1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/fs.h> 31 #include <linux/timer.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/compat.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/uaccess.h> 37 #include <linux/io.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/completion.h> 40 #include <linux/moduleparam.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_device.h> 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_tcq.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <linux/atomic.h> 50 #include <linux/jiffies.h> 51 #include <linux/percpu-defs.h> 52 #include <linux/percpu.h> 53 #include <asm/unaligned.h> 54 #include <asm/div64.h> 55 #include "hpsa_cmd.h" 56 #include "hpsa.h" 57 58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 59 #define HPSA_DRIVER_VERSION "3.4.4-1" 60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 61 #define HPSA "hpsa" 62 63 /* How long to wait for CISS doorbell communication */ 64 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 65 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 66 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 67 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 68 #define MAX_IOCTL_CONFIG_WAIT 1000 69 70 /*define how many times we will try a command because of bus resets */ 71 #define MAX_CMD_RETRIES 3 72 73 /* Embedded module documentation macros - see modules.h */ 74 MODULE_AUTHOR("Hewlett-Packard Company"); 75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 76 HPSA_DRIVER_VERSION); 77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 78 MODULE_VERSION(HPSA_DRIVER_VERSION); 79 MODULE_LICENSE("GPL"); 80 81 static int hpsa_allow_any; 82 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 83 MODULE_PARM_DESC(hpsa_allow_any, 84 "Allow hpsa driver to access unknown HP Smart Array hardware"); 85 static int hpsa_simple_mode; 86 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 87 MODULE_PARM_DESC(hpsa_simple_mode, 88 "Use 'simple mode' rather than 'performant mode'"); 89 90 /* define the PCI info for the cards we can control */ 91 static const struct pci_device_id hpsa_pci_device_id[] = { 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 133 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 134 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 135 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 136 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 137 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 138 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 139 {0,} 140 }; 141 142 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 143 144 /* board_id = Subsystem Device ID & Vendor ID 145 * product = Marketing Name for the board 146 * access = Address of the struct of function pointers 147 */ 148 static struct board_type products[] = { 149 {0x3241103C, "Smart Array P212", &SA5_access}, 150 {0x3243103C, "Smart Array P410", &SA5_access}, 151 {0x3245103C, "Smart Array P410i", &SA5_access}, 152 {0x3247103C, "Smart Array P411", &SA5_access}, 153 {0x3249103C, "Smart Array P812", &SA5_access}, 154 {0x324A103C, "Smart Array P712m", &SA5_access}, 155 {0x324B103C, "Smart Array P711m", &SA5_access}, 156 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 157 {0x3350103C, "Smart Array P222", &SA5_access}, 158 {0x3351103C, "Smart Array P420", &SA5_access}, 159 {0x3352103C, "Smart Array P421", &SA5_access}, 160 {0x3353103C, "Smart Array P822", &SA5_access}, 161 {0x3354103C, "Smart Array P420i", &SA5_access}, 162 {0x3355103C, "Smart Array P220i", &SA5_access}, 163 {0x3356103C, "Smart Array P721m", &SA5_access}, 164 {0x1921103C, "Smart Array P830i", &SA5_access}, 165 {0x1922103C, "Smart Array P430", &SA5_access}, 166 {0x1923103C, "Smart Array P431", &SA5_access}, 167 {0x1924103C, "Smart Array P830", &SA5_access}, 168 {0x1926103C, "Smart Array P731m", &SA5_access}, 169 {0x1928103C, "Smart Array P230i", &SA5_access}, 170 {0x1929103C, "Smart Array P530", &SA5_access}, 171 {0x21BD103C, "Smart Array P244br", &SA5_access}, 172 {0x21BE103C, "Smart Array P741m", &SA5_access}, 173 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 174 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 175 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 176 {0x21C2103C, "Smart Array P440", &SA5_access}, 177 {0x21C3103C, "Smart Array P441", &SA5_access}, 178 {0x21C4103C, "Smart Array", &SA5_access}, 179 {0x21C5103C, "Smart Array P841", &SA5_access}, 180 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 181 {0x21C7103C, "Smart HBA H240", &SA5_access}, 182 {0x21C8103C, "Smart HBA H241", &SA5_access}, 183 {0x21C9103C, "Smart Array", &SA5_access}, 184 {0x21CA103C, "Smart Array P246br", &SA5_access}, 185 {0x21CB103C, "Smart Array P840", &SA5_access}, 186 {0x21CC103C, "Smart Array", &SA5_access}, 187 {0x21CD103C, "Smart Array", &SA5_access}, 188 {0x21CE103C, "Smart HBA", &SA5_access}, 189 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 190 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 191 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 192 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 193 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 194 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 195 }; 196 197 static int number_of_controllers; 198 199 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 200 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 201 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); 202 203 #ifdef CONFIG_COMPAT 204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, 205 void __user *arg); 206 #endif 207 208 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 209 static struct CommandList *cmd_alloc(struct ctlr_info *h); 210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 211 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 212 int cmd_type); 213 static void hpsa_free_cmd_pool(struct ctlr_info *h); 214 #define VPD_PAGE (1 << 8) 215 216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 217 static void hpsa_scan_start(struct Scsi_Host *); 218 static int hpsa_scan_finished(struct Scsi_Host *sh, 219 unsigned long elapsed_time); 220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 221 222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); 224 static int hpsa_slave_alloc(struct scsi_device *sdev); 225 static void hpsa_slave_destroy(struct scsi_device *sdev); 226 227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 228 static int check_for_unit_attention(struct ctlr_info *h, 229 struct CommandList *c); 230 static void check_ioctl_unit_attention(struct ctlr_info *h, 231 struct CommandList *c); 232 /* performant mode helper functions */ 233 static void calc_bucket_map(int *bucket, int num_buckets, 234 int nsgs, int min_blocks, u32 *bucket_map); 235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 236 static inline u32 next_command(struct ctlr_info *h, u8 q); 237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 238 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 239 u64 *cfg_offset); 240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 241 unsigned long *memory_bar); 242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 244 int wait_for_ready); 245 static inline void finish_cmd(struct CommandList *c); 246 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 247 #define BOARD_NOT_READY 0 248 #define BOARD_READY 1 249 static void hpsa_drain_accel_commands(struct ctlr_info *h); 250 static void hpsa_flush_cache(struct ctlr_info *h); 251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 252 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 253 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 254 static void hpsa_command_resubmit_worker(struct work_struct *work); 255 256 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 257 { 258 unsigned long *priv = shost_priv(sdev->host); 259 return (struct ctlr_info *) *priv; 260 } 261 262 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 263 { 264 unsigned long *priv = shost_priv(sh); 265 return (struct ctlr_info *) *priv; 266 } 267 268 static int check_for_unit_attention(struct ctlr_info *h, 269 struct CommandList *c) 270 { 271 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 272 return 0; 273 274 switch (c->err_info->SenseInfo[12]) { 275 case STATE_CHANGED: 276 dev_warn(&h->pdev->dev, HPSA "%d: a state change " 277 "detected, command retried\n", h->ctlr); 278 break; 279 case LUN_FAILED: 280 dev_warn(&h->pdev->dev, 281 HPSA "%d: LUN failure detected\n", h->ctlr); 282 break; 283 case REPORT_LUNS_CHANGED: 284 dev_warn(&h->pdev->dev, 285 HPSA "%d: report LUN data changed\n", h->ctlr); 286 /* 287 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 288 * target (array) devices. 289 */ 290 break; 291 case POWER_OR_RESET: 292 dev_warn(&h->pdev->dev, HPSA "%d: a power on " 293 "or device reset detected\n", h->ctlr); 294 break; 295 case UNIT_ATTENTION_CLEARED: 296 dev_warn(&h->pdev->dev, HPSA "%d: unit attention " 297 "cleared by another initiator\n", h->ctlr); 298 break; 299 default: 300 dev_warn(&h->pdev->dev, HPSA "%d: unknown " 301 "unit attention detected\n", h->ctlr); 302 break; 303 } 304 return 1; 305 } 306 307 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 308 { 309 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 310 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 311 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 312 return 0; 313 dev_warn(&h->pdev->dev, HPSA "device busy"); 314 return 1; 315 } 316 317 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 318 struct device_attribute *attr, 319 const char *buf, size_t count) 320 { 321 int status, len; 322 struct ctlr_info *h; 323 struct Scsi_Host *shost = class_to_shost(dev); 324 char tmpbuf[10]; 325 326 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 327 return -EACCES; 328 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 329 strncpy(tmpbuf, buf, len); 330 tmpbuf[len] = '\0'; 331 if (sscanf(tmpbuf, "%d", &status) != 1) 332 return -EINVAL; 333 h = shost_to_hba(shost); 334 h->acciopath_status = !!status; 335 dev_warn(&h->pdev->dev, 336 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 337 h->acciopath_status ? "enabled" : "disabled"); 338 return count; 339 } 340 341 static ssize_t host_store_raid_offload_debug(struct device *dev, 342 struct device_attribute *attr, 343 const char *buf, size_t count) 344 { 345 int debug_level, len; 346 struct ctlr_info *h; 347 struct Scsi_Host *shost = class_to_shost(dev); 348 char tmpbuf[10]; 349 350 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 351 return -EACCES; 352 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 353 strncpy(tmpbuf, buf, len); 354 tmpbuf[len] = '\0'; 355 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 356 return -EINVAL; 357 if (debug_level < 0) 358 debug_level = 0; 359 h = shost_to_hba(shost); 360 h->raid_offload_debug = debug_level; 361 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 362 h->raid_offload_debug); 363 return count; 364 } 365 366 static ssize_t host_store_rescan(struct device *dev, 367 struct device_attribute *attr, 368 const char *buf, size_t count) 369 { 370 struct ctlr_info *h; 371 struct Scsi_Host *shost = class_to_shost(dev); 372 h = shost_to_hba(shost); 373 hpsa_scan_start(h->scsi_host); 374 return count; 375 } 376 377 static ssize_t host_show_firmware_revision(struct device *dev, 378 struct device_attribute *attr, char *buf) 379 { 380 struct ctlr_info *h; 381 struct Scsi_Host *shost = class_to_shost(dev); 382 unsigned char *fwrev; 383 384 h = shost_to_hba(shost); 385 if (!h->hba_inquiry_data) 386 return 0; 387 fwrev = &h->hba_inquiry_data[32]; 388 return snprintf(buf, 20, "%c%c%c%c\n", 389 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 390 } 391 392 static ssize_t host_show_commands_outstanding(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 struct Scsi_Host *shost = class_to_shost(dev); 396 struct ctlr_info *h = shost_to_hba(shost); 397 398 return snprintf(buf, 20, "%d\n", 399 atomic_read(&h->commands_outstanding)); 400 } 401 402 static ssize_t host_show_transport_mode(struct device *dev, 403 struct device_attribute *attr, char *buf) 404 { 405 struct ctlr_info *h; 406 struct Scsi_Host *shost = class_to_shost(dev); 407 408 h = shost_to_hba(shost); 409 return snprintf(buf, 20, "%s\n", 410 h->transMethod & CFGTBL_Trans_Performant ? 411 "performant" : "simple"); 412 } 413 414 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 struct ctlr_info *h; 418 struct Scsi_Host *shost = class_to_shost(dev); 419 420 h = shost_to_hba(shost); 421 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 422 (h->acciopath_status == 1) ? "enabled" : "disabled"); 423 } 424 425 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 426 static u32 unresettable_controller[] = { 427 0x324a103C, /* Smart Array P712m */ 428 0x324b103C, /* SmartArray P711m */ 429 0x3223103C, /* Smart Array P800 */ 430 0x3234103C, /* Smart Array P400 */ 431 0x3235103C, /* Smart Array P400i */ 432 0x3211103C, /* Smart Array E200i */ 433 0x3212103C, /* Smart Array E200 */ 434 0x3213103C, /* Smart Array E200i */ 435 0x3214103C, /* Smart Array E200i */ 436 0x3215103C, /* Smart Array E200i */ 437 0x3237103C, /* Smart Array E500 */ 438 0x323D103C, /* Smart Array P700m */ 439 0x40800E11, /* Smart Array 5i */ 440 0x409C0E11, /* Smart Array 6400 */ 441 0x409D0E11, /* Smart Array 6400 EM */ 442 0x40700E11, /* Smart Array 5300 */ 443 0x40820E11, /* Smart Array 532 */ 444 0x40830E11, /* Smart Array 5312 */ 445 0x409A0E11, /* Smart Array 641 */ 446 0x409B0E11, /* Smart Array 642 */ 447 0x40910E11, /* Smart Array 6i */ 448 }; 449 450 /* List of controllers which cannot even be soft reset */ 451 static u32 soft_unresettable_controller[] = { 452 0x40800E11, /* Smart Array 5i */ 453 0x40700E11, /* Smart Array 5300 */ 454 0x40820E11, /* Smart Array 532 */ 455 0x40830E11, /* Smart Array 5312 */ 456 0x409A0E11, /* Smart Array 641 */ 457 0x409B0E11, /* Smart Array 642 */ 458 0x40910E11, /* Smart Array 6i */ 459 /* Exclude 640x boards. These are two pci devices in one slot 460 * which share a battery backed cache module. One controls the 461 * cache, the other accesses the cache through the one that controls 462 * it. If we reset the one controlling the cache, the other will 463 * likely not be happy. Just forbid resetting this conjoined mess. 464 * The 640x isn't really supported by hpsa anyway. 465 */ 466 0x409C0E11, /* Smart Array 6400 */ 467 0x409D0E11, /* Smart Array 6400 EM */ 468 }; 469 470 static int ctlr_is_hard_resettable(u32 board_id) 471 { 472 int i; 473 474 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) 475 if (unresettable_controller[i] == board_id) 476 return 0; 477 return 1; 478 } 479 480 static int ctlr_is_soft_resettable(u32 board_id) 481 { 482 int i; 483 484 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) 485 if (soft_unresettable_controller[i] == board_id) 486 return 0; 487 return 1; 488 } 489 490 static int ctlr_is_resettable(u32 board_id) 491 { 492 return ctlr_is_hard_resettable(board_id) || 493 ctlr_is_soft_resettable(board_id); 494 } 495 496 static ssize_t host_show_resettable(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct ctlr_info *h; 500 struct Scsi_Host *shost = class_to_shost(dev); 501 502 h = shost_to_hba(shost); 503 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 504 } 505 506 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 507 { 508 return (scsi3addr[3] & 0xC0) == 0x40; 509 } 510 511 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 512 "1(+0)ADM", "UNKNOWN" 513 }; 514 #define HPSA_RAID_0 0 515 #define HPSA_RAID_4 1 516 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 517 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 518 #define HPSA_RAID_51 4 519 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 520 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 521 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 522 523 static ssize_t raid_level_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 ssize_t l = 0; 527 unsigned char rlevel; 528 struct ctlr_info *h; 529 struct scsi_device *sdev; 530 struct hpsa_scsi_dev_t *hdev; 531 unsigned long flags; 532 533 sdev = to_scsi_device(dev); 534 h = sdev_to_hba(sdev); 535 spin_lock_irqsave(&h->lock, flags); 536 hdev = sdev->hostdata; 537 if (!hdev) { 538 spin_unlock_irqrestore(&h->lock, flags); 539 return -ENODEV; 540 } 541 542 /* Is this even a logical drive? */ 543 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 544 spin_unlock_irqrestore(&h->lock, flags); 545 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 546 return l; 547 } 548 549 rlevel = hdev->raid_level; 550 spin_unlock_irqrestore(&h->lock, flags); 551 if (rlevel > RAID_UNKNOWN) 552 rlevel = RAID_UNKNOWN; 553 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 554 return l; 555 } 556 557 static ssize_t lunid_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct ctlr_info *h; 561 struct scsi_device *sdev; 562 struct hpsa_scsi_dev_t *hdev; 563 unsigned long flags; 564 unsigned char lunid[8]; 565 566 sdev = to_scsi_device(dev); 567 h = sdev_to_hba(sdev); 568 spin_lock_irqsave(&h->lock, flags); 569 hdev = sdev->hostdata; 570 if (!hdev) { 571 spin_unlock_irqrestore(&h->lock, flags); 572 return -ENODEV; 573 } 574 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 575 spin_unlock_irqrestore(&h->lock, flags); 576 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 577 lunid[0], lunid[1], lunid[2], lunid[3], 578 lunid[4], lunid[5], lunid[6], lunid[7]); 579 } 580 581 static ssize_t unique_id_show(struct device *dev, 582 struct device_attribute *attr, char *buf) 583 { 584 struct ctlr_info *h; 585 struct scsi_device *sdev; 586 struct hpsa_scsi_dev_t *hdev; 587 unsigned long flags; 588 unsigned char sn[16]; 589 590 sdev = to_scsi_device(dev); 591 h = sdev_to_hba(sdev); 592 spin_lock_irqsave(&h->lock, flags); 593 hdev = sdev->hostdata; 594 if (!hdev) { 595 spin_unlock_irqrestore(&h->lock, flags); 596 return -ENODEV; 597 } 598 memcpy(sn, hdev->device_id, sizeof(sn)); 599 spin_unlock_irqrestore(&h->lock, flags); 600 return snprintf(buf, 16 * 2 + 2, 601 "%02X%02X%02X%02X%02X%02X%02X%02X" 602 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 603 sn[0], sn[1], sn[2], sn[3], 604 sn[4], sn[5], sn[6], sn[7], 605 sn[8], sn[9], sn[10], sn[11], 606 sn[12], sn[13], sn[14], sn[15]); 607 } 608 609 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct ctlr_info *h; 613 struct scsi_device *sdev; 614 struct hpsa_scsi_dev_t *hdev; 615 unsigned long flags; 616 int offload_enabled; 617 618 sdev = to_scsi_device(dev); 619 h = sdev_to_hba(sdev); 620 spin_lock_irqsave(&h->lock, flags); 621 hdev = sdev->hostdata; 622 if (!hdev) { 623 spin_unlock_irqrestore(&h->lock, flags); 624 return -ENODEV; 625 } 626 offload_enabled = hdev->offload_enabled; 627 spin_unlock_irqrestore(&h->lock, flags); 628 return snprintf(buf, 20, "%d\n", offload_enabled); 629 } 630 631 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 632 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 633 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 634 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 635 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 636 host_show_hp_ssd_smart_path_enabled, NULL); 637 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 638 host_show_hp_ssd_smart_path_status, 639 host_store_hp_ssd_smart_path_status); 640 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 641 host_store_raid_offload_debug); 642 static DEVICE_ATTR(firmware_revision, S_IRUGO, 643 host_show_firmware_revision, NULL); 644 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 645 host_show_commands_outstanding, NULL); 646 static DEVICE_ATTR(transport_mode, S_IRUGO, 647 host_show_transport_mode, NULL); 648 static DEVICE_ATTR(resettable, S_IRUGO, 649 host_show_resettable, NULL); 650 651 static struct device_attribute *hpsa_sdev_attrs[] = { 652 &dev_attr_raid_level, 653 &dev_attr_lunid, 654 &dev_attr_unique_id, 655 &dev_attr_hp_ssd_smart_path_enabled, 656 NULL, 657 }; 658 659 static struct device_attribute *hpsa_shost_attrs[] = { 660 &dev_attr_rescan, 661 &dev_attr_firmware_revision, 662 &dev_attr_commands_outstanding, 663 &dev_attr_transport_mode, 664 &dev_attr_resettable, 665 &dev_attr_hp_ssd_smart_path_status, 666 &dev_attr_raid_offload_debug, 667 NULL, 668 }; 669 670 static struct scsi_host_template hpsa_driver_template = { 671 .module = THIS_MODULE, 672 .name = HPSA, 673 .proc_name = HPSA, 674 .queuecommand = hpsa_scsi_queue_command, 675 .scan_start = hpsa_scan_start, 676 .scan_finished = hpsa_scan_finished, 677 .change_queue_depth = hpsa_change_queue_depth, 678 .this_id = -1, 679 .use_clustering = ENABLE_CLUSTERING, 680 .eh_abort_handler = hpsa_eh_abort_handler, 681 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 682 .ioctl = hpsa_ioctl, 683 .slave_alloc = hpsa_slave_alloc, 684 .slave_destroy = hpsa_slave_destroy, 685 #ifdef CONFIG_COMPAT 686 .compat_ioctl = hpsa_compat_ioctl, 687 #endif 688 .sdev_attrs = hpsa_sdev_attrs, 689 .shost_attrs = hpsa_shost_attrs, 690 .max_sectors = 8192, 691 .no_write_same = 1, 692 }; 693 694 static inline u32 next_command(struct ctlr_info *h, u8 q) 695 { 696 u32 a; 697 struct reply_queue_buffer *rq = &h->reply_queue[q]; 698 699 if (h->transMethod & CFGTBL_Trans_io_accel1) 700 return h->access.command_completed(h, q); 701 702 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 703 return h->access.command_completed(h, q); 704 705 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 706 a = rq->head[rq->current_entry]; 707 rq->current_entry++; 708 atomic_dec(&h->commands_outstanding); 709 } else { 710 a = FIFO_EMPTY; 711 } 712 /* Check for wraparound */ 713 if (rq->current_entry == h->max_commands) { 714 rq->current_entry = 0; 715 rq->wraparound ^= 1; 716 } 717 return a; 718 } 719 720 /* 721 * There are some special bits in the bus address of the 722 * command that we have to set for the controller to know 723 * how to process the command: 724 * 725 * Normal performant mode: 726 * bit 0: 1 means performant mode, 0 means simple mode. 727 * bits 1-3 = block fetch table entry 728 * bits 4-6 = command type (== 0) 729 * 730 * ioaccel1 mode: 731 * bit 0 = "performant mode" bit. 732 * bits 1-3 = block fetch table entry 733 * bits 4-6 = command type (== 110) 734 * (command type is needed because ioaccel1 mode 735 * commands are submitted through the same register as normal 736 * mode commands, so this is how the controller knows whether 737 * the command is normal mode or ioaccel1 mode.) 738 * 739 * ioaccel2 mode: 740 * bit 0 = "performant mode" bit. 741 * bits 1-4 = block fetch table entry (note extra bit) 742 * bits 4-6 = not needed, because ioaccel2 mode has 743 * a separate special register for submitting commands. 744 */ 745 746 /* set_performant_mode: Modify the tag for cciss performant 747 * set bit 0 for pull model, bits 3-1 for block fetch 748 * register number 749 */ 750 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 751 { 752 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 753 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 754 if (likely(h->msix_vector > 0)) 755 c->Header.ReplyQueue = 756 raw_smp_processor_id() % h->nreply_queues; 757 } 758 } 759 760 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 761 struct CommandList *c) 762 { 763 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 764 765 /* Tell the controller to post the reply to the queue for this 766 * processor. This seems to give the best I/O throughput. 767 */ 768 cp->ReplyQueue = smp_processor_id() % h->nreply_queues; 769 /* Set the bits in the address sent down to include: 770 * - performant mode bit (bit 0) 771 * - pull count (bits 1-3) 772 * - command type (bits 4-6) 773 */ 774 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 775 IOACCEL1_BUSADDR_CMDTYPE; 776 } 777 778 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 779 struct CommandList *c) 780 { 781 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 782 783 /* Tell the controller to post the reply to the queue for this 784 * processor. This seems to give the best I/O throughput. 785 */ 786 cp->reply_queue = smp_processor_id() % h->nreply_queues; 787 /* Set the bits in the address sent down to include: 788 * - performant mode bit not used in ioaccel mode 2 789 * - pull count (bits 0-3) 790 * - command type isn't needed for ioaccel2 791 */ 792 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 793 } 794 795 static int is_firmware_flash_cmd(u8 *cdb) 796 { 797 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 798 } 799 800 /* 801 * During firmware flash, the heartbeat register may not update as frequently 802 * as it should. So we dial down lockup detection during firmware flash. and 803 * dial it back up when firmware flash completes. 804 */ 805 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 806 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 807 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 808 struct CommandList *c) 809 { 810 if (!is_firmware_flash_cmd(c->Request.CDB)) 811 return; 812 atomic_inc(&h->firmware_flash_in_progress); 813 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 814 } 815 816 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 817 struct CommandList *c) 818 { 819 if (is_firmware_flash_cmd(c->Request.CDB) && 820 atomic_dec_and_test(&h->firmware_flash_in_progress)) 821 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 822 } 823 824 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 825 struct CommandList *c) 826 { 827 dial_down_lockup_detection_during_fw_flash(h, c); 828 atomic_inc(&h->commands_outstanding); 829 switch (c->cmd_type) { 830 case CMD_IOACCEL1: 831 set_ioaccel1_performant_mode(h, c); 832 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 833 break; 834 case CMD_IOACCEL2: 835 set_ioaccel2_performant_mode(h, c); 836 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 837 break; 838 default: 839 set_performant_mode(h, c); 840 h->access.submit_command(h, c); 841 } 842 } 843 844 static inline int is_hba_lunid(unsigned char scsi3addr[]) 845 { 846 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 847 } 848 849 static inline int is_scsi_rev_5(struct ctlr_info *h) 850 { 851 if (!h->hba_inquiry_data) 852 return 0; 853 if ((h->hba_inquiry_data[2] & 0x07) == 5) 854 return 1; 855 return 0; 856 } 857 858 static int hpsa_find_target_lun(struct ctlr_info *h, 859 unsigned char scsi3addr[], int bus, int *target, int *lun) 860 { 861 /* finds an unused bus, target, lun for a new physical device 862 * assumes h->devlock is held 863 */ 864 int i, found = 0; 865 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 866 867 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 868 869 for (i = 0; i < h->ndevices; i++) { 870 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 871 __set_bit(h->dev[i]->target, lun_taken); 872 } 873 874 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 875 if (i < HPSA_MAX_DEVICES) { 876 /* *bus = 1; */ 877 *target = i; 878 *lun = 0; 879 found = 1; 880 } 881 return !found; 882 } 883 884 /* Add an entry into h->dev[] array. */ 885 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 886 struct hpsa_scsi_dev_t *device, 887 struct hpsa_scsi_dev_t *added[], int *nadded) 888 { 889 /* assumes h->devlock is held */ 890 int n = h->ndevices; 891 int i; 892 unsigned char addr1[8], addr2[8]; 893 struct hpsa_scsi_dev_t *sd; 894 895 if (n >= HPSA_MAX_DEVICES) { 896 dev_err(&h->pdev->dev, "too many devices, some will be " 897 "inaccessible.\n"); 898 return -1; 899 } 900 901 /* physical devices do not have lun or target assigned until now. */ 902 if (device->lun != -1) 903 /* Logical device, lun is already assigned. */ 904 goto lun_assigned; 905 906 /* If this device a non-zero lun of a multi-lun device 907 * byte 4 of the 8-byte LUN addr will contain the logical 908 * unit no, zero otherwise. 909 */ 910 if (device->scsi3addr[4] == 0) { 911 /* This is not a non-zero lun of a multi-lun device */ 912 if (hpsa_find_target_lun(h, device->scsi3addr, 913 device->bus, &device->target, &device->lun) != 0) 914 return -1; 915 goto lun_assigned; 916 } 917 918 /* This is a non-zero lun of a multi-lun device. 919 * Search through our list and find the device which 920 * has the same 8 byte LUN address, excepting byte 4. 921 * Assign the same bus and target for this new LUN. 922 * Use the logical unit number from the firmware. 923 */ 924 memcpy(addr1, device->scsi3addr, 8); 925 addr1[4] = 0; 926 for (i = 0; i < n; i++) { 927 sd = h->dev[i]; 928 memcpy(addr2, sd->scsi3addr, 8); 929 addr2[4] = 0; 930 /* differ only in byte 4? */ 931 if (memcmp(addr1, addr2, 8) == 0) { 932 device->bus = sd->bus; 933 device->target = sd->target; 934 device->lun = device->scsi3addr[4]; 935 break; 936 } 937 } 938 if (device->lun == -1) { 939 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 940 " suspect firmware bug or unsupported hardware " 941 "configuration.\n"); 942 return -1; 943 } 944 945 lun_assigned: 946 947 h->dev[n] = device; 948 h->ndevices++; 949 added[*nadded] = device; 950 (*nadded)++; 951 952 /* initially, (before registering with scsi layer) we don't 953 * know our hostno and we don't want to print anything first 954 * time anyway (the scsi layer's inquiries will show that info) 955 */ 956 /* if (hostno != -1) */ 957 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 958 scsi_device_type(device->devtype), hostno, 959 device->bus, device->target, device->lun); 960 return 0; 961 } 962 963 /* Update an entry in h->dev[] array. */ 964 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, 965 int entry, struct hpsa_scsi_dev_t *new_entry) 966 { 967 /* assumes h->devlock is held */ 968 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 969 970 /* Raid level changed. */ 971 h->dev[entry]->raid_level = new_entry->raid_level; 972 973 /* Raid offload parameters changed. Careful about the ordering. */ 974 if (new_entry->offload_config && new_entry->offload_enabled) { 975 /* 976 * if drive is newly offload_enabled, we want to copy the 977 * raid map data first. If previously offload_enabled and 978 * offload_config were set, raid map data had better be 979 * the same as it was before. if raid map data is changed 980 * then it had better be the case that 981 * h->dev[entry]->offload_enabled is currently 0. 982 */ 983 h->dev[entry]->raid_map = new_entry->raid_map; 984 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 985 wmb(); /* ensure raid map updated prior to ->offload_enabled */ 986 } 987 h->dev[entry]->offload_config = new_entry->offload_config; 988 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 989 h->dev[entry]->offload_enabled = new_entry->offload_enabled; 990 h->dev[entry]->queue_depth = new_entry->queue_depth; 991 992 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", 993 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 994 new_entry->target, new_entry->lun); 995 } 996 997 /* Replace an entry from h->dev[] array. */ 998 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 999 int entry, struct hpsa_scsi_dev_t *new_entry, 1000 struct hpsa_scsi_dev_t *added[], int *nadded, 1001 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1002 { 1003 /* assumes h->devlock is held */ 1004 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1005 removed[*nremoved] = h->dev[entry]; 1006 (*nremoved)++; 1007 1008 /* 1009 * New physical devices won't have target/lun assigned yet 1010 * so we need to preserve the values in the slot we are replacing. 1011 */ 1012 if (new_entry->target == -1) { 1013 new_entry->target = h->dev[entry]->target; 1014 new_entry->lun = h->dev[entry]->lun; 1015 } 1016 1017 h->dev[entry] = new_entry; 1018 added[*nadded] = new_entry; 1019 (*nadded)++; 1020 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 1021 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 1022 new_entry->target, new_entry->lun); 1023 } 1024 1025 /* Remove an entry from h->dev[] array. */ 1026 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 1027 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1028 { 1029 /* assumes h->devlock is held */ 1030 int i; 1031 struct hpsa_scsi_dev_t *sd; 1032 1033 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1034 1035 sd = h->dev[entry]; 1036 removed[*nremoved] = h->dev[entry]; 1037 (*nremoved)++; 1038 1039 for (i = entry; i < h->ndevices-1; i++) 1040 h->dev[i] = h->dev[i+1]; 1041 h->ndevices--; 1042 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 1043 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 1044 sd->lun); 1045 } 1046 1047 #define SCSI3ADDR_EQ(a, b) ( \ 1048 (a)[7] == (b)[7] && \ 1049 (a)[6] == (b)[6] && \ 1050 (a)[5] == (b)[5] && \ 1051 (a)[4] == (b)[4] && \ 1052 (a)[3] == (b)[3] && \ 1053 (a)[2] == (b)[2] && \ 1054 (a)[1] == (b)[1] && \ 1055 (a)[0] == (b)[0]) 1056 1057 static void fixup_botched_add(struct ctlr_info *h, 1058 struct hpsa_scsi_dev_t *added) 1059 { 1060 /* called when scsi_add_device fails in order to re-adjust 1061 * h->dev[] to match the mid layer's view. 1062 */ 1063 unsigned long flags; 1064 int i, j; 1065 1066 spin_lock_irqsave(&h->lock, flags); 1067 for (i = 0; i < h->ndevices; i++) { 1068 if (h->dev[i] == added) { 1069 for (j = i; j < h->ndevices-1; j++) 1070 h->dev[j] = h->dev[j+1]; 1071 h->ndevices--; 1072 break; 1073 } 1074 } 1075 spin_unlock_irqrestore(&h->lock, flags); 1076 kfree(added); 1077 } 1078 1079 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1080 struct hpsa_scsi_dev_t *dev2) 1081 { 1082 /* we compare everything except lun and target as these 1083 * are not yet assigned. Compare parts likely 1084 * to differ first 1085 */ 1086 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1087 sizeof(dev1->scsi3addr)) != 0) 1088 return 0; 1089 if (memcmp(dev1->device_id, dev2->device_id, 1090 sizeof(dev1->device_id)) != 0) 1091 return 0; 1092 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1093 return 0; 1094 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1095 return 0; 1096 if (dev1->devtype != dev2->devtype) 1097 return 0; 1098 if (dev1->bus != dev2->bus) 1099 return 0; 1100 return 1; 1101 } 1102 1103 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1104 struct hpsa_scsi_dev_t *dev2) 1105 { 1106 /* Device attributes that can change, but don't mean 1107 * that the device is a different device, nor that the OS 1108 * needs to be told anything about the change. 1109 */ 1110 if (dev1->raid_level != dev2->raid_level) 1111 return 1; 1112 if (dev1->offload_config != dev2->offload_config) 1113 return 1; 1114 if (dev1->offload_enabled != dev2->offload_enabled) 1115 return 1; 1116 if (dev1->queue_depth != dev2->queue_depth) 1117 return 1; 1118 return 0; 1119 } 1120 1121 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1122 * and return needle location in *index. If scsi3addr matches, but not 1123 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1124 * location in *index. 1125 * In the case of a minor device attribute change, such as RAID level, just 1126 * return DEVICE_UPDATED, along with the updated device's location in index. 1127 * If needle not found, return DEVICE_NOT_FOUND. 1128 */ 1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1130 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1131 int *index) 1132 { 1133 int i; 1134 #define DEVICE_NOT_FOUND 0 1135 #define DEVICE_CHANGED 1 1136 #define DEVICE_SAME 2 1137 #define DEVICE_UPDATED 3 1138 for (i = 0; i < haystack_size; i++) { 1139 if (haystack[i] == NULL) /* previously removed. */ 1140 continue; 1141 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1142 *index = i; 1143 if (device_is_the_same(needle, haystack[i])) { 1144 if (device_updated(needle, haystack[i])) 1145 return DEVICE_UPDATED; 1146 return DEVICE_SAME; 1147 } else { 1148 /* Keep offline devices offline */ 1149 if (needle->volume_offline) 1150 return DEVICE_NOT_FOUND; 1151 return DEVICE_CHANGED; 1152 } 1153 } 1154 } 1155 *index = -1; 1156 return DEVICE_NOT_FOUND; 1157 } 1158 1159 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1160 unsigned char scsi3addr[]) 1161 { 1162 struct offline_device_entry *device; 1163 unsigned long flags; 1164 1165 /* Check to see if device is already on the list */ 1166 spin_lock_irqsave(&h->offline_device_lock, flags); 1167 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1168 if (memcmp(device->scsi3addr, scsi3addr, 1169 sizeof(device->scsi3addr)) == 0) { 1170 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1171 return; 1172 } 1173 } 1174 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1175 1176 /* Device is not on the list, add it. */ 1177 device = kmalloc(sizeof(*device), GFP_KERNEL); 1178 if (!device) { 1179 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__); 1180 return; 1181 } 1182 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1183 spin_lock_irqsave(&h->offline_device_lock, flags); 1184 list_add_tail(&device->offline_list, &h->offline_device_list); 1185 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1186 } 1187 1188 /* Print a message explaining various offline volume states */ 1189 static void hpsa_show_volume_status(struct ctlr_info *h, 1190 struct hpsa_scsi_dev_t *sd) 1191 { 1192 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1193 dev_info(&h->pdev->dev, 1194 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1195 h->scsi_host->host_no, 1196 sd->bus, sd->target, sd->lun); 1197 switch (sd->volume_offline) { 1198 case HPSA_LV_OK: 1199 break; 1200 case HPSA_LV_UNDERGOING_ERASE: 1201 dev_info(&h->pdev->dev, 1202 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1203 h->scsi_host->host_no, 1204 sd->bus, sd->target, sd->lun); 1205 break; 1206 case HPSA_LV_UNDERGOING_RPI: 1207 dev_info(&h->pdev->dev, 1208 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n", 1209 h->scsi_host->host_no, 1210 sd->bus, sd->target, sd->lun); 1211 break; 1212 case HPSA_LV_PENDING_RPI: 1213 dev_info(&h->pdev->dev, 1214 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1215 h->scsi_host->host_no, 1216 sd->bus, sd->target, sd->lun); 1217 break; 1218 case HPSA_LV_ENCRYPTED_NO_KEY: 1219 dev_info(&h->pdev->dev, 1220 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1221 h->scsi_host->host_no, 1222 sd->bus, sd->target, sd->lun); 1223 break; 1224 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1225 dev_info(&h->pdev->dev, 1226 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1227 h->scsi_host->host_no, 1228 sd->bus, sd->target, sd->lun); 1229 break; 1230 case HPSA_LV_UNDERGOING_ENCRYPTION: 1231 dev_info(&h->pdev->dev, 1232 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1233 h->scsi_host->host_no, 1234 sd->bus, sd->target, sd->lun); 1235 break; 1236 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1237 dev_info(&h->pdev->dev, 1238 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1239 h->scsi_host->host_no, 1240 sd->bus, sd->target, sd->lun); 1241 break; 1242 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1243 dev_info(&h->pdev->dev, 1244 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1245 h->scsi_host->host_no, 1246 sd->bus, sd->target, sd->lun); 1247 break; 1248 case HPSA_LV_PENDING_ENCRYPTION: 1249 dev_info(&h->pdev->dev, 1250 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1251 h->scsi_host->host_no, 1252 sd->bus, sd->target, sd->lun); 1253 break; 1254 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1255 dev_info(&h->pdev->dev, 1256 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1257 h->scsi_host->host_no, 1258 sd->bus, sd->target, sd->lun); 1259 break; 1260 } 1261 } 1262 1263 /* 1264 * Figure the list of physical drive pointers for a logical drive with 1265 * raid offload configured. 1266 */ 1267 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1268 struct hpsa_scsi_dev_t *dev[], int ndevices, 1269 struct hpsa_scsi_dev_t *logical_drive) 1270 { 1271 struct raid_map_data *map = &logical_drive->raid_map; 1272 struct raid_map_disk_data *dd = &map->data[0]; 1273 int i, j; 1274 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1275 le16_to_cpu(map->metadata_disks_per_row); 1276 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1277 le16_to_cpu(map->layout_map_count) * 1278 total_disks_per_row; 1279 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1280 total_disks_per_row; 1281 int qdepth; 1282 1283 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1284 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1285 1286 qdepth = 0; 1287 for (i = 0; i < nraid_map_entries; i++) { 1288 logical_drive->phys_disk[i] = NULL; 1289 if (!logical_drive->offload_config) 1290 continue; 1291 for (j = 0; j < ndevices; j++) { 1292 if (dev[j]->devtype != TYPE_DISK) 1293 continue; 1294 if (is_logical_dev_addr_mode(dev[j]->scsi3addr)) 1295 continue; 1296 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1297 continue; 1298 1299 logical_drive->phys_disk[i] = dev[j]; 1300 if (i < nphys_disk) 1301 qdepth = min(h->nr_cmds, qdepth + 1302 logical_drive->phys_disk[i]->queue_depth); 1303 break; 1304 } 1305 1306 /* 1307 * This can happen if a physical drive is removed and 1308 * the logical drive is degraded. In that case, the RAID 1309 * map data will refer to a physical disk which isn't actually 1310 * present. And in that case offload_enabled should already 1311 * be 0, but we'll turn it off here just in case 1312 */ 1313 if (!logical_drive->phys_disk[i]) { 1314 logical_drive->offload_enabled = 0; 1315 logical_drive->queue_depth = h->nr_cmds; 1316 } 1317 } 1318 if (nraid_map_entries) 1319 /* 1320 * This is correct for reads, too high for full stripe writes, 1321 * way too high for partial stripe writes 1322 */ 1323 logical_drive->queue_depth = qdepth; 1324 else 1325 logical_drive->queue_depth = h->nr_cmds; 1326 } 1327 1328 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1329 struct hpsa_scsi_dev_t *dev[], int ndevices) 1330 { 1331 int i; 1332 1333 for (i = 0; i < ndevices; i++) { 1334 if (dev[i]->devtype != TYPE_DISK) 1335 continue; 1336 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr)) 1337 continue; 1338 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1339 } 1340 } 1341 1342 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 1343 struct hpsa_scsi_dev_t *sd[], int nsds) 1344 { 1345 /* sd contains scsi3 addresses and devtypes, and inquiry 1346 * data. This function takes what's in sd to be the current 1347 * reality and updates h->dev[] to reflect that reality. 1348 */ 1349 int i, entry, device_change, changes = 0; 1350 struct hpsa_scsi_dev_t *csd; 1351 unsigned long flags; 1352 struct hpsa_scsi_dev_t **added, **removed; 1353 int nadded, nremoved; 1354 struct Scsi_Host *sh = NULL; 1355 1356 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); 1357 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); 1358 1359 if (!added || !removed) { 1360 dev_warn(&h->pdev->dev, "out of memory in " 1361 "adjust_hpsa_scsi_table\n"); 1362 goto free_and_out; 1363 } 1364 1365 spin_lock_irqsave(&h->devlock, flags); 1366 1367 /* find any devices in h->dev[] that are not in 1368 * sd[] and remove them from h->dev[], and for any 1369 * devices which have changed, remove the old device 1370 * info and add the new device info. 1371 * If minor device attributes change, just update 1372 * the existing device structure. 1373 */ 1374 i = 0; 1375 nremoved = 0; 1376 nadded = 0; 1377 while (i < h->ndevices) { 1378 csd = h->dev[i]; 1379 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1380 if (device_change == DEVICE_NOT_FOUND) { 1381 changes++; 1382 hpsa_scsi_remove_entry(h, hostno, i, 1383 removed, &nremoved); 1384 continue; /* remove ^^^, hence i not incremented */ 1385 } else if (device_change == DEVICE_CHANGED) { 1386 changes++; 1387 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 1388 added, &nadded, removed, &nremoved); 1389 /* Set it to NULL to prevent it from being freed 1390 * at the bottom of hpsa_update_scsi_devices() 1391 */ 1392 sd[entry] = NULL; 1393 } else if (device_change == DEVICE_UPDATED) { 1394 hpsa_scsi_update_entry(h, hostno, i, sd[entry]); 1395 } 1396 i++; 1397 } 1398 1399 /* Now, make sure every device listed in sd[] is also 1400 * listed in h->dev[], adding them if they aren't found 1401 */ 1402 1403 for (i = 0; i < nsds; i++) { 1404 if (!sd[i]) /* if already added above. */ 1405 continue; 1406 1407 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1408 * as the SCSI mid-layer does not handle such devices well. 1409 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1410 * at 160Hz, and prevents the system from coming up. 1411 */ 1412 if (sd[i]->volume_offline) { 1413 hpsa_show_volume_status(h, sd[i]); 1414 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n", 1415 h->scsi_host->host_no, 1416 sd[i]->bus, sd[i]->target, sd[i]->lun); 1417 continue; 1418 } 1419 1420 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 1421 h->ndevices, &entry); 1422 if (device_change == DEVICE_NOT_FOUND) { 1423 changes++; 1424 if (hpsa_scsi_add_entry(h, hostno, sd[i], 1425 added, &nadded) != 0) 1426 break; 1427 sd[i] = NULL; /* prevent from being freed later. */ 1428 } else if (device_change == DEVICE_CHANGED) { 1429 /* should never happen... */ 1430 changes++; 1431 dev_warn(&h->pdev->dev, 1432 "device unexpectedly changed.\n"); 1433 /* but if it does happen, we just ignore that device */ 1434 } 1435 } 1436 spin_unlock_irqrestore(&h->devlock, flags); 1437 1438 /* Monitor devices which are in one of several NOT READY states to be 1439 * brought online later. This must be done without holding h->devlock, 1440 * so don't touch h->dev[] 1441 */ 1442 for (i = 0; i < nsds; i++) { 1443 if (!sd[i]) /* if already added above. */ 1444 continue; 1445 if (sd[i]->volume_offline) 1446 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 1447 } 1448 1449 /* Don't notify scsi mid layer of any changes the first time through 1450 * (or if there are no changes) scsi_scan_host will do it later the 1451 * first time through. 1452 */ 1453 if (hostno == -1 || !changes) 1454 goto free_and_out; 1455 1456 sh = h->scsi_host; 1457 /* Notify scsi mid layer of any removed devices */ 1458 for (i = 0; i < nremoved; i++) { 1459 struct scsi_device *sdev = 1460 scsi_device_lookup(sh, removed[i]->bus, 1461 removed[i]->target, removed[i]->lun); 1462 if (sdev != NULL) { 1463 scsi_remove_device(sdev); 1464 scsi_device_put(sdev); 1465 } else { 1466 /* We don't expect to get here. 1467 * future cmds to this device will get selection 1468 * timeout as if the device was gone. 1469 */ 1470 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 1471 " for removal.", hostno, removed[i]->bus, 1472 removed[i]->target, removed[i]->lun); 1473 } 1474 kfree(removed[i]); 1475 removed[i] = NULL; 1476 } 1477 1478 /* Notify scsi mid layer of any added devices */ 1479 for (i = 0; i < nadded; i++) { 1480 if (scsi_add_device(sh, added[i]->bus, 1481 added[i]->target, added[i]->lun) == 0) 1482 continue; 1483 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 1484 "device not added.\n", hostno, added[i]->bus, 1485 added[i]->target, added[i]->lun); 1486 /* now we have to remove it from h->dev, 1487 * since it didn't get added to scsi mid layer 1488 */ 1489 fixup_botched_add(h, added[i]); 1490 } 1491 1492 free_and_out: 1493 kfree(added); 1494 kfree(removed); 1495 } 1496 1497 /* 1498 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 1499 * Assume's h->devlock is held. 1500 */ 1501 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 1502 int bus, int target, int lun) 1503 { 1504 int i; 1505 struct hpsa_scsi_dev_t *sd; 1506 1507 for (i = 0; i < h->ndevices; i++) { 1508 sd = h->dev[i]; 1509 if (sd->bus == bus && sd->target == target && sd->lun == lun) 1510 return sd; 1511 } 1512 return NULL; 1513 } 1514 1515 /* link sdev->hostdata to our per-device structure. */ 1516 static int hpsa_slave_alloc(struct scsi_device *sdev) 1517 { 1518 struct hpsa_scsi_dev_t *sd; 1519 unsigned long flags; 1520 struct ctlr_info *h; 1521 1522 h = sdev_to_hba(sdev); 1523 spin_lock_irqsave(&h->devlock, flags); 1524 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 1525 sdev_id(sdev), sdev->lun); 1526 if (sd != NULL) { 1527 sdev->hostdata = sd; 1528 if (sd->queue_depth) 1529 scsi_change_queue_depth(sdev, sd->queue_depth); 1530 atomic_set(&sd->ioaccel_cmds_out, 0); 1531 } 1532 spin_unlock_irqrestore(&h->devlock, flags); 1533 return 0; 1534 } 1535 1536 static void hpsa_slave_destroy(struct scsi_device *sdev) 1537 { 1538 /* nothing to do. */ 1539 } 1540 1541 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 1542 { 1543 int i; 1544 1545 if (!h->cmd_sg_list) 1546 return; 1547 for (i = 0; i < h->nr_cmds; i++) { 1548 kfree(h->cmd_sg_list[i]); 1549 h->cmd_sg_list[i] = NULL; 1550 } 1551 kfree(h->cmd_sg_list); 1552 h->cmd_sg_list = NULL; 1553 } 1554 1555 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 1556 { 1557 int i; 1558 1559 if (h->chainsize <= 0) 1560 return 0; 1561 1562 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 1563 GFP_KERNEL); 1564 if (!h->cmd_sg_list) { 1565 dev_err(&h->pdev->dev, "Failed to allocate SG list\n"); 1566 return -ENOMEM; 1567 } 1568 for (i = 0; i < h->nr_cmds; i++) { 1569 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 1570 h->chainsize, GFP_KERNEL); 1571 if (!h->cmd_sg_list[i]) { 1572 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n"); 1573 goto clean; 1574 } 1575 } 1576 return 0; 1577 1578 clean: 1579 hpsa_free_sg_chain_blocks(h); 1580 return -ENOMEM; 1581 } 1582 1583 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 1584 struct CommandList *c) 1585 { 1586 struct SGDescriptor *chain_sg, *chain_block; 1587 u64 temp64; 1588 u32 chain_len; 1589 1590 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1591 chain_block = h->cmd_sg_list[c->cmdindex]; 1592 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 1593 chain_len = sizeof(*chain_sg) * 1594 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 1595 chain_sg->Len = cpu_to_le32(chain_len); 1596 temp64 = pci_map_single(h->pdev, chain_block, chain_len, 1597 PCI_DMA_TODEVICE); 1598 if (dma_mapping_error(&h->pdev->dev, temp64)) { 1599 /* prevent subsequent unmapping */ 1600 chain_sg->Addr = cpu_to_le64(0); 1601 return -1; 1602 } 1603 chain_sg->Addr = cpu_to_le64(temp64); 1604 return 0; 1605 } 1606 1607 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 1608 struct CommandList *c) 1609 { 1610 struct SGDescriptor *chain_sg; 1611 1612 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 1613 return; 1614 1615 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1616 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), 1617 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); 1618 } 1619 1620 1621 /* Decode the various types of errors on ioaccel2 path. 1622 * Return 1 for any error that should generate a RAID path retry. 1623 * Return 0 for errors that don't require a RAID path retry. 1624 */ 1625 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 1626 struct CommandList *c, 1627 struct scsi_cmnd *cmd, 1628 struct io_accel2_cmd *c2) 1629 { 1630 int data_len; 1631 int retry = 0; 1632 1633 switch (c2->error_data.serv_response) { 1634 case IOACCEL2_SERV_RESPONSE_COMPLETE: 1635 switch (c2->error_data.status) { 1636 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 1637 break; 1638 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 1639 dev_warn(&h->pdev->dev, 1640 "%s: task complete with check condition.\n", 1641 "HP SSD Smart Path"); 1642 cmd->result |= SAM_STAT_CHECK_CONDITION; 1643 if (c2->error_data.data_present != 1644 IOACCEL2_SENSE_DATA_PRESENT) { 1645 memset(cmd->sense_buffer, 0, 1646 SCSI_SENSE_BUFFERSIZE); 1647 break; 1648 } 1649 /* copy the sense data */ 1650 data_len = c2->error_data.sense_data_len; 1651 if (data_len > SCSI_SENSE_BUFFERSIZE) 1652 data_len = SCSI_SENSE_BUFFERSIZE; 1653 if (data_len > sizeof(c2->error_data.sense_data_buff)) 1654 data_len = 1655 sizeof(c2->error_data.sense_data_buff); 1656 memcpy(cmd->sense_buffer, 1657 c2->error_data.sense_data_buff, data_len); 1658 retry = 1; 1659 break; 1660 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 1661 dev_warn(&h->pdev->dev, 1662 "%s: task complete with BUSY status.\n", 1663 "HP SSD Smart Path"); 1664 retry = 1; 1665 break; 1666 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 1667 dev_warn(&h->pdev->dev, 1668 "%s: task complete with reservation conflict.\n", 1669 "HP SSD Smart Path"); 1670 retry = 1; 1671 break; 1672 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 1673 /* Make scsi midlayer do unlimited retries */ 1674 cmd->result = DID_IMM_RETRY << 16; 1675 break; 1676 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 1677 dev_warn(&h->pdev->dev, 1678 "%s: task complete with aborted status.\n", 1679 "HP SSD Smart Path"); 1680 retry = 1; 1681 break; 1682 default: 1683 dev_warn(&h->pdev->dev, 1684 "%s: task complete with unrecognized status: 0x%02x\n", 1685 "HP SSD Smart Path", c2->error_data.status); 1686 retry = 1; 1687 break; 1688 } 1689 break; 1690 case IOACCEL2_SERV_RESPONSE_FAILURE: 1691 /* don't expect to get here. */ 1692 dev_warn(&h->pdev->dev, 1693 "unexpected delivery or target failure, status = 0x%02x\n", 1694 c2->error_data.status); 1695 retry = 1; 1696 break; 1697 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 1698 break; 1699 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 1700 break; 1701 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 1702 dev_warn(&h->pdev->dev, "task management function rejected.\n"); 1703 retry = 1; 1704 break; 1705 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 1706 dev_warn(&h->pdev->dev, "task management function invalid LUN\n"); 1707 break; 1708 default: 1709 dev_warn(&h->pdev->dev, 1710 "%s: Unrecognized server response: 0x%02x\n", 1711 "HP SSD Smart Path", 1712 c2->error_data.serv_response); 1713 retry = 1; 1714 break; 1715 } 1716 1717 return retry; /* retry on raid path? */ 1718 } 1719 1720 static void process_ioaccel2_completion(struct ctlr_info *h, 1721 struct CommandList *c, struct scsi_cmnd *cmd, 1722 struct hpsa_scsi_dev_t *dev) 1723 { 1724 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 1725 1726 /* check for good status */ 1727 if (likely(c2->error_data.serv_response == 0 && 1728 c2->error_data.status == 0)) { 1729 cmd_free(h, c); 1730 cmd->scsi_done(cmd); 1731 return; 1732 } 1733 1734 /* Any RAID offload error results in retry which will use 1735 * the normal I/O path so the controller can handle whatever's 1736 * wrong. 1737 */ 1738 if (is_logical_dev_addr_mode(dev->scsi3addr) && 1739 c2->error_data.serv_response == 1740 IOACCEL2_SERV_RESPONSE_FAILURE) { 1741 if (c2->error_data.status == 1742 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) 1743 dev->offload_enabled = 0; 1744 goto retry_cmd; 1745 } 1746 1747 if (handle_ioaccel_mode2_error(h, c, cmd, c2)) 1748 goto retry_cmd; 1749 1750 cmd_free(h, c); 1751 cmd->scsi_done(cmd); 1752 return; 1753 1754 retry_cmd: 1755 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 1756 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 1757 } 1758 1759 static void complete_scsi_command(struct CommandList *cp) 1760 { 1761 struct scsi_cmnd *cmd; 1762 struct ctlr_info *h; 1763 struct ErrorInfo *ei; 1764 struct hpsa_scsi_dev_t *dev; 1765 1766 unsigned char sense_key; 1767 unsigned char asc; /* additional sense code */ 1768 unsigned char ascq; /* additional sense code qualifier */ 1769 unsigned long sense_data_size; 1770 1771 ei = cp->err_info; 1772 cmd = cp->scsi_cmd; 1773 h = cp->h; 1774 dev = cmd->device->hostdata; 1775 1776 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1777 if ((cp->cmd_type == CMD_SCSI) && 1778 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 1779 hpsa_unmap_sg_chain_block(h, cp); 1780 1781 cmd->result = (DID_OK << 16); /* host byte */ 1782 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1783 1784 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) 1785 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 1786 1787 if (cp->cmd_type == CMD_IOACCEL2) 1788 return process_ioaccel2_completion(h, cp, cmd, dev); 1789 1790 cmd->result |= ei->ScsiStatus; 1791 1792 scsi_set_resid(cmd, ei->ResidualCnt); 1793 if (ei->CommandStatus == 0) { 1794 if (cp->cmd_type == CMD_IOACCEL1) 1795 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 1796 cmd_free(h, cp); 1797 cmd->scsi_done(cmd); 1798 return; 1799 } 1800 1801 /* copy the sense data */ 1802 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 1803 sense_data_size = SCSI_SENSE_BUFFERSIZE; 1804 else 1805 sense_data_size = sizeof(ei->SenseInfo); 1806 if (ei->SenseLen < sense_data_size) 1807 sense_data_size = ei->SenseLen; 1808 1809 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 1810 1811 /* For I/O accelerator commands, copy over some fields to the normal 1812 * CISS header used below for error handling. 1813 */ 1814 if (cp->cmd_type == CMD_IOACCEL1) { 1815 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 1816 cp->Header.SGList = scsi_sg_count(cmd); 1817 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 1818 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 1819 IOACCEL1_IOFLAGS_CDBLEN_MASK; 1820 cp->Header.tag = c->tag; 1821 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 1822 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 1823 1824 /* Any RAID offload error results in retry which will use 1825 * the normal I/O path so the controller can handle whatever's 1826 * wrong. 1827 */ 1828 if (is_logical_dev_addr_mode(dev->scsi3addr)) { 1829 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 1830 dev->offload_enabled = 0; 1831 INIT_WORK(&cp->work, hpsa_command_resubmit_worker); 1832 queue_work_on(raw_smp_processor_id(), 1833 h->resubmit_wq, &cp->work); 1834 return; 1835 } 1836 } 1837 1838 /* an error has occurred */ 1839 switch (ei->CommandStatus) { 1840 1841 case CMD_TARGET_STATUS: 1842 if (ei->ScsiStatus) { 1843 /* Get sense key */ 1844 sense_key = 0xf & ei->SenseInfo[2]; 1845 /* Get additional sense code */ 1846 asc = ei->SenseInfo[12]; 1847 /* Get addition sense code qualifier */ 1848 ascq = ei->SenseInfo[13]; 1849 } 1850 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1851 if (sense_key == ABORTED_COMMAND) { 1852 cmd->result |= DID_SOFT_ERROR << 16; 1853 break; 1854 } 1855 break; 1856 } 1857 /* Problem was not a check condition 1858 * Pass it up to the upper layers... 1859 */ 1860 if (ei->ScsiStatus) { 1861 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1862 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1863 "Returning result: 0x%x\n", 1864 cp, ei->ScsiStatus, 1865 sense_key, asc, ascq, 1866 cmd->result); 1867 } else { /* scsi status is zero??? How??? */ 1868 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1869 "Returning no connection.\n", cp), 1870 1871 /* Ordinarily, this case should never happen, 1872 * but there is a bug in some released firmware 1873 * revisions that allows it to happen if, for 1874 * example, a 4100 backplane loses power and 1875 * the tape drive is in it. We assume that 1876 * it's a fatal error of some kind because we 1877 * can't show that it wasn't. We will make it 1878 * look like selection timeout since that is 1879 * the most common reason for this to occur, 1880 * and it's severe enough. 1881 */ 1882 1883 cmd->result = DID_NO_CONNECT << 16; 1884 } 1885 break; 1886 1887 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1888 break; 1889 case CMD_DATA_OVERRUN: 1890 dev_warn(&h->pdev->dev, 1891 "CDB %16phN data overrun\n", cp->Request.CDB); 1892 break; 1893 case CMD_INVALID: { 1894 /* print_bytes(cp, sizeof(*cp), 1, 0); 1895 print_cmd(cp); */ 1896 /* We get CMD_INVALID if you address a non-existent device 1897 * instead of a selection timeout (no response). You will 1898 * see this if you yank out a drive, then try to access it. 1899 * This is kind of a shame because it means that any other 1900 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1901 * missing target. */ 1902 cmd->result = DID_NO_CONNECT << 16; 1903 } 1904 break; 1905 case CMD_PROTOCOL_ERR: 1906 cmd->result = DID_ERROR << 16; 1907 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 1908 cp->Request.CDB); 1909 break; 1910 case CMD_HARDWARE_ERR: 1911 cmd->result = DID_ERROR << 16; 1912 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 1913 cp->Request.CDB); 1914 break; 1915 case CMD_CONNECTION_LOST: 1916 cmd->result = DID_ERROR << 16; 1917 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 1918 cp->Request.CDB); 1919 break; 1920 case CMD_ABORTED: 1921 cmd->result = DID_ABORT << 16; 1922 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n", 1923 cp->Request.CDB, ei->ScsiStatus); 1924 break; 1925 case CMD_ABORT_FAILED: 1926 cmd->result = DID_ERROR << 16; 1927 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 1928 cp->Request.CDB); 1929 break; 1930 case CMD_UNSOLICITED_ABORT: 1931 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 1932 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 1933 cp->Request.CDB); 1934 break; 1935 case CMD_TIMEOUT: 1936 cmd->result = DID_TIME_OUT << 16; 1937 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 1938 cp->Request.CDB); 1939 break; 1940 case CMD_UNABORTABLE: 1941 cmd->result = DID_ERROR << 16; 1942 dev_warn(&h->pdev->dev, "Command unabortable\n"); 1943 break; 1944 case CMD_IOACCEL_DISABLED: 1945 /* This only handles the direct pass-through case since RAID 1946 * offload is handled above. Just attempt a retry. 1947 */ 1948 cmd->result = DID_SOFT_ERROR << 16; 1949 dev_warn(&h->pdev->dev, 1950 "cp %p had HP SSD Smart Path error\n", cp); 1951 break; 1952 default: 1953 cmd->result = DID_ERROR << 16; 1954 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1955 cp, ei->CommandStatus); 1956 } 1957 cmd_free(h, cp); 1958 cmd->scsi_done(cmd); 1959 } 1960 1961 static void hpsa_pci_unmap(struct pci_dev *pdev, 1962 struct CommandList *c, int sg_used, int data_direction) 1963 { 1964 int i; 1965 1966 for (i = 0; i < sg_used; i++) 1967 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), 1968 le32_to_cpu(c->SG[i].Len), 1969 data_direction); 1970 } 1971 1972 static int hpsa_map_one(struct pci_dev *pdev, 1973 struct CommandList *cp, 1974 unsigned char *buf, 1975 size_t buflen, 1976 int data_direction) 1977 { 1978 u64 addr64; 1979 1980 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1981 cp->Header.SGList = 0; 1982 cp->Header.SGTotal = cpu_to_le16(0); 1983 return 0; 1984 } 1985 1986 addr64 = pci_map_single(pdev, buf, buflen, data_direction); 1987 if (dma_mapping_error(&pdev->dev, addr64)) { 1988 /* Prevent subsequent unmap of something never mapped */ 1989 cp->Header.SGList = 0; 1990 cp->Header.SGTotal = cpu_to_le16(0); 1991 return -1; 1992 } 1993 cp->SG[0].Addr = cpu_to_le64(addr64); 1994 cp->SG[0].Len = cpu_to_le32(buflen); 1995 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 1996 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 1997 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 1998 return 0; 1999 } 2000 2001 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2002 struct CommandList *c) 2003 { 2004 DECLARE_COMPLETION_ONSTACK(wait); 2005 2006 c->waiting = &wait; 2007 enqueue_cmd_and_start_io(h, c); 2008 wait_for_completion(&wait); 2009 } 2010 2011 static u32 lockup_detected(struct ctlr_info *h) 2012 { 2013 int cpu; 2014 u32 rc, *lockup_detected; 2015 2016 cpu = get_cpu(); 2017 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2018 rc = *lockup_detected; 2019 put_cpu(); 2020 return rc; 2021 } 2022 2023 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, 2024 struct CommandList *c) 2025 { 2026 /* If controller lockup detected, fake a hardware error. */ 2027 if (unlikely(lockup_detected(h))) 2028 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 2029 else 2030 hpsa_scsi_do_simple_cmd_core(h, c); 2031 } 2032 2033 #define MAX_DRIVER_CMD_RETRIES 25 2034 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2035 struct CommandList *c, int data_direction) 2036 { 2037 int backoff_time = 10, retry_count = 0; 2038 2039 do { 2040 memset(c->err_info, 0, sizeof(*c->err_info)); 2041 hpsa_scsi_do_simple_cmd_core(h, c); 2042 retry_count++; 2043 if (retry_count > 3) { 2044 msleep(backoff_time); 2045 if (backoff_time < 1000) 2046 backoff_time *= 2; 2047 } 2048 } while ((check_for_unit_attention(h, c) || 2049 check_for_busy(h, c)) && 2050 retry_count <= MAX_DRIVER_CMD_RETRIES); 2051 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2052 } 2053 2054 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2055 struct CommandList *c) 2056 { 2057 const u8 *cdb = c->Request.CDB; 2058 const u8 *lun = c->Header.LUN.LunAddrBytes; 2059 2060 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x" 2061 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", 2062 txt, lun[0], lun[1], lun[2], lun[3], 2063 lun[4], lun[5], lun[6], lun[7], 2064 cdb[0], cdb[1], cdb[2], cdb[3], 2065 cdb[4], cdb[5], cdb[6], cdb[7], 2066 cdb[8], cdb[9], cdb[10], cdb[11], 2067 cdb[12], cdb[13], cdb[14], cdb[15]); 2068 } 2069 2070 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2071 struct CommandList *cp) 2072 { 2073 const struct ErrorInfo *ei = cp->err_info; 2074 struct device *d = &cp->h->pdev->dev; 2075 const u8 *sd = ei->SenseInfo; 2076 2077 switch (ei->CommandStatus) { 2078 case CMD_TARGET_STATUS: 2079 hpsa_print_cmd(h, "SCSI status", cp); 2080 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2081 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n", 2082 sd[2] & 0x0f, sd[12], sd[13]); 2083 else 2084 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus); 2085 if (ei->ScsiStatus == 0) 2086 dev_warn(d, "SCSI status is abnormally zero. " 2087 "(probably indicates selection timeout " 2088 "reported incorrectly due to a known " 2089 "firmware bug, circa July, 2001.)\n"); 2090 break; 2091 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2092 break; 2093 case CMD_DATA_OVERRUN: 2094 hpsa_print_cmd(h, "overrun condition", cp); 2095 break; 2096 case CMD_INVALID: { 2097 /* controller unfortunately reports SCSI passthru's 2098 * to non-existent targets as invalid commands. 2099 */ 2100 hpsa_print_cmd(h, "invalid command", cp); 2101 dev_warn(d, "probably means device no longer present\n"); 2102 } 2103 break; 2104 case CMD_PROTOCOL_ERR: 2105 hpsa_print_cmd(h, "protocol error", cp); 2106 break; 2107 case CMD_HARDWARE_ERR: 2108 hpsa_print_cmd(h, "hardware error", cp); 2109 break; 2110 case CMD_CONNECTION_LOST: 2111 hpsa_print_cmd(h, "connection lost", cp); 2112 break; 2113 case CMD_ABORTED: 2114 hpsa_print_cmd(h, "aborted", cp); 2115 break; 2116 case CMD_ABORT_FAILED: 2117 hpsa_print_cmd(h, "abort failed", cp); 2118 break; 2119 case CMD_UNSOLICITED_ABORT: 2120 hpsa_print_cmd(h, "unsolicited abort", cp); 2121 break; 2122 case CMD_TIMEOUT: 2123 hpsa_print_cmd(h, "timed out", cp); 2124 break; 2125 case CMD_UNABORTABLE: 2126 hpsa_print_cmd(h, "unabortable", cp); 2127 break; 2128 default: 2129 hpsa_print_cmd(h, "unknown status", cp); 2130 dev_warn(d, "Unknown command status %x\n", 2131 ei->CommandStatus); 2132 } 2133 } 2134 2135 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 2136 u16 page, unsigned char *buf, 2137 unsigned char bufsize) 2138 { 2139 int rc = IO_OK; 2140 struct CommandList *c; 2141 struct ErrorInfo *ei; 2142 2143 c = cmd_alloc(h); 2144 2145 if (c == NULL) { 2146 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2147 return -ENOMEM; 2148 } 2149 2150 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 2151 page, scsi3addr, TYPE_CMD)) { 2152 rc = -1; 2153 goto out; 2154 } 2155 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 2156 ei = c->err_info; 2157 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2158 hpsa_scsi_interpret_error(h, c); 2159 rc = -1; 2160 } 2161 out: 2162 cmd_free(h, c); 2163 return rc; 2164 } 2165 2166 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h, 2167 unsigned char *scsi3addr, unsigned char page, 2168 struct bmic_controller_parameters *buf, size_t bufsize) 2169 { 2170 int rc = IO_OK; 2171 struct CommandList *c; 2172 struct ErrorInfo *ei; 2173 2174 c = cmd_alloc(h); 2175 if (c == NULL) { /* trouble... */ 2176 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2177 return -ENOMEM; 2178 } 2179 2180 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize, 2181 page, scsi3addr, TYPE_CMD)) { 2182 rc = -1; 2183 goto out; 2184 } 2185 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 2186 ei = c->err_info; 2187 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2188 hpsa_scsi_interpret_error(h, c); 2189 rc = -1; 2190 } 2191 out: 2192 cmd_free(h, c); 2193 return rc; 2194 } 2195 2196 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, 2197 u8 reset_type) 2198 { 2199 int rc = IO_OK; 2200 struct CommandList *c; 2201 struct ErrorInfo *ei; 2202 2203 c = cmd_alloc(h); 2204 2205 if (c == NULL) { /* trouble... */ 2206 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2207 return -ENOMEM; 2208 } 2209 2210 /* fill_cmd can't fail here, no data buffer to map. */ 2211 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 2212 scsi3addr, TYPE_MSG); 2213 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */ 2214 hpsa_scsi_do_simple_cmd_core(h, c); 2215 /* no unmap needed here because no data xfer. */ 2216 2217 ei = c->err_info; 2218 if (ei->CommandStatus != 0) { 2219 hpsa_scsi_interpret_error(h, c); 2220 rc = -1; 2221 } 2222 cmd_free(h, c); 2223 return rc; 2224 } 2225 2226 static void hpsa_get_raid_level(struct ctlr_info *h, 2227 unsigned char *scsi3addr, unsigned char *raid_level) 2228 { 2229 int rc; 2230 unsigned char *buf; 2231 2232 *raid_level = RAID_UNKNOWN; 2233 buf = kzalloc(64, GFP_KERNEL); 2234 if (!buf) 2235 return; 2236 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64); 2237 if (rc == 0) 2238 *raid_level = buf[8]; 2239 if (*raid_level > RAID_UNKNOWN) 2240 *raid_level = RAID_UNKNOWN; 2241 kfree(buf); 2242 return; 2243 } 2244 2245 #define HPSA_MAP_DEBUG 2246 #ifdef HPSA_MAP_DEBUG 2247 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 2248 struct raid_map_data *map_buff) 2249 { 2250 struct raid_map_disk_data *dd = &map_buff->data[0]; 2251 int map, row, col; 2252 u16 map_cnt, row_cnt, disks_per_row; 2253 2254 if (rc != 0) 2255 return; 2256 2257 /* Show details only if debugging has been activated. */ 2258 if (h->raid_offload_debug < 2) 2259 return; 2260 2261 dev_info(&h->pdev->dev, "structure_size = %u\n", 2262 le32_to_cpu(map_buff->structure_size)); 2263 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 2264 le32_to_cpu(map_buff->volume_blk_size)); 2265 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 2266 le64_to_cpu(map_buff->volume_blk_cnt)); 2267 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 2268 map_buff->phys_blk_shift); 2269 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 2270 map_buff->parity_rotation_shift); 2271 dev_info(&h->pdev->dev, "strip_size = %u\n", 2272 le16_to_cpu(map_buff->strip_size)); 2273 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 2274 le64_to_cpu(map_buff->disk_starting_blk)); 2275 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 2276 le64_to_cpu(map_buff->disk_blk_cnt)); 2277 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 2278 le16_to_cpu(map_buff->data_disks_per_row)); 2279 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 2280 le16_to_cpu(map_buff->metadata_disks_per_row)); 2281 dev_info(&h->pdev->dev, "row_cnt = %u\n", 2282 le16_to_cpu(map_buff->row_cnt)); 2283 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 2284 le16_to_cpu(map_buff->layout_map_count)); 2285 dev_info(&h->pdev->dev, "flags = 0x%x\n", 2286 le16_to_cpu(map_buff->flags)); 2287 dev_info(&h->pdev->dev, "encrypytion = %s\n", 2288 le16_to_cpu(map_buff->flags) & 2289 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 2290 dev_info(&h->pdev->dev, "dekindex = %u\n", 2291 le16_to_cpu(map_buff->dekindex)); 2292 map_cnt = le16_to_cpu(map_buff->layout_map_count); 2293 for (map = 0; map < map_cnt; map++) { 2294 dev_info(&h->pdev->dev, "Map%u:\n", map); 2295 row_cnt = le16_to_cpu(map_buff->row_cnt); 2296 for (row = 0; row < row_cnt; row++) { 2297 dev_info(&h->pdev->dev, " Row%u:\n", row); 2298 disks_per_row = 2299 le16_to_cpu(map_buff->data_disks_per_row); 2300 for (col = 0; col < disks_per_row; col++, dd++) 2301 dev_info(&h->pdev->dev, 2302 " D%02u: h=0x%04x xor=%u,%u\n", 2303 col, dd->ioaccel_handle, 2304 dd->xor_mult[0], dd->xor_mult[1]); 2305 disks_per_row = 2306 le16_to_cpu(map_buff->metadata_disks_per_row); 2307 for (col = 0; col < disks_per_row; col++, dd++) 2308 dev_info(&h->pdev->dev, 2309 " M%02u: h=0x%04x xor=%u,%u\n", 2310 col, dd->ioaccel_handle, 2311 dd->xor_mult[0], dd->xor_mult[1]); 2312 } 2313 } 2314 } 2315 #else 2316 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 2317 __attribute__((unused)) int rc, 2318 __attribute__((unused)) struct raid_map_data *map_buff) 2319 { 2320 } 2321 #endif 2322 2323 static int hpsa_get_raid_map(struct ctlr_info *h, 2324 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 2325 { 2326 int rc = 0; 2327 struct CommandList *c; 2328 struct ErrorInfo *ei; 2329 2330 c = cmd_alloc(h); 2331 if (c == NULL) { 2332 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2333 return -ENOMEM; 2334 } 2335 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 2336 sizeof(this_device->raid_map), 0, 2337 scsi3addr, TYPE_CMD)) { 2338 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n"); 2339 cmd_free(h, c); 2340 return -ENOMEM; 2341 } 2342 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 2343 ei = c->err_info; 2344 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2345 hpsa_scsi_interpret_error(h, c); 2346 cmd_free(h, c); 2347 return -1; 2348 } 2349 cmd_free(h, c); 2350 2351 /* @todo in the future, dynamically allocate RAID map memory */ 2352 if (le32_to_cpu(this_device->raid_map.structure_size) > 2353 sizeof(this_device->raid_map)) { 2354 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 2355 rc = -1; 2356 } 2357 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 2358 return rc; 2359 } 2360 2361 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 2362 unsigned char scsi3addr[], u16 bmic_device_index, 2363 struct bmic_identify_physical_device *buf, size_t bufsize) 2364 { 2365 int rc = IO_OK; 2366 struct CommandList *c; 2367 struct ErrorInfo *ei; 2368 2369 c = cmd_alloc(h); 2370 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 2371 0, RAID_CTLR_LUNID, TYPE_CMD); 2372 if (rc) 2373 goto out; 2374 2375 c->Request.CDB[2] = bmic_device_index & 0xff; 2376 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 2377 2378 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 2379 ei = c->err_info; 2380 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2381 hpsa_scsi_interpret_error(h, c); 2382 rc = -1; 2383 } 2384 out: 2385 cmd_free(h, c); 2386 return rc; 2387 } 2388 2389 static int hpsa_vpd_page_supported(struct ctlr_info *h, 2390 unsigned char scsi3addr[], u8 page) 2391 { 2392 int rc; 2393 int i; 2394 int pages; 2395 unsigned char *buf, bufsize; 2396 2397 buf = kzalloc(256, GFP_KERNEL); 2398 if (!buf) 2399 return 0; 2400 2401 /* Get the size of the page list first */ 2402 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 2403 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 2404 buf, HPSA_VPD_HEADER_SZ); 2405 if (rc != 0) 2406 goto exit_unsupported; 2407 pages = buf[3]; 2408 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 2409 bufsize = pages + HPSA_VPD_HEADER_SZ; 2410 else 2411 bufsize = 255; 2412 2413 /* Get the whole VPD page list */ 2414 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 2415 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 2416 buf, bufsize); 2417 if (rc != 0) 2418 goto exit_unsupported; 2419 2420 pages = buf[3]; 2421 for (i = 1; i <= pages; i++) 2422 if (buf[3 + i] == page) 2423 goto exit_supported; 2424 exit_unsupported: 2425 kfree(buf); 2426 return 0; 2427 exit_supported: 2428 kfree(buf); 2429 return 1; 2430 } 2431 2432 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 2433 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 2434 { 2435 int rc; 2436 unsigned char *buf; 2437 u8 ioaccel_status; 2438 2439 this_device->offload_config = 0; 2440 this_device->offload_enabled = 0; 2441 2442 buf = kzalloc(64, GFP_KERNEL); 2443 if (!buf) 2444 return; 2445 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 2446 goto out; 2447 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 2448 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 2449 if (rc != 0) 2450 goto out; 2451 2452 #define IOACCEL_STATUS_BYTE 4 2453 #define OFFLOAD_CONFIGURED_BIT 0x01 2454 #define OFFLOAD_ENABLED_BIT 0x02 2455 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 2456 this_device->offload_config = 2457 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 2458 if (this_device->offload_config) { 2459 this_device->offload_enabled = 2460 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 2461 if (hpsa_get_raid_map(h, scsi3addr, this_device)) 2462 this_device->offload_enabled = 0; 2463 } 2464 out: 2465 kfree(buf); 2466 return; 2467 } 2468 2469 /* Get the device id from inquiry page 0x83 */ 2470 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 2471 unsigned char *device_id, int buflen) 2472 { 2473 int rc; 2474 unsigned char *buf; 2475 2476 if (buflen > 16) 2477 buflen = 16; 2478 buf = kzalloc(64, GFP_KERNEL); 2479 if (!buf) 2480 return -ENOMEM; 2481 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64); 2482 if (rc == 0) 2483 memcpy(device_id, &buf[8], buflen); 2484 kfree(buf); 2485 return rc != 0; 2486 } 2487 2488 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 2489 void *buf, int bufsize, 2490 int extended_response) 2491 { 2492 int rc = IO_OK; 2493 struct CommandList *c; 2494 unsigned char scsi3addr[8]; 2495 struct ErrorInfo *ei; 2496 2497 c = cmd_alloc(h); 2498 if (c == NULL) { /* trouble... */ 2499 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2500 return -1; 2501 } 2502 /* address the controller */ 2503 memset(scsi3addr, 0, sizeof(scsi3addr)); 2504 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 2505 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 2506 rc = -1; 2507 goto out; 2508 } 2509 if (extended_response) 2510 c->Request.CDB[1] = extended_response; 2511 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 2512 ei = c->err_info; 2513 if (ei->CommandStatus != 0 && 2514 ei->CommandStatus != CMD_DATA_UNDERRUN) { 2515 hpsa_scsi_interpret_error(h, c); 2516 rc = -1; 2517 } else { 2518 struct ReportLUNdata *rld = buf; 2519 2520 if (rld->extended_response_flag != extended_response) { 2521 dev_err(&h->pdev->dev, 2522 "report luns requested format %u, got %u\n", 2523 extended_response, 2524 rld->extended_response_flag); 2525 rc = -1; 2526 } 2527 } 2528 out: 2529 cmd_free(h, c); 2530 return rc; 2531 } 2532 2533 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 2534 struct ReportExtendedLUNdata *buf, int bufsize) 2535 { 2536 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 2537 HPSA_REPORT_PHYS_EXTENDED); 2538 } 2539 2540 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 2541 struct ReportLUNdata *buf, int bufsize) 2542 { 2543 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 2544 } 2545 2546 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 2547 int bus, int target, int lun) 2548 { 2549 device->bus = bus; 2550 device->target = target; 2551 device->lun = lun; 2552 } 2553 2554 /* Use VPD inquiry to get details of volume status */ 2555 static int hpsa_get_volume_status(struct ctlr_info *h, 2556 unsigned char scsi3addr[]) 2557 { 2558 int rc; 2559 int status; 2560 int size; 2561 unsigned char *buf; 2562 2563 buf = kzalloc(64, GFP_KERNEL); 2564 if (!buf) 2565 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 2566 2567 /* Does controller have VPD for logical volume status? */ 2568 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 2569 goto exit_failed; 2570 2571 /* Get the size of the VPD return buffer */ 2572 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 2573 buf, HPSA_VPD_HEADER_SZ); 2574 if (rc != 0) 2575 goto exit_failed; 2576 size = buf[3]; 2577 2578 /* Now get the whole VPD buffer */ 2579 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 2580 buf, size + HPSA_VPD_HEADER_SZ); 2581 if (rc != 0) 2582 goto exit_failed; 2583 status = buf[4]; /* status byte */ 2584 2585 kfree(buf); 2586 return status; 2587 exit_failed: 2588 kfree(buf); 2589 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 2590 } 2591 2592 /* Determine offline status of a volume. 2593 * Return either: 2594 * 0 (not offline) 2595 * 0xff (offline for unknown reasons) 2596 * # (integer code indicating one of several NOT READY states 2597 * describing why a volume is to be kept offline) 2598 */ 2599 static int hpsa_volume_offline(struct ctlr_info *h, 2600 unsigned char scsi3addr[]) 2601 { 2602 struct CommandList *c; 2603 unsigned char *sense, sense_key, asc, ascq; 2604 int ldstat = 0; 2605 u16 cmd_status; 2606 u8 scsi_status; 2607 #define ASC_LUN_NOT_READY 0x04 2608 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 2609 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 2610 2611 c = cmd_alloc(h); 2612 if (!c) 2613 return 0; 2614 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 2615 hpsa_scsi_do_simple_cmd_core(h, c); 2616 sense = c->err_info->SenseInfo; 2617 sense_key = sense[2]; 2618 asc = sense[12]; 2619 ascq = sense[13]; 2620 cmd_status = c->err_info->CommandStatus; 2621 scsi_status = c->err_info->ScsiStatus; 2622 cmd_free(h, c); 2623 /* Is the volume 'not ready'? */ 2624 if (cmd_status != CMD_TARGET_STATUS || 2625 scsi_status != SAM_STAT_CHECK_CONDITION || 2626 sense_key != NOT_READY || 2627 asc != ASC_LUN_NOT_READY) { 2628 return 0; 2629 } 2630 2631 /* Determine the reason for not ready state */ 2632 ldstat = hpsa_get_volume_status(h, scsi3addr); 2633 2634 /* Keep volume offline in certain cases: */ 2635 switch (ldstat) { 2636 case HPSA_LV_UNDERGOING_ERASE: 2637 case HPSA_LV_UNDERGOING_RPI: 2638 case HPSA_LV_PENDING_RPI: 2639 case HPSA_LV_ENCRYPTED_NO_KEY: 2640 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 2641 case HPSA_LV_UNDERGOING_ENCRYPTION: 2642 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 2643 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 2644 return ldstat; 2645 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 2646 /* If VPD status page isn't available, 2647 * use ASC/ASCQ to determine state 2648 */ 2649 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 2650 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 2651 return ldstat; 2652 break; 2653 default: 2654 break; 2655 } 2656 return 0; 2657 } 2658 2659 static int hpsa_update_device_info(struct ctlr_info *h, 2660 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 2661 unsigned char *is_OBDR_device) 2662 { 2663 2664 #define OBDR_SIG_OFFSET 43 2665 #define OBDR_TAPE_SIG "$DR-10" 2666 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 2667 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 2668 2669 unsigned char *inq_buff; 2670 unsigned char *obdr_sig; 2671 2672 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 2673 if (!inq_buff) 2674 goto bail_out; 2675 2676 /* Do an inquiry to the device to see what it is. */ 2677 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 2678 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 2679 /* Inquiry failed (msg printed already) */ 2680 dev_err(&h->pdev->dev, 2681 "hpsa_update_device_info: inquiry failed\n"); 2682 goto bail_out; 2683 } 2684 2685 this_device->devtype = (inq_buff[0] & 0x1f); 2686 memcpy(this_device->scsi3addr, scsi3addr, 8); 2687 memcpy(this_device->vendor, &inq_buff[8], 2688 sizeof(this_device->vendor)); 2689 memcpy(this_device->model, &inq_buff[16], 2690 sizeof(this_device->model)); 2691 memset(this_device->device_id, 0, 2692 sizeof(this_device->device_id)); 2693 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 2694 sizeof(this_device->device_id)); 2695 2696 if (this_device->devtype == TYPE_DISK && 2697 is_logical_dev_addr_mode(scsi3addr)) { 2698 int volume_offline; 2699 2700 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 2701 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 2702 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 2703 volume_offline = hpsa_volume_offline(h, scsi3addr); 2704 if (volume_offline < 0 || volume_offline > 0xff) 2705 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED; 2706 this_device->volume_offline = volume_offline & 0xff; 2707 } else { 2708 this_device->raid_level = RAID_UNKNOWN; 2709 this_device->offload_config = 0; 2710 this_device->offload_enabled = 0; 2711 this_device->volume_offline = 0; 2712 this_device->queue_depth = h->nr_cmds; 2713 } 2714 2715 if (is_OBDR_device) { 2716 /* See if this is a One-Button-Disaster-Recovery device 2717 * by looking for "$DR-10" at offset 43 in inquiry data. 2718 */ 2719 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 2720 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 2721 strncmp(obdr_sig, OBDR_TAPE_SIG, 2722 OBDR_SIG_LEN) == 0); 2723 } 2724 2725 kfree(inq_buff); 2726 return 0; 2727 2728 bail_out: 2729 kfree(inq_buff); 2730 return 1; 2731 } 2732 2733 static unsigned char *ext_target_model[] = { 2734 "MSA2012", 2735 "MSA2024", 2736 "MSA2312", 2737 "MSA2324", 2738 "P2000 G3 SAS", 2739 "MSA 2040 SAS", 2740 NULL, 2741 }; 2742 2743 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 2744 { 2745 int i; 2746 2747 for (i = 0; ext_target_model[i]; i++) 2748 if (strncmp(device->model, ext_target_model[i], 2749 strlen(ext_target_model[i])) == 0) 2750 return 1; 2751 return 0; 2752 } 2753 2754 /* Helper function to assign bus, target, lun mapping of devices. 2755 * Puts non-external target logical volumes on bus 0, external target logical 2756 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 2757 * Logical drive target and lun are assigned at this time, but 2758 * physical device lun and target assignment are deferred (assigned 2759 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 2760 */ 2761 static void figure_bus_target_lun(struct ctlr_info *h, 2762 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 2763 { 2764 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 2765 2766 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 2767 /* physical device, target and lun filled in later */ 2768 if (is_hba_lunid(lunaddrbytes)) 2769 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); 2770 else 2771 /* defer target, lun assignment for physical devices */ 2772 hpsa_set_bus_target_lun(device, 2, -1, -1); 2773 return; 2774 } 2775 /* It's a logical device */ 2776 if (is_ext_target(h, device)) { 2777 /* external target way, put logicals on bus 1 2778 * and match target/lun numbers box 2779 * reports, other smart array, bus 0, target 0, match lunid 2780 */ 2781 hpsa_set_bus_target_lun(device, 2782 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); 2783 return; 2784 } 2785 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); 2786 } 2787 2788 /* 2789 * If there is no lun 0 on a target, linux won't find any devices. 2790 * For the external targets (arrays), we have to manually detect the enclosure 2791 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 2792 * it for some reason. *tmpdevice is the target we're adding, 2793 * this_device is a pointer into the current element of currentsd[] 2794 * that we're building up in update_scsi_devices(), below. 2795 * lunzerobits is a bitmap that tracks which targets already have a 2796 * lun 0 assigned. 2797 * Returns 1 if an enclosure was added, 0 if not. 2798 */ 2799 static int add_ext_target_dev(struct ctlr_info *h, 2800 struct hpsa_scsi_dev_t *tmpdevice, 2801 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 2802 unsigned long lunzerobits[], int *n_ext_target_devs) 2803 { 2804 unsigned char scsi3addr[8]; 2805 2806 if (test_bit(tmpdevice->target, lunzerobits)) 2807 return 0; /* There is already a lun 0 on this target. */ 2808 2809 if (!is_logical_dev_addr_mode(lunaddrbytes)) 2810 return 0; /* It's the logical targets that may lack lun 0. */ 2811 2812 if (!is_ext_target(h, tmpdevice)) 2813 return 0; /* Only external target devices have this problem. */ 2814 2815 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ 2816 return 0; 2817 2818 memset(scsi3addr, 0, 8); 2819 scsi3addr[3] = tmpdevice->target; 2820 if (is_hba_lunid(scsi3addr)) 2821 return 0; /* Don't add the RAID controller here. */ 2822 2823 if (is_scsi_rev_5(h)) 2824 return 0; /* p1210m doesn't need to do this. */ 2825 2826 if (*n_ext_target_devs >= MAX_EXT_TARGETS) { 2827 dev_warn(&h->pdev->dev, "Maximum number of external " 2828 "target devices exceeded. Check your hardware " 2829 "configuration."); 2830 return 0; 2831 } 2832 2833 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) 2834 return 0; 2835 (*n_ext_target_devs)++; 2836 hpsa_set_bus_target_lun(this_device, 2837 tmpdevice->bus, tmpdevice->target, 0); 2838 set_bit(tmpdevice->target, lunzerobits); 2839 return 1; 2840 } 2841 2842 /* 2843 * Get address of physical disk used for an ioaccel2 mode command: 2844 * 1. Extract ioaccel2 handle from the command. 2845 * 2. Find a matching ioaccel2 handle from list of physical disks. 2846 * 3. Return: 2847 * 1 and set scsi3addr to address of matching physical 2848 * 0 if no matching physical disk was found. 2849 */ 2850 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, 2851 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) 2852 { 2853 struct ReportExtendedLUNdata *physicals = NULL; 2854 int responsesize = 24; /* size of physical extended response */ 2855 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize; 2856 u32 nphysicals = 0; /* number of reported physical devs */ 2857 int found = 0; /* found match (1) or not (0) */ 2858 u32 find; /* handle we need to match */ 2859 int i; 2860 struct scsi_cmnd *scmd; /* scsi command within request being aborted */ 2861 struct hpsa_scsi_dev_t *d; /* device of request being aborted */ 2862 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */ 2863 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */ 2864 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */ 2865 2866 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2) 2867 return 0; /* no match */ 2868 2869 /* point to the ioaccel2 device handle */ 2870 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; 2871 if (c2a == NULL) 2872 return 0; /* no match */ 2873 2874 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd; 2875 if (scmd == NULL) 2876 return 0; /* no match */ 2877 2878 d = scmd->device->hostdata; 2879 if (d == NULL) 2880 return 0; /* no match */ 2881 2882 it_nexus = cpu_to_le32(d->ioaccel_handle); 2883 scsi_nexus = c2a->scsi_nexus; 2884 find = le32_to_cpu(c2a->scsi_nexus); 2885 2886 if (h->raid_offload_debug > 0) 2887 dev_info(&h->pdev->dev, 2888 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", 2889 __func__, scsi_nexus, 2890 d->device_id[0], d->device_id[1], d->device_id[2], 2891 d->device_id[3], d->device_id[4], d->device_id[5], 2892 d->device_id[6], d->device_id[7], d->device_id[8], 2893 d->device_id[9], d->device_id[10], d->device_id[11], 2894 d->device_id[12], d->device_id[13], d->device_id[14], 2895 d->device_id[15]); 2896 2897 /* Get the list of physical devices */ 2898 physicals = kzalloc(reportsize, GFP_KERNEL); 2899 if (physicals == NULL) 2900 return 0; 2901 if (hpsa_scsi_do_report_phys_luns(h, physicals, reportsize)) { 2902 dev_err(&h->pdev->dev, 2903 "Can't lookup %s device handle: report physical LUNs failed.\n", 2904 "HP SSD Smart Path"); 2905 kfree(physicals); 2906 return 0; 2907 } 2908 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) / 2909 responsesize; 2910 2911 /* find ioaccel2 handle in list of physicals: */ 2912 for (i = 0; i < nphysicals; i++) { 2913 struct ext_report_lun_entry *entry = &physicals->LUN[i]; 2914 2915 /* handle is in bytes 28-31 of each lun */ 2916 if (entry->ioaccel_handle != find) 2917 continue; /* didn't match */ 2918 found = 1; 2919 memcpy(scsi3addr, entry->lunid, 8); 2920 if (h->raid_offload_debug > 0) 2921 dev_info(&h->pdev->dev, 2922 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n", 2923 __func__, find, 2924 entry->ioaccel_handle, scsi3addr); 2925 break; /* found it */ 2926 } 2927 2928 kfree(physicals); 2929 if (found) 2930 return 1; 2931 else 2932 return 0; 2933 2934 } 2935 /* 2936 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 2937 * logdev. The number of luns in physdev and logdev are returned in 2938 * *nphysicals and *nlogicals, respectively. 2939 * Returns 0 on success, -1 otherwise. 2940 */ 2941 static int hpsa_gather_lun_info(struct ctlr_info *h, 2942 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 2943 struct ReportLUNdata *logdev, u32 *nlogicals) 2944 { 2945 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 2946 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 2947 return -1; 2948 } 2949 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 2950 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 2951 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 2952 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 2953 *nphysicals = HPSA_MAX_PHYS_LUN; 2954 } 2955 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 2956 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 2957 return -1; 2958 } 2959 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 2960 /* Reject Logicals in excess of our max capability. */ 2961 if (*nlogicals > HPSA_MAX_LUN) { 2962 dev_warn(&h->pdev->dev, 2963 "maximum logical LUNs (%d) exceeded. " 2964 "%d LUNs ignored.\n", HPSA_MAX_LUN, 2965 *nlogicals - HPSA_MAX_LUN); 2966 *nlogicals = HPSA_MAX_LUN; 2967 } 2968 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 2969 dev_warn(&h->pdev->dev, 2970 "maximum logical + physical LUNs (%d) exceeded. " 2971 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 2972 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 2973 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 2974 } 2975 return 0; 2976 } 2977 2978 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 2979 int i, int nphysicals, int nlogicals, 2980 struct ReportExtendedLUNdata *physdev_list, 2981 struct ReportLUNdata *logdev_list) 2982 { 2983 /* Helper function, figure out where the LUN ID info is coming from 2984 * given index i, lists of physical and logical devices, where in 2985 * the list the raid controller is supposed to appear (first or last) 2986 */ 2987 2988 int logicals_start = nphysicals + (raid_ctlr_position == 0); 2989 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 2990 2991 if (i == raid_ctlr_position) 2992 return RAID_CTLR_LUNID; 2993 2994 if (i < logicals_start) 2995 return &physdev_list->LUN[i - 2996 (raid_ctlr_position == 0)].lunid[0]; 2997 2998 if (i < last_device) 2999 return &logdev_list->LUN[i - nphysicals - 3000 (raid_ctlr_position == 0)][0]; 3001 BUG(); 3002 return NULL; 3003 } 3004 3005 static int hpsa_hba_mode_enabled(struct ctlr_info *h) 3006 { 3007 int rc; 3008 int hba_mode_enabled; 3009 struct bmic_controller_parameters *ctlr_params; 3010 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters), 3011 GFP_KERNEL); 3012 3013 if (!ctlr_params) 3014 return -ENOMEM; 3015 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params, 3016 sizeof(struct bmic_controller_parameters)); 3017 if (rc) { 3018 kfree(ctlr_params); 3019 return rc; 3020 } 3021 3022 hba_mode_enabled = 3023 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0); 3024 kfree(ctlr_params); 3025 return hba_mode_enabled; 3026 } 3027 3028 /* get physical drive ioaccel handle and queue depth */ 3029 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 3030 struct hpsa_scsi_dev_t *dev, 3031 u8 *lunaddrbytes, 3032 struct bmic_identify_physical_device *id_phys) 3033 { 3034 int rc; 3035 struct ext_report_lun_entry *rle = 3036 (struct ext_report_lun_entry *) lunaddrbytes; 3037 3038 dev->ioaccel_handle = rle->ioaccel_handle; 3039 memset(id_phys, 0, sizeof(*id_phys)); 3040 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes, 3041 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys, 3042 sizeof(*id_phys)); 3043 if (!rc) 3044 /* Reserve space for FW operations */ 3045 #define DRIVE_CMDS_RESERVED_FOR_FW 2 3046 #define DRIVE_QUEUE_DEPTH 7 3047 dev->queue_depth = 3048 le16_to_cpu(id_phys->current_queue_depth_limit) - 3049 DRIVE_CMDS_RESERVED_FOR_FW; 3050 else 3051 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 3052 atomic_set(&dev->ioaccel_cmds_out, 0); 3053 } 3054 3055 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 3056 { 3057 /* the idea here is we could get notified 3058 * that some devices have changed, so we do a report 3059 * physical luns and report logical luns cmd, and adjust 3060 * our list of devices accordingly. 3061 * 3062 * The scsi3addr's of devices won't change so long as the 3063 * adapter is not reset. That means we can rescan and 3064 * tell which devices we already know about, vs. new 3065 * devices, vs. disappearing devices. 3066 */ 3067 struct ReportExtendedLUNdata *physdev_list = NULL; 3068 struct ReportLUNdata *logdev_list = NULL; 3069 struct bmic_identify_physical_device *id_phys = NULL; 3070 u32 nphysicals = 0; 3071 u32 nlogicals = 0; 3072 u32 ndev_allocated = 0; 3073 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 3074 int ncurrent = 0; 3075 int i, n_ext_target_devs, ndevs_to_allocate; 3076 int raid_ctlr_position; 3077 int rescan_hba_mode; 3078 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 3079 3080 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); 3081 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 3082 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 3083 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 3084 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3085 3086 if (!currentsd || !physdev_list || !logdev_list || 3087 !tmpdevice || !id_phys) { 3088 dev_err(&h->pdev->dev, "out of memory\n"); 3089 goto out; 3090 } 3091 memset(lunzerobits, 0, sizeof(lunzerobits)); 3092 3093 rescan_hba_mode = hpsa_hba_mode_enabled(h); 3094 if (rescan_hba_mode < 0) 3095 goto out; 3096 3097 if (!h->hba_mode_enabled && rescan_hba_mode) 3098 dev_warn(&h->pdev->dev, "HBA mode enabled\n"); 3099 else if (h->hba_mode_enabled && !rescan_hba_mode) 3100 dev_warn(&h->pdev->dev, "HBA mode disabled\n"); 3101 3102 h->hba_mode_enabled = rescan_hba_mode; 3103 3104 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 3105 logdev_list, &nlogicals)) 3106 goto out; 3107 3108 /* We might see up to the maximum number of logical and physical disks 3109 * plus external target devices, and a device for the local RAID 3110 * controller. 3111 */ 3112 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 3113 3114 /* Allocate the per device structures */ 3115 for (i = 0; i < ndevs_to_allocate; i++) { 3116 if (i >= HPSA_MAX_DEVICES) { 3117 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 3118 " %d devices ignored.\n", HPSA_MAX_DEVICES, 3119 ndevs_to_allocate - HPSA_MAX_DEVICES); 3120 break; 3121 } 3122 3123 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 3124 if (!currentsd[i]) { 3125 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 3126 __FILE__, __LINE__); 3127 goto out; 3128 } 3129 ndev_allocated++; 3130 } 3131 3132 if (is_scsi_rev_5(h)) 3133 raid_ctlr_position = 0; 3134 else 3135 raid_ctlr_position = nphysicals + nlogicals; 3136 3137 /* adjust our table of devices */ 3138 n_ext_target_devs = 0; 3139 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 3140 u8 *lunaddrbytes, is_OBDR = 0; 3141 3142 /* Figure out where the LUN ID info is coming from */ 3143 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 3144 i, nphysicals, nlogicals, physdev_list, logdev_list); 3145 /* skip masked physical devices. */ 3146 if (lunaddrbytes[3] & 0xC0 && 3147 i < nphysicals + (raid_ctlr_position == 0)) 3148 continue; 3149 3150 /* Get device type, vendor, model, device id */ 3151 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 3152 &is_OBDR)) 3153 continue; /* skip it if we can't talk to it. */ 3154 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 3155 this_device = currentsd[ncurrent]; 3156 3157 /* 3158 * For external target devices, we have to insert a LUN 0 which 3159 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 3160 * is nonetheless an enclosure device there. We have to 3161 * present that otherwise linux won't find anything if 3162 * there is no lun 0. 3163 */ 3164 if (add_ext_target_dev(h, tmpdevice, this_device, 3165 lunaddrbytes, lunzerobits, 3166 &n_ext_target_devs)) { 3167 ncurrent++; 3168 this_device = currentsd[ncurrent]; 3169 } 3170 3171 *this_device = *tmpdevice; 3172 3173 switch (this_device->devtype) { 3174 case TYPE_ROM: 3175 /* We don't *really* support actual CD-ROM devices, 3176 * just "One Button Disaster Recovery" tape drive 3177 * which temporarily pretends to be a CD-ROM drive. 3178 * So we check that the device is really an OBDR tape 3179 * device by checking for "$DR-10" in bytes 43-48 of 3180 * the inquiry data. 3181 */ 3182 if (is_OBDR) 3183 ncurrent++; 3184 break; 3185 case TYPE_DISK: 3186 if (h->hba_mode_enabled) { 3187 /* never use raid mapper in HBA mode */ 3188 this_device->offload_enabled = 0; 3189 ncurrent++; 3190 break; 3191 } else if (h->acciopath_status) { 3192 if (i >= nphysicals) { 3193 ncurrent++; 3194 break; 3195 } 3196 } else { 3197 if (i < nphysicals) 3198 break; 3199 ncurrent++; 3200 break; 3201 } 3202 if (h->transMethod & CFGTBL_Trans_io_accel1 || 3203 h->transMethod & CFGTBL_Trans_io_accel2) { 3204 hpsa_get_ioaccel_drive_info(h, this_device, 3205 lunaddrbytes, id_phys); 3206 atomic_set(&this_device->ioaccel_cmds_out, 0); 3207 ncurrent++; 3208 } 3209 break; 3210 case TYPE_TAPE: 3211 case TYPE_MEDIUM_CHANGER: 3212 ncurrent++; 3213 break; 3214 case TYPE_RAID: 3215 /* Only present the Smartarray HBA as a RAID controller. 3216 * If it's a RAID controller other than the HBA itself 3217 * (an external RAID controller, MSA500 or similar) 3218 * don't present it. 3219 */ 3220 if (!is_hba_lunid(lunaddrbytes)) 3221 break; 3222 ncurrent++; 3223 break; 3224 default: 3225 break; 3226 } 3227 if (ncurrent >= HPSA_MAX_DEVICES) 3228 break; 3229 } 3230 hpsa_update_log_drive_phys_drive_ptrs(h, currentsd, ncurrent); 3231 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 3232 out: 3233 kfree(tmpdevice); 3234 for (i = 0; i < ndev_allocated; i++) 3235 kfree(currentsd[i]); 3236 kfree(currentsd); 3237 kfree(physdev_list); 3238 kfree(logdev_list); 3239 kfree(id_phys); 3240 } 3241 3242 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 3243 struct scatterlist *sg) 3244 { 3245 u64 addr64 = (u64) sg_dma_address(sg); 3246 unsigned int len = sg_dma_len(sg); 3247 3248 desc->Addr = cpu_to_le64(addr64); 3249 desc->Len = cpu_to_le32(len); 3250 desc->Ext = 0; 3251 } 3252 3253 /* 3254 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 3255 * dma mapping and fills in the scatter gather entries of the 3256 * hpsa command, cp. 3257 */ 3258 static int hpsa_scatter_gather(struct ctlr_info *h, 3259 struct CommandList *cp, 3260 struct scsi_cmnd *cmd) 3261 { 3262 struct scatterlist *sg; 3263 int use_sg, i, sg_index, chained; 3264 struct SGDescriptor *curr_sg; 3265 3266 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 3267 3268 use_sg = scsi_dma_map(cmd); 3269 if (use_sg < 0) 3270 return use_sg; 3271 3272 if (!use_sg) 3273 goto sglist_finished; 3274 3275 curr_sg = cp->SG; 3276 chained = 0; 3277 sg_index = 0; 3278 scsi_for_each_sg(cmd, sg, use_sg, i) { 3279 if (i == h->max_cmd_sg_entries - 1 && 3280 use_sg > h->max_cmd_sg_entries) { 3281 chained = 1; 3282 curr_sg = h->cmd_sg_list[cp->cmdindex]; 3283 sg_index = 0; 3284 } 3285 hpsa_set_sg_descriptor(curr_sg, sg); 3286 curr_sg++; 3287 } 3288 3289 /* Back the pointer up to the last entry and mark it as "last". */ 3290 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 3291 3292 if (use_sg + chained > h->maxSG) 3293 h->maxSG = use_sg + chained; 3294 3295 if (chained) { 3296 cp->Header.SGList = h->max_cmd_sg_entries; 3297 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 3298 if (hpsa_map_sg_chain_block(h, cp)) { 3299 scsi_dma_unmap(cmd); 3300 return -1; 3301 } 3302 return 0; 3303 } 3304 3305 sglist_finished: 3306 3307 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 3308 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 3309 return 0; 3310 } 3311 3312 #define IO_ACCEL_INELIGIBLE (1) 3313 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 3314 { 3315 int is_write = 0; 3316 u32 block; 3317 u32 block_cnt; 3318 3319 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 3320 switch (cdb[0]) { 3321 case WRITE_6: 3322 case WRITE_12: 3323 is_write = 1; 3324 case READ_6: 3325 case READ_12: 3326 if (*cdb_len == 6) { 3327 block = (((u32) cdb[2]) << 8) | cdb[3]; 3328 block_cnt = cdb[4]; 3329 } else { 3330 BUG_ON(*cdb_len != 12); 3331 block = (((u32) cdb[2]) << 24) | 3332 (((u32) cdb[3]) << 16) | 3333 (((u32) cdb[4]) << 8) | 3334 cdb[5]; 3335 block_cnt = 3336 (((u32) cdb[6]) << 24) | 3337 (((u32) cdb[7]) << 16) | 3338 (((u32) cdb[8]) << 8) | 3339 cdb[9]; 3340 } 3341 if (block_cnt > 0xffff) 3342 return IO_ACCEL_INELIGIBLE; 3343 3344 cdb[0] = is_write ? WRITE_10 : READ_10; 3345 cdb[1] = 0; 3346 cdb[2] = (u8) (block >> 24); 3347 cdb[3] = (u8) (block >> 16); 3348 cdb[4] = (u8) (block >> 8); 3349 cdb[5] = (u8) (block); 3350 cdb[6] = 0; 3351 cdb[7] = (u8) (block_cnt >> 8); 3352 cdb[8] = (u8) (block_cnt); 3353 cdb[9] = 0; 3354 *cdb_len = 10; 3355 break; 3356 } 3357 return 0; 3358 } 3359 3360 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 3361 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 3362 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 3363 { 3364 struct scsi_cmnd *cmd = c->scsi_cmd; 3365 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 3366 unsigned int len; 3367 unsigned int total_len = 0; 3368 struct scatterlist *sg; 3369 u64 addr64; 3370 int use_sg, i; 3371 struct SGDescriptor *curr_sg; 3372 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 3373 3374 /* TODO: implement chaining support */ 3375 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 3376 atomic_dec(&phys_disk->ioaccel_cmds_out); 3377 return IO_ACCEL_INELIGIBLE; 3378 } 3379 3380 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 3381 3382 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 3383 atomic_dec(&phys_disk->ioaccel_cmds_out); 3384 return IO_ACCEL_INELIGIBLE; 3385 } 3386 3387 c->cmd_type = CMD_IOACCEL1; 3388 3389 /* Adjust the DMA address to point to the accelerated command buffer */ 3390 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 3391 (c->cmdindex * sizeof(*cp)); 3392 BUG_ON(c->busaddr & 0x0000007F); 3393 3394 use_sg = scsi_dma_map(cmd); 3395 if (use_sg < 0) { 3396 atomic_dec(&phys_disk->ioaccel_cmds_out); 3397 return use_sg; 3398 } 3399 3400 if (use_sg) { 3401 curr_sg = cp->SG; 3402 scsi_for_each_sg(cmd, sg, use_sg, i) { 3403 addr64 = (u64) sg_dma_address(sg); 3404 len = sg_dma_len(sg); 3405 total_len += len; 3406 curr_sg->Addr = cpu_to_le64(addr64); 3407 curr_sg->Len = cpu_to_le32(len); 3408 curr_sg->Ext = cpu_to_le32(0); 3409 curr_sg++; 3410 } 3411 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 3412 3413 switch (cmd->sc_data_direction) { 3414 case DMA_TO_DEVICE: 3415 control |= IOACCEL1_CONTROL_DATA_OUT; 3416 break; 3417 case DMA_FROM_DEVICE: 3418 control |= IOACCEL1_CONTROL_DATA_IN; 3419 break; 3420 case DMA_NONE: 3421 control |= IOACCEL1_CONTROL_NODATAXFER; 3422 break; 3423 default: 3424 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 3425 cmd->sc_data_direction); 3426 BUG(); 3427 break; 3428 } 3429 } else { 3430 control |= IOACCEL1_CONTROL_NODATAXFER; 3431 } 3432 3433 c->Header.SGList = use_sg; 3434 /* Fill out the command structure to submit */ 3435 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 3436 cp->transfer_len = cpu_to_le32(total_len); 3437 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 3438 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 3439 cp->control = cpu_to_le32(control); 3440 memcpy(cp->CDB, cdb, cdb_len); 3441 memcpy(cp->CISS_LUN, scsi3addr, 8); 3442 /* Tag was already set at init time. */ 3443 enqueue_cmd_and_start_io(h, c); 3444 return 0; 3445 } 3446 3447 /* 3448 * Queue a command directly to a device behind the controller using the 3449 * I/O accelerator path. 3450 */ 3451 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 3452 struct CommandList *c) 3453 { 3454 struct scsi_cmnd *cmd = c->scsi_cmd; 3455 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 3456 3457 c->phys_disk = dev; 3458 3459 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 3460 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 3461 } 3462 3463 /* 3464 * Set encryption parameters for the ioaccel2 request 3465 */ 3466 static void set_encrypt_ioaccel2(struct ctlr_info *h, 3467 struct CommandList *c, struct io_accel2_cmd *cp) 3468 { 3469 struct scsi_cmnd *cmd = c->scsi_cmd; 3470 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 3471 struct raid_map_data *map = &dev->raid_map; 3472 u64 first_block; 3473 3474 /* Are we doing encryption on this device */ 3475 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 3476 return; 3477 /* Set the data encryption key index. */ 3478 cp->dekindex = map->dekindex; 3479 3480 /* Set the encryption enable flag, encoded into direction field. */ 3481 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 3482 3483 /* Set encryption tweak values based on logical block address 3484 * If block size is 512, tweak value is LBA. 3485 * For other block sizes, tweak is (LBA * block size)/ 512) 3486 */ 3487 switch (cmd->cmnd[0]) { 3488 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 3489 case WRITE_6: 3490 case READ_6: 3491 first_block = get_unaligned_be16(&cmd->cmnd[2]); 3492 break; 3493 case WRITE_10: 3494 case READ_10: 3495 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 3496 case WRITE_12: 3497 case READ_12: 3498 first_block = get_unaligned_be32(&cmd->cmnd[2]); 3499 break; 3500 case WRITE_16: 3501 case READ_16: 3502 first_block = get_unaligned_be64(&cmd->cmnd[2]); 3503 break; 3504 default: 3505 dev_err(&h->pdev->dev, 3506 "ERROR: %s: size (0x%x) not supported for encryption\n", 3507 __func__, cmd->cmnd[0]); 3508 BUG(); 3509 break; 3510 } 3511 3512 if (le32_to_cpu(map->volume_blk_size) != 512) 3513 first_block = first_block * 3514 le32_to_cpu(map->volume_blk_size)/512; 3515 3516 cp->tweak_lower = cpu_to_le32(first_block); 3517 cp->tweak_upper = cpu_to_le32(first_block >> 32); 3518 } 3519 3520 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 3521 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 3522 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 3523 { 3524 struct scsi_cmnd *cmd = c->scsi_cmd; 3525 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 3526 struct ioaccel2_sg_element *curr_sg; 3527 int use_sg, i; 3528 struct scatterlist *sg; 3529 u64 addr64; 3530 u32 len; 3531 u32 total_len = 0; 3532 3533 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 3534 atomic_dec(&phys_disk->ioaccel_cmds_out); 3535 return IO_ACCEL_INELIGIBLE; 3536 } 3537 3538 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 3539 atomic_dec(&phys_disk->ioaccel_cmds_out); 3540 return IO_ACCEL_INELIGIBLE; 3541 } 3542 3543 c->cmd_type = CMD_IOACCEL2; 3544 /* Adjust the DMA address to point to the accelerated command buffer */ 3545 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 3546 (c->cmdindex * sizeof(*cp)); 3547 BUG_ON(c->busaddr & 0x0000007F); 3548 3549 memset(cp, 0, sizeof(*cp)); 3550 cp->IU_type = IOACCEL2_IU_TYPE; 3551 3552 use_sg = scsi_dma_map(cmd); 3553 if (use_sg < 0) { 3554 atomic_dec(&phys_disk->ioaccel_cmds_out); 3555 return use_sg; 3556 } 3557 3558 if (use_sg) { 3559 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES); 3560 curr_sg = cp->sg; 3561 scsi_for_each_sg(cmd, sg, use_sg, i) { 3562 addr64 = (u64) sg_dma_address(sg); 3563 len = sg_dma_len(sg); 3564 total_len += len; 3565 curr_sg->address = cpu_to_le64(addr64); 3566 curr_sg->length = cpu_to_le32(len); 3567 curr_sg->reserved[0] = 0; 3568 curr_sg->reserved[1] = 0; 3569 curr_sg->reserved[2] = 0; 3570 curr_sg->chain_indicator = 0; 3571 curr_sg++; 3572 } 3573 3574 switch (cmd->sc_data_direction) { 3575 case DMA_TO_DEVICE: 3576 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 3577 cp->direction |= IOACCEL2_DIR_DATA_OUT; 3578 break; 3579 case DMA_FROM_DEVICE: 3580 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 3581 cp->direction |= IOACCEL2_DIR_DATA_IN; 3582 break; 3583 case DMA_NONE: 3584 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 3585 cp->direction |= IOACCEL2_DIR_NO_DATA; 3586 break; 3587 default: 3588 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 3589 cmd->sc_data_direction); 3590 BUG(); 3591 break; 3592 } 3593 } else { 3594 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 3595 cp->direction |= IOACCEL2_DIR_NO_DATA; 3596 } 3597 3598 /* Set encryption parameters, if necessary */ 3599 set_encrypt_ioaccel2(h, c, cp); 3600 3601 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 3602 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 3603 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 3604 3605 /* fill in sg elements */ 3606 cp->sg_count = (u8) use_sg; 3607 3608 cp->data_len = cpu_to_le32(total_len); 3609 cp->err_ptr = cpu_to_le64(c->busaddr + 3610 offsetof(struct io_accel2_cmd, error_data)); 3611 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 3612 3613 enqueue_cmd_and_start_io(h, c); 3614 return 0; 3615 } 3616 3617 /* 3618 * Queue a command to the correct I/O accelerator path. 3619 */ 3620 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 3621 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 3622 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 3623 { 3624 /* Try to honor the device's queue depth */ 3625 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 3626 phys_disk->queue_depth) { 3627 atomic_dec(&phys_disk->ioaccel_cmds_out); 3628 return IO_ACCEL_INELIGIBLE; 3629 } 3630 if (h->transMethod & CFGTBL_Trans_io_accel1) 3631 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 3632 cdb, cdb_len, scsi3addr, 3633 phys_disk); 3634 else 3635 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 3636 cdb, cdb_len, scsi3addr, 3637 phys_disk); 3638 } 3639 3640 static void raid_map_helper(struct raid_map_data *map, 3641 int offload_to_mirror, u32 *map_index, u32 *current_group) 3642 { 3643 if (offload_to_mirror == 0) { 3644 /* use physical disk in the first mirrored group. */ 3645 *map_index %= le16_to_cpu(map->data_disks_per_row); 3646 return; 3647 } 3648 do { 3649 /* determine mirror group that *map_index indicates */ 3650 *current_group = *map_index / 3651 le16_to_cpu(map->data_disks_per_row); 3652 if (offload_to_mirror == *current_group) 3653 continue; 3654 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 3655 /* select map index from next group */ 3656 *map_index += le16_to_cpu(map->data_disks_per_row); 3657 (*current_group)++; 3658 } else { 3659 /* select map index from first group */ 3660 *map_index %= le16_to_cpu(map->data_disks_per_row); 3661 *current_group = 0; 3662 } 3663 } while (offload_to_mirror != *current_group); 3664 } 3665 3666 /* 3667 * Attempt to perform offload RAID mapping for a logical volume I/O. 3668 */ 3669 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 3670 struct CommandList *c) 3671 { 3672 struct scsi_cmnd *cmd = c->scsi_cmd; 3673 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 3674 struct raid_map_data *map = &dev->raid_map; 3675 struct raid_map_disk_data *dd = &map->data[0]; 3676 int is_write = 0; 3677 u32 map_index; 3678 u64 first_block, last_block; 3679 u32 block_cnt; 3680 u32 blocks_per_row; 3681 u64 first_row, last_row; 3682 u32 first_row_offset, last_row_offset; 3683 u32 first_column, last_column; 3684 u64 r0_first_row, r0_last_row; 3685 u32 r5or6_blocks_per_row; 3686 u64 r5or6_first_row, r5or6_last_row; 3687 u32 r5or6_first_row_offset, r5or6_last_row_offset; 3688 u32 r5or6_first_column, r5or6_last_column; 3689 u32 total_disks_per_row; 3690 u32 stripesize; 3691 u32 first_group, last_group, current_group; 3692 u32 map_row; 3693 u32 disk_handle; 3694 u64 disk_block; 3695 u32 disk_block_cnt; 3696 u8 cdb[16]; 3697 u8 cdb_len; 3698 u16 strip_size; 3699 #if BITS_PER_LONG == 32 3700 u64 tmpdiv; 3701 #endif 3702 int offload_to_mirror; 3703 3704 /* check for valid opcode, get LBA and block count */ 3705 switch (cmd->cmnd[0]) { 3706 case WRITE_6: 3707 is_write = 1; 3708 case READ_6: 3709 first_block = 3710 (((u64) cmd->cmnd[2]) << 8) | 3711 cmd->cmnd[3]; 3712 block_cnt = cmd->cmnd[4]; 3713 if (block_cnt == 0) 3714 block_cnt = 256; 3715 break; 3716 case WRITE_10: 3717 is_write = 1; 3718 case READ_10: 3719 first_block = 3720 (((u64) cmd->cmnd[2]) << 24) | 3721 (((u64) cmd->cmnd[3]) << 16) | 3722 (((u64) cmd->cmnd[4]) << 8) | 3723 cmd->cmnd[5]; 3724 block_cnt = 3725 (((u32) cmd->cmnd[7]) << 8) | 3726 cmd->cmnd[8]; 3727 break; 3728 case WRITE_12: 3729 is_write = 1; 3730 case READ_12: 3731 first_block = 3732 (((u64) cmd->cmnd[2]) << 24) | 3733 (((u64) cmd->cmnd[3]) << 16) | 3734 (((u64) cmd->cmnd[4]) << 8) | 3735 cmd->cmnd[5]; 3736 block_cnt = 3737 (((u32) cmd->cmnd[6]) << 24) | 3738 (((u32) cmd->cmnd[7]) << 16) | 3739 (((u32) cmd->cmnd[8]) << 8) | 3740 cmd->cmnd[9]; 3741 break; 3742 case WRITE_16: 3743 is_write = 1; 3744 case READ_16: 3745 first_block = 3746 (((u64) cmd->cmnd[2]) << 56) | 3747 (((u64) cmd->cmnd[3]) << 48) | 3748 (((u64) cmd->cmnd[4]) << 40) | 3749 (((u64) cmd->cmnd[5]) << 32) | 3750 (((u64) cmd->cmnd[6]) << 24) | 3751 (((u64) cmd->cmnd[7]) << 16) | 3752 (((u64) cmd->cmnd[8]) << 8) | 3753 cmd->cmnd[9]; 3754 block_cnt = 3755 (((u32) cmd->cmnd[10]) << 24) | 3756 (((u32) cmd->cmnd[11]) << 16) | 3757 (((u32) cmd->cmnd[12]) << 8) | 3758 cmd->cmnd[13]; 3759 break; 3760 default: 3761 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 3762 } 3763 last_block = first_block + block_cnt - 1; 3764 3765 /* check for write to non-RAID-0 */ 3766 if (is_write && dev->raid_level != 0) 3767 return IO_ACCEL_INELIGIBLE; 3768 3769 /* check for invalid block or wraparound */ 3770 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 3771 last_block < first_block) 3772 return IO_ACCEL_INELIGIBLE; 3773 3774 /* calculate stripe information for the request */ 3775 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 3776 le16_to_cpu(map->strip_size); 3777 strip_size = le16_to_cpu(map->strip_size); 3778 #if BITS_PER_LONG == 32 3779 tmpdiv = first_block; 3780 (void) do_div(tmpdiv, blocks_per_row); 3781 first_row = tmpdiv; 3782 tmpdiv = last_block; 3783 (void) do_div(tmpdiv, blocks_per_row); 3784 last_row = tmpdiv; 3785 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 3786 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 3787 tmpdiv = first_row_offset; 3788 (void) do_div(tmpdiv, strip_size); 3789 first_column = tmpdiv; 3790 tmpdiv = last_row_offset; 3791 (void) do_div(tmpdiv, strip_size); 3792 last_column = tmpdiv; 3793 #else 3794 first_row = first_block / blocks_per_row; 3795 last_row = last_block / blocks_per_row; 3796 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 3797 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 3798 first_column = first_row_offset / strip_size; 3799 last_column = last_row_offset / strip_size; 3800 #endif 3801 3802 /* if this isn't a single row/column then give to the controller */ 3803 if ((first_row != last_row) || (first_column != last_column)) 3804 return IO_ACCEL_INELIGIBLE; 3805 3806 /* proceeding with driver mapping */ 3807 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 3808 le16_to_cpu(map->metadata_disks_per_row); 3809 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 3810 le16_to_cpu(map->row_cnt); 3811 map_index = (map_row * total_disks_per_row) + first_column; 3812 3813 switch (dev->raid_level) { 3814 case HPSA_RAID_0: 3815 break; /* nothing special to do */ 3816 case HPSA_RAID_1: 3817 /* Handles load balance across RAID 1 members. 3818 * (2-drive R1 and R10 with even # of drives.) 3819 * Appropriate for SSDs, not optimal for HDDs 3820 */ 3821 BUG_ON(le16_to_cpu(map->layout_map_count) != 2); 3822 if (dev->offload_to_mirror) 3823 map_index += le16_to_cpu(map->data_disks_per_row); 3824 dev->offload_to_mirror = !dev->offload_to_mirror; 3825 break; 3826 case HPSA_RAID_ADM: 3827 /* Handles N-way mirrors (R1-ADM) 3828 * and R10 with # of drives divisible by 3.) 3829 */ 3830 BUG_ON(le16_to_cpu(map->layout_map_count) != 3); 3831 3832 offload_to_mirror = dev->offload_to_mirror; 3833 raid_map_helper(map, offload_to_mirror, 3834 &map_index, ¤t_group); 3835 /* set mirror group to use next time */ 3836 offload_to_mirror = 3837 (offload_to_mirror >= 3838 le16_to_cpu(map->layout_map_count) - 1) 3839 ? 0 : offload_to_mirror + 1; 3840 dev->offload_to_mirror = offload_to_mirror; 3841 /* Avoid direct use of dev->offload_to_mirror within this 3842 * function since multiple threads might simultaneously 3843 * increment it beyond the range of dev->layout_map_count -1. 3844 */ 3845 break; 3846 case HPSA_RAID_5: 3847 case HPSA_RAID_6: 3848 if (le16_to_cpu(map->layout_map_count) <= 1) 3849 break; 3850 3851 /* Verify first and last block are in same RAID group */ 3852 r5or6_blocks_per_row = 3853 le16_to_cpu(map->strip_size) * 3854 le16_to_cpu(map->data_disks_per_row); 3855 BUG_ON(r5or6_blocks_per_row == 0); 3856 stripesize = r5or6_blocks_per_row * 3857 le16_to_cpu(map->layout_map_count); 3858 #if BITS_PER_LONG == 32 3859 tmpdiv = first_block; 3860 first_group = do_div(tmpdiv, stripesize); 3861 tmpdiv = first_group; 3862 (void) do_div(tmpdiv, r5or6_blocks_per_row); 3863 first_group = tmpdiv; 3864 tmpdiv = last_block; 3865 last_group = do_div(tmpdiv, stripesize); 3866 tmpdiv = last_group; 3867 (void) do_div(tmpdiv, r5or6_blocks_per_row); 3868 last_group = tmpdiv; 3869 #else 3870 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 3871 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 3872 #endif 3873 if (first_group != last_group) 3874 return IO_ACCEL_INELIGIBLE; 3875 3876 /* Verify request is in a single row of RAID 5/6 */ 3877 #if BITS_PER_LONG == 32 3878 tmpdiv = first_block; 3879 (void) do_div(tmpdiv, stripesize); 3880 first_row = r5or6_first_row = r0_first_row = tmpdiv; 3881 tmpdiv = last_block; 3882 (void) do_div(tmpdiv, stripesize); 3883 r5or6_last_row = r0_last_row = tmpdiv; 3884 #else 3885 first_row = r5or6_first_row = r0_first_row = 3886 first_block / stripesize; 3887 r5or6_last_row = r0_last_row = last_block / stripesize; 3888 #endif 3889 if (r5or6_first_row != r5or6_last_row) 3890 return IO_ACCEL_INELIGIBLE; 3891 3892 3893 /* Verify request is in a single column */ 3894 #if BITS_PER_LONG == 32 3895 tmpdiv = first_block; 3896 first_row_offset = do_div(tmpdiv, stripesize); 3897 tmpdiv = first_row_offset; 3898 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 3899 r5or6_first_row_offset = first_row_offset; 3900 tmpdiv = last_block; 3901 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 3902 tmpdiv = r5or6_last_row_offset; 3903 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 3904 tmpdiv = r5or6_first_row_offset; 3905 (void) do_div(tmpdiv, map->strip_size); 3906 first_column = r5or6_first_column = tmpdiv; 3907 tmpdiv = r5or6_last_row_offset; 3908 (void) do_div(tmpdiv, map->strip_size); 3909 r5or6_last_column = tmpdiv; 3910 #else 3911 first_row_offset = r5or6_first_row_offset = 3912 (u32)((first_block % stripesize) % 3913 r5or6_blocks_per_row); 3914 3915 r5or6_last_row_offset = 3916 (u32)((last_block % stripesize) % 3917 r5or6_blocks_per_row); 3918 3919 first_column = r5or6_first_column = 3920 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 3921 r5or6_last_column = 3922 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 3923 #endif 3924 if (r5or6_first_column != r5or6_last_column) 3925 return IO_ACCEL_INELIGIBLE; 3926 3927 /* Request is eligible */ 3928 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 3929 le16_to_cpu(map->row_cnt); 3930 3931 map_index = (first_group * 3932 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 3933 (map_row * total_disks_per_row) + first_column; 3934 break; 3935 default: 3936 return IO_ACCEL_INELIGIBLE; 3937 } 3938 3939 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 3940 return IO_ACCEL_INELIGIBLE; 3941 3942 c->phys_disk = dev->phys_disk[map_index]; 3943 3944 disk_handle = dd[map_index].ioaccel_handle; 3945 disk_block = le64_to_cpu(map->disk_starting_blk) + 3946 first_row * le16_to_cpu(map->strip_size) + 3947 (first_row_offset - first_column * 3948 le16_to_cpu(map->strip_size)); 3949 disk_block_cnt = block_cnt; 3950 3951 /* handle differing logical/physical block sizes */ 3952 if (map->phys_blk_shift) { 3953 disk_block <<= map->phys_blk_shift; 3954 disk_block_cnt <<= map->phys_blk_shift; 3955 } 3956 BUG_ON(disk_block_cnt > 0xffff); 3957 3958 /* build the new CDB for the physical disk I/O */ 3959 if (disk_block > 0xffffffff) { 3960 cdb[0] = is_write ? WRITE_16 : READ_16; 3961 cdb[1] = 0; 3962 cdb[2] = (u8) (disk_block >> 56); 3963 cdb[3] = (u8) (disk_block >> 48); 3964 cdb[4] = (u8) (disk_block >> 40); 3965 cdb[5] = (u8) (disk_block >> 32); 3966 cdb[6] = (u8) (disk_block >> 24); 3967 cdb[7] = (u8) (disk_block >> 16); 3968 cdb[8] = (u8) (disk_block >> 8); 3969 cdb[9] = (u8) (disk_block); 3970 cdb[10] = (u8) (disk_block_cnt >> 24); 3971 cdb[11] = (u8) (disk_block_cnt >> 16); 3972 cdb[12] = (u8) (disk_block_cnt >> 8); 3973 cdb[13] = (u8) (disk_block_cnt); 3974 cdb[14] = 0; 3975 cdb[15] = 0; 3976 cdb_len = 16; 3977 } else { 3978 cdb[0] = is_write ? WRITE_10 : READ_10; 3979 cdb[1] = 0; 3980 cdb[2] = (u8) (disk_block >> 24); 3981 cdb[3] = (u8) (disk_block >> 16); 3982 cdb[4] = (u8) (disk_block >> 8); 3983 cdb[5] = (u8) (disk_block); 3984 cdb[6] = 0; 3985 cdb[7] = (u8) (disk_block_cnt >> 8); 3986 cdb[8] = (u8) (disk_block_cnt); 3987 cdb[9] = 0; 3988 cdb_len = 10; 3989 } 3990 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 3991 dev->scsi3addr, 3992 dev->phys_disk[map_index]); 3993 } 3994 3995 /* Submit commands down the "normal" RAID stack path */ 3996 static int hpsa_ciss_submit(struct ctlr_info *h, 3997 struct CommandList *c, struct scsi_cmnd *cmd, 3998 unsigned char scsi3addr[]) 3999 { 4000 cmd->host_scribble = (unsigned char *) c; 4001 c->cmd_type = CMD_SCSI; 4002 c->scsi_cmd = cmd; 4003 c->Header.ReplyQueue = 0; /* unused in simple mode */ 4004 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 4005 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 4006 4007 /* Fill in the request block... */ 4008 4009 c->Request.Timeout = 0; 4010 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 4011 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 4012 c->Request.CDBLen = cmd->cmd_len; 4013 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 4014 switch (cmd->sc_data_direction) { 4015 case DMA_TO_DEVICE: 4016 c->Request.type_attr_dir = 4017 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 4018 break; 4019 case DMA_FROM_DEVICE: 4020 c->Request.type_attr_dir = 4021 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 4022 break; 4023 case DMA_NONE: 4024 c->Request.type_attr_dir = 4025 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 4026 break; 4027 case DMA_BIDIRECTIONAL: 4028 /* This can happen if a buggy application does a scsi passthru 4029 * and sets both inlen and outlen to non-zero. ( see 4030 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 4031 */ 4032 4033 c->Request.type_attr_dir = 4034 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 4035 /* This is technically wrong, and hpsa controllers should 4036 * reject it with CMD_INVALID, which is the most correct 4037 * response, but non-fibre backends appear to let it 4038 * slide by, and give the same results as if this field 4039 * were set correctly. Either way is acceptable for 4040 * our purposes here. 4041 */ 4042 4043 break; 4044 4045 default: 4046 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4047 cmd->sc_data_direction); 4048 BUG(); 4049 break; 4050 } 4051 4052 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 4053 cmd_free(h, c); 4054 return SCSI_MLQUEUE_HOST_BUSY; 4055 } 4056 enqueue_cmd_and_start_io(h, c); 4057 /* the cmd'll come back via intr handler in complete_scsi_command() */ 4058 return 0; 4059 } 4060 4061 static void hpsa_command_resubmit_worker(struct work_struct *work) 4062 { 4063 struct scsi_cmnd *cmd; 4064 struct hpsa_scsi_dev_t *dev; 4065 struct CommandList *c = 4066 container_of(work, struct CommandList, work); 4067 4068 cmd = c->scsi_cmd; 4069 dev = cmd->device->hostdata; 4070 if (!dev) { 4071 cmd->result = DID_NO_CONNECT << 16; 4072 cmd->scsi_done(cmd); 4073 return; 4074 } 4075 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { 4076 /* 4077 * If we get here, it means dma mapping failed. Try 4078 * again via scsi mid layer, which will then get 4079 * SCSI_MLQUEUE_HOST_BUSY. 4080 */ 4081 cmd->result = DID_IMM_RETRY << 16; 4082 cmd->scsi_done(cmd); 4083 } 4084 } 4085 4086 /* Running in struct Scsi_Host->host_lock less mode */ 4087 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 4088 { 4089 struct ctlr_info *h; 4090 struct hpsa_scsi_dev_t *dev; 4091 unsigned char scsi3addr[8]; 4092 struct CommandList *c; 4093 int rc = 0; 4094 4095 /* Get the ptr to our adapter structure out of cmd->host. */ 4096 h = sdev_to_hba(cmd->device); 4097 dev = cmd->device->hostdata; 4098 if (!dev) { 4099 cmd->result = DID_NO_CONNECT << 16; 4100 cmd->scsi_done(cmd); 4101 return 0; 4102 } 4103 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 4104 4105 if (unlikely(lockup_detected(h))) { 4106 cmd->result = DID_ERROR << 16; 4107 cmd->scsi_done(cmd); 4108 return 0; 4109 } 4110 c = cmd_alloc(h); 4111 if (c == NULL) { /* trouble... */ 4112 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 4113 return SCSI_MLQUEUE_HOST_BUSY; 4114 } 4115 if (unlikely(lockup_detected(h))) { 4116 cmd->result = DID_ERROR << 16; 4117 cmd_free(h, c); 4118 cmd->scsi_done(cmd); 4119 return 0; 4120 } 4121 4122 /* 4123 * Call alternate submit routine for I/O accelerated commands. 4124 * Retries always go down the normal I/O path. 4125 */ 4126 if (likely(cmd->retries == 0 && 4127 cmd->request->cmd_type == REQ_TYPE_FS && 4128 h->acciopath_status)) { 4129 4130 cmd->host_scribble = (unsigned char *) c; 4131 c->cmd_type = CMD_SCSI; 4132 c->scsi_cmd = cmd; 4133 4134 if (dev->offload_enabled) { 4135 rc = hpsa_scsi_ioaccel_raid_map(h, c); 4136 if (rc == 0) 4137 return 0; /* Sent on ioaccel path */ 4138 if (rc < 0) { /* scsi_dma_map failed. */ 4139 cmd_free(h, c); 4140 return SCSI_MLQUEUE_HOST_BUSY; 4141 } 4142 } else if (dev->ioaccel_handle) { 4143 rc = hpsa_scsi_ioaccel_direct_map(h, c); 4144 if (rc == 0) 4145 return 0; /* Sent on direct map path */ 4146 if (rc < 0) { /* scsi_dma_map failed. */ 4147 cmd_free(h, c); 4148 return SCSI_MLQUEUE_HOST_BUSY; 4149 } 4150 } 4151 } 4152 return hpsa_ciss_submit(h, c, cmd, scsi3addr); 4153 } 4154 4155 static void hpsa_scan_complete(struct ctlr_info *h) 4156 { 4157 unsigned long flags; 4158 4159 spin_lock_irqsave(&h->scan_lock, flags); 4160 h->scan_finished = 1; 4161 wake_up_all(&h->scan_wait_queue); 4162 spin_unlock_irqrestore(&h->scan_lock, flags); 4163 } 4164 4165 static void hpsa_scan_start(struct Scsi_Host *sh) 4166 { 4167 struct ctlr_info *h = shost_to_hba(sh); 4168 unsigned long flags; 4169 4170 /* 4171 * Don't let rescans be initiated on a controller known to be locked 4172 * up. If the controller locks up *during* a rescan, that thread is 4173 * probably hosed, but at least we can prevent new rescan threads from 4174 * piling up on a locked up controller. 4175 */ 4176 if (unlikely(lockup_detected(h))) 4177 return hpsa_scan_complete(h); 4178 4179 /* wait until any scan already in progress is finished. */ 4180 while (1) { 4181 spin_lock_irqsave(&h->scan_lock, flags); 4182 if (h->scan_finished) 4183 break; 4184 spin_unlock_irqrestore(&h->scan_lock, flags); 4185 wait_event(h->scan_wait_queue, h->scan_finished); 4186 /* Note: We don't need to worry about a race between this 4187 * thread and driver unload because the midlayer will 4188 * have incremented the reference count, so unload won't 4189 * happen if we're in here. 4190 */ 4191 } 4192 h->scan_finished = 0; /* mark scan as in progress */ 4193 spin_unlock_irqrestore(&h->scan_lock, flags); 4194 4195 if (unlikely(lockup_detected(h))) 4196 return hpsa_scan_complete(h); 4197 4198 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 4199 4200 hpsa_scan_complete(h); 4201 } 4202 4203 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 4204 { 4205 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 4206 4207 if (!logical_drive) 4208 return -ENODEV; 4209 4210 if (qdepth < 1) 4211 qdepth = 1; 4212 else if (qdepth > logical_drive->queue_depth) 4213 qdepth = logical_drive->queue_depth; 4214 4215 return scsi_change_queue_depth(sdev, qdepth); 4216 } 4217 4218 static int hpsa_scan_finished(struct Scsi_Host *sh, 4219 unsigned long elapsed_time) 4220 { 4221 struct ctlr_info *h = shost_to_hba(sh); 4222 unsigned long flags; 4223 int finished; 4224 4225 spin_lock_irqsave(&h->scan_lock, flags); 4226 finished = h->scan_finished; 4227 spin_unlock_irqrestore(&h->scan_lock, flags); 4228 return finished; 4229 } 4230 4231 static void hpsa_unregister_scsi(struct ctlr_info *h) 4232 { 4233 /* we are being forcibly unloaded, and may not refuse. */ 4234 scsi_remove_host(h->scsi_host); 4235 scsi_host_put(h->scsi_host); 4236 h->scsi_host = NULL; 4237 } 4238 4239 static int hpsa_register_scsi(struct ctlr_info *h) 4240 { 4241 struct Scsi_Host *sh; 4242 int error; 4243 4244 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 4245 if (sh == NULL) 4246 goto fail; 4247 4248 sh->io_port = 0; 4249 sh->n_io_port = 0; 4250 sh->this_id = -1; 4251 sh->max_channel = 3; 4252 sh->max_cmd_len = MAX_COMMAND_SIZE; 4253 sh->max_lun = HPSA_MAX_LUN; 4254 sh->max_id = HPSA_MAX_LUN; 4255 sh->can_queue = h->nr_cmds - 4256 HPSA_CMDS_RESERVED_FOR_ABORTS - 4257 HPSA_CMDS_RESERVED_FOR_DRIVER - 4258 HPSA_MAX_CONCURRENT_PASSTHRUS; 4259 sh->cmd_per_lun = sh->can_queue; 4260 sh->sg_tablesize = h->maxsgentries; 4261 h->scsi_host = sh; 4262 sh->hostdata[0] = (unsigned long) h; 4263 sh->irq = h->intr[h->intr_mode]; 4264 sh->unique_id = sh->irq; 4265 error = scsi_add_host(sh, &h->pdev->dev); 4266 if (error) 4267 goto fail_host_put; 4268 scsi_scan_host(sh); 4269 return 0; 4270 4271 fail_host_put: 4272 dev_err(&h->pdev->dev, "%s: scsi_add_host" 4273 " failed for controller %d\n", __func__, h->ctlr); 4274 scsi_host_put(sh); 4275 return error; 4276 fail: 4277 dev_err(&h->pdev->dev, "%s: scsi_host_alloc" 4278 " failed for controller %d\n", __func__, h->ctlr); 4279 return -ENOMEM; 4280 } 4281 4282 static int wait_for_device_to_become_ready(struct ctlr_info *h, 4283 unsigned char lunaddr[]) 4284 { 4285 int rc; 4286 int count = 0; 4287 int waittime = 1; /* seconds */ 4288 struct CommandList *c; 4289 4290 c = cmd_alloc(h); 4291 if (!c) { 4292 dev_warn(&h->pdev->dev, "out of memory in " 4293 "wait_for_device_to_become_ready.\n"); 4294 return IO_ERROR; 4295 } 4296 4297 /* Send test unit ready until device ready, or give up. */ 4298 while (count < HPSA_TUR_RETRY_LIMIT) { 4299 4300 /* Wait for a bit. do this first, because if we send 4301 * the TUR right away, the reset will just abort it. 4302 */ 4303 msleep(1000 * waittime); 4304 count++; 4305 rc = 0; /* Device ready. */ 4306 4307 /* Increase wait time with each try, up to a point. */ 4308 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 4309 waittime = waittime * 2; 4310 4311 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 4312 (void) fill_cmd(c, TEST_UNIT_READY, h, 4313 NULL, 0, 0, lunaddr, TYPE_CMD); 4314 hpsa_scsi_do_simple_cmd_core(h, c); 4315 /* no unmap needed here because no data xfer. */ 4316 4317 if (c->err_info->CommandStatus == CMD_SUCCESS) 4318 break; 4319 4320 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 4321 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 4322 (c->err_info->SenseInfo[2] == NO_SENSE || 4323 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 4324 break; 4325 4326 dev_warn(&h->pdev->dev, "waiting %d secs " 4327 "for device to become ready.\n", waittime); 4328 rc = 1; /* device not ready. */ 4329 } 4330 4331 if (rc) 4332 dev_warn(&h->pdev->dev, "giving up on device.\n"); 4333 else 4334 dev_warn(&h->pdev->dev, "device is ready.\n"); 4335 4336 cmd_free(h, c); 4337 return rc; 4338 } 4339 4340 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 4341 * complaining. Doing a host- or bus-reset can't do anything good here. 4342 */ 4343 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 4344 { 4345 int rc; 4346 struct ctlr_info *h; 4347 struct hpsa_scsi_dev_t *dev; 4348 4349 /* find the controller to which the command to be aborted was sent */ 4350 h = sdev_to_hba(scsicmd->device); 4351 if (h == NULL) /* paranoia */ 4352 return FAILED; 4353 4354 if (lockup_detected(h)) 4355 return FAILED; 4356 4357 dev = scsicmd->device->hostdata; 4358 if (!dev) { 4359 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 4360 "device lookup failed.\n"); 4361 return FAILED; 4362 } 4363 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 4364 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 4365 /* send a reset to the SCSI LUN which the command was sent to */ 4366 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN); 4367 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 4368 return SUCCESS; 4369 4370 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 4371 return FAILED; 4372 } 4373 4374 static void swizzle_abort_tag(u8 *tag) 4375 { 4376 u8 original_tag[8]; 4377 4378 memcpy(original_tag, tag, 8); 4379 tag[0] = original_tag[3]; 4380 tag[1] = original_tag[2]; 4381 tag[2] = original_tag[1]; 4382 tag[3] = original_tag[0]; 4383 tag[4] = original_tag[7]; 4384 tag[5] = original_tag[6]; 4385 tag[6] = original_tag[5]; 4386 tag[7] = original_tag[4]; 4387 } 4388 4389 static void hpsa_get_tag(struct ctlr_info *h, 4390 struct CommandList *c, __le32 *taglower, __le32 *tagupper) 4391 { 4392 u64 tag; 4393 if (c->cmd_type == CMD_IOACCEL1) { 4394 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) 4395 &h->ioaccel_cmd_pool[c->cmdindex]; 4396 tag = le64_to_cpu(cm1->tag); 4397 *tagupper = cpu_to_le32(tag >> 32); 4398 *taglower = cpu_to_le32(tag); 4399 return; 4400 } 4401 if (c->cmd_type == CMD_IOACCEL2) { 4402 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) 4403 &h->ioaccel2_cmd_pool[c->cmdindex]; 4404 /* upper tag not used in ioaccel2 mode */ 4405 memset(tagupper, 0, sizeof(*tagupper)); 4406 *taglower = cm2->Tag; 4407 return; 4408 } 4409 tag = le64_to_cpu(c->Header.tag); 4410 *tagupper = cpu_to_le32(tag >> 32); 4411 *taglower = cpu_to_le32(tag); 4412 } 4413 4414 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, 4415 struct CommandList *abort, int swizzle) 4416 { 4417 int rc = IO_OK; 4418 struct CommandList *c; 4419 struct ErrorInfo *ei; 4420 __le32 tagupper, taglower; 4421 4422 c = cmd_alloc(h); 4423 if (c == NULL) { /* trouble... */ 4424 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 4425 return -ENOMEM; 4426 } 4427 4428 /* fill_cmd can't fail here, no buffer to map */ 4429 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort, 4430 0, 0, scsi3addr, TYPE_MSG); 4431 if (swizzle) 4432 swizzle_abort_tag(&c->Request.CDB[4]); 4433 hpsa_scsi_do_simple_cmd_core(h, c); 4434 hpsa_get_tag(h, abort, &taglower, &tagupper); 4435 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", 4436 __func__, tagupper, taglower); 4437 /* no unmap needed here because no data xfer. */ 4438 4439 ei = c->err_info; 4440 switch (ei->CommandStatus) { 4441 case CMD_SUCCESS: 4442 break; 4443 case CMD_UNABORTABLE: /* Very common, don't make noise. */ 4444 rc = -1; 4445 break; 4446 default: 4447 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", 4448 __func__, tagupper, taglower); 4449 hpsa_scsi_interpret_error(h, c); 4450 rc = -1; 4451 break; 4452 } 4453 cmd_free(h, c); 4454 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", 4455 __func__, tagupper, taglower); 4456 return rc; 4457 } 4458 4459 /* ioaccel2 path firmware cannot handle abort task requests. 4460 * Change abort requests to physical target reset, and send to the 4461 * address of the physical disk used for the ioaccel 2 command. 4462 * Return 0 on success (IO_OK) 4463 * -1 on failure 4464 */ 4465 4466 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, 4467 unsigned char *scsi3addr, struct CommandList *abort) 4468 { 4469 int rc = IO_OK; 4470 struct scsi_cmnd *scmd; /* scsi command within request being aborted */ 4471 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ 4472 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ 4473 unsigned char *psa = &phys_scsi3addr[0]; 4474 4475 /* Get a pointer to the hpsa logical device. */ 4476 scmd = abort->scsi_cmd; 4477 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); 4478 if (dev == NULL) { 4479 dev_warn(&h->pdev->dev, 4480 "Cannot abort: no device pointer for command.\n"); 4481 return -1; /* not abortable */ 4482 } 4483 4484 if (h->raid_offload_debug > 0) 4485 dev_info(&h->pdev->dev, 4486 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 4487 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 4488 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3], 4489 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]); 4490 4491 if (!dev->offload_enabled) { 4492 dev_warn(&h->pdev->dev, 4493 "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); 4494 return -1; /* not abortable */ 4495 } 4496 4497 /* Incoming scsi3addr is logical addr. We need physical disk addr. */ 4498 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { 4499 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); 4500 return -1; /* not abortable */ 4501 } 4502 4503 /* send the reset */ 4504 if (h->raid_offload_debug > 0) 4505 dev_info(&h->pdev->dev, 4506 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 4507 psa[0], psa[1], psa[2], psa[3], 4508 psa[4], psa[5], psa[6], psa[7]); 4509 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET); 4510 if (rc != 0) { 4511 dev_warn(&h->pdev->dev, 4512 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 4513 psa[0], psa[1], psa[2], psa[3], 4514 psa[4], psa[5], psa[6], psa[7]); 4515 return rc; /* failed to reset */ 4516 } 4517 4518 /* wait for device to recover */ 4519 if (wait_for_device_to_become_ready(h, psa) != 0) { 4520 dev_warn(&h->pdev->dev, 4521 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 4522 psa[0], psa[1], psa[2], psa[3], 4523 psa[4], psa[5], psa[6], psa[7]); 4524 return -1; /* failed to recover */ 4525 } 4526 4527 /* device recovered */ 4528 dev_info(&h->pdev->dev, 4529 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 4530 psa[0], psa[1], psa[2], psa[3], 4531 psa[4], psa[5], psa[6], psa[7]); 4532 4533 return rc; /* success */ 4534 } 4535 4536 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to 4537 * tell which kind we're dealing with, so we send the abort both ways. There 4538 * shouldn't be any collisions between swizzled and unswizzled tags due to the 4539 * way we construct our tags but we check anyway in case the assumptions which 4540 * make this true someday become false. 4541 */ 4542 static int hpsa_send_abort_both_ways(struct ctlr_info *h, 4543 unsigned char *scsi3addr, struct CommandList *abort) 4544 { 4545 /* ioccelerator mode 2 commands should be aborted via the 4546 * accelerated path, since RAID path is unaware of these commands, 4547 * but underlying firmware can't handle abort TMF. 4548 * Change abort to physical device reset. 4549 */ 4550 if (abort->cmd_type == CMD_IOACCEL2) 4551 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort); 4552 4553 return hpsa_send_abort(h, scsi3addr, abort, 0) && 4554 hpsa_send_abort(h, scsi3addr, abort, 1); 4555 } 4556 4557 /* Send an abort for the specified command. 4558 * If the device and controller support it, 4559 * send a task abort request. 4560 */ 4561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) 4562 { 4563 4564 int i, rc; 4565 struct ctlr_info *h; 4566 struct hpsa_scsi_dev_t *dev; 4567 struct CommandList *abort; /* pointer to command to be aborted */ 4568 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ 4569 char msg[256]; /* For debug messaging. */ 4570 int ml = 0; 4571 __le32 tagupper, taglower; 4572 int refcount; 4573 4574 /* Find the controller of the command to be aborted */ 4575 h = sdev_to_hba(sc->device); 4576 if (WARN(h == NULL, 4577 "ABORT REQUEST FAILED, Controller lookup failed.\n")) 4578 return FAILED; 4579 4580 if (lockup_detected(h)) 4581 return FAILED; 4582 4583 /* Check that controller supports some kind of task abort */ 4584 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && 4585 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 4586 return FAILED; 4587 4588 memset(msg, 0, sizeof(msg)); 4589 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ", 4590 h->scsi_host->host_no, sc->device->channel, 4591 sc->device->id, sc->device->lun); 4592 4593 /* Find the device of the command to be aborted */ 4594 dev = sc->device->hostdata; 4595 if (!dev) { 4596 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", 4597 msg); 4598 return FAILED; 4599 } 4600 4601 /* Get SCSI command to be aborted */ 4602 abort = (struct CommandList *) sc->host_scribble; 4603 if (abort == NULL) { 4604 /* This can happen if the command already completed. */ 4605 return SUCCESS; 4606 } 4607 refcount = atomic_inc_return(&abort->refcount); 4608 if (refcount == 1) { /* Command is done already. */ 4609 cmd_free(h, abort); 4610 return SUCCESS; 4611 } 4612 hpsa_get_tag(h, abort, &taglower, &tagupper); 4613 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); 4614 as = abort->scsi_cmd; 4615 if (as != NULL) 4616 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", 4617 as->cmnd[0], as->serial_number); 4618 dev_dbg(&h->pdev->dev, "%s\n", msg); 4619 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", 4620 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 4621 /* 4622 * Command is in flight, or possibly already completed 4623 * by the firmware (but not to the scsi mid layer) but we can't 4624 * distinguish which. Send the abort down. 4625 */ 4626 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); 4627 if (rc != 0) { 4628 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); 4629 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", 4630 h->scsi_host->host_no, 4631 dev->bus, dev->target, dev->lun); 4632 cmd_free(h, abort); 4633 return FAILED; 4634 } 4635 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); 4636 4637 /* If the abort(s) above completed and actually aborted the 4638 * command, then the command to be aborted should already be 4639 * completed. If not, wait around a bit more to see if they 4640 * manage to complete normally. 4641 */ 4642 #define ABORT_COMPLETE_WAIT_SECS 30 4643 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { 4644 refcount = atomic_read(&abort->refcount); 4645 if (refcount < 2) { 4646 cmd_free(h, abort); 4647 return SUCCESS; 4648 } else { 4649 msleep(100); 4650 } 4651 } 4652 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", 4653 msg, ABORT_COMPLETE_WAIT_SECS); 4654 cmd_free(h, abort); 4655 return FAILED; 4656 } 4657 4658 /* 4659 * For operations that cannot sleep, a command block is allocated at init, 4660 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 4661 * which ones are free or in use. Lock must be held when calling this. 4662 * cmd_free() is the complement. 4663 */ 4664 4665 static struct CommandList *cmd_alloc(struct ctlr_info *h) 4666 { 4667 struct CommandList *c; 4668 int i; 4669 union u64bit temp64; 4670 dma_addr_t cmd_dma_handle, err_dma_handle; 4671 int refcount; 4672 unsigned long offset; 4673 4674 /* 4675 * There is some *extremely* small but non-zero chance that that 4676 * multiple threads could get in here, and one thread could 4677 * be scanning through the list of bits looking for a free 4678 * one, but the free ones are always behind him, and other 4679 * threads sneak in behind him and eat them before he can 4680 * get to them, so that while there is always a free one, a 4681 * very unlucky thread might be starved anyway, never able to 4682 * beat the other threads. In reality, this happens so 4683 * infrequently as to be indistinguishable from never. 4684 */ 4685 4686 offset = h->last_allocation; /* benignly racy */ 4687 for (;;) { 4688 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset); 4689 if (unlikely(i == h->nr_cmds)) { 4690 offset = 0; 4691 continue; 4692 } 4693 c = h->cmd_pool + i; 4694 refcount = atomic_inc_return(&c->refcount); 4695 if (unlikely(refcount > 1)) { 4696 cmd_free(h, c); /* already in use */ 4697 offset = (i + 1) % h->nr_cmds; 4698 continue; 4699 } 4700 set_bit(i & (BITS_PER_LONG - 1), 4701 h->cmd_pool_bits + (i / BITS_PER_LONG)); 4702 break; /* it's ours now. */ 4703 } 4704 h->last_allocation = i; /* benignly racy */ 4705 4706 /* Zero out all of commandlist except the last field, refcount */ 4707 memset(c, 0, offsetof(struct CommandList, refcount)); 4708 c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT)); 4709 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c); 4710 c->err_info = h->errinfo_pool + i; 4711 memset(c->err_info, 0, sizeof(*c->err_info)); 4712 err_dma_handle = h->errinfo_pool_dhandle 4713 + i * sizeof(*c->err_info); 4714 4715 c->cmdindex = i; 4716 4717 c->busaddr = (u32) cmd_dma_handle; 4718 temp64.val = (u64) err_dma_handle; 4719 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 4720 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 4721 4722 c->h = h; 4723 return c; 4724 } 4725 4726 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 4727 { 4728 if (atomic_dec_and_test(&c->refcount)) { 4729 int i; 4730 4731 i = c - h->cmd_pool; 4732 clear_bit(i & (BITS_PER_LONG - 1), 4733 h->cmd_pool_bits + (i / BITS_PER_LONG)); 4734 } 4735 } 4736 4737 #ifdef CONFIG_COMPAT 4738 4739 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, 4740 void __user *arg) 4741 { 4742 IOCTL32_Command_struct __user *arg32 = 4743 (IOCTL32_Command_struct __user *) arg; 4744 IOCTL_Command_struct arg64; 4745 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 4746 int err; 4747 u32 cp; 4748 4749 memset(&arg64, 0, sizeof(arg64)); 4750 err = 0; 4751 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 4752 sizeof(arg64.LUN_info)); 4753 err |= copy_from_user(&arg64.Request, &arg32->Request, 4754 sizeof(arg64.Request)); 4755 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 4756 sizeof(arg64.error_info)); 4757 err |= get_user(arg64.buf_size, &arg32->buf_size); 4758 err |= get_user(cp, &arg32->buf); 4759 arg64.buf = compat_ptr(cp); 4760 err |= copy_to_user(p, &arg64, sizeof(arg64)); 4761 4762 if (err) 4763 return -EFAULT; 4764 4765 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); 4766 if (err) 4767 return err; 4768 err |= copy_in_user(&arg32->error_info, &p->error_info, 4769 sizeof(arg32->error_info)); 4770 if (err) 4771 return -EFAULT; 4772 return err; 4773 } 4774 4775 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 4776 int cmd, void __user *arg) 4777 { 4778 BIG_IOCTL32_Command_struct __user *arg32 = 4779 (BIG_IOCTL32_Command_struct __user *) arg; 4780 BIG_IOCTL_Command_struct arg64; 4781 BIG_IOCTL_Command_struct __user *p = 4782 compat_alloc_user_space(sizeof(arg64)); 4783 int err; 4784 u32 cp; 4785 4786 memset(&arg64, 0, sizeof(arg64)); 4787 err = 0; 4788 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 4789 sizeof(arg64.LUN_info)); 4790 err |= copy_from_user(&arg64.Request, &arg32->Request, 4791 sizeof(arg64.Request)); 4792 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 4793 sizeof(arg64.error_info)); 4794 err |= get_user(arg64.buf_size, &arg32->buf_size); 4795 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 4796 err |= get_user(cp, &arg32->buf); 4797 arg64.buf = compat_ptr(cp); 4798 err |= copy_to_user(p, &arg64, sizeof(arg64)); 4799 4800 if (err) 4801 return -EFAULT; 4802 4803 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); 4804 if (err) 4805 return err; 4806 err |= copy_in_user(&arg32->error_info, &p->error_info, 4807 sizeof(arg32->error_info)); 4808 if (err) 4809 return -EFAULT; 4810 return err; 4811 } 4812 4813 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 4814 { 4815 switch (cmd) { 4816 case CCISS_GETPCIINFO: 4817 case CCISS_GETINTINFO: 4818 case CCISS_SETINTINFO: 4819 case CCISS_GETNODENAME: 4820 case CCISS_SETNODENAME: 4821 case CCISS_GETHEARTBEAT: 4822 case CCISS_GETBUSTYPES: 4823 case CCISS_GETFIRMVER: 4824 case CCISS_GETDRIVVER: 4825 case CCISS_REVALIDVOLS: 4826 case CCISS_DEREGDISK: 4827 case CCISS_REGNEWDISK: 4828 case CCISS_REGNEWD: 4829 case CCISS_RESCANDISK: 4830 case CCISS_GETLUNINFO: 4831 return hpsa_ioctl(dev, cmd, arg); 4832 4833 case CCISS_PASSTHRU32: 4834 return hpsa_ioctl32_passthru(dev, cmd, arg); 4835 case CCISS_BIG_PASSTHRU32: 4836 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 4837 4838 default: 4839 return -ENOIOCTLCMD; 4840 } 4841 } 4842 #endif 4843 4844 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 4845 { 4846 struct hpsa_pci_info pciinfo; 4847 4848 if (!argp) 4849 return -EINVAL; 4850 pciinfo.domain = pci_domain_nr(h->pdev->bus); 4851 pciinfo.bus = h->pdev->bus->number; 4852 pciinfo.dev_fn = h->pdev->devfn; 4853 pciinfo.board_id = h->board_id; 4854 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 4855 return -EFAULT; 4856 return 0; 4857 } 4858 4859 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 4860 { 4861 DriverVer_type DriverVer; 4862 unsigned char vmaj, vmin, vsubmin; 4863 int rc; 4864 4865 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 4866 &vmaj, &vmin, &vsubmin); 4867 if (rc != 3) { 4868 dev_info(&h->pdev->dev, "driver version string '%s' " 4869 "unrecognized.", HPSA_DRIVER_VERSION); 4870 vmaj = 0; 4871 vmin = 0; 4872 vsubmin = 0; 4873 } 4874 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 4875 if (!argp) 4876 return -EINVAL; 4877 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 4878 return -EFAULT; 4879 return 0; 4880 } 4881 4882 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 4883 { 4884 IOCTL_Command_struct iocommand; 4885 struct CommandList *c; 4886 char *buff = NULL; 4887 u64 temp64; 4888 int rc = 0; 4889 4890 if (!argp) 4891 return -EINVAL; 4892 if (!capable(CAP_SYS_RAWIO)) 4893 return -EPERM; 4894 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 4895 return -EFAULT; 4896 if ((iocommand.buf_size < 1) && 4897 (iocommand.Request.Type.Direction != XFER_NONE)) { 4898 return -EINVAL; 4899 } 4900 if (iocommand.buf_size > 0) { 4901 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 4902 if (buff == NULL) 4903 return -EFAULT; 4904 if (iocommand.Request.Type.Direction & XFER_WRITE) { 4905 /* Copy the data into the buffer we created */ 4906 if (copy_from_user(buff, iocommand.buf, 4907 iocommand.buf_size)) { 4908 rc = -EFAULT; 4909 goto out_kfree; 4910 } 4911 } else { 4912 memset(buff, 0, iocommand.buf_size); 4913 } 4914 } 4915 c = cmd_alloc(h); 4916 if (c == NULL) { 4917 rc = -ENOMEM; 4918 goto out_kfree; 4919 } 4920 /* Fill in the command type */ 4921 c->cmd_type = CMD_IOCTL_PEND; 4922 /* Fill in Command Header */ 4923 c->Header.ReplyQueue = 0; /* unused in simple mode */ 4924 if (iocommand.buf_size > 0) { /* buffer to fill */ 4925 c->Header.SGList = 1; 4926 c->Header.SGTotal = cpu_to_le16(1); 4927 } else { /* no buffers to fill */ 4928 c->Header.SGList = 0; 4929 c->Header.SGTotal = cpu_to_le16(0); 4930 } 4931 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 4932 4933 /* Fill in Request block */ 4934 memcpy(&c->Request, &iocommand.Request, 4935 sizeof(c->Request)); 4936 4937 /* Fill in the scatter gather information */ 4938 if (iocommand.buf_size > 0) { 4939 temp64 = pci_map_single(h->pdev, buff, 4940 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 4941 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 4942 c->SG[0].Addr = cpu_to_le64(0); 4943 c->SG[0].Len = cpu_to_le32(0); 4944 rc = -ENOMEM; 4945 goto out; 4946 } 4947 c->SG[0].Addr = cpu_to_le64(temp64); 4948 c->SG[0].Len = cpu_to_le32(iocommand.buf_size); 4949 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 4950 } 4951 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 4952 if (iocommand.buf_size > 0) 4953 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 4954 check_ioctl_unit_attention(h, c); 4955 4956 /* Copy the error information out */ 4957 memcpy(&iocommand.error_info, c->err_info, 4958 sizeof(iocommand.error_info)); 4959 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 4960 rc = -EFAULT; 4961 goto out; 4962 } 4963 if ((iocommand.Request.Type.Direction & XFER_READ) && 4964 iocommand.buf_size > 0) { 4965 /* Copy the data out of the buffer we created */ 4966 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 4967 rc = -EFAULT; 4968 goto out; 4969 } 4970 } 4971 out: 4972 cmd_free(h, c); 4973 out_kfree: 4974 kfree(buff); 4975 return rc; 4976 } 4977 4978 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 4979 { 4980 BIG_IOCTL_Command_struct *ioc; 4981 struct CommandList *c; 4982 unsigned char **buff = NULL; 4983 int *buff_size = NULL; 4984 u64 temp64; 4985 BYTE sg_used = 0; 4986 int status = 0; 4987 u32 left; 4988 u32 sz; 4989 BYTE __user *data_ptr; 4990 4991 if (!argp) 4992 return -EINVAL; 4993 if (!capable(CAP_SYS_RAWIO)) 4994 return -EPERM; 4995 ioc = (BIG_IOCTL_Command_struct *) 4996 kmalloc(sizeof(*ioc), GFP_KERNEL); 4997 if (!ioc) { 4998 status = -ENOMEM; 4999 goto cleanup1; 5000 } 5001 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 5002 status = -EFAULT; 5003 goto cleanup1; 5004 } 5005 if ((ioc->buf_size < 1) && 5006 (ioc->Request.Type.Direction != XFER_NONE)) { 5007 status = -EINVAL; 5008 goto cleanup1; 5009 } 5010 /* Check kmalloc limits using all SGs */ 5011 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 5012 status = -EINVAL; 5013 goto cleanup1; 5014 } 5015 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 5016 status = -EINVAL; 5017 goto cleanup1; 5018 } 5019 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); 5020 if (!buff) { 5021 status = -ENOMEM; 5022 goto cleanup1; 5023 } 5024 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); 5025 if (!buff_size) { 5026 status = -ENOMEM; 5027 goto cleanup1; 5028 } 5029 left = ioc->buf_size; 5030 data_ptr = ioc->buf; 5031 while (left) { 5032 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 5033 buff_size[sg_used] = sz; 5034 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 5035 if (buff[sg_used] == NULL) { 5036 status = -ENOMEM; 5037 goto cleanup1; 5038 } 5039 if (ioc->Request.Type.Direction & XFER_WRITE) { 5040 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 5041 status = -EFAULT; 5042 goto cleanup1; 5043 } 5044 } else 5045 memset(buff[sg_used], 0, sz); 5046 left -= sz; 5047 data_ptr += sz; 5048 sg_used++; 5049 } 5050 c = cmd_alloc(h); 5051 if (c == NULL) { 5052 status = -ENOMEM; 5053 goto cleanup1; 5054 } 5055 c->cmd_type = CMD_IOCTL_PEND; 5056 c->Header.ReplyQueue = 0; 5057 c->Header.SGList = (u8) sg_used; 5058 c->Header.SGTotal = cpu_to_le16(sg_used); 5059 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 5060 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 5061 if (ioc->buf_size > 0) { 5062 int i; 5063 for (i = 0; i < sg_used; i++) { 5064 temp64 = pci_map_single(h->pdev, buff[i], 5065 buff_size[i], PCI_DMA_BIDIRECTIONAL); 5066 if (dma_mapping_error(&h->pdev->dev, 5067 (dma_addr_t) temp64)) { 5068 c->SG[i].Addr = cpu_to_le64(0); 5069 c->SG[i].Len = cpu_to_le32(0); 5070 hpsa_pci_unmap(h->pdev, c, i, 5071 PCI_DMA_BIDIRECTIONAL); 5072 status = -ENOMEM; 5073 goto cleanup0; 5074 } 5075 c->SG[i].Addr = cpu_to_le64(temp64); 5076 c->SG[i].Len = cpu_to_le32(buff_size[i]); 5077 c->SG[i].Ext = cpu_to_le32(0); 5078 } 5079 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 5080 } 5081 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 5082 if (sg_used) 5083 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 5084 check_ioctl_unit_attention(h, c); 5085 /* Copy the error information out */ 5086 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 5087 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 5088 status = -EFAULT; 5089 goto cleanup0; 5090 } 5091 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 5092 int i; 5093 5094 /* Copy the data out of the buffer we created */ 5095 BYTE __user *ptr = ioc->buf; 5096 for (i = 0; i < sg_used; i++) { 5097 if (copy_to_user(ptr, buff[i], buff_size[i])) { 5098 status = -EFAULT; 5099 goto cleanup0; 5100 } 5101 ptr += buff_size[i]; 5102 } 5103 } 5104 status = 0; 5105 cleanup0: 5106 cmd_free(h, c); 5107 cleanup1: 5108 if (buff) { 5109 int i; 5110 5111 for (i = 0; i < sg_used; i++) 5112 kfree(buff[i]); 5113 kfree(buff); 5114 } 5115 kfree(buff_size); 5116 kfree(ioc); 5117 return status; 5118 } 5119 5120 static void check_ioctl_unit_attention(struct ctlr_info *h, 5121 struct CommandList *c) 5122 { 5123 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5124 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 5125 (void) check_for_unit_attention(h, c); 5126 } 5127 5128 /* 5129 * ioctl 5130 */ 5131 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 5132 { 5133 struct ctlr_info *h; 5134 void __user *argp = (void __user *)arg; 5135 int rc; 5136 5137 h = sdev_to_hba(dev); 5138 5139 switch (cmd) { 5140 case CCISS_DEREGDISK: 5141 case CCISS_REGNEWDISK: 5142 case CCISS_REGNEWD: 5143 hpsa_scan_start(h->scsi_host); 5144 return 0; 5145 case CCISS_GETPCIINFO: 5146 return hpsa_getpciinfo_ioctl(h, argp); 5147 case CCISS_GETDRIVVER: 5148 return hpsa_getdrivver_ioctl(h, argp); 5149 case CCISS_PASSTHRU: 5150 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 5151 return -EAGAIN; 5152 rc = hpsa_passthru_ioctl(h, argp); 5153 atomic_inc(&h->passthru_cmds_avail); 5154 return rc; 5155 case CCISS_BIG_PASSTHRU: 5156 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 5157 return -EAGAIN; 5158 rc = hpsa_big_passthru_ioctl(h, argp); 5159 atomic_inc(&h->passthru_cmds_avail); 5160 return rc; 5161 default: 5162 return -ENOTTY; 5163 } 5164 } 5165 5166 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, 5167 u8 reset_type) 5168 { 5169 struct CommandList *c; 5170 5171 c = cmd_alloc(h); 5172 if (!c) 5173 return -ENOMEM; 5174 /* fill_cmd can't fail here, no data buffer to map */ 5175 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 5176 RAID_CTLR_LUNID, TYPE_MSG); 5177 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 5178 c->waiting = NULL; 5179 enqueue_cmd_and_start_io(h, c); 5180 /* Don't wait for completion, the reset won't complete. Don't free 5181 * the command either. This is the last command we will send before 5182 * re-initializing everything, so it doesn't matter and won't leak. 5183 */ 5184 return 0; 5185 } 5186 5187 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 5188 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 5189 int cmd_type) 5190 { 5191 int pci_dir = XFER_NONE; 5192 struct CommandList *a; /* for commands to be aborted */ 5193 5194 c->cmd_type = CMD_IOCTL_PEND; 5195 c->Header.ReplyQueue = 0; 5196 if (buff != NULL && size > 0) { 5197 c->Header.SGList = 1; 5198 c->Header.SGTotal = cpu_to_le16(1); 5199 } else { 5200 c->Header.SGList = 0; 5201 c->Header.SGTotal = cpu_to_le16(0); 5202 } 5203 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 5204 5205 if (cmd_type == TYPE_CMD) { 5206 switch (cmd) { 5207 case HPSA_INQUIRY: 5208 /* are we trying to read a vital product page */ 5209 if (page_code & VPD_PAGE) { 5210 c->Request.CDB[1] = 0x01; 5211 c->Request.CDB[2] = (page_code & 0xff); 5212 } 5213 c->Request.CDBLen = 6; 5214 c->Request.type_attr_dir = 5215 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 5216 c->Request.Timeout = 0; 5217 c->Request.CDB[0] = HPSA_INQUIRY; 5218 c->Request.CDB[4] = size & 0xFF; 5219 break; 5220 case HPSA_REPORT_LOG: 5221 case HPSA_REPORT_PHYS: 5222 /* Talking to controller so It's a physical command 5223 mode = 00 target = 0. Nothing to write. 5224 */ 5225 c->Request.CDBLen = 12; 5226 c->Request.type_attr_dir = 5227 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 5228 c->Request.Timeout = 0; 5229 c->Request.CDB[0] = cmd; 5230 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 5231 c->Request.CDB[7] = (size >> 16) & 0xFF; 5232 c->Request.CDB[8] = (size >> 8) & 0xFF; 5233 c->Request.CDB[9] = size & 0xFF; 5234 break; 5235 case HPSA_CACHE_FLUSH: 5236 c->Request.CDBLen = 12; 5237 c->Request.type_attr_dir = 5238 TYPE_ATTR_DIR(cmd_type, 5239 ATTR_SIMPLE, XFER_WRITE); 5240 c->Request.Timeout = 0; 5241 c->Request.CDB[0] = BMIC_WRITE; 5242 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 5243 c->Request.CDB[7] = (size >> 8) & 0xFF; 5244 c->Request.CDB[8] = size & 0xFF; 5245 break; 5246 case TEST_UNIT_READY: 5247 c->Request.CDBLen = 6; 5248 c->Request.type_attr_dir = 5249 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 5250 c->Request.Timeout = 0; 5251 break; 5252 case HPSA_GET_RAID_MAP: 5253 c->Request.CDBLen = 12; 5254 c->Request.type_attr_dir = 5255 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 5256 c->Request.Timeout = 0; 5257 c->Request.CDB[0] = HPSA_CISS_READ; 5258 c->Request.CDB[1] = cmd; 5259 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 5260 c->Request.CDB[7] = (size >> 16) & 0xFF; 5261 c->Request.CDB[8] = (size >> 8) & 0xFF; 5262 c->Request.CDB[9] = size & 0xFF; 5263 break; 5264 case BMIC_SENSE_CONTROLLER_PARAMETERS: 5265 c->Request.CDBLen = 10; 5266 c->Request.type_attr_dir = 5267 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 5268 c->Request.Timeout = 0; 5269 c->Request.CDB[0] = BMIC_READ; 5270 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 5271 c->Request.CDB[7] = (size >> 16) & 0xFF; 5272 c->Request.CDB[8] = (size >> 8) & 0xFF; 5273 break; 5274 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 5275 c->Request.CDBLen = 10; 5276 c->Request.type_attr_dir = 5277 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 5278 c->Request.Timeout = 0; 5279 c->Request.CDB[0] = BMIC_READ; 5280 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 5281 c->Request.CDB[7] = (size >> 16) & 0xFF; 5282 c->Request.CDB[8] = (size >> 8) & 0XFF; 5283 break; 5284 default: 5285 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 5286 BUG(); 5287 return -1; 5288 } 5289 } else if (cmd_type == TYPE_MSG) { 5290 switch (cmd) { 5291 5292 case HPSA_DEVICE_RESET_MSG: 5293 c->Request.CDBLen = 16; 5294 c->Request.type_attr_dir = 5295 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 5296 c->Request.Timeout = 0; /* Don't time out */ 5297 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 5298 c->Request.CDB[0] = cmd; 5299 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 5300 /* If bytes 4-7 are zero, it means reset the */ 5301 /* LunID device */ 5302 c->Request.CDB[4] = 0x00; 5303 c->Request.CDB[5] = 0x00; 5304 c->Request.CDB[6] = 0x00; 5305 c->Request.CDB[7] = 0x00; 5306 break; 5307 case HPSA_ABORT_MSG: 5308 a = buff; /* point to command to be aborted */ 5309 dev_dbg(&h->pdev->dev, 5310 "Abort Tag:0x%016llx request Tag:0x%016llx", 5311 a->Header.tag, c->Header.tag); 5312 c->Request.CDBLen = 16; 5313 c->Request.type_attr_dir = 5314 TYPE_ATTR_DIR(cmd_type, 5315 ATTR_SIMPLE, XFER_WRITE); 5316 c->Request.Timeout = 0; /* Don't time out */ 5317 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; 5318 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; 5319 c->Request.CDB[2] = 0x00; /* reserved */ 5320 c->Request.CDB[3] = 0x00; /* reserved */ 5321 /* Tag to abort goes in CDB[4]-CDB[11] */ 5322 memcpy(&c->Request.CDB[4], &a->Header.tag, 5323 sizeof(a->Header.tag)); 5324 c->Request.CDB[12] = 0x00; /* reserved */ 5325 c->Request.CDB[13] = 0x00; /* reserved */ 5326 c->Request.CDB[14] = 0x00; /* reserved */ 5327 c->Request.CDB[15] = 0x00; /* reserved */ 5328 break; 5329 default: 5330 dev_warn(&h->pdev->dev, "unknown message type %d\n", 5331 cmd); 5332 BUG(); 5333 } 5334 } else { 5335 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 5336 BUG(); 5337 } 5338 5339 switch (GET_DIR(c->Request.type_attr_dir)) { 5340 case XFER_READ: 5341 pci_dir = PCI_DMA_FROMDEVICE; 5342 break; 5343 case XFER_WRITE: 5344 pci_dir = PCI_DMA_TODEVICE; 5345 break; 5346 case XFER_NONE: 5347 pci_dir = PCI_DMA_NONE; 5348 break; 5349 default: 5350 pci_dir = PCI_DMA_BIDIRECTIONAL; 5351 } 5352 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) 5353 return -1; 5354 return 0; 5355 } 5356 5357 /* 5358 * Map (physical) PCI mem into (virtual) kernel space 5359 */ 5360 static void __iomem *remap_pci_mem(ulong base, ulong size) 5361 { 5362 ulong page_base = ((ulong) base) & PAGE_MASK; 5363 ulong page_offs = ((ulong) base) - page_base; 5364 void __iomem *page_remapped = ioremap_nocache(page_base, 5365 page_offs + size); 5366 5367 return page_remapped ? (page_remapped + page_offs) : NULL; 5368 } 5369 5370 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 5371 { 5372 return h->access.command_completed(h, q); 5373 } 5374 5375 static inline bool interrupt_pending(struct ctlr_info *h) 5376 { 5377 return h->access.intr_pending(h); 5378 } 5379 5380 static inline long interrupt_not_for_us(struct ctlr_info *h) 5381 { 5382 return (h->access.intr_pending(h) == 0) || 5383 (h->interrupts_enabled == 0); 5384 } 5385 5386 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 5387 u32 raw_tag) 5388 { 5389 if (unlikely(tag_index >= h->nr_cmds)) { 5390 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 5391 return 1; 5392 } 5393 return 0; 5394 } 5395 5396 static inline void finish_cmd(struct CommandList *c) 5397 { 5398 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 5399 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 5400 || c->cmd_type == CMD_IOACCEL2)) 5401 complete_scsi_command(c); 5402 else if (c->cmd_type == CMD_IOCTL_PEND) 5403 complete(c->waiting); 5404 } 5405 5406 5407 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 5408 { 5409 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 5410 #define HPSA_SIMPLE_ERROR_BITS 0x03 5411 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 5412 return tag & ~HPSA_SIMPLE_ERROR_BITS; 5413 return tag & ~HPSA_PERF_ERROR_BITS; 5414 } 5415 5416 /* process completion of an indexed ("direct lookup") command */ 5417 static inline void process_indexed_cmd(struct ctlr_info *h, 5418 u32 raw_tag) 5419 { 5420 u32 tag_index; 5421 struct CommandList *c; 5422 5423 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 5424 if (!bad_tag(h, tag_index, raw_tag)) { 5425 c = h->cmd_pool + tag_index; 5426 finish_cmd(c); 5427 } 5428 } 5429 5430 /* Some controllers, like p400, will give us one interrupt 5431 * after a soft reset, even if we turned interrupts off. 5432 * Only need to check for this in the hpsa_xxx_discard_completions 5433 * functions. 5434 */ 5435 static int ignore_bogus_interrupt(struct ctlr_info *h) 5436 { 5437 if (likely(!reset_devices)) 5438 return 0; 5439 5440 if (likely(h->interrupts_enabled)) 5441 return 0; 5442 5443 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 5444 "(known firmware bug.) Ignoring.\n"); 5445 5446 return 1; 5447 } 5448 5449 /* 5450 * Convert &h->q[x] (passed to interrupt handlers) back to h. 5451 * Relies on (h-q[x] == x) being true for x such that 5452 * 0 <= x < MAX_REPLY_QUEUES. 5453 */ 5454 static struct ctlr_info *queue_to_hba(u8 *queue) 5455 { 5456 return container_of((queue - *queue), struct ctlr_info, q[0]); 5457 } 5458 5459 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 5460 { 5461 struct ctlr_info *h = queue_to_hba(queue); 5462 u8 q = *(u8 *) queue; 5463 u32 raw_tag; 5464 5465 if (ignore_bogus_interrupt(h)) 5466 return IRQ_NONE; 5467 5468 if (interrupt_not_for_us(h)) 5469 return IRQ_NONE; 5470 h->last_intr_timestamp = get_jiffies_64(); 5471 while (interrupt_pending(h)) { 5472 raw_tag = get_next_completion(h, q); 5473 while (raw_tag != FIFO_EMPTY) 5474 raw_tag = next_command(h, q); 5475 } 5476 return IRQ_HANDLED; 5477 } 5478 5479 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 5480 { 5481 struct ctlr_info *h = queue_to_hba(queue); 5482 u32 raw_tag; 5483 u8 q = *(u8 *) queue; 5484 5485 if (ignore_bogus_interrupt(h)) 5486 return IRQ_NONE; 5487 5488 h->last_intr_timestamp = get_jiffies_64(); 5489 raw_tag = get_next_completion(h, q); 5490 while (raw_tag != FIFO_EMPTY) 5491 raw_tag = next_command(h, q); 5492 return IRQ_HANDLED; 5493 } 5494 5495 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 5496 { 5497 struct ctlr_info *h = queue_to_hba((u8 *) queue); 5498 u32 raw_tag; 5499 u8 q = *(u8 *) queue; 5500 5501 if (interrupt_not_for_us(h)) 5502 return IRQ_NONE; 5503 h->last_intr_timestamp = get_jiffies_64(); 5504 while (interrupt_pending(h)) { 5505 raw_tag = get_next_completion(h, q); 5506 while (raw_tag != FIFO_EMPTY) { 5507 process_indexed_cmd(h, raw_tag); 5508 raw_tag = next_command(h, q); 5509 } 5510 } 5511 return IRQ_HANDLED; 5512 } 5513 5514 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 5515 { 5516 struct ctlr_info *h = queue_to_hba(queue); 5517 u32 raw_tag; 5518 u8 q = *(u8 *) queue; 5519 5520 h->last_intr_timestamp = get_jiffies_64(); 5521 raw_tag = get_next_completion(h, q); 5522 while (raw_tag != FIFO_EMPTY) { 5523 process_indexed_cmd(h, raw_tag); 5524 raw_tag = next_command(h, q); 5525 } 5526 return IRQ_HANDLED; 5527 } 5528 5529 /* Send a message CDB to the firmware. Careful, this only works 5530 * in simple mode, not performant mode due to the tag lookup. 5531 * We only ever use this immediately after a controller reset. 5532 */ 5533 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 5534 unsigned char type) 5535 { 5536 struct Command { 5537 struct CommandListHeader CommandHeader; 5538 struct RequestBlock Request; 5539 struct ErrDescriptor ErrorDescriptor; 5540 }; 5541 struct Command *cmd; 5542 static const size_t cmd_sz = sizeof(*cmd) + 5543 sizeof(cmd->ErrorDescriptor); 5544 dma_addr_t paddr64; 5545 __le32 paddr32; 5546 u32 tag; 5547 void __iomem *vaddr; 5548 int i, err; 5549 5550 vaddr = pci_ioremap_bar(pdev, 0); 5551 if (vaddr == NULL) 5552 return -ENOMEM; 5553 5554 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 5555 * CCISS commands, so they must be allocated from the lower 4GiB of 5556 * memory. 5557 */ 5558 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 5559 if (err) { 5560 iounmap(vaddr); 5561 return err; 5562 } 5563 5564 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 5565 if (cmd == NULL) { 5566 iounmap(vaddr); 5567 return -ENOMEM; 5568 } 5569 5570 /* This must fit, because of the 32-bit consistent DMA mask. Also, 5571 * although there's no guarantee, we assume that the address is at 5572 * least 4-byte aligned (most likely, it's page-aligned). 5573 */ 5574 paddr32 = cpu_to_le32(paddr64); 5575 5576 cmd->CommandHeader.ReplyQueue = 0; 5577 cmd->CommandHeader.SGList = 0; 5578 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 5579 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 5580 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 5581 5582 cmd->Request.CDBLen = 16; 5583 cmd->Request.type_attr_dir = 5584 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 5585 cmd->Request.Timeout = 0; /* Don't time out */ 5586 cmd->Request.CDB[0] = opcode; 5587 cmd->Request.CDB[1] = type; 5588 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 5589 cmd->ErrorDescriptor.Addr = 5590 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 5591 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 5592 5593 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 5594 5595 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 5596 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 5597 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 5598 break; 5599 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 5600 } 5601 5602 iounmap(vaddr); 5603 5604 /* we leak the DMA buffer here ... no choice since the controller could 5605 * still complete the command. 5606 */ 5607 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 5608 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 5609 opcode, type); 5610 return -ETIMEDOUT; 5611 } 5612 5613 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 5614 5615 if (tag & HPSA_ERROR_BIT) { 5616 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 5617 opcode, type); 5618 return -EIO; 5619 } 5620 5621 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 5622 opcode, type); 5623 return 0; 5624 } 5625 5626 #define hpsa_noop(p) hpsa_message(p, 3, 0) 5627 5628 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 5629 void __iomem *vaddr, u32 use_doorbell) 5630 { 5631 5632 if (use_doorbell) { 5633 /* For everything after the P600, the PCI power state method 5634 * of resetting the controller doesn't work, so we have this 5635 * other way using the doorbell register. 5636 */ 5637 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 5638 writel(use_doorbell, vaddr + SA5_DOORBELL); 5639 5640 /* PMC hardware guys tell us we need a 10 second delay after 5641 * doorbell reset and before any attempt to talk to the board 5642 * at all to ensure that this actually works and doesn't fall 5643 * over in some weird corner cases. 5644 */ 5645 msleep(10000); 5646 } else { /* Try to do it the PCI power state way */ 5647 5648 /* Quoting from the Open CISS Specification: "The Power 5649 * Management Control/Status Register (CSR) controls the power 5650 * state of the device. The normal operating state is D0, 5651 * CSR=00h. The software off state is D3, CSR=03h. To reset 5652 * the controller, place the interface device in D3 then to D0, 5653 * this causes a secondary PCI reset which will reset the 5654 * controller." */ 5655 5656 int rc = 0; 5657 5658 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 5659 5660 /* enter the D3hot power management state */ 5661 rc = pci_set_power_state(pdev, PCI_D3hot); 5662 if (rc) 5663 return rc; 5664 5665 msleep(500); 5666 5667 /* enter the D0 power management state */ 5668 rc = pci_set_power_state(pdev, PCI_D0); 5669 if (rc) 5670 return rc; 5671 5672 /* 5673 * The P600 requires a small delay when changing states. 5674 * Otherwise we may think the board did not reset and we bail. 5675 * This for kdump only and is particular to the P600. 5676 */ 5677 msleep(500); 5678 } 5679 return 0; 5680 } 5681 5682 static void init_driver_version(char *driver_version, int len) 5683 { 5684 memset(driver_version, 0, len); 5685 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 5686 } 5687 5688 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 5689 { 5690 char *driver_version; 5691 int i, size = sizeof(cfgtable->driver_version); 5692 5693 driver_version = kmalloc(size, GFP_KERNEL); 5694 if (!driver_version) 5695 return -ENOMEM; 5696 5697 init_driver_version(driver_version, size); 5698 for (i = 0; i < size; i++) 5699 writeb(driver_version[i], &cfgtable->driver_version[i]); 5700 kfree(driver_version); 5701 return 0; 5702 } 5703 5704 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 5705 unsigned char *driver_ver) 5706 { 5707 int i; 5708 5709 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 5710 driver_ver[i] = readb(&cfgtable->driver_version[i]); 5711 } 5712 5713 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 5714 { 5715 5716 char *driver_ver, *old_driver_ver; 5717 int rc, size = sizeof(cfgtable->driver_version); 5718 5719 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 5720 if (!old_driver_ver) 5721 return -ENOMEM; 5722 driver_ver = old_driver_ver + size; 5723 5724 /* After a reset, the 32 bytes of "driver version" in the cfgtable 5725 * should have been changed, otherwise we know the reset failed. 5726 */ 5727 init_driver_version(old_driver_ver, size); 5728 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 5729 rc = !memcmp(driver_ver, old_driver_ver, size); 5730 kfree(old_driver_ver); 5731 return rc; 5732 } 5733 /* This does a hard reset of the controller using PCI power management 5734 * states or the using the doorbell register. 5735 */ 5736 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 5737 { 5738 u64 cfg_offset; 5739 u32 cfg_base_addr; 5740 u64 cfg_base_addr_index; 5741 void __iomem *vaddr; 5742 unsigned long paddr; 5743 u32 misc_fw_support; 5744 int rc; 5745 struct CfgTable __iomem *cfgtable; 5746 u32 use_doorbell; 5747 u32 board_id; 5748 u16 command_register; 5749 5750 /* For controllers as old as the P600, this is very nearly 5751 * the same thing as 5752 * 5753 * pci_save_state(pci_dev); 5754 * pci_set_power_state(pci_dev, PCI_D3hot); 5755 * pci_set_power_state(pci_dev, PCI_D0); 5756 * pci_restore_state(pci_dev); 5757 * 5758 * For controllers newer than the P600, the pci power state 5759 * method of resetting doesn't work so we have another way 5760 * using the doorbell register. 5761 */ 5762 5763 rc = hpsa_lookup_board_id(pdev, &board_id); 5764 if (rc < 0) { 5765 dev_warn(&pdev->dev, "Board ID not found\n"); 5766 return rc; 5767 } 5768 if (!ctlr_is_resettable(board_id)) { 5769 dev_warn(&pdev->dev, "Controller not resettable\n"); 5770 return -ENODEV; 5771 } 5772 5773 /* if controller is soft- but not hard resettable... */ 5774 if (!ctlr_is_hard_resettable(board_id)) 5775 return -ENOTSUPP; /* try soft reset later. */ 5776 5777 /* Save the PCI command register */ 5778 pci_read_config_word(pdev, 4, &command_register); 5779 pci_save_state(pdev); 5780 5781 /* find the first memory BAR, so we can find the cfg table */ 5782 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 5783 if (rc) 5784 return rc; 5785 vaddr = remap_pci_mem(paddr, 0x250); 5786 if (!vaddr) 5787 return -ENOMEM; 5788 5789 /* find cfgtable in order to check if reset via doorbell is supported */ 5790 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 5791 &cfg_base_addr_index, &cfg_offset); 5792 if (rc) 5793 goto unmap_vaddr; 5794 cfgtable = remap_pci_mem(pci_resource_start(pdev, 5795 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 5796 if (!cfgtable) { 5797 rc = -ENOMEM; 5798 goto unmap_vaddr; 5799 } 5800 rc = write_driver_ver_to_cfgtable(cfgtable); 5801 if (rc) 5802 goto unmap_cfgtable; 5803 5804 /* If reset via doorbell register is supported, use that. 5805 * There are two such methods. Favor the newest method. 5806 */ 5807 misc_fw_support = readl(&cfgtable->misc_fw_support); 5808 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 5809 if (use_doorbell) { 5810 use_doorbell = DOORBELL_CTLR_RESET2; 5811 } else { 5812 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 5813 if (use_doorbell) { 5814 dev_warn(&pdev->dev, 5815 "Soft reset not supported. Firmware update is required.\n"); 5816 rc = -ENOTSUPP; /* try soft reset */ 5817 goto unmap_cfgtable; 5818 } 5819 } 5820 5821 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 5822 if (rc) 5823 goto unmap_cfgtable; 5824 5825 pci_restore_state(pdev); 5826 pci_write_config_word(pdev, 4, command_register); 5827 5828 /* Some devices (notably the HP Smart Array 5i Controller) 5829 need a little pause here */ 5830 msleep(HPSA_POST_RESET_PAUSE_MSECS); 5831 5832 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 5833 if (rc) { 5834 dev_warn(&pdev->dev, 5835 "Failed waiting for board to become ready after hard reset\n"); 5836 goto unmap_cfgtable; 5837 } 5838 5839 rc = controller_reset_failed(vaddr); 5840 if (rc < 0) 5841 goto unmap_cfgtable; 5842 if (rc) { 5843 dev_warn(&pdev->dev, "Unable to successfully reset " 5844 "controller. Will try soft reset.\n"); 5845 rc = -ENOTSUPP; 5846 } else { 5847 dev_info(&pdev->dev, "board ready after hard reset.\n"); 5848 } 5849 5850 unmap_cfgtable: 5851 iounmap(cfgtable); 5852 5853 unmap_vaddr: 5854 iounmap(vaddr); 5855 return rc; 5856 } 5857 5858 /* 5859 * We cannot read the structure directly, for portability we must use 5860 * the io functions. 5861 * This is for debug only. 5862 */ 5863 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 5864 { 5865 #ifdef HPSA_DEBUG 5866 int i; 5867 char temp_name[17]; 5868 5869 dev_info(dev, "Controller Configuration information\n"); 5870 dev_info(dev, "------------------------------------\n"); 5871 for (i = 0; i < 4; i++) 5872 temp_name[i] = readb(&(tb->Signature[i])); 5873 temp_name[4] = '\0'; 5874 dev_info(dev, " Signature = %s\n", temp_name); 5875 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 5876 dev_info(dev, " Transport methods supported = 0x%x\n", 5877 readl(&(tb->TransportSupport))); 5878 dev_info(dev, " Transport methods active = 0x%x\n", 5879 readl(&(tb->TransportActive))); 5880 dev_info(dev, " Requested transport Method = 0x%x\n", 5881 readl(&(tb->HostWrite.TransportRequest))); 5882 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 5883 readl(&(tb->HostWrite.CoalIntDelay))); 5884 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 5885 readl(&(tb->HostWrite.CoalIntCount))); 5886 dev_info(dev, " Max outstanding commands = %d\n", 5887 readl(&(tb->CmdsOutMax))); 5888 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 5889 for (i = 0; i < 16; i++) 5890 temp_name[i] = readb(&(tb->ServerName[i])); 5891 temp_name[16] = '\0'; 5892 dev_info(dev, " Server Name = %s\n", temp_name); 5893 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 5894 readl(&(tb->HeartBeat))); 5895 #endif /* HPSA_DEBUG */ 5896 } 5897 5898 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 5899 { 5900 int i, offset, mem_type, bar_type; 5901 5902 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 5903 return 0; 5904 offset = 0; 5905 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5906 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 5907 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 5908 offset += 4; 5909 else { 5910 mem_type = pci_resource_flags(pdev, i) & 5911 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 5912 switch (mem_type) { 5913 case PCI_BASE_ADDRESS_MEM_TYPE_32: 5914 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 5915 offset += 4; /* 32 bit */ 5916 break; 5917 case PCI_BASE_ADDRESS_MEM_TYPE_64: 5918 offset += 8; 5919 break; 5920 default: /* reserved in PCI 2.2 */ 5921 dev_warn(&pdev->dev, 5922 "base address is invalid\n"); 5923 return -1; 5924 break; 5925 } 5926 } 5927 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 5928 return i + 1; 5929 } 5930 return -1; 5931 } 5932 5933 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 5934 * controllers that are capable. If not, we use legacy INTx mode. 5935 */ 5936 5937 static void hpsa_interrupt_mode(struct ctlr_info *h) 5938 { 5939 #ifdef CONFIG_PCI_MSI 5940 int err, i; 5941 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; 5942 5943 for (i = 0; i < MAX_REPLY_QUEUES; i++) { 5944 hpsa_msix_entries[i].vector = 0; 5945 hpsa_msix_entries[i].entry = i; 5946 } 5947 5948 /* Some boards advertise MSI but don't really support it */ 5949 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 5950 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 5951 goto default_int_mode; 5952 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 5953 dev_info(&h->pdev->dev, "MSI-X capable controller\n"); 5954 h->msix_vector = MAX_REPLY_QUEUES; 5955 if (h->msix_vector > num_online_cpus()) 5956 h->msix_vector = num_online_cpus(); 5957 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries, 5958 1, h->msix_vector); 5959 if (err < 0) { 5960 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); 5961 h->msix_vector = 0; 5962 goto single_msi_mode; 5963 } else if (err < h->msix_vector) { 5964 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 5965 "available\n", err); 5966 } 5967 h->msix_vector = err; 5968 for (i = 0; i < h->msix_vector; i++) 5969 h->intr[i] = hpsa_msix_entries[i].vector; 5970 return; 5971 } 5972 single_msi_mode: 5973 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 5974 dev_info(&h->pdev->dev, "MSI capable controller\n"); 5975 if (!pci_enable_msi(h->pdev)) 5976 h->msi_vector = 1; 5977 else 5978 dev_warn(&h->pdev->dev, "MSI init failed\n"); 5979 } 5980 default_int_mode: 5981 #endif /* CONFIG_PCI_MSI */ 5982 /* if we get here we're going to use the default interrupt mode */ 5983 h->intr[h->intr_mode] = h->pdev->irq; 5984 } 5985 5986 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 5987 { 5988 int i; 5989 u32 subsystem_vendor_id, subsystem_device_id; 5990 5991 subsystem_vendor_id = pdev->subsystem_vendor; 5992 subsystem_device_id = pdev->subsystem_device; 5993 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 5994 subsystem_vendor_id; 5995 5996 for (i = 0; i < ARRAY_SIZE(products); i++) 5997 if (*board_id == products[i].board_id) 5998 return i; 5999 6000 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 6001 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 6002 !hpsa_allow_any) { 6003 dev_warn(&pdev->dev, "unrecognized board ID: " 6004 "0x%08x, ignoring.\n", *board_id); 6005 return -ENODEV; 6006 } 6007 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 6008 } 6009 6010 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 6011 unsigned long *memory_bar) 6012 { 6013 int i; 6014 6015 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 6016 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 6017 /* addressing mode bits already removed */ 6018 *memory_bar = pci_resource_start(pdev, i); 6019 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 6020 *memory_bar); 6021 return 0; 6022 } 6023 dev_warn(&pdev->dev, "no memory BAR found\n"); 6024 return -ENODEV; 6025 } 6026 6027 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 6028 int wait_for_ready) 6029 { 6030 int i, iterations; 6031 u32 scratchpad; 6032 if (wait_for_ready) 6033 iterations = HPSA_BOARD_READY_ITERATIONS; 6034 else 6035 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 6036 6037 for (i = 0; i < iterations; i++) { 6038 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 6039 if (wait_for_ready) { 6040 if (scratchpad == HPSA_FIRMWARE_READY) 6041 return 0; 6042 } else { 6043 if (scratchpad != HPSA_FIRMWARE_READY) 6044 return 0; 6045 } 6046 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 6047 } 6048 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 6049 return -ENODEV; 6050 } 6051 6052 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 6053 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 6054 u64 *cfg_offset) 6055 { 6056 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 6057 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 6058 *cfg_base_addr &= (u32) 0x0000ffff; 6059 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 6060 if (*cfg_base_addr_index == -1) { 6061 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 6062 return -ENODEV; 6063 } 6064 return 0; 6065 } 6066 6067 static int hpsa_find_cfgtables(struct ctlr_info *h) 6068 { 6069 u64 cfg_offset; 6070 u32 cfg_base_addr; 6071 u64 cfg_base_addr_index; 6072 u32 trans_offset; 6073 int rc; 6074 6075 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 6076 &cfg_base_addr_index, &cfg_offset); 6077 if (rc) 6078 return rc; 6079 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 6080 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 6081 if (!h->cfgtable) { 6082 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 6083 return -ENOMEM; 6084 } 6085 rc = write_driver_ver_to_cfgtable(h->cfgtable); 6086 if (rc) 6087 return rc; 6088 /* Find performant mode table. */ 6089 trans_offset = readl(&h->cfgtable->TransMethodOffset); 6090 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 6091 cfg_base_addr_index)+cfg_offset+trans_offset, 6092 sizeof(*h->transtable)); 6093 if (!h->transtable) 6094 return -ENOMEM; 6095 return 0; 6096 } 6097 6098 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 6099 { 6100 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 6101 6102 /* Limit commands in memory limited kdump scenario. */ 6103 if (reset_devices && h->max_commands > 32) 6104 h->max_commands = 32; 6105 6106 if (h->max_commands < 16) { 6107 dev_warn(&h->pdev->dev, "Controller reports " 6108 "max supported commands of %d, an obvious lie. " 6109 "Using 16. Ensure that firmware is up to date.\n", 6110 h->max_commands); 6111 h->max_commands = 16; 6112 } 6113 } 6114 6115 /* If the controller reports that the total max sg entries is greater than 512, 6116 * then we know that chained SG blocks work. (Original smart arrays did not 6117 * support chained SG blocks and would return zero for max sg entries.) 6118 */ 6119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 6120 { 6121 return h->maxsgentries > 512; 6122 } 6123 6124 /* Interrogate the hardware for some limits: 6125 * max commands, max SG elements without chaining, and with chaining, 6126 * SG chain block size, etc. 6127 */ 6128 static void hpsa_find_board_params(struct ctlr_info *h) 6129 { 6130 hpsa_get_max_perf_mode_cmds(h); 6131 h->nr_cmds = h->max_commands; 6132 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 6133 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 6134 if (hpsa_supports_chained_sg_blocks(h)) { 6135 /* Limit in-command s/g elements to 32 save dma'able memory. */ 6136 h->max_cmd_sg_entries = 32; 6137 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 6138 h->maxsgentries--; /* save one for chain pointer */ 6139 } else { 6140 /* 6141 * Original smart arrays supported at most 31 s/g entries 6142 * embedded inline in the command (trying to use more 6143 * would lock up the controller) 6144 */ 6145 h->max_cmd_sg_entries = 31; 6146 h->maxsgentries = 31; /* default to traditional values */ 6147 h->chainsize = 0; 6148 } 6149 6150 /* Find out what task management functions are supported and cache */ 6151 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 6152 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 6153 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 6154 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 6155 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 6156 } 6157 6158 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 6159 { 6160 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 6161 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 6162 return false; 6163 } 6164 return true; 6165 } 6166 6167 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 6168 { 6169 u32 driver_support; 6170 6171 driver_support = readl(&(h->cfgtable->driver_support)); 6172 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 6173 #ifdef CONFIG_X86 6174 driver_support |= ENABLE_SCSI_PREFETCH; 6175 #endif 6176 driver_support |= ENABLE_UNIT_ATTN; 6177 writel(driver_support, &(h->cfgtable->driver_support)); 6178 } 6179 6180 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 6181 * in a prefetch beyond physical memory. 6182 */ 6183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 6184 { 6185 u32 dma_prefetch; 6186 6187 if (h->board_id != 0x3225103C) 6188 return; 6189 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 6190 dma_prefetch |= 0x8000; 6191 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 6192 } 6193 6194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 6195 { 6196 int i; 6197 u32 doorbell_value; 6198 unsigned long flags; 6199 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 6200 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 6201 spin_lock_irqsave(&h->lock, flags); 6202 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 6203 spin_unlock_irqrestore(&h->lock, flags); 6204 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 6205 goto done; 6206 /* delay and try again */ 6207 msleep(CLEAR_EVENT_WAIT_INTERVAL); 6208 } 6209 return -ENODEV; 6210 done: 6211 return 0; 6212 } 6213 6214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 6215 { 6216 int i; 6217 u32 doorbell_value; 6218 unsigned long flags; 6219 6220 /* under certain very rare conditions, this can take awhile. 6221 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 6222 * as we enter this code.) 6223 */ 6224 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 6225 spin_lock_irqsave(&h->lock, flags); 6226 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 6227 spin_unlock_irqrestore(&h->lock, flags); 6228 if (!(doorbell_value & CFGTBL_ChangeReq)) 6229 goto done; 6230 /* delay and try again */ 6231 msleep(MODE_CHANGE_WAIT_INTERVAL); 6232 } 6233 return -ENODEV; 6234 done: 6235 return 0; 6236 } 6237 6238 /* return -ENODEV or other reason on error, 0 on success */ 6239 static int hpsa_enter_simple_mode(struct ctlr_info *h) 6240 { 6241 u32 trans_support; 6242 6243 trans_support = readl(&(h->cfgtable->TransportSupport)); 6244 if (!(trans_support & SIMPLE_MODE)) 6245 return -ENOTSUPP; 6246 6247 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 6248 6249 /* Update the field, and then ring the doorbell */ 6250 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 6251 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 6252 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 6253 if (hpsa_wait_for_mode_change_ack(h)) 6254 goto error; 6255 print_cfg_table(&h->pdev->dev, h->cfgtable); 6256 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 6257 goto error; 6258 h->transMethod = CFGTBL_Trans_Simple; 6259 return 0; 6260 error: 6261 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 6262 return -ENODEV; 6263 } 6264 6265 static int hpsa_pci_init(struct ctlr_info *h) 6266 { 6267 int prod_index, err; 6268 6269 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 6270 if (prod_index < 0) 6271 return prod_index; 6272 h->product_name = products[prod_index].product_name; 6273 h->access = *(products[prod_index].access); 6274 6275 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 6276 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 6277 6278 err = pci_enable_device(h->pdev); 6279 if (err) { 6280 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 6281 return err; 6282 } 6283 6284 err = pci_request_regions(h->pdev, HPSA); 6285 if (err) { 6286 dev_err(&h->pdev->dev, 6287 "cannot obtain PCI resources, aborting\n"); 6288 return err; 6289 } 6290 6291 pci_set_master(h->pdev); 6292 6293 hpsa_interrupt_mode(h); 6294 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 6295 if (err) 6296 goto err_out_free_res; 6297 h->vaddr = remap_pci_mem(h->paddr, 0x250); 6298 if (!h->vaddr) { 6299 err = -ENOMEM; 6300 goto err_out_free_res; 6301 } 6302 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 6303 if (err) 6304 goto err_out_free_res; 6305 err = hpsa_find_cfgtables(h); 6306 if (err) 6307 goto err_out_free_res; 6308 hpsa_find_board_params(h); 6309 6310 if (!hpsa_CISS_signature_present(h)) { 6311 err = -ENODEV; 6312 goto err_out_free_res; 6313 } 6314 hpsa_set_driver_support_bits(h); 6315 hpsa_p600_dma_prefetch_quirk(h); 6316 err = hpsa_enter_simple_mode(h); 6317 if (err) 6318 goto err_out_free_res; 6319 return 0; 6320 6321 err_out_free_res: 6322 if (h->transtable) 6323 iounmap(h->transtable); 6324 if (h->cfgtable) 6325 iounmap(h->cfgtable); 6326 if (h->vaddr) 6327 iounmap(h->vaddr); 6328 pci_disable_device(h->pdev); 6329 pci_release_regions(h->pdev); 6330 return err; 6331 } 6332 6333 static void hpsa_hba_inquiry(struct ctlr_info *h) 6334 { 6335 int rc; 6336 6337 #define HBA_INQUIRY_BYTE_COUNT 64 6338 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 6339 if (!h->hba_inquiry_data) 6340 return; 6341 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 6342 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 6343 if (rc != 0) { 6344 kfree(h->hba_inquiry_data); 6345 h->hba_inquiry_data = NULL; 6346 } 6347 } 6348 6349 static int hpsa_init_reset_devices(struct pci_dev *pdev) 6350 { 6351 int rc, i; 6352 void __iomem *vaddr; 6353 6354 if (!reset_devices) 6355 return 0; 6356 6357 /* kdump kernel is loading, we don't know in which state is 6358 * the pci interface. The dev->enable_cnt is equal zero 6359 * so we call enable+disable, wait a while and switch it on. 6360 */ 6361 rc = pci_enable_device(pdev); 6362 if (rc) { 6363 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 6364 return -ENODEV; 6365 } 6366 pci_disable_device(pdev); 6367 msleep(260); /* a randomly chosen number */ 6368 rc = pci_enable_device(pdev); 6369 if (rc) { 6370 dev_warn(&pdev->dev, "failed to enable device.\n"); 6371 return -ENODEV; 6372 } 6373 6374 pci_set_master(pdev); 6375 6376 vaddr = pci_ioremap_bar(pdev, 0); 6377 if (vaddr == NULL) { 6378 rc = -ENOMEM; 6379 goto out_disable; 6380 } 6381 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 6382 iounmap(vaddr); 6383 6384 /* Reset the controller with a PCI power-cycle or via doorbell */ 6385 rc = hpsa_kdump_hard_reset_controller(pdev); 6386 6387 /* -ENOTSUPP here means we cannot reset the controller 6388 * but it's already (and still) up and running in 6389 * "performant mode". Or, it might be 640x, which can't reset 6390 * due to concerns about shared bbwc between 6402/6404 pair. 6391 */ 6392 if (rc) 6393 goto out_disable; 6394 6395 /* Now try to get the controller to respond to a no-op */ 6396 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 6397 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 6398 if (hpsa_noop(pdev) == 0) 6399 break; 6400 else 6401 dev_warn(&pdev->dev, "no-op failed%s\n", 6402 (i < 11 ? "; re-trying" : "")); 6403 } 6404 6405 out_disable: 6406 6407 pci_disable_device(pdev); 6408 return rc; 6409 } 6410 6411 static int hpsa_allocate_cmd_pool(struct ctlr_info *h) 6412 { 6413 h->cmd_pool_bits = kzalloc( 6414 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 6415 sizeof(unsigned long), GFP_KERNEL); 6416 h->cmd_pool = pci_alloc_consistent(h->pdev, 6417 h->nr_cmds * sizeof(*h->cmd_pool), 6418 &(h->cmd_pool_dhandle)); 6419 h->errinfo_pool = pci_alloc_consistent(h->pdev, 6420 h->nr_cmds * sizeof(*h->errinfo_pool), 6421 &(h->errinfo_pool_dhandle)); 6422 if ((h->cmd_pool_bits == NULL) 6423 || (h->cmd_pool == NULL) 6424 || (h->errinfo_pool == NULL)) { 6425 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 6426 goto clean_up; 6427 } 6428 return 0; 6429 clean_up: 6430 hpsa_free_cmd_pool(h); 6431 return -ENOMEM; 6432 } 6433 6434 static void hpsa_free_cmd_pool(struct ctlr_info *h) 6435 { 6436 kfree(h->cmd_pool_bits); 6437 if (h->cmd_pool) 6438 pci_free_consistent(h->pdev, 6439 h->nr_cmds * sizeof(struct CommandList), 6440 h->cmd_pool, h->cmd_pool_dhandle); 6441 if (h->ioaccel2_cmd_pool) 6442 pci_free_consistent(h->pdev, 6443 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 6444 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); 6445 if (h->errinfo_pool) 6446 pci_free_consistent(h->pdev, 6447 h->nr_cmds * sizeof(struct ErrorInfo), 6448 h->errinfo_pool, 6449 h->errinfo_pool_dhandle); 6450 if (h->ioaccel_cmd_pool) 6451 pci_free_consistent(h->pdev, 6452 h->nr_cmds * sizeof(struct io_accel1_cmd), 6453 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); 6454 } 6455 6456 static void hpsa_irq_affinity_hints(struct ctlr_info *h) 6457 { 6458 int i, cpu; 6459 6460 cpu = cpumask_first(cpu_online_mask); 6461 for (i = 0; i < h->msix_vector; i++) { 6462 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu)); 6463 cpu = cpumask_next(cpu, cpu_online_mask); 6464 } 6465 } 6466 6467 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 6468 static void hpsa_free_irqs(struct ctlr_info *h) 6469 { 6470 int i; 6471 6472 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { 6473 /* Single reply queue, only one irq to free */ 6474 i = h->intr_mode; 6475 irq_set_affinity_hint(h->intr[i], NULL); 6476 free_irq(h->intr[i], &h->q[i]); 6477 return; 6478 } 6479 6480 for (i = 0; i < h->msix_vector; i++) { 6481 irq_set_affinity_hint(h->intr[i], NULL); 6482 free_irq(h->intr[i], &h->q[i]); 6483 } 6484 for (; i < MAX_REPLY_QUEUES; i++) 6485 h->q[i] = 0; 6486 } 6487 6488 /* returns 0 on success; cleans up and returns -Enn on error */ 6489 static int hpsa_request_irqs(struct ctlr_info *h, 6490 irqreturn_t (*msixhandler)(int, void *), 6491 irqreturn_t (*intxhandler)(int, void *)) 6492 { 6493 int rc, i; 6494 6495 /* 6496 * initialize h->q[x] = x so that interrupt handlers know which 6497 * queue to process. 6498 */ 6499 for (i = 0; i < MAX_REPLY_QUEUES; i++) 6500 h->q[i] = (u8) i; 6501 6502 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { 6503 /* If performant mode and MSI-X, use multiple reply queues */ 6504 for (i = 0; i < h->msix_vector; i++) { 6505 rc = request_irq(h->intr[i], msixhandler, 6506 0, h->devname, 6507 &h->q[i]); 6508 if (rc) { 6509 int j; 6510 6511 dev_err(&h->pdev->dev, 6512 "failed to get irq %d for %s\n", 6513 h->intr[i], h->devname); 6514 for (j = 0; j < i; j++) { 6515 free_irq(h->intr[j], &h->q[j]); 6516 h->q[j] = 0; 6517 } 6518 for (; j < MAX_REPLY_QUEUES; j++) 6519 h->q[j] = 0; 6520 return rc; 6521 } 6522 } 6523 hpsa_irq_affinity_hints(h); 6524 } else { 6525 /* Use single reply pool */ 6526 if (h->msix_vector > 0 || h->msi_vector) { 6527 rc = request_irq(h->intr[h->intr_mode], 6528 msixhandler, 0, h->devname, 6529 &h->q[h->intr_mode]); 6530 } else { 6531 rc = request_irq(h->intr[h->intr_mode], 6532 intxhandler, IRQF_SHARED, h->devname, 6533 &h->q[h->intr_mode]); 6534 } 6535 } 6536 if (rc) { 6537 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", 6538 h->intr[h->intr_mode], h->devname); 6539 return -ENODEV; 6540 } 6541 return 0; 6542 } 6543 6544 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 6545 { 6546 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, 6547 HPSA_RESET_TYPE_CONTROLLER)) { 6548 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); 6549 return -EIO; 6550 } 6551 6552 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 6553 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { 6554 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 6555 return -1; 6556 } 6557 6558 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 6559 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { 6560 dev_warn(&h->pdev->dev, "Board failed to become ready " 6561 "after soft reset.\n"); 6562 return -1; 6563 } 6564 6565 return 0; 6566 } 6567 6568 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) 6569 { 6570 hpsa_free_irqs(h); 6571 #ifdef CONFIG_PCI_MSI 6572 if (h->msix_vector) { 6573 if (h->pdev->msix_enabled) 6574 pci_disable_msix(h->pdev); 6575 } else if (h->msi_vector) { 6576 if (h->pdev->msi_enabled) 6577 pci_disable_msi(h->pdev); 6578 } 6579 #endif /* CONFIG_PCI_MSI */ 6580 } 6581 6582 static void hpsa_free_reply_queues(struct ctlr_info *h) 6583 { 6584 int i; 6585 6586 for (i = 0; i < h->nreply_queues; i++) { 6587 if (!h->reply_queue[i].head) 6588 continue; 6589 pci_free_consistent(h->pdev, h->reply_queue_size, 6590 h->reply_queue[i].head, h->reply_queue[i].busaddr); 6591 h->reply_queue[i].head = NULL; 6592 h->reply_queue[i].busaddr = 0; 6593 } 6594 } 6595 6596 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 6597 { 6598 hpsa_free_irqs_and_disable_msix(h); 6599 hpsa_free_sg_chain_blocks(h); 6600 hpsa_free_cmd_pool(h); 6601 kfree(h->ioaccel1_blockFetchTable); 6602 kfree(h->blockFetchTable); 6603 hpsa_free_reply_queues(h); 6604 if (h->vaddr) 6605 iounmap(h->vaddr); 6606 if (h->transtable) 6607 iounmap(h->transtable); 6608 if (h->cfgtable) 6609 iounmap(h->cfgtable); 6610 pci_disable_device(h->pdev); 6611 pci_release_regions(h->pdev); 6612 kfree(h); 6613 } 6614 6615 /* Called when controller lockup detected. */ 6616 static void fail_all_outstanding_cmds(struct ctlr_info *h) 6617 { 6618 int i, refcount; 6619 struct CommandList *c; 6620 6621 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 6622 for (i = 0; i < h->nr_cmds; i++) { 6623 c = h->cmd_pool + i; 6624 refcount = atomic_inc_return(&c->refcount); 6625 if (refcount > 1) { 6626 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 6627 finish_cmd(c); 6628 } 6629 cmd_free(h, c); 6630 } 6631 } 6632 6633 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 6634 { 6635 int i, cpu; 6636 6637 cpu = cpumask_first(cpu_online_mask); 6638 for (i = 0; i < num_online_cpus(); i++) { 6639 u32 *lockup_detected; 6640 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 6641 *lockup_detected = value; 6642 cpu = cpumask_next(cpu, cpu_online_mask); 6643 } 6644 wmb(); /* be sure the per-cpu variables are out to memory */ 6645 } 6646 6647 static void controller_lockup_detected(struct ctlr_info *h) 6648 { 6649 unsigned long flags; 6650 u32 lockup_detected; 6651 6652 h->access.set_intr_mask(h, HPSA_INTR_OFF); 6653 spin_lock_irqsave(&h->lock, flags); 6654 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 6655 if (!lockup_detected) { 6656 /* no heartbeat, but controller gave us a zero. */ 6657 dev_warn(&h->pdev->dev, 6658 "lockup detected but scratchpad register is zero\n"); 6659 lockup_detected = 0xffffffff; 6660 } 6661 set_lockup_detected_for_all_cpus(h, lockup_detected); 6662 spin_unlock_irqrestore(&h->lock, flags); 6663 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", 6664 lockup_detected); 6665 pci_disable_device(h->pdev); 6666 fail_all_outstanding_cmds(h); 6667 } 6668 6669 static void detect_controller_lockup(struct ctlr_info *h) 6670 { 6671 u64 now; 6672 u32 heartbeat; 6673 unsigned long flags; 6674 6675 now = get_jiffies_64(); 6676 /* If we've received an interrupt recently, we're ok. */ 6677 if (time_after64(h->last_intr_timestamp + 6678 (h->heartbeat_sample_interval), now)) 6679 return; 6680 6681 /* 6682 * If we've already checked the heartbeat recently, we're ok. 6683 * This could happen if someone sends us a signal. We 6684 * otherwise don't care about signals in this thread. 6685 */ 6686 if (time_after64(h->last_heartbeat_timestamp + 6687 (h->heartbeat_sample_interval), now)) 6688 return; 6689 6690 /* If heartbeat has not changed since we last looked, we're not ok. */ 6691 spin_lock_irqsave(&h->lock, flags); 6692 heartbeat = readl(&h->cfgtable->HeartBeat); 6693 spin_unlock_irqrestore(&h->lock, flags); 6694 if (h->last_heartbeat == heartbeat) { 6695 controller_lockup_detected(h); 6696 return; 6697 } 6698 6699 /* We're ok. */ 6700 h->last_heartbeat = heartbeat; 6701 h->last_heartbeat_timestamp = now; 6702 } 6703 6704 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 6705 { 6706 int i; 6707 char *event_type; 6708 6709 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 6710 return; 6711 6712 /* Ask the controller to clear the events we're handling. */ 6713 if ((h->transMethod & (CFGTBL_Trans_io_accel1 6714 | CFGTBL_Trans_io_accel2)) && 6715 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 6716 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 6717 6718 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 6719 event_type = "state change"; 6720 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 6721 event_type = "configuration change"; 6722 /* Stop sending new RAID offload reqs via the IO accelerator */ 6723 scsi_block_requests(h->scsi_host); 6724 for (i = 0; i < h->ndevices; i++) 6725 h->dev[i]->offload_enabled = 0; 6726 hpsa_drain_accel_commands(h); 6727 /* Set 'accelerator path config change' bit */ 6728 dev_warn(&h->pdev->dev, 6729 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 6730 h->events, event_type); 6731 writel(h->events, &(h->cfgtable->clear_event_notify)); 6732 /* Set the "clear event notify field update" bit 6 */ 6733 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 6734 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 6735 hpsa_wait_for_clear_event_notify_ack(h); 6736 scsi_unblock_requests(h->scsi_host); 6737 } else { 6738 /* Acknowledge controller notification events. */ 6739 writel(h->events, &(h->cfgtable->clear_event_notify)); 6740 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 6741 hpsa_wait_for_clear_event_notify_ack(h); 6742 #if 0 6743 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 6744 hpsa_wait_for_mode_change_ack(h); 6745 #endif 6746 } 6747 return; 6748 } 6749 6750 /* Check a register on the controller to see if there are configuration 6751 * changes (added/changed/removed logical drives, etc.) which mean that 6752 * we should rescan the controller for devices. 6753 * Also check flag for driver-initiated rescan. 6754 */ 6755 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 6756 { 6757 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 6758 return 0; 6759 6760 h->events = readl(&(h->cfgtable->event_notify)); 6761 return h->events & RESCAN_REQUIRED_EVENT_BITS; 6762 } 6763 6764 /* 6765 * Check if any of the offline devices have become ready 6766 */ 6767 static int hpsa_offline_devices_ready(struct ctlr_info *h) 6768 { 6769 unsigned long flags; 6770 struct offline_device_entry *d; 6771 struct list_head *this, *tmp; 6772 6773 spin_lock_irqsave(&h->offline_device_lock, flags); 6774 list_for_each_safe(this, tmp, &h->offline_device_list) { 6775 d = list_entry(this, struct offline_device_entry, 6776 offline_list); 6777 spin_unlock_irqrestore(&h->offline_device_lock, flags); 6778 if (!hpsa_volume_offline(h, d->scsi3addr)) { 6779 spin_lock_irqsave(&h->offline_device_lock, flags); 6780 list_del(&d->offline_list); 6781 spin_unlock_irqrestore(&h->offline_device_lock, flags); 6782 return 1; 6783 } 6784 spin_lock_irqsave(&h->offline_device_lock, flags); 6785 } 6786 spin_unlock_irqrestore(&h->offline_device_lock, flags); 6787 return 0; 6788 } 6789 6790 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 6791 { 6792 unsigned long flags; 6793 struct ctlr_info *h = container_of(to_delayed_work(work), 6794 struct ctlr_info, rescan_ctlr_work); 6795 6796 6797 if (h->remove_in_progress) 6798 return; 6799 6800 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { 6801 scsi_host_get(h->scsi_host); 6802 hpsa_ack_ctlr_events(h); 6803 hpsa_scan_start(h->scsi_host); 6804 scsi_host_put(h->scsi_host); 6805 } 6806 spin_lock_irqsave(&h->lock, flags); 6807 if (!h->remove_in_progress) 6808 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 6809 h->heartbeat_sample_interval); 6810 spin_unlock_irqrestore(&h->lock, flags); 6811 } 6812 6813 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 6814 { 6815 unsigned long flags; 6816 struct ctlr_info *h = container_of(to_delayed_work(work), 6817 struct ctlr_info, monitor_ctlr_work); 6818 6819 detect_controller_lockup(h); 6820 if (lockup_detected(h)) 6821 return; 6822 6823 spin_lock_irqsave(&h->lock, flags); 6824 if (!h->remove_in_progress) 6825 schedule_delayed_work(&h->monitor_ctlr_work, 6826 h->heartbeat_sample_interval); 6827 spin_unlock_irqrestore(&h->lock, flags); 6828 } 6829 6830 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 6831 char *name) 6832 { 6833 struct workqueue_struct *wq = NULL; 6834 6835 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 6836 if (!wq) 6837 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 6838 6839 return wq; 6840 } 6841 6842 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6843 { 6844 int dac, rc; 6845 struct ctlr_info *h; 6846 int try_soft_reset = 0; 6847 unsigned long flags; 6848 6849 if (number_of_controllers == 0) 6850 printk(KERN_INFO DRIVER_NAME "\n"); 6851 6852 rc = hpsa_init_reset_devices(pdev); 6853 if (rc) { 6854 if (rc != -ENOTSUPP) 6855 return rc; 6856 /* If the reset fails in a particular way (it has no way to do 6857 * a proper hard reset, so returns -ENOTSUPP) we can try to do 6858 * a soft reset once we get the controller configured up to the 6859 * point that it can accept a command. 6860 */ 6861 try_soft_reset = 1; 6862 rc = 0; 6863 } 6864 6865 reinit_after_soft_reset: 6866 6867 /* Command structures must be aligned on a 32-byte boundary because 6868 * the 5 lower bits of the address are used by the hardware. and by 6869 * the driver. See comments in hpsa.h for more info. 6870 */ 6871 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 6872 h = kzalloc(sizeof(*h), GFP_KERNEL); 6873 if (!h) 6874 return -ENOMEM; 6875 6876 h->pdev = pdev; 6877 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 6878 INIT_LIST_HEAD(&h->offline_device_list); 6879 spin_lock_init(&h->lock); 6880 spin_lock_init(&h->offline_device_lock); 6881 spin_lock_init(&h->scan_lock); 6882 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 6883 6884 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 6885 if (!h->rescan_ctlr_wq) { 6886 rc = -ENOMEM; 6887 goto clean1; 6888 } 6889 6890 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 6891 if (!h->resubmit_wq) { 6892 rc = -ENOMEM; 6893 goto clean1; 6894 } 6895 6896 /* Allocate and clear per-cpu variable lockup_detected */ 6897 h->lockup_detected = alloc_percpu(u32); 6898 if (!h->lockup_detected) { 6899 rc = -ENOMEM; 6900 goto clean1; 6901 } 6902 set_lockup_detected_for_all_cpus(h, 0); 6903 6904 rc = hpsa_pci_init(h); 6905 if (rc != 0) 6906 goto clean1; 6907 6908 sprintf(h->devname, HPSA "%d", number_of_controllers); 6909 h->ctlr = number_of_controllers; 6910 number_of_controllers++; 6911 6912 /* configure PCI DMA stuff */ 6913 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 6914 if (rc == 0) { 6915 dac = 1; 6916 } else { 6917 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6918 if (rc == 0) { 6919 dac = 0; 6920 } else { 6921 dev_err(&pdev->dev, "no suitable DMA available\n"); 6922 goto clean1; 6923 } 6924 } 6925 6926 /* make sure the board interrupts are off */ 6927 h->access.set_intr_mask(h, HPSA_INTR_OFF); 6928 6929 if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) 6930 goto clean2; 6931 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 6932 h->devname, pdev->device, 6933 h->intr[h->intr_mode], dac ? "" : " not"); 6934 rc = hpsa_allocate_cmd_pool(h); 6935 if (rc) 6936 goto clean2_and_free_irqs; 6937 if (hpsa_allocate_sg_chain_blocks(h)) 6938 goto clean4; 6939 init_waitqueue_head(&h->scan_wait_queue); 6940 h->scan_finished = 1; /* no scan currently in progress */ 6941 6942 pci_set_drvdata(pdev, h); 6943 h->ndevices = 0; 6944 h->hba_mode_enabled = 0; 6945 h->scsi_host = NULL; 6946 spin_lock_init(&h->devlock); 6947 hpsa_put_ctlr_into_performant_mode(h); 6948 6949 /* At this point, the controller is ready to take commands. 6950 * Now, if reset_devices and the hard reset didn't work, try 6951 * the soft reset and see if that works. 6952 */ 6953 if (try_soft_reset) { 6954 6955 /* This is kind of gross. We may or may not get a completion 6956 * from the soft reset command, and if we do, then the value 6957 * from the fifo may or may not be valid. So, we wait 10 secs 6958 * after the reset throwing away any completions we get during 6959 * that time. Unregister the interrupt handler and register 6960 * fake ones to scoop up any residual completions. 6961 */ 6962 spin_lock_irqsave(&h->lock, flags); 6963 h->access.set_intr_mask(h, HPSA_INTR_OFF); 6964 spin_unlock_irqrestore(&h->lock, flags); 6965 hpsa_free_irqs(h); 6966 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 6967 hpsa_intx_discard_completions); 6968 if (rc) { 6969 dev_warn(&h->pdev->dev, 6970 "Failed to request_irq after soft reset.\n"); 6971 goto clean4; 6972 } 6973 6974 rc = hpsa_kdump_soft_reset(h); 6975 if (rc) 6976 /* Neither hard nor soft reset worked, we're hosed. */ 6977 goto clean4; 6978 6979 dev_info(&h->pdev->dev, "Board READY.\n"); 6980 dev_info(&h->pdev->dev, 6981 "Waiting for stale completions to drain.\n"); 6982 h->access.set_intr_mask(h, HPSA_INTR_ON); 6983 msleep(10000); 6984 h->access.set_intr_mask(h, HPSA_INTR_OFF); 6985 6986 rc = controller_reset_failed(h->cfgtable); 6987 if (rc) 6988 dev_info(&h->pdev->dev, 6989 "Soft reset appears to have failed.\n"); 6990 6991 /* since the controller's reset, we have to go back and re-init 6992 * everything. Easiest to just forget what we've done and do it 6993 * all over again. 6994 */ 6995 hpsa_undo_allocations_after_kdump_soft_reset(h); 6996 try_soft_reset = 0; 6997 if (rc) 6998 /* don't go to clean4, we already unallocated */ 6999 return -ENODEV; 7000 7001 goto reinit_after_soft_reset; 7002 } 7003 7004 /* Enable Accelerated IO path at driver layer */ 7005 h->acciopath_status = 1; 7006 7007 7008 /* Turn the interrupts on so we can service requests */ 7009 h->access.set_intr_mask(h, HPSA_INTR_ON); 7010 7011 hpsa_hba_inquiry(h); 7012 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 7013 7014 /* Monitor the controller for firmware lockups */ 7015 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 7016 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 7017 schedule_delayed_work(&h->monitor_ctlr_work, 7018 h->heartbeat_sample_interval); 7019 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 7020 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 7021 h->heartbeat_sample_interval); 7022 return 0; 7023 7024 clean4: 7025 hpsa_free_sg_chain_blocks(h); 7026 hpsa_free_cmd_pool(h); 7027 clean2_and_free_irqs: 7028 hpsa_free_irqs(h); 7029 clean2: 7030 clean1: 7031 if (h->resubmit_wq) 7032 destroy_workqueue(h->resubmit_wq); 7033 if (h->rescan_ctlr_wq) 7034 destroy_workqueue(h->rescan_ctlr_wq); 7035 if (h->lockup_detected) 7036 free_percpu(h->lockup_detected); 7037 kfree(h); 7038 return rc; 7039 } 7040 7041 static void hpsa_flush_cache(struct ctlr_info *h) 7042 { 7043 char *flush_buf; 7044 struct CommandList *c; 7045 7046 /* Don't bother trying to flush the cache if locked up */ 7047 if (unlikely(lockup_detected(h))) 7048 return; 7049 flush_buf = kzalloc(4, GFP_KERNEL); 7050 if (!flush_buf) 7051 return; 7052 7053 c = cmd_alloc(h); 7054 if (!c) { 7055 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 7056 goto out_of_memory; 7057 } 7058 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 7059 RAID_CTLR_LUNID, TYPE_CMD)) { 7060 goto out; 7061 } 7062 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 7063 if (c->err_info->CommandStatus != 0) 7064 out: 7065 dev_warn(&h->pdev->dev, 7066 "error flushing cache on controller\n"); 7067 cmd_free(h, c); 7068 out_of_memory: 7069 kfree(flush_buf); 7070 } 7071 7072 static void hpsa_shutdown(struct pci_dev *pdev) 7073 { 7074 struct ctlr_info *h; 7075 7076 h = pci_get_drvdata(pdev); 7077 /* Turn board interrupts off and send the flush cache command 7078 * sendcmd will turn off interrupt, and send the flush... 7079 * To write all data in the battery backed cache to disks 7080 */ 7081 hpsa_flush_cache(h); 7082 h->access.set_intr_mask(h, HPSA_INTR_OFF); 7083 hpsa_free_irqs_and_disable_msix(h); 7084 } 7085 7086 static void hpsa_free_device_info(struct ctlr_info *h) 7087 { 7088 int i; 7089 7090 for (i = 0; i < h->ndevices; i++) 7091 kfree(h->dev[i]); 7092 } 7093 7094 static void hpsa_remove_one(struct pci_dev *pdev) 7095 { 7096 struct ctlr_info *h; 7097 unsigned long flags; 7098 7099 if (pci_get_drvdata(pdev) == NULL) { 7100 dev_err(&pdev->dev, "unable to remove device\n"); 7101 return; 7102 } 7103 h = pci_get_drvdata(pdev); 7104 7105 /* Get rid of any controller monitoring work items */ 7106 spin_lock_irqsave(&h->lock, flags); 7107 h->remove_in_progress = 1; 7108 spin_unlock_irqrestore(&h->lock, flags); 7109 cancel_delayed_work_sync(&h->monitor_ctlr_work); 7110 cancel_delayed_work_sync(&h->rescan_ctlr_work); 7111 destroy_workqueue(h->rescan_ctlr_wq); 7112 destroy_workqueue(h->resubmit_wq); 7113 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 7114 hpsa_shutdown(pdev); 7115 iounmap(h->vaddr); 7116 iounmap(h->transtable); 7117 iounmap(h->cfgtable); 7118 hpsa_free_device_info(h); 7119 hpsa_free_sg_chain_blocks(h); 7120 pci_free_consistent(h->pdev, 7121 h->nr_cmds * sizeof(struct CommandList), 7122 h->cmd_pool, h->cmd_pool_dhandle); 7123 pci_free_consistent(h->pdev, 7124 h->nr_cmds * sizeof(struct ErrorInfo), 7125 h->errinfo_pool, h->errinfo_pool_dhandle); 7126 hpsa_free_reply_queues(h); 7127 kfree(h->cmd_pool_bits); 7128 kfree(h->blockFetchTable); 7129 kfree(h->ioaccel1_blockFetchTable); 7130 kfree(h->ioaccel2_blockFetchTable); 7131 kfree(h->hba_inquiry_data); 7132 pci_disable_device(pdev); 7133 pci_release_regions(pdev); 7134 free_percpu(h->lockup_detected); 7135 kfree(h); 7136 } 7137 7138 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 7139 __attribute__((unused)) pm_message_t state) 7140 { 7141 return -ENOSYS; 7142 } 7143 7144 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 7145 { 7146 return -ENOSYS; 7147 } 7148 7149 static struct pci_driver hpsa_pci_driver = { 7150 .name = HPSA, 7151 .probe = hpsa_init_one, 7152 .remove = hpsa_remove_one, 7153 .id_table = hpsa_pci_device_id, /* id_table */ 7154 .shutdown = hpsa_shutdown, 7155 .suspend = hpsa_suspend, 7156 .resume = hpsa_resume, 7157 }; 7158 7159 /* Fill in bucket_map[], given nsgs (the max number of 7160 * scatter gather elements supported) and bucket[], 7161 * which is an array of 8 integers. The bucket[] array 7162 * contains 8 different DMA transfer sizes (in 16 7163 * byte increments) which the controller uses to fetch 7164 * commands. This function fills in bucket_map[], which 7165 * maps a given number of scatter gather elements to one of 7166 * the 8 DMA transfer sizes. The point of it is to allow the 7167 * controller to only do as much DMA as needed to fetch the 7168 * command, with the DMA transfer size encoded in the lower 7169 * bits of the command address. 7170 */ 7171 static void calc_bucket_map(int bucket[], int num_buckets, 7172 int nsgs, int min_blocks, u32 *bucket_map) 7173 { 7174 int i, j, b, size; 7175 7176 /* Note, bucket_map must have nsgs+1 entries. */ 7177 for (i = 0; i <= nsgs; i++) { 7178 /* Compute size of a command with i SG entries */ 7179 size = i + min_blocks; 7180 b = num_buckets; /* Assume the biggest bucket */ 7181 /* Find the bucket that is just big enough */ 7182 for (j = 0; j < num_buckets; j++) { 7183 if (bucket[j] >= size) { 7184 b = j; 7185 break; 7186 } 7187 } 7188 /* for a command with i SG entries, use bucket b. */ 7189 bucket_map[i] = b; 7190 } 7191 } 7192 7193 /* return -ENODEV or other reason on error, 0 on success */ 7194 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 7195 { 7196 int i; 7197 unsigned long register_value; 7198 unsigned long transMethod = CFGTBL_Trans_Performant | 7199 (trans_support & CFGTBL_Trans_use_short_tags) | 7200 CFGTBL_Trans_enable_directed_msix | 7201 (trans_support & (CFGTBL_Trans_io_accel1 | 7202 CFGTBL_Trans_io_accel2)); 7203 struct access_method access = SA5_performant_access; 7204 7205 /* This is a bit complicated. There are 8 registers on 7206 * the controller which we write to to tell it 8 different 7207 * sizes of commands which there may be. It's a way of 7208 * reducing the DMA done to fetch each command. Encoded into 7209 * each command's tag are 3 bits which communicate to the controller 7210 * which of the eight sizes that command fits within. The size of 7211 * each command depends on how many scatter gather entries there are. 7212 * Each SG entry requires 16 bytes. The eight registers are programmed 7213 * with the number of 16-byte blocks a command of that size requires. 7214 * The smallest command possible requires 5 such 16 byte blocks. 7215 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 7216 * blocks. Note, this only extends to the SG entries contained 7217 * within the command block, and does not extend to chained blocks 7218 * of SG elements. bft[] contains the eight values we write to 7219 * the registers. They are not evenly distributed, but have more 7220 * sizes for small commands, and fewer sizes for larger commands. 7221 */ 7222 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 7223 #define MIN_IOACCEL2_BFT_ENTRY 5 7224 #define HPSA_IOACCEL2_HEADER_SZ 4 7225 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 7226 13, 14, 15, 16, 17, 18, 19, 7227 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 7228 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 7229 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 7230 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 7231 16 * MIN_IOACCEL2_BFT_ENTRY); 7232 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 7233 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 7234 /* 5 = 1 s/g entry or 4k 7235 * 6 = 2 s/g entry or 8k 7236 * 8 = 4 s/g entry or 16k 7237 * 10 = 6 s/g entry or 24k 7238 */ 7239 7240 /* If the controller supports either ioaccel method then 7241 * we can also use the RAID stack submit path that does not 7242 * perform the superfluous readl() after each command submission. 7243 */ 7244 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 7245 access = SA5_performant_access_no_read; 7246 7247 /* Controller spec: zero out this buffer. */ 7248 for (i = 0; i < h->nreply_queues; i++) 7249 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 7250 7251 bft[7] = SG_ENTRIES_IN_CMD + 4; 7252 calc_bucket_map(bft, ARRAY_SIZE(bft), 7253 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 7254 for (i = 0; i < 8; i++) 7255 writel(bft[i], &h->transtable->BlockFetch[i]); 7256 7257 /* size of controller ring buffer */ 7258 writel(h->max_commands, &h->transtable->RepQSize); 7259 writel(h->nreply_queues, &h->transtable->RepQCount); 7260 writel(0, &h->transtable->RepQCtrAddrLow32); 7261 writel(0, &h->transtable->RepQCtrAddrHigh32); 7262 7263 for (i = 0; i < h->nreply_queues; i++) { 7264 writel(0, &h->transtable->RepQAddr[i].upper); 7265 writel(h->reply_queue[i].busaddr, 7266 &h->transtable->RepQAddr[i].lower); 7267 } 7268 7269 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7270 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 7271 /* 7272 * enable outbound interrupt coalescing in accelerator mode; 7273 */ 7274 if (trans_support & CFGTBL_Trans_io_accel1) { 7275 access = SA5_ioaccel_mode1_access; 7276 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 7277 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 7278 } else { 7279 if (trans_support & CFGTBL_Trans_io_accel2) { 7280 access = SA5_ioaccel_mode2_access; 7281 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 7282 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 7283 } 7284 } 7285 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7286 if (hpsa_wait_for_mode_change_ack(h)) { 7287 dev_err(&h->pdev->dev, 7288 "performant mode problem - doorbell timeout\n"); 7289 return -ENODEV; 7290 } 7291 register_value = readl(&(h->cfgtable->TransportActive)); 7292 if (!(register_value & CFGTBL_Trans_Performant)) { 7293 dev_err(&h->pdev->dev, 7294 "performant mode problem - transport not active\n"); 7295 return -ENODEV; 7296 } 7297 /* Change the access methods to the performant access methods */ 7298 h->access = access; 7299 h->transMethod = transMethod; 7300 7301 if (!((trans_support & CFGTBL_Trans_io_accel1) || 7302 (trans_support & CFGTBL_Trans_io_accel2))) 7303 return 0; 7304 7305 if (trans_support & CFGTBL_Trans_io_accel1) { 7306 /* Set up I/O accelerator mode */ 7307 for (i = 0; i < h->nreply_queues; i++) { 7308 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 7309 h->reply_queue[i].current_entry = 7310 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 7311 } 7312 bft[7] = h->ioaccel_maxsg + 8; 7313 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 7314 h->ioaccel1_blockFetchTable); 7315 7316 /* initialize all reply queue entries to unused */ 7317 for (i = 0; i < h->nreply_queues; i++) 7318 memset(h->reply_queue[i].head, 7319 (u8) IOACCEL_MODE1_REPLY_UNUSED, 7320 h->reply_queue_size); 7321 7322 /* set all the constant fields in the accelerator command 7323 * frames once at init time to save CPU cycles later. 7324 */ 7325 for (i = 0; i < h->nr_cmds; i++) { 7326 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 7327 7328 cp->function = IOACCEL1_FUNCTION_SCSIIO; 7329 cp->err_info = (u32) (h->errinfo_pool_dhandle + 7330 (i * sizeof(struct ErrorInfo))); 7331 cp->err_info_len = sizeof(struct ErrorInfo); 7332 cp->sgl_offset = IOACCEL1_SGLOFFSET; 7333 cp->host_context_flags = 7334 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 7335 cp->timeout_sec = 0; 7336 cp->ReplyQueue = 0; 7337 cp->tag = 7338 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 7339 cp->host_addr = 7340 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 7341 (i * sizeof(struct io_accel1_cmd))); 7342 } 7343 } else if (trans_support & CFGTBL_Trans_io_accel2) { 7344 u64 cfg_offset, cfg_base_addr_index; 7345 u32 bft2_offset, cfg_base_addr; 7346 int rc; 7347 7348 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7349 &cfg_base_addr_index, &cfg_offset); 7350 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 7351 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 7352 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 7353 4, h->ioaccel2_blockFetchTable); 7354 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 7355 BUILD_BUG_ON(offsetof(struct CfgTable, 7356 io_accel_request_size_offset) != 0xb8); 7357 h->ioaccel2_bft2_regs = 7358 remap_pci_mem(pci_resource_start(h->pdev, 7359 cfg_base_addr_index) + 7360 cfg_offset + bft2_offset, 7361 ARRAY_SIZE(bft2) * 7362 sizeof(*h->ioaccel2_bft2_regs)); 7363 for (i = 0; i < ARRAY_SIZE(bft2); i++) 7364 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 7365 } 7366 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7367 if (hpsa_wait_for_mode_change_ack(h)) { 7368 dev_err(&h->pdev->dev, 7369 "performant mode problem - enabling ioaccel mode\n"); 7370 return -ENODEV; 7371 } 7372 return 0; 7373 } 7374 7375 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h) 7376 { 7377 h->ioaccel_maxsg = 7378 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 7379 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 7380 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 7381 7382 /* Command structures must be aligned on a 128-byte boundary 7383 * because the 7 lower bits of the address are used by the 7384 * hardware. 7385 */ 7386 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 7387 IOACCEL1_COMMANDLIST_ALIGNMENT); 7388 h->ioaccel_cmd_pool = 7389 pci_alloc_consistent(h->pdev, 7390 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 7391 &(h->ioaccel_cmd_pool_dhandle)); 7392 7393 h->ioaccel1_blockFetchTable = 7394 kmalloc(((h->ioaccel_maxsg + 1) * 7395 sizeof(u32)), GFP_KERNEL); 7396 7397 if ((h->ioaccel_cmd_pool == NULL) || 7398 (h->ioaccel1_blockFetchTable == NULL)) 7399 goto clean_up; 7400 7401 memset(h->ioaccel_cmd_pool, 0, 7402 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 7403 return 0; 7404 7405 clean_up: 7406 if (h->ioaccel_cmd_pool) 7407 pci_free_consistent(h->pdev, 7408 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 7409 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); 7410 kfree(h->ioaccel1_blockFetchTable); 7411 return 1; 7412 } 7413 7414 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h) 7415 { 7416 /* Allocate ioaccel2 mode command blocks and block fetch table */ 7417 7418 h->ioaccel_maxsg = 7419 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 7420 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 7421 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 7422 7423 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 7424 IOACCEL2_COMMANDLIST_ALIGNMENT); 7425 h->ioaccel2_cmd_pool = 7426 pci_alloc_consistent(h->pdev, 7427 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 7428 &(h->ioaccel2_cmd_pool_dhandle)); 7429 7430 h->ioaccel2_blockFetchTable = 7431 kmalloc(((h->ioaccel_maxsg + 1) * 7432 sizeof(u32)), GFP_KERNEL); 7433 7434 if ((h->ioaccel2_cmd_pool == NULL) || 7435 (h->ioaccel2_blockFetchTable == NULL)) 7436 goto clean_up; 7437 7438 memset(h->ioaccel2_cmd_pool, 0, 7439 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 7440 return 0; 7441 7442 clean_up: 7443 if (h->ioaccel2_cmd_pool) 7444 pci_free_consistent(h->pdev, 7445 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 7446 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); 7447 kfree(h->ioaccel2_blockFetchTable); 7448 return 1; 7449 } 7450 7451 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 7452 { 7453 u32 trans_support; 7454 unsigned long transMethod = CFGTBL_Trans_Performant | 7455 CFGTBL_Trans_use_short_tags; 7456 int i; 7457 7458 if (hpsa_simple_mode) 7459 return; 7460 7461 trans_support = readl(&(h->cfgtable->TransportSupport)); 7462 if (!(trans_support & PERFORMANT_MODE)) 7463 return; 7464 7465 /* Check for I/O accelerator mode support */ 7466 if (trans_support & CFGTBL_Trans_io_accel1) { 7467 transMethod |= CFGTBL_Trans_io_accel1 | 7468 CFGTBL_Trans_enable_directed_msix; 7469 if (hpsa_alloc_ioaccel_cmd_and_bft(h)) 7470 goto clean_up; 7471 } else { 7472 if (trans_support & CFGTBL_Trans_io_accel2) { 7473 transMethod |= CFGTBL_Trans_io_accel2 | 7474 CFGTBL_Trans_enable_directed_msix; 7475 if (ioaccel2_alloc_cmds_and_bft(h)) 7476 goto clean_up; 7477 } 7478 } 7479 7480 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; 7481 hpsa_get_max_perf_mode_cmds(h); 7482 /* Performant mode ring buffer and supporting data structures */ 7483 h->reply_queue_size = h->max_commands * sizeof(u64); 7484 7485 for (i = 0; i < h->nreply_queues; i++) { 7486 h->reply_queue[i].head = pci_alloc_consistent(h->pdev, 7487 h->reply_queue_size, 7488 &(h->reply_queue[i].busaddr)); 7489 if (!h->reply_queue[i].head) 7490 goto clean_up; 7491 h->reply_queue[i].size = h->max_commands; 7492 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 7493 h->reply_queue[i].current_entry = 0; 7494 } 7495 7496 /* Need a block fetch table for performant mode */ 7497 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 7498 sizeof(u32)), GFP_KERNEL); 7499 if (!h->blockFetchTable) 7500 goto clean_up; 7501 7502 hpsa_enter_performant_mode(h, trans_support); 7503 return; 7504 7505 clean_up: 7506 hpsa_free_reply_queues(h); 7507 kfree(h->blockFetchTable); 7508 } 7509 7510 static int is_accelerated_cmd(struct CommandList *c) 7511 { 7512 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 7513 } 7514 7515 static void hpsa_drain_accel_commands(struct ctlr_info *h) 7516 { 7517 struct CommandList *c = NULL; 7518 int i, accel_cmds_out; 7519 int refcount; 7520 7521 do { /* wait for all outstanding ioaccel commands to drain out */ 7522 accel_cmds_out = 0; 7523 for (i = 0; i < h->nr_cmds; i++) { 7524 c = h->cmd_pool + i; 7525 refcount = atomic_inc_return(&c->refcount); 7526 if (refcount > 1) /* Command is allocated */ 7527 accel_cmds_out += is_accelerated_cmd(c); 7528 cmd_free(h, c); 7529 } 7530 if (accel_cmds_out <= 0) 7531 break; 7532 msleep(100); 7533 } while (1); 7534 } 7535 7536 /* 7537 * This is it. Register the PCI driver information for the cards we control 7538 * the OS will call our registered routines when it finds one of our cards. 7539 */ 7540 static int __init hpsa_init(void) 7541 { 7542 return pci_register_driver(&hpsa_pci_driver); 7543 } 7544 7545 static void __exit hpsa_cleanup(void) 7546 { 7547 pci_unregister_driver(&hpsa_pci_driver); 7548 } 7549 7550 static void __attribute__((unused)) verify_offsets(void) 7551 { 7552 #define VERIFY_OFFSET(member, offset) \ 7553 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 7554 7555 VERIFY_OFFSET(structure_size, 0); 7556 VERIFY_OFFSET(volume_blk_size, 4); 7557 VERIFY_OFFSET(volume_blk_cnt, 8); 7558 VERIFY_OFFSET(phys_blk_shift, 16); 7559 VERIFY_OFFSET(parity_rotation_shift, 17); 7560 VERIFY_OFFSET(strip_size, 18); 7561 VERIFY_OFFSET(disk_starting_blk, 20); 7562 VERIFY_OFFSET(disk_blk_cnt, 28); 7563 VERIFY_OFFSET(data_disks_per_row, 36); 7564 VERIFY_OFFSET(metadata_disks_per_row, 38); 7565 VERIFY_OFFSET(row_cnt, 40); 7566 VERIFY_OFFSET(layout_map_count, 42); 7567 VERIFY_OFFSET(flags, 44); 7568 VERIFY_OFFSET(dekindex, 46); 7569 /* VERIFY_OFFSET(reserved, 48 */ 7570 VERIFY_OFFSET(data, 64); 7571 7572 #undef VERIFY_OFFSET 7573 7574 #define VERIFY_OFFSET(member, offset) \ 7575 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 7576 7577 VERIFY_OFFSET(IU_type, 0); 7578 VERIFY_OFFSET(direction, 1); 7579 VERIFY_OFFSET(reply_queue, 2); 7580 /* VERIFY_OFFSET(reserved1, 3); */ 7581 VERIFY_OFFSET(scsi_nexus, 4); 7582 VERIFY_OFFSET(Tag, 8); 7583 VERIFY_OFFSET(cdb, 16); 7584 VERIFY_OFFSET(cciss_lun, 32); 7585 VERIFY_OFFSET(data_len, 40); 7586 VERIFY_OFFSET(cmd_priority_task_attr, 44); 7587 VERIFY_OFFSET(sg_count, 45); 7588 /* VERIFY_OFFSET(reserved3 */ 7589 VERIFY_OFFSET(err_ptr, 48); 7590 VERIFY_OFFSET(err_len, 56); 7591 /* VERIFY_OFFSET(reserved4 */ 7592 VERIFY_OFFSET(sg, 64); 7593 7594 #undef VERIFY_OFFSET 7595 7596 #define VERIFY_OFFSET(member, offset) \ 7597 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 7598 7599 VERIFY_OFFSET(dev_handle, 0x00); 7600 VERIFY_OFFSET(reserved1, 0x02); 7601 VERIFY_OFFSET(function, 0x03); 7602 VERIFY_OFFSET(reserved2, 0x04); 7603 VERIFY_OFFSET(err_info, 0x0C); 7604 VERIFY_OFFSET(reserved3, 0x10); 7605 VERIFY_OFFSET(err_info_len, 0x12); 7606 VERIFY_OFFSET(reserved4, 0x13); 7607 VERIFY_OFFSET(sgl_offset, 0x14); 7608 VERIFY_OFFSET(reserved5, 0x15); 7609 VERIFY_OFFSET(transfer_len, 0x1C); 7610 VERIFY_OFFSET(reserved6, 0x20); 7611 VERIFY_OFFSET(io_flags, 0x24); 7612 VERIFY_OFFSET(reserved7, 0x26); 7613 VERIFY_OFFSET(LUN, 0x34); 7614 VERIFY_OFFSET(control, 0x3C); 7615 VERIFY_OFFSET(CDB, 0x40); 7616 VERIFY_OFFSET(reserved8, 0x50); 7617 VERIFY_OFFSET(host_context_flags, 0x60); 7618 VERIFY_OFFSET(timeout_sec, 0x62); 7619 VERIFY_OFFSET(ReplyQueue, 0x64); 7620 VERIFY_OFFSET(reserved9, 0x65); 7621 VERIFY_OFFSET(tag, 0x68); 7622 VERIFY_OFFSET(host_addr, 0x70); 7623 VERIFY_OFFSET(CISS_LUN, 0x78); 7624 VERIFY_OFFSET(SG, 0x78 + 8); 7625 #undef VERIFY_OFFSET 7626 } 7627 7628 module_init(hpsa_init); 7629 module_exit(hpsa_cleanup); 7630