;
3832 #if BITS_PER_LONG == 32
3833 		tmpdiv = first_block;
3834 		first_group = do_div(tmpdiv, stripesize);
3835 		tmpdiv = first_group;
3836 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3837 		first_group = tmpdiv;
3838 		tmpdiv = last_block;
3839 		last_group = do_div(tmpdiv, stripesize);
3840 		tmpdiv = last_group;
3841 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3842 		last_group = tmpdiv;
3843 #else
3844 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3845 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3846 #endif
3847 		if (first_group != last_group)
3848 			return IO_ACCEL_INELIGIBLE;
3849 
3850 		/* Verify request is in a single row of RAID 5/6 */
3851 #if BITS_PER_LONG == 32
3852 		tmpdiv = first_block;
3853 		(void) do_div(tmpdiv, stripesize);
3854 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3855 		tmpdiv = last_block;
3856 		(void) do_div(tmpdiv, stripesize);
3857 		r5or6_last_row = r0_last_row = tmpdiv;
3858 #else
3859 		first_row = r5or6_first_row = r0_first_row =
3860 						first_block / stripesize;
3861 		r5or6_last_row = r0_last_row = last_block / stripesize;
3862 #endif
3863 		if (r5or6_first_row != r5or6_last_row)
3864 			return IO_ACCEL_INELIGIBLE;
3865 
3866 
3867 		/* Verify request is in a single column */
3868 #if BITS_PER_LONG == 32
3869 		tmpdiv = first_block;
3870 		first_row_offset = do_div(tmpdiv, stripesize);
3871 		tmpdiv = first_row_offset;
3872 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3873 		r5or6_first_row_offset = first_row_offset;
3874 		tmpdiv = last_block;
3875 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3876 		tmpdiv = r5or6_last_row_offset;
3877 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3878 		tmpdiv = r5or6_first_row_offset;
3879 		(void) do_div(tmpdiv, map->strip_size);
3880 		first_column = r5or6_first_column = tmpdiv;
3881 		tmpdiv = r5or6_last_row_offset;
3882 		(void) do_div(tmpdiv, map->strip_size);
3883 		r5or6_last_column = tmpdiv;
3884 #else
3885 		first_row_offset = r5or6_first_row_offset =
3886 			(u32)((first_block % stripesize) %
3887 						r5or6_blocks_per_row);
3888 
3889 		r5or6_last_row_offset =
3890 			(u32)((last_block % stripesize) %
3891 						r5or6_blocks_per_row);
3892 
3893 		first_column = r5or6_first_column =
3894 			r5or6_first_row_offset / map->strip_size;
3895 		r5or6_last_column =
3896 			r5or6_last_row_offset / map->strip_size;
3897 #endif
3898 		if (r5or6_first_column != r5or6_last_column)
3899 			return IO_ACCEL_INELIGIBLE;
3900 
3901 		/* Request is eligible */
3902 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3903 			map->row_cnt;
3904 
3905 		map_index = (first_group *
3906 			(map->row_cnt * total_disks_per_row)) +
3907 			(map_row * total_disks_per_row) + first_column;
3908 		break;
3909 	default:
3910 		return IO_ACCEL_INELIGIBLE;
3911 	}
3912 
3913 	disk_handle = dd[map_index].ioaccel_handle;
3914 	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3915 			(first_row_offset - (first_column * map->strip_size));
3916 	disk_block_cnt = block_cnt;
3917 
3918 	/* handle differing logical/physical block sizes */
3919 	if (map->phys_blk_shift) {
3920 		disk_block <<= map->phys_blk_shift;
3921 		disk_block_cnt <<= map->phys_blk_shift;
3922 	}
3923 	BUG_ON(disk_block_cnt > 0xffff);
3924 
3925 	/* build the new CDB for the physical disk I/O */
3926 	if (disk_block > 0xffffffff) {
3927 		cdb[0] = is_write ? WRITE_16 : READ_16;
3928 		cdb[1] = 0;
3929 		cdb[2] = (u8) (disk_block >> 56);
3930 		cdb[3] = (u8) (disk_block >> 48);
3931 		cdb[4] = (u8) (disk_block >> 40);
3932 		cdb[5] = (u8) (disk_block >> 32);
3933 		cdb[6] = (u8) (disk_block >> 24);
3934 		cdb[7] = (u8) (disk_block >> 16);
3935 		cdb[8] = (u8) (disk_block >> 8);
3936 		cdb[9] = (u8) (disk_block);
3937 		cdb[10] = (u8) (disk_block_cnt >> 24);
3938 		cdb[11] = (u8) (disk_block_cnt >> 16);
3939 		cdb[12] = (u8) (disk_block_cnt >> 8);
3940 		cdb[13] = (u8) (disk_block_cnt);
3941 		cdb[14] = 0;
3942 		cdb[15] = 0;
3943 		cdb_len = 16;
3944 	} else {
3945 		cdb[0] = is_write ? WRITE_10 : READ_10;
3946 		cdb[1] = 0;
3947 		cdb[2] = (u8) (disk_block >> 24);
3948 		cdb[3] = (u8) (disk_block >> 16);
3949 		cdb[4] = (u8) (disk_block >> 8);
3950 		cdb[5] = (u8) (disk_block);
3951 		cdb[6] = 0;
3952 		cdb[7] = (u8) (disk_block_cnt >> 8);
3953 		cdb[8] = (u8) (disk_block_cnt);
3954 		cdb[9] = 0;
3955 		cdb_len = 10;
3956 	}
3957 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3958 						dev->scsi3addr);
3959 }
3960 
3961 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3962 	void (*done)(struct scsi_cmnd *))
3963 {
3964 	struct ctlr_info *h;
3965 	struct hpsa_scsi_dev_t *dev;
3966 	unsigned char scsi3addr[8];
3967 	struct CommandList *c;
3968 	int rc = 0;
3969 
3970 	/* Get the ptr to our adapter structure out of cmd->host. */
3971 	h = sdev_to_hba(cmd->device);
3972 	dev = cmd->device->hostdata;
3973 	if (!dev) {
3974 		cmd->result = DID_NO_CONNECT << 16;
3975 		done(cmd);
3976 		return 0;
3977 	}
3978 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3979 
3980 	if (unlikely(lockup_detected(h))) {
3981 		cmd->result = DID_ERROR << 16;
3982 		done(cmd);
3983 		return 0;
3984 	}
3985 	c = cmd_alloc(h);
3986 	if (c == NULL) {			/* trouble... */
3987 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3988 		return SCSI_MLQUEUE_HOST_BUSY;
3989 	}
3990 
3991 	/* Fill in the command list header */
3992 
3993 	cmd->scsi_done = done;    /* save this for use by completion code */
3994 
3995 	/* save c in case we have to abort it  */
3996 	cmd->host_scribble = (unsigned char *) c;
3997 
3998 	c->cmd_type = CMD_SCSI;
3999 	c->scsi_cmd = cmd;
4000 
4001 	/* Call alternate submit routine for I/O accelerated commands.
4002 	 * Retries always go down the normal I/O path.
4003 	 */
4004 	if (likely(cmd->retries == 0 &&
4005 		cmd->request->cmd_type == REQ_TYPE_FS &&
4006 		h->acciopath_status)) {
4007 		if (dev->offload_enabled) {
4008 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
4009 			if (rc == 0)
4010 				return 0; /* Sent on ioaccel path */
4011 			if (rc < 0) {   /* scsi_dma_map failed. */
4012 				cmd_free(h, c);
4013 				return SCSI_MLQUEUE_HOST_BUSY;
4014 			}
4015 		} else if (dev->ioaccel_handle) {
4016 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4017 			if (rc == 0)
4018 				return 0; /* Sent on direct map path */
4019 			if (rc < 0) {   /* scsi_dma_map failed. */
4020 				cmd_free(h, c);
4021 				return SCSI_MLQUEUE_HOST_BUSY;
4022 			}
4023 		}
4024 	}
4025 
4026 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4027 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4028 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4029 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4030 
4031 	/* Fill in the request block... */
4032 
4033 	c->Request.Timeout = 0;
4034 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4035 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4036 	c->Request.CDBLen = cmd->cmd_len;
4037 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4038 	c->Request.Type.Type = TYPE_CMD;
4039 	c->Request.Type.Attribute = ATTR_SIMPLE;
4040 	switch (cmd->sc_data_direction) {
4041 	case DMA_TO_DEVICE:
4042 		c->Request.Type.Direction = XFER_WRITE;
4043 		break;
4044 	case DMA_FROM_DEVICE:
4045 		c->Request.Type.Direction = XFER_READ;
4046 		break;
4047 	case DMA_NONE:
4048 		c->Request.Type.Direction = XFER_NONE;
4049 		break;
4050 	case DMA_BIDIRECTIONAL:
4051 		/* This can happen if a buggy application does a scsi passthru
4052 		 * and sets both inlen and outlen to non-zero. ( see
4053 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4054 		 */
4055 
4056 		c->Request.Type.Direction = XFER_RSVD;
4057 		/* This is technically wrong, and hpsa controllers should
4058 		 * reject it with CMD_INVALID, which is the most correct
4059 		 * response, but non-fibre backends appear to let it
4060 		 * slide by, and give the same results as if this field
4061 		 * were set correctly.  Either way is acceptable for
4062 		 * our purposes here.
4063 		 */
4064 
4065 		break;
4066 
4067 	default:
4068 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4069 			cmd->sc_data_direction);
4070 		BUG();
4071 		break;
4072 	}
4073 
4074 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4075 		cmd_free(h, c);
4076 		return SCSI_MLQUEUE_HOST_BUSY;
4077 	}
4078 	enqueue_cmd_and_start_io(h, c);
4079 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4080 	return 0;
4081 }
4082 
4083 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4084 
4085 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4086 {
4087 	unsigned long flags;
4088 
4089 	/*
4090 	 * Don't let rescans be initiated on a controller known
4091 	 * to be locked up.  If the controller locks up *during*
4092 	 * a rescan, that thread is probably hosed, but at least
4093 	 * we can prevent new rescan threads from piling up on a
4094 	 * locked up controller.
4095 	 */
4096 	if (unlikely(lockup_detected(h))) {
4097 		spin_lock_irqsave(&h->scan_lock, flags);
4098 		h->scan_finished = 1;
4099 		wake_up_all(&h->scan_wait_queue);
4100 		spin_unlock_irqrestore(&h->scan_lock, flags);
4101 		return 1;
4102 	}
4103 	return 0;
4104 }
4105 
4106 static void hpsa_scan_start(struct Scsi_Host *sh)
4107 {
4108 	struct ctlr_info *h = shost_to_hba(sh);
4109 	unsigned long flags;
4110 
4111 	if (do_not_scan_if_controller_locked_up(h))
4112 		return;
4113 
4114 	/* wait until any scan already in progress is finished. */
4115 	while (1) {
4116 		spin_lock_irqsave(&h->scan_lock, flags);
4117 		if (h->scan_finished)
4118 			break;
4119 		spin_unlock_irqrestore(&h->scan_lock, flags);
4120 		wait_event(h->scan_wait_queue, h->scan_finished);
4121 		/* Note: We don't need to worry about a race between this
4122 		 * thread and driver unload because the midlayer will
4123 		 * have incremented the reference count, so unload won't
4124 		 * happen if we're in here.
4125 		 */
4126 	}
4127 	h->scan_finished = 0; /* mark scan as in progress */
4128 	spin_unlock_irqrestore(&h->scan_lock, flags);
4129 
4130 	if (do_not_scan_if_controller_locked_up(h))
4131 		return;
4132 
4133 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4134 
4135 	spin_lock_irqsave(&h->scan_lock, flags);
4136 	h->scan_finished = 1; /* mark scan as finished. */
4137 	wake_up_all(&h->scan_wait_queue);
4138 	spin_unlock_irqrestore(&h->scan_lock, flags);
4139 }
4140 
4141 static int hpsa_scan_finished(struct Scsi_Host *sh,
4142 	unsigned long elapsed_time)
4143 {
4144 	struct ctlr_info *h = shost_to_hba(sh);
4145 	unsigned long flags;
4146 	int finished;
4147 
4148 	spin_lock_irqsave(&h->scan_lock, flags);
4149 	finished = h->scan_finished;
4150 	spin_unlock_irqrestore(&h->scan_lock, flags);
4151 	return finished;
4152 }
4153 
4154 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4155 	int qdepth, int reason)
4156 {
4157 	struct ctlr_info *h = sdev_to_hba(sdev);
4158 
4159 	if (reason != SCSI_QDEPTH_DEFAULT)
4160 		return -ENOTSUPP;
4161 
4162 	if (qdepth < 1)
4163 		qdepth = 1;
4164 	else
4165 		if (qdepth > h->nr_cmds)
4166 			qdepth = h->nr_cmds;
4167 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4168 	return sdev->queue_depth;
4169 }
4170 
4171 static void hpsa_unregister_scsi(struct ctlr_info *h)
4172 {
4173 	/* we are being forcibly unloaded, and may not refuse. */
4174 	scsi_remove_host(h->scsi_host);
4175 	scsi_host_put(h->scsi_host);
4176 	h->scsi_host = NULL;
4177 }
4178 
4179 static int hpsa_register_scsi(struct ctlr_info *h)
4180 {
4181 	struct Scsi_Host *sh;
4182 	int error;
4183 
4184 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4185 	if (sh == NULL)
4186 		goto fail;
4187 
4188 	sh->io_port = 0;
4189 	sh->n_io_port = 0;
4190 	sh->this_id = -1;
4191 	sh->max_channel = 3;
4192 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4193 	sh->max_lun = HPSA_MAX_LUN;
4194 	sh->max_id = HPSA_MAX_LUN;
4195 	sh->can_queue = h->nr_cmds;
4196 	if (h->hba_mode_enabled)
4197 		sh->cmd_per_lun = 7;
4198 	else
4199 		sh->cmd_per_lun = h->nr_cmds;
4200 	sh->sg_tablesize = h->maxsgentries;
4201 	h->scsi_host = sh;
4202 	sh->hostdata[0] = (unsigned long) h;
4203 	sh->irq = h->intr[h->intr_mode];
4204 	sh->unique_id = sh->irq;
4205 	error = scsi_add_host(sh, &h->pdev->dev);
4206 	if (error)
4207 		goto fail_host_put;
4208 	scsi_scan_host(sh);
4209 	return 0;
4210 
4211  fail_host_put:
4212 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4213 		" failed for controller %d\n", __func__, h->ctlr);
4214 	scsi_host_put(sh);
4215 	return error;
4216  fail:
4217 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4218 		" failed for controller %d\n", __func__, h->ctlr);
4219 	return -ENOMEM;
4220 }
4221 
4222 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4223 	unsigned char lunaddr[])
4224 {
4225 	int rc;
4226 	int count = 0;
4227 	int waittime = 1; /* seconds */
4228 	struct CommandList *c;
4229 
4230 	c = cmd_special_alloc(h);
4231 	if (!c) {
4232 		dev_warn(&h->pdev->dev, "out of memory in "
4233 			"wait_for_device_to_become_ready.\n");
4234 		return IO_ERROR;
4235 	}
4236 
4237 	/* Send test unit ready until device ready, or give up. */
4238 	while (count < HPSA_TUR_RETRY_LIMIT) {
4239 
4240 		/* Wait for a bit.  do this first, because if we send
4241 		 * the TUR right away, the reset will just abort it.
4242 		 */
4243 		msleep(1000 * waittime);
4244 		count++;
4245 		rc = 0; /* Device ready. */
4246 
4247 		/* Increase wait time with each try, up to a point. */
4248 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4249 			waittime = waittime * 2;
4250 
4251 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4252 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4253 				NULL, 0, 0, lunaddr, TYPE_CMD);
4254 		hpsa_scsi_do_simple_cmd_core(h, c);
4255 		/* no unmap needed here because no data xfer. */
4256 
4257 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4258 			break;
4259 
4260 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4261 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4262 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4263 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4264 			break;
4265 
4266 		dev_warn(&h->pdev->dev, "waiting %d secs "
4267 			"for device to become ready.\n", waittime);
4268 		rc = 1; /* device not ready. */
4269 	}
4270 
4271 	if (rc)
4272 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4273 	else
4274 		dev_warn(&h->pdev->dev, "device is ready.\n");
4275 
4276 	cmd_special_free(h, c);
4277 	return rc;
4278 }
4279 
4280 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4281  * complaining.  Doing a host- or bus-reset can't do anything good here.
4282  */
4283 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4284 {
4285 	int rc;
4286 	struct ctlr_info *h;
4287 	struct hpsa_scsi_dev_t *dev;
4288 
4289 	/* find the controller to which the command to be aborted was sent */
4290 	h = sdev_to_hba(scsicmd->device);
4291 	if (h == NULL) /* paranoia */
4292 		return FAILED;
4293 	dev = scsicmd->device->hostdata;
4294 	if (!dev) {
4295 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4296 			"device lookup failed.\n");
4297 		return FAILED;
4298 	}
4299 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4300 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4301 	/* send a reset to the SCSI LUN which the command was sent to */
4302 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4303 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4304 		return SUCCESS;
4305 
4306 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4307 	return FAILED;
4308 }
4309 
4310 static void swizzle_abort_tag(u8 *tag)
4311 {
4312 	u8 original_tag[8];
4313 
4314 	memcpy(original_tag, tag, 8);
4315 	tag[0] = original_tag[3];
4316 	tag[1] = original_tag[2];
4317 	tag[2] = original_tag[1];
4318 	tag[3] = original_tag[0];
4319 	tag[4] = original_tag[7];
4320 	tag[5] = original_tag[6];
4321 	tag[6] = original_tag[5];
4322 	tag[7] = original_tag[4];
4323 }
4324 
4325 static void hpsa_get_tag(struct ctlr_info *h,
4326 	struct CommandList *c, u32 *taglower, u32 *tagupper)
4327 {
4328 	if (c->cmd_type == CMD_IOACCEL1) {
4329 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4330 			&h->ioaccel_cmd_pool[c->cmdindex];
4331 		*tagupper = cm1->Tag.upper;
4332 		*taglower = cm1->Tag.lower;
4333 		return;
4334 	}
4335 	if (c->cmd_type == CMD_IOACCEL2) {
4336 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4337 			&h->ioaccel2_cmd_pool[c->cmdindex];
4338 		/* upper tag not used in ioaccel2 mode */
4339 		memset(tagupper, 0, sizeof(*tagupper));
4340 		*taglower = cm2->Tag;
4341 		return;
4342 	}
4343 	*tagupper = c->Header.Tag.upper;
4344 	*taglower = c->Header.Tag.lower;
4345 }
4346 
4347 
4348 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4349 	struct CommandList *abort, int swizzle)
4350 {
4351 	int rc = IO_OK;
4352 	struct CommandList *c;
4353 	struct ErrorInfo *ei;
4354 	u32 tagupper, taglower;
4355 
4356 	c = cmd_special_alloc(h);
4357 	if (c == NULL) {	/* trouble... */
4358 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4359 		return -ENOMEM;
4360 	}
4361 
4362 	/* fill_cmd can't fail here, no buffer to map */
4363 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4364 		0, 0, scsi3addr, TYPE_MSG);
4365 	if (swizzle)
4366 		swizzle_abort_tag(&c->Request.CDB[4]);
4367 	hpsa_scsi_do_simple_cmd_core(h, c);
4368 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4369 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4370 		__func__, tagupper, taglower);
4371 	/* no unmap needed here because no data xfer. */
4372 
4373 	ei = c->err_info;
4374 	switch (ei->CommandStatus) {
4375 	case CMD_SUCCESS:
4376 		break;
4377 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4378 		rc = -1;
4379 		break;
4380 	default:
4381 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4382 			__func__, tagupper, taglower);
4383 		hpsa_scsi_interpret_error(h, c);
4384 		rc = -1;
4385 		break;
4386 	}
4387 	cmd_special_free(h, c);
4388 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4389 		__func__, tagupper, taglower);
4390 	return rc;
4391 }
4392 
4393 /*
4394  * hpsa_find_cmd_in_queue
4395  *
4396  * Used to determine whether a command (find) is still present
4397  * in queue_head.   Optionally excludes the last element of queue_head.
4398  *
4399  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4400  * not yet been submitted, and so can be aborted by the driver without
4401  * sending an abort to the hardware.
4402  *
4403  * Returns pointer to command if found in queue, NULL otherwise.
4404  */
4405 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4406 			struct scsi_cmnd *find, struct list_head *queue_head)
4407 {
4408 	unsigned long flags;
4409 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4410 
4411 	if (!find)
4412 		return 0;
4413 	spin_lock_irqsave(&h->lock, flags);
4414 	list_for_each_entry(c, queue_head, list) {
4415 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4416 			continue;
4417 		if (c->scsi_cmd == find) {
4418 			spin_unlock_irqrestore(&h->lock, flags);
4419 			return c;
4420 		}
4421 	}
4422 	spin_unlock_irqrestore(&h->lock, flags);
4423 	return NULL;
4424 }
4425 
4426 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4427 					u8 *tag, struct list_head *queue_head)
4428 {
4429 	unsigned long flags;
4430 	struct CommandList *c;
4431 
4432 	spin_lock_irqsave(&h->lock, flags);
4433 	list_for_each_entry(c, queue_head, list) {
4434 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
4435 			continue;
4436 		spin_unlock_irqrestore(&h->lock, flags);
4437 		return c;
4438 	}
4439 	spin_unlock_irqrestore(&h->lock, flags);
4440 	return NULL;
4441 }
4442 
4443 /* ioaccel2 path firmware cannot handle abort task requests.
4444  * Change abort requests to physical target reset, and send to the
4445  * address of the physical disk used for the ioaccel 2 command.
4446  * Return 0 on success (IO_OK)
4447  *	 -1 on failure
4448  */
4449 
4450 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4451 	unsigned char *scsi3addr, struct CommandList *abort)
4452 {
4453 	int rc = IO_OK;
4454 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4455 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4456 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4457 	unsigned char *psa = &phys_scsi3addr[0];
4458 
4459 	/* Get a pointer to the hpsa logical device. */
4460 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4461 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4462 	if (dev == NULL) {
4463 		dev_warn(&h->pdev->dev,
4464 			"Cannot abort: no device pointer for command.\n");
4465 			return -1; /* not abortable */
4466 	}
4467 
4468 	if (h->raid_offload_debug > 0)
4469 		dev_info(&h->pdev->dev,
4470 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4471 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4472 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4473 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4474 
4475 	if (!dev->offload_enabled) {
4476 		dev_warn(&h->pdev->dev,
4477 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4478 		return -1; /* not abortable */
4479 	}
4480 
4481 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4482 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4483 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4484 		return -1; /* not abortable */
4485 	}
4486 
4487 	/* send the reset */
4488 	if (h->raid_offload_debug > 0)
4489 		dev_info(&h->pdev->dev,
4490 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4491 			psa[0], psa[1], psa[2], psa[3],
4492 			psa[4], psa[5], psa[6], psa[7]);
4493 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4494 	if (rc != 0) {
4495 		dev_warn(&h->pdev->dev,
4496 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4497 			psa[0], psa[1], psa[2], psa[3],
4498 			psa[4], psa[5], psa[6], psa[7]);
4499 		return rc; /* failed to reset */
4500 	}
4501 
4502 	/* wait for device to recover */
4503 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4504 		dev_warn(&h->pdev->dev,
4505 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506 			psa[0], psa[1], psa[2], psa[3],
4507 			psa[4], psa[5], psa[6], psa[7]);
4508 		return -1;  /* failed to recover */
4509 	}
4510 
4511 	/* device recovered */
4512 	dev_info(&h->pdev->dev,
4513 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4514 		psa[0], psa[1], psa[2], psa[3],
4515 		psa[4], psa[5], psa[6], psa[7]);
4516 
4517 	return rc; /* success */
4518 }
4519 
4520 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4521  * tell which kind we're dealing with, so we send the abort both ways.  There
4522  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4523  * way we construct our tags but we check anyway in case the assumptions which
4524  * make this true someday become false.
4525  */
4526 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4527 	unsigned char *scsi3addr, struct CommandList *abort)
4528 {
4529 	u8 swizzled_tag[8];
4530 	struct CommandList *c;
4531 	int rc = 0, rc2 = 0;
4532 
4533 	/* ioccelerator mode 2 commands should be aborted via the
4534 	 * accelerated path, since RAID path is unaware of these commands,
4535 	 * but underlying firmware can't handle abort TMF.
4536 	 * Change abort to physical device reset.
4537 	 */
4538 	if (abort->cmd_type == CMD_IOACCEL2)
4539 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4540 
4541 	/* we do not expect to find the swizzled tag in our queue, but
4542 	 * check anyway just to be sure the assumptions which make this
4543 	 * the case haven't become wrong.
4544 	 */
4545 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4546 	swizzle_abort_tag(swizzled_tag);
4547 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4548 	if (c != NULL) {
4549 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4550 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4551 	}
4552 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4553 
4554 	/* if the command is still in our queue, we can't conclude that it was
4555 	 * aborted (it might have just completed normally) but in any case
4556 	 * we don't need to try to abort it another way.
4557 	 */
4558 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4559 	if (c)
4560 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4561 	return rc && rc2;
4562 }
4563 
4564 /* Send an abort for the specified command.
4565  *	If the device and controller support it,
4566  *		send a task abort request.
4567  */
4568 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4569 {
4570 
4571 	int i, rc;
4572 	struct ctlr_info *h;
4573 	struct hpsa_scsi_dev_t *dev;
4574 	struct CommandList *abort; /* pointer to command to be aborted */
4575 	struct CommandList *found;
4576 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4577 	char msg[256];		/* For debug messaging. */
4578 	int ml = 0;
4579 	u32 tagupper, taglower;
4580 
4581 	/* Find the controller of the command to be aborted */
4582 	h = sdev_to_hba(sc->device);
4583 	if (WARN(h == NULL,
4584 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4585 		return FAILED;
4586 
4587 	/* Check that controller supports some kind of task abort */
4588 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4589 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4590 		return FAILED;
4591 
4592 	memset(msg, 0, sizeof(msg));
4593 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4594 		h->scsi_host->host_no, sc->device->channel,
4595 		sc->device->id, sc->device->lun);
4596 
4597 	/* Find the device of the command to be aborted */
4598 	dev = sc->device->hostdata;
4599 	if (!dev) {
4600 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4601 				msg);
4602 		return FAILED;
4603 	}
4604 
4605 	/* Get SCSI command to be aborted */
4606 	abort = (struct CommandList *) sc->host_scribble;
4607 	if (abort == NULL) {
4608 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4609 				msg);
4610 		return FAILED;
4611 	}
4612 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4613 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4614 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4615 	if (as != NULL)
4616 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4617 			as->cmnd[0], as->serial_number);
4618 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4619 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4620 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4621 
4622 	/* Search reqQ to See if command is queued but not submitted,
4623 	 * if so, complete the command with aborted status and remove
4624 	 * it from the reqQ.
4625 	 */
4626 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4627 	if (found) {
4628 		found->err_info->CommandStatus = CMD_ABORTED;
4629 		finish_cmd(found);
4630 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4631 				msg);
4632 		return SUCCESS;
4633 	}
4634 
4635 	/* not in reqQ, if also not in cmpQ, must have already completed */
4636 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4637 	if (!found)  {
4638 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4639 				msg);
4640 		return SUCCESS;
4641 	}
4642 
4643 	/*
4644 	 * Command is in flight, or possibly already completed
4645 	 * by the firmware (but not to the scsi mid layer) but we can't
4646 	 * distinguish which.  Send the abort down.
4647 	 */
4648 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4649 	if (rc != 0) {
4650 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4651 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4652 			h->scsi_host->host_no,
4653 			dev->bus, dev->target, dev->lun);
4654 		return FAILED;
4655 	}
4656 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4657 
4658 	/* If the abort(s) above completed and actually aborted the
4659 	 * command, then the command to be aborted should already be
4660 	 * completed.  If not, wait around a bit more to see if they
4661 	 * manage to complete normally.
4662 	 */
4663 #define ABORT_COMPLETE_WAIT_SECS 30
4664 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4665 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4666 		if (!found)
4667 			return SUCCESS;
4668 		msleep(100);
4669 	}
4670 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4671 		msg, ABORT_COMPLETE_WAIT_SECS);
4672 	return FAILED;
4673 }
4674 
4675 
4676 /*
4677  * For operations that cannot sleep, a command block is allocated at init,
4678  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4679  * which ones are free or in use.  Lock must be held when calling this.
4680  * cmd_free() is the complement.
4681  */
4682 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4683 {
4684 	struct CommandList *c;
4685 	int i;
4686 	union u64bit temp64;
4687 	dma_addr_t cmd_dma_handle, err_dma_handle;
4688 	unsigned long flags;
4689 
4690 	spin_lock_irqsave(&h->lock, flags);
4691 	do {
4692 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4693 		if (i == h->nr_cmds) {
4694 			spin_unlock_irqrestore(&h->lock, flags);
4695 			return NULL;
4696 		}
4697 	} while (test_and_set_bit
4698 		 (i & (BITS_PER_LONG - 1),
4699 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4700 	spin_unlock_irqrestore(&h->lock, flags);
4701 
4702 	c = h->cmd_pool + i;
4703 	memset(c, 0, sizeof(*c));
4704 	cmd_dma_handle = h->cmd_pool_dhandle
4705 	    + i * sizeof(*c);
4706 	c->err_info = h->errinfo_pool + i;
4707 	memset(c->err_info, 0, sizeof(*c->err_info));
4708 	err_dma_handle = h->errinfo_pool_dhandle
4709 	    + i * sizeof(*c->err_info);
4710 
4711 	c->cmdindex = i;
4712 
4713 	INIT_LIST_HEAD(&c->list);
4714 	c->busaddr = (u32) cmd_dma_handle;
4715 	temp64.val = (u64) err_dma_handle;
4716 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4717 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4718 	c->ErrDesc.Len = sizeof(*c->err_info);
4719 
4720 	c->h = h;
4721 	return c;
4722 }
4723 
4724 /* For operations that can wait for kmalloc to possibly sleep,
4725  * this routine can be called. Lock need not be held to call
4726  * cmd_special_alloc. cmd_special_free() is the complement.
4727  */
4728 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4729 {
4730 	struct CommandList *c;
4731 	union u64bit temp64;
4732 	dma_addr_t cmd_dma_handle, err_dma_handle;
4733 
4734 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4735 	if (c == NULL)
4736 		return NULL;
4737 	memset(c, 0, sizeof(*c));
4738 
4739 	c->cmd_type = CMD_SCSI;
4740 	c->cmdindex = -1;
4741 
4742 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4743 		    &err_dma_handle);
4744 
4745 	if (c->err_info == NULL) {
4746 		pci_free_consistent(h->pdev,
4747 			sizeof(*c), c, cmd_dma_handle);
4748 		return NULL;
4749 	}
4750 	memset(c->err_info, 0, sizeof(*c->err_info));
4751 
4752 	INIT_LIST_HEAD(&c->list);
4753 	c->busaddr = (u32) cmd_dma_handle;
4754 	temp64.val = (u64) err_dma_handle;
4755 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4756 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4757 	c->ErrDesc.Len = sizeof(*c->err_info);
4758 
4759 	c->h = h;
4760 	return c;
4761 }
4762 
4763 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4764 {
4765 	int i;
4766 	unsigned long flags;
4767 
4768 	i = c - h->cmd_pool;
4769 	spin_lock_irqsave(&h->lock, flags);
4770 	clear_bit(i & (BITS_PER_LONG - 1),
4771 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4772 	spin_unlock_irqrestore(&h->lock, flags);
4773 }
4774 
4775 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4776 {
4777 	union u64bit temp64;
4778 
4779 	temp64.val32.lower = c->ErrDesc.Addr.lower;
4780 	temp64.val32.upper = c->ErrDesc.Addr.upper;
4781 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4782 			    c->err_info, (dma_addr_t) temp64.val);
4783 	pci_free_consistent(h->pdev, sizeof(*c),
4784 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4785 }
4786 
4787 #ifdef CONFIG_COMPAT
4788 
4789 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4790 {
4791 	IOCTL32_Command_struct __user *arg32 =
4792 	    (IOCTL32_Command_struct __user *) arg;
4793 	IOCTL_Command_struct arg64;
4794 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4795 	int err;
4796 	u32 cp;
4797 
4798 	memset(&arg64, 0, sizeof(arg64));
4799 	err = 0;
4800 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4801 			   sizeof(arg64.LUN_info));
4802 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4803 			   sizeof(arg64.Request));
4804 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4805 			   sizeof(arg64.error_info));
4806 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4807 	err |= get_user(cp, &arg32->buf);
4808 	arg64.buf = compat_ptr(cp);
4809 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4810 
4811 	if (err)
4812 		return -EFAULT;
4813 
4814 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4815 	if (err)
4816 		return err;
4817 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4818 			 sizeof(arg32->error_info));
4819 	if (err)
4820 		return -EFAULT;
4821 	return err;
4822 }
4823 
4824 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4825 	int cmd, void *arg)
4826 {
4827 	BIG_IOCTL32_Command_struct __user *arg32 =
4828 	    (BIG_IOCTL32_Command_struct __user *) arg;
4829 	BIG_IOCTL_Command_struct arg64;
4830 	BIG_IOCTL_Command_struct __user *p =
4831 	    compat_alloc_user_space(sizeof(arg64));
4832 	int err;
4833 	u32 cp;
4834 
4835 	memset(&arg64, 0, sizeof(arg64));
4836 	err = 0;
4837 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4838 			   sizeof(arg64.LUN_info));
4839 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4840 			   sizeof(arg64.Request));
4841 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4842 			   sizeof(arg64.error_info));
4843 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4844 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4845 	err |= get_user(cp, &arg32->buf);
4846 	arg64.buf = compat_ptr(cp);
4847 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4848 
4849 	if (err)
4850 		return -EFAULT;
4851 
4852 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4853 	if (err)
4854 		return err;
4855 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4856 			 sizeof(arg32->error_info));
4857 	if (err)
4858 		return -EFAULT;
4859 	return err;
4860 }
4861 
4862 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4863 {
4864 	switch (cmd) {
4865 	case CCISS_GETPCIINFO:
4866 	case CCISS_GETINTINFO:
4867 	case CCISS_SETINTINFO:
4868 	case CCISS_GETNODENAME:
4869 	case CCISS_SETNODENAME:
4870 	case CCISS_GETHEARTBEAT:
4871 	case CCISS_GETBUSTYPES:
4872 	case CCISS_GETFIRMVER:
4873 	case CCISS_GETDRIVVER:
4874 	case CCISS_REVALIDVOLS:
4875 	case CCISS_DEREGDISK:
4876 	case CCISS_REGNEWDISK:
4877 	case CCISS_REGNEWD:
4878 	case CCISS_RESCANDISK:
4879 	case CCISS_GETLUNINFO:
4880 		return hpsa_ioctl(dev, cmd, arg);
4881 
4882 	case CCISS_PASSTHRU32:
4883 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4884 	case CCISS_BIG_PASSTHRU32:
4885 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4886 
4887 	default:
4888 		return -ENOIOCTLCMD;
4889 	}
4890 }
4891 #endif
4892 
4893 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4894 {
4895 	struct hpsa_pci_info pciinfo;
4896 
4897 	if (!argp)
4898 		return -EINVAL;
4899 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4900 	pciinfo.bus = h->pdev->bus->number;
4901 	pciinfo.dev_fn = h->pdev->devfn;
4902 	pciinfo.board_id = h->board_id;
4903 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4904 		return -EFAULT;
4905 	return 0;
4906 }
4907 
4908 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4909 {
4910 	DriverVer_type DriverVer;
4911 	unsigned char vmaj, vmin, vsubmin;
4912 	int rc;
4913 
4914 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4915 		&vmaj, &vmin, &vsubmin);
4916 	if (rc != 3) {
4917 		dev_info(&h->pdev->dev, "driver version string '%s' "
4918 			"unrecognized.", HPSA_DRIVER_VERSION);
4919 		vmaj = 0;
4920 		vmin = 0;
4921 		vsubmin = 0;
4922 	}
4923 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4924 	if (!argp)
4925 		return -EINVAL;
4926 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4927 		return -EFAULT;
4928 	return 0;
4929 }
4930 
4931 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4932 {
4933 	IOCTL_Command_struct iocommand;
4934 	struct CommandList *c;
4935 	char *buff = NULL;
4936 	union u64bit temp64;
4937 	int rc = 0;
4938 
4939 	if (!argp)
4940 		return -EINVAL;
4941 	if (!capable(CAP_SYS_RAWIO))
4942 		return -EPERM;
4943 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4944 		return -EFAULT;
4945 	if ((iocommand.buf_size < 1) &&
4946 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4947 		return -EINVAL;
4948 	}
4949 	if (iocommand.buf_size > 0) {
4950 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4951 		if (buff == NULL)
4952 			return -EFAULT;
4953 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4954 			/* Copy the data into the buffer we created */
4955 			if (copy_from_user(buff, iocommand.buf,
4956 				iocommand.buf_size)) {
4957 				rc = -EFAULT;
4958 				goto out_kfree;
4959 			}
4960 		} else {
4961 			memset(buff, 0, iocommand.buf_size);
4962 		}
4963 	}
4964 	c = cmd_special_alloc(h);
4965 	if (c == NULL) {
4966 		rc = -ENOMEM;
4967 		goto out_kfree;
4968 	}
4969 	/* Fill in the command type */
4970 	c->cmd_type = CMD_IOCTL_PEND;
4971 	/* Fill in Command Header */
4972 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4973 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4974 		c->Header.SGList = 1;
4975 		c->Header.SGTotal = 1;
4976 	} else	{ /* no buffers to fill */
4977 		c->Header.SGList = 0;
4978 		c->Header.SGTotal = 0;
4979 	}
4980 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4981 	/* use the kernel address the cmd block for tag */
4982 	c->Header.Tag.lower = c->busaddr;
4983 
4984 	/* Fill in Request block */
4985 	memcpy(&c->Request, &iocommand.Request,
4986 		sizeof(c->Request));
4987 
4988 	/* Fill in the scatter gather information */
4989 	if (iocommand.buf_size > 0) {
4990 		temp64.val = pci_map_single(h->pdev, buff,
4991 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4992 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4993 			c->SG[0].Addr.lower = 0;
4994 			c->SG[0].Addr.upper = 0;
4995 			c->SG[0].Len = 0;
4996 			rc = -ENOMEM;
4997 			goto out;
4998 		}
4999 		c->SG[0].Addr.lower = temp64.val32.lower;
5000 		c->SG[0].Addr.upper = temp64.val32.upper;
5001 		c->SG[0].Len = iocommand.buf_size;
5002 		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
5003 	}
5004 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5005 	if (iocommand.buf_size > 0)
5006 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5007 	check_ioctl_unit_attention(h, c);
5008 
5009 	/* Copy the error information out */
5010 	memcpy(&iocommand.error_info, c->err_info,
5011 		sizeof(iocommand.error_info));
5012 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5013 		rc = -EFAULT;
5014 		goto out;
5015 	}
5016 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5017 		iocommand.buf_size > 0) {
5018 		/* Copy the data out of the buffer we created */
5019 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5020 			rc = -EFAULT;
5021 			goto out;
5022 		}
5023 	}
5024 out:
5025 	cmd_special_free(h, c);
5026 out_kfree:
5027 	kfree(buff);
5028 	return rc;
5029 }
5030 
5031 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5032 {
5033 	BIG_IOCTL_Command_struct *ioc;
5034 	struct CommandList *c;
5035 	unsigned char **buff = NULL;
5036 	int *buff_size = NULL;
5037 	union u64bit temp64;
5038 	BYTE sg_used = 0;
5039 	int status = 0;
5040 	int i;
5041 	u32 left;
5042 	u32 sz;
5043 	BYTE __user *data_ptr;
5044 
5045 	if (!argp)
5046 		return -EINVAL;
5047 	if (!capable(CAP_SYS_RAWIO))
5048 		return -EPERM;
5049 	ioc = (BIG_IOCTL_Command_struct *)
5050 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5051 	if (!ioc) {
5052 		status = -ENOMEM;
5053 		goto cleanup1;
5054 	}
5055 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5056 		status = -EFAULT;
5057 		goto cleanup1;
5058 	}
5059 	if ((ioc->buf_size < 1) &&
5060 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5061 		status = -EINVAL;
5062 		goto cleanup1;
5063 	}
5064 	/* Check kmalloc limits  using all SGs */
5065 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5066 		status = -EINVAL;
5067 		goto cleanup1;
5068 	}
5069 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5070 		status = -EINVAL;
5071 		goto cleanup1;
5072 	}
5073 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5074 	if (!buff) {
5075 		status = -ENOMEM;
5076 		goto cleanup1;
5077 	}
5078 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5079 	if (!buff_size) {
5080 		status = -ENOMEM;
5081 		goto cleanup1;
5082 	}
5083 	left = ioc->buf_size;
5084 	data_ptr = ioc->buf;
5085 	while (left) {
5086 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5087 		buff_size[sg_used] = sz;
5088 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5089 		if (buff[sg_used] == NULL) {
5090 			status = -ENOMEM;
5091 			goto cleanup1;
5092 		}
5093 		if (ioc->Request.Type.Direction & XFER_WRITE) {
5094 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5095 				status = -ENOMEM;
5096 				goto cleanup1;
5097 			}
5098 		} else
5099 			memset(buff[sg_used], 0, sz);
5100 		left -= sz;
5101 		data_ptr += sz;
5102 		sg_used++;
5103 	}
5104 	c = cmd_special_alloc(h);
5105 	if (c == NULL) {
5106 		status = -ENOMEM;
5107 		goto cleanup1;
5108 	}
5109 	c->cmd_type = CMD_IOCTL_PEND;
5110 	c->Header.ReplyQueue = 0;
5111 	c->Header.SGList = c->Header.SGTotal = sg_used;
5112 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5113 	c->Header.Tag.lower = c->busaddr;
5114 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5115 	if (ioc->buf_size > 0) {
5116 		int i;
5117 		for (i = 0; i < sg_used; i++) {
5118 			temp64.val = pci_map_single(h->pdev, buff[i],
5119 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5120 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5121 				c->SG[i].Addr.lower = 0;
5122 				c->SG[i].Addr.upper = 0;
5123 				c->SG[i].Len = 0;
5124 				hpsa_pci_unmap(h->pdev, c, i,
5125 					PCI_DMA_BIDIRECTIONAL);
5126 				status = -ENOMEM;
5127 				goto cleanup0;
5128 			}
5129 			c->SG[i].Addr.lower = temp64.val32.lower;
5130 			c->SG[i].Addr.upper = temp64.val32.upper;
5131 			c->SG[i].Len = buff_size[i];
5132 			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5133 		}
5134 	}
5135 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5136 	if (sg_used)
5137 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5138 	check_ioctl_unit_attention(h, c);
5139 	/* Copy the error information out */
5140 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5141 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5142 		status = -EFAULT;
5143 		goto cleanup0;
5144 	}
5145 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5146 		/* Copy the data out of the buffer we created */
5147 		BYTE __user *ptr = ioc->buf;
5148 		for (i = 0; i < sg_used; i++) {
5149 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5150 				status = -EFAULT;
5151 				goto cleanup0;
5152 			}
5153 			ptr += buff_size[i];
5154 		}
5155 	}
5156 	status = 0;
5157 cleanup0:
5158 	cmd_special_free(h, c);
5159 cleanup1:
5160 	if (buff) {
5161 		for (i = 0; i < sg_used; i++)
5162 			kfree(buff[i]);
5163 		kfree(buff);
5164 	}
5165 	kfree(buff_size);
5166 	kfree(ioc);
5167 	return status;
5168 }
5169 
5170 static void check_ioctl_unit_attention(struct ctlr_info *h,
5171 	struct CommandList *c)
5172 {
5173 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5174 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5175 		(void) check_for_unit_attention(h, c);
5176 }
5177 
5178 static int increment_passthru_count(struct ctlr_info *h)
5179 {
5180 	unsigned long flags;
5181 
5182 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5183 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5184 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5185 		return -1;
5186 	}
5187 	h->passthru_count++;
5188 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5189 	return 0;
5190 }
5191 
5192 static void decrement_passthru_count(struct ctlr_info *h)
5193 {
5194 	unsigned long flags;
5195 
5196 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5197 	if (h->passthru_count <= 0) {
5198 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5199 		/* not expecting to get here. */
5200 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5201 		return;
5202 	}
5203 	h->passthru_count--;
5204 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5205 }
5206 
5207 /*
5208  * ioctl
5209  */
5210 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5211 {
5212 	struct ctlr_info *h;
5213 	void __user *argp = (void __user *)arg;
5214 	int rc;
5215 
5216 	h = sdev_to_hba(dev);
5217 
5218 	switch (cmd) {
5219 	case CCISS_DEREGDISK:
5220 	case CCISS_REGNEWDISK:
5221 	case CCISS_REGNEWD:
5222 		hpsa_scan_start(h->scsi_host);
5223 		return 0;
5224 	case CCISS_GETPCIINFO:
5225 		return hpsa_getpciinfo_ioctl(h, argp);
5226 	case CCISS_GETDRIVVER:
5227 		return hpsa_getdrivver_ioctl(h, argp);
5228 	case CCISS_PASSTHRU:
5229 		if (increment_passthru_count(h))
5230 			return -EAGAIN;
5231 		rc = hpsa_passthru_ioctl(h, argp);
5232 		decrement_passthru_count(h);
5233 		return rc;
5234 	case CCISS_BIG_PASSTHRU:
5235 		if (increment_passthru_count(h))
5236 			return -EAGAIN;
5237 		rc = hpsa_big_passthru_ioctl(h, argp);
5238 		decrement_passthru_count(h);
5239 		return rc;
5240 	default:
5241 		return -ENOTTY;
5242 	}
5243 }
5244 
5245 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5246 				u8 reset_type)
5247 {
5248 	struct CommandList *c;
5249 
5250 	c = cmd_alloc(h);
5251 	if (!c)
5252 		return -ENOMEM;
5253 	/* fill_cmd can't fail here, no data buffer to map */
5254 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5255 		RAID_CTLR_LUNID, TYPE_MSG);
5256 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5257 	c->waiting = NULL;
5258 	enqueue_cmd_and_start_io(h, c);
5259 	/* Don't wait for completion, the reset won't complete.  Don't free
5260 	 * the command either.  This is the last command we will send before
5261 	 * re-initializing everything, so it doesn't matter and won't leak.
5262 	 */
5263 	return 0;
5264 }
5265 
5266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5268 	int cmd_type)
5269 {
5270 	int pci_dir = XFER_NONE;
5271 	struct CommandList *a; /* for commands to be aborted */
5272 
5273 	c->cmd_type = CMD_IOCTL_PEND;
5274 	c->Header.ReplyQueue = 0;
5275 	if (buff != NULL && size > 0) {
5276 		c->Header.SGList = 1;
5277 		c->Header.SGTotal = 1;
5278 	} else {
5279 		c->Header.SGList = 0;
5280 		c->Header.SGTotal = 0;
5281 	}
5282 	c->Header.Tag.lower = c->busaddr;
5283 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5284 
5285 	c->Request.Type.Type = cmd_type;
5286 	if (cmd_type == TYPE_CMD) {
5287 		switch (cmd) {
5288 		case HPSA_INQUIRY:
5289 			/* are we trying to read a vital product page */
5290 			if (page_code & VPD_PAGE) {
5291 				c->Request.CDB[1] = 0x01;
5292 				c->Request.CDB[2] = (page_code & 0xff);
5293 			}
5294 			c->Request.CDBLen = 6;
5295 			c->Request.Type.Attribute = ATTR_SIMPLE;
5296 			c->Request.Type.Direction = XFER_READ;
5297 			c->Request.Timeout = 0;
5298 			c->Request.CDB[0] = HPSA_INQUIRY;
5299 			c->Request.CDB[4] = size & 0xFF;
5300 			break;
5301 		case HPSA_REPORT_LOG:
5302 		case HPSA_REPORT_PHYS:
5303 			/* Talking to controller so It's a physical command
5304 			   mode = 00 target = 0.  Nothing to write.
5305 			 */
5306 			c->Request.CDBLen = 12;
5307 			c->Request.Type.Attribute = ATTR_SIMPLE;
5308 			c->Request.Type.Direction = XFER_READ;
5309 			c->Request.Timeout = 0;
5310 			c->Request.CDB[0] = cmd;
5311 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5312 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5313 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5314 			c->Request.CDB[9] = size & 0xFF;
5315 			break;
5316 		case HPSA_CACHE_FLUSH:
5317 			c->Request.CDBLen = 12;
5318 			c->Request.Type.Attribute = ATTR_SIMPLE;
5319 			c->Request.Type.Direction = XFER_WRITE;
5320 			c->Request.Timeout = 0;
5321 			c->Request.CDB[0] = BMIC_WRITE;
5322 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5323 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5324 			c->Request.CDB[8] = size & 0xFF;
5325 			break;
5326 		case TEST_UNIT_READY:
5327 			c->Request.CDBLen = 6;
5328 			c->Request.Type.Attribute = ATTR_SIMPLE;
5329 			c->Request.Type.Direction = XFER_NONE;
5330 			c->Request.Timeout = 0;
5331 			break;
5332 		case HPSA_GET_RAID_MAP:
5333 			c->Request.CDBLen = 12;
5334 			c->Request.Type.Attribute = ATTR_SIMPLE;
5335 			c->Request.Type.Direction = XFER_READ;
5336 			c->Request.Timeout = 0;
5337 			c->Request.CDB[0] = HPSA_CISS_READ;
5338 			c->Request.CDB[1] = cmd;
5339 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5340 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5341 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5342 			c->Request.CDB[9] = size & 0xFF;
5343 			break;
5344 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5345 			c->Request.CDBLen = 10;
5346 			c->Request.Type.Attribute = ATTR_SIMPLE;
5347 			c->Request.Type.Direction = XFER_READ;
5348 			c->Request.Timeout = 0;
5349 			c->Request.CDB[0] = BMIC_READ;
5350 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5351 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5352 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5353 			break;
5354 		default:
5355 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5356 			BUG();
5357 			return -1;
5358 		}
5359 	} else if (cmd_type == TYPE_MSG) {
5360 		switch (cmd) {
5361 
5362 		case  HPSA_DEVICE_RESET_MSG:
5363 			c->Request.CDBLen = 16;
5364 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5365 			c->Request.Type.Attribute = ATTR_SIMPLE;
5366 			c->Request.Type.Direction = XFER_NONE;
5367 			c->Request.Timeout = 0; /* Don't time out */
5368 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5369 			c->Request.CDB[0] =  cmd;
5370 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5371 			/* If bytes 4-7 are zero, it means reset the */
5372 			/* LunID device */
5373 			c->Request.CDB[4] = 0x00;
5374 			c->Request.CDB[5] = 0x00;
5375 			c->Request.CDB[6] = 0x00;
5376 			c->Request.CDB[7] = 0x00;
5377 			break;
5378 		case  HPSA_ABORT_MSG:
5379 			a = buff;       /* point to command to be aborted */
5380 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5381 				a->Header.Tag.upper, a->Header.Tag.lower,
5382 				c->Header.Tag.upper, c->Header.Tag.lower);
5383 			c->Request.CDBLen = 16;
5384 			c->Request.Type.Type = TYPE_MSG;
5385 			c->Request.Type.Attribute = ATTR_SIMPLE;
5386 			c->Request.Type.Direction = XFER_WRITE;
5387 			c->Request.Timeout = 0; /* Don't time out */
5388 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5389 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5390 			c->Request.CDB[2] = 0x00; /* reserved */
5391 			c->Request.CDB[3] = 0x00; /* reserved */
5392 			/* Tag to abort goes in CDB[4]-CDB[11] */
5393 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5394 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5395 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5396 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5397 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5398 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5399 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5400 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5401 			c->Request.CDB[12] = 0x00; /* reserved */
5402 			c->Request.CDB[13] = 0x00; /* reserved */
5403 			c->Request.CDB[14] = 0x00; /* reserved */
5404 			c->Request.CDB[15] = 0x00; /* reserved */
5405 		break;
5406 		default:
5407 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5408 				cmd);
5409 			BUG();
5410 		}
5411 	} else {
5412 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5413 		BUG();
5414 	}
5415 
5416 	switch (c->Request.Type.Direction) {
5417 	case XFER_READ:
5418 		pci_dir = PCI_DMA_FROMDEVICE;
5419 		break;
5420 	case XFER_WRITE:
5421 		pci_dir = PCI_DMA_TODEVICE;
5422 		break;
5423 	case XFER_NONE:
5424 		pci_dir = PCI_DMA_NONE;
5425 		break;
5426 	default:
5427 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5428 	}
5429 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5430 		return -1;
5431 	return 0;
5432 }
5433 
5434 /*
5435  * Map (physical) PCI mem into (virtual) kernel space
5436  */
5437 static void __iomem *remap_pci_mem(ulong base, ulong size)
5438 {
5439 	ulong page_base = ((ulong) base) & PAGE_MASK;
5440 	ulong page_offs = ((ulong) base) - page_base;
5441 	void __iomem *page_remapped = ioremap_nocache(page_base,
5442 		page_offs + size);
5443 
5444 	return page_remapped ? (page_remapped + page_offs) : NULL;
5445 }
5446 
5447 /* Takes cmds off the submission queue and sends them to the hardware,
5448  * then puts them on the queue of cmds waiting for completion.
5449  * Assumes h->lock is held
5450  */
5451 static void start_io(struct ctlr_info *h, unsigned long *flags)
5452 {
5453 	struct CommandList *c;
5454 
5455 	while (!list_empty(&h->reqQ)) {
5456 		c = list_entry(h->reqQ.next, struct CommandList, list);
5457 		/* can't do anything if fifo is full */
5458 		if ((h->access.fifo_full(h))) {
5459 			h->fifo_recently_full = 1;
5460 			dev_warn(&h->pdev->dev, "fifo full\n");
5461 			break;
5462 		}
5463 		h->fifo_recently_full = 0;
5464 
5465 		/* Get the first entry from the Request Q */
5466 		removeQ(c);
5467 		h->Qdepth--;
5468 
5469 		/* Put job onto the completed Q */
5470 		addQ(&h->cmpQ, c);
5471 
5472 		/* Must increment commands_outstanding before unlocking
5473 		 * and submitting to avoid race checking for fifo full
5474 		 * condition.
5475 		 */
5476 		h->commands_outstanding++;
5477 
5478 		/* Tell the controller execute command */
5479 		spin_unlock_irqrestore(&h->lock, *flags);
5480 		h->access.submit_command(h, c);
5481 		spin_lock_irqsave(&h->lock, *flags);
5482 	}
5483 }
5484 
5485 static void lock_and_start_io(struct ctlr_info *h)
5486 {
5487 	unsigned long flags;
5488 
5489 	spin_lock_irqsave(&h->lock, flags);
5490 	start_io(h, &flags);
5491 	spin_unlock_irqrestore(&h->lock, flags);
5492 }
5493 
5494 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5495 {
5496 	return h->access.command_completed(h, q);
5497 }
5498 
5499 static inline bool interrupt_pending(struct ctlr_info *h)
5500 {
5501 	return h->access.intr_pending(h);
5502 }
5503 
5504 static inline long interrupt_not_for_us(struct ctlr_info *h)
5505 {
5506 	return (h->access.intr_pending(h) == 0) ||
5507 		(h->interrupts_enabled == 0);
5508 }
5509 
5510 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5511 	u32 raw_tag)
5512 {
5513 	if (unlikely(tag_index >= h->nr_cmds)) {
5514 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5515 		return 1;
5516 	}
5517 	return 0;
5518 }
5519 
5520 static inline void finish_cmd(struct CommandList *c)
5521 {
5522 	unsigned long flags;
5523 	int io_may_be_stalled = 0;
5524 	struct ctlr_info *h = c->h;
5525 
5526 	spin_lock_irqsave(&h->lock, flags);
5527 	removeQ(c);
5528 
5529 	/*
5530 	 * Check for possibly stalled i/o.
5531 	 *
5532 	 * If a fifo_full condition is encountered, requests will back up
5533 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5534 	 * only called when a new i/o request comes in.  If no i/o's are
5535 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5536 	 * start_io from here if we detect such a danger.
5537 	 *
5538 	 * Normally, we shouldn't hit this case, but pounding on the
5539 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5540 	 * commands_outstanding is low.  We want to avoid calling
5541 	 * start_io from in here as much as possible, and esp. don't
5542 	 * want to get in a cycle where we call start_io every time
5543 	 * through here.
5544 	 */
5545 	if (unlikely(h->fifo_recently_full) &&
5546 		h->commands_outstanding < 5)
5547 		io_may_be_stalled = 1;
5548 
5549 	spin_unlock_irqrestore(&h->lock, flags);
5550 
5551 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5552 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5553 			|| c->cmd_type == CMD_IOACCEL2))
5554 		complete_scsi_command(c);
5555 	else if (c->cmd_type == CMD_IOCTL_PEND)
5556 		complete(c->waiting);
5557 	if (unlikely(io_may_be_stalled))
5558 		lock_and_start_io(h);
5559 }
5560 
5561 static inline u32 hpsa_tag_contains_index(u32 tag)
5562 {
5563 	return tag & DIRECT_LOOKUP_BIT;
5564 }
5565 
5566 static inline u32 hpsa_tag_to_index(u32 tag)
5567 {
5568 	return tag >> DIRECT_LOOKUP_SHIFT;
5569 }
5570 
5571 
5572 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5573 {
5574 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5575 #define HPSA_SIMPLE_ERROR_BITS 0x03
5576 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5577 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5578 	return tag & ~HPSA_PERF_ERROR_BITS;
5579 }
5580 
5581 /* process completion of an indexed ("direct lookup") command */
5582 static inline void process_indexed_cmd(struct ctlr_info *h,
5583 	u32 raw_tag)
5584 {
5585 	u32 tag_index;
5586 	struct CommandList *c;
5587 
5588 	tag_index = hpsa_tag_to_index(raw_tag);
5589 	if (!bad_tag(h, tag_index, raw_tag)) {
5590 		c = h->cmd_pool + tag_index;
5591 		finish_cmd(c);
5592 	}
5593 }
5594 
5595 /* process completion of a non-indexed command */
5596 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5597 	u32 raw_tag)
5598 {
5599 	u32 tag;
5600 	struct CommandList *c = NULL;
5601 	unsigned long flags;
5602 
5603 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5604 	spin_lock_irqsave(&h->lock, flags);
5605 	list_for_each_entry(c, &h->cmpQ, list) {
5606 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5607 			spin_unlock_irqrestore(&h->lock, flags);
5608 			finish_cmd(c);
5609 			return;
5610 		}
5611 	}
5612 	spin_unlock_irqrestore(&h->lock, flags);
5613 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5614 }
5615 
5616 /* Some controllers, like p400, will give us one interrupt
5617  * after a soft reset, even if we turned interrupts off.
5618  * Only need to check for this in the hpsa_xxx_discard_completions
5619  * functions.
5620  */
5621 static int ignore_bogus_interrupt(struct ctlr_info *h)
5622 {
5623 	if (likely(!reset_devices))
5624 		return 0;
5625 
5626 	if (likely(h->interrupts_enabled))
5627 		return 0;
5628 
5629 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5630 		"(known firmware bug.)  Ignoring.\n");
5631 
5632 	return 1;
5633 }
5634 
5635 /*
5636  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5637  * Relies on (h-q[x] == x) being true for x such that
5638  * 0 <= x < MAX_REPLY_QUEUES.
5639  */
5640 static struct ctlr_info *queue_to_hba(u8 *queue)
5641 {
5642 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5643 }
5644 
5645 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5646 {
5647 	struct ctlr_info *h = queue_to_hba(queue);
5648 	u8 q = *(u8 *) queue;
5649 	u32 raw_tag;
5650 
5651 	if (ignore_bogus_interrupt(h))
5652 		return IRQ_NONE;
5653 
5654 	if (interrupt_not_for_us(h))
5655 		return IRQ_NONE;
5656 	h->last_intr_timestamp = get_jiffies_64();
5657 	while (interrupt_pending(h)) {
5658 		raw_tag = get_next_completion(h, q);
5659 		while (raw_tag != FIFO_EMPTY)
5660 			raw_tag = next_command(h, q);
5661 	}
5662 	return IRQ_HANDLED;
5663 }
5664 
5665 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5666 {
5667 	struct ctlr_info *h = queue_to_hba(queue);
5668 	u32 raw_tag;
5669 	u8 q = *(u8 *) queue;
5670 
5671 	if (ignore_bogus_interrupt(h))
5672 		return IRQ_NONE;
5673 
5674 	h->last_intr_timestamp = get_jiffies_64();
5675 	raw_tag = get_next_completion(h, q);
5676 	while (raw_tag != FIFO_EMPTY)
5677 		raw_tag = next_command(h, q);
5678 	return IRQ_HANDLED;
5679 }
5680 
5681 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5682 {
5683 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5684 	u32 raw_tag;
5685 	u8 q = *(u8 *) queue;
5686 
5687 	if (interrupt_not_for_us(h))
5688 		return IRQ_NONE;
5689 	h->last_intr_timestamp = get_jiffies_64();
5690 	while (interrupt_pending(h)) {
5691 		raw_tag = get_next_completion(h, q);
5692 		while (raw_tag != FIFO_EMPTY) {
5693 			if (likely(hpsa_tag_contains_index(raw_tag)))
5694 				process_indexed_cmd(h, raw_tag);
5695 			else
5696 				process_nonindexed_cmd(h, raw_tag);
5697 			raw_tag = next_command(h, q);
5698 		}
5699 	}
5700 	return IRQ_HANDLED;
5701 }
5702 
5703 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5704 {
5705 	struct ctlr_info *h = queue_to_hba(queue);
5706 	u32 raw_tag;
5707 	u8 q = *(u8 *) queue;
5708 
5709 	h->last_intr_timestamp = get_jiffies_64();
5710 	raw_tag = get_next_completion(h, q);
5711 	while (raw_tag != FIFO_EMPTY) {
5712 		if (likely(hpsa_tag_contains_index(raw_tag)))
5713 			process_indexed_cmd(h, raw_tag);
5714 		else
5715 			process_nonindexed_cmd(h, raw_tag);
5716 		raw_tag = next_command(h, q);
5717 	}
5718 	return IRQ_HANDLED;
5719 }
5720 
5721 /* Send a message CDB to the firmware. Careful, this only works
5722  * in simple mode, not performant mode due to the tag lookup.
5723  * We only ever use this immediately after a controller reset.
5724  */
5725 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5726 			unsigned char type)
5727 {
5728 	struct Command {
5729 		struct CommandListHeader CommandHeader;
5730 		struct RequestBlock Request;
5731 		struct ErrDescriptor ErrorDescriptor;
5732 	};
5733 	struct Command *cmd;
5734 	static const size_t cmd_sz = sizeof(*cmd) +
5735 					sizeof(cmd->ErrorDescriptor);
5736 	dma_addr_t paddr64;
5737 	uint32_t paddr32, tag;
5738 	void __iomem *vaddr;
5739 	int i, err;
5740 
5741 	vaddr = pci_ioremap_bar(pdev, 0);
5742 	if (vaddr == NULL)
5743 		return -ENOMEM;
5744 
5745 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5746 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5747 	 * memory.
5748 	 */
5749 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5750 	if (err) {
5751 		iounmap(vaddr);
5752 		return -ENOMEM;
5753 	}
5754 
5755 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5756 	if (cmd == NULL) {
5757 		iounmap(vaddr);
5758 		return -ENOMEM;
5759 	}
5760 
5761 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5762 	 * although there's no guarantee, we assume that the address is at
5763 	 * least 4-byte aligned (most likely, it's page-aligned).
5764 	 */
5765 	paddr32 = paddr64;
5766 
5767 	cmd->CommandHeader.ReplyQueue = 0;
5768 	cmd->CommandHeader.SGList = 0;
5769 	cmd->CommandHeader.SGTotal = 0;
5770 	cmd->CommandHeader.Tag.lower = paddr32;
5771 	cmd->CommandHeader.Tag.upper = 0;
5772 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5773 
5774 	cmd->Request.CDBLen = 16;
5775 	cmd->Request.Type.Type = TYPE_MSG;
5776 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5777 	cmd->Request.Type.Direction = XFER_NONE;
5778 	cmd->Request.Timeout = 0; /* Don't time out */
5779 	cmd->Request.CDB[0] = opcode;
5780 	cmd->Request.CDB[1] = type;
5781 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5782 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5783 	cmd->ErrorDescriptor.Addr.upper = 0;
5784 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5785 
5786 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5787 
5788 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5789 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5790 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5791 			break;
5792 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5793 	}
5794 
5795 	iounmap(vaddr);
5796 
5797 	/* we leak the DMA buffer here ... no choice since the controller could
5798 	 *  still complete the command.
5799 	 */
5800 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5801 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5802 			opcode, type);
5803 		return -ETIMEDOUT;
5804 	}
5805 
5806 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5807 
5808 	if (tag & HPSA_ERROR_BIT) {
5809 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5810 			opcode, type);
5811 		return -EIO;
5812 	}
5813 
5814 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5815 		opcode, type);
5816 	return 0;
5817 }
5818 
5819 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5820 
5821 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5822 	void * __iomem vaddr, u32 use_doorbell)
5823 {
5824 	u16 pmcsr;
5825 	int pos;
5826 
5827 	if (use_doorbell) {
5828 		/* For everything after the P600, the PCI power state method
5829 		 * of resetting the controller doesn't work, so we have this
5830 		 * other way using the doorbell register.
5831 		 */
5832 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5833 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5834 
5835 		/* PMC hardware guys tell us we need a 10 second delay after
5836 		 * doorbell reset and before any attempt to talk to the board
5837 		 * at all to ensure that this actually works and doesn't fall
5838 		 * over in some weird corner cases.
5839 		 */
5840 		msleep(10000);
5841 	} else { /* Try to do it the PCI power state way */
5842 
5843 		/* Quoting from the Open CISS Specification: "The Power
5844 		 * Management Control/Status Register (CSR) controls the power
5845 		 * state of the device.  The normal operating state is D0,
5846 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5847 		 * the controller, place the interface device in D3 then to D0,
5848 		 * this causes a secondary PCI reset which will reset the
5849 		 * controller." */
5850 
5851 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5852 		if (pos == 0) {
5853 			dev_err(&pdev->dev,
5854 				"hpsa_reset_controller: "
5855 				"PCI PM not supported\n");
5856 			return -ENODEV;
5857 		}
5858 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5859 		/* enter the D3hot power management state */
5860 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5861 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5862 		pmcsr |= PCI_D3hot;
5863 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5864 
5865 		msleep(500);
5866 
5867 		/* enter the D0 power management state */
5868 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5869 		pmcsr |= PCI_D0;
5870 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5871 
5872 		/*
5873 		 * The P600 requires a small delay when changing states.
5874 		 * Otherwise we may think the board did not reset and we bail.
5875 		 * This for kdump only and is particular to the P600.
5876 		 */
5877 		msleep(500);
5878 	}
5879 	return 0;
5880 }
5881 
5882 static void init_driver_version(char *driver_version, int len)
5883 {
5884 	memset(driver_version, 0, len);
5885 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5886 }
5887 
5888 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5889 {
5890 	char *driver_version;
5891 	int i, size = sizeof(cfgtable->driver_version);
5892 
5893 	driver_version = kmalloc(size, GFP_KERNEL);
5894 	if (!driver_version)
5895 		return -ENOMEM;
5896 
5897 	init_driver_version(driver_version, size);
5898 	for (i = 0; i < size; i++)
5899 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5900 	kfree(driver_version);
5901 	return 0;
5902 }
5903 
5904 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5905 					  unsigned char *driver_ver)
5906 {
5907 	int i;
5908 
5909 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5910 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5911 }
5912 
5913 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5914 {
5915 
5916 	char *driver_ver, *old_driver_ver;
5917 	int rc, size = sizeof(cfgtable->driver_version);
5918 
5919 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5920 	if (!old_driver_ver)
5921 		return -ENOMEM;
5922 	driver_ver = old_driver_ver + size;
5923 
5924 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5925 	 * should have been changed, otherwise we know the reset failed.
5926 	 */
5927 	init_driver_version(old_driver_ver, size);
5928 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5929 	rc = !memcmp(driver_ver, old_driver_ver, size);
5930 	kfree(old_driver_ver);
5931 	return rc;
5932 }
5933 /* This does a hard reset of the controller using PCI power management
5934  * states or the using the doorbell register.
5935  */
5936 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5937 {
5938 	u64 cfg_offset;
5939 	u32 cfg_base_addr;
5940 	u64 cfg_base_addr_index;
5941 	void __iomem *vaddr;
5942 	unsigned long paddr;
5943 	u32 misc_fw_support;
5944 	int rc;
5945 	struct CfgTable __iomem *cfgtable;
5946 	u32 use_doorbell;
5947 	u32 board_id;
5948 	u16 command_register;
5949 
5950 	/* For controllers as old as the P600, this is very nearly
5951 	 * the same thing as
5952 	 *
5953 	 * pci_save_state(pci_dev);
5954 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5955 	 * pci_set_power_state(pci_dev, PCI_D0);
5956 	 * pci_restore_state(pci_dev);
5957 	 *
5958 	 * For controllers newer than the P600, the pci power state
5959 	 * method of resetting doesn't work so we have another way
5960 	 * using the doorbell register.
5961 	 */
5962 
5963 	rc = hpsa_lookup_board_id(pdev, &board_id);
5964 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5965 		dev_warn(&pdev->dev, "Not resetting device.\n");
5966 		return -ENODEV;
5967 	}
5968 
5969 	/* if controller is soft- but not hard resettable... */
5970 	if (!ctlr_is_hard_resettable(board_id))
5971 		return -ENOTSUPP; /* try soft reset later. */
5972 
5973 	/* Save the PCI command register */
5974 	pci_read_config_word(pdev, 4, &command_register);
5975 	/* Turn the board off.  This is so that later pci_restore_state()
5976 	 * won't turn the board on before the rest of config space is ready.
5977 	 */
5978 	pci_disable_device(pdev);
5979 	pci_save_state(pdev);
5980 
5981 	/* find the first memory BAR, so we can find the cfg table */
5982 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5983 	if (rc)
5984 		return rc;
5985 	vaddr = remap_pci_mem(paddr, 0x250);
5986 	if (!vaddr)
5987 		return -ENOMEM;
5988 
5989 	/* find cfgtable in order to check if reset via doorbell is supported */
5990 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5991 					&cfg_base_addr_index, &cfg_offset);
5992 	if (rc)
5993 		goto unmap_vaddr;
5994 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5995 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5996 	if (!cfgtable) {
5997 		rc = -ENOMEM;
5998 		goto unmap_vaddr;
5999 	}
6000 	rc = write_driver_ver_to_cfgtable(cfgtable);
6001 	if (rc)
6002 		goto unmap_vaddr;
6003 
6004 	/* If reset via doorbell register is supported, use that.
6005 	 * There are two such methods.  Favor the newest method.
6006 	 */
6007 	misc_fw_support = readl(&cfgtable->misc_fw_support);
6008 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6009 	if (use_doorbell) {
6010 		use_doorbell = DOORBELL_CTLR_RESET2;
6011 	} else {
6012 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6013 		if (use_doorbell) {
6014 			dev_warn(&pdev->dev, "Soft reset not supported. "
6015 				"Firmware update is required.\n");
6016 			rc = -ENOTSUPP; /* try soft reset */
6017 			goto unmap_cfgtable;
6018 		}
6019 	}
6020 
6021 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6022 	if (rc)
6023 		goto unmap_cfgtable;
6024 
6025 	pci_restore_state(pdev);
6026 	rc = pci_enable_device(pdev);
6027 	if (rc) {
6028 		dev_warn(&pdev->dev, "failed to enable device.\n");
6029 		goto unmap_cfgtable;
6030 	}
6031 	pci_write_config_word(pdev, 4, command_register);
6032 
6033 	/* Some devices (notably the HP Smart Array 5i Controller)
6034 	   need a little pause here */
6035 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6036 
6037 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6038 	if (rc) {
6039 		dev_warn(&pdev->dev,
6040 			"failed waiting for board to become ready "
6041 			"after hard reset\n");
6042 		goto unmap_cfgtable;
6043 	}
6044 
6045 	rc = controller_reset_failed(vaddr);
6046 	if (rc < 0)
6047 		goto unmap_cfgtable;
6048 	if (rc) {
6049 		dev_warn(&pdev->dev, "Unable to successfully reset "
6050 			"controller. Will try soft reset.\n");
6051 		rc = -ENOTSUPP;
6052 	} else {
6053 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6054 	}
6055 
6056 unmap_cfgtable:
6057 	iounmap(cfgtable);
6058 
6059 unmap_vaddr:
6060 	iounmap(vaddr);
6061 	return rc;
6062 }
6063 
6064 /*
6065  *  We cannot read the structure directly, for portability we must use
6066  *   the io functions.
6067  *   This is for debug only.
6068  */
6069 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6070 {
6071 #ifdef HPSA_DEBUG
6072 	int i;
6073 	char temp_name[17];
6074 
6075 	dev_info(dev, "Controller Configuration information\n");
6076 	dev_info(dev, "------------------------------------\n");
6077 	for (i = 0; i < 4; i++)
6078 		temp_name[i] = readb(&(tb->Signature[i]));
6079 	temp_name[4] = '\0';
6080 	dev_info(dev, "   Signature = %s\n", temp_name);
6081 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6082 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6083 	       readl(&(tb->TransportSupport)));
6084 	dev_info(dev, "   Transport methods active = 0x%x\n",
6085 	       readl(&(tb->TransportActive)));
6086 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6087 	       readl(&(tb->HostWrite.TransportRequest)));
6088 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6089 	       readl(&(tb->HostWrite.CoalIntDelay)));
6090 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6091 	       readl(&(tb->HostWrite.CoalIntCount)));
6092 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
6093 	       readl(&(tb->CmdsOutMax)));
6094 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6095 	for (i = 0; i < 16; i++)
6096 		temp_name[i] = readb(&(tb->ServerName[i]));
6097 	temp_name[16] = '\0';
6098 	dev_info(dev, "   Server Name = %s\n", temp_name);
6099 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6100 		readl(&(tb->HeartBeat)));
6101 #endif				/* HPSA_DEBUG */
6102 }
6103 
6104 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6105 {
6106 	int i, offset, mem_type, bar_type;
6107 
6108 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6109 		return 0;
6110 	offset = 0;
6111 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6112 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6113 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6114 			offset += 4;
6115 		else {
6116 			mem_type = pci_resource_flags(pdev, i) &
6117 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6118 			switch (mem_type) {
6119 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6120 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6121 				offset += 4;	/* 32 bit */
6122 				break;
6123 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6124 				offset += 8;
6125 				break;
6126 			default:	/* reserved in PCI 2.2 */
6127 				dev_warn(&pdev->dev,
6128 				       "base address is invalid\n");
6129 				return -1;
6130 				break;
6131 			}
6132 		}
6133 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6134 			return i + 1;
6135 	}
6136 	return -1;
6137 }
6138 
6139 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6140  * controllers that are capable. If not, we use IO-APIC mode.
6141  */
6142 
6143 static void hpsa_interrupt_mode(struct ctlr_info *h)
6144 {
6145 #ifdef CONFIG_PCI_MSI
6146 	int err, i;
6147 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6148 
6149 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6150 		hpsa_msix_entries[i].vector = 0;
6151 		hpsa_msix_entries[i].entry = i;
6152 	}
6153 
6154 	/* Some boards advertise MSI but don't really support it */
6155 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6156 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6157 		goto default_int_mode;
6158 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6159 		dev_info(&h->pdev->dev, "MSIX\n");
6160 		h->msix_vector = MAX_REPLY_QUEUES;
6161 		if (h->msix_vector > num_online_cpus())
6162 			h->msix_vector = num_online_cpus();
6163 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6164 				      h->msix_vector);
6165 		if (err > 0) {
6166 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6167 			       "available\n", err);
6168 			h->msix_vector = err;
6169 			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6170 					      h->msix_vector);
6171 		}
6172 		if (!err) {
6173 			for (i = 0; i < h->msix_vector; i++)
6174 				h->intr[i] = hpsa_msix_entries[i].vector;
6175 			return;
6176 		} else {
6177 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6178 			       err);
6179 			h->msix_vector = 0;
6180 			goto default_int_mode;
6181 		}
6182 	}
6183 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6184 		dev_info(&h->pdev->dev, "MSI\n");
6185 		if (!pci_enable_msi(h->pdev))
6186 			h->msi_vector = 1;
6187 		else
6188 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6189 	}
6190 default_int_mode:
6191 #endif				/* CONFIG_PCI_MSI */
6192 	/* if we get here we're going to use the default interrupt mode */
6193 	h->intr[h->intr_mode] = h->pdev->irq;
6194 }
6195 
6196 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6197 {
6198 	int i;
6199 	u32 subsystem_vendor_id, subsystem_device_id;
6200 
6201 	subsystem_vendor_id = pdev->subsystem_vendor;
6202 	subsystem_device_id = pdev->subsystem_device;
6203 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6204 		    subsystem_vendor_id;
6205 
6206 	for (i = 0; i < ARRAY_SIZE(products); i++)
6207 		if (*board_id == products[i].board_id)
6208 			return i;
6209 
6210 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6211 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6212 		!hpsa_allow_any) {
6213 		dev_warn(&pdev->dev, "unrecognized board ID: "
6214 			"0x%08x, ignoring.\n", *board_id);
6215 			return -ENODEV;
6216 	}
6217 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6218 }
6219 
6220 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6221 				    unsigned long *memory_bar)
6222 {
6223 	int i;
6224 
6225 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6226 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6227 			/* addressing mode bits already removed */
6228 			*memory_bar = pci_resource_start(pdev, i);
6229 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6230 				*memory_bar);
6231 			return 0;
6232 		}
6233 	dev_warn(&pdev->dev, "no memory BAR found\n");
6234 	return -ENODEV;
6235 }
6236 
6237 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6238 				     int wait_for_ready)
6239 {
6240 	int i, iterations;
6241 	u32 scratchpad;
6242 	if (wait_for_ready)
6243 		iterations = HPSA_BOARD_READY_ITERATIONS;
6244 	else
6245 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6246 
6247 	for (i = 0; i < iterations; i++) {
6248 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6249 		if (wait_for_ready) {
6250 			if (scratchpad == HPSA_FIRMWARE_READY)
6251 				return 0;
6252 		} else {
6253 			if (scratchpad != HPSA_FIRMWARE_READY)
6254 				return 0;
6255 		}
6256 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6257 	}
6258 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6259 	return -ENODEV;
6260 }
6261 
6262 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6263 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6264 			       u64 *cfg_offset)
6265 {
6266 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6267 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6268 	*cfg_base_addr &= (u32) 0x0000ffff;
6269 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6270 	if (*cfg_base_addr_index == -1) {
6271 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6272 		return -ENODEV;
6273 	}
6274 	return 0;
6275 }
6276 
6277 static int hpsa_find_cfgtables(struct ctlr_info *h)
6278 {
6279 	u64 cfg_offset;
6280 	u32 cfg_base_addr;
6281 	u64 cfg_base_addr_index;
6282 	u32 trans_offset;
6283 	int rc;
6284 
6285 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6286 		&cfg_base_addr_index, &cfg_offset);
6287 	if (rc)
6288 		return rc;
6289 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6290 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6291 	if (!h->cfgtable)
6292 		return -ENOMEM;
6293 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6294 	if (rc)
6295 		return rc;
6296 	/* Find performant mode table. */
6297 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6298 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6299 				cfg_base_addr_index)+cfg_offset+trans_offset,
6300 				sizeof(*h->transtable));
6301 	if (!h->transtable)
6302 		return -ENOMEM;
6303 	return 0;
6304 }
6305 
6306 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6307 {
6308 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6309 
6310 	/* Limit commands in memory limited kdump scenario. */
6311 	if (reset_devices && h->max_commands > 32)
6312 		h->max_commands = 32;
6313 
6314 	if (h->max_commands < 16) {
6315 		dev_warn(&h->pdev->dev, "Controller reports "
6316 			"max supported commands of %d, an obvious lie. "
6317 			"Using 16.  Ensure that firmware is up to date.\n",
6318 			h->max_commands);
6319 		h->max_commands = 16;
6320 	}
6321 }
6322 
6323 /* Interrogate the hardware for some limits:
6324  * max commands, max SG elements without chaining, and with chaining,
6325  * SG chain block size, etc.
6326  */
6327 static void hpsa_find_board_params(struct ctlr_info *h)
6328 {
6329 	hpsa_get_max_perf_mode_cmds(h);
6330 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6331 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6332 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6333 	/*
6334 	 * Limit in-command s/g elements to 32 save dma'able memory.
6335 	 * Howvever spec says if 0, use 31
6336 	 */
6337 	h->max_cmd_sg_entries = 31;
6338 	if (h->maxsgentries > 512) {
6339 		h->max_cmd_sg_entries = 32;
6340 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6341 		h->maxsgentries--; /* save one for chain pointer */
6342 	} else {
6343 		h->maxsgentries = 31; /* default to traditional values */
6344 		h->chainsize = 0;
6345 	}
6346 
6347 	/* Find out what task management functions are supported and cache */
6348 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6349 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6350 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6351 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6352 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6353 }
6354 
6355 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6356 {
6357 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6358 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6359 		return false;
6360 	}
6361 	return true;
6362 }
6363 
6364 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6365 {
6366 	u32 driver_support;
6367 
6368 #ifdef CONFIG_X86
6369 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6370 	driver_support = readl(&(h->cfgtable->driver_support));
6371 	driver_support |= ENABLE_SCSI_PREFETCH;
6372 #endif
6373 	driver_support |= ENABLE_UNIT_ATTN;
6374 	writel(driver_support, &(h->cfgtable->driver_support));
6375 }
6376 
6377 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6378  * in a prefetch beyond physical memory.
6379  */
6380 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6381 {
6382 	u32 dma_prefetch;
6383 
6384 	if (h->board_id != 0x3225103C)
6385 		return;
6386 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6387 	dma_prefetch |= 0x8000;
6388 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6389 }
6390 
6391 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6392 {
6393 	int i;
6394 	u32 doorbell_value;
6395 	unsigned long flags;
6396 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6397 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6398 		spin_lock_irqsave(&h->lock, flags);
6399 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6400 		spin_unlock_irqrestore(&h->lock, flags);
6401 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6402 			break;
6403 		/* delay and try again */
6404 		msleep(20);
6405 	}
6406 }
6407 
6408 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6409 {
6410 	int i;
6411 	u32 doorbell_value;
6412 	unsigned long flags;
6413 
6414 	/* under certain very rare conditions, this can take awhile.
6415 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6416 	 * as we enter this code.)
6417 	 */
6418 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6419 		spin_lock_irqsave(&h->lock, flags);
6420 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6421 		spin_unlock_irqrestore(&h->lock, flags);
6422 		if (!(doorbell_value & CFGTBL_ChangeReq))
6423 			break;
6424 		/* delay and try again */
6425 		usleep_range(10000, 20000);
6426 	}
6427 }
6428 
6429 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6430 {
6431 	u32 trans_support;
6432 
6433 	trans_support = readl(&(h->cfgtable->TransportSupport));
6434 	if (!(trans_support & SIMPLE_MODE))
6435 		return -ENOTSUPP;
6436 
6437 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6438 
6439 	/* Update the field, and then ring the doorbell */
6440 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6441 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6442 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6443 	hpsa_wait_for_mode_change_ack(h);
6444 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6445 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6446 		goto error;
6447 	h->transMethod = CFGTBL_Trans_Simple;
6448 	return 0;
6449 error:
6450 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6451 	return -ENODEV;
6452 }
6453 
6454 static int hpsa_pci_init(struct ctlr_info *h)
6455 {
6456 	int prod_index, err;
6457 
6458 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6459 	if (prod_index < 0)
6460 		return -ENODEV;
6461 	h->product_name = products[prod_index].product_name;
6462 	h->access = *(products[prod_index].access);
6463 
6464 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6465 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6466 
6467 	err = pci_enable_device(h->pdev);
6468 	if (err) {
6469 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6470 		return err;
6471 	}
6472 
6473 	/* Enable bus mastering (pci_disable_device may disable this) */
6474 	pci_set_master(h->pdev);
6475 
6476 	err = pci_request_regions(h->pdev, HPSA);
6477 	if (err) {
6478 		dev_err(&h->pdev->dev,
6479 			"cannot obtain PCI resources, aborting\n");
6480 		return err;
6481 	}
6482 	hpsa_interrupt_mode(h);
6483 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6484 	if (err)
6485 		goto err_out_free_res;
6486 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6487 	if (!h->vaddr) {
6488 		err = -ENOMEM;
6489 		goto err_out_free_res;
6490 	}
6491 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6492 	if (err)
6493 		goto err_out_free_res;
6494 	err = hpsa_find_cfgtables(h);
6495 	if (err)
6496 		goto err_out_free_res;
6497 	hpsa_find_board_params(h);
6498 
6499 	if (!hpsa_CISS_signature_present(h)) {
6500 		err = -ENODEV;
6501 		goto err_out_free_res;
6502 	}
6503 	hpsa_set_driver_support_bits(h);
6504 	hpsa_p600_dma_prefetch_quirk(h);
6505 	err = hpsa_enter_simple_mode(h);
6506 	if (err)
6507 		goto err_out_free_res;
6508 	return 0;
6509 
6510 err_out_free_res:
6511 	if (h->transtable)
6512 		iounmap(h->transtable);
6513 	if (h->cfgtable)
6514 		iounmap(h->cfgtable);
6515 	if (h->vaddr)
6516 		iounmap(h->vaddr);
6517 	pci_disable_device(h->pdev);
6518 	pci_release_regions(h->pdev);
6519 	return err;
6520 }
6521 
6522 static void hpsa_hba_inquiry(struct ctlr_info *h)
6523 {
6524 	int rc;
6525 
6526 #define HBA_INQUIRY_BYTE_COUNT 64
6527 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6528 	if (!h->hba_inquiry_data)
6529 		return;
6530 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6531 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6532 	if (rc != 0) {
6533 		kfree(h->hba_inquiry_data);
6534 		h->hba_inquiry_data = NULL;
6535 	}
6536 }
6537 
6538 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6539 {
6540 	int rc, i;
6541 
6542 	if (!reset_devices)
6543 		return 0;
6544 
6545 	/* Reset the controller with a PCI power-cycle or via doorbell */
6546 	rc = hpsa_kdump_hard_reset_controller(pdev);
6547 
6548 	/* -ENOTSUPP here means we cannot reset the controller
6549 	 * but it's already (and still) up and running in
6550 	 * "performant mode".  Or, it might be 640x, which can't reset
6551 	 * due to concerns about shared bbwc between 6402/6404 pair.
6552 	 */
6553 	if (rc == -ENOTSUPP)
6554 		return rc; /* just try to do the kdump anyhow. */
6555 	if (rc)
6556 		return -ENODEV;
6557 
6558 	/* Now try to get the controller to respond to a no-op */
6559 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6560 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6561 		if (hpsa_noop(pdev) == 0)
6562 			break;
6563 		else
6564 			dev_warn(&pdev->dev, "no-op failed%s\n",
6565 					(i < 11 ? "; re-trying" : ""));
6566 	}
6567 	return 0;
6568 }
6569 
6570 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6571 {
6572 	h->cmd_pool_bits = kzalloc(
6573 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6574 		sizeof(unsigned long), GFP_KERNEL);
6575 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6576 		    h->nr_cmds * sizeof(*h->cmd_pool),
6577 		    &(h->cmd_pool_dhandle));
6578 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6579 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6580 		    &(h->errinfo_pool_dhandle));
6581 	if ((h->cmd_pool_bits == NULL)
6582 	    || (h->cmd_pool == NULL)
6583 	    || (h->errinfo_pool == NULL)) {
6584 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6585 		return -ENOMEM;
6586 	}
6587 	return 0;
6588 }
6589 
6590 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6591 {
6592 	kfree(h->cmd_pool_bits);
6593 	if (h->cmd_pool)
6594 		pci_free_consistent(h->pdev,
6595 			    h->nr_cmds * sizeof(struct CommandList),
6596 			    h->cmd_pool, h->cmd_pool_dhandle);
6597 	if (h->ioaccel2_cmd_pool)
6598 		pci_free_consistent(h->pdev,
6599 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6600 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6601 	if (h->errinfo_pool)
6602 		pci_free_consistent(h->pdev,
6603 			    h->nr_cmds * sizeof(struct ErrorInfo),
6604 			    h->errinfo_pool,
6605 			    h->errinfo_pool_dhandle);
6606 	if (h->ioaccel_cmd_pool)
6607 		pci_free_consistent(h->pdev,
6608 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6609 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6610 }
6611 
6612 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6613 {
6614 	int i, cpu, rc;
6615 
6616 	cpu = cpumask_first(cpu_online_mask);
6617 	for (i = 0; i < h->msix_vector; i++) {
6618 		rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6619 		cpu = cpumask_next(cpu, cpu_online_mask);
6620 	}
6621 }
6622 
6623 static int hpsa_request_irq(struct ctlr_info *h,
6624 	irqreturn_t (*msixhandler)(int, void *),
6625 	irqreturn_t (*intxhandler)(int, void *))
6626 {
6627 	int rc, i;
6628 
6629 	/*
6630 	 * initialize h->q[x] = x so that interrupt handlers know which
6631 	 * queue to process.
6632 	 */
6633 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6634 		h->q[i] = (u8) i;
6635 
6636 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6637 		/* If performant mode and MSI-X, use multiple reply queues */
6638 		for (i = 0; i < h->msix_vector; i++)
6639 			rc = request_irq(h->intr[i], msixhandler,
6640 					0, h->devname,
6641 					&h->q[i]);
6642 		hpsa_irq_affinity_hints(h);
6643 	} else {
6644 		/* Use single reply pool */
6645 		if (h->msix_vector > 0 || h->msi_vector) {
6646 			rc = request_irq(h->intr[h->intr_mode],
6647 				msixhandler, 0, h->devname,
6648 				&h->q[h->intr_mode]);
6649 		} else {
6650 			rc = request_irq(h->intr[h->intr_mode],
6651 				intxhandler, IRQF_SHARED, h->devname,
6652 				&h->q[h->intr_mode]);
6653 		}
6654 	}
6655 	if (rc) {
6656 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6657 		       h->intr[h->intr_mode], h->devname);
6658 		return -ENODEV;
6659 	}
6660 	return 0;
6661 }
6662 
6663 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6664 {
6665 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6666 		HPSA_RESET_TYPE_CONTROLLER)) {
6667 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6668 		return -EIO;
6669 	}
6670 
6671 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6672 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6673 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6674 		return -1;
6675 	}
6676 
6677 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6678 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6679 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6680 			"after soft reset.\n");
6681 		return -1;
6682 	}
6683 
6684 	return 0;
6685 }
6686 
6687 static void free_irqs(struct ctlr_info *h)
6688 {
6689 	int i;
6690 
6691 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6692 		/* Single reply queue, only one irq to free */
6693 		i = h->intr_mode;
6694 		irq_set_affinity_hint(h->intr[i], NULL);
6695 		free_irq(h->intr[i], &h->q[i]);
6696 		return;
6697 	}
6698 
6699 	for (i = 0; i < h->msix_vector; i++) {
6700 		irq_set_affinity_hint(h->intr[i], NULL);
6701 		free_irq(h->intr[i], &h->q[i]);
6702 	}
6703 }
6704 
6705 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6706 {
6707 	free_irqs(h);
6708 #ifdef CONFIG_PCI_MSI
6709 	if (h->msix_vector) {
6710 		if (h->pdev->msix_enabled)
6711 			pci_disable_msix(h->pdev);
6712 	} else if (h->msi_vector) {
6713 		if (h->pdev->msi_enabled)
6714 			pci_disable_msi(h->pdev);
6715 	}
6716 #endif /* CONFIG_PCI_MSI */
6717 }
6718 
6719 static void hpsa_free_reply_queues(struct ctlr_info *h)
6720 {
6721 	int i;
6722 
6723 	for (i = 0; i < h->nreply_queues; i++) {
6724 		if (!h->reply_queue[i].head)
6725 			continue;
6726 		pci_free_consistent(h->pdev, h->reply_queue_size,
6727 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6728 		h->reply_queue[i].head = NULL;
6729 		h->reply_queue[i].busaddr = 0;
6730 	}
6731 }
6732 
6733 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6734 {
6735 	hpsa_free_irqs_and_disable_msix(h);
6736 	hpsa_free_sg_chain_blocks(h);
6737 	hpsa_free_cmd_pool(h);
6738 	kfree(h->ioaccel1_blockFetchTable);
6739 	kfree(h->blockFetchTable);
6740 	hpsa_free_reply_queues(h);
6741 	if (h->vaddr)
6742 		iounmap(h->vaddr);
6743 	if (h->transtable)
6744 		iounmap(h->transtable);
6745 	if (h->cfgtable)
6746 		iounmap(h->cfgtable);
6747 	pci_release_regions(h->pdev);
6748 	kfree(h);
6749 }
6750 
6751 /* Called when controller lockup detected. */
6752 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6753 {
6754 	struct CommandList *c = NULL;
6755 
6756 	assert_spin_locked(&h->lock);
6757 	/* Mark all outstanding commands as failed and complete them. */
6758 	while (!list_empty(list)) {
6759 		c = list_entry(list->next, struct CommandList, list);
6760 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6761 		finish_cmd(c);
6762 	}
6763 }
6764 
6765 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6766 {
6767 	int i, cpu;
6768 
6769 	cpu = cpumask_first(cpu_online_mask);
6770 	for (i = 0; i < num_online_cpus(); i++) {
6771 		u32 *lockup_detected;
6772 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6773 		*lockup_detected = value;
6774 		cpu = cpumask_next(cpu, cpu_online_mask);
6775 	}
6776 	wmb(); /* be sure the per-cpu variables are out to memory */
6777 }
6778 
6779 static void controller_lockup_detected(struct ctlr_info *h)
6780 {
6781 	unsigned long flags;
6782 	u32 lockup_detected;
6783 
6784 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6785 	spin_lock_irqsave(&h->lock, flags);
6786 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6787 	if (!lockup_detected) {
6788 		/* no heartbeat, but controller gave us a zero. */
6789 		dev_warn(&h->pdev->dev,
6790 			"lockup detected but scratchpad register is zero\n");
6791 		lockup_detected = 0xffffffff;
6792 	}
6793 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6794 	spin_unlock_irqrestore(&h->lock, flags);
6795 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6796 			lockup_detected);
6797 	pci_disable_device(h->pdev);
6798 	spin_lock_irqsave(&h->lock, flags);
6799 	fail_all_cmds_on_list(h, &h->cmpQ);
6800 	fail_all_cmds_on_list(h, &h->reqQ);
6801 	spin_unlock_irqrestore(&h->lock, flags);
6802 }
6803 
6804 static void detect_controller_lockup(struct ctlr_info *h)
6805 {
6806 	u64 now;
6807 	u32 heartbeat;
6808 	unsigned long flags;
6809 
6810 	now = get_jiffies_64();
6811 	/* If we've received an interrupt recently, we're ok. */
6812 	if (time_after64(h->last_intr_timestamp +
6813 				(h->heartbeat_sample_interval), now))
6814 		return;
6815 
6816 	/*
6817 	 * If we've already checked the heartbeat recently, we're ok.
6818 	 * This could happen if someone sends us a signal. We
6819 	 * otherwise don't care about signals in this thread.
6820 	 */
6821 	if (time_after64(h->last_heartbeat_timestamp +
6822 				(h->heartbeat_sample_interval), now))
6823 		return;
6824 
6825 	/* If heartbeat has not changed since we last looked, we're not ok. */
6826 	spin_lock_irqsave(&h->lock, flags);
6827 	heartbeat = readl(&h->cfgtable->HeartBeat);
6828 	spin_unlock_irqrestore(&h->lock, flags);
6829 	if (h->last_heartbeat == heartbeat) {
6830 		controller_lockup_detected(h);
6831 		return;
6832 	}
6833 
6834 	/* We're ok. */
6835 	h->last_heartbeat = heartbeat;
6836 	h->last_heartbeat_timestamp = now;
6837 }
6838 
6839 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6840 {
6841 	int i;
6842 	char *event_type;
6843 
6844 	/* Clear the driver-requested rescan flag */
6845 	h->drv_req_rescan = 0;
6846 
6847 	/* Ask the controller to clear the events we're handling. */
6848 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6849 			| CFGTBL_Trans_io_accel2)) &&
6850 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6851 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6852 
6853 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6854 			event_type = "state change";
6855 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6856 			event_type = "configuration change";
6857 		/* Stop sending new RAID offload reqs via the IO accelerator */
6858 		scsi_block_requests(h->scsi_host);
6859 		for (i = 0; i < h->ndevices; i++)
6860 			h->dev[i]->offload_enabled = 0;
6861 		hpsa_drain_accel_commands(h);
6862 		/* Set 'accelerator path config change' bit */
6863 		dev_warn(&h->pdev->dev,
6864 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6865 			h->events, event_type);
6866 		writel(h->events, &(h->cfgtable->clear_event_notify));
6867 		/* Set the "clear event notify field update" bit 6 */
6868 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6869 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6870 		hpsa_wait_for_clear_event_notify_ack(h);
6871 		scsi_unblock_requests(h->scsi_host);
6872 	} else {
6873 		/* Acknowledge controller notification events. */
6874 		writel(h->events, &(h->cfgtable->clear_event_notify));
6875 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6876 		hpsa_wait_for_clear_event_notify_ack(h);
6877 #if 0
6878 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6879 		hpsa_wait_for_mode_change_ack(h);
6880 #endif
6881 	}
6882 	return;
6883 }
6884 
6885 /* Check a register on the controller to see if there are configuration
6886  * changes (added/changed/removed logical drives, etc.) which mean that
6887  * we should rescan the controller for devices.
6888  * Also check flag for driver-initiated rescan.
6889  */
6890 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6891 {
6892 	if (h->drv_req_rescan)
6893 		return 1;
6894 
6895 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6896 		return 0;
6897 
6898 	h->events = readl(&(h->cfgtable->event_notify));
6899 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6900 }
6901 
6902 /*
6903  * Check if any of the offline devices have become ready
6904  */
6905 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6906 {
6907 	unsigned long flags;
6908 	struct offline_device_entry *d;
6909 	struct list_head *this, *tmp;
6910 
6911 	spin_lock_irqsave(&h->offline_device_lock, flags);
6912 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6913 		d = list_entry(this, struct offline_device_entry,
6914 				offline_list);
6915 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6916 		if (!hpsa_volume_offline(h, d->scsi3addr))
6917 			return 1;
6918 		spin_lock_irqsave(&h->offline_device_lock, flags);
6919 	}
6920 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6921 	return 0;
6922 }
6923 
6924 
6925 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6926 {
6927 	unsigned long flags;
6928 	struct ctlr_info *h = container_of(to_delayed_work(work),
6929 					struct ctlr_info, monitor_ctlr_work);
6930 	detect_controller_lockup(h);
6931 	if (lockup_detected(h))
6932 		return;
6933 
6934 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6935 		scsi_host_get(h->scsi_host);
6936 		h->drv_req_rescan = 0;
6937 		hpsa_ack_ctlr_events(h);
6938 		hpsa_scan_start(h->scsi_host);
6939 		scsi_host_put(h->scsi_host);
6940 	}
6941 
6942 	spin_lock_irqsave(&h->lock, flags);
6943 	if (h->remove_in_progress) {
6944 		spin_unlock_irqrestore(&h->lock, flags);
6945 		return;
6946 	}
6947 	schedule_delayed_work(&h->monitor_ctlr_work,
6948 				h->heartbeat_sample_interval);
6949 	spin_unlock_irqrestore(&h->lock, flags);
6950 }
6951 
6952 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6953 {
6954 	int dac, rc;
6955 	struct ctlr_info *h;
6956 	int try_soft_reset = 0;
6957 	unsigned long flags;
6958 
6959 	if (number_of_controllers == 0)
6960 		printk(KERN_INFO DRIVER_NAME "\n");
6961 
6962 	rc = hpsa_init_reset_devices(pdev);
6963 	if (rc) {
6964 		if (rc != -ENOTSUPP)
6965 			return rc;
6966 		/* If the reset fails in a particular way (it has no way to do
6967 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6968 		 * a soft reset once we get the controller configured up to the
6969 		 * point that it can accept a command.
6970 		 */
6971 		try_soft_reset = 1;
6972 		rc = 0;
6973 	}
6974 
6975 reinit_after_soft_reset:
6976 
6977 	/* Command structures must be aligned on a 32-byte boundary because
6978 	 * the 5 lower bits of the address are used by the hardware. and by
6979 	 * the driver.  See comments in hpsa.h for more info.
6980 	 */
6981 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6982 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6983 	if (!h)
6984 		return -ENOMEM;
6985 
6986 	h->pdev = pdev;
6987 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6988 	INIT_LIST_HEAD(&h->cmpQ);
6989 	INIT_LIST_HEAD(&h->reqQ);
6990 	INIT_LIST_HEAD(&h->offline_device_list);
6991 	spin_lock_init(&h->lock);
6992 	spin_lock_init(&h->offline_device_lock);
6993 	spin_lock_init(&h->scan_lock);
6994 	spin_lock_init(&h->passthru_count_lock);
6995 
6996 	/* Allocate and clear per-cpu variable lockup_detected */
6997 	h->lockup_detected = alloc_percpu(u32);
6998 	if (!h->lockup_detected)
6999 		goto clean1;
7000 	set_lockup_detected_for_all_cpus(h, 0);
7001 
7002 	rc = hpsa_pci_init(h);
7003 	if (rc != 0)
7004 		goto clean1;
7005 
7006 	sprintf(h->devname, HPSA "%d", number_of_controllers);
7007 	h->ctlr = number_of_controllers;
7008 	number_of_controllers++;
7009 
7010 	/* configure PCI DMA stuff */
7011 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7012 	if (rc == 0) {
7013 		dac = 1;
7014 	} else {
7015 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7016 		if (rc == 0) {
7017 			dac = 0;
7018 		} else {
7019 			dev_err(&pdev->dev, "no suitable DMA available\n");
7020 			goto clean1;
7021 		}
7022 	}
7023 
7024 	/* make sure the board interrupts are off */
7025 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7026 
7027 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7028 		goto clean2;
7029 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7030 	       h->devname, pdev->device,
7031 	       h->intr[h->intr_mode], dac ? "" : " not");
7032 	if (hpsa_allocate_cmd_pool(h))
7033 		goto clean4;
7034 	if (hpsa_allocate_sg_chain_blocks(h))
7035 		goto clean4;
7036 	init_waitqueue_head(&h->scan_wait_queue);
7037 	h->scan_finished = 1; /* no scan currently in progress */
7038 
7039 	pci_set_drvdata(pdev, h);
7040 	h->ndevices = 0;
7041 	h->hba_mode_enabled = 0;
7042 	h->scsi_host = NULL;
7043 	spin_lock_init(&h->devlock);
7044 	hpsa_put_ctlr_into_performant_mode(h);
7045 
7046 	/* At this point, the controller is ready to take commands.
7047 	 * Now, if reset_devices and the hard reset didn't work, try
7048 	 * the soft reset and see if that works.
7049 	 */
7050 	if (try_soft_reset) {
7051 
7052 		/* This is kind of gross.  We may or may not get a completion
7053 		 * from the soft reset command, and if we do, then the value
7054 		 * from the fifo may or may not be valid.  So, we wait 10 secs
7055 		 * after the reset throwing away any completions we get during
7056 		 * that time.  Unregister the interrupt handler and register
7057 		 * fake ones to scoop up any residual completions.
7058 		 */
7059 		spin_lock_irqsave(&h->lock, flags);
7060 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7061 		spin_unlock_irqrestore(&h->lock, flags);
7062 		free_irqs(h);
7063 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
7064 					hpsa_intx_discard_completions);
7065 		if (rc) {
7066 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
7067 				"soft reset.\n");
7068 			goto clean4;
7069 		}
7070 
7071 		rc = hpsa_kdump_soft_reset(h);
7072 		if (rc)
7073 			/* Neither hard nor soft reset worked, we're hosed. */
7074 			goto clean4;
7075 
7076 		dev_info(&h->pdev->dev, "Board READY.\n");
7077 		dev_info(&h->pdev->dev,
7078 			"Waiting for stale completions to drain.\n");
7079 		h->access.set_intr_mask(h, HPSA_INTR_ON);
7080 		msleep(10000);
7081 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7082 
7083 		rc = controller_reset_failed(h->cfgtable);
7084 		if (rc)
7085 			dev_info(&h->pdev->dev,
7086 				"Soft reset appears to have failed.\n");
7087 
7088 		/* since the controller's reset, we have to go back and re-init
7089 		 * everything.  Easiest to just forget what we've done and do it
7090 		 * all over again.
7091 		 */
7092 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7093 		try_soft_reset = 0;
7094 		if (rc)
7095 			/* don't go to clean4, we already unallocated */
7096 			return -ENODEV;
7097 
7098 		goto reinit_after_soft_reset;
7099 	}
7100 
7101 		/* Enable Accelerated IO path at driver layer */
7102 		h->acciopath_status = 1;
7103 
7104 	h->drv_req_rescan = 0;
7105 
7106 	/* Turn the interrupts on so we can service requests */
7107 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7108 
7109 	hpsa_hba_inquiry(h);
7110 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7111 
7112 	/* Monitor the controller for firmware lockups */
7113 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7114 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7115 	schedule_delayed_work(&h->monitor_ctlr_work,
7116 				h->heartbeat_sample_interval);
7117 	return 0;
7118 
7119 clean4:
7120 	hpsa_free_sg_chain_blocks(h);
7121 	hpsa_free_cmd_pool(h);
7122 	free_irqs(h);
7123 clean2:
7124 clean1:
7125 	if (h->lockup_detected)
7126 		free_percpu(h->lockup_detected);
7127 	kfree(h);
7128 	return rc;
7129 }
7130 
7131 static void hpsa_flush_cache(struct ctlr_info *h)
7132 {
7133 	char *flush_buf;
7134 	struct CommandList *c;
7135 
7136 	/* Don't bother trying to flush the cache if locked up */
7137 	if (unlikely(lockup_detected(h)))
7138 		return;
7139 	flush_buf = kzalloc(4, GFP_KERNEL);
7140 	if (!flush_buf)
7141 		return;
7142 
7143 	c = cmd_special_alloc(h);
7144 	if (!c) {
7145 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7146 		goto out_of_memory;
7147 	}
7148 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7149 		RAID_CTLR_LUNID, TYPE_CMD)) {
7150 		goto out;
7151 	}
7152 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7153 	if (c->err_info->CommandStatus != 0)
7154 out:
7155 		dev_warn(&h->pdev->dev,
7156 			"error flushing cache on controller\n");
7157 	cmd_special_free(h, c);
7158 out_of_memory:
7159 	kfree(flush_buf);
7160 }
7161 
7162 static void hpsa_shutdown(struct pci_dev *pdev)
7163 {
7164 	struct ctlr_info *h;
7165 
7166 	h = pci_get_drvdata(pdev);
7167 	/* Turn board interrupts off  and send the flush cache command
7168 	 * sendcmd will turn off interrupt, and send the flush...
7169 	 * To write all data in the battery backed cache to disks
7170 	 */
7171 	hpsa_flush_cache(h);
7172 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7173 	hpsa_free_irqs_and_disable_msix(h);
7174 }
7175 
7176 static void hpsa_free_device_info(struct ctlr_info *h)
7177 {
7178 	int i;
7179 
7180 	for (i = 0; i < h->ndevices; i++)
7181 		kfree(h->dev[i]);
7182 }
7183 
7184 static void hpsa_remove_one(struct pci_dev *pdev)
7185 {
7186 	struct ctlr_info *h;
7187 	unsigned long flags;
7188 
7189 	if (pci_get_drvdata(pdev) == NULL) {
7190 		dev_err(&pdev->dev, "unable to remove device\n");
7191 		return;
7192 	}
7193 	h = pci_get_drvdata(pdev);
7194 
7195 	/* Get rid of any controller monitoring work items */
7196 	spin_lock_irqsave(&h->lock, flags);
7197 	h->remove_in_progress = 1;
7198 	cancel_delayed_work(&h->monitor_ctlr_work);
7199 	spin_unlock_irqrestore(&h->lock, flags);
7200 
7201 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7202 	hpsa_shutdown(pdev);
7203 	iounmap(h->vaddr);
7204 	iounmap(h->transtable);
7205 	iounmap(h->cfgtable);
7206 	hpsa_free_device_info(h);
7207 	hpsa_free_sg_chain_blocks(h);
7208 	pci_free_consistent(h->pdev,
7209 		h->nr_cmds * sizeof(struct CommandList),
7210 		h->cmd_pool, h->cmd_pool_dhandle);
7211 	pci_free_consistent(h->pdev,
7212 		h->nr_cmds * sizeof(struct ErrorInfo),
7213 		h->errinfo_pool, h->errinfo_pool_dhandle);
7214 	hpsa_free_reply_queues(h);
7215 	kfree(h->cmd_pool_bits);
7216 	kfree(h->blockFetchTable);
7217 	kfree(h->ioaccel1_blockFetchTable);
7218 	kfree(h->ioaccel2_blockFetchTable);
7219 	kfree(h->hba_inquiry_data);
7220 	pci_disable_device(pdev);
7221 	pci_release_regions(pdev);
7222 	free_percpu(h->lockup_detected);
7223 	kfree(h);
7224 }
7225 
7226 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7227 	__attribute__((unused)) pm_message_t state)
7228 {
7229 	return -ENOSYS;
7230 }
7231 
7232 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7233 {
7234 	return -ENOSYS;
7235 }
7236 
7237 static struct pci_driver hpsa_pci_driver = {
7238 	.name = HPSA,
7239 	.probe = hpsa_init_one,
7240 	.remove = hpsa_remove_one,
7241 	.id_table = hpsa_pci_device_id,	/* id_table */
7242 	.shutdown = hpsa_shutdown,
7243 	.suspend = hpsa_suspend,
7244 	.resume = hpsa_resume,
7245 };
7246 
7247 /* Fill in bucket_map[], given nsgs (the max number of
7248  * scatter gather elements supported) and bucket[],
7249  * which is an array of 8 integers.  The bucket[] array
7250  * contains 8 different DMA transfer sizes (in 16
7251  * byte increments) which the controller uses to fetch
7252  * commands.  This function fills in bucket_map[], which
7253  * maps a given number of scatter gather elements to one of
7254  * the 8 DMA transfer sizes.  The point of it is to allow the
7255  * controller to only do as much DMA as needed to fetch the
7256  * command, with the DMA transfer size encoded in the lower
7257  * bits of the command address.
7258  */
7259 static void  calc_bucket_map(int bucket[], int num_buckets,
7260 	int nsgs, int min_blocks, int *bucket_map)
7261 {
7262 	int i, j, b, size;
7263 
7264 	/* Note, bucket_map must have nsgs+1 entries. */
7265 	for (i = 0; i <= nsgs; i++) {
7266 		/* Compute size of a command with i SG entries */
7267 		size = i + min_blocks;
7268 		b = num_buckets; /* Assume the biggest bucket */
7269 		/* Find the bucket that is just big enough */
7270 		for (j = 0; j < num_buckets; j++) {
7271 			if (bucket[j] >= size) {
7272 				b = j;
7273 				break;
7274 			}
7275 		}
7276 		/* for a command with i SG entries, use bucket b. */
7277 		bucket_map[i] = b;
7278 	}
7279 }
7280 
7281 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7282 {
7283 	int i;
7284 	unsigned long register_value;
7285 	unsigned long transMethod = CFGTBL_Trans_Performant |
7286 			(trans_support & CFGTBL_Trans_use_short_tags) |
7287 				CFGTBL_Trans_enable_directed_msix |
7288 			(trans_support & (CFGTBL_Trans_io_accel1 |
7289 				CFGTBL_Trans_io_accel2));
7290 	struct access_method access = SA5_performant_access;
7291 
7292 	/* This is a bit complicated.  There are 8 registers on
7293 	 * the controller which we write to to tell it 8 different
7294 	 * sizes of commands which there may be.  It's a way of
7295 	 * reducing the DMA done to fetch each command.  Encoded into
7296 	 * each command's tag are 3 bits which communicate to the controller
7297 	 * which of the eight sizes that command fits within.  The size of
7298 	 * each command depends on how many scatter gather entries there are.
7299 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7300 	 * with the number of 16-byte blocks a command of that size requires.
7301 	 * The smallest command possible requires 5 such 16 byte blocks.
7302 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7303 	 * blocks.  Note, this only extends to the SG entries contained
7304 	 * within the command block, and does not extend to chained blocks
7305 	 * of SG elements.   bft[] contains the eight values we write to
7306 	 * the registers.  They are not evenly distributed, but have more
7307 	 * sizes for small commands, and fewer sizes for larger commands.
7308 	 */
7309 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7310 #define MIN_IOACCEL2_BFT_ENTRY 5
7311 #define HPSA_IOACCEL2_HEADER_SZ 4
7312 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7313 			13, 14, 15, 16, 17, 18, 19,
7314 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7315 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7316 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7317 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7318 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7319 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7320 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7321 	/*  5 = 1 s/g entry or 4k
7322 	 *  6 = 2 s/g entry or 8k
7323 	 *  8 = 4 s/g entry or 16k
7324 	 * 10 = 6 s/g entry or 24k
7325 	 */
7326 
7327 	/* If the controller supports either ioaccel method then
7328 	 * we can also use the RAID stack submit path that does not
7329 	 * perform the superfluous readl() after each command submission.
7330 	 */
7331 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7332 		access = SA5_performant_access_no_read;
7333 
7334 	/* Controller spec: zero out this buffer. */
7335 	for (i = 0; i < h->nreply_queues; i++)
7336 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7337 
7338 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7339 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7340 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7341 	for (i = 0; i < 8; i++)
7342 		writel(bft[i], &h->transtable->BlockFetch[i]);
7343 
7344 	/* size of controller ring buffer */
7345 	writel(h->max_commands, &h->transtable->RepQSize);
7346 	writel(h->nreply_queues, &h->transtable->RepQCount);
7347 	writel(0, &h->transtable->RepQCtrAddrLow32);
7348 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7349 
7350 	for (i = 0; i < h->nreply_queues; i++) {
7351 		writel(0, &h->transtable->RepQAddr[i].upper);
7352 		writel(h->reply_queue[i].busaddr,
7353 			&h->transtable->RepQAddr[i].lower);
7354 	}
7355 
7356 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7357 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7358 	/*
7359 	 * enable outbound interrupt coalescing in accelerator mode;
7360 	 */
7361 	if (trans_support & CFGTBL_Trans_io_accel1) {
7362 		access = SA5_ioaccel_mode1_access;
7363 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7364 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7365 	} else {
7366 		if (trans_support & CFGTBL_Trans_io_accel2) {
7367 			access = SA5_ioaccel_mode2_access;
7368 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7369 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7370 		}
7371 	}
7372 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7373 	hpsa_wait_for_mode_change_ack(h);
7374 	register_value = readl(&(h->cfgtable->TransportActive));
7375 	if (!(register_value & CFGTBL_Trans_Performant)) {
7376 		dev_warn(&h->pdev->dev, "unable to get board into"
7377 					" performant mode\n");
7378 		return;
7379 	}
7380 	/* Change the access methods to the performant access methods */
7381 	h->access = access;
7382 	h->transMethod = transMethod;
7383 
7384 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7385 		(trans_support & CFGTBL_Trans_io_accel2)))
7386 		return;
7387 
7388 	if (trans_support & CFGTBL_Trans_io_accel1) {
7389 		/* Set up I/O accelerator mode */
7390 		for (i = 0; i < h->nreply_queues; i++) {
7391 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7392 			h->reply_queue[i].current_entry =
7393 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7394 		}
7395 		bft[7] = h->ioaccel_maxsg + 8;
7396 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7397 				h->ioaccel1_blockFetchTable);
7398 
7399 		/* initialize all reply queue entries to unused */
7400 		for (i = 0; i < h->nreply_queues; i++)
7401 			memset(h->reply_queue[i].head,
7402 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7403 				h->reply_queue_size);
7404 
7405 		/* set all the constant fields in the accelerator command
7406 		 * frames once at init time to save CPU cycles later.
7407 		 */
7408 		for (i = 0; i < h->nr_cmds; i++) {
7409 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7410 
7411 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7412 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7413 					(i * sizeof(struct ErrorInfo)));
7414 			cp->err_info_len = sizeof(struct ErrorInfo);
7415 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7416 			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7417 			cp->timeout_sec = 0;
7418 			cp->ReplyQueue = 0;
7419 			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7420 						DIRECT_LOOKUP_BIT;
7421 			cp->Tag.upper = 0;
7422 			cp->host_addr.lower =
7423 				(u32) (h->ioaccel_cmd_pool_dhandle +
7424 					(i * sizeof(struct io_accel1_cmd)));
7425 			cp->host_addr.upper = 0;
7426 		}
7427 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7428 		u64 cfg_offset, cfg_base_addr_index;
7429 		u32 bft2_offset, cfg_base_addr;
7430 		int rc;
7431 
7432 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7433 			&cfg_base_addr_index, &cfg_offset);
7434 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7435 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7436 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7437 				4, h->ioaccel2_blockFetchTable);
7438 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7439 		BUILD_BUG_ON(offsetof(struct CfgTable,
7440 				io_accel_request_size_offset) != 0xb8);
7441 		h->ioaccel2_bft2_regs =
7442 			remap_pci_mem(pci_resource_start(h->pdev,
7443 					cfg_base_addr_index) +
7444 					cfg_offset + bft2_offset,
7445 					ARRAY_SIZE(bft2) *
7446 					sizeof(*h->ioaccel2_bft2_regs));
7447 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7448 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7449 	}
7450 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7451 	hpsa_wait_for_mode_change_ack(h);
7452 }
7453 
7454 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7455 {
7456 	h->ioaccel_maxsg =
7457 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7458 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7459 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7460 
7461 	/* Command structures must be aligned on a 128-byte boundary
7462 	 * because the 7 lower bits of the address are used by the
7463 	 * hardware.
7464 	 */
7465 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7466 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7467 	h->ioaccel_cmd_pool =
7468 		pci_alloc_consistent(h->pdev,
7469 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7470 			&(h->ioaccel_cmd_pool_dhandle));
7471 
7472 	h->ioaccel1_blockFetchTable =
7473 		kmalloc(((h->ioaccel_maxsg + 1) *
7474 				sizeof(u32)), GFP_KERNEL);
7475 
7476 	if ((h->ioaccel_cmd_pool == NULL) ||
7477 		(h->ioaccel1_blockFetchTable == NULL))
7478 		goto clean_up;
7479 
7480 	memset(h->ioaccel_cmd_pool, 0,
7481 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7482 	return 0;
7483 
7484 clean_up:
7485 	if (h->ioaccel_cmd_pool)
7486 		pci_free_consistent(h->pdev,
7487 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7488 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7489 	kfree(h->ioaccel1_blockFetchTable);
7490 	return 1;
7491 }
7492 
7493 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7494 {
7495 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7496 
7497 	h->ioaccel_maxsg =
7498 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7499 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7500 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7501 
7502 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7503 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7504 	h->ioaccel2_cmd_pool =
7505 		pci_alloc_consistent(h->pdev,
7506 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7507 			&(h->ioaccel2_cmd_pool_dhandle));
7508 
7509 	h->ioaccel2_blockFetchTable =
7510 		kmalloc(((h->ioaccel_maxsg + 1) *
7511 				sizeof(u32)), GFP_KERNEL);
7512 
7513 	if ((h->ioaccel2_cmd_pool == NULL) ||
7514 		(h->ioaccel2_blockFetchTable == NULL))
7515 		goto clean_up;
7516 
7517 	memset(h->ioaccel2_cmd_pool, 0,
7518 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7519 	return 0;
7520 
7521 clean_up:
7522 	if (h->ioaccel2_cmd_pool)
7523 		pci_free_consistent(h->pdev,
7524 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7525 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7526 	kfree(h->ioaccel2_blockFetchTable);
7527 	return 1;
7528 }
7529 
7530 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7531 {
7532 	u32 trans_support;
7533 	unsigned long transMethod = CFGTBL_Trans_Performant |
7534 					CFGTBL_Trans_use_short_tags;
7535 	int i;
7536 
7537 	if (hpsa_simple_mode)
7538 		return;
7539 
7540 	trans_support = readl(&(h->cfgtable->TransportSupport));
7541 	if (!(trans_support & PERFORMANT_MODE))
7542 		return;
7543 
7544 	/* Check for I/O accelerator mode support */
7545 	if (trans_support & CFGTBL_Trans_io_accel1) {
7546 		transMethod |= CFGTBL_Trans_io_accel1 |
7547 				CFGTBL_Trans_enable_directed_msix;
7548 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7549 			goto clean_up;
7550 	} else {
7551 		if (trans_support & CFGTBL_Trans_io_accel2) {
7552 				transMethod |= CFGTBL_Trans_io_accel2 |
7553 				CFGTBL_Trans_enable_directed_msix;
7554 		if (ioaccel2_alloc_cmds_and_bft(h))
7555 			goto clean_up;
7556 		}
7557 	}
7558 
7559 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7560 	hpsa_get_max_perf_mode_cmds(h);
7561 	/* Performant mode ring buffer and supporting data structures */
7562 	h->reply_queue_size = h->max_commands * sizeof(u64);
7563 
7564 	for (i = 0; i < h->nreply_queues; i++) {
7565 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7566 						h->reply_queue_size,
7567 						&(h->reply_queue[i].busaddr));
7568 		if (!h->reply_queue[i].head)
7569 			goto clean_up;
7570 		h->reply_queue[i].size = h->max_commands;
7571 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7572 		h->reply_queue[i].current_entry = 0;
7573 	}
7574 
7575 	/* Need a block fetch table for performant mode */
7576 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7577 				sizeof(u32)), GFP_KERNEL);
7578 	if (!h->blockFetchTable)
7579 		goto clean_up;
7580 
7581 	hpsa_enter_performant_mode(h, trans_support);
7582 	return;
7583 
7584 clean_up:
7585 	hpsa_free_reply_queues(h);
7586 	kfree(h->blockFetchTable);
7587 }
7588 
7589 static int is_accelerated_cmd(struct CommandList *c)
7590 {
7591 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7592 }
7593 
7594 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7595 {
7596 	struct CommandList *c = NULL;
7597 	unsigned long flags;
7598 	int accel_cmds_out;
7599 
7600 	do { /* wait for all outstanding commands to drain out */
7601 		accel_cmds_out = 0;
7602 		spin_lock_irqsave(&h->lock, flags);
7603 		list_for_each_entry(c, &h->cmpQ, list)
7604 			accel_cmds_out += is_accelerated_cmd(c);
7605 		list_for_each_entry(c, &h->reqQ, list)
7606 			accel_cmds_out += is_accelerated_cmd(c);
7607 		spin_unlock_irqrestore(&h->lock, flags);
7608 		if (accel_cmds_out <= 0)
7609 			break;
7610 		msleep(100);
7611 	} while (1);
7612 }
7613 
7614 /*
7615  *  This is it.  Register the PCI driver information for the cards we control
7616  *  the OS will call our registered routines when it finds one of our cards.
7617  */
7618 static int __init hpsa_init(void)
7619 {
7620 	return pci_register_driver(&hpsa_pci_driver);
7621 }
7622 
7623 static void __exit hpsa_cleanup(void)
7624 {
7625 	pci_unregister_driver(&hpsa_pci_driver);
7626 }
7627 
7628 static void __attribute__((unused)) verify_offsets(void)
7629 {
7630 #define VERIFY_OFFSET(member, offset) \
7631 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7632 
7633 	VERIFY_OFFSET(structure_size, 0);
7634 	VERIFY_OFFSET(volume_blk_size, 4);
7635 	VERIFY_OFFSET(volume_blk_cnt, 8);
7636 	VERIFY_OFFSET(phys_blk_shift, 16);
7637 	VERIFY_OFFSET(parity_rotation_shift, 17);
7638 	VERIFY_OFFSET(strip_size, 18);
7639 	VERIFY_OFFSET(disk_starting_blk, 20);
7640 	VERIFY_OFFSET(disk_blk_cnt, 28);
7641 	VERIFY_OFFSET(data_disks_per_row, 36);
7642 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7643 	VERIFY_OFFSET(row_cnt, 40);
7644 	VERIFY_OFFSET(layout_map_count, 42);
7645 	VERIFY_OFFSET(flags, 44);
7646 	VERIFY_OFFSET(dekindex, 46);
7647 	/* VERIFY_OFFSET(reserved, 48 */
7648 	VERIFY_OFFSET(data, 64);
7649 
7650 #undef VERIFY_OFFSET
7651 
7652 #define VERIFY_OFFSET(member, offset) \
7653 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7654 
7655 	VERIFY_OFFSET(IU_type, 0);
7656 	VERIFY_OFFSET(direction, 1);
7657 	VERIFY_OFFSET(reply_queue, 2);
7658 	/* VERIFY_OFFSET(reserved1, 3);  */
7659 	VERIFY_OFFSET(scsi_nexus, 4);
7660 	VERIFY_OFFSET(Tag, 8);
7661 	VERIFY_OFFSET(cdb, 16);
7662 	VERIFY_OFFSET(cciss_lun, 32);
7663 	VERIFY_OFFSET(data_len, 40);
7664 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7665 	VERIFY_OFFSET(sg_count, 45);
7666 	/* VERIFY_OFFSET(reserved3 */
7667 	VERIFY_OFFSET(err_ptr, 48);
7668 	VERIFY_OFFSET(err_len, 56);
7669 	/* VERIFY_OFFSET(reserved4  */
7670 	VERIFY_OFFSET(sg, 64);
7671 
7672 #undef VERIFY_OFFSET
7673 
7674 #define VERIFY_OFFSET(member, offset) \
7675 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7676 
7677 	VERIFY_OFFSET(dev_handle, 0x00);
7678 	VERIFY_OFFSET(reserved1, 0x02);
7679 	VERIFY_OFFSET(function, 0x03);
7680 	VERIFY_OFFSET(reserved2, 0x04);
7681 	VERIFY_OFFSET(err_info, 0x0C);
7682 	VERIFY_OFFSET(reserved3, 0x10);
7683 	VERIFY_OFFSET(err_info_len, 0x12);
7684 	VERIFY_OFFSET(reserved4, 0x13);
7685 	VERIFY_OFFSET(sgl_offset, 0x14);
7686 	VERIFY_OFFSET(reserved5, 0x15);
7687 	VERIFY_OFFSET(transfer_len, 0x1C);
7688 	VERIFY_OFFSET(reserved6, 0x20);
7689 	VERIFY_OFFSET(io_flags, 0x24);
7690 	VERIFY_OFFSET(reserved7, 0x26);
7691 	VERIFY_OFFSET(LUN, 0x34);
7692 	VERIFY_OFFSET(control, 0x3C);
7693 	VERIFY_OFFSET(CDB, 0x40);
7694 	VERIFY_OFFSET(reserved8, 0x50);
7695 	VERIFY_OFFSET(host_context_flags, 0x60);
7696 	VERIFY_OFFSET(timeout_sec, 0x62);
7697 	VERIFY_OFFSET(ReplyQueue, 0x64);
7698 	VERIFY_OFFSET(reserved9, 0x65);
7699 	VERIFY_OFFSET(Tag, 0x68);
7700 	VERIFY_OFFSET(host_addr, 0x70);
7701 	VERIFY_OFFSET(CISS_LUN, 0x78);
7702 	VERIFY_OFFSET(SG, 0x78 + 8);
7703 #undef VERIFY_OFFSET
7704 }
7705 
7706 module_init(hpsa_init);
7707 module_exit(hpsa_cleanup);
7708