xref: /openbmc/linux/drivers/scsi/hpsa.c (revision c7ee65b3)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62 
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66 
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69 
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 	HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77 
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81 		"Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85 	"Use 'simple mode' rather than 'performant mode'");
86 
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
135 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136 	{0,}
137 };
138 
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140 
141 /*  board_id = Subsystem Device ID & Vendor ID
142  *  product = Marketing Name for the board
143  *  access = Address of the struct of function pointers
144  */
145 static struct board_type products[] = {
146 	{0x3241103C, "Smart Array P212", &SA5_access},
147 	{0x3243103C, "Smart Array P410", &SA5_access},
148 	{0x3245103C, "Smart Array P410i", &SA5_access},
149 	{0x3247103C, "Smart Array P411", &SA5_access},
150 	{0x3249103C, "Smart Array P812", &SA5_access},
151 	{0x324A103C, "Smart Array P712m", &SA5_access},
152 	{0x324B103C, "Smart Array P711m", &SA5_access},
153 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 	{0x3350103C, "Smart Array P222", &SA5_access},
155 	{0x3351103C, "Smart Array P420", &SA5_access},
156 	{0x3352103C, "Smart Array P421", &SA5_access},
157 	{0x3353103C, "Smart Array P822", &SA5_access},
158 	{0x3354103C, "Smart Array P420i", &SA5_access},
159 	{0x3355103C, "Smart Array P220i", &SA5_access},
160 	{0x3356103C, "Smart Array P721m", &SA5_access},
161 	{0x1921103C, "Smart Array P830i", &SA5_access},
162 	{0x1922103C, "Smart Array P430", &SA5_access},
163 	{0x1923103C, "Smart Array P431", &SA5_access},
164 	{0x1924103C, "Smart Array P830", &SA5_access},
165 	{0x1926103C, "Smart Array P731m", &SA5_access},
166 	{0x1928103C, "Smart Array P230i", &SA5_access},
167 	{0x1929103C, "Smart Array P530", &SA5_access},
168 	{0x21BD103C, "Smart Array", &SA5_access},
169 	{0x21BE103C, "Smart Array", &SA5_access},
170 	{0x21BF103C, "Smart Array", &SA5_access},
171 	{0x21C0103C, "Smart Array", &SA5_access},
172 	{0x21C1103C, "Smart Array", &SA5_access},
173 	{0x21C2103C, "Smart Array", &SA5_access},
174 	{0x21C3103C, "Smart Array", &SA5_access},
175 	{0x21C4103C, "Smart Array", &SA5_access},
176 	{0x21C5103C, "Smart Array", &SA5_access},
177 	{0x21C6103C, "Smart Array", &SA5_access},
178 	{0x21C7103C, "Smart Array", &SA5_access},
179 	{0x21C8103C, "Smart Array", &SA5_access},
180 	{0x21C9103C, "Smart Array", &SA5_access},
181 	{0x21CA103C, "Smart Array", &SA5_access},
182 	{0x21CB103C, "Smart Array", &SA5_access},
183 	{0x21CC103C, "Smart Array", &SA5_access},
184 	{0x21CD103C, "Smart Array", &SA5_access},
185 	{0x21CE103C, "Smart Array", &SA5_access},
186 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193 
194 static int number_of_controllers;
195 
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 static void lock_and_start_io(struct ctlr_info *h);
200 static void start_io(struct ctlr_info *h, unsigned long *flags);
201 
202 #ifdef CONFIG_COMPAT
203 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
204 	void __user *arg);
205 #endif
206 
207 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
211 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213 	int cmd_type);
214 #define VPD_PAGE (1 << 8)
215 
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219 	unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221 
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226 
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 	struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 	struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 	int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 			       u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 				    unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 				     int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 	u8 *scsi3addr);
254 
255 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
256 {
257 	unsigned long *priv = shost_priv(sdev->host);
258 	return (struct ctlr_info *) *priv;
259 }
260 
261 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
262 {
263 	unsigned long *priv = shost_priv(sh);
264 	return (struct ctlr_info *) *priv;
265 }
266 
267 static int check_for_unit_attention(struct ctlr_info *h,
268 	struct CommandList *c)
269 {
270 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271 		return 0;
272 
273 	switch (c->err_info->SenseInfo[12]) {
274 	case STATE_CHANGED:
275 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276 			"detected, command retried\n", h->ctlr);
277 		break;
278 	case LUN_FAILED:
279 		dev_warn(&h->pdev->dev,
280 			HPSA "%d: LUN failure detected\n", h->ctlr);
281 		break;
282 	case REPORT_LUNS_CHANGED:
283 		dev_warn(&h->pdev->dev,
284 			HPSA "%d: report LUN data changed\n", h->ctlr);
285 	/*
286 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287 	 * target (array) devices.
288 	 */
289 		break;
290 	case POWER_OR_RESET:
291 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292 			"or device reset detected\n", h->ctlr);
293 		break;
294 	case UNIT_ATTENTION_CLEARED:
295 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296 		    "cleared by another initiator\n", h->ctlr);
297 		break;
298 	default:
299 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300 			"unit attention detected\n", h->ctlr);
301 		break;
302 	}
303 	return 1;
304 }
305 
306 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
307 {
308 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
311 		return 0;
312 	dev_warn(&h->pdev->dev, HPSA "device busy");
313 	return 1;
314 }
315 
316 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317 					 struct device_attribute *attr,
318 					 const char *buf, size_t count)
319 {
320 	int status, len;
321 	struct ctlr_info *h;
322 	struct Scsi_Host *shost = class_to_shost(dev);
323 	char tmpbuf[10];
324 
325 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
326 		return -EACCES;
327 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328 	strncpy(tmpbuf, buf, len);
329 	tmpbuf[len] = '\0';
330 	if (sscanf(tmpbuf, "%d", &status) != 1)
331 		return -EINVAL;
332 	h = shost_to_hba(shost);
333 	h->acciopath_status = !!status;
334 	dev_warn(&h->pdev->dev,
335 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
336 		h->acciopath_status ? "enabled" : "disabled");
337 	return count;
338 }
339 
340 static ssize_t host_store_raid_offload_debug(struct device *dev,
341 					 struct device_attribute *attr,
342 					 const char *buf, size_t count)
343 {
344 	int debug_level, len;
345 	struct ctlr_info *h;
346 	struct Scsi_Host *shost = class_to_shost(dev);
347 	char tmpbuf[10];
348 
349 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
350 		return -EACCES;
351 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352 	strncpy(tmpbuf, buf, len);
353 	tmpbuf[len] = '\0';
354 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
355 		return -EINVAL;
356 	if (debug_level < 0)
357 		debug_level = 0;
358 	h = shost_to_hba(shost);
359 	h->raid_offload_debug = debug_level;
360 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361 		h->raid_offload_debug);
362 	return count;
363 }
364 
365 static ssize_t host_store_rescan(struct device *dev,
366 				 struct device_attribute *attr,
367 				 const char *buf, size_t count)
368 {
369 	struct ctlr_info *h;
370 	struct Scsi_Host *shost = class_to_shost(dev);
371 	h = shost_to_hba(shost);
372 	hpsa_scan_start(h->scsi_host);
373 	return count;
374 }
375 
376 static ssize_t host_show_firmware_revision(struct device *dev,
377 	     struct device_attribute *attr, char *buf)
378 {
379 	struct ctlr_info *h;
380 	struct Scsi_Host *shost = class_to_shost(dev);
381 	unsigned char *fwrev;
382 
383 	h = shost_to_hba(shost);
384 	if (!h->hba_inquiry_data)
385 		return 0;
386 	fwrev = &h->hba_inquiry_data[32];
387 	return snprintf(buf, 20, "%c%c%c%c\n",
388 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 }
390 
391 static ssize_t host_show_commands_outstanding(struct device *dev,
392 	     struct device_attribute *attr, char *buf)
393 {
394 	struct Scsi_Host *shost = class_to_shost(dev);
395 	struct ctlr_info *h = shost_to_hba(shost);
396 
397 	return snprintf(buf, 20, "%d\n",
398 			atomic_read(&h->commands_outstanding));
399 }
400 
401 static ssize_t host_show_transport_mode(struct device *dev,
402 	struct device_attribute *attr, char *buf)
403 {
404 	struct ctlr_info *h;
405 	struct Scsi_Host *shost = class_to_shost(dev);
406 
407 	h = shost_to_hba(shost);
408 	return snprintf(buf, 20, "%s\n",
409 		h->transMethod & CFGTBL_Trans_Performant ?
410 			"performant" : "simple");
411 }
412 
413 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
414 	struct device_attribute *attr, char *buf)
415 {
416 	struct ctlr_info *h;
417 	struct Scsi_Host *shost = class_to_shost(dev);
418 
419 	h = shost_to_hba(shost);
420 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
421 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
422 }
423 
424 /* List of controllers which cannot be hard reset on kexec with reset_devices */
425 static u32 unresettable_controller[] = {
426 	0x324a103C, /* Smart Array P712m */
427 	0x324b103C, /* SmartArray P711m */
428 	0x3223103C, /* Smart Array P800 */
429 	0x3234103C, /* Smart Array P400 */
430 	0x3235103C, /* Smart Array P400i */
431 	0x3211103C, /* Smart Array E200i */
432 	0x3212103C, /* Smart Array E200 */
433 	0x3213103C, /* Smart Array E200i */
434 	0x3214103C, /* Smart Array E200i */
435 	0x3215103C, /* Smart Array E200i */
436 	0x3237103C, /* Smart Array E500 */
437 	0x323D103C, /* Smart Array P700m */
438 	0x40800E11, /* Smart Array 5i */
439 	0x409C0E11, /* Smart Array 6400 */
440 	0x409D0E11, /* Smart Array 6400 EM */
441 	0x40700E11, /* Smart Array 5300 */
442 	0x40820E11, /* Smart Array 532 */
443 	0x40830E11, /* Smart Array 5312 */
444 	0x409A0E11, /* Smart Array 641 */
445 	0x409B0E11, /* Smart Array 642 */
446 	0x40910E11, /* Smart Array 6i */
447 };
448 
449 /* List of controllers which cannot even be soft reset */
450 static u32 soft_unresettable_controller[] = {
451 	0x40800E11, /* Smart Array 5i */
452 	0x40700E11, /* Smart Array 5300 */
453 	0x40820E11, /* Smart Array 532 */
454 	0x40830E11, /* Smart Array 5312 */
455 	0x409A0E11, /* Smart Array 641 */
456 	0x409B0E11, /* Smart Array 642 */
457 	0x40910E11, /* Smart Array 6i */
458 	/* Exclude 640x boards.  These are two pci devices in one slot
459 	 * which share a battery backed cache module.  One controls the
460 	 * cache, the other accesses the cache through the one that controls
461 	 * it.  If we reset the one controlling the cache, the other will
462 	 * likely not be happy.  Just forbid resetting this conjoined mess.
463 	 * The 640x isn't really supported by hpsa anyway.
464 	 */
465 	0x409C0E11, /* Smart Array 6400 */
466 	0x409D0E11, /* Smart Array 6400 EM */
467 };
468 
469 static int ctlr_is_hard_resettable(u32 board_id)
470 {
471 	int i;
472 
473 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
474 		if (unresettable_controller[i] == board_id)
475 			return 0;
476 	return 1;
477 }
478 
479 static int ctlr_is_soft_resettable(u32 board_id)
480 {
481 	int i;
482 
483 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
484 		if (soft_unresettable_controller[i] == board_id)
485 			return 0;
486 	return 1;
487 }
488 
489 static int ctlr_is_resettable(u32 board_id)
490 {
491 	return ctlr_is_hard_resettable(board_id) ||
492 		ctlr_is_soft_resettable(board_id);
493 }
494 
495 static ssize_t host_show_resettable(struct device *dev,
496 	struct device_attribute *attr, char *buf)
497 {
498 	struct ctlr_info *h;
499 	struct Scsi_Host *shost = class_to_shost(dev);
500 
501 	h = shost_to_hba(shost);
502 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
503 }
504 
505 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
506 {
507 	return (scsi3addr[3] & 0xC0) == 0x40;
508 }
509 
510 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
511 	"1(+0)ADM", "UNKNOWN"
512 };
513 #define HPSA_RAID_0	0
514 #define HPSA_RAID_4	1
515 #define HPSA_RAID_1	2	/* also used for RAID 10 */
516 #define HPSA_RAID_5	3	/* also used for RAID 50 */
517 #define HPSA_RAID_51	4
518 #define HPSA_RAID_6	5	/* also used for RAID 60 */
519 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
520 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
521 
522 static ssize_t raid_level_show(struct device *dev,
523 	     struct device_attribute *attr, char *buf)
524 {
525 	ssize_t l = 0;
526 	unsigned char rlevel;
527 	struct ctlr_info *h;
528 	struct scsi_device *sdev;
529 	struct hpsa_scsi_dev_t *hdev;
530 	unsigned long flags;
531 
532 	sdev = to_scsi_device(dev);
533 	h = sdev_to_hba(sdev);
534 	spin_lock_irqsave(&h->lock, flags);
535 	hdev = sdev->hostdata;
536 	if (!hdev) {
537 		spin_unlock_irqrestore(&h->lock, flags);
538 		return -ENODEV;
539 	}
540 
541 	/* Is this even a logical drive? */
542 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
543 		spin_unlock_irqrestore(&h->lock, flags);
544 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
545 		return l;
546 	}
547 
548 	rlevel = hdev->raid_level;
549 	spin_unlock_irqrestore(&h->lock, flags);
550 	if (rlevel > RAID_UNKNOWN)
551 		rlevel = RAID_UNKNOWN;
552 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
553 	return l;
554 }
555 
556 static ssize_t lunid_show(struct device *dev,
557 	     struct device_attribute *attr, char *buf)
558 {
559 	struct ctlr_info *h;
560 	struct scsi_device *sdev;
561 	struct hpsa_scsi_dev_t *hdev;
562 	unsigned long flags;
563 	unsigned char lunid[8];
564 
565 	sdev = to_scsi_device(dev);
566 	h = sdev_to_hba(sdev);
567 	spin_lock_irqsave(&h->lock, flags);
568 	hdev = sdev->hostdata;
569 	if (!hdev) {
570 		spin_unlock_irqrestore(&h->lock, flags);
571 		return -ENODEV;
572 	}
573 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
574 	spin_unlock_irqrestore(&h->lock, flags);
575 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
576 		lunid[0], lunid[1], lunid[2], lunid[3],
577 		lunid[4], lunid[5], lunid[6], lunid[7]);
578 }
579 
580 static ssize_t unique_id_show(struct device *dev,
581 	     struct device_attribute *attr, char *buf)
582 {
583 	struct ctlr_info *h;
584 	struct scsi_device *sdev;
585 	struct hpsa_scsi_dev_t *hdev;
586 	unsigned long flags;
587 	unsigned char sn[16];
588 
589 	sdev = to_scsi_device(dev);
590 	h = sdev_to_hba(sdev);
591 	spin_lock_irqsave(&h->lock, flags);
592 	hdev = sdev->hostdata;
593 	if (!hdev) {
594 		spin_unlock_irqrestore(&h->lock, flags);
595 		return -ENODEV;
596 	}
597 	memcpy(sn, hdev->device_id, sizeof(sn));
598 	spin_unlock_irqrestore(&h->lock, flags);
599 	return snprintf(buf, 16 * 2 + 2,
600 			"%02X%02X%02X%02X%02X%02X%02X%02X"
601 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
602 			sn[0], sn[1], sn[2], sn[3],
603 			sn[4], sn[5], sn[6], sn[7],
604 			sn[8], sn[9], sn[10], sn[11],
605 			sn[12], sn[13], sn[14], sn[15]);
606 }
607 
608 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
609 	     struct device_attribute *attr, char *buf)
610 {
611 	struct ctlr_info *h;
612 	struct scsi_device *sdev;
613 	struct hpsa_scsi_dev_t *hdev;
614 	unsigned long flags;
615 	int offload_enabled;
616 
617 	sdev = to_scsi_device(dev);
618 	h = sdev_to_hba(sdev);
619 	spin_lock_irqsave(&h->lock, flags);
620 	hdev = sdev->hostdata;
621 	if (!hdev) {
622 		spin_unlock_irqrestore(&h->lock, flags);
623 		return -ENODEV;
624 	}
625 	offload_enabled = hdev->offload_enabled;
626 	spin_unlock_irqrestore(&h->lock, flags);
627 	return snprintf(buf, 20, "%d\n", offload_enabled);
628 }
629 
630 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
631 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
632 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
633 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
634 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
635 			host_show_hp_ssd_smart_path_enabled, NULL);
636 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
637 		host_show_hp_ssd_smart_path_status,
638 		host_store_hp_ssd_smart_path_status);
639 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
640 			host_store_raid_offload_debug);
641 static DEVICE_ATTR(firmware_revision, S_IRUGO,
642 	host_show_firmware_revision, NULL);
643 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
644 	host_show_commands_outstanding, NULL);
645 static DEVICE_ATTR(transport_mode, S_IRUGO,
646 	host_show_transport_mode, NULL);
647 static DEVICE_ATTR(resettable, S_IRUGO,
648 	host_show_resettable, NULL);
649 
650 static struct device_attribute *hpsa_sdev_attrs[] = {
651 	&dev_attr_raid_level,
652 	&dev_attr_lunid,
653 	&dev_attr_unique_id,
654 	&dev_attr_hp_ssd_smart_path_enabled,
655 	NULL,
656 };
657 
658 static struct device_attribute *hpsa_shost_attrs[] = {
659 	&dev_attr_rescan,
660 	&dev_attr_firmware_revision,
661 	&dev_attr_commands_outstanding,
662 	&dev_attr_transport_mode,
663 	&dev_attr_resettable,
664 	&dev_attr_hp_ssd_smart_path_status,
665 	&dev_attr_raid_offload_debug,
666 	NULL,
667 };
668 
669 static struct scsi_host_template hpsa_driver_template = {
670 	.module			= THIS_MODULE,
671 	.name			= HPSA,
672 	.proc_name		= HPSA,
673 	.queuecommand		= hpsa_scsi_queue_command,
674 	.scan_start		= hpsa_scan_start,
675 	.scan_finished		= hpsa_scan_finished,
676 	.change_queue_depth	= hpsa_change_queue_depth,
677 	.this_id		= -1,
678 	.use_clustering		= ENABLE_CLUSTERING,
679 	.eh_abort_handler	= hpsa_eh_abort_handler,
680 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
681 	.ioctl			= hpsa_ioctl,
682 	.slave_alloc		= hpsa_slave_alloc,
683 	.slave_destroy		= hpsa_slave_destroy,
684 #ifdef CONFIG_COMPAT
685 	.compat_ioctl		= hpsa_compat_ioctl,
686 #endif
687 	.sdev_attrs = hpsa_sdev_attrs,
688 	.shost_attrs = hpsa_shost_attrs,
689 	.max_sectors = 8192,
690 	.no_write_same = 1,
691 };
692 
693 
694 /* Enqueuing and dequeuing functions for cmdlists. */
695 static inline void addQ(struct list_head *list, struct CommandList *c)
696 {
697 	list_add_tail(&c->list, list);
698 }
699 
700 static inline u32 next_command(struct ctlr_info *h, u8 q)
701 {
702 	u32 a;
703 	struct reply_queue_buffer *rq = &h->reply_queue[q];
704 
705 	if (h->transMethod & CFGTBL_Trans_io_accel1)
706 		return h->access.command_completed(h, q);
707 
708 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709 		return h->access.command_completed(h, q);
710 
711 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712 		a = rq->head[rq->current_entry];
713 		rq->current_entry++;
714 		atomic_dec(&h->commands_outstanding);
715 	} else {
716 		a = FIFO_EMPTY;
717 	}
718 	/* Check for wraparound */
719 	if (rq->current_entry == h->max_commands) {
720 		rq->current_entry = 0;
721 		rq->wraparound ^= 1;
722 	}
723 	return a;
724 }
725 
726 /*
727  * There are some special bits in the bus address of the
728  * command that we have to set for the controller to know
729  * how to process the command:
730  *
731  * Normal performant mode:
732  * bit 0: 1 means performant mode, 0 means simple mode.
733  * bits 1-3 = block fetch table entry
734  * bits 4-6 = command type (== 0)
735  *
736  * ioaccel1 mode:
737  * bit 0 = "performant mode" bit.
738  * bits 1-3 = block fetch table entry
739  * bits 4-6 = command type (== 110)
740  * (command type is needed because ioaccel1 mode
741  * commands are submitted through the same register as normal
742  * mode commands, so this is how the controller knows whether
743  * the command is normal mode or ioaccel1 mode.)
744  *
745  * ioaccel2 mode:
746  * bit 0 = "performant mode" bit.
747  * bits 1-4 = block fetch table entry (note extra bit)
748  * bits 4-6 = not needed, because ioaccel2 mode has
749  * a separate special register for submitting commands.
750  */
751 
752 /* set_performant_mode: Modify the tag for cciss performant
753  * set bit 0 for pull model, bits 3-1 for block fetch
754  * register number
755  */
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
757 {
758 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760 		if (likely(h->msix_vector > 0))
761 			c->Header.ReplyQueue =
762 				raw_smp_processor_id() % h->nreply_queues;
763 	}
764 }
765 
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 						struct CommandList *c)
768 {
769 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
770 
771 	/* Tell the controller to post the reply to the queue for this
772 	 * processor.  This seems to give the best I/O throughput.
773 	 */
774 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 	/* Set the bits in the address sent down to include:
776 	 *  - performant mode bit (bit 0)
777 	 *  - pull count (bits 1-3)
778 	 *  - command type (bits 4-6)
779 	 */
780 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 					IOACCEL1_BUSADDR_CMDTYPE;
782 }
783 
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 						struct CommandList *c)
786 {
787 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
788 
789 	/* Tell the controller to post the reply to the queue for this
790 	 * processor.  This seems to give the best I/O throughput.
791 	 */
792 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 	/* Set the bits in the address sent down to include:
794 	 *  - performant mode bit not used in ioaccel mode 2
795 	 *  - pull count (bits 0-3)
796 	 *  - command type isn't needed for ioaccel2
797 	 */
798 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799 }
800 
801 static int is_firmware_flash_cmd(u8 *cdb)
802 {
803 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
804 }
805 
806 /*
807  * During firmware flash, the heartbeat register may not update as frequently
808  * as it should.  So we dial down lockup detection during firmware flash. and
809  * dial it back up when firmware flash completes.
810  */
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 		struct CommandList *c)
815 {
816 	if (!is_firmware_flash_cmd(c->Request.CDB))
817 		return;
818 	atomic_inc(&h->firmware_flash_in_progress);
819 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820 }
821 
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 		struct CommandList *c)
824 {
825 	if (is_firmware_flash_cmd(c->Request.CDB) &&
826 		atomic_dec_and_test(&h->firmware_flash_in_progress))
827 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828 }
829 
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 	struct CommandList *c)
832 {
833 	unsigned long flags;
834 
835 	switch (c->cmd_type) {
836 	case CMD_IOACCEL1:
837 		set_ioaccel1_performant_mode(h, c);
838 		break;
839 	case CMD_IOACCEL2:
840 		set_ioaccel2_performant_mode(h, c);
841 		break;
842 	default:
843 		set_performant_mode(h, c);
844 	}
845 	dial_down_lockup_detection_during_fw_flash(h, c);
846 	spin_lock_irqsave(&h->lock, flags);
847 	addQ(&h->reqQ, c);
848 	h->Qdepth++;
849 	start_io(h, &flags);
850 	spin_unlock_irqrestore(&h->lock, flags);
851 }
852 
853 static inline void removeQ(struct CommandList *c)
854 {
855 	if (WARN_ON(list_empty(&c->list)))
856 		return;
857 	list_del_init(&c->list);
858 }
859 
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
861 {
862 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863 }
864 
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
866 {
867 	if (!h->hba_inquiry_data)
868 		return 0;
869 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
870 		return 1;
871 	return 0;
872 }
873 
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875 	unsigned char scsi3addr[], int bus, int *target, int *lun)
876 {
877 	/* finds an unused bus, target, lun for a new physical device
878 	 * assumes h->devlock is held
879 	 */
880 	int i, found = 0;
881 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
882 
883 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
884 
885 	for (i = 0; i < h->ndevices; i++) {
886 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887 			__set_bit(h->dev[i]->target, lun_taken);
888 	}
889 
890 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 	if (i < HPSA_MAX_DEVICES) {
892 		/* *bus = 1; */
893 		*target = i;
894 		*lun = 0;
895 		found = 1;
896 	}
897 	return !found;
898 }
899 
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 		struct hpsa_scsi_dev_t *device,
903 		struct hpsa_scsi_dev_t *added[], int *nadded)
904 {
905 	/* assumes h->devlock is held */
906 	int n = h->ndevices;
907 	int i;
908 	unsigned char addr1[8], addr2[8];
909 	struct hpsa_scsi_dev_t *sd;
910 
911 	if (n >= HPSA_MAX_DEVICES) {
912 		dev_err(&h->pdev->dev, "too many devices, some will be "
913 			"inaccessible.\n");
914 		return -1;
915 	}
916 
917 	/* physical devices do not have lun or target assigned until now. */
918 	if (device->lun != -1)
919 		/* Logical device, lun is already assigned. */
920 		goto lun_assigned;
921 
922 	/* If this device a non-zero lun of a multi-lun device
923 	 * byte 4 of the 8-byte LUN addr will contain the logical
924 	 * unit no, zero otherwise.
925 	 */
926 	if (device->scsi3addr[4] == 0) {
927 		/* This is not a non-zero lun of a multi-lun device */
928 		if (hpsa_find_target_lun(h, device->scsi3addr,
929 			device->bus, &device->target, &device->lun) != 0)
930 			return -1;
931 		goto lun_assigned;
932 	}
933 
934 	/* This is a non-zero lun of a multi-lun device.
935 	 * Search through our list and find the device which
936 	 * has the same 8 byte LUN address, excepting byte 4.
937 	 * Assign the same bus and target for this new LUN.
938 	 * Use the logical unit number from the firmware.
939 	 */
940 	memcpy(addr1, device->scsi3addr, 8);
941 	addr1[4] = 0;
942 	for (i = 0; i < n; i++) {
943 		sd = h->dev[i];
944 		memcpy(addr2, sd->scsi3addr, 8);
945 		addr2[4] = 0;
946 		/* differ only in byte 4? */
947 		if (memcmp(addr1, addr2, 8) == 0) {
948 			device->bus = sd->bus;
949 			device->target = sd->target;
950 			device->lun = device->scsi3addr[4];
951 			break;
952 		}
953 	}
954 	if (device->lun == -1) {
955 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 			" suspect firmware bug or unsupported hardware "
957 			"configuration.\n");
958 			return -1;
959 	}
960 
961 lun_assigned:
962 
963 	h->dev[n] = device;
964 	h->ndevices++;
965 	added[*nadded] = device;
966 	(*nadded)++;
967 
968 	/* initially, (before registering with scsi layer) we don't
969 	 * know our hostno and we don't want to print anything first
970 	 * time anyway (the scsi layer's inquiries will show that info)
971 	 */
972 	/* if (hostno != -1) */
973 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 			scsi_device_type(device->devtype), hostno,
975 			device->bus, device->target, device->lun);
976 	return 0;
977 }
978 
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 	int entry, struct hpsa_scsi_dev_t *new_entry)
982 {
983 	/* assumes h->devlock is held */
984 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
985 
986 	/* Raid level changed. */
987 	h->dev[entry]->raid_level = new_entry->raid_level;
988 
989 	/* Raid offload parameters changed. */
990 	h->dev[entry]->offload_config = new_entry->offload_config;
991 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 	h->dev[entry]->raid_map = new_entry->raid_map;
995 
996 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 		new_entry->target, new_entry->lun);
999 }
1000 
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 	int entry, struct hpsa_scsi_dev_t *new_entry,
1004 	struct hpsa_scsi_dev_t *added[], int *nadded,
1005 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1006 {
1007 	/* assumes h->devlock is held */
1008 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009 	removed[*nremoved] = h->dev[entry];
1010 	(*nremoved)++;
1011 
1012 	/*
1013 	 * New physical devices won't have target/lun assigned yet
1014 	 * so we need to preserve the values in the slot we are replacing.
1015 	 */
1016 	if (new_entry->target == -1) {
1017 		new_entry->target = h->dev[entry]->target;
1018 		new_entry->lun = h->dev[entry]->lun;
1019 	}
1020 
1021 	h->dev[entry] = new_entry;
1022 	added[*nadded] = new_entry;
1023 	(*nadded)++;
1024 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 			new_entry->target, new_entry->lun);
1027 }
1028 
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1032 {
1033 	/* assumes h->devlock is held */
1034 	int i;
1035 	struct hpsa_scsi_dev_t *sd;
1036 
1037 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1038 
1039 	sd = h->dev[entry];
1040 	removed[*nremoved] = h->dev[entry];
1041 	(*nremoved)++;
1042 
1043 	for (i = entry; i < h->ndevices-1; i++)
1044 		h->dev[i] = h->dev[i+1];
1045 	h->ndevices--;
1046 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1048 		sd->lun);
1049 }
1050 
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052 	(a)[7] == (b)[7] && \
1053 	(a)[6] == (b)[6] && \
1054 	(a)[5] == (b)[5] && \
1055 	(a)[4] == (b)[4] && \
1056 	(a)[3] == (b)[3] && \
1057 	(a)[2] == (b)[2] && \
1058 	(a)[1] == (b)[1] && \
1059 	(a)[0] == (b)[0])
1060 
1061 static void fixup_botched_add(struct ctlr_info *h,
1062 	struct hpsa_scsi_dev_t *added)
1063 {
1064 	/* called when scsi_add_device fails in order to re-adjust
1065 	 * h->dev[] to match the mid layer's view.
1066 	 */
1067 	unsigned long flags;
1068 	int i, j;
1069 
1070 	spin_lock_irqsave(&h->lock, flags);
1071 	for (i = 0; i < h->ndevices; i++) {
1072 		if (h->dev[i] == added) {
1073 			for (j = i; j < h->ndevices-1; j++)
1074 				h->dev[j] = h->dev[j+1];
1075 			h->ndevices--;
1076 			break;
1077 		}
1078 	}
1079 	spin_unlock_irqrestore(&h->lock, flags);
1080 	kfree(added);
1081 }
1082 
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 	struct hpsa_scsi_dev_t *dev2)
1085 {
1086 	/* we compare everything except lun and target as these
1087 	 * are not yet assigned.  Compare parts likely
1088 	 * to differ first
1089 	 */
1090 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 		sizeof(dev1->scsi3addr)) != 0)
1092 		return 0;
1093 	if (memcmp(dev1->device_id, dev2->device_id,
1094 		sizeof(dev1->device_id)) != 0)
1095 		return 0;
1096 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1097 		return 0;
1098 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1099 		return 0;
1100 	if (dev1->devtype != dev2->devtype)
1101 		return 0;
1102 	if (dev1->bus != dev2->bus)
1103 		return 0;
1104 	return 1;
1105 }
1106 
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 	struct hpsa_scsi_dev_t *dev2)
1109 {
1110 	/* Device attributes that can change, but don't mean
1111 	 * that the device is a different device, nor that the OS
1112 	 * needs to be told anything about the change.
1113 	 */
1114 	if (dev1->raid_level != dev2->raid_level)
1115 		return 1;
1116 	if (dev1->offload_config != dev2->offload_config)
1117 		return 1;
1118 	if (dev1->offload_enabled != dev2->offload_enabled)
1119 		return 1;
1120 	return 0;
1121 }
1122 
1123 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1124  * and return needle location in *index.  If scsi3addr matches, but not
1125  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126  * location in *index.
1127  * In the case of a minor device attribute change, such as RAID level, just
1128  * return DEVICE_UPDATED, along with the updated device's location in index.
1129  * If needle not found, return DEVICE_NOT_FOUND.
1130  */
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1133 	int *index)
1134 {
1135 	int i;
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140 	for (i = 0; i < haystack_size; i++) {
1141 		if (haystack[i] == NULL) /* previously removed. */
1142 			continue;
1143 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1144 			*index = i;
1145 			if (device_is_the_same(needle, haystack[i])) {
1146 				if (device_updated(needle, haystack[i]))
1147 					return DEVICE_UPDATED;
1148 				return DEVICE_SAME;
1149 			} else {
1150 				/* Keep offline devices offline */
1151 				if (needle->volume_offline)
1152 					return DEVICE_NOT_FOUND;
1153 				return DEVICE_CHANGED;
1154 			}
1155 		}
1156 	}
1157 	*index = -1;
1158 	return DEVICE_NOT_FOUND;
1159 }
1160 
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 					unsigned char scsi3addr[])
1163 {
1164 	struct offline_device_entry *device;
1165 	unsigned long flags;
1166 
1167 	/* Check to see if device is already on the list */
1168 	spin_lock_irqsave(&h->offline_device_lock, flags);
1169 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 		if (memcmp(device->scsi3addr, scsi3addr,
1171 			sizeof(device->scsi3addr)) == 0) {
1172 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1173 			return;
1174 		}
1175 	}
1176 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1177 
1178 	/* Device is not on the list, add it. */
1179 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1180 	if (!device) {
1181 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1182 		return;
1183 	}
1184 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 	spin_lock_irqsave(&h->offline_device_lock, flags);
1186 	list_add_tail(&device->offline_list, &h->offline_device_list);
1187 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188 }
1189 
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192 	struct hpsa_scsi_dev_t *sd)
1193 {
1194 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 		dev_info(&h->pdev->dev,
1196 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 			h->scsi_host->host_no,
1198 			sd->bus, sd->target, sd->lun);
1199 	switch (sd->volume_offline) {
1200 	case HPSA_LV_OK:
1201 		break;
1202 	case HPSA_LV_UNDERGOING_ERASE:
1203 		dev_info(&h->pdev->dev,
1204 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 			h->scsi_host->host_no,
1206 			sd->bus, sd->target, sd->lun);
1207 		break;
1208 	case HPSA_LV_UNDERGOING_RPI:
1209 		dev_info(&h->pdev->dev,
1210 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 			h->scsi_host->host_no,
1212 			sd->bus, sd->target, sd->lun);
1213 		break;
1214 	case HPSA_LV_PENDING_RPI:
1215 		dev_info(&h->pdev->dev,
1216 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 				h->scsi_host->host_no,
1218 				sd->bus, sd->target, sd->lun);
1219 		break;
1220 	case HPSA_LV_ENCRYPTED_NO_KEY:
1221 		dev_info(&h->pdev->dev,
1222 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 			h->scsi_host->host_no,
1224 			sd->bus, sd->target, sd->lun);
1225 		break;
1226 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 		dev_info(&h->pdev->dev,
1228 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 			h->scsi_host->host_no,
1230 			sd->bus, sd->target, sd->lun);
1231 		break;
1232 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 		dev_info(&h->pdev->dev,
1234 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 			h->scsi_host->host_no,
1236 			sd->bus, sd->target, sd->lun);
1237 		break;
1238 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 		dev_info(&h->pdev->dev,
1240 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 			h->scsi_host->host_no,
1242 			sd->bus, sd->target, sd->lun);
1243 		break;
1244 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 		dev_info(&h->pdev->dev,
1246 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 			h->scsi_host->host_no,
1248 			sd->bus, sd->target, sd->lun);
1249 		break;
1250 	case HPSA_LV_PENDING_ENCRYPTION:
1251 		dev_info(&h->pdev->dev,
1252 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 			h->scsi_host->host_no,
1254 			sd->bus, sd->target, sd->lun);
1255 		break;
1256 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 		dev_info(&h->pdev->dev,
1258 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 			h->scsi_host->host_no,
1260 			sd->bus, sd->target, sd->lun);
1261 		break;
1262 	}
1263 }
1264 
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266 	struct hpsa_scsi_dev_t *sd[], int nsds)
1267 {
1268 	/* sd contains scsi3 addresses and devtypes, and inquiry
1269 	 * data.  This function takes what's in sd to be the current
1270 	 * reality and updates h->dev[] to reflect that reality.
1271 	 */
1272 	int i, entry, device_change, changes = 0;
1273 	struct hpsa_scsi_dev_t *csd;
1274 	unsigned long flags;
1275 	struct hpsa_scsi_dev_t **added, **removed;
1276 	int nadded, nremoved;
1277 	struct Scsi_Host *sh = NULL;
1278 
1279 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1281 
1282 	if (!added || !removed) {
1283 		dev_warn(&h->pdev->dev, "out of memory in "
1284 			"adjust_hpsa_scsi_table\n");
1285 		goto free_and_out;
1286 	}
1287 
1288 	spin_lock_irqsave(&h->devlock, flags);
1289 
1290 	/* find any devices in h->dev[] that are not in
1291 	 * sd[] and remove them from h->dev[], and for any
1292 	 * devices which have changed, remove the old device
1293 	 * info and add the new device info.
1294 	 * If minor device attributes change, just update
1295 	 * the existing device structure.
1296 	 */
1297 	i = 0;
1298 	nremoved = 0;
1299 	nadded = 0;
1300 	while (i < h->ndevices) {
1301 		csd = h->dev[i];
1302 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 		if (device_change == DEVICE_NOT_FOUND) {
1304 			changes++;
1305 			hpsa_scsi_remove_entry(h, hostno, i,
1306 				removed, &nremoved);
1307 			continue; /* remove ^^^, hence i not incremented */
1308 		} else if (device_change == DEVICE_CHANGED) {
1309 			changes++;
1310 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 				added, &nadded, removed, &nremoved);
1312 			/* Set it to NULL to prevent it from being freed
1313 			 * at the bottom of hpsa_update_scsi_devices()
1314 			 */
1315 			sd[entry] = NULL;
1316 		} else if (device_change == DEVICE_UPDATED) {
1317 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1318 		}
1319 		i++;
1320 	}
1321 
1322 	/* Now, make sure every device listed in sd[] is also
1323 	 * listed in h->dev[], adding them if they aren't found
1324 	 */
1325 
1326 	for (i = 0; i < nsds; i++) {
1327 		if (!sd[i]) /* if already added above. */
1328 			continue;
1329 
1330 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 		 * as the SCSI mid-layer does not handle such devices well.
1332 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 		 * at 160Hz, and prevents the system from coming up.
1334 		 */
1335 		if (sd[i]->volume_offline) {
1336 			hpsa_show_volume_status(h, sd[i]);
1337 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 				h->scsi_host->host_no,
1339 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1340 			continue;
1341 		}
1342 
1343 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 					h->ndevices, &entry);
1345 		if (device_change == DEVICE_NOT_FOUND) {
1346 			changes++;
1347 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 				added, &nadded) != 0)
1349 				break;
1350 			sd[i] = NULL; /* prevent from being freed later. */
1351 		} else if (device_change == DEVICE_CHANGED) {
1352 			/* should never happen... */
1353 			changes++;
1354 			dev_warn(&h->pdev->dev,
1355 				"device unexpectedly changed.\n");
1356 			/* but if it does happen, we just ignore that device */
1357 		}
1358 	}
1359 	spin_unlock_irqrestore(&h->devlock, flags);
1360 
1361 	/* Monitor devices which are in one of several NOT READY states to be
1362 	 * brought online later. This must be done without holding h->devlock,
1363 	 * so don't touch h->dev[]
1364 	 */
1365 	for (i = 0; i < nsds; i++) {
1366 		if (!sd[i]) /* if already added above. */
1367 			continue;
1368 		if (sd[i]->volume_offline)
1369 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370 	}
1371 
1372 	/* Don't notify scsi mid layer of any changes the first time through
1373 	 * (or if there are no changes) scsi_scan_host will do it later the
1374 	 * first time through.
1375 	 */
1376 	if (hostno == -1 || !changes)
1377 		goto free_and_out;
1378 
1379 	sh = h->scsi_host;
1380 	/* Notify scsi mid layer of any removed devices */
1381 	for (i = 0; i < nremoved; i++) {
1382 		struct scsi_device *sdev =
1383 			scsi_device_lookup(sh, removed[i]->bus,
1384 				removed[i]->target, removed[i]->lun);
1385 		if (sdev != NULL) {
1386 			scsi_remove_device(sdev);
1387 			scsi_device_put(sdev);
1388 		} else {
1389 			/* We don't expect to get here.
1390 			 * future cmds to this device will get selection
1391 			 * timeout as if the device was gone.
1392 			 */
1393 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 				" for removal.", hostno, removed[i]->bus,
1395 				removed[i]->target, removed[i]->lun);
1396 		}
1397 		kfree(removed[i]);
1398 		removed[i] = NULL;
1399 	}
1400 
1401 	/* Notify scsi mid layer of any added devices */
1402 	for (i = 0; i < nadded; i++) {
1403 		if (scsi_add_device(sh, added[i]->bus,
1404 			added[i]->target, added[i]->lun) == 0)
1405 			continue;
1406 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 			"device not added.\n", hostno, added[i]->bus,
1408 			added[i]->target, added[i]->lun);
1409 		/* now we have to remove it from h->dev,
1410 		 * since it didn't get added to scsi mid layer
1411 		 */
1412 		fixup_botched_add(h, added[i]);
1413 	}
1414 
1415 free_and_out:
1416 	kfree(added);
1417 	kfree(removed);
1418 }
1419 
1420 /*
1421  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422  * Assume's h->devlock is held.
1423  */
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 	int bus, int target, int lun)
1426 {
1427 	int i;
1428 	struct hpsa_scsi_dev_t *sd;
1429 
1430 	for (i = 0; i < h->ndevices; i++) {
1431 		sd = h->dev[i];
1432 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1433 			return sd;
1434 	}
1435 	return NULL;
1436 }
1437 
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1440 {
1441 	struct hpsa_scsi_dev_t *sd;
1442 	unsigned long flags;
1443 	struct ctlr_info *h;
1444 
1445 	h = sdev_to_hba(sdev);
1446 	spin_lock_irqsave(&h->devlock, flags);
1447 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 		sdev_id(sdev), sdev->lun);
1449 	if (sd != NULL)
1450 		sdev->hostdata = sd;
1451 	spin_unlock_irqrestore(&h->devlock, flags);
1452 	return 0;
1453 }
1454 
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1456 {
1457 	/* nothing to do. */
1458 }
1459 
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462 	int i;
1463 
1464 	if (!h->cmd_sg_list)
1465 		return;
1466 	for (i = 0; i < h->nr_cmds; i++) {
1467 		kfree(h->cmd_sg_list[i]);
1468 		h->cmd_sg_list[i] = NULL;
1469 	}
1470 	kfree(h->cmd_sg_list);
1471 	h->cmd_sg_list = NULL;
1472 }
1473 
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1475 {
1476 	int i;
1477 
1478 	if (h->chainsize <= 0)
1479 		return 0;
1480 
1481 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1482 				GFP_KERNEL);
1483 	if (!h->cmd_sg_list)
1484 		return -ENOMEM;
1485 	for (i = 0; i < h->nr_cmds; i++) {
1486 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 						h->chainsize, GFP_KERNEL);
1488 		if (!h->cmd_sg_list[i])
1489 			goto clean;
1490 	}
1491 	return 0;
1492 
1493 clean:
1494 	hpsa_free_sg_chain_blocks(h);
1495 	return -ENOMEM;
1496 }
1497 
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499 	struct CommandList *c)
1500 {
1501 	struct SGDescriptor *chain_sg, *chain_block;
1502 	u64 temp64;
1503 	u32 chain_len;
1504 
1505 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1506 	chain_block = h->cmd_sg_list[c->cmdindex];
1507 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1508 	chain_len = sizeof(*chain_sg) *
1509 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1510 	chain_sg->Len = cpu_to_le32(chain_len);
1511 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1512 				PCI_DMA_TODEVICE);
1513 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1514 		/* prevent subsequent unmapping */
1515 		chain_sg->Addr = cpu_to_le64(0);
1516 		return -1;
1517 	}
1518 	chain_sg->Addr = cpu_to_le64(temp64);
1519 	return 0;
1520 }
1521 
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 	struct CommandList *c)
1524 {
1525 	struct SGDescriptor *chain_sg;
1526 
1527 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1528 		return;
1529 
1530 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1531 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1532 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1533 }
1534 
1535 
1536 /* Decode the various types of errors on ioaccel2 path.
1537  * Return 1 for any error that should generate a RAID path retry.
1538  * Return 0 for errors that don't require a RAID path retry.
1539  */
1540 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1541 					struct CommandList *c,
1542 					struct scsi_cmnd *cmd,
1543 					struct io_accel2_cmd *c2)
1544 {
1545 	int data_len;
1546 	int retry = 0;
1547 
1548 	switch (c2->error_data.serv_response) {
1549 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550 		switch (c2->error_data.status) {
1551 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1552 			break;
1553 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554 			dev_warn(&h->pdev->dev,
1555 				"%s: task complete with check condition.\n",
1556 				"HP SSD Smart Path");
1557 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1558 			if (c2->error_data.data_present !=
1559 					IOACCEL2_SENSE_DATA_PRESENT) {
1560 				memset(cmd->sense_buffer, 0,
1561 					SCSI_SENSE_BUFFERSIZE);
1562 				break;
1563 			}
1564 			/* copy the sense data */
1565 			data_len = c2->error_data.sense_data_len;
1566 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1567 				data_len = SCSI_SENSE_BUFFERSIZE;
1568 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1569 				data_len =
1570 					sizeof(c2->error_data.sense_data_buff);
1571 			memcpy(cmd->sense_buffer,
1572 				c2->error_data.sense_data_buff, data_len);
1573 			retry = 1;
1574 			break;
1575 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1576 			dev_warn(&h->pdev->dev,
1577 				"%s: task complete with BUSY status.\n",
1578 				"HP SSD Smart Path");
1579 			retry = 1;
1580 			break;
1581 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1582 			dev_warn(&h->pdev->dev,
1583 				"%s: task complete with reservation conflict.\n",
1584 				"HP SSD Smart Path");
1585 			retry = 1;
1586 			break;
1587 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1588 			/* Make scsi midlayer do unlimited retries */
1589 			cmd->result = DID_IMM_RETRY << 16;
1590 			break;
1591 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1592 			dev_warn(&h->pdev->dev,
1593 				"%s: task complete with aborted status.\n",
1594 				"HP SSD Smart Path");
1595 			retry = 1;
1596 			break;
1597 		default:
1598 			dev_warn(&h->pdev->dev,
1599 				"%s: task complete with unrecognized status: 0x%02x\n",
1600 				"HP SSD Smart Path", c2->error_data.status);
1601 			retry = 1;
1602 			break;
1603 		}
1604 		break;
1605 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1606 		/* don't expect to get here. */
1607 		dev_warn(&h->pdev->dev,
1608 			"unexpected delivery or target failure, status = 0x%02x\n",
1609 			c2->error_data.status);
1610 		retry = 1;
1611 		break;
1612 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1613 		break;
1614 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1615 		break;
1616 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1617 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1618 		retry = 1;
1619 		break;
1620 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1621 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1622 		break;
1623 	default:
1624 		dev_warn(&h->pdev->dev,
1625 			"%s: Unrecognized server response: 0x%02x\n",
1626 			"HP SSD Smart Path",
1627 			c2->error_data.serv_response);
1628 		retry = 1;
1629 		break;
1630 	}
1631 
1632 	return retry;	/* retry on raid path? */
1633 }
1634 
1635 static void process_ioaccel2_completion(struct ctlr_info *h,
1636 		struct CommandList *c, struct scsi_cmnd *cmd,
1637 		struct hpsa_scsi_dev_t *dev)
1638 {
1639 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1640 	int raid_retry = 0;
1641 
1642 	/* check for good status */
1643 	if (likely(c2->error_data.serv_response == 0 &&
1644 			c2->error_data.status == 0)) {
1645 		cmd_free(h, c);
1646 		cmd->scsi_done(cmd);
1647 		return;
1648 	}
1649 
1650 	/* Any RAID offload error results in retry which will use
1651 	 * the normal I/O path so the controller can handle whatever's
1652 	 * wrong.
1653 	 */
1654 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1655 		c2->error_data.serv_response ==
1656 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1657 		dev->offload_enabled = 0;
1658 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1659 		cmd->result = DID_SOFT_ERROR << 16;
1660 		cmd_free(h, c);
1661 		cmd->scsi_done(cmd);
1662 		return;
1663 	}
1664 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1665 	/* If error found, disable Smart Path, schedule a rescan,
1666 	 * and force a retry on the standard path.
1667 	 */
1668 	if (raid_retry) {
1669 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1670 			"HP SSD Smart Path");
1671 		dev->offload_enabled = 0; /* Disable Smart Path */
1672 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1673 		cmd->result = DID_SOFT_ERROR << 16;
1674 	}
1675 	cmd_free(h, c);
1676 	cmd->scsi_done(cmd);
1677 }
1678 
1679 static void complete_scsi_command(struct CommandList *cp)
1680 {
1681 	struct scsi_cmnd *cmd;
1682 	struct ctlr_info *h;
1683 	struct ErrorInfo *ei;
1684 	struct hpsa_scsi_dev_t *dev;
1685 
1686 	unsigned char sense_key;
1687 	unsigned char asc;      /* additional sense code */
1688 	unsigned char ascq;     /* additional sense code qualifier */
1689 	unsigned long sense_data_size;
1690 
1691 	ei = cp->err_info;
1692 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1693 	h = cp->h;
1694 	dev = cmd->device->hostdata;
1695 
1696 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1697 	if ((cp->cmd_type == CMD_SCSI) &&
1698 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1699 		hpsa_unmap_sg_chain_block(h, cp);
1700 
1701 	cmd->result = (DID_OK << 16); 		/* host byte */
1702 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1703 
1704 	if (cp->cmd_type == CMD_IOACCEL2)
1705 		return process_ioaccel2_completion(h, cp, cmd, dev);
1706 
1707 	cmd->result |= ei->ScsiStatus;
1708 
1709 	scsi_set_resid(cmd, ei->ResidualCnt);
1710 	if (ei->CommandStatus == 0) {
1711 		cmd_free(h, cp);
1712 		cmd->scsi_done(cmd);
1713 		return;
1714 	}
1715 
1716 	/* copy the sense data */
1717 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1719 	else
1720 		sense_data_size = sizeof(ei->SenseInfo);
1721 	if (ei->SenseLen < sense_data_size)
1722 		sense_data_size = ei->SenseLen;
1723 
1724 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1725 
1726 	/* For I/O accelerator commands, copy over some fields to the normal
1727 	 * CISS header used below for error handling.
1728 	 */
1729 	if (cp->cmd_type == CMD_IOACCEL1) {
1730 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1731 		cp->Header.SGList = scsi_sg_count(cmd);
1732 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1733 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1734 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 		cp->Header.tag = c->tag;
1736 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1738 
1739 		/* Any RAID offload error results in retry which will use
1740 		 * the normal I/O path so the controller can handle whatever's
1741 		 * wrong.
1742 		 */
1743 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745 				dev->offload_enabled = 0;
1746 			cmd->result = DID_SOFT_ERROR << 16;
1747 			cmd_free(h, cp);
1748 			cmd->scsi_done(cmd);
1749 			return;
1750 		}
1751 	}
1752 
1753 	/* an error has occurred */
1754 	switch (ei->CommandStatus) {
1755 
1756 	case CMD_TARGET_STATUS:
1757 		if (ei->ScsiStatus) {
1758 			/* Get sense key */
1759 			sense_key = 0xf & ei->SenseInfo[2];
1760 			/* Get additional sense code */
1761 			asc = ei->SenseInfo[12];
1762 			/* Get addition sense code qualifier */
1763 			ascq = ei->SenseInfo[13];
1764 		}
1765 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1766 			if (sense_key == ABORTED_COMMAND) {
1767 				cmd->result |= DID_SOFT_ERROR << 16;
1768 				break;
1769 			}
1770 			break;
1771 		}
1772 		/* Problem was not a check condition
1773 		 * Pass it up to the upper layers...
1774 		 */
1775 		if (ei->ScsiStatus) {
1776 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1777 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1778 				"Returning result: 0x%x\n",
1779 				cp, ei->ScsiStatus,
1780 				sense_key, asc, ascq,
1781 				cmd->result);
1782 		} else {  /* scsi status is zero??? How??? */
1783 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1784 				"Returning no connection.\n", cp),
1785 
1786 			/* Ordinarily, this case should never happen,
1787 			 * but there is a bug in some released firmware
1788 			 * revisions that allows it to happen if, for
1789 			 * example, a 4100 backplane loses power and
1790 			 * the tape drive is in it.  We assume that
1791 			 * it's a fatal error of some kind because we
1792 			 * can't show that it wasn't. We will make it
1793 			 * look like selection timeout since that is
1794 			 * the most common reason for this to occur,
1795 			 * and it's severe enough.
1796 			 */
1797 
1798 			cmd->result = DID_NO_CONNECT << 16;
1799 		}
1800 		break;
1801 
1802 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1803 		break;
1804 	case CMD_DATA_OVERRUN:
1805 		dev_warn(&h->pdev->dev, "cp %p has"
1806 			" completed with data overrun "
1807 			"reported\n", cp);
1808 		break;
1809 	case CMD_INVALID: {
1810 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1811 		print_cmd(cp); */
1812 		/* We get CMD_INVALID if you address a non-existent device
1813 		 * instead of a selection timeout (no response).  You will
1814 		 * see this if you yank out a drive, then try to access it.
1815 		 * This is kind of a shame because it means that any other
1816 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1817 		 * missing target. */
1818 		cmd->result = DID_NO_CONNECT << 16;
1819 	}
1820 		break;
1821 	case CMD_PROTOCOL_ERR:
1822 		cmd->result = DID_ERROR << 16;
1823 		dev_warn(&h->pdev->dev, "cp %p has "
1824 			"protocol error\n", cp);
1825 		break;
1826 	case CMD_HARDWARE_ERR:
1827 		cmd->result = DID_ERROR << 16;
1828 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1829 		break;
1830 	case CMD_CONNECTION_LOST:
1831 		cmd->result = DID_ERROR << 16;
1832 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1833 		break;
1834 	case CMD_ABORTED:
1835 		cmd->result = DID_ABORT << 16;
1836 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1837 				cp, ei->ScsiStatus);
1838 		break;
1839 	case CMD_ABORT_FAILED:
1840 		cmd->result = DID_ERROR << 16;
1841 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1842 		break;
1843 	case CMD_UNSOLICITED_ABORT:
1844 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1845 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1846 			"abort\n", cp);
1847 		break;
1848 	case CMD_TIMEOUT:
1849 		cmd->result = DID_TIME_OUT << 16;
1850 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1851 		break;
1852 	case CMD_UNABORTABLE:
1853 		cmd->result = DID_ERROR << 16;
1854 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1855 		break;
1856 	case CMD_IOACCEL_DISABLED:
1857 		/* This only handles the direct pass-through case since RAID
1858 		 * offload is handled above.  Just attempt a retry.
1859 		 */
1860 		cmd->result = DID_SOFT_ERROR << 16;
1861 		dev_warn(&h->pdev->dev,
1862 				"cp %p had HP SSD Smart Path error\n", cp);
1863 		break;
1864 	default:
1865 		cmd->result = DID_ERROR << 16;
1866 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1867 				cp, ei->CommandStatus);
1868 	}
1869 	cmd_free(h, cp);
1870 	cmd->scsi_done(cmd);
1871 }
1872 
1873 static void hpsa_pci_unmap(struct pci_dev *pdev,
1874 	struct CommandList *c, int sg_used, int data_direction)
1875 {
1876 	int i;
1877 
1878 	for (i = 0; i < sg_used; i++)
1879 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1880 				le32_to_cpu(c->SG[i].Len),
1881 				data_direction);
1882 }
1883 
1884 static int hpsa_map_one(struct pci_dev *pdev,
1885 		struct CommandList *cp,
1886 		unsigned char *buf,
1887 		size_t buflen,
1888 		int data_direction)
1889 {
1890 	u64 addr64;
1891 
1892 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1893 		cp->Header.SGList = 0;
1894 		cp->Header.SGTotal = cpu_to_le16(0);
1895 		return 0;
1896 	}
1897 
1898 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1899 	if (dma_mapping_error(&pdev->dev, addr64)) {
1900 		/* Prevent subsequent unmap of something never mapped */
1901 		cp->Header.SGList = 0;
1902 		cp->Header.SGTotal = cpu_to_le16(0);
1903 		return -1;
1904 	}
1905 	cp->SG[0].Addr = cpu_to_le64(addr64);
1906 	cp->SG[0].Len = cpu_to_le32(buflen);
1907 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1908 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1909 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1910 	return 0;
1911 }
1912 
1913 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1914 	struct CommandList *c)
1915 {
1916 	DECLARE_COMPLETION_ONSTACK(wait);
1917 
1918 	c->waiting = &wait;
1919 	enqueue_cmd_and_start_io(h, c);
1920 	wait_for_completion(&wait);
1921 }
1922 
1923 static u32 lockup_detected(struct ctlr_info *h)
1924 {
1925 	int cpu;
1926 	u32 rc, *lockup_detected;
1927 
1928 	cpu = get_cpu();
1929 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1930 	rc = *lockup_detected;
1931 	put_cpu();
1932 	return rc;
1933 }
1934 
1935 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1936 	struct CommandList *c)
1937 {
1938 	/* If controller lockup detected, fake a hardware error. */
1939 	if (unlikely(lockup_detected(h)))
1940 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1941 	else
1942 		hpsa_scsi_do_simple_cmd_core(h, c);
1943 }
1944 
1945 #define MAX_DRIVER_CMD_RETRIES 25
1946 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1947 	struct CommandList *c, int data_direction)
1948 {
1949 	int backoff_time = 10, retry_count = 0;
1950 
1951 	do {
1952 		memset(c->err_info, 0, sizeof(*c->err_info));
1953 		hpsa_scsi_do_simple_cmd_core(h, c);
1954 		retry_count++;
1955 		if (retry_count > 3) {
1956 			msleep(backoff_time);
1957 			if (backoff_time < 1000)
1958 				backoff_time *= 2;
1959 		}
1960 	} while ((check_for_unit_attention(h, c) ||
1961 			check_for_busy(h, c)) &&
1962 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1963 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1964 }
1965 
1966 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1967 				struct CommandList *c)
1968 {
1969 	const u8 *cdb = c->Request.CDB;
1970 	const u8 *lun = c->Header.LUN.LunAddrBytes;
1971 
1972 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1973 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1974 		txt, lun[0], lun[1], lun[2], lun[3],
1975 		lun[4], lun[5], lun[6], lun[7],
1976 		cdb[0], cdb[1], cdb[2], cdb[3],
1977 		cdb[4], cdb[5], cdb[6], cdb[7],
1978 		cdb[8], cdb[9], cdb[10], cdb[11],
1979 		cdb[12], cdb[13], cdb[14], cdb[15]);
1980 }
1981 
1982 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1983 			struct CommandList *cp)
1984 {
1985 	const struct ErrorInfo *ei = cp->err_info;
1986 	struct device *d = &cp->h->pdev->dev;
1987 	const u8 *sd = ei->SenseInfo;
1988 
1989 	switch (ei->CommandStatus) {
1990 	case CMD_TARGET_STATUS:
1991 		hpsa_print_cmd(h, "SCSI status", cp);
1992 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1993 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1994 				sd[2] & 0x0f, sd[12], sd[13]);
1995 		else
1996 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1997 		if (ei->ScsiStatus == 0)
1998 			dev_warn(d, "SCSI status is abnormally zero.  "
1999 			"(probably indicates selection timeout "
2000 			"reported incorrectly due to a known "
2001 			"firmware bug, circa July, 2001.)\n");
2002 		break;
2003 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2004 		break;
2005 	case CMD_DATA_OVERRUN:
2006 		hpsa_print_cmd(h, "overrun condition", cp);
2007 		break;
2008 	case CMD_INVALID: {
2009 		/* controller unfortunately reports SCSI passthru's
2010 		 * to non-existent targets as invalid commands.
2011 		 */
2012 		hpsa_print_cmd(h, "invalid command", cp);
2013 		dev_warn(d, "probably means device no longer present\n");
2014 		}
2015 		break;
2016 	case CMD_PROTOCOL_ERR:
2017 		hpsa_print_cmd(h, "protocol error", cp);
2018 		break;
2019 	case CMD_HARDWARE_ERR:
2020 		hpsa_print_cmd(h, "hardware error", cp);
2021 		break;
2022 	case CMD_CONNECTION_LOST:
2023 		hpsa_print_cmd(h, "connection lost", cp);
2024 		break;
2025 	case CMD_ABORTED:
2026 		hpsa_print_cmd(h, "aborted", cp);
2027 		break;
2028 	case CMD_ABORT_FAILED:
2029 		hpsa_print_cmd(h, "abort failed", cp);
2030 		break;
2031 	case CMD_UNSOLICITED_ABORT:
2032 		hpsa_print_cmd(h, "unsolicited abort", cp);
2033 		break;
2034 	case CMD_TIMEOUT:
2035 		hpsa_print_cmd(h, "timed out", cp);
2036 		break;
2037 	case CMD_UNABORTABLE:
2038 		hpsa_print_cmd(h, "unabortable", cp);
2039 		break;
2040 	default:
2041 		hpsa_print_cmd(h, "unknown status", cp);
2042 		dev_warn(d, "Unknown command status %x\n",
2043 				ei->CommandStatus);
2044 	}
2045 }
2046 
2047 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2048 			u16 page, unsigned char *buf,
2049 			unsigned char bufsize)
2050 {
2051 	int rc = IO_OK;
2052 	struct CommandList *c;
2053 	struct ErrorInfo *ei;
2054 
2055 	c = cmd_special_alloc(h);
2056 
2057 	if (c == NULL) {			/* trouble... */
2058 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2059 		return -ENOMEM;
2060 	}
2061 
2062 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2063 			page, scsi3addr, TYPE_CMD)) {
2064 		rc = -1;
2065 		goto out;
2066 	}
2067 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2068 	ei = c->err_info;
2069 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2070 		hpsa_scsi_interpret_error(h, c);
2071 		rc = -1;
2072 	}
2073 out:
2074 	cmd_special_free(h, c);
2075 	return rc;
2076 }
2077 
2078 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2079 		unsigned char *scsi3addr, unsigned char page,
2080 		struct bmic_controller_parameters *buf, size_t bufsize)
2081 {
2082 	int rc = IO_OK;
2083 	struct CommandList *c;
2084 	struct ErrorInfo *ei;
2085 
2086 	c = cmd_special_alloc(h);
2087 
2088 	if (c == NULL) {			/* trouble... */
2089 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2090 		return -ENOMEM;
2091 	}
2092 
2093 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2094 			page, scsi3addr, TYPE_CMD)) {
2095 		rc = -1;
2096 		goto out;
2097 	}
2098 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2099 	ei = c->err_info;
2100 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2101 		hpsa_scsi_interpret_error(h, c);
2102 		rc = -1;
2103 	}
2104 out:
2105 	cmd_special_free(h, c);
2106 	return rc;
2107 	}
2108 
2109 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2110 	u8 reset_type)
2111 {
2112 	int rc = IO_OK;
2113 	struct CommandList *c;
2114 	struct ErrorInfo *ei;
2115 
2116 	c = cmd_special_alloc(h);
2117 
2118 	if (c == NULL) {			/* trouble... */
2119 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2120 		return -ENOMEM;
2121 	}
2122 
2123 	/* fill_cmd can't fail here, no data buffer to map. */
2124 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2125 			scsi3addr, TYPE_MSG);
2126 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2127 	hpsa_scsi_do_simple_cmd_core(h, c);
2128 	/* no unmap needed here because no data xfer. */
2129 
2130 	ei = c->err_info;
2131 	if (ei->CommandStatus != 0) {
2132 		hpsa_scsi_interpret_error(h, c);
2133 		rc = -1;
2134 	}
2135 	cmd_special_free(h, c);
2136 	return rc;
2137 }
2138 
2139 static void hpsa_get_raid_level(struct ctlr_info *h,
2140 	unsigned char *scsi3addr, unsigned char *raid_level)
2141 {
2142 	int rc;
2143 	unsigned char *buf;
2144 
2145 	*raid_level = RAID_UNKNOWN;
2146 	buf = kzalloc(64, GFP_KERNEL);
2147 	if (!buf)
2148 		return;
2149 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2150 	if (rc == 0)
2151 		*raid_level = buf[8];
2152 	if (*raid_level > RAID_UNKNOWN)
2153 		*raid_level = RAID_UNKNOWN;
2154 	kfree(buf);
2155 	return;
2156 }
2157 
2158 #define HPSA_MAP_DEBUG
2159 #ifdef HPSA_MAP_DEBUG
2160 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2161 				struct raid_map_data *map_buff)
2162 {
2163 	struct raid_map_disk_data *dd = &map_buff->data[0];
2164 	int map, row, col;
2165 	u16 map_cnt, row_cnt, disks_per_row;
2166 
2167 	if (rc != 0)
2168 		return;
2169 
2170 	/* Show details only if debugging has been activated. */
2171 	if (h->raid_offload_debug < 2)
2172 		return;
2173 
2174 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2175 				le32_to_cpu(map_buff->structure_size));
2176 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2177 			le32_to_cpu(map_buff->volume_blk_size));
2178 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2179 			le64_to_cpu(map_buff->volume_blk_cnt));
2180 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2181 			map_buff->phys_blk_shift);
2182 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2183 			map_buff->parity_rotation_shift);
2184 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2185 			le16_to_cpu(map_buff->strip_size));
2186 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2187 			le64_to_cpu(map_buff->disk_starting_blk));
2188 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2189 			le64_to_cpu(map_buff->disk_blk_cnt));
2190 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2191 			le16_to_cpu(map_buff->data_disks_per_row));
2192 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2193 			le16_to_cpu(map_buff->metadata_disks_per_row));
2194 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2195 			le16_to_cpu(map_buff->row_cnt));
2196 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2197 			le16_to_cpu(map_buff->layout_map_count));
2198 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2199 			le16_to_cpu(map_buff->flags));
2200 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2201 			le16_to_cpu(map_buff->flags) &
2202 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2203 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2204 			le16_to_cpu(map_buff->dekindex));
2205 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2206 	for (map = 0; map < map_cnt; map++) {
2207 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2208 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2209 		for (row = 0; row < row_cnt; row++) {
2210 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2211 			disks_per_row =
2212 				le16_to_cpu(map_buff->data_disks_per_row);
2213 			for (col = 0; col < disks_per_row; col++, dd++)
2214 				dev_info(&h->pdev->dev,
2215 					"    D%02u: h=0x%04x xor=%u,%u\n",
2216 					col, dd->ioaccel_handle,
2217 					dd->xor_mult[0], dd->xor_mult[1]);
2218 			disks_per_row =
2219 				le16_to_cpu(map_buff->metadata_disks_per_row);
2220 			for (col = 0; col < disks_per_row; col++, dd++)
2221 				dev_info(&h->pdev->dev,
2222 					"    M%02u: h=0x%04x xor=%u,%u\n",
2223 					col, dd->ioaccel_handle,
2224 					dd->xor_mult[0], dd->xor_mult[1]);
2225 		}
2226 	}
2227 }
2228 #else
2229 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2230 			__attribute__((unused)) int rc,
2231 			__attribute__((unused)) struct raid_map_data *map_buff)
2232 {
2233 }
2234 #endif
2235 
2236 static int hpsa_get_raid_map(struct ctlr_info *h,
2237 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2238 {
2239 	int rc = 0;
2240 	struct CommandList *c;
2241 	struct ErrorInfo *ei;
2242 
2243 	c = cmd_special_alloc(h);
2244 	if (c == NULL) {
2245 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2246 		return -ENOMEM;
2247 	}
2248 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2249 			sizeof(this_device->raid_map), 0,
2250 			scsi3addr, TYPE_CMD)) {
2251 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2252 		cmd_special_free(h, c);
2253 		return -ENOMEM;
2254 	}
2255 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2256 	ei = c->err_info;
2257 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2258 		hpsa_scsi_interpret_error(h, c);
2259 		cmd_special_free(h, c);
2260 		return -1;
2261 	}
2262 	cmd_special_free(h, c);
2263 
2264 	/* @todo in the future, dynamically allocate RAID map memory */
2265 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2266 				sizeof(this_device->raid_map)) {
2267 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2268 		rc = -1;
2269 	}
2270 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2271 	return rc;
2272 }
2273 
2274 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2275 	unsigned char scsi3addr[], u8 page)
2276 {
2277 	int rc;
2278 	int i;
2279 	int pages;
2280 	unsigned char *buf, bufsize;
2281 
2282 	buf = kzalloc(256, GFP_KERNEL);
2283 	if (!buf)
2284 		return 0;
2285 
2286 	/* Get the size of the page list first */
2287 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2288 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2289 				buf, HPSA_VPD_HEADER_SZ);
2290 	if (rc != 0)
2291 		goto exit_unsupported;
2292 	pages = buf[3];
2293 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2294 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2295 	else
2296 		bufsize = 255;
2297 
2298 	/* Get the whole VPD page list */
2299 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2300 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2301 				buf, bufsize);
2302 	if (rc != 0)
2303 		goto exit_unsupported;
2304 
2305 	pages = buf[3];
2306 	for (i = 1; i <= pages; i++)
2307 		if (buf[3 + i] == page)
2308 			goto exit_supported;
2309 exit_unsupported:
2310 	kfree(buf);
2311 	return 0;
2312 exit_supported:
2313 	kfree(buf);
2314 	return 1;
2315 }
2316 
2317 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2318 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2319 {
2320 	int rc;
2321 	unsigned char *buf;
2322 	u8 ioaccel_status;
2323 
2324 	this_device->offload_config = 0;
2325 	this_device->offload_enabled = 0;
2326 
2327 	buf = kzalloc(64, GFP_KERNEL);
2328 	if (!buf)
2329 		return;
2330 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2331 		goto out;
2332 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2333 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2334 	if (rc != 0)
2335 		goto out;
2336 
2337 #define IOACCEL_STATUS_BYTE 4
2338 #define OFFLOAD_CONFIGURED_BIT 0x01
2339 #define OFFLOAD_ENABLED_BIT 0x02
2340 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2341 	this_device->offload_config =
2342 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2343 	if (this_device->offload_config) {
2344 		this_device->offload_enabled =
2345 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2346 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2347 			this_device->offload_enabled = 0;
2348 	}
2349 out:
2350 	kfree(buf);
2351 	return;
2352 }
2353 
2354 /* Get the device id from inquiry page 0x83 */
2355 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2356 	unsigned char *device_id, int buflen)
2357 {
2358 	int rc;
2359 	unsigned char *buf;
2360 
2361 	if (buflen > 16)
2362 		buflen = 16;
2363 	buf = kzalloc(64, GFP_KERNEL);
2364 	if (!buf)
2365 		return -ENOMEM;
2366 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2367 	if (rc == 0)
2368 		memcpy(device_id, &buf[8], buflen);
2369 	kfree(buf);
2370 	return rc != 0;
2371 }
2372 
2373 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2374 		struct ReportLUNdata *buf, int bufsize,
2375 		int extended_response)
2376 {
2377 	int rc = IO_OK;
2378 	struct CommandList *c;
2379 	unsigned char scsi3addr[8];
2380 	struct ErrorInfo *ei;
2381 
2382 	c = cmd_special_alloc(h);
2383 	if (c == NULL) {			/* trouble... */
2384 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2385 		return -1;
2386 	}
2387 	/* address the controller */
2388 	memset(scsi3addr, 0, sizeof(scsi3addr));
2389 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2390 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2391 		rc = -1;
2392 		goto out;
2393 	}
2394 	if (extended_response)
2395 		c->Request.CDB[1] = extended_response;
2396 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2397 	ei = c->err_info;
2398 	if (ei->CommandStatus != 0 &&
2399 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2400 		hpsa_scsi_interpret_error(h, c);
2401 		rc = -1;
2402 	} else {
2403 		if (buf->extended_response_flag != extended_response) {
2404 			dev_err(&h->pdev->dev,
2405 				"report luns requested format %u, got %u\n",
2406 				extended_response,
2407 				buf->extended_response_flag);
2408 			rc = -1;
2409 		}
2410 	}
2411 out:
2412 	cmd_special_free(h, c);
2413 	return rc;
2414 }
2415 
2416 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2417 		struct ReportLUNdata *buf,
2418 		int bufsize, int extended_response)
2419 {
2420 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2421 }
2422 
2423 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2424 		struct ReportLUNdata *buf, int bufsize)
2425 {
2426 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2427 }
2428 
2429 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2430 	int bus, int target, int lun)
2431 {
2432 	device->bus = bus;
2433 	device->target = target;
2434 	device->lun = lun;
2435 }
2436 
2437 /* Use VPD inquiry to get details of volume status */
2438 static int hpsa_get_volume_status(struct ctlr_info *h,
2439 					unsigned char scsi3addr[])
2440 {
2441 	int rc;
2442 	int status;
2443 	int size;
2444 	unsigned char *buf;
2445 
2446 	buf = kzalloc(64, GFP_KERNEL);
2447 	if (!buf)
2448 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2449 
2450 	/* Does controller have VPD for logical volume status? */
2451 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2452 		goto exit_failed;
2453 
2454 	/* Get the size of the VPD return buffer */
2455 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2456 					buf, HPSA_VPD_HEADER_SZ);
2457 	if (rc != 0)
2458 		goto exit_failed;
2459 	size = buf[3];
2460 
2461 	/* Now get the whole VPD buffer */
2462 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2463 					buf, size + HPSA_VPD_HEADER_SZ);
2464 	if (rc != 0)
2465 		goto exit_failed;
2466 	status = buf[4]; /* status byte */
2467 
2468 	kfree(buf);
2469 	return status;
2470 exit_failed:
2471 	kfree(buf);
2472 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2473 }
2474 
2475 /* Determine offline status of a volume.
2476  * Return either:
2477  *  0 (not offline)
2478  *  0xff (offline for unknown reasons)
2479  *  # (integer code indicating one of several NOT READY states
2480  *     describing why a volume is to be kept offline)
2481  */
2482 static int hpsa_volume_offline(struct ctlr_info *h,
2483 					unsigned char scsi3addr[])
2484 {
2485 	struct CommandList *c;
2486 	unsigned char *sense, sense_key, asc, ascq;
2487 	int ldstat = 0;
2488 	u16 cmd_status;
2489 	u8 scsi_status;
2490 #define ASC_LUN_NOT_READY 0x04
2491 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2492 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2493 
2494 	c = cmd_alloc(h);
2495 	if (!c)
2496 		return 0;
2497 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2498 	hpsa_scsi_do_simple_cmd_core(h, c);
2499 	sense = c->err_info->SenseInfo;
2500 	sense_key = sense[2];
2501 	asc = sense[12];
2502 	ascq = sense[13];
2503 	cmd_status = c->err_info->CommandStatus;
2504 	scsi_status = c->err_info->ScsiStatus;
2505 	cmd_free(h, c);
2506 	/* Is the volume 'not ready'? */
2507 	if (cmd_status != CMD_TARGET_STATUS ||
2508 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2509 		sense_key != NOT_READY ||
2510 		asc != ASC_LUN_NOT_READY)  {
2511 		return 0;
2512 	}
2513 
2514 	/* Determine the reason for not ready state */
2515 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2516 
2517 	/* Keep volume offline in certain cases: */
2518 	switch (ldstat) {
2519 	case HPSA_LV_UNDERGOING_ERASE:
2520 	case HPSA_LV_UNDERGOING_RPI:
2521 	case HPSA_LV_PENDING_RPI:
2522 	case HPSA_LV_ENCRYPTED_NO_KEY:
2523 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2524 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2525 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2526 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2527 		return ldstat;
2528 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2529 		/* If VPD status page isn't available,
2530 		 * use ASC/ASCQ to determine state
2531 		 */
2532 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2533 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2534 			return ldstat;
2535 		break;
2536 	default:
2537 		break;
2538 	}
2539 	return 0;
2540 }
2541 
2542 static int hpsa_update_device_info(struct ctlr_info *h,
2543 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2544 	unsigned char *is_OBDR_device)
2545 {
2546 
2547 #define OBDR_SIG_OFFSET 43
2548 #define OBDR_TAPE_SIG "$DR-10"
2549 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2550 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2551 
2552 	unsigned char *inq_buff;
2553 	unsigned char *obdr_sig;
2554 
2555 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2556 	if (!inq_buff)
2557 		goto bail_out;
2558 
2559 	/* Do an inquiry to the device to see what it is. */
2560 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2561 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2562 		/* Inquiry failed (msg printed already) */
2563 		dev_err(&h->pdev->dev,
2564 			"hpsa_update_device_info: inquiry failed\n");
2565 		goto bail_out;
2566 	}
2567 
2568 	this_device->devtype = (inq_buff[0] & 0x1f);
2569 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2570 	memcpy(this_device->vendor, &inq_buff[8],
2571 		sizeof(this_device->vendor));
2572 	memcpy(this_device->model, &inq_buff[16],
2573 		sizeof(this_device->model));
2574 	memset(this_device->device_id, 0,
2575 		sizeof(this_device->device_id));
2576 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2577 		sizeof(this_device->device_id));
2578 
2579 	if (this_device->devtype == TYPE_DISK &&
2580 		is_logical_dev_addr_mode(scsi3addr)) {
2581 		int volume_offline;
2582 
2583 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2584 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2585 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2586 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2587 		if (volume_offline < 0 || volume_offline > 0xff)
2588 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2589 		this_device->volume_offline = volume_offline & 0xff;
2590 	} else {
2591 		this_device->raid_level = RAID_UNKNOWN;
2592 		this_device->offload_config = 0;
2593 		this_device->offload_enabled = 0;
2594 		this_device->volume_offline = 0;
2595 	}
2596 
2597 	if (is_OBDR_device) {
2598 		/* See if this is a One-Button-Disaster-Recovery device
2599 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2600 		 */
2601 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2602 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2603 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2604 						OBDR_SIG_LEN) == 0);
2605 	}
2606 
2607 	kfree(inq_buff);
2608 	return 0;
2609 
2610 bail_out:
2611 	kfree(inq_buff);
2612 	return 1;
2613 }
2614 
2615 static unsigned char *ext_target_model[] = {
2616 	"MSA2012",
2617 	"MSA2024",
2618 	"MSA2312",
2619 	"MSA2324",
2620 	"P2000 G3 SAS",
2621 	"MSA 2040 SAS",
2622 	NULL,
2623 };
2624 
2625 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2626 {
2627 	int i;
2628 
2629 	for (i = 0; ext_target_model[i]; i++)
2630 		if (strncmp(device->model, ext_target_model[i],
2631 			strlen(ext_target_model[i])) == 0)
2632 			return 1;
2633 	return 0;
2634 }
2635 
2636 /* Helper function to assign bus, target, lun mapping of devices.
2637  * Puts non-external target logical volumes on bus 0, external target logical
2638  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2639  * Logical drive target and lun are assigned at this time, but
2640  * physical device lun and target assignment are deferred (assigned
2641  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2642  */
2643 static void figure_bus_target_lun(struct ctlr_info *h,
2644 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2645 {
2646 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2647 
2648 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2649 		/* physical device, target and lun filled in later */
2650 		if (is_hba_lunid(lunaddrbytes))
2651 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2652 		else
2653 			/* defer target, lun assignment for physical devices */
2654 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2655 		return;
2656 	}
2657 	/* It's a logical device */
2658 	if (is_ext_target(h, device)) {
2659 		/* external target way, put logicals on bus 1
2660 		 * and match target/lun numbers box
2661 		 * reports, other smart array, bus 0, target 0, match lunid
2662 		 */
2663 		hpsa_set_bus_target_lun(device,
2664 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2665 		return;
2666 	}
2667 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2668 }
2669 
2670 /*
2671  * If there is no lun 0 on a target, linux won't find any devices.
2672  * For the external targets (arrays), we have to manually detect the enclosure
2673  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2674  * it for some reason.  *tmpdevice is the target we're adding,
2675  * this_device is a pointer into the current element of currentsd[]
2676  * that we're building up in update_scsi_devices(), below.
2677  * lunzerobits is a bitmap that tracks which targets already have a
2678  * lun 0 assigned.
2679  * Returns 1 if an enclosure was added, 0 if not.
2680  */
2681 static int add_ext_target_dev(struct ctlr_info *h,
2682 	struct hpsa_scsi_dev_t *tmpdevice,
2683 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2684 	unsigned long lunzerobits[], int *n_ext_target_devs)
2685 {
2686 	unsigned char scsi3addr[8];
2687 
2688 	if (test_bit(tmpdevice->target, lunzerobits))
2689 		return 0; /* There is already a lun 0 on this target. */
2690 
2691 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2692 		return 0; /* It's the logical targets that may lack lun 0. */
2693 
2694 	if (!is_ext_target(h, tmpdevice))
2695 		return 0; /* Only external target devices have this problem. */
2696 
2697 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2698 		return 0;
2699 
2700 	memset(scsi3addr, 0, 8);
2701 	scsi3addr[3] = tmpdevice->target;
2702 	if (is_hba_lunid(scsi3addr))
2703 		return 0; /* Don't add the RAID controller here. */
2704 
2705 	if (is_scsi_rev_5(h))
2706 		return 0; /* p1210m doesn't need to do this. */
2707 
2708 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2709 		dev_warn(&h->pdev->dev, "Maximum number of external "
2710 			"target devices exceeded.  Check your hardware "
2711 			"configuration.");
2712 		return 0;
2713 	}
2714 
2715 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2716 		return 0;
2717 	(*n_ext_target_devs)++;
2718 	hpsa_set_bus_target_lun(this_device,
2719 				tmpdevice->bus, tmpdevice->target, 0);
2720 	set_bit(tmpdevice->target, lunzerobits);
2721 	return 1;
2722 }
2723 
2724 /*
2725  * Get address of physical disk used for an ioaccel2 mode command:
2726  *	1. Extract ioaccel2 handle from the command.
2727  *	2. Find a matching ioaccel2 handle from list of physical disks.
2728  *	3. Return:
2729  *		1 and set scsi3addr to address of matching physical
2730  *		0 if no matching physical disk was found.
2731  */
2732 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2733 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2734 {
2735 	struct ReportExtendedLUNdata *physicals = NULL;
2736 	int responsesize = 24;	/* size of physical extended response */
2737 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2738 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2739 	u32 nphysicals = 0;	/* number of reported physical devs */
2740 	int found = 0;		/* found match (1) or not (0) */
2741 	u32 find;		/* handle we need to match */
2742 	int i;
2743 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2744 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2745 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2746 	__le32 it_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2747 	__le32 scsi_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2748 
2749 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2750 		return 0; /* no match */
2751 
2752 	/* point to the ioaccel2 device handle */
2753 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2754 	if (c2a == NULL)
2755 		return 0; /* no match */
2756 
2757 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2758 	if (scmd == NULL)
2759 		return 0; /* no match */
2760 
2761 	d = scmd->device->hostdata;
2762 	if (d == NULL)
2763 		return 0; /* no match */
2764 
2765 	it_nexus = cpu_to_le32(d->ioaccel_handle);
2766 	scsi_nexus = c2a->scsi_nexus;
2767 	find = le32_to_cpu(c2a->scsi_nexus);
2768 
2769 	if (h->raid_offload_debug > 0)
2770 		dev_info(&h->pdev->dev,
2771 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2772 			__func__, scsi_nexus,
2773 			d->device_id[0], d->device_id[1], d->device_id[2],
2774 			d->device_id[3], d->device_id[4], d->device_id[5],
2775 			d->device_id[6], d->device_id[7], d->device_id[8],
2776 			d->device_id[9], d->device_id[10], d->device_id[11],
2777 			d->device_id[12], d->device_id[13], d->device_id[14],
2778 			d->device_id[15]);
2779 
2780 	/* Get the list of physical devices */
2781 	physicals = kzalloc(reportsize, GFP_KERNEL);
2782 	if (physicals == NULL)
2783 		return 0;
2784 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2785 		reportsize, extended)) {
2786 		dev_err(&h->pdev->dev,
2787 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2788 			"HP SSD Smart Path");
2789 		kfree(physicals);
2790 		return 0;
2791 	}
2792 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2793 							responsesize;
2794 
2795 	/* find ioaccel2 handle in list of physicals: */
2796 	for (i = 0; i < nphysicals; i++) {
2797 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2798 
2799 		/* handle is in bytes 28-31 of each lun */
2800 		if (entry->ioaccel_handle != find)
2801 			continue; /* didn't match */
2802 		found = 1;
2803 		memcpy(scsi3addr, entry->lunid, 8);
2804 		if (h->raid_offload_debug > 0)
2805 			dev_info(&h->pdev->dev,
2806 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2807 				__func__, find,
2808 				entry->ioaccel_handle, scsi3addr);
2809 		break; /* found it */
2810 	}
2811 
2812 	kfree(physicals);
2813 	if (found)
2814 		return 1;
2815 	else
2816 		return 0;
2817 
2818 }
2819 /*
2820  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2821  * logdev.  The number of luns in physdev and logdev are returned in
2822  * *nphysicals and *nlogicals, respectively.
2823  * Returns 0 on success, -1 otherwise.
2824  */
2825 static int hpsa_gather_lun_info(struct ctlr_info *h,
2826 	int reportphyslunsize, int reportloglunsize,
2827 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2828 	struct ReportLUNdata *logdev, u32 *nlogicals)
2829 {
2830 	int physical_entry_size = 8;
2831 
2832 	*physical_mode = 0;
2833 
2834 	/* For I/O accelerator mode we need to read physical device handles */
2835 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2836 		h->transMethod & CFGTBL_Trans_io_accel2) {
2837 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2838 		physical_entry_size = 24;
2839 	}
2840 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2841 							*physical_mode)) {
2842 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2843 		return -1;
2844 	}
2845 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2846 							physical_entry_size;
2847 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2848 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2849 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2850 			*nphysicals - HPSA_MAX_PHYS_LUN);
2851 		*nphysicals = HPSA_MAX_PHYS_LUN;
2852 	}
2853 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2854 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2855 		return -1;
2856 	}
2857 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2858 	/* Reject Logicals in excess of our max capability. */
2859 	if (*nlogicals > HPSA_MAX_LUN) {
2860 		dev_warn(&h->pdev->dev,
2861 			"maximum logical LUNs (%d) exceeded.  "
2862 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2863 			*nlogicals - HPSA_MAX_LUN);
2864 			*nlogicals = HPSA_MAX_LUN;
2865 	}
2866 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2867 		dev_warn(&h->pdev->dev,
2868 			"maximum logical + physical LUNs (%d) exceeded. "
2869 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2870 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2871 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2872 	}
2873 	return 0;
2874 }
2875 
2876 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2877 	int i, int nphysicals, int nlogicals,
2878 	struct ReportExtendedLUNdata *physdev_list,
2879 	struct ReportLUNdata *logdev_list)
2880 {
2881 	/* Helper function, figure out where the LUN ID info is coming from
2882 	 * given index i, lists of physical and logical devices, where in
2883 	 * the list the raid controller is supposed to appear (first or last)
2884 	 */
2885 
2886 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2887 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2888 
2889 	if (i == raid_ctlr_position)
2890 		return RAID_CTLR_LUNID;
2891 
2892 	if (i < logicals_start)
2893 		return &physdev_list->LUN[i -
2894 				(raid_ctlr_position == 0)].lunid[0];
2895 
2896 	if (i < last_device)
2897 		return &logdev_list->LUN[i - nphysicals -
2898 			(raid_ctlr_position == 0)][0];
2899 	BUG();
2900 	return NULL;
2901 }
2902 
2903 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2904 {
2905 	int rc;
2906 	int hba_mode_enabled;
2907 	struct bmic_controller_parameters *ctlr_params;
2908 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2909 		GFP_KERNEL);
2910 
2911 	if (!ctlr_params)
2912 		return -ENOMEM;
2913 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2914 		sizeof(struct bmic_controller_parameters));
2915 	if (rc) {
2916 		kfree(ctlr_params);
2917 		return rc;
2918 	}
2919 
2920 	hba_mode_enabled =
2921 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2922 	kfree(ctlr_params);
2923 	return hba_mode_enabled;
2924 }
2925 
2926 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2927 {
2928 	/* the idea here is we could get notified
2929 	 * that some devices have changed, so we do a report
2930 	 * physical luns and report logical luns cmd, and adjust
2931 	 * our list of devices accordingly.
2932 	 *
2933 	 * The scsi3addr's of devices won't change so long as the
2934 	 * adapter is not reset.  That means we can rescan and
2935 	 * tell which devices we already know about, vs. new
2936 	 * devices, vs.  disappearing devices.
2937 	 */
2938 	struct ReportExtendedLUNdata *physdev_list = NULL;
2939 	struct ReportLUNdata *logdev_list = NULL;
2940 	u32 nphysicals = 0;
2941 	u32 nlogicals = 0;
2942 	int physical_mode = 0;
2943 	u32 ndev_allocated = 0;
2944 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2945 	int ncurrent = 0;
2946 	int i, n_ext_target_devs, ndevs_to_allocate;
2947 	int raid_ctlr_position;
2948 	int rescan_hba_mode;
2949 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2950 
2951 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2952 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2953 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2954 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2955 
2956 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2957 		dev_err(&h->pdev->dev, "out of memory\n");
2958 		goto out;
2959 	}
2960 	memset(lunzerobits, 0, sizeof(lunzerobits));
2961 
2962 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
2963 	if (rescan_hba_mode < 0)
2964 		goto out;
2965 
2966 	if (!h->hba_mode_enabled && rescan_hba_mode)
2967 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2968 	else if (h->hba_mode_enabled && !rescan_hba_mode)
2969 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2970 
2971 	h->hba_mode_enabled = rescan_hba_mode;
2972 
2973 	if (hpsa_gather_lun_info(h,
2974 			sizeof(*physdev_list), sizeof(*logdev_list),
2975 			(struct ReportLUNdata *) physdev_list, &nphysicals,
2976 			&physical_mode, logdev_list, &nlogicals))
2977 		goto out;
2978 
2979 	/* We might see up to the maximum number of logical and physical disks
2980 	 * plus external target devices, and a device for the local RAID
2981 	 * controller.
2982 	 */
2983 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2984 
2985 	/* Allocate the per device structures */
2986 	for (i = 0; i < ndevs_to_allocate; i++) {
2987 		if (i >= HPSA_MAX_DEVICES) {
2988 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2989 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
2990 				ndevs_to_allocate - HPSA_MAX_DEVICES);
2991 			break;
2992 		}
2993 
2994 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2995 		if (!currentsd[i]) {
2996 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2997 				__FILE__, __LINE__);
2998 			goto out;
2999 		}
3000 		ndev_allocated++;
3001 	}
3002 
3003 	if (is_scsi_rev_5(h))
3004 		raid_ctlr_position = 0;
3005 	else
3006 		raid_ctlr_position = nphysicals + nlogicals;
3007 
3008 	/* adjust our table of devices */
3009 	n_ext_target_devs = 0;
3010 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3011 		u8 *lunaddrbytes, is_OBDR = 0;
3012 
3013 		/* Figure out where the LUN ID info is coming from */
3014 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3015 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3016 		/* skip masked physical devices. */
3017 		if (lunaddrbytes[3] & 0xC0 &&
3018 			i < nphysicals + (raid_ctlr_position == 0))
3019 			continue;
3020 
3021 		/* Get device type, vendor, model, device id */
3022 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3023 							&is_OBDR))
3024 			continue; /* skip it if we can't talk to it. */
3025 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3026 		this_device = currentsd[ncurrent];
3027 
3028 		/*
3029 		 * For external target devices, we have to insert a LUN 0 which
3030 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3031 		 * is nonetheless an enclosure device there.  We have to
3032 		 * present that otherwise linux won't find anything if
3033 		 * there is no lun 0.
3034 		 */
3035 		if (add_ext_target_dev(h, tmpdevice, this_device,
3036 				lunaddrbytes, lunzerobits,
3037 				&n_ext_target_devs)) {
3038 			ncurrent++;
3039 			this_device = currentsd[ncurrent];
3040 		}
3041 
3042 		*this_device = *tmpdevice;
3043 
3044 		switch (this_device->devtype) {
3045 		case TYPE_ROM:
3046 			/* We don't *really* support actual CD-ROM devices,
3047 			 * just "One Button Disaster Recovery" tape drive
3048 			 * which temporarily pretends to be a CD-ROM drive.
3049 			 * So we check that the device is really an OBDR tape
3050 			 * device by checking for "$DR-10" in bytes 43-48 of
3051 			 * the inquiry data.
3052 			 */
3053 			if (is_OBDR)
3054 				ncurrent++;
3055 			break;
3056 		case TYPE_DISK:
3057 			if (h->hba_mode_enabled) {
3058 				/* never use raid mapper in HBA mode */
3059 				this_device->offload_enabled = 0;
3060 				ncurrent++;
3061 				break;
3062 			} else if (h->acciopath_status) {
3063 				if (i >= nphysicals) {
3064 					ncurrent++;
3065 					break;
3066 				}
3067 			} else {
3068 				if (i < nphysicals)
3069 					break;
3070 				ncurrent++;
3071 				break;
3072 			}
3073 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3074 				memcpy(&this_device->ioaccel_handle,
3075 					&lunaddrbytes[20],
3076 					sizeof(this_device->ioaccel_handle));
3077 				ncurrent++;
3078 			}
3079 			break;
3080 		case TYPE_TAPE:
3081 		case TYPE_MEDIUM_CHANGER:
3082 			ncurrent++;
3083 			break;
3084 		case TYPE_RAID:
3085 			/* Only present the Smartarray HBA as a RAID controller.
3086 			 * If it's a RAID controller other than the HBA itself
3087 			 * (an external RAID controller, MSA500 or similar)
3088 			 * don't present it.
3089 			 */
3090 			if (!is_hba_lunid(lunaddrbytes))
3091 				break;
3092 			ncurrent++;
3093 			break;
3094 		default:
3095 			break;
3096 		}
3097 		if (ncurrent >= HPSA_MAX_DEVICES)
3098 			break;
3099 	}
3100 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3101 out:
3102 	kfree(tmpdevice);
3103 	for (i = 0; i < ndev_allocated; i++)
3104 		kfree(currentsd[i]);
3105 	kfree(currentsd);
3106 	kfree(physdev_list);
3107 	kfree(logdev_list);
3108 }
3109 
3110 /*
3111  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3112  * dma mapping  and fills in the scatter gather entries of the
3113  * hpsa command, cp.
3114  */
3115 static int hpsa_scatter_gather(struct ctlr_info *h,
3116 		struct CommandList *cp,
3117 		struct scsi_cmnd *cmd)
3118 {
3119 	unsigned int len;
3120 	struct scatterlist *sg;
3121 	u64 addr64;
3122 	int use_sg, i, sg_index, chained;
3123 	struct SGDescriptor *curr_sg;
3124 
3125 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3126 
3127 	use_sg = scsi_dma_map(cmd);
3128 	if (use_sg < 0)
3129 		return use_sg;
3130 
3131 	if (!use_sg)
3132 		goto sglist_finished;
3133 
3134 	curr_sg = cp->SG;
3135 	chained = 0;
3136 	sg_index = 0;
3137 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3138 		if (i == h->max_cmd_sg_entries - 1 &&
3139 			use_sg > h->max_cmd_sg_entries) {
3140 			chained = 1;
3141 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3142 			sg_index = 0;
3143 		}
3144 		addr64 = (u64) sg_dma_address(sg);
3145 		len  = sg_dma_len(sg);
3146 		curr_sg->Addr = cpu_to_le64(addr64);
3147 		curr_sg->Len = cpu_to_le32(len);
3148 		curr_sg->Ext = cpu_to_le32(0);
3149 		curr_sg++;
3150 	}
3151 	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3152 
3153 	if (use_sg + chained > h->maxSG)
3154 		h->maxSG = use_sg + chained;
3155 
3156 	if (chained) {
3157 		cp->Header.SGList = h->max_cmd_sg_entries;
3158 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3159 		if (hpsa_map_sg_chain_block(h, cp)) {
3160 			scsi_dma_unmap(cmd);
3161 			return -1;
3162 		}
3163 		return 0;
3164 	}
3165 
3166 sglist_finished:
3167 
3168 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3169 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3170 	return 0;
3171 }
3172 
3173 #define IO_ACCEL_INELIGIBLE (1)
3174 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3175 {
3176 	int is_write = 0;
3177 	u32 block;
3178 	u32 block_cnt;
3179 
3180 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3181 	switch (cdb[0]) {
3182 	case WRITE_6:
3183 	case WRITE_12:
3184 		is_write = 1;
3185 	case READ_6:
3186 	case READ_12:
3187 		if (*cdb_len == 6) {
3188 			block = (((u32) cdb[2]) << 8) | cdb[3];
3189 			block_cnt = cdb[4];
3190 		} else {
3191 			BUG_ON(*cdb_len != 12);
3192 			block = (((u32) cdb[2]) << 24) |
3193 				(((u32) cdb[3]) << 16) |
3194 				(((u32) cdb[4]) << 8) |
3195 				cdb[5];
3196 			block_cnt =
3197 				(((u32) cdb[6]) << 24) |
3198 				(((u32) cdb[7]) << 16) |
3199 				(((u32) cdb[8]) << 8) |
3200 				cdb[9];
3201 		}
3202 		if (block_cnt > 0xffff)
3203 			return IO_ACCEL_INELIGIBLE;
3204 
3205 		cdb[0] = is_write ? WRITE_10 : READ_10;
3206 		cdb[1] = 0;
3207 		cdb[2] = (u8) (block >> 24);
3208 		cdb[3] = (u8) (block >> 16);
3209 		cdb[4] = (u8) (block >> 8);
3210 		cdb[5] = (u8) (block);
3211 		cdb[6] = 0;
3212 		cdb[7] = (u8) (block_cnt >> 8);
3213 		cdb[8] = (u8) (block_cnt);
3214 		cdb[9] = 0;
3215 		*cdb_len = 10;
3216 		break;
3217 	}
3218 	return 0;
3219 }
3220 
3221 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3222 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3223 	u8 *scsi3addr)
3224 {
3225 	struct scsi_cmnd *cmd = c->scsi_cmd;
3226 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3227 	unsigned int len;
3228 	unsigned int total_len = 0;
3229 	struct scatterlist *sg;
3230 	u64 addr64;
3231 	int use_sg, i;
3232 	struct SGDescriptor *curr_sg;
3233 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3234 
3235 	/* TODO: implement chaining support */
3236 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3237 		return IO_ACCEL_INELIGIBLE;
3238 
3239 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3240 
3241 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3242 		return IO_ACCEL_INELIGIBLE;
3243 
3244 	c->cmd_type = CMD_IOACCEL1;
3245 
3246 	/* Adjust the DMA address to point to the accelerated command buffer */
3247 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3248 				(c->cmdindex * sizeof(*cp));
3249 	BUG_ON(c->busaddr & 0x0000007F);
3250 
3251 	use_sg = scsi_dma_map(cmd);
3252 	if (use_sg < 0)
3253 		return use_sg;
3254 
3255 	if (use_sg) {
3256 		curr_sg = cp->SG;
3257 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3258 			addr64 = (u64) sg_dma_address(sg);
3259 			len  = sg_dma_len(sg);
3260 			total_len += len;
3261 			curr_sg->Addr = cpu_to_le64(addr64);
3262 			curr_sg->Len = cpu_to_le32(len);
3263 			curr_sg->Ext = cpu_to_le32(0);
3264 			curr_sg++;
3265 		}
3266 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3267 
3268 		switch (cmd->sc_data_direction) {
3269 		case DMA_TO_DEVICE:
3270 			control |= IOACCEL1_CONTROL_DATA_OUT;
3271 			break;
3272 		case DMA_FROM_DEVICE:
3273 			control |= IOACCEL1_CONTROL_DATA_IN;
3274 			break;
3275 		case DMA_NONE:
3276 			control |= IOACCEL1_CONTROL_NODATAXFER;
3277 			break;
3278 		default:
3279 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3280 			cmd->sc_data_direction);
3281 			BUG();
3282 			break;
3283 		}
3284 	} else {
3285 		control |= IOACCEL1_CONTROL_NODATAXFER;
3286 	}
3287 
3288 	c->Header.SGList = use_sg;
3289 	/* Fill out the command structure to submit */
3290 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3291 	cp->transfer_len = cpu_to_le32(total_len);
3292 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3293 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3294 	cp->control = cpu_to_le32(control);
3295 	memcpy(cp->CDB, cdb, cdb_len);
3296 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3297 	/* Tag was already set at init time. */
3298 	enqueue_cmd_and_start_io(h, c);
3299 	return 0;
3300 }
3301 
3302 /*
3303  * Queue a command directly to a device behind the controller using the
3304  * I/O accelerator path.
3305  */
3306 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3307 	struct CommandList *c)
3308 {
3309 	struct scsi_cmnd *cmd = c->scsi_cmd;
3310 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3311 
3312 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3313 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3314 }
3315 
3316 /*
3317  * Set encryption parameters for the ioaccel2 request
3318  */
3319 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3320 	struct CommandList *c, struct io_accel2_cmd *cp)
3321 {
3322 	struct scsi_cmnd *cmd = c->scsi_cmd;
3323 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3324 	struct raid_map_data *map = &dev->raid_map;
3325 	u64 first_block;
3326 
3327 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3328 
3329 	/* Are we doing encryption on this device */
3330 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3331 		return;
3332 	/* Set the data encryption key index. */
3333 	cp->dekindex = map->dekindex;
3334 
3335 	/* Set the encryption enable flag, encoded into direction field. */
3336 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3337 
3338 	/* Set encryption tweak values based on logical block address
3339 	 * If block size is 512, tweak value is LBA.
3340 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3341 	 */
3342 	switch (cmd->cmnd[0]) {
3343 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3344 	case WRITE_6:
3345 	case READ_6:
3346 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3347 		break;
3348 	case WRITE_10:
3349 	case READ_10:
3350 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3351 	case WRITE_12:
3352 	case READ_12:
3353 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3354 		break;
3355 	case WRITE_16:
3356 	case READ_16:
3357 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3358 		break;
3359 	default:
3360 		dev_err(&h->pdev->dev,
3361 			"ERROR: %s: size (0x%x) not supported for encryption\n",
3362 			__func__, cmd->cmnd[0]);
3363 		BUG();
3364 		break;
3365 	}
3366 
3367 	if (le32_to_cpu(map->volume_blk_size) != 512)
3368 		first_block = first_block *
3369 				le32_to_cpu(map->volume_blk_size)/512;
3370 
3371 	cp->tweak_lower = cpu_to_le32(first_block);
3372 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3373 }
3374 
3375 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3376 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3377 	u8 *scsi3addr)
3378 {
3379 	struct scsi_cmnd *cmd = c->scsi_cmd;
3380 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3381 	struct ioaccel2_sg_element *curr_sg;
3382 	int use_sg, i;
3383 	struct scatterlist *sg;
3384 	u64 addr64;
3385 	u32 len;
3386 	u32 total_len = 0;
3387 
3388 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3389 		return IO_ACCEL_INELIGIBLE;
3390 
3391 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3392 		return IO_ACCEL_INELIGIBLE;
3393 	c->cmd_type = CMD_IOACCEL2;
3394 	/* Adjust the DMA address to point to the accelerated command buffer */
3395 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3396 				(c->cmdindex * sizeof(*cp));
3397 	BUG_ON(c->busaddr & 0x0000007F);
3398 
3399 	memset(cp, 0, sizeof(*cp));
3400 	cp->IU_type = IOACCEL2_IU_TYPE;
3401 
3402 	use_sg = scsi_dma_map(cmd);
3403 	if (use_sg < 0)
3404 		return use_sg;
3405 
3406 	if (use_sg) {
3407 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3408 		curr_sg = cp->sg;
3409 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3410 			addr64 = (u64) sg_dma_address(sg);
3411 			len  = sg_dma_len(sg);
3412 			total_len += len;
3413 			curr_sg->address = cpu_to_le64(addr64);
3414 			curr_sg->length = cpu_to_le32(len);
3415 			curr_sg->reserved[0] = 0;
3416 			curr_sg->reserved[1] = 0;
3417 			curr_sg->reserved[2] = 0;
3418 			curr_sg->chain_indicator = 0;
3419 			curr_sg++;
3420 		}
3421 
3422 		switch (cmd->sc_data_direction) {
3423 		case DMA_TO_DEVICE:
3424 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3425 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3426 			break;
3427 		case DMA_FROM_DEVICE:
3428 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3429 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3430 			break;
3431 		case DMA_NONE:
3432 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3433 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3434 			break;
3435 		default:
3436 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3437 				cmd->sc_data_direction);
3438 			BUG();
3439 			break;
3440 		}
3441 	} else {
3442 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3443 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3444 	}
3445 
3446 	/* Set encryption parameters, if necessary */
3447 	set_encrypt_ioaccel2(h, c, cp);
3448 
3449 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3450 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3451 				DIRECT_LOOKUP_BIT);
3452 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3453 
3454 	/* fill in sg elements */
3455 	cp->sg_count = (u8) use_sg;
3456 
3457 	cp->data_len = cpu_to_le32(total_len);
3458 	cp->err_ptr = cpu_to_le64(c->busaddr +
3459 			offsetof(struct io_accel2_cmd, error_data));
3460 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3461 
3462 	enqueue_cmd_and_start_io(h, c);
3463 	return 0;
3464 }
3465 
3466 /*
3467  * Queue a command to the correct I/O accelerator path.
3468  */
3469 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3470 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3471 	u8 *scsi3addr)
3472 {
3473 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3474 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3475 						cdb, cdb_len, scsi3addr);
3476 	else
3477 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3478 						cdb, cdb_len, scsi3addr);
3479 }
3480 
3481 static void raid_map_helper(struct raid_map_data *map,
3482 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3483 {
3484 	if (offload_to_mirror == 0)  {
3485 		/* use physical disk in the first mirrored group. */
3486 		*map_index %= le16_to_cpu(map->data_disks_per_row);
3487 		return;
3488 	}
3489 	do {
3490 		/* determine mirror group that *map_index indicates */
3491 		*current_group = *map_index /
3492 			le16_to_cpu(map->data_disks_per_row);
3493 		if (offload_to_mirror == *current_group)
3494 			continue;
3495 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3496 			/* select map index from next group */
3497 			*map_index += le16_to_cpu(map->data_disks_per_row);
3498 			(*current_group)++;
3499 		} else {
3500 			/* select map index from first group */
3501 			*map_index %= le16_to_cpu(map->data_disks_per_row);
3502 			*current_group = 0;
3503 		}
3504 	} while (offload_to_mirror != *current_group);
3505 }
3506 
3507 /*
3508  * Attempt to perform offload RAID mapping for a logical volume I/O.
3509  */
3510 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3511 	struct CommandList *c)
3512 {
3513 	struct scsi_cmnd *cmd = c->scsi_cmd;
3514 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3515 	struct raid_map_data *map = &dev->raid_map;
3516 	struct raid_map_disk_data *dd = &map->data[0];
3517 	int is_write = 0;
3518 	u32 map_index;
3519 	u64 first_block, last_block;
3520 	u32 block_cnt;
3521 	u32 blocks_per_row;
3522 	u64 first_row, last_row;
3523 	u32 first_row_offset, last_row_offset;
3524 	u32 first_column, last_column;
3525 	u64 r0_first_row, r0_last_row;
3526 	u32 r5or6_blocks_per_row;
3527 	u64 r5or6_first_row, r5or6_last_row;
3528 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3529 	u32 r5or6_first_column, r5or6_last_column;
3530 	u32 total_disks_per_row;
3531 	u32 stripesize;
3532 	u32 first_group, last_group, current_group;
3533 	u32 map_row;
3534 	u32 disk_handle;
3535 	u64 disk_block;
3536 	u32 disk_block_cnt;
3537 	u8 cdb[16];
3538 	u8 cdb_len;
3539 	u16 strip_size;
3540 #if BITS_PER_LONG == 32
3541 	u64 tmpdiv;
3542 #endif
3543 	int offload_to_mirror;
3544 
3545 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3546 
3547 	/* check for valid opcode, get LBA and block count */
3548 	switch (cmd->cmnd[0]) {
3549 	case WRITE_6:
3550 		is_write = 1;
3551 	case READ_6:
3552 		first_block =
3553 			(((u64) cmd->cmnd[2]) << 8) |
3554 			cmd->cmnd[3];
3555 		block_cnt = cmd->cmnd[4];
3556 		if (block_cnt == 0)
3557 			block_cnt = 256;
3558 		break;
3559 	case WRITE_10:
3560 		is_write = 1;
3561 	case READ_10:
3562 		first_block =
3563 			(((u64) cmd->cmnd[2]) << 24) |
3564 			(((u64) cmd->cmnd[3]) << 16) |
3565 			(((u64) cmd->cmnd[4]) << 8) |
3566 			cmd->cmnd[5];
3567 		block_cnt =
3568 			(((u32) cmd->cmnd[7]) << 8) |
3569 			cmd->cmnd[8];
3570 		break;
3571 	case WRITE_12:
3572 		is_write = 1;
3573 	case READ_12:
3574 		first_block =
3575 			(((u64) cmd->cmnd[2]) << 24) |
3576 			(((u64) cmd->cmnd[3]) << 16) |
3577 			(((u64) cmd->cmnd[4]) << 8) |
3578 			cmd->cmnd[5];
3579 		block_cnt =
3580 			(((u32) cmd->cmnd[6]) << 24) |
3581 			(((u32) cmd->cmnd[7]) << 16) |
3582 			(((u32) cmd->cmnd[8]) << 8) |
3583 		cmd->cmnd[9];
3584 		break;
3585 	case WRITE_16:
3586 		is_write = 1;
3587 	case READ_16:
3588 		first_block =
3589 			(((u64) cmd->cmnd[2]) << 56) |
3590 			(((u64) cmd->cmnd[3]) << 48) |
3591 			(((u64) cmd->cmnd[4]) << 40) |
3592 			(((u64) cmd->cmnd[5]) << 32) |
3593 			(((u64) cmd->cmnd[6]) << 24) |
3594 			(((u64) cmd->cmnd[7]) << 16) |
3595 			(((u64) cmd->cmnd[8]) << 8) |
3596 			cmd->cmnd[9];
3597 		block_cnt =
3598 			(((u32) cmd->cmnd[10]) << 24) |
3599 			(((u32) cmd->cmnd[11]) << 16) |
3600 			(((u32) cmd->cmnd[12]) << 8) |
3601 			cmd->cmnd[13];
3602 		break;
3603 	default:
3604 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3605 	}
3606 	last_block = first_block + block_cnt - 1;
3607 
3608 	/* check for write to non-RAID-0 */
3609 	if (is_write && dev->raid_level != 0)
3610 		return IO_ACCEL_INELIGIBLE;
3611 
3612 	/* check for invalid block or wraparound */
3613 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3614 		last_block < first_block)
3615 		return IO_ACCEL_INELIGIBLE;
3616 
3617 	/* calculate stripe information for the request */
3618 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3619 				le16_to_cpu(map->strip_size);
3620 	strip_size = le16_to_cpu(map->strip_size);
3621 #if BITS_PER_LONG == 32
3622 	tmpdiv = first_block;
3623 	(void) do_div(tmpdiv, blocks_per_row);
3624 	first_row = tmpdiv;
3625 	tmpdiv = last_block;
3626 	(void) do_div(tmpdiv, blocks_per_row);
3627 	last_row = tmpdiv;
3628 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3629 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3630 	tmpdiv = first_row_offset;
3631 	(void) do_div(tmpdiv, strip_size);
3632 	first_column = tmpdiv;
3633 	tmpdiv = last_row_offset;
3634 	(void) do_div(tmpdiv, strip_size);
3635 	last_column = tmpdiv;
3636 #else
3637 	first_row = first_block / blocks_per_row;
3638 	last_row = last_block / blocks_per_row;
3639 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3640 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3641 	first_column = first_row_offset / strip_size;
3642 	last_column = last_row_offset / strip_size;
3643 #endif
3644 
3645 	/* if this isn't a single row/column then give to the controller */
3646 	if ((first_row != last_row) || (first_column != last_column))
3647 		return IO_ACCEL_INELIGIBLE;
3648 
3649 	/* proceeding with driver mapping */
3650 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3651 				le16_to_cpu(map->metadata_disks_per_row);
3652 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3653 				le16_to_cpu(map->row_cnt);
3654 	map_index = (map_row * total_disks_per_row) + first_column;
3655 
3656 	switch (dev->raid_level) {
3657 	case HPSA_RAID_0:
3658 		break; /* nothing special to do */
3659 	case HPSA_RAID_1:
3660 		/* Handles load balance across RAID 1 members.
3661 		 * (2-drive R1 and R10 with even # of drives.)
3662 		 * Appropriate for SSDs, not optimal for HDDs
3663 		 */
3664 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3665 		if (dev->offload_to_mirror)
3666 			map_index += le16_to_cpu(map->data_disks_per_row);
3667 		dev->offload_to_mirror = !dev->offload_to_mirror;
3668 		break;
3669 	case HPSA_RAID_ADM:
3670 		/* Handles N-way mirrors  (R1-ADM)
3671 		 * and R10 with # of drives divisible by 3.)
3672 		 */
3673 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3674 
3675 		offload_to_mirror = dev->offload_to_mirror;
3676 		raid_map_helper(map, offload_to_mirror,
3677 				&map_index, &current_group);
3678 		/* set mirror group to use next time */
3679 		offload_to_mirror =
3680 			(offload_to_mirror >=
3681 			le16_to_cpu(map->layout_map_count) - 1)
3682 			? 0 : offload_to_mirror + 1;
3683 		dev->offload_to_mirror = offload_to_mirror;
3684 		/* Avoid direct use of dev->offload_to_mirror within this
3685 		 * function since multiple threads might simultaneously
3686 		 * increment it beyond the range of dev->layout_map_count -1.
3687 		 */
3688 		break;
3689 	case HPSA_RAID_5:
3690 	case HPSA_RAID_6:
3691 		if (le16_to_cpu(map->layout_map_count) <= 1)
3692 			break;
3693 
3694 		/* Verify first and last block are in same RAID group */
3695 		r5or6_blocks_per_row =
3696 			le16_to_cpu(map->strip_size) *
3697 			le16_to_cpu(map->data_disks_per_row);
3698 		BUG_ON(r5or6_blocks_per_row == 0);
3699 		stripesize = r5or6_blocks_per_row *
3700 			le16_to_cpu(map->layout_map_count);
3701 #if BITS_PER_LONG == 32
3702 		tmpdiv = first_block;
3703 		first_group = do_div(tmpdiv, stripesize);
3704 		tmpdiv = first_group;
3705 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3706 		first_group = tmpdiv;
3707 		tmpdiv = last_block;
3708 		last_group = do_div(tmpdiv, stripesize);
3709 		tmpdiv = last_group;
3710 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3711 		last_group = tmpdiv;
3712 #else
3713 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3714 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3715 #endif
3716 		if (first_group != last_group)
3717 			return IO_ACCEL_INELIGIBLE;
3718 
3719 		/* Verify request is in a single row of RAID 5/6 */
3720 #if BITS_PER_LONG == 32
3721 		tmpdiv = first_block;
3722 		(void) do_div(tmpdiv, stripesize);
3723 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3724 		tmpdiv = last_block;
3725 		(void) do_div(tmpdiv, stripesize);
3726 		r5or6_last_row = r0_last_row = tmpdiv;
3727 #else
3728 		first_row = r5or6_first_row = r0_first_row =
3729 						first_block / stripesize;
3730 		r5or6_last_row = r0_last_row = last_block / stripesize;
3731 #endif
3732 		if (r5or6_first_row != r5or6_last_row)
3733 			return IO_ACCEL_INELIGIBLE;
3734 
3735 
3736 		/* Verify request is in a single column */
3737 #if BITS_PER_LONG == 32
3738 		tmpdiv = first_block;
3739 		first_row_offset = do_div(tmpdiv, stripesize);
3740 		tmpdiv = first_row_offset;
3741 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3742 		r5or6_first_row_offset = first_row_offset;
3743 		tmpdiv = last_block;
3744 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3745 		tmpdiv = r5or6_last_row_offset;
3746 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3747 		tmpdiv = r5or6_first_row_offset;
3748 		(void) do_div(tmpdiv, map->strip_size);
3749 		first_column = r5or6_first_column = tmpdiv;
3750 		tmpdiv = r5or6_last_row_offset;
3751 		(void) do_div(tmpdiv, map->strip_size);
3752 		r5or6_last_column = tmpdiv;
3753 #else
3754 		first_row_offset = r5or6_first_row_offset =
3755 			(u32)((first_block % stripesize) %
3756 						r5or6_blocks_per_row);
3757 
3758 		r5or6_last_row_offset =
3759 			(u32)((last_block % stripesize) %
3760 						r5or6_blocks_per_row);
3761 
3762 		first_column = r5or6_first_column =
3763 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3764 		r5or6_last_column =
3765 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3766 #endif
3767 		if (r5or6_first_column != r5or6_last_column)
3768 			return IO_ACCEL_INELIGIBLE;
3769 
3770 		/* Request is eligible */
3771 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3772 			le16_to_cpu(map->row_cnt);
3773 
3774 		map_index = (first_group *
3775 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3776 			(map_row * total_disks_per_row) + first_column;
3777 		break;
3778 	default:
3779 		return IO_ACCEL_INELIGIBLE;
3780 	}
3781 
3782 	disk_handle = dd[map_index].ioaccel_handle;
3783 	disk_block = le64_to_cpu(map->disk_starting_blk) +
3784 			first_row * le16_to_cpu(map->strip_size) +
3785 			(first_row_offset - first_column *
3786 			le16_to_cpu(map->strip_size));
3787 	disk_block_cnt = block_cnt;
3788 
3789 	/* handle differing logical/physical block sizes */
3790 	if (map->phys_blk_shift) {
3791 		disk_block <<= map->phys_blk_shift;
3792 		disk_block_cnt <<= map->phys_blk_shift;
3793 	}
3794 	BUG_ON(disk_block_cnt > 0xffff);
3795 
3796 	/* build the new CDB for the physical disk I/O */
3797 	if (disk_block > 0xffffffff) {
3798 		cdb[0] = is_write ? WRITE_16 : READ_16;
3799 		cdb[1] = 0;
3800 		cdb[2] = (u8) (disk_block >> 56);
3801 		cdb[3] = (u8) (disk_block >> 48);
3802 		cdb[4] = (u8) (disk_block >> 40);
3803 		cdb[5] = (u8) (disk_block >> 32);
3804 		cdb[6] = (u8) (disk_block >> 24);
3805 		cdb[7] = (u8) (disk_block >> 16);
3806 		cdb[8] = (u8) (disk_block >> 8);
3807 		cdb[9] = (u8) (disk_block);
3808 		cdb[10] = (u8) (disk_block_cnt >> 24);
3809 		cdb[11] = (u8) (disk_block_cnt >> 16);
3810 		cdb[12] = (u8) (disk_block_cnt >> 8);
3811 		cdb[13] = (u8) (disk_block_cnt);
3812 		cdb[14] = 0;
3813 		cdb[15] = 0;
3814 		cdb_len = 16;
3815 	} else {
3816 		cdb[0] = is_write ? WRITE_10 : READ_10;
3817 		cdb[1] = 0;
3818 		cdb[2] = (u8) (disk_block >> 24);
3819 		cdb[3] = (u8) (disk_block >> 16);
3820 		cdb[4] = (u8) (disk_block >> 8);
3821 		cdb[5] = (u8) (disk_block);
3822 		cdb[6] = 0;
3823 		cdb[7] = (u8) (disk_block_cnt >> 8);
3824 		cdb[8] = (u8) (disk_block_cnt);
3825 		cdb[9] = 0;
3826 		cdb_len = 10;
3827 	}
3828 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3829 						dev->scsi3addr);
3830 }
3831 
3832 /*
3833  * Running in struct Scsi_Host->host_lock less mode using LLD internal
3834  * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3835  */
3836 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3837 {
3838 	struct ctlr_info *h;
3839 	struct hpsa_scsi_dev_t *dev;
3840 	unsigned char scsi3addr[8];
3841 	struct CommandList *c;
3842 	int rc = 0;
3843 
3844 	/* Get the ptr to our adapter structure out of cmd->host. */
3845 	h = sdev_to_hba(cmd->device);
3846 	dev = cmd->device->hostdata;
3847 	if (!dev) {
3848 		cmd->result = DID_NO_CONNECT << 16;
3849 		cmd->scsi_done(cmd);
3850 		return 0;
3851 	}
3852 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3853 
3854 	if (unlikely(lockup_detected(h))) {
3855 		cmd->result = DID_ERROR << 16;
3856 		cmd->scsi_done(cmd);
3857 		return 0;
3858 	}
3859 	c = cmd_alloc(h);
3860 	if (c == NULL) {			/* trouble... */
3861 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3862 		return SCSI_MLQUEUE_HOST_BUSY;
3863 	}
3864 
3865 	/* Fill in the command list header */
3866 	/* save c in case we have to abort it  */
3867 	cmd->host_scribble = (unsigned char *) c;
3868 
3869 	c->cmd_type = CMD_SCSI;
3870 	c->scsi_cmd = cmd;
3871 
3872 	/* Call alternate submit routine for I/O accelerated commands.
3873 	 * Retries always go down the normal I/O path.
3874 	 */
3875 	if (likely(cmd->retries == 0 &&
3876 		cmd->request->cmd_type == REQ_TYPE_FS &&
3877 		h->acciopath_status)) {
3878 		if (dev->offload_enabled) {
3879 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
3880 			if (rc == 0)
3881 				return 0; /* Sent on ioaccel path */
3882 			if (rc < 0) {   /* scsi_dma_map failed. */
3883 				cmd_free(h, c);
3884 				return SCSI_MLQUEUE_HOST_BUSY;
3885 			}
3886 		} else if (dev->ioaccel_handle) {
3887 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
3888 			if (rc == 0)
3889 				return 0; /* Sent on direct map path */
3890 			if (rc < 0) {   /* scsi_dma_map failed. */
3891 				cmd_free(h, c);
3892 				return SCSI_MLQUEUE_HOST_BUSY;
3893 			}
3894 		}
3895 	}
3896 
3897 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
3898 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3899 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3900 					DIRECT_LOOKUP_BIT);
3901 
3902 	/* Fill in the request block... */
3903 
3904 	c->Request.Timeout = 0;
3905 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3906 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3907 	c->Request.CDBLen = cmd->cmd_len;
3908 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3909 	switch (cmd->sc_data_direction) {
3910 	case DMA_TO_DEVICE:
3911 		c->Request.type_attr_dir =
3912 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3913 		break;
3914 	case DMA_FROM_DEVICE:
3915 		c->Request.type_attr_dir =
3916 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3917 		break;
3918 	case DMA_NONE:
3919 		c->Request.type_attr_dir =
3920 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3921 		break;
3922 	case DMA_BIDIRECTIONAL:
3923 		/* This can happen if a buggy application does a scsi passthru
3924 		 * and sets both inlen and outlen to non-zero. ( see
3925 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3926 		 */
3927 
3928 		c->Request.type_attr_dir =
3929 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3930 		/* This is technically wrong, and hpsa controllers should
3931 		 * reject it with CMD_INVALID, which is the most correct
3932 		 * response, but non-fibre backends appear to let it
3933 		 * slide by, and give the same results as if this field
3934 		 * were set correctly.  Either way is acceptable for
3935 		 * our purposes here.
3936 		 */
3937 
3938 		break;
3939 
3940 	default:
3941 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3942 			cmd->sc_data_direction);
3943 		BUG();
3944 		break;
3945 	}
3946 
3947 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3948 		cmd_free(h, c);
3949 		return SCSI_MLQUEUE_HOST_BUSY;
3950 	}
3951 	enqueue_cmd_and_start_io(h, c);
3952 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
3953 	return 0;
3954 }
3955 
3956 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3957 {
3958 	unsigned long flags;
3959 
3960 	/*
3961 	 * Don't let rescans be initiated on a controller known
3962 	 * to be locked up.  If the controller locks up *during*
3963 	 * a rescan, that thread is probably hosed, but at least
3964 	 * we can prevent new rescan threads from piling up on a
3965 	 * locked up controller.
3966 	 */
3967 	if (unlikely(lockup_detected(h))) {
3968 		spin_lock_irqsave(&h->scan_lock, flags);
3969 		h->scan_finished = 1;
3970 		wake_up_all(&h->scan_wait_queue);
3971 		spin_unlock_irqrestore(&h->scan_lock, flags);
3972 		return 1;
3973 	}
3974 	return 0;
3975 }
3976 
3977 static void hpsa_scan_start(struct Scsi_Host *sh)
3978 {
3979 	struct ctlr_info *h = shost_to_hba(sh);
3980 	unsigned long flags;
3981 
3982 	if (do_not_scan_if_controller_locked_up(h))
3983 		return;
3984 
3985 	/* wait until any scan already in progress is finished. */
3986 	while (1) {
3987 		spin_lock_irqsave(&h->scan_lock, flags);
3988 		if (h->scan_finished)
3989 			break;
3990 		spin_unlock_irqrestore(&h->scan_lock, flags);
3991 		wait_event(h->scan_wait_queue, h->scan_finished);
3992 		/* Note: We don't need to worry about a race between this
3993 		 * thread and driver unload because the midlayer will
3994 		 * have incremented the reference count, so unload won't
3995 		 * happen if we're in here.
3996 		 */
3997 	}
3998 	h->scan_finished = 0; /* mark scan as in progress */
3999 	spin_unlock_irqrestore(&h->scan_lock, flags);
4000 
4001 	if (do_not_scan_if_controller_locked_up(h))
4002 		return;
4003 
4004 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4005 
4006 	spin_lock_irqsave(&h->scan_lock, flags);
4007 	h->scan_finished = 1; /* mark scan as finished. */
4008 	wake_up_all(&h->scan_wait_queue);
4009 	spin_unlock_irqrestore(&h->scan_lock, flags);
4010 }
4011 
4012 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4013 {
4014 	struct ctlr_info *h = sdev_to_hba(sdev);
4015 
4016 	if (qdepth < 1)
4017 		qdepth = 1;
4018 	else
4019 		if (qdepth > h->nr_cmds)
4020 			qdepth = h->nr_cmds;
4021 	scsi_change_queue_depth(sdev, qdepth);
4022 	return sdev->queue_depth;
4023 }
4024 
4025 static int hpsa_scan_finished(struct Scsi_Host *sh,
4026 	unsigned long elapsed_time)
4027 {
4028 	struct ctlr_info *h = shost_to_hba(sh);
4029 	unsigned long flags;
4030 	int finished;
4031 
4032 	spin_lock_irqsave(&h->scan_lock, flags);
4033 	finished = h->scan_finished;
4034 	spin_unlock_irqrestore(&h->scan_lock, flags);
4035 	return finished;
4036 }
4037 
4038 static void hpsa_unregister_scsi(struct ctlr_info *h)
4039 {
4040 	/* we are being forcibly unloaded, and may not refuse. */
4041 	scsi_remove_host(h->scsi_host);
4042 	scsi_host_put(h->scsi_host);
4043 	h->scsi_host = NULL;
4044 }
4045 
4046 static int hpsa_register_scsi(struct ctlr_info *h)
4047 {
4048 	struct Scsi_Host *sh;
4049 	int error;
4050 
4051 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4052 	if (sh == NULL)
4053 		goto fail;
4054 
4055 	sh->io_port = 0;
4056 	sh->n_io_port = 0;
4057 	sh->this_id = -1;
4058 	sh->max_channel = 3;
4059 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4060 	sh->max_lun = HPSA_MAX_LUN;
4061 	sh->max_id = HPSA_MAX_LUN;
4062 	sh->can_queue = h->nr_cmds;
4063 	if (h->hba_mode_enabled)
4064 		sh->cmd_per_lun = 7;
4065 	else
4066 		sh->cmd_per_lun = h->nr_cmds;
4067 	sh->sg_tablesize = h->maxsgentries;
4068 	h->scsi_host = sh;
4069 	sh->hostdata[0] = (unsigned long) h;
4070 	sh->irq = h->intr[h->intr_mode];
4071 	sh->unique_id = sh->irq;
4072 	error = scsi_add_host(sh, &h->pdev->dev);
4073 	if (error)
4074 		goto fail_host_put;
4075 	scsi_scan_host(sh);
4076 	return 0;
4077 
4078  fail_host_put:
4079 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4080 		" failed for controller %d\n", __func__, h->ctlr);
4081 	scsi_host_put(sh);
4082 	return error;
4083  fail:
4084 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4085 		" failed for controller %d\n", __func__, h->ctlr);
4086 	return -ENOMEM;
4087 }
4088 
4089 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4090 	unsigned char lunaddr[])
4091 {
4092 	int rc;
4093 	int count = 0;
4094 	int waittime = 1; /* seconds */
4095 	struct CommandList *c;
4096 
4097 	c = cmd_special_alloc(h);
4098 	if (!c) {
4099 		dev_warn(&h->pdev->dev, "out of memory in "
4100 			"wait_for_device_to_become_ready.\n");
4101 		return IO_ERROR;
4102 	}
4103 
4104 	/* Send test unit ready until device ready, or give up. */
4105 	while (count < HPSA_TUR_RETRY_LIMIT) {
4106 
4107 		/* Wait for a bit.  do this first, because if we send
4108 		 * the TUR right away, the reset will just abort it.
4109 		 */
4110 		msleep(1000 * waittime);
4111 		count++;
4112 		rc = 0; /* Device ready. */
4113 
4114 		/* Increase wait time with each try, up to a point. */
4115 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4116 			waittime = waittime * 2;
4117 
4118 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4119 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4120 				NULL, 0, 0, lunaddr, TYPE_CMD);
4121 		hpsa_scsi_do_simple_cmd_core(h, c);
4122 		/* no unmap needed here because no data xfer. */
4123 
4124 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4125 			break;
4126 
4127 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4128 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4129 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4130 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4131 			break;
4132 
4133 		dev_warn(&h->pdev->dev, "waiting %d secs "
4134 			"for device to become ready.\n", waittime);
4135 		rc = 1; /* device not ready. */
4136 	}
4137 
4138 	if (rc)
4139 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4140 	else
4141 		dev_warn(&h->pdev->dev, "device is ready.\n");
4142 
4143 	cmd_special_free(h, c);
4144 	return rc;
4145 }
4146 
4147 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4148  * complaining.  Doing a host- or bus-reset can't do anything good here.
4149  */
4150 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4151 {
4152 	int rc;
4153 	struct ctlr_info *h;
4154 	struct hpsa_scsi_dev_t *dev;
4155 
4156 	/* find the controller to which the command to be aborted was sent */
4157 	h = sdev_to_hba(scsicmd->device);
4158 	if (h == NULL) /* paranoia */
4159 		return FAILED;
4160 	dev = scsicmd->device->hostdata;
4161 	if (!dev) {
4162 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4163 			"device lookup failed.\n");
4164 		return FAILED;
4165 	}
4166 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4167 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4168 	/* send a reset to the SCSI LUN which the command was sent to */
4169 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4170 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4171 		return SUCCESS;
4172 
4173 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4174 	return FAILED;
4175 }
4176 
4177 static void swizzle_abort_tag(u8 *tag)
4178 {
4179 	u8 original_tag[8];
4180 
4181 	memcpy(original_tag, tag, 8);
4182 	tag[0] = original_tag[3];
4183 	tag[1] = original_tag[2];
4184 	tag[2] = original_tag[1];
4185 	tag[3] = original_tag[0];
4186 	tag[4] = original_tag[7];
4187 	tag[5] = original_tag[6];
4188 	tag[6] = original_tag[5];
4189 	tag[7] = original_tag[4];
4190 }
4191 
4192 static void hpsa_get_tag(struct ctlr_info *h,
4193 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4194 {
4195 	u64 tag;
4196 	if (c->cmd_type == CMD_IOACCEL1) {
4197 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4198 			&h->ioaccel_cmd_pool[c->cmdindex];
4199 		tag = le64_to_cpu(cm1->tag);
4200 		*tagupper = cpu_to_le32(tag >> 32);
4201 		*taglower = cpu_to_le32(tag);
4202 		return;
4203 	}
4204 	if (c->cmd_type == CMD_IOACCEL2) {
4205 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4206 			&h->ioaccel2_cmd_pool[c->cmdindex];
4207 		/* upper tag not used in ioaccel2 mode */
4208 		memset(tagupper, 0, sizeof(*tagupper));
4209 		*taglower = cm2->Tag;
4210 		return;
4211 	}
4212 	tag = le64_to_cpu(c->Header.tag);
4213 	*tagupper = cpu_to_le32(tag >> 32);
4214 	*taglower = cpu_to_le32(tag);
4215 }
4216 
4217 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4218 	struct CommandList *abort, int swizzle)
4219 {
4220 	int rc = IO_OK;
4221 	struct CommandList *c;
4222 	struct ErrorInfo *ei;
4223 	__le32 tagupper, taglower;
4224 
4225 	c = cmd_special_alloc(h);
4226 	if (c == NULL) {	/* trouble... */
4227 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4228 		return -ENOMEM;
4229 	}
4230 
4231 	/* fill_cmd can't fail here, no buffer to map */
4232 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4233 		0, 0, scsi3addr, TYPE_MSG);
4234 	if (swizzle)
4235 		swizzle_abort_tag(&c->Request.CDB[4]);
4236 	hpsa_scsi_do_simple_cmd_core(h, c);
4237 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4238 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4239 		__func__, tagupper, taglower);
4240 	/* no unmap needed here because no data xfer. */
4241 
4242 	ei = c->err_info;
4243 	switch (ei->CommandStatus) {
4244 	case CMD_SUCCESS:
4245 		break;
4246 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4247 		rc = -1;
4248 		break;
4249 	default:
4250 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4251 			__func__, tagupper, taglower);
4252 		hpsa_scsi_interpret_error(h, c);
4253 		rc = -1;
4254 		break;
4255 	}
4256 	cmd_special_free(h, c);
4257 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4258 		__func__, tagupper, taglower);
4259 	return rc;
4260 }
4261 
4262 /*
4263  * hpsa_find_cmd_in_queue
4264  *
4265  * Used to determine whether a command (find) is still present
4266  * in queue_head.   Optionally excludes the last element of queue_head.
4267  *
4268  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4269  * not yet been submitted, and so can be aborted by the driver without
4270  * sending an abort to the hardware.
4271  *
4272  * Returns pointer to command if found in queue, NULL otherwise.
4273  */
4274 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4275 			struct scsi_cmnd *find, struct list_head *queue_head)
4276 {
4277 	unsigned long flags;
4278 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4279 
4280 	if (!find)
4281 		return NULL;
4282 	spin_lock_irqsave(&h->lock, flags);
4283 	list_for_each_entry(c, queue_head, list) {
4284 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4285 			continue;
4286 		if (c->scsi_cmd == find) {
4287 			spin_unlock_irqrestore(&h->lock, flags);
4288 			return c;
4289 		}
4290 	}
4291 	spin_unlock_irqrestore(&h->lock, flags);
4292 	return NULL;
4293 }
4294 
4295 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4296 					u8 *tag, struct list_head *queue_head)
4297 {
4298 	unsigned long flags;
4299 	struct CommandList *c;
4300 
4301 	spin_lock_irqsave(&h->lock, flags);
4302 	list_for_each_entry(c, queue_head, list) {
4303 		if (memcmp(&c->Header.tag, tag, 8) != 0)
4304 			continue;
4305 		spin_unlock_irqrestore(&h->lock, flags);
4306 		return c;
4307 	}
4308 	spin_unlock_irqrestore(&h->lock, flags);
4309 	return NULL;
4310 }
4311 
4312 /* ioaccel2 path firmware cannot handle abort task requests.
4313  * Change abort requests to physical target reset, and send to the
4314  * address of the physical disk used for the ioaccel 2 command.
4315  * Return 0 on success (IO_OK)
4316  *	 -1 on failure
4317  */
4318 
4319 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4320 	unsigned char *scsi3addr, struct CommandList *abort)
4321 {
4322 	int rc = IO_OK;
4323 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4324 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4325 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4326 	unsigned char *psa = &phys_scsi3addr[0];
4327 
4328 	/* Get a pointer to the hpsa logical device. */
4329 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4330 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4331 	if (dev == NULL) {
4332 		dev_warn(&h->pdev->dev,
4333 			"Cannot abort: no device pointer for command.\n");
4334 			return -1; /* not abortable */
4335 	}
4336 
4337 	if (h->raid_offload_debug > 0)
4338 		dev_info(&h->pdev->dev,
4339 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4340 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4341 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4342 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4343 
4344 	if (!dev->offload_enabled) {
4345 		dev_warn(&h->pdev->dev,
4346 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4347 		return -1; /* not abortable */
4348 	}
4349 
4350 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4351 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4352 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4353 		return -1; /* not abortable */
4354 	}
4355 
4356 	/* send the reset */
4357 	if (h->raid_offload_debug > 0)
4358 		dev_info(&h->pdev->dev,
4359 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4360 			psa[0], psa[1], psa[2], psa[3],
4361 			psa[4], psa[5], psa[6], psa[7]);
4362 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4363 	if (rc != 0) {
4364 		dev_warn(&h->pdev->dev,
4365 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4366 			psa[0], psa[1], psa[2], psa[3],
4367 			psa[4], psa[5], psa[6], psa[7]);
4368 		return rc; /* failed to reset */
4369 	}
4370 
4371 	/* wait for device to recover */
4372 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4373 		dev_warn(&h->pdev->dev,
4374 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4375 			psa[0], psa[1], psa[2], psa[3],
4376 			psa[4], psa[5], psa[6], psa[7]);
4377 		return -1;  /* failed to recover */
4378 	}
4379 
4380 	/* device recovered */
4381 	dev_info(&h->pdev->dev,
4382 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4383 		psa[0], psa[1], psa[2], psa[3],
4384 		psa[4], psa[5], psa[6], psa[7]);
4385 
4386 	return rc; /* success */
4387 }
4388 
4389 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4390  * tell which kind we're dealing with, so we send the abort both ways.  There
4391  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4392  * way we construct our tags but we check anyway in case the assumptions which
4393  * make this true someday become false.
4394  */
4395 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4396 	unsigned char *scsi3addr, struct CommandList *abort)
4397 {
4398 	u8 swizzled_tag[8];
4399 	struct CommandList *c;
4400 	int rc = 0, rc2 = 0;
4401 
4402 	/* ioccelerator mode 2 commands should be aborted via the
4403 	 * accelerated path, since RAID path is unaware of these commands,
4404 	 * but underlying firmware can't handle abort TMF.
4405 	 * Change abort to physical device reset.
4406 	 */
4407 	if (abort->cmd_type == CMD_IOACCEL2)
4408 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4409 
4410 	/* we do not expect to find the swizzled tag in our queue, but
4411 	 * check anyway just to be sure the assumptions which make this
4412 	 * the case haven't become wrong.
4413 	 */
4414 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4415 	swizzle_abort_tag(swizzled_tag);
4416 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4417 	if (c != NULL) {
4418 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4419 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4420 	}
4421 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4422 
4423 	/* if the command is still in our queue, we can't conclude that it was
4424 	 * aborted (it might have just completed normally) but in any case
4425 	 * we don't need to try to abort it another way.
4426 	 */
4427 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4428 	if (c)
4429 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4430 	return rc && rc2;
4431 }
4432 
4433 /* Send an abort for the specified command.
4434  *	If the device and controller support it,
4435  *		send a task abort request.
4436  */
4437 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4438 {
4439 
4440 	int i, rc;
4441 	struct ctlr_info *h;
4442 	struct hpsa_scsi_dev_t *dev;
4443 	struct CommandList *abort; /* pointer to command to be aborted */
4444 	struct CommandList *found;
4445 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4446 	char msg[256];		/* For debug messaging. */
4447 	int ml = 0;
4448 	__le32 tagupper, taglower;
4449 
4450 	/* Find the controller of the command to be aborted */
4451 	h = sdev_to_hba(sc->device);
4452 	if (WARN(h == NULL,
4453 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4454 		return FAILED;
4455 
4456 	/* Check that controller supports some kind of task abort */
4457 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4458 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4459 		return FAILED;
4460 
4461 	memset(msg, 0, sizeof(msg));
4462 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4463 		h->scsi_host->host_no, sc->device->channel,
4464 		sc->device->id, sc->device->lun);
4465 
4466 	/* Find the device of the command to be aborted */
4467 	dev = sc->device->hostdata;
4468 	if (!dev) {
4469 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4470 				msg);
4471 		return FAILED;
4472 	}
4473 
4474 	/* Get SCSI command to be aborted */
4475 	abort = (struct CommandList *) sc->host_scribble;
4476 	if (abort == NULL) {
4477 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4478 				msg);
4479 		return FAILED;
4480 	}
4481 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4482 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4483 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4484 	if (as != NULL)
4485 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4486 			as->cmnd[0], as->serial_number);
4487 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4488 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4489 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4490 
4491 	/* Search reqQ to See if command is queued but not submitted,
4492 	 * if so, complete the command with aborted status and remove
4493 	 * it from the reqQ.
4494 	 */
4495 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4496 	if (found) {
4497 		found->err_info->CommandStatus = CMD_ABORTED;
4498 		finish_cmd(found);
4499 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4500 				msg);
4501 		return SUCCESS;
4502 	}
4503 
4504 	/* not in reqQ, if also not in cmpQ, must have already completed */
4505 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4506 	if (!found)  {
4507 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4508 				msg);
4509 		return SUCCESS;
4510 	}
4511 
4512 	/*
4513 	 * Command is in flight, or possibly already completed
4514 	 * by the firmware (but not to the scsi mid layer) but we can't
4515 	 * distinguish which.  Send the abort down.
4516 	 */
4517 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4518 	if (rc != 0) {
4519 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4520 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4521 			h->scsi_host->host_no,
4522 			dev->bus, dev->target, dev->lun);
4523 		return FAILED;
4524 	}
4525 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4526 
4527 	/* If the abort(s) above completed and actually aborted the
4528 	 * command, then the command to be aborted should already be
4529 	 * completed.  If not, wait around a bit more to see if they
4530 	 * manage to complete normally.
4531 	 */
4532 #define ABORT_COMPLETE_WAIT_SECS 30
4533 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4534 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4535 		if (!found)
4536 			return SUCCESS;
4537 		msleep(100);
4538 	}
4539 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4540 		msg, ABORT_COMPLETE_WAIT_SECS);
4541 	return FAILED;
4542 }
4543 
4544 
4545 /*
4546  * For operations that cannot sleep, a command block is allocated at init,
4547  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4548  * which ones are free or in use.  Lock must be held when calling this.
4549  * cmd_free() is the complement.
4550  */
4551 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4552 {
4553 	struct CommandList *c;
4554 	int i;
4555 	union u64bit temp64;
4556 	dma_addr_t cmd_dma_handle, err_dma_handle;
4557 	int loopcount;
4558 
4559 	/* There is some *extremely* small but non-zero chance that that
4560 	 * multiple threads could get in here, and one thread could
4561 	 * be scanning through the list of bits looking for a free
4562 	 * one, but the free ones are always behind him, and other
4563 	 * threads sneak in behind him and eat them before he can
4564 	 * get to them, so that while there is always a free one, a
4565 	 * very unlucky thread might be starved anyway, never able to
4566 	 * beat the other threads.  In reality, this happens so
4567 	 * infrequently as to be indistinguishable from never.
4568 	 */
4569 
4570 	loopcount = 0;
4571 	do {
4572 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4573 		if (i == h->nr_cmds)
4574 			i = 0;
4575 		loopcount++;
4576 	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4577 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4578 		loopcount < 10);
4579 
4580 	/* Thread got starved?  We do not expect this to ever happen. */
4581 	if (loopcount >= 10)
4582 		return NULL;
4583 
4584 	c = h->cmd_pool + i;
4585 	memset(c, 0, sizeof(*c));
4586 	cmd_dma_handle = h->cmd_pool_dhandle
4587 	    + i * sizeof(*c);
4588 	c->err_info = h->errinfo_pool + i;
4589 	memset(c->err_info, 0, sizeof(*c->err_info));
4590 	err_dma_handle = h->errinfo_pool_dhandle
4591 	    + i * sizeof(*c->err_info);
4592 
4593 	c->cmdindex = i;
4594 
4595 	INIT_LIST_HEAD(&c->list);
4596 	c->busaddr = (u32) cmd_dma_handle;
4597 	temp64.val = (u64) err_dma_handle;
4598 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4599 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4600 
4601 	c->h = h;
4602 	return c;
4603 }
4604 
4605 /* For operations that can wait for kmalloc to possibly sleep,
4606  * this routine can be called. Lock need not be held to call
4607  * cmd_special_alloc. cmd_special_free() is the complement.
4608  */
4609 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4610 {
4611 	struct CommandList *c;
4612 	dma_addr_t cmd_dma_handle, err_dma_handle;
4613 
4614 	c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4615 	if (c == NULL)
4616 		return NULL;
4617 
4618 	c->cmd_type = CMD_SCSI;
4619 	c->cmdindex = -1;
4620 
4621 	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4622 					    &err_dma_handle);
4623 
4624 	if (c->err_info == NULL) {
4625 		pci_free_consistent(h->pdev,
4626 			sizeof(*c), c, cmd_dma_handle);
4627 		return NULL;
4628 	}
4629 
4630 	INIT_LIST_HEAD(&c->list);
4631 	c->busaddr = (u32) cmd_dma_handle;
4632 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4633 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4634 
4635 	c->h = h;
4636 	return c;
4637 }
4638 
4639 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4640 {
4641 	int i;
4642 
4643 	i = c - h->cmd_pool;
4644 	clear_bit(i & (BITS_PER_LONG - 1),
4645 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4646 }
4647 
4648 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4649 {
4650 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4651 			    c->err_info,
4652 			    (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4653 	pci_free_consistent(h->pdev, sizeof(*c),
4654 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4655 }
4656 
4657 #ifdef CONFIG_COMPAT
4658 
4659 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4660 	void __user *arg)
4661 {
4662 	IOCTL32_Command_struct __user *arg32 =
4663 	    (IOCTL32_Command_struct __user *) arg;
4664 	IOCTL_Command_struct arg64;
4665 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4666 	int err;
4667 	u32 cp;
4668 
4669 	memset(&arg64, 0, sizeof(arg64));
4670 	err = 0;
4671 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4672 			   sizeof(arg64.LUN_info));
4673 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4674 			   sizeof(arg64.Request));
4675 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4676 			   sizeof(arg64.error_info));
4677 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4678 	err |= get_user(cp, &arg32->buf);
4679 	arg64.buf = compat_ptr(cp);
4680 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4681 
4682 	if (err)
4683 		return -EFAULT;
4684 
4685 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4686 	if (err)
4687 		return err;
4688 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4689 			 sizeof(arg32->error_info));
4690 	if (err)
4691 		return -EFAULT;
4692 	return err;
4693 }
4694 
4695 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4696 	int cmd, void __user *arg)
4697 {
4698 	BIG_IOCTL32_Command_struct __user *arg32 =
4699 	    (BIG_IOCTL32_Command_struct __user *) arg;
4700 	BIG_IOCTL_Command_struct arg64;
4701 	BIG_IOCTL_Command_struct __user *p =
4702 	    compat_alloc_user_space(sizeof(arg64));
4703 	int err;
4704 	u32 cp;
4705 
4706 	memset(&arg64, 0, sizeof(arg64));
4707 	err = 0;
4708 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4709 			   sizeof(arg64.LUN_info));
4710 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4711 			   sizeof(arg64.Request));
4712 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4713 			   sizeof(arg64.error_info));
4714 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4715 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4716 	err |= get_user(cp, &arg32->buf);
4717 	arg64.buf = compat_ptr(cp);
4718 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4719 
4720 	if (err)
4721 		return -EFAULT;
4722 
4723 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4724 	if (err)
4725 		return err;
4726 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4727 			 sizeof(arg32->error_info));
4728 	if (err)
4729 		return -EFAULT;
4730 	return err;
4731 }
4732 
4733 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4734 {
4735 	switch (cmd) {
4736 	case CCISS_GETPCIINFO:
4737 	case CCISS_GETINTINFO:
4738 	case CCISS_SETINTINFO:
4739 	case CCISS_GETNODENAME:
4740 	case CCISS_SETNODENAME:
4741 	case CCISS_GETHEARTBEAT:
4742 	case CCISS_GETBUSTYPES:
4743 	case CCISS_GETFIRMVER:
4744 	case CCISS_GETDRIVVER:
4745 	case CCISS_REVALIDVOLS:
4746 	case CCISS_DEREGDISK:
4747 	case CCISS_REGNEWDISK:
4748 	case CCISS_REGNEWD:
4749 	case CCISS_RESCANDISK:
4750 	case CCISS_GETLUNINFO:
4751 		return hpsa_ioctl(dev, cmd, arg);
4752 
4753 	case CCISS_PASSTHRU32:
4754 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4755 	case CCISS_BIG_PASSTHRU32:
4756 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4757 
4758 	default:
4759 		return -ENOIOCTLCMD;
4760 	}
4761 }
4762 #endif
4763 
4764 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4765 {
4766 	struct hpsa_pci_info pciinfo;
4767 
4768 	if (!argp)
4769 		return -EINVAL;
4770 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4771 	pciinfo.bus = h->pdev->bus->number;
4772 	pciinfo.dev_fn = h->pdev->devfn;
4773 	pciinfo.board_id = h->board_id;
4774 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4775 		return -EFAULT;
4776 	return 0;
4777 }
4778 
4779 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4780 {
4781 	DriverVer_type DriverVer;
4782 	unsigned char vmaj, vmin, vsubmin;
4783 	int rc;
4784 
4785 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4786 		&vmaj, &vmin, &vsubmin);
4787 	if (rc != 3) {
4788 		dev_info(&h->pdev->dev, "driver version string '%s' "
4789 			"unrecognized.", HPSA_DRIVER_VERSION);
4790 		vmaj = 0;
4791 		vmin = 0;
4792 		vsubmin = 0;
4793 	}
4794 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4795 	if (!argp)
4796 		return -EINVAL;
4797 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4798 		return -EFAULT;
4799 	return 0;
4800 }
4801 
4802 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4803 {
4804 	IOCTL_Command_struct iocommand;
4805 	struct CommandList *c;
4806 	char *buff = NULL;
4807 	u64 temp64;
4808 	int rc = 0;
4809 
4810 	if (!argp)
4811 		return -EINVAL;
4812 	if (!capable(CAP_SYS_RAWIO))
4813 		return -EPERM;
4814 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4815 		return -EFAULT;
4816 	if ((iocommand.buf_size < 1) &&
4817 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4818 		return -EINVAL;
4819 	}
4820 	if (iocommand.buf_size > 0) {
4821 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4822 		if (buff == NULL)
4823 			return -EFAULT;
4824 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4825 			/* Copy the data into the buffer we created */
4826 			if (copy_from_user(buff, iocommand.buf,
4827 				iocommand.buf_size)) {
4828 				rc = -EFAULT;
4829 				goto out_kfree;
4830 			}
4831 		} else {
4832 			memset(buff, 0, iocommand.buf_size);
4833 		}
4834 	}
4835 	c = cmd_special_alloc(h);
4836 	if (c == NULL) {
4837 		rc = -ENOMEM;
4838 		goto out_kfree;
4839 	}
4840 	/* Fill in the command type */
4841 	c->cmd_type = CMD_IOCTL_PEND;
4842 	/* Fill in Command Header */
4843 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4844 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4845 		c->Header.SGList = 1;
4846 		c->Header.SGTotal = cpu_to_le16(1);
4847 	} else	{ /* no buffers to fill */
4848 		c->Header.SGList = 0;
4849 		c->Header.SGTotal = cpu_to_le16(0);
4850 	}
4851 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4852 	/* use the kernel address the cmd block for tag */
4853 	c->Header.tag = cpu_to_le64(c->busaddr);
4854 
4855 	/* Fill in Request block */
4856 	memcpy(&c->Request, &iocommand.Request,
4857 		sizeof(c->Request));
4858 
4859 	/* Fill in the scatter gather information */
4860 	if (iocommand.buf_size > 0) {
4861 		temp64 = pci_map_single(h->pdev, buff,
4862 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4863 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4864 			c->SG[0].Addr = cpu_to_le64(0);
4865 			c->SG[0].Len = cpu_to_le32(0);
4866 			rc = -ENOMEM;
4867 			goto out;
4868 		}
4869 		c->SG[0].Addr = cpu_to_le64(temp64);
4870 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4871 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4872 	}
4873 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4874 	if (iocommand.buf_size > 0)
4875 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4876 	check_ioctl_unit_attention(h, c);
4877 
4878 	/* Copy the error information out */
4879 	memcpy(&iocommand.error_info, c->err_info,
4880 		sizeof(iocommand.error_info));
4881 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4882 		rc = -EFAULT;
4883 		goto out;
4884 	}
4885 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4886 		iocommand.buf_size > 0) {
4887 		/* Copy the data out of the buffer we created */
4888 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4889 			rc = -EFAULT;
4890 			goto out;
4891 		}
4892 	}
4893 out:
4894 	cmd_special_free(h, c);
4895 out_kfree:
4896 	kfree(buff);
4897 	return rc;
4898 }
4899 
4900 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4901 {
4902 	BIG_IOCTL_Command_struct *ioc;
4903 	struct CommandList *c;
4904 	unsigned char **buff = NULL;
4905 	int *buff_size = NULL;
4906 	u64 temp64;
4907 	BYTE sg_used = 0;
4908 	int status = 0;
4909 	u32 left;
4910 	u32 sz;
4911 	BYTE __user *data_ptr;
4912 
4913 	if (!argp)
4914 		return -EINVAL;
4915 	if (!capable(CAP_SYS_RAWIO))
4916 		return -EPERM;
4917 	ioc = (BIG_IOCTL_Command_struct *)
4918 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
4919 	if (!ioc) {
4920 		status = -ENOMEM;
4921 		goto cleanup1;
4922 	}
4923 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4924 		status = -EFAULT;
4925 		goto cleanup1;
4926 	}
4927 	if ((ioc->buf_size < 1) &&
4928 	    (ioc->Request.Type.Direction != XFER_NONE)) {
4929 		status = -EINVAL;
4930 		goto cleanup1;
4931 	}
4932 	/* Check kmalloc limits  using all SGs */
4933 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4934 		status = -EINVAL;
4935 		goto cleanup1;
4936 	}
4937 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4938 		status = -EINVAL;
4939 		goto cleanup1;
4940 	}
4941 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4942 	if (!buff) {
4943 		status = -ENOMEM;
4944 		goto cleanup1;
4945 	}
4946 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4947 	if (!buff_size) {
4948 		status = -ENOMEM;
4949 		goto cleanup1;
4950 	}
4951 	left = ioc->buf_size;
4952 	data_ptr = ioc->buf;
4953 	while (left) {
4954 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4955 		buff_size[sg_used] = sz;
4956 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4957 		if (buff[sg_used] == NULL) {
4958 			status = -ENOMEM;
4959 			goto cleanup1;
4960 		}
4961 		if (ioc->Request.Type.Direction & XFER_WRITE) {
4962 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4963 				status = -EFAULT;
4964 				goto cleanup1;
4965 			}
4966 		} else
4967 			memset(buff[sg_used], 0, sz);
4968 		left -= sz;
4969 		data_ptr += sz;
4970 		sg_used++;
4971 	}
4972 	c = cmd_special_alloc(h);
4973 	if (c == NULL) {
4974 		status = -ENOMEM;
4975 		goto cleanup1;
4976 	}
4977 	c->cmd_type = CMD_IOCTL_PEND;
4978 	c->Header.ReplyQueue = 0;
4979 	c->Header.SGList = (u8) sg_used;
4980 	c->Header.SGTotal = cpu_to_le16(sg_used);
4981 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4982 	c->Header.tag = cpu_to_le64(c->busaddr);
4983 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4984 	if (ioc->buf_size > 0) {
4985 		int i;
4986 		for (i = 0; i < sg_used; i++) {
4987 			temp64 = pci_map_single(h->pdev, buff[i],
4988 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
4989 			if (dma_mapping_error(&h->pdev->dev,
4990 							(dma_addr_t) temp64)) {
4991 				c->SG[i].Addr = cpu_to_le64(0);
4992 				c->SG[i].Len = cpu_to_le32(0);
4993 				hpsa_pci_unmap(h->pdev, c, i,
4994 					PCI_DMA_BIDIRECTIONAL);
4995 				status = -ENOMEM;
4996 				goto cleanup0;
4997 			}
4998 			c->SG[i].Addr = cpu_to_le64(temp64);
4999 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
5000 			c->SG[i].Ext = cpu_to_le32(0);
5001 		}
5002 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5003 	}
5004 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5005 	if (sg_used)
5006 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5007 	check_ioctl_unit_attention(h, c);
5008 	/* Copy the error information out */
5009 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5010 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5011 		status = -EFAULT;
5012 		goto cleanup0;
5013 	}
5014 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5015 		int i;
5016 
5017 		/* Copy the data out of the buffer we created */
5018 		BYTE __user *ptr = ioc->buf;
5019 		for (i = 0; i < sg_used; i++) {
5020 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5021 				status = -EFAULT;
5022 				goto cleanup0;
5023 			}
5024 			ptr += buff_size[i];
5025 		}
5026 	}
5027 	status = 0;
5028 cleanup0:
5029 	cmd_special_free(h, c);
5030 cleanup1:
5031 	if (buff) {
5032 		int i;
5033 
5034 		for (i = 0; i < sg_used; i++)
5035 			kfree(buff[i]);
5036 		kfree(buff);
5037 	}
5038 	kfree(buff_size);
5039 	kfree(ioc);
5040 	return status;
5041 }
5042 
5043 static void check_ioctl_unit_attention(struct ctlr_info *h,
5044 	struct CommandList *c)
5045 {
5046 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5047 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5048 		(void) check_for_unit_attention(h, c);
5049 }
5050 
5051 static int increment_passthru_count(struct ctlr_info *h)
5052 {
5053 	unsigned long flags;
5054 
5055 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5056 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5057 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5058 		return -1;
5059 	}
5060 	h->passthru_count++;
5061 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5062 	return 0;
5063 }
5064 
5065 static void decrement_passthru_count(struct ctlr_info *h)
5066 {
5067 	unsigned long flags;
5068 
5069 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5070 	if (h->passthru_count <= 0) {
5071 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5072 		/* not expecting to get here. */
5073 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5074 		return;
5075 	}
5076 	h->passthru_count--;
5077 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5078 }
5079 
5080 /*
5081  * ioctl
5082  */
5083 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5084 {
5085 	struct ctlr_info *h;
5086 	void __user *argp = (void __user *)arg;
5087 	int rc;
5088 
5089 	h = sdev_to_hba(dev);
5090 
5091 	switch (cmd) {
5092 	case CCISS_DEREGDISK:
5093 	case CCISS_REGNEWDISK:
5094 	case CCISS_REGNEWD:
5095 		hpsa_scan_start(h->scsi_host);
5096 		return 0;
5097 	case CCISS_GETPCIINFO:
5098 		return hpsa_getpciinfo_ioctl(h, argp);
5099 	case CCISS_GETDRIVVER:
5100 		return hpsa_getdrivver_ioctl(h, argp);
5101 	case CCISS_PASSTHRU:
5102 		if (increment_passthru_count(h))
5103 			return -EAGAIN;
5104 		rc = hpsa_passthru_ioctl(h, argp);
5105 		decrement_passthru_count(h);
5106 		return rc;
5107 	case CCISS_BIG_PASSTHRU:
5108 		if (increment_passthru_count(h))
5109 			return -EAGAIN;
5110 		rc = hpsa_big_passthru_ioctl(h, argp);
5111 		decrement_passthru_count(h);
5112 		return rc;
5113 	default:
5114 		return -ENOTTY;
5115 	}
5116 }
5117 
5118 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5119 				u8 reset_type)
5120 {
5121 	struct CommandList *c;
5122 
5123 	c = cmd_alloc(h);
5124 	if (!c)
5125 		return -ENOMEM;
5126 	/* fill_cmd can't fail here, no data buffer to map */
5127 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5128 		RAID_CTLR_LUNID, TYPE_MSG);
5129 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5130 	c->waiting = NULL;
5131 	enqueue_cmd_and_start_io(h, c);
5132 	/* Don't wait for completion, the reset won't complete.  Don't free
5133 	 * the command either.  This is the last command we will send before
5134 	 * re-initializing everything, so it doesn't matter and won't leak.
5135 	 */
5136 	return 0;
5137 }
5138 
5139 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5140 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5141 	int cmd_type)
5142 {
5143 	int pci_dir = XFER_NONE;
5144 	struct CommandList *a; /* for commands to be aborted */
5145 
5146 	c->cmd_type = CMD_IOCTL_PEND;
5147 	c->Header.ReplyQueue = 0;
5148 	if (buff != NULL && size > 0) {
5149 		c->Header.SGList = 1;
5150 		c->Header.SGTotal = cpu_to_le16(1);
5151 	} else {
5152 		c->Header.SGList = 0;
5153 		c->Header.SGTotal = cpu_to_le16(0);
5154 	}
5155 	c->Header.tag = cpu_to_le64(c->busaddr);
5156 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5157 
5158 	if (cmd_type == TYPE_CMD) {
5159 		switch (cmd) {
5160 		case HPSA_INQUIRY:
5161 			/* are we trying to read a vital product page */
5162 			if (page_code & VPD_PAGE) {
5163 				c->Request.CDB[1] = 0x01;
5164 				c->Request.CDB[2] = (page_code & 0xff);
5165 			}
5166 			c->Request.CDBLen = 6;
5167 			c->Request.type_attr_dir =
5168 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5169 			c->Request.Timeout = 0;
5170 			c->Request.CDB[0] = HPSA_INQUIRY;
5171 			c->Request.CDB[4] = size & 0xFF;
5172 			break;
5173 		case HPSA_REPORT_LOG:
5174 		case HPSA_REPORT_PHYS:
5175 			/* Talking to controller so It's a physical command
5176 			   mode = 00 target = 0.  Nothing to write.
5177 			 */
5178 			c->Request.CDBLen = 12;
5179 			c->Request.type_attr_dir =
5180 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5181 			c->Request.Timeout = 0;
5182 			c->Request.CDB[0] = cmd;
5183 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5184 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5185 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5186 			c->Request.CDB[9] = size & 0xFF;
5187 			break;
5188 		case HPSA_CACHE_FLUSH:
5189 			c->Request.CDBLen = 12;
5190 			c->Request.type_attr_dir =
5191 					TYPE_ATTR_DIR(cmd_type,
5192 						ATTR_SIMPLE, XFER_WRITE);
5193 			c->Request.Timeout = 0;
5194 			c->Request.CDB[0] = BMIC_WRITE;
5195 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5196 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5197 			c->Request.CDB[8] = size & 0xFF;
5198 			break;
5199 		case TEST_UNIT_READY:
5200 			c->Request.CDBLen = 6;
5201 			c->Request.type_attr_dir =
5202 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5203 			c->Request.Timeout = 0;
5204 			break;
5205 		case HPSA_GET_RAID_MAP:
5206 			c->Request.CDBLen = 12;
5207 			c->Request.type_attr_dir =
5208 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5209 			c->Request.Timeout = 0;
5210 			c->Request.CDB[0] = HPSA_CISS_READ;
5211 			c->Request.CDB[1] = cmd;
5212 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5213 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5214 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5215 			c->Request.CDB[9] = size & 0xFF;
5216 			break;
5217 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5218 			c->Request.CDBLen = 10;
5219 			c->Request.type_attr_dir =
5220 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5221 			c->Request.Timeout = 0;
5222 			c->Request.CDB[0] = BMIC_READ;
5223 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5224 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5225 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5226 			break;
5227 		default:
5228 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5229 			BUG();
5230 			return -1;
5231 		}
5232 	} else if (cmd_type == TYPE_MSG) {
5233 		switch (cmd) {
5234 
5235 		case  HPSA_DEVICE_RESET_MSG:
5236 			c->Request.CDBLen = 16;
5237 			c->Request.type_attr_dir =
5238 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5239 			c->Request.Timeout = 0; /* Don't time out */
5240 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5241 			c->Request.CDB[0] =  cmd;
5242 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5243 			/* If bytes 4-7 are zero, it means reset the */
5244 			/* LunID device */
5245 			c->Request.CDB[4] = 0x00;
5246 			c->Request.CDB[5] = 0x00;
5247 			c->Request.CDB[6] = 0x00;
5248 			c->Request.CDB[7] = 0x00;
5249 			break;
5250 		case  HPSA_ABORT_MSG:
5251 			a = buff;       /* point to command to be aborted */
5252 			dev_dbg(&h->pdev->dev,
5253 				"Abort Tag:0x%016llx request Tag:0x%016llx",
5254 				a->Header.tag, c->Header.tag);
5255 			c->Request.CDBLen = 16;
5256 			c->Request.type_attr_dir =
5257 					TYPE_ATTR_DIR(cmd_type,
5258 						ATTR_SIMPLE, XFER_WRITE);
5259 			c->Request.Timeout = 0; /* Don't time out */
5260 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5261 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5262 			c->Request.CDB[2] = 0x00; /* reserved */
5263 			c->Request.CDB[3] = 0x00; /* reserved */
5264 			/* Tag to abort goes in CDB[4]-CDB[11] */
5265 			memcpy(&c->Request.CDB[4], &a->Header.tag,
5266 				sizeof(a->Header.tag));
5267 			c->Request.CDB[12] = 0x00; /* reserved */
5268 			c->Request.CDB[13] = 0x00; /* reserved */
5269 			c->Request.CDB[14] = 0x00; /* reserved */
5270 			c->Request.CDB[15] = 0x00; /* reserved */
5271 		break;
5272 		default:
5273 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5274 				cmd);
5275 			BUG();
5276 		}
5277 	} else {
5278 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5279 		BUG();
5280 	}
5281 
5282 	switch (GET_DIR(c->Request.type_attr_dir)) {
5283 	case XFER_READ:
5284 		pci_dir = PCI_DMA_FROMDEVICE;
5285 		break;
5286 	case XFER_WRITE:
5287 		pci_dir = PCI_DMA_TODEVICE;
5288 		break;
5289 	case XFER_NONE:
5290 		pci_dir = PCI_DMA_NONE;
5291 		break;
5292 	default:
5293 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5294 	}
5295 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5296 		return -1;
5297 	return 0;
5298 }
5299 
5300 /*
5301  * Map (physical) PCI mem into (virtual) kernel space
5302  */
5303 static void __iomem *remap_pci_mem(ulong base, ulong size)
5304 {
5305 	ulong page_base = ((ulong) base) & PAGE_MASK;
5306 	ulong page_offs = ((ulong) base) - page_base;
5307 	void __iomem *page_remapped = ioremap_nocache(page_base,
5308 		page_offs + size);
5309 
5310 	return page_remapped ? (page_remapped + page_offs) : NULL;
5311 }
5312 
5313 /* Takes cmds off the submission queue and sends them to the hardware,
5314  * then puts them on the queue of cmds waiting for completion.
5315  * Assumes h->lock is held
5316  */
5317 static void start_io(struct ctlr_info *h, unsigned long *flags)
5318 {
5319 	struct CommandList *c;
5320 
5321 	while (!list_empty(&h->reqQ)) {
5322 		c = list_entry(h->reqQ.next, struct CommandList, list);
5323 		/* can't do anything if fifo is full */
5324 		if ((h->access.fifo_full(h))) {
5325 			h->fifo_recently_full = 1;
5326 			dev_warn(&h->pdev->dev, "fifo full\n");
5327 			break;
5328 		}
5329 		h->fifo_recently_full = 0;
5330 
5331 		/* Get the first entry from the Request Q */
5332 		removeQ(c);
5333 		h->Qdepth--;
5334 
5335 		/* Put job onto the completed Q */
5336 		addQ(&h->cmpQ, c);
5337 		atomic_inc(&h->commands_outstanding);
5338 		spin_unlock_irqrestore(&h->lock, *flags);
5339 		/* Tell the controller execute command */
5340 		h->access.submit_command(h, c);
5341 		spin_lock_irqsave(&h->lock, *flags);
5342 	}
5343 }
5344 
5345 static void lock_and_start_io(struct ctlr_info *h)
5346 {
5347 	unsigned long flags;
5348 
5349 	spin_lock_irqsave(&h->lock, flags);
5350 	start_io(h, &flags);
5351 	spin_unlock_irqrestore(&h->lock, flags);
5352 }
5353 
5354 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5355 {
5356 	return h->access.command_completed(h, q);
5357 }
5358 
5359 static inline bool interrupt_pending(struct ctlr_info *h)
5360 {
5361 	return h->access.intr_pending(h);
5362 }
5363 
5364 static inline long interrupt_not_for_us(struct ctlr_info *h)
5365 {
5366 	return (h->access.intr_pending(h) == 0) ||
5367 		(h->interrupts_enabled == 0);
5368 }
5369 
5370 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5371 	u32 raw_tag)
5372 {
5373 	if (unlikely(tag_index >= h->nr_cmds)) {
5374 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5375 		return 1;
5376 	}
5377 	return 0;
5378 }
5379 
5380 static inline void finish_cmd(struct CommandList *c)
5381 {
5382 	unsigned long flags;
5383 	int io_may_be_stalled = 0;
5384 	struct ctlr_info *h = c->h;
5385 	int count;
5386 
5387 	spin_lock_irqsave(&h->lock, flags);
5388 	removeQ(c);
5389 
5390 	/*
5391 	 * Check for possibly stalled i/o.
5392 	 *
5393 	 * If a fifo_full condition is encountered, requests will back up
5394 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5395 	 * only called when a new i/o request comes in.  If no i/o's are
5396 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5397 	 * start_io from here if we detect such a danger.
5398 	 *
5399 	 * Normally, we shouldn't hit this case, but pounding on the
5400 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5401 	 * commands_outstanding is low.  We want to avoid calling
5402 	 * start_io from in here as much as possible, and esp. don't
5403 	 * want to get in a cycle where we call start_io every time
5404 	 * through here.
5405 	 */
5406 	count = atomic_read(&h->commands_outstanding);
5407 	spin_unlock_irqrestore(&h->lock, flags);
5408 	if (unlikely(h->fifo_recently_full) && count < 5)
5409 		io_may_be_stalled = 1;
5410 
5411 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5412 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5413 			|| c->cmd_type == CMD_IOACCEL2))
5414 		complete_scsi_command(c);
5415 	else if (c->cmd_type == CMD_IOCTL_PEND)
5416 		complete(c->waiting);
5417 	if (unlikely(io_may_be_stalled))
5418 		lock_and_start_io(h);
5419 }
5420 
5421 static inline u32 hpsa_tag_contains_index(u32 tag)
5422 {
5423 	return tag & DIRECT_LOOKUP_BIT;
5424 }
5425 
5426 static inline u32 hpsa_tag_to_index(u32 tag)
5427 {
5428 	return tag >> DIRECT_LOOKUP_SHIFT;
5429 }
5430 
5431 
5432 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5433 {
5434 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5435 #define HPSA_SIMPLE_ERROR_BITS 0x03
5436 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5437 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5438 	return tag & ~HPSA_PERF_ERROR_BITS;
5439 }
5440 
5441 /* process completion of an indexed ("direct lookup") command */
5442 static inline void process_indexed_cmd(struct ctlr_info *h,
5443 	u32 raw_tag)
5444 {
5445 	u32 tag_index;
5446 	struct CommandList *c;
5447 
5448 	tag_index = hpsa_tag_to_index(raw_tag);
5449 	if (!bad_tag(h, tag_index, raw_tag)) {
5450 		c = h->cmd_pool + tag_index;
5451 		finish_cmd(c);
5452 	}
5453 }
5454 
5455 /* process completion of a non-indexed command */
5456 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5457 	u32 raw_tag)
5458 {
5459 	u32 tag;
5460 	struct CommandList *c = NULL;
5461 	unsigned long flags;
5462 
5463 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5464 	spin_lock_irqsave(&h->lock, flags);
5465 	list_for_each_entry(c, &h->cmpQ, list) {
5466 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5467 			spin_unlock_irqrestore(&h->lock, flags);
5468 			finish_cmd(c);
5469 			return;
5470 		}
5471 	}
5472 	spin_unlock_irqrestore(&h->lock, flags);
5473 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5474 }
5475 
5476 /* Some controllers, like p400, will give us one interrupt
5477  * after a soft reset, even if we turned interrupts off.
5478  * Only need to check for this in the hpsa_xxx_discard_completions
5479  * functions.
5480  */
5481 static int ignore_bogus_interrupt(struct ctlr_info *h)
5482 {
5483 	if (likely(!reset_devices))
5484 		return 0;
5485 
5486 	if (likely(h->interrupts_enabled))
5487 		return 0;
5488 
5489 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5490 		"(known firmware bug.)  Ignoring.\n");
5491 
5492 	return 1;
5493 }
5494 
5495 /*
5496  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5497  * Relies on (h-q[x] == x) being true for x such that
5498  * 0 <= x < MAX_REPLY_QUEUES.
5499  */
5500 static struct ctlr_info *queue_to_hba(u8 *queue)
5501 {
5502 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5503 }
5504 
5505 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5506 {
5507 	struct ctlr_info *h = queue_to_hba(queue);
5508 	u8 q = *(u8 *) queue;
5509 	u32 raw_tag;
5510 
5511 	if (ignore_bogus_interrupt(h))
5512 		return IRQ_NONE;
5513 
5514 	if (interrupt_not_for_us(h))
5515 		return IRQ_NONE;
5516 	h->last_intr_timestamp = get_jiffies_64();
5517 	while (interrupt_pending(h)) {
5518 		raw_tag = get_next_completion(h, q);
5519 		while (raw_tag != FIFO_EMPTY)
5520 			raw_tag = next_command(h, q);
5521 	}
5522 	return IRQ_HANDLED;
5523 }
5524 
5525 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5526 {
5527 	struct ctlr_info *h = queue_to_hba(queue);
5528 	u32 raw_tag;
5529 	u8 q = *(u8 *) queue;
5530 
5531 	if (ignore_bogus_interrupt(h))
5532 		return IRQ_NONE;
5533 
5534 	h->last_intr_timestamp = get_jiffies_64();
5535 	raw_tag = get_next_completion(h, q);
5536 	while (raw_tag != FIFO_EMPTY)
5537 		raw_tag = next_command(h, q);
5538 	return IRQ_HANDLED;
5539 }
5540 
5541 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5542 {
5543 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5544 	u32 raw_tag;
5545 	u8 q = *(u8 *) queue;
5546 
5547 	if (interrupt_not_for_us(h))
5548 		return IRQ_NONE;
5549 	h->last_intr_timestamp = get_jiffies_64();
5550 	while (interrupt_pending(h)) {
5551 		raw_tag = get_next_completion(h, q);
5552 		while (raw_tag != FIFO_EMPTY) {
5553 			if (likely(hpsa_tag_contains_index(raw_tag)))
5554 				process_indexed_cmd(h, raw_tag);
5555 			else
5556 				process_nonindexed_cmd(h, raw_tag);
5557 			raw_tag = next_command(h, q);
5558 		}
5559 	}
5560 	return IRQ_HANDLED;
5561 }
5562 
5563 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5564 {
5565 	struct ctlr_info *h = queue_to_hba(queue);
5566 	u32 raw_tag;
5567 	u8 q = *(u8 *) queue;
5568 
5569 	h->last_intr_timestamp = get_jiffies_64();
5570 	raw_tag = get_next_completion(h, q);
5571 	while (raw_tag != FIFO_EMPTY) {
5572 		if (likely(hpsa_tag_contains_index(raw_tag)))
5573 			process_indexed_cmd(h, raw_tag);
5574 		else
5575 			process_nonindexed_cmd(h, raw_tag);
5576 		raw_tag = next_command(h, q);
5577 	}
5578 	return IRQ_HANDLED;
5579 }
5580 
5581 /* Send a message CDB to the firmware. Careful, this only works
5582  * in simple mode, not performant mode due to the tag lookup.
5583  * We only ever use this immediately after a controller reset.
5584  */
5585 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5586 			unsigned char type)
5587 {
5588 	struct Command {
5589 		struct CommandListHeader CommandHeader;
5590 		struct RequestBlock Request;
5591 		struct ErrDescriptor ErrorDescriptor;
5592 	};
5593 	struct Command *cmd;
5594 	static const size_t cmd_sz = sizeof(*cmd) +
5595 					sizeof(cmd->ErrorDescriptor);
5596 	dma_addr_t paddr64;
5597 	__le32 paddr32;
5598 	u32 tag;
5599 	void __iomem *vaddr;
5600 	int i, err;
5601 
5602 	vaddr = pci_ioremap_bar(pdev, 0);
5603 	if (vaddr == NULL)
5604 		return -ENOMEM;
5605 
5606 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5607 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5608 	 * memory.
5609 	 */
5610 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5611 	if (err) {
5612 		iounmap(vaddr);
5613 		return -ENOMEM;
5614 	}
5615 
5616 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5617 	if (cmd == NULL) {
5618 		iounmap(vaddr);
5619 		return -ENOMEM;
5620 	}
5621 
5622 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5623 	 * although there's no guarantee, we assume that the address is at
5624 	 * least 4-byte aligned (most likely, it's page-aligned).
5625 	 */
5626 	paddr32 = cpu_to_le32(paddr64);
5627 
5628 	cmd->CommandHeader.ReplyQueue = 0;
5629 	cmd->CommandHeader.SGList = 0;
5630 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5631 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5632 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5633 
5634 	cmd->Request.CDBLen = 16;
5635 	cmd->Request.type_attr_dir =
5636 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5637 	cmd->Request.Timeout = 0; /* Don't time out */
5638 	cmd->Request.CDB[0] = opcode;
5639 	cmd->Request.CDB[1] = type;
5640 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5641 	cmd->ErrorDescriptor.Addr =
5642 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5643 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5644 
5645 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5646 
5647 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5648 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5649 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5650 			break;
5651 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5652 	}
5653 
5654 	iounmap(vaddr);
5655 
5656 	/* we leak the DMA buffer here ... no choice since the controller could
5657 	 *  still complete the command.
5658 	 */
5659 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5660 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5661 			opcode, type);
5662 		return -ETIMEDOUT;
5663 	}
5664 
5665 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5666 
5667 	if (tag & HPSA_ERROR_BIT) {
5668 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5669 			opcode, type);
5670 		return -EIO;
5671 	}
5672 
5673 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5674 		opcode, type);
5675 	return 0;
5676 }
5677 
5678 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5679 
5680 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5681 	void __iomem *vaddr, u32 use_doorbell)
5682 {
5683 
5684 	if (use_doorbell) {
5685 		/* For everything after the P600, the PCI power state method
5686 		 * of resetting the controller doesn't work, so we have this
5687 		 * other way using the doorbell register.
5688 		 */
5689 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5690 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5691 
5692 		/* PMC hardware guys tell us we need a 10 second delay after
5693 		 * doorbell reset and before any attempt to talk to the board
5694 		 * at all to ensure that this actually works and doesn't fall
5695 		 * over in some weird corner cases.
5696 		 */
5697 		msleep(10000);
5698 	} else { /* Try to do it the PCI power state way */
5699 
5700 		/* Quoting from the Open CISS Specification: "The Power
5701 		 * Management Control/Status Register (CSR) controls the power
5702 		 * state of the device.  The normal operating state is D0,
5703 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5704 		 * the controller, place the interface device in D3 then to D0,
5705 		 * this causes a secondary PCI reset which will reset the
5706 		 * controller." */
5707 
5708 		int rc = 0;
5709 
5710 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5711 
5712 		/* enter the D3hot power management state */
5713 		rc = pci_set_power_state(pdev, PCI_D3hot);
5714 		if (rc)
5715 			return rc;
5716 
5717 		msleep(500);
5718 
5719 		/* enter the D0 power management state */
5720 		rc = pci_set_power_state(pdev, PCI_D0);
5721 		if (rc)
5722 			return rc;
5723 
5724 		/*
5725 		 * The P600 requires a small delay when changing states.
5726 		 * Otherwise we may think the board did not reset and we bail.
5727 		 * This for kdump only and is particular to the P600.
5728 		 */
5729 		msleep(500);
5730 	}
5731 	return 0;
5732 }
5733 
5734 static void init_driver_version(char *driver_version, int len)
5735 {
5736 	memset(driver_version, 0, len);
5737 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5738 }
5739 
5740 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5741 {
5742 	char *driver_version;
5743 	int i, size = sizeof(cfgtable->driver_version);
5744 
5745 	driver_version = kmalloc(size, GFP_KERNEL);
5746 	if (!driver_version)
5747 		return -ENOMEM;
5748 
5749 	init_driver_version(driver_version, size);
5750 	for (i = 0; i < size; i++)
5751 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5752 	kfree(driver_version);
5753 	return 0;
5754 }
5755 
5756 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5757 					  unsigned char *driver_ver)
5758 {
5759 	int i;
5760 
5761 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5762 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5763 }
5764 
5765 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5766 {
5767 
5768 	char *driver_ver, *old_driver_ver;
5769 	int rc, size = sizeof(cfgtable->driver_version);
5770 
5771 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5772 	if (!old_driver_ver)
5773 		return -ENOMEM;
5774 	driver_ver = old_driver_ver + size;
5775 
5776 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5777 	 * should have been changed, otherwise we know the reset failed.
5778 	 */
5779 	init_driver_version(old_driver_ver, size);
5780 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5781 	rc = !memcmp(driver_ver, old_driver_ver, size);
5782 	kfree(old_driver_ver);
5783 	return rc;
5784 }
5785 /* This does a hard reset of the controller using PCI power management
5786  * states or the using the doorbell register.
5787  */
5788 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5789 {
5790 	u64 cfg_offset;
5791 	u32 cfg_base_addr;
5792 	u64 cfg_base_addr_index;
5793 	void __iomem *vaddr;
5794 	unsigned long paddr;
5795 	u32 misc_fw_support;
5796 	int rc;
5797 	struct CfgTable __iomem *cfgtable;
5798 	u32 use_doorbell;
5799 	u32 board_id;
5800 	u16 command_register;
5801 
5802 	/* For controllers as old as the P600, this is very nearly
5803 	 * the same thing as
5804 	 *
5805 	 * pci_save_state(pci_dev);
5806 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5807 	 * pci_set_power_state(pci_dev, PCI_D0);
5808 	 * pci_restore_state(pci_dev);
5809 	 *
5810 	 * For controllers newer than the P600, the pci power state
5811 	 * method of resetting doesn't work so we have another way
5812 	 * using the doorbell register.
5813 	 */
5814 
5815 	rc = hpsa_lookup_board_id(pdev, &board_id);
5816 	if (rc < 0) {
5817 		dev_warn(&pdev->dev, "Board ID not found\n");
5818 		return rc;
5819 	}
5820 	if (!ctlr_is_resettable(board_id)) {
5821 		dev_warn(&pdev->dev, "Controller not resettable\n");
5822 		return -ENODEV;
5823 	}
5824 
5825 	/* if controller is soft- but not hard resettable... */
5826 	if (!ctlr_is_hard_resettable(board_id))
5827 		return -ENOTSUPP; /* try soft reset later. */
5828 
5829 	/* Save the PCI command register */
5830 	pci_read_config_word(pdev, 4, &command_register);
5831 	pci_save_state(pdev);
5832 
5833 	/* find the first memory BAR, so we can find the cfg table */
5834 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5835 	if (rc)
5836 		return rc;
5837 	vaddr = remap_pci_mem(paddr, 0x250);
5838 	if (!vaddr)
5839 		return -ENOMEM;
5840 
5841 	/* find cfgtable in order to check if reset via doorbell is supported */
5842 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5843 					&cfg_base_addr_index, &cfg_offset);
5844 	if (rc)
5845 		goto unmap_vaddr;
5846 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5847 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5848 	if (!cfgtable) {
5849 		rc = -ENOMEM;
5850 		goto unmap_vaddr;
5851 	}
5852 	rc = write_driver_ver_to_cfgtable(cfgtable);
5853 	if (rc)
5854 		goto unmap_cfgtable;
5855 
5856 	/* If reset via doorbell register is supported, use that.
5857 	 * There are two such methods.  Favor the newest method.
5858 	 */
5859 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5860 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5861 	if (use_doorbell) {
5862 		use_doorbell = DOORBELL_CTLR_RESET2;
5863 	} else {
5864 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5865 		if (use_doorbell) {
5866 			dev_warn(&pdev->dev, "Soft reset not supported. "
5867 				"Firmware update is required.\n");
5868 			rc = -ENOTSUPP; /* try soft reset */
5869 			goto unmap_cfgtable;
5870 		}
5871 	}
5872 
5873 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5874 	if (rc)
5875 		goto unmap_cfgtable;
5876 
5877 	pci_restore_state(pdev);
5878 	pci_write_config_word(pdev, 4, command_register);
5879 
5880 	/* Some devices (notably the HP Smart Array 5i Controller)
5881 	   need a little pause here */
5882 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
5883 
5884 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5885 	if (rc) {
5886 		dev_warn(&pdev->dev,
5887 			"failed waiting for board to become ready "
5888 			"after hard reset\n");
5889 		goto unmap_cfgtable;
5890 	}
5891 
5892 	rc = controller_reset_failed(vaddr);
5893 	if (rc < 0)
5894 		goto unmap_cfgtable;
5895 	if (rc) {
5896 		dev_warn(&pdev->dev, "Unable to successfully reset "
5897 			"controller. Will try soft reset.\n");
5898 		rc = -ENOTSUPP;
5899 	} else {
5900 		dev_info(&pdev->dev, "board ready after hard reset.\n");
5901 	}
5902 
5903 unmap_cfgtable:
5904 	iounmap(cfgtable);
5905 
5906 unmap_vaddr:
5907 	iounmap(vaddr);
5908 	return rc;
5909 }
5910 
5911 /*
5912  *  We cannot read the structure directly, for portability we must use
5913  *   the io functions.
5914  *   This is for debug only.
5915  */
5916 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5917 {
5918 #ifdef HPSA_DEBUG
5919 	int i;
5920 	char temp_name[17];
5921 
5922 	dev_info(dev, "Controller Configuration information\n");
5923 	dev_info(dev, "------------------------------------\n");
5924 	for (i = 0; i < 4; i++)
5925 		temp_name[i] = readb(&(tb->Signature[i]));
5926 	temp_name[4] = '\0';
5927 	dev_info(dev, "   Signature = %s\n", temp_name);
5928 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5929 	dev_info(dev, "   Transport methods supported = 0x%x\n",
5930 	       readl(&(tb->TransportSupport)));
5931 	dev_info(dev, "   Transport methods active = 0x%x\n",
5932 	       readl(&(tb->TransportActive)));
5933 	dev_info(dev, "   Requested transport Method = 0x%x\n",
5934 	       readl(&(tb->HostWrite.TransportRequest)));
5935 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5936 	       readl(&(tb->HostWrite.CoalIntDelay)));
5937 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5938 	       readl(&(tb->HostWrite.CoalIntCount)));
5939 	dev_info(dev, "   Max outstanding commands = %d\n",
5940 	       readl(&(tb->CmdsOutMax)));
5941 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5942 	for (i = 0; i < 16; i++)
5943 		temp_name[i] = readb(&(tb->ServerName[i]));
5944 	temp_name[16] = '\0';
5945 	dev_info(dev, "   Server Name = %s\n", temp_name);
5946 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5947 		readl(&(tb->HeartBeat)));
5948 #endif				/* HPSA_DEBUG */
5949 }
5950 
5951 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5952 {
5953 	int i, offset, mem_type, bar_type;
5954 
5955 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
5956 		return 0;
5957 	offset = 0;
5958 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5959 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5960 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5961 			offset += 4;
5962 		else {
5963 			mem_type = pci_resource_flags(pdev, i) &
5964 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5965 			switch (mem_type) {
5966 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
5967 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5968 				offset += 4;	/* 32 bit */
5969 				break;
5970 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
5971 				offset += 8;
5972 				break;
5973 			default:	/* reserved in PCI 2.2 */
5974 				dev_warn(&pdev->dev,
5975 				       "base address is invalid\n");
5976 				return -1;
5977 				break;
5978 			}
5979 		}
5980 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5981 			return i + 1;
5982 	}
5983 	return -1;
5984 }
5985 
5986 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5987  * controllers that are capable. If not, we use IO-APIC mode.
5988  */
5989 
5990 static void hpsa_interrupt_mode(struct ctlr_info *h)
5991 {
5992 #ifdef CONFIG_PCI_MSI
5993 	int err, i;
5994 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5995 
5996 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5997 		hpsa_msix_entries[i].vector = 0;
5998 		hpsa_msix_entries[i].entry = i;
5999 	}
6000 
6001 	/* Some boards advertise MSI but don't really support it */
6002 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6003 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6004 		goto default_int_mode;
6005 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6006 		dev_info(&h->pdev->dev, "MSIX\n");
6007 		h->msix_vector = MAX_REPLY_QUEUES;
6008 		if (h->msix_vector > num_online_cpus())
6009 			h->msix_vector = num_online_cpus();
6010 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6011 					    1, h->msix_vector);
6012 		if (err < 0) {
6013 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6014 			h->msix_vector = 0;
6015 			goto single_msi_mode;
6016 		} else if (err < h->msix_vector) {
6017 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6018 			       "available\n", err);
6019 		}
6020 		h->msix_vector = err;
6021 		for (i = 0; i < h->msix_vector; i++)
6022 			h->intr[i] = hpsa_msix_entries[i].vector;
6023 		return;
6024 	}
6025 single_msi_mode:
6026 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6027 		dev_info(&h->pdev->dev, "MSI\n");
6028 		if (!pci_enable_msi(h->pdev))
6029 			h->msi_vector = 1;
6030 		else
6031 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6032 	}
6033 default_int_mode:
6034 #endif				/* CONFIG_PCI_MSI */
6035 	/* if we get here we're going to use the default interrupt mode */
6036 	h->intr[h->intr_mode] = h->pdev->irq;
6037 }
6038 
6039 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6040 {
6041 	int i;
6042 	u32 subsystem_vendor_id, subsystem_device_id;
6043 
6044 	subsystem_vendor_id = pdev->subsystem_vendor;
6045 	subsystem_device_id = pdev->subsystem_device;
6046 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6047 		    subsystem_vendor_id;
6048 
6049 	for (i = 0; i < ARRAY_SIZE(products); i++)
6050 		if (*board_id == products[i].board_id)
6051 			return i;
6052 
6053 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6054 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6055 		!hpsa_allow_any) {
6056 		dev_warn(&pdev->dev, "unrecognized board ID: "
6057 			"0x%08x, ignoring.\n", *board_id);
6058 			return -ENODEV;
6059 	}
6060 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6061 }
6062 
6063 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6064 				    unsigned long *memory_bar)
6065 {
6066 	int i;
6067 
6068 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6069 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6070 			/* addressing mode bits already removed */
6071 			*memory_bar = pci_resource_start(pdev, i);
6072 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6073 				*memory_bar);
6074 			return 0;
6075 		}
6076 	dev_warn(&pdev->dev, "no memory BAR found\n");
6077 	return -ENODEV;
6078 }
6079 
6080 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6081 				     int wait_for_ready)
6082 {
6083 	int i, iterations;
6084 	u32 scratchpad;
6085 	if (wait_for_ready)
6086 		iterations = HPSA_BOARD_READY_ITERATIONS;
6087 	else
6088 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6089 
6090 	for (i = 0; i < iterations; i++) {
6091 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6092 		if (wait_for_ready) {
6093 			if (scratchpad == HPSA_FIRMWARE_READY)
6094 				return 0;
6095 		} else {
6096 			if (scratchpad != HPSA_FIRMWARE_READY)
6097 				return 0;
6098 		}
6099 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6100 	}
6101 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6102 	return -ENODEV;
6103 }
6104 
6105 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6106 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6107 			       u64 *cfg_offset)
6108 {
6109 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6110 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6111 	*cfg_base_addr &= (u32) 0x0000ffff;
6112 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6113 	if (*cfg_base_addr_index == -1) {
6114 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6115 		return -ENODEV;
6116 	}
6117 	return 0;
6118 }
6119 
6120 static int hpsa_find_cfgtables(struct ctlr_info *h)
6121 {
6122 	u64 cfg_offset;
6123 	u32 cfg_base_addr;
6124 	u64 cfg_base_addr_index;
6125 	u32 trans_offset;
6126 	int rc;
6127 
6128 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6129 		&cfg_base_addr_index, &cfg_offset);
6130 	if (rc)
6131 		return rc;
6132 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6133 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6134 	if (!h->cfgtable)
6135 		return -ENOMEM;
6136 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6137 	if (rc)
6138 		return rc;
6139 	/* Find performant mode table. */
6140 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6141 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6142 				cfg_base_addr_index)+cfg_offset+trans_offset,
6143 				sizeof(*h->transtable));
6144 	if (!h->transtable)
6145 		return -ENOMEM;
6146 	return 0;
6147 }
6148 
6149 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6150 {
6151 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6152 
6153 	/* Limit commands in memory limited kdump scenario. */
6154 	if (reset_devices && h->max_commands > 32)
6155 		h->max_commands = 32;
6156 
6157 	if (h->max_commands < 16) {
6158 		dev_warn(&h->pdev->dev, "Controller reports "
6159 			"max supported commands of %d, an obvious lie. "
6160 			"Using 16.  Ensure that firmware is up to date.\n",
6161 			h->max_commands);
6162 		h->max_commands = 16;
6163 	}
6164 }
6165 
6166 /* If the controller reports that the total max sg entries is greater than 512,
6167  * then we know that chained SG blocks work.  (Original smart arrays did not
6168  * support chained SG blocks and would return zero for max sg entries.)
6169  */
6170 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6171 {
6172 	return h->maxsgentries > 512;
6173 }
6174 
6175 /* Interrogate the hardware for some limits:
6176  * max commands, max SG elements without chaining, and with chaining,
6177  * SG chain block size, etc.
6178  */
6179 static void hpsa_find_board_params(struct ctlr_info *h)
6180 {
6181 	hpsa_get_max_perf_mode_cmds(h);
6182 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6183 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6184 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6185 	if (hpsa_supports_chained_sg_blocks(h)) {
6186 		/* Limit in-command s/g elements to 32 save dma'able memory. */
6187 		h->max_cmd_sg_entries = 32;
6188 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6189 		h->maxsgentries--; /* save one for chain pointer */
6190 	} else {
6191 		/*
6192 		 * Original smart arrays supported at most 31 s/g entries
6193 		 * embedded inline in the command (trying to use more
6194 		 * would lock up the controller)
6195 		 */
6196 		h->max_cmd_sg_entries = 31;
6197 		h->maxsgentries = 31; /* default to traditional values */
6198 		h->chainsize = 0;
6199 	}
6200 
6201 	/* Find out what task management functions are supported and cache */
6202 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6203 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6204 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6205 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6206 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6207 }
6208 
6209 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6210 {
6211 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6212 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6213 		return false;
6214 	}
6215 	return true;
6216 }
6217 
6218 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6219 {
6220 	u32 driver_support;
6221 
6222 	driver_support = readl(&(h->cfgtable->driver_support));
6223 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6224 #ifdef CONFIG_X86
6225 	driver_support |= ENABLE_SCSI_PREFETCH;
6226 #endif
6227 	driver_support |= ENABLE_UNIT_ATTN;
6228 	writel(driver_support, &(h->cfgtable->driver_support));
6229 }
6230 
6231 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6232  * in a prefetch beyond physical memory.
6233  */
6234 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6235 {
6236 	u32 dma_prefetch;
6237 
6238 	if (h->board_id != 0x3225103C)
6239 		return;
6240 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6241 	dma_prefetch |= 0x8000;
6242 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6243 }
6244 
6245 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6246 {
6247 	int i;
6248 	u32 doorbell_value;
6249 	unsigned long flags;
6250 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6251 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6252 		spin_lock_irqsave(&h->lock, flags);
6253 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6254 		spin_unlock_irqrestore(&h->lock, flags);
6255 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6256 			break;
6257 		/* delay and try again */
6258 		msleep(20);
6259 	}
6260 }
6261 
6262 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6263 {
6264 	int i;
6265 	u32 doorbell_value;
6266 	unsigned long flags;
6267 
6268 	/* under certain very rare conditions, this can take awhile.
6269 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6270 	 * as we enter this code.)
6271 	 */
6272 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6273 		spin_lock_irqsave(&h->lock, flags);
6274 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6275 		spin_unlock_irqrestore(&h->lock, flags);
6276 		if (!(doorbell_value & CFGTBL_ChangeReq))
6277 			break;
6278 		/* delay and try again */
6279 		usleep_range(10000, 20000);
6280 	}
6281 }
6282 
6283 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6284 {
6285 	u32 trans_support;
6286 
6287 	trans_support = readl(&(h->cfgtable->TransportSupport));
6288 	if (!(trans_support & SIMPLE_MODE))
6289 		return -ENOTSUPP;
6290 
6291 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6292 
6293 	/* Update the field, and then ring the doorbell */
6294 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6295 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6296 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6297 	hpsa_wait_for_mode_change_ack(h);
6298 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6299 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6300 		goto error;
6301 	h->transMethod = CFGTBL_Trans_Simple;
6302 	return 0;
6303 error:
6304 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6305 	return -ENODEV;
6306 }
6307 
6308 static int hpsa_pci_init(struct ctlr_info *h)
6309 {
6310 	int prod_index, err;
6311 
6312 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6313 	if (prod_index < 0)
6314 		return prod_index;
6315 	h->product_name = products[prod_index].product_name;
6316 	h->access = *(products[prod_index].access);
6317 
6318 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6319 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6320 
6321 	err = pci_enable_device(h->pdev);
6322 	if (err) {
6323 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6324 		return err;
6325 	}
6326 
6327 	err = pci_request_regions(h->pdev, HPSA);
6328 	if (err) {
6329 		dev_err(&h->pdev->dev,
6330 			"cannot obtain PCI resources, aborting\n");
6331 		return err;
6332 	}
6333 
6334 	pci_set_master(h->pdev);
6335 
6336 	hpsa_interrupt_mode(h);
6337 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6338 	if (err)
6339 		goto err_out_free_res;
6340 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6341 	if (!h->vaddr) {
6342 		err = -ENOMEM;
6343 		goto err_out_free_res;
6344 	}
6345 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6346 	if (err)
6347 		goto err_out_free_res;
6348 	err = hpsa_find_cfgtables(h);
6349 	if (err)
6350 		goto err_out_free_res;
6351 	hpsa_find_board_params(h);
6352 
6353 	if (!hpsa_CISS_signature_present(h)) {
6354 		err = -ENODEV;
6355 		goto err_out_free_res;
6356 	}
6357 	hpsa_set_driver_support_bits(h);
6358 	hpsa_p600_dma_prefetch_quirk(h);
6359 	err = hpsa_enter_simple_mode(h);
6360 	if (err)
6361 		goto err_out_free_res;
6362 	return 0;
6363 
6364 err_out_free_res:
6365 	if (h->transtable)
6366 		iounmap(h->transtable);
6367 	if (h->cfgtable)
6368 		iounmap(h->cfgtable);
6369 	if (h->vaddr)
6370 		iounmap(h->vaddr);
6371 	pci_disable_device(h->pdev);
6372 	pci_release_regions(h->pdev);
6373 	return err;
6374 }
6375 
6376 static void hpsa_hba_inquiry(struct ctlr_info *h)
6377 {
6378 	int rc;
6379 
6380 #define HBA_INQUIRY_BYTE_COUNT 64
6381 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6382 	if (!h->hba_inquiry_data)
6383 		return;
6384 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6385 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6386 	if (rc != 0) {
6387 		kfree(h->hba_inquiry_data);
6388 		h->hba_inquiry_data = NULL;
6389 	}
6390 }
6391 
6392 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6393 {
6394 	int rc, i;
6395 	void __iomem *vaddr;
6396 
6397 	if (!reset_devices)
6398 		return 0;
6399 
6400 	/* kdump kernel is loading, we don't know in which state is
6401 	 * the pci interface. The dev->enable_cnt is equal zero
6402 	 * so we call enable+disable, wait a while and switch it on.
6403 	 */
6404 	rc = pci_enable_device(pdev);
6405 	if (rc) {
6406 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6407 		return -ENODEV;
6408 	}
6409 	pci_disable_device(pdev);
6410 	msleep(260);			/* a randomly chosen number */
6411 	rc = pci_enable_device(pdev);
6412 	if (rc) {
6413 		dev_warn(&pdev->dev, "failed to enable device.\n");
6414 		return -ENODEV;
6415 	}
6416 
6417 	pci_set_master(pdev);
6418 
6419 	vaddr = pci_ioremap_bar(pdev, 0);
6420 	if (vaddr == NULL) {
6421 		rc = -ENOMEM;
6422 		goto out_disable;
6423 	}
6424 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6425 	iounmap(vaddr);
6426 
6427 	/* Reset the controller with a PCI power-cycle or via doorbell */
6428 	rc = hpsa_kdump_hard_reset_controller(pdev);
6429 
6430 	/* -ENOTSUPP here means we cannot reset the controller
6431 	 * but it's already (and still) up and running in
6432 	 * "performant mode".  Or, it might be 640x, which can't reset
6433 	 * due to concerns about shared bbwc between 6402/6404 pair.
6434 	 */
6435 	if (rc)
6436 		goto out_disable;
6437 
6438 	/* Now try to get the controller to respond to a no-op */
6439 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6440 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6441 		if (hpsa_noop(pdev) == 0)
6442 			break;
6443 		else
6444 			dev_warn(&pdev->dev, "no-op failed%s\n",
6445 					(i < 11 ? "; re-trying" : ""));
6446 	}
6447 
6448 out_disable:
6449 
6450 	pci_disable_device(pdev);
6451 	return rc;
6452 }
6453 
6454 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6455 {
6456 	h->cmd_pool_bits = kzalloc(
6457 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6458 		sizeof(unsigned long), GFP_KERNEL);
6459 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6460 		    h->nr_cmds * sizeof(*h->cmd_pool),
6461 		    &(h->cmd_pool_dhandle));
6462 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6463 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6464 		    &(h->errinfo_pool_dhandle));
6465 	if ((h->cmd_pool_bits == NULL)
6466 	    || (h->cmd_pool == NULL)
6467 	    || (h->errinfo_pool == NULL)) {
6468 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6469 		return -ENOMEM;
6470 	}
6471 	return 0;
6472 }
6473 
6474 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6475 {
6476 	kfree(h->cmd_pool_bits);
6477 	if (h->cmd_pool)
6478 		pci_free_consistent(h->pdev,
6479 			    h->nr_cmds * sizeof(struct CommandList),
6480 			    h->cmd_pool, h->cmd_pool_dhandle);
6481 	if (h->ioaccel2_cmd_pool)
6482 		pci_free_consistent(h->pdev,
6483 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6484 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6485 	if (h->errinfo_pool)
6486 		pci_free_consistent(h->pdev,
6487 			    h->nr_cmds * sizeof(struct ErrorInfo),
6488 			    h->errinfo_pool,
6489 			    h->errinfo_pool_dhandle);
6490 	if (h->ioaccel_cmd_pool)
6491 		pci_free_consistent(h->pdev,
6492 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6493 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6494 }
6495 
6496 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6497 {
6498 	int i, cpu;
6499 
6500 	cpu = cpumask_first(cpu_online_mask);
6501 	for (i = 0; i < h->msix_vector; i++) {
6502 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6503 		cpu = cpumask_next(cpu, cpu_online_mask);
6504 	}
6505 }
6506 
6507 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6508 static void hpsa_free_irqs(struct ctlr_info *h)
6509 {
6510 	int i;
6511 
6512 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6513 		/* Single reply queue, only one irq to free */
6514 		i = h->intr_mode;
6515 		irq_set_affinity_hint(h->intr[i], NULL);
6516 		free_irq(h->intr[i], &h->q[i]);
6517 		return;
6518 	}
6519 
6520 	for (i = 0; i < h->msix_vector; i++) {
6521 		irq_set_affinity_hint(h->intr[i], NULL);
6522 		free_irq(h->intr[i], &h->q[i]);
6523 	}
6524 	for (; i < MAX_REPLY_QUEUES; i++)
6525 		h->q[i] = 0;
6526 }
6527 
6528 static int hpsa_request_irq(struct ctlr_info *h,
6529 	irqreturn_t (*msixhandler)(int, void *),
6530 	irqreturn_t (*intxhandler)(int, void *))
6531 {
6532 	int rc, i;
6533 
6534 	/*
6535 	 * initialize h->q[x] = x so that interrupt handlers know which
6536 	 * queue to process.
6537 	 */
6538 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6539 		h->q[i] = (u8) i;
6540 
6541 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6542 		/* If performant mode and MSI-X, use multiple reply queues */
6543 		for (i = 0; i < h->msix_vector; i++) {
6544 			rc = request_irq(h->intr[i], msixhandler,
6545 					0, h->devname,
6546 					&h->q[i]);
6547 			if (rc) {
6548 				int j;
6549 
6550 				dev_err(&h->pdev->dev,
6551 					"failed to get irq %d for %s\n",
6552 				       h->intr[i], h->devname);
6553 				for (j = 0; j < i; j++) {
6554 					free_irq(h->intr[j], &h->q[j]);
6555 					h->q[j] = 0;
6556 				}
6557 				for (; j < MAX_REPLY_QUEUES; j++)
6558 					h->q[j] = 0;
6559 				return rc;
6560 			}
6561 		}
6562 		hpsa_irq_affinity_hints(h);
6563 	} else {
6564 		/* Use single reply pool */
6565 		if (h->msix_vector > 0 || h->msi_vector) {
6566 			rc = request_irq(h->intr[h->intr_mode],
6567 				msixhandler, 0, h->devname,
6568 				&h->q[h->intr_mode]);
6569 		} else {
6570 			rc = request_irq(h->intr[h->intr_mode],
6571 				intxhandler, IRQF_SHARED, h->devname,
6572 				&h->q[h->intr_mode]);
6573 		}
6574 	}
6575 	if (rc) {
6576 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6577 		       h->intr[h->intr_mode], h->devname);
6578 		return -ENODEV;
6579 	}
6580 	return 0;
6581 }
6582 
6583 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6584 {
6585 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6586 		HPSA_RESET_TYPE_CONTROLLER)) {
6587 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6588 		return -EIO;
6589 	}
6590 
6591 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6592 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6593 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6594 		return -1;
6595 	}
6596 
6597 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6598 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6599 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6600 			"after soft reset.\n");
6601 		return -1;
6602 	}
6603 
6604 	return 0;
6605 }
6606 
6607 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6608 {
6609 	hpsa_free_irqs(h);
6610 #ifdef CONFIG_PCI_MSI
6611 	if (h->msix_vector) {
6612 		if (h->pdev->msix_enabled)
6613 			pci_disable_msix(h->pdev);
6614 	} else if (h->msi_vector) {
6615 		if (h->pdev->msi_enabled)
6616 			pci_disable_msi(h->pdev);
6617 	}
6618 #endif /* CONFIG_PCI_MSI */
6619 }
6620 
6621 static void hpsa_free_reply_queues(struct ctlr_info *h)
6622 {
6623 	int i;
6624 
6625 	for (i = 0; i < h->nreply_queues; i++) {
6626 		if (!h->reply_queue[i].head)
6627 			continue;
6628 		pci_free_consistent(h->pdev, h->reply_queue_size,
6629 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6630 		h->reply_queue[i].head = NULL;
6631 		h->reply_queue[i].busaddr = 0;
6632 	}
6633 }
6634 
6635 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6636 {
6637 	hpsa_free_irqs_and_disable_msix(h);
6638 	hpsa_free_sg_chain_blocks(h);
6639 	hpsa_free_cmd_pool(h);
6640 	kfree(h->ioaccel1_blockFetchTable);
6641 	kfree(h->blockFetchTable);
6642 	hpsa_free_reply_queues(h);
6643 	if (h->vaddr)
6644 		iounmap(h->vaddr);
6645 	if (h->transtable)
6646 		iounmap(h->transtable);
6647 	if (h->cfgtable)
6648 		iounmap(h->cfgtable);
6649 	pci_disable_device(h->pdev);
6650 	pci_release_regions(h->pdev);
6651 	kfree(h);
6652 }
6653 
6654 /* Called when controller lockup detected. */
6655 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6656 {
6657 	struct CommandList *c = NULL;
6658 
6659 	assert_spin_locked(&h->lock);
6660 	/* Mark all outstanding commands as failed and complete them. */
6661 	while (!list_empty(list)) {
6662 		c = list_entry(list->next, struct CommandList, list);
6663 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6664 		finish_cmd(c);
6665 	}
6666 }
6667 
6668 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6669 {
6670 	int i, cpu;
6671 
6672 	cpu = cpumask_first(cpu_online_mask);
6673 	for (i = 0; i < num_online_cpus(); i++) {
6674 		u32 *lockup_detected;
6675 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6676 		*lockup_detected = value;
6677 		cpu = cpumask_next(cpu, cpu_online_mask);
6678 	}
6679 	wmb(); /* be sure the per-cpu variables are out to memory */
6680 }
6681 
6682 static void controller_lockup_detected(struct ctlr_info *h)
6683 {
6684 	unsigned long flags;
6685 	u32 lockup_detected;
6686 
6687 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6688 	spin_lock_irqsave(&h->lock, flags);
6689 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6690 	if (!lockup_detected) {
6691 		/* no heartbeat, but controller gave us a zero. */
6692 		dev_warn(&h->pdev->dev,
6693 			"lockup detected but scratchpad register is zero\n");
6694 		lockup_detected = 0xffffffff;
6695 	}
6696 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6697 	spin_unlock_irqrestore(&h->lock, flags);
6698 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6699 			lockup_detected);
6700 	pci_disable_device(h->pdev);
6701 	spin_lock_irqsave(&h->lock, flags);
6702 	fail_all_cmds_on_list(h, &h->cmpQ);
6703 	fail_all_cmds_on_list(h, &h->reqQ);
6704 	spin_unlock_irqrestore(&h->lock, flags);
6705 }
6706 
6707 static void detect_controller_lockup(struct ctlr_info *h)
6708 {
6709 	u64 now;
6710 	u32 heartbeat;
6711 	unsigned long flags;
6712 
6713 	now = get_jiffies_64();
6714 	/* If we've received an interrupt recently, we're ok. */
6715 	if (time_after64(h->last_intr_timestamp +
6716 				(h->heartbeat_sample_interval), now))
6717 		return;
6718 
6719 	/*
6720 	 * If we've already checked the heartbeat recently, we're ok.
6721 	 * This could happen if someone sends us a signal. We
6722 	 * otherwise don't care about signals in this thread.
6723 	 */
6724 	if (time_after64(h->last_heartbeat_timestamp +
6725 				(h->heartbeat_sample_interval), now))
6726 		return;
6727 
6728 	/* If heartbeat has not changed since we last looked, we're not ok. */
6729 	spin_lock_irqsave(&h->lock, flags);
6730 	heartbeat = readl(&h->cfgtable->HeartBeat);
6731 	spin_unlock_irqrestore(&h->lock, flags);
6732 	if (h->last_heartbeat == heartbeat) {
6733 		controller_lockup_detected(h);
6734 		return;
6735 	}
6736 
6737 	/* We're ok. */
6738 	h->last_heartbeat = heartbeat;
6739 	h->last_heartbeat_timestamp = now;
6740 }
6741 
6742 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6743 {
6744 	int i;
6745 	char *event_type;
6746 
6747 	/* Clear the driver-requested rescan flag */
6748 	h->drv_req_rescan = 0;
6749 
6750 	/* Ask the controller to clear the events we're handling. */
6751 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6752 			| CFGTBL_Trans_io_accel2)) &&
6753 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6754 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6755 
6756 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6757 			event_type = "state change";
6758 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6759 			event_type = "configuration change";
6760 		/* Stop sending new RAID offload reqs via the IO accelerator */
6761 		scsi_block_requests(h->scsi_host);
6762 		for (i = 0; i < h->ndevices; i++)
6763 			h->dev[i]->offload_enabled = 0;
6764 		hpsa_drain_accel_commands(h);
6765 		/* Set 'accelerator path config change' bit */
6766 		dev_warn(&h->pdev->dev,
6767 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6768 			h->events, event_type);
6769 		writel(h->events, &(h->cfgtable->clear_event_notify));
6770 		/* Set the "clear event notify field update" bit 6 */
6771 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6772 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6773 		hpsa_wait_for_clear_event_notify_ack(h);
6774 		scsi_unblock_requests(h->scsi_host);
6775 	} else {
6776 		/* Acknowledge controller notification events. */
6777 		writel(h->events, &(h->cfgtable->clear_event_notify));
6778 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6779 		hpsa_wait_for_clear_event_notify_ack(h);
6780 #if 0
6781 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6782 		hpsa_wait_for_mode_change_ack(h);
6783 #endif
6784 	}
6785 	return;
6786 }
6787 
6788 /* Check a register on the controller to see if there are configuration
6789  * changes (added/changed/removed logical drives, etc.) which mean that
6790  * we should rescan the controller for devices.
6791  * Also check flag for driver-initiated rescan.
6792  */
6793 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6794 {
6795 	if (h->drv_req_rescan)
6796 		return 1;
6797 
6798 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6799 		return 0;
6800 
6801 	h->events = readl(&(h->cfgtable->event_notify));
6802 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6803 }
6804 
6805 /*
6806  * Check if any of the offline devices have become ready
6807  */
6808 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6809 {
6810 	unsigned long flags;
6811 	struct offline_device_entry *d;
6812 	struct list_head *this, *tmp;
6813 
6814 	spin_lock_irqsave(&h->offline_device_lock, flags);
6815 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6816 		d = list_entry(this, struct offline_device_entry,
6817 				offline_list);
6818 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6819 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
6820 			spin_lock_irqsave(&h->offline_device_lock, flags);
6821 			list_del(&d->offline_list);
6822 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6823 			return 1;
6824 		}
6825 		spin_lock_irqsave(&h->offline_device_lock, flags);
6826 	}
6827 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6828 	return 0;
6829 }
6830 
6831 
6832 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6833 {
6834 	unsigned long flags;
6835 	struct ctlr_info *h = container_of(to_delayed_work(work),
6836 					struct ctlr_info, monitor_ctlr_work);
6837 	detect_controller_lockup(h);
6838 	if (lockup_detected(h))
6839 		return;
6840 
6841 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6842 		scsi_host_get(h->scsi_host);
6843 		h->drv_req_rescan = 0;
6844 		hpsa_ack_ctlr_events(h);
6845 		hpsa_scan_start(h->scsi_host);
6846 		scsi_host_put(h->scsi_host);
6847 	}
6848 
6849 	spin_lock_irqsave(&h->lock, flags);
6850 	if (h->remove_in_progress) {
6851 		spin_unlock_irqrestore(&h->lock, flags);
6852 		return;
6853 	}
6854 	schedule_delayed_work(&h->monitor_ctlr_work,
6855 				h->heartbeat_sample_interval);
6856 	spin_unlock_irqrestore(&h->lock, flags);
6857 }
6858 
6859 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6860 {
6861 	int dac, rc;
6862 	struct ctlr_info *h;
6863 	int try_soft_reset = 0;
6864 	unsigned long flags;
6865 
6866 	if (number_of_controllers == 0)
6867 		printk(KERN_INFO DRIVER_NAME "\n");
6868 
6869 	rc = hpsa_init_reset_devices(pdev);
6870 	if (rc) {
6871 		if (rc != -ENOTSUPP)
6872 			return rc;
6873 		/* If the reset fails in a particular way (it has no way to do
6874 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6875 		 * a soft reset once we get the controller configured up to the
6876 		 * point that it can accept a command.
6877 		 */
6878 		try_soft_reset = 1;
6879 		rc = 0;
6880 	}
6881 
6882 reinit_after_soft_reset:
6883 
6884 	/* Command structures must be aligned on a 32-byte boundary because
6885 	 * the 5 lower bits of the address are used by the hardware. and by
6886 	 * the driver.  See comments in hpsa.h for more info.
6887 	 */
6888 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6889 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6890 	if (!h)
6891 		return -ENOMEM;
6892 
6893 	h->pdev = pdev;
6894 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6895 	INIT_LIST_HEAD(&h->cmpQ);
6896 	INIT_LIST_HEAD(&h->reqQ);
6897 	INIT_LIST_HEAD(&h->offline_device_list);
6898 	spin_lock_init(&h->lock);
6899 	spin_lock_init(&h->offline_device_lock);
6900 	spin_lock_init(&h->scan_lock);
6901 	spin_lock_init(&h->passthru_count_lock);
6902 
6903 	/* Allocate and clear per-cpu variable lockup_detected */
6904 	h->lockup_detected = alloc_percpu(u32);
6905 	if (!h->lockup_detected) {
6906 		rc = -ENOMEM;
6907 		goto clean1;
6908 	}
6909 	set_lockup_detected_for_all_cpus(h, 0);
6910 
6911 	rc = hpsa_pci_init(h);
6912 	if (rc != 0)
6913 		goto clean1;
6914 
6915 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6916 	h->ctlr = number_of_controllers;
6917 	number_of_controllers++;
6918 
6919 	/* configure PCI DMA stuff */
6920 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6921 	if (rc == 0) {
6922 		dac = 1;
6923 	} else {
6924 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6925 		if (rc == 0) {
6926 			dac = 0;
6927 		} else {
6928 			dev_err(&pdev->dev, "no suitable DMA available\n");
6929 			goto clean1;
6930 		}
6931 	}
6932 
6933 	/* make sure the board interrupts are off */
6934 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6935 
6936 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6937 		goto clean2;
6938 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6939 	       h->devname, pdev->device,
6940 	       h->intr[h->intr_mode], dac ? "" : " not");
6941 	if (hpsa_allocate_cmd_pool(h))
6942 		goto clean4;
6943 	if (hpsa_allocate_sg_chain_blocks(h))
6944 		goto clean4;
6945 	init_waitqueue_head(&h->scan_wait_queue);
6946 	h->scan_finished = 1; /* no scan currently in progress */
6947 
6948 	pci_set_drvdata(pdev, h);
6949 	h->ndevices = 0;
6950 	h->hba_mode_enabled = 0;
6951 	h->scsi_host = NULL;
6952 	spin_lock_init(&h->devlock);
6953 	hpsa_put_ctlr_into_performant_mode(h);
6954 
6955 	/* At this point, the controller is ready to take commands.
6956 	 * Now, if reset_devices and the hard reset didn't work, try
6957 	 * the soft reset and see if that works.
6958 	 */
6959 	if (try_soft_reset) {
6960 
6961 		/* This is kind of gross.  We may or may not get a completion
6962 		 * from the soft reset command, and if we do, then the value
6963 		 * from the fifo may or may not be valid.  So, we wait 10 secs
6964 		 * after the reset throwing away any completions we get during
6965 		 * that time.  Unregister the interrupt handler and register
6966 		 * fake ones to scoop up any residual completions.
6967 		 */
6968 		spin_lock_irqsave(&h->lock, flags);
6969 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6970 		spin_unlock_irqrestore(&h->lock, flags);
6971 		hpsa_free_irqs(h);
6972 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6973 					hpsa_intx_discard_completions);
6974 		if (rc) {
6975 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
6976 				"soft reset.\n");
6977 			goto clean4;
6978 		}
6979 
6980 		rc = hpsa_kdump_soft_reset(h);
6981 		if (rc)
6982 			/* Neither hard nor soft reset worked, we're hosed. */
6983 			goto clean4;
6984 
6985 		dev_info(&h->pdev->dev, "Board READY.\n");
6986 		dev_info(&h->pdev->dev,
6987 			"Waiting for stale completions to drain.\n");
6988 		h->access.set_intr_mask(h, HPSA_INTR_ON);
6989 		msleep(10000);
6990 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6991 
6992 		rc = controller_reset_failed(h->cfgtable);
6993 		if (rc)
6994 			dev_info(&h->pdev->dev,
6995 				"Soft reset appears to have failed.\n");
6996 
6997 		/* since the controller's reset, we have to go back and re-init
6998 		 * everything.  Easiest to just forget what we've done and do it
6999 		 * all over again.
7000 		 */
7001 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7002 		try_soft_reset = 0;
7003 		if (rc)
7004 			/* don't go to clean4, we already unallocated */
7005 			return -ENODEV;
7006 
7007 		goto reinit_after_soft_reset;
7008 	}
7009 
7010 		/* Enable Accelerated IO path at driver layer */
7011 		h->acciopath_status = 1;
7012 
7013 	h->drv_req_rescan = 0;
7014 
7015 	/* Turn the interrupts on so we can service requests */
7016 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7017 
7018 	hpsa_hba_inquiry(h);
7019 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7020 
7021 	/* Monitor the controller for firmware lockups */
7022 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7023 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7024 	schedule_delayed_work(&h->monitor_ctlr_work,
7025 				h->heartbeat_sample_interval);
7026 	return 0;
7027 
7028 clean4:
7029 	hpsa_free_sg_chain_blocks(h);
7030 	hpsa_free_cmd_pool(h);
7031 	hpsa_free_irqs(h);
7032 clean2:
7033 clean1:
7034 	if (h->lockup_detected)
7035 		free_percpu(h->lockup_detected);
7036 	kfree(h);
7037 	return rc;
7038 }
7039 
7040 static void hpsa_flush_cache(struct ctlr_info *h)
7041 {
7042 	char *flush_buf;
7043 	struct CommandList *c;
7044 
7045 	/* Don't bother trying to flush the cache if locked up */
7046 	if (unlikely(lockup_detected(h)))
7047 		return;
7048 	flush_buf = kzalloc(4, GFP_KERNEL);
7049 	if (!flush_buf)
7050 		return;
7051 
7052 	c = cmd_special_alloc(h);
7053 	if (!c) {
7054 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7055 		goto out_of_memory;
7056 	}
7057 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7058 		RAID_CTLR_LUNID, TYPE_CMD)) {
7059 		goto out;
7060 	}
7061 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7062 	if (c->err_info->CommandStatus != 0)
7063 out:
7064 		dev_warn(&h->pdev->dev,
7065 			"error flushing cache on controller\n");
7066 	cmd_special_free(h, c);
7067 out_of_memory:
7068 	kfree(flush_buf);
7069 }
7070 
7071 static void hpsa_shutdown(struct pci_dev *pdev)
7072 {
7073 	struct ctlr_info *h;
7074 
7075 	h = pci_get_drvdata(pdev);
7076 	/* Turn board interrupts off  and send the flush cache command
7077 	 * sendcmd will turn off interrupt, and send the flush...
7078 	 * To write all data in the battery backed cache to disks
7079 	 */
7080 	hpsa_flush_cache(h);
7081 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7082 	hpsa_free_irqs_and_disable_msix(h);
7083 }
7084 
7085 static void hpsa_free_device_info(struct ctlr_info *h)
7086 {
7087 	int i;
7088 
7089 	for (i = 0; i < h->ndevices; i++)
7090 		kfree(h->dev[i]);
7091 }
7092 
7093 static void hpsa_remove_one(struct pci_dev *pdev)
7094 {
7095 	struct ctlr_info *h;
7096 	unsigned long flags;
7097 
7098 	if (pci_get_drvdata(pdev) == NULL) {
7099 		dev_err(&pdev->dev, "unable to remove device\n");
7100 		return;
7101 	}
7102 	h = pci_get_drvdata(pdev);
7103 
7104 	/* Get rid of any controller monitoring work items */
7105 	spin_lock_irqsave(&h->lock, flags);
7106 	h->remove_in_progress = 1;
7107 	cancel_delayed_work(&h->monitor_ctlr_work);
7108 	spin_unlock_irqrestore(&h->lock, flags);
7109 
7110 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7111 	hpsa_shutdown(pdev);
7112 	iounmap(h->vaddr);
7113 	iounmap(h->transtable);
7114 	iounmap(h->cfgtable);
7115 	hpsa_free_device_info(h);
7116 	hpsa_free_sg_chain_blocks(h);
7117 	pci_free_consistent(h->pdev,
7118 		h->nr_cmds * sizeof(struct CommandList),
7119 		h->cmd_pool, h->cmd_pool_dhandle);
7120 	pci_free_consistent(h->pdev,
7121 		h->nr_cmds * sizeof(struct ErrorInfo),
7122 		h->errinfo_pool, h->errinfo_pool_dhandle);
7123 	hpsa_free_reply_queues(h);
7124 	kfree(h->cmd_pool_bits);
7125 	kfree(h->blockFetchTable);
7126 	kfree(h->ioaccel1_blockFetchTable);
7127 	kfree(h->ioaccel2_blockFetchTable);
7128 	kfree(h->hba_inquiry_data);
7129 	pci_disable_device(pdev);
7130 	pci_release_regions(pdev);
7131 	free_percpu(h->lockup_detected);
7132 	kfree(h);
7133 }
7134 
7135 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7136 	__attribute__((unused)) pm_message_t state)
7137 {
7138 	return -ENOSYS;
7139 }
7140 
7141 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7142 {
7143 	return -ENOSYS;
7144 }
7145 
7146 static struct pci_driver hpsa_pci_driver = {
7147 	.name = HPSA,
7148 	.probe = hpsa_init_one,
7149 	.remove = hpsa_remove_one,
7150 	.id_table = hpsa_pci_device_id,	/* id_table */
7151 	.shutdown = hpsa_shutdown,
7152 	.suspend = hpsa_suspend,
7153 	.resume = hpsa_resume,
7154 };
7155 
7156 /* Fill in bucket_map[], given nsgs (the max number of
7157  * scatter gather elements supported) and bucket[],
7158  * which is an array of 8 integers.  The bucket[] array
7159  * contains 8 different DMA transfer sizes (in 16
7160  * byte increments) which the controller uses to fetch
7161  * commands.  This function fills in bucket_map[], which
7162  * maps a given number of scatter gather elements to one of
7163  * the 8 DMA transfer sizes.  The point of it is to allow the
7164  * controller to only do as much DMA as needed to fetch the
7165  * command, with the DMA transfer size encoded in the lower
7166  * bits of the command address.
7167  */
7168 static void  calc_bucket_map(int bucket[], int num_buckets,
7169 	int nsgs, int min_blocks, u32 *bucket_map)
7170 {
7171 	int i, j, b, size;
7172 
7173 	/* Note, bucket_map must have nsgs+1 entries. */
7174 	for (i = 0; i <= nsgs; i++) {
7175 		/* Compute size of a command with i SG entries */
7176 		size = i + min_blocks;
7177 		b = num_buckets; /* Assume the biggest bucket */
7178 		/* Find the bucket that is just big enough */
7179 		for (j = 0; j < num_buckets; j++) {
7180 			if (bucket[j] >= size) {
7181 				b = j;
7182 				break;
7183 			}
7184 		}
7185 		/* for a command with i SG entries, use bucket b. */
7186 		bucket_map[i] = b;
7187 	}
7188 }
7189 
7190 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7191 {
7192 	int i;
7193 	unsigned long register_value;
7194 	unsigned long transMethod = CFGTBL_Trans_Performant |
7195 			(trans_support & CFGTBL_Trans_use_short_tags) |
7196 				CFGTBL_Trans_enable_directed_msix |
7197 			(trans_support & (CFGTBL_Trans_io_accel1 |
7198 				CFGTBL_Trans_io_accel2));
7199 	struct access_method access = SA5_performant_access;
7200 
7201 	/* This is a bit complicated.  There are 8 registers on
7202 	 * the controller which we write to to tell it 8 different
7203 	 * sizes of commands which there may be.  It's a way of
7204 	 * reducing the DMA done to fetch each command.  Encoded into
7205 	 * each command's tag are 3 bits which communicate to the controller
7206 	 * which of the eight sizes that command fits within.  The size of
7207 	 * each command depends on how many scatter gather entries there are.
7208 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7209 	 * with the number of 16-byte blocks a command of that size requires.
7210 	 * The smallest command possible requires 5 such 16 byte blocks.
7211 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7212 	 * blocks.  Note, this only extends to the SG entries contained
7213 	 * within the command block, and does not extend to chained blocks
7214 	 * of SG elements.   bft[] contains the eight values we write to
7215 	 * the registers.  They are not evenly distributed, but have more
7216 	 * sizes for small commands, and fewer sizes for larger commands.
7217 	 */
7218 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7219 #define MIN_IOACCEL2_BFT_ENTRY 5
7220 #define HPSA_IOACCEL2_HEADER_SZ 4
7221 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7222 			13, 14, 15, 16, 17, 18, 19,
7223 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7224 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7225 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7226 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7227 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7228 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7229 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7230 	/*  5 = 1 s/g entry or 4k
7231 	 *  6 = 2 s/g entry or 8k
7232 	 *  8 = 4 s/g entry or 16k
7233 	 * 10 = 6 s/g entry or 24k
7234 	 */
7235 
7236 	/* If the controller supports either ioaccel method then
7237 	 * we can also use the RAID stack submit path that does not
7238 	 * perform the superfluous readl() after each command submission.
7239 	 */
7240 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7241 		access = SA5_performant_access_no_read;
7242 
7243 	/* Controller spec: zero out this buffer. */
7244 	for (i = 0; i < h->nreply_queues; i++)
7245 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7246 
7247 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7248 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7249 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7250 	for (i = 0; i < 8; i++)
7251 		writel(bft[i], &h->transtable->BlockFetch[i]);
7252 
7253 	/* size of controller ring buffer */
7254 	writel(h->max_commands, &h->transtable->RepQSize);
7255 	writel(h->nreply_queues, &h->transtable->RepQCount);
7256 	writel(0, &h->transtable->RepQCtrAddrLow32);
7257 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7258 
7259 	for (i = 0; i < h->nreply_queues; i++) {
7260 		writel(0, &h->transtable->RepQAddr[i].upper);
7261 		writel(h->reply_queue[i].busaddr,
7262 			&h->transtable->RepQAddr[i].lower);
7263 	}
7264 
7265 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7266 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7267 	/*
7268 	 * enable outbound interrupt coalescing in accelerator mode;
7269 	 */
7270 	if (trans_support & CFGTBL_Trans_io_accel1) {
7271 		access = SA5_ioaccel_mode1_access;
7272 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7273 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7274 	} else {
7275 		if (trans_support & CFGTBL_Trans_io_accel2) {
7276 			access = SA5_ioaccel_mode2_access;
7277 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7278 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7279 		}
7280 	}
7281 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7282 	hpsa_wait_for_mode_change_ack(h);
7283 	register_value = readl(&(h->cfgtable->TransportActive));
7284 	if (!(register_value & CFGTBL_Trans_Performant)) {
7285 		dev_warn(&h->pdev->dev, "unable to get board into"
7286 					" performant mode\n");
7287 		return;
7288 	}
7289 	/* Change the access methods to the performant access methods */
7290 	h->access = access;
7291 	h->transMethod = transMethod;
7292 
7293 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7294 		(trans_support & CFGTBL_Trans_io_accel2)))
7295 		return;
7296 
7297 	if (trans_support & CFGTBL_Trans_io_accel1) {
7298 		/* Set up I/O accelerator mode */
7299 		for (i = 0; i < h->nreply_queues; i++) {
7300 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7301 			h->reply_queue[i].current_entry =
7302 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7303 		}
7304 		bft[7] = h->ioaccel_maxsg + 8;
7305 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7306 				h->ioaccel1_blockFetchTable);
7307 
7308 		/* initialize all reply queue entries to unused */
7309 		for (i = 0; i < h->nreply_queues; i++)
7310 			memset(h->reply_queue[i].head,
7311 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7312 				h->reply_queue_size);
7313 
7314 		/* set all the constant fields in the accelerator command
7315 		 * frames once at init time to save CPU cycles later.
7316 		 */
7317 		for (i = 0; i < h->nr_cmds; i++) {
7318 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7319 
7320 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7321 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7322 					(i * sizeof(struct ErrorInfo)));
7323 			cp->err_info_len = sizeof(struct ErrorInfo);
7324 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7325 			cp->host_context_flags =
7326 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7327 			cp->timeout_sec = 0;
7328 			cp->ReplyQueue = 0;
7329 			cp->tag =
7330 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7331 						DIRECT_LOOKUP_BIT);
7332 			cp->host_addr =
7333 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7334 					(i * sizeof(struct io_accel1_cmd)));
7335 		}
7336 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7337 		u64 cfg_offset, cfg_base_addr_index;
7338 		u32 bft2_offset, cfg_base_addr;
7339 		int rc;
7340 
7341 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7342 			&cfg_base_addr_index, &cfg_offset);
7343 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7344 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7345 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7346 				4, h->ioaccel2_blockFetchTable);
7347 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7348 		BUILD_BUG_ON(offsetof(struct CfgTable,
7349 				io_accel_request_size_offset) != 0xb8);
7350 		h->ioaccel2_bft2_regs =
7351 			remap_pci_mem(pci_resource_start(h->pdev,
7352 					cfg_base_addr_index) +
7353 					cfg_offset + bft2_offset,
7354 					ARRAY_SIZE(bft2) *
7355 					sizeof(*h->ioaccel2_bft2_regs));
7356 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7357 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7358 	}
7359 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7360 	hpsa_wait_for_mode_change_ack(h);
7361 }
7362 
7363 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7364 {
7365 	h->ioaccel_maxsg =
7366 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7367 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7368 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7369 
7370 	/* Command structures must be aligned on a 128-byte boundary
7371 	 * because the 7 lower bits of the address are used by the
7372 	 * hardware.
7373 	 */
7374 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7375 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7376 	h->ioaccel_cmd_pool =
7377 		pci_alloc_consistent(h->pdev,
7378 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7379 			&(h->ioaccel_cmd_pool_dhandle));
7380 
7381 	h->ioaccel1_blockFetchTable =
7382 		kmalloc(((h->ioaccel_maxsg + 1) *
7383 				sizeof(u32)), GFP_KERNEL);
7384 
7385 	if ((h->ioaccel_cmd_pool == NULL) ||
7386 		(h->ioaccel1_blockFetchTable == NULL))
7387 		goto clean_up;
7388 
7389 	memset(h->ioaccel_cmd_pool, 0,
7390 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7391 	return 0;
7392 
7393 clean_up:
7394 	if (h->ioaccel_cmd_pool)
7395 		pci_free_consistent(h->pdev,
7396 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7397 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7398 	kfree(h->ioaccel1_blockFetchTable);
7399 	return 1;
7400 }
7401 
7402 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7403 {
7404 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7405 
7406 	h->ioaccel_maxsg =
7407 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7408 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7409 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7410 
7411 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7412 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7413 	h->ioaccel2_cmd_pool =
7414 		pci_alloc_consistent(h->pdev,
7415 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7416 			&(h->ioaccel2_cmd_pool_dhandle));
7417 
7418 	h->ioaccel2_blockFetchTable =
7419 		kmalloc(((h->ioaccel_maxsg + 1) *
7420 				sizeof(u32)), GFP_KERNEL);
7421 
7422 	if ((h->ioaccel2_cmd_pool == NULL) ||
7423 		(h->ioaccel2_blockFetchTable == NULL))
7424 		goto clean_up;
7425 
7426 	memset(h->ioaccel2_cmd_pool, 0,
7427 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7428 	return 0;
7429 
7430 clean_up:
7431 	if (h->ioaccel2_cmd_pool)
7432 		pci_free_consistent(h->pdev,
7433 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7434 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7435 	kfree(h->ioaccel2_blockFetchTable);
7436 	return 1;
7437 }
7438 
7439 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7440 {
7441 	u32 trans_support;
7442 	unsigned long transMethod = CFGTBL_Trans_Performant |
7443 					CFGTBL_Trans_use_short_tags;
7444 	int i;
7445 
7446 	if (hpsa_simple_mode)
7447 		return;
7448 
7449 	trans_support = readl(&(h->cfgtable->TransportSupport));
7450 	if (!(trans_support & PERFORMANT_MODE))
7451 		return;
7452 
7453 	/* Check for I/O accelerator mode support */
7454 	if (trans_support & CFGTBL_Trans_io_accel1) {
7455 		transMethod |= CFGTBL_Trans_io_accel1 |
7456 				CFGTBL_Trans_enable_directed_msix;
7457 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7458 			goto clean_up;
7459 	} else {
7460 		if (trans_support & CFGTBL_Trans_io_accel2) {
7461 				transMethod |= CFGTBL_Trans_io_accel2 |
7462 				CFGTBL_Trans_enable_directed_msix;
7463 		if (ioaccel2_alloc_cmds_and_bft(h))
7464 			goto clean_up;
7465 		}
7466 	}
7467 
7468 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7469 	hpsa_get_max_perf_mode_cmds(h);
7470 	/* Performant mode ring buffer and supporting data structures */
7471 	h->reply_queue_size = h->max_commands * sizeof(u64);
7472 
7473 	for (i = 0; i < h->nreply_queues; i++) {
7474 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7475 						h->reply_queue_size,
7476 						&(h->reply_queue[i].busaddr));
7477 		if (!h->reply_queue[i].head)
7478 			goto clean_up;
7479 		h->reply_queue[i].size = h->max_commands;
7480 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7481 		h->reply_queue[i].current_entry = 0;
7482 	}
7483 
7484 	/* Need a block fetch table for performant mode */
7485 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7486 				sizeof(u32)), GFP_KERNEL);
7487 	if (!h->blockFetchTable)
7488 		goto clean_up;
7489 
7490 	hpsa_enter_performant_mode(h, trans_support);
7491 	return;
7492 
7493 clean_up:
7494 	hpsa_free_reply_queues(h);
7495 	kfree(h->blockFetchTable);
7496 }
7497 
7498 static int is_accelerated_cmd(struct CommandList *c)
7499 {
7500 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7501 }
7502 
7503 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7504 {
7505 	struct CommandList *c = NULL;
7506 	unsigned long flags;
7507 	int accel_cmds_out;
7508 
7509 	do { /* wait for all outstanding commands to drain out */
7510 		accel_cmds_out = 0;
7511 		spin_lock_irqsave(&h->lock, flags);
7512 		list_for_each_entry(c, &h->cmpQ, list)
7513 			accel_cmds_out += is_accelerated_cmd(c);
7514 		list_for_each_entry(c, &h->reqQ, list)
7515 			accel_cmds_out += is_accelerated_cmd(c);
7516 		spin_unlock_irqrestore(&h->lock, flags);
7517 		if (accel_cmds_out <= 0)
7518 			break;
7519 		msleep(100);
7520 	} while (1);
7521 }
7522 
7523 /*
7524  *  This is it.  Register the PCI driver information for the cards we control
7525  *  the OS will call our registered routines when it finds one of our cards.
7526  */
7527 static int __init hpsa_init(void)
7528 {
7529 	return pci_register_driver(&hpsa_pci_driver);
7530 }
7531 
7532 static void __exit hpsa_cleanup(void)
7533 {
7534 	pci_unregister_driver(&hpsa_pci_driver);
7535 }
7536 
7537 static void __attribute__((unused)) verify_offsets(void)
7538 {
7539 #define VERIFY_OFFSET(member, offset) \
7540 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7541 
7542 	VERIFY_OFFSET(structure_size, 0);
7543 	VERIFY_OFFSET(volume_blk_size, 4);
7544 	VERIFY_OFFSET(volume_blk_cnt, 8);
7545 	VERIFY_OFFSET(phys_blk_shift, 16);
7546 	VERIFY_OFFSET(parity_rotation_shift, 17);
7547 	VERIFY_OFFSET(strip_size, 18);
7548 	VERIFY_OFFSET(disk_starting_blk, 20);
7549 	VERIFY_OFFSET(disk_blk_cnt, 28);
7550 	VERIFY_OFFSET(data_disks_per_row, 36);
7551 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7552 	VERIFY_OFFSET(row_cnt, 40);
7553 	VERIFY_OFFSET(layout_map_count, 42);
7554 	VERIFY_OFFSET(flags, 44);
7555 	VERIFY_OFFSET(dekindex, 46);
7556 	/* VERIFY_OFFSET(reserved, 48 */
7557 	VERIFY_OFFSET(data, 64);
7558 
7559 #undef VERIFY_OFFSET
7560 
7561 #define VERIFY_OFFSET(member, offset) \
7562 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7563 
7564 	VERIFY_OFFSET(IU_type, 0);
7565 	VERIFY_OFFSET(direction, 1);
7566 	VERIFY_OFFSET(reply_queue, 2);
7567 	/* VERIFY_OFFSET(reserved1, 3);  */
7568 	VERIFY_OFFSET(scsi_nexus, 4);
7569 	VERIFY_OFFSET(Tag, 8);
7570 	VERIFY_OFFSET(cdb, 16);
7571 	VERIFY_OFFSET(cciss_lun, 32);
7572 	VERIFY_OFFSET(data_len, 40);
7573 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7574 	VERIFY_OFFSET(sg_count, 45);
7575 	/* VERIFY_OFFSET(reserved3 */
7576 	VERIFY_OFFSET(err_ptr, 48);
7577 	VERIFY_OFFSET(err_len, 56);
7578 	/* VERIFY_OFFSET(reserved4  */
7579 	VERIFY_OFFSET(sg, 64);
7580 
7581 #undef VERIFY_OFFSET
7582 
7583 #define VERIFY_OFFSET(member, offset) \
7584 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7585 
7586 	VERIFY_OFFSET(dev_handle, 0x00);
7587 	VERIFY_OFFSET(reserved1, 0x02);
7588 	VERIFY_OFFSET(function, 0x03);
7589 	VERIFY_OFFSET(reserved2, 0x04);
7590 	VERIFY_OFFSET(err_info, 0x0C);
7591 	VERIFY_OFFSET(reserved3, 0x10);
7592 	VERIFY_OFFSET(err_info_len, 0x12);
7593 	VERIFY_OFFSET(reserved4, 0x13);
7594 	VERIFY_OFFSET(sgl_offset, 0x14);
7595 	VERIFY_OFFSET(reserved5, 0x15);
7596 	VERIFY_OFFSET(transfer_len, 0x1C);
7597 	VERIFY_OFFSET(reserved6, 0x20);
7598 	VERIFY_OFFSET(io_flags, 0x24);
7599 	VERIFY_OFFSET(reserved7, 0x26);
7600 	VERIFY_OFFSET(LUN, 0x34);
7601 	VERIFY_OFFSET(control, 0x3C);
7602 	VERIFY_OFFSET(CDB, 0x40);
7603 	VERIFY_OFFSET(reserved8, 0x50);
7604 	VERIFY_OFFSET(host_context_flags, 0x60);
7605 	VERIFY_OFFSET(timeout_sec, 0x62);
7606 	VERIFY_OFFSET(ReplyQueue, 0x64);
7607 	VERIFY_OFFSET(reserved9, 0x65);
7608 	VERIFY_OFFSET(tag, 0x68);
7609 	VERIFY_OFFSET(host_addr, 0x70);
7610 	VERIFY_OFFSET(CISS_LUN, 0x78);
7611 	VERIFY_OFFSET(SG, 0x78 + 8);
7612 #undef VERIFY_OFFSET
7613 }
7614 
7615 module_init(hpsa_init);
7616 module_exit(hpsa_cleanup);
7617