xref: /openbmc/linux/drivers/scsi/hpsa.c (revision c819e2cf)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56 
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.4-1"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61 
62 /* How long to wait (in milliseconds) for board to go into simple mode */
63 #define MAX_CONFIG_WAIT 30000
64 #define MAX_IOCTL_CONFIG_WAIT 1000
65 
66 /*define how many times we will try a command because of bus resets */
67 #define MAX_CMD_RETRIES 3
68 
69 /* Embedded module documentation macros - see modules.h */
70 MODULE_AUTHOR("Hewlett-Packard Company");
71 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 	HPSA_DRIVER_VERSION);
73 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_VERSION(HPSA_DRIVER_VERSION);
75 MODULE_LICENSE("GPL");
76 
77 static int hpsa_allow_any;
78 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_allow_any,
80 		"Allow hpsa driver to access unknown HP Smart Array hardware");
81 static int hpsa_simple_mode;
82 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_simple_mode,
84 	"Use 'simple mode' rather than 'performant mode'");
85 
86 /* define the PCI info for the cards we can control */
87 static const struct pci_device_id hpsa_pci_device_id[] = {
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
128 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
134 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135 	{0,}
136 };
137 
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
139 
140 /*  board_id = Subsystem Device ID & Vendor ID
141  *  product = Marketing Name for the board
142  *  access = Address of the struct of function pointers
143  */
144 static struct board_type products[] = {
145 	{0x3241103C, "Smart Array P212", &SA5_access},
146 	{0x3243103C, "Smart Array P410", &SA5_access},
147 	{0x3245103C, "Smart Array P410i", &SA5_access},
148 	{0x3247103C, "Smart Array P411", &SA5_access},
149 	{0x3249103C, "Smart Array P812", &SA5_access},
150 	{0x324A103C, "Smart Array P712m", &SA5_access},
151 	{0x324B103C, "Smart Array P711m", &SA5_access},
152 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
153 	{0x3350103C, "Smart Array P222", &SA5_access},
154 	{0x3351103C, "Smart Array P420", &SA5_access},
155 	{0x3352103C, "Smart Array P421", &SA5_access},
156 	{0x3353103C, "Smart Array P822", &SA5_access},
157 	{0x3354103C, "Smart Array P420i", &SA5_access},
158 	{0x3355103C, "Smart Array P220i", &SA5_access},
159 	{0x3356103C, "Smart Array P721m", &SA5_access},
160 	{0x1921103C, "Smart Array P830i", &SA5_access},
161 	{0x1922103C, "Smart Array P430", &SA5_access},
162 	{0x1923103C, "Smart Array P431", &SA5_access},
163 	{0x1924103C, "Smart Array P830", &SA5_access},
164 	{0x1926103C, "Smart Array P731m", &SA5_access},
165 	{0x1928103C, "Smart Array P230i", &SA5_access},
166 	{0x1929103C, "Smart Array P530", &SA5_access},
167 	{0x21BD103C, "Smart Array", &SA5_access},
168 	{0x21BE103C, "Smart Array", &SA5_access},
169 	{0x21BF103C, "Smart Array", &SA5_access},
170 	{0x21C0103C, "Smart Array", &SA5_access},
171 	{0x21C1103C, "Smart Array", &SA5_access},
172 	{0x21C2103C, "Smart Array", &SA5_access},
173 	{0x21C3103C, "Smart Array", &SA5_access},
174 	{0x21C4103C, "Smart Array", &SA5_access},
175 	{0x21C5103C, "Smart Array", &SA5_access},
176 	{0x21C6103C, "Smart Array", &SA5_access},
177 	{0x21C7103C, "Smart Array", &SA5_access},
178 	{0x21C8103C, "Smart Array", &SA5_access},
179 	{0x21C9103C, "Smart Array", &SA5_access},
180 	{0x21CA103C, "Smart Array", &SA5_access},
181 	{0x21CB103C, "Smart Array", &SA5_access},
182 	{0x21CC103C, "Smart Array", &SA5_access},
183 	{0x21CD103C, "Smart Array", &SA5_access},
184 	{0x21CE103C, "Smart Array", &SA5_access},
185 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
186 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
187 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
188 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
189 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
190 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
191 };
192 
193 static int number_of_controllers;
194 
195 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
196 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
197 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
198 static void lock_and_start_io(struct ctlr_info *h);
199 static void start_io(struct ctlr_info *h, unsigned long *flags);
200 
201 #ifdef CONFIG_COMPAT
202 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
203 	void __user *arg);
204 #endif
205 
206 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
207 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
208 static struct CommandList *cmd_alloc(struct ctlr_info *h);
209 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212 	int cmd_type);
213 #define VPD_PAGE (1 << 8)
214 
215 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 static void hpsa_scan_start(struct Scsi_Host *);
217 static int hpsa_scan_finished(struct Scsi_Host *sh,
218 	unsigned long elapsed_time);
219 
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_slave_alloc(struct scsi_device *sdev);
223 static void hpsa_slave_destroy(struct scsi_device *sdev);
224 
225 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
226 static int check_for_unit_attention(struct ctlr_info *h,
227 	struct CommandList *c);
228 static void check_ioctl_unit_attention(struct ctlr_info *h,
229 	struct CommandList *c);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket, int num_buckets,
232 	int nsgs, int min_blocks, int *bucket_map);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
234 static inline u32 next_command(struct ctlr_info *h, u8 q);
235 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
236 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
237 			       u64 *cfg_offset);
238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
239 				    unsigned long *memory_bar);
240 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
241 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
242 				     int wait_for_ready);
243 static inline void finish_cmd(struct CommandList *c);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info *h);
248 static void hpsa_flush_cache(struct ctlr_info *h);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
250 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
251 	u8 *scsi3addr);
252 
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255 	unsigned long *priv = shost_priv(sdev->host);
256 	return (struct ctlr_info *) *priv;
257 }
258 
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261 	unsigned long *priv = shost_priv(sh);
262 	return (struct ctlr_info *) *priv;
263 }
264 
265 static int check_for_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c)
267 {
268 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269 		return 0;
270 
271 	switch (c->err_info->SenseInfo[12]) {
272 	case STATE_CHANGED:
273 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 			"detected, command retried\n", h->ctlr);
275 		break;
276 	case LUN_FAILED:
277 		dev_warn(&h->pdev->dev,
278 			HPSA "%d: LUN failure detected\n", h->ctlr);
279 		break;
280 	case REPORT_LUNS_CHANGED:
281 		dev_warn(&h->pdev->dev,
282 			HPSA "%d: report LUN data changed\n", h->ctlr);
283 	/*
284 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 	 * target (array) devices.
286 	 */
287 		break;
288 	case POWER_OR_RESET:
289 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 			"or device reset detected\n", h->ctlr);
291 		break;
292 	case UNIT_ATTENTION_CLEARED:
293 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 		    "cleared by another initiator\n", h->ctlr);
295 		break;
296 	default:
297 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 			"unit attention detected\n", h->ctlr);
299 		break;
300 	}
301 	return 1;
302 }
303 
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309 		return 0;
310 	dev_warn(&h->pdev->dev, HPSA "device busy");
311 	return 1;
312 }
313 
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 					 struct device_attribute *attr,
316 					 const char *buf, size_t count)
317 {
318 	int status, len;
319 	struct ctlr_info *h;
320 	struct Scsi_Host *shost = class_to_shost(dev);
321 	char tmpbuf[10];
322 
323 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324 		return -EACCES;
325 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 	strncpy(tmpbuf, buf, len);
327 	tmpbuf[len] = '\0';
328 	if (sscanf(tmpbuf, "%d", &status) != 1)
329 		return -EINVAL;
330 	h = shost_to_hba(shost);
331 	h->acciopath_status = !!status;
332 	dev_warn(&h->pdev->dev,
333 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 		h->acciopath_status ? "enabled" : "disabled");
335 	return count;
336 }
337 
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 					 struct device_attribute *attr,
340 					 const char *buf, size_t count)
341 {
342 	int debug_level, len;
343 	struct ctlr_info *h;
344 	struct Scsi_Host *shost = class_to_shost(dev);
345 	char tmpbuf[10];
346 
347 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348 		return -EACCES;
349 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 	strncpy(tmpbuf, buf, len);
351 	tmpbuf[len] = '\0';
352 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353 		return -EINVAL;
354 	if (debug_level < 0)
355 		debug_level = 0;
356 	h = shost_to_hba(shost);
357 	h->raid_offload_debug = debug_level;
358 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 		h->raid_offload_debug);
360 	return count;
361 }
362 
363 static ssize_t host_store_rescan(struct device *dev,
364 				 struct device_attribute *attr,
365 				 const char *buf, size_t count)
366 {
367 	struct ctlr_info *h;
368 	struct Scsi_Host *shost = class_to_shost(dev);
369 	h = shost_to_hba(shost);
370 	hpsa_scan_start(h->scsi_host);
371 	return count;
372 }
373 
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 	     struct device_attribute *attr, char *buf)
376 {
377 	struct ctlr_info *h;
378 	struct Scsi_Host *shost = class_to_shost(dev);
379 	unsigned char *fwrev;
380 
381 	h = shost_to_hba(shost);
382 	if (!h->hba_inquiry_data)
383 		return 0;
384 	fwrev = &h->hba_inquiry_data[32];
385 	return snprintf(buf, 20, "%c%c%c%c\n",
386 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388 
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 	     struct device_attribute *attr, char *buf)
391 {
392 	struct Scsi_Host *shost = class_to_shost(dev);
393 	struct ctlr_info *h = shost_to_hba(shost);
394 
395 	return snprintf(buf, 20, "%d\n",
396 			atomic_read(&h->commands_outstanding));
397 }
398 
399 static ssize_t host_show_transport_mode(struct device *dev,
400 	struct device_attribute *attr, char *buf)
401 {
402 	struct ctlr_info *h;
403 	struct Scsi_Host *shost = class_to_shost(dev);
404 
405 	h = shost_to_hba(shost);
406 	return snprintf(buf, 20, "%s\n",
407 		h->transMethod & CFGTBL_Trans_Performant ?
408 			"performant" : "simple");
409 }
410 
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412 	struct device_attribute *attr, char *buf)
413 {
414 	struct ctlr_info *h;
415 	struct Scsi_Host *shost = class_to_shost(dev);
416 
417 	h = shost_to_hba(shost);
418 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
420 }
421 
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424 	0x324a103C, /* Smart Array P712m */
425 	0x324b103C, /* SmartArray P711m */
426 	0x3223103C, /* Smart Array P800 */
427 	0x3234103C, /* Smart Array P400 */
428 	0x3235103C, /* Smart Array P400i */
429 	0x3211103C, /* Smart Array E200i */
430 	0x3212103C, /* Smart Array E200 */
431 	0x3213103C, /* Smart Array E200i */
432 	0x3214103C, /* Smart Array E200i */
433 	0x3215103C, /* Smart Array E200i */
434 	0x3237103C, /* Smart Array E500 */
435 	0x323D103C, /* Smart Array P700m */
436 	0x40800E11, /* Smart Array 5i */
437 	0x409C0E11, /* Smart Array 6400 */
438 	0x409D0E11, /* Smart Array 6400 EM */
439 	0x40700E11, /* Smart Array 5300 */
440 	0x40820E11, /* Smart Array 532 */
441 	0x40830E11, /* Smart Array 5312 */
442 	0x409A0E11, /* Smart Array 641 */
443 	0x409B0E11, /* Smart Array 642 */
444 	0x40910E11, /* Smart Array 6i */
445 };
446 
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449 	0x40800E11, /* Smart Array 5i */
450 	0x40700E11, /* Smart Array 5300 */
451 	0x40820E11, /* Smart Array 532 */
452 	0x40830E11, /* Smart Array 5312 */
453 	0x409A0E11, /* Smart Array 641 */
454 	0x409B0E11, /* Smart Array 642 */
455 	0x40910E11, /* Smart Array 6i */
456 	/* Exclude 640x boards.  These are two pci devices in one slot
457 	 * which share a battery backed cache module.  One controls the
458 	 * cache, the other accesses the cache through the one that controls
459 	 * it.  If we reset the one controlling the cache, the other will
460 	 * likely not be happy.  Just forbid resetting this conjoined mess.
461 	 * The 640x isn't really supported by hpsa anyway.
462 	 */
463 	0x409C0E11, /* Smart Array 6400 */
464 	0x409D0E11, /* Smart Array 6400 EM */
465 };
466 
467 static int ctlr_is_hard_resettable(u32 board_id)
468 {
469 	int i;
470 
471 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472 		if (unresettable_controller[i] == board_id)
473 			return 0;
474 	return 1;
475 }
476 
477 static int ctlr_is_soft_resettable(u32 board_id)
478 {
479 	int i;
480 
481 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482 		if (soft_unresettable_controller[i] == board_id)
483 			return 0;
484 	return 1;
485 }
486 
487 static int ctlr_is_resettable(u32 board_id)
488 {
489 	return ctlr_is_hard_resettable(board_id) ||
490 		ctlr_is_soft_resettable(board_id);
491 }
492 
493 static ssize_t host_show_resettable(struct device *dev,
494 	struct device_attribute *attr, char *buf)
495 {
496 	struct ctlr_info *h;
497 	struct Scsi_Host *shost = class_to_shost(dev);
498 
499 	h = shost_to_hba(shost);
500 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
501 }
502 
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 {
505 	return (scsi3addr[3] & 0xC0) == 0x40;
506 }
507 
508 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
509 	"1(ADM)", "UNKNOWN"
510 };
511 #define HPSA_RAID_0	0
512 #define HPSA_RAID_4	1
513 #define HPSA_RAID_1	2	/* also used for RAID 10 */
514 #define HPSA_RAID_5	3	/* also used for RAID 50 */
515 #define HPSA_RAID_51	4
516 #define HPSA_RAID_6	5	/* also used for RAID 60 */
517 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519 
520 static ssize_t raid_level_show(struct device *dev,
521 	     struct device_attribute *attr, char *buf)
522 {
523 	ssize_t l = 0;
524 	unsigned char rlevel;
525 	struct ctlr_info *h;
526 	struct scsi_device *sdev;
527 	struct hpsa_scsi_dev_t *hdev;
528 	unsigned long flags;
529 
530 	sdev = to_scsi_device(dev);
531 	h = sdev_to_hba(sdev);
532 	spin_lock_irqsave(&h->lock, flags);
533 	hdev = sdev->hostdata;
534 	if (!hdev) {
535 		spin_unlock_irqrestore(&h->lock, flags);
536 		return -ENODEV;
537 	}
538 
539 	/* Is this even a logical drive? */
540 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541 		spin_unlock_irqrestore(&h->lock, flags);
542 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
543 		return l;
544 	}
545 
546 	rlevel = hdev->raid_level;
547 	spin_unlock_irqrestore(&h->lock, flags);
548 	if (rlevel > RAID_UNKNOWN)
549 		rlevel = RAID_UNKNOWN;
550 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551 	return l;
552 }
553 
554 static ssize_t lunid_show(struct device *dev,
555 	     struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct scsi_device *sdev;
559 	struct hpsa_scsi_dev_t *hdev;
560 	unsigned long flags;
561 	unsigned char lunid[8];
562 
563 	sdev = to_scsi_device(dev);
564 	h = sdev_to_hba(sdev);
565 	spin_lock_irqsave(&h->lock, flags);
566 	hdev = sdev->hostdata;
567 	if (!hdev) {
568 		spin_unlock_irqrestore(&h->lock, flags);
569 		return -ENODEV;
570 	}
571 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572 	spin_unlock_irqrestore(&h->lock, flags);
573 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574 		lunid[0], lunid[1], lunid[2], lunid[3],
575 		lunid[4], lunid[5], lunid[6], lunid[7]);
576 }
577 
578 static ssize_t unique_id_show(struct device *dev,
579 	     struct device_attribute *attr, char *buf)
580 {
581 	struct ctlr_info *h;
582 	struct scsi_device *sdev;
583 	struct hpsa_scsi_dev_t *hdev;
584 	unsigned long flags;
585 	unsigned char sn[16];
586 
587 	sdev = to_scsi_device(dev);
588 	h = sdev_to_hba(sdev);
589 	spin_lock_irqsave(&h->lock, flags);
590 	hdev = sdev->hostdata;
591 	if (!hdev) {
592 		spin_unlock_irqrestore(&h->lock, flags);
593 		return -ENODEV;
594 	}
595 	memcpy(sn, hdev->device_id, sizeof(sn));
596 	spin_unlock_irqrestore(&h->lock, flags);
597 	return snprintf(buf, 16 * 2 + 2,
598 			"%02X%02X%02X%02X%02X%02X%02X%02X"
599 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 			sn[0], sn[1], sn[2], sn[3],
601 			sn[4], sn[5], sn[6], sn[7],
602 			sn[8], sn[9], sn[10], sn[11],
603 			sn[12], sn[13], sn[14], sn[15]);
604 }
605 
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607 	     struct device_attribute *attr, char *buf)
608 {
609 	struct ctlr_info *h;
610 	struct scsi_device *sdev;
611 	struct hpsa_scsi_dev_t *hdev;
612 	unsigned long flags;
613 	int offload_enabled;
614 
615 	sdev = to_scsi_device(dev);
616 	h = sdev_to_hba(sdev);
617 	spin_lock_irqsave(&h->lock, flags);
618 	hdev = sdev->hostdata;
619 	if (!hdev) {
620 		spin_unlock_irqrestore(&h->lock, flags);
621 		return -ENODEV;
622 	}
623 	offload_enabled = hdev->offload_enabled;
624 	spin_unlock_irqrestore(&h->lock, flags);
625 	return snprintf(buf, 20, "%d\n", offload_enabled);
626 }
627 
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633 			host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635 		host_show_hp_ssd_smart_path_status,
636 		host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638 			host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640 	host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642 	host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644 	host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646 	host_show_resettable, NULL);
647 
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649 	&dev_attr_raid_level,
650 	&dev_attr_lunid,
651 	&dev_attr_unique_id,
652 	&dev_attr_hp_ssd_smart_path_enabled,
653 	NULL,
654 };
655 
656 static struct device_attribute *hpsa_shost_attrs[] = {
657 	&dev_attr_rescan,
658 	&dev_attr_firmware_revision,
659 	&dev_attr_commands_outstanding,
660 	&dev_attr_transport_mode,
661 	&dev_attr_resettable,
662 	&dev_attr_hp_ssd_smart_path_status,
663 	&dev_attr_raid_offload_debug,
664 	NULL,
665 };
666 
667 static struct scsi_host_template hpsa_driver_template = {
668 	.module			= THIS_MODULE,
669 	.name			= HPSA,
670 	.proc_name		= HPSA,
671 	.queuecommand		= hpsa_scsi_queue_command,
672 	.scan_start		= hpsa_scan_start,
673 	.scan_finished		= hpsa_scan_finished,
674 	.change_queue_depth	= scsi_change_queue_depth,
675 	.this_id		= -1,
676 	.use_clustering		= ENABLE_CLUSTERING,
677 	.eh_abort_handler	= hpsa_eh_abort_handler,
678 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
679 	.ioctl			= hpsa_ioctl,
680 	.slave_alloc		= hpsa_slave_alloc,
681 	.slave_destroy		= hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683 	.compat_ioctl		= hpsa_compat_ioctl,
684 #endif
685 	.sdev_attrs = hpsa_sdev_attrs,
686 	.shost_attrs = hpsa_shost_attrs,
687 	.max_sectors = 8192,
688 	.no_write_same = 1,
689 };
690 
691 
692 /* Enqueuing and dequeuing functions for cmdlists. */
693 static inline void addQ(struct list_head *list, struct CommandList *c)
694 {
695 	list_add_tail(&c->list, list);
696 }
697 
698 static inline u32 next_command(struct ctlr_info *h, u8 q)
699 {
700 	u32 a;
701 	struct reply_queue_buffer *rq = &h->reply_queue[q];
702 
703 	if (h->transMethod & CFGTBL_Trans_io_accel1)
704 		return h->access.command_completed(h, q);
705 
706 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
707 		return h->access.command_completed(h, q);
708 
709 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
710 		a = rq->head[rq->current_entry];
711 		rq->current_entry++;
712 		atomic_dec(&h->commands_outstanding);
713 	} else {
714 		a = FIFO_EMPTY;
715 	}
716 	/* Check for wraparound */
717 	if (rq->current_entry == h->max_commands) {
718 		rq->current_entry = 0;
719 		rq->wraparound ^= 1;
720 	}
721 	return a;
722 }
723 
724 /*
725  * There are some special bits in the bus address of the
726  * command that we have to set for the controller to know
727  * how to process the command:
728  *
729  * Normal performant mode:
730  * bit 0: 1 means performant mode, 0 means simple mode.
731  * bits 1-3 = block fetch table entry
732  * bits 4-6 = command type (== 0)
733  *
734  * ioaccel1 mode:
735  * bit 0 = "performant mode" bit.
736  * bits 1-3 = block fetch table entry
737  * bits 4-6 = command type (== 110)
738  * (command type is needed because ioaccel1 mode
739  * commands are submitted through the same register as normal
740  * mode commands, so this is how the controller knows whether
741  * the command is normal mode or ioaccel1 mode.)
742  *
743  * ioaccel2 mode:
744  * bit 0 = "performant mode" bit.
745  * bits 1-4 = block fetch table entry (note extra bit)
746  * bits 4-6 = not needed, because ioaccel2 mode has
747  * a separate special register for submitting commands.
748  */
749 
750 /* set_performant_mode: Modify the tag for cciss performant
751  * set bit 0 for pull model, bits 3-1 for block fetch
752  * register number
753  */
754 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
755 {
756 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
757 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
758 		if (likely(h->msix_vector > 0))
759 			c->Header.ReplyQueue =
760 				raw_smp_processor_id() % h->nreply_queues;
761 	}
762 }
763 
764 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
765 						struct CommandList *c)
766 {
767 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
768 
769 	/* Tell the controller to post the reply to the queue for this
770 	 * processor.  This seems to give the best I/O throughput.
771 	 */
772 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
773 	/* Set the bits in the address sent down to include:
774 	 *  - performant mode bit (bit 0)
775 	 *  - pull count (bits 1-3)
776 	 *  - command type (bits 4-6)
777 	 */
778 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
779 					IOACCEL1_BUSADDR_CMDTYPE;
780 }
781 
782 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
783 						struct CommandList *c)
784 {
785 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
786 
787 	/* Tell the controller to post the reply to the queue for this
788 	 * processor.  This seems to give the best I/O throughput.
789 	 */
790 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
791 	/* Set the bits in the address sent down to include:
792 	 *  - performant mode bit not used in ioaccel mode 2
793 	 *  - pull count (bits 0-3)
794 	 *  - command type isn't needed for ioaccel2
795 	 */
796 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
797 }
798 
799 static int is_firmware_flash_cmd(u8 *cdb)
800 {
801 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
802 }
803 
804 /*
805  * During firmware flash, the heartbeat register may not update as frequently
806  * as it should.  So we dial down lockup detection during firmware flash. and
807  * dial it back up when firmware flash completes.
808  */
809 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
810 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
811 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
812 		struct CommandList *c)
813 {
814 	if (!is_firmware_flash_cmd(c->Request.CDB))
815 		return;
816 	atomic_inc(&h->firmware_flash_in_progress);
817 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
818 }
819 
820 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
821 		struct CommandList *c)
822 {
823 	if (is_firmware_flash_cmd(c->Request.CDB) &&
824 		atomic_dec_and_test(&h->firmware_flash_in_progress))
825 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
826 }
827 
828 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
829 	struct CommandList *c)
830 {
831 	unsigned long flags;
832 
833 	switch (c->cmd_type) {
834 	case CMD_IOACCEL1:
835 		set_ioaccel1_performant_mode(h, c);
836 		break;
837 	case CMD_IOACCEL2:
838 		set_ioaccel2_performant_mode(h, c);
839 		break;
840 	default:
841 		set_performant_mode(h, c);
842 	}
843 	dial_down_lockup_detection_during_fw_flash(h, c);
844 	spin_lock_irqsave(&h->lock, flags);
845 	addQ(&h->reqQ, c);
846 	h->Qdepth++;
847 	start_io(h, &flags);
848 	spin_unlock_irqrestore(&h->lock, flags);
849 }
850 
851 static inline void removeQ(struct CommandList *c)
852 {
853 	if (WARN_ON(list_empty(&c->list)))
854 		return;
855 	list_del_init(&c->list);
856 }
857 
858 static inline int is_hba_lunid(unsigned char scsi3addr[])
859 {
860 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
861 }
862 
863 static inline int is_scsi_rev_5(struct ctlr_info *h)
864 {
865 	if (!h->hba_inquiry_data)
866 		return 0;
867 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
868 		return 1;
869 	return 0;
870 }
871 
872 static int hpsa_find_target_lun(struct ctlr_info *h,
873 	unsigned char scsi3addr[], int bus, int *target, int *lun)
874 {
875 	/* finds an unused bus, target, lun for a new physical device
876 	 * assumes h->devlock is held
877 	 */
878 	int i, found = 0;
879 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
880 
881 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
882 
883 	for (i = 0; i < h->ndevices; i++) {
884 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
885 			__set_bit(h->dev[i]->target, lun_taken);
886 	}
887 
888 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
889 	if (i < HPSA_MAX_DEVICES) {
890 		/* *bus = 1; */
891 		*target = i;
892 		*lun = 0;
893 		found = 1;
894 	}
895 	return !found;
896 }
897 
898 /* Add an entry into h->dev[] array. */
899 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
900 		struct hpsa_scsi_dev_t *device,
901 		struct hpsa_scsi_dev_t *added[], int *nadded)
902 {
903 	/* assumes h->devlock is held */
904 	int n = h->ndevices;
905 	int i;
906 	unsigned char addr1[8], addr2[8];
907 	struct hpsa_scsi_dev_t *sd;
908 
909 	if (n >= HPSA_MAX_DEVICES) {
910 		dev_err(&h->pdev->dev, "too many devices, some will be "
911 			"inaccessible.\n");
912 		return -1;
913 	}
914 
915 	/* physical devices do not have lun or target assigned until now. */
916 	if (device->lun != -1)
917 		/* Logical device, lun is already assigned. */
918 		goto lun_assigned;
919 
920 	/* If this device a non-zero lun of a multi-lun device
921 	 * byte 4 of the 8-byte LUN addr will contain the logical
922 	 * unit no, zero otherise.
923 	 */
924 	if (device->scsi3addr[4] == 0) {
925 		/* This is not a non-zero lun of a multi-lun device */
926 		if (hpsa_find_target_lun(h, device->scsi3addr,
927 			device->bus, &device->target, &device->lun) != 0)
928 			return -1;
929 		goto lun_assigned;
930 	}
931 
932 	/* This is a non-zero lun of a multi-lun device.
933 	 * Search through our list and find the device which
934 	 * has the same 8 byte LUN address, excepting byte 4.
935 	 * Assign the same bus and target for this new LUN.
936 	 * Use the logical unit number from the firmware.
937 	 */
938 	memcpy(addr1, device->scsi3addr, 8);
939 	addr1[4] = 0;
940 	for (i = 0; i < n; i++) {
941 		sd = h->dev[i];
942 		memcpy(addr2, sd->scsi3addr, 8);
943 		addr2[4] = 0;
944 		/* differ only in byte 4? */
945 		if (memcmp(addr1, addr2, 8) == 0) {
946 			device->bus = sd->bus;
947 			device->target = sd->target;
948 			device->lun = device->scsi3addr[4];
949 			break;
950 		}
951 	}
952 	if (device->lun == -1) {
953 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
954 			" suspect firmware bug or unsupported hardware "
955 			"configuration.\n");
956 			return -1;
957 	}
958 
959 lun_assigned:
960 
961 	h->dev[n] = device;
962 	h->ndevices++;
963 	added[*nadded] = device;
964 	(*nadded)++;
965 
966 	/* initially, (before registering with scsi layer) we don't
967 	 * know our hostno and we don't want to print anything first
968 	 * time anyway (the scsi layer's inquiries will show that info)
969 	 */
970 	/* if (hostno != -1) */
971 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
972 			scsi_device_type(device->devtype), hostno,
973 			device->bus, device->target, device->lun);
974 	return 0;
975 }
976 
977 /* Update an entry in h->dev[] array. */
978 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
979 	int entry, struct hpsa_scsi_dev_t *new_entry)
980 {
981 	/* assumes h->devlock is held */
982 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
983 
984 	/* Raid level changed. */
985 	h->dev[entry]->raid_level = new_entry->raid_level;
986 
987 	/* Raid offload parameters changed. */
988 	h->dev[entry]->offload_config = new_entry->offload_config;
989 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
991 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
992 	h->dev[entry]->raid_map = new_entry->raid_map;
993 
994 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
995 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
996 		new_entry->target, new_entry->lun);
997 }
998 
999 /* Replace an entry from h->dev[] array. */
1000 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1001 	int entry, struct hpsa_scsi_dev_t *new_entry,
1002 	struct hpsa_scsi_dev_t *added[], int *nadded,
1003 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1004 {
1005 	/* assumes h->devlock is held */
1006 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1007 	removed[*nremoved] = h->dev[entry];
1008 	(*nremoved)++;
1009 
1010 	/*
1011 	 * New physical devices won't have target/lun assigned yet
1012 	 * so we need to preserve the values in the slot we are replacing.
1013 	 */
1014 	if (new_entry->target == -1) {
1015 		new_entry->target = h->dev[entry]->target;
1016 		new_entry->lun = h->dev[entry]->lun;
1017 	}
1018 
1019 	h->dev[entry] = new_entry;
1020 	added[*nadded] = new_entry;
1021 	(*nadded)++;
1022 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1023 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1024 			new_entry->target, new_entry->lun);
1025 }
1026 
1027 /* Remove an entry from h->dev[] array. */
1028 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1029 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1030 {
1031 	/* assumes h->devlock is held */
1032 	int i;
1033 	struct hpsa_scsi_dev_t *sd;
1034 
1035 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1036 
1037 	sd = h->dev[entry];
1038 	removed[*nremoved] = h->dev[entry];
1039 	(*nremoved)++;
1040 
1041 	for (i = entry; i < h->ndevices-1; i++)
1042 		h->dev[i] = h->dev[i+1];
1043 	h->ndevices--;
1044 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1045 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1046 		sd->lun);
1047 }
1048 
1049 #define SCSI3ADDR_EQ(a, b) ( \
1050 	(a)[7] == (b)[7] && \
1051 	(a)[6] == (b)[6] && \
1052 	(a)[5] == (b)[5] && \
1053 	(a)[4] == (b)[4] && \
1054 	(a)[3] == (b)[3] && \
1055 	(a)[2] == (b)[2] && \
1056 	(a)[1] == (b)[1] && \
1057 	(a)[0] == (b)[0])
1058 
1059 static void fixup_botched_add(struct ctlr_info *h,
1060 	struct hpsa_scsi_dev_t *added)
1061 {
1062 	/* called when scsi_add_device fails in order to re-adjust
1063 	 * h->dev[] to match the mid layer's view.
1064 	 */
1065 	unsigned long flags;
1066 	int i, j;
1067 
1068 	spin_lock_irqsave(&h->lock, flags);
1069 	for (i = 0; i < h->ndevices; i++) {
1070 		if (h->dev[i] == added) {
1071 			for (j = i; j < h->ndevices-1; j++)
1072 				h->dev[j] = h->dev[j+1];
1073 			h->ndevices--;
1074 			break;
1075 		}
1076 	}
1077 	spin_unlock_irqrestore(&h->lock, flags);
1078 	kfree(added);
1079 }
1080 
1081 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1082 	struct hpsa_scsi_dev_t *dev2)
1083 {
1084 	/* we compare everything except lun and target as these
1085 	 * are not yet assigned.  Compare parts likely
1086 	 * to differ first
1087 	 */
1088 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1089 		sizeof(dev1->scsi3addr)) != 0)
1090 		return 0;
1091 	if (memcmp(dev1->device_id, dev2->device_id,
1092 		sizeof(dev1->device_id)) != 0)
1093 		return 0;
1094 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1095 		return 0;
1096 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1097 		return 0;
1098 	if (dev1->devtype != dev2->devtype)
1099 		return 0;
1100 	if (dev1->bus != dev2->bus)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1106 	struct hpsa_scsi_dev_t *dev2)
1107 {
1108 	/* Device attributes that can change, but don't mean
1109 	 * that the device is a different device, nor that the OS
1110 	 * needs to be told anything about the change.
1111 	 */
1112 	if (dev1->raid_level != dev2->raid_level)
1113 		return 1;
1114 	if (dev1->offload_config != dev2->offload_config)
1115 		return 1;
1116 	if (dev1->offload_enabled != dev2->offload_enabled)
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1122  * and return needle location in *index.  If scsi3addr matches, but not
1123  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124  * location in *index.
1125  * In the case of a minor device attribute change, such as RAID level, just
1126  * return DEVICE_UPDATED, along with the updated device's location in index.
1127  * If needle not found, return DEVICE_NOT_FOUND.
1128  */
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131 	int *index)
1132 {
1133 	int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 	for (i = 0; i < haystack_size; i++) {
1139 		if (haystack[i] == NULL) /* previously removed. */
1140 			continue;
1141 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142 			*index = i;
1143 			if (device_is_the_same(needle, haystack[i])) {
1144 				if (device_updated(needle, haystack[i]))
1145 					return DEVICE_UPDATED;
1146 				return DEVICE_SAME;
1147 			} else {
1148 				/* Keep offline devices offline */
1149 				if (needle->volume_offline)
1150 					return DEVICE_NOT_FOUND;
1151 				return DEVICE_CHANGED;
1152 			}
1153 		}
1154 	}
1155 	*index = -1;
1156 	return DEVICE_NOT_FOUND;
1157 }
1158 
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160 					unsigned char scsi3addr[])
1161 {
1162 	struct offline_device_entry *device;
1163 	unsigned long flags;
1164 
1165 	/* Check to see if device is already on the list */
1166 	spin_lock_irqsave(&h->offline_device_lock, flags);
1167 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168 		if (memcmp(device->scsi3addr, scsi3addr,
1169 			sizeof(device->scsi3addr)) == 0) {
1170 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171 			return;
1172 		}
1173 	}
1174 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175 
1176 	/* Device is not on the list, add it. */
1177 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1178 	if (!device) {
1179 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180 		return;
1181 	}
1182 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183 	spin_lock_irqsave(&h->offline_device_lock, flags);
1184 	list_add_tail(&device->offline_list, &h->offline_device_list);
1185 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1186 }
1187 
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190 	struct hpsa_scsi_dev_t *sd)
1191 {
1192 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193 		dev_info(&h->pdev->dev,
1194 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 			h->scsi_host->host_no,
1196 			sd->bus, sd->target, sd->lun);
1197 	switch (sd->volume_offline) {
1198 	case HPSA_LV_OK:
1199 		break;
1200 	case HPSA_LV_UNDERGOING_ERASE:
1201 		dev_info(&h->pdev->dev,
1202 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 			h->scsi_host->host_no,
1204 			sd->bus, sd->target, sd->lun);
1205 		break;
1206 	case HPSA_LV_UNDERGOING_RPI:
1207 		dev_info(&h->pdev->dev,
1208 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 			h->scsi_host->host_no,
1210 			sd->bus, sd->target, sd->lun);
1211 		break;
1212 	case HPSA_LV_PENDING_RPI:
1213 		dev_info(&h->pdev->dev,
1214 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 				h->scsi_host->host_no,
1216 				sd->bus, sd->target, sd->lun);
1217 		break;
1218 	case HPSA_LV_ENCRYPTED_NO_KEY:
1219 		dev_info(&h->pdev->dev,
1220 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 			h->scsi_host->host_no,
1222 			sd->bus, sd->target, sd->lun);
1223 		break;
1224 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225 		dev_info(&h->pdev->dev,
1226 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 			h->scsi_host->host_no,
1228 			sd->bus, sd->target, sd->lun);
1229 		break;
1230 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1231 		dev_info(&h->pdev->dev,
1232 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 			h->scsi_host->host_no,
1234 			sd->bus, sd->target, sd->lun);
1235 		break;
1236 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237 		dev_info(&h->pdev->dev,
1238 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 			h->scsi_host->host_no,
1240 			sd->bus, sd->target, sd->lun);
1241 		break;
1242 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243 		dev_info(&h->pdev->dev,
1244 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 			h->scsi_host->host_no,
1246 			sd->bus, sd->target, sd->lun);
1247 		break;
1248 	case HPSA_LV_PENDING_ENCRYPTION:
1249 		dev_info(&h->pdev->dev,
1250 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 			h->scsi_host->host_no,
1252 			sd->bus, sd->target, sd->lun);
1253 		break;
1254 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255 		dev_info(&h->pdev->dev,
1256 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 			h->scsi_host->host_no,
1258 			sd->bus, sd->target, sd->lun);
1259 		break;
1260 	}
1261 }
1262 
1263 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1264 	struct hpsa_scsi_dev_t *sd[], int nsds)
1265 {
1266 	/* sd contains scsi3 addresses and devtypes, and inquiry
1267 	 * data.  This function takes what's in sd to be the current
1268 	 * reality and updates h->dev[] to reflect that reality.
1269 	 */
1270 	int i, entry, device_change, changes = 0;
1271 	struct hpsa_scsi_dev_t *csd;
1272 	unsigned long flags;
1273 	struct hpsa_scsi_dev_t **added, **removed;
1274 	int nadded, nremoved;
1275 	struct Scsi_Host *sh = NULL;
1276 
1277 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1278 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1279 
1280 	if (!added || !removed) {
1281 		dev_warn(&h->pdev->dev, "out of memory in "
1282 			"adjust_hpsa_scsi_table\n");
1283 		goto free_and_out;
1284 	}
1285 
1286 	spin_lock_irqsave(&h->devlock, flags);
1287 
1288 	/* find any devices in h->dev[] that are not in
1289 	 * sd[] and remove them from h->dev[], and for any
1290 	 * devices which have changed, remove the old device
1291 	 * info and add the new device info.
1292 	 * If minor device attributes change, just update
1293 	 * the existing device structure.
1294 	 */
1295 	i = 0;
1296 	nremoved = 0;
1297 	nadded = 0;
1298 	while (i < h->ndevices) {
1299 		csd = h->dev[i];
1300 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1301 		if (device_change == DEVICE_NOT_FOUND) {
1302 			changes++;
1303 			hpsa_scsi_remove_entry(h, hostno, i,
1304 				removed, &nremoved);
1305 			continue; /* remove ^^^, hence i not incremented */
1306 		} else if (device_change == DEVICE_CHANGED) {
1307 			changes++;
1308 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1309 				added, &nadded, removed, &nremoved);
1310 			/* Set it to NULL to prevent it from being freed
1311 			 * at the bottom of hpsa_update_scsi_devices()
1312 			 */
1313 			sd[entry] = NULL;
1314 		} else if (device_change == DEVICE_UPDATED) {
1315 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1316 		}
1317 		i++;
1318 	}
1319 
1320 	/* Now, make sure every device listed in sd[] is also
1321 	 * listed in h->dev[], adding them if they aren't found
1322 	 */
1323 
1324 	for (i = 0; i < nsds; i++) {
1325 		if (!sd[i]) /* if already added above. */
1326 			continue;
1327 
1328 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1329 		 * as the SCSI mid-layer does not handle such devices well.
1330 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1331 		 * at 160Hz, and prevents the system from coming up.
1332 		 */
1333 		if (sd[i]->volume_offline) {
1334 			hpsa_show_volume_status(h, sd[i]);
1335 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1336 				h->scsi_host->host_no,
1337 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1338 			continue;
1339 		}
1340 
1341 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1342 					h->ndevices, &entry);
1343 		if (device_change == DEVICE_NOT_FOUND) {
1344 			changes++;
1345 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1346 				added, &nadded) != 0)
1347 				break;
1348 			sd[i] = NULL; /* prevent from being freed later. */
1349 		} else if (device_change == DEVICE_CHANGED) {
1350 			/* should never happen... */
1351 			changes++;
1352 			dev_warn(&h->pdev->dev,
1353 				"device unexpectedly changed.\n");
1354 			/* but if it does happen, we just ignore that device */
1355 		}
1356 	}
1357 	spin_unlock_irqrestore(&h->devlock, flags);
1358 
1359 	/* Monitor devices which are in one of several NOT READY states to be
1360 	 * brought online later. This must be done without holding h->devlock,
1361 	 * so don't touch h->dev[]
1362 	 */
1363 	for (i = 0; i < nsds; i++) {
1364 		if (!sd[i]) /* if already added above. */
1365 			continue;
1366 		if (sd[i]->volume_offline)
1367 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1368 	}
1369 
1370 	/* Don't notify scsi mid layer of any changes the first time through
1371 	 * (or if there are no changes) scsi_scan_host will do it later the
1372 	 * first time through.
1373 	 */
1374 	if (hostno == -1 || !changes)
1375 		goto free_and_out;
1376 
1377 	sh = h->scsi_host;
1378 	/* Notify scsi mid layer of any removed devices */
1379 	for (i = 0; i < nremoved; i++) {
1380 		struct scsi_device *sdev =
1381 			scsi_device_lookup(sh, removed[i]->bus,
1382 				removed[i]->target, removed[i]->lun);
1383 		if (sdev != NULL) {
1384 			scsi_remove_device(sdev);
1385 			scsi_device_put(sdev);
1386 		} else {
1387 			/* We don't expect to get here.
1388 			 * future cmds to this device will get selection
1389 			 * timeout as if the device was gone.
1390 			 */
1391 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1392 				" for removal.", hostno, removed[i]->bus,
1393 				removed[i]->target, removed[i]->lun);
1394 		}
1395 		kfree(removed[i]);
1396 		removed[i] = NULL;
1397 	}
1398 
1399 	/* Notify scsi mid layer of any added devices */
1400 	for (i = 0; i < nadded; i++) {
1401 		if (scsi_add_device(sh, added[i]->bus,
1402 			added[i]->target, added[i]->lun) == 0)
1403 			continue;
1404 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1405 			"device not added.\n", hostno, added[i]->bus,
1406 			added[i]->target, added[i]->lun);
1407 		/* now we have to remove it from h->dev,
1408 		 * since it didn't get added to scsi mid layer
1409 		 */
1410 		fixup_botched_add(h, added[i]);
1411 	}
1412 
1413 free_and_out:
1414 	kfree(added);
1415 	kfree(removed);
1416 }
1417 
1418 /*
1419  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1420  * Assume's h->devlock is held.
1421  */
1422 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1423 	int bus, int target, int lun)
1424 {
1425 	int i;
1426 	struct hpsa_scsi_dev_t *sd;
1427 
1428 	for (i = 0; i < h->ndevices; i++) {
1429 		sd = h->dev[i];
1430 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1431 			return sd;
1432 	}
1433 	return NULL;
1434 }
1435 
1436 /* link sdev->hostdata to our per-device structure. */
1437 static int hpsa_slave_alloc(struct scsi_device *sdev)
1438 {
1439 	struct hpsa_scsi_dev_t *sd;
1440 	unsigned long flags;
1441 	struct ctlr_info *h;
1442 
1443 	h = sdev_to_hba(sdev);
1444 	spin_lock_irqsave(&h->devlock, flags);
1445 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1446 		sdev_id(sdev), sdev->lun);
1447 	if (sd != NULL)
1448 		sdev->hostdata = sd;
1449 	spin_unlock_irqrestore(&h->devlock, flags);
1450 	return 0;
1451 }
1452 
1453 static void hpsa_slave_destroy(struct scsi_device *sdev)
1454 {
1455 	/* nothing to do. */
1456 }
1457 
1458 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1459 {
1460 	int i;
1461 
1462 	if (!h->cmd_sg_list)
1463 		return;
1464 	for (i = 0; i < h->nr_cmds; i++) {
1465 		kfree(h->cmd_sg_list[i]);
1466 		h->cmd_sg_list[i] = NULL;
1467 	}
1468 	kfree(h->cmd_sg_list);
1469 	h->cmd_sg_list = NULL;
1470 }
1471 
1472 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1473 {
1474 	int i;
1475 
1476 	if (h->chainsize <= 0)
1477 		return 0;
1478 
1479 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1480 				GFP_KERNEL);
1481 	if (!h->cmd_sg_list)
1482 		return -ENOMEM;
1483 	for (i = 0; i < h->nr_cmds; i++) {
1484 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1485 						h->chainsize, GFP_KERNEL);
1486 		if (!h->cmd_sg_list[i])
1487 			goto clean;
1488 	}
1489 	return 0;
1490 
1491 clean:
1492 	hpsa_free_sg_chain_blocks(h);
1493 	return -ENOMEM;
1494 }
1495 
1496 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1497 	struct CommandList *c)
1498 {
1499 	struct SGDescriptor *chain_sg, *chain_block;
1500 	u64 temp64;
1501 	u32 chain_len;
1502 
1503 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1504 	chain_block = h->cmd_sg_list[c->cmdindex];
1505 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1506 	chain_len = sizeof(*chain_sg) *
1507 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1508 	chain_sg->Len = cpu_to_le32(chain_len);
1509 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1510 				PCI_DMA_TODEVICE);
1511 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1512 		/* prevent subsequent unmapping */
1513 		chain_sg->Addr = cpu_to_le64(0);
1514 		return -1;
1515 	}
1516 	chain_sg->Addr = cpu_to_le64(temp64);
1517 	return 0;
1518 }
1519 
1520 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1521 	struct CommandList *c)
1522 {
1523 	struct SGDescriptor *chain_sg;
1524 
1525 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1526 		return;
1527 
1528 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1529 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1530 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1531 }
1532 
1533 
1534 /* Decode the various types of errors on ioaccel2 path.
1535  * Return 1 for any error that should generate a RAID path retry.
1536  * Return 0 for errors that don't require a RAID path retry.
1537  */
1538 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1539 					struct CommandList *c,
1540 					struct scsi_cmnd *cmd,
1541 					struct io_accel2_cmd *c2)
1542 {
1543 	int data_len;
1544 	int retry = 0;
1545 
1546 	switch (c2->error_data.serv_response) {
1547 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1548 		switch (c2->error_data.status) {
1549 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1550 			break;
1551 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1552 			dev_warn(&h->pdev->dev,
1553 				"%s: task complete with check condition.\n",
1554 				"HP SSD Smart Path");
1555 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1556 			if (c2->error_data.data_present !=
1557 					IOACCEL2_SENSE_DATA_PRESENT) {
1558 				memset(cmd->sense_buffer, 0,
1559 					SCSI_SENSE_BUFFERSIZE);
1560 				break;
1561 			}
1562 			/* copy the sense data */
1563 			data_len = c2->error_data.sense_data_len;
1564 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1565 				data_len = SCSI_SENSE_BUFFERSIZE;
1566 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1567 				data_len =
1568 					sizeof(c2->error_data.sense_data_buff);
1569 			memcpy(cmd->sense_buffer,
1570 				c2->error_data.sense_data_buff, data_len);
1571 			retry = 1;
1572 			break;
1573 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1574 			dev_warn(&h->pdev->dev,
1575 				"%s: task complete with BUSY status.\n",
1576 				"HP SSD Smart Path");
1577 			retry = 1;
1578 			break;
1579 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1580 			dev_warn(&h->pdev->dev,
1581 				"%s: task complete with reservation conflict.\n",
1582 				"HP SSD Smart Path");
1583 			retry = 1;
1584 			break;
1585 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1586 			/* Make scsi midlayer do unlimited retries */
1587 			cmd->result = DID_IMM_RETRY << 16;
1588 			break;
1589 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1590 			dev_warn(&h->pdev->dev,
1591 				"%s: task complete with aborted status.\n",
1592 				"HP SSD Smart Path");
1593 			retry = 1;
1594 			break;
1595 		default:
1596 			dev_warn(&h->pdev->dev,
1597 				"%s: task complete with unrecognized status: 0x%02x\n",
1598 				"HP SSD Smart Path", c2->error_data.status);
1599 			retry = 1;
1600 			break;
1601 		}
1602 		break;
1603 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1604 		/* don't expect to get here. */
1605 		dev_warn(&h->pdev->dev,
1606 			"unexpected delivery or target failure, status = 0x%02x\n",
1607 			c2->error_data.status);
1608 		retry = 1;
1609 		break;
1610 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1611 		break;
1612 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1613 		break;
1614 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1615 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1616 		retry = 1;
1617 		break;
1618 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1619 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1620 		break;
1621 	default:
1622 		dev_warn(&h->pdev->dev,
1623 			"%s: Unrecognized server response: 0x%02x\n",
1624 			"HP SSD Smart Path",
1625 			c2->error_data.serv_response);
1626 		retry = 1;
1627 		break;
1628 	}
1629 
1630 	return retry;	/* retry on raid path? */
1631 }
1632 
1633 static void process_ioaccel2_completion(struct ctlr_info *h,
1634 		struct CommandList *c, struct scsi_cmnd *cmd,
1635 		struct hpsa_scsi_dev_t *dev)
1636 {
1637 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1638 	int raid_retry = 0;
1639 
1640 	/* check for good status */
1641 	if (likely(c2->error_data.serv_response == 0 &&
1642 			c2->error_data.status == 0)) {
1643 		cmd_free(h, c);
1644 		cmd->scsi_done(cmd);
1645 		return;
1646 	}
1647 
1648 	/* Any RAID offload error results in retry which will use
1649 	 * the normal I/O path so the controller can handle whatever's
1650 	 * wrong.
1651 	 */
1652 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1653 		c2->error_data.serv_response ==
1654 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1655 		dev->offload_enabled = 0;
1656 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1657 		cmd->result = DID_SOFT_ERROR << 16;
1658 		cmd_free(h, c);
1659 		cmd->scsi_done(cmd);
1660 		return;
1661 	}
1662 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1663 	/* If error found, disable Smart Path, schedule a rescan,
1664 	 * and force a retry on the standard path.
1665 	 */
1666 	if (raid_retry) {
1667 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1668 			"HP SSD Smart Path");
1669 		dev->offload_enabled = 0; /* Disable Smart Path */
1670 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1671 		cmd->result = DID_SOFT_ERROR << 16;
1672 	}
1673 	cmd_free(h, c);
1674 	cmd->scsi_done(cmd);
1675 }
1676 
1677 static void complete_scsi_command(struct CommandList *cp)
1678 {
1679 	struct scsi_cmnd *cmd;
1680 	struct ctlr_info *h;
1681 	struct ErrorInfo *ei;
1682 	struct hpsa_scsi_dev_t *dev;
1683 
1684 	unsigned char sense_key;
1685 	unsigned char asc;      /* additional sense code */
1686 	unsigned char ascq;     /* additional sense code qualifier */
1687 	unsigned long sense_data_size;
1688 
1689 	ei = cp->err_info;
1690 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1691 	h = cp->h;
1692 	dev = cmd->device->hostdata;
1693 
1694 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1695 	if ((cp->cmd_type == CMD_SCSI) &&
1696 		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1697 		hpsa_unmap_sg_chain_block(h, cp);
1698 
1699 	cmd->result = (DID_OK << 16); 		/* host byte */
1700 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1701 
1702 	if (cp->cmd_type == CMD_IOACCEL2)
1703 		return process_ioaccel2_completion(h, cp, cmd, dev);
1704 
1705 	cmd->result |= ei->ScsiStatus;
1706 
1707 	scsi_set_resid(cmd, ei->ResidualCnt);
1708 	if (ei->CommandStatus == 0) {
1709 		cmd_free(h, cp);
1710 		cmd->scsi_done(cmd);
1711 		return;
1712 	}
1713 
1714 	/* copy the sense data */
1715 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1716 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1717 	else
1718 		sense_data_size = sizeof(ei->SenseInfo);
1719 	if (ei->SenseLen < sense_data_size)
1720 		sense_data_size = ei->SenseLen;
1721 
1722 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1723 
1724 	/* For I/O accelerator commands, copy over some fields to the normal
1725 	 * CISS header used below for error handling.
1726 	 */
1727 	if (cp->cmd_type == CMD_IOACCEL1) {
1728 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1729 		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1730 		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1731 		cp->Header.tag = c->tag;
1732 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1733 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1734 
1735 		/* Any RAID offload error results in retry which will use
1736 		 * the normal I/O path so the controller can handle whatever's
1737 		 * wrong.
1738 		 */
1739 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1740 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1741 				dev->offload_enabled = 0;
1742 			cmd->result = DID_SOFT_ERROR << 16;
1743 			cmd_free(h, cp);
1744 			cmd->scsi_done(cmd);
1745 			return;
1746 		}
1747 	}
1748 
1749 	/* an error has occurred */
1750 	switch (ei->CommandStatus) {
1751 
1752 	case CMD_TARGET_STATUS:
1753 		if (ei->ScsiStatus) {
1754 			/* Get sense key */
1755 			sense_key = 0xf & ei->SenseInfo[2];
1756 			/* Get additional sense code */
1757 			asc = ei->SenseInfo[12];
1758 			/* Get addition sense code qualifier */
1759 			ascq = ei->SenseInfo[13];
1760 		}
1761 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1762 			if (sense_key == ABORTED_COMMAND) {
1763 				cmd->result |= DID_SOFT_ERROR << 16;
1764 				break;
1765 			}
1766 			break;
1767 		}
1768 		/* Problem was not a check condition
1769 		 * Pass it up to the upper layers...
1770 		 */
1771 		if (ei->ScsiStatus) {
1772 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1773 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1774 				"Returning result: 0x%x\n",
1775 				cp, ei->ScsiStatus,
1776 				sense_key, asc, ascq,
1777 				cmd->result);
1778 		} else {  /* scsi status is zero??? How??? */
1779 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1780 				"Returning no connection.\n", cp),
1781 
1782 			/* Ordinarily, this case should never happen,
1783 			 * but there is a bug in some released firmware
1784 			 * revisions that allows it to happen if, for
1785 			 * example, a 4100 backplane loses power and
1786 			 * the tape drive is in it.  We assume that
1787 			 * it's a fatal error of some kind because we
1788 			 * can't show that it wasn't. We will make it
1789 			 * look like selection timeout since that is
1790 			 * the most common reason for this to occur,
1791 			 * and it's severe enough.
1792 			 */
1793 
1794 			cmd->result = DID_NO_CONNECT << 16;
1795 		}
1796 		break;
1797 
1798 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1799 		break;
1800 	case CMD_DATA_OVERRUN:
1801 		dev_warn(&h->pdev->dev, "cp %p has"
1802 			" completed with data overrun "
1803 			"reported\n", cp);
1804 		break;
1805 	case CMD_INVALID: {
1806 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1807 		print_cmd(cp); */
1808 		/* We get CMD_INVALID if you address a non-existent device
1809 		 * instead of a selection timeout (no response).  You will
1810 		 * see this if you yank out a drive, then try to access it.
1811 		 * This is kind of a shame because it means that any other
1812 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1813 		 * missing target. */
1814 		cmd->result = DID_NO_CONNECT << 16;
1815 	}
1816 		break;
1817 	case CMD_PROTOCOL_ERR:
1818 		cmd->result = DID_ERROR << 16;
1819 		dev_warn(&h->pdev->dev, "cp %p has "
1820 			"protocol error\n", cp);
1821 		break;
1822 	case CMD_HARDWARE_ERR:
1823 		cmd->result = DID_ERROR << 16;
1824 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1825 		break;
1826 	case CMD_CONNECTION_LOST:
1827 		cmd->result = DID_ERROR << 16;
1828 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1829 		break;
1830 	case CMD_ABORTED:
1831 		cmd->result = DID_ABORT << 16;
1832 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1833 				cp, ei->ScsiStatus);
1834 		break;
1835 	case CMD_ABORT_FAILED:
1836 		cmd->result = DID_ERROR << 16;
1837 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1838 		break;
1839 	case CMD_UNSOLICITED_ABORT:
1840 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1841 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1842 			"abort\n", cp);
1843 		break;
1844 	case CMD_TIMEOUT:
1845 		cmd->result = DID_TIME_OUT << 16;
1846 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1847 		break;
1848 	case CMD_UNABORTABLE:
1849 		cmd->result = DID_ERROR << 16;
1850 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1851 		break;
1852 	case CMD_IOACCEL_DISABLED:
1853 		/* This only handles the direct pass-through case since RAID
1854 		 * offload is handled above.  Just attempt a retry.
1855 		 */
1856 		cmd->result = DID_SOFT_ERROR << 16;
1857 		dev_warn(&h->pdev->dev,
1858 				"cp %p had HP SSD Smart Path error\n", cp);
1859 		break;
1860 	default:
1861 		cmd->result = DID_ERROR << 16;
1862 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1863 				cp, ei->CommandStatus);
1864 	}
1865 	cmd_free(h, cp);
1866 	cmd->scsi_done(cmd);
1867 }
1868 
1869 static void hpsa_pci_unmap(struct pci_dev *pdev,
1870 	struct CommandList *c, int sg_used, int data_direction)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < sg_used; i++)
1875 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1876 				le32_to_cpu(c->SG[i].Len),
1877 				data_direction);
1878 }
1879 
1880 static int hpsa_map_one(struct pci_dev *pdev,
1881 		struct CommandList *cp,
1882 		unsigned char *buf,
1883 		size_t buflen,
1884 		int data_direction)
1885 {
1886 	u64 addr64;
1887 
1888 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1889 		cp->Header.SGList = 0;
1890 		cp->Header.SGTotal = cpu_to_le16(0);
1891 		return 0;
1892 	}
1893 
1894 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1895 	if (dma_mapping_error(&pdev->dev, addr64)) {
1896 		/* Prevent subsequent unmap of something never mapped */
1897 		cp->Header.SGList = 0;
1898 		cp->Header.SGTotal = cpu_to_le16(0);
1899 		return -1;
1900 	}
1901 	cp->SG[0].Addr = cpu_to_le64(addr64);
1902 	cp->SG[0].Len = cpu_to_le32(buflen);
1903 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1904 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1905 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1906 	return 0;
1907 }
1908 
1909 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1910 	struct CommandList *c)
1911 {
1912 	DECLARE_COMPLETION_ONSTACK(wait);
1913 
1914 	c->waiting = &wait;
1915 	enqueue_cmd_and_start_io(h, c);
1916 	wait_for_completion(&wait);
1917 }
1918 
1919 static u32 lockup_detected(struct ctlr_info *h)
1920 {
1921 	int cpu;
1922 	u32 rc, *lockup_detected;
1923 
1924 	cpu = get_cpu();
1925 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1926 	rc = *lockup_detected;
1927 	put_cpu();
1928 	return rc;
1929 }
1930 
1931 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1932 	struct CommandList *c)
1933 {
1934 	/* If controller lockup detected, fake a hardware error. */
1935 	if (unlikely(lockup_detected(h)))
1936 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1937 	else
1938 		hpsa_scsi_do_simple_cmd_core(h, c);
1939 }
1940 
1941 #define MAX_DRIVER_CMD_RETRIES 25
1942 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1943 	struct CommandList *c, int data_direction)
1944 {
1945 	int backoff_time = 10, retry_count = 0;
1946 
1947 	do {
1948 		memset(c->err_info, 0, sizeof(*c->err_info));
1949 		hpsa_scsi_do_simple_cmd_core(h, c);
1950 		retry_count++;
1951 		if (retry_count > 3) {
1952 			msleep(backoff_time);
1953 			if (backoff_time < 1000)
1954 				backoff_time *= 2;
1955 		}
1956 	} while ((check_for_unit_attention(h, c) ||
1957 			check_for_busy(h, c)) &&
1958 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1959 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1960 }
1961 
1962 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1963 				struct CommandList *c)
1964 {
1965 	const u8 *cdb = c->Request.CDB;
1966 	const u8 *lun = c->Header.LUN.LunAddrBytes;
1967 
1968 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1969 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1970 		txt, lun[0], lun[1], lun[2], lun[3],
1971 		lun[4], lun[5], lun[6], lun[7],
1972 		cdb[0], cdb[1], cdb[2], cdb[3],
1973 		cdb[4], cdb[5], cdb[6], cdb[7],
1974 		cdb[8], cdb[9], cdb[10], cdb[11],
1975 		cdb[12], cdb[13], cdb[14], cdb[15]);
1976 }
1977 
1978 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1979 			struct CommandList *cp)
1980 {
1981 	const struct ErrorInfo *ei = cp->err_info;
1982 	struct device *d = &cp->h->pdev->dev;
1983 	const u8 *sd = ei->SenseInfo;
1984 
1985 	switch (ei->CommandStatus) {
1986 	case CMD_TARGET_STATUS:
1987 		hpsa_print_cmd(h, "SCSI status", cp);
1988 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1989 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1990 				sd[2] & 0x0f, sd[12], sd[13]);
1991 		else
1992 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1993 		if (ei->ScsiStatus == 0)
1994 			dev_warn(d, "SCSI status is abnormally zero.  "
1995 			"(probably indicates selection timeout "
1996 			"reported incorrectly due to a known "
1997 			"firmware bug, circa July, 2001.)\n");
1998 		break;
1999 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2000 		break;
2001 	case CMD_DATA_OVERRUN:
2002 		hpsa_print_cmd(h, "overrun condition", cp);
2003 		break;
2004 	case CMD_INVALID: {
2005 		/* controller unfortunately reports SCSI passthru's
2006 		 * to non-existent targets as invalid commands.
2007 		 */
2008 		hpsa_print_cmd(h, "invalid command", cp);
2009 		dev_warn(d, "probably means device no longer present\n");
2010 		}
2011 		break;
2012 	case CMD_PROTOCOL_ERR:
2013 		hpsa_print_cmd(h, "protocol error", cp);
2014 		break;
2015 	case CMD_HARDWARE_ERR:
2016 		hpsa_print_cmd(h, "hardware error", cp);
2017 		break;
2018 	case CMD_CONNECTION_LOST:
2019 		hpsa_print_cmd(h, "connection lost", cp);
2020 		break;
2021 	case CMD_ABORTED:
2022 		hpsa_print_cmd(h, "aborted", cp);
2023 		break;
2024 	case CMD_ABORT_FAILED:
2025 		hpsa_print_cmd(h, "abort failed", cp);
2026 		break;
2027 	case CMD_UNSOLICITED_ABORT:
2028 		hpsa_print_cmd(h, "unsolicited abort", cp);
2029 		break;
2030 	case CMD_TIMEOUT:
2031 		hpsa_print_cmd(h, "timed out", cp);
2032 		break;
2033 	case CMD_UNABORTABLE:
2034 		hpsa_print_cmd(h, "unabortable", cp);
2035 		break;
2036 	default:
2037 		hpsa_print_cmd(h, "unknown status", cp);
2038 		dev_warn(d, "Unknown command status %x\n",
2039 				ei->CommandStatus);
2040 	}
2041 }
2042 
2043 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2044 			u16 page, unsigned char *buf,
2045 			unsigned char bufsize)
2046 {
2047 	int rc = IO_OK;
2048 	struct CommandList *c;
2049 	struct ErrorInfo *ei;
2050 
2051 	c = cmd_special_alloc(h);
2052 
2053 	if (c == NULL) {			/* trouble... */
2054 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2055 		return -ENOMEM;
2056 	}
2057 
2058 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2059 			page, scsi3addr, TYPE_CMD)) {
2060 		rc = -1;
2061 		goto out;
2062 	}
2063 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2064 	ei = c->err_info;
2065 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2066 		hpsa_scsi_interpret_error(h, c);
2067 		rc = -1;
2068 	}
2069 out:
2070 	cmd_special_free(h, c);
2071 	return rc;
2072 }
2073 
2074 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2075 		unsigned char *scsi3addr, unsigned char page,
2076 		struct bmic_controller_parameters *buf, size_t bufsize)
2077 {
2078 	int rc = IO_OK;
2079 	struct CommandList *c;
2080 	struct ErrorInfo *ei;
2081 
2082 	c = cmd_special_alloc(h);
2083 
2084 	if (c == NULL) {			/* trouble... */
2085 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2086 		return -ENOMEM;
2087 	}
2088 
2089 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2090 			page, scsi3addr, TYPE_CMD)) {
2091 		rc = -1;
2092 		goto out;
2093 	}
2094 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2095 	ei = c->err_info;
2096 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2097 		hpsa_scsi_interpret_error(h, c);
2098 		rc = -1;
2099 	}
2100 out:
2101 	cmd_special_free(h, c);
2102 	return rc;
2103 	}
2104 
2105 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2106 	u8 reset_type)
2107 {
2108 	int rc = IO_OK;
2109 	struct CommandList *c;
2110 	struct ErrorInfo *ei;
2111 
2112 	c = cmd_special_alloc(h);
2113 
2114 	if (c == NULL) {			/* trouble... */
2115 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2116 		return -ENOMEM;
2117 	}
2118 
2119 	/* fill_cmd can't fail here, no data buffer to map. */
2120 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2121 			scsi3addr, TYPE_MSG);
2122 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2123 	hpsa_scsi_do_simple_cmd_core(h, c);
2124 	/* no unmap needed here because no data xfer. */
2125 
2126 	ei = c->err_info;
2127 	if (ei->CommandStatus != 0) {
2128 		hpsa_scsi_interpret_error(h, c);
2129 		rc = -1;
2130 	}
2131 	cmd_special_free(h, c);
2132 	return rc;
2133 }
2134 
2135 static void hpsa_get_raid_level(struct ctlr_info *h,
2136 	unsigned char *scsi3addr, unsigned char *raid_level)
2137 {
2138 	int rc;
2139 	unsigned char *buf;
2140 
2141 	*raid_level = RAID_UNKNOWN;
2142 	buf = kzalloc(64, GFP_KERNEL);
2143 	if (!buf)
2144 		return;
2145 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2146 	if (rc == 0)
2147 		*raid_level = buf[8];
2148 	if (*raid_level > RAID_UNKNOWN)
2149 		*raid_level = RAID_UNKNOWN;
2150 	kfree(buf);
2151 	return;
2152 }
2153 
2154 #define HPSA_MAP_DEBUG
2155 #ifdef HPSA_MAP_DEBUG
2156 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2157 				struct raid_map_data *map_buff)
2158 {
2159 	struct raid_map_disk_data *dd = &map_buff->data[0];
2160 	int map, row, col;
2161 	u16 map_cnt, row_cnt, disks_per_row;
2162 
2163 	if (rc != 0)
2164 		return;
2165 
2166 	/* Show details only if debugging has been activated. */
2167 	if (h->raid_offload_debug < 2)
2168 		return;
2169 
2170 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2171 				le32_to_cpu(map_buff->structure_size));
2172 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2173 			le32_to_cpu(map_buff->volume_blk_size));
2174 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2175 			le64_to_cpu(map_buff->volume_blk_cnt));
2176 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2177 			map_buff->phys_blk_shift);
2178 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2179 			map_buff->parity_rotation_shift);
2180 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2181 			le16_to_cpu(map_buff->strip_size));
2182 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2183 			le64_to_cpu(map_buff->disk_starting_blk));
2184 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2185 			le64_to_cpu(map_buff->disk_blk_cnt));
2186 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2187 			le16_to_cpu(map_buff->data_disks_per_row));
2188 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2189 			le16_to_cpu(map_buff->metadata_disks_per_row));
2190 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2191 			le16_to_cpu(map_buff->row_cnt));
2192 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2193 			le16_to_cpu(map_buff->layout_map_count));
2194 	dev_info(&h->pdev->dev, "flags = %u\n",
2195 			le16_to_cpu(map_buff->flags));
2196 	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2197 		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2198 	else
2199 		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2200 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2201 			le16_to_cpu(map_buff->dekindex));
2202 
2203 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2204 	for (map = 0; map < map_cnt; map++) {
2205 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2206 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2207 		for (row = 0; row < row_cnt; row++) {
2208 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2209 			disks_per_row =
2210 				le16_to_cpu(map_buff->data_disks_per_row);
2211 			for (col = 0; col < disks_per_row; col++, dd++)
2212 				dev_info(&h->pdev->dev,
2213 					"    D%02u: h=0x%04x xor=%u,%u\n",
2214 					col, dd->ioaccel_handle,
2215 					dd->xor_mult[0], dd->xor_mult[1]);
2216 			disks_per_row =
2217 				le16_to_cpu(map_buff->metadata_disks_per_row);
2218 			for (col = 0; col < disks_per_row; col++, dd++)
2219 				dev_info(&h->pdev->dev,
2220 					"    M%02u: h=0x%04x xor=%u,%u\n",
2221 					col, dd->ioaccel_handle,
2222 					dd->xor_mult[0], dd->xor_mult[1]);
2223 		}
2224 	}
2225 }
2226 #else
2227 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2228 			__attribute__((unused)) int rc,
2229 			__attribute__((unused)) struct raid_map_data *map_buff)
2230 {
2231 }
2232 #endif
2233 
2234 static int hpsa_get_raid_map(struct ctlr_info *h,
2235 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2236 {
2237 	int rc = 0;
2238 	struct CommandList *c;
2239 	struct ErrorInfo *ei;
2240 
2241 	c = cmd_special_alloc(h);
2242 	if (c == NULL) {
2243 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2244 		return -ENOMEM;
2245 	}
2246 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2247 			sizeof(this_device->raid_map), 0,
2248 			scsi3addr, TYPE_CMD)) {
2249 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2250 		cmd_special_free(h, c);
2251 		return -ENOMEM;
2252 	}
2253 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2254 	ei = c->err_info;
2255 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2256 		hpsa_scsi_interpret_error(h, c);
2257 		cmd_special_free(h, c);
2258 		return -1;
2259 	}
2260 	cmd_special_free(h, c);
2261 
2262 	/* @todo in the future, dynamically allocate RAID map memory */
2263 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2264 				sizeof(this_device->raid_map)) {
2265 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2266 		rc = -1;
2267 	}
2268 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2269 	return rc;
2270 }
2271 
2272 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2273 	unsigned char scsi3addr[], u8 page)
2274 {
2275 	int rc;
2276 	int i;
2277 	int pages;
2278 	unsigned char *buf, bufsize;
2279 
2280 	buf = kzalloc(256, GFP_KERNEL);
2281 	if (!buf)
2282 		return 0;
2283 
2284 	/* Get the size of the page list first */
2285 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2286 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2287 				buf, HPSA_VPD_HEADER_SZ);
2288 	if (rc != 0)
2289 		goto exit_unsupported;
2290 	pages = buf[3];
2291 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2292 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2293 	else
2294 		bufsize = 255;
2295 
2296 	/* Get the whole VPD page list */
2297 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2298 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2299 				buf, bufsize);
2300 	if (rc != 0)
2301 		goto exit_unsupported;
2302 
2303 	pages = buf[3];
2304 	for (i = 1; i <= pages; i++)
2305 		if (buf[3 + i] == page)
2306 			goto exit_supported;
2307 exit_unsupported:
2308 	kfree(buf);
2309 	return 0;
2310 exit_supported:
2311 	kfree(buf);
2312 	return 1;
2313 }
2314 
2315 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2316 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2317 {
2318 	int rc;
2319 	unsigned char *buf;
2320 	u8 ioaccel_status;
2321 
2322 	this_device->offload_config = 0;
2323 	this_device->offload_enabled = 0;
2324 
2325 	buf = kzalloc(64, GFP_KERNEL);
2326 	if (!buf)
2327 		return;
2328 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2329 		goto out;
2330 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2331 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2332 	if (rc != 0)
2333 		goto out;
2334 
2335 #define IOACCEL_STATUS_BYTE 4
2336 #define OFFLOAD_CONFIGURED_BIT 0x01
2337 #define OFFLOAD_ENABLED_BIT 0x02
2338 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2339 	this_device->offload_config =
2340 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2341 	if (this_device->offload_config) {
2342 		this_device->offload_enabled =
2343 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2344 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2345 			this_device->offload_enabled = 0;
2346 	}
2347 out:
2348 	kfree(buf);
2349 	return;
2350 }
2351 
2352 /* Get the device id from inquiry page 0x83 */
2353 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2354 	unsigned char *device_id, int buflen)
2355 {
2356 	int rc;
2357 	unsigned char *buf;
2358 
2359 	if (buflen > 16)
2360 		buflen = 16;
2361 	buf = kzalloc(64, GFP_KERNEL);
2362 	if (!buf)
2363 		return -ENOMEM;
2364 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2365 	if (rc == 0)
2366 		memcpy(device_id, &buf[8], buflen);
2367 	kfree(buf);
2368 	return rc != 0;
2369 }
2370 
2371 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2372 		struct ReportLUNdata *buf, int bufsize,
2373 		int extended_response)
2374 {
2375 	int rc = IO_OK;
2376 	struct CommandList *c;
2377 	unsigned char scsi3addr[8];
2378 	struct ErrorInfo *ei;
2379 
2380 	c = cmd_special_alloc(h);
2381 	if (c == NULL) {			/* trouble... */
2382 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2383 		return -1;
2384 	}
2385 	/* address the controller */
2386 	memset(scsi3addr, 0, sizeof(scsi3addr));
2387 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2388 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2389 		rc = -1;
2390 		goto out;
2391 	}
2392 	if (extended_response)
2393 		c->Request.CDB[1] = extended_response;
2394 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2395 	ei = c->err_info;
2396 	if (ei->CommandStatus != 0 &&
2397 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2398 		hpsa_scsi_interpret_error(h, c);
2399 		rc = -1;
2400 	} else {
2401 		if (buf->extended_response_flag != extended_response) {
2402 			dev_err(&h->pdev->dev,
2403 				"report luns requested format %u, got %u\n",
2404 				extended_response,
2405 				buf->extended_response_flag);
2406 			rc = -1;
2407 		}
2408 	}
2409 out:
2410 	cmd_special_free(h, c);
2411 	return rc;
2412 }
2413 
2414 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2415 		struct ReportLUNdata *buf,
2416 		int bufsize, int extended_response)
2417 {
2418 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2419 }
2420 
2421 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2422 		struct ReportLUNdata *buf, int bufsize)
2423 {
2424 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2425 }
2426 
2427 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2428 	int bus, int target, int lun)
2429 {
2430 	device->bus = bus;
2431 	device->target = target;
2432 	device->lun = lun;
2433 }
2434 
2435 /* Use VPD inquiry to get details of volume status */
2436 static int hpsa_get_volume_status(struct ctlr_info *h,
2437 					unsigned char scsi3addr[])
2438 {
2439 	int rc;
2440 	int status;
2441 	int size;
2442 	unsigned char *buf;
2443 
2444 	buf = kzalloc(64, GFP_KERNEL);
2445 	if (!buf)
2446 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2447 
2448 	/* Does controller have VPD for logical volume status? */
2449 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2450 		goto exit_failed;
2451 
2452 	/* Get the size of the VPD return buffer */
2453 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2454 					buf, HPSA_VPD_HEADER_SZ);
2455 	if (rc != 0)
2456 		goto exit_failed;
2457 	size = buf[3];
2458 
2459 	/* Now get the whole VPD buffer */
2460 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2461 					buf, size + HPSA_VPD_HEADER_SZ);
2462 	if (rc != 0)
2463 		goto exit_failed;
2464 	status = buf[4]; /* status byte */
2465 
2466 	kfree(buf);
2467 	return status;
2468 exit_failed:
2469 	kfree(buf);
2470 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2471 }
2472 
2473 /* Determine offline status of a volume.
2474  * Return either:
2475  *  0 (not offline)
2476  *  0xff (offline for unknown reasons)
2477  *  # (integer code indicating one of several NOT READY states
2478  *     describing why a volume is to be kept offline)
2479  */
2480 static int hpsa_volume_offline(struct ctlr_info *h,
2481 					unsigned char scsi3addr[])
2482 {
2483 	struct CommandList *c;
2484 	unsigned char *sense, sense_key, asc, ascq;
2485 	int ldstat = 0;
2486 	u16 cmd_status;
2487 	u8 scsi_status;
2488 #define ASC_LUN_NOT_READY 0x04
2489 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2490 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2491 
2492 	c = cmd_alloc(h);
2493 	if (!c)
2494 		return 0;
2495 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2496 	hpsa_scsi_do_simple_cmd_core(h, c);
2497 	sense = c->err_info->SenseInfo;
2498 	sense_key = sense[2];
2499 	asc = sense[12];
2500 	ascq = sense[13];
2501 	cmd_status = c->err_info->CommandStatus;
2502 	scsi_status = c->err_info->ScsiStatus;
2503 	cmd_free(h, c);
2504 	/* Is the volume 'not ready'? */
2505 	if (cmd_status != CMD_TARGET_STATUS ||
2506 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2507 		sense_key != NOT_READY ||
2508 		asc != ASC_LUN_NOT_READY)  {
2509 		return 0;
2510 	}
2511 
2512 	/* Determine the reason for not ready state */
2513 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2514 
2515 	/* Keep volume offline in certain cases: */
2516 	switch (ldstat) {
2517 	case HPSA_LV_UNDERGOING_ERASE:
2518 	case HPSA_LV_UNDERGOING_RPI:
2519 	case HPSA_LV_PENDING_RPI:
2520 	case HPSA_LV_ENCRYPTED_NO_KEY:
2521 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2522 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2523 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2524 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2525 		return ldstat;
2526 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2527 		/* If VPD status page isn't available,
2528 		 * use ASC/ASCQ to determine state
2529 		 */
2530 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2531 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2532 			return ldstat;
2533 		break;
2534 	default:
2535 		break;
2536 	}
2537 	return 0;
2538 }
2539 
2540 static int hpsa_update_device_info(struct ctlr_info *h,
2541 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2542 	unsigned char *is_OBDR_device)
2543 {
2544 
2545 #define OBDR_SIG_OFFSET 43
2546 #define OBDR_TAPE_SIG "$DR-10"
2547 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2548 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2549 
2550 	unsigned char *inq_buff;
2551 	unsigned char *obdr_sig;
2552 
2553 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2554 	if (!inq_buff)
2555 		goto bail_out;
2556 
2557 	/* Do an inquiry to the device to see what it is. */
2558 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2559 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2560 		/* Inquiry failed (msg printed already) */
2561 		dev_err(&h->pdev->dev,
2562 			"hpsa_update_device_info: inquiry failed\n");
2563 		goto bail_out;
2564 	}
2565 
2566 	this_device->devtype = (inq_buff[0] & 0x1f);
2567 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2568 	memcpy(this_device->vendor, &inq_buff[8],
2569 		sizeof(this_device->vendor));
2570 	memcpy(this_device->model, &inq_buff[16],
2571 		sizeof(this_device->model));
2572 	memset(this_device->device_id, 0,
2573 		sizeof(this_device->device_id));
2574 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2575 		sizeof(this_device->device_id));
2576 
2577 	if (this_device->devtype == TYPE_DISK &&
2578 		is_logical_dev_addr_mode(scsi3addr)) {
2579 		int volume_offline;
2580 
2581 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2582 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2583 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2584 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2585 		if (volume_offline < 0 || volume_offline > 0xff)
2586 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2587 		this_device->volume_offline = volume_offline & 0xff;
2588 	} else {
2589 		this_device->raid_level = RAID_UNKNOWN;
2590 		this_device->offload_config = 0;
2591 		this_device->offload_enabled = 0;
2592 		this_device->volume_offline = 0;
2593 	}
2594 
2595 	if (is_OBDR_device) {
2596 		/* See if this is a One-Button-Disaster-Recovery device
2597 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2598 		 */
2599 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2600 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2601 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2602 						OBDR_SIG_LEN) == 0);
2603 	}
2604 
2605 	kfree(inq_buff);
2606 	return 0;
2607 
2608 bail_out:
2609 	kfree(inq_buff);
2610 	return 1;
2611 }
2612 
2613 static unsigned char *ext_target_model[] = {
2614 	"MSA2012",
2615 	"MSA2024",
2616 	"MSA2312",
2617 	"MSA2324",
2618 	"P2000 G3 SAS",
2619 	"MSA 2040 SAS",
2620 	NULL,
2621 };
2622 
2623 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2624 {
2625 	int i;
2626 
2627 	for (i = 0; ext_target_model[i]; i++)
2628 		if (strncmp(device->model, ext_target_model[i],
2629 			strlen(ext_target_model[i])) == 0)
2630 			return 1;
2631 	return 0;
2632 }
2633 
2634 /* Helper function to assign bus, target, lun mapping of devices.
2635  * Puts non-external target logical volumes on bus 0, external target logical
2636  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2637  * Logical drive target and lun are assigned at this time, but
2638  * physical device lun and target assignment are deferred (assigned
2639  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2640  */
2641 static void figure_bus_target_lun(struct ctlr_info *h,
2642 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2643 {
2644 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2645 
2646 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2647 		/* physical device, target and lun filled in later */
2648 		if (is_hba_lunid(lunaddrbytes))
2649 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2650 		else
2651 			/* defer target, lun assignment for physical devices */
2652 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2653 		return;
2654 	}
2655 	/* It's a logical device */
2656 	if (is_ext_target(h, device)) {
2657 		/* external target way, put logicals on bus 1
2658 		 * and match target/lun numbers box
2659 		 * reports, other smart array, bus 0, target 0, match lunid
2660 		 */
2661 		hpsa_set_bus_target_lun(device,
2662 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2663 		return;
2664 	}
2665 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2666 }
2667 
2668 /*
2669  * If there is no lun 0 on a target, linux won't find any devices.
2670  * For the external targets (arrays), we have to manually detect the enclosure
2671  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2672  * it for some reason.  *tmpdevice is the target we're adding,
2673  * this_device is a pointer into the current element of currentsd[]
2674  * that we're building up in update_scsi_devices(), below.
2675  * lunzerobits is a bitmap that tracks which targets already have a
2676  * lun 0 assigned.
2677  * Returns 1 if an enclosure was added, 0 if not.
2678  */
2679 static int add_ext_target_dev(struct ctlr_info *h,
2680 	struct hpsa_scsi_dev_t *tmpdevice,
2681 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2682 	unsigned long lunzerobits[], int *n_ext_target_devs)
2683 {
2684 	unsigned char scsi3addr[8];
2685 
2686 	if (test_bit(tmpdevice->target, lunzerobits))
2687 		return 0; /* There is already a lun 0 on this target. */
2688 
2689 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2690 		return 0; /* It's the logical targets that may lack lun 0. */
2691 
2692 	if (!is_ext_target(h, tmpdevice))
2693 		return 0; /* Only external target devices have this problem. */
2694 
2695 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2696 		return 0;
2697 
2698 	memset(scsi3addr, 0, 8);
2699 	scsi3addr[3] = tmpdevice->target;
2700 	if (is_hba_lunid(scsi3addr))
2701 		return 0; /* Don't add the RAID controller here. */
2702 
2703 	if (is_scsi_rev_5(h))
2704 		return 0; /* p1210m doesn't need to do this. */
2705 
2706 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2707 		dev_warn(&h->pdev->dev, "Maximum number of external "
2708 			"target devices exceeded.  Check your hardware "
2709 			"configuration.");
2710 		return 0;
2711 	}
2712 
2713 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2714 		return 0;
2715 	(*n_ext_target_devs)++;
2716 	hpsa_set_bus_target_lun(this_device,
2717 				tmpdevice->bus, tmpdevice->target, 0);
2718 	set_bit(tmpdevice->target, lunzerobits);
2719 	return 1;
2720 }
2721 
2722 /*
2723  * Get address of physical disk used for an ioaccel2 mode command:
2724  *	1. Extract ioaccel2 handle from the command.
2725  *	2. Find a matching ioaccel2 handle from list of physical disks.
2726  *	3. Return:
2727  *		1 and set scsi3addr to address of matching physical
2728  *		0 if no matching physical disk was found.
2729  */
2730 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2731 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2732 {
2733 	struct ReportExtendedLUNdata *physicals = NULL;
2734 	int responsesize = 24;	/* size of physical extended response */
2735 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2736 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2737 	u32 nphysicals = 0;	/* number of reported physical devs */
2738 	int found = 0;		/* found match (1) or not (0) */
2739 	u32 find;		/* handle we need to match */
2740 	int i;
2741 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2742 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2743 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2744 	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2745 	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2746 
2747 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2748 		return 0; /* no match */
2749 
2750 	/* point to the ioaccel2 device handle */
2751 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2752 	if (c2a == NULL)
2753 		return 0; /* no match */
2754 
2755 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2756 	if (scmd == NULL)
2757 		return 0; /* no match */
2758 
2759 	d = scmd->device->hostdata;
2760 	if (d == NULL)
2761 		return 0; /* no match */
2762 
2763 	it_nexus = cpu_to_le32(d->ioaccel_handle);
2764 	scsi_nexus = cpu_to_le32(c2a->scsi_nexus);
2765 	find = c2a->scsi_nexus;
2766 
2767 	if (h->raid_offload_debug > 0)
2768 		dev_info(&h->pdev->dev,
2769 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2770 			__func__, scsi_nexus,
2771 			d->device_id[0], d->device_id[1], d->device_id[2],
2772 			d->device_id[3], d->device_id[4], d->device_id[5],
2773 			d->device_id[6], d->device_id[7], d->device_id[8],
2774 			d->device_id[9], d->device_id[10], d->device_id[11],
2775 			d->device_id[12], d->device_id[13], d->device_id[14],
2776 			d->device_id[15]);
2777 
2778 	/* Get the list of physical devices */
2779 	physicals = kzalloc(reportsize, GFP_KERNEL);
2780 	if (physicals == NULL)
2781 		return 0;
2782 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2783 		reportsize, extended)) {
2784 		dev_err(&h->pdev->dev,
2785 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2786 			"HP SSD Smart Path");
2787 		kfree(physicals);
2788 		return 0;
2789 	}
2790 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2791 							responsesize;
2792 
2793 	/* find ioaccel2 handle in list of physicals: */
2794 	for (i = 0; i < nphysicals; i++) {
2795 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2796 
2797 		/* handle is in bytes 28-31 of each lun */
2798 		if (entry->ioaccel_handle != find)
2799 			continue; /* didn't match */
2800 		found = 1;
2801 		memcpy(scsi3addr, entry->lunid, 8);
2802 		if (h->raid_offload_debug > 0)
2803 			dev_info(&h->pdev->dev,
2804 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2805 				__func__, find,
2806 				entry->ioaccel_handle, scsi3addr);
2807 		break; /* found it */
2808 	}
2809 
2810 	kfree(physicals);
2811 	if (found)
2812 		return 1;
2813 	else
2814 		return 0;
2815 
2816 }
2817 /*
2818  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2819  * logdev.  The number of luns in physdev and logdev are returned in
2820  * *nphysicals and *nlogicals, respectively.
2821  * Returns 0 on success, -1 otherwise.
2822  */
2823 static int hpsa_gather_lun_info(struct ctlr_info *h,
2824 	int reportphyslunsize, int reportloglunsize,
2825 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2826 	struct ReportLUNdata *logdev, u32 *nlogicals)
2827 {
2828 	int physical_entry_size = 8;
2829 
2830 	*physical_mode = 0;
2831 
2832 	/* For I/O accelerator mode we need to read physical device handles */
2833 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2834 		h->transMethod & CFGTBL_Trans_io_accel2) {
2835 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2836 		physical_entry_size = 24;
2837 	}
2838 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2839 							*physical_mode)) {
2840 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2841 		return -1;
2842 	}
2843 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2844 							physical_entry_size;
2845 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2846 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2847 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2848 			*nphysicals - HPSA_MAX_PHYS_LUN);
2849 		*nphysicals = HPSA_MAX_PHYS_LUN;
2850 	}
2851 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2852 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2853 		return -1;
2854 	}
2855 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2856 	/* Reject Logicals in excess of our max capability. */
2857 	if (*nlogicals > HPSA_MAX_LUN) {
2858 		dev_warn(&h->pdev->dev,
2859 			"maximum logical LUNs (%d) exceeded.  "
2860 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2861 			*nlogicals - HPSA_MAX_LUN);
2862 			*nlogicals = HPSA_MAX_LUN;
2863 	}
2864 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2865 		dev_warn(&h->pdev->dev,
2866 			"maximum logical + physical LUNs (%d) exceeded. "
2867 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2868 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2869 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2870 	}
2871 	return 0;
2872 }
2873 
2874 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2875 	int i, int nphysicals, int nlogicals,
2876 	struct ReportExtendedLUNdata *physdev_list,
2877 	struct ReportLUNdata *logdev_list)
2878 {
2879 	/* Helper function, figure out where the LUN ID info is coming from
2880 	 * given index i, lists of physical and logical devices, where in
2881 	 * the list the raid controller is supposed to appear (first or last)
2882 	 */
2883 
2884 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2885 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2886 
2887 	if (i == raid_ctlr_position)
2888 		return RAID_CTLR_LUNID;
2889 
2890 	if (i < logicals_start)
2891 		return &physdev_list->LUN[i -
2892 				(raid_ctlr_position == 0)].lunid[0];
2893 
2894 	if (i < last_device)
2895 		return &logdev_list->LUN[i - nphysicals -
2896 			(raid_ctlr_position == 0)][0];
2897 	BUG();
2898 	return NULL;
2899 }
2900 
2901 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2902 {
2903 	int rc;
2904 	int hba_mode_enabled;
2905 	struct bmic_controller_parameters *ctlr_params;
2906 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2907 		GFP_KERNEL);
2908 
2909 	if (!ctlr_params)
2910 		return -ENOMEM;
2911 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2912 		sizeof(struct bmic_controller_parameters));
2913 	if (rc) {
2914 		kfree(ctlr_params);
2915 		return rc;
2916 	}
2917 
2918 	hba_mode_enabled =
2919 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2920 	kfree(ctlr_params);
2921 	return hba_mode_enabled;
2922 }
2923 
2924 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2925 {
2926 	/* the idea here is we could get notified
2927 	 * that some devices have changed, so we do a report
2928 	 * physical luns and report logical luns cmd, and adjust
2929 	 * our list of devices accordingly.
2930 	 *
2931 	 * The scsi3addr's of devices won't change so long as the
2932 	 * adapter is not reset.  That means we can rescan and
2933 	 * tell which devices we already know about, vs. new
2934 	 * devices, vs.  disappearing devices.
2935 	 */
2936 	struct ReportExtendedLUNdata *physdev_list = NULL;
2937 	struct ReportLUNdata *logdev_list = NULL;
2938 	u32 nphysicals = 0;
2939 	u32 nlogicals = 0;
2940 	int physical_mode = 0;
2941 	u32 ndev_allocated = 0;
2942 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2943 	int ncurrent = 0;
2944 	int i, n_ext_target_devs, ndevs_to_allocate;
2945 	int raid_ctlr_position;
2946 	int rescan_hba_mode;
2947 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2948 
2949 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2950 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2951 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2952 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2953 
2954 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2955 		dev_err(&h->pdev->dev, "out of memory\n");
2956 		goto out;
2957 	}
2958 	memset(lunzerobits, 0, sizeof(lunzerobits));
2959 
2960 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
2961 	if (rescan_hba_mode < 0)
2962 		goto out;
2963 
2964 	if (!h->hba_mode_enabled && rescan_hba_mode)
2965 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2966 	else if (h->hba_mode_enabled && !rescan_hba_mode)
2967 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2968 
2969 	h->hba_mode_enabled = rescan_hba_mode;
2970 
2971 	if (hpsa_gather_lun_info(h,
2972 			sizeof(*physdev_list), sizeof(*logdev_list),
2973 			(struct ReportLUNdata *) physdev_list, &nphysicals,
2974 			&physical_mode, logdev_list, &nlogicals))
2975 		goto out;
2976 
2977 	/* We might see up to the maximum number of logical and physical disks
2978 	 * plus external target devices, and a device for the local RAID
2979 	 * controller.
2980 	 */
2981 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2982 
2983 	/* Allocate the per device structures */
2984 	for (i = 0; i < ndevs_to_allocate; i++) {
2985 		if (i >= HPSA_MAX_DEVICES) {
2986 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2987 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
2988 				ndevs_to_allocate - HPSA_MAX_DEVICES);
2989 			break;
2990 		}
2991 
2992 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2993 		if (!currentsd[i]) {
2994 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2995 				__FILE__, __LINE__);
2996 			goto out;
2997 		}
2998 		ndev_allocated++;
2999 	}
3000 
3001 	if (is_scsi_rev_5(h))
3002 		raid_ctlr_position = 0;
3003 	else
3004 		raid_ctlr_position = nphysicals + nlogicals;
3005 
3006 	/* adjust our table of devices */
3007 	n_ext_target_devs = 0;
3008 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3009 		u8 *lunaddrbytes, is_OBDR = 0;
3010 
3011 		/* Figure out where the LUN ID info is coming from */
3012 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3013 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3014 		/* skip masked physical devices. */
3015 		if (lunaddrbytes[3] & 0xC0 &&
3016 			i < nphysicals + (raid_ctlr_position == 0))
3017 			continue;
3018 
3019 		/* Get device type, vendor, model, device id */
3020 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3021 							&is_OBDR))
3022 			continue; /* skip it if we can't talk to it. */
3023 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3024 		this_device = currentsd[ncurrent];
3025 
3026 		/*
3027 		 * For external target devices, we have to insert a LUN 0 which
3028 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3029 		 * is nonetheless an enclosure device there.  We have to
3030 		 * present that otherwise linux won't find anything if
3031 		 * there is no lun 0.
3032 		 */
3033 		if (add_ext_target_dev(h, tmpdevice, this_device,
3034 				lunaddrbytes, lunzerobits,
3035 				&n_ext_target_devs)) {
3036 			ncurrent++;
3037 			this_device = currentsd[ncurrent];
3038 		}
3039 
3040 		*this_device = *tmpdevice;
3041 
3042 		switch (this_device->devtype) {
3043 		case TYPE_ROM:
3044 			/* We don't *really* support actual CD-ROM devices,
3045 			 * just "One Button Disaster Recovery" tape drive
3046 			 * which temporarily pretends to be a CD-ROM drive.
3047 			 * So we check that the device is really an OBDR tape
3048 			 * device by checking for "$DR-10" in bytes 43-48 of
3049 			 * the inquiry data.
3050 			 */
3051 			if (is_OBDR)
3052 				ncurrent++;
3053 			break;
3054 		case TYPE_DISK:
3055 			if (h->hba_mode_enabled) {
3056 				/* never use raid mapper in HBA mode */
3057 				this_device->offload_enabled = 0;
3058 				ncurrent++;
3059 				break;
3060 			} else if (h->acciopath_status) {
3061 				if (i >= nphysicals) {
3062 					ncurrent++;
3063 					break;
3064 				}
3065 			} else {
3066 				if (i < nphysicals)
3067 					break;
3068 				ncurrent++;
3069 				break;
3070 			}
3071 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3072 				memcpy(&this_device->ioaccel_handle,
3073 					&lunaddrbytes[20],
3074 					sizeof(this_device->ioaccel_handle));
3075 				ncurrent++;
3076 			}
3077 			break;
3078 		case TYPE_TAPE:
3079 		case TYPE_MEDIUM_CHANGER:
3080 			ncurrent++;
3081 			break;
3082 		case TYPE_RAID:
3083 			/* Only present the Smartarray HBA as a RAID controller.
3084 			 * If it's a RAID controller other than the HBA itself
3085 			 * (an external RAID controller, MSA500 or similar)
3086 			 * don't present it.
3087 			 */
3088 			if (!is_hba_lunid(lunaddrbytes))
3089 				break;
3090 			ncurrent++;
3091 			break;
3092 		default:
3093 			break;
3094 		}
3095 		if (ncurrent >= HPSA_MAX_DEVICES)
3096 			break;
3097 	}
3098 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3099 out:
3100 	kfree(tmpdevice);
3101 	for (i = 0; i < ndev_allocated; i++)
3102 		kfree(currentsd[i]);
3103 	kfree(currentsd);
3104 	kfree(physdev_list);
3105 	kfree(logdev_list);
3106 }
3107 
3108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3109  * dma mapping  and fills in the scatter gather entries of the
3110  * hpsa command, cp.
3111  */
3112 static int hpsa_scatter_gather(struct ctlr_info *h,
3113 		struct CommandList *cp,
3114 		struct scsi_cmnd *cmd)
3115 {
3116 	unsigned int len;
3117 	struct scatterlist *sg;
3118 	u64 addr64;
3119 	int use_sg, i, sg_index, chained;
3120 	struct SGDescriptor *curr_sg;
3121 
3122 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3123 
3124 	use_sg = scsi_dma_map(cmd);
3125 	if (use_sg < 0)
3126 		return use_sg;
3127 
3128 	if (!use_sg)
3129 		goto sglist_finished;
3130 
3131 	curr_sg = cp->SG;
3132 	chained = 0;
3133 	sg_index = 0;
3134 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3135 		if (i == h->max_cmd_sg_entries - 1 &&
3136 			use_sg > h->max_cmd_sg_entries) {
3137 			chained = 1;
3138 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3139 			sg_index = 0;
3140 		}
3141 		addr64 = (u64) sg_dma_address(sg);
3142 		len  = sg_dma_len(sg);
3143 		curr_sg->Addr = cpu_to_le64(addr64);
3144 		curr_sg->Len = cpu_to_le32(len);
3145 		curr_sg->Ext = cpu_to_le32(0);
3146 		curr_sg++;
3147 	}
3148 	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3149 
3150 	if (use_sg + chained > h->maxSG)
3151 		h->maxSG = use_sg + chained;
3152 
3153 	if (chained) {
3154 		cp->Header.SGList = h->max_cmd_sg_entries;
3155 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3156 		if (hpsa_map_sg_chain_block(h, cp)) {
3157 			scsi_dma_unmap(cmd);
3158 			return -1;
3159 		}
3160 		return 0;
3161 	}
3162 
3163 sglist_finished:
3164 
3165 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3166 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3167 	return 0;
3168 }
3169 
3170 #define IO_ACCEL_INELIGIBLE (1)
3171 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3172 {
3173 	int is_write = 0;
3174 	u32 block;
3175 	u32 block_cnt;
3176 
3177 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3178 	switch (cdb[0]) {
3179 	case WRITE_6:
3180 	case WRITE_12:
3181 		is_write = 1;
3182 	case READ_6:
3183 	case READ_12:
3184 		if (*cdb_len == 6) {
3185 			block = (((u32) cdb[2]) << 8) | cdb[3];
3186 			block_cnt = cdb[4];
3187 		} else {
3188 			BUG_ON(*cdb_len != 12);
3189 			block = (((u32) cdb[2]) << 24) |
3190 				(((u32) cdb[3]) << 16) |
3191 				(((u32) cdb[4]) << 8) |
3192 				cdb[5];
3193 			block_cnt =
3194 				(((u32) cdb[6]) << 24) |
3195 				(((u32) cdb[7]) << 16) |
3196 				(((u32) cdb[8]) << 8) |
3197 				cdb[9];
3198 		}
3199 		if (block_cnt > 0xffff)
3200 			return IO_ACCEL_INELIGIBLE;
3201 
3202 		cdb[0] = is_write ? WRITE_10 : READ_10;
3203 		cdb[1] = 0;
3204 		cdb[2] = (u8) (block >> 24);
3205 		cdb[3] = (u8) (block >> 16);
3206 		cdb[4] = (u8) (block >> 8);
3207 		cdb[5] = (u8) (block);
3208 		cdb[6] = 0;
3209 		cdb[7] = (u8) (block_cnt >> 8);
3210 		cdb[8] = (u8) (block_cnt);
3211 		cdb[9] = 0;
3212 		*cdb_len = 10;
3213 		break;
3214 	}
3215 	return 0;
3216 }
3217 
3218 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3219 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3220 	u8 *scsi3addr)
3221 {
3222 	struct scsi_cmnd *cmd = c->scsi_cmd;
3223 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3224 	unsigned int len;
3225 	unsigned int total_len = 0;
3226 	struct scatterlist *sg;
3227 	u64 addr64;
3228 	int use_sg, i;
3229 	struct SGDescriptor *curr_sg;
3230 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3231 
3232 	/* TODO: implement chaining support */
3233 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3234 		return IO_ACCEL_INELIGIBLE;
3235 
3236 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3237 
3238 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3239 		return IO_ACCEL_INELIGIBLE;
3240 
3241 	c->cmd_type = CMD_IOACCEL1;
3242 
3243 	/* Adjust the DMA address to point to the accelerated command buffer */
3244 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3245 				(c->cmdindex * sizeof(*cp));
3246 	BUG_ON(c->busaddr & 0x0000007F);
3247 
3248 	use_sg = scsi_dma_map(cmd);
3249 	if (use_sg < 0)
3250 		return use_sg;
3251 
3252 	if (use_sg) {
3253 		curr_sg = cp->SG;
3254 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3255 			addr64 = (u64) sg_dma_address(sg);
3256 			len  = sg_dma_len(sg);
3257 			total_len += len;
3258 			curr_sg->Addr = cpu_to_le64(addr64);
3259 			curr_sg->Len = cpu_to_le32(len);
3260 			curr_sg->Ext = cpu_to_le32(0);
3261 			curr_sg++;
3262 		}
3263 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3264 
3265 		switch (cmd->sc_data_direction) {
3266 		case DMA_TO_DEVICE:
3267 			control |= IOACCEL1_CONTROL_DATA_OUT;
3268 			break;
3269 		case DMA_FROM_DEVICE:
3270 			control |= IOACCEL1_CONTROL_DATA_IN;
3271 			break;
3272 		case DMA_NONE:
3273 			control |= IOACCEL1_CONTROL_NODATAXFER;
3274 			break;
3275 		default:
3276 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3277 			cmd->sc_data_direction);
3278 			BUG();
3279 			break;
3280 		}
3281 	} else {
3282 		control |= IOACCEL1_CONTROL_NODATAXFER;
3283 	}
3284 
3285 	c->Header.SGList = use_sg;
3286 	/* Fill out the command structure to submit */
3287 	cp->dev_handle = ioaccel_handle & 0xFFFF;
3288 	cp->transfer_len = total_len;
3289 	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3290 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3291 	cp->control = control;
3292 	memcpy(cp->CDB, cdb, cdb_len);
3293 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3294 	/* Tag was already set at init time. */
3295 	enqueue_cmd_and_start_io(h, c);
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Queue a command directly to a device behind the controller using the
3301  * I/O accelerator path.
3302  */
3303 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3304 	struct CommandList *c)
3305 {
3306 	struct scsi_cmnd *cmd = c->scsi_cmd;
3307 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3308 
3309 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3310 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3311 }
3312 
3313 /*
3314  * Set encryption parameters for the ioaccel2 request
3315  */
3316 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3317 	struct CommandList *c, struct io_accel2_cmd *cp)
3318 {
3319 	struct scsi_cmnd *cmd = c->scsi_cmd;
3320 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3321 	struct raid_map_data *map = &dev->raid_map;
3322 	u64 first_block;
3323 
3324 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3325 
3326 	/* Are we doing encryption on this device */
3327 	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3328 		return;
3329 	/* Set the data encryption key index. */
3330 	cp->dekindex = map->dekindex;
3331 
3332 	/* Set the encryption enable flag, encoded into direction field. */
3333 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3334 
3335 	/* Set encryption tweak values based on logical block address
3336 	 * If block size is 512, tweak value is LBA.
3337 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3338 	 */
3339 	switch (cmd->cmnd[0]) {
3340 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3341 	case WRITE_6:
3342 	case READ_6:
3343 		if (map->volume_blk_size == 512) {
3344 			cp->tweak_lower =
3345 				(((u32) cmd->cmnd[2]) << 8) |
3346 					cmd->cmnd[3];
3347 			cp->tweak_upper = 0;
3348 		} else {
3349 			first_block =
3350 				(((u64) cmd->cmnd[2]) << 8) |
3351 					cmd->cmnd[3];
3352 			first_block = (first_block * map->volume_blk_size)/512;
3353 			cp->tweak_lower = (u32)first_block;
3354 			cp->tweak_upper = (u32)(first_block >> 32);
3355 		}
3356 		break;
3357 	case WRITE_10:
3358 	case READ_10:
3359 		if (map->volume_blk_size == 512) {
3360 			cp->tweak_lower =
3361 				(((u32) cmd->cmnd[2]) << 24) |
3362 				(((u32) cmd->cmnd[3]) << 16) |
3363 				(((u32) cmd->cmnd[4]) << 8) |
3364 					cmd->cmnd[5];
3365 			cp->tweak_upper = 0;
3366 		} else {
3367 			first_block =
3368 				(((u64) cmd->cmnd[2]) << 24) |
3369 				(((u64) cmd->cmnd[3]) << 16) |
3370 				(((u64) cmd->cmnd[4]) << 8) |
3371 					cmd->cmnd[5];
3372 			first_block = (first_block * map->volume_blk_size)/512;
3373 			cp->tweak_lower = (u32)first_block;
3374 			cp->tweak_upper = (u32)(first_block >> 32);
3375 		}
3376 		break;
3377 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3378 	case WRITE_12:
3379 	case READ_12:
3380 		if (map->volume_blk_size == 512) {
3381 			cp->tweak_lower =
3382 				(((u32) cmd->cmnd[2]) << 24) |
3383 				(((u32) cmd->cmnd[3]) << 16) |
3384 				(((u32) cmd->cmnd[4]) << 8) |
3385 					cmd->cmnd[5];
3386 			cp->tweak_upper = 0;
3387 		} else {
3388 			first_block =
3389 				(((u64) cmd->cmnd[2]) << 24) |
3390 				(((u64) cmd->cmnd[3]) << 16) |
3391 				(((u64) cmd->cmnd[4]) << 8) |
3392 					cmd->cmnd[5];
3393 			first_block = (first_block * map->volume_blk_size)/512;
3394 			cp->tweak_lower = (u32)first_block;
3395 			cp->tweak_upper = (u32)(first_block >> 32);
3396 		}
3397 		break;
3398 	case WRITE_16:
3399 	case READ_16:
3400 		if (map->volume_blk_size == 512) {
3401 			cp->tweak_lower =
3402 				(((u32) cmd->cmnd[6]) << 24) |
3403 				(((u32) cmd->cmnd[7]) << 16) |
3404 				(((u32) cmd->cmnd[8]) << 8) |
3405 					cmd->cmnd[9];
3406 			cp->tweak_upper =
3407 				(((u32) cmd->cmnd[2]) << 24) |
3408 				(((u32) cmd->cmnd[3]) << 16) |
3409 				(((u32) cmd->cmnd[4]) << 8) |
3410 					cmd->cmnd[5];
3411 		} else {
3412 			first_block =
3413 				(((u64) cmd->cmnd[2]) << 56) |
3414 				(((u64) cmd->cmnd[3]) << 48) |
3415 				(((u64) cmd->cmnd[4]) << 40) |
3416 				(((u64) cmd->cmnd[5]) << 32) |
3417 				(((u64) cmd->cmnd[6]) << 24) |
3418 				(((u64) cmd->cmnd[7]) << 16) |
3419 				(((u64) cmd->cmnd[8]) << 8) |
3420 					cmd->cmnd[9];
3421 			first_block = (first_block * map->volume_blk_size)/512;
3422 			cp->tweak_lower = (u32)first_block;
3423 			cp->tweak_upper = (u32)(first_block >> 32);
3424 		}
3425 		break;
3426 	default:
3427 		dev_err(&h->pdev->dev,
3428 			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3429 			__func__);
3430 		BUG();
3431 		break;
3432 	}
3433 }
3434 
3435 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3436 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3437 	u8 *scsi3addr)
3438 {
3439 	struct scsi_cmnd *cmd = c->scsi_cmd;
3440 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3441 	struct ioaccel2_sg_element *curr_sg;
3442 	int use_sg, i;
3443 	struct scatterlist *sg;
3444 	u64 addr64;
3445 	u32 len;
3446 	u32 total_len = 0;
3447 
3448 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3449 		return IO_ACCEL_INELIGIBLE;
3450 
3451 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3452 		return IO_ACCEL_INELIGIBLE;
3453 	c->cmd_type = CMD_IOACCEL2;
3454 	/* Adjust the DMA address to point to the accelerated command buffer */
3455 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3456 				(c->cmdindex * sizeof(*cp));
3457 	BUG_ON(c->busaddr & 0x0000007F);
3458 
3459 	memset(cp, 0, sizeof(*cp));
3460 	cp->IU_type = IOACCEL2_IU_TYPE;
3461 
3462 	use_sg = scsi_dma_map(cmd);
3463 	if (use_sg < 0)
3464 		return use_sg;
3465 
3466 	if (use_sg) {
3467 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3468 		curr_sg = cp->sg;
3469 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3470 			addr64 = (u64) sg_dma_address(sg);
3471 			len  = sg_dma_len(sg);
3472 			total_len += len;
3473 			curr_sg->address = cpu_to_le64(addr64);
3474 			curr_sg->length = cpu_to_le32(len);
3475 			curr_sg->reserved[0] = 0;
3476 			curr_sg->reserved[1] = 0;
3477 			curr_sg->reserved[2] = 0;
3478 			curr_sg->chain_indicator = 0;
3479 			curr_sg++;
3480 		}
3481 
3482 		switch (cmd->sc_data_direction) {
3483 		case DMA_TO_DEVICE:
3484 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3485 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3486 			break;
3487 		case DMA_FROM_DEVICE:
3488 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3489 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3490 			break;
3491 		case DMA_NONE:
3492 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3493 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3494 			break;
3495 		default:
3496 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3497 				cmd->sc_data_direction);
3498 			BUG();
3499 			break;
3500 		}
3501 	} else {
3502 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3503 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3504 	}
3505 
3506 	/* Set encryption parameters, if necessary */
3507 	set_encrypt_ioaccel2(h, c, cp);
3508 
3509 	cp->scsi_nexus = ioaccel_handle;
3510 	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3511 				DIRECT_LOOKUP_BIT;
3512 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3513 
3514 	/* fill in sg elements */
3515 	cp->sg_count = (u8) use_sg;
3516 
3517 	cp->data_len = cpu_to_le32(total_len);
3518 	cp->err_ptr = cpu_to_le64(c->busaddr +
3519 			offsetof(struct io_accel2_cmd, error_data));
3520 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3521 
3522 	enqueue_cmd_and_start_io(h, c);
3523 	return 0;
3524 }
3525 
3526 /*
3527  * Queue a command to the correct I/O accelerator path.
3528  */
3529 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3530 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3531 	u8 *scsi3addr)
3532 {
3533 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3534 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3535 						cdb, cdb_len, scsi3addr);
3536 	else
3537 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3538 						cdb, cdb_len, scsi3addr);
3539 }
3540 
3541 static void raid_map_helper(struct raid_map_data *map,
3542 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3543 {
3544 	if (offload_to_mirror == 0)  {
3545 		/* use physical disk in the first mirrored group. */
3546 		*map_index %= map->data_disks_per_row;
3547 		return;
3548 	}
3549 	do {
3550 		/* determine mirror group that *map_index indicates */
3551 		*current_group = *map_index / map->data_disks_per_row;
3552 		if (offload_to_mirror == *current_group)
3553 			continue;
3554 		if (*current_group < (map->layout_map_count - 1)) {
3555 			/* select map index from next group */
3556 			*map_index += map->data_disks_per_row;
3557 			(*current_group)++;
3558 		} else {
3559 			/* select map index from first group */
3560 			*map_index %= map->data_disks_per_row;
3561 			*current_group = 0;
3562 		}
3563 	} while (offload_to_mirror != *current_group);
3564 }
3565 
3566 /*
3567  * Attempt to perform offload RAID mapping for a logical volume I/O.
3568  */
3569 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3570 	struct CommandList *c)
3571 {
3572 	struct scsi_cmnd *cmd = c->scsi_cmd;
3573 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3574 	struct raid_map_data *map = &dev->raid_map;
3575 	struct raid_map_disk_data *dd = &map->data[0];
3576 	int is_write = 0;
3577 	u32 map_index;
3578 	u64 first_block, last_block;
3579 	u32 block_cnt;
3580 	u32 blocks_per_row;
3581 	u64 first_row, last_row;
3582 	u32 first_row_offset, last_row_offset;
3583 	u32 first_column, last_column;
3584 	u64 r0_first_row, r0_last_row;
3585 	u32 r5or6_blocks_per_row;
3586 	u64 r5or6_first_row, r5or6_last_row;
3587 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3588 	u32 r5or6_first_column, r5or6_last_column;
3589 	u32 total_disks_per_row;
3590 	u32 stripesize;
3591 	u32 first_group, last_group, current_group;
3592 	u32 map_row;
3593 	u32 disk_handle;
3594 	u64 disk_block;
3595 	u32 disk_block_cnt;
3596 	u8 cdb[16];
3597 	u8 cdb_len;
3598 #if BITS_PER_LONG == 32
3599 	u64 tmpdiv;
3600 #endif
3601 	int offload_to_mirror;
3602 
3603 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3604 
3605 	/* check for valid opcode, get LBA and block count */
3606 	switch (cmd->cmnd[0]) {
3607 	case WRITE_6:
3608 		is_write = 1;
3609 	case READ_6:
3610 		first_block =
3611 			(((u64) cmd->cmnd[2]) << 8) |
3612 			cmd->cmnd[3];
3613 		block_cnt = cmd->cmnd[4];
3614 		if (block_cnt == 0)
3615 			block_cnt = 256;
3616 		break;
3617 	case WRITE_10:
3618 		is_write = 1;
3619 	case READ_10:
3620 		first_block =
3621 			(((u64) cmd->cmnd[2]) << 24) |
3622 			(((u64) cmd->cmnd[3]) << 16) |
3623 			(((u64) cmd->cmnd[4]) << 8) |
3624 			cmd->cmnd[5];
3625 		block_cnt =
3626 			(((u32) cmd->cmnd[7]) << 8) |
3627 			cmd->cmnd[8];
3628 		break;
3629 	case WRITE_12:
3630 		is_write = 1;
3631 	case READ_12:
3632 		first_block =
3633 			(((u64) cmd->cmnd[2]) << 24) |
3634 			(((u64) cmd->cmnd[3]) << 16) |
3635 			(((u64) cmd->cmnd[4]) << 8) |
3636 			cmd->cmnd[5];
3637 		block_cnt =
3638 			(((u32) cmd->cmnd[6]) << 24) |
3639 			(((u32) cmd->cmnd[7]) << 16) |
3640 			(((u32) cmd->cmnd[8]) << 8) |
3641 		cmd->cmnd[9];
3642 		break;
3643 	case WRITE_16:
3644 		is_write = 1;
3645 	case READ_16:
3646 		first_block =
3647 			(((u64) cmd->cmnd[2]) << 56) |
3648 			(((u64) cmd->cmnd[3]) << 48) |
3649 			(((u64) cmd->cmnd[4]) << 40) |
3650 			(((u64) cmd->cmnd[5]) << 32) |
3651 			(((u64) cmd->cmnd[6]) << 24) |
3652 			(((u64) cmd->cmnd[7]) << 16) |
3653 			(((u64) cmd->cmnd[8]) << 8) |
3654 			cmd->cmnd[9];
3655 		block_cnt =
3656 			(((u32) cmd->cmnd[10]) << 24) |
3657 			(((u32) cmd->cmnd[11]) << 16) |
3658 			(((u32) cmd->cmnd[12]) << 8) |
3659 			cmd->cmnd[13];
3660 		break;
3661 	default:
3662 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3663 	}
3664 	last_block = first_block + block_cnt - 1;
3665 
3666 	/* check for write to non-RAID-0 */
3667 	if (is_write && dev->raid_level != 0)
3668 		return IO_ACCEL_INELIGIBLE;
3669 
3670 	/* check for invalid block or wraparound */
3671 	if (last_block >= map->volume_blk_cnt || last_block < first_block)
3672 		return IO_ACCEL_INELIGIBLE;
3673 
3674 	/* calculate stripe information for the request */
3675 	blocks_per_row = map->data_disks_per_row * map->strip_size;
3676 #if BITS_PER_LONG == 32
3677 	tmpdiv = first_block;
3678 	(void) do_div(tmpdiv, blocks_per_row);
3679 	first_row = tmpdiv;
3680 	tmpdiv = last_block;
3681 	(void) do_div(tmpdiv, blocks_per_row);
3682 	last_row = tmpdiv;
3683 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3684 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3685 	tmpdiv = first_row_offset;
3686 	(void) do_div(tmpdiv,  map->strip_size);
3687 	first_column = tmpdiv;
3688 	tmpdiv = last_row_offset;
3689 	(void) do_div(tmpdiv, map->strip_size);
3690 	last_column = tmpdiv;
3691 #else
3692 	first_row = first_block / blocks_per_row;
3693 	last_row = last_block / blocks_per_row;
3694 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3695 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3696 	first_column = first_row_offset / map->strip_size;
3697 	last_column = last_row_offset / map->strip_size;
3698 #endif
3699 
3700 	/* if this isn't a single row/column then give to the controller */
3701 	if ((first_row != last_row) || (first_column != last_column))
3702 		return IO_ACCEL_INELIGIBLE;
3703 
3704 	/* proceeding with driver mapping */
3705 	total_disks_per_row = map->data_disks_per_row +
3706 				map->metadata_disks_per_row;
3707 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3708 				map->row_cnt;
3709 	map_index = (map_row * total_disks_per_row) + first_column;
3710 
3711 	switch (dev->raid_level) {
3712 	case HPSA_RAID_0:
3713 		break; /* nothing special to do */
3714 	case HPSA_RAID_1:
3715 		/* Handles load balance across RAID 1 members.
3716 		 * (2-drive R1 and R10 with even # of drives.)
3717 		 * Appropriate for SSDs, not optimal for HDDs
3718 		 */
3719 		BUG_ON(map->layout_map_count != 2);
3720 		if (dev->offload_to_mirror)
3721 			map_index += map->data_disks_per_row;
3722 		dev->offload_to_mirror = !dev->offload_to_mirror;
3723 		break;
3724 	case HPSA_RAID_ADM:
3725 		/* Handles N-way mirrors  (R1-ADM)
3726 		 * and R10 with # of drives divisible by 3.)
3727 		 */
3728 		BUG_ON(map->layout_map_count != 3);
3729 
3730 		offload_to_mirror = dev->offload_to_mirror;
3731 		raid_map_helper(map, offload_to_mirror,
3732 				&map_index, &current_group);
3733 		/* set mirror group to use next time */
3734 		offload_to_mirror =
3735 			(offload_to_mirror >= map->layout_map_count - 1)
3736 			? 0 : offload_to_mirror + 1;
3737 		dev->offload_to_mirror = offload_to_mirror;
3738 		/* Avoid direct use of dev->offload_to_mirror within this
3739 		 * function since multiple threads might simultaneously
3740 		 * increment it beyond the range of dev->layout_map_count -1.
3741 		 */
3742 		break;
3743 	case HPSA_RAID_5:
3744 	case HPSA_RAID_6:
3745 		if (map->layout_map_count <= 1)
3746 			break;
3747 
3748 		/* Verify first and last block are in same RAID group */
3749 		r5or6_blocks_per_row =
3750 			map->strip_size * map->data_disks_per_row;
3751 		BUG_ON(r5or6_blocks_per_row == 0);
3752 		stripesize = r5or6_blocks_per_row * map->layout_map_count;
3753 #if BITS_PER_LONG == 32
3754 		tmpdiv = first_block;
3755 		first_group = do_div(tmpdiv, stripesize);
3756 		tmpdiv = first_group;
3757 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3758 		first_group = tmpdiv;
3759 		tmpdiv = last_block;
3760 		last_group = do_div(tmpdiv, stripesize);
3761 		tmpdiv = last_group;
3762 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3763 		last_group = tmpdiv;
3764 #else
3765 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3766 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3767 #endif
3768 		if (first_group != last_group)
3769 			return IO_ACCEL_INELIGIBLE;
3770 
3771 		/* Verify request is in a single row of RAID 5/6 */
3772 #if BITS_PER_LONG == 32
3773 		tmpdiv = first_block;
3774 		(void) do_div(tmpdiv, stripesize);
3775 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3776 		tmpdiv = last_block;
3777 		(void) do_div(tmpdiv, stripesize);
3778 		r5or6_last_row = r0_last_row = tmpdiv;
3779 #else
3780 		first_row = r5or6_first_row = r0_first_row =
3781 						first_block / stripesize;
3782 		r5or6_last_row = r0_last_row = last_block / stripesize;
3783 #endif
3784 		if (r5or6_first_row != r5or6_last_row)
3785 			return IO_ACCEL_INELIGIBLE;
3786 
3787 
3788 		/* Verify request is in a single column */
3789 #if BITS_PER_LONG == 32
3790 		tmpdiv = first_block;
3791 		first_row_offset = do_div(tmpdiv, stripesize);
3792 		tmpdiv = first_row_offset;
3793 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3794 		r5or6_first_row_offset = first_row_offset;
3795 		tmpdiv = last_block;
3796 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3797 		tmpdiv = r5or6_last_row_offset;
3798 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3799 		tmpdiv = r5or6_first_row_offset;
3800 		(void) do_div(tmpdiv, map->strip_size);
3801 		first_column = r5or6_first_column = tmpdiv;
3802 		tmpdiv = r5or6_last_row_offset;
3803 		(void) do_div(tmpdiv, map->strip_size);
3804 		r5or6_last_column = tmpdiv;
3805 #else
3806 		first_row_offset = r5or6_first_row_offset =
3807 			(u32)((first_block % stripesize) %
3808 						r5or6_blocks_per_row);
3809 
3810 		r5or6_last_row_offset =
3811 			(u32)((last_block % stripesize) %
3812 						r5or6_blocks_per_row);
3813 
3814 		first_column = r5or6_first_column =
3815 			r5or6_first_row_offset / map->strip_size;
3816 		r5or6_last_column =
3817 			r5or6_last_row_offset / map->strip_size;
3818 #endif
3819 		if (r5or6_first_column != r5or6_last_column)
3820 			return IO_ACCEL_INELIGIBLE;
3821 
3822 		/* Request is eligible */
3823 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3824 			map->row_cnt;
3825 
3826 		map_index = (first_group *
3827 			(map->row_cnt * total_disks_per_row)) +
3828 			(map_row * total_disks_per_row) + first_column;
3829 		break;
3830 	default:
3831 		return IO_ACCEL_INELIGIBLE;
3832 	}
3833 
3834 	disk_handle = dd[map_index].ioaccel_handle;
3835 	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3836 			(first_row_offset - (first_column * map->strip_size));
3837 	disk_block_cnt = block_cnt;
3838 
3839 	/* handle differing logical/physical block sizes */
3840 	if (map->phys_blk_shift) {
3841 		disk_block <<= map->phys_blk_shift;
3842 		disk_block_cnt <<= map->phys_blk_shift;
3843 	}
3844 	BUG_ON(disk_block_cnt > 0xffff);
3845 
3846 	/* build the new CDB for the physical disk I/O */
3847 	if (disk_block > 0xffffffff) {
3848 		cdb[0] = is_write ? WRITE_16 : READ_16;
3849 		cdb[1] = 0;
3850 		cdb[2] = (u8) (disk_block >> 56);
3851 		cdb[3] = (u8) (disk_block >> 48);
3852 		cdb[4] = (u8) (disk_block >> 40);
3853 		cdb[5] = (u8) (disk_block >> 32);
3854 		cdb[6] = (u8) (disk_block >> 24);
3855 		cdb[7] = (u8) (disk_block >> 16);
3856 		cdb[8] = (u8) (disk_block >> 8);
3857 		cdb[9] = (u8) (disk_block);
3858 		cdb[10] = (u8) (disk_block_cnt >> 24);
3859 		cdb[11] = (u8) (disk_block_cnt >> 16);
3860 		cdb[12] = (u8) (disk_block_cnt >> 8);
3861 		cdb[13] = (u8) (disk_block_cnt);
3862 		cdb[14] = 0;
3863 		cdb[15] = 0;
3864 		cdb_len = 16;
3865 	} else {
3866 		cdb[0] = is_write ? WRITE_10 : READ_10;
3867 		cdb[1] = 0;
3868 		cdb[2] = (u8) (disk_block >> 24);
3869 		cdb[3] = (u8) (disk_block >> 16);
3870 		cdb[4] = (u8) (disk_block >> 8);
3871 		cdb[5] = (u8) (disk_block);
3872 		cdb[6] = 0;
3873 		cdb[7] = (u8) (disk_block_cnt >> 8);
3874 		cdb[8] = (u8) (disk_block_cnt);
3875 		cdb[9] = 0;
3876 		cdb_len = 10;
3877 	}
3878 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3879 						dev->scsi3addr);
3880 }
3881 
3882 /*
3883  * Running in struct Scsi_Host->host_lock less mode using LLD internal
3884  * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3885  */
3886 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3887 {
3888 	struct ctlr_info *h;
3889 	struct hpsa_scsi_dev_t *dev;
3890 	unsigned char scsi3addr[8];
3891 	struct CommandList *c;
3892 	int rc = 0;
3893 
3894 	/* Get the ptr to our adapter structure out of cmd->host. */
3895 	h = sdev_to_hba(cmd->device);
3896 	dev = cmd->device->hostdata;
3897 	if (!dev) {
3898 		cmd->result = DID_NO_CONNECT << 16;
3899 		cmd->scsi_done(cmd);
3900 		return 0;
3901 	}
3902 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3903 
3904 	if (unlikely(lockup_detected(h))) {
3905 		cmd->result = DID_ERROR << 16;
3906 		cmd->scsi_done(cmd);
3907 		return 0;
3908 	}
3909 	c = cmd_alloc(h);
3910 	if (c == NULL) {			/* trouble... */
3911 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3912 		return SCSI_MLQUEUE_HOST_BUSY;
3913 	}
3914 
3915 	/* Fill in the command list header */
3916 	/* save c in case we have to abort it  */
3917 	cmd->host_scribble = (unsigned char *) c;
3918 
3919 	c->cmd_type = CMD_SCSI;
3920 	c->scsi_cmd = cmd;
3921 
3922 	/* Call alternate submit routine for I/O accelerated commands.
3923 	 * Retries always go down the normal I/O path.
3924 	 */
3925 	if (likely(cmd->retries == 0 &&
3926 		cmd->request->cmd_type == REQ_TYPE_FS &&
3927 		h->acciopath_status)) {
3928 		if (dev->offload_enabled) {
3929 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
3930 			if (rc == 0)
3931 				return 0; /* Sent on ioaccel path */
3932 			if (rc < 0) {   /* scsi_dma_map failed. */
3933 				cmd_free(h, c);
3934 				return SCSI_MLQUEUE_HOST_BUSY;
3935 			}
3936 		} else if (dev->ioaccel_handle) {
3937 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
3938 			if (rc == 0)
3939 				return 0; /* Sent on direct map path */
3940 			if (rc < 0) {   /* scsi_dma_map failed. */
3941 				cmd_free(h, c);
3942 				return SCSI_MLQUEUE_HOST_BUSY;
3943 			}
3944 		}
3945 	}
3946 
3947 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
3948 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3949 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3950 					DIRECT_LOOKUP_BIT);
3951 
3952 	/* Fill in the request block... */
3953 
3954 	c->Request.Timeout = 0;
3955 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3956 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3957 	c->Request.CDBLen = cmd->cmd_len;
3958 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3959 	switch (cmd->sc_data_direction) {
3960 	case DMA_TO_DEVICE:
3961 		c->Request.type_attr_dir =
3962 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3963 		break;
3964 	case DMA_FROM_DEVICE:
3965 		c->Request.type_attr_dir =
3966 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3967 		break;
3968 	case DMA_NONE:
3969 		c->Request.type_attr_dir =
3970 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3971 		break;
3972 	case DMA_BIDIRECTIONAL:
3973 		/* This can happen if a buggy application does a scsi passthru
3974 		 * and sets both inlen and outlen to non-zero. ( see
3975 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3976 		 */
3977 
3978 		c->Request.type_attr_dir =
3979 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3980 		/* This is technically wrong, and hpsa controllers should
3981 		 * reject it with CMD_INVALID, which is the most correct
3982 		 * response, but non-fibre backends appear to let it
3983 		 * slide by, and give the same results as if this field
3984 		 * were set correctly.  Either way is acceptable for
3985 		 * our purposes here.
3986 		 */
3987 
3988 		break;
3989 
3990 	default:
3991 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3992 			cmd->sc_data_direction);
3993 		BUG();
3994 		break;
3995 	}
3996 
3997 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3998 		cmd_free(h, c);
3999 		return SCSI_MLQUEUE_HOST_BUSY;
4000 	}
4001 	enqueue_cmd_and_start_io(h, c);
4002 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4003 	return 0;
4004 }
4005 
4006 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4007 {
4008 	unsigned long flags;
4009 
4010 	/*
4011 	 * Don't let rescans be initiated on a controller known
4012 	 * to be locked up.  If the controller locks up *during*
4013 	 * a rescan, that thread is probably hosed, but at least
4014 	 * we can prevent new rescan threads from piling up on a
4015 	 * locked up controller.
4016 	 */
4017 	if (unlikely(lockup_detected(h))) {
4018 		spin_lock_irqsave(&h->scan_lock, flags);
4019 		h->scan_finished = 1;
4020 		wake_up_all(&h->scan_wait_queue);
4021 		spin_unlock_irqrestore(&h->scan_lock, flags);
4022 		return 1;
4023 	}
4024 	return 0;
4025 }
4026 
4027 static void hpsa_scan_start(struct Scsi_Host *sh)
4028 {
4029 	struct ctlr_info *h = shost_to_hba(sh);
4030 	unsigned long flags;
4031 
4032 	if (do_not_scan_if_controller_locked_up(h))
4033 		return;
4034 
4035 	/* wait until any scan already in progress is finished. */
4036 	while (1) {
4037 		spin_lock_irqsave(&h->scan_lock, flags);
4038 		if (h->scan_finished)
4039 			break;
4040 		spin_unlock_irqrestore(&h->scan_lock, flags);
4041 		wait_event(h->scan_wait_queue, h->scan_finished);
4042 		/* Note: We don't need to worry about a race between this
4043 		 * thread and driver unload because the midlayer will
4044 		 * have incremented the reference count, so unload won't
4045 		 * happen if we're in here.
4046 		 */
4047 	}
4048 	h->scan_finished = 0; /* mark scan as in progress */
4049 	spin_unlock_irqrestore(&h->scan_lock, flags);
4050 
4051 	if (do_not_scan_if_controller_locked_up(h))
4052 		return;
4053 
4054 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4055 
4056 	spin_lock_irqsave(&h->scan_lock, flags);
4057 	h->scan_finished = 1; /* mark scan as finished. */
4058 	wake_up_all(&h->scan_wait_queue);
4059 	spin_unlock_irqrestore(&h->scan_lock, flags);
4060 }
4061 
4062 static int hpsa_scan_finished(struct Scsi_Host *sh,
4063 	unsigned long elapsed_time)
4064 {
4065 	struct ctlr_info *h = shost_to_hba(sh);
4066 	unsigned long flags;
4067 	int finished;
4068 
4069 	spin_lock_irqsave(&h->scan_lock, flags);
4070 	finished = h->scan_finished;
4071 	spin_unlock_irqrestore(&h->scan_lock, flags);
4072 	return finished;
4073 }
4074 
4075 static void hpsa_unregister_scsi(struct ctlr_info *h)
4076 {
4077 	/* we are being forcibly unloaded, and may not refuse. */
4078 	scsi_remove_host(h->scsi_host);
4079 	scsi_host_put(h->scsi_host);
4080 	h->scsi_host = NULL;
4081 }
4082 
4083 static int hpsa_register_scsi(struct ctlr_info *h)
4084 {
4085 	struct Scsi_Host *sh;
4086 	int error;
4087 
4088 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4089 	if (sh == NULL)
4090 		goto fail;
4091 
4092 	sh->io_port = 0;
4093 	sh->n_io_port = 0;
4094 	sh->this_id = -1;
4095 	sh->max_channel = 3;
4096 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4097 	sh->max_lun = HPSA_MAX_LUN;
4098 	sh->max_id = HPSA_MAX_LUN;
4099 	sh->can_queue = h->nr_cmds;
4100 	if (h->hba_mode_enabled)
4101 		sh->cmd_per_lun = 7;
4102 	else
4103 		sh->cmd_per_lun = h->nr_cmds;
4104 	sh->sg_tablesize = h->maxsgentries;
4105 	h->scsi_host = sh;
4106 	sh->hostdata[0] = (unsigned long) h;
4107 	sh->irq = h->intr[h->intr_mode];
4108 	sh->unique_id = sh->irq;
4109 	error = scsi_add_host(sh, &h->pdev->dev);
4110 	if (error)
4111 		goto fail_host_put;
4112 	scsi_scan_host(sh);
4113 	return 0;
4114 
4115  fail_host_put:
4116 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4117 		" failed for controller %d\n", __func__, h->ctlr);
4118 	scsi_host_put(sh);
4119 	return error;
4120  fail:
4121 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4122 		" failed for controller %d\n", __func__, h->ctlr);
4123 	return -ENOMEM;
4124 }
4125 
4126 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4127 	unsigned char lunaddr[])
4128 {
4129 	int rc;
4130 	int count = 0;
4131 	int waittime = 1; /* seconds */
4132 	struct CommandList *c;
4133 
4134 	c = cmd_special_alloc(h);
4135 	if (!c) {
4136 		dev_warn(&h->pdev->dev, "out of memory in "
4137 			"wait_for_device_to_become_ready.\n");
4138 		return IO_ERROR;
4139 	}
4140 
4141 	/* Send test unit ready until device ready, or give up. */
4142 	while (count < HPSA_TUR_RETRY_LIMIT) {
4143 
4144 		/* Wait for a bit.  do this first, because if we send
4145 		 * the TUR right away, the reset will just abort it.
4146 		 */
4147 		msleep(1000 * waittime);
4148 		count++;
4149 		rc = 0; /* Device ready. */
4150 
4151 		/* Increase wait time with each try, up to a point. */
4152 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4153 			waittime = waittime * 2;
4154 
4155 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4156 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4157 				NULL, 0, 0, lunaddr, TYPE_CMD);
4158 		hpsa_scsi_do_simple_cmd_core(h, c);
4159 		/* no unmap needed here because no data xfer. */
4160 
4161 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4162 			break;
4163 
4164 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4165 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4166 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4167 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4168 			break;
4169 
4170 		dev_warn(&h->pdev->dev, "waiting %d secs "
4171 			"for device to become ready.\n", waittime);
4172 		rc = 1; /* device not ready. */
4173 	}
4174 
4175 	if (rc)
4176 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4177 	else
4178 		dev_warn(&h->pdev->dev, "device is ready.\n");
4179 
4180 	cmd_special_free(h, c);
4181 	return rc;
4182 }
4183 
4184 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4185  * complaining.  Doing a host- or bus-reset can't do anything good here.
4186  */
4187 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4188 {
4189 	int rc;
4190 	struct ctlr_info *h;
4191 	struct hpsa_scsi_dev_t *dev;
4192 
4193 	/* find the controller to which the command to be aborted was sent */
4194 	h = sdev_to_hba(scsicmd->device);
4195 	if (h == NULL) /* paranoia */
4196 		return FAILED;
4197 	dev = scsicmd->device->hostdata;
4198 	if (!dev) {
4199 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4200 			"device lookup failed.\n");
4201 		return FAILED;
4202 	}
4203 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4204 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4205 	/* send a reset to the SCSI LUN which the command was sent to */
4206 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4207 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4208 		return SUCCESS;
4209 
4210 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4211 	return FAILED;
4212 }
4213 
4214 static void swizzle_abort_tag(u8 *tag)
4215 {
4216 	u8 original_tag[8];
4217 
4218 	memcpy(original_tag, tag, 8);
4219 	tag[0] = original_tag[3];
4220 	tag[1] = original_tag[2];
4221 	tag[2] = original_tag[1];
4222 	tag[3] = original_tag[0];
4223 	tag[4] = original_tag[7];
4224 	tag[5] = original_tag[6];
4225 	tag[6] = original_tag[5];
4226 	tag[7] = original_tag[4];
4227 }
4228 
4229 static void hpsa_get_tag(struct ctlr_info *h,
4230 	struct CommandList *c, u32 *taglower, u32 *tagupper)
4231 {
4232 	if (c->cmd_type == CMD_IOACCEL1) {
4233 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4234 			&h->ioaccel_cmd_pool[c->cmdindex];
4235 		*tagupper = (u32) (cm1->tag >> 32);
4236 		*taglower = (u32) (cm1->tag & 0x0ffffffffULL);
4237 		return;
4238 	}
4239 	if (c->cmd_type == CMD_IOACCEL2) {
4240 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4241 			&h->ioaccel2_cmd_pool[c->cmdindex];
4242 		/* upper tag not used in ioaccel2 mode */
4243 		memset(tagupper, 0, sizeof(*tagupper));
4244 		*taglower = cm2->Tag;
4245 		return;
4246 	}
4247 	*tagupper = (u32) (c->Header.tag >> 32);
4248 	*taglower = (u32) (c->Header.tag & 0x0ffffffffULL);
4249 }
4250 
4251 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4252 	struct CommandList *abort, int swizzle)
4253 {
4254 	int rc = IO_OK;
4255 	struct CommandList *c;
4256 	struct ErrorInfo *ei;
4257 	u32 tagupper, taglower;
4258 
4259 	c = cmd_special_alloc(h);
4260 	if (c == NULL) {	/* trouble... */
4261 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4262 		return -ENOMEM;
4263 	}
4264 
4265 	/* fill_cmd can't fail here, no buffer to map */
4266 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4267 		0, 0, scsi3addr, TYPE_MSG);
4268 	if (swizzle)
4269 		swizzle_abort_tag(&c->Request.CDB[4]);
4270 	hpsa_scsi_do_simple_cmd_core(h, c);
4271 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4272 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4273 		__func__, tagupper, taglower);
4274 	/* no unmap needed here because no data xfer. */
4275 
4276 	ei = c->err_info;
4277 	switch (ei->CommandStatus) {
4278 	case CMD_SUCCESS:
4279 		break;
4280 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4281 		rc = -1;
4282 		break;
4283 	default:
4284 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4285 			__func__, tagupper, taglower);
4286 		hpsa_scsi_interpret_error(h, c);
4287 		rc = -1;
4288 		break;
4289 	}
4290 	cmd_special_free(h, c);
4291 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4292 		__func__, tagupper, taglower);
4293 	return rc;
4294 }
4295 
4296 /*
4297  * hpsa_find_cmd_in_queue
4298  *
4299  * Used to determine whether a command (find) is still present
4300  * in queue_head.   Optionally excludes the last element of queue_head.
4301  *
4302  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4303  * not yet been submitted, and so can be aborted by the driver without
4304  * sending an abort to the hardware.
4305  *
4306  * Returns pointer to command if found in queue, NULL otherwise.
4307  */
4308 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4309 			struct scsi_cmnd *find, struct list_head *queue_head)
4310 {
4311 	unsigned long flags;
4312 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4313 
4314 	if (!find)
4315 		return NULL;
4316 	spin_lock_irqsave(&h->lock, flags);
4317 	list_for_each_entry(c, queue_head, list) {
4318 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4319 			continue;
4320 		if (c->scsi_cmd == find) {
4321 			spin_unlock_irqrestore(&h->lock, flags);
4322 			return c;
4323 		}
4324 	}
4325 	spin_unlock_irqrestore(&h->lock, flags);
4326 	return NULL;
4327 }
4328 
4329 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4330 					u8 *tag, struct list_head *queue_head)
4331 {
4332 	unsigned long flags;
4333 	struct CommandList *c;
4334 
4335 	spin_lock_irqsave(&h->lock, flags);
4336 	list_for_each_entry(c, queue_head, list) {
4337 		if (memcmp(&c->Header.tag, tag, 8) != 0)
4338 			continue;
4339 		spin_unlock_irqrestore(&h->lock, flags);
4340 		return c;
4341 	}
4342 	spin_unlock_irqrestore(&h->lock, flags);
4343 	return NULL;
4344 }
4345 
4346 /* ioaccel2 path firmware cannot handle abort task requests.
4347  * Change abort requests to physical target reset, and send to the
4348  * address of the physical disk used for the ioaccel 2 command.
4349  * Return 0 on success (IO_OK)
4350  *	 -1 on failure
4351  */
4352 
4353 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4354 	unsigned char *scsi3addr, struct CommandList *abort)
4355 {
4356 	int rc = IO_OK;
4357 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4358 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4359 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4360 	unsigned char *psa = &phys_scsi3addr[0];
4361 
4362 	/* Get a pointer to the hpsa logical device. */
4363 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4364 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4365 	if (dev == NULL) {
4366 		dev_warn(&h->pdev->dev,
4367 			"Cannot abort: no device pointer for command.\n");
4368 			return -1; /* not abortable */
4369 	}
4370 
4371 	if (h->raid_offload_debug > 0)
4372 		dev_info(&h->pdev->dev,
4373 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4375 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4376 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4377 
4378 	if (!dev->offload_enabled) {
4379 		dev_warn(&h->pdev->dev,
4380 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4381 		return -1; /* not abortable */
4382 	}
4383 
4384 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4385 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4386 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4387 		return -1; /* not abortable */
4388 	}
4389 
4390 	/* send the reset */
4391 	if (h->raid_offload_debug > 0)
4392 		dev_info(&h->pdev->dev,
4393 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4394 			psa[0], psa[1], psa[2], psa[3],
4395 			psa[4], psa[5], psa[6], psa[7]);
4396 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4397 	if (rc != 0) {
4398 		dev_warn(&h->pdev->dev,
4399 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4400 			psa[0], psa[1], psa[2], psa[3],
4401 			psa[4], psa[5], psa[6], psa[7]);
4402 		return rc; /* failed to reset */
4403 	}
4404 
4405 	/* wait for device to recover */
4406 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4407 		dev_warn(&h->pdev->dev,
4408 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4409 			psa[0], psa[1], psa[2], psa[3],
4410 			psa[4], psa[5], psa[6], psa[7]);
4411 		return -1;  /* failed to recover */
4412 	}
4413 
4414 	/* device recovered */
4415 	dev_info(&h->pdev->dev,
4416 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4417 		psa[0], psa[1], psa[2], psa[3],
4418 		psa[4], psa[5], psa[6], psa[7]);
4419 
4420 	return rc; /* success */
4421 }
4422 
4423 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4424  * tell which kind we're dealing with, so we send the abort both ways.  There
4425  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4426  * way we construct our tags but we check anyway in case the assumptions which
4427  * make this true someday become false.
4428  */
4429 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4430 	unsigned char *scsi3addr, struct CommandList *abort)
4431 {
4432 	u8 swizzled_tag[8];
4433 	struct CommandList *c;
4434 	int rc = 0, rc2 = 0;
4435 
4436 	/* ioccelerator mode 2 commands should be aborted via the
4437 	 * accelerated path, since RAID path is unaware of these commands,
4438 	 * but underlying firmware can't handle abort TMF.
4439 	 * Change abort to physical device reset.
4440 	 */
4441 	if (abort->cmd_type == CMD_IOACCEL2)
4442 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4443 
4444 	/* we do not expect to find the swizzled tag in our queue, but
4445 	 * check anyway just to be sure the assumptions which make this
4446 	 * the case haven't become wrong.
4447 	 */
4448 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4449 	swizzle_abort_tag(swizzled_tag);
4450 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4451 	if (c != NULL) {
4452 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4453 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4454 	}
4455 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4456 
4457 	/* if the command is still in our queue, we can't conclude that it was
4458 	 * aborted (it might have just completed normally) but in any case
4459 	 * we don't need to try to abort it another way.
4460 	 */
4461 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4462 	if (c)
4463 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4464 	return rc && rc2;
4465 }
4466 
4467 /* Send an abort for the specified command.
4468  *	If the device and controller support it,
4469  *		send a task abort request.
4470  */
4471 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4472 {
4473 
4474 	int i, rc;
4475 	struct ctlr_info *h;
4476 	struct hpsa_scsi_dev_t *dev;
4477 	struct CommandList *abort; /* pointer to command to be aborted */
4478 	struct CommandList *found;
4479 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4480 	char msg[256];		/* For debug messaging. */
4481 	int ml = 0;
4482 	u32 tagupper, taglower;
4483 
4484 	/* Find the controller of the command to be aborted */
4485 	h = sdev_to_hba(sc->device);
4486 	if (WARN(h == NULL,
4487 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4488 		return FAILED;
4489 
4490 	/* Check that controller supports some kind of task abort */
4491 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4492 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4493 		return FAILED;
4494 
4495 	memset(msg, 0, sizeof(msg));
4496 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4497 		h->scsi_host->host_no, sc->device->channel,
4498 		sc->device->id, sc->device->lun);
4499 
4500 	/* Find the device of the command to be aborted */
4501 	dev = sc->device->hostdata;
4502 	if (!dev) {
4503 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4504 				msg);
4505 		return FAILED;
4506 	}
4507 
4508 	/* Get SCSI command to be aborted */
4509 	abort = (struct CommandList *) sc->host_scribble;
4510 	if (abort == NULL) {
4511 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4512 				msg);
4513 		return FAILED;
4514 	}
4515 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4516 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4517 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4518 	if (as != NULL)
4519 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4520 			as->cmnd[0], as->serial_number);
4521 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4522 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4523 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4524 
4525 	/* Search reqQ to See if command is queued but not submitted,
4526 	 * if so, complete the command with aborted status and remove
4527 	 * it from the reqQ.
4528 	 */
4529 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4530 	if (found) {
4531 		found->err_info->CommandStatus = CMD_ABORTED;
4532 		finish_cmd(found);
4533 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4534 				msg);
4535 		return SUCCESS;
4536 	}
4537 
4538 	/* not in reqQ, if also not in cmpQ, must have already completed */
4539 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4540 	if (!found)  {
4541 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4542 				msg);
4543 		return SUCCESS;
4544 	}
4545 
4546 	/*
4547 	 * Command is in flight, or possibly already completed
4548 	 * by the firmware (but not to the scsi mid layer) but we can't
4549 	 * distinguish which.  Send the abort down.
4550 	 */
4551 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4552 	if (rc != 0) {
4553 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4554 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4555 			h->scsi_host->host_no,
4556 			dev->bus, dev->target, dev->lun);
4557 		return FAILED;
4558 	}
4559 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4560 
4561 	/* If the abort(s) above completed and actually aborted the
4562 	 * command, then the command to be aborted should already be
4563 	 * completed.  If not, wait around a bit more to see if they
4564 	 * manage to complete normally.
4565 	 */
4566 #define ABORT_COMPLETE_WAIT_SECS 30
4567 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4568 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4569 		if (!found)
4570 			return SUCCESS;
4571 		msleep(100);
4572 	}
4573 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4574 		msg, ABORT_COMPLETE_WAIT_SECS);
4575 	return FAILED;
4576 }
4577 
4578 
4579 /*
4580  * For operations that cannot sleep, a command block is allocated at init,
4581  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4582  * which ones are free or in use.  Lock must be held when calling this.
4583  * cmd_free() is the complement.
4584  */
4585 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4586 {
4587 	struct CommandList *c;
4588 	int i;
4589 	union u64bit temp64;
4590 	dma_addr_t cmd_dma_handle, err_dma_handle;
4591 	int loopcount;
4592 
4593 	/* There is some *extremely* small but non-zero chance that that
4594 	 * multiple threads could get in here, and one thread could
4595 	 * be scanning through the list of bits looking for a free
4596 	 * one, but the free ones are always behind him, and other
4597 	 * threads sneak in behind him and eat them before he can
4598 	 * get to them, so that while there is always a free one, a
4599 	 * very unlucky thread might be starved anyway, never able to
4600 	 * beat the other threads.  In reality, this happens so
4601 	 * infrequently as to be indistinguishable from never.
4602 	 */
4603 
4604 	loopcount = 0;
4605 	do {
4606 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4607 		if (i == h->nr_cmds)
4608 			i = 0;
4609 		loopcount++;
4610 	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4611 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4612 		loopcount < 10);
4613 
4614 	/* Thread got starved?  We do not expect this to ever happen. */
4615 	if (loopcount >= 10)
4616 		return NULL;
4617 
4618 	c = h->cmd_pool + i;
4619 	memset(c, 0, sizeof(*c));
4620 	cmd_dma_handle = h->cmd_pool_dhandle
4621 	    + i * sizeof(*c);
4622 	c->err_info = h->errinfo_pool + i;
4623 	memset(c->err_info, 0, sizeof(*c->err_info));
4624 	err_dma_handle = h->errinfo_pool_dhandle
4625 	    + i * sizeof(*c->err_info);
4626 
4627 	c->cmdindex = i;
4628 
4629 	INIT_LIST_HEAD(&c->list);
4630 	c->busaddr = (u32) cmd_dma_handle;
4631 	temp64.val = (u64) err_dma_handle;
4632 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4633 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4634 
4635 	c->h = h;
4636 	return c;
4637 }
4638 
4639 /* For operations that can wait for kmalloc to possibly sleep,
4640  * this routine can be called. Lock need not be held to call
4641  * cmd_special_alloc. cmd_special_free() is the complement.
4642  */
4643 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4644 {
4645 	struct CommandList *c;
4646 	dma_addr_t cmd_dma_handle, err_dma_handle;
4647 
4648 	c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4649 	if (c == NULL)
4650 		return NULL;
4651 
4652 	c->cmd_type = CMD_SCSI;
4653 	c->cmdindex = -1;
4654 
4655 	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4656 					    &err_dma_handle);
4657 
4658 	if (c->err_info == NULL) {
4659 		pci_free_consistent(h->pdev,
4660 			sizeof(*c), c, cmd_dma_handle);
4661 		return NULL;
4662 	}
4663 
4664 	INIT_LIST_HEAD(&c->list);
4665 	c->busaddr = (u32) cmd_dma_handle;
4666 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4667 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4668 
4669 	c->h = h;
4670 	return c;
4671 }
4672 
4673 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4674 {
4675 	int i;
4676 
4677 	i = c - h->cmd_pool;
4678 	clear_bit(i & (BITS_PER_LONG - 1),
4679 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4680 }
4681 
4682 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4683 {
4684 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4685 			    c->err_info,
4686 			    (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4687 	pci_free_consistent(h->pdev, sizeof(*c),
4688 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4689 }
4690 
4691 #ifdef CONFIG_COMPAT
4692 
4693 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4694 	void __user *arg)
4695 {
4696 	IOCTL32_Command_struct __user *arg32 =
4697 	    (IOCTL32_Command_struct __user *) arg;
4698 	IOCTL_Command_struct arg64;
4699 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4700 	int err;
4701 	u32 cp;
4702 
4703 	memset(&arg64, 0, sizeof(arg64));
4704 	err = 0;
4705 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4706 			   sizeof(arg64.LUN_info));
4707 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4708 			   sizeof(arg64.Request));
4709 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4710 			   sizeof(arg64.error_info));
4711 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4712 	err |= get_user(cp, &arg32->buf);
4713 	arg64.buf = compat_ptr(cp);
4714 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4715 
4716 	if (err)
4717 		return -EFAULT;
4718 
4719 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4720 	if (err)
4721 		return err;
4722 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4723 			 sizeof(arg32->error_info));
4724 	if (err)
4725 		return -EFAULT;
4726 	return err;
4727 }
4728 
4729 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4730 	int cmd, void __user *arg)
4731 {
4732 	BIG_IOCTL32_Command_struct __user *arg32 =
4733 	    (BIG_IOCTL32_Command_struct __user *) arg;
4734 	BIG_IOCTL_Command_struct arg64;
4735 	BIG_IOCTL_Command_struct __user *p =
4736 	    compat_alloc_user_space(sizeof(arg64));
4737 	int err;
4738 	u32 cp;
4739 
4740 	memset(&arg64, 0, sizeof(arg64));
4741 	err = 0;
4742 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4743 			   sizeof(arg64.LUN_info));
4744 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4745 			   sizeof(arg64.Request));
4746 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4747 			   sizeof(arg64.error_info));
4748 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4749 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4750 	err |= get_user(cp, &arg32->buf);
4751 	arg64.buf = compat_ptr(cp);
4752 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4753 
4754 	if (err)
4755 		return -EFAULT;
4756 
4757 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4758 	if (err)
4759 		return err;
4760 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4761 			 sizeof(arg32->error_info));
4762 	if (err)
4763 		return -EFAULT;
4764 	return err;
4765 }
4766 
4767 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4768 {
4769 	switch (cmd) {
4770 	case CCISS_GETPCIINFO:
4771 	case CCISS_GETINTINFO:
4772 	case CCISS_SETINTINFO:
4773 	case CCISS_GETNODENAME:
4774 	case CCISS_SETNODENAME:
4775 	case CCISS_GETHEARTBEAT:
4776 	case CCISS_GETBUSTYPES:
4777 	case CCISS_GETFIRMVER:
4778 	case CCISS_GETDRIVVER:
4779 	case CCISS_REVALIDVOLS:
4780 	case CCISS_DEREGDISK:
4781 	case CCISS_REGNEWDISK:
4782 	case CCISS_REGNEWD:
4783 	case CCISS_RESCANDISK:
4784 	case CCISS_GETLUNINFO:
4785 		return hpsa_ioctl(dev, cmd, arg);
4786 
4787 	case CCISS_PASSTHRU32:
4788 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4789 	case CCISS_BIG_PASSTHRU32:
4790 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4791 
4792 	default:
4793 		return -ENOIOCTLCMD;
4794 	}
4795 }
4796 #endif
4797 
4798 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4799 {
4800 	struct hpsa_pci_info pciinfo;
4801 
4802 	if (!argp)
4803 		return -EINVAL;
4804 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4805 	pciinfo.bus = h->pdev->bus->number;
4806 	pciinfo.dev_fn = h->pdev->devfn;
4807 	pciinfo.board_id = h->board_id;
4808 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4809 		return -EFAULT;
4810 	return 0;
4811 }
4812 
4813 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4814 {
4815 	DriverVer_type DriverVer;
4816 	unsigned char vmaj, vmin, vsubmin;
4817 	int rc;
4818 
4819 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4820 		&vmaj, &vmin, &vsubmin);
4821 	if (rc != 3) {
4822 		dev_info(&h->pdev->dev, "driver version string '%s' "
4823 			"unrecognized.", HPSA_DRIVER_VERSION);
4824 		vmaj = 0;
4825 		vmin = 0;
4826 		vsubmin = 0;
4827 	}
4828 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4829 	if (!argp)
4830 		return -EINVAL;
4831 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4832 		return -EFAULT;
4833 	return 0;
4834 }
4835 
4836 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4837 {
4838 	IOCTL_Command_struct iocommand;
4839 	struct CommandList *c;
4840 	char *buff = NULL;
4841 	u64 temp64;
4842 	int rc = 0;
4843 
4844 	if (!argp)
4845 		return -EINVAL;
4846 	if (!capable(CAP_SYS_RAWIO))
4847 		return -EPERM;
4848 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4849 		return -EFAULT;
4850 	if ((iocommand.buf_size < 1) &&
4851 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4852 		return -EINVAL;
4853 	}
4854 	if (iocommand.buf_size > 0) {
4855 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4856 		if (buff == NULL)
4857 			return -EFAULT;
4858 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4859 			/* Copy the data into the buffer we created */
4860 			if (copy_from_user(buff, iocommand.buf,
4861 				iocommand.buf_size)) {
4862 				rc = -EFAULT;
4863 				goto out_kfree;
4864 			}
4865 		} else {
4866 			memset(buff, 0, iocommand.buf_size);
4867 		}
4868 	}
4869 	c = cmd_special_alloc(h);
4870 	if (c == NULL) {
4871 		rc = -ENOMEM;
4872 		goto out_kfree;
4873 	}
4874 	/* Fill in the command type */
4875 	c->cmd_type = CMD_IOCTL_PEND;
4876 	/* Fill in Command Header */
4877 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4878 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4879 		c->Header.SGList = 1;
4880 		c->Header.SGTotal = cpu_to_le16(1);
4881 	} else	{ /* no buffers to fill */
4882 		c->Header.SGList = 0;
4883 		c->Header.SGTotal = cpu_to_le16(0);
4884 	}
4885 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4886 	/* use the kernel address the cmd block for tag */
4887 	c->Header.tag = c->busaddr;
4888 
4889 	/* Fill in Request block */
4890 	memcpy(&c->Request, &iocommand.Request,
4891 		sizeof(c->Request));
4892 
4893 	/* Fill in the scatter gather information */
4894 	if (iocommand.buf_size > 0) {
4895 		temp64 = pci_map_single(h->pdev, buff,
4896 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4897 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4898 			c->SG[0].Addr = cpu_to_le64(0);
4899 			c->SG[0].Len = cpu_to_le32(0);
4900 			rc = -ENOMEM;
4901 			goto out;
4902 		}
4903 		c->SG[0].Addr = cpu_to_le64(temp64);
4904 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4905 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4906 	}
4907 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4908 	if (iocommand.buf_size > 0)
4909 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4910 	check_ioctl_unit_attention(h, c);
4911 
4912 	/* Copy the error information out */
4913 	memcpy(&iocommand.error_info, c->err_info,
4914 		sizeof(iocommand.error_info));
4915 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4916 		rc = -EFAULT;
4917 		goto out;
4918 	}
4919 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4920 		iocommand.buf_size > 0) {
4921 		/* Copy the data out of the buffer we created */
4922 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4923 			rc = -EFAULT;
4924 			goto out;
4925 		}
4926 	}
4927 out:
4928 	cmd_special_free(h, c);
4929 out_kfree:
4930 	kfree(buff);
4931 	return rc;
4932 }
4933 
4934 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4935 {
4936 	BIG_IOCTL_Command_struct *ioc;
4937 	struct CommandList *c;
4938 	unsigned char **buff = NULL;
4939 	int *buff_size = NULL;
4940 	u64 temp64;
4941 	BYTE sg_used = 0;
4942 	int status = 0;
4943 	int i;
4944 	u32 left;
4945 	u32 sz;
4946 	BYTE __user *data_ptr;
4947 
4948 	if (!argp)
4949 		return -EINVAL;
4950 	if (!capable(CAP_SYS_RAWIO))
4951 		return -EPERM;
4952 	ioc = (BIG_IOCTL_Command_struct *)
4953 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
4954 	if (!ioc) {
4955 		status = -ENOMEM;
4956 		goto cleanup1;
4957 	}
4958 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4959 		status = -EFAULT;
4960 		goto cleanup1;
4961 	}
4962 	if ((ioc->buf_size < 1) &&
4963 	    (ioc->Request.Type.Direction != XFER_NONE)) {
4964 		status = -EINVAL;
4965 		goto cleanup1;
4966 	}
4967 	/* Check kmalloc limits  using all SGs */
4968 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4969 		status = -EINVAL;
4970 		goto cleanup1;
4971 	}
4972 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4973 		status = -EINVAL;
4974 		goto cleanup1;
4975 	}
4976 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4977 	if (!buff) {
4978 		status = -ENOMEM;
4979 		goto cleanup1;
4980 	}
4981 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4982 	if (!buff_size) {
4983 		status = -ENOMEM;
4984 		goto cleanup1;
4985 	}
4986 	left = ioc->buf_size;
4987 	data_ptr = ioc->buf;
4988 	while (left) {
4989 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4990 		buff_size[sg_used] = sz;
4991 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4992 		if (buff[sg_used] == NULL) {
4993 			status = -ENOMEM;
4994 			goto cleanup1;
4995 		}
4996 		if (ioc->Request.Type.Direction & XFER_WRITE) {
4997 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4998 				status = -EFAULT;
4999 				goto cleanup1;
5000 			}
5001 		} else
5002 			memset(buff[sg_used], 0, sz);
5003 		left -= sz;
5004 		data_ptr += sz;
5005 		sg_used++;
5006 	}
5007 	c = cmd_special_alloc(h);
5008 	if (c == NULL) {
5009 		status = -ENOMEM;
5010 		goto cleanup1;
5011 	}
5012 	c->cmd_type = CMD_IOCTL_PEND;
5013 	c->Header.ReplyQueue = 0;
5014 	c->Header.SGList = (u8) sg_used;
5015 	c->Header.SGTotal = cpu_to_le16(sg_used);
5016 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5017 	c->Header.tag = c->busaddr;
5018 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5019 	if (ioc->buf_size > 0) {
5020 		int i;
5021 		for (i = 0; i < sg_used; i++) {
5022 			temp64 = pci_map_single(h->pdev, buff[i],
5023 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5024 			if (dma_mapping_error(&h->pdev->dev,
5025 							(dma_addr_t) temp64)) {
5026 				c->SG[i].Addr = cpu_to_le64(0);
5027 				c->SG[i].Len = cpu_to_le32(0);
5028 				hpsa_pci_unmap(h->pdev, c, i,
5029 					PCI_DMA_BIDIRECTIONAL);
5030 				status = -ENOMEM;
5031 				goto cleanup0;
5032 			}
5033 			c->SG[i].Addr = cpu_to_le64(temp64);
5034 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
5035 			c->SG[i].Ext = cpu_to_le32(0);
5036 		}
5037 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5038 	}
5039 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5040 	if (sg_used)
5041 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5042 	check_ioctl_unit_attention(h, c);
5043 	/* Copy the error information out */
5044 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5045 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5046 		status = -EFAULT;
5047 		goto cleanup0;
5048 	}
5049 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5050 		/* Copy the data out of the buffer we created */
5051 		BYTE __user *ptr = ioc->buf;
5052 		for (i = 0; i < sg_used; i++) {
5053 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5054 				status = -EFAULT;
5055 				goto cleanup0;
5056 			}
5057 			ptr += buff_size[i];
5058 		}
5059 	}
5060 	status = 0;
5061 cleanup0:
5062 	cmd_special_free(h, c);
5063 cleanup1:
5064 	if (buff) {
5065 		for (i = 0; i < sg_used; i++)
5066 			kfree(buff[i]);
5067 		kfree(buff);
5068 	}
5069 	kfree(buff_size);
5070 	kfree(ioc);
5071 	return status;
5072 }
5073 
5074 static void check_ioctl_unit_attention(struct ctlr_info *h,
5075 	struct CommandList *c)
5076 {
5077 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5078 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5079 		(void) check_for_unit_attention(h, c);
5080 }
5081 
5082 static int increment_passthru_count(struct ctlr_info *h)
5083 {
5084 	unsigned long flags;
5085 
5086 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5087 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5088 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5089 		return -1;
5090 	}
5091 	h->passthru_count++;
5092 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5093 	return 0;
5094 }
5095 
5096 static void decrement_passthru_count(struct ctlr_info *h)
5097 {
5098 	unsigned long flags;
5099 
5100 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5101 	if (h->passthru_count <= 0) {
5102 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5103 		/* not expecting to get here. */
5104 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5105 		return;
5106 	}
5107 	h->passthru_count--;
5108 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5109 }
5110 
5111 /*
5112  * ioctl
5113  */
5114 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5115 {
5116 	struct ctlr_info *h;
5117 	void __user *argp = (void __user *)arg;
5118 	int rc;
5119 
5120 	h = sdev_to_hba(dev);
5121 
5122 	switch (cmd) {
5123 	case CCISS_DEREGDISK:
5124 	case CCISS_REGNEWDISK:
5125 	case CCISS_REGNEWD:
5126 		hpsa_scan_start(h->scsi_host);
5127 		return 0;
5128 	case CCISS_GETPCIINFO:
5129 		return hpsa_getpciinfo_ioctl(h, argp);
5130 	case CCISS_GETDRIVVER:
5131 		return hpsa_getdrivver_ioctl(h, argp);
5132 	case CCISS_PASSTHRU:
5133 		if (increment_passthru_count(h))
5134 			return -EAGAIN;
5135 		rc = hpsa_passthru_ioctl(h, argp);
5136 		decrement_passthru_count(h);
5137 		return rc;
5138 	case CCISS_BIG_PASSTHRU:
5139 		if (increment_passthru_count(h))
5140 			return -EAGAIN;
5141 		rc = hpsa_big_passthru_ioctl(h, argp);
5142 		decrement_passthru_count(h);
5143 		return rc;
5144 	default:
5145 		return -ENOTTY;
5146 	}
5147 }
5148 
5149 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5150 				u8 reset_type)
5151 {
5152 	struct CommandList *c;
5153 
5154 	c = cmd_alloc(h);
5155 	if (!c)
5156 		return -ENOMEM;
5157 	/* fill_cmd can't fail here, no data buffer to map */
5158 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5159 		RAID_CTLR_LUNID, TYPE_MSG);
5160 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5161 	c->waiting = NULL;
5162 	enqueue_cmd_and_start_io(h, c);
5163 	/* Don't wait for completion, the reset won't complete.  Don't free
5164 	 * the command either.  This is the last command we will send before
5165 	 * re-initializing everything, so it doesn't matter and won't leak.
5166 	 */
5167 	return 0;
5168 }
5169 
5170 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5171 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5172 	int cmd_type)
5173 {
5174 	int pci_dir = XFER_NONE;
5175 	struct CommandList *a; /* for commands to be aborted */
5176 	u32 tupper, tlower;
5177 
5178 	c->cmd_type = CMD_IOCTL_PEND;
5179 	c->Header.ReplyQueue = 0;
5180 	if (buff != NULL && size > 0) {
5181 		c->Header.SGList = 1;
5182 		c->Header.SGTotal = cpu_to_le16(1);
5183 	} else {
5184 		c->Header.SGList = 0;
5185 		c->Header.SGTotal = cpu_to_le16(0);
5186 	}
5187 	c->Header.tag = c->busaddr;
5188 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5189 
5190 	if (cmd_type == TYPE_CMD) {
5191 		switch (cmd) {
5192 		case HPSA_INQUIRY:
5193 			/* are we trying to read a vital product page */
5194 			if (page_code & VPD_PAGE) {
5195 				c->Request.CDB[1] = 0x01;
5196 				c->Request.CDB[2] = (page_code & 0xff);
5197 			}
5198 			c->Request.CDBLen = 6;
5199 			c->Request.type_attr_dir =
5200 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5201 			c->Request.Timeout = 0;
5202 			c->Request.CDB[0] = HPSA_INQUIRY;
5203 			c->Request.CDB[4] = size & 0xFF;
5204 			break;
5205 		case HPSA_REPORT_LOG:
5206 		case HPSA_REPORT_PHYS:
5207 			/* Talking to controller so It's a physical command
5208 			   mode = 00 target = 0.  Nothing to write.
5209 			 */
5210 			c->Request.CDBLen = 12;
5211 			c->Request.type_attr_dir =
5212 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5213 			c->Request.Timeout = 0;
5214 			c->Request.CDB[0] = cmd;
5215 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5216 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5217 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5218 			c->Request.CDB[9] = size & 0xFF;
5219 			break;
5220 		case HPSA_CACHE_FLUSH:
5221 			c->Request.CDBLen = 12;
5222 			c->Request.type_attr_dir =
5223 					TYPE_ATTR_DIR(cmd_type,
5224 						ATTR_SIMPLE, XFER_WRITE);
5225 			c->Request.Timeout = 0;
5226 			c->Request.CDB[0] = BMIC_WRITE;
5227 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5228 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5229 			c->Request.CDB[8] = size & 0xFF;
5230 			break;
5231 		case TEST_UNIT_READY:
5232 			c->Request.CDBLen = 6;
5233 			c->Request.type_attr_dir =
5234 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5235 			c->Request.Timeout = 0;
5236 			break;
5237 		case HPSA_GET_RAID_MAP:
5238 			c->Request.CDBLen = 12;
5239 			c->Request.type_attr_dir =
5240 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5241 			c->Request.Timeout = 0;
5242 			c->Request.CDB[0] = HPSA_CISS_READ;
5243 			c->Request.CDB[1] = cmd;
5244 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5245 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5246 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5247 			c->Request.CDB[9] = size & 0xFF;
5248 			break;
5249 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5250 			c->Request.CDBLen = 10;
5251 			c->Request.type_attr_dir =
5252 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5253 			c->Request.Timeout = 0;
5254 			c->Request.CDB[0] = BMIC_READ;
5255 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5256 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5257 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5258 			break;
5259 		default:
5260 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5261 			BUG();
5262 			return -1;
5263 		}
5264 	} else if (cmd_type == TYPE_MSG) {
5265 		switch (cmd) {
5266 
5267 		case  HPSA_DEVICE_RESET_MSG:
5268 			c->Request.CDBLen = 16;
5269 			c->Request.type_attr_dir =
5270 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5271 			c->Request.Timeout = 0; /* Don't time out */
5272 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5273 			c->Request.CDB[0] =  cmd;
5274 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5275 			/* If bytes 4-7 are zero, it means reset the */
5276 			/* LunID device */
5277 			c->Request.CDB[4] = 0x00;
5278 			c->Request.CDB[5] = 0x00;
5279 			c->Request.CDB[6] = 0x00;
5280 			c->Request.CDB[7] = 0x00;
5281 			break;
5282 		case  HPSA_ABORT_MSG:
5283 			a = buff;       /* point to command to be aborted */
5284 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using request Tag:0x%016llx",
5285 				a->Header.tag, c->Header.tag);
5286 			tlower = (u32) (a->Header.tag >> 32);
5287 			tupper = (u32) (a->Header.tag & 0x0ffffffffULL);
5288 			c->Request.CDBLen = 16;
5289 			c->Request.type_attr_dir =
5290 					TYPE_ATTR_DIR(cmd_type,
5291 						ATTR_SIMPLE, XFER_WRITE);
5292 			c->Request.Timeout = 0; /* Don't time out */
5293 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5294 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5295 			c->Request.CDB[2] = 0x00; /* reserved */
5296 			c->Request.CDB[3] = 0x00; /* reserved */
5297 			/* Tag to abort goes in CDB[4]-CDB[11] */
5298 			c->Request.CDB[4] = tlower & 0xFF;
5299 			c->Request.CDB[5] = (tlower >> 8) & 0xFF;
5300 			c->Request.CDB[6] = (tlower >> 16) & 0xFF;
5301 			c->Request.CDB[7] = (tlower >> 24) & 0xFF;
5302 			c->Request.CDB[8] = tupper & 0xFF;
5303 			c->Request.CDB[9] = (tupper >> 8) & 0xFF;
5304 			c->Request.CDB[10] = (tupper >> 16) & 0xFF;
5305 			c->Request.CDB[11] = (tupper >> 24) & 0xFF;
5306 			c->Request.CDB[12] = 0x00; /* reserved */
5307 			c->Request.CDB[13] = 0x00; /* reserved */
5308 			c->Request.CDB[14] = 0x00; /* reserved */
5309 			c->Request.CDB[15] = 0x00; /* reserved */
5310 		break;
5311 		default:
5312 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5313 				cmd);
5314 			BUG();
5315 		}
5316 	} else {
5317 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5318 		BUG();
5319 	}
5320 
5321 	switch (GET_DIR(c->Request.type_attr_dir)) {
5322 	case XFER_READ:
5323 		pci_dir = PCI_DMA_FROMDEVICE;
5324 		break;
5325 	case XFER_WRITE:
5326 		pci_dir = PCI_DMA_TODEVICE;
5327 		break;
5328 	case XFER_NONE:
5329 		pci_dir = PCI_DMA_NONE;
5330 		break;
5331 	default:
5332 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5333 	}
5334 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5335 		return -1;
5336 	return 0;
5337 }
5338 
5339 /*
5340  * Map (physical) PCI mem into (virtual) kernel space
5341  */
5342 static void __iomem *remap_pci_mem(ulong base, ulong size)
5343 {
5344 	ulong page_base = ((ulong) base) & PAGE_MASK;
5345 	ulong page_offs = ((ulong) base) - page_base;
5346 	void __iomem *page_remapped = ioremap_nocache(page_base,
5347 		page_offs + size);
5348 
5349 	return page_remapped ? (page_remapped + page_offs) : NULL;
5350 }
5351 
5352 /* Takes cmds off the submission queue and sends them to the hardware,
5353  * then puts them on the queue of cmds waiting for completion.
5354  * Assumes h->lock is held
5355  */
5356 static void start_io(struct ctlr_info *h, unsigned long *flags)
5357 {
5358 	struct CommandList *c;
5359 
5360 	while (!list_empty(&h->reqQ)) {
5361 		c = list_entry(h->reqQ.next, struct CommandList, list);
5362 		/* can't do anything if fifo is full */
5363 		if ((h->access.fifo_full(h))) {
5364 			h->fifo_recently_full = 1;
5365 			dev_warn(&h->pdev->dev, "fifo full\n");
5366 			break;
5367 		}
5368 		h->fifo_recently_full = 0;
5369 
5370 		/* Get the first entry from the Request Q */
5371 		removeQ(c);
5372 		h->Qdepth--;
5373 
5374 		/* Put job onto the completed Q */
5375 		addQ(&h->cmpQ, c);
5376 		atomic_inc(&h->commands_outstanding);
5377 		spin_unlock_irqrestore(&h->lock, *flags);
5378 		/* Tell the controller execute command */
5379 		h->access.submit_command(h, c);
5380 		spin_lock_irqsave(&h->lock, *flags);
5381 	}
5382 }
5383 
5384 static void lock_and_start_io(struct ctlr_info *h)
5385 {
5386 	unsigned long flags;
5387 
5388 	spin_lock_irqsave(&h->lock, flags);
5389 	start_io(h, &flags);
5390 	spin_unlock_irqrestore(&h->lock, flags);
5391 }
5392 
5393 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5394 {
5395 	return h->access.command_completed(h, q);
5396 }
5397 
5398 static inline bool interrupt_pending(struct ctlr_info *h)
5399 {
5400 	return h->access.intr_pending(h);
5401 }
5402 
5403 static inline long interrupt_not_for_us(struct ctlr_info *h)
5404 {
5405 	return (h->access.intr_pending(h) == 0) ||
5406 		(h->interrupts_enabled == 0);
5407 }
5408 
5409 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5410 	u32 raw_tag)
5411 {
5412 	if (unlikely(tag_index >= h->nr_cmds)) {
5413 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5414 		return 1;
5415 	}
5416 	return 0;
5417 }
5418 
5419 static inline void finish_cmd(struct CommandList *c)
5420 {
5421 	unsigned long flags;
5422 	int io_may_be_stalled = 0;
5423 	struct ctlr_info *h = c->h;
5424 	int count;
5425 
5426 	spin_lock_irqsave(&h->lock, flags);
5427 	removeQ(c);
5428 
5429 	/*
5430 	 * Check for possibly stalled i/o.
5431 	 *
5432 	 * If a fifo_full condition is encountered, requests will back up
5433 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5434 	 * only called when a new i/o request comes in.  If no i/o's are
5435 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5436 	 * start_io from here if we detect such a danger.
5437 	 *
5438 	 * Normally, we shouldn't hit this case, but pounding on the
5439 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5440 	 * commands_outstanding is low.  We want to avoid calling
5441 	 * start_io from in here as much as possible, and esp. don't
5442 	 * want to get in a cycle where we call start_io every time
5443 	 * through here.
5444 	 */
5445 	count = atomic_read(&h->commands_outstanding);
5446 	spin_unlock_irqrestore(&h->lock, flags);
5447 	if (unlikely(h->fifo_recently_full) && count < 5)
5448 		io_may_be_stalled = 1;
5449 
5450 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5451 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5452 			|| c->cmd_type == CMD_IOACCEL2))
5453 		complete_scsi_command(c);
5454 	else if (c->cmd_type == CMD_IOCTL_PEND)
5455 		complete(c->waiting);
5456 	if (unlikely(io_may_be_stalled))
5457 		lock_and_start_io(h);
5458 }
5459 
5460 static inline u32 hpsa_tag_contains_index(u32 tag)
5461 {
5462 	return tag & DIRECT_LOOKUP_BIT;
5463 }
5464 
5465 static inline u32 hpsa_tag_to_index(u32 tag)
5466 {
5467 	return tag >> DIRECT_LOOKUP_SHIFT;
5468 }
5469 
5470 
5471 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5472 {
5473 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5474 #define HPSA_SIMPLE_ERROR_BITS 0x03
5475 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5476 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5477 	return tag & ~HPSA_PERF_ERROR_BITS;
5478 }
5479 
5480 /* process completion of an indexed ("direct lookup") command */
5481 static inline void process_indexed_cmd(struct ctlr_info *h,
5482 	u32 raw_tag)
5483 {
5484 	u32 tag_index;
5485 	struct CommandList *c;
5486 
5487 	tag_index = hpsa_tag_to_index(raw_tag);
5488 	if (!bad_tag(h, tag_index, raw_tag)) {
5489 		c = h->cmd_pool + tag_index;
5490 		finish_cmd(c);
5491 	}
5492 }
5493 
5494 /* process completion of a non-indexed command */
5495 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5496 	u32 raw_tag)
5497 {
5498 	u32 tag;
5499 	struct CommandList *c = NULL;
5500 	unsigned long flags;
5501 
5502 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5503 	spin_lock_irqsave(&h->lock, flags);
5504 	list_for_each_entry(c, &h->cmpQ, list) {
5505 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5506 			spin_unlock_irqrestore(&h->lock, flags);
5507 			finish_cmd(c);
5508 			return;
5509 		}
5510 	}
5511 	spin_unlock_irqrestore(&h->lock, flags);
5512 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5513 }
5514 
5515 /* Some controllers, like p400, will give us one interrupt
5516  * after a soft reset, even if we turned interrupts off.
5517  * Only need to check for this in the hpsa_xxx_discard_completions
5518  * functions.
5519  */
5520 static int ignore_bogus_interrupt(struct ctlr_info *h)
5521 {
5522 	if (likely(!reset_devices))
5523 		return 0;
5524 
5525 	if (likely(h->interrupts_enabled))
5526 		return 0;
5527 
5528 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5529 		"(known firmware bug.)  Ignoring.\n");
5530 
5531 	return 1;
5532 }
5533 
5534 /*
5535  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5536  * Relies on (h-q[x] == x) being true for x such that
5537  * 0 <= x < MAX_REPLY_QUEUES.
5538  */
5539 static struct ctlr_info *queue_to_hba(u8 *queue)
5540 {
5541 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5542 }
5543 
5544 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5545 {
5546 	struct ctlr_info *h = queue_to_hba(queue);
5547 	u8 q = *(u8 *) queue;
5548 	u32 raw_tag;
5549 
5550 	if (ignore_bogus_interrupt(h))
5551 		return IRQ_NONE;
5552 
5553 	if (interrupt_not_for_us(h))
5554 		return IRQ_NONE;
5555 	h->last_intr_timestamp = get_jiffies_64();
5556 	while (interrupt_pending(h)) {
5557 		raw_tag = get_next_completion(h, q);
5558 		while (raw_tag != FIFO_EMPTY)
5559 			raw_tag = next_command(h, q);
5560 	}
5561 	return IRQ_HANDLED;
5562 }
5563 
5564 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5565 {
5566 	struct ctlr_info *h = queue_to_hba(queue);
5567 	u32 raw_tag;
5568 	u8 q = *(u8 *) queue;
5569 
5570 	if (ignore_bogus_interrupt(h))
5571 		return IRQ_NONE;
5572 
5573 	h->last_intr_timestamp = get_jiffies_64();
5574 	raw_tag = get_next_completion(h, q);
5575 	while (raw_tag != FIFO_EMPTY)
5576 		raw_tag = next_command(h, q);
5577 	return IRQ_HANDLED;
5578 }
5579 
5580 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5581 {
5582 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5583 	u32 raw_tag;
5584 	u8 q = *(u8 *) queue;
5585 
5586 	if (interrupt_not_for_us(h))
5587 		return IRQ_NONE;
5588 	h->last_intr_timestamp = get_jiffies_64();
5589 	while (interrupt_pending(h)) {
5590 		raw_tag = get_next_completion(h, q);
5591 		while (raw_tag != FIFO_EMPTY) {
5592 			if (likely(hpsa_tag_contains_index(raw_tag)))
5593 				process_indexed_cmd(h, raw_tag);
5594 			else
5595 				process_nonindexed_cmd(h, raw_tag);
5596 			raw_tag = next_command(h, q);
5597 		}
5598 	}
5599 	return IRQ_HANDLED;
5600 }
5601 
5602 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5603 {
5604 	struct ctlr_info *h = queue_to_hba(queue);
5605 	u32 raw_tag;
5606 	u8 q = *(u8 *) queue;
5607 
5608 	h->last_intr_timestamp = get_jiffies_64();
5609 	raw_tag = get_next_completion(h, q);
5610 	while (raw_tag != FIFO_EMPTY) {
5611 		if (likely(hpsa_tag_contains_index(raw_tag)))
5612 			process_indexed_cmd(h, raw_tag);
5613 		else
5614 			process_nonindexed_cmd(h, raw_tag);
5615 		raw_tag = next_command(h, q);
5616 	}
5617 	return IRQ_HANDLED;
5618 }
5619 
5620 /* Send a message CDB to the firmware. Careful, this only works
5621  * in simple mode, not performant mode due to the tag lookup.
5622  * We only ever use this immediately after a controller reset.
5623  */
5624 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5625 			unsigned char type)
5626 {
5627 	struct Command {
5628 		struct CommandListHeader CommandHeader;
5629 		struct RequestBlock Request;
5630 		struct ErrDescriptor ErrorDescriptor;
5631 	};
5632 	struct Command *cmd;
5633 	static const size_t cmd_sz = sizeof(*cmd) +
5634 					sizeof(cmd->ErrorDescriptor);
5635 	dma_addr_t paddr64;
5636 	uint32_t paddr32, tag;
5637 	void __iomem *vaddr;
5638 	int i, err;
5639 
5640 	vaddr = pci_ioremap_bar(pdev, 0);
5641 	if (vaddr == NULL)
5642 		return -ENOMEM;
5643 
5644 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5645 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5646 	 * memory.
5647 	 */
5648 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5649 	if (err) {
5650 		iounmap(vaddr);
5651 		return -ENOMEM;
5652 	}
5653 
5654 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5655 	if (cmd == NULL) {
5656 		iounmap(vaddr);
5657 		return -ENOMEM;
5658 	}
5659 
5660 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5661 	 * although there's no guarantee, we assume that the address is at
5662 	 * least 4-byte aligned (most likely, it's page-aligned).
5663 	 */
5664 	paddr32 = paddr64;
5665 
5666 	cmd->CommandHeader.ReplyQueue = 0;
5667 	cmd->CommandHeader.SGList = 0;
5668 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5669 	cmd->CommandHeader.tag = paddr32;
5670 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5671 
5672 	cmd->Request.CDBLen = 16;
5673 	cmd->Request.type_attr_dir =
5674 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5675 	cmd->Request.Timeout = 0; /* Don't time out */
5676 	cmd->Request.CDB[0] = opcode;
5677 	cmd->Request.CDB[1] = type;
5678 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5679 	cmd->ErrorDescriptor.Addr =
5680 			cpu_to_le64((paddr32 + sizeof(*cmd)));
5681 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5682 
5683 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5684 
5685 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5686 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5687 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5688 			break;
5689 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5690 	}
5691 
5692 	iounmap(vaddr);
5693 
5694 	/* we leak the DMA buffer here ... no choice since the controller could
5695 	 *  still complete the command.
5696 	 */
5697 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5698 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5699 			opcode, type);
5700 		return -ETIMEDOUT;
5701 	}
5702 
5703 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5704 
5705 	if (tag & HPSA_ERROR_BIT) {
5706 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5707 			opcode, type);
5708 		return -EIO;
5709 	}
5710 
5711 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5712 		opcode, type);
5713 	return 0;
5714 }
5715 
5716 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5717 
5718 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5719 	void __iomem *vaddr, u32 use_doorbell)
5720 {
5721 	u16 pmcsr;
5722 	int pos;
5723 
5724 	if (use_doorbell) {
5725 		/* For everything after the P600, the PCI power state method
5726 		 * of resetting the controller doesn't work, so we have this
5727 		 * other way using the doorbell register.
5728 		 */
5729 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5730 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5731 
5732 		/* PMC hardware guys tell us we need a 10 second delay after
5733 		 * doorbell reset and before any attempt to talk to the board
5734 		 * at all to ensure that this actually works and doesn't fall
5735 		 * over in some weird corner cases.
5736 		 */
5737 		msleep(10000);
5738 	} else { /* Try to do it the PCI power state way */
5739 
5740 		/* Quoting from the Open CISS Specification: "The Power
5741 		 * Management Control/Status Register (CSR) controls the power
5742 		 * state of the device.  The normal operating state is D0,
5743 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5744 		 * the controller, place the interface device in D3 then to D0,
5745 		 * this causes a secondary PCI reset which will reset the
5746 		 * controller." */
5747 
5748 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5749 		if (pos == 0) {
5750 			dev_err(&pdev->dev,
5751 				"hpsa_reset_controller: "
5752 				"PCI PM not supported\n");
5753 			return -ENODEV;
5754 		}
5755 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5756 		/* enter the D3hot power management state */
5757 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5758 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5759 		pmcsr |= PCI_D3hot;
5760 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5761 
5762 		msleep(500);
5763 
5764 		/* enter the D0 power management state */
5765 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5766 		pmcsr |= PCI_D0;
5767 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5768 
5769 		/*
5770 		 * The P600 requires a small delay when changing states.
5771 		 * Otherwise we may think the board did not reset and we bail.
5772 		 * This for kdump only and is particular to the P600.
5773 		 */
5774 		msleep(500);
5775 	}
5776 	return 0;
5777 }
5778 
5779 static void init_driver_version(char *driver_version, int len)
5780 {
5781 	memset(driver_version, 0, len);
5782 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5783 }
5784 
5785 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5786 {
5787 	char *driver_version;
5788 	int i, size = sizeof(cfgtable->driver_version);
5789 
5790 	driver_version = kmalloc(size, GFP_KERNEL);
5791 	if (!driver_version)
5792 		return -ENOMEM;
5793 
5794 	init_driver_version(driver_version, size);
5795 	for (i = 0; i < size; i++)
5796 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5797 	kfree(driver_version);
5798 	return 0;
5799 }
5800 
5801 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5802 					  unsigned char *driver_ver)
5803 {
5804 	int i;
5805 
5806 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5807 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5808 }
5809 
5810 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5811 {
5812 
5813 	char *driver_ver, *old_driver_ver;
5814 	int rc, size = sizeof(cfgtable->driver_version);
5815 
5816 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5817 	if (!old_driver_ver)
5818 		return -ENOMEM;
5819 	driver_ver = old_driver_ver + size;
5820 
5821 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5822 	 * should have been changed, otherwise we know the reset failed.
5823 	 */
5824 	init_driver_version(old_driver_ver, size);
5825 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5826 	rc = !memcmp(driver_ver, old_driver_ver, size);
5827 	kfree(old_driver_ver);
5828 	return rc;
5829 }
5830 /* This does a hard reset of the controller using PCI power management
5831  * states or the using the doorbell register.
5832  */
5833 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5834 {
5835 	u64 cfg_offset;
5836 	u32 cfg_base_addr;
5837 	u64 cfg_base_addr_index;
5838 	void __iomem *vaddr;
5839 	unsigned long paddr;
5840 	u32 misc_fw_support;
5841 	int rc;
5842 	struct CfgTable __iomem *cfgtable;
5843 	u32 use_doorbell;
5844 	u32 board_id;
5845 	u16 command_register;
5846 
5847 	/* For controllers as old as the P600, this is very nearly
5848 	 * the same thing as
5849 	 *
5850 	 * pci_save_state(pci_dev);
5851 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5852 	 * pci_set_power_state(pci_dev, PCI_D0);
5853 	 * pci_restore_state(pci_dev);
5854 	 *
5855 	 * For controllers newer than the P600, the pci power state
5856 	 * method of resetting doesn't work so we have another way
5857 	 * using the doorbell register.
5858 	 */
5859 
5860 	rc = hpsa_lookup_board_id(pdev, &board_id);
5861 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5862 		dev_warn(&pdev->dev, "Not resetting device.\n");
5863 		return -ENODEV;
5864 	}
5865 
5866 	/* if controller is soft- but not hard resettable... */
5867 	if (!ctlr_is_hard_resettable(board_id))
5868 		return -ENOTSUPP; /* try soft reset later. */
5869 
5870 	/* Save the PCI command register */
5871 	pci_read_config_word(pdev, 4, &command_register);
5872 	pci_save_state(pdev);
5873 
5874 	/* find the first memory BAR, so we can find the cfg table */
5875 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5876 	if (rc)
5877 		return rc;
5878 	vaddr = remap_pci_mem(paddr, 0x250);
5879 	if (!vaddr)
5880 		return -ENOMEM;
5881 
5882 	/* find cfgtable in order to check if reset via doorbell is supported */
5883 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5884 					&cfg_base_addr_index, &cfg_offset);
5885 	if (rc)
5886 		goto unmap_vaddr;
5887 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5888 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5889 	if (!cfgtable) {
5890 		rc = -ENOMEM;
5891 		goto unmap_vaddr;
5892 	}
5893 	rc = write_driver_ver_to_cfgtable(cfgtable);
5894 	if (rc)
5895 		goto unmap_vaddr;
5896 
5897 	/* If reset via doorbell register is supported, use that.
5898 	 * There are two such methods.  Favor the newest method.
5899 	 */
5900 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5901 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5902 	if (use_doorbell) {
5903 		use_doorbell = DOORBELL_CTLR_RESET2;
5904 	} else {
5905 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5906 		if (use_doorbell) {
5907 			dev_warn(&pdev->dev, "Soft reset not supported. "
5908 				"Firmware update is required.\n");
5909 			rc = -ENOTSUPP; /* try soft reset */
5910 			goto unmap_cfgtable;
5911 		}
5912 	}
5913 
5914 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5915 	if (rc)
5916 		goto unmap_cfgtable;
5917 
5918 	pci_restore_state(pdev);
5919 	pci_write_config_word(pdev, 4, command_register);
5920 
5921 	/* Some devices (notably the HP Smart Array 5i Controller)
5922 	   need a little pause here */
5923 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
5924 
5925 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5926 	if (rc) {
5927 		dev_warn(&pdev->dev,
5928 			"failed waiting for board to become ready "
5929 			"after hard reset\n");
5930 		goto unmap_cfgtable;
5931 	}
5932 
5933 	rc = controller_reset_failed(vaddr);
5934 	if (rc < 0)
5935 		goto unmap_cfgtable;
5936 	if (rc) {
5937 		dev_warn(&pdev->dev, "Unable to successfully reset "
5938 			"controller. Will try soft reset.\n");
5939 		rc = -ENOTSUPP;
5940 	} else {
5941 		dev_info(&pdev->dev, "board ready after hard reset.\n");
5942 	}
5943 
5944 unmap_cfgtable:
5945 	iounmap(cfgtable);
5946 
5947 unmap_vaddr:
5948 	iounmap(vaddr);
5949 	return rc;
5950 }
5951 
5952 /*
5953  *  We cannot read the structure directly, for portability we must use
5954  *   the io functions.
5955  *   This is for debug only.
5956  */
5957 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5958 {
5959 #ifdef HPSA_DEBUG
5960 	int i;
5961 	char temp_name[17];
5962 
5963 	dev_info(dev, "Controller Configuration information\n");
5964 	dev_info(dev, "------------------------------------\n");
5965 	for (i = 0; i < 4; i++)
5966 		temp_name[i] = readb(&(tb->Signature[i]));
5967 	temp_name[4] = '\0';
5968 	dev_info(dev, "   Signature = %s\n", temp_name);
5969 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5970 	dev_info(dev, "   Transport methods supported = 0x%x\n",
5971 	       readl(&(tb->TransportSupport)));
5972 	dev_info(dev, "   Transport methods active = 0x%x\n",
5973 	       readl(&(tb->TransportActive)));
5974 	dev_info(dev, "   Requested transport Method = 0x%x\n",
5975 	       readl(&(tb->HostWrite.TransportRequest)));
5976 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5977 	       readl(&(tb->HostWrite.CoalIntDelay)));
5978 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5979 	       readl(&(tb->HostWrite.CoalIntCount)));
5980 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
5981 	       readl(&(tb->CmdsOutMax)));
5982 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5983 	for (i = 0; i < 16; i++)
5984 		temp_name[i] = readb(&(tb->ServerName[i]));
5985 	temp_name[16] = '\0';
5986 	dev_info(dev, "   Server Name = %s\n", temp_name);
5987 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5988 		readl(&(tb->HeartBeat)));
5989 #endif				/* HPSA_DEBUG */
5990 }
5991 
5992 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5993 {
5994 	int i, offset, mem_type, bar_type;
5995 
5996 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
5997 		return 0;
5998 	offset = 0;
5999 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6000 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6001 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6002 			offset += 4;
6003 		else {
6004 			mem_type = pci_resource_flags(pdev, i) &
6005 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6006 			switch (mem_type) {
6007 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6008 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6009 				offset += 4;	/* 32 bit */
6010 				break;
6011 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6012 				offset += 8;
6013 				break;
6014 			default:	/* reserved in PCI 2.2 */
6015 				dev_warn(&pdev->dev,
6016 				       "base address is invalid\n");
6017 				return -1;
6018 				break;
6019 			}
6020 		}
6021 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6022 			return i + 1;
6023 	}
6024 	return -1;
6025 }
6026 
6027 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6028  * controllers that are capable. If not, we use IO-APIC mode.
6029  */
6030 
6031 static void hpsa_interrupt_mode(struct ctlr_info *h)
6032 {
6033 #ifdef CONFIG_PCI_MSI
6034 	int err, i;
6035 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6036 
6037 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6038 		hpsa_msix_entries[i].vector = 0;
6039 		hpsa_msix_entries[i].entry = i;
6040 	}
6041 
6042 	/* Some boards advertise MSI but don't really support it */
6043 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6044 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6045 		goto default_int_mode;
6046 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6047 		dev_info(&h->pdev->dev, "MSIX\n");
6048 		h->msix_vector = MAX_REPLY_QUEUES;
6049 		if (h->msix_vector > num_online_cpus())
6050 			h->msix_vector = num_online_cpus();
6051 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6052 					    1, h->msix_vector);
6053 		if (err < 0) {
6054 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6055 			h->msix_vector = 0;
6056 			goto single_msi_mode;
6057 		} else if (err < h->msix_vector) {
6058 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6059 			       "available\n", err);
6060 		}
6061 		h->msix_vector = err;
6062 		for (i = 0; i < h->msix_vector; i++)
6063 			h->intr[i] = hpsa_msix_entries[i].vector;
6064 		return;
6065 	}
6066 single_msi_mode:
6067 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6068 		dev_info(&h->pdev->dev, "MSI\n");
6069 		if (!pci_enable_msi(h->pdev))
6070 			h->msi_vector = 1;
6071 		else
6072 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6073 	}
6074 default_int_mode:
6075 #endif				/* CONFIG_PCI_MSI */
6076 	/* if we get here we're going to use the default interrupt mode */
6077 	h->intr[h->intr_mode] = h->pdev->irq;
6078 }
6079 
6080 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6081 {
6082 	int i;
6083 	u32 subsystem_vendor_id, subsystem_device_id;
6084 
6085 	subsystem_vendor_id = pdev->subsystem_vendor;
6086 	subsystem_device_id = pdev->subsystem_device;
6087 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6088 		    subsystem_vendor_id;
6089 
6090 	for (i = 0; i < ARRAY_SIZE(products); i++)
6091 		if (*board_id == products[i].board_id)
6092 			return i;
6093 
6094 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6095 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6096 		!hpsa_allow_any) {
6097 		dev_warn(&pdev->dev, "unrecognized board ID: "
6098 			"0x%08x, ignoring.\n", *board_id);
6099 			return -ENODEV;
6100 	}
6101 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6102 }
6103 
6104 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6105 				    unsigned long *memory_bar)
6106 {
6107 	int i;
6108 
6109 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6110 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6111 			/* addressing mode bits already removed */
6112 			*memory_bar = pci_resource_start(pdev, i);
6113 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6114 				*memory_bar);
6115 			return 0;
6116 		}
6117 	dev_warn(&pdev->dev, "no memory BAR found\n");
6118 	return -ENODEV;
6119 }
6120 
6121 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6122 				     int wait_for_ready)
6123 {
6124 	int i, iterations;
6125 	u32 scratchpad;
6126 	if (wait_for_ready)
6127 		iterations = HPSA_BOARD_READY_ITERATIONS;
6128 	else
6129 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6130 
6131 	for (i = 0; i < iterations; i++) {
6132 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6133 		if (wait_for_ready) {
6134 			if (scratchpad == HPSA_FIRMWARE_READY)
6135 				return 0;
6136 		} else {
6137 			if (scratchpad != HPSA_FIRMWARE_READY)
6138 				return 0;
6139 		}
6140 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6141 	}
6142 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6143 	return -ENODEV;
6144 }
6145 
6146 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6147 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6148 			       u64 *cfg_offset)
6149 {
6150 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6151 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6152 	*cfg_base_addr &= (u32) 0x0000ffff;
6153 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6154 	if (*cfg_base_addr_index == -1) {
6155 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6156 		return -ENODEV;
6157 	}
6158 	return 0;
6159 }
6160 
6161 static int hpsa_find_cfgtables(struct ctlr_info *h)
6162 {
6163 	u64 cfg_offset;
6164 	u32 cfg_base_addr;
6165 	u64 cfg_base_addr_index;
6166 	u32 trans_offset;
6167 	int rc;
6168 
6169 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6170 		&cfg_base_addr_index, &cfg_offset);
6171 	if (rc)
6172 		return rc;
6173 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6174 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6175 	if (!h->cfgtable)
6176 		return -ENOMEM;
6177 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6178 	if (rc)
6179 		return rc;
6180 	/* Find performant mode table. */
6181 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6182 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6183 				cfg_base_addr_index)+cfg_offset+trans_offset,
6184 				sizeof(*h->transtable));
6185 	if (!h->transtable)
6186 		return -ENOMEM;
6187 	return 0;
6188 }
6189 
6190 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6191 {
6192 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6193 
6194 	/* Limit commands in memory limited kdump scenario. */
6195 	if (reset_devices && h->max_commands > 32)
6196 		h->max_commands = 32;
6197 
6198 	if (h->max_commands < 16) {
6199 		dev_warn(&h->pdev->dev, "Controller reports "
6200 			"max supported commands of %d, an obvious lie. "
6201 			"Using 16.  Ensure that firmware is up to date.\n",
6202 			h->max_commands);
6203 		h->max_commands = 16;
6204 	}
6205 }
6206 
6207 /* Interrogate the hardware for some limits:
6208  * max commands, max SG elements without chaining, and with chaining,
6209  * SG chain block size, etc.
6210  */
6211 static void hpsa_find_board_params(struct ctlr_info *h)
6212 {
6213 	hpsa_get_max_perf_mode_cmds(h);
6214 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6215 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6216 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6217 	/*
6218 	 * Limit in-command s/g elements to 32 save dma'able memory.
6219 	 * Howvever spec says if 0, use 31
6220 	 */
6221 	h->max_cmd_sg_entries = 31;
6222 	if (h->maxsgentries > 512) {
6223 		h->max_cmd_sg_entries = 32;
6224 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6225 		h->maxsgentries--; /* save one for chain pointer */
6226 	} else {
6227 		h->chainsize = 0;
6228 		h->maxsgentries = 31; /* default to traditional values */
6229 	}
6230 
6231 	/* Find out what task management functions are supported and cache */
6232 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6233 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6234 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6235 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6236 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6237 }
6238 
6239 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6240 {
6241 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6242 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6243 		return false;
6244 	}
6245 	return true;
6246 }
6247 
6248 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6249 {
6250 	u32 driver_support;
6251 
6252 	driver_support = readl(&(h->cfgtable->driver_support));
6253 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6254 #ifdef CONFIG_X86
6255 	driver_support |= ENABLE_SCSI_PREFETCH;
6256 #endif
6257 	driver_support |= ENABLE_UNIT_ATTN;
6258 	writel(driver_support, &(h->cfgtable->driver_support));
6259 }
6260 
6261 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6262  * in a prefetch beyond physical memory.
6263  */
6264 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6265 {
6266 	u32 dma_prefetch;
6267 
6268 	if (h->board_id != 0x3225103C)
6269 		return;
6270 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6271 	dma_prefetch |= 0x8000;
6272 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6273 }
6274 
6275 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6276 {
6277 	int i;
6278 	u32 doorbell_value;
6279 	unsigned long flags;
6280 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6281 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6282 		spin_lock_irqsave(&h->lock, flags);
6283 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6284 		spin_unlock_irqrestore(&h->lock, flags);
6285 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6286 			break;
6287 		/* delay and try again */
6288 		msleep(20);
6289 	}
6290 }
6291 
6292 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6293 {
6294 	int i;
6295 	u32 doorbell_value;
6296 	unsigned long flags;
6297 
6298 	/* under certain very rare conditions, this can take awhile.
6299 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6300 	 * as we enter this code.)
6301 	 */
6302 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6303 		spin_lock_irqsave(&h->lock, flags);
6304 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6305 		spin_unlock_irqrestore(&h->lock, flags);
6306 		if (!(doorbell_value & CFGTBL_ChangeReq))
6307 			break;
6308 		/* delay and try again */
6309 		usleep_range(10000, 20000);
6310 	}
6311 }
6312 
6313 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6314 {
6315 	u32 trans_support;
6316 
6317 	trans_support = readl(&(h->cfgtable->TransportSupport));
6318 	if (!(trans_support & SIMPLE_MODE))
6319 		return -ENOTSUPP;
6320 
6321 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6322 
6323 	/* Update the field, and then ring the doorbell */
6324 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6325 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6326 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6327 	hpsa_wait_for_mode_change_ack(h);
6328 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6329 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6330 		goto error;
6331 	h->transMethod = CFGTBL_Trans_Simple;
6332 	return 0;
6333 error:
6334 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6335 	return -ENODEV;
6336 }
6337 
6338 static int hpsa_pci_init(struct ctlr_info *h)
6339 {
6340 	int prod_index, err;
6341 
6342 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6343 	if (prod_index < 0)
6344 		return -ENODEV;
6345 	h->product_name = products[prod_index].product_name;
6346 	h->access = *(products[prod_index].access);
6347 
6348 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6349 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6350 
6351 	err = pci_enable_device(h->pdev);
6352 	if (err) {
6353 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6354 		return err;
6355 	}
6356 
6357 	err = pci_request_regions(h->pdev, HPSA);
6358 	if (err) {
6359 		dev_err(&h->pdev->dev,
6360 			"cannot obtain PCI resources, aborting\n");
6361 		return err;
6362 	}
6363 
6364 	pci_set_master(h->pdev);
6365 
6366 	hpsa_interrupt_mode(h);
6367 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6368 	if (err)
6369 		goto err_out_free_res;
6370 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6371 	if (!h->vaddr) {
6372 		err = -ENOMEM;
6373 		goto err_out_free_res;
6374 	}
6375 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6376 	if (err)
6377 		goto err_out_free_res;
6378 	err = hpsa_find_cfgtables(h);
6379 	if (err)
6380 		goto err_out_free_res;
6381 	hpsa_find_board_params(h);
6382 
6383 	if (!hpsa_CISS_signature_present(h)) {
6384 		err = -ENODEV;
6385 		goto err_out_free_res;
6386 	}
6387 	hpsa_set_driver_support_bits(h);
6388 	hpsa_p600_dma_prefetch_quirk(h);
6389 	err = hpsa_enter_simple_mode(h);
6390 	if (err)
6391 		goto err_out_free_res;
6392 	return 0;
6393 
6394 err_out_free_res:
6395 	if (h->transtable)
6396 		iounmap(h->transtable);
6397 	if (h->cfgtable)
6398 		iounmap(h->cfgtable);
6399 	if (h->vaddr)
6400 		iounmap(h->vaddr);
6401 	pci_disable_device(h->pdev);
6402 	pci_release_regions(h->pdev);
6403 	return err;
6404 }
6405 
6406 static void hpsa_hba_inquiry(struct ctlr_info *h)
6407 {
6408 	int rc;
6409 
6410 #define HBA_INQUIRY_BYTE_COUNT 64
6411 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6412 	if (!h->hba_inquiry_data)
6413 		return;
6414 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6415 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6416 	if (rc != 0) {
6417 		kfree(h->hba_inquiry_data);
6418 		h->hba_inquiry_data = NULL;
6419 	}
6420 }
6421 
6422 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6423 {
6424 	int rc, i;
6425 
6426 	if (!reset_devices)
6427 		return 0;
6428 
6429 	/* kdump kernel is loading, we don't know in which state is
6430 	 * the pci interface. The dev->enable_cnt is equal zero
6431 	 * so we call enable+disable, wait a while and switch it on.
6432 	 */
6433 	rc = pci_enable_device(pdev);
6434 	if (rc) {
6435 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6436 		return -ENODEV;
6437 	}
6438 	pci_disable_device(pdev);
6439 	msleep(260);			/* a randomly chosen number */
6440 	rc = pci_enable_device(pdev);
6441 	if (rc) {
6442 		dev_warn(&pdev->dev, "failed to enable device.\n");
6443 		return -ENODEV;
6444 	}
6445 
6446 	pci_set_master(pdev);
6447 
6448 	/* Reset the controller with a PCI power-cycle or via doorbell */
6449 	rc = hpsa_kdump_hard_reset_controller(pdev);
6450 
6451 	/* -ENOTSUPP here means we cannot reset the controller
6452 	 * but it's already (and still) up and running in
6453 	 * "performant mode".  Or, it might be 640x, which can't reset
6454 	 * due to concerns about shared bbwc between 6402/6404 pair.
6455 	 */
6456 	if (rc) {
6457 		if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
6458 			rc = -ENODEV;
6459 		goto out_disable;
6460 	}
6461 
6462 	/* Now try to get the controller to respond to a no-op */
6463 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6464 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6465 		if (hpsa_noop(pdev) == 0)
6466 			break;
6467 		else
6468 			dev_warn(&pdev->dev, "no-op failed%s\n",
6469 					(i < 11 ? "; re-trying" : ""));
6470 	}
6471 
6472 out_disable:
6473 
6474 	pci_disable_device(pdev);
6475 	return rc;
6476 }
6477 
6478 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6479 {
6480 	h->cmd_pool_bits = kzalloc(
6481 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6482 		sizeof(unsigned long), GFP_KERNEL);
6483 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6484 		    h->nr_cmds * sizeof(*h->cmd_pool),
6485 		    &(h->cmd_pool_dhandle));
6486 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6487 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6488 		    &(h->errinfo_pool_dhandle));
6489 	if ((h->cmd_pool_bits == NULL)
6490 	    || (h->cmd_pool == NULL)
6491 	    || (h->errinfo_pool == NULL)) {
6492 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6493 		return -ENOMEM;
6494 	}
6495 	return 0;
6496 }
6497 
6498 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6499 {
6500 	kfree(h->cmd_pool_bits);
6501 	if (h->cmd_pool)
6502 		pci_free_consistent(h->pdev,
6503 			    h->nr_cmds * sizeof(struct CommandList),
6504 			    h->cmd_pool, h->cmd_pool_dhandle);
6505 	if (h->ioaccel2_cmd_pool)
6506 		pci_free_consistent(h->pdev,
6507 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6508 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6509 	if (h->errinfo_pool)
6510 		pci_free_consistent(h->pdev,
6511 			    h->nr_cmds * sizeof(struct ErrorInfo),
6512 			    h->errinfo_pool,
6513 			    h->errinfo_pool_dhandle);
6514 	if (h->ioaccel_cmd_pool)
6515 		pci_free_consistent(h->pdev,
6516 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6517 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6518 }
6519 
6520 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6521 {
6522 	int i, cpu, rc;
6523 
6524 	cpu = cpumask_first(cpu_online_mask);
6525 	for (i = 0; i < h->msix_vector; i++) {
6526 		rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6527 		cpu = cpumask_next(cpu, cpu_online_mask);
6528 	}
6529 }
6530 
6531 static int hpsa_request_irq(struct ctlr_info *h,
6532 	irqreturn_t (*msixhandler)(int, void *),
6533 	irqreturn_t (*intxhandler)(int, void *))
6534 {
6535 	int rc, i;
6536 
6537 	/*
6538 	 * initialize h->q[x] = x so that interrupt handlers know which
6539 	 * queue to process.
6540 	 */
6541 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6542 		h->q[i] = (u8) i;
6543 
6544 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6545 		/* If performant mode and MSI-X, use multiple reply queues */
6546 		for (i = 0; i < h->msix_vector; i++)
6547 			rc = request_irq(h->intr[i], msixhandler,
6548 					0, h->devname,
6549 					&h->q[i]);
6550 		hpsa_irq_affinity_hints(h);
6551 	} else {
6552 		/* Use single reply pool */
6553 		if (h->msix_vector > 0 || h->msi_vector) {
6554 			rc = request_irq(h->intr[h->intr_mode],
6555 				msixhandler, 0, h->devname,
6556 				&h->q[h->intr_mode]);
6557 		} else {
6558 			rc = request_irq(h->intr[h->intr_mode],
6559 				intxhandler, IRQF_SHARED, h->devname,
6560 				&h->q[h->intr_mode]);
6561 		}
6562 	}
6563 	if (rc) {
6564 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6565 		       h->intr[h->intr_mode], h->devname);
6566 		return -ENODEV;
6567 	}
6568 	return 0;
6569 }
6570 
6571 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6572 {
6573 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6574 		HPSA_RESET_TYPE_CONTROLLER)) {
6575 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6576 		return -EIO;
6577 	}
6578 
6579 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6580 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6581 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6582 		return -1;
6583 	}
6584 
6585 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6586 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6587 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6588 			"after soft reset.\n");
6589 		return -1;
6590 	}
6591 
6592 	return 0;
6593 }
6594 
6595 static void free_irqs(struct ctlr_info *h)
6596 {
6597 	int i;
6598 
6599 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6600 		/* Single reply queue, only one irq to free */
6601 		i = h->intr_mode;
6602 		irq_set_affinity_hint(h->intr[i], NULL);
6603 		free_irq(h->intr[i], &h->q[i]);
6604 		return;
6605 	}
6606 
6607 	for (i = 0; i < h->msix_vector; i++) {
6608 		irq_set_affinity_hint(h->intr[i], NULL);
6609 		free_irq(h->intr[i], &h->q[i]);
6610 	}
6611 }
6612 
6613 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6614 {
6615 	free_irqs(h);
6616 #ifdef CONFIG_PCI_MSI
6617 	if (h->msix_vector) {
6618 		if (h->pdev->msix_enabled)
6619 			pci_disable_msix(h->pdev);
6620 	} else if (h->msi_vector) {
6621 		if (h->pdev->msi_enabled)
6622 			pci_disable_msi(h->pdev);
6623 	}
6624 #endif /* CONFIG_PCI_MSI */
6625 }
6626 
6627 static void hpsa_free_reply_queues(struct ctlr_info *h)
6628 {
6629 	int i;
6630 
6631 	for (i = 0; i < h->nreply_queues; i++) {
6632 		if (!h->reply_queue[i].head)
6633 			continue;
6634 		pci_free_consistent(h->pdev, h->reply_queue_size,
6635 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6636 		h->reply_queue[i].head = NULL;
6637 		h->reply_queue[i].busaddr = 0;
6638 	}
6639 }
6640 
6641 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6642 {
6643 	hpsa_free_irqs_and_disable_msix(h);
6644 	hpsa_free_sg_chain_blocks(h);
6645 	hpsa_free_cmd_pool(h);
6646 	kfree(h->ioaccel1_blockFetchTable);
6647 	kfree(h->blockFetchTable);
6648 	hpsa_free_reply_queues(h);
6649 	if (h->vaddr)
6650 		iounmap(h->vaddr);
6651 	if (h->transtable)
6652 		iounmap(h->transtable);
6653 	if (h->cfgtable)
6654 		iounmap(h->cfgtable);
6655 	pci_disable_device(h->pdev);
6656 	pci_release_regions(h->pdev);
6657 	kfree(h);
6658 }
6659 
6660 /* Called when controller lockup detected. */
6661 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6662 {
6663 	struct CommandList *c = NULL;
6664 
6665 	assert_spin_locked(&h->lock);
6666 	/* Mark all outstanding commands as failed and complete them. */
6667 	while (!list_empty(list)) {
6668 		c = list_entry(list->next, struct CommandList, list);
6669 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6670 		finish_cmd(c);
6671 	}
6672 }
6673 
6674 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6675 {
6676 	int i, cpu;
6677 
6678 	cpu = cpumask_first(cpu_online_mask);
6679 	for (i = 0; i < num_online_cpus(); i++) {
6680 		u32 *lockup_detected;
6681 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6682 		*lockup_detected = value;
6683 		cpu = cpumask_next(cpu, cpu_online_mask);
6684 	}
6685 	wmb(); /* be sure the per-cpu variables are out to memory */
6686 }
6687 
6688 static void controller_lockup_detected(struct ctlr_info *h)
6689 {
6690 	unsigned long flags;
6691 	u32 lockup_detected;
6692 
6693 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6694 	spin_lock_irqsave(&h->lock, flags);
6695 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6696 	if (!lockup_detected) {
6697 		/* no heartbeat, but controller gave us a zero. */
6698 		dev_warn(&h->pdev->dev,
6699 			"lockup detected but scratchpad register is zero\n");
6700 		lockup_detected = 0xffffffff;
6701 	}
6702 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6703 	spin_unlock_irqrestore(&h->lock, flags);
6704 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6705 			lockup_detected);
6706 	pci_disable_device(h->pdev);
6707 	spin_lock_irqsave(&h->lock, flags);
6708 	fail_all_cmds_on_list(h, &h->cmpQ);
6709 	fail_all_cmds_on_list(h, &h->reqQ);
6710 	spin_unlock_irqrestore(&h->lock, flags);
6711 }
6712 
6713 static void detect_controller_lockup(struct ctlr_info *h)
6714 {
6715 	u64 now;
6716 	u32 heartbeat;
6717 	unsigned long flags;
6718 
6719 	now = get_jiffies_64();
6720 	/* If we've received an interrupt recently, we're ok. */
6721 	if (time_after64(h->last_intr_timestamp +
6722 				(h->heartbeat_sample_interval), now))
6723 		return;
6724 
6725 	/*
6726 	 * If we've already checked the heartbeat recently, we're ok.
6727 	 * This could happen if someone sends us a signal. We
6728 	 * otherwise don't care about signals in this thread.
6729 	 */
6730 	if (time_after64(h->last_heartbeat_timestamp +
6731 				(h->heartbeat_sample_interval), now))
6732 		return;
6733 
6734 	/* If heartbeat has not changed since we last looked, we're not ok. */
6735 	spin_lock_irqsave(&h->lock, flags);
6736 	heartbeat = readl(&h->cfgtable->HeartBeat);
6737 	spin_unlock_irqrestore(&h->lock, flags);
6738 	if (h->last_heartbeat == heartbeat) {
6739 		controller_lockup_detected(h);
6740 		return;
6741 	}
6742 
6743 	/* We're ok. */
6744 	h->last_heartbeat = heartbeat;
6745 	h->last_heartbeat_timestamp = now;
6746 }
6747 
6748 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6749 {
6750 	int i;
6751 	char *event_type;
6752 
6753 	/* Clear the driver-requested rescan flag */
6754 	h->drv_req_rescan = 0;
6755 
6756 	/* Ask the controller to clear the events we're handling. */
6757 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6758 			| CFGTBL_Trans_io_accel2)) &&
6759 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6760 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6761 
6762 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6763 			event_type = "state change";
6764 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6765 			event_type = "configuration change";
6766 		/* Stop sending new RAID offload reqs via the IO accelerator */
6767 		scsi_block_requests(h->scsi_host);
6768 		for (i = 0; i < h->ndevices; i++)
6769 			h->dev[i]->offload_enabled = 0;
6770 		hpsa_drain_accel_commands(h);
6771 		/* Set 'accelerator path config change' bit */
6772 		dev_warn(&h->pdev->dev,
6773 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6774 			h->events, event_type);
6775 		writel(h->events, &(h->cfgtable->clear_event_notify));
6776 		/* Set the "clear event notify field update" bit 6 */
6777 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6778 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6779 		hpsa_wait_for_clear_event_notify_ack(h);
6780 		scsi_unblock_requests(h->scsi_host);
6781 	} else {
6782 		/* Acknowledge controller notification events. */
6783 		writel(h->events, &(h->cfgtable->clear_event_notify));
6784 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6785 		hpsa_wait_for_clear_event_notify_ack(h);
6786 #if 0
6787 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6788 		hpsa_wait_for_mode_change_ack(h);
6789 #endif
6790 	}
6791 	return;
6792 }
6793 
6794 /* Check a register on the controller to see if there are configuration
6795  * changes (added/changed/removed logical drives, etc.) which mean that
6796  * we should rescan the controller for devices.
6797  * Also check flag for driver-initiated rescan.
6798  */
6799 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6800 {
6801 	if (h->drv_req_rescan)
6802 		return 1;
6803 
6804 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6805 		return 0;
6806 
6807 	h->events = readl(&(h->cfgtable->event_notify));
6808 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6809 }
6810 
6811 /*
6812  * Check if any of the offline devices have become ready
6813  */
6814 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6815 {
6816 	unsigned long flags;
6817 	struct offline_device_entry *d;
6818 	struct list_head *this, *tmp;
6819 
6820 	spin_lock_irqsave(&h->offline_device_lock, flags);
6821 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6822 		d = list_entry(this, struct offline_device_entry,
6823 				offline_list);
6824 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6825 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
6826 			spin_lock_irqsave(&h->offline_device_lock, flags);
6827 			list_del(&d->offline_list);
6828 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6829 			return 1;
6830 		}
6831 		spin_lock_irqsave(&h->offline_device_lock, flags);
6832 	}
6833 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6834 	return 0;
6835 }
6836 
6837 
6838 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6839 {
6840 	unsigned long flags;
6841 	struct ctlr_info *h = container_of(to_delayed_work(work),
6842 					struct ctlr_info, monitor_ctlr_work);
6843 	detect_controller_lockup(h);
6844 	if (lockup_detected(h))
6845 		return;
6846 
6847 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6848 		scsi_host_get(h->scsi_host);
6849 		h->drv_req_rescan = 0;
6850 		hpsa_ack_ctlr_events(h);
6851 		hpsa_scan_start(h->scsi_host);
6852 		scsi_host_put(h->scsi_host);
6853 	}
6854 
6855 	spin_lock_irqsave(&h->lock, flags);
6856 	if (h->remove_in_progress) {
6857 		spin_unlock_irqrestore(&h->lock, flags);
6858 		return;
6859 	}
6860 	schedule_delayed_work(&h->monitor_ctlr_work,
6861 				h->heartbeat_sample_interval);
6862 	spin_unlock_irqrestore(&h->lock, flags);
6863 }
6864 
6865 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6866 {
6867 	int dac, rc;
6868 	struct ctlr_info *h;
6869 	int try_soft_reset = 0;
6870 	unsigned long flags;
6871 
6872 	if (number_of_controllers == 0)
6873 		printk(KERN_INFO DRIVER_NAME "\n");
6874 
6875 	rc = hpsa_init_reset_devices(pdev);
6876 	if (rc) {
6877 		if (rc != -ENOTSUPP)
6878 			return rc;
6879 		/* If the reset fails in a particular way (it has no way to do
6880 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6881 		 * a soft reset once we get the controller configured up to the
6882 		 * point that it can accept a command.
6883 		 */
6884 		try_soft_reset = 1;
6885 		rc = 0;
6886 	}
6887 
6888 reinit_after_soft_reset:
6889 
6890 	/* Command structures must be aligned on a 32-byte boundary because
6891 	 * the 5 lower bits of the address are used by the hardware. and by
6892 	 * the driver.  See comments in hpsa.h for more info.
6893 	 */
6894 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6895 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6896 	if (!h)
6897 		return -ENOMEM;
6898 
6899 	h->pdev = pdev;
6900 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6901 	INIT_LIST_HEAD(&h->cmpQ);
6902 	INIT_LIST_HEAD(&h->reqQ);
6903 	INIT_LIST_HEAD(&h->offline_device_list);
6904 	spin_lock_init(&h->lock);
6905 	spin_lock_init(&h->offline_device_lock);
6906 	spin_lock_init(&h->scan_lock);
6907 	spin_lock_init(&h->passthru_count_lock);
6908 
6909 	/* Allocate and clear per-cpu variable lockup_detected */
6910 	h->lockup_detected = alloc_percpu(u32);
6911 	if (!h->lockup_detected) {
6912 		rc = -ENOMEM;
6913 		goto clean1;
6914 	}
6915 	set_lockup_detected_for_all_cpus(h, 0);
6916 
6917 	rc = hpsa_pci_init(h);
6918 	if (rc != 0)
6919 		goto clean1;
6920 
6921 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6922 	h->ctlr = number_of_controllers;
6923 	number_of_controllers++;
6924 
6925 	/* configure PCI DMA stuff */
6926 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6927 	if (rc == 0) {
6928 		dac = 1;
6929 	} else {
6930 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6931 		if (rc == 0) {
6932 			dac = 0;
6933 		} else {
6934 			dev_err(&pdev->dev, "no suitable DMA available\n");
6935 			goto clean1;
6936 		}
6937 	}
6938 
6939 	/* make sure the board interrupts are off */
6940 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6941 
6942 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6943 		goto clean2;
6944 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6945 	       h->devname, pdev->device,
6946 	       h->intr[h->intr_mode], dac ? "" : " not");
6947 	if (hpsa_allocate_cmd_pool(h))
6948 		goto clean4;
6949 	if (hpsa_allocate_sg_chain_blocks(h))
6950 		goto clean4;
6951 	init_waitqueue_head(&h->scan_wait_queue);
6952 	h->scan_finished = 1; /* no scan currently in progress */
6953 
6954 	pci_set_drvdata(pdev, h);
6955 	h->ndevices = 0;
6956 	h->hba_mode_enabled = 0;
6957 	h->scsi_host = NULL;
6958 	spin_lock_init(&h->devlock);
6959 	hpsa_put_ctlr_into_performant_mode(h);
6960 
6961 	/* At this point, the controller is ready to take commands.
6962 	 * Now, if reset_devices and the hard reset didn't work, try
6963 	 * the soft reset and see if that works.
6964 	 */
6965 	if (try_soft_reset) {
6966 
6967 		/* This is kind of gross.  We may or may not get a completion
6968 		 * from the soft reset command, and if we do, then the value
6969 		 * from the fifo may or may not be valid.  So, we wait 10 secs
6970 		 * after the reset throwing away any completions we get during
6971 		 * that time.  Unregister the interrupt handler and register
6972 		 * fake ones to scoop up any residual completions.
6973 		 */
6974 		spin_lock_irqsave(&h->lock, flags);
6975 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6976 		spin_unlock_irqrestore(&h->lock, flags);
6977 		free_irqs(h);
6978 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6979 					hpsa_intx_discard_completions);
6980 		if (rc) {
6981 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
6982 				"soft reset.\n");
6983 			goto clean4;
6984 		}
6985 
6986 		rc = hpsa_kdump_soft_reset(h);
6987 		if (rc)
6988 			/* Neither hard nor soft reset worked, we're hosed. */
6989 			goto clean4;
6990 
6991 		dev_info(&h->pdev->dev, "Board READY.\n");
6992 		dev_info(&h->pdev->dev,
6993 			"Waiting for stale completions to drain.\n");
6994 		h->access.set_intr_mask(h, HPSA_INTR_ON);
6995 		msleep(10000);
6996 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6997 
6998 		rc = controller_reset_failed(h->cfgtable);
6999 		if (rc)
7000 			dev_info(&h->pdev->dev,
7001 				"Soft reset appears to have failed.\n");
7002 
7003 		/* since the controller's reset, we have to go back and re-init
7004 		 * everything.  Easiest to just forget what we've done and do it
7005 		 * all over again.
7006 		 */
7007 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7008 		try_soft_reset = 0;
7009 		if (rc)
7010 			/* don't go to clean4, we already unallocated */
7011 			return -ENODEV;
7012 
7013 		goto reinit_after_soft_reset;
7014 	}
7015 
7016 		/* Enable Accelerated IO path at driver layer */
7017 		h->acciopath_status = 1;
7018 
7019 	h->drv_req_rescan = 0;
7020 
7021 	/* Turn the interrupts on so we can service requests */
7022 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7023 
7024 	hpsa_hba_inquiry(h);
7025 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7026 
7027 	/* Monitor the controller for firmware lockups */
7028 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7029 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7030 	schedule_delayed_work(&h->monitor_ctlr_work,
7031 				h->heartbeat_sample_interval);
7032 	return 0;
7033 
7034 clean4:
7035 	hpsa_free_sg_chain_blocks(h);
7036 	hpsa_free_cmd_pool(h);
7037 	free_irqs(h);
7038 clean2:
7039 clean1:
7040 	if (h->lockup_detected)
7041 		free_percpu(h->lockup_detected);
7042 	kfree(h);
7043 	return rc;
7044 }
7045 
7046 static void hpsa_flush_cache(struct ctlr_info *h)
7047 {
7048 	char *flush_buf;
7049 	struct CommandList *c;
7050 
7051 	/* Don't bother trying to flush the cache if locked up */
7052 	if (unlikely(lockup_detected(h)))
7053 		return;
7054 	flush_buf = kzalloc(4, GFP_KERNEL);
7055 	if (!flush_buf)
7056 		return;
7057 
7058 	c = cmd_special_alloc(h);
7059 	if (!c) {
7060 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7061 		goto out_of_memory;
7062 	}
7063 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7064 		RAID_CTLR_LUNID, TYPE_CMD)) {
7065 		goto out;
7066 	}
7067 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7068 	if (c->err_info->CommandStatus != 0)
7069 out:
7070 		dev_warn(&h->pdev->dev,
7071 			"error flushing cache on controller\n");
7072 	cmd_special_free(h, c);
7073 out_of_memory:
7074 	kfree(flush_buf);
7075 }
7076 
7077 static void hpsa_shutdown(struct pci_dev *pdev)
7078 {
7079 	struct ctlr_info *h;
7080 
7081 	h = pci_get_drvdata(pdev);
7082 	/* Turn board interrupts off  and send the flush cache command
7083 	 * sendcmd will turn off interrupt, and send the flush...
7084 	 * To write all data in the battery backed cache to disks
7085 	 */
7086 	hpsa_flush_cache(h);
7087 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7088 	hpsa_free_irqs_and_disable_msix(h);
7089 }
7090 
7091 static void hpsa_free_device_info(struct ctlr_info *h)
7092 {
7093 	int i;
7094 
7095 	for (i = 0; i < h->ndevices; i++)
7096 		kfree(h->dev[i]);
7097 }
7098 
7099 static void hpsa_remove_one(struct pci_dev *pdev)
7100 {
7101 	struct ctlr_info *h;
7102 	unsigned long flags;
7103 
7104 	if (pci_get_drvdata(pdev) == NULL) {
7105 		dev_err(&pdev->dev, "unable to remove device\n");
7106 		return;
7107 	}
7108 	h = pci_get_drvdata(pdev);
7109 
7110 	/* Get rid of any controller monitoring work items */
7111 	spin_lock_irqsave(&h->lock, flags);
7112 	h->remove_in_progress = 1;
7113 	cancel_delayed_work(&h->monitor_ctlr_work);
7114 	spin_unlock_irqrestore(&h->lock, flags);
7115 
7116 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7117 	hpsa_shutdown(pdev);
7118 	iounmap(h->vaddr);
7119 	iounmap(h->transtable);
7120 	iounmap(h->cfgtable);
7121 	hpsa_free_device_info(h);
7122 	hpsa_free_sg_chain_blocks(h);
7123 	pci_free_consistent(h->pdev,
7124 		h->nr_cmds * sizeof(struct CommandList),
7125 		h->cmd_pool, h->cmd_pool_dhandle);
7126 	pci_free_consistent(h->pdev,
7127 		h->nr_cmds * sizeof(struct ErrorInfo),
7128 		h->errinfo_pool, h->errinfo_pool_dhandle);
7129 	hpsa_free_reply_queues(h);
7130 	kfree(h->cmd_pool_bits);
7131 	kfree(h->blockFetchTable);
7132 	kfree(h->ioaccel1_blockFetchTable);
7133 	kfree(h->ioaccel2_blockFetchTable);
7134 	kfree(h->hba_inquiry_data);
7135 	pci_disable_device(pdev);
7136 	pci_release_regions(pdev);
7137 	free_percpu(h->lockup_detected);
7138 	kfree(h);
7139 }
7140 
7141 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7142 	__attribute__((unused)) pm_message_t state)
7143 {
7144 	return -ENOSYS;
7145 }
7146 
7147 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7148 {
7149 	return -ENOSYS;
7150 }
7151 
7152 static struct pci_driver hpsa_pci_driver = {
7153 	.name = HPSA,
7154 	.probe = hpsa_init_one,
7155 	.remove = hpsa_remove_one,
7156 	.id_table = hpsa_pci_device_id,	/* id_table */
7157 	.shutdown = hpsa_shutdown,
7158 	.suspend = hpsa_suspend,
7159 	.resume = hpsa_resume,
7160 };
7161 
7162 /* Fill in bucket_map[], given nsgs (the max number of
7163  * scatter gather elements supported) and bucket[],
7164  * which is an array of 8 integers.  The bucket[] array
7165  * contains 8 different DMA transfer sizes (in 16
7166  * byte increments) which the controller uses to fetch
7167  * commands.  This function fills in bucket_map[], which
7168  * maps a given number of scatter gather elements to one of
7169  * the 8 DMA transfer sizes.  The point of it is to allow the
7170  * controller to only do as much DMA as needed to fetch the
7171  * command, with the DMA transfer size encoded in the lower
7172  * bits of the command address.
7173  */
7174 static void  calc_bucket_map(int bucket[], int num_buckets,
7175 	int nsgs, int min_blocks, int *bucket_map)
7176 {
7177 	int i, j, b, size;
7178 
7179 	/* Note, bucket_map must have nsgs+1 entries. */
7180 	for (i = 0; i <= nsgs; i++) {
7181 		/* Compute size of a command with i SG entries */
7182 		size = i + min_blocks;
7183 		b = num_buckets; /* Assume the biggest bucket */
7184 		/* Find the bucket that is just big enough */
7185 		for (j = 0; j < num_buckets; j++) {
7186 			if (bucket[j] >= size) {
7187 				b = j;
7188 				break;
7189 			}
7190 		}
7191 		/* for a command with i SG entries, use bucket b. */
7192 		bucket_map[i] = b;
7193 	}
7194 }
7195 
7196 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7197 {
7198 	int i;
7199 	unsigned long register_value;
7200 	unsigned long transMethod = CFGTBL_Trans_Performant |
7201 			(trans_support & CFGTBL_Trans_use_short_tags) |
7202 				CFGTBL_Trans_enable_directed_msix |
7203 			(trans_support & (CFGTBL_Trans_io_accel1 |
7204 				CFGTBL_Trans_io_accel2));
7205 	struct access_method access = SA5_performant_access;
7206 
7207 	/* This is a bit complicated.  There are 8 registers on
7208 	 * the controller which we write to to tell it 8 different
7209 	 * sizes of commands which there may be.  It's a way of
7210 	 * reducing the DMA done to fetch each command.  Encoded into
7211 	 * each command's tag are 3 bits which communicate to the controller
7212 	 * which of the eight sizes that command fits within.  The size of
7213 	 * each command depends on how many scatter gather entries there are.
7214 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7215 	 * with the number of 16-byte blocks a command of that size requires.
7216 	 * The smallest command possible requires 5 such 16 byte blocks.
7217 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7218 	 * blocks.  Note, this only extends to the SG entries contained
7219 	 * within the command block, and does not extend to chained blocks
7220 	 * of SG elements.   bft[] contains the eight values we write to
7221 	 * the registers.  They are not evenly distributed, but have more
7222 	 * sizes for small commands, and fewer sizes for larger commands.
7223 	 */
7224 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7225 #define MIN_IOACCEL2_BFT_ENTRY 5
7226 #define HPSA_IOACCEL2_HEADER_SZ 4
7227 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7228 			13, 14, 15, 16, 17, 18, 19,
7229 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7230 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7231 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7232 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7233 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7234 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7235 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7236 	/*  5 = 1 s/g entry or 4k
7237 	 *  6 = 2 s/g entry or 8k
7238 	 *  8 = 4 s/g entry or 16k
7239 	 * 10 = 6 s/g entry or 24k
7240 	 */
7241 
7242 	/* If the controller supports either ioaccel method then
7243 	 * we can also use the RAID stack submit path that does not
7244 	 * perform the superfluous readl() after each command submission.
7245 	 */
7246 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7247 		access = SA5_performant_access_no_read;
7248 
7249 	/* Controller spec: zero out this buffer. */
7250 	for (i = 0; i < h->nreply_queues; i++)
7251 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7252 
7253 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7254 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7255 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7256 	for (i = 0; i < 8; i++)
7257 		writel(bft[i], &h->transtable->BlockFetch[i]);
7258 
7259 	/* size of controller ring buffer */
7260 	writel(h->max_commands, &h->transtable->RepQSize);
7261 	writel(h->nreply_queues, &h->transtable->RepQCount);
7262 	writel(0, &h->transtable->RepQCtrAddrLow32);
7263 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7264 
7265 	for (i = 0; i < h->nreply_queues; i++) {
7266 		writel(0, &h->transtable->RepQAddr[i].upper);
7267 		writel(h->reply_queue[i].busaddr,
7268 			&h->transtable->RepQAddr[i].lower);
7269 	}
7270 
7271 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7272 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7273 	/*
7274 	 * enable outbound interrupt coalescing in accelerator mode;
7275 	 */
7276 	if (trans_support & CFGTBL_Trans_io_accel1) {
7277 		access = SA5_ioaccel_mode1_access;
7278 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7279 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7280 	} else {
7281 		if (trans_support & CFGTBL_Trans_io_accel2) {
7282 			access = SA5_ioaccel_mode2_access;
7283 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7284 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7285 		}
7286 	}
7287 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7288 	hpsa_wait_for_mode_change_ack(h);
7289 	register_value = readl(&(h->cfgtable->TransportActive));
7290 	if (!(register_value & CFGTBL_Trans_Performant)) {
7291 		dev_warn(&h->pdev->dev, "unable to get board into"
7292 					" performant mode\n");
7293 		return;
7294 	}
7295 	/* Change the access methods to the performant access methods */
7296 	h->access = access;
7297 	h->transMethod = transMethod;
7298 
7299 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7300 		(trans_support & CFGTBL_Trans_io_accel2)))
7301 		return;
7302 
7303 	if (trans_support & CFGTBL_Trans_io_accel1) {
7304 		/* Set up I/O accelerator mode */
7305 		for (i = 0; i < h->nreply_queues; i++) {
7306 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7307 			h->reply_queue[i].current_entry =
7308 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7309 		}
7310 		bft[7] = h->ioaccel_maxsg + 8;
7311 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7312 				h->ioaccel1_blockFetchTable);
7313 
7314 		/* initialize all reply queue entries to unused */
7315 		for (i = 0; i < h->nreply_queues; i++)
7316 			memset(h->reply_queue[i].head,
7317 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7318 				h->reply_queue_size);
7319 
7320 		/* set all the constant fields in the accelerator command
7321 		 * frames once at init time to save CPU cycles later.
7322 		 */
7323 		for (i = 0; i < h->nr_cmds; i++) {
7324 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7325 
7326 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7327 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7328 					(i * sizeof(struct ErrorInfo)));
7329 			cp->err_info_len = sizeof(struct ErrorInfo);
7330 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7331 			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7332 			cp->timeout_sec = 0;
7333 			cp->ReplyQueue = 0;
7334 			cp->tag =
7335 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7336 						DIRECT_LOOKUP_BIT);
7337 			cp->host_addr =
7338 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7339 					(i * sizeof(struct io_accel1_cmd)));
7340 		}
7341 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7342 		u64 cfg_offset, cfg_base_addr_index;
7343 		u32 bft2_offset, cfg_base_addr;
7344 		int rc;
7345 
7346 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7347 			&cfg_base_addr_index, &cfg_offset);
7348 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7349 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7350 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7351 				4, h->ioaccel2_blockFetchTable);
7352 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7353 		BUILD_BUG_ON(offsetof(struct CfgTable,
7354 				io_accel_request_size_offset) != 0xb8);
7355 		h->ioaccel2_bft2_regs =
7356 			remap_pci_mem(pci_resource_start(h->pdev,
7357 					cfg_base_addr_index) +
7358 					cfg_offset + bft2_offset,
7359 					ARRAY_SIZE(bft2) *
7360 					sizeof(*h->ioaccel2_bft2_regs));
7361 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7362 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7363 	}
7364 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7365 	hpsa_wait_for_mode_change_ack(h);
7366 }
7367 
7368 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7369 {
7370 	h->ioaccel_maxsg =
7371 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7372 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7373 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7374 
7375 	/* Command structures must be aligned on a 128-byte boundary
7376 	 * because the 7 lower bits of the address are used by the
7377 	 * hardware.
7378 	 */
7379 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7380 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7381 	h->ioaccel_cmd_pool =
7382 		pci_alloc_consistent(h->pdev,
7383 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7384 			&(h->ioaccel_cmd_pool_dhandle));
7385 
7386 	h->ioaccel1_blockFetchTable =
7387 		kmalloc(((h->ioaccel_maxsg + 1) *
7388 				sizeof(u32)), GFP_KERNEL);
7389 
7390 	if ((h->ioaccel_cmd_pool == NULL) ||
7391 		(h->ioaccel1_blockFetchTable == NULL))
7392 		goto clean_up;
7393 
7394 	memset(h->ioaccel_cmd_pool, 0,
7395 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7396 	return 0;
7397 
7398 clean_up:
7399 	if (h->ioaccel_cmd_pool)
7400 		pci_free_consistent(h->pdev,
7401 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7402 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7403 	kfree(h->ioaccel1_blockFetchTable);
7404 	return 1;
7405 }
7406 
7407 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7408 {
7409 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7410 
7411 	h->ioaccel_maxsg =
7412 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7413 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7414 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7415 
7416 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7417 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7418 	h->ioaccel2_cmd_pool =
7419 		pci_alloc_consistent(h->pdev,
7420 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7421 			&(h->ioaccel2_cmd_pool_dhandle));
7422 
7423 	h->ioaccel2_blockFetchTable =
7424 		kmalloc(((h->ioaccel_maxsg + 1) *
7425 				sizeof(u32)), GFP_KERNEL);
7426 
7427 	if ((h->ioaccel2_cmd_pool == NULL) ||
7428 		(h->ioaccel2_blockFetchTable == NULL))
7429 		goto clean_up;
7430 
7431 	memset(h->ioaccel2_cmd_pool, 0,
7432 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7433 	return 0;
7434 
7435 clean_up:
7436 	if (h->ioaccel2_cmd_pool)
7437 		pci_free_consistent(h->pdev,
7438 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7439 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7440 	kfree(h->ioaccel2_blockFetchTable);
7441 	return 1;
7442 }
7443 
7444 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7445 {
7446 	u32 trans_support;
7447 	unsigned long transMethod = CFGTBL_Trans_Performant |
7448 					CFGTBL_Trans_use_short_tags;
7449 	int i;
7450 
7451 	if (hpsa_simple_mode)
7452 		return;
7453 
7454 	trans_support = readl(&(h->cfgtable->TransportSupport));
7455 	if (!(trans_support & PERFORMANT_MODE))
7456 		return;
7457 
7458 	/* Check for I/O accelerator mode support */
7459 	if (trans_support & CFGTBL_Trans_io_accel1) {
7460 		transMethod |= CFGTBL_Trans_io_accel1 |
7461 				CFGTBL_Trans_enable_directed_msix;
7462 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7463 			goto clean_up;
7464 	} else {
7465 		if (trans_support & CFGTBL_Trans_io_accel2) {
7466 				transMethod |= CFGTBL_Trans_io_accel2 |
7467 				CFGTBL_Trans_enable_directed_msix;
7468 		if (ioaccel2_alloc_cmds_and_bft(h))
7469 			goto clean_up;
7470 		}
7471 	}
7472 
7473 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7474 	hpsa_get_max_perf_mode_cmds(h);
7475 	/* Performant mode ring buffer and supporting data structures */
7476 	h->reply_queue_size = h->max_commands * sizeof(u64);
7477 
7478 	for (i = 0; i < h->nreply_queues; i++) {
7479 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7480 						h->reply_queue_size,
7481 						&(h->reply_queue[i].busaddr));
7482 		if (!h->reply_queue[i].head)
7483 			goto clean_up;
7484 		h->reply_queue[i].size = h->max_commands;
7485 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7486 		h->reply_queue[i].current_entry = 0;
7487 	}
7488 
7489 	/* Need a block fetch table for performant mode */
7490 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7491 				sizeof(u32)), GFP_KERNEL);
7492 	if (!h->blockFetchTable)
7493 		goto clean_up;
7494 
7495 	hpsa_enter_performant_mode(h, trans_support);
7496 	return;
7497 
7498 clean_up:
7499 	hpsa_free_reply_queues(h);
7500 	kfree(h->blockFetchTable);
7501 }
7502 
7503 static int is_accelerated_cmd(struct CommandList *c)
7504 {
7505 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7506 }
7507 
7508 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7509 {
7510 	struct CommandList *c = NULL;
7511 	unsigned long flags;
7512 	int accel_cmds_out;
7513 
7514 	do { /* wait for all outstanding commands to drain out */
7515 		accel_cmds_out = 0;
7516 		spin_lock_irqsave(&h->lock, flags);
7517 		list_for_each_entry(c, &h->cmpQ, list)
7518 			accel_cmds_out += is_accelerated_cmd(c);
7519 		list_for_each_entry(c, &h->reqQ, list)
7520 			accel_cmds_out += is_accelerated_cmd(c);
7521 		spin_unlock_irqrestore(&h->lock, flags);
7522 		if (accel_cmds_out <= 0)
7523 			break;
7524 		msleep(100);
7525 	} while (1);
7526 }
7527 
7528 /*
7529  *  This is it.  Register the PCI driver information for the cards we control
7530  *  the OS will call our registered routines when it finds one of our cards.
7531  */
7532 static int __init hpsa_init(void)
7533 {
7534 	return pci_register_driver(&hpsa_pci_driver);
7535 }
7536 
7537 static void __exit hpsa_cleanup(void)
7538 {
7539 	pci_unregister_driver(&hpsa_pci_driver);
7540 }
7541 
7542 static void __attribute__((unused)) verify_offsets(void)
7543 {
7544 #define VERIFY_OFFSET(member, offset) \
7545 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7546 
7547 	VERIFY_OFFSET(structure_size, 0);
7548 	VERIFY_OFFSET(volume_blk_size, 4);
7549 	VERIFY_OFFSET(volume_blk_cnt, 8);
7550 	VERIFY_OFFSET(phys_blk_shift, 16);
7551 	VERIFY_OFFSET(parity_rotation_shift, 17);
7552 	VERIFY_OFFSET(strip_size, 18);
7553 	VERIFY_OFFSET(disk_starting_blk, 20);
7554 	VERIFY_OFFSET(disk_blk_cnt, 28);
7555 	VERIFY_OFFSET(data_disks_per_row, 36);
7556 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7557 	VERIFY_OFFSET(row_cnt, 40);
7558 	VERIFY_OFFSET(layout_map_count, 42);
7559 	VERIFY_OFFSET(flags, 44);
7560 	VERIFY_OFFSET(dekindex, 46);
7561 	/* VERIFY_OFFSET(reserved, 48 */
7562 	VERIFY_OFFSET(data, 64);
7563 
7564 #undef VERIFY_OFFSET
7565 
7566 #define VERIFY_OFFSET(member, offset) \
7567 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7568 
7569 	VERIFY_OFFSET(IU_type, 0);
7570 	VERIFY_OFFSET(direction, 1);
7571 	VERIFY_OFFSET(reply_queue, 2);
7572 	/* VERIFY_OFFSET(reserved1, 3);  */
7573 	VERIFY_OFFSET(scsi_nexus, 4);
7574 	VERIFY_OFFSET(Tag, 8);
7575 	VERIFY_OFFSET(cdb, 16);
7576 	VERIFY_OFFSET(cciss_lun, 32);
7577 	VERIFY_OFFSET(data_len, 40);
7578 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7579 	VERIFY_OFFSET(sg_count, 45);
7580 	/* VERIFY_OFFSET(reserved3 */
7581 	VERIFY_OFFSET(err_ptr, 48);
7582 	VERIFY_OFFSET(err_len, 56);
7583 	/* VERIFY_OFFSET(reserved4  */
7584 	VERIFY_OFFSET(sg, 64);
7585 
7586 #undef VERIFY_OFFSET
7587 
7588 #define VERIFY_OFFSET(member, offset) \
7589 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7590 
7591 	VERIFY_OFFSET(dev_handle, 0x00);
7592 	VERIFY_OFFSET(reserved1, 0x02);
7593 	VERIFY_OFFSET(function, 0x03);
7594 	VERIFY_OFFSET(reserved2, 0x04);
7595 	VERIFY_OFFSET(err_info, 0x0C);
7596 	VERIFY_OFFSET(reserved3, 0x10);
7597 	VERIFY_OFFSET(err_info_len, 0x12);
7598 	VERIFY_OFFSET(reserved4, 0x13);
7599 	VERIFY_OFFSET(sgl_offset, 0x14);
7600 	VERIFY_OFFSET(reserved5, 0x15);
7601 	VERIFY_OFFSET(transfer_len, 0x1C);
7602 	VERIFY_OFFSET(reserved6, 0x20);
7603 	VERIFY_OFFSET(io_flags, 0x24);
7604 	VERIFY_OFFSET(reserved7, 0x26);
7605 	VERIFY_OFFSET(LUN, 0x34);
7606 	VERIFY_OFFSET(control, 0x3C);
7607 	VERIFY_OFFSET(CDB, 0x40);
7608 	VERIFY_OFFSET(reserved8, 0x50);
7609 	VERIFY_OFFSET(host_context_flags, 0x60);
7610 	VERIFY_OFFSET(timeout_sec, 0x62);
7611 	VERIFY_OFFSET(ReplyQueue, 0x64);
7612 	VERIFY_OFFSET(reserved9, 0x65);
7613 	VERIFY_OFFSET(tag, 0x68);
7614 	VERIFY_OFFSET(host_addr, 0x70);
7615 	VERIFY_OFFSET(CISS_LUN, 0x78);
7616 	VERIFY_OFFSET(SG, 0x78 + 8);
7617 #undef VERIFY_OFFSET
7618 }
7619 
7620 module_init(hpsa_init);
7621 module_exit(hpsa_cleanup);
7622