xref: /openbmc/linux/drivers/scsi/hpsa.c (revision d0b5e15f)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62 
63 /* How long to wait for CISS doorbell communication */
64 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
65 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
66 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
67 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
68 #define MAX_IOCTL_CONFIG_WAIT 1000
69 
70 /*define how many times we will try a command because of bus resets */
71 #define MAX_CMD_RETRIES 3
72 
73 /* Embedded module documentation macros - see modules.h */
74 MODULE_AUTHOR("Hewlett-Packard Company");
75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76 	HPSA_DRIVER_VERSION);
77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
78 MODULE_VERSION(HPSA_DRIVER_VERSION);
79 MODULE_LICENSE("GPL");
80 
81 static int hpsa_allow_any;
82 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_allow_any,
84 		"Allow hpsa driver to access unknown HP Smart Array hardware");
85 static int hpsa_simple_mode;
86 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_simple_mode,
88 	"Use 'simple mode' rather than 'performant mode'");
89 
90 /* define the PCI info for the cards we can control */
91 static const struct pci_device_id hpsa_pci_device_id[] = {
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
132 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
133 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
134 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
135 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
136 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
137 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
138 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139 	{0,}
140 };
141 
142 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
143 
144 /*  board_id = Subsystem Device ID & Vendor ID
145  *  product = Marketing Name for the board
146  *  access = Address of the struct of function pointers
147  */
148 static struct board_type products[] = {
149 	{0x3241103C, "Smart Array P212", &SA5_access},
150 	{0x3243103C, "Smart Array P410", &SA5_access},
151 	{0x3245103C, "Smart Array P410i", &SA5_access},
152 	{0x3247103C, "Smart Array P411", &SA5_access},
153 	{0x3249103C, "Smart Array P812", &SA5_access},
154 	{0x324A103C, "Smart Array P712m", &SA5_access},
155 	{0x324B103C, "Smart Array P711m", &SA5_access},
156 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
157 	{0x3350103C, "Smart Array P222", &SA5_access},
158 	{0x3351103C, "Smart Array P420", &SA5_access},
159 	{0x3352103C, "Smart Array P421", &SA5_access},
160 	{0x3353103C, "Smart Array P822", &SA5_access},
161 	{0x3354103C, "Smart Array P420i", &SA5_access},
162 	{0x3355103C, "Smart Array P220i", &SA5_access},
163 	{0x3356103C, "Smart Array P721m", &SA5_access},
164 	{0x1921103C, "Smart Array P830i", &SA5_access},
165 	{0x1922103C, "Smart Array P430", &SA5_access},
166 	{0x1923103C, "Smart Array P431", &SA5_access},
167 	{0x1924103C, "Smart Array P830", &SA5_access},
168 	{0x1926103C, "Smart Array P731m", &SA5_access},
169 	{0x1928103C, "Smart Array P230i", &SA5_access},
170 	{0x1929103C, "Smart Array P530", &SA5_access},
171 	{0x21BD103C, "Smart Array P244br", &SA5_access},
172 	{0x21BE103C, "Smart Array P741m", &SA5_access},
173 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
174 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
175 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
176 	{0x21C2103C, "Smart Array P440", &SA5_access},
177 	{0x21C3103C, "Smart Array P441", &SA5_access},
178 	{0x21C4103C, "Smart Array", &SA5_access},
179 	{0x21C5103C, "Smart Array P841", &SA5_access},
180 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
181 	{0x21C7103C, "Smart HBA H240", &SA5_access},
182 	{0x21C8103C, "Smart HBA H241", &SA5_access},
183 	{0x21C9103C, "Smart Array", &SA5_access},
184 	{0x21CA103C, "Smart Array P246br", &SA5_access},
185 	{0x21CB103C, "Smart Array P840", &SA5_access},
186 	{0x21CC103C, "Smart Array", &SA5_access},
187 	{0x21CD103C, "Smart Array", &SA5_access},
188 	{0x21CE103C, "Smart HBA", &SA5_access},
189 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
190 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
191 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
192 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
193 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
194 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
195 };
196 
197 static int number_of_controllers;
198 
199 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
200 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
201 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
202 
203 #ifdef CONFIG_COMPAT
204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
205 	void __user *arg);
206 #endif
207 
208 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212 	int cmd_type);
213 static void hpsa_free_cmd_pool(struct ctlr_info *h);
214 #define VPD_PAGE (1 << 8)
215 
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219 	unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221 
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226 
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 	struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 	struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 	int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 			       u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 				    unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 				     int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
254 static void hpsa_command_resubmit_worker(struct work_struct *work);
255 
256 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
257 {
258 	unsigned long *priv = shost_priv(sdev->host);
259 	return (struct ctlr_info *) *priv;
260 }
261 
262 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
263 {
264 	unsigned long *priv = shost_priv(sh);
265 	return (struct ctlr_info *) *priv;
266 }
267 
268 static int check_for_unit_attention(struct ctlr_info *h,
269 	struct CommandList *c)
270 {
271 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
272 		return 0;
273 
274 	switch (c->err_info->SenseInfo[12]) {
275 	case STATE_CHANGED:
276 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
277 			"detected, command retried\n", h->ctlr);
278 		break;
279 	case LUN_FAILED:
280 		dev_warn(&h->pdev->dev,
281 			HPSA "%d: LUN failure detected\n", h->ctlr);
282 		break;
283 	case REPORT_LUNS_CHANGED:
284 		dev_warn(&h->pdev->dev,
285 			HPSA "%d: report LUN data changed\n", h->ctlr);
286 	/*
287 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
288 	 * target (array) devices.
289 	 */
290 		break;
291 	case POWER_OR_RESET:
292 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
293 			"or device reset detected\n", h->ctlr);
294 		break;
295 	case UNIT_ATTENTION_CLEARED:
296 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
297 		    "cleared by another initiator\n", h->ctlr);
298 		break;
299 	default:
300 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
301 			"unit attention detected\n", h->ctlr);
302 		break;
303 	}
304 	return 1;
305 }
306 
307 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
308 {
309 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
310 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
311 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
312 		return 0;
313 	dev_warn(&h->pdev->dev, HPSA "device busy");
314 	return 1;
315 }
316 
317 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
318 					 struct device_attribute *attr,
319 					 const char *buf, size_t count)
320 {
321 	int status, len;
322 	struct ctlr_info *h;
323 	struct Scsi_Host *shost = class_to_shost(dev);
324 	char tmpbuf[10];
325 
326 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
327 		return -EACCES;
328 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
329 	strncpy(tmpbuf, buf, len);
330 	tmpbuf[len] = '\0';
331 	if (sscanf(tmpbuf, "%d", &status) != 1)
332 		return -EINVAL;
333 	h = shost_to_hba(shost);
334 	h->acciopath_status = !!status;
335 	dev_warn(&h->pdev->dev,
336 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
337 		h->acciopath_status ? "enabled" : "disabled");
338 	return count;
339 }
340 
341 static ssize_t host_store_raid_offload_debug(struct device *dev,
342 					 struct device_attribute *attr,
343 					 const char *buf, size_t count)
344 {
345 	int debug_level, len;
346 	struct ctlr_info *h;
347 	struct Scsi_Host *shost = class_to_shost(dev);
348 	char tmpbuf[10];
349 
350 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
351 		return -EACCES;
352 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
353 	strncpy(tmpbuf, buf, len);
354 	tmpbuf[len] = '\0';
355 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
356 		return -EINVAL;
357 	if (debug_level < 0)
358 		debug_level = 0;
359 	h = shost_to_hba(shost);
360 	h->raid_offload_debug = debug_level;
361 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
362 		h->raid_offload_debug);
363 	return count;
364 }
365 
366 static ssize_t host_store_rescan(struct device *dev,
367 				 struct device_attribute *attr,
368 				 const char *buf, size_t count)
369 {
370 	struct ctlr_info *h;
371 	struct Scsi_Host *shost = class_to_shost(dev);
372 	h = shost_to_hba(shost);
373 	hpsa_scan_start(h->scsi_host);
374 	return count;
375 }
376 
377 static ssize_t host_show_firmware_revision(struct device *dev,
378 	     struct device_attribute *attr, char *buf)
379 {
380 	struct ctlr_info *h;
381 	struct Scsi_Host *shost = class_to_shost(dev);
382 	unsigned char *fwrev;
383 
384 	h = shost_to_hba(shost);
385 	if (!h->hba_inquiry_data)
386 		return 0;
387 	fwrev = &h->hba_inquiry_data[32];
388 	return snprintf(buf, 20, "%c%c%c%c\n",
389 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
390 }
391 
392 static ssize_t host_show_commands_outstanding(struct device *dev,
393 	     struct device_attribute *attr, char *buf)
394 {
395 	struct Scsi_Host *shost = class_to_shost(dev);
396 	struct ctlr_info *h = shost_to_hba(shost);
397 
398 	return snprintf(buf, 20, "%d\n",
399 			atomic_read(&h->commands_outstanding));
400 }
401 
402 static ssize_t host_show_transport_mode(struct device *dev,
403 	struct device_attribute *attr, char *buf)
404 {
405 	struct ctlr_info *h;
406 	struct Scsi_Host *shost = class_to_shost(dev);
407 
408 	h = shost_to_hba(shost);
409 	return snprintf(buf, 20, "%s\n",
410 		h->transMethod & CFGTBL_Trans_Performant ?
411 			"performant" : "simple");
412 }
413 
414 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
415 	struct device_attribute *attr, char *buf)
416 {
417 	struct ctlr_info *h;
418 	struct Scsi_Host *shost = class_to_shost(dev);
419 
420 	h = shost_to_hba(shost);
421 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
422 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
423 }
424 
425 /* List of controllers which cannot be hard reset on kexec with reset_devices */
426 static u32 unresettable_controller[] = {
427 	0x324a103C, /* Smart Array P712m */
428 	0x324b103C, /* SmartArray P711m */
429 	0x3223103C, /* Smart Array P800 */
430 	0x3234103C, /* Smart Array P400 */
431 	0x3235103C, /* Smart Array P400i */
432 	0x3211103C, /* Smart Array E200i */
433 	0x3212103C, /* Smart Array E200 */
434 	0x3213103C, /* Smart Array E200i */
435 	0x3214103C, /* Smart Array E200i */
436 	0x3215103C, /* Smart Array E200i */
437 	0x3237103C, /* Smart Array E500 */
438 	0x323D103C, /* Smart Array P700m */
439 	0x40800E11, /* Smart Array 5i */
440 	0x409C0E11, /* Smart Array 6400 */
441 	0x409D0E11, /* Smart Array 6400 EM */
442 	0x40700E11, /* Smart Array 5300 */
443 	0x40820E11, /* Smart Array 532 */
444 	0x40830E11, /* Smart Array 5312 */
445 	0x409A0E11, /* Smart Array 641 */
446 	0x409B0E11, /* Smart Array 642 */
447 	0x40910E11, /* Smart Array 6i */
448 };
449 
450 /* List of controllers which cannot even be soft reset */
451 static u32 soft_unresettable_controller[] = {
452 	0x40800E11, /* Smart Array 5i */
453 	0x40700E11, /* Smart Array 5300 */
454 	0x40820E11, /* Smart Array 532 */
455 	0x40830E11, /* Smart Array 5312 */
456 	0x409A0E11, /* Smart Array 641 */
457 	0x409B0E11, /* Smart Array 642 */
458 	0x40910E11, /* Smart Array 6i */
459 	/* Exclude 640x boards.  These are two pci devices in one slot
460 	 * which share a battery backed cache module.  One controls the
461 	 * cache, the other accesses the cache through the one that controls
462 	 * it.  If we reset the one controlling the cache, the other will
463 	 * likely not be happy.  Just forbid resetting this conjoined mess.
464 	 * The 640x isn't really supported by hpsa anyway.
465 	 */
466 	0x409C0E11, /* Smart Array 6400 */
467 	0x409D0E11, /* Smart Array 6400 EM */
468 };
469 
470 static int ctlr_is_hard_resettable(u32 board_id)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
475 		if (unresettable_controller[i] == board_id)
476 			return 0;
477 	return 1;
478 }
479 
480 static int ctlr_is_soft_resettable(u32 board_id)
481 {
482 	int i;
483 
484 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
485 		if (soft_unresettable_controller[i] == board_id)
486 			return 0;
487 	return 1;
488 }
489 
490 static int ctlr_is_resettable(u32 board_id)
491 {
492 	return ctlr_is_hard_resettable(board_id) ||
493 		ctlr_is_soft_resettable(board_id);
494 }
495 
496 static ssize_t host_show_resettable(struct device *dev,
497 	struct device_attribute *attr, char *buf)
498 {
499 	struct ctlr_info *h;
500 	struct Scsi_Host *shost = class_to_shost(dev);
501 
502 	h = shost_to_hba(shost);
503 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
504 }
505 
506 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
507 {
508 	return (scsi3addr[3] & 0xC0) == 0x40;
509 }
510 
511 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
512 	"1(+0)ADM", "UNKNOWN"
513 };
514 #define HPSA_RAID_0	0
515 #define HPSA_RAID_4	1
516 #define HPSA_RAID_1	2	/* also used for RAID 10 */
517 #define HPSA_RAID_5	3	/* also used for RAID 50 */
518 #define HPSA_RAID_51	4
519 #define HPSA_RAID_6	5	/* also used for RAID 60 */
520 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
521 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
522 
523 static ssize_t raid_level_show(struct device *dev,
524 	     struct device_attribute *attr, char *buf)
525 {
526 	ssize_t l = 0;
527 	unsigned char rlevel;
528 	struct ctlr_info *h;
529 	struct scsi_device *sdev;
530 	struct hpsa_scsi_dev_t *hdev;
531 	unsigned long flags;
532 
533 	sdev = to_scsi_device(dev);
534 	h = sdev_to_hba(sdev);
535 	spin_lock_irqsave(&h->lock, flags);
536 	hdev = sdev->hostdata;
537 	if (!hdev) {
538 		spin_unlock_irqrestore(&h->lock, flags);
539 		return -ENODEV;
540 	}
541 
542 	/* Is this even a logical drive? */
543 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
544 		spin_unlock_irqrestore(&h->lock, flags);
545 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
546 		return l;
547 	}
548 
549 	rlevel = hdev->raid_level;
550 	spin_unlock_irqrestore(&h->lock, flags);
551 	if (rlevel > RAID_UNKNOWN)
552 		rlevel = RAID_UNKNOWN;
553 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
554 	return l;
555 }
556 
557 static ssize_t lunid_show(struct device *dev,
558 	     struct device_attribute *attr, char *buf)
559 {
560 	struct ctlr_info *h;
561 	struct scsi_device *sdev;
562 	struct hpsa_scsi_dev_t *hdev;
563 	unsigned long flags;
564 	unsigned char lunid[8];
565 
566 	sdev = to_scsi_device(dev);
567 	h = sdev_to_hba(sdev);
568 	spin_lock_irqsave(&h->lock, flags);
569 	hdev = sdev->hostdata;
570 	if (!hdev) {
571 		spin_unlock_irqrestore(&h->lock, flags);
572 		return -ENODEV;
573 	}
574 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
575 	spin_unlock_irqrestore(&h->lock, flags);
576 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
577 		lunid[0], lunid[1], lunid[2], lunid[3],
578 		lunid[4], lunid[5], lunid[6], lunid[7]);
579 }
580 
581 static ssize_t unique_id_show(struct device *dev,
582 	     struct device_attribute *attr, char *buf)
583 {
584 	struct ctlr_info *h;
585 	struct scsi_device *sdev;
586 	struct hpsa_scsi_dev_t *hdev;
587 	unsigned long flags;
588 	unsigned char sn[16];
589 
590 	sdev = to_scsi_device(dev);
591 	h = sdev_to_hba(sdev);
592 	spin_lock_irqsave(&h->lock, flags);
593 	hdev = sdev->hostdata;
594 	if (!hdev) {
595 		spin_unlock_irqrestore(&h->lock, flags);
596 		return -ENODEV;
597 	}
598 	memcpy(sn, hdev->device_id, sizeof(sn));
599 	spin_unlock_irqrestore(&h->lock, flags);
600 	return snprintf(buf, 16 * 2 + 2,
601 			"%02X%02X%02X%02X%02X%02X%02X%02X"
602 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
603 			sn[0], sn[1], sn[2], sn[3],
604 			sn[4], sn[5], sn[6], sn[7],
605 			sn[8], sn[9], sn[10], sn[11],
606 			sn[12], sn[13], sn[14], sn[15]);
607 }
608 
609 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
610 	     struct device_attribute *attr, char *buf)
611 {
612 	struct ctlr_info *h;
613 	struct scsi_device *sdev;
614 	struct hpsa_scsi_dev_t *hdev;
615 	unsigned long flags;
616 	int offload_enabled;
617 
618 	sdev = to_scsi_device(dev);
619 	h = sdev_to_hba(sdev);
620 	spin_lock_irqsave(&h->lock, flags);
621 	hdev = sdev->hostdata;
622 	if (!hdev) {
623 		spin_unlock_irqrestore(&h->lock, flags);
624 		return -ENODEV;
625 	}
626 	offload_enabled = hdev->offload_enabled;
627 	spin_unlock_irqrestore(&h->lock, flags);
628 	return snprintf(buf, 20, "%d\n", offload_enabled);
629 }
630 
631 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
632 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
633 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
634 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
635 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
636 			host_show_hp_ssd_smart_path_enabled, NULL);
637 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
638 		host_show_hp_ssd_smart_path_status,
639 		host_store_hp_ssd_smart_path_status);
640 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
641 			host_store_raid_offload_debug);
642 static DEVICE_ATTR(firmware_revision, S_IRUGO,
643 	host_show_firmware_revision, NULL);
644 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
645 	host_show_commands_outstanding, NULL);
646 static DEVICE_ATTR(transport_mode, S_IRUGO,
647 	host_show_transport_mode, NULL);
648 static DEVICE_ATTR(resettable, S_IRUGO,
649 	host_show_resettable, NULL);
650 
651 static struct device_attribute *hpsa_sdev_attrs[] = {
652 	&dev_attr_raid_level,
653 	&dev_attr_lunid,
654 	&dev_attr_unique_id,
655 	&dev_attr_hp_ssd_smart_path_enabled,
656 	NULL,
657 };
658 
659 static struct device_attribute *hpsa_shost_attrs[] = {
660 	&dev_attr_rescan,
661 	&dev_attr_firmware_revision,
662 	&dev_attr_commands_outstanding,
663 	&dev_attr_transport_mode,
664 	&dev_attr_resettable,
665 	&dev_attr_hp_ssd_smart_path_status,
666 	&dev_attr_raid_offload_debug,
667 	NULL,
668 };
669 
670 static struct scsi_host_template hpsa_driver_template = {
671 	.module			= THIS_MODULE,
672 	.name			= HPSA,
673 	.proc_name		= HPSA,
674 	.queuecommand		= hpsa_scsi_queue_command,
675 	.scan_start		= hpsa_scan_start,
676 	.scan_finished		= hpsa_scan_finished,
677 	.change_queue_depth	= hpsa_change_queue_depth,
678 	.this_id		= -1,
679 	.use_clustering		= ENABLE_CLUSTERING,
680 	.eh_abort_handler	= hpsa_eh_abort_handler,
681 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
682 	.ioctl			= hpsa_ioctl,
683 	.slave_alloc		= hpsa_slave_alloc,
684 	.slave_destroy		= hpsa_slave_destroy,
685 #ifdef CONFIG_COMPAT
686 	.compat_ioctl		= hpsa_compat_ioctl,
687 #endif
688 	.sdev_attrs = hpsa_sdev_attrs,
689 	.shost_attrs = hpsa_shost_attrs,
690 	.max_sectors = 8192,
691 	.no_write_same = 1,
692 };
693 
694 static inline u32 next_command(struct ctlr_info *h, u8 q)
695 {
696 	u32 a;
697 	struct reply_queue_buffer *rq = &h->reply_queue[q];
698 
699 	if (h->transMethod & CFGTBL_Trans_io_accel1)
700 		return h->access.command_completed(h, q);
701 
702 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
703 		return h->access.command_completed(h, q);
704 
705 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
706 		a = rq->head[rq->current_entry];
707 		rq->current_entry++;
708 		atomic_dec(&h->commands_outstanding);
709 	} else {
710 		a = FIFO_EMPTY;
711 	}
712 	/* Check for wraparound */
713 	if (rq->current_entry == h->max_commands) {
714 		rq->current_entry = 0;
715 		rq->wraparound ^= 1;
716 	}
717 	return a;
718 }
719 
720 /*
721  * There are some special bits in the bus address of the
722  * command that we have to set for the controller to know
723  * how to process the command:
724  *
725  * Normal performant mode:
726  * bit 0: 1 means performant mode, 0 means simple mode.
727  * bits 1-3 = block fetch table entry
728  * bits 4-6 = command type (== 0)
729  *
730  * ioaccel1 mode:
731  * bit 0 = "performant mode" bit.
732  * bits 1-3 = block fetch table entry
733  * bits 4-6 = command type (== 110)
734  * (command type is needed because ioaccel1 mode
735  * commands are submitted through the same register as normal
736  * mode commands, so this is how the controller knows whether
737  * the command is normal mode or ioaccel1 mode.)
738  *
739  * ioaccel2 mode:
740  * bit 0 = "performant mode" bit.
741  * bits 1-4 = block fetch table entry (note extra bit)
742  * bits 4-6 = not needed, because ioaccel2 mode has
743  * a separate special register for submitting commands.
744  */
745 
746 /* set_performant_mode: Modify the tag for cciss performant
747  * set bit 0 for pull model, bits 3-1 for block fetch
748  * register number
749  */
750 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
751 {
752 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
753 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
754 		if (likely(h->msix_vector > 0))
755 			c->Header.ReplyQueue =
756 				raw_smp_processor_id() % h->nreply_queues;
757 	}
758 }
759 
760 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
761 						struct CommandList *c)
762 {
763 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
764 
765 	/* Tell the controller to post the reply to the queue for this
766 	 * processor.  This seems to give the best I/O throughput.
767 	 */
768 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
769 	/* Set the bits in the address sent down to include:
770 	 *  - performant mode bit (bit 0)
771 	 *  - pull count (bits 1-3)
772 	 *  - command type (bits 4-6)
773 	 */
774 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
775 					IOACCEL1_BUSADDR_CMDTYPE;
776 }
777 
778 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
779 						struct CommandList *c)
780 {
781 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
782 
783 	/* Tell the controller to post the reply to the queue for this
784 	 * processor.  This seems to give the best I/O throughput.
785 	 */
786 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
787 	/* Set the bits in the address sent down to include:
788 	 *  - performant mode bit not used in ioaccel mode 2
789 	 *  - pull count (bits 0-3)
790 	 *  - command type isn't needed for ioaccel2
791 	 */
792 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
793 }
794 
795 static int is_firmware_flash_cmd(u8 *cdb)
796 {
797 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
798 }
799 
800 /*
801  * During firmware flash, the heartbeat register may not update as frequently
802  * as it should.  So we dial down lockup detection during firmware flash. and
803  * dial it back up when firmware flash completes.
804  */
805 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
806 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
807 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
808 		struct CommandList *c)
809 {
810 	if (!is_firmware_flash_cmd(c->Request.CDB))
811 		return;
812 	atomic_inc(&h->firmware_flash_in_progress);
813 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
814 }
815 
816 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
817 		struct CommandList *c)
818 {
819 	if (is_firmware_flash_cmd(c->Request.CDB) &&
820 		atomic_dec_and_test(&h->firmware_flash_in_progress))
821 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
822 }
823 
824 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
825 	struct CommandList *c)
826 {
827 	dial_down_lockup_detection_during_fw_flash(h, c);
828 	atomic_inc(&h->commands_outstanding);
829 	switch (c->cmd_type) {
830 	case CMD_IOACCEL1:
831 		set_ioaccel1_performant_mode(h, c);
832 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
833 		break;
834 	case CMD_IOACCEL2:
835 		set_ioaccel2_performant_mode(h, c);
836 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
837 		break;
838 	default:
839 		set_performant_mode(h, c);
840 		h->access.submit_command(h, c);
841 	}
842 }
843 
844 static inline int is_hba_lunid(unsigned char scsi3addr[])
845 {
846 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
847 }
848 
849 static inline int is_scsi_rev_5(struct ctlr_info *h)
850 {
851 	if (!h->hba_inquiry_data)
852 		return 0;
853 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
854 		return 1;
855 	return 0;
856 }
857 
858 static int hpsa_find_target_lun(struct ctlr_info *h,
859 	unsigned char scsi3addr[], int bus, int *target, int *lun)
860 {
861 	/* finds an unused bus, target, lun for a new physical device
862 	 * assumes h->devlock is held
863 	 */
864 	int i, found = 0;
865 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
866 
867 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
868 
869 	for (i = 0; i < h->ndevices; i++) {
870 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
871 			__set_bit(h->dev[i]->target, lun_taken);
872 	}
873 
874 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
875 	if (i < HPSA_MAX_DEVICES) {
876 		/* *bus = 1; */
877 		*target = i;
878 		*lun = 0;
879 		found = 1;
880 	}
881 	return !found;
882 }
883 
884 /* Add an entry into h->dev[] array. */
885 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
886 		struct hpsa_scsi_dev_t *device,
887 		struct hpsa_scsi_dev_t *added[], int *nadded)
888 {
889 	/* assumes h->devlock is held */
890 	int n = h->ndevices;
891 	int i;
892 	unsigned char addr1[8], addr2[8];
893 	struct hpsa_scsi_dev_t *sd;
894 
895 	if (n >= HPSA_MAX_DEVICES) {
896 		dev_err(&h->pdev->dev, "too many devices, some will be "
897 			"inaccessible.\n");
898 		return -1;
899 	}
900 
901 	/* physical devices do not have lun or target assigned until now. */
902 	if (device->lun != -1)
903 		/* Logical device, lun is already assigned. */
904 		goto lun_assigned;
905 
906 	/* If this device a non-zero lun of a multi-lun device
907 	 * byte 4 of the 8-byte LUN addr will contain the logical
908 	 * unit no, zero otherwise.
909 	 */
910 	if (device->scsi3addr[4] == 0) {
911 		/* This is not a non-zero lun of a multi-lun device */
912 		if (hpsa_find_target_lun(h, device->scsi3addr,
913 			device->bus, &device->target, &device->lun) != 0)
914 			return -1;
915 		goto lun_assigned;
916 	}
917 
918 	/* This is a non-zero lun of a multi-lun device.
919 	 * Search through our list and find the device which
920 	 * has the same 8 byte LUN address, excepting byte 4.
921 	 * Assign the same bus and target for this new LUN.
922 	 * Use the logical unit number from the firmware.
923 	 */
924 	memcpy(addr1, device->scsi3addr, 8);
925 	addr1[4] = 0;
926 	for (i = 0; i < n; i++) {
927 		sd = h->dev[i];
928 		memcpy(addr2, sd->scsi3addr, 8);
929 		addr2[4] = 0;
930 		/* differ only in byte 4? */
931 		if (memcmp(addr1, addr2, 8) == 0) {
932 			device->bus = sd->bus;
933 			device->target = sd->target;
934 			device->lun = device->scsi3addr[4];
935 			break;
936 		}
937 	}
938 	if (device->lun == -1) {
939 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
940 			" suspect firmware bug or unsupported hardware "
941 			"configuration.\n");
942 			return -1;
943 	}
944 
945 lun_assigned:
946 
947 	h->dev[n] = device;
948 	h->ndevices++;
949 	added[*nadded] = device;
950 	(*nadded)++;
951 
952 	/* initially, (before registering with scsi layer) we don't
953 	 * know our hostno and we don't want to print anything first
954 	 * time anyway (the scsi layer's inquiries will show that info)
955 	 */
956 	/* if (hostno != -1) */
957 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
958 			scsi_device_type(device->devtype), hostno,
959 			device->bus, device->target, device->lun);
960 	return 0;
961 }
962 
963 /* Update an entry in h->dev[] array. */
964 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
965 	int entry, struct hpsa_scsi_dev_t *new_entry)
966 {
967 	/* assumes h->devlock is held */
968 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
969 
970 	/* Raid level changed. */
971 	h->dev[entry]->raid_level = new_entry->raid_level;
972 
973 	/* Raid offload parameters changed.  Careful about the ordering. */
974 	if (new_entry->offload_config && new_entry->offload_enabled) {
975 		/*
976 		 * if drive is newly offload_enabled, we want to copy the
977 		 * raid map data first.  If previously offload_enabled and
978 		 * offload_config were set, raid map data had better be
979 		 * the same as it was before.  if raid map data is changed
980 		 * then it had better be the case that
981 		 * h->dev[entry]->offload_enabled is currently 0.
982 		 */
983 		h->dev[entry]->raid_map = new_entry->raid_map;
984 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
985 		wmb(); /* ensure raid map updated prior to ->offload_enabled */
986 	}
987 	h->dev[entry]->offload_config = new_entry->offload_config;
988 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
989 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990 	h->dev[entry]->queue_depth = new_entry->queue_depth;
991 
992 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
993 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
994 		new_entry->target, new_entry->lun);
995 }
996 
997 /* Replace an entry from h->dev[] array. */
998 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
999 	int entry, struct hpsa_scsi_dev_t *new_entry,
1000 	struct hpsa_scsi_dev_t *added[], int *nadded,
1001 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1002 {
1003 	/* assumes h->devlock is held */
1004 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1005 	removed[*nremoved] = h->dev[entry];
1006 	(*nremoved)++;
1007 
1008 	/*
1009 	 * New physical devices won't have target/lun assigned yet
1010 	 * so we need to preserve the values in the slot we are replacing.
1011 	 */
1012 	if (new_entry->target == -1) {
1013 		new_entry->target = h->dev[entry]->target;
1014 		new_entry->lun = h->dev[entry]->lun;
1015 	}
1016 
1017 	h->dev[entry] = new_entry;
1018 	added[*nadded] = new_entry;
1019 	(*nadded)++;
1020 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1021 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1022 			new_entry->target, new_entry->lun);
1023 }
1024 
1025 /* Remove an entry from h->dev[] array. */
1026 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1027 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1028 {
1029 	/* assumes h->devlock is held */
1030 	int i;
1031 	struct hpsa_scsi_dev_t *sd;
1032 
1033 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1034 
1035 	sd = h->dev[entry];
1036 	removed[*nremoved] = h->dev[entry];
1037 	(*nremoved)++;
1038 
1039 	for (i = entry; i < h->ndevices-1; i++)
1040 		h->dev[i] = h->dev[i+1];
1041 	h->ndevices--;
1042 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1043 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1044 		sd->lun);
1045 }
1046 
1047 #define SCSI3ADDR_EQ(a, b) ( \
1048 	(a)[7] == (b)[7] && \
1049 	(a)[6] == (b)[6] && \
1050 	(a)[5] == (b)[5] && \
1051 	(a)[4] == (b)[4] && \
1052 	(a)[3] == (b)[3] && \
1053 	(a)[2] == (b)[2] && \
1054 	(a)[1] == (b)[1] && \
1055 	(a)[0] == (b)[0])
1056 
1057 static void fixup_botched_add(struct ctlr_info *h,
1058 	struct hpsa_scsi_dev_t *added)
1059 {
1060 	/* called when scsi_add_device fails in order to re-adjust
1061 	 * h->dev[] to match the mid layer's view.
1062 	 */
1063 	unsigned long flags;
1064 	int i, j;
1065 
1066 	spin_lock_irqsave(&h->lock, flags);
1067 	for (i = 0; i < h->ndevices; i++) {
1068 		if (h->dev[i] == added) {
1069 			for (j = i; j < h->ndevices-1; j++)
1070 				h->dev[j] = h->dev[j+1];
1071 			h->ndevices--;
1072 			break;
1073 		}
1074 	}
1075 	spin_unlock_irqrestore(&h->lock, flags);
1076 	kfree(added);
1077 }
1078 
1079 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1080 	struct hpsa_scsi_dev_t *dev2)
1081 {
1082 	/* we compare everything except lun and target as these
1083 	 * are not yet assigned.  Compare parts likely
1084 	 * to differ first
1085 	 */
1086 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1087 		sizeof(dev1->scsi3addr)) != 0)
1088 		return 0;
1089 	if (memcmp(dev1->device_id, dev2->device_id,
1090 		sizeof(dev1->device_id)) != 0)
1091 		return 0;
1092 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1093 		return 0;
1094 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1095 		return 0;
1096 	if (dev1->devtype != dev2->devtype)
1097 		return 0;
1098 	if (dev1->bus != dev2->bus)
1099 		return 0;
1100 	return 1;
1101 }
1102 
1103 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1104 	struct hpsa_scsi_dev_t *dev2)
1105 {
1106 	/* Device attributes that can change, but don't mean
1107 	 * that the device is a different device, nor that the OS
1108 	 * needs to be told anything about the change.
1109 	 */
1110 	if (dev1->raid_level != dev2->raid_level)
1111 		return 1;
1112 	if (dev1->offload_config != dev2->offload_config)
1113 		return 1;
1114 	if (dev1->offload_enabled != dev2->offload_enabled)
1115 		return 1;
1116 	if (dev1->queue_depth != dev2->queue_depth)
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1122  * and return needle location in *index.  If scsi3addr matches, but not
1123  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124  * location in *index.
1125  * In the case of a minor device attribute change, such as RAID level, just
1126  * return DEVICE_UPDATED, along with the updated device's location in index.
1127  * If needle not found, return DEVICE_NOT_FOUND.
1128  */
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131 	int *index)
1132 {
1133 	int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 	for (i = 0; i < haystack_size; i++) {
1139 		if (haystack[i] == NULL) /* previously removed. */
1140 			continue;
1141 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142 			*index = i;
1143 			if (device_is_the_same(needle, haystack[i])) {
1144 				if (device_updated(needle, haystack[i]))
1145 					return DEVICE_UPDATED;
1146 				return DEVICE_SAME;
1147 			} else {
1148 				/* Keep offline devices offline */
1149 				if (needle->volume_offline)
1150 					return DEVICE_NOT_FOUND;
1151 				return DEVICE_CHANGED;
1152 			}
1153 		}
1154 	}
1155 	*index = -1;
1156 	return DEVICE_NOT_FOUND;
1157 }
1158 
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160 					unsigned char scsi3addr[])
1161 {
1162 	struct offline_device_entry *device;
1163 	unsigned long flags;
1164 
1165 	/* Check to see if device is already on the list */
1166 	spin_lock_irqsave(&h->offline_device_lock, flags);
1167 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168 		if (memcmp(device->scsi3addr, scsi3addr,
1169 			sizeof(device->scsi3addr)) == 0) {
1170 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171 			return;
1172 		}
1173 	}
1174 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175 
1176 	/* Device is not on the list, add it. */
1177 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1178 	if (!device) {
1179 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180 		return;
1181 	}
1182 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183 	spin_lock_irqsave(&h->offline_device_lock, flags);
1184 	list_add_tail(&device->offline_list, &h->offline_device_list);
1185 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1186 }
1187 
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190 	struct hpsa_scsi_dev_t *sd)
1191 {
1192 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193 		dev_info(&h->pdev->dev,
1194 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 			h->scsi_host->host_no,
1196 			sd->bus, sd->target, sd->lun);
1197 	switch (sd->volume_offline) {
1198 	case HPSA_LV_OK:
1199 		break;
1200 	case HPSA_LV_UNDERGOING_ERASE:
1201 		dev_info(&h->pdev->dev,
1202 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 			h->scsi_host->host_no,
1204 			sd->bus, sd->target, sd->lun);
1205 		break;
1206 	case HPSA_LV_UNDERGOING_RPI:
1207 		dev_info(&h->pdev->dev,
1208 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 			h->scsi_host->host_no,
1210 			sd->bus, sd->target, sd->lun);
1211 		break;
1212 	case HPSA_LV_PENDING_RPI:
1213 		dev_info(&h->pdev->dev,
1214 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 				h->scsi_host->host_no,
1216 				sd->bus, sd->target, sd->lun);
1217 		break;
1218 	case HPSA_LV_ENCRYPTED_NO_KEY:
1219 		dev_info(&h->pdev->dev,
1220 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 			h->scsi_host->host_no,
1222 			sd->bus, sd->target, sd->lun);
1223 		break;
1224 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225 		dev_info(&h->pdev->dev,
1226 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 			h->scsi_host->host_no,
1228 			sd->bus, sd->target, sd->lun);
1229 		break;
1230 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1231 		dev_info(&h->pdev->dev,
1232 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 			h->scsi_host->host_no,
1234 			sd->bus, sd->target, sd->lun);
1235 		break;
1236 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237 		dev_info(&h->pdev->dev,
1238 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 			h->scsi_host->host_no,
1240 			sd->bus, sd->target, sd->lun);
1241 		break;
1242 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243 		dev_info(&h->pdev->dev,
1244 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 			h->scsi_host->host_no,
1246 			sd->bus, sd->target, sd->lun);
1247 		break;
1248 	case HPSA_LV_PENDING_ENCRYPTION:
1249 		dev_info(&h->pdev->dev,
1250 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 			h->scsi_host->host_no,
1252 			sd->bus, sd->target, sd->lun);
1253 		break;
1254 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255 		dev_info(&h->pdev->dev,
1256 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 			h->scsi_host->host_no,
1258 			sd->bus, sd->target, sd->lun);
1259 		break;
1260 	}
1261 }
1262 
1263 /*
1264  * Figure the list of physical drive pointers for a logical drive with
1265  * raid offload configured.
1266  */
1267 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1268 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1269 				struct hpsa_scsi_dev_t *logical_drive)
1270 {
1271 	struct raid_map_data *map = &logical_drive->raid_map;
1272 	struct raid_map_disk_data *dd = &map->data[0];
1273 	int i, j;
1274 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1275 				le16_to_cpu(map->metadata_disks_per_row);
1276 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1277 				le16_to_cpu(map->layout_map_count) *
1278 				total_disks_per_row;
1279 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1280 				total_disks_per_row;
1281 	int qdepth;
1282 
1283 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1284 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1285 
1286 	qdepth = 0;
1287 	for (i = 0; i < nraid_map_entries; i++) {
1288 		logical_drive->phys_disk[i] = NULL;
1289 		if (!logical_drive->offload_config)
1290 			continue;
1291 		for (j = 0; j < ndevices; j++) {
1292 			if (dev[j]->devtype != TYPE_DISK)
1293 				continue;
1294 			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1295 				continue;
1296 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1297 				continue;
1298 
1299 			logical_drive->phys_disk[i] = dev[j];
1300 			if (i < nphys_disk)
1301 				qdepth = min(h->nr_cmds, qdepth +
1302 				    logical_drive->phys_disk[i]->queue_depth);
1303 			break;
1304 		}
1305 
1306 		/*
1307 		 * This can happen if a physical drive is removed and
1308 		 * the logical drive is degraded.  In that case, the RAID
1309 		 * map data will refer to a physical disk which isn't actually
1310 		 * present.  And in that case offload_enabled should already
1311 		 * be 0, but we'll turn it off here just in case
1312 		 */
1313 		if (!logical_drive->phys_disk[i]) {
1314 			logical_drive->offload_enabled = 0;
1315 			logical_drive->queue_depth = h->nr_cmds;
1316 		}
1317 	}
1318 	if (nraid_map_entries)
1319 		/*
1320 		 * This is correct for reads, too high for full stripe writes,
1321 		 * way too high for partial stripe writes
1322 		 */
1323 		logical_drive->queue_depth = qdepth;
1324 	else
1325 		logical_drive->queue_depth = h->nr_cmds;
1326 }
1327 
1328 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1329 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < ndevices; i++) {
1334 		if (dev[i]->devtype != TYPE_DISK)
1335 			continue;
1336 		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1337 			continue;
1338 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1339 	}
1340 }
1341 
1342 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1343 	struct hpsa_scsi_dev_t *sd[], int nsds)
1344 {
1345 	/* sd contains scsi3 addresses and devtypes, and inquiry
1346 	 * data.  This function takes what's in sd to be the current
1347 	 * reality and updates h->dev[] to reflect that reality.
1348 	 */
1349 	int i, entry, device_change, changes = 0;
1350 	struct hpsa_scsi_dev_t *csd;
1351 	unsigned long flags;
1352 	struct hpsa_scsi_dev_t **added, **removed;
1353 	int nadded, nremoved;
1354 	struct Scsi_Host *sh = NULL;
1355 
1356 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1357 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1358 
1359 	if (!added || !removed) {
1360 		dev_warn(&h->pdev->dev, "out of memory in "
1361 			"adjust_hpsa_scsi_table\n");
1362 		goto free_and_out;
1363 	}
1364 
1365 	spin_lock_irqsave(&h->devlock, flags);
1366 
1367 	/* find any devices in h->dev[] that are not in
1368 	 * sd[] and remove them from h->dev[], and for any
1369 	 * devices which have changed, remove the old device
1370 	 * info and add the new device info.
1371 	 * If minor device attributes change, just update
1372 	 * the existing device structure.
1373 	 */
1374 	i = 0;
1375 	nremoved = 0;
1376 	nadded = 0;
1377 	while (i < h->ndevices) {
1378 		csd = h->dev[i];
1379 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1380 		if (device_change == DEVICE_NOT_FOUND) {
1381 			changes++;
1382 			hpsa_scsi_remove_entry(h, hostno, i,
1383 				removed, &nremoved);
1384 			continue; /* remove ^^^, hence i not incremented */
1385 		} else if (device_change == DEVICE_CHANGED) {
1386 			changes++;
1387 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1388 				added, &nadded, removed, &nremoved);
1389 			/* Set it to NULL to prevent it from being freed
1390 			 * at the bottom of hpsa_update_scsi_devices()
1391 			 */
1392 			sd[entry] = NULL;
1393 		} else if (device_change == DEVICE_UPDATED) {
1394 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1395 		}
1396 		i++;
1397 	}
1398 
1399 	/* Now, make sure every device listed in sd[] is also
1400 	 * listed in h->dev[], adding them if they aren't found
1401 	 */
1402 
1403 	for (i = 0; i < nsds; i++) {
1404 		if (!sd[i]) /* if already added above. */
1405 			continue;
1406 
1407 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1408 		 * as the SCSI mid-layer does not handle such devices well.
1409 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1410 		 * at 160Hz, and prevents the system from coming up.
1411 		 */
1412 		if (sd[i]->volume_offline) {
1413 			hpsa_show_volume_status(h, sd[i]);
1414 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1415 				h->scsi_host->host_no,
1416 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1417 			continue;
1418 		}
1419 
1420 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1421 					h->ndevices, &entry);
1422 		if (device_change == DEVICE_NOT_FOUND) {
1423 			changes++;
1424 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1425 				added, &nadded) != 0)
1426 				break;
1427 			sd[i] = NULL; /* prevent from being freed later. */
1428 		} else if (device_change == DEVICE_CHANGED) {
1429 			/* should never happen... */
1430 			changes++;
1431 			dev_warn(&h->pdev->dev,
1432 				"device unexpectedly changed.\n");
1433 			/* but if it does happen, we just ignore that device */
1434 		}
1435 	}
1436 	spin_unlock_irqrestore(&h->devlock, flags);
1437 
1438 	/* Monitor devices which are in one of several NOT READY states to be
1439 	 * brought online later. This must be done without holding h->devlock,
1440 	 * so don't touch h->dev[]
1441 	 */
1442 	for (i = 0; i < nsds; i++) {
1443 		if (!sd[i]) /* if already added above. */
1444 			continue;
1445 		if (sd[i]->volume_offline)
1446 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1447 	}
1448 
1449 	/* Don't notify scsi mid layer of any changes the first time through
1450 	 * (or if there are no changes) scsi_scan_host will do it later the
1451 	 * first time through.
1452 	 */
1453 	if (hostno == -1 || !changes)
1454 		goto free_and_out;
1455 
1456 	sh = h->scsi_host;
1457 	/* Notify scsi mid layer of any removed devices */
1458 	for (i = 0; i < nremoved; i++) {
1459 		struct scsi_device *sdev =
1460 			scsi_device_lookup(sh, removed[i]->bus,
1461 				removed[i]->target, removed[i]->lun);
1462 		if (sdev != NULL) {
1463 			scsi_remove_device(sdev);
1464 			scsi_device_put(sdev);
1465 		} else {
1466 			/* We don't expect to get here.
1467 			 * future cmds to this device will get selection
1468 			 * timeout as if the device was gone.
1469 			 */
1470 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1471 				" for removal.", hostno, removed[i]->bus,
1472 				removed[i]->target, removed[i]->lun);
1473 		}
1474 		kfree(removed[i]);
1475 		removed[i] = NULL;
1476 	}
1477 
1478 	/* Notify scsi mid layer of any added devices */
1479 	for (i = 0; i < nadded; i++) {
1480 		if (scsi_add_device(sh, added[i]->bus,
1481 			added[i]->target, added[i]->lun) == 0)
1482 			continue;
1483 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1484 			"device not added.\n", hostno, added[i]->bus,
1485 			added[i]->target, added[i]->lun);
1486 		/* now we have to remove it from h->dev,
1487 		 * since it didn't get added to scsi mid layer
1488 		 */
1489 		fixup_botched_add(h, added[i]);
1490 	}
1491 
1492 free_and_out:
1493 	kfree(added);
1494 	kfree(removed);
1495 }
1496 
1497 /*
1498  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1499  * Assume's h->devlock is held.
1500  */
1501 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1502 	int bus, int target, int lun)
1503 {
1504 	int i;
1505 	struct hpsa_scsi_dev_t *sd;
1506 
1507 	for (i = 0; i < h->ndevices; i++) {
1508 		sd = h->dev[i];
1509 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1510 			return sd;
1511 	}
1512 	return NULL;
1513 }
1514 
1515 /* link sdev->hostdata to our per-device structure. */
1516 static int hpsa_slave_alloc(struct scsi_device *sdev)
1517 {
1518 	struct hpsa_scsi_dev_t *sd;
1519 	unsigned long flags;
1520 	struct ctlr_info *h;
1521 
1522 	h = sdev_to_hba(sdev);
1523 	spin_lock_irqsave(&h->devlock, flags);
1524 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1525 		sdev_id(sdev), sdev->lun);
1526 	if (sd != NULL) {
1527 		sdev->hostdata = sd;
1528 		if (sd->queue_depth)
1529 			scsi_change_queue_depth(sdev, sd->queue_depth);
1530 		atomic_set(&sd->ioaccel_cmds_out, 0);
1531 	}
1532 	spin_unlock_irqrestore(&h->devlock, flags);
1533 	return 0;
1534 }
1535 
1536 static void hpsa_slave_destroy(struct scsi_device *sdev)
1537 {
1538 	/* nothing to do. */
1539 }
1540 
1541 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1542 {
1543 	int i;
1544 
1545 	if (!h->cmd_sg_list)
1546 		return;
1547 	for (i = 0; i < h->nr_cmds; i++) {
1548 		kfree(h->cmd_sg_list[i]);
1549 		h->cmd_sg_list[i] = NULL;
1550 	}
1551 	kfree(h->cmd_sg_list);
1552 	h->cmd_sg_list = NULL;
1553 }
1554 
1555 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1556 {
1557 	int i;
1558 
1559 	if (h->chainsize <= 0)
1560 		return 0;
1561 
1562 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1563 				GFP_KERNEL);
1564 	if (!h->cmd_sg_list) {
1565 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1566 		return -ENOMEM;
1567 	}
1568 	for (i = 0; i < h->nr_cmds; i++) {
1569 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1570 						h->chainsize, GFP_KERNEL);
1571 		if (!h->cmd_sg_list[i]) {
1572 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1573 			goto clean;
1574 		}
1575 	}
1576 	return 0;
1577 
1578 clean:
1579 	hpsa_free_sg_chain_blocks(h);
1580 	return -ENOMEM;
1581 }
1582 
1583 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1584 	struct CommandList *c)
1585 {
1586 	struct SGDescriptor *chain_sg, *chain_block;
1587 	u64 temp64;
1588 	u32 chain_len;
1589 
1590 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1591 	chain_block = h->cmd_sg_list[c->cmdindex];
1592 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1593 	chain_len = sizeof(*chain_sg) *
1594 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1595 	chain_sg->Len = cpu_to_le32(chain_len);
1596 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1597 				PCI_DMA_TODEVICE);
1598 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1599 		/* prevent subsequent unmapping */
1600 		chain_sg->Addr = cpu_to_le64(0);
1601 		return -1;
1602 	}
1603 	chain_sg->Addr = cpu_to_le64(temp64);
1604 	return 0;
1605 }
1606 
1607 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1608 	struct CommandList *c)
1609 {
1610 	struct SGDescriptor *chain_sg;
1611 
1612 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1613 		return;
1614 
1615 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1616 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1617 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1618 }
1619 
1620 
1621 /* Decode the various types of errors on ioaccel2 path.
1622  * Return 1 for any error that should generate a RAID path retry.
1623  * Return 0 for errors that don't require a RAID path retry.
1624  */
1625 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1626 					struct CommandList *c,
1627 					struct scsi_cmnd *cmd,
1628 					struct io_accel2_cmd *c2)
1629 {
1630 	int data_len;
1631 	int retry = 0;
1632 
1633 	switch (c2->error_data.serv_response) {
1634 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1635 		switch (c2->error_data.status) {
1636 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1637 			break;
1638 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1639 			dev_warn(&h->pdev->dev,
1640 				"%s: task complete with check condition.\n",
1641 				"HP SSD Smart Path");
1642 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1643 			if (c2->error_data.data_present !=
1644 					IOACCEL2_SENSE_DATA_PRESENT) {
1645 				memset(cmd->sense_buffer, 0,
1646 					SCSI_SENSE_BUFFERSIZE);
1647 				break;
1648 			}
1649 			/* copy the sense data */
1650 			data_len = c2->error_data.sense_data_len;
1651 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1652 				data_len = SCSI_SENSE_BUFFERSIZE;
1653 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1654 				data_len =
1655 					sizeof(c2->error_data.sense_data_buff);
1656 			memcpy(cmd->sense_buffer,
1657 				c2->error_data.sense_data_buff, data_len);
1658 			retry = 1;
1659 			break;
1660 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1661 			dev_warn(&h->pdev->dev,
1662 				"%s: task complete with BUSY status.\n",
1663 				"HP SSD Smart Path");
1664 			retry = 1;
1665 			break;
1666 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1667 			dev_warn(&h->pdev->dev,
1668 				"%s: task complete with reservation conflict.\n",
1669 				"HP SSD Smart Path");
1670 			retry = 1;
1671 			break;
1672 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1673 			/* Make scsi midlayer do unlimited retries */
1674 			cmd->result = DID_IMM_RETRY << 16;
1675 			break;
1676 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1677 			dev_warn(&h->pdev->dev,
1678 				"%s: task complete with aborted status.\n",
1679 				"HP SSD Smart Path");
1680 			retry = 1;
1681 			break;
1682 		default:
1683 			dev_warn(&h->pdev->dev,
1684 				"%s: task complete with unrecognized status: 0x%02x\n",
1685 				"HP SSD Smart Path", c2->error_data.status);
1686 			retry = 1;
1687 			break;
1688 		}
1689 		break;
1690 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1691 		/* don't expect to get here. */
1692 		dev_warn(&h->pdev->dev,
1693 			"unexpected delivery or target failure, status = 0x%02x\n",
1694 			c2->error_data.status);
1695 		retry = 1;
1696 		break;
1697 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1698 		break;
1699 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1700 		break;
1701 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1702 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1703 		retry = 1;
1704 		break;
1705 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1706 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1707 		break;
1708 	default:
1709 		dev_warn(&h->pdev->dev,
1710 			"%s: Unrecognized server response: 0x%02x\n",
1711 			"HP SSD Smart Path",
1712 			c2->error_data.serv_response);
1713 		retry = 1;
1714 		break;
1715 	}
1716 
1717 	return retry;	/* retry on raid path? */
1718 }
1719 
1720 static void process_ioaccel2_completion(struct ctlr_info *h,
1721 		struct CommandList *c, struct scsi_cmnd *cmd,
1722 		struct hpsa_scsi_dev_t *dev)
1723 {
1724 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1725 
1726 	/* check for good status */
1727 	if (likely(c2->error_data.serv_response == 0 &&
1728 			c2->error_data.status == 0)) {
1729 		cmd_free(h, c);
1730 		cmd->scsi_done(cmd);
1731 		return;
1732 	}
1733 
1734 	/* Any RAID offload error results in retry which will use
1735 	 * the normal I/O path so the controller can handle whatever's
1736 	 * wrong.
1737 	 */
1738 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1739 		c2->error_data.serv_response ==
1740 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1741 		if (c2->error_data.status ==
1742 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1743 			dev->offload_enabled = 0;
1744 		goto retry_cmd;
1745 	}
1746 
1747 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1748 		goto retry_cmd;
1749 
1750 	cmd_free(h, c);
1751 	cmd->scsi_done(cmd);
1752 	return;
1753 
1754 retry_cmd:
1755 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1756 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1757 }
1758 
1759 static void complete_scsi_command(struct CommandList *cp)
1760 {
1761 	struct scsi_cmnd *cmd;
1762 	struct ctlr_info *h;
1763 	struct ErrorInfo *ei;
1764 	struct hpsa_scsi_dev_t *dev;
1765 
1766 	unsigned char sense_key;
1767 	unsigned char asc;      /* additional sense code */
1768 	unsigned char ascq;     /* additional sense code qualifier */
1769 	unsigned long sense_data_size;
1770 
1771 	ei = cp->err_info;
1772 	cmd = cp->scsi_cmd;
1773 	h = cp->h;
1774 	dev = cmd->device->hostdata;
1775 
1776 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1777 	if ((cp->cmd_type == CMD_SCSI) &&
1778 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1779 		hpsa_unmap_sg_chain_block(h, cp);
1780 
1781 	cmd->result = (DID_OK << 16); 		/* host byte */
1782 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1783 
1784 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1785 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1786 
1787 	if (cp->cmd_type == CMD_IOACCEL2)
1788 		return process_ioaccel2_completion(h, cp, cmd, dev);
1789 
1790 	cmd->result |= ei->ScsiStatus;
1791 
1792 	scsi_set_resid(cmd, ei->ResidualCnt);
1793 	if (ei->CommandStatus == 0) {
1794 		if (cp->cmd_type == CMD_IOACCEL1)
1795 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1796 		cmd_free(h, cp);
1797 		cmd->scsi_done(cmd);
1798 		return;
1799 	}
1800 
1801 	/* copy the sense data */
1802 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1803 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1804 	else
1805 		sense_data_size = sizeof(ei->SenseInfo);
1806 	if (ei->SenseLen < sense_data_size)
1807 		sense_data_size = ei->SenseLen;
1808 
1809 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1810 
1811 	/* For I/O accelerator commands, copy over some fields to the normal
1812 	 * CISS header used below for error handling.
1813 	 */
1814 	if (cp->cmd_type == CMD_IOACCEL1) {
1815 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1816 		cp->Header.SGList = scsi_sg_count(cmd);
1817 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1818 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1819 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1820 		cp->Header.tag = c->tag;
1821 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1822 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1823 
1824 		/* Any RAID offload error results in retry which will use
1825 		 * the normal I/O path so the controller can handle whatever's
1826 		 * wrong.
1827 		 */
1828 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1829 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1830 				dev->offload_enabled = 0;
1831 			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1832 			queue_work_on(raw_smp_processor_id(),
1833 					h->resubmit_wq, &cp->work);
1834 			return;
1835 		}
1836 	}
1837 
1838 	/* an error has occurred */
1839 	switch (ei->CommandStatus) {
1840 
1841 	case CMD_TARGET_STATUS:
1842 		if (ei->ScsiStatus) {
1843 			/* Get sense key */
1844 			sense_key = 0xf & ei->SenseInfo[2];
1845 			/* Get additional sense code */
1846 			asc = ei->SenseInfo[12];
1847 			/* Get addition sense code qualifier */
1848 			ascq = ei->SenseInfo[13];
1849 		}
1850 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1851 			if (sense_key == ABORTED_COMMAND) {
1852 				cmd->result |= DID_SOFT_ERROR << 16;
1853 				break;
1854 			}
1855 			break;
1856 		}
1857 		/* Problem was not a check condition
1858 		 * Pass it up to the upper layers...
1859 		 */
1860 		if (ei->ScsiStatus) {
1861 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1862 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1863 				"Returning result: 0x%x\n",
1864 				cp, ei->ScsiStatus,
1865 				sense_key, asc, ascq,
1866 				cmd->result);
1867 		} else {  /* scsi status is zero??? How??? */
1868 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1869 				"Returning no connection.\n", cp),
1870 
1871 			/* Ordinarily, this case should never happen,
1872 			 * but there is a bug in some released firmware
1873 			 * revisions that allows it to happen if, for
1874 			 * example, a 4100 backplane loses power and
1875 			 * the tape drive is in it.  We assume that
1876 			 * it's a fatal error of some kind because we
1877 			 * can't show that it wasn't. We will make it
1878 			 * look like selection timeout since that is
1879 			 * the most common reason for this to occur,
1880 			 * and it's severe enough.
1881 			 */
1882 
1883 			cmd->result = DID_NO_CONNECT << 16;
1884 		}
1885 		break;
1886 
1887 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1888 		break;
1889 	case CMD_DATA_OVERRUN:
1890 		dev_warn(&h->pdev->dev,
1891 			"CDB %16phN data overrun\n", cp->Request.CDB);
1892 		break;
1893 	case CMD_INVALID: {
1894 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1895 		print_cmd(cp); */
1896 		/* We get CMD_INVALID if you address a non-existent device
1897 		 * instead of a selection timeout (no response).  You will
1898 		 * see this if you yank out a drive, then try to access it.
1899 		 * This is kind of a shame because it means that any other
1900 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1901 		 * missing target. */
1902 		cmd->result = DID_NO_CONNECT << 16;
1903 	}
1904 		break;
1905 	case CMD_PROTOCOL_ERR:
1906 		cmd->result = DID_ERROR << 16;
1907 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
1908 				cp->Request.CDB);
1909 		break;
1910 	case CMD_HARDWARE_ERR:
1911 		cmd->result = DID_ERROR << 16;
1912 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
1913 			cp->Request.CDB);
1914 		break;
1915 	case CMD_CONNECTION_LOST:
1916 		cmd->result = DID_ERROR << 16;
1917 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
1918 			cp->Request.CDB);
1919 		break;
1920 	case CMD_ABORTED:
1921 		cmd->result = DID_ABORT << 16;
1922 		dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
1923 				cp->Request.CDB, ei->ScsiStatus);
1924 		break;
1925 	case CMD_ABORT_FAILED:
1926 		cmd->result = DID_ERROR << 16;
1927 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
1928 			cp->Request.CDB);
1929 		break;
1930 	case CMD_UNSOLICITED_ABORT:
1931 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1932 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
1933 			cp->Request.CDB);
1934 		break;
1935 	case CMD_TIMEOUT:
1936 		cmd->result = DID_TIME_OUT << 16;
1937 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
1938 			cp->Request.CDB);
1939 		break;
1940 	case CMD_UNABORTABLE:
1941 		cmd->result = DID_ERROR << 16;
1942 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1943 		break;
1944 	case CMD_IOACCEL_DISABLED:
1945 		/* This only handles the direct pass-through case since RAID
1946 		 * offload is handled above.  Just attempt a retry.
1947 		 */
1948 		cmd->result = DID_SOFT_ERROR << 16;
1949 		dev_warn(&h->pdev->dev,
1950 				"cp %p had HP SSD Smart Path error\n", cp);
1951 		break;
1952 	default:
1953 		cmd->result = DID_ERROR << 16;
1954 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1955 				cp, ei->CommandStatus);
1956 	}
1957 	cmd_free(h, cp);
1958 	cmd->scsi_done(cmd);
1959 }
1960 
1961 static void hpsa_pci_unmap(struct pci_dev *pdev,
1962 	struct CommandList *c, int sg_used, int data_direction)
1963 {
1964 	int i;
1965 
1966 	for (i = 0; i < sg_used; i++)
1967 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1968 				le32_to_cpu(c->SG[i].Len),
1969 				data_direction);
1970 }
1971 
1972 static int hpsa_map_one(struct pci_dev *pdev,
1973 		struct CommandList *cp,
1974 		unsigned char *buf,
1975 		size_t buflen,
1976 		int data_direction)
1977 {
1978 	u64 addr64;
1979 
1980 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1981 		cp->Header.SGList = 0;
1982 		cp->Header.SGTotal = cpu_to_le16(0);
1983 		return 0;
1984 	}
1985 
1986 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1987 	if (dma_mapping_error(&pdev->dev, addr64)) {
1988 		/* Prevent subsequent unmap of something never mapped */
1989 		cp->Header.SGList = 0;
1990 		cp->Header.SGTotal = cpu_to_le16(0);
1991 		return -1;
1992 	}
1993 	cp->SG[0].Addr = cpu_to_le64(addr64);
1994 	cp->SG[0].Len = cpu_to_le32(buflen);
1995 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1996 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1997 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1998 	return 0;
1999 }
2000 
2001 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2002 	struct CommandList *c)
2003 {
2004 	DECLARE_COMPLETION_ONSTACK(wait);
2005 
2006 	c->waiting = &wait;
2007 	enqueue_cmd_and_start_io(h, c);
2008 	wait_for_completion(&wait);
2009 }
2010 
2011 static u32 lockup_detected(struct ctlr_info *h)
2012 {
2013 	int cpu;
2014 	u32 rc, *lockup_detected;
2015 
2016 	cpu = get_cpu();
2017 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2018 	rc = *lockup_detected;
2019 	put_cpu();
2020 	return rc;
2021 }
2022 
2023 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2024 	struct CommandList *c)
2025 {
2026 	/* If controller lockup detected, fake a hardware error. */
2027 	if (unlikely(lockup_detected(h)))
2028 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2029 	else
2030 		hpsa_scsi_do_simple_cmd_core(h, c);
2031 }
2032 
2033 #define MAX_DRIVER_CMD_RETRIES 25
2034 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2035 	struct CommandList *c, int data_direction)
2036 {
2037 	int backoff_time = 10, retry_count = 0;
2038 
2039 	do {
2040 		memset(c->err_info, 0, sizeof(*c->err_info));
2041 		hpsa_scsi_do_simple_cmd_core(h, c);
2042 		retry_count++;
2043 		if (retry_count > 3) {
2044 			msleep(backoff_time);
2045 			if (backoff_time < 1000)
2046 				backoff_time *= 2;
2047 		}
2048 	} while ((check_for_unit_attention(h, c) ||
2049 			check_for_busy(h, c)) &&
2050 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2051 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2052 }
2053 
2054 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2055 				struct CommandList *c)
2056 {
2057 	const u8 *cdb = c->Request.CDB;
2058 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2059 
2060 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2061 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2062 		txt, lun[0], lun[1], lun[2], lun[3],
2063 		lun[4], lun[5], lun[6], lun[7],
2064 		cdb[0], cdb[1], cdb[2], cdb[3],
2065 		cdb[4], cdb[5], cdb[6], cdb[7],
2066 		cdb[8], cdb[9], cdb[10], cdb[11],
2067 		cdb[12], cdb[13], cdb[14], cdb[15]);
2068 }
2069 
2070 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2071 			struct CommandList *cp)
2072 {
2073 	const struct ErrorInfo *ei = cp->err_info;
2074 	struct device *d = &cp->h->pdev->dev;
2075 	const u8 *sd = ei->SenseInfo;
2076 
2077 	switch (ei->CommandStatus) {
2078 	case CMD_TARGET_STATUS:
2079 		hpsa_print_cmd(h, "SCSI status", cp);
2080 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2081 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2082 				sd[2] & 0x0f, sd[12], sd[13]);
2083 		else
2084 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2085 		if (ei->ScsiStatus == 0)
2086 			dev_warn(d, "SCSI status is abnormally zero.  "
2087 			"(probably indicates selection timeout "
2088 			"reported incorrectly due to a known "
2089 			"firmware bug, circa July, 2001.)\n");
2090 		break;
2091 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2092 		break;
2093 	case CMD_DATA_OVERRUN:
2094 		hpsa_print_cmd(h, "overrun condition", cp);
2095 		break;
2096 	case CMD_INVALID: {
2097 		/* controller unfortunately reports SCSI passthru's
2098 		 * to non-existent targets as invalid commands.
2099 		 */
2100 		hpsa_print_cmd(h, "invalid command", cp);
2101 		dev_warn(d, "probably means device no longer present\n");
2102 		}
2103 		break;
2104 	case CMD_PROTOCOL_ERR:
2105 		hpsa_print_cmd(h, "protocol error", cp);
2106 		break;
2107 	case CMD_HARDWARE_ERR:
2108 		hpsa_print_cmd(h, "hardware error", cp);
2109 		break;
2110 	case CMD_CONNECTION_LOST:
2111 		hpsa_print_cmd(h, "connection lost", cp);
2112 		break;
2113 	case CMD_ABORTED:
2114 		hpsa_print_cmd(h, "aborted", cp);
2115 		break;
2116 	case CMD_ABORT_FAILED:
2117 		hpsa_print_cmd(h, "abort failed", cp);
2118 		break;
2119 	case CMD_UNSOLICITED_ABORT:
2120 		hpsa_print_cmd(h, "unsolicited abort", cp);
2121 		break;
2122 	case CMD_TIMEOUT:
2123 		hpsa_print_cmd(h, "timed out", cp);
2124 		break;
2125 	case CMD_UNABORTABLE:
2126 		hpsa_print_cmd(h, "unabortable", cp);
2127 		break;
2128 	default:
2129 		hpsa_print_cmd(h, "unknown status", cp);
2130 		dev_warn(d, "Unknown command status %x\n",
2131 				ei->CommandStatus);
2132 	}
2133 }
2134 
2135 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2136 			u16 page, unsigned char *buf,
2137 			unsigned char bufsize)
2138 {
2139 	int rc = IO_OK;
2140 	struct CommandList *c;
2141 	struct ErrorInfo *ei;
2142 
2143 	c = cmd_alloc(h);
2144 
2145 	if (c == NULL) {
2146 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2147 		return -ENOMEM;
2148 	}
2149 
2150 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2151 			page, scsi3addr, TYPE_CMD)) {
2152 		rc = -1;
2153 		goto out;
2154 	}
2155 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2156 	ei = c->err_info;
2157 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2158 		hpsa_scsi_interpret_error(h, c);
2159 		rc = -1;
2160 	}
2161 out:
2162 	cmd_free(h, c);
2163 	return rc;
2164 }
2165 
2166 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2167 		unsigned char *scsi3addr, unsigned char page,
2168 		struct bmic_controller_parameters *buf, size_t bufsize)
2169 {
2170 	int rc = IO_OK;
2171 	struct CommandList *c;
2172 	struct ErrorInfo *ei;
2173 
2174 	c = cmd_alloc(h);
2175 	if (c == NULL) {			/* trouble... */
2176 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2177 		return -ENOMEM;
2178 	}
2179 
2180 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2181 			page, scsi3addr, TYPE_CMD)) {
2182 		rc = -1;
2183 		goto out;
2184 	}
2185 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2186 	ei = c->err_info;
2187 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2188 		hpsa_scsi_interpret_error(h, c);
2189 		rc = -1;
2190 	}
2191 out:
2192 	cmd_free(h, c);
2193 	return rc;
2194 	}
2195 
2196 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2197 	u8 reset_type)
2198 {
2199 	int rc = IO_OK;
2200 	struct CommandList *c;
2201 	struct ErrorInfo *ei;
2202 
2203 	c = cmd_alloc(h);
2204 
2205 	if (c == NULL) {			/* trouble... */
2206 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2207 		return -ENOMEM;
2208 	}
2209 
2210 	/* fill_cmd can't fail here, no data buffer to map. */
2211 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2212 			scsi3addr, TYPE_MSG);
2213 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2214 	hpsa_scsi_do_simple_cmd_core(h, c);
2215 	/* no unmap needed here because no data xfer. */
2216 
2217 	ei = c->err_info;
2218 	if (ei->CommandStatus != 0) {
2219 		hpsa_scsi_interpret_error(h, c);
2220 		rc = -1;
2221 	}
2222 	cmd_free(h, c);
2223 	return rc;
2224 }
2225 
2226 static void hpsa_get_raid_level(struct ctlr_info *h,
2227 	unsigned char *scsi3addr, unsigned char *raid_level)
2228 {
2229 	int rc;
2230 	unsigned char *buf;
2231 
2232 	*raid_level = RAID_UNKNOWN;
2233 	buf = kzalloc(64, GFP_KERNEL);
2234 	if (!buf)
2235 		return;
2236 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2237 	if (rc == 0)
2238 		*raid_level = buf[8];
2239 	if (*raid_level > RAID_UNKNOWN)
2240 		*raid_level = RAID_UNKNOWN;
2241 	kfree(buf);
2242 	return;
2243 }
2244 
2245 #define HPSA_MAP_DEBUG
2246 #ifdef HPSA_MAP_DEBUG
2247 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2248 				struct raid_map_data *map_buff)
2249 {
2250 	struct raid_map_disk_data *dd = &map_buff->data[0];
2251 	int map, row, col;
2252 	u16 map_cnt, row_cnt, disks_per_row;
2253 
2254 	if (rc != 0)
2255 		return;
2256 
2257 	/* Show details only if debugging has been activated. */
2258 	if (h->raid_offload_debug < 2)
2259 		return;
2260 
2261 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2262 				le32_to_cpu(map_buff->structure_size));
2263 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2264 			le32_to_cpu(map_buff->volume_blk_size));
2265 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2266 			le64_to_cpu(map_buff->volume_blk_cnt));
2267 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2268 			map_buff->phys_blk_shift);
2269 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2270 			map_buff->parity_rotation_shift);
2271 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2272 			le16_to_cpu(map_buff->strip_size));
2273 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2274 			le64_to_cpu(map_buff->disk_starting_blk));
2275 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2276 			le64_to_cpu(map_buff->disk_blk_cnt));
2277 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2278 			le16_to_cpu(map_buff->data_disks_per_row));
2279 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2280 			le16_to_cpu(map_buff->metadata_disks_per_row));
2281 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2282 			le16_to_cpu(map_buff->row_cnt));
2283 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2284 			le16_to_cpu(map_buff->layout_map_count));
2285 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2286 			le16_to_cpu(map_buff->flags));
2287 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2288 			le16_to_cpu(map_buff->flags) &
2289 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2290 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2291 			le16_to_cpu(map_buff->dekindex));
2292 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2293 	for (map = 0; map < map_cnt; map++) {
2294 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2295 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2296 		for (row = 0; row < row_cnt; row++) {
2297 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2298 			disks_per_row =
2299 				le16_to_cpu(map_buff->data_disks_per_row);
2300 			for (col = 0; col < disks_per_row; col++, dd++)
2301 				dev_info(&h->pdev->dev,
2302 					"    D%02u: h=0x%04x xor=%u,%u\n",
2303 					col, dd->ioaccel_handle,
2304 					dd->xor_mult[0], dd->xor_mult[1]);
2305 			disks_per_row =
2306 				le16_to_cpu(map_buff->metadata_disks_per_row);
2307 			for (col = 0; col < disks_per_row; col++, dd++)
2308 				dev_info(&h->pdev->dev,
2309 					"    M%02u: h=0x%04x xor=%u,%u\n",
2310 					col, dd->ioaccel_handle,
2311 					dd->xor_mult[0], dd->xor_mult[1]);
2312 		}
2313 	}
2314 }
2315 #else
2316 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2317 			__attribute__((unused)) int rc,
2318 			__attribute__((unused)) struct raid_map_data *map_buff)
2319 {
2320 }
2321 #endif
2322 
2323 static int hpsa_get_raid_map(struct ctlr_info *h,
2324 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2325 {
2326 	int rc = 0;
2327 	struct CommandList *c;
2328 	struct ErrorInfo *ei;
2329 
2330 	c = cmd_alloc(h);
2331 	if (c == NULL) {
2332 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2333 		return -ENOMEM;
2334 	}
2335 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2336 			sizeof(this_device->raid_map), 0,
2337 			scsi3addr, TYPE_CMD)) {
2338 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2339 		cmd_free(h, c);
2340 		return -ENOMEM;
2341 	}
2342 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2343 	ei = c->err_info;
2344 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2345 		hpsa_scsi_interpret_error(h, c);
2346 		cmd_free(h, c);
2347 		return -1;
2348 	}
2349 	cmd_free(h, c);
2350 
2351 	/* @todo in the future, dynamically allocate RAID map memory */
2352 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2353 				sizeof(this_device->raid_map)) {
2354 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2355 		rc = -1;
2356 	}
2357 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2358 	return rc;
2359 }
2360 
2361 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2362 		unsigned char scsi3addr[], u16 bmic_device_index,
2363 		struct bmic_identify_physical_device *buf, size_t bufsize)
2364 {
2365 	int rc = IO_OK;
2366 	struct CommandList *c;
2367 	struct ErrorInfo *ei;
2368 
2369 	c = cmd_alloc(h);
2370 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2371 		0, RAID_CTLR_LUNID, TYPE_CMD);
2372 	if (rc)
2373 		goto out;
2374 
2375 	c->Request.CDB[2] = bmic_device_index & 0xff;
2376 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2377 
2378 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2379 	ei = c->err_info;
2380 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2381 		hpsa_scsi_interpret_error(h, c);
2382 		rc = -1;
2383 	}
2384 out:
2385 	cmd_free(h, c);
2386 	return rc;
2387 }
2388 
2389 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2390 	unsigned char scsi3addr[], u8 page)
2391 {
2392 	int rc;
2393 	int i;
2394 	int pages;
2395 	unsigned char *buf, bufsize;
2396 
2397 	buf = kzalloc(256, GFP_KERNEL);
2398 	if (!buf)
2399 		return 0;
2400 
2401 	/* Get the size of the page list first */
2402 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2403 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2404 				buf, HPSA_VPD_HEADER_SZ);
2405 	if (rc != 0)
2406 		goto exit_unsupported;
2407 	pages = buf[3];
2408 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2409 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2410 	else
2411 		bufsize = 255;
2412 
2413 	/* Get the whole VPD page list */
2414 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2415 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2416 				buf, bufsize);
2417 	if (rc != 0)
2418 		goto exit_unsupported;
2419 
2420 	pages = buf[3];
2421 	for (i = 1; i <= pages; i++)
2422 		if (buf[3 + i] == page)
2423 			goto exit_supported;
2424 exit_unsupported:
2425 	kfree(buf);
2426 	return 0;
2427 exit_supported:
2428 	kfree(buf);
2429 	return 1;
2430 }
2431 
2432 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2433 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2434 {
2435 	int rc;
2436 	unsigned char *buf;
2437 	u8 ioaccel_status;
2438 
2439 	this_device->offload_config = 0;
2440 	this_device->offload_enabled = 0;
2441 
2442 	buf = kzalloc(64, GFP_KERNEL);
2443 	if (!buf)
2444 		return;
2445 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2446 		goto out;
2447 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2448 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2449 	if (rc != 0)
2450 		goto out;
2451 
2452 #define IOACCEL_STATUS_BYTE 4
2453 #define OFFLOAD_CONFIGURED_BIT 0x01
2454 #define OFFLOAD_ENABLED_BIT 0x02
2455 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2456 	this_device->offload_config =
2457 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2458 	if (this_device->offload_config) {
2459 		this_device->offload_enabled =
2460 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2461 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2462 			this_device->offload_enabled = 0;
2463 	}
2464 out:
2465 	kfree(buf);
2466 	return;
2467 }
2468 
2469 /* Get the device id from inquiry page 0x83 */
2470 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2471 	unsigned char *device_id, int buflen)
2472 {
2473 	int rc;
2474 	unsigned char *buf;
2475 
2476 	if (buflen > 16)
2477 		buflen = 16;
2478 	buf = kzalloc(64, GFP_KERNEL);
2479 	if (!buf)
2480 		return -ENOMEM;
2481 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2482 	if (rc == 0)
2483 		memcpy(device_id, &buf[8], buflen);
2484 	kfree(buf);
2485 	return rc != 0;
2486 }
2487 
2488 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2489 		void *buf, int bufsize,
2490 		int extended_response)
2491 {
2492 	int rc = IO_OK;
2493 	struct CommandList *c;
2494 	unsigned char scsi3addr[8];
2495 	struct ErrorInfo *ei;
2496 
2497 	c = cmd_alloc(h);
2498 	if (c == NULL) {			/* trouble... */
2499 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2500 		return -1;
2501 	}
2502 	/* address the controller */
2503 	memset(scsi3addr, 0, sizeof(scsi3addr));
2504 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2505 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2506 		rc = -1;
2507 		goto out;
2508 	}
2509 	if (extended_response)
2510 		c->Request.CDB[1] = extended_response;
2511 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2512 	ei = c->err_info;
2513 	if (ei->CommandStatus != 0 &&
2514 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2515 		hpsa_scsi_interpret_error(h, c);
2516 		rc = -1;
2517 	} else {
2518 		struct ReportLUNdata *rld = buf;
2519 
2520 		if (rld->extended_response_flag != extended_response) {
2521 			dev_err(&h->pdev->dev,
2522 				"report luns requested format %u, got %u\n",
2523 				extended_response,
2524 				rld->extended_response_flag);
2525 			rc = -1;
2526 		}
2527 	}
2528 out:
2529 	cmd_free(h, c);
2530 	return rc;
2531 }
2532 
2533 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2534 		struct ReportExtendedLUNdata *buf, int bufsize)
2535 {
2536 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2537 						HPSA_REPORT_PHYS_EXTENDED);
2538 }
2539 
2540 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2541 		struct ReportLUNdata *buf, int bufsize)
2542 {
2543 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2544 }
2545 
2546 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2547 	int bus, int target, int lun)
2548 {
2549 	device->bus = bus;
2550 	device->target = target;
2551 	device->lun = lun;
2552 }
2553 
2554 /* Use VPD inquiry to get details of volume status */
2555 static int hpsa_get_volume_status(struct ctlr_info *h,
2556 					unsigned char scsi3addr[])
2557 {
2558 	int rc;
2559 	int status;
2560 	int size;
2561 	unsigned char *buf;
2562 
2563 	buf = kzalloc(64, GFP_KERNEL);
2564 	if (!buf)
2565 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2566 
2567 	/* Does controller have VPD for logical volume status? */
2568 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2569 		goto exit_failed;
2570 
2571 	/* Get the size of the VPD return buffer */
2572 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2573 					buf, HPSA_VPD_HEADER_SZ);
2574 	if (rc != 0)
2575 		goto exit_failed;
2576 	size = buf[3];
2577 
2578 	/* Now get the whole VPD buffer */
2579 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2580 					buf, size + HPSA_VPD_HEADER_SZ);
2581 	if (rc != 0)
2582 		goto exit_failed;
2583 	status = buf[4]; /* status byte */
2584 
2585 	kfree(buf);
2586 	return status;
2587 exit_failed:
2588 	kfree(buf);
2589 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2590 }
2591 
2592 /* Determine offline status of a volume.
2593  * Return either:
2594  *  0 (not offline)
2595  *  0xff (offline for unknown reasons)
2596  *  # (integer code indicating one of several NOT READY states
2597  *     describing why a volume is to be kept offline)
2598  */
2599 static int hpsa_volume_offline(struct ctlr_info *h,
2600 					unsigned char scsi3addr[])
2601 {
2602 	struct CommandList *c;
2603 	unsigned char *sense, sense_key, asc, ascq;
2604 	int ldstat = 0;
2605 	u16 cmd_status;
2606 	u8 scsi_status;
2607 #define ASC_LUN_NOT_READY 0x04
2608 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2609 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2610 
2611 	c = cmd_alloc(h);
2612 	if (!c)
2613 		return 0;
2614 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2615 	hpsa_scsi_do_simple_cmd_core(h, c);
2616 	sense = c->err_info->SenseInfo;
2617 	sense_key = sense[2];
2618 	asc = sense[12];
2619 	ascq = sense[13];
2620 	cmd_status = c->err_info->CommandStatus;
2621 	scsi_status = c->err_info->ScsiStatus;
2622 	cmd_free(h, c);
2623 	/* Is the volume 'not ready'? */
2624 	if (cmd_status != CMD_TARGET_STATUS ||
2625 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2626 		sense_key != NOT_READY ||
2627 		asc != ASC_LUN_NOT_READY)  {
2628 		return 0;
2629 	}
2630 
2631 	/* Determine the reason for not ready state */
2632 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2633 
2634 	/* Keep volume offline in certain cases: */
2635 	switch (ldstat) {
2636 	case HPSA_LV_UNDERGOING_ERASE:
2637 	case HPSA_LV_UNDERGOING_RPI:
2638 	case HPSA_LV_PENDING_RPI:
2639 	case HPSA_LV_ENCRYPTED_NO_KEY:
2640 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2641 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2642 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2643 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2644 		return ldstat;
2645 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2646 		/* If VPD status page isn't available,
2647 		 * use ASC/ASCQ to determine state
2648 		 */
2649 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2650 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2651 			return ldstat;
2652 		break;
2653 	default:
2654 		break;
2655 	}
2656 	return 0;
2657 }
2658 
2659 static int hpsa_update_device_info(struct ctlr_info *h,
2660 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2661 	unsigned char *is_OBDR_device)
2662 {
2663 
2664 #define OBDR_SIG_OFFSET 43
2665 #define OBDR_TAPE_SIG "$DR-10"
2666 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2667 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2668 
2669 	unsigned char *inq_buff;
2670 	unsigned char *obdr_sig;
2671 
2672 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2673 	if (!inq_buff)
2674 		goto bail_out;
2675 
2676 	/* Do an inquiry to the device to see what it is. */
2677 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2678 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2679 		/* Inquiry failed (msg printed already) */
2680 		dev_err(&h->pdev->dev,
2681 			"hpsa_update_device_info: inquiry failed\n");
2682 		goto bail_out;
2683 	}
2684 
2685 	this_device->devtype = (inq_buff[0] & 0x1f);
2686 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2687 	memcpy(this_device->vendor, &inq_buff[8],
2688 		sizeof(this_device->vendor));
2689 	memcpy(this_device->model, &inq_buff[16],
2690 		sizeof(this_device->model));
2691 	memset(this_device->device_id, 0,
2692 		sizeof(this_device->device_id));
2693 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2694 		sizeof(this_device->device_id));
2695 
2696 	if (this_device->devtype == TYPE_DISK &&
2697 		is_logical_dev_addr_mode(scsi3addr)) {
2698 		int volume_offline;
2699 
2700 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2701 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2702 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2703 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2704 		if (volume_offline < 0 || volume_offline > 0xff)
2705 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2706 		this_device->volume_offline = volume_offline & 0xff;
2707 	} else {
2708 		this_device->raid_level = RAID_UNKNOWN;
2709 		this_device->offload_config = 0;
2710 		this_device->offload_enabled = 0;
2711 		this_device->volume_offline = 0;
2712 		this_device->queue_depth = h->nr_cmds;
2713 	}
2714 
2715 	if (is_OBDR_device) {
2716 		/* See if this is a One-Button-Disaster-Recovery device
2717 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2718 		 */
2719 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2720 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2721 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2722 						OBDR_SIG_LEN) == 0);
2723 	}
2724 
2725 	kfree(inq_buff);
2726 	return 0;
2727 
2728 bail_out:
2729 	kfree(inq_buff);
2730 	return 1;
2731 }
2732 
2733 static unsigned char *ext_target_model[] = {
2734 	"MSA2012",
2735 	"MSA2024",
2736 	"MSA2312",
2737 	"MSA2324",
2738 	"P2000 G3 SAS",
2739 	"MSA 2040 SAS",
2740 	NULL,
2741 };
2742 
2743 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2744 {
2745 	int i;
2746 
2747 	for (i = 0; ext_target_model[i]; i++)
2748 		if (strncmp(device->model, ext_target_model[i],
2749 			strlen(ext_target_model[i])) == 0)
2750 			return 1;
2751 	return 0;
2752 }
2753 
2754 /* Helper function to assign bus, target, lun mapping of devices.
2755  * Puts non-external target logical volumes on bus 0, external target logical
2756  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2757  * Logical drive target and lun are assigned at this time, but
2758  * physical device lun and target assignment are deferred (assigned
2759  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2760  */
2761 static void figure_bus_target_lun(struct ctlr_info *h,
2762 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2763 {
2764 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2765 
2766 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2767 		/* physical device, target and lun filled in later */
2768 		if (is_hba_lunid(lunaddrbytes))
2769 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2770 		else
2771 			/* defer target, lun assignment for physical devices */
2772 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2773 		return;
2774 	}
2775 	/* It's a logical device */
2776 	if (is_ext_target(h, device)) {
2777 		/* external target way, put logicals on bus 1
2778 		 * and match target/lun numbers box
2779 		 * reports, other smart array, bus 0, target 0, match lunid
2780 		 */
2781 		hpsa_set_bus_target_lun(device,
2782 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2783 		return;
2784 	}
2785 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2786 }
2787 
2788 /*
2789  * If there is no lun 0 on a target, linux won't find any devices.
2790  * For the external targets (arrays), we have to manually detect the enclosure
2791  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2792  * it for some reason.  *tmpdevice is the target we're adding,
2793  * this_device is a pointer into the current element of currentsd[]
2794  * that we're building up in update_scsi_devices(), below.
2795  * lunzerobits is a bitmap that tracks which targets already have a
2796  * lun 0 assigned.
2797  * Returns 1 if an enclosure was added, 0 if not.
2798  */
2799 static int add_ext_target_dev(struct ctlr_info *h,
2800 	struct hpsa_scsi_dev_t *tmpdevice,
2801 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2802 	unsigned long lunzerobits[], int *n_ext_target_devs)
2803 {
2804 	unsigned char scsi3addr[8];
2805 
2806 	if (test_bit(tmpdevice->target, lunzerobits))
2807 		return 0; /* There is already a lun 0 on this target. */
2808 
2809 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2810 		return 0; /* It's the logical targets that may lack lun 0. */
2811 
2812 	if (!is_ext_target(h, tmpdevice))
2813 		return 0; /* Only external target devices have this problem. */
2814 
2815 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2816 		return 0;
2817 
2818 	memset(scsi3addr, 0, 8);
2819 	scsi3addr[3] = tmpdevice->target;
2820 	if (is_hba_lunid(scsi3addr))
2821 		return 0; /* Don't add the RAID controller here. */
2822 
2823 	if (is_scsi_rev_5(h))
2824 		return 0; /* p1210m doesn't need to do this. */
2825 
2826 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2827 		dev_warn(&h->pdev->dev, "Maximum number of external "
2828 			"target devices exceeded.  Check your hardware "
2829 			"configuration.");
2830 		return 0;
2831 	}
2832 
2833 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2834 		return 0;
2835 	(*n_ext_target_devs)++;
2836 	hpsa_set_bus_target_lun(this_device,
2837 				tmpdevice->bus, tmpdevice->target, 0);
2838 	set_bit(tmpdevice->target, lunzerobits);
2839 	return 1;
2840 }
2841 
2842 /*
2843  * Get address of physical disk used for an ioaccel2 mode command:
2844  *	1. Extract ioaccel2 handle from the command.
2845  *	2. Find a matching ioaccel2 handle from list of physical disks.
2846  *	3. Return:
2847  *		1 and set scsi3addr to address of matching physical
2848  *		0 if no matching physical disk was found.
2849  */
2850 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2851 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2852 {
2853 	struct ReportExtendedLUNdata *physicals = NULL;
2854 	int responsesize = 24;	/* size of physical extended response */
2855 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2856 	u32 nphysicals = 0;	/* number of reported physical devs */
2857 	int found = 0;		/* found match (1) or not (0) */
2858 	u32 find;		/* handle we need to match */
2859 	int i;
2860 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2861 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2862 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2863 	__le32 it_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2864 	__le32 scsi_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2865 
2866 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2867 		return 0; /* no match */
2868 
2869 	/* point to the ioaccel2 device handle */
2870 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2871 	if (c2a == NULL)
2872 		return 0; /* no match */
2873 
2874 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2875 	if (scmd == NULL)
2876 		return 0; /* no match */
2877 
2878 	d = scmd->device->hostdata;
2879 	if (d == NULL)
2880 		return 0; /* no match */
2881 
2882 	it_nexus = cpu_to_le32(d->ioaccel_handle);
2883 	scsi_nexus = c2a->scsi_nexus;
2884 	find = le32_to_cpu(c2a->scsi_nexus);
2885 
2886 	if (h->raid_offload_debug > 0)
2887 		dev_info(&h->pdev->dev,
2888 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2889 			__func__, scsi_nexus,
2890 			d->device_id[0], d->device_id[1], d->device_id[2],
2891 			d->device_id[3], d->device_id[4], d->device_id[5],
2892 			d->device_id[6], d->device_id[7], d->device_id[8],
2893 			d->device_id[9], d->device_id[10], d->device_id[11],
2894 			d->device_id[12], d->device_id[13], d->device_id[14],
2895 			d->device_id[15]);
2896 
2897 	/* Get the list of physical devices */
2898 	physicals = kzalloc(reportsize, GFP_KERNEL);
2899 	if (physicals == NULL)
2900 		return 0;
2901 	if (hpsa_scsi_do_report_phys_luns(h, physicals, reportsize)) {
2902 		dev_err(&h->pdev->dev,
2903 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2904 			"HP SSD Smart Path");
2905 		kfree(physicals);
2906 		return 0;
2907 	}
2908 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2909 							responsesize;
2910 
2911 	/* find ioaccel2 handle in list of physicals: */
2912 	for (i = 0; i < nphysicals; i++) {
2913 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2914 
2915 		/* handle is in bytes 28-31 of each lun */
2916 		if (entry->ioaccel_handle != find)
2917 			continue; /* didn't match */
2918 		found = 1;
2919 		memcpy(scsi3addr, entry->lunid, 8);
2920 		if (h->raid_offload_debug > 0)
2921 			dev_info(&h->pdev->dev,
2922 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2923 				__func__, find,
2924 				entry->ioaccel_handle, scsi3addr);
2925 		break; /* found it */
2926 	}
2927 
2928 	kfree(physicals);
2929 	if (found)
2930 		return 1;
2931 	else
2932 		return 0;
2933 
2934 }
2935 /*
2936  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2937  * logdev.  The number of luns in physdev and logdev are returned in
2938  * *nphysicals and *nlogicals, respectively.
2939  * Returns 0 on success, -1 otherwise.
2940  */
2941 static int hpsa_gather_lun_info(struct ctlr_info *h,
2942 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
2943 	struct ReportLUNdata *logdev, u32 *nlogicals)
2944 {
2945 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
2946 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2947 		return -1;
2948 	}
2949 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
2950 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2951 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
2952 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
2953 		*nphysicals = HPSA_MAX_PHYS_LUN;
2954 	}
2955 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
2956 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2957 		return -1;
2958 	}
2959 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2960 	/* Reject Logicals in excess of our max capability. */
2961 	if (*nlogicals > HPSA_MAX_LUN) {
2962 		dev_warn(&h->pdev->dev,
2963 			"maximum logical LUNs (%d) exceeded.  "
2964 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2965 			*nlogicals - HPSA_MAX_LUN);
2966 			*nlogicals = HPSA_MAX_LUN;
2967 	}
2968 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2969 		dev_warn(&h->pdev->dev,
2970 			"maximum logical + physical LUNs (%d) exceeded. "
2971 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2972 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2973 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2974 	}
2975 	return 0;
2976 }
2977 
2978 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2979 	int i, int nphysicals, int nlogicals,
2980 	struct ReportExtendedLUNdata *physdev_list,
2981 	struct ReportLUNdata *logdev_list)
2982 {
2983 	/* Helper function, figure out where the LUN ID info is coming from
2984 	 * given index i, lists of physical and logical devices, where in
2985 	 * the list the raid controller is supposed to appear (first or last)
2986 	 */
2987 
2988 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2989 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2990 
2991 	if (i == raid_ctlr_position)
2992 		return RAID_CTLR_LUNID;
2993 
2994 	if (i < logicals_start)
2995 		return &physdev_list->LUN[i -
2996 				(raid_ctlr_position == 0)].lunid[0];
2997 
2998 	if (i < last_device)
2999 		return &logdev_list->LUN[i - nphysicals -
3000 			(raid_ctlr_position == 0)][0];
3001 	BUG();
3002 	return NULL;
3003 }
3004 
3005 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3006 {
3007 	int rc;
3008 	int hba_mode_enabled;
3009 	struct bmic_controller_parameters *ctlr_params;
3010 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3011 		GFP_KERNEL);
3012 
3013 	if (!ctlr_params)
3014 		return -ENOMEM;
3015 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3016 		sizeof(struct bmic_controller_parameters));
3017 	if (rc) {
3018 		kfree(ctlr_params);
3019 		return rc;
3020 	}
3021 
3022 	hba_mode_enabled =
3023 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3024 	kfree(ctlr_params);
3025 	return hba_mode_enabled;
3026 }
3027 
3028 /* get physical drive ioaccel handle and queue depth */
3029 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3030 		struct hpsa_scsi_dev_t *dev,
3031 		u8 *lunaddrbytes,
3032 		struct bmic_identify_physical_device *id_phys)
3033 {
3034 	int rc;
3035 	struct ext_report_lun_entry *rle =
3036 		(struct ext_report_lun_entry *) lunaddrbytes;
3037 
3038 	dev->ioaccel_handle = rle->ioaccel_handle;
3039 	memset(id_phys, 0, sizeof(*id_phys));
3040 	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3041 			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3042 			sizeof(*id_phys));
3043 	if (!rc)
3044 		/* Reserve space for FW operations */
3045 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3046 #define DRIVE_QUEUE_DEPTH 7
3047 		dev->queue_depth =
3048 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3049 				DRIVE_CMDS_RESERVED_FOR_FW;
3050 	else
3051 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3052 	atomic_set(&dev->ioaccel_cmds_out, 0);
3053 }
3054 
3055 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3056 {
3057 	/* the idea here is we could get notified
3058 	 * that some devices have changed, so we do a report
3059 	 * physical luns and report logical luns cmd, and adjust
3060 	 * our list of devices accordingly.
3061 	 *
3062 	 * The scsi3addr's of devices won't change so long as the
3063 	 * adapter is not reset.  That means we can rescan and
3064 	 * tell which devices we already know about, vs. new
3065 	 * devices, vs.  disappearing devices.
3066 	 */
3067 	struct ReportExtendedLUNdata *physdev_list = NULL;
3068 	struct ReportLUNdata *logdev_list = NULL;
3069 	struct bmic_identify_physical_device *id_phys = NULL;
3070 	u32 nphysicals = 0;
3071 	u32 nlogicals = 0;
3072 	u32 ndev_allocated = 0;
3073 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3074 	int ncurrent = 0;
3075 	int i, n_ext_target_devs, ndevs_to_allocate;
3076 	int raid_ctlr_position;
3077 	int rescan_hba_mode;
3078 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3079 
3080 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3081 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3082 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3083 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3084 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3085 
3086 	if (!currentsd || !physdev_list || !logdev_list ||
3087 		!tmpdevice || !id_phys) {
3088 		dev_err(&h->pdev->dev, "out of memory\n");
3089 		goto out;
3090 	}
3091 	memset(lunzerobits, 0, sizeof(lunzerobits));
3092 
3093 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3094 	if (rescan_hba_mode < 0)
3095 		goto out;
3096 
3097 	if (!h->hba_mode_enabled && rescan_hba_mode)
3098 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3099 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3100 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3101 
3102 	h->hba_mode_enabled = rescan_hba_mode;
3103 
3104 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3105 			logdev_list, &nlogicals))
3106 		goto out;
3107 
3108 	/* We might see up to the maximum number of logical and physical disks
3109 	 * plus external target devices, and a device for the local RAID
3110 	 * controller.
3111 	 */
3112 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3113 
3114 	/* Allocate the per device structures */
3115 	for (i = 0; i < ndevs_to_allocate; i++) {
3116 		if (i >= HPSA_MAX_DEVICES) {
3117 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3118 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3119 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3120 			break;
3121 		}
3122 
3123 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3124 		if (!currentsd[i]) {
3125 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3126 				__FILE__, __LINE__);
3127 			goto out;
3128 		}
3129 		ndev_allocated++;
3130 	}
3131 
3132 	if (is_scsi_rev_5(h))
3133 		raid_ctlr_position = 0;
3134 	else
3135 		raid_ctlr_position = nphysicals + nlogicals;
3136 
3137 	/* adjust our table of devices */
3138 	n_ext_target_devs = 0;
3139 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3140 		u8 *lunaddrbytes, is_OBDR = 0;
3141 
3142 		/* Figure out where the LUN ID info is coming from */
3143 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3144 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3145 		/* skip masked physical devices. */
3146 		if (lunaddrbytes[3] & 0xC0 &&
3147 			i < nphysicals + (raid_ctlr_position == 0))
3148 			continue;
3149 
3150 		/* Get device type, vendor, model, device id */
3151 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3152 							&is_OBDR))
3153 			continue; /* skip it if we can't talk to it. */
3154 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3155 		this_device = currentsd[ncurrent];
3156 
3157 		/*
3158 		 * For external target devices, we have to insert a LUN 0 which
3159 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3160 		 * is nonetheless an enclosure device there.  We have to
3161 		 * present that otherwise linux won't find anything if
3162 		 * there is no lun 0.
3163 		 */
3164 		if (add_ext_target_dev(h, tmpdevice, this_device,
3165 				lunaddrbytes, lunzerobits,
3166 				&n_ext_target_devs)) {
3167 			ncurrent++;
3168 			this_device = currentsd[ncurrent];
3169 		}
3170 
3171 		*this_device = *tmpdevice;
3172 
3173 		switch (this_device->devtype) {
3174 		case TYPE_ROM:
3175 			/* We don't *really* support actual CD-ROM devices,
3176 			 * just "One Button Disaster Recovery" tape drive
3177 			 * which temporarily pretends to be a CD-ROM drive.
3178 			 * So we check that the device is really an OBDR tape
3179 			 * device by checking for "$DR-10" in bytes 43-48 of
3180 			 * the inquiry data.
3181 			 */
3182 			if (is_OBDR)
3183 				ncurrent++;
3184 			break;
3185 		case TYPE_DISK:
3186 			if (h->hba_mode_enabled) {
3187 				/* never use raid mapper in HBA mode */
3188 				this_device->offload_enabled = 0;
3189 				ncurrent++;
3190 				break;
3191 			} else if (h->acciopath_status) {
3192 				if (i >= nphysicals) {
3193 					ncurrent++;
3194 					break;
3195 				}
3196 			} else {
3197 				if (i < nphysicals)
3198 					break;
3199 				ncurrent++;
3200 				break;
3201 			}
3202 			if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3203 				h->transMethod & CFGTBL_Trans_io_accel2) {
3204 				hpsa_get_ioaccel_drive_info(h, this_device,
3205 							lunaddrbytes, id_phys);
3206 				atomic_set(&this_device->ioaccel_cmds_out, 0);
3207 				ncurrent++;
3208 			}
3209 			break;
3210 		case TYPE_TAPE:
3211 		case TYPE_MEDIUM_CHANGER:
3212 			ncurrent++;
3213 			break;
3214 		case TYPE_RAID:
3215 			/* Only present the Smartarray HBA as a RAID controller.
3216 			 * If it's a RAID controller other than the HBA itself
3217 			 * (an external RAID controller, MSA500 or similar)
3218 			 * don't present it.
3219 			 */
3220 			if (!is_hba_lunid(lunaddrbytes))
3221 				break;
3222 			ncurrent++;
3223 			break;
3224 		default:
3225 			break;
3226 		}
3227 		if (ncurrent >= HPSA_MAX_DEVICES)
3228 			break;
3229 	}
3230 	hpsa_update_log_drive_phys_drive_ptrs(h, currentsd, ncurrent);
3231 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3232 out:
3233 	kfree(tmpdevice);
3234 	for (i = 0; i < ndev_allocated; i++)
3235 		kfree(currentsd[i]);
3236 	kfree(currentsd);
3237 	kfree(physdev_list);
3238 	kfree(logdev_list);
3239 	kfree(id_phys);
3240 }
3241 
3242 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3243 				   struct scatterlist *sg)
3244 {
3245 	u64 addr64 = (u64) sg_dma_address(sg);
3246 	unsigned int len = sg_dma_len(sg);
3247 
3248 	desc->Addr = cpu_to_le64(addr64);
3249 	desc->Len = cpu_to_le32(len);
3250 	desc->Ext = 0;
3251 }
3252 
3253 /*
3254  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3255  * dma mapping  and fills in the scatter gather entries of the
3256  * hpsa command, cp.
3257  */
3258 static int hpsa_scatter_gather(struct ctlr_info *h,
3259 		struct CommandList *cp,
3260 		struct scsi_cmnd *cmd)
3261 {
3262 	struct scatterlist *sg;
3263 	int use_sg, i, sg_index, chained;
3264 	struct SGDescriptor *curr_sg;
3265 
3266 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3267 
3268 	use_sg = scsi_dma_map(cmd);
3269 	if (use_sg < 0)
3270 		return use_sg;
3271 
3272 	if (!use_sg)
3273 		goto sglist_finished;
3274 
3275 	curr_sg = cp->SG;
3276 	chained = 0;
3277 	sg_index = 0;
3278 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3279 		if (i == h->max_cmd_sg_entries - 1 &&
3280 			use_sg > h->max_cmd_sg_entries) {
3281 			chained = 1;
3282 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3283 			sg_index = 0;
3284 		}
3285 		hpsa_set_sg_descriptor(curr_sg, sg);
3286 		curr_sg++;
3287 	}
3288 
3289 	/* Back the pointer up to the last entry and mark it as "last". */
3290 	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3291 
3292 	if (use_sg + chained > h->maxSG)
3293 		h->maxSG = use_sg + chained;
3294 
3295 	if (chained) {
3296 		cp->Header.SGList = h->max_cmd_sg_entries;
3297 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3298 		if (hpsa_map_sg_chain_block(h, cp)) {
3299 			scsi_dma_unmap(cmd);
3300 			return -1;
3301 		}
3302 		return 0;
3303 	}
3304 
3305 sglist_finished:
3306 
3307 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3308 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3309 	return 0;
3310 }
3311 
3312 #define IO_ACCEL_INELIGIBLE (1)
3313 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3314 {
3315 	int is_write = 0;
3316 	u32 block;
3317 	u32 block_cnt;
3318 
3319 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3320 	switch (cdb[0]) {
3321 	case WRITE_6:
3322 	case WRITE_12:
3323 		is_write = 1;
3324 	case READ_6:
3325 	case READ_12:
3326 		if (*cdb_len == 6) {
3327 			block = (((u32) cdb[2]) << 8) | cdb[3];
3328 			block_cnt = cdb[4];
3329 		} else {
3330 			BUG_ON(*cdb_len != 12);
3331 			block = (((u32) cdb[2]) << 24) |
3332 				(((u32) cdb[3]) << 16) |
3333 				(((u32) cdb[4]) << 8) |
3334 				cdb[5];
3335 			block_cnt =
3336 				(((u32) cdb[6]) << 24) |
3337 				(((u32) cdb[7]) << 16) |
3338 				(((u32) cdb[8]) << 8) |
3339 				cdb[9];
3340 		}
3341 		if (block_cnt > 0xffff)
3342 			return IO_ACCEL_INELIGIBLE;
3343 
3344 		cdb[0] = is_write ? WRITE_10 : READ_10;
3345 		cdb[1] = 0;
3346 		cdb[2] = (u8) (block >> 24);
3347 		cdb[3] = (u8) (block >> 16);
3348 		cdb[4] = (u8) (block >> 8);
3349 		cdb[5] = (u8) (block);
3350 		cdb[6] = 0;
3351 		cdb[7] = (u8) (block_cnt >> 8);
3352 		cdb[8] = (u8) (block_cnt);
3353 		cdb[9] = 0;
3354 		*cdb_len = 10;
3355 		break;
3356 	}
3357 	return 0;
3358 }
3359 
3360 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3361 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3362 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3363 {
3364 	struct scsi_cmnd *cmd = c->scsi_cmd;
3365 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3366 	unsigned int len;
3367 	unsigned int total_len = 0;
3368 	struct scatterlist *sg;
3369 	u64 addr64;
3370 	int use_sg, i;
3371 	struct SGDescriptor *curr_sg;
3372 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3373 
3374 	/* TODO: implement chaining support */
3375 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3376 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3377 		return IO_ACCEL_INELIGIBLE;
3378 	}
3379 
3380 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3381 
3382 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3383 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3384 		return IO_ACCEL_INELIGIBLE;
3385 	}
3386 
3387 	c->cmd_type = CMD_IOACCEL1;
3388 
3389 	/* Adjust the DMA address to point to the accelerated command buffer */
3390 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3391 				(c->cmdindex * sizeof(*cp));
3392 	BUG_ON(c->busaddr & 0x0000007F);
3393 
3394 	use_sg = scsi_dma_map(cmd);
3395 	if (use_sg < 0) {
3396 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3397 		return use_sg;
3398 	}
3399 
3400 	if (use_sg) {
3401 		curr_sg = cp->SG;
3402 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3403 			addr64 = (u64) sg_dma_address(sg);
3404 			len  = sg_dma_len(sg);
3405 			total_len += len;
3406 			curr_sg->Addr = cpu_to_le64(addr64);
3407 			curr_sg->Len = cpu_to_le32(len);
3408 			curr_sg->Ext = cpu_to_le32(0);
3409 			curr_sg++;
3410 		}
3411 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3412 
3413 		switch (cmd->sc_data_direction) {
3414 		case DMA_TO_DEVICE:
3415 			control |= IOACCEL1_CONTROL_DATA_OUT;
3416 			break;
3417 		case DMA_FROM_DEVICE:
3418 			control |= IOACCEL1_CONTROL_DATA_IN;
3419 			break;
3420 		case DMA_NONE:
3421 			control |= IOACCEL1_CONTROL_NODATAXFER;
3422 			break;
3423 		default:
3424 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3425 			cmd->sc_data_direction);
3426 			BUG();
3427 			break;
3428 		}
3429 	} else {
3430 		control |= IOACCEL1_CONTROL_NODATAXFER;
3431 	}
3432 
3433 	c->Header.SGList = use_sg;
3434 	/* Fill out the command structure to submit */
3435 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3436 	cp->transfer_len = cpu_to_le32(total_len);
3437 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3438 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3439 	cp->control = cpu_to_le32(control);
3440 	memcpy(cp->CDB, cdb, cdb_len);
3441 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3442 	/* Tag was already set at init time. */
3443 	enqueue_cmd_and_start_io(h, c);
3444 	return 0;
3445 }
3446 
3447 /*
3448  * Queue a command directly to a device behind the controller using the
3449  * I/O accelerator path.
3450  */
3451 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3452 	struct CommandList *c)
3453 {
3454 	struct scsi_cmnd *cmd = c->scsi_cmd;
3455 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3456 
3457 	c->phys_disk = dev;
3458 
3459 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3460 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3461 }
3462 
3463 /*
3464  * Set encryption parameters for the ioaccel2 request
3465  */
3466 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3467 	struct CommandList *c, struct io_accel2_cmd *cp)
3468 {
3469 	struct scsi_cmnd *cmd = c->scsi_cmd;
3470 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3471 	struct raid_map_data *map = &dev->raid_map;
3472 	u64 first_block;
3473 
3474 	/* Are we doing encryption on this device */
3475 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3476 		return;
3477 	/* Set the data encryption key index. */
3478 	cp->dekindex = map->dekindex;
3479 
3480 	/* Set the encryption enable flag, encoded into direction field. */
3481 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3482 
3483 	/* Set encryption tweak values based on logical block address
3484 	 * If block size is 512, tweak value is LBA.
3485 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3486 	 */
3487 	switch (cmd->cmnd[0]) {
3488 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3489 	case WRITE_6:
3490 	case READ_6:
3491 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3492 		break;
3493 	case WRITE_10:
3494 	case READ_10:
3495 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3496 	case WRITE_12:
3497 	case READ_12:
3498 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3499 		break;
3500 	case WRITE_16:
3501 	case READ_16:
3502 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3503 		break;
3504 	default:
3505 		dev_err(&h->pdev->dev,
3506 			"ERROR: %s: size (0x%x) not supported for encryption\n",
3507 			__func__, cmd->cmnd[0]);
3508 		BUG();
3509 		break;
3510 	}
3511 
3512 	if (le32_to_cpu(map->volume_blk_size) != 512)
3513 		first_block = first_block *
3514 				le32_to_cpu(map->volume_blk_size)/512;
3515 
3516 	cp->tweak_lower = cpu_to_le32(first_block);
3517 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3518 }
3519 
3520 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3521 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3522 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3523 {
3524 	struct scsi_cmnd *cmd = c->scsi_cmd;
3525 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3526 	struct ioaccel2_sg_element *curr_sg;
3527 	int use_sg, i;
3528 	struct scatterlist *sg;
3529 	u64 addr64;
3530 	u32 len;
3531 	u32 total_len = 0;
3532 
3533 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3534 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3535 		return IO_ACCEL_INELIGIBLE;
3536 	}
3537 
3538 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3539 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3540 		return IO_ACCEL_INELIGIBLE;
3541 	}
3542 
3543 	c->cmd_type = CMD_IOACCEL2;
3544 	/* Adjust the DMA address to point to the accelerated command buffer */
3545 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3546 				(c->cmdindex * sizeof(*cp));
3547 	BUG_ON(c->busaddr & 0x0000007F);
3548 
3549 	memset(cp, 0, sizeof(*cp));
3550 	cp->IU_type = IOACCEL2_IU_TYPE;
3551 
3552 	use_sg = scsi_dma_map(cmd);
3553 	if (use_sg < 0) {
3554 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3555 		return use_sg;
3556 	}
3557 
3558 	if (use_sg) {
3559 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3560 		curr_sg = cp->sg;
3561 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3562 			addr64 = (u64) sg_dma_address(sg);
3563 			len  = sg_dma_len(sg);
3564 			total_len += len;
3565 			curr_sg->address = cpu_to_le64(addr64);
3566 			curr_sg->length = cpu_to_le32(len);
3567 			curr_sg->reserved[0] = 0;
3568 			curr_sg->reserved[1] = 0;
3569 			curr_sg->reserved[2] = 0;
3570 			curr_sg->chain_indicator = 0;
3571 			curr_sg++;
3572 		}
3573 
3574 		switch (cmd->sc_data_direction) {
3575 		case DMA_TO_DEVICE:
3576 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3577 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3578 			break;
3579 		case DMA_FROM_DEVICE:
3580 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3581 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3582 			break;
3583 		case DMA_NONE:
3584 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3585 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3586 			break;
3587 		default:
3588 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3589 				cmd->sc_data_direction);
3590 			BUG();
3591 			break;
3592 		}
3593 	} else {
3594 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3595 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3596 	}
3597 
3598 	/* Set encryption parameters, if necessary */
3599 	set_encrypt_ioaccel2(h, c, cp);
3600 
3601 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3602 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3603 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3604 
3605 	/* fill in sg elements */
3606 	cp->sg_count = (u8) use_sg;
3607 
3608 	cp->data_len = cpu_to_le32(total_len);
3609 	cp->err_ptr = cpu_to_le64(c->busaddr +
3610 			offsetof(struct io_accel2_cmd, error_data));
3611 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3612 
3613 	enqueue_cmd_and_start_io(h, c);
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Queue a command to the correct I/O accelerator path.
3619  */
3620 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3621 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3622 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3623 {
3624 	/* Try to honor the device's queue depth */
3625 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3626 					phys_disk->queue_depth) {
3627 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3628 		return IO_ACCEL_INELIGIBLE;
3629 	}
3630 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3631 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3632 						cdb, cdb_len, scsi3addr,
3633 						phys_disk);
3634 	else
3635 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3636 						cdb, cdb_len, scsi3addr,
3637 						phys_disk);
3638 }
3639 
3640 static void raid_map_helper(struct raid_map_data *map,
3641 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3642 {
3643 	if (offload_to_mirror == 0)  {
3644 		/* use physical disk in the first mirrored group. */
3645 		*map_index %= le16_to_cpu(map->data_disks_per_row);
3646 		return;
3647 	}
3648 	do {
3649 		/* determine mirror group that *map_index indicates */
3650 		*current_group = *map_index /
3651 			le16_to_cpu(map->data_disks_per_row);
3652 		if (offload_to_mirror == *current_group)
3653 			continue;
3654 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3655 			/* select map index from next group */
3656 			*map_index += le16_to_cpu(map->data_disks_per_row);
3657 			(*current_group)++;
3658 		} else {
3659 			/* select map index from first group */
3660 			*map_index %= le16_to_cpu(map->data_disks_per_row);
3661 			*current_group = 0;
3662 		}
3663 	} while (offload_to_mirror != *current_group);
3664 }
3665 
3666 /*
3667  * Attempt to perform offload RAID mapping for a logical volume I/O.
3668  */
3669 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3670 	struct CommandList *c)
3671 {
3672 	struct scsi_cmnd *cmd = c->scsi_cmd;
3673 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3674 	struct raid_map_data *map = &dev->raid_map;
3675 	struct raid_map_disk_data *dd = &map->data[0];
3676 	int is_write = 0;
3677 	u32 map_index;
3678 	u64 first_block, last_block;
3679 	u32 block_cnt;
3680 	u32 blocks_per_row;
3681 	u64 first_row, last_row;
3682 	u32 first_row_offset, last_row_offset;
3683 	u32 first_column, last_column;
3684 	u64 r0_first_row, r0_last_row;
3685 	u32 r5or6_blocks_per_row;
3686 	u64 r5or6_first_row, r5or6_last_row;
3687 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3688 	u32 r5or6_first_column, r5or6_last_column;
3689 	u32 total_disks_per_row;
3690 	u32 stripesize;
3691 	u32 first_group, last_group, current_group;
3692 	u32 map_row;
3693 	u32 disk_handle;
3694 	u64 disk_block;
3695 	u32 disk_block_cnt;
3696 	u8 cdb[16];
3697 	u8 cdb_len;
3698 	u16 strip_size;
3699 #if BITS_PER_LONG == 32
3700 	u64 tmpdiv;
3701 #endif
3702 	int offload_to_mirror;
3703 
3704 	/* check for valid opcode, get LBA and block count */
3705 	switch (cmd->cmnd[0]) {
3706 	case WRITE_6:
3707 		is_write = 1;
3708 	case READ_6:
3709 		first_block =
3710 			(((u64) cmd->cmnd[2]) << 8) |
3711 			cmd->cmnd[3];
3712 		block_cnt = cmd->cmnd[4];
3713 		if (block_cnt == 0)
3714 			block_cnt = 256;
3715 		break;
3716 	case WRITE_10:
3717 		is_write = 1;
3718 	case READ_10:
3719 		first_block =
3720 			(((u64) cmd->cmnd[2]) << 24) |
3721 			(((u64) cmd->cmnd[3]) << 16) |
3722 			(((u64) cmd->cmnd[4]) << 8) |
3723 			cmd->cmnd[5];
3724 		block_cnt =
3725 			(((u32) cmd->cmnd[7]) << 8) |
3726 			cmd->cmnd[8];
3727 		break;
3728 	case WRITE_12:
3729 		is_write = 1;
3730 	case READ_12:
3731 		first_block =
3732 			(((u64) cmd->cmnd[2]) << 24) |
3733 			(((u64) cmd->cmnd[3]) << 16) |
3734 			(((u64) cmd->cmnd[4]) << 8) |
3735 			cmd->cmnd[5];
3736 		block_cnt =
3737 			(((u32) cmd->cmnd[6]) << 24) |
3738 			(((u32) cmd->cmnd[7]) << 16) |
3739 			(((u32) cmd->cmnd[8]) << 8) |
3740 		cmd->cmnd[9];
3741 		break;
3742 	case WRITE_16:
3743 		is_write = 1;
3744 	case READ_16:
3745 		first_block =
3746 			(((u64) cmd->cmnd[2]) << 56) |
3747 			(((u64) cmd->cmnd[3]) << 48) |
3748 			(((u64) cmd->cmnd[4]) << 40) |
3749 			(((u64) cmd->cmnd[5]) << 32) |
3750 			(((u64) cmd->cmnd[6]) << 24) |
3751 			(((u64) cmd->cmnd[7]) << 16) |
3752 			(((u64) cmd->cmnd[8]) << 8) |
3753 			cmd->cmnd[9];
3754 		block_cnt =
3755 			(((u32) cmd->cmnd[10]) << 24) |
3756 			(((u32) cmd->cmnd[11]) << 16) |
3757 			(((u32) cmd->cmnd[12]) << 8) |
3758 			cmd->cmnd[13];
3759 		break;
3760 	default:
3761 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3762 	}
3763 	last_block = first_block + block_cnt - 1;
3764 
3765 	/* check for write to non-RAID-0 */
3766 	if (is_write && dev->raid_level != 0)
3767 		return IO_ACCEL_INELIGIBLE;
3768 
3769 	/* check for invalid block or wraparound */
3770 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3771 		last_block < first_block)
3772 		return IO_ACCEL_INELIGIBLE;
3773 
3774 	/* calculate stripe information for the request */
3775 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3776 				le16_to_cpu(map->strip_size);
3777 	strip_size = le16_to_cpu(map->strip_size);
3778 #if BITS_PER_LONG == 32
3779 	tmpdiv = first_block;
3780 	(void) do_div(tmpdiv, blocks_per_row);
3781 	first_row = tmpdiv;
3782 	tmpdiv = last_block;
3783 	(void) do_div(tmpdiv, blocks_per_row);
3784 	last_row = tmpdiv;
3785 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3786 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3787 	tmpdiv = first_row_offset;
3788 	(void) do_div(tmpdiv, strip_size);
3789 	first_column = tmpdiv;
3790 	tmpdiv = last_row_offset;
3791 	(void) do_div(tmpdiv, strip_size);
3792 	last_column = tmpdiv;
3793 #else
3794 	first_row = first_block / blocks_per_row;
3795 	last_row = last_block / blocks_per_row;
3796 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3797 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3798 	first_column = first_row_offset / strip_size;
3799 	last_column = last_row_offset / strip_size;
3800 #endif
3801 
3802 	/* if this isn't a single row/column then give to the controller */
3803 	if ((first_row != last_row) || (first_column != last_column))
3804 		return IO_ACCEL_INELIGIBLE;
3805 
3806 	/* proceeding with driver mapping */
3807 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3808 				le16_to_cpu(map->metadata_disks_per_row);
3809 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3810 				le16_to_cpu(map->row_cnt);
3811 	map_index = (map_row * total_disks_per_row) + first_column;
3812 
3813 	switch (dev->raid_level) {
3814 	case HPSA_RAID_0:
3815 		break; /* nothing special to do */
3816 	case HPSA_RAID_1:
3817 		/* Handles load balance across RAID 1 members.
3818 		 * (2-drive R1 and R10 with even # of drives.)
3819 		 * Appropriate for SSDs, not optimal for HDDs
3820 		 */
3821 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3822 		if (dev->offload_to_mirror)
3823 			map_index += le16_to_cpu(map->data_disks_per_row);
3824 		dev->offload_to_mirror = !dev->offload_to_mirror;
3825 		break;
3826 	case HPSA_RAID_ADM:
3827 		/* Handles N-way mirrors  (R1-ADM)
3828 		 * and R10 with # of drives divisible by 3.)
3829 		 */
3830 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3831 
3832 		offload_to_mirror = dev->offload_to_mirror;
3833 		raid_map_helper(map, offload_to_mirror,
3834 				&map_index, &current_group);
3835 		/* set mirror group to use next time */
3836 		offload_to_mirror =
3837 			(offload_to_mirror >=
3838 			le16_to_cpu(map->layout_map_count) - 1)
3839 			? 0 : offload_to_mirror + 1;
3840 		dev->offload_to_mirror = offload_to_mirror;
3841 		/* Avoid direct use of dev->offload_to_mirror within this
3842 		 * function since multiple threads might simultaneously
3843 		 * increment it beyond the range of dev->layout_map_count -1.
3844 		 */
3845 		break;
3846 	case HPSA_RAID_5:
3847 	case HPSA_RAID_6:
3848 		if (le16_to_cpu(map->layout_map_count) <= 1)
3849 			break;
3850 
3851 		/* Verify first and last block are in same RAID group */
3852 		r5or6_blocks_per_row =
3853 			le16_to_cpu(map->strip_size) *
3854 			le16_to_cpu(map->data_disks_per_row);
3855 		BUG_ON(r5or6_blocks_per_row == 0);
3856 		stripesize = r5or6_blocks_per_row *
3857 			le16_to_cpu(map->layout_map_count);
3858 #if BITS_PER_LONG == 32
3859 		tmpdiv = first_block;
3860 		first_group = do_div(tmpdiv, stripesize);
3861 		tmpdiv = first_group;
3862 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3863 		first_group = tmpdiv;
3864 		tmpdiv = last_block;
3865 		last_group = do_div(tmpdiv, stripesize);
3866 		tmpdiv = last_group;
3867 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3868 		last_group = tmpdiv;
3869 #else
3870 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3871 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3872 #endif
3873 		if (first_group != last_group)
3874 			return IO_ACCEL_INELIGIBLE;
3875 
3876 		/* Verify request is in a single row of RAID 5/6 */
3877 #if BITS_PER_LONG == 32
3878 		tmpdiv = first_block;
3879 		(void) do_div(tmpdiv, stripesize);
3880 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3881 		tmpdiv = last_block;
3882 		(void) do_div(tmpdiv, stripesize);
3883 		r5or6_last_row = r0_last_row = tmpdiv;
3884 #else
3885 		first_row = r5or6_first_row = r0_first_row =
3886 						first_block / stripesize;
3887 		r5or6_last_row = r0_last_row = last_block / stripesize;
3888 #endif
3889 		if (r5or6_first_row != r5or6_last_row)
3890 			return IO_ACCEL_INELIGIBLE;
3891 
3892 
3893 		/* Verify request is in a single column */
3894 #if BITS_PER_LONG == 32
3895 		tmpdiv = first_block;
3896 		first_row_offset = do_div(tmpdiv, stripesize);
3897 		tmpdiv = first_row_offset;
3898 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3899 		r5or6_first_row_offset = first_row_offset;
3900 		tmpdiv = last_block;
3901 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3902 		tmpdiv = r5or6_last_row_offset;
3903 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3904 		tmpdiv = r5or6_first_row_offset;
3905 		(void) do_div(tmpdiv, map->strip_size);
3906 		first_column = r5or6_first_column = tmpdiv;
3907 		tmpdiv = r5or6_last_row_offset;
3908 		(void) do_div(tmpdiv, map->strip_size);
3909 		r5or6_last_column = tmpdiv;
3910 #else
3911 		first_row_offset = r5or6_first_row_offset =
3912 			(u32)((first_block % stripesize) %
3913 						r5or6_blocks_per_row);
3914 
3915 		r5or6_last_row_offset =
3916 			(u32)((last_block % stripesize) %
3917 						r5or6_blocks_per_row);
3918 
3919 		first_column = r5or6_first_column =
3920 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3921 		r5or6_last_column =
3922 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3923 #endif
3924 		if (r5or6_first_column != r5or6_last_column)
3925 			return IO_ACCEL_INELIGIBLE;
3926 
3927 		/* Request is eligible */
3928 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3929 			le16_to_cpu(map->row_cnt);
3930 
3931 		map_index = (first_group *
3932 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3933 			(map_row * total_disks_per_row) + first_column;
3934 		break;
3935 	default:
3936 		return IO_ACCEL_INELIGIBLE;
3937 	}
3938 
3939 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
3940 		return IO_ACCEL_INELIGIBLE;
3941 
3942 	c->phys_disk = dev->phys_disk[map_index];
3943 
3944 	disk_handle = dd[map_index].ioaccel_handle;
3945 	disk_block = le64_to_cpu(map->disk_starting_blk) +
3946 			first_row * le16_to_cpu(map->strip_size) +
3947 			(first_row_offset - first_column *
3948 			le16_to_cpu(map->strip_size));
3949 	disk_block_cnt = block_cnt;
3950 
3951 	/* handle differing logical/physical block sizes */
3952 	if (map->phys_blk_shift) {
3953 		disk_block <<= map->phys_blk_shift;
3954 		disk_block_cnt <<= map->phys_blk_shift;
3955 	}
3956 	BUG_ON(disk_block_cnt > 0xffff);
3957 
3958 	/* build the new CDB for the physical disk I/O */
3959 	if (disk_block > 0xffffffff) {
3960 		cdb[0] = is_write ? WRITE_16 : READ_16;
3961 		cdb[1] = 0;
3962 		cdb[2] = (u8) (disk_block >> 56);
3963 		cdb[3] = (u8) (disk_block >> 48);
3964 		cdb[4] = (u8) (disk_block >> 40);
3965 		cdb[5] = (u8) (disk_block >> 32);
3966 		cdb[6] = (u8) (disk_block >> 24);
3967 		cdb[7] = (u8) (disk_block >> 16);
3968 		cdb[8] = (u8) (disk_block >> 8);
3969 		cdb[9] = (u8) (disk_block);
3970 		cdb[10] = (u8) (disk_block_cnt >> 24);
3971 		cdb[11] = (u8) (disk_block_cnt >> 16);
3972 		cdb[12] = (u8) (disk_block_cnt >> 8);
3973 		cdb[13] = (u8) (disk_block_cnt);
3974 		cdb[14] = 0;
3975 		cdb[15] = 0;
3976 		cdb_len = 16;
3977 	} else {
3978 		cdb[0] = is_write ? WRITE_10 : READ_10;
3979 		cdb[1] = 0;
3980 		cdb[2] = (u8) (disk_block >> 24);
3981 		cdb[3] = (u8) (disk_block >> 16);
3982 		cdb[4] = (u8) (disk_block >> 8);
3983 		cdb[5] = (u8) (disk_block);
3984 		cdb[6] = 0;
3985 		cdb[7] = (u8) (disk_block_cnt >> 8);
3986 		cdb[8] = (u8) (disk_block_cnt);
3987 		cdb[9] = 0;
3988 		cdb_len = 10;
3989 	}
3990 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3991 						dev->scsi3addr,
3992 						dev->phys_disk[map_index]);
3993 }
3994 
3995 /* Submit commands down the "normal" RAID stack path */
3996 static int hpsa_ciss_submit(struct ctlr_info *h,
3997 	struct CommandList *c, struct scsi_cmnd *cmd,
3998 	unsigned char scsi3addr[])
3999 {
4000 	cmd->host_scribble = (unsigned char *) c;
4001 	c->cmd_type = CMD_SCSI;
4002 	c->scsi_cmd = cmd;
4003 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4004 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4005 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4006 
4007 	/* Fill in the request block... */
4008 
4009 	c->Request.Timeout = 0;
4010 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4011 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4012 	c->Request.CDBLen = cmd->cmd_len;
4013 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4014 	switch (cmd->sc_data_direction) {
4015 	case DMA_TO_DEVICE:
4016 		c->Request.type_attr_dir =
4017 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4018 		break;
4019 	case DMA_FROM_DEVICE:
4020 		c->Request.type_attr_dir =
4021 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4022 		break;
4023 	case DMA_NONE:
4024 		c->Request.type_attr_dir =
4025 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4026 		break;
4027 	case DMA_BIDIRECTIONAL:
4028 		/* This can happen if a buggy application does a scsi passthru
4029 		 * and sets both inlen and outlen to non-zero. ( see
4030 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4031 		 */
4032 
4033 		c->Request.type_attr_dir =
4034 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4035 		/* This is technically wrong, and hpsa controllers should
4036 		 * reject it with CMD_INVALID, which is the most correct
4037 		 * response, but non-fibre backends appear to let it
4038 		 * slide by, and give the same results as if this field
4039 		 * were set correctly.  Either way is acceptable for
4040 		 * our purposes here.
4041 		 */
4042 
4043 		break;
4044 
4045 	default:
4046 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4047 			cmd->sc_data_direction);
4048 		BUG();
4049 		break;
4050 	}
4051 
4052 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4053 		cmd_free(h, c);
4054 		return SCSI_MLQUEUE_HOST_BUSY;
4055 	}
4056 	enqueue_cmd_and_start_io(h, c);
4057 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4058 	return 0;
4059 }
4060 
4061 static void hpsa_command_resubmit_worker(struct work_struct *work)
4062 {
4063 	struct scsi_cmnd *cmd;
4064 	struct hpsa_scsi_dev_t *dev;
4065 	struct CommandList *c =
4066 			container_of(work, struct CommandList, work);
4067 
4068 	cmd = c->scsi_cmd;
4069 	dev = cmd->device->hostdata;
4070 	if (!dev) {
4071 		cmd->result = DID_NO_CONNECT << 16;
4072 		cmd->scsi_done(cmd);
4073 		return;
4074 	}
4075 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4076 		/*
4077 		 * If we get here, it means dma mapping failed. Try
4078 		 * again via scsi mid layer, which will then get
4079 		 * SCSI_MLQUEUE_HOST_BUSY.
4080 		 */
4081 		cmd->result = DID_IMM_RETRY << 16;
4082 		cmd->scsi_done(cmd);
4083 	}
4084 }
4085 
4086 /* Running in struct Scsi_Host->host_lock less mode */
4087 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4088 {
4089 	struct ctlr_info *h;
4090 	struct hpsa_scsi_dev_t *dev;
4091 	unsigned char scsi3addr[8];
4092 	struct CommandList *c;
4093 	int rc = 0;
4094 
4095 	/* Get the ptr to our adapter structure out of cmd->host. */
4096 	h = sdev_to_hba(cmd->device);
4097 	dev = cmd->device->hostdata;
4098 	if (!dev) {
4099 		cmd->result = DID_NO_CONNECT << 16;
4100 		cmd->scsi_done(cmd);
4101 		return 0;
4102 	}
4103 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4104 
4105 	if (unlikely(lockup_detected(h))) {
4106 		cmd->result = DID_ERROR << 16;
4107 		cmd->scsi_done(cmd);
4108 		return 0;
4109 	}
4110 	c = cmd_alloc(h);
4111 	if (c == NULL) {			/* trouble... */
4112 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4113 		return SCSI_MLQUEUE_HOST_BUSY;
4114 	}
4115 	if (unlikely(lockup_detected(h))) {
4116 		cmd->result = DID_ERROR << 16;
4117 		cmd_free(h, c);
4118 		cmd->scsi_done(cmd);
4119 		return 0;
4120 	}
4121 
4122 	/*
4123 	 * Call alternate submit routine for I/O accelerated commands.
4124 	 * Retries always go down the normal I/O path.
4125 	 */
4126 	if (likely(cmd->retries == 0 &&
4127 		cmd->request->cmd_type == REQ_TYPE_FS &&
4128 		h->acciopath_status)) {
4129 
4130 		cmd->host_scribble = (unsigned char *) c;
4131 		c->cmd_type = CMD_SCSI;
4132 		c->scsi_cmd = cmd;
4133 
4134 		if (dev->offload_enabled) {
4135 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
4136 			if (rc == 0)
4137 				return 0; /* Sent on ioaccel path */
4138 			if (rc < 0) {   /* scsi_dma_map failed. */
4139 				cmd_free(h, c);
4140 				return SCSI_MLQUEUE_HOST_BUSY;
4141 			}
4142 		} else if (dev->ioaccel_handle) {
4143 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4144 			if (rc == 0)
4145 				return 0; /* Sent on direct map path */
4146 			if (rc < 0) {   /* scsi_dma_map failed. */
4147 				cmd_free(h, c);
4148 				return SCSI_MLQUEUE_HOST_BUSY;
4149 			}
4150 		}
4151 	}
4152 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4153 }
4154 
4155 static void hpsa_scan_complete(struct ctlr_info *h)
4156 {
4157 	unsigned long flags;
4158 
4159 	spin_lock_irqsave(&h->scan_lock, flags);
4160 	h->scan_finished = 1;
4161 	wake_up_all(&h->scan_wait_queue);
4162 	spin_unlock_irqrestore(&h->scan_lock, flags);
4163 }
4164 
4165 static void hpsa_scan_start(struct Scsi_Host *sh)
4166 {
4167 	struct ctlr_info *h = shost_to_hba(sh);
4168 	unsigned long flags;
4169 
4170 	/*
4171 	 * Don't let rescans be initiated on a controller known to be locked
4172 	 * up.  If the controller locks up *during* a rescan, that thread is
4173 	 * probably hosed, but at least we can prevent new rescan threads from
4174 	 * piling up on a locked up controller.
4175 	 */
4176 	if (unlikely(lockup_detected(h)))
4177 		return hpsa_scan_complete(h);
4178 
4179 	/* wait until any scan already in progress is finished. */
4180 	while (1) {
4181 		spin_lock_irqsave(&h->scan_lock, flags);
4182 		if (h->scan_finished)
4183 			break;
4184 		spin_unlock_irqrestore(&h->scan_lock, flags);
4185 		wait_event(h->scan_wait_queue, h->scan_finished);
4186 		/* Note: We don't need to worry about a race between this
4187 		 * thread and driver unload because the midlayer will
4188 		 * have incremented the reference count, so unload won't
4189 		 * happen if we're in here.
4190 		 */
4191 	}
4192 	h->scan_finished = 0; /* mark scan as in progress */
4193 	spin_unlock_irqrestore(&h->scan_lock, flags);
4194 
4195 	if (unlikely(lockup_detected(h)))
4196 		return hpsa_scan_complete(h);
4197 
4198 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4199 
4200 	hpsa_scan_complete(h);
4201 }
4202 
4203 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4204 {
4205 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4206 
4207 	if (!logical_drive)
4208 		return -ENODEV;
4209 
4210 	if (qdepth < 1)
4211 		qdepth = 1;
4212 	else if (qdepth > logical_drive->queue_depth)
4213 		qdepth = logical_drive->queue_depth;
4214 
4215 	return scsi_change_queue_depth(sdev, qdepth);
4216 }
4217 
4218 static int hpsa_scan_finished(struct Scsi_Host *sh,
4219 	unsigned long elapsed_time)
4220 {
4221 	struct ctlr_info *h = shost_to_hba(sh);
4222 	unsigned long flags;
4223 	int finished;
4224 
4225 	spin_lock_irqsave(&h->scan_lock, flags);
4226 	finished = h->scan_finished;
4227 	spin_unlock_irqrestore(&h->scan_lock, flags);
4228 	return finished;
4229 }
4230 
4231 static void hpsa_unregister_scsi(struct ctlr_info *h)
4232 {
4233 	/* we are being forcibly unloaded, and may not refuse. */
4234 	scsi_remove_host(h->scsi_host);
4235 	scsi_host_put(h->scsi_host);
4236 	h->scsi_host = NULL;
4237 }
4238 
4239 static int hpsa_register_scsi(struct ctlr_info *h)
4240 {
4241 	struct Scsi_Host *sh;
4242 	int error;
4243 
4244 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4245 	if (sh == NULL)
4246 		goto fail;
4247 
4248 	sh->io_port = 0;
4249 	sh->n_io_port = 0;
4250 	sh->this_id = -1;
4251 	sh->max_channel = 3;
4252 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4253 	sh->max_lun = HPSA_MAX_LUN;
4254 	sh->max_id = HPSA_MAX_LUN;
4255 	sh->can_queue = h->nr_cmds -
4256 			HPSA_CMDS_RESERVED_FOR_ABORTS -
4257 			HPSA_CMDS_RESERVED_FOR_DRIVER -
4258 			HPSA_MAX_CONCURRENT_PASSTHRUS;
4259 	sh->cmd_per_lun = sh->can_queue;
4260 	sh->sg_tablesize = h->maxsgentries;
4261 	h->scsi_host = sh;
4262 	sh->hostdata[0] = (unsigned long) h;
4263 	sh->irq = h->intr[h->intr_mode];
4264 	sh->unique_id = sh->irq;
4265 	error = scsi_add_host(sh, &h->pdev->dev);
4266 	if (error)
4267 		goto fail_host_put;
4268 	scsi_scan_host(sh);
4269 	return 0;
4270 
4271  fail_host_put:
4272 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4273 		" failed for controller %d\n", __func__, h->ctlr);
4274 	scsi_host_put(sh);
4275 	return error;
4276  fail:
4277 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4278 		" failed for controller %d\n", __func__, h->ctlr);
4279 	return -ENOMEM;
4280 }
4281 
4282 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4283 	unsigned char lunaddr[])
4284 {
4285 	int rc;
4286 	int count = 0;
4287 	int waittime = 1; /* seconds */
4288 	struct CommandList *c;
4289 
4290 	c = cmd_alloc(h);
4291 	if (!c) {
4292 		dev_warn(&h->pdev->dev, "out of memory in "
4293 			"wait_for_device_to_become_ready.\n");
4294 		return IO_ERROR;
4295 	}
4296 
4297 	/* Send test unit ready until device ready, or give up. */
4298 	while (count < HPSA_TUR_RETRY_LIMIT) {
4299 
4300 		/* Wait for a bit.  do this first, because if we send
4301 		 * the TUR right away, the reset will just abort it.
4302 		 */
4303 		msleep(1000 * waittime);
4304 		count++;
4305 		rc = 0; /* Device ready. */
4306 
4307 		/* Increase wait time with each try, up to a point. */
4308 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4309 			waittime = waittime * 2;
4310 
4311 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4312 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4313 				NULL, 0, 0, lunaddr, TYPE_CMD);
4314 		hpsa_scsi_do_simple_cmd_core(h, c);
4315 		/* no unmap needed here because no data xfer. */
4316 
4317 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4318 			break;
4319 
4320 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4321 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4322 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4323 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4324 			break;
4325 
4326 		dev_warn(&h->pdev->dev, "waiting %d secs "
4327 			"for device to become ready.\n", waittime);
4328 		rc = 1; /* device not ready. */
4329 	}
4330 
4331 	if (rc)
4332 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4333 	else
4334 		dev_warn(&h->pdev->dev, "device is ready.\n");
4335 
4336 	cmd_free(h, c);
4337 	return rc;
4338 }
4339 
4340 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4341  * complaining.  Doing a host- or bus-reset can't do anything good here.
4342  */
4343 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4344 {
4345 	int rc;
4346 	struct ctlr_info *h;
4347 	struct hpsa_scsi_dev_t *dev;
4348 
4349 	/* find the controller to which the command to be aborted was sent */
4350 	h = sdev_to_hba(scsicmd->device);
4351 	if (h == NULL) /* paranoia */
4352 		return FAILED;
4353 
4354 	if (lockup_detected(h))
4355 		return FAILED;
4356 
4357 	dev = scsicmd->device->hostdata;
4358 	if (!dev) {
4359 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4360 			"device lookup failed.\n");
4361 		return FAILED;
4362 	}
4363 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4364 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4365 	/* send a reset to the SCSI LUN which the command was sent to */
4366 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4367 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4368 		return SUCCESS;
4369 
4370 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4371 	return FAILED;
4372 }
4373 
4374 static void swizzle_abort_tag(u8 *tag)
4375 {
4376 	u8 original_tag[8];
4377 
4378 	memcpy(original_tag, tag, 8);
4379 	tag[0] = original_tag[3];
4380 	tag[1] = original_tag[2];
4381 	tag[2] = original_tag[1];
4382 	tag[3] = original_tag[0];
4383 	tag[4] = original_tag[7];
4384 	tag[5] = original_tag[6];
4385 	tag[6] = original_tag[5];
4386 	tag[7] = original_tag[4];
4387 }
4388 
4389 static void hpsa_get_tag(struct ctlr_info *h,
4390 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4391 {
4392 	u64 tag;
4393 	if (c->cmd_type == CMD_IOACCEL1) {
4394 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4395 			&h->ioaccel_cmd_pool[c->cmdindex];
4396 		tag = le64_to_cpu(cm1->tag);
4397 		*tagupper = cpu_to_le32(tag >> 32);
4398 		*taglower = cpu_to_le32(tag);
4399 		return;
4400 	}
4401 	if (c->cmd_type == CMD_IOACCEL2) {
4402 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4403 			&h->ioaccel2_cmd_pool[c->cmdindex];
4404 		/* upper tag not used in ioaccel2 mode */
4405 		memset(tagupper, 0, sizeof(*tagupper));
4406 		*taglower = cm2->Tag;
4407 		return;
4408 	}
4409 	tag = le64_to_cpu(c->Header.tag);
4410 	*tagupper = cpu_to_le32(tag >> 32);
4411 	*taglower = cpu_to_le32(tag);
4412 }
4413 
4414 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4415 	struct CommandList *abort, int swizzle)
4416 {
4417 	int rc = IO_OK;
4418 	struct CommandList *c;
4419 	struct ErrorInfo *ei;
4420 	__le32 tagupper, taglower;
4421 
4422 	c = cmd_alloc(h);
4423 	if (c == NULL) {	/* trouble... */
4424 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4425 		return -ENOMEM;
4426 	}
4427 
4428 	/* fill_cmd can't fail here, no buffer to map */
4429 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4430 		0, 0, scsi3addr, TYPE_MSG);
4431 	if (swizzle)
4432 		swizzle_abort_tag(&c->Request.CDB[4]);
4433 	hpsa_scsi_do_simple_cmd_core(h, c);
4434 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4435 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4436 		__func__, tagupper, taglower);
4437 	/* no unmap needed here because no data xfer. */
4438 
4439 	ei = c->err_info;
4440 	switch (ei->CommandStatus) {
4441 	case CMD_SUCCESS:
4442 		break;
4443 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4444 		rc = -1;
4445 		break;
4446 	default:
4447 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4448 			__func__, tagupper, taglower);
4449 		hpsa_scsi_interpret_error(h, c);
4450 		rc = -1;
4451 		break;
4452 	}
4453 	cmd_free(h, c);
4454 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4455 		__func__, tagupper, taglower);
4456 	return rc;
4457 }
4458 
4459 /* ioaccel2 path firmware cannot handle abort task requests.
4460  * Change abort requests to physical target reset, and send to the
4461  * address of the physical disk used for the ioaccel 2 command.
4462  * Return 0 on success (IO_OK)
4463  *	 -1 on failure
4464  */
4465 
4466 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4467 	unsigned char *scsi3addr, struct CommandList *abort)
4468 {
4469 	int rc = IO_OK;
4470 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4471 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4472 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4473 	unsigned char *psa = &phys_scsi3addr[0];
4474 
4475 	/* Get a pointer to the hpsa logical device. */
4476 	scmd = abort->scsi_cmd;
4477 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4478 	if (dev == NULL) {
4479 		dev_warn(&h->pdev->dev,
4480 			"Cannot abort: no device pointer for command.\n");
4481 			return -1; /* not abortable */
4482 	}
4483 
4484 	if (h->raid_offload_debug > 0)
4485 		dev_info(&h->pdev->dev,
4486 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4487 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4488 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4489 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4490 
4491 	if (!dev->offload_enabled) {
4492 		dev_warn(&h->pdev->dev,
4493 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4494 		return -1; /* not abortable */
4495 	}
4496 
4497 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4498 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4499 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4500 		return -1; /* not abortable */
4501 	}
4502 
4503 	/* send the reset */
4504 	if (h->raid_offload_debug > 0)
4505 		dev_info(&h->pdev->dev,
4506 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4507 			psa[0], psa[1], psa[2], psa[3],
4508 			psa[4], psa[5], psa[6], psa[7]);
4509 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4510 	if (rc != 0) {
4511 		dev_warn(&h->pdev->dev,
4512 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4513 			psa[0], psa[1], psa[2], psa[3],
4514 			psa[4], psa[5], psa[6], psa[7]);
4515 		return rc; /* failed to reset */
4516 	}
4517 
4518 	/* wait for device to recover */
4519 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4520 		dev_warn(&h->pdev->dev,
4521 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4522 			psa[0], psa[1], psa[2], psa[3],
4523 			psa[4], psa[5], psa[6], psa[7]);
4524 		return -1;  /* failed to recover */
4525 	}
4526 
4527 	/* device recovered */
4528 	dev_info(&h->pdev->dev,
4529 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4530 		psa[0], psa[1], psa[2], psa[3],
4531 		psa[4], psa[5], psa[6], psa[7]);
4532 
4533 	return rc; /* success */
4534 }
4535 
4536 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4537  * tell which kind we're dealing with, so we send the abort both ways.  There
4538  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4539  * way we construct our tags but we check anyway in case the assumptions which
4540  * make this true someday become false.
4541  */
4542 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4543 	unsigned char *scsi3addr, struct CommandList *abort)
4544 {
4545 	/* ioccelerator mode 2 commands should be aborted via the
4546 	 * accelerated path, since RAID path is unaware of these commands,
4547 	 * but underlying firmware can't handle abort TMF.
4548 	 * Change abort to physical device reset.
4549 	 */
4550 	if (abort->cmd_type == CMD_IOACCEL2)
4551 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4552 
4553 	return hpsa_send_abort(h, scsi3addr, abort, 0) &&
4554 			hpsa_send_abort(h, scsi3addr, abort, 1);
4555 }
4556 
4557 /* Send an abort for the specified command.
4558  *	If the device and controller support it,
4559  *		send a task abort request.
4560  */
4561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4562 {
4563 
4564 	int i, rc;
4565 	struct ctlr_info *h;
4566 	struct hpsa_scsi_dev_t *dev;
4567 	struct CommandList *abort; /* pointer to command to be aborted */
4568 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4569 	char msg[256];		/* For debug messaging. */
4570 	int ml = 0;
4571 	__le32 tagupper, taglower;
4572 	int refcount;
4573 
4574 	/* Find the controller of the command to be aborted */
4575 	h = sdev_to_hba(sc->device);
4576 	if (WARN(h == NULL,
4577 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4578 		return FAILED;
4579 
4580 	if (lockup_detected(h))
4581 		return FAILED;
4582 
4583 	/* Check that controller supports some kind of task abort */
4584 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4585 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4586 		return FAILED;
4587 
4588 	memset(msg, 0, sizeof(msg));
4589 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4590 		h->scsi_host->host_no, sc->device->channel,
4591 		sc->device->id, sc->device->lun);
4592 
4593 	/* Find the device of the command to be aborted */
4594 	dev = sc->device->hostdata;
4595 	if (!dev) {
4596 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4597 				msg);
4598 		return FAILED;
4599 	}
4600 
4601 	/* Get SCSI command to be aborted */
4602 	abort = (struct CommandList *) sc->host_scribble;
4603 	if (abort == NULL) {
4604 		/* This can happen if the command already completed. */
4605 		return SUCCESS;
4606 	}
4607 	refcount = atomic_inc_return(&abort->refcount);
4608 	if (refcount == 1) { /* Command is done already. */
4609 		cmd_free(h, abort);
4610 		return SUCCESS;
4611 	}
4612 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4613 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4614 	as  = abort->scsi_cmd;
4615 	if (as != NULL)
4616 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4617 			as->cmnd[0], as->serial_number);
4618 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4619 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4620 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4621 	/*
4622 	 * Command is in flight, or possibly already completed
4623 	 * by the firmware (but not to the scsi mid layer) but we can't
4624 	 * distinguish which.  Send the abort down.
4625 	 */
4626 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4627 	if (rc != 0) {
4628 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4629 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4630 			h->scsi_host->host_no,
4631 			dev->bus, dev->target, dev->lun);
4632 		cmd_free(h, abort);
4633 		return FAILED;
4634 	}
4635 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4636 
4637 	/* If the abort(s) above completed and actually aborted the
4638 	 * command, then the command to be aborted should already be
4639 	 * completed.  If not, wait around a bit more to see if they
4640 	 * manage to complete normally.
4641 	 */
4642 #define ABORT_COMPLETE_WAIT_SECS 30
4643 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4644 		refcount = atomic_read(&abort->refcount);
4645 		if (refcount < 2) {
4646 			cmd_free(h, abort);
4647 			return SUCCESS;
4648 		} else {
4649 			msleep(100);
4650 		}
4651 	}
4652 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4653 		msg, ABORT_COMPLETE_WAIT_SECS);
4654 	cmd_free(h, abort);
4655 	return FAILED;
4656 }
4657 
4658 /*
4659  * For operations that cannot sleep, a command block is allocated at init,
4660  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4661  * which ones are free or in use.  Lock must be held when calling this.
4662  * cmd_free() is the complement.
4663  */
4664 
4665 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4666 {
4667 	struct CommandList *c;
4668 	int i;
4669 	union u64bit temp64;
4670 	dma_addr_t cmd_dma_handle, err_dma_handle;
4671 	int refcount;
4672 	unsigned long offset;
4673 
4674 	/*
4675 	 * There is some *extremely* small but non-zero chance that that
4676 	 * multiple threads could get in here, and one thread could
4677 	 * be scanning through the list of bits looking for a free
4678 	 * one, but the free ones are always behind him, and other
4679 	 * threads sneak in behind him and eat them before he can
4680 	 * get to them, so that while there is always a free one, a
4681 	 * very unlucky thread might be starved anyway, never able to
4682 	 * beat the other threads.  In reality, this happens so
4683 	 * infrequently as to be indistinguishable from never.
4684 	 */
4685 
4686 	offset = h->last_allocation; /* benignly racy */
4687 	for (;;) {
4688 		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
4689 		if (unlikely(i == h->nr_cmds)) {
4690 			offset = 0;
4691 			continue;
4692 		}
4693 		c = h->cmd_pool + i;
4694 		refcount = atomic_inc_return(&c->refcount);
4695 		if (unlikely(refcount > 1)) {
4696 			cmd_free(h, c); /* already in use */
4697 			offset = (i + 1) % h->nr_cmds;
4698 			continue;
4699 		}
4700 		set_bit(i & (BITS_PER_LONG - 1),
4701 			h->cmd_pool_bits + (i / BITS_PER_LONG));
4702 		break; /* it's ours now. */
4703 	}
4704 	h->last_allocation = i; /* benignly racy */
4705 
4706 	/* Zero out all of commandlist except the last field, refcount */
4707 	memset(c, 0, offsetof(struct CommandList, refcount));
4708 	c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4709 	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4710 	c->err_info = h->errinfo_pool + i;
4711 	memset(c->err_info, 0, sizeof(*c->err_info));
4712 	err_dma_handle = h->errinfo_pool_dhandle
4713 	    + i * sizeof(*c->err_info);
4714 
4715 	c->cmdindex = i;
4716 
4717 	c->busaddr = (u32) cmd_dma_handle;
4718 	temp64.val = (u64) err_dma_handle;
4719 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4720 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4721 
4722 	c->h = h;
4723 	return c;
4724 }
4725 
4726 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4727 {
4728 	if (atomic_dec_and_test(&c->refcount)) {
4729 		int i;
4730 
4731 		i = c - h->cmd_pool;
4732 		clear_bit(i & (BITS_PER_LONG - 1),
4733 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
4734 	}
4735 }
4736 
4737 #ifdef CONFIG_COMPAT
4738 
4739 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4740 	void __user *arg)
4741 {
4742 	IOCTL32_Command_struct __user *arg32 =
4743 	    (IOCTL32_Command_struct __user *) arg;
4744 	IOCTL_Command_struct arg64;
4745 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4746 	int err;
4747 	u32 cp;
4748 
4749 	memset(&arg64, 0, sizeof(arg64));
4750 	err = 0;
4751 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4752 			   sizeof(arg64.LUN_info));
4753 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4754 			   sizeof(arg64.Request));
4755 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4756 			   sizeof(arg64.error_info));
4757 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4758 	err |= get_user(cp, &arg32->buf);
4759 	arg64.buf = compat_ptr(cp);
4760 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4761 
4762 	if (err)
4763 		return -EFAULT;
4764 
4765 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4766 	if (err)
4767 		return err;
4768 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4769 			 sizeof(arg32->error_info));
4770 	if (err)
4771 		return -EFAULT;
4772 	return err;
4773 }
4774 
4775 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4776 	int cmd, void __user *arg)
4777 {
4778 	BIG_IOCTL32_Command_struct __user *arg32 =
4779 	    (BIG_IOCTL32_Command_struct __user *) arg;
4780 	BIG_IOCTL_Command_struct arg64;
4781 	BIG_IOCTL_Command_struct __user *p =
4782 	    compat_alloc_user_space(sizeof(arg64));
4783 	int err;
4784 	u32 cp;
4785 
4786 	memset(&arg64, 0, sizeof(arg64));
4787 	err = 0;
4788 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4789 			   sizeof(arg64.LUN_info));
4790 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4791 			   sizeof(arg64.Request));
4792 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4793 			   sizeof(arg64.error_info));
4794 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4795 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4796 	err |= get_user(cp, &arg32->buf);
4797 	arg64.buf = compat_ptr(cp);
4798 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4799 
4800 	if (err)
4801 		return -EFAULT;
4802 
4803 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4804 	if (err)
4805 		return err;
4806 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4807 			 sizeof(arg32->error_info));
4808 	if (err)
4809 		return -EFAULT;
4810 	return err;
4811 }
4812 
4813 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4814 {
4815 	switch (cmd) {
4816 	case CCISS_GETPCIINFO:
4817 	case CCISS_GETINTINFO:
4818 	case CCISS_SETINTINFO:
4819 	case CCISS_GETNODENAME:
4820 	case CCISS_SETNODENAME:
4821 	case CCISS_GETHEARTBEAT:
4822 	case CCISS_GETBUSTYPES:
4823 	case CCISS_GETFIRMVER:
4824 	case CCISS_GETDRIVVER:
4825 	case CCISS_REVALIDVOLS:
4826 	case CCISS_DEREGDISK:
4827 	case CCISS_REGNEWDISK:
4828 	case CCISS_REGNEWD:
4829 	case CCISS_RESCANDISK:
4830 	case CCISS_GETLUNINFO:
4831 		return hpsa_ioctl(dev, cmd, arg);
4832 
4833 	case CCISS_PASSTHRU32:
4834 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4835 	case CCISS_BIG_PASSTHRU32:
4836 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4837 
4838 	default:
4839 		return -ENOIOCTLCMD;
4840 	}
4841 }
4842 #endif
4843 
4844 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4845 {
4846 	struct hpsa_pci_info pciinfo;
4847 
4848 	if (!argp)
4849 		return -EINVAL;
4850 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4851 	pciinfo.bus = h->pdev->bus->number;
4852 	pciinfo.dev_fn = h->pdev->devfn;
4853 	pciinfo.board_id = h->board_id;
4854 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4855 		return -EFAULT;
4856 	return 0;
4857 }
4858 
4859 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4860 {
4861 	DriverVer_type DriverVer;
4862 	unsigned char vmaj, vmin, vsubmin;
4863 	int rc;
4864 
4865 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4866 		&vmaj, &vmin, &vsubmin);
4867 	if (rc != 3) {
4868 		dev_info(&h->pdev->dev, "driver version string '%s' "
4869 			"unrecognized.", HPSA_DRIVER_VERSION);
4870 		vmaj = 0;
4871 		vmin = 0;
4872 		vsubmin = 0;
4873 	}
4874 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4875 	if (!argp)
4876 		return -EINVAL;
4877 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4878 		return -EFAULT;
4879 	return 0;
4880 }
4881 
4882 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4883 {
4884 	IOCTL_Command_struct iocommand;
4885 	struct CommandList *c;
4886 	char *buff = NULL;
4887 	u64 temp64;
4888 	int rc = 0;
4889 
4890 	if (!argp)
4891 		return -EINVAL;
4892 	if (!capable(CAP_SYS_RAWIO))
4893 		return -EPERM;
4894 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4895 		return -EFAULT;
4896 	if ((iocommand.buf_size < 1) &&
4897 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4898 		return -EINVAL;
4899 	}
4900 	if (iocommand.buf_size > 0) {
4901 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4902 		if (buff == NULL)
4903 			return -EFAULT;
4904 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4905 			/* Copy the data into the buffer we created */
4906 			if (copy_from_user(buff, iocommand.buf,
4907 				iocommand.buf_size)) {
4908 				rc = -EFAULT;
4909 				goto out_kfree;
4910 			}
4911 		} else {
4912 			memset(buff, 0, iocommand.buf_size);
4913 		}
4914 	}
4915 	c = cmd_alloc(h);
4916 	if (c == NULL) {
4917 		rc = -ENOMEM;
4918 		goto out_kfree;
4919 	}
4920 	/* Fill in the command type */
4921 	c->cmd_type = CMD_IOCTL_PEND;
4922 	/* Fill in Command Header */
4923 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4924 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4925 		c->Header.SGList = 1;
4926 		c->Header.SGTotal = cpu_to_le16(1);
4927 	} else	{ /* no buffers to fill */
4928 		c->Header.SGList = 0;
4929 		c->Header.SGTotal = cpu_to_le16(0);
4930 	}
4931 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4932 
4933 	/* Fill in Request block */
4934 	memcpy(&c->Request, &iocommand.Request,
4935 		sizeof(c->Request));
4936 
4937 	/* Fill in the scatter gather information */
4938 	if (iocommand.buf_size > 0) {
4939 		temp64 = pci_map_single(h->pdev, buff,
4940 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4941 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4942 			c->SG[0].Addr = cpu_to_le64(0);
4943 			c->SG[0].Len = cpu_to_le32(0);
4944 			rc = -ENOMEM;
4945 			goto out;
4946 		}
4947 		c->SG[0].Addr = cpu_to_le64(temp64);
4948 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4949 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4950 	}
4951 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4952 	if (iocommand.buf_size > 0)
4953 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4954 	check_ioctl_unit_attention(h, c);
4955 
4956 	/* Copy the error information out */
4957 	memcpy(&iocommand.error_info, c->err_info,
4958 		sizeof(iocommand.error_info));
4959 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4960 		rc = -EFAULT;
4961 		goto out;
4962 	}
4963 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4964 		iocommand.buf_size > 0) {
4965 		/* Copy the data out of the buffer we created */
4966 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4967 			rc = -EFAULT;
4968 			goto out;
4969 		}
4970 	}
4971 out:
4972 	cmd_free(h, c);
4973 out_kfree:
4974 	kfree(buff);
4975 	return rc;
4976 }
4977 
4978 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4979 {
4980 	BIG_IOCTL_Command_struct *ioc;
4981 	struct CommandList *c;
4982 	unsigned char **buff = NULL;
4983 	int *buff_size = NULL;
4984 	u64 temp64;
4985 	BYTE sg_used = 0;
4986 	int status = 0;
4987 	u32 left;
4988 	u32 sz;
4989 	BYTE __user *data_ptr;
4990 
4991 	if (!argp)
4992 		return -EINVAL;
4993 	if (!capable(CAP_SYS_RAWIO))
4994 		return -EPERM;
4995 	ioc = (BIG_IOCTL_Command_struct *)
4996 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
4997 	if (!ioc) {
4998 		status = -ENOMEM;
4999 		goto cleanup1;
5000 	}
5001 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5002 		status = -EFAULT;
5003 		goto cleanup1;
5004 	}
5005 	if ((ioc->buf_size < 1) &&
5006 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5007 		status = -EINVAL;
5008 		goto cleanup1;
5009 	}
5010 	/* Check kmalloc limits  using all SGs */
5011 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5012 		status = -EINVAL;
5013 		goto cleanup1;
5014 	}
5015 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5016 		status = -EINVAL;
5017 		goto cleanup1;
5018 	}
5019 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5020 	if (!buff) {
5021 		status = -ENOMEM;
5022 		goto cleanup1;
5023 	}
5024 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5025 	if (!buff_size) {
5026 		status = -ENOMEM;
5027 		goto cleanup1;
5028 	}
5029 	left = ioc->buf_size;
5030 	data_ptr = ioc->buf;
5031 	while (left) {
5032 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5033 		buff_size[sg_used] = sz;
5034 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5035 		if (buff[sg_used] == NULL) {
5036 			status = -ENOMEM;
5037 			goto cleanup1;
5038 		}
5039 		if (ioc->Request.Type.Direction & XFER_WRITE) {
5040 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5041 				status = -EFAULT;
5042 				goto cleanup1;
5043 			}
5044 		} else
5045 			memset(buff[sg_used], 0, sz);
5046 		left -= sz;
5047 		data_ptr += sz;
5048 		sg_used++;
5049 	}
5050 	c = cmd_alloc(h);
5051 	if (c == NULL) {
5052 		status = -ENOMEM;
5053 		goto cleanup1;
5054 	}
5055 	c->cmd_type = CMD_IOCTL_PEND;
5056 	c->Header.ReplyQueue = 0;
5057 	c->Header.SGList = (u8) sg_used;
5058 	c->Header.SGTotal = cpu_to_le16(sg_used);
5059 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5060 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5061 	if (ioc->buf_size > 0) {
5062 		int i;
5063 		for (i = 0; i < sg_used; i++) {
5064 			temp64 = pci_map_single(h->pdev, buff[i],
5065 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5066 			if (dma_mapping_error(&h->pdev->dev,
5067 							(dma_addr_t) temp64)) {
5068 				c->SG[i].Addr = cpu_to_le64(0);
5069 				c->SG[i].Len = cpu_to_le32(0);
5070 				hpsa_pci_unmap(h->pdev, c, i,
5071 					PCI_DMA_BIDIRECTIONAL);
5072 				status = -ENOMEM;
5073 				goto cleanup0;
5074 			}
5075 			c->SG[i].Addr = cpu_to_le64(temp64);
5076 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
5077 			c->SG[i].Ext = cpu_to_le32(0);
5078 		}
5079 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5080 	}
5081 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5082 	if (sg_used)
5083 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5084 	check_ioctl_unit_attention(h, c);
5085 	/* Copy the error information out */
5086 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5087 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5088 		status = -EFAULT;
5089 		goto cleanup0;
5090 	}
5091 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5092 		int i;
5093 
5094 		/* Copy the data out of the buffer we created */
5095 		BYTE __user *ptr = ioc->buf;
5096 		for (i = 0; i < sg_used; i++) {
5097 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5098 				status = -EFAULT;
5099 				goto cleanup0;
5100 			}
5101 			ptr += buff_size[i];
5102 		}
5103 	}
5104 	status = 0;
5105 cleanup0:
5106 	cmd_free(h, c);
5107 cleanup1:
5108 	if (buff) {
5109 		int i;
5110 
5111 		for (i = 0; i < sg_used; i++)
5112 			kfree(buff[i]);
5113 		kfree(buff);
5114 	}
5115 	kfree(buff_size);
5116 	kfree(ioc);
5117 	return status;
5118 }
5119 
5120 static void check_ioctl_unit_attention(struct ctlr_info *h,
5121 	struct CommandList *c)
5122 {
5123 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5124 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5125 		(void) check_for_unit_attention(h, c);
5126 }
5127 
5128 /*
5129  * ioctl
5130  */
5131 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5132 {
5133 	struct ctlr_info *h;
5134 	void __user *argp = (void __user *)arg;
5135 	int rc;
5136 
5137 	h = sdev_to_hba(dev);
5138 
5139 	switch (cmd) {
5140 	case CCISS_DEREGDISK:
5141 	case CCISS_REGNEWDISK:
5142 	case CCISS_REGNEWD:
5143 		hpsa_scan_start(h->scsi_host);
5144 		return 0;
5145 	case CCISS_GETPCIINFO:
5146 		return hpsa_getpciinfo_ioctl(h, argp);
5147 	case CCISS_GETDRIVVER:
5148 		return hpsa_getdrivver_ioctl(h, argp);
5149 	case CCISS_PASSTHRU:
5150 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5151 			return -EAGAIN;
5152 		rc = hpsa_passthru_ioctl(h, argp);
5153 		atomic_inc(&h->passthru_cmds_avail);
5154 		return rc;
5155 	case CCISS_BIG_PASSTHRU:
5156 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5157 			return -EAGAIN;
5158 		rc = hpsa_big_passthru_ioctl(h, argp);
5159 		atomic_inc(&h->passthru_cmds_avail);
5160 		return rc;
5161 	default:
5162 		return -ENOTTY;
5163 	}
5164 }
5165 
5166 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5167 				u8 reset_type)
5168 {
5169 	struct CommandList *c;
5170 
5171 	c = cmd_alloc(h);
5172 	if (!c)
5173 		return -ENOMEM;
5174 	/* fill_cmd can't fail here, no data buffer to map */
5175 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5176 		RAID_CTLR_LUNID, TYPE_MSG);
5177 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5178 	c->waiting = NULL;
5179 	enqueue_cmd_and_start_io(h, c);
5180 	/* Don't wait for completion, the reset won't complete.  Don't free
5181 	 * the command either.  This is the last command we will send before
5182 	 * re-initializing everything, so it doesn't matter and won't leak.
5183 	 */
5184 	return 0;
5185 }
5186 
5187 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5188 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5189 	int cmd_type)
5190 {
5191 	int pci_dir = XFER_NONE;
5192 	struct CommandList *a; /* for commands to be aborted */
5193 
5194 	c->cmd_type = CMD_IOCTL_PEND;
5195 	c->Header.ReplyQueue = 0;
5196 	if (buff != NULL && size > 0) {
5197 		c->Header.SGList = 1;
5198 		c->Header.SGTotal = cpu_to_le16(1);
5199 	} else {
5200 		c->Header.SGList = 0;
5201 		c->Header.SGTotal = cpu_to_le16(0);
5202 	}
5203 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5204 
5205 	if (cmd_type == TYPE_CMD) {
5206 		switch (cmd) {
5207 		case HPSA_INQUIRY:
5208 			/* are we trying to read a vital product page */
5209 			if (page_code & VPD_PAGE) {
5210 				c->Request.CDB[1] = 0x01;
5211 				c->Request.CDB[2] = (page_code & 0xff);
5212 			}
5213 			c->Request.CDBLen = 6;
5214 			c->Request.type_attr_dir =
5215 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5216 			c->Request.Timeout = 0;
5217 			c->Request.CDB[0] = HPSA_INQUIRY;
5218 			c->Request.CDB[4] = size & 0xFF;
5219 			break;
5220 		case HPSA_REPORT_LOG:
5221 		case HPSA_REPORT_PHYS:
5222 			/* Talking to controller so It's a physical command
5223 			   mode = 00 target = 0.  Nothing to write.
5224 			 */
5225 			c->Request.CDBLen = 12;
5226 			c->Request.type_attr_dir =
5227 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5228 			c->Request.Timeout = 0;
5229 			c->Request.CDB[0] = cmd;
5230 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5231 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5232 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5233 			c->Request.CDB[9] = size & 0xFF;
5234 			break;
5235 		case HPSA_CACHE_FLUSH:
5236 			c->Request.CDBLen = 12;
5237 			c->Request.type_attr_dir =
5238 					TYPE_ATTR_DIR(cmd_type,
5239 						ATTR_SIMPLE, XFER_WRITE);
5240 			c->Request.Timeout = 0;
5241 			c->Request.CDB[0] = BMIC_WRITE;
5242 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5243 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5244 			c->Request.CDB[8] = size & 0xFF;
5245 			break;
5246 		case TEST_UNIT_READY:
5247 			c->Request.CDBLen = 6;
5248 			c->Request.type_attr_dir =
5249 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5250 			c->Request.Timeout = 0;
5251 			break;
5252 		case HPSA_GET_RAID_MAP:
5253 			c->Request.CDBLen = 12;
5254 			c->Request.type_attr_dir =
5255 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5256 			c->Request.Timeout = 0;
5257 			c->Request.CDB[0] = HPSA_CISS_READ;
5258 			c->Request.CDB[1] = cmd;
5259 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5260 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5261 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5262 			c->Request.CDB[9] = size & 0xFF;
5263 			break;
5264 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5265 			c->Request.CDBLen = 10;
5266 			c->Request.type_attr_dir =
5267 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5268 			c->Request.Timeout = 0;
5269 			c->Request.CDB[0] = BMIC_READ;
5270 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5271 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5272 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5273 			break;
5274 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5275 			c->Request.CDBLen = 10;
5276 			c->Request.type_attr_dir =
5277 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5278 			c->Request.Timeout = 0;
5279 			c->Request.CDB[0] = BMIC_READ;
5280 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5281 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5282 			c->Request.CDB[8] = (size >> 8) & 0XFF;
5283 			break;
5284 		default:
5285 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5286 			BUG();
5287 			return -1;
5288 		}
5289 	} else if (cmd_type == TYPE_MSG) {
5290 		switch (cmd) {
5291 
5292 		case  HPSA_DEVICE_RESET_MSG:
5293 			c->Request.CDBLen = 16;
5294 			c->Request.type_attr_dir =
5295 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5296 			c->Request.Timeout = 0; /* Don't time out */
5297 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5298 			c->Request.CDB[0] =  cmd;
5299 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5300 			/* If bytes 4-7 are zero, it means reset the */
5301 			/* LunID device */
5302 			c->Request.CDB[4] = 0x00;
5303 			c->Request.CDB[5] = 0x00;
5304 			c->Request.CDB[6] = 0x00;
5305 			c->Request.CDB[7] = 0x00;
5306 			break;
5307 		case  HPSA_ABORT_MSG:
5308 			a = buff;       /* point to command to be aborted */
5309 			dev_dbg(&h->pdev->dev,
5310 				"Abort Tag:0x%016llx request Tag:0x%016llx",
5311 				a->Header.tag, c->Header.tag);
5312 			c->Request.CDBLen = 16;
5313 			c->Request.type_attr_dir =
5314 					TYPE_ATTR_DIR(cmd_type,
5315 						ATTR_SIMPLE, XFER_WRITE);
5316 			c->Request.Timeout = 0; /* Don't time out */
5317 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5318 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5319 			c->Request.CDB[2] = 0x00; /* reserved */
5320 			c->Request.CDB[3] = 0x00; /* reserved */
5321 			/* Tag to abort goes in CDB[4]-CDB[11] */
5322 			memcpy(&c->Request.CDB[4], &a->Header.tag,
5323 				sizeof(a->Header.tag));
5324 			c->Request.CDB[12] = 0x00; /* reserved */
5325 			c->Request.CDB[13] = 0x00; /* reserved */
5326 			c->Request.CDB[14] = 0x00; /* reserved */
5327 			c->Request.CDB[15] = 0x00; /* reserved */
5328 		break;
5329 		default:
5330 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5331 				cmd);
5332 			BUG();
5333 		}
5334 	} else {
5335 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5336 		BUG();
5337 	}
5338 
5339 	switch (GET_DIR(c->Request.type_attr_dir)) {
5340 	case XFER_READ:
5341 		pci_dir = PCI_DMA_FROMDEVICE;
5342 		break;
5343 	case XFER_WRITE:
5344 		pci_dir = PCI_DMA_TODEVICE;
5345 		break;
5346 	case XFER_NONE:
5347 		pci_dir = PCI_DMA_NONE;
5348 		break;
5349 	default:
5350 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5351 	}
5352 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5353 		return -1;
5354 	return 0;
5355 }
5356 
5357 /*
5358  * Map (physical) PCI mem into (virtual) kernel space
5359  */
5360 static void __iomem *remap_pci_mem(ulong base, ulong size)
5361 {
5362 	ulong page_base = ((ulong) base) & PAGE_MASK;
5363 	ulong page_offs = ((ulong) base) - page_base;
5364 	void __iomem *page_remapped = ioremap_nocache(page_base,
5365 		page_offs + size);
5366 
5367 	return page_remapped ? (page_remapped + page_offs) : NULL;
5368 }
5369 
5370 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5371 {
5372 	return h->access.command_completed(h, q);
5373 }
5374 
5375 static inline bool interrupt_pending(struct ctlr_info *h)
5376 {
5377 	return h->access.intr_pending(h);
5378 }
5379 
5380 static inline long interrupt_not_for_us(struct ctlr_info *h)
5381 {
5382 	return (h->access.intr_pending(h) == 0) ||
5383 		(h->interrupts_enabled == 0);
5384 }
5385 
5386 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5387 	u32 raw_tag)
5388 {
5389 	if (unlikely(tag_index >= h->nr_cmds)) {
5390 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5391 		return 1;
5392 	}
5393 	return 0;
5394 }
5395 
5396 static inline void finish_cmd(struct CommandList *c)
5397 {
5398 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5399 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5400 			|| c->cmd_type == CMD_IOACCEL2))
5401 		complete_scsi_command(c);
5402 	else if (c->cmd_type == CMD_IOCTL_PEND)
5403 		complete(c->waiting);
5404 }
5405 
5406 
5407 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5408 {
5409 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5410 #define HPSA_SIMPLE_ERROR_BITS 0x03
5411 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5412 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5413 	return tag & ~HPSA_PERF_ERROR_BITS;
5414 }
5415 
5416 /* process completion of an indexed ("direct lookup") command */
5417 static inline void process_indexed_cmd(struct ctlr_info *h,
5418 	u32 raw_tag)
5419 {
5420 	u32 tag_index;
5421 	struct CommandList *c;
5422 
5423 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5424 	if (!bad_tag(h, tag_index, raw_tag)) {
5425 		c = h->cmd_pool + tag_index;
5426 		finish_cmd(c);
5427 	}
5428 }
5429 
5430 /* Some controllers, like p400, will give us one interrupt
5431  * after a soft reset, even if we turned interrupts off.
5432  * Only need to check for this in the hpsa_xxx_discard_completions
5433  * functions.
5434  */
5435 static int ignore_bogus_interrupt(struct ctlr_info *h)
5436 {
5437 	if (likely(!reset_devices))
5438 		return 0;
5439 
5440 	if (likely(h->interrupts_enabled))
5441 		return 0;
5442 
5443 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5444 		"(known firmware bug.)  Ignoring.\n");
5445 
5446 	return 1;
5447 }
5448 
5449 /*
5450  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5451  * Relies on (h-q[x] == x) being true for x such that
5452  * 0 <= x < MAX_REPLY_QUEUES.
5453  */
5454 static struct ctlr_info *queue_to_hba(u8 *queue)
5455 {
5456 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5457 }
5458 
5459 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5460 {
5461 	struct ctlr_info *h = queue_to_hba(queue);
5462 	u8 q = *(u8 *) queue;
5463 	u32 raw_tag;
5464 
5465 	if (ignore_bogus_interrupt(h))
5466 		return IRQ_NONE;
5467 
5468 	if (interrupt_not_for_us(h))
5469 		return IRQ_NONE;
5470 	h->last_intr_timestamp = get_jiffies_64();
5471 	while (interrupt_pending(h)) {
5472 		raw_tag = get_next_completion(h, q);
5473 		while (raw_tag != FIFO_EMPTY)
5474 			raw_tag = next_command(h, q);
5475 	}
5476 	return IRQ_HANDLED;
5477 }
5478 
5479 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5480 {
5481 	struct ctlr_info *h = queue_to_hba(queue);
5482 	u32 raw_tag;
5483 	u8 q = *(u8 *) queue;
5484 
5485 	if (ignore_bogus_interrupt(h))
5486 		return IRQ_NONE;
5487 
5488 	h->last_intr_timestamp = get_jiffies_64();
5489 	raw_tag = get_next_completion(h, q);
5490 	while (raw_tag != FIFO_EMPTY)
5491 		raw_tag = next_command(h, q);
5492 	return IRQ_HANDLED;
5493 }
5494 
5495 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5496 {
5497 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5498 	u32 raw_tag;
5499 	u8 q = *(u8 *) queue;
5500 
5501 	if (interrupt_not_for_us(h))
5502 		return IRQ_NONE;
5503 	h->last_intr_timestamp = get_jiffies_64();
5504 	while (interrupt_pending(h)) {
5505 		raw_tag = get_next_completion(h, q);
5506 		while (raw_tag != FIFO_EMPTY) {
5507 			process_indexed_cmd(h, raw_tag);
5508 			raw_tag = next_command(h, q);
5509 		}
5510 	}
5511 	return IRQ_HANDLED;
5512 }
5513 
5514 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5515 {
5516 	struct ctlr_info *h = queue_to_hba(queue);
5517 	u32 raw_tag;
5518 	u8 q = *(u8 *) queue;
5519 
5520 	h->last_intr_timestamp = get_jiffies_64();
5521 	raw_tag = get_next_completion(h, q);
5522 	while (raw_tag != FIFO_EMPTY) {
5523 		process_indexed_cmd(h, raw_tag);
5524 		raw_tag = next_command(h, q);
5525 	}
5526 	return IRQ_HANDLED;
5527 }
5528 
5529 /* Send a message CDB to the firmware. Careful, this only works
5530  * in simple mode, not performant mode due to the tag lookup.
5531  * We only ever use this immediately after a controller reset.
5532  */
5533 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5534 			unsigned char type)
5535 {
5536 	struct Command {
5537 		struct CommandListHeader CommandHeader;
5538 		struct RequestBlock Request;
5539 		struct ErrDescriptor ErrorDescriptor;
5540 	};
5541 	struct Command *cmd;
5542 	static const size_t cmd_sz = sizeof(*cmd) +
5543 					sizeof(cmd->ErrorDescriptor);
5544 	dma_addr_t paddr64;
5545 	__le32 paddr32;
5546 	u32 tag;
5547 	void __iomem *vaddr;
5548 	int i, err;
5549 
5550 	vaddr = pci_ioremap_bar(pdev, 0);
5551 	if (vaddr == NULL)
5552 		return -ENOMEM;
5553 
5554 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5555 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5556 	 * memory.
5557 	 */
5558 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5559 	if (err) {
5560 		iounmap(vaddr);
5561 		return err;
5562 	}
5563 
5564 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5565 	if (cmd == NULL) {
5566 		iounmap(vaddr);
5567 		return -ENOMEM;
5568 	}
5569 
5570 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5571 	 * although there's no guarantee, we assume that the address is at
5572 	 * least 4-byte aligned (most likely, it's page-aligned).
5573 	 */
5574 	paddr32 = cpu_to_le32(paddr64);
5575 
5576 	cmd->CommandHeader.ReplyQueue = 0;
5577 	cmd->CommandHeader.SGList = 0;
5578 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5579 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5580 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5581 
5582 	cmd->Request.CDBLen = 16;
5583 	cmd->Request.type_attr_dir =
5584 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5585 	cmd->Request.Timeout = 0; /* Don't time out */
5586 	cmd->Request.CDB[0] = opcode;
5587 	cmd->Request.CDB[1] = type;
5588 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5589 	cmd->ErrorDescriptor.Addr =
5590 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5591 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5592 
5593 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5594 
5595 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5596 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5597 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5598 			break;
5599 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5600 	}
5601 
5602 	iounmap(vaddr);
5603 
5604 	/* we leak the DMA buffer here ... no choice since the controller could
5605 	 *  still complete the command.
5606 	 */
5607 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5608 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5609 			opcode, type);
5610 		return -ETIMEDOUT;
5611 	}
5612 
5613 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5614 
5615 	if (tag & HPSA_ERROR_BIT) {
5616 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5617 			opcode, type);
5618 		return -EIO;
5619 	}
5620 
5621 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5622 		opcode, type);
5623 	return 0;
5624 }
5625 
5626 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5627 
5628 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5629 	void __iomem *vaddr, u32 use_doorbell)
5630 {
5631 
5632 	if (use_doorbell) {
5633 		/* For everything after the P600, the PCI power state method
5634 		 * of resetting the controller doesn't work, so we have this
5635 		 * other way using the doorbell register.
5636 		 */
5637 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5638 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5639 
5640 		/* PMC hardware guys tell us we need a 10 second delay after
5641 		 * doorbell reset and before any attempt to talk to the board
5642 		 * at all to ensure that this actually works and doesn't fall
5643 		 * over in some weird corner cases.
5644 		 */
5645 		msleep(10000);
5646 	} else { /* Try to do it the PCI power state way */
5647 
5648 		/* Quoting from the Open CISS Specification: "The Power
5649 		 * Management Control/Status Register (CSR) controls the power
5650 		 * state of the device.  The normal operating state is D0,
5651 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5652 		 * the controller, place the interface device in D3 then to D0,
5653 		 * this causes a secondary PCI reset which will reset the
5654 		 * controller." */
5655 
5656 		int rc = 0;
5657 
5658 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5659 
5660 		/* enter the D3hot power management state */
5661 		rc = pci_set_power_state(pdev, PCI_D3hot);
5662 		if (rc)
5663 			return rc;
5664 
5665 		msleep(500);
5666 
5667 		/* enter the D0 power management state */
5668 		rc = pci_set_power_state(pdev, PCI_D0);
5669 		if (rc)
5670 			return rc;
5671 
5672 		/*
5673 		 * The P600 requires a small delay when changing states.
5674 		 * Otherwise we may think the board did not reset and we bail.
5675 		 * This for kdump only and is particular to the P600.
5676 		 */
5677 		msleep(500);
5678 	}
5679 	return 0;
5680 }
5681 
5682 static void init_driver_version(char *driver_version, int len)
5683 {
5684 	memset(driver_version, 0, len);
5685 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5686 }
5687 
5688 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5689 {
5690 	char *driver_version;
5691 	int i, size = sizeof(cfgtable->driver_version);
5692 
5693 	driver_version = kmalloc(size, GFP_KERNEL);
5694 	if (!driver_version)
5695 		return -ENOMEM;
5696 
5697 	init_driver_version(driver_version, size);
5698 	for (i = 0; i < size; i++)
5699 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5700 	kfree(driver_version);
5701 	return 0;
5702 }
5703 
5704 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5705 					  unsigned char *driver_ver)
5706 {
5707 	int i;
5708 
5709 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5710 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5711 }
5712 
5713 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5714 {
5715 
5716 	char *driver_ver, *old_driver_ver;
5717 	int rc, size = sizeof(cfgtable->driver_version);
5718 
5719 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5720 	if (!old_driver_ver)
5721 		return -ENOMEM;
5722 	driver_ver = old_driver_ver + size;
5723 
5724 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5725 	 * should have been changed, otherwise we know the reset failed.
5726 	 */
5727 	init_driver_version(old_driver_ver, size);
5728 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5729 	rc = !memcmp(driver_ver, old_driver_ver, size);
5730 	kfree(old_driver_ver);
5731 	return rc;
5732 }
5733 /* This does a hard reset of the controller using PCI power management
5734  * states or the using the doorbell register.
5735  */
5736 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5737 {
5738 	u64 cfg_offset;
5739 	u32 cfg_base_addr;
5740 	u64 cfg_base_addr_index;
5741 	void __iomem *vaddr;
5742 	unsigned long paddr;
5743 	u32 misc_fw_support;
5744 	int rc;
5745 	struct CfgTable __iomem *cfgtable;
5746 	u32 use_doorbell;
5747 	u32 board_id;
5748 	u16 command_register;
5749 
5750 	/* For controllers as old as the P600, this is very nearly
5751 	 * the same thing as
5752 	 *
5753 	 * pci_save_state(pci_dev);
5754 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5755 	 * pci_set_power_state(pci_dev, PCI_D0);
5756 	 * pci_restore_state(pci_dev);
5757 	 *
5758 	 * For controllers newer than the P600, the pci power state
5759 	 * method of resetting doesn't work so we have another way
5760 	 * using the doorbell register.
5761 	 */
5762 
5763 	rc = hpsa_lookup_board_id(pdev, &board_id);
5764 	if (rc < 0) {
5765 		dev_warn(&pdev->dev, "Board ID not found\n");
5766 		return rc;
5767 	}
5768 	if (!ctlr_is_resettable(board_id)) {
5769 		dev_warn(&pdev->dev, "Controller not resettable\n");
5770 		return -ENODEV;
5771 	}
5772 
5773 	/* if controller is soft- but not hard resettable... */
5774 	if (!ctlr_is_hard_resettable(board_id))
5775 		return -ENOTSUPP; /* try soft reset later. */
5776 
5777 	/* Save the PCI command register */
5778 	pci_read_config_word(pdev, 4, &command_register);
5779 	pci_save_state(pdev);
5780 
5781 	/* find the first memory BAR, so we can find the cfg table */
5782 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5783 	if (rc)
5784 		return rc;
5785 	vaddr = remap_pci_mem(paddr, 0x250);
5786 	if (!vaddr)
5787 		return -ENOMEM;
5788 
5789 	/* find cfgtable in order to check if reset via doorbell is supported */
5790 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5791 					&cfg_base_addr_index, &cfg_offset);
5792 	if (rc)
5793 		goto unmap_vaddr;
5794 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5795 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5796 	if (!cfgtable) {
5797 		rc = -ENOMEM;
5798 		goto unmap_vaddr;
5799 	}
5800 	rc = write_driver_ver_to_cfgtable(cfgtable);
5801 	if (rc)
5802 		goto unmap_cfgtable;
5803 
5804 	/* If reset via doorbell register is supported, use that.
5805 	 * There are two such methods.  Favor the newest method.
5806 	 */
5807 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5808 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5809 	if (use_doorbell) {
5810 		use_doorbell = DOORBELL_CTLR_RESET2;
5811 	} else {
5812 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5813 		if (use_doorbell) {
5814 			dev_warn(&pdev->dev,
5815 				"Soft reset not supported. Firmware update is required.\n");
5816 			rc = -ENOTSUPP; /* try soft reset */
5817 			goto unmap_cfgtable;
5818 		}
5819 	}
5820 
5821 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5822 	if (rc)
5823 		goto unmap_cfgtable;
5824 
5825 	pci_restore_state(pdev);
5826 	pci_write_config_word(pdev, 4, command_register);
5827 
5828 	/* Some devices (notably the HP Smart Array 5i Controller)
5829 	   need a little pause here */
5830 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
5831 
5832 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5833 	if (rc) {
5834 		dev_warn(&pdev->dev,
5835 			"Failed waiting for board to become ready after hard reset\n");
5836 		goto unmap_cfgtable;
5837 	}
5838 
5839 	rc = controller_reset_failed(vaddr);
5840 	if (rc < 0)
5841 		goto unmap_cfgtable;
5842 	if (rc) {
5843 		dev_warn(&pdev->dev, "Unable to successfully reset "
5844 			"controller. Will try soft reset.\n");
5845 		rc = -ENOTSUPP;
5846 	} else {
5847 		dev_info(&pdev->dev, "board ready after hard reset.\n");
5848 	}
5849 
5850 unmap_cfgtable:
5851 	iounmap(cfgtable);
5852 
5853 unmap_vaddr:
5854 	iounmap(vaddr);
5855 	return rc;
5856 }
5857 
5858 /*
5859  *  We cannot read the structure directly, for portability we must use
5860  *   the io functions.
5861  *   This is for debug only.
5862  */
5863 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5864 {
5865 #ifdef HPSA_DEBUG
5866 	int i;
5867 	char temp_name[17];
5868 
5869 	dev_info(dev, "Controller Configuration information\n");
5870 	dev_info(dev, "------------------------------------\n");
5871 	for (i = 0; i < 4; i++)
5872 		temp_name[i] = readb(&(tb->Signature[i]));
5873 	temp_name[4] = '\0';
5874 	dev_info(dev, "   Signature = %s\n", temp_name);
5875 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5876 	dev_info(dev, "   Transport methods supported = 0x%x\n",
5877 	       readl(&(tb->TransportSupport)));
5878 	dev_info(dev, "   Transport methods active = 0x%x\n",
5879 	       readl(&(tb->TransportActive)));
5880 	dev_info(dev, "   Requested transport Method = 0x%x\n",
5881 	       readl(&(tb->HostWrite.TransportRequest)));
5882 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5883 	       readl(&(tb->HostWrite.CoalIntDelay)));
5884 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5885 	       readl(&(tb->HostWrite.CoalIntCount)));
5886 	dev_info(dev, "   Max outstanding commands = %d\n",
5887 	       readl(&(tb->CmdsOutMax)));
5888 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5889 	for (i = 0; i < 16; i++)
5890 		temp_name[i] = readb(&(tb->ServerName[i]));
5891 	temp_name[16] = '\0';
5892 	dev_info(dev, "   Server Name = %s\n", temp_name);
5893 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5894 		readl(&(tb->HeartBeat)));
5895 #endif				/* HPSA_DEBUG */
5896 }
5897 
5898 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5899 {
5900 	int i, offset, mem_type, bar_type;
5901 
5902 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
5903 		return 0;
5904 	offset = 0;
5905 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5906 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5907 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5908 			offset += 4;
5909 		else {
5910 			mem_type = pci_resource_flags(pdev, i) &
5911 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5912 			switch (mem_type) {
5913 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
5914 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5915 				offset += 4;	/* 32 bit */
5916 				break;
5917 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
5918 				offset += 8;
5919 				break;
5920 			default:	/* reserved in PCI 2.2 */
5921 				dev_warn(&pdev->dev,
5922 				       "base address is invalid\n");
5923 				return -1;
5924 				break;
5925 			}
5926 		}
5927 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5928 			return i + 1;
5929 	}
5930 	return -1;
5931 }
5932 
5933 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5934  * controllers that are capable. If not, we use legacy INTx mode.
5935  */
5936 
5937 static void hpsa_interrupt_mode(struct ctlr_info *h)
5938 {
5939 #ifdef CONFIG_PCI_MSI
5940 	int err, i;
5941 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5942 
5943 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5944 		hpsa_msix_entries[i].vector = 0;
5945 		hpsa_msix_entries[i].entry = i;
5946 	}
5947 
5948 	/* Some boards advertise MSI but don't really support it */
5949 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5950 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5951 		goto default_int_mode;
5952 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5953 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5954 		h->msix_vector = MAX_REPLY_QUEUES;
5955 		if (h->msix_vector > num_online_cpus())
5956 			h->msix_vector = num_online_cpus();
5957 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5958 					    1, h->msix_vector);
5959 		if (err < 0) {
5960 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5961 			h->msix_vector = 0;
5962 			goto single_msi_mode;
5963 		} else if (err < h->msix_vector) {
5964 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5965 			       "available\n", err);
5966 		}
5967 		h->msix_vector = err;
5968 		for (i = 0; i < h->msix_vector; i++)
5969 			h->intr[i] = hpsa_msix_entries[i].vector;
5970 		return;
5971 	}
5972 single_msi_mode:
5973 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5974 		dev_info(&h->pdev->dev, "MSI capable controller\n");
5975 		if (!pci_enable_msi(h->pdev))
5976 			h->msi_vector = 1;
5977 		else
5978 			dev_warn(&h->pdev->dev, "MSI init failed\n");
5979 	}
5980 default_int_mode:
5981 #endif				/* CONFIG_PCI_MSI */
5982 	/* if we get here we're going to use the default interrupt mode */
5983 	h->intr[h->intr_mode] = h->pdev->irq;
5984 }
5985 
5986 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5987 {
5988 	int i;
5989 	u32 subsystem_vendor_id, subsystem_device_id;
5990 
5991 	subsystem_vendor_id = pdev->subsystem_vendor;
5992 	subsystem_device_id = pdev->subsystem_device;
5993 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
5994 		    subsystem_vendor_id;
5995 
5996 	for (i = 0; i < ARRAY_SIZE(products); i++)
5997 		if (*board_id == products[i].board_id)
5998 			return i;
5999 
6000 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6001 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6002 		!hpsa_allow_any) {
6003 		dev_warn(&pdev->dev, "unrecognized board ID: "
6004 			"0x%08x, ignoring.\n", *board_id);
6005 			return -ENODEV;
6006 	}
6007 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6008 }
6009 
6010 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6011 				    unsigned long *memory_bar)
6012 {
6013 	int i;
6014 
6015 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6016 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6017 			/* addressing mode bits already removed */
6018 			*memory_bar = pci_resource_start(pdev, i);
6019 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6020 				*memory_bar);
6021 			return 0;
6022 		}
6023 	dev_warn(&pdev->dev, "no memory BAR found\n");
6024 	return -ENODEV;
6025 }
6026 
6027 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6028 				     int wait_for_ready)
6029 {
6030 	int i, iterations;
6031 	u32 scratchpad;
6032 	if (wait_for_ready)
6033 		iterations = HPSA_BOARD_READY_ITERATIONS;
6034 	else
6035 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6036 
6037 	for (i = 0; i < iterations; i++) {
6038 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6039 		if (wait_for_ready) {
6040 			if (scratchpad == HPSA_FIRMWARE_READY)
6041 				return 0;
6042 		} else {
6043 			if (scratchpad != HPSA_FIRMWARE_READY)
6044 				return 0;
6045 		}
6046 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6047 	}
6048 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6049 	return -ENODEV;
6050 }
6051 
6052 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6053 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6054 			       u64 *cfg_offset)
6055 {
6056 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6057 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6058 	*cfg_base_addr &= (u32) 0x0000ffff;
6059 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6060 	if (*cfg_base_addr_index == -1) {
6061 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6062 		return -ENODEV;
6063 	}
6064 	return 0;
6065 }
6066 
6067 static int hpsa_find_cfgtables(struct ctlr_info *h)
6068 {
6069 	u64 cfg_offset;
6070 	u32 cfg_base_addr;
6071 	u64 cfg_base_addr_index;
6072 	u32 trans_offset;
6073 	int rc;
6074 
6075 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6076 		&cfg_base_addr_index, &cfg_offset);
6077 	if (rc)
6078 		return rc;
6079 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6080 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6081 	if (!h->cfgtable) {
6082 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6083 		return -ENOMEM;
6084 	}
6085 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6086 	if (rc)
6087 		return rc;
6088 	/* Find performant mode table. */
6089 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6090 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6091 				cfg_base_addr_index)+cfg_offset+trans_offset,
6092 				sizeof(*h->transtable));
6093 	if (!h->transtable)
6094 		return -ENOMEM;
6095 	return 0;
6096 }
6097 
6098 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6099 {
6100 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6101 
6102 	/* Limit commands in memory limited kdump scenario. */
6103 	if (reset_devices && h->max_commands > 32)
6104 		h->max_commands = 32;
6105 
6106 	if (h->max_commands < 16) {
6107 		dev_warn(&h->pdev->dev, "Controller reports "
6108 			"max supported commands of %d, an obvious lie. "
6109 			"Using 16.  Ensure that firmware is up to date.\n",
6110 			h->max_commands);
6111 		h->max_commands = 16;
6112 	}
6113 }
6114 
6115 /* If the controller reports that the total max sg entries is greater than 512,
6116  * then we know that chained SG blocks work.  (Original smart arrays did not
6117  * support chained SG blocks and would return zero for max sg entries.)
6118  */
6119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6120 {
6121 	return h->maxsgentries > 512;
6122 }
6123 
6124 /* Interrogate the hardware for some limits:
6125  * max commands, max SG elements without chaining, and with chaining,
6126  * SG chain block size, etc.
6127  */
6128 static void hpsa_find_board_params(struct ctlr_info *h)
6129 {
6130 	hpsa_get_max_perf_mode_cmds(h);
6131 	h->nr_cmds = h->max_commands;
6132 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6133 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6134 	if (hpsa_supports_chained_sg_blocks(h)) {
6135 		/* Limit in-command s/g elements to 32 save dma'able memory. */
6136 		h->max_cmd_sg_entries = 32;
6137 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6138 		h->maxsgentries--; /* save one for chain pointer */
6139 	} else {
6140 		/*
6141 		 * Original smart arrays supported at most 31 s/g entries
6142 		 * embedded inline in the command (trying to use more
6143 		 * would lock up the controller)
6144 		 */
6145 		h->max_cmd_sg_entries = 31;
6146 		h->maxsgentries = 31; /* default to traditional values */
6147 		h->chainsize = 0;
6148 	}
6149 
6150 	/* Find out what task management functions are supported and cache */
6151 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6152 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6153 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6154 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6155 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6156 }
6157 
6158 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6159 {
6160 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6161 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6162 		return false;
6163 	}
6164 	return true;
6165 }
6166 
6167 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6168 {
6169 	u32 driver_support;
6170 
6171 	driver_support = readl(&(h->cfgtable->driver_support));
6172 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6173 #ifdef CONFIG_X86
6174 	driver_support |= ENABLE_SCSI_PREFETCH;
6175 #endif
6176 	driver_support |= ENABLE_UNIT_ATTN;
6177 	writel(driver_support, &(h->cfgtable->driver_support));
6178 }
6179 
6180 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6181  * in a prefetch beyond physical memory.
6182  */
6183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6184 {
6185 	u32 dma_prefetch;
6186 
6187 	if (h->board_id != 0x3225103C)
6188 		return;
6189 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6190 	dma_prefetch |= 0x8000;
6191 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6192 }
6193 
6194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6195 {
6196 	int i;
6197 	u32 doorbell_value;
6198 	unsigned long flags;
6199 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6200 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6201 		spin_lock_irqsave(&h->lock, flags);
6202 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6203 		spin_unlock_irqrestore(&h->lock, flags);
6204 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6205 			goto done;
6206 		/* delay and try again */
6207 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6208 	}
6209 	return -ENODEV;
6210 done:
6211 	return 0;
6212 }
6213 
6214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6215 {
6216 	int i;
6217 	u32 doorbell_value;
6218 	unsigned long flags;
6219 
6220 	/* under certain very rare conditions, this can take awhile.
6221 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6222 	 * as we enter this code.)
6223 	 */
6224 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6225 		spin_lock_irqsave(&h->lock, flags);
6226 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6227 		spin_unlock_irqrestore(&h->lock, flags);
6228 		if (!(doorbell_value & CFGTBL_ChangeReq))
6229 			goto done;
6230 		/* delay and try again */
6231 		msleep(MODE_CHANGE_WAIT_INTERVAL);
6232 	}
6233 	return -ENODEV;
6234 done:
6235 	return 0;
6236 }
6237 
6238 /* return -ENODEV or other reason on error, 0 on success */
6239 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6240 {
6241 	u32 trans_support;
6242 
6243 	trans_support = readl(&(h->cfgtable->TransportSupport));
6244 	if (!(trans_support & SIMPLE_MODE))
6245 		return -ENOTSUPP;
6246 
6247 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6248 
6249 	/* Update the field, and then ring the doorbell */
6250 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6251 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6252 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6253 	if (hpsa_wait_for_mode_change_ack(h))
6254 		goto error;
6255 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6256 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6257 		goto error;
6258 	h->transMethod = CFGTBL_Trans_Simple;
6259 	return 0;
6260 error:
6261 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6262 	return -ENODEV;
6263 }
6264 
6265 static int hpsa_pci_init(struct ctlr_info *h)
6266 {
6267 	int prod_index, err;
6268 
6269 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6270 	if (prod_index < 0)
6271 		return prod_index;
6272 	h->product_name = products[prod_index].product_name;
6273 	h->access = *(products[prod_index].access);
6274 
6275 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6276 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6277 
6278 	err = pci_enable_device(h->pdev);
6279 	if (err) {
6280 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6281 		return err;
6282 	}
6283 
6284 	err = pci_request_regions(h->pdev, HPSA);
6285 	if (err) {
6286 		dev_err(&h->pdev->dev,
6287 			"cannot obtain PCI resources, aborting\n");
6288 		return err;
6289 	}
6290 
6291 	pci_set_master(h->pdev);
6292 
6293 	hpsa_interrupt_mode(h);
6294 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6295 	if (err)
6296 		goto err_out_free_res;
6297 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6298 	if (!h->vaddr) {
6299 		err = -ENOMEM;
6300 		goto err_out_free_res;
6301 	}
6302 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6303 	if (err)
6304 		goto err_out_free_res;
6305 	err = hpsa_find_cfgtables(h);
6306 	if (err)
6307 		goto err_out_free_res;
6308 	hpsa_find_board_params(h);
6309 
6310 	if (!hpsa_CISS_signature_present(h)) {
6311 		err = -ENODEV;
6312 		goto err_out_free_res;
6313 	}
6314 	hpsa_set_driver_support_bits(h);
6315 	hpsa_p600_dma_prefetch_quirk(h);
6316 	err = hpsa_enter_simple_mode(h);
6317 	if (err)
6318 		goto err_out_free_res;
6319 	return 0;
6320 
6321 err_out_free_res:
6322 	if (h->transtable)
6323 		iounmap(h->transtable);
6324 	if (h->cfgtable)
6325 		iounmap(h->cfgtable);
6326 	if (h->vaddr)
6327 		iounmap(h->vaddr);
6328 	pci_disable_device(h->pdev);
6329 	pci_release_regions(h->pdev);
6330 	return err;
6331 }
6332 
6333 static void hpsa_hba_inquiry(struct ctlr_info *h)
6334 {
6335 	int rc;
6336 
6337 #define HBA_INQUIRY_BYTE_COUNT 64
6338 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6339 	if (!h->hba_inquiry_data)
6340 		return;
6341 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6342 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6343 	if (rc != 0) {
6344 		kfree(h->hba_inquiry_data);
6345 		h->hba_inquiry_data = NULL;
6346 	}
6347 }
6348 
6349 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6350 {
6351 	int rc, i;
6352 	void __iomem *vaddr;
6353 
6354 	if (!reset_devices)
6355 		return 0;
6356 
6357 	/* kdump kernel is loading, we don't know in which state is
6358 	 * the pci interface. The dev->enable_cnt is equal zero
6359 	 * so we call enable+disable, wait a while and switch it on.
6360 	 */
6361 	rc = pci_enable_device(pdev);
6362 	if (rc) {
6363 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6364 		return -ENODEV;
6365 	}
6366 	pci_disable_device(pdev);
6367 	msleep(260);			/* a randomly chosen number */
6368 	rc = pci_enable_device(pdev);
6369 	if (rc) {
6370 		dev_warn(&pdev->dev, "failed to enable device.\n");
6371 		return -ENODEV;
6372 	}
6373 
6374 	pci_set_master(pdev);
6375 
6376 	vaddr = pci_ioremap_bar(pdev, 0);
6377 	if (vaddr == NULL) {
6378 		rc = -ENOMEM;
6379 		goto out_disable;
6380 	}
6381 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6382 	iounmap(vaddr);
6383 
6384 	/* Reset the controller with a PCI power-cycle or via doorbell */
6385 	rc = hpsa_kdump_hard_reset_controller(pdev);
6386 
6387 	/* -ENOTSUPP here means we cannot reset the controller
6388 	 * but it's already (and still) up and running in
6389 	 * "performant mode".  Or, it might be 640x, which can't reset
6390 	 * due to concerns about shared bbwc between 6402/6404 pair.
6391 	 */
6392 	if (rc)
6393 		goto out_disable;
6394 
6395 	/* Now try to get the controller to respond to a no-op */
6396 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6397 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6398 		if (hpsa_noop(pdev) == 0)
6399 			break;
6400 		else
6401 			dev_warn(&pdev->dev, "no-op failed%s\n",
6402 					(i < 11 ? "; re-trying" : ""));
6403 	}
6404 
6405 out_disable:
6406 
6407 	pci_disable_device(pdev);
6408 	return rc;
6409 }
6410 
6411 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6412 {
6413 	h->cmd_pool_bits = kzalloc(
6414 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6415 		sizeof(unsigned long), GFP_KERNEL);
6416 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6417 		    h->nr_cmds * sizeof(*h->cmd_pool),
6418 		    &(h->cmd_pool_dhandle));
6419 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6420 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6421 		    &(h->errinfo_pool_dhandle));
6422 	if ((h->cmd_pool_bits == NULL)
6423 	    || (h->cmd_pool == NULL)
6424 	    || (h->errinfo_pool == NULL)) {
6425 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6426 		goto clean_up;
6427 	}
6428 	return 0;
6429 clean_up:
6430 	hpsa_free_cmd_pool(h);
6431 	return -ENOMEM;
6432 }
6433 
6434 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6435 {
6436 	kfree(h->cmd_pool_bits);
6437 	if (h->cmd_pool)
6438 		pci_free_consistent(h->pdev,
6439 			    h->nr_cmds * sizeof(struct CommandList),
6440 			    h->cmd_pool, h->cmd_pool_dhandle);
6441 	if (h->ioaccel2_cmd_pool)
6442 		pci_free_consistent(h->pdev,
6443 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6444 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6445 	if (h->errinfo_pool)
6446 		pci_free_consistent(h->pdev,
6447 			    h->nr_cmds * sizeof(struct ErrorInfo),
6448 			    h->errinfo_pool,
6449 			    h->errinfo_pool_dhandle);
6450 	if (h->ioaccel_cmd_pool)
6451 		pci_free_consistent(h->pdev,
6452 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6453 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6454 }
6455 
6456 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6457 {
6458 	int i, cpu;
6459 
6460 	cpu = cpumask_first(cpu_online_mask);
6461 	for (i = 0; i < h->msix_vector; i++) {
6462 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6463 		cpu = cpumask_next(cpu, cpu_online_mask);
6464 	}
6465 }
6466 
6467 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6468 static void hpsa_free_irqs(struct ctlr_info *h)
6469 {
6470 	int i;
6471 
6472 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6473 		/* Single reply queue, only one irq to free */
6474 		i = h->intr_mode;
6475 		irq_set_affinity_hint(h->intr[i], NULL);
6476 		free_irq(h->intr[i], &h->q[i]);
6477 		return;
6478 	}
6479 
6480 	for (i = 0; i < h->msix_vector; i++) {
6481 		irq_set_affinity_hint(h->intr[i], NULL);
6482 		free_irq(h->intr[i], &h->q[i]);
6483 	}
6484 	for (; i < MAX_REPLY_QUEUES; i++)
6485 		h->q[i] = 0;
6486 }
6487 
6488 /* returns 0 on success; cleans up and returns -Enn on error */
6489 static int hpsa_request_irqs(struct ctlr_info *h,
6490 	irqreturn_t (*msixhandler)(int, void *),
6491 	irqreturn_t (*intxhandler)(int, void *))
6492 {
6493 	int rc, i;
6494 
6495 	/*
6496 	 * initialize h->q[x] = x so that interrupt handlers know which
6497 	 * queue to process.
6498 	 */
6499 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6500 		h->q[i] = (u8) i;
6501 
6502 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6503 		/* If performant mode and MSI-X, use multiple reply queues */
6504 		for (i = 0; i < h->msix_vector; i++) {
6505 			rc = request_irq(h->intr[i], msixhandler,
6506 					0, h->devname,
6507 					&h->q[i]);
6508 			if (rc) {
6509 				int j;
6510 
6511 				dev_err(&h->pdev->dev,
6512 					"failed to get irq %d for %s\n",
6513 				       h->intr[i], h->devname);
6514 				for (j = 0; j < i; j++) {
6515 					free_irq(h->intr[j], &h->q[j]);
6516 					h->q[j] = 0;
6517 				}
6518 				for (; j < MAX_REPLY_QUEUES; j++)
6519 					h->q[j] = 0;
6520 				return rc;
6521 			}
6522 		}
6523 		hpsa_irq_affinity_hints(h);
6524 	} else {
6525 		/* Use single reply pool */
6526 		if (h->msix_vector > 0 || h->msi_vector) {
6527 			rc = request_irq(h->intr[h->intr_mode],
6528 				msixhandler, 0, h->devname,
6529 				&h->q[h->intr_mode]);
6530 		} else {
6531 			rc = request_irq(h->intr[h->intr_mode],
6532 				intxhandler, IRQF_SHARED, h->devname,
6533 				&h->q[h->intr_mode]);
6534 		}
6535 	}
6536 	if (rc) {
6537 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6538 		       h->intr[h->intr_mode], h->devname);
6539 		return -ENODEV;
6540 	}
6541 	return 0;
6542 }
6543 
6544 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6545 {
6546 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6547 		HPSA_RESET_TYPE_CONTROLLER)) {
6548 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6549 		return -EIO;
6550 	}
6551 
6552 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6553 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6554 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6555 		return -1;
6556 	}
6557 
6558 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6559 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6560 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6561 			"after soft reset.\n");
6562 		return -1;
6563 	}
6564 
6565 	return 0;
6566 }
6567 
6568 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6569 {
6570 	hpsa_free_irqs(h);
6571 #ifdef CONFIG_PCI_MSI
6572 	if (h->msix_vector) {
6573 		if (h->pdev->msix_enabled)
6574 			pci_disable_msix(h->pdev);
6575 	} else if (h->msi_vector) {
6576 		if (h->pdev->msi_enabled)
6577 			pci_disable_msi(h->pdev);
6578 	}
6579 #endif /* CONFIG_PCI_MSI */
6580 }
6581 
6582 static void hpsa_free_reply_queues(struct ctlr_info *h)
6583 {
6584 	int i;
6585 
6586 	for (i = 0; i < h->nreply_queues; i++) {
6587 		if (!h->reply_queue[i].head)
6588 			continue;
6589 		pci_free_consistent(h->pdev, h->reply_queue_size,
6590 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6591 		h->reply_queue[i].head = NULL;
6592 		h->reply_queue[i].busaddr = 0;
6593 	}
6594 }
6595 
6596 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6597 {
6598 	hpsa_free_irqs_and_disable_msix(h);
6599 	hpsa_free_sg_chain_blocks(h);
6600 	hpsa_free_cmd_pool(h);
6601 	kfree(h->ioaccel1_blockFetchTable);
6602 	kfree(h->blockFetchTable);
6603 	hpsa_free_reply_queues(h);
6604 	if (h->vaddr)
6605 		iounmap(h->vaddr);
6606 	if (h->transtable)
6607 		iounmap(h->transtable);
6608 	if (h->cfgtable)
6609 		iounmap(h->cfgtable);
6610 	pci_disable_device(h->pdev);
6611 	pci_release_regions(h->pdev);
6612 	kfree(h);
6613 }
6614 
6615 /* Called when controller lockup detected. */
6616 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6617 {
6618 	int i, refcount;
6619 	struct CommandList *c;
6620 
6621 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6622 	for (i = 0; i < h->nr_cmds; i++) {
6623 		c = h->cmd_pool + i;
6624 		refcount = atomic_inc_return(&c->refcount);
6625 		if (refcount > 1) {
6626 			c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6627 			finish_cmd(c);
6628 		}
6629 		cmd_free(h, c);
6630 	}
6631 }
6632 
6633 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6634 {
6635 	int i, cpu;
6636 
6637 	cpu = cpumask_first(cpu_online_mask);
6638 	for (i = 0; i < num_online_cpus(); i++) {
6639 		u32 *lockup_detected;
6640 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6641 		*lockup_detected = value;
6642 		cpu = cpumask_next(cpu, cpu_online_mask);
6643 	}
6644 	wmb(); /* be sure the per-cpu variables are out to memory */
6645 }
6646 
6647 static void controller_lockup_detected(struct ctlr_info *h)
6648 {
6649 	unsigned long flags;
6650 	u32 lockup_detected;
6651 
6652 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6653 	spin_lock_irqsave(&h->lock, flags);
6654 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6655 	if (!lockup_detected) {
6656 		/* no heartbeat, but controller gave us a zero. */
6657 		dev_warn(&h->pdev->dev,
6658 			"lockup detected but scratchpad register is zero\n");
6659 		lockup_detected = 0xffffffff;
6660 	}
6661 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6662 	spin_unlock_irqrestore(&h->lock, flags);
6663 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6664 			lockup_detected);
6665 	pci_disable_device(h->pdev);
6666 	fail_all_outstanding_cmds(h);
6667 }
6668 
6669 static void detect_controller_lockup(struct ctlr_info *h)
6670 {
6671 	u64 now;
6672 	u32 heartbeat;
6673 	unsigned long flags;
6674 
6675 	now = get_jiffies_64();
6676 	/* If we've received an interrupt recently, we're ok. */
6677 	if (time_after64(h->last_intr_timestamp +
6678 				(h->heartbeat_sample_interval), now))
6679 		return;
6680 
6681 	/*
6682 	 * If we've already checked the heartbeat recently, we're ok.
6683 	 * This could happen if someone sends us a signal. We
6684 	 * otherwise don't care about signals in this thread.
6685 	 */
6686 	if (time_after64(h->last_heartbeat_timestamp +
6687 				(h->heartbeat_sample_interval), now))
6688 		return;
6689 
6690 	/* If heartbeat has not changed since we last looked, we're not ok. */
6691 	spin_lock_irqsave(&h->lock, flags);
6692 	heartbeat = readl(&h->cfgtable->HeartBeat);
6693 	spin_unlock_irqrestore(&h->lock, flags);
6694 	if (h->last_heartbeat == heartbeat) {
6695 		controller_lockup_detected(h);
6696 		return;
6697 	}
6698 
6699 	/* We're ok. */
6700 	h->last_heartbeat = heartbeat;
6701 	h->last_heartbeat_timestamp = now;
6702 }
6703 
6704 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6705 {
6706 	int i;
6707 	char *event_type;
6708 
6709 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6710 		return;
6711 
6712 	/* Ask the controller to clear the events we're handling. */
6713 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6714 			| CFGTBL_Trans_io_accel2)) &&
6715 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6716 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6717 
6718 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6719 			event_type = "state change";
6720 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6721 			event_type = "configuration change";
6722 		/* Stop sending new RAID offload reqs via the IO accelerator */
6723 		scsi_block_requests(h->scsi_host);
6724 		for (i = 0; i < h->ndevices; i++)
6725 			h->dev[i]->offload_enabled = 0;
6726 		hpsa_drain_accel_commands(h);
6727 		/* Set 'accelerator path config change' bit */
6728 		dev_warn(&h->pdev->dev,
6729 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6730 			h->events, event_type);
6731 		writel(h->events, &(h->cfgtable->clear_event_notify));
6732 		/* Set the "clear event notify field update" bit 6 */
6733 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6734 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6735 		hpsa_wait_for_clear_event_notify_ack(h);
6736 		scsi_unblock_requests(h->scsi_host);
6737 	} else {
6738 		/* Acknowledge controller notification events. */
6739 		writel(h->events, &(h->cfgtable->clear_event_notify));
6740 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6741 		hpsa_wait_for_clear_event_notify_ack(h);
6742 #if 0
6743 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6744 		hpsa_wait_for_mode_change_ack(h);
6745 #endif
6746 	}
6747 	return;
6748 }
6749 
6750 /* Check a register on the controller to see if there are configuration
6751  * changes (added/changed/removed logical drives, etc.) which mean that
6752  * we should rescan the controller for devices.
6753  * Also check flag for driver-initiated rescan.
6754  */
6755 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6756 {
6757 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6758 		return 0;
6759 
6760 	h->events = readl(&(h->cfgtable->event_notify));
6761 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6762 }
6763 
6764 /*
6765  * Check if any of the offline devices have become ready
6766  */
6767 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6768 {
6769 	unsigned long flags;
6770 	struct offline_device_entry *d;
6771 	struct list_head *this, *tmp;
6772 
6773 	spin_lock_irqsave(&h->offline_device_lock, flags);
6774 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6775 		d = list_entry(this, struct offline_device_entry,
6776 				offline_list);
6777 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6778 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
6779 			spin_lock_irqsave(&h->offline_device_lock, flags);
6780 			list_del(&d->offline_list);
6781 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6782 			return 1;
6783 		}
6784 		spin_lock_irqsave(&h->offline_device_lock, flags);
6785 	}
6786 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6787 	return 0;
6788 }
6789 
6790 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
6791 {
6792 	unsigned long flags;
6793 	struct ctlr_info *h = container_of(to_delayed_work(work),
6794 					struct ctlr_info, rescan_ctlr_work);
6795 
6796 
6797 	if (h->remove_in_progress)
6798 		return;
6799 
6800 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6801 		scsi_host_get(h->scsi_host);
6802 		hpsa_ack_ctlr_events(h);
6803 		hpsa_scan_start(h->scsi_host);
6804 		scsi_host_put(h->scsi_host);
6805 	}
6806 	spin_lock_irqsave(&h->lock, flags);
6807 	if (!h->remove_in_progress)
6808 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
6809 				h->heartbeat_sample_interval);
6810 	spin_unlock_irqrestore(&h->lock, flags);
6811 }
6812 
6813 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6814 {
6815 	unsigned long flags;
6816 	struct ctlr_info *h = container_of(to_delayed_work(work),
6817 					struct ctlr_info, monitor_ctlr_work);
6818 
6819 	detect_controller_lockup(h);
6820 	if (lockup_detected(h))
6821 		return;
6822 
6823 	spin_lock_irqsave(&h->lock, flags);
6824 	if (!h->remove_in_progress)
6825 		schedule_delayed_work(&h->monitor_ctlr_work,
6826 				h->heartbeat_sample_interval);
6827 	spin_unlock_irqrestore(&h->lock, flags);
6828 }
6829 
6830 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
6831 						char *name)
6832 {
6833 	struct workqueue_struct *wq = NULL;
6834 
6835 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6836 	if (!wq)
6837 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
6838 
6839 	return wq;
6840 }
6841 
6842 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6843 {
6844 	int dac, rc;
6845 	struct ctlr_info *h;
6846 	int try_soft_reset = 0;
6847 	unsigned long flags;
6848 
6849 	if (number_of_controllers == 0)
6850 		printk(KERN_INFO DRIVER_NAME "\n");
6851 
6852 	rc = hpsa_init_reset_devices(pdev);
6853 	if (rc) {
6854 		if (rc != -ENOTSUPP)
6855 			return rc;
6856 		/* If the reset fails in a particular way (it has no way to do
6857 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6858 		 * a soft reset once we get the controller configured up to the
6859 		 * point that it can accept a command.
6860 		 */
6861 		try_soft_reset = 1;
6862 		rc = 0;
6863 	}
6864 
6865 reinit_after_soft_reset:
6866 
6867 	/* Command structures must be aligned on a 32-byte boundary because
6868 	 * the 5 lower bits of the address are used by the hardware. and by
6869 	 * the driver.  See comments in hpsa.h for more info.
6870 	 */
6871 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6872 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6873 	if (!h)
6874 		return -ENOMEM;
6875 
6876 	h->pdev = pdev;
6877 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6878 	INIT_LIST_HEAD(&h->offline_device_list);
6879 	spin_lock_init(&h->lock);
6880 	spin_lock_init(&h->offline_device_lock);
6881 	spin_lock_init(&h->scan_lock);
6882 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
6883 
6884 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
6885 	if (!h->rescan_ctlr_wq) {
6886 		rc = -ENOMEM;
6887 		goto clean1;
6888 	}
6889 
6890 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
6891 	if (!h->resubmit_wq) {
6892 		rc = -ENOMEM;
6893 		goto clean1;
6894 	}
6895 
6896 	/* Allocate and clear per-cpu variable lockup_detected */
6897 	h->lockup_detected = alloc_percpu(u32);
6898 	if (!h->lockup_detected) {
6899 		rc = -ENOMEM;
6900 		goto clean1;
6901 	}
6902 	set_lockup_detected_for_all_cpus(h, 0);
6903 
6904 	rc = hpsa_pci_init(h);
6905 	if (rc != 0)
6906 		goto clean1;
6907 
6908 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6909 	h->ctlr = number_of_controllers;
6910 	number_of_controllers++;
6911 
6912 	/* configure PCI DMA stuff */
6913 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6914 	if (rc == 0) {
6915 		dac = 1;
6916 	} else {
6917 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6918 		if (rc == 0) {
6919 			dac = 0;
6920 		} else {
6921 			dev_err(&pdev->dev, "no suitable DMA available\n");
6922 			goto clean1;
6923 		}
6924 	}
6925 
6926 	/* make sure the board interrupts are off */
6927 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6928 
6929 	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6930 		goto clean2;
6931 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6932 	       h->devname, pdev->device,
6933 	       h->intr[h->intr_mode], dac ? "" : " not");
6934 	rc = hpsa_allocate_cmd_pool(h);
6935 	if (rc)
6936 		goto clean2_and_free_irqs;
6937 	if (hpsa_allocate_sg_chain_blocks(h))
6938 		goto clean4;
6939 	init_waitqueue_head(&h->scan_wait_queue);
6940 	h->scan_finished = 1; /* no scan currently in progress */
6941 
6942 	pci_set_drvdata(pdev, h);
6943 	h->ndevices = 0;
6944 	h->hba_mode_enabled = 0;
6945 	h->scsi_host = NULL;
6946 	spin_lock_init(&h->devlock);
6947 	hpsa_put_ctlr_into_performant_mode(h);
6948 
6949 	/* At this point, the controller is ready to take commands.
6950 	 * Now, if reset_devices and the hard reset didn't work, try
6951 	 * the soft reset and see if that works.
6952 	 */
6953 	if (try_soft_reset) {
6954 
6955 		/* This is kind of gross.  We may or may not get a completion
6956 		 * from the soft reset command, and if we do, then the value
6957 		 * from the fifo may or may not be valid.  So, we wait 10 secs
6958 		 * after the reset throwing away any completions we get during
6959 		 * that time.  Unregister the interrupt handler and register
6960 		 * fake ones to scoop up any residual completions.
6961 		 */
6962 		spin_lock_irqsave(&h->lock, flags);
6963 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6964 		spin_unlock_irqrestore(&h->lock, flags);
6965 		hpsa_free_irqs(h);
6966 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6967 					hpsa_intx_discard_completions);
6968 		if (rc) {
6969 			dev_warn(&h->pdev->dev,
6970 				"Failed to request_irq after soft reset.\n");
6971 			goto clean4;
6972 		}
6973 
6974 		rc = hpsa_kdump_soft_reset(h);
6975 		if (rc)
6976 			/* Neither hard nor soft reset worked, we're hosed. */
6977 			goto clean4;
6978 
6979 		dev_info(&h->pdev->dev, "Board READY.\n");
6980 		dev_info(&h->pdev->dev,
6981 			"Waiting for stale completions to drain.\n");
6982 		h->access.set_intr_mask(h, HPSA_INTR_ON);
6983 		msleep(10000);
6984 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6985 
6986 		rc = controller_reset_failed(h->cfgtable);
6987 		if (rc)
6988 			dev_info(&h->pdev->dev,
6989 				"Soft reset appears to have failed.\n");
6990 
6991 		/* since the controller's reset, we have to go back and re-init
6992 		 * everything.  Easiest to just forget what we've done and do it
6993 		 * all over again.
6994 		 */
6995 		hpsa_undo_allocations_after_kdump_soft_reset(h);
6996 		try_soft_reset = 0;
6997 		if (rc)
6998 			/* don't go to clean4, we already unallocated */
6999 			return -ENODEV;
7000 
7001 		goto reinit_after_soft_reset;
7002 	}
7003 
7004 		/* Enable Accelerated IO path at driver layer */
7005 		h->acciopath_status = 1;
7006 
7007 
7008 	/* Turn the interrupts on so we can service requests */
7009 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7010 
7011 	hpsa_hba_inquiry(h);
7012 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7013 
7014 	/* Monitor the controller for firmware lockups */
7015 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7016 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7017 	schedule_delayed_work(&h->monitor_ctlr_work,
7018 				h->heartbeat_sample_interval);
7019 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7020 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7021 				h->heartbeat_sample_interval);
7022 	return 0;
7023 
7024 clean4:
7025 	hpsa_free_sg_chain_blocks(h);
7026 	hpsa_free_cmd_pool(h);
7027 clean2_and_free_irqs:
7028 	hpsa_free_irqs(h);
7029 clean2:
7030 clean1:
7031 	if (h->resubmit_wq)
7032 		destroy_workqueue(h->resubmit_wq);
7033 	if (h->rescan_ctlr_wq)
7034 		destroy_workqueue(h->rescan_ctlr_wq);
7035 	if (h->lockup_detected)
7036 		free_percpu(h->lockup_detected);
7037 	kfree(h);
7038 	return rc;
7039 }
7040 
7041 static void hpsa_flush_cache(struct ctlr_info *h)
7042 {
7043 	char *flush_buf;
7044 	struct CommandList *c;
7045 
7046 	/* Don't bother trying to flush the cache if locked up */
7047 	if (unlikely(lockup_detected(h)))
7048 		return;
7049 	flush_buf = kzalloc(4, GFP_KERNEL);
7050 	if (!flush_buf)
7051 		return;
7052 
7053 	c = cmd_alloc(h);
7054 	if (!c) {
7055 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7056 		goto out_of_memory;
7057 	}
7058 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7059 		RAID_CTLR_LUNID, TYPE_CMD)) {
7060 		goto out;
7061 	}
7062 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7063 	if (c->err_info->CommandStatus != 0)
7064 out:
7065 		dev_warn(&h->pdev->dev,
7066 			"error flushing cache on controller\n");
7067 	cmd_free(h, c);
7068 out_of_memory:
7069 	kfree(flush_buf);
7070 }
7071 
7072 static void hpsa_shutdown(struct pci_dev *pdev)
7073 {
7074 	struct ctlr_info *h;
7075 
7076 	h = pci_get_drvdata(pdev);
7077 	/* Turn board interrupts off  and send the flush cache command
7078 	 * sendcmd will turn off interrupt, and send the flush...
7079 	 * To write all data in the battery backed cache to disks
7080 	 */
7081 	hpsa_flush_cache(h);
7082 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7083 	hpsa_free_irqs_and_disable_msix(h);
7084 }
7085 
7086 static void hpsa_free_device_info(struct ctlr_info *h)
7087 {
7088 	int i;
7089 
7090 	for (i = 0; i < h->ndevices; i++)
7091 		kfree(h->dev[i]);
7092 }
7093 
7094 static void hpsa_remove_one(struct pci_dev *pdev)
7095 {
7096 	struct ctlr_info *h;
7097 	unsigned long flags;
7098 
7099 	if (pci_get_drvdata(pdev) == NULL) {
7100 		dev_err(&pdev->dev, "unable to remove device\n");
7101 		return;
7102 	}
7103 	h = pci_get_drvdata(pdev);
7104 
7105 	/* Get rid of any controller monitoring work items */
7106 	spin_lock_irqsave(&h->lock, flags);
7107 	h->remove_in_progress = 1;
7108 	spin_unlock_irqrestore(&h->lock, flags);
7109 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
7110 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
7111 	destroy_workqueue(h->rescan_ctlr_wq);
7112 	destroy_workqueue(h->resubmit_wq);
7113 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7114 	hpsa_shutdown(pdev);
7115 	iounmap(h->vaddr);
7116 	iounmap(h->transtable);
7117 	iounmap(h->cfgtable);
7118 	hpsa_free_device_info(h);
7119 	hpsa_free_sg_chain_blocks(h);
7120 	pci_free_consistent(h->pdev,
7121 		h->nr_cmds * sizeof(struct CommandList),
7122 		h->cmd_pool, h->cmd_pool_dhandle);
7123 	pci_free_consistent(h->pdev,
7124 		h->nr_cmds * sizeof(struct ErrorInfo),
7125 		h->errinfo_pool, h->errinfo_pool_dhandle);
7126 	hpsa_free_reply_queues(h);
7127 	kfree(h->cmd_pool_bits);
7128 	kfree(h->blockFetchTable);
7129 	kfree(h->ioaccel1_blockFetchTable);
7130 	kfree(h->ioaccel2_blockFetchTable);
7131 	kfree(h->hba_inquiry_data);
7132 	pci_disable_device(pdev);
7133 	pci_release_regions(pdev);
7134 	free_percpu(h->lockup_detected);
7135 	kfree(h);
7136 }
7137 
7138 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7139 	__attribute__((unused)) pm_message_t state)
7140 {
7141 	return -ENOSYS;
7142 }
7143 
7144 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7145 {
7146 	return -ENOSYS;
7147 }
7148 
7149 static struct pci_driver hpsa_pci_driver = {
7150 	.name = HPSA,
7151 	.probe = hpsa_init_one,
7152 	.remove = hpsa_remove_one,
7153 	.id_table = hpsa_pci_device_id,	/* id_table */
7154 	.shutdown = hpsa_shutdown,
7155 	.suspend = hpsa_suspend,
7156 	.resume = hpsa_resume,
7157 };
7158 
7159 /* Fill in bucket_map[], given nsgs (the max number of
7160  * scatter gather elements supported) and bucket[],
7161  * which is an array of 8 integers.  The bucket[] array
7162  * contains 8 different DMA transfer sizes (in 16
7163  * byte increments) which the controller uses to fetch
7164  * commands.  This function fills in bucket_map[], which
7165  * maps a given number of scatter gather elements to one of
7166  * the 8 DMA transfer sizes.  The point of it is to allow the
7167  * controller to only do as much DMA as needed to fetch the
7168  * command, with the DMA transfer size encoded in the lower
7169  * bits of the command address.
7170  */
7171 static void  calc_bucket_map(int bucket[], int num_buckets,
7172 	int nsgs, int min_blocks, u32 *bucket_map)
7173 {
7174 	int i, j, b, size;
7175 
7176 	/* Note, bucket_map must have nsgs+1 entries. */
7177 	for (i = 0; i <= nsgs; i++) {
7178 		/* Compute size of a command with i SG entries */
7179 		size = i + min_blocks;
7180 		b = num_buckets; /* Assume the biggest bucket */
7181 		/* Find the bucket that is just big enough */
7182 		for (j = 0; j < num_buckets; j++) {
7183 			if (bucket[j] >= size) {
7184 				b = j;
7185 				break;
7186 			}
7187 		}
7188 		/* for a command with i SG entries, use bucket b. */
7189 		bucket_map[i] = b;
7190 	}
7191 }
7192 
7193 /* return -ENODEV or other reason on error, 0 on success */
7194 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7195 {
7196 	int i;
7197 	unsigned long register_value;
7198 	unsigned long transMethod = CFGTBL_Trans_Performant |
7199 			(trans_support & CFGTBL_Trans_use_short_tags) |
7200 				CFGTBL_Trans_enable_directed_msix |
7201 			(trans_support & (CFGTBL_Trans_io_accel1 |
7202 				CFGTBL_Trans_io_accel2));
7203 	struct access_method access = SA5_performant_access;
7204 
7205 	/* This is a bit complicated.  There are 8 registers on
7206 	 * the controller which we write to to tell it 8 different
7207 	 * sizes of commands which there may be.  It's a way of
7208 	 * reducing the DMA done to fetch each command.  Encoded into
7209 	 * each command's tag are 3 bits which communicate to the controller
7210 	 * which of the eight sizes that command fits within.  The size of
7211 	 * each command depends on how many scatter gather entries there are.
7212 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7213 	 * with the number of 16-byte blocks a command of that size requires.
7214 	 * The smallest command possible requires 5 such 16 byte blocks.
7215 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7216 	 * blocks.  Note, this only extends to the SG entries contained
7217 	 * within the command block, and does not extend to chained blocks
7218 	 * of SG elements.   bft[] contains the eight values we write to
7219 	 * the registers.  They are not evenly distributed, but have more
7220 	 * sizes for small commands, and fewer sizes for larger commands.
7221 	 */
7222 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7223 #define MIN_IOACCEL2_BFT_ENTRY 5
7224 #define HPSA_IOACCEL2_HEADER_SZ 4
7225 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7226 			13, 14, 15, 16, 17, 18, 19,
7227 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7228 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7229 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7230 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7231 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7232 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7233 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7234 	/*  5 = 1 s/g entry or 4k
7235 	 *  6 = 2 s/g entry or 8k
7236 	 *  8 = 4 s/g entry or 16k
7237 	 * 10 = 6 s/g entry or 24k
7238 	 */
7239 
7240 	/* If the controller supports either ioaccel method then
7241 	 * we can also use the RAID stack submit path that does not
7242 	 * perform the superfluous readl() after each command submission.
7243 	 */
7244 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7245 		access = SA5_performant_access_no_read;
7246 
7247 	/* Controller spec: zero out this buffer. */
7248 	for (i = 0; i < h->nreply_queues; i++)
7249 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7250 
7251 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7252 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7253 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7254 	for (i = 0; i < 8; i++)
7255 		writel(bft[i], &h->transtable->BlockFetch[i]);
7256 
7257 	/* size of controller ring buffer */
7258 	writel(h->max_commands, &h->transtable->RepQSize);
7259 	writel(h->nreply_queues, &h->transtable->RepQCount);
7260 	writel(0, &h->transtable->RepQCtrAddrLow32);
7261 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7262 
7263 	for (i = 0; i < h->nreply_queues; i++) {
7264 		writel(0, &h->transtable->RepQAddr[i].upper);
7265 		writel(h->reply_queue[i].busaddr,
7266 			&h->transtable->RepQAddr[i].lower);
7267 	}
7268 
7269 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7270 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7271 	/*
7272 	 * enable outbound interrupt coalescing in accelerator mode;
7273 	 */
7274 	if (trans_support & CFGTBL_Trans_io_accel1) {
7275 		access = SA5_ioaccel_mode1_access;
7276 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7277 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7278 	} else {
7279 		if (trans_support & CFGTBL_Trans_io_accel2) {
7280 			access = SA5_ioaccel_mode2_access;
7281 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7282 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7283 		}
7284 	}
7285 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7286 	if (hpsa_wait_for_mode_change_ack(h)) {
7287 		dev_err(&h->pdev->dev,
7288 			"performant mode problem - doorbell timeout\n");
7289 		return -ENODEV;
7290 	}
7291 	register_value = readl(&(h->cfgtable->TransportActive));
7292 	if (!(register_value & CFGTBL_Trans_Performant)) {
7293 		dev_err(&h->pdev->dev,
7294 			"performant mode problem - transport not active\n");
7295 		return -ENODEV;
7296 	}
7297 	/* Change the access methods to the performant access methods */
7298 	h->access = access;
7299 	h->transMethod = transMethod;
7300 
7301 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7302 		(trans_support & CFGTBL_Trans_io_accel2)))
7303 		return 0;
7304 
7305 	if (trans_support & CFGTBL_Trans_io_accel1) {
7306 		/* Set up I/O accelerator mode */
7307 		for (i = 0; i < h->nreply_queues; i++) {
7308 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7309 			h->reply_queue[i].current_entry =
7310 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7311 		}
7312 		bft[7] = h->ioaccel_maxsg + 8;
7313 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7314 				h->ioaccel1_blockFetchTable);
7315 
7316 		/* initialize all reply queue entries to unused */
7317 		for (i = 0; i < h->nreply_queues; i++)
7318 			memset(h->reply_queue[i].head,
7319 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7320 				h->reply_queue_size);
7321 
7322 		/* set all the constant fields in the accelerator command
7323 		 * frames once at init time to save CPU cycles later.
7324 		 */
7325 		for (i = 0; i < h->nr_cmds; i++) {
7326 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7327 
7328 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7329 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7330 					(i * sizeof(struct ErrorInfo)));
7331 			cp->err_info_len = sizeof(struct ErrorInfo);
7332 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7333 			cp->host_context_flags =
7334 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7335 			cp->timeout_sec = 0;
7336 			cp->ReplyQueue = 0;
7337 			cp->tag =
7338 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7339 			cp->host_addr =
7340 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7341 					(i * sizeof(struct io_accel1_cmd)));
7342 		}
7343 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7344 		u64 cfg_offset, cfg_base_addr_index;
7345 		u32 bft2_offset, cfg_base_addr;
7346 		int rc;
7347 
7348 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7349 			&cfg_base_addr_index, &cfg_offset);
7350 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7351 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7352 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7353 				4, h->ioaccel2_blockFetchTable);
7354 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7355 		BUILD_BUG_ON(offsetof(struct CfgTable,
7356 				io_accel_request_size_offset) != 0xb8);
7357 		h->ioaccel2_bft2_regs =
7358 			remap_pci_mem(pci_resource_start(h->pdev,
7359 					cfg_base_addr_index) +
7360 					cfg_offset + bft2_offset,
7361 					ARRAY_SIZE(bft2) *
7362 					sizeof(*h->ioaccel2_bft2_regs));
7363 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7364 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7365 	}
7366 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7367 	if (hpsa_wait_for_mode_change_ack(h)) {
7368 		dev_err(&h->pdev->dev,
7369 			"performant mode problem - enabling ioaccel mode\n");
7370 		return -ENODEV;
7371 	}
7372 	return 0;
7373 }
7374 
7375 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7376 {
7377 	h->ioaccel_maxsg =
7378 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7379 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7380 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7381 
7382 	/* Command structures must be aligned on a 128-byte boundary
7383 	 * because the 7 lower bits of the address are used by the
7384 	 * hardware.
7385 	 */
7386 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7387 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7388 	h->ioaccel_cmd_pool =
7389 		pci_alloc_consistent(h->pdev,
7390 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7391 			&(h->ioaccel_cmd_pool_dhandle));
7392 
7393 	h->ioaccel1_blockFetchTable =
7394 		kmalloc(((h->ioaccel_maxsg + 1) *
7395 				sizeof(u32)), GFP_KERNEL);
7396 
7397 	if ((h->ioaccel_cmd_pool == NULL) ||
7398 		(h->ioaccel1_blockFetchTable == NULL))
7399 		goto clean_up;
7400 
7401 	memset(h->ioaccel_cmd_pool, 0,
7402 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7403 	return 0;
7404 
7405 clean_up:
7406 	if (h->ioaccel_cmd_pool)
7407 		pci_free_consistent(h->pdev,
7408 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7409 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7410 	kfree(h->ioaccel1_blockFetchTable);
7411 	return 1;
7412 }
7413 
7414 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7415 {
7416 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7417 
7418 	h->ioaccel_maxsg =
7419 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7420 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7421 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7422 
7423 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7424 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7425 	h->ioaccel2_cmd_pool =
7426 		pci_alloc_consistent(h->pdev,
7427 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7428 			&(h->ioaccel2_cmd_pool_dhandle));
7429 
7430 	h->ioaccel2_blockFetchTable =
7431 		kmalloc(((h->ioaccel_maxsg + 1) *
7432 				sizeof(u32)), GFP_KERNEL);
7433 
7434 	if ((h->ioaccel2_cmd_pool == NULL) ||
7435 		(h->ioaccel2_blockFetchTable == NULL))
7436 		goto clean_up;
7437 
7438 	memset(h->ioaccel2_cmd_pool, 0,
7439 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7440 	return 0;
7441 
7442 clean_up:
7443 	if (h->ioaccel2_cmd_pool)
7444 		pci_free_consistent(h->pdev,
7445 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7446 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7447 	kfree(h->ioaccel2_blockFetchTable);
7448 	return 1;
7449 }
7450 
7451 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7452 {
7453 	u32 trans_support;
7454 	unsigned long transMethod = CFGTBL_Trans_Performant |
7455 					CFGTBL_Trans_use_short_tags;
7456 	int i;
7457 
7458 	if (hpsa_simple_mode)
7459 		return;
7460 
7461 	trans_support = readl(&(h->cfgtable->TransportSupport));
7462 	if (!(trans_support & PERFORMANT_MODE))
7463 		return;
7464 
7465 	/* Check for I/O accelerator mode support */
7466 	if (trans_support & CFGTBL_Trans_io_accel1) {
7467 		transMethod |= CFGTBL_Trans_io_accel1 |
7468 				CFGTBL_Trans_enable_directed_msix;
7469 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7470 			goto clean_up;
7471 	} else {
7472 		if (trans_support & CFGTBL_Trans_io_accel2) {
7473 				transMethod |= CFGTBL_Trans_io_accel2 |
7474 				CFGTBL_Trans_enable_directed_msix;
7475 		if (ioaccel2_alloc_cmds_and_bft(h))
7476 			goto clean_up;
7477 		}
7478 	}
7479 
7480 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7481 	hpsa_get_max_perf_mode_cmds(h);
7482 	/* Performant mode ring buffer and supporting data structures */
7483 	h->reply_queue_size = h->max_commands * sizeof(u64);
7484 
7485 	for (i = 0; i < h->nreply_queues; i++) {
7486 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7487 						h->reply_queue_size,
7488 						&(h->reply_queue[i].busaddr));
7489 		if (!h->reply_queue[i].head)
7490 			goto clean_up;
7491 		h->reply_queue[i].size = h->max_commands;
7492 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7493 		h->reply_queue[i].current_entry = 0;
7494 	}
7495 
7496 	/* Need a block fetch table for performant mode */
7497 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7498 				sizeof(u32)), GFP_KERNEL);
7499 	if (!h->blockFetchTable)
7500 		goto clean_up;
7501 
7502 	hpsa_enter_performant_mode(h, trans_support);
7503 	return;
7504 
7505 clean_up:
7506 	hpsa_free_reply_queues(h);
7507 	kfree(h->blockFetchTable);
7508 }
7509 
7510 static int is_accelerated_cmd(struct CommandList *c)
7511 {
7512 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7513 }
7514 
7515 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7516 {
7517 	struct CommandList *c = NULL;
7518 	int i, accel_cmds_out;
7519 	int refcount;
7520 
7521 	do { /* wait for all outstanding ioaccel commands to drain out */
7522 		accel_cmds_out = 0;
7523 		for (i = 0; i < h->nr_cmds; i++) {
7524 			c = h->cmd_pool + i;
7525 			refcount = atomic_inc_return(&c->refcount);
7526 			if (refcount > 1) /* Command is allocated */
7527 				accel_cmds_out += is_accelerated_cmd(c);
7528 			cmd_free(h, c);
7529 		}
7530 		if (accel_cmds_out <= 0)
7531 			break;
7532 		msleep(100);
7533 	} while (1);
7534 }
7535 
7536 /*
7537  *  This is it.  Register the PCI driver information for the cards we control
7538  *  the OS will call our registered routines when it finds one of our cards.
7539  */
7540 static int __init hpsa_init(void)
7541 {
7542 	return pci_register_driver(&hpsa_pci_driver);
7543 }
7544 
7545 static void __exit hpsa_cleanup(void)
7546 {
7547 	pci_unregister_driver(&hpsa_pci_driver);
7548 }
7549 
7550 static void __attribute__((unused)) verify_offsets(void)
7551 {
7552 #define VERIFY_OFFSET(member, offset) \
7553 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7554 
7555 	VERIFY_OFFSET(structure_size, 0);
7556 	VERIFY_OFFSET(volume_blk_size, 4);
7557 	VERIFY_OFFSET(volume_blk_cnt, 8);
7558 	VERIFY_OFFSET(phys_blk_shift, 16);
7559 	VERIFY_OFFSET(parity_rotation_shift, 17);
7560 	VERIFY_OFFSET(strip_size, 18);
7561 	VERIFY_OFFSET(disk_starting_blk, 20);
7562 	VERIFY_OFFSET(disk_blk_cnt, 28);
7563 	VERIFY_OFFSET(data_disks_per_row, 36);
7564 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7565 	VERIFY_OFFSET(row_cnt, 40);
7566 	VERIFY_OFFSET(layout_map_count, 42);
7567 	VERIFY_OFFSET(flags, 44);
7568 	VERIFY_OFFSET(dekindex, 46);
7569 	/* VERIFY_OFFSET(reserved, 48 */
7570 	VERIFY_OFFSET(data, 64);
7571 
7572 #undef VERIFY_OFFSET
7573 
7574 #define VERIFY_OFFSET(member, offset) \
7575 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7576 
7577 	VERIFY_OFFSET(IU_type, 0);
7578 	VERIFY_OFFSET(direction, 1);
7579 	VERIFY_OFFSET(reply_queue, 2);
7580 	/* VERIFY_OFFSET(reserved1, 3);  */
7581 	VERIFY_OFFSET(scsi_nexus, 4);
7582 	VERIFY_OFFSET(Tag, 8);
7583 	VERIFY_OFFSET(cdb, 16);
7584 	VERIFY_OFFSET(cciss_lun, 32);
7585 	VERIFY_OFFSET(data_len, 40);
7586 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7587 	VERIFY_OFFSET(sg_count, 45);
7588 	/* VERIFY_OFFSET(reserved3 */
7589 	VERIFY_OFFSET(err_ptr, 48);
7590 	VERIFY_OFFSET(err_len, 56);
7591 	/* VERIFY_OFFSET(reserved4  */
7592 	VERIFY_OFFSET(sg, 64);
7593 
7594 #undef VERIFY_OFFSET
7595 
7596 #define VERIFY_OFFSET(member, offset) \
7597 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7598 
7599 	VERIFY_OFFSET(dev_handle, 0x00);
7600 	VERIFY_OFFSET(reserved1, 0x02);
7601 	VERIFY_OFFSET(function, 0x03);
7602 	VERIFY_OFFSET(reserved2, 0x04);
7603 	VERIFY_OFFSET(err_info, 0x0C);
7604 	VERIFY_OFFSET(reserved3, 0x10);
7605 	VERIFY_OFFSET(err_info_len, 0x12);
7606 	VERIFY_OFFSET(reserved4, 0x13);
7607 	VERIFY_OFFSET(sgl_offset, 0x14);
7608 	VERIFY_OFFSET(reserved5, 0x15);
7609 	VERIFY_OFFSET(transfer_len, 0x1C);
7610 	VERIFY_OFFSET(reserved6, 0x20);
7611 	VERIFY_OFFSET(io_flags, 0x24);
7612 	VERIFY_OFFSET(reserved7, 0x26);
7613 	VERIFY_OFFSET(LUN, 0x34);
7614 	VERIFY_OFFSET(control, 0x3C);
7615 	VERIFY_OFFSET(CDB, 0x40);
7616 	VERIFY_OFFSET(reserved8, 0x50);
7617 	VERIFY_OFFSET(host_context_flags, 0x60);
7618 	VERIFY_OFFSET(timeout_sec, 0x62);
7619 	VERIFY_OFFSET(ReplyQueue, 0x64);
7620 	VERIFY_OFFSET(reserved9, 0x65);
7621 	VERIFY_OFFSET(tag, 0x68);
7622 	VERIFY_OFFSET(host_addr, 0x70);
7623 	VERIFY_OFFSET(CISS_LUN, 0x78);
7624 	VERIFY_OFFSET(SG, 0x78 + 8);
7625 #undef VERIFY_OFFSET
7626 }
7627 
7628 module_init(hpsa_init);
7629 module_exit(hpsa_cleanup);
7630