xref: /openbmc/linux/drivers/scsi/hpsa.c (revision bc5aa3a0)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 				     int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 	struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298 			       struct hpsa_scsi_dev_t *dev,
299 			       unsigned char *scsi3addr);
300 
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
302 {
303 	unsigned long *priv = shost_priv(sdev->host);
304 	return (struct ctlr_info *) *priv;
305 }
306 
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
308 {
309 	unsigned long *priv = shost_priv(sh);
310 	return (struct ctlr_info *) *priv;
311 }
312 
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
314 {
315 	return c->scsi_cmd == SCSI_CMD_IDLE;
316 }
317 
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
319 {
320 	return c->abort_pending || c->reset_pending;
321 }
322 
323 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325 			u8 *sense_key, u8 *asc, u8 *ascq)
326 {
327 	struct scsi_sense_hdr sshdr;
328 	bool rc;
329 
330 	*sense_key = -1;
331 	*asc = -1;
332 	*ascq = -1;
333 
334 	if (sense_data_len < 1)
335 		return;
336 
337 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338 	if (rc) {
339 		*sense_key = sshdr.sense_key;
340 		*asc = sshdr.asc;
341 		*ascq = sshdr.ascq;
342 	}
343 }
344 
345 static int check_for_unit_attention(struct ctlr_info *h,
346 	struct CommandList *c)
347 {
348 	u8 sense_key, asc, ascq;
349 	int sense_len;
350 
351 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352 		sense_len = sizeof(c->err_info->SenseInfo);
353 	else
354 		sense_len = c->err_info->SenseLen;
355 
356 	decode_sense_data(c->err_info->SenseInfo, sense_len,
357 				&sense_key, &asc, &ascq);
358 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
359 		return 0;
360 
361 	switch (asc) {
362 	case STATE_CHANGED:
363 		dev_warn(&h->pdev->dev,
364 			"%s: a state change detected, command retried\n",
365 			h->devname);
366 		break;
367 	case LUN_FAILED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: LUN failure detected\n", h->devname);
370 		break;
371 	case REPORT_LUNS_CHANGED:
372 		dev_warn(&h->pdev->dev,
373 			"%s: report LUN data changed\n", h->devname);
374 	/*
375 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376 	 * target (array) devices.
377 	 */
378 		break;
379 	case POWER_OR_RESET:
380 		dev_warn(&h->pdev->dev,
381 			"%s: a power on or device reset detected\n",
382 			h->devname);
383 		break;
384 	case UNIT_ATTENTION_CLEARED:
385 		dev_warn(&h->pdev->dev,
386 			"%s: unit attention cleared by another initiator\n",
387 			h->devname);
388 		break;
389 	default:
390 		dev_warn(&h->pdev->dev,
391 			"%s: unknown unit attention detected\n",
392 			h->devname);
393 		break;
394 	}
395 	return 1;
396 }
397 
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
399 {
400 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403 		return 0;
404 	dev_warn(&h->pdev->dev, HPSA "device busy");
405 	return 1;
406 }
407 
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	int ld;
413 	struct ctlr_info *h;
414 	struct Scsi_Host *shost = class_to_shost(dev);
415 
416 	h = shost_to_hba(shost);
417 	ld = lockup_detected(h);
418 
419 	return sprintf(buf, "ld=%d\n", ld);
420 }
421 
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423 					 struct device_attribute *attr,
424 					 const char *buf, size_t count)
425 {
426 	int status, len;
427 	struct ctlr_info *h;
428 	struct Scsi_Host *shost = class_to_shost(dev);
429 	char tmpbuf[10];
430 
431 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432 		return -EACCES;
433 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434 	strncpy(tmpbuf, buf, len);
435 	tmpbuf[len] = '\0';
436 	if (sscanf(tmpbuf, "%d", &status) != 1)
437 		return -EINVAL;
438 	h = shost_to_hba(shost);
439 	h->acciopath_status = !!status;
440 	dev_warn(&h->pdev->dev,
441 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
442 		h->acciopath_status ? "enabled" : "disabled");
443 	return count;
444 }
445 
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447 					 struct device_attribute *attr,
448 					 const char *buf, size_t count)
449 {
450 	int debug_level, len;
451 	struct ctlr_info *h;
452 	struct Scsi_Host *shost = class_to_shost(dev);
453 	char tmpbuf[10];
454 
455 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456 		return -EACCES;
457 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458 	strncpy(tmpbuf, buf, len);
459 	tmpbuf[len] = '\0';
460 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461 		return -EINVAL;
462 	if (debug_level < 0)
463 		debug_level = 0;
464 	h = shost_to_hba(shost);
465 	h->raid_offload_debug = debug_level;
466 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467 		h->raid_offload_debug);
468 	return count;
469 }
470 
471 static ssize_t host_store_rescan(struct device *dev,
472 				 struct device_attribute *attr,
473 				 const char *buf, size_t count)
474 {
475 	struct ctlr_info *h;
476 	struct Scsi_Host *shost = class_to_shost(dev);
477 	h = shost_to_hba(shost);
478 	hpsa_scan_start(h->scsi_host);
479 	return count;
480 }
481 
482 static ssize_t host_show_firmware_revision(struct device *dev,
483 	     struct device_attribute *attr, char *buf)
484 {
485 	struct ctlr_info *h;
486 	struct Scsi_Host *shost = class_to_shost(dev);
487 	unsigned char *fwrev;
488 
489 	h = shost_to_hba(shost);
490 	if (!h->hba_inquiry_data)
491 		return 0;
492 	fwrev = &h->hba_inquiry_data[32];
493 	return snprintf(buf, 20, "%c%c%c%c\n",
494 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
495 }
496 
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498 	     struct device_attribute *attr, char *buf)
499 {
500 	struct Scsi_Host *shost = class_to_shost(dev);
501 	struct ctlr_info *h = shost_to_hba(shost);
502 
503 	return snprintf(buf, 20, "%d\n",
504 			atomic_read(&h->commands_outstanding));
505 }
506 
507 static ssize_t host_show_transport_mode(struct device *dev,
508 	struct device_attribute *attr, char *buf)
509 {
510 	struct ctlr_info *h;
511 	struct Scsi_Host *shost = class_to_shost(dev);
512 
513 	h = shost_to_hba(shost);
514 	return snprintf(buf, 20, "%s\n",
515 		h->transMethod & CFGTBL_Trans_Performant ?
516 			"performant" : "simple");
517 }
518 
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520 	struct device_attribute *attr, char *buf)
521 {
522 	struct ctlr_info *h;
523 	struct Scsi_Host *shost = class_to_shost(dev);
524 
525 	h = shost_to_hba(shost);
526 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
528 }
529 
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532 	0x324a103C, /* Smart Array P712m */
533 	0x324b103C, /* Smart Array P711m */
534 	0x3223103C, /* Smart Array P800 */
535 	0x3234103C, /* Smart Array P400 */
536 	0x3235103C, /* Smart Array P400i */
537 	0x3211103C, /* Smart Array E200i */
538 	0x3212103C, /* Smart Array E200 */
539 	0x3213103C, /* Smart Array E200i */
540 	0x3214103C, /* Smart Array E200i */
541 	0x3215103C, /* Smart Array E200i */
542 	0x3237103C, /* Smart Array E500 */
543 	0x323D103C, /* Smart Array P700m */
544 	0x40800E11, /* Smart Array 5i */
545 	0x409C0E11, /* Smart Array 6400 */
546 	0x409D0E11, /* Smart Array 6400 EM */
547 	0x40700E11, /* Smart Array 5300 */
548 	0x40820E11, /* Smart Array 532 */
549 	0x40830E11, /* Smart Array 5312 */
550 	0x409A0E11, /* Smart Array 641 */
551 	0x409B0E11, /* Smart Array 642 */
552 	0x40910E11, /* Smart Array 6i */
553 };
554 
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557 	0x40800E11, /* Smart Array 5i */
558 	0x40700E11, /* Smart Array 5300 */
559 	0x40820E11, /* Smart Array 532 */
560 	0x40830E11, /* Smart Array 5312 */
561 	0x409A0E11, /* Smart Array 641 */
562 	0x409B0E11, /* Smart Array 642 */
563 	0x40910E11, /* Smart Array 6i */
564 	/* Exclude 640x boards.  These are two pci devices in one slot
565 	 * which share a battery backed cache module.  One controls the
566 	 * cache, the other accesses the cache through the one that controls
567 	 * it.  If we reset the one controlling the cache, the other will
568 	 * likely not be happy.  Just forbid resetting this conjoined mess.
569 	 * The 640x isn't really supported by hpsa anyway.
570 	 */
571 	0x409C0E11, /* Smart Array 6400 */
572 	0x409D0E11, /* Smart Array 6400 EM */
573 };
574 
575 static u32 needs_abort_tags_swizzled[] = {
576 	0x323D103C, /* Smart Array P700m */
577 	0x324a103C, /* Smart Array P712m */
578 	0x324b103C, /* SmartArray P711m */
579 };
580 
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
582 {
583 	int i;
584 
585 	for (i = 0; i < nelems; i++)
586 		if (a[i] == board_id)
587 			return 1;
588 	return 0;
589 }
590 
591 static int ctlr_is_hard_resettable(u32 board_id)
592 {
593 	return !board_id_in_array(unresettable_controller,
594 			ARRAY_SIZE(unresettable_controller), board_id);
595 }
596 
597 static int ctlr_is_soft_resettable(u32 board_id)
598 {
599 	return !board_id_in_array(soft_unresettable_controller,
600 			ARRAY_SIZE(soft_unresettable_controller), board_id);
601 }
602 
603 static int ctlr_is_resettable(u32 board_id)
604 {
605 	return ctlr_is_hard_resettable(board_id) ||
606 		ctlr_is_soft_resettable(board_id);
607 }
608 
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
610 {
611 	return board_id_in_array(needs_abort_tags_swizzled,
612 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
613 }
614 
615 static ssize_t host_show_resettable(struct device *dev,
616 	struct device_attribute *attr, char *buf)
617 {
618 	struct ctlr_info *h;
619 	struct Scsi_Host *shost = class_to_shost(dev);
620 
621 	h = shost_to_hba(shost);
622 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
623 }
624 
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
626 {
627 	return (scsi3addr[3] & 0xC0) == 0x40;
628 }
629 
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
632 };
633 #define HPSA_RAID_0	0
634 #define HPSA_RAID_4	1
635 #define HPSA_RAID_1	2	/* also used for RAID 10 */
636 #define HPSA_RAID_5	3	/* also used for RAID 50 */
637 #define HPSA_RAID_51	4
638 #define HPSA_RAID_6	5	/* also used for RAID 60 */
639 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
642 
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
644 {
645 	return !device->physical_device;
646 }
647 
648 static ssize_t raid_level_show(struct device *dev,
649 	     struct device_attribute *attr, char *buf)
650 {
651 	ssize_t l = 0;
652 	unsigned char rlevel;
653 	struct ctlr_info *h;
654 	struct scsi_device *sdev;
655 	struct hpsa_scsi_dev_t *hdev;
656 	unsigned long flags;
657 
658 	sdev = to_scsi_device(dev);
659 	h = sdev_to_hba(sdev);
660 	spin_lock_irqsave(&h->lock, flags);
661 	hdev = sdev->hostdata;
662 	if (!hdev) {
663 		spin_unlock_irqrestore(&h->lock, flags);
664 		return -ENODEV;
665 	}
666 
667 	/* Is this even a logical drive? */
668 	if (!is_logical_device(hdev)) {
669 		spin_unlock_irqrestore(&h->lock, flags);
670 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
671 		return l;
672 	}
673 
674 	rlevel = hdev->raid_level;
675 	spin_unlock_irqrestore(&h->lock, flags);
676 	if (rlevel > RAID_UNKNOWN)
677 		rlevel = RAID_UNKNOWN;
678 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679 	return l;
680 }
681 
682 static ssize_t lunid_show(struct device *dev,
683 	     struct device_attribute *attr, char *buf)
684 {
685 	struct ctlr_info *h;
686 	struct scsi_device *sdev;
687 	struct hpsa_scsi_dev_t *hdev;
688 	unsigned long flags;
689 	unsigned char lunid[8];
690 
691 	sdev = to_scsi_device(dev);
692 	h = sdev_to_hba(sdev);
693 	spin_lock_irqsave(&h->lock, flags);
694 	hdev = sdev->hostdata;
695 	if (!hdev) {
696 		spin_unlock_irqrestore(&h->lock, flags);
697 		return -ENODEV;
698 	}
699 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700 	spin_unlock_irqrestore(&h->lock, flags);
701 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702 		lunid[0], lunid[1], lunid[2], lunid[3],
703 		lunid[4], lunid[5], lunid[6], lunid[7]);
704 }
705 
706 static ssize_t unique_id_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char sn[16];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(sn, hdev->device_id, sizeof(sn));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 16 * 2 + 2,
726 			"%02X%02X%02X%02X%02X%02X%02X%02X"
727 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
728 			sn[0], sn[1], sn[2], sn[3],
729 			sn[4], sn[5], sn[6], sn[7],
730 			sn[8], sn[9], sn[10], sn[11],
731 			sn[12], sn[13], sn[14], sn[15]);
732 }
733 
734 static ssize_t sas_address_show(struct device *dev,
735 	      struct device_attribute *attr, char *buf)
736 {
737 	struct ctlr_info *h;
738 	struct scsi_device *sdev;
739 	struct hpsa_scsi_dev_t *hdev;
740 	unsigned long flags;
741 	u64 sas_address;
742 
743 	sdev = to_scsi_device(dev);
744 	h = sdev_to_hba(sdev);
745 	spin_lock_irqsave(&h->lock, flags);
746 	hdev = sdev->hostdata;
747 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748 		spin_unlock_irqrestore(&h->lock, flags);
749 		return -ENODEV;
750 	}
751 	sas_address = hdev->sas_address;
752 	spin_unlock_irqrestore(&h->lock, flags);
753 
754 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
755 }
756 
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758 	     struct device_attribute *attr, char *buf)
759 {
760 	struct ctlr_info *h;
761 	struct scsi_device *sdev;
762 	struct hpsa_scsi_dev_t *hdev;
763 	unsigned long flags;
764 	int offload_enabled;
765 
766 	sdev = to_scsi_device(dev);
767 	h = sdev_to_hba(sdev);
768 	spin_lock_irqsave(&h->lock, flags);
769 	hdev = sdev->hostdata;
770 	if (!hdev) {
771 		spin_unlock_irqrestore(&h->lock, flags);
772 		return -ENODEV;
773 	}
774 	offload_enabled = hdev->offload_enabled;
775 	spin_unlock_irqrestore(&h->lock, flags);
776 	return snprintf(buf, 20, "%d\n", offload_enabled);
777 }
778 
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781 	     struct device_attribute *attr, char *buf)
782 {
783 	struct ctlr_info *h;
784 	struct scsi_device *sdev;
785 	struct hpsa_scsi_dev_t *hdev;
786 	unsigned long flags;
787 	int i;
788 	int output_len = 0;
789 	u8 box;
790 	u8 bay;
791 	u8 path_map_index = 0;
792 	char *active;
793 	unsigned char phys_connector[2];
794 
795 	sdev = to_scsi_device(dev);
796 	h = sdev_to_hba(sdev);
797 	spin_lock_irqsave(&h->devlock, flags);
798 	hdev = sdev->hostdata;
799 	if (!hdev) {
800 		spin_unlock_irqrestore(&h->devlock, flags);
801 		return -ENODEV;
802 	}
803 
804 	bay = hdev->bay;
805 	for (i = 0; i < MAX_PATHS; i++) {
806 		path_map_index = 1<<i;
807 		if (i == hdev->active_path_index)
808 			active = "Active";
809 		else if (hdev->path_map & path_map_index)
810 			active = "Inactive";
811 		else
812 			continue;
813 
814 		output_len += scnprintf(buf + output_len,
815 				PAGE_SIZE - output_len,
816 				"[%d:%d:%d:%d] %20.20s ",
817 				h->scsi_host->host_no,
818 				hdev->bus, hdev->target, hdev->lun,
819 				scsi_device_type(hdev->devtype));
820 
821 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822 			output_len += scnprintf(buf + output_len,
823 						PAGE_SIZE - output_len,
824 						"%s\n", active);
825 			continue;
826 		}
827 
828 		box = hdev->box[i];
829 		memcpy(&phys_connector, &hdev->phys_connector[i],
830 			sizeof(phys_connector));
831 		if (phys_connector[0] < '0')
832 			phys_connector[0] = '0';
833 		if (phys_connector[1] < '0')
834 			phys_connector[1] = '0';
835 		output_len += scnprintf(buf + output_len,
836 				PAGE_SIZE - output_len,
837 				"PORT: %.2s ",
838 				phys_connector);
839 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840 			hdev->expose_device) {
841 			if (box == 0 || box == 0xFF) {
842 				output_len += scnprintf(buf + output_len,
843 					PAGE_SIZE - output_len,
844 					"BAY: %hhu %s\n",
845 					bay, active);
846 			} else {
847 				output_len += scnprintf(buf + output_len,
848 					PAGE_SIZE - output_len,
849 					"BOX: %hhu BAY: %hhu %s\n",
850 					box, bay, active);
851 			}
852 		} else if (box != 0 && box != 0xFF) {
853 			output_len += scnprintf(buf + output_len,
854 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855 				box, active);
856 		} else
857 			output_len += scnprintf(buf + output_len,
858 				PAGE_SIZE - output_len, "%s\n", active);
859 	}
860 
861 	spin_unlock_irqrestore(&h->devlock, flags);
862 	return output_len;
863 }
864 
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871 			host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874 		host_show_hp_ssd_smart_path_status,
875 		host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877 			host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879 	host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881 	host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883 	host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885 	host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887 	host_show_lockup_detected, NULL);
888 
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890 	&dev_attr_raid_level,
891 	&dev_attr_lunid,
892 	&dev_attr_unique_id,
893 	&dev_attr_hp_ssd_smart_path_enabled,
894 	&dev_attr_path_info,
895 	&dev_attr_sas_address,
896 	NULL,
897 };
898 
899 static struct device_attribute *hpsa_shost_attrs[] = {
900 	&dev_attr_rescan,
901 	&dev_attr_firmware_revision,
902 	&dev_attr_commands_outstanding,
903 	&dev_attr_transport_mode,
904 	&dev_attr_resettable,
905 	&dev_attr_hp_ssd_smart_path_status,
906 	&dev_attr_raid_offload_debug,
907 	&dev_attr_lockup_detected,
908 	NULL,
909 };
910 
911 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
912 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
913 
914 static struct scsi_host_template hpsa_driver_template = {
915 	.module			= THIS_MODULE,
916 	.name			= HPSA,
917 	.proc_name		= HPSA,
918 	.queuecommand		= hpsa_scsi_queue_command,
919 	.scan_start		= hpsa_scan_start,
920 	.scan_finished		= hpsa_scan_finished,
921 	.change_queue_depth	= hpsa_change_queue_depth,
922 	.this_id		= -1,
923 	.use_clustering		= ENABLE_CLUSTERING,
924 	.eh_abort_handler	= hpsa_eh_abort_handler,
925 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
926 	.ioctl			= hpsa_ioctl,
927 	.slave_alloc		= hpsa_slave_alloc,
928 	.slave_configure	= hpsa_slave_configure,
929 	.slave_destroy		= hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931 	.compat_ioctl		= hpsa_compat_ioctl,
932 #endif
933 	.sdev_attrs = hpsa_sdev_attrs,
934 	.shost_attrs = hpsa_shost_attrs,
935 	.max_sectors = 8192,
936 	.no_write_same = 1,
937 };
938 
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
940 {
941 	u32 a;
942 	struct reply_queue_buffer *rq = &h->reply_queue[q];
943 
944 	if (h->transMethod & CFGTBL_Trans_io_accel1)
945 		return h->access.command_completed(h, q);
946 
947 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948 		return h->access.command_completed(h, q);
949 
950 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951 		a = rq->head[rq->current_entry];
952 		rq->current_entry++;
953 		atomic_dec(&h->commands_outstanding);
954 	} else {
955 		a = FIFO_EMPTY;
956 	}
957 	/* Check for wraparound */
958 	if (rq->current_entry == h->max_commands) {
959 		rq->current_entry = 0;
960 		rq->wraparound ^= 1;
961 	}
962 	return a;
963 }
964 
965 /*
966  * There are some special bits in the bus address of the
967  * command that we have to set for the controller to know
968  * how to process the command:
969  *
970  * Normal performant mode:
971  * bit 0: 1 means performant mode, 0 means simple mode.
972  * bits 1-3 = block fetch table entry
973  * bits 4-6 = command type (== 0)
974  *
975  * ioaccel1 mode:
976  * bit 0 = "performant mode" bit.
977  * bits 1-3 = block fetch table entry
978  * bits 4-6 = command type (== 110)
979  * (command type is needed because ioaccel1 mode
980  * commands are submitted through the same register as normal
981  * mode commands, so this is how the controller knows whether
982  * the command is normal mode or ioaccel1 mode.)
983  *
984  * ioaccel2 mode:
985  * bit 0 = "performant mode" bit.
986  * bits 1-4 = block fetch table entry (note extra bit)
987  * bits 4-6 = not needed, because ioaccel2 mode has
988  * a separate special register for submitting commands.
989  */
990 
991 /*
992  * set_performant_mode: Modify the tag for cciss performant
993  * set bit 0 for pull model, bits 3-1 for block fetch
994  * register number
995  */
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998 					int reply_queue)
999 {
1000 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002 		if (unlikely(!h->msix_vector))
1003 			return;
1004 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005 			c->Header.ReplyQueue =
1006 				raw_smp_processor_id() % h->nreply_queues;
1007 		else
1008 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009 	}
1010 }
1011 
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013 						struct CommandList *c,
1014 						int reply_queue)
1015 {
1016 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017 
1018 	/*
1019 	 * Tell the controller to post the reply to the queue for this
1020 	 * processor.  This seems to give the best I/O throughput.
1021 	 */
1022 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024 	else
1025 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1026 	/*
1027 	 * Set the bits in the address sent down to include:
1028 	 *  - performant mode bit (bit 0)
1029 	 *  - pull count (bits 1-3)
1030 	 *  - command type (bits 4-6)
1031 	 */
1032 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033 					IOACCEL1_BUSADDR_CMDTYPE;
1034 }
1035 
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037 						struct CommandList *c,
1038 						int reply_queue)
1039 {
1040 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041 		&h->ioaccel2_cmd_pool[c->cmdindex];
1042 
1043 	/* Tell the controller to post the reply to the queue for this
1044 	 * processor.  This seems to give the best I/O throughput.
1045 	 */
1046 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048 	else
1049 		cp->reply_queue = reply_queue % h->nreply_queues;
1050 	/* Set the bits in the address sent down to include:
1051 	 *  - performant mode bit not used in ioaccel mode 2
1052 	 *  - pull count (bits 0-3)
1053 	 *  - command type isn't needed for ioaccel2
1054 	 */
1055 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056 }
1057 
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059 						struct CommandList *c,
1060 						int reply_queue)
1061 {
1062 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063 
1064 	/*
1065 	 * Tell the controller to post the reply to the queue for this
1066 	 * processor.  This seems to give the best I/O throughput.
1067 	 */
1068 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070 	else
1071 		cp->reply_queue = reply_queue % h->nreply_queues;
1072 	/*
1073 	 * Set the bits in the address sent down to include:
1074 	 *  - performant mode bit not used in ioaccel mode 2
1075 	 *  - pull count (bits 0-3)
1076 	 *  - command type isn't needed for ioaccel2
1077 	 */
1078 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079 }
1080 
1081 static int is_firmware_flash_cmd(u8 *cdb)
1082 {
1083 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084 }
1085 
1086 /*
1087  * During firmware flash, the heartbeat register may not update as frequently
1088  * as it should.  So we dial down lockup detection during firmware flash. and
1089  * dial it back up when firmware flash completes.
1090  */
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094 		struct CommandList *c)
1095 {
1096 	if (!is_firmware_flash_cmd(c->Request.CDB))
1097 		return;
1098 	atomic_inc(&h->firmware_flash_in_progress);
1099 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100 }
1101 
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103 		struct CommandList *c)
1104 {
1105 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1106 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1107 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108 }
1109 
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111 	struct CommandList *c, int reply_queue)
1112 {
1113 	dial_down_lockup_detection_during_fw_flash(h, c);
1114 	atomic_inc(&h->commands_outstanding);
1115 	switch (c->cmd_type) {
1116 	case CMD_IOACCEL1:
1117 		set_ioaccel1_performant_mode(h, c, reply_queue);
1118 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119 		break;
1120 	case CMD_IOACCEL2:
1121 		set_ioaccel2_performant_mode(h, c, reply_queue);
1122 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123 		break;
1124 	case IOACCEL2_TMF:
1125 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127 		break;
1128 	default:
1129 		set_performant_mode(h, c, reply_queue);
1130 		h->access.submit_command(h, c);
1131 	}
1132 }
1133 
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135 {
1136 	if (unlikely(hpsa_is_pending_event(c)))
1137 		return finish_cmd(c);
1138 
1139 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140 }
1141 
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1143 {
1144 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145 }
1146 
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1148 {
1149 	if (!h->hba_inquiry_data)
1150 		return 0;
1151 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152 		return 1;
1153 	return 0;
1154 }
1155 
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1158 {
1159 	/* finds an unused bus, target, lun for a new physical device
1160 	 * assumes h->devlock is held
1161 	 */
1162 	int i, found = 0;
1163 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164 
1165 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166 
1167 	for (i = 0; i < h->ndevices; i++) {
1168 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169 			__set_bit(h->dev[i]->target, lun_taken);
1170 	}
1171 
1172 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173 	if (i < HPSA_MAX_DEVICES) {
1174 		/* *bus = 1; */
1175 		*target = i;
1176 		*lun = 0;
1177 		found = 1;
1178 	}
1179 	return !found;
1180 }
1181 
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183 	struct hpsa_scsi_dev_t *dev, char *description)
1184 {
1185 #define LABEL_SIZE 25
1186 	char label[LABEL_SIZE];
1187 
1188 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189 		return;
1190 
1191 	switch (dev->devtype) {
1192 	case TYPE_RAID:
1193 		snprintf(label, LABEL_SIZE, "controller");
1194 		break;
1195 	case TYPE_ENCLOSURE:
1196 		snprintf(label, LABEL_SIZE, "enclosure");
1197 		break;
1198 	case TYPE_DISK:
1199 	case TYPE_ZBC:
1200 		if (dev->external)
1201 			snprintf(label, LABEL_SIZE, "external");
1202 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203 			snprintf(label, LABEL_SIZE, "%s",
1204 				raid_label[PHYSICAL_DRIVE]);
1205 		else
1206 			snprintf(label, LABEL_SIZE, "RAID-%s",
1207 				dev->raid_level > RAID_UNKNOWN ? "?" :
1208 				raid_label[dev->raid_level]);
1209 		break;
1210 	case TYPE_ROM:
1211 		snprintf(label, LABEL_SIZE, "rom");
1212 		break;
1213 	case TYPE_TAPE:
1214 		snprintf(label, LABEL_SIZE, "tape");
1215 		break;
1216 	case TYPE_MEDIUM_CHANGER:
1217 		snprintf(label, LABEL_SIZE, "changer");
1218 		break;
1219 	default:
1220 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1221 		break;
1222 	}
1223 
1224 	dev_printk(level, &h->pdev->dev,
1225 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227 			description,
1228 			scsi_device_type(dev->devtype),
1229 			dev->vendor,
1230 			dev->model,
1231 			label,
1232 			dev->offload_config ? '+' : '-',
1233 			dev->offload_enabled ? '+' : '-',
1234 			dev->expose_device);
1235 }
1236 
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239 		struct hpsa_scsi_dev_t *device,
1240 		struct hpsa_scsi_dev_t *added[], int *nadded)
1241 {
1242 	/* assumes h->devlock is held */
1243 	int n = h->ndevices;
1244 	int i;
1245 	unsigned char addr1[8], addr2[8];
1246 	struct hpsa_scsi_dev_t *sd;
1247 
1248 	if (n >= HPSA_MAX_DEVICES) {
1249 		dev_err(&h->pdev->dev, "too many devices, some will be "
1250 			"inaccessible.\n");
1251 		return -1;
1252 	}
1253 
1254 	/* physical devices do not have lun or target assigned until now. */
1255 	if (device->lun != -1)
1256 		/* Logical device, lun is already assigned. */
1257 		goto lun_assigned;
1258 
1259 	/* If this device a non-zero lun of a multi-lun device
1260 	 * byte 4 of the 8-byte LUN addr will contain the logical
1261 	 * unit no, zero otherwise.
1262 	 */
1263 	if (device->scsi3addr[4] == 0) {
1264 		/* This is not a non-zero lun of a multi-lun device */
1265 		if (hpsa_find_target_lun(h, device->scsi3addr,
1266 			device->bus, &device->target, &device->lun) != 0)
1267 			return -1;
1268 		goto lun_assigned;
1269 	}
1270 
1271 	/* This is a non-zero lun of a multi-lun device.
1272 	 * Search through our list and find the device which
1273 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1274 	 * Assign the same bus and target for this new LUN.
1275 	 * Use the logical unit number from the firmware.
1276 	 */
1277 	memcpy(addr1, device->scsi3addr, 8);
1278 	addr1[4] = 0;
1279 	addr1[5] = 0;
1280 	for (i = 0; i < n; i++) {
1281 		sd = h->dev[i];
1282 		memcpy(addr2, sd->scsi3addr, 8);
1283 		addr2[4] = 0;
1284 		addr2[5] = 0;
1285 		/* differ only in byte 4 and 5? */
1286 		if (memcmp(addr1, addr2, 8) == 0) {
1287 			device->bus = sd->bus;
1288 			device->target = sd->target;
1289 			device->lun = device->scsi3addr[4];
1290 			break;
1291 		}
1292 	}
1293 	if (device->lun == -1) {
1294 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295 			" suspect firmware bug or unsupported hardware "
1296 			"configuration.\n");
1297 			return -1;
1298 	}
1299 
1300 lun_assigned:
1301 
1302 	h->dev[n] = device;
1303 	h->ndevices++;
1304 	added[*nadded] = device;
1305 	(*nadded)++;
1306 	hpsa_show_dev_msg(KERN_INFO, h, device,
1307 		device->expose_device ? "added" : "masked");
1308 	device->offload_to_be_enabled = device->offload_enabled;
1309 	device->offload_enabled = 0;
1310 	return 0;
1311 }
1312 
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315 	int entry, struct hpsa_scsi_dev_t *new_entry)
1316 {
1317 	int offload_enabled;
1318 	/* assumes h->devlock is held */
1319 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320 
1321 	/* Raid level changed. */
1322 	h->dev[entry]->raid_level = new_entry->raid_level;
1323 
1324 	/* Raid offload parameters changed.  Careful about the ordering. */
1325 	if (new_entry->offload_config && new_entry->offload_enabled) {
1326 		/*
1327 		 * if drive is newly offload_enabled, we want to copy the
1328 		 * raid map data first.  If previously offload_enabled and
1329 		 * offload_config were set, raid map data had better be
1330 		 * the same as it was before.  if raid map data is changed
1331 		 * then it had better be the case that
1332 		 * h->dev[entry]->offload_enabled is currently 0.
1333 		 */
1334 		h->dev[entry]->raid_map = new_entry->raid_map;
1335 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336 	}
1337 	if (new_entry->hba_ioaccel_enabled) {
1338 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340 	}
1341 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342 	h->dev[entry]->offload_config = new_entry->offload_config;
1343 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1345 
1346 	/*
1347 	 * We can turn off ioaccel offload now, but need to delay turning
1348 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1349 	 * can't do that until all the devices are updated.
1350 	 */
1351 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352 	if (!new_entry->offload_enabled)
1353 		h->dev[entry]->offload_enabled = 0;
1354 
1355 	offload_enabled = h->dev[entry]->offload_enabled;
1356 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358 	h->dev[entry]->offload_enabled = offload_enabled;
1359 }
1360 
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363 	int entry, struct hpsa_scsi_dev_t *new_entry,
1364 	struct hpsa_scsi_dev_t *added[], int *nadded,
1365 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 {
1367 	/* assumes h->devlock is held */
1368 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369 	removed[*nremoved] = h->dev[entry];
1370 	(*nremoved)++;
1371 
1372 	/*
1373 	 * New physical devices won't have target/lun assigned yet
1374 	 * so we need to preserve the values in the slot we are replacing.
1375 	 */
1376 	if (new_entry->target == -1) {
1377 		new_entry->target = h->dev[entry]->target;
1378 		new_entry->lun = h->dev[entry]->lun;
1379 	}
1380 
1381 	h->dev[entry] = new_entry;
1382 	added[*nadded] = new_entry;
1383 	(*nadded)++;
1384 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386 	new_entry->offload_enabled = 0;
1387 }
1388 
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392 {
1393 	/* assumes h->devlock is held */
1394 	int i;
1395 	struct hpsa_scsi_dev_t *sd;
1396 
1397 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398 
1399 	sd = h->dev[entry];
1400 	removed[*nremoved] = h->dev[entry];
1401 	(*nremoved)++;
1402 
1403 	for (i = entry; i < h->ndevices-1; i++)
1404 		h->dev[i] = h->dev[i+1];
1405 	h->ndevices--;
1406 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407 }
1408 
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410 	(a)[7] == (b)[7] && \
1411 	(a)[6] == (b)[6] && \
1412 	(a)[5] == (b)[5] && \
1413 	(a)[4] == (b)[4] && \
1414 	(a)[3] == (b)[3] && \
1415 	(a)[2] == (b)[2] && \
1416 	(a)[1] == (b)[1] && \
1417 	(a)[0] == (b)[0])
1418 
1419 static void fixup_botched_add(struct ctlr_info *h,
1420 	struct hpsa_scsi_dev_t *added)
1421 {
1422 	/* called when scsi_add_device fails in order to re-adjust
1423 	 * h->dev[] to match the mid layer's view.
1424 	 */
1425 	unsigned long flags;
1426 	int i, j;
1427 
1428 	spin_lock_irqsave(&h->lock, flags);
1429 	for (i = 0; i < h->ndevices; i++) {
1430 		if (h->dev[i] == added) {
1431 			for (j = i; j < h->ndevices-1; j++)
1432 				h->dev[j] = h->dev[j+1];
1433 			h->ndevices--;
1434 			break;
1435 		}
1436 	}
1437 	spin_unlock_irqrestore(&h->lock, flags);
1438 	kfree(added);
1439 }
1440 
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442 	struct hpsa_scsi_dev_t *dev2)
1443 {
1444 	/* we compare everything except lun and target as these
1445 	 * are not yet assigned.  Compare parts likely
1446 	 * to differ first
1447 	 */
1448 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449 		sizeof(dev1->scsi3addr)) != 0)
1450 		return 0;
1451 	if (memcmp(dev1->device_id, dev2->device_id,
1452 		sizeof(dev1->device_id)) != 0)
1453 		return 0;
1454 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455 		return 0;
1456 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457 		return 0;
1458 	if (dev1->devtype != dev2->devtype)
1459 		return 0;
1460 	if (dev1->bus != dev2->bus)
1461 		return 0;
1462 	return 1;
1463 }
1464 
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466 	struct hpsa_scsi_dev_t *dev2)
1467 {
1468 	/* Device attributes that can change, but don't mean
1469 	 * that the device is a different device, nor that the OS
1470 	 * needs to be told anything about the change.
1471 	 */
1472 	if (dev1->raid_level != dev2->raid_level)
1473 		return 1;
1474 	if (dev1->offload_config != dev2->offload_config)
1475 		return 1;
1476 	if (dev1->offload_enabled != dev2->offload_enabled)
1477 		return 1;
1478 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479 		if (dev1->queue_depth != dev2->queue_depth)
1480 			return 1;
1481 	return 0;
1482 }
1483 
1484 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485  * and return needle location in *index.  If scsi3addr matches, but not
1486  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487  * location in *index.
1488  * In the case of a minor device attribute change, such as RAID level, just
1489  * return DEVICE_UPDATED, along with the updated device's location in index.
1490  * If needle not found, return DEVICE_NOT_FOUND.
1491  */
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494 	int *index)
1495 {
1496 	int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501 	if (needle == NULL)
1502 		return DEVICE_NOT_FOUND;
1503 
1504 	for (i = 0; i < haystack_size; i++) {
1505 		if (haystack[i] == NULL) /* previously removed. */
1506 			continue;
1507 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508 			*index = i;
1509 			if (device_is_the_same(needle, haystack[i])) {
1510 				if (device_updated(needle, haystack[i]))
1511 					return DEVICE_UPDATED;
1512 				return DEVICE_SAME;
1513 			} else {
1514 				/* Keep offline devices offline */
1515 				if (needle->volume_offline)
1516 					return DEVICE_NOT_FOUND;
1517 				return DEVICE_CHANGED;
1518 			}
1519 		}
1520 	}
1521 	*index = -1;
1522 	return DEVICE_NOT_FOUND;
1523 }
1524 
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526 					unsigned char scsi3addr[])
1527 {
1528 	struct offline_device_entry *device;
1529 	unsigned long flags;
1530 
1531 	/* Check to see if device is already on the list */
1532 	spin_lock_irqsave(&h->offline_device_lock, flags);
1533 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534 		if (memcmp(device->scsi3addr, scsi3addr,
1535 			sizeof(device->scsi3addr)) == 0) {
1536 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537 			return;
1538 		}
1539 	}
1540 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541 
1542 	/* Device is not on the list, add it. */
1543 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1544 	if (!device) {
1545 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546 		return;
1547 	}
1548 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549 	spin_lock_irqsave(&h->offline_device_lock, flags);
1550 	list_add_tail(&device->offline_list, &h->offline_device_list);
1551 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552 }
1553 
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556 	struct hpsa_scsi_dev_t *sd)
1557 {
1558 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559 		dev_info(&h->pdev->dev,
1560 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561 			h->scsi_host->host_no,
1562 			sd->bus, sd->target, sd->lun);
1563 	switch (sd->volume_offline) {
1564 	case HPSA_LV_OK:
1565 		break;
1566 	case HPSA_LV_UNDERGOING_ERASE:
1567 		dev_info(&h->pdev->dev,
1568 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569 			h->scsi_host->host_no,
1570 			sd->bus, sd->target, sd->lun);
1571 		break;
1572 	case HPSA_LV_NOT_AVAILABLE:
1573 		dev_info(&h->pdev->dev,
1574 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575 			h->scsi_host->host_no,
1576 			sd->bus, sd->target, sd->lun);
1577 		break;
1578 	case HPSA_LV_UNDERGOING_RPI:
1579 		dev_info(&h->pdev->dev,
1580 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581 			h->scsi_host->host_no,
1582 			sd->bus, sd->target, sd->lun);
1583 		break;
1584 	case HPSA_LV_PENDING_RPI:
1585 		dev_info(&h->pdev->dev,
1586 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587 			h->scsi_host->host_no,
1588 			sd->bus, sd->target, sd->lun);
1589 		break;
1590 	case HPSA_LV_ENCRYPTED_NO_KEY:
1591 		dev_info(&h->pdev->dev,
1592 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593 			h->scsi_host->host_no,
1594 			sd->bus, sd->target, sd->lun);
1595 		break;
1596 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597 		dev_info(&h->pdev->dev,
1598 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599 			h->scsi_host->host_no,
1600 			sd->bus, sd->target, sd->lun);
1601 		break;
1602 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1603 		dev_info(&h->pdev->dev,
1604 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605 			h->scsi_host->host_no,
1606 			sd->bus, sd->target, sd->lun);
1607 		break;
1608 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 		break;
1614 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 		break;
1620 	case HPSA_LV_PENDING_ENCRYPTION:
1621 		dev_info(&h->pdev->dev,
1622 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623 			h->scsi_host->host_no,
1624 			sd->bus, sd->target, sd->lun);
1625 		break;
1626 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627 		dev_info(&h->pdev->dev,
1628 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629 			h->scsi_host->host_no,
1630 			sd->bus, sd->target, sd->lun);
1631 		break;
1632 	}
1633 }
1634 
1635 /*
1636  * Figure the list of physical drive pointers for a logical drive with
1637  * raid offload configured.
1638  */
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1641 				struct hpsa_scsi_dev_t *logical_drive)
1642 {
1643 	struct raid_map_data *map = &logical_drive->raid_map;
1644 	struct raid_map_disk_data *dd = &map->data[0];
1645 	int i, j;
1646 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647 				le16_to_cpu(map->metadata_disks_per_row);
1648 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649 				le16_to_cpu(map->layout_map_count) *
1650 				total_disks_per_row;
1651 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652 				total_disks_per_row;
1653 	int qdepth;
1654 
1655 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657 
1658 	logical_drive->nphysical_disks = nraid_map_entries;
1659 
1660 	qdepth = 0;
1661 	for (i = 0; i < nraid_map_entries; i++) {
1662 		logical_drive->phys_disk[i] = NULL;
1663 		if (!logical_drive->offload_config)
1664 			continue;
1665 		for (j = 0; j < ndevices; j++) {
1666 			if (dev[j] == NULL)
1667 				continue;
1668 			if (dev[j]->devtype != TYPE_DISK &&
1669 			    dev[j]->devtype != TYPE_ZBC)
1670 				continue;
1671 			if (is_logical_device(dev[j]))
1672 				continue;
1673 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674 				continue;
1675 
1676 			logical_drive->phys_disk[i] = dev[j];
1677 			if (i < nphys_disk)
1678 				qdepth = min(h->nr_cmds, qdepth +
1679 				    logical_drive->phys_disk[i]->queue_depth);
1680 			break;
1681 		}
1682 
1683 		/*
1684 		 * This can happen if a physical drive is removed and
1685 		 * the logical drive is degraded.  In that case, the RAID
1686 		 * map data will refer to a physical disk which isn't actually
1687 		 * present.  And in that case offload_enabled should already
1688 		 * be 0, but we'll turn it off here just in case
1689 		 */
1690 		if (!logical_drive->phys_disk[i]) {
1691 			logical_drive->offload_enabled = 0;
1692 			logical_drive->offload_to_be_enabled = 0;
1693 			logical_drive->queue_depth = 8;
1694 		}
1695 	}
1696 	if (nraid_map_entries)
1697 		/*
1698 		 * This is correct for reads, too high for full stripe writes,
1699 		 * way too high for partial stripe writes
1700 		 */
1701 		logical_drive->queue_depth = qdepth;
1702 	else
1703 		logical_drive->queue_depth = h->nr_cmds;
1704 }
1705 
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1708 {
1709 	int i;
1710 
1711 	for (i = 0; i < ndevices; i++) {
1712 		if (dev[i] == NULL)
1713 			continue;
1714 		if (dev[i]->devtype != TYPE_DISK &&
1715 		    dev[i]->devtype != TYPE_ZBC)
1716 			continue;
1717 		if (!is_logical_device(dev[i]))
1718 			continue;
1719 
1720 		/*
1721 		 * If offload is currently enabled, the RAID map and
1722 		 * phys_disk[] assignment *better* not be changing
1723 		 * and since it isn't changing, we do not need to
1724 		 * update it.
1725 		 */
1726 		if (dev[i]->offload_enabled)
1727 			continue;
1728 
1729 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730 	}
1731 }
1732 
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734 {
1735 	int rc = 0;
1736 
1737 	if (!h->scsi_host)
1738 		return 1;
1739 
1740 	if (is_logical_device(device)) /* RAID */
1741 		rc = scsi_add_device(h->scsi_host, device->bus,
1742 					device->target, device->lun);
1743 	else /* HBA */
1744 		rc = hpsa_add_sas_device(h->sas_host, device);
1745 
1746 	return rc;
1747 }
1748 
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750 						struct hpsa_scsi_dev_t *dev)
1751 {
1752 	int i;
1753 	int count = 0;
1754 
1755 	for (i = 0; i < h->nr_cmds; i++) {
1756 		struct CommandList *c = h->cmd_pool + i;
1757 		int refcount = atomic_inc_return(&c->refcount);
1758 
1759 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760 				dev->scsi3addr)) {
1761 			unsigned long flags;
1762 
1763 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1764 			if (!hpsa_is_cmd_idle(c))
1765 				++count;
1766 			spin_unlock_irqrestore(&h->lock, flags);
1767 		}
1768 
1769 		cmd_free(h, c);
1770 	}
1771 
1772 	return count;
1773 }
1774 
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776 						struct hpsa_scsi_dev_t *device)
1777 {
1778 	int cmds = 0;
1779 	int waits = 0;
1780 
1781 	while (1) {
1782 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783 		if (cmds == 0)
1784 			break;
1785 		if (++waits > 20)
1786 			break;
1787 		dev_warn(&h->pdev->dev,
1788 			"%s: removing device with %d outstanding commands!\n",
1789 			__func__, cmds);
1790 		msleep(1000);
1791 	}
1792 }
1793 
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795 			struct hpsa_scsi_dev_t *device)
1796 {
1797 	struct scsi_device *sdev = NULL;
1798 
1799 	if (!h->scsi_host)
1800 		return;
1801 
1802 	if (is_logical_device(device)) { /* RAID */
1803 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804 						device->target, device->lun);
1805 		if (sdev) {
1806 			scsi_remove_device(sdev);
1807 			scsi_device_put(sdev);
1808 		} else {
1809 			/*
1810 			 * We don't expect to get here.  Future commands
1811 			 * to this device will get a selection timeout as
1812 			 * if the device were gone.
1813 			 */
1814 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1815 					"didn't find device for removal.");
1816 		}
1817 	} else { /* HBA */
1818 
1819 		device->removed = 1;
1820 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821 
1822 		hpsa_remove_sas_device(device);
1823 	}
1824 }
1825 
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827 	struct hpsa_scsi_dev_t *sd[], int nsds)
1828 {
1829 	/* sd contains scsi3 addresses and devtypes, and inquiry
1830 	 * data.  This function takes what's in sd to be the current
1831 	 * reality and updates h->dev[] to reflect that reality.
1832 	 */
1833 	int i, entry, device_change, changes = 0;
1834 	struct hpsa_scsi_dev_t *csd;
1835 	unsigned long flags;
1836 	struct hpsa_scsi_dev_t **added, **removed;
1837 	int nadded, nremoved;
1838 
1839 	/*
1840 	 * A reset can cause a device status to change
1841 	 * re-schedule the scan to see what happened.
1842 	 */
1843 	if (h->reset_in_progress) {
1844 		h->drv_req_rescan = 1;
1845 		return;
1846 	}
1847 
1848 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850 
1851 	if (!added || !removed) {
1852 		dev_warn(&h->pdev->dev, "out of memory in "
1853 			"adjust_hpsa_scsi_table\n");
1854 		goto free_and_out;
1855 	}
1856 
1857 	spin_lock_irqsave(&h->devlock, flags);
1858 
1859 	/* find any devices in h->dev[] that are not in
1860 	 * sd[] and remove them from h->dev[], and for any
1861 	 * devices which have changed, remove the old device
1862 	 * info and add the new device info.
1863 	 * If minor device attributes change, just update
1864 	 * the existing device structure.
1865 	 */
1866 	i = 0;
1867 	nremoved = 0;
1868 	nadded = 0;
1869 	while (i < h->ndevices) {
1870 		csd = h->dev[i];
1871 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872 		if (device_change == DEVICE_NOT_FOUND) {
1873 			changes++;
1874 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875 			continue; /* remove ^^^, hence i not incremented */
1876 		} else if (device_change == DEVICE_CHANGED) {
1877 			changes++;
1878 			hpsa_scsi_replace_entry(h, i, sd[entry],
1879 				added, &nadded, removed, &nremoved);
1880 			/* Set it to NULL to prevent it from being freed
1881 			 * at the bottom of hpsa_update_scsi_devices()
1882 			 */
1883 			sd[entry] = NULL;
1884 		} else if (device_change == DEVICE_UPDATED) {
1885 			hpsa_scsi_update_entry(h, i, sd[entry]);
1886 		}
1887 		i++;
1888 	}
1889 
1890 	/* Now, make sure every device listed in sd[] is also
1891 	 * listed in h->dev[], adding them if they aren't found
1892 	 */
1893 
1894 	for (i = 0; i < nsds; i++) {
1895 		if (!sd[i]) /* if already added above. */
1896 			continue;
1897 
1898 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899 		 * as the SCSI mid-layer does not handle such devices well.
1900 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901 		 * at 160Hz, and prevents the system from coming up.
1902 		 */
1903 		if (sd[i]->volume_offline) {
1904 			hpsa_show_volume_status(h, sd[i]);
1905 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906 			continue;
1907 		}
1908 
1909 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910 					h->ndevices, &entry);
1911 		if (device_change == DEVICE_NOT_FOUND) {
1912 			changes++;
1913 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914 				break;
1915 			sd[i] = NULL; /* prevent from being freed later. */
1916 		} else if (device_change == DEVICE_CHANGED) {
1917 			/* should never happen... */
1918 			changes++;
1919 			dev_warn(&h->pdev->dev,
1920 				"device unexpectedly changed.\n");
1921 			/* but if it does happen, we just ignore that device */
1922 		}
1923 	}
1924 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925 
1926 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927 	 * any logical drives that need it enabled.
1928 	 */
1929 	for (i = 0; i < h->ndevices; i++) {
1930 		if (h->dev[i] == NULL)
1931 			continue;
1932 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933 	}
1934 
1935 	spin_unlock_irqrestore(&h->devlock, flags);
1936 
1937 	/* Monitor devices which are in one of several NOT READY states to be
1938 	 * brought online later. This must be done without holding h->devlock,
1939 	 * so don't touch h->dev[]
1940 	 */
1941 	for (i = 0; i < nsds; i++) {
1942 		if (!sd[i]) /* if already added above. */
1943 			continue;
1944 		if (sd[i]->volume_offline)
1945 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946 	}
1947 
1948 	/* Don't notify scsi mid layer of any changes the first time through
1949 	 * (or if there are no changes) scsi_scan_host will do it later the
1950 	 * first time through.
1951 	 */
1952 	if (!changes)
1953 		goto free_and_out;
1954 
1955 	/* Notify scsi mid layer of any removed devices */
1956 	for (i = 0; i < nremoved; i++) {
1957 		if (removed[i] == NULL)
1958 			continue;
1959 		if (removed[i]->expose_device)
1960 			hpsa_remove_device(h, removed[i]);
1961 		kfree(removed[i]);
1962 		removed[i] = NULL;
1963 	}
1964 
1965 	/* Notify scsi mid layer of any added devices */
1966 	for (i = 0; i < nadded; i++) {
1967 		int rc = 0;
1968 
1969 		if (added[i] == NULL)
1970 			continue;
1971 		if (!(added[i]->expose_device))
1972 			continue;
1973 		rc = hpsa_add_device(h, added[i]);
1974 		if (!rc)
1975 			continue;
1976 		dev_warn(&h->pdev->dev,
1977 			"addition failed %d, device not added.", rc);
1978 		/* now we have to remove it from h->dev,
1979 		 * since it didn't get added to scsi mid layer
1980 		 */
1981 		fixup_botched_add(h, added[i]);
1982 		h->drv_req_rescan = 1;
1983 	}
1984 
1985 free_and_out:
1986 	kfree(added);
1987 	kfree(removed);
1988 }
1989 
1990 /*
1991  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992  * Assume's h->devlock is held.
1993  */
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995 	int bus, int target, int lun)
1996 {
1997 	int i;
1998 	struct hpsa_scsi_dev_t *sd;
1999 
2000 	for (i = 0; i < h->ndevices; i++) {
2001 		sd = h->dev[i];
2002 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003 			return sd;
2004 	}
2005 	return NULL;
2006 }
2007 
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2009 {
2010 	struct hpsa_scsi_dev_t *sd;
2011 	unsigned long flags;
2012 	struct ctlr_info *h;
2013 
2014 	h = sdev_to_hba(sdev);
2015 	spin_lock_irqsave(&h->devlock, flags);
2016 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017 		struct scsi_target *starget;
2018 		struct sas_rphy *rphy;
2019 
2020 		starget = scsi_target(sdev);
2021 		rphy = target_to_rphy(starget);
2022 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023 		if (sd) {
2024 			sd->target = sdev_id(sdev);
2025 			sd->lun = sdev->lun;
2026 		}
2027 	} else
2028 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029 					sdev_id(sdev), sdev->lun);
2030 
2031 	if (sd && sd->expose_device) {
2032 		atomic_set(&sd->ioaccel_cmds_out, 0);
2033 		sdev->hostdata = sd;
2034 	} else
2035 		sdev->hostdata = NULL;
2036 	spin_unlock_irqrestore(&h->devlock, flags);
2037 	return 0;
2038 }
2039 
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2042 {
2043 	struct hpsa_scsi_dev_t *sd;
2044 	int queue_depth;
2045 
2046 	sd = sdev->hostdata;
2047 	sdev->no_uld_attach = !sd || !sd->expose_device;
2048 
2049 	if (sd)
2050 		queue_depth = sd->queue_depth != 0 ?
2051 			sd->queue_depth : sdev->host->can_queue;
2052 	else
2053 		queue_depth = sdev->host->can_queue;
2054 
2055 	scsi_change_queue_depth(sdev, queue_depth);
2056 
2057 	return 0;
2058 }
2059 
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2061 {
2062 	/* nothing to do. */
2063 }
2064 
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066 {
2067 	int i;
2068 
2069 	if (!h->ioaccel2_cmd_sg_list)
2070 		return;
2071 	for (i = 0; i < h->nr_cmds; i++) {
2072 		kfree(h->ioaccel2_cmd_sg_list[i]);
2073 		h->ioaccel2_cmd_sg_list[i] = NULL;
2074 	}
2075 	kfree(h->ioaccel2_cmd_sg_list);
2076 	h->ioaccel2_cmd_sg_list = NULL;
2077 }
2078 
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080 {
2081 	int i;
2082 
2083 	if (h->chainsize <= 0)
2084 		return 0;
2085 
2086 	h->ioaccel2_cmd_sg_list =
2087 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088 					GFP_KERNEL);
2089 	if (!h->ioaccel2_cmd_sg_list)
2090 		return -ENOMEM;
2091 	for (i = 0; i < h->nr_cmds; i++) {
2092 		h->ioaccel2_cmd_sg_list[i] =
2093 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094 					h->maxsgentries, GFP_KERNEL);
2095 		if (!h->ioaccel2_cmd_sg_list[i])
2096 			goto clean;
2097 	}
2098 	return 0;
2099 
2100 clean:
2101 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2102 	return -ENOMEM;
2103 }
2104 
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106 {
2107 	int i;
2108 
2109 	if (!h->cmd_sg_list)
2110 		return;
2111 	for (i = 0; i < h->nr_cmds; i++) {
2112 		kfree(h->cmd_sg_list[i]);
2113 		h->cmd_sg_list[i] = NULL;
2114 	}
2115 	kfree(h->cmd_sg_list);
2116 	h->cmd_sg_list = NULL;
2117 }
2118 
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120 {
2121 	int i;
2122 
2123 	if (h->chainsize <= 0)
2124 		return 0;
2125 
2126 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127 				GFP_KERNEL);
2128 	if (!h->cmd_sg_list) {
2129 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130 		return -ENOMEM;
2131 	}
2132 	for (i = 0; i < h->nr_cmds; i++) {
2133 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134 						h->chainsize, GFP_KERNEL);
2135 		if (!h->cmd_sg_list[i]) {
2136 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137 			goto clean;
2138 		}
2139 	}
2140 	return 0;
2141 
2142 clean:
2143 	hpsa_free_sg_chain_blocks(h);
2144 	return -ENOMEM;
2145 }
2146 
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148 	struct io_accel2_cmd *cp, struct CommandList *c)
2149 {
2150 	struct ioaccel2_sg_element *chain_block;
2151 	u64 temp64;
2152 	u32 chain_size;
2153 
2154 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155 	chain_size = le32_to_cpu(cp->sg[0].length);
2156 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157 				PCI_DMA_TODEVICE);
2158 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159 		/* prevent subsequent unmapping */
2160 		cp->sg->address = 0;
2161 		return -1;
2162 	}
2163 	cp->sg->address = cpu_to_le64(temp64);
2164 	return 0;
2165 }
2166 
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168 	struct io_accel2_cmd *cp)
2169 {
2170 	struct ioaccel2_sg_element *chain_sg;
2171 	u64 temp64;
2172 	u32 chain_size;
2173 
2174 	chain_sg = cp->sg;
2175 	temp64 = le64_to_cpu(chain_sg->address);
2176 	chain_size = le32_to_cpu(cp->sg[0].length);
2177 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178 }
2179 
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181 	struct CommandList *c)
2182 {
2183 	struct SGDescriptor *chain_sg, *chain_block;
2184 	u64 temp64;
2185 	u32 chain_len;
2186 
2187 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188 	chain_block = h->cmd_sg_list[c->cmdindex];
2189 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190 	chain_len = sizeof(*chain_sg) *
2191 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192 	chain_sg->Len = cpu_to_le32(chain_len);
2193 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194 				PCI_DMA_TODEVICE);
2195 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196 		/* prevent subsequent unmapping */
2197 		chain_sg->Addr = cpu_to_le64(0);
2198 		return -1;
2199 	}
2200 	chain_sg->Addr = cpu_to_le64(temp64);
2201 	return 0;
2202 }
2203 
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205 	struct CommandList *c)
2206 {
2207 	struct SGDescriptor *chain_sg;
2208 
2209 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210 		return;
2211 
2212 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215 }
2216 
2217 
2218 /* Decode the various types of errors on ioaccel2 path.
2219  * Return 1 for any error that should generate a RAID path retry.
2220  * Return 0 for errors that don't require a RAID path retry.
2221  */
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223 					struct CommandList *c,
2224 					struct scsi_cmnd *cmd,
2225 					struct io_accel2_cmd *c2,
2226 					struct hpsa_scsi_dev_t *dev)
2227 {
2228 	int data_len;
2229 	int retry = 0;
2230 	u32 ioaccel2_resid = 0;
2231 
2232 	switch (c2->error_data.serv_response) {
2233 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234 		switch (c2->error_data.status) {
2235 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236 			break;
2237 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2239 			if (c2->error_data.data_present !=
2240 					IOACCEL2_SENSE_DATA_PRESENT) {
2241 				memset(cmd->sense_buffer, 0,
2242 					SCSI_SENSE_BUFFERSIZE);
2243 				break;
2244 			}
2245 			/* copy the sense data */
2246 			data_len = c2->error_data.sense_data_len;
2247 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2248 				data_len = SCSI_SENSE_BUFFERSIZE;
2249 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2250 				data_len =
2251 					sizeof(c2->error_data.sense_data_buff);
2252 			memcpy(cmd->sense_buffer,
2253 				c2->error_data.sense_data_buff, data_len);
2254 			retry = 1;
2255 			break;
2256 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257 			retry = 1;
2258 			break;
2259 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260 			retry = 1;
2261 			break;
2262 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263 			retry = 1;
2264 			break;
2265 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266 			retry = 1;
2267 			break;
2268 		default:
2269 			retry = 1;
2270 			break;
2271 		}
2272 		break;
2273 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2274 		switch (c2->error_data.status) {
2275 		case IOACCEL2_STATUS_SR_IO_ERROR:
2276 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2277 		case IOACCEL2_STATUS_SR_OVERRUN:
2278 			retry = 1;
2279 			break;
2280 		case IOACCEL2_STATUS_SR_UNDERRUN:
2281 			cmd->result = (DID_OK << 16);		/* host byte */
2282 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2283 			ioaccel2_resid = get_unaligned_le32(
2284 						&c2->error_data.resid_cnt[0]);
2285 			scsi_set_resid(cmd, ioaccel2_resid);
2286 			break;
2287 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290 			/*
2291 			 * Did an HBA disk disappear? We will eventually
2292 			 * get a state change event from the controller but
2293 			 * in the meantime, we need to tell the OS that the
2294 			 * HBA disk is no longer there and stop I/O
2295 			 * from going down. This allows the potential re-insert
2296 			 * of the disk to get the same device node.
2297 			 */
2298 			if (dev->physical_device && dev->expose_device) {
2299 				cmd->result = DID_NO_CONNECT << 16;
2300 				dev->removed = 1;
2301 				h->drv_req_rescan = 1;
2302 				dev_warn(&h->pdev->dev,
2303 					"%s: device is gone!\n", __func__);
2304 			} else
2305 				/*
2306 				 * Retry by sending down the RAID path.
2307 				 * We will get an event from ctlr to
2308 				 * trigger rescan regardless.
2309 				 */
2310 				retry = 1;
2311 			break;
2312 		default:
2313 			retry = 1;
2314 		}
2315 		break;
2316 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317 		break;
2318 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319 		break;
2320 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321 		retry = 1;
2322 		break;
2323 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324 		break;
2325 	default:
2326 		retry = 1;
2327 		break;
2328 	}
2329 
2330 	return retry;	/* retry on raid path? */
2331 }
2332 
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334 		struct CommandList *c)
2335 {
2336 	bool do_wake = false;
2337 
2338 	/*
2339 	 * Prevent the following race in the abort handler:
2340 	 *
2341 	 * 1. LLD is requested to abort a SCSI command
2342 	 * 2. The SCSI command completes
2343 	 * 3. The struct CommandList associated with step 2 is made available
2344 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2346 	 *    finds struct CommandList and tries to aborts it
2347 	 * Now we have aborted the wrong command.
2348 	 *
2349 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2350 	 * this command has completed.  Then, check to see if the handler is
2351 	 * waiting for this command, and, if so, wake it.
2352 	 */
2353 	c->scsi_cmd = SCSI_CMD_IDLE;
2354 	mb();	/* Declare command idle before checking for pending events. */
2355 	if (c->abort_pending) {
2356 		do_wake = true;
2357 		c->abort_pending = false;
2358 	}
2359 	if (c->reset_pending) {
2360 		unsigned long flags;
2361 		struct hpsa_scsi_dev_t *dev;
2362 
2363 		/*
2364 		 * There appears to be a reset pending; lock the lock and
2365 		 * reconfirm.  If so, then decrement the count of outstanding
2366 		 * commands and wake the reset command if this is the last one.
2367 		 */
2368 		spin_lock_irqsave(&h->lock, flags);
2369 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2370 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371 			do_wake = true;
2372 		c->reset_pending = NULL;
2373 		spin_unlock_irqrestore(&h->lock, flags);
2374 	}
2375 
2376 	if (do_wake)
2377 		wake_up_all(&h->event_sync_wait_queue);
2378 }
2379 
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381 				      struct CommandList *c)
2382 {
2383 	hpsa_cmd_resolve_events(h, c);
2384 	cmd_tagged_free(h, c);
2385 }
2386 
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388 		struct CommandList *c, struct scsi_cmnd *cmd)
2389 {
2390 	hpsa_cmd_resolve_and_free(h, c);
2391 	cmd->scsi_done(cmd);
2392 }
2393 
2394 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2395 {
2396 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2398 }
2399 
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2401 {
2402 	cmd->result = DID_ABORT << 16;
2403 }
2404 
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406 				    struct scsi_cmnd *cmd)
2407 {
2408 	hpsa_set_scsi_cmd_aborted(cmd);
2409 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410 			 c->Request.CDB, c->err_info->ScsiStatus);
2411 	hpsa_cmd_resolve_and_free(h, c);
2412 }
2413 
2414 static void process_ioaccel2_completion(struct ctlr_info *h,
2415 		struct CommandList *c, struct scsi_cmnd *cmd,
2416 		struct hpsa_scsi_dev_t *dev)
2417 {
2418 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2419 
2420 	/* check for good status */
2421 	if (likely(c2->error_data.serv_response == 0 &&
2422 			c2->error_data.status == 0))
2423 		return hpsa_cmd_free_and_done(h, c, cmd);
2424 
2425 	/*
2426 	 * Any RAID offload error results in retry which will use
2427 	 * the normal I/O path so the controller can handle whatever's
2428 	 * wrong.
2429 	 */
2430 	if (is_logical_device(dev) &&
2431 		c2->error_data.serv_response ==
2432 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2433 		if (c2->error_data.status ==
2434 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435 			dev->offload_enabled = 0;
2436 			dev->offload_to_be_enabled = 0;
2437 		}
2438 
2439 		return hpsa_retry_cmd(h, c);
2440 	}
2441 
2442 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443 		return hpsa_retry_cmd(h, c);
2444 
2445 	return hpsa_cmd_free_and_done(h, c, cmd);
2446 }
2447 
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450 					struct CommandList *cp)
2451 {
2452 	u8 tmf_status = cp->err_info->ScsiStatus;
2453 
2454 	switch (tmf_status) {
2455 	case CISS_TMF_COMPLETE:
2456 		/*
2457 		 * CISS_TMF_COMPLETE never happens, instead,
2458 		 * ei->CommandStatus == 0 for this case.
2459 		 */
2460 	case CISS_TMF_SUCCESS:
2461 		return 0;
2462 	case CISS_TMF_INVALID_FRAME:
2463 	case CISS_TMF_NOT_SUPPORTED:
2464 	case CISS_TMF_FAILED:
2465 	case CISS_TMF_WRONG_LUN:
2466 	case CISS_TMF_OVERLAPPED_TAG:
2467 		break;
2468 	default:
2469 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470 				tmf_status);
2471 		break;
2472 	}
2473 	return -tmf_status;
2474 }
2475 
2476 static void complete_scsi_command(struct CommandList *cp)
2477 {
2478 	struct scsi_cmnd *cmd;
2479 	struct ctlr_info *h;
2480 	struct ErrorInfo *ei;
2481 	struct hpsa_scsi_dev_t *dev;
2482 	struct io_accel2_cmd *c2;
2483 
2484 	u8 sense_key;
2485 	u8 asc;      /* additional sense code */
2486 	u8 ascq;     /* additional sense code qualifier */
2487 	unsigned long sense_data_size;
2488 
2489 	ei = cp->err_info;
2490 	cmd = cp->scsi_cmd;
2491 	h = cp->h;
2492 	dev = cmd->device->hostdata;
2493 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2494 
2495 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496 	if ((cp->cmd_type == CMD_SCSI) &&
2497 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498 		hpsa_unmap_sg_chain_block(h, cp);
2499 
2500 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2501 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2503 
2504 	cmd->result = (DID_OK << 16); 		/* host byte */
2505 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2506 
2507 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509 
2510 	/*
2511 	 * We check for lockup status here as it may be set for
2512 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513 	 * fail_all_oustanding_cmds()
2514 	 */
2515 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516 		/* DID_NO_CONNECT will prevent a retry */
2517 		cmd->result = DID_NO_CONNECT << 16;
2518 		return hpsa_cmd_free_and_done(h, cp, cmd);
2519 	}
2520 
2521 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2522 		if (cp->reset_pending)
2523 			return hpsa_cmd_resolve_and_free(h, cp);
2524 		if (cp->abort_pending)
2525 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2526 	}
2527 
2528 	if (cp->cmd_type == CMD_IOACCEL2)
2529 		return process_ioaccel2_completion(h, cp, cmd, dev);
2530 
2531 	scsi_set_resid(cmd, ei->ResidualCnt);
2532 	if (ei->CommandStatus == 0)
2533 		return hpsa_cmd_free_and_done(h, cp, cmd);
2534 
2535 	/* For I/O accelerator commands, copy over some fields to the normal
2536 	 * CISS header used below for error handling.
2537 	 */
2538 	if (cp->cmd_type == CMD_IOACCEL1) {
2539 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540 		cp->Header.SGList = scsi_sg_count(cmd);
2541 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544 		cp->Header.tag = c->tag;
2545 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2547 
2548 		/* Any RAID offload error results in retry which will use
2549 		 * the normal I/O path so the controller can handle whatever's
2550 		 * wrong.
2551 		 */
2552 		if (is_logical_device(dev)) {
2553 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554 				dev->offload_enabled = 0;
2555 			return hpsa_retry_cmd(h, cp);
2556 		}
2557 	}
2558 
2559 	/* an error has occurred */
2560 	switch (ei->CommandStatus) {
2561 
2562 	case CMD_TARGET_STATUS:
2563 		cmd->result |= ei->ScsiStatus;
2564 		/* copy the sense data */
2565 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567 		else
2568 			sense_data_size = sizeof(ei->SenseInfo);
2569 		if (ei->SenseLen < sense_data_size)
2570 			sense_data_size = ei->SenseLen;
2571 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572 		if (ei->ScsiStatus)
2573 			decode_sense_data(ei->SenseInfo, sense_data_size,
2574 				&sense_key, &asc, &ascq);
2575 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576 			if (sense_key == ABORTED_COMMAND) {
2577 				cmd->result |= DID_SOFT_ERROR << 16;
2578 				break;
2579 			}
2580 			break;
2581 		}
2582 		/* Problem was not a check condition
2583 		 * Pass it up to the upper layers...
2584 		 */
2585 		if (ei->ScsiStatus) {
2586 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588 				"Returning result: 0x%x\n",
2589 				cp, ei->ScsiStatus,
2590 				sense_key, asc, ascq,
2591 				cmd->result);
2592 		} else {  /* scsi status is zero??? How??? */
2593 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594 				"Returning no connection.\n", cp),
2595 
2596 			/* Ordinarily, this case should never happen,
2597 			 * but there is a bug in some released firmware
2598 			 * revisions that allows it to happen if, for
2599 			 * example, a 4100 backplane loses power and
2600 			 * the tape drive is in it.  We assume that
2601 			 * it's a fatal error of some kind because we
2602 			 * can't show that it wasn't. We will make it
2603 			 * look like selection timeout since that is
2604 			 * the most common reason for this to occur,
2605 			 * and it's severe enough.
2606 			 */
2607 
2608 			cmd->result = DID_NO_CONNECT << 16;
2609 		}
2610 		break;
2611 
2612 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613 		break;
2614 	case CMD_DATA_OVERRUN:
2615 		dev_warn(&h->pdev->dev,
2616 			"CDB %16phN data overrun\n", cp->Request.CDB);
2617 		break;
2618 	case CMD_INVALID: {
2619 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2620 		print_cmd(cp); */
2621 		/* We get CMD_INVALID if you address a non-existent device
2622 		 * instead of a selection timeout (no response).  You will
2623 		 * see this if you yank out a drive, then try to access it.
2624 		 * This is kind of a shame because it means that any other
2625 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626 		 * missing target. */
2627 		cmd->result = DID_NO_CONNECT << 16;
2628 	}
2629 		break;
2630 	case CMD_PROTOCOL_ERR:
2631 		cmd->result = DID_ERROR << 16;
2632 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633 				cp->Request.CDB);
2634 		break;
2635 	case CMD_HARDWARE_ERR:
2636 		cmd->result = DID_ERROR << 16;
2637 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638 			cp->Request.CDB);
2639 		break;
2640 	case CMD_CONNECTION_LOST:
2641 		cmd->result = DID_ERROR << 16;
2642 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643 			cp->Request.CDB);
2644 		break;
2645 	case CMD_ABORTED:
2646 		/* Return now to avoid calling scsi_done(). */
2647 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2648 	case CMD_ABORT_FAILED:
2649 		cmd->result = DID_ERROR << 16;
2650 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651 			cp->Request.CDB);
2652 		break;
2653 	case CMD_UNSOLICITED_ABORT:
2654 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656 			cp->Request.CDB);
2657 		break;
2658 	case CMD_TIMEOUT:
2659 		cmd->result = DID_TIME_OUT << 16;
2660 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661 			cp->Request.CDB);
2662 		break;
2663 	case CMD_UNABORTABLE:
2664 		cmd->result = DID_ERROR << 16;
2665 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2666 		break;
2667 	case CMD_TMF_STATUS:
2668 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669 			cmd->result = DID_ERROR << 16;
2670 		break;
2671 	case CMD_IOACCEL_DISABLED:
2672 		/* This only handles the direct pass-through case since RAID
2673 		 * offload is handled above.  Just attempt a retry.
2674 		 */
2675 		cmd->result = DID_SOFT_ERROR << 16;
2676 		dev_warn(&h->pdev->dev,
2677 				"cp %p had HP SSD Smart Path error\n", cp);
2678 		break;
2679 	default:
2680 		cmd->result = DID_ERROR << 16;
2681 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682 				cp, ei->CommandStatus);
2683 	}
2684 
2685 	return hpsa_cmd_free_and_done(h, cp, cmd);
2686 }
2687 
2688 static void hpsa_pci_unmap(struct pci_dev *pdev,
2689 	struct CommandList *c, int sg_used, int data_direction)
2690 {
2691 	int i;
2692 
2693 	for (i = 0; i < sg_used; i++)
2694 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695 				le32_to_cpu(c->SG[i].Len),
2696 				data_direction);
2697 }
2698 
2699 static int hpsa_map_one(struct pci_dev *pdev,
2700 		struct CommandList *cp,
2701 		unsigned char *buf,
2702 		size_t buflen,
2703 		int data_direction)
2704 {
2705 	u64 addr64;
2706 
2707 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708 		cp->Header.SGList = 0;
2709 		cp->Header.SGTotal = cpu_to_le16(0);
2710 		return 0;
2711 	}
2712 
2713 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714 	if (dma_mapping_error(&pdev->dev, addr64)) {
2715 		/* Prevent subsequent unmap of something never mapped */
2716 		cp->Header.SGList = 0;
2717 		cp->Header.SGTotal = cpu_to_le16(0);
2718 		return -1;
2719 	}
2720 	cp->SG[0].Addr = cpu_to_le64(addr64);
2721 	cp->SG[0].Len = cpu_to_le32(buflen);
2722 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2724 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725 	return 0;
2726 }
2727 
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2732 {
2733 	DECLARE_COMPLETION_ONSTACK(wait);
2734 
2735 	c->waiting = &wait;
2736 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2737 	if (timeout_msecs == NO_TIMEOUT) {
2738 		/* TODO: get rid of this no-timeout thing */
2739 		wait_for_completion_io(&wait);
2740 		return IO_OK;
2741 	}
2742 	if (!wait_for_completion_io_timeout(&wait,
2743 					msecs_to_jiffies(timeout_msecs))) {
2744 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2745 		return -ETIMEDOUT;
2746 	}
2747 	return IO_OK;
2748 }
2749 
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751 				   int reply_queue, unsigned long timeout_msecs)
2752 {
2753 	if (unlikely(lockup_detected(h))) {
2754 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755 		return IO_OK;
2756 	}
2757 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2758 }
2759 
2760 static u32 lockup_detected(struct ctlr_info *h)
2761 {
2762 	int cpu;
2763 	u32 rc, *lockup_detected;
2764 
2765 	cpu = get_cpu();
2766 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767 	rc = *lockup_detected;
2768 	put_cpu();
2769 	return rc;
2770 }
2771 
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2775 {
2776 	int backoff_time = 10, retry_count = 0;
2777 	int rc;
2778 
2779 	do {
2780 		memset(c->err_info, 0, sizeof(*c->err_info));
2781 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782 						  timeout_msecs);
2783 		if (rc)
2784 			break;
2785 		retry_count++;
2786 		if (retry_count > 3) {
2787 			msleep(backoff_time);
2788 			if (backoff_time < 1000)
2789 				backoff_time *= 2;
2790 		}
2791 	} while ((check_for_unit_attention(h, c) ||
2792 			check_for_busy(h, c)) &&
2793 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2794 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796 		rc = -EIO;
2797 	return rc;
2798 }
2799 
2800 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801 				struct CommandList *c)
2802 {
2803 	const u8 *cdb = c->Request.CDB;
2804 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2805 
2806 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808 		txt, lun[0], lun[1], lun[2], lun[3],
2809 		lun[4], lun[5], lun[6], lun[7],
2810 		cdb[0], cdb[1], cdb[2], cdb[3],
2811 		cdb[4], cdb[5], cdb[6], cdb[7],
2812 		cdb[8], cdb[9], cdb[10], cdb[11],
2813 		cdb[12], cdb[13], cdb[14], cdb[15]);
2814 }
2815 
2816 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817 			struct CommandList *cp)
2818 {
2819 	const struct ErrorInfo *ei = cp->err_info;
2820 	struct device *d = &cp->h->pdev->dev;
2821 	u8 sense_key, asc, ascq;
2822 	int sense_len;
2823 
2824 	switch (ei->CommandStatus) {
2825 	case CMD_TARGET_STATUS:
2826 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2827 			sense_len = sizeof(ei->SenseInfo);
2828 		else
2829 			sense_len = ei->SenseLen;
2830 		decode_sense_data(ei->SenseInfo, sense_len,
2831 					&sense_key, &asc, &ascq);
2832 		hpsa_print_cmd(h, "SCSI status", cp);
2833 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835 				sense_key, asc, ascq);
2836 		else
2837 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838 		if (ei->ScsiStatus == 0)
2839 			dev_warn(d, "SCSI status is abnormally zero.  "
2840 			"(probably indicates selection timeout "
2841 			"reported incorrectly due to a known "
2842 			"firmware bug, circa July, 2001.)\n");
2843 		break;
2844 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845 		break;
2846 	case CMD_DATA_OVERRUN:
2847 		hpsa_print_cmd(h, "overrun condition", cp);
2848 		break;
2849 	case CMD_INVALID: {
2850 		/* controller unfortunately reports SCSI passthru's
2851 		 * to non-existent targets as invalid commands.
2852 		 */
2853 		hpsa_print_cmd(h, "invalid command", cp);
2854 		dev_warn(d, "probably means device no longer present\n");
2855 		}
2856 		break;
2857 	case CMD_PROTOCOL_ERR:
2858 		hpsa_print_cmd(h, "protocol error", cp);
2859 		break;
2860 	case CMD_HARDWARE_ERR:
2861 		hpsa_print_cmd(h, "hardware error", cp);
2862 		break;
2863 	case CMD_CONNECTION_LOST:
2864 		hpsa_print_cmd(h, "connection lost", cp);
2865 		break;
2866 	case CMD_ABORTED:
2867 		hpsa_print_cmd(h, "aborted", cp);
2868 		break;
2869 	case CMD_ABORT_FAILED:
2870 		hpsa_print_cmd(h, "abort failed", cp);
2871 		break;
2872 	case CMD_UNSOLICITED_ABORT:
2873 		hpsa_print_cmd(h, "unsolicited abort", cp);
2874 		break;
2875 	case CMD_TIMEOUT:
2876 		hpsa_print_cmd(h, "timed out", cp);
2877 		break;
2878 	case CMD_UNABORTABLE:
2879 		hpsa_print_cmd(h, "unabortable", cp);
2880 		break;
2881 	case CMD_CTLR_LOCKUP:
2882 		hpsa_print_cmd(h, "controller lockup detected", cp);
2883 		break;
2884 	default:
2885 		hpsa_print_cmd(h, "unknown status", cp);
2886 		dev_warn(d, "Unknown command status %x\n",
2887 				ei->CommandStatus);
2888 	}
2889 }
2890 
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892 			u16 page, unsigned char *buf,
2893 			unsigned char bufsize)
2894 {
2895 	int rc = IO_OK;
2896 	struct CommandList *c;
2897 	struct ErrorInfo *ei;
2898 
2899 	c = cmd_alloc(h);
2900 
2901 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902 			page, scsi3addr, TYPE_CMD)) {
2903 		rc = -1;
2904 		goto out;
2905 	}
2906 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908 	if (rc)
2909 		goto out;
2910 	ei = c->err_info;
2911 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912 		hpsa_scsi_interpret_error(h, c);
2913 		rc = -1;
2914 	}
2915 out:
2916 	cmd_free(h, c);
2917 	return rc;
2918 }
2919 
2920 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921 	u8 reset_type, int reply_queue)
2922 {
2923 	int rc = IO_OK;
2924 	struct CommandList *c;
2925 	struct ErrorInfo *ei;
2926 
2927 	c = cmd_alloc(h);
2928 
2929 
2930 	/* fill_cmd can't fail here, no data buffer to map. */
2931 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932 			scsi3addr, TYPE_MSG);
2933 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934 	if (rc) {
2935 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936 		goto out;
2937 	}
2938 	/* no unmap needed here because no data xfer. */
2939 
2940 	ei = c->err_info;
2941 	if (ei->CommandStatus != 0) {
2942 		hpsa_scsi_interpret_error(h, c);
2943 		rc = -1;
2944 	}
2945 out:
2946 	cmd_free(h, c);
2947 	return rc;
2948 }
2949 
2950 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951 			       struct hpsa_scsi_dev_t *dev,
2952 			       unsigned char *scsi3addr)
2953 {
2954 	int i;
2955 	bool match = false;
2956 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2958 
2959 	if (hpsa_is_cmd_idle(c))
2960 		return false;
2961 
2962 	switch (c->cmd_type) {
2963 	case CMD_SCSI:
2964 	case CMD_IOCTL_PEND:
2965 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966 				sizeof(c->Header.LUN.LunAddrBytes));
2967 		break;
2968 
2969 	case CMD_IOACCEL1:
2970 	case CMD_IOACCEL2:
2971 		if (c->phys_disk == dev) {
2972 			/* HBA mode match */
2973 			match = true;
2974 		} else {
2975 			/* Possible RAID mode -- check each phys dev. */
2976 			/* FIXME:  Do we need to take out a lock here?  If
2977 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978 			 * instead. */
2979 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980 				/* FIXME: an alternate test might be
2981 				 *
2982 				 * match = dev->phys_disk[i]->ioaccel_handle
2983 				 *              == c2->scsi_nexus;      */
2984 				match = dev->phys_disk[i] == c->phys_disk;
2985 			}
2986 		}
2987 		break;
2988 
2989 	case IOACCEL2_TMF:
2990 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991 			match = dev->phys_disk[i]->ioaccel_handle ==
2992 					le32_to_cpu(ac->it_nexus);
2993 		}
2994 		break;
2995 
2996 	case 0:		/* The command is in the middle of being initialized. */
2997 		match = false;
2998 		break;
2999 
3000 	default:
3001 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002 			c->cmd_type);
3003 		BUG();
3004 	}
3005 
3006 	return match;
3007 }
3008 
3009 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3011 {
3012 	int i;
3013 	int rc = 0;
3014 
3015 	/* We can really only handle one reset at a time */
3016 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018 		return -EINTR;
3019 	}
3020 
3021 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3022 
3023 	for (i = 0; i < h->nr_cmds; i++) {
3024 		struct CommandList *c = h->cmd_pool + i;
3025 		int refcount = atomic_inc_return(&c->refcount);
3026 
3027 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028 			unsigned long flags;
3029 
3030 			/*
3031 			 * Mark the target command as having a reset pending,
3032 			 * then lock a lock so that the command cannot complete
3033 			 * while we're considering it.  If the command is not
3034 			 * idle then count it; otherwise revoke the event.
3035 			 */
3036 			c->reset_pending = dev;
3037 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3038 			if (!hpsa_is_cmd_idle(c))
3039 				atomic_inc(&dev->reset_cmds_out);
3040 			else
3041 				c->reset_pending = NULL;
3042 			spin_unlock_irqrestore(&h->lock, flags);
3043 		}
3044 
3045 		cmd_free(h, c);
3046 	}
3047 
3048 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049 	if (!rc)
3050 		wait_event(h->event_sync_wait_queue,
3051 			atomic_read(&dev->reset_cmds_out) == 0 ||
3052 			lockup_detected(h));
3053 
3054 	if (unlikely(lockup_detected(h))) {
3055 		dev_warn(&h->pdev->dev,
3056 			 "Controller lockup detected during reset wait\n");
3057 		rc = -ENODEV;
3058 	}
3059 
3060 	if (unlikely(rc))
3061 		atomic_set(&dev->reset_cmds_out, 0);
3062 
3063 	mutex_unlock(&h->reset_mutex);
3064 	return rc;
3065 }
3066 
3067 static void hpsa_get_raid_level(struct ctlr_info *h,
3068 	unsigned char *scsi3addr, unsigned char *raid_level)
3069 {
3070 	int rc;
3071 	unsigned char *buf;
3072 
3073 	*raid_level = RAID_UNKNOWN;
3074 	buf = kzalloc(64, GFP_KERNEL);
3075 	if (!buf)
3076 		return;
3077 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078 	if (rc == 0)
3079 		*raid_level = buf[8];
3080 	if (*raid_level > RAID_UNKNOWN)
3081 		*raid_level = RAID_UNKNOWN;
3082 	kfree(buf);
3083 	return;
3084 }
3085 
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089 				struct raid_map_data *map_buff)
3090 {
3091 	struct raid_map_disk_data *dd = &map_buff->data[0];
3092 	int map, row, col;
3093 	u16 map_cnt, row_cnt, disks_per_row;
3094 
3095 	if (rc != 0)
3096 		return;
3097 
3098 	/* Show details only if debugging has been activated. */
3099 	if (h->raid_offload_debug < 2)
3100 		return;
3101 
3102 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3103 				le32_to_cpu(map_buff->structure_size));
3104 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105 			le32_to_cpu(map_buff->volume_blk_size));
3106 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107 			le64_to_cpu(map_buff->volume_blk_cnt));
3108 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109 			map_buff->phys_blk_shift);
3110 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111 			map_buff->parity_rotation_shift);
3112 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3113 			le16_to_cpu(map_buff->strip_size));
3114 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115 			le64_to_cpu(map_buff->disk_starting_blk));
3116 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117 			le64_to_cpu(map_buff->disk_blk_cnt));
3118 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119 			le16_to_cpu(map_buff->data_disks_per_row));
3120 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121 			le16_to_cpu(map_buff->metadata_disks_per_row));
3122 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123 			le16_to_cpu(map_buff->row_cnt));
3124 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125 			le16_to_cpu(map_buff->layout_map_count));
3126 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127 			le16_to_cpu(map_buff->flags));
3128 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129 			le16_to_cpu(map_buff->flags) &
3130 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3131 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3132 			le16_to_cpu(map_buff->dekindex));
3133 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134 	for (map = 0; map < map_cnt; map++) {
3135 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3136 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3137 		for (row = 0; row < row_cnt; row++) {
3138 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3139 			disks_per_row =
3140 				le16_to_cpu(map_buff->data_disks_per_row);
3141 			for (col = 0; col < disks_per_row; col++, dd++)
3142 				dev_info(&h->pdev->dev,
3143 					"    D%02u: h=0x%04x xor=%u,%u\n",
3144 					col, dd->ioaccel_handle,
3145 					dd->xor_mult[0], dd->xor_mult[1]);
3146 			disks_per_row =
3147 				le16_to_cpu(map_buff->metadata_disks_per_row);
3148 			for (col = 0; col < disks_per_row; col++, dd++)
3149 				dev_info(&h->pdev->dev,
3150 					"    M%02u: h=0x%04x xor=%u,%u\n",
3151 					col, dd->ioaccel_handle,
3152 					dd->xor_mult[0], dd->xor_mult[1]);
3153 		}
3154 	}
3155 }
3156 #else
3157 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158 			__attribute__((unused)) int rc,
3159 			__attribute__((unused)) struct raid_map_data *map_buff)
3160 {
3161 }
3162 #endif
3163 
3164 static int hpsa_get_raid_map(struct ctlr_info *h,
3165 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3166 {
3167 	int rc = 0;
3168 	struct CommandList *c;
3169 	struct ErrorInfo *ei;
3170 
3171 	c = cmd_alloc(h);
3172 
3173 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174 			sizeof(this_device->raid_map), 0,
3175 			scsi3addr, TYPE_CMD)) {
3176 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177 		cmd_free(h, c);
3178 		return -1;
3179 	}
3180 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182 	if (rc)
3183 		goto out;
3184 	ei = c->err_info;
3185 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186 		hpsa_scsi_interpret_error(h, c);
3187 		rc = -1;
3188 		goto out;
3189 	}
3190 	cmd_free(h, c);
3191 
3192 	/* @todo in the future, dynamically allocate RAID map memory */
3193 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3194 				sizeof(this_device->raid_map)) {
3195 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196 		rc = -1;
3197 	}
3198 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199 	return rc;
3200 out:
3201 	cmd_free(h, c);
3202 	return rc;
3203 }
3204 
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206 		unsigned char scsi3addr[], u16 bmic_device_index,
3207 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3208 {
3209 	int rc = IO_OK;
3210 	struct CommandList *c;
3211 	struct ErrorInfo *ei;
3212 
3213 	c = cmd_alloc(h);
3214 
3215 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216 		0, RAID_CTLR_LUNID, TYPE_CMD);
3217 	if (rc)
3218 		goto out;
3219 
3220 	c->Request.CDB[2] = bmic_device_index & 0xff;
3221 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3222 
3223 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225 	if (rc)
3226 		goto out;
3227 	ei = c->err_info;
3228 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229 		hpsa_scsi_interpret_error(h, c);
3230 		rc = -1;
3231 	}
3232 out:
3233 	cmd_free(h, c);
3234 	return rc;
3235 }
3236 
3237 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238 	struct bmic_identify_controller *buf, size_t bufsize)
3239 {
3240 	int rc = IO_OK;
3241 	struct CommandList *c;
3242 	struct ErrorInfo *ei;
3243 
3244 	c = cmd_alloc(h);
3245 
3246 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247 		0, RAID_CTLR_LUNID, TYPE_CMD);
3248 	if (rc)
3249 		goto out;
3250 
3251 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253 	if (rc)
3254 		goto out;
3255 	ei = c->err_info;
3256 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257 		hpsa_scsi_interpret_error(h, c);
3258 		rc = -1;
3259 	}
3260 out:
3261 	cmd_free(h, c);
3262 	return rc;
3263 }
3264 
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266 		unsigned char scsi3addr[], u16 bmic_device_index,
3267 		struct bmic_identify_physical_device *buf, size_t bufsize)
3268 {
3269 	int rc = IO_OK;
3270 	struct CommandList *c;
3271 	struct ErrorInfo *ei;
3272 
3273 	c = cmd_alloc(h);
3274 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275 		0, RAID_CTLR_LUNID, TYPE_CMD);
3276 	if (rc)
3277 		goto out;
3278 
3279 	c->Request.CDB[2] = bmic_device_index & 0xff;
3280 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3281 
3282 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283 						DEFAULT_TIMEOUT);
3284 	ei = c->err_info;
3285 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286 		hpsa_scsi_interpret_error(h, c);
3287 		rc = -1;
3288 	}
3289 out:
3290 	cmd_free(h, c);
3291 
3292 	return rc;
3293 }
3294 
3295 /*
3296  * get enclosure information
3297  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299  * Uses id_physical_device to determine the box_index.
3300  */
3301 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302 			unsigned char *scsi3addr,
3303 			struct ReportExtendedLUNdata *rlep, int rle_index,
3304 			struct hpsa_scsi_dev_t *encl_dev)
3305 {
3306 	int rc = -1;
3307 	struct CommandList *c = NULL;
3308 	struct ErrorInfo *ei = NULL;
3309 	struct bmic_sense_storage_box_params *bssbp = NULL;
3310 	struct bmic_identify_physical_device *id_phys = NULL;
3311 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312 	u16 bmic_device_index = 0;
3313 
3314 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3315 
3316 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317 		rc = IO_OK;
3318 		goto out;
3319 	}
3320 
3321 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322 	if (!bssbp)
3323 		goto out;
3324 
3325 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326 	if (!id_phys)
3327 		goto out;
3328 
3329 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330 						id_phys, sizeof(*id_phys));
3331 	if (rc) {
3332 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333 			__func__, encl_dev->external, bmic_device_index);
3334 		goto out;
3335 	}
3336 
3337 	c = cmd_alloc(h);
3338 
3339 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3341 
3342 	if (rc)
3343 		goto out;
3344 
3345 	if (id_phys->phys_connector[1] == 'E')
3346 		c->Request.CDB[5] = id_phys->box_index;
3347 	else
3348 		c->Request.CDB[5] = 0;
3349 
3350 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351 						DEFAULT_TIMEOUT);
3352 	if (rc)
3353 		goto out;
3354 
3355 	ei = c->err_info;
3356 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357 		rc = -1;
3358 		goto out;
3359 	}
3360 
3361 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3364 
3365 	rc = IO_OK;
3366 out:
3367 	kfree(bssbp);
3368 	kfree(id_phys);
3369 
3370 	if (c)
3371 		cmd_free(h, c);
3372 
3373 	if (rc != IO_OK)
3374 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375 			"Error, could not get enclosure information\n");
3376 }
3377 
3378 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379 						unsigned char *scsi3addr)
3380 {
3381 	struct ReportExtendedLUNdata *physdev;
3382 	u32 nphysicals;
3383 	u64 sa = 0;
3384 	int i;
3385 
3386 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387 	if (!physdev)
3388 		return 0;
3389 
3390 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392 		kfree(physdev);
3393 		return 0;
3394 	}
3395 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3396 
3397 	for (i = 0; i < nphysicals; i++)
3398 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400 			break;
3401 		}
3402 
3403 	kfree(physdev);
3404 
3405 	return sa;
3406 }
3407 
3408 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409 					struct hpsa_scsi_dev_t *dev)
3410 {
3411 	int rc;
3412 	u64 sa = 0;
3413 
3414 	if (is_hba_lunid(scsi3addr)) {
3415 		struct bmic_sense_subsystem_info *ssi;
3416 
3417 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418 		if (ssi == NULL) {
3419 			dev_warn(&h->pdev->dev,
3420 				"%s: out of memory\n", __func__);
3421 			return;
3422 		}
3423 
3424 		rc = hpsa_bmic_sense_subsystem_information(h,
3425 					scsi3addr, 0, ssi, sizeof(*ssi));
3426 		if (rc == 0) {
3427 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428 			h->sas_address = sa;
3429 		}
3430 
3431 		kfree(ssi);
3432 	} else
3433 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3434 
3435 	dev->sas_address = sa;
3436 }
3437 
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440 	unsigned char scsi3addr[], u8 page)
3441 {
3442 	int rc;
3443 	int i;
3444 	int pages;
3445 	unsigned char *buf, bufsize;
3446 
3447 	buf = kzalloc(256, GFP_KERNEL);
3448 	if (!buf)
3449 		return 0;
3450 
3451 	/* Get the size of the page list first */
3452 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454 				buf, HPSA_VPD_HEADER_SZ);
3455 	if (rc != 0)
3456 		goto exit_unsupported;
3457 	pages = buf[3];
3458 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3460 	else
3461 		bufsize = 255;
3462 
3463 	/* Get the whole VPD page list */
3464 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466 				buf, bufsize);
3467 	if (rc != 0)
3468 		goto exit_unsupported;
3469 
3470 	pages = buf[3];
3471 	for (i = 1; i <= pages; i++)
3472 		if (buf[3 + i] == page)
3473 			goto exit_supported;
3474 exit_unsupported:
3475 	kfree(buf);
3476 	return 0;
3477 exit_supported:
3478 	kfree(buf);
3479 	return 1;
3480 }
3481 
3482 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3484 {
3485 	int rc;
3486 	unsigned char *buf;
3487 	u8 ioaccel_status;
3488 
3489 	this_device->offload_config = 0;
3490 	this_device->offload_enabled = 0;
3491 	this_device->offload_to_be_enabled = 0;
3492 
3493 	buf = kzalloc(64, GFP_KERNEL);
3494 	if (!buf)
3495 		return;
3496 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497 		goto out;
3498 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500 	if (rc != 0)
3501 		goto out;
3502 
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507 	this_device->offload_config =
3508 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509 	if (this_device->offload_config) {
3510 		this_device->offload_enabled =
3511 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513 			this_device->offload_enabled = 0;
3514 	}
3515 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3516 out:
3517 	kfree(buf);
3518 	return;
3519 }
3520 
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523 	unsigned char *device_id, int index, int buflen)
3524 {
3525 	int rc;
3526 	unsigned char *buf;
3527 
3528 	if (buflen > 16)
3529 		buflen = 16;
3530 	buf = kzalloc(64, GFP_KERNEL);
3531 	if (!buf)
3532 		return -ENOMEM;
3533 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534 	if (rc == 0)
3535 		memcpy(device_id, &buf[index], buflen);
3536 
3537 	kfree(buf);
3538 
3539 	return rc != 0;
3540 }
3541 
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543 		void *buf, int bufsize,
3544 		int extended_response)
3545 {
3546 	int rc = IO_OK;
3547 	struct CommandList *c;
3548 	unsigned char scsi3addr[8];
3549 	struct ErrorInfo *ei;
3550 
3551 	c = cmd_alloc(h);
3552 
3553 	/* address the controller */
3554 	memset(scsi3addr, 0, sizeof(scsi3addr));
3555 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557 		rc = -1;
3558 		goto out;
3559 	}
3560 	if (extended_response)
3561 		c->Request.CDB[1] = extended_response;
3562 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564 	if (rc)
3565 		goto out;
3566 	ei = c->err_info;
3567 	if (ei->CommandStatus != 0 &&
3568 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569 		hpsa_scsi_interpret_error(h, c);
3570 		rc = -1;
3571 	} else {
3572 		struct ReportLUNdata *rld = buf;
3573 
3574 		if (rld->extended_response_flag != extended_response) {
3575 			dev_err(&h->pdev->dev,
3576 				"report luns requested format %u, got %u\n",
3577 				extended_response,
3578 				rld->extended_response_flag);
3579 			rc = -1;
3580 		}
3581 	}
3582 out:
3583 	cmd_free(h, c);
3584 	return rc;
3585 }
3586 
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588 		struct ReportExtendedLUNdata *buf, int bufsize)
3589 {
3590 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591 						HPSA_REPORT_PHYS_EXTENDED);
3592 }
3593 
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595 		struct ReportLUNdata *buf, int bufsize)
3596 {
3597 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3598 }
3599 
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601 	int bus, int target, int lun)
3602 {
3603 	device->bus = bus;
3604 	device->target = target;
3605 	device->lun = lun;
3606 }
3607 
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info *h,
3610 					unsigned char scsi3addr[])
3611 {
3612 	int rc;
3613 	int status;
3614 	int size;
3615 	unsigned char *buf;
3616 
3617 	buf = kzalloc(64, GFP_KERNEL);
3618 	if (!buf)
3619 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3620 
3621 	/* Does controller have VPD for logical volume status? */
3622 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623 		goto exit_failed;
3624 
3625 	/* Get the size of the VPD return buffer */
3626 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627 					buf, HPSA_VPD_HEADER_SZ);
3628 	if (rc != 0)
3629 		goto exit_failed;
3630 	size = buf[3];
3631 
3632 	/* Now get the whole VPD buffer */
3633 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634 					buf, size + HPSA_VPD_HEADER_SZ);
3635 	if (rc != 0)
3636 		goto exit_failed;
3637 	status = buf[4]; /* status byte */
3638 
3639 	kfree(buf);
3640 	return status;
3641 exit_failed:
3642 	kfree(buf);
3643 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3644 }
3645 
3646 /* Determine offline status of a volume.
3647  * Return either:
3648  *  0 (not offline)
3649  *  0xff (offline for unknown reasons)
3650  *  # (integer code indicating one of several NOT READY states
3651  *     describing why a volume is to be kept offline)
3652  */
3653 static int hpsa_volume_offline(struct ctlr_info *h,
3654 					unsigned char scsi3addr[])
3655 {
3656 	struct CommandList *c;
3657 	unsigned char *sense;
3658 	u8 sense_key, asc, ascq;
3659 	int sense_len;
3660 	int rc, ldstat = 0;
3661 	u16 cmd_status;
3662 	u8 scsi_status;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3666 
3667 	c = cmd_alloc(h);
3668 
3669 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671 					DEFAULT_TIMEOUT);
3672 	if (rc) {
3673 		cmd_free(h, c);
3674 		return 0;
3675 	}
3676 	sense = c->err_info->SenseInfo;
3677 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678 		sense_len = sizeof(c->err_info->SenseInfo);
3679 	else
3680 		sense_len = c->err_info->SenseLen;
3681 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682 	cmd_status = c->err_info->CommandStatus;
3683 	scsi_status = c->err_info->ScsiStatus;
3684 	cmd_free(h, c);
3685 	/* Is the volume 'not ready'? */
3686 	if (cmd_status != CMD_TARGET_STATUS ||
3687 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3688 		sense_key != NOT_READY ||
3689 		asc != ASC_LUN_NOT_READY)  {
3690 		return 0;
3691 	}
3692 
3693 	/* Determine the reason for not ready state */
3694 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3695 
3696 	/* Keep volume offline in certain cases: */
3697 	switch (ldstat) {
3698 	case HPSA_LV_UNDERGOING_ERASE:
3699 	case HPSA_LV_NOT_AVAILABLE:
3700 	case HPSA_LV_UNDERGOING_RPI:
3701 	case HPSA_LV_PENDING_RPI:
3702 	case HPSA_LV_ENCRYPTED_NO_KEY:
3703 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3705 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707 		return ldstat;
3708 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709 		/* If VPD status page isn't available,
3710 		 * use ASC/ASCQ to determine state
3711 		 */
3712 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714 			return ldstat;
3715 		break;
3716 	default:
3717 		break;
3718 	}
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Find out if a logical device supports aborts by simply trying one.
3724  * Smart Array may claim not to support aborts on logical drives, but
3725  * if a MSA2000 * is connected, the drives on that will be presented
3726  * by the Smart Array as logical drives, and aborts may be sent to
3727  * those devices successfully.  So the simplest way to find out is
3728  * to simply try an abort and see how the device responds.
3729  */
3730 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731 					unsigned char *scsi3addr)
3732 {
3733 	struct CommandList *c;
3734 	struct ErrorInfo *ei;
3735 	int rc = 0;
3736 
3737 	u64 tag = (u64) -1; /* bogus tag */
3738 
3739 	/* Assume that physical devices support aborts */
3740 	if (!is_logical_dev_addr_mode(scsi3addr))
3741 		return 1;
3742 
3743 	c = cmd_alloc(h);
3744 
3745 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747 					DEFAULT_TIMEOUT);
3748 	/* no unmap needed here because no data xfer. */
3749 	ei = c->err_info;
3750 	switch (ei->CommandStatus) {
3751 	case CMD_INVALID:
3752 		rc = 0;
3753 		break;
3754 	case CMD_UNABORTABLE:
3755 	case CMD_ABORT_FAILED:
3756 		rc = 1;
3757 		break;
3758 	case CMD_TMF_STATUS:
3759 		rc = hpsa_evaluate_tmf_status(h, c);
3760 		break;
3761 	default:
3762 		rc = 0;
3763 		break;
3764 	}
3765 	cmd_free(h, c);
3766 	return rc;
3767 }
3768 
3769 static int hpsa_update_device_info(struct ctlr_info *h,
3770 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771 	unsigned char *is_OBDR_device)
3772 {
3773 
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3778 
3779 	unsigned char *inq_buff;
3780 	unsigned char *obdr_sig;
3781 	int rc = 0;
3782 
3783 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784 	if (!inq_buff) {
3785 		rc = -ENOMEM;
3786 		goto bail_out;
3787 	}
3788 
3789 	/* Do an inquiry to the device to see what it is. */
3790 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792 		/* Inquiry failed (msg printed already) */
3793 		dev_err(&h->pdev->dev,
3794 			"hpsa_update_device_info: inquiry failed\n");
3795 		rc = -EIO;
3796 		goto bail_out;
3797 	}
3798 
3799 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3801 
3802 	this_device->devtype = (inq_buff[0] & 0x1f);
3803 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3804 	memcpy(this_device->vendor, &inq_buff[8],
3805 		sizeof(this_device->vendor));
3806 	memcpy(this_device->model, &inq_buff[16],
3807 		sizeof(this_device->model));
3808 	memset(this_device->device_id, 0,
3809 		sizeof(this_device->device_id));
3810 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811 		sizeof(this_device->device_id));
3812 
3813 	if ((this_device->devtype == TYPE_DISK ||
3814 		this_device->devtype == TYPE_ZBC) &&
3815 		is_logical_dev_addr_mode(scsi3addr)) {
3816 		int volume_offline;
3817 
3818 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3822 		if (volume_offline < 0 || volume_offline > 0xff)
3823 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824 		this_device->volume_offline = volume_offline & 0xff;
3825 	} else {
3826 		this_device->raid_level = RAID_UNKNOWN;
3827 		this_device->offload_config = 0;
3828 		this_device->offload_enabled = 0;
3829 		this_device->offload_to_be_enabled = 0;
3830 		this_device->hba_ioaccel_enabled = 0;
3831 		this_device->volume_offline = 0;
3832 		this_device->queue_depth = h->nr_cmds;
3833 	}
3834 
3835 	if (is_OBDR_device) {
3836 		/* See if this is a One-Button-Disaster-Recovery device
3837 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3838 		 */
3839 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3842 						OBDR_SIG_LEN) == 0);
3843 	}
3844 	kfree(inq_buff);
3845 	return 0;
3846 
3847 bail_out:
3848 	kfree(inq_buff);
3849 	return rc;
3850 }
3851 
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3854 {
3855 	unsigned long flags;
3856 	int rc, entry;
3857 	/*
3858 	 * See if this device supports aborts.  If we already know
3859 	 * the device, we already know if it supports aborts, otherwise
3860 	 * we have to find out if it supports aborts by trying one.
3861 	 */
3862 	spin_lock_irqsave(&h->devlock, flags);
3863 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865 		entry >= 0 && entry < h->ndevices) {
3866 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3867 		spin_unlock_irqrestore(&h->devlock, flags);
3868 	} else {
3869 		spin_unlock_irqrestore(&h->devlock, flags);
3870 		dev->supports_aborts =
3871 				hpsa_device_supports_aborts(h, scsi3addr);
3872 		if (dev->supports_aborts < 0)
3873 			dev->supports_aborts = 0;
3874 	}
3875 }
3876 
3877 /*
3878  * Helper function to assign bus, target, lun mapping of devices.
3879  * Logical drive target and lun are assigned at this time, but
3880  * physical device lun and target assignment are deferred (assigned
3881  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3882 */
3883 static void figure_bus_target_lun(struct ctlr_info *h,
3884 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3885 {
3886 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3887 
3888 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889 		/* physical device, target and lun filled in later */
3890 		if (is_hba_lunid(lunaddrbytes))
3891 			hpsa_set_bus_target_lun(device,
3892 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893 		else
3894 			/* defer target, lun assignment for physical devices */
3895 			hpsa_set_bus_target_lun(device,
3896 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897 		return;
3898 	}
3899 	/* It's a logical device */
3900 	if (device->external) {
3901 		hpsa_set_bus_target_lun(device,
3902 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903 			lunid & 0x00ff);
3904 		return;
3905 	}
3906 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907 				0, lunid & 0x3fff);
3908 }
3909 
3910 
3911 /*
3912  * Get address of physical disk used for an ioaccel2 mode command:
3913  *	1. Extract ioaccel2 handle from the command.
3914  *	2. Find a matching ioaccel2 handle from list of physical disks.
3915  *	3. Return:
3916  *		1 and set scsi3addr to address of matching physical
3917  *		0 if no matching physical disk was found.
3918  */
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3921 {
3922 	struct io_accel2_cmd *c2 =
3923 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924 	unsigned long flags;
3925 	int i;
3926 
3927 	spin_lock_irqsave(&h->devlock, flags);
3928 	for (i = 0; i < h->ndevices; i++)
3929 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931 				sizeof(h->dev[i]->scsi3addr));
3932 			spin_unlock_irqrestore(&h->devlock, flags);
3933 			return 1;
3934 		}
3935 	spin_unlock_irqrestore(&h->devlock, flags);
3936 	return 0;
3937 }
3938 
3939 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940 	int i, int nphysicals, int nlocal_logicals)
3941 {
3942 	/* In report logicals, local logicals are listed first,
3943 	* then any externals.
3944 	*/
3945 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3946 
3947 	if (i == raid_ctlr_position)
3948 		return 0;
3949 
3950 	if (i < logicals_start)
3951 		return 0;
3952 
3953 	/* i is in logicals range, but still within local logicals */
3954 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955 		return 0;
3956 
3957 	return 1; /* it's an external lun */
3958 }
3959 
3960 /*
3961  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3962  * logdev.  The number of luns in physdev and logdev are returned in
3963  * *nphysicals and *nlogicals, respectively.
3964  * Returns 0 on success, -1 otherwise.
3965  */
3966 static int hpsa_gather_lun_info(struct ctlr_info *h,
3967 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968 	struct ReportLUNdata *logdev, u32 *nlogicals)
3969 {
3970 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972 		return -1;
3973 	}
3974 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978 		*nphysicals = HPSA_MAX_PHYS_LUN;
3979 	}
3980 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982 		return -1;
3983 	}
3984 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985 	/* Reject Logicals in excess of our max capability. */
3986 	if (*nlogicals > HPSA_MAX_LUN) {
3987 		dev_warn(&h->pdev->dev,
3988 			"maximum logical LUNs (%d) exceeded.  "
3989 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3990 			*nlogicals - HPSA_MAX_LUN);
3991 			*nlogicals = HPSA_MAX_LUN;
3992 	}
3993 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994 		dev_warn(&h->pdev->dev,
3995 			"maximum logical + physical LUNs (%d) exceeded. "
3996 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3999 	}
4000 	return 0;
4001 }
4002 
4003 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004 	int i, int nphysicals, int nlogicals,
4005 	struct ReportExtendedLUNdata *physdev_list,
4006 	struct ReportLUNdata *logdev_list)
4007 {
4008 	/* Helper function, figure out where the LUN ID info is coming from
4009 	 * given index i, lists of physical and logical devices, where in
4010 	 * the list the raid controller is supposed to appear (first or last)
4011 	 */
4012 
4013 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4015 
4016 	if (i == raid_ctlr_position)
4017 		return RAID_CTLR_LUNID;
4018 
4019 	if (i < logicals_start)
4020 		return &physdev_list->LUN[i -
4021 				(raid_ctlr_position == 0)].lunid[0];
4022 
4023 	if (i < last_device)
4024 		return &logdev_list->LUN[i - nphysicals -
4025 			(raid_ctlr_position == 0)][0];
4026 	BUG();
4027 	return NULL;
4028 }
4029 
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032 		struct hpsa_scsi_dev_t *dev,
4033 		struct ReportExtendedLUNdata *rlep, int rle_index,
4034 		struct bmic_identify_physical_device *id_phys)
4035 {
4036 	int rc;
4037 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4038 
4039 	dev->ioaccel_handle = rle->ioaccel_handle;
4040 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041 		dev->hba_ioaccel_enabled = 1;
4042 	memset(id_phys, 0, sizeof(*id_phys));
4043 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045 			sizeof(*id_phys));
4046 	if (!rc)
4047 		/* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4050 		dev->queue_depth =
4051 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4052 				DRIVE_CMDS_RESERVED_FOR_FW;
4053 	else
4054 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4055 }
4056 
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058 	struct ReportExtendedLUNdata *rlep, int rle_index,
4059 	struct bmic_identify_physical_device *id_phys)
4060 {
4061 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4062 
4063 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064 		this_device->hba_ioaccel_enabled = 1;
4065 
4066 	memcpy(&this_device->active_path_index,
4067 		&id_phys->active_path_number,
4068 		sizeof(this_device->active_path_index));
4069 	memcpy(&this_device->path_map,
4070 		&id_phys->redundant_path_present_map,
4071 		sizeof(this_device->path_map));
4072 	memcpy(&this_device->box,
4073 		&id_phys->alternate_paths_phys_box_on_port,
4074 		sizeof(this_device->box));
4075 	memcpy(&this_device->phys_connector,
4076 		&id_phys->alternate_paths_phys_connector,
4077 		sizeof(this_device->phys_connector));
4078 	memcpy(&this_device->bay,
4079 		&id_phys->phys_bay_in_box,
4080 		sizeof(this_device->bay));
4081 }
4082 
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085 	struct bmic_identify_controller *id_ctlr,
4086 	u32 *nlocals)
4087 {
4088 	int rc;
4089 
4090 	if (!id_ctlr) {
4091 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092 			__func__);
4093 		return -ENOMEM;
4094 	}
4095 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4096 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097 	if (!rc)
4098 		if (id_ctlr->configured_logical_drive_count < 256)
4099 			*nlocals = id_ctlr->configured_logical_drive_count;
4100 		else
4101 			*nlocals = le16_to_cpu(
4102 					id_ctlr->extended_logical_unit_count);
4103 	else
4104 		*nlocals = -1;
4105 	return rc;
4106 }
4107 
4108 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4109 {
4110 	struct bmic_identify_physical_device *id_phys;
4111 	bool is_spare = false;
4112 	int rc;
4113 
4114 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4115 	if (!id_phys)
4116 		return false;
4117 
4118 	rc = hpsa_bmic_id_physical_device(h,
4119 					lunaddrbytes,
4120 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4121 					id_phys, sizeof(*id_phys));
4122 	if (rc == 0)
4123 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4124 
4125 	kfree(id_phys);
4126 	return is_spare;
4127 }
4128 
4129 #define RPL_DEV_FLAG_NON_DISK                           0x1
4130 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4131 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4132 
4133 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4134 
4135 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4136 				struct ext_report_lun_entry *rle)
4137 {
4138 	u8 device_flags;
4139 	u8 device_type;
4140 
4141 	if (!MASKED_DEVICE(lunaddrbytes))
4142 		return false;
4143 
4144 	device_flags = rle->device_flags;
4145 	device_type = rle->device_type;
4146 
4147 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4148 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4149 			return false;
4150 		return true;
4151 	}
4152 
4153 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4154 		return false;
4155 
4156 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4157 		return false;
4158 
4159 	/*
4160 	 * Spares may be spun down, we do not want to
4161 	 * do an Inquiry to a RAID set spare drive as
4162 	 * that would have them spun up, that is a
4163 	 * performance hit because I/O to the RAID device
4164 	 * stops while the spin up occurs which can take
4165 	 * over 50 seconds.
4166 	 */
4167 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4168 		return true;
4169 
4170 	return false;
4171 }
4172 
4173 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4174 {
4175 	/* the idea here is we could get notified
4176 	 * that some devices have changed, so we do a report
4177 	 * physical luns and report logical luns cmd, and adjust
4178 	 * our list of devices accordingly.
4179 	 *
4180 	 * The scsi3addr's of devices won't change so long as the
4181 	 * adapter is not reset.  That means we can rescan and
4182 	 * tell which devices we already know about, vs. new
4183 	 * devices, vs.  disappearing devices.
4184 	 */
4185 	struct ReportExtendedLUNdata *physdev_list = NULL;
4186 	struct ReportLUNdata *logdev_list = NULL;
4187 	struct bmic_identify_physical_device *id_phys = NULL;
4188 	struct bmic_identify_controller *id_ctlr = NULL;
4189 	u32 nphysicals = 0;
4190 	u32 nlogicals = 0;
4191 	u32 nlocal_logicals = 0;
4192 	u32 ndev_allocated = 0;
4193 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4194 	int ncurrent = 0;
4195 	int i, n_ext_target_devs, ndevs_to_allocate;
4196 	int raid_ctlr_position;
4197 	bool physical_device;
4198 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4199 
4200 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4201 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4202 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4203 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4204 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4205 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4206 
4207 	if (!currentsd || !physdev_list || !logdev_list ||
4208 		!tmpdevice || !id_phys || !id_ctlr) {
4209 		dev_err(&h->pdev->dev, "out of memory\n");
4210 		goto out;
4211 	}
4212 	memset(lunzerobits, 0, sizeof(lunzerobits));
4213 
4214 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4215 
4216 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4217 			logdev_list, &nlogicals)) {
4218 		h->drv_req_rescan = 1;
4219 		goto out;
4220 	}
4221 
4222 	/* Set number of local logicals (non PTRAID) */
4223 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4224 		dev_warn(&h->pdev->dev,
4225 			"%s: Can't determine number of local logical devices.\n",
4226 			__func__);
4227 	}
4228 
4229 	/* We might see up to the maximum number of logical and physical disks
4230 	 * plus external target devices, and a device for the local RAID
4231 	 * controller.
4232 	 */
4233 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4234 
4235 	/* Allocate the per device structures */
4236 	for (i = 0; i < ndevs_to_allocate; i++) {
4237 		if (i >= HPSA_MAX_DEVICES) {
4238 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4239 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4240 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4241 			break;
4242 		}
4243 
4244 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4245 		if (!currentsd[i]) {
4246 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4247 				__FILE__, __LINE__);
4248 			h->drv_req_rescan = 1;
4249 			goto out;
4250 		}
4251 		ndev_allocated++;
4252 	}
4253 
4254 	if (is_scsi_rev_5(h))
4255 		raid_ctlr_position = 0;
4256 	else
4257 		raid_ctlr_position = nphysicals + nlogicals;
4258 
4259 	/* adjust our table of devices */
4260 	n_ext_target_devs = 0;
4261 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4262 		u8 *lunaddrbytes, is_OBDR = 0;
4263 		int rc = 0;
4264 		int phys_dev_index = i - (raid_ctlr_position == 0);
4265 		bool skip_device = false;
4266 
4267 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4268 
4269 		/* Figure out where the LUN ID info is coming from */
4270 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4271 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4272 
4273 		/*
4274 		 * Skip over some devices such as a spare.
4275 		 */
4276 		if (!tmpdevice->external && physical_device) {
4277 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4278 					&physdev_list->LUN[phys_dev_index]);
4279 			if (skip_device)
4280 				continue;
4281 		}
4282 
4283 		/* Get device type, vendor, model, device id */
4284 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4285 							&is_OBDR);
4286 		if (rc == -ENOMEM) {
4287 			dev_warn(&h->pdev->dev,
4288 				"Out of memory, rescan deferred.\n");
4289 			h->drv_req_rescan = 1;
4290 			goto out;
4291 		}
4292 		if (rc) {
4293 			dev_warn(&h->pdev->dev,
4294 				"Inquiry failed, skipping device.\n");
4295 			continue;
4296 		}
4297 
4298 		/* Determine if this is a lun from an external target array */
4299 		tmpdevice->external =
4300 			figure_external_status(h, raid_ctlr_position, i,
4301 						nphysicals, nlocal_logicals);
4302 
4303 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4304 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4305 		this_device = currentsd[ncurrent];
4306 
4307 		/* Turn on discovery_polling if there are ext target devices.
4308 		 * Event-based change notification is unreliable for those.
4309 		 */
4310 		if (!h->discovery_polling) {
4311 			if (tmpdevice->external) {
4312 				h->discovery_polling = 1;
4313 				dev_info(&h->pdev->dev,
4314 					"External target, activate discovery polling.\n");
4315 			}
4316 		}
4317 
4318 
4319 		*this_device = *tmpdevice;
4320 		this_device->physical_device = physical_device;
4321 
4322 		/*
4323 		 * Expose all devices except for physical devices that
4324 		 * are masked.
4325 		 */
4326 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4327 			this_device->expose_device = 0;
4328 		else
4329 			this_device->expose_device = 1;
4330 
4331 
4332 		/*
4333 		 * Get the SAS address for physical devices that are exposed.
4334 		 */
4335 		if (this_device->physical_device && this_device->expose_device)
4336 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4337 
4338 		switch (this_device->devtype) {
4339 		case TYPE_ROM:
4340 			/* We don't *really* support actual CD-ROM devices,
4341 			 * just "One Button Disaster Recovery" tape drive
4342 			 * which temporarily pretends to be a CD-ROM drive.
4343 			 * So we check that the device is really an OBDR tape
4344 			 * device by checking for "$DR-10" in bytes 43-48 of
4345 			 * the inquiry data.
4346 			 */
4347 			if (is_OBDR)
4348 				ncurrent++;
4349 			break;
4350 		case TYPE_DISK:
4351 		case TYPE_ZBC:
4352 			if (this_device->physical_device) {
4353 				/* The disk is in HBA mode. */
4354 				/* Never use RAID mapper in HBA mode. */
4355 				this_device->offload_enabled = 0;
4356 				hpsa_get_ioaccel_drive_info(h, this_device,
4357 					physdev_list, phys_dev_index, id_phys);
4358 				hpsa_get_path_info(this_device,
4359 					physdev_list, phys_dev_index, id_phys);
4360 			}
4361 			ncurrent++;
4362 			break;
4363 		case TYPE_TAPE:
4364 		case TYPE_MEDIUM_CHANGER:
4365 			ncurrent++;
4366 			break;
4367 		case TYPE_ENCLOSURE:
4368 			if (!this_device->external)
4369 				hpsa_get_enclosure_info(h, lunaddrbytes,
4370 						physdev_list, phys_dev_index,
4371 						this_device);
4372 			ncurrent++;
4373 			break;
4374 		case TYPE_RAID:
4375 			/* Only present the Smartarray HBA as a RAID controller.
4376 			 * If it's a RAID controller other than the HBA itself
4377 			 * (an external RAID controller, MSA500 or similar)
4378 			 * don't present it.
4379 			 */
4380 			if (!is_hba_lunid(lunaddrbytes))
4381 				break;
4382 			ncurrent++;
4383 			break;
4384 		default:
4385 			break;
4386 		}
4387 		if (ncurrent >= HPSA_MAX_DEVICES)
4388 			break;
4389 	}
4390 
4391 	if (h->sas_host == NULL) {
4392 		int rc = 0;
4393 
4394 		rc = hpsa_add_sas_host(h);
4395 		if (rc) {
4396 			dev_warn(&h->pdev->dev,
4397 				"Could not add sas host %d\n", rc);
4398 			goto out;
4399 		}
4400 	}
4401 
4402 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4403 out:
4404 	kfree(tmpdevice);
4405 	for (i = 0; i < ndev_allocated; i++)
4406 		kfree(currentsd[i]);
4407 	kfree(currentsd);
4408 	kfree(physdev_list);
4409 	kfree(logdev_list);
4410 	kfree(id_ctlr);
4411 	kfree(id_phys);
4412 }
4413 
4414 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4415 				   struct scatterlist *sg)
4416 {
4417 	u64 addr64 = (u64) sg_dma_address(sg);
4418 	unsigned int len = sg_dma_len(sg);
4419 
4420 	desc->Addr = cpu_to_le64(addr64);
4421 	desc->Len = cpu_to_le32(len);
4422 	desc->Ext = 0;
4423 }
4424 
4425 /*
4426  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4427  * dma mapping  and fills in the scatter gather entries of the
4428  * hpsa command, cp.
4429  */
4430 static int hpsa_scatter_gather(struct ctlr_info *h,
4431 		struct CommandList *cp,
4432 		struct scsi_cmnd *cmd)
4433 {
4434 	struct scatterlist *sg;
4435 	int use_sg, i, sg_limit, chained, last_sg;
4436 	struct SGDescriptor *curr_sg;
4437 
4438 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4439 
4440 	use_sg = scsi_dma_map(cmd);
4441 	if (use_sg < 0)
4442 		return use_sg;
4443 
4444 	if (!use_sg)
4445 		goto sglist_finished;
4446 
4447 	/*
4448 	 * If the number of entries is greater than the max for a single list,
4449 	 * then we have a chained list; we will set up all but one entry in the
4450 	 * first list (the last entry is saved for link information);
4451 	 * otherwise, we don't have a chained list and we'll set up at each of
4452 	 * the entries in the one list.
4453 	 */
4454 	curr_sg = cp->SG;
4455 	chained = use_sg > h->max_cmd_sg_entries;
4456 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4457 	last_sg = scsi_sg_count(cmd) - 1;
4458 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4459 		hpsa_set_sg_descriptor(curr_sg, sg);
4460 		curr_sg++;
4461 	}
4462 
4463 	if (chained) {
4464 		/*
4465 		 * Continue with the chained list.  Set curr_sg to the chained
4466 		 * list.  Modify the limit to the total count less the entries
4467 		 * we've already set up.  Resume the scan at the list entry
4468 		 * where the previous loop left off.
4469 		 */
4470 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4471 		sg_limit = use_sg - sg_limit;
4472 		for_each_sg(sg, sg, sg_limit, i) {
4473 			hpsa_set_sg_descriptor(curr_sg, sg);
4474 			curr_sg++;
4475 		}
4476 	}
4477 
4478 	/* Back the pointer up to the last entry and mark it as "last". */
4479 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4480 
4481 	if (use_sg + chained > h->maxSG)
4482 		h->maxSG = use_sg + chained;
4483 
4484 	if (chained) {
4485 		cp->Header.SGList = h->max_cmd_sg_entries;
4486 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4487 		if (hpsa_map_sg_chain_block(h, cp)) {
4488 			scsi_dma_unmap(cmd);
4489 			return -1;
4490 		}
4491 		return 0;
4492 	}
4493 
4494 sglist_finished:
4495 
4496 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4497 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4498 	return 0;
4499 }
4500 
4501 #define IO_ACCEL_INELIGIBLE (1)
4502 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4503 {
4504 	int is_write = 0;
4505 	u32 block;
4506 	u32 block_cnt;
4507 
4508 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4509 	switch (cdb[0]) {
4510 	case WRITE_6:
4511 	case WRITE_12:
4512 		is_write = 1;
4513 	case READ_6:
4514 	case READ_12:
4515 		if (*cdb_len == 6) {
4516 			block = get_unaligned_be16(&cdb[2]);
4517 			block_cnt = cdb[4];
4518 			if (block_cnt == 0)
4519 				block_cnt = 256;
4520 		} else {
4521 			BUG_ON(*cdb_len != 12);
4522 			block = get_unaligned_be32(&cdb[2]);
4523 			block_cnt = get_unaligned_be32(&cdb[6]);
4524 		}
4525 		if (block_cnt > 0xffff)
4526 			return IO_ACCEL_INELIGIBLE;
4527 
4528 		cdb[0] = is_write ? WRITE_10 : READ_10;
4529 		cdb[1] = 0;
4530 		cdb[2] = (u8) (block >> 24);
4531 		cdb[3] = (u8) (block >> 16);
4532 		cdb[4] = (u8) (block >> 8);
4533 		cdb[5] = (u8) (block);
4534 		cdb[6] = 0;
4535 		cdb[7] = (u8) (block_cnt >> 8);
4536 		cdb[8] = (u8) (block_cnt);
4537 		cdb[9] = 0;
4538 		*cdb_len = 10;
4539 		break;
4540 	}
4541 	return 0;
4542 }
4543 
4544 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4545 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4546 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4547 {
4548 	struct scsi_cmnd *cmd = c->scsi_cmd;
4549 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4550 	unsigned int len;
4551 	unsigned int total_len = 0;
4552 	struct scatterlist *sg;
4553 	u64 addr64;
4554 	int use_sg, i;
4555 	struct SGDescriptor *curr_sg;
4556 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4557 
4558 	/* TODO: implement chaining support */
4559 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4560 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4561 		return IO_ACCEL_INELIGIBLE;
4562 	}
4563 
4564 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4565 
4566 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4567 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4568 		return IO_ACCEL_INELIGIBLE;
4569 	}
4570 
4571 	c->cmd_type = CMD_IOACCEL1;
4572 
4573 	/* Adjust the DMA address to point to the accelerated command buffer */
4574 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4575 				(c->cmdindex * sizeof(*cp));
4576 	BUG_ON(c->busaddr & 0x0000007F);
4577 
4578 	use_sg = scsi_dma_map(cmd);
4579 	if (use_sg < 0) {
4580 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4581 		return use_sg;
4582 	}
4583 
4584 	if (use_sg) {
4585 		curr_sg = cp->SG;
4586 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4587 			addr64 = (u64) sg_dma_address(sg);
4588 			len  = sg_dma_len(sg);
4589 			total_len += len;
4590 			curr_sg->Addr = cpu_to_le64(addr64);
4591 			curr_sg->Len = cpu_to_le32(len);
4592 			curr_sg->Ext = cpu_to_le32(0);
4593 			curr_sg++;
4594 		}
4595 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4596 
4597 		switch (cmd->sc_data_direction) {
4598 		case DMA_TO_DEVICE:
4599 			control |= IOACCEL1_CONTROL_DATA_OUT;
4600 			break;
4601 		case DMA_FROM_DEVICE:
4602 			control |= IOACCEL1_CONTROL_DATA_IN;
4603 			break;
4604 		case DMA_NONE:
4605 			control |= IOACCEL1_CONTROL_NODATAXFER;
4606 			break;
4607 		default:
4608 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4609 			cmd->sc_data_direction);
4610 			BUG();
4611 			break;
4612 		}
4613 	} else {
4614 		control |= IOACCEL1_CONTROL_NODATAXFER;
4615 	}
4616 
4617 	c->Header.SGList = use_sg;
4618 	/* Fill out the command structure to submit */
4619 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4620 	cp->transfer_len = cpu_to_le32(total_len);
4621 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4622 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4623 	cp->control = cpu_to_le32(control);
4624 	memcpy(cp->CDB, cdb, cdb_len);
4625 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4626 	/* Tag was already set at init time. */
4627 	enqueue_cmd_and_start_io(h, c);
4628 	return 0;
4629 }
4630 
4631 /*
4632  * Queue a command directly to a device behind the controller using the
4633  * I/O accelerator path.
4634  */
4635 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4636 	struct CommandList *c)
4637 {
4638 	struct scsi_cmnd *cmd = c->scsi_cmd;
4639 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4640 
4641 	c->phys_disk = dev;
4642 
4643 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4644 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4645 }
4646 
4647 /*
4648  * Set encryption parameters for the ioaccel2 request
4649  */
4650 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4651 	struct CommandList *c, struct io_accel2_cmd *cp)
4652 {
4653 	struct scsi_cmnd *cmd = c->scsi_cmd;
4654 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4655 	struct raid_map_data *map = &dev->raid_map;
4656 	u64 first_block;
4657 
4658 	/* Are we doing encryption on this device */
4659 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4660 		return;
4661 	/* Set the data encryption key index. */
4662 	cp->dekindex = map->dekindex;
4663 
4664 	/* Set the encryption enable flag, encoded into direction field. */
4665 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4666 
4667 	/* Set encryption tweak values based on logical block address
4668 	 * If block size is 512, tweak value is LBA.
4669 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4670 	 */
4671 	switch (cmd->cmnd[0]) {
4672 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4673 	case WRITE_6:
4674 	case READ_6:
4675 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4676 		break;
4677 	case WRITE_10:
4678 	case READ_10:
4679 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4680 	case WRITE_12:
4681 	case READ_12:
4682 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4683 		break;
4684 	case WRITE_16:
4685 	case READ_16:
4686 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4687 		break;
4688 	default:
4689 		dev_err(&h->pdev->dev,
4690 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4691 			__func__, cmd->cmnd[0]);
4692 		BUG();
4693 		break;
4694 	}
4695 
4696 	if (le32_to_cpu(map->volume_blk_size) != 512)
4697 		first_block = first_block *
4698 				le32_to_cpu(map->volume_blk_size)/512;
4699 
4700 	cp->tweak_lower = cpu_to_le32(first_block);
4701 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4702 }
4703 
4704 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4705 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4706 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4707 {
4708 	struct scsi_cmnd *cmd = c->scsi_cmd;
4709 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4710 	struct ioaccel2_sg_element *curr_sg;
4711 	int use_sg, i;
4712 	struct scatterlist *sg;
4713 	u64 addr64;
4714 	u32 len;
4715 	u32 total_len = 0;
4716 
4717 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4718 
4719 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4720 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4721 		return IO_ACCEL_INELIGIBLE;
4722 	}
4723 
4724 	c->cmd_type = CMD_IOACCEL2;
4725 	/* Adjust the DMA address to point to the accelerated command buffer */
4726 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4727 				(c->cmdindex * sizeof(*cp));
4728 	BUG_ON(c->busaddr & 0x0000007F);
4729 
4730 	memset(cp, 0, sizeof(*cp));
4731 	cp->IU_type = IOACCEL2_IU_TYPE;
4732 
4733 	use_sg = scsi_dma_map(cmd);
4734 	if (use_sg < 0) {
4735 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4736 		return use_sg;
4737 	}
4738 
4739 	if (use_sg) {
4740 		curr_sg = cp->sg;
4741 		if (use_sg > h->ioaccel_maxsg) {
4742 			addr64 = le64_to_cpu(
4743 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4744 			curr_sg->address = cpu_to_le64(addr64);
4745 			curr_sg->length = 0;
4746 			curr_sg->reserved[0] = 0;
4747 			curr_sg->reserved[1] = 0;
4748 			curr_sg->reserved[2] = 0;
4749 			curr_sg->chain_indicator = 0x80;
4750 
4751 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4752 		}
4753 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4754 			addr64 = (u64) sg_dma_address(sg);
4755 			len  = sg_dma_len(sg);
4756 			total_len += len;
4757 			curr_sg->address = cpu_to_le64(addr64);
4758 			curr_sg->length = cpu_to_le32(len);
4759 			curr_sg->reserved[0] = 0;
4760 			curr_sg->reserved[1] = 0;
4761 			curr_sg->reserved[2] = 0;
4762 			curr_sg->chain_indicator = 0;
4763 			curr_sg++;
4764 		}
4765 
4766 		switch (cmd->sc_data_direction) {
4767 		case DMA_TO_DEVICE:
4768 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4769 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4770 			break;
4771 		case DMA_FROM_DEVICE:
4772 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4773 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4774 			break;
4775 		case DMA_NONE:
4776 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4777 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4778 			break;
4779 		default:
4780 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4781 				cmd->sc_data_direction);
4782 			BUG();
4783 			break;
4784 		}
4785 	} else {
4786 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4787 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4788 	}
4789 
4790 	/* Set encryption parameters, if necessary */
4791 	set_encrypt_ioaccel2(h, c, cp);
4792 
4793 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4794 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4795 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4796 
4797 	cp->data_len = cpu_to_le32(total_len);
4798 	cp->err_ptr = cpu_to_le64(c->busaddr +
4799 			offsetof(struct io_accel2_cmd, error_data));
4800 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4801 
4802 	/* fill in sg elements */
4803 	if (use_sg > h->ioaccel_maxsg) {
4804 		cp->sg_count = 1;
4805 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4806 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4807 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4808 			scsi_dma_unmap(cmd);
4809 			return -1;
4810 		}
4811 	} else
4812 		cp->sg_count = (u8) use_sg;
4813 
4814 	enqueue_cmd_and_start_io(h, c);
4815 	return 0;
4816 }
4817 
4818 /*
4819  * Queue a command to the correct I/O accelerator path.
4820  */
4821 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4822 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4823 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4824 {
4825 	/* Try to honor the device's queue depth */
4826 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4827 					phys_disk->queue_depth) {
4828 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4829 		return IO_ACCEL_INELIGIBLE;
4830 	}
4831 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4832 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4833 						cdb, cdb_len, scsi3addr,
4834 						phys_disk);
4835 	else
4836 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4837 						cdb, cdb_len, scsi3addr,
4838 						phys_disk);
4839 }
4840 
4841 static void raid_map_helper(struct raid_map_data *map,
4842 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4843 {
4844 	if (offload_to_mirror == 0)  {
4845 		/* use physical disk in the first mirrored group. */
4846 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4847 		return;
4848 	}
4849 	do {
4850 		/* determine mirror group that *map_index indicates */
4851 		*current_group = *map_index /
4852 			le16_to_cpu(map->data_disks_per_row);
4853 		if (offload_to_mirror == *current_group)
4854 			continue;
4855 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4856 			/* select map index from next group */
4857 			*map_index += le16_to_cpu(map->data_disks_per_row);
4858 			(*current_group)++;
4859 		} else {
4860 			/* select map index from first group */
4861 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4862 			*current_group = 0;
4863 		}
4864 	} while (offload_to_mirror != *current_group);
4865 }
4866 
4867 /*
4868  * Attempt to perform offload RAID mapping for a logical volume I/O.
4869  */
4870 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4871 	struct CommandList *c)
4872 {
4873 	struct scsi_cmnd *cmd = c->scsi_cmd;
4874 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4875 	struct raid_map_data *map = &dev->raid_map;
4876 	struct raid_map_disk_data *dd = &map->data[0];
4877 	int is_write = 0;
4878 	u32 map_index;
4879 	u64 first_block, last_block;
4880 	u32 block_cnt;
4881 	u32 blocks_per_row;
4882 	u64 first_row, last_row;
4883 	u32 first_row_offset, last_row_offset;
4884 	u32 first_column, last_column;
4885 	u64 r0_first_row, r0_last_row;
4886 	u32 r5or6_blocks_per_row;
4887 	u64 r5or6_first_row, r5or6_last_row;
4888 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4889 	u32 r5or6_first_column, r5or6_last_column;
4890 	u32 total_disks_per_row;
4891 	u32 stripesize;
4892 	u32 first_group, last_group, current_group;
4893 	u32 map_row;
4894 	u32 disk_handle;
4895 	u64 disk_block;
4896 	u32 disk_block_cnt;
4897 	u8 cdb[16];
4898 	u8 cdb_len;
4899 	u16 strip_size;
4900 #if BITS_PER_LONG == 32
4901 	u64 tmpdiv;
4902 #endif
4903 	int offload_to_mirror;
4904 
4905 	/* check for valid opcode, get LBA and block count */
4906 	switch (cmd->cmnd[0]) {
4907 	case WRITE_6:
4908 		is_write = 1;
4909 	case READ_6:
4910 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4911 		block_cnt = cmd->cmnd[4];
4912 		if (block_cnt == 0)
4913 			block_cnt = 256;
4914 		break;
4915 	case WRITE_10:
4916 		is_write = 1;
4917 	case READ_10:
4918 		first_block =
4919 			(((u64) cmd->cmnd[2]) << 24) |
4920 			(((u64) cmd->cmnd[3]) << 16) |
4921 			(((u64) cmd->cmnd[4]) << 8) |
4922 			cmd->cmnd[5];
4923 		block_cnt =
4924 			(((u32) cmd->cmnd[7]) << 8) |
4925 			cmd->cmnd[8];
4926 		break;
4927 	case WRITE_12:
4928 		is_write = 1;
4929 	case READ_12:
4930 		first_block =
4931 			(((u64) cmd->cmnd[2]) << 24) |
4932 			(((u64) cmd->cmnd[3]) << 16) |
4933 			(((u64) cmd->cmnd[4]) << 8) |
4934 			cmd->cmnd[5];
4935 		block_cnt =
4936 			(((u32) cmd->cmnd[6]) << 24) |
4937 			(((u32) cmd->cmnd[7]) << 16) |
4938 			(((u32) cmd->cmnd[8]) << 8) |
4939 		cmd->cmnd[9];
4940 		break;
4941 	case WRITE_16:
4942 		is_write = 1;
4943 	case READ_16:
4944 		first_block =
4945 			(((u64) cmd->cmnd[2]) << 56) |
4946 			(((u64) cmd->cmnd[3]) << 48) |
4947 			(((u64) cmd->cmnd[4]) << 40) |
4948 			(((u64) cmd->cmnd[5]) << 32) |
4949 			(((u64) cmd->cmnd[6]) << 24) |
4950 			(((u64) cmd->cmnd[7]) << 16) |
4951 			(((u64) cmd->cmnd[8]) << 8) |
4952 			cmd->cmnd[9];
4953 		block_cnt =
4954 			(((u32) cmd->cmnd[10]) << 24) |
4955 			(((u32) cmd->cmnd[11]) << 16) |
4956 			(((u32) cmd->cmnd[12]) << 8) |
4957 			cmd->cmnd[13];
4958 		break;
4959 	default:
4960 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4961 	}
4962 	last_block = first_block + block_cnt - 1;
4963 
4964 	/* check for write to non-RAID-0 */
4965 	if (is_write && dev->raid_level != 0)
4966 		return IO_ACCEL_INELIGIBLE;
4967 
4968 	/* check for invalid block or wraparound */
4969 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4970 		last_block < first_block)
4971 		return IO_ACCEL_INELIGIBLE;
4972 
4973 	/* calculate stripe information for the request */
4974 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4975 				le16_to_cpu(map->strip_size);
4976 	strip_size = le16_to_cpu(map->strip_size);
4977 #if BITS_PER_LONG == 32
4978 	tmpdiv = first_block;
4979 	(void) do_div(tmpdiv, blocks_per_row);
4980 	first_row = tmpdiv;
4981 	tmpdiv = last_block;
4982 	(void) do_div(tmpdiv, blocks_per_row);
4983 	last_row = tmpdiv;
4984 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4985 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4986 	tmpdiv = first_row_offset;
4987 	(void) do_div(tmpdiv, strip_size);
4988 	first_column = tmpdiv;
4989 	tmpdiv = last_row_offset;
4990 	(void) do_div(tmpdiv, strip_size);
4991 	last_column = tmpdiv;
4992 #else
4993 	first_row = first_block / blocks_per_row;
4994 	last_row = last_block / blocks_per_row;
4995 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4996 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4997 	first_column = first_row_offset / strip_size;
4998 	last_column = last_row_offset / strip_size;
4999 #endif
5000 
5001 	/* if this isn't a single row/column then give to the controller */
5002 	if ((first_row != last_row) || (first_column != last_column))
5003 		return IO_ACCEL_INELIGIBLE;
5004 
5005 	/* proceeding with driver mapping */
5006 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5007 				le16_to_cpu(map->metadata_disks_per_row);
5008 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5009 				le16_to_cpu(map->row_cnt);
5010 	map_index = (map_row * total_disks_per_row) + first_column;
5011 
5012 	switch (dev->raid_level) {
5013 	case HPSA_RAID_0:
5014 		break; /* nothing special to do */
5015 	case HPSA_RAID_1:
5016 		/* Handles load balance across RAID 1 members.
5017 		 * (2-drive R1 and R10 with even # of drives.)
5018 		 * Appropriate for SSDs, not optimal for HDDs
5019 		 */
5020 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5021 		if (dev->offload_to_mirror)
5022 			map_index += le16_to_cpu(map->data_disks_per_row);
5023 		dev->offload_to_mirror = !dev->offload_to_mirror;
5024 		break;
5025 	case HPSA_RAID_ADM:
5026 		/* Handles N-way mirrors  (R1-ADM)
5027 		 * and R10 with # of drives divisible by 3.)
5028 		 */
5029 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5030 
5031 		offload_to_mirror = dev->offload_to_mirror;
5032 		raid_map_helper(map, offload_to_mirror,
5033 				&map_index, &current_group);
5034 		/* set mirror group to use next time */
5035 		offload_to_mirror =
5036 			(offload_to_mirror >=
5037 			le16_to_cpu(map->layout_map_count) - 1)
5038 			? 0 : offload_to_mirror + 1;
5039 		dev->offload_to_mirror = offload_to_mirror;
5040 		/* Avoid direct use of dev->offload_to_mirror within this
5041 		 * function since multiple threads might simultaneously
5042 		 * increment it beyond the range of dev->layout_map_count -1.
5043 		 */
5044 		break;
5045 	case HPSA_RAID_5:
5046 	case HPSA_RAID_6:
5047 		if (le16_to_cpu(map->layout_map_count) <= 1)
5048 			break;
5049 
5050 		/* Verify first and last block are in same RAID group */
5051 		r5or6_blocks_per_row =
5052 			le16_to_cpu(map->strip_size) *
5053 			le16_to_cpu(map->data_disks_per_row);
5054 		BUG_ON(r5or6_blocks_per_row == 0);
5055 		stripesize = r5or6_blocks_per_row *
5056 			le16_to_cpu(map->layout_map_count);
5057 #if BITS_PER_LONG == 32
5058 		tmpdiv = first_block;
5059 		first_group = do_div(tmpdiv, stripesize);
5060 		tmpdiv = first_group;
5061 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5062 		first_group = tmpdiv;
5063 		tmpdiv = last_block;
5064 		last_group = do_div(tmpdiv, stripesize);
5065 		tmpdiv = last_group;
5066 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5067 		last_group = tmpdiv;
5068 #else
5069 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5070 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5071 #endif
5072 		if (first_group != last_group)
5073 			return IO_ACCEL_INELIGIBLE;
5074 
5075 		/* Verify request is in a single row of RAID 5/6 */
5076 #if BITS_PER_LONG == 32
5077 		tmpdiv = first_block;
5078 		(void) do_div(tmpdiv, stripesize);
5079 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5080 		tmpdiv = last_block;
5081 		(void) do_div(tmpdiv, stripesize);
5082 		r5or6_last_row = r0_last_row = tmpdiv;
5083 #else
5084 		first_row = r5or6_first_row = r0_first_row =
5085 						first_block / stripesize;
5086 		r5or6_last_row = r0_last_row = last_block / stripesize;
5087 #endif
5088 		if (r5or6_first_row != r5or6_last_row)
5089 			return IO_ACCEL_INELIGIBLE;
5090 
5091 
5092 		/* Verify request is in a single column */
5093 #if BITS_PER_LONG == 32
5094 		tmpdiv = first_block;
5095 		first_row_offset = do_div(tmpdiv, stripesize);
5096 		tmpdiv = first_row_offset;
5097 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5098 		r5or6_first_row_offset = first_row_offset;
5099 		tmpdiv = last_block;
5100 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5101 		tmpdiv = r5or6_last_row_offset;
5102 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5103 		tmpdiv = r5or6_first_row_offset;
5104 		(void) do_div(tmpdiv, map->strip_size);
5105 		first_column = r5or6_first_column = tmpdiv;
5106 		tmpdiv = r5or6_last_row_offset;
5107 		(void) do_div(tmpdiv, map->strip_size);
5108 		r5or6_last_column = tmpdiv;
5109 #else
5110 		first_row_offset = r5or6_first_row_offset =
5111 			(u32)((first_block % stripesize) %
5112 						r5or6_blocks_per_row);
5113 
5114 		r5or6_last_row_offset =
5115 			(u32)((last_block % stripesize) %
5116 						r5or6_blocks_per_row);
5117 
5118 		first_column = r5or6_first_column =
5119 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5120 		r5or6_last_column =
5121 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5122 #endif
5123 		if (r5or6_first_column != r5or6_last_column)
5124 			return IO_ACCEL_INELIGIBLE;
5125 
5126 		/* Request is eligible */
5127 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5128 			le16_to_cpu(map->row_cnt);
5129 
5130 		map_index = (first_group *
5131 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5132 			(map_row * total_disks_per_row) + first_column;
5133 		break;
5134 	default:
5135 		return IO_ACCEL_INELIGIBLE;
5136 	}
5137 
5138 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5139 		return IO_ACCEL_INELIGIBLE;
5140 
5141 	c->phys_disk = dev->phys_disk[map_index];
5142 	if (!c->phys_disk)
5143 		return IO_ACCEL_INELIGIBLE;
5144 
5145 	disk_handle = dd[map_index].ioaccel_handle;
5146 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5147 			first_row * le16_to_cpu(map->strip_size) +
5148 			(first_row_offset - first_column *
5149 			le16_to_cpu(map->strip_size));
5150 	disk_block_cnt = block_cnt;
5151 
5152 	/* handle differing logical/physical block sizes */
5153 	if (map->phys_blk_shift) {
5154 		disk_block <<= map->phys_blk_shift;
5155 		disk_block_cnt <<= map->phys_blk_shift;
5156 	}
5157 	BUG_ON(disk_block_cnt > 0xffff);
5158 
5159 	/* build the new CDB for the physical disk I/O */
5160 	if (disk_block > 0xffffffff) {
5161 		cdb[0] = is_write ? WRITE_16 : READ_16;
5162 		cdb[1] = 0;
5163 		cdb[2] = (u8) (disk_block >> 56);
5164 		cdb[3] = (u8) (disk_block >> 48);
5165 		cdb[4] = (u8) (disk_block >> 40);
5166 		cdb[5] = (u8) (disk_block >> 32);
5167 		cdb[6] = (u8) (disk_block >> 24);
5168 		cdb[7] = (u8) (disk_block >> 16);
5169 		cdb[8] = (u8) (disk_block >> 8);
5170 		cdb[9] = (u8) (disk_block);
5171 		cdb[10] = (u8) (disk_block_cnt >> 24);
5172 		cdb[11] = (u8) (disk_block_cnt >> 16);
5173 		cdb[12] = (u8) (disk_block_cnt >> 8);
5174 		cdb[13] = (u8) (disk_block_cnt);
5175 		cdb[14] = 0;
5176 		cdb[15] = 0;
5177 		cdb_len = 16;
5178 	} else {
5179 		cdb[0] = is_write ? WRITE_10 : READ_10;
5180 		cdb[1] = 0;
5181 		cdb[2] = (u8) (disk_block >> 24);
5182 		cdb[3] = (u8) (disk_block >> 16);
5183 		cdb[4] = (u8) (disk_block >> 8);
5184 		cdb[5] = (u8) (disk_block);
5185 		cdb[6] = 0;
5186 		cdb[7] = (u8) (disk_block_cnt >> 8);
5187 		cdb[8] = (u8) (disk_block_cnt);
5188 		cdb[9] = 0;
5189 		cdb_len = 10;
5190 	}
5191 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5192 						dev->scsi3addr,
5193 						dev->phys_disk[map_index]);
5194 }
5195 
5196 /*
5197  * Submit commands down the "normal" RAID stack path
5198  * All callers to hpsa_ciss_submit must check lockup_detected
5199  * beforehand, before (opt.) and after calling cmd_alloc
5200  */
5201 static int hpsa_ciss_submit(struct ctlr_info *h,
5202 	struct CommandList *c, struct scsi_cmnd *cmd,
5203 	unsigned char scsi3addr[])
5204 {
5205 	cmd->host_scribble = (unsigned char *) c;
5206 	c->cmd_type = CMD_SCSI;
5207 	c->scsi_cmd = cmd;
5208 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5209 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5210 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5211 
5212 	/* Fill in the request block... */
5213 
5214 	c->Request.Timeout = 0;
5215 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5216 	c->Request.CDBLen = cmd->cmd_len;
5217 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5218 	switch (cmd->sc_data_direction) {
5219 	case DMA_TO_DEVICE:
5220 		c->Request.type_attr_dir =
5221 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5222 		break;
5223 	case DMA_FROM_DEVICE:
5224 		c->Request.type_attr_dir =
5225 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5226 		break;
5227 	case DMA_NONE:
5228 		c->Request.type_attr_dir =
5229 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5230 		break;
5231 	case DMA_BIDIRECTIONAL:
5232 		/* This can happen if a buggy application does a scsi passthru
5233 		 * and sets both inlen and outlen to non-zero. ( see
5234 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5235 		 */
5236 
5237 		c->Request.type_attr_dir =
5238 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5239 		/* This is technically wrong, and hpsa controllers should
5240 		 * reject it with CMD_INVALID, which is the most correct
5241 		 * response, but non-fibre backends appear to let it
5242 		 * slide by, and give the same results as if this field
5243 		 * were set correctly.  Either way is acceptable for
5244 		 * our purposes here.
5245 		 */
5246 
5247 		break;
5248 
5249 	default:
5250 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5251 			cmd->sc_data_direction);
5252 		BUG();
5253 		break;
5254 	}
5255 
5256 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5257 		hpsa_cmd_resolve_and_free(h, c);
5258 		return SCSI_MLQUEUE_HOST_BUSY;
5259 	}
5260 	enqueue_cmd_and_start_io(h, c);
5261 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5262 	return 0;
5263 }
5264 
5265 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5266 				struct CommandList *c)
5267 {
5268 	dma_addr_t cmd_dma_handle, err_dma_handle;
5269 
5270 	/* Zero out all of commandlist except the last field, refcount */
5271 	memset(c, 0, offsetof(struct CommandList, refcount));
5272 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5273 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5274 	c->err_info = h->errinfo_pool + index;
5275 	memset(c->err_info, 0, sizeof(*c->err_info));
5276 	err_dma_handle = h->errinfo_pool_dhandle
5277 	    + index * sizeof(*c->err_info);
5278 	c->cmdindex = index;
5279 	c->busaddr = (u32) cmd_dma_handle;
5280 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5281 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5282 	c->h = h;
5283 	c->scsi_cmd = SCSI_CMD_IDLE;
5284 }
5285 
5286 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5287 {
5288 	int i;
5289 
5290 	for (i = 0; i < h->nr_cmds; i++) {
5291 		struct CommandList *c = h->cmd_pool + i;
5292 
5293 		hpsa_cmd_init(h, i, c);
5294 		atomic_set(&c->refcount, 0);
5295 	}
5296 }
5297 
5298 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5299 				struct CommandList *c)
5300 {
5301 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5302 
5303 	BUG_ON(c->cmdindex != index);
5304 
5305 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5306 	memset(c->err_info, 0, sizeof(*c->err_info));
5307 	c->busaddr = (u32) cmd_dma_handle;
5308 }
5309 
5310 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5311 		struct CommandList *c, struct scsi_cmnd *cmd,
5312 		unsigned char *scsi3addr)
5313 {
5314 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5315 	int rc = IO_ACCEL_INELIGIBLE;
5316 
5317 	cmd->host_scribble = (unsigned char *) c;
5318 
5319 	if (dev->offload_enabled) {
5320 		hpsa_cmd_init(h, c->cmdindex, c);
5321 		c->cmd_type = CMD_SCSI;
5322 		c->scsi_cmd = cmd;
5323 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5324 		if (rc < 0)     /* scsi_dma_map failed. */
5325 			rc = SCSI_MLQUEUE_HOST_BUSY;
5326 	} else if (dev->hba_ioaccel_enabled) {
5327 		hpsa_cmd_init(h, c->cmdindex, c);
5328 		c->cmd_type = CMD_SCSI;
5329 		c->scsi_cmd = cmd;
5330 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5331 		if (rc < 0)     /* scsi_dma_map failed. */
5332 			rc = SCSI_MLQUEUE_HOST_BUSY;
5333 	}
5334 	return rc;
5335 }
5336 
5337 static void hpsa_command_resubmit_worker(struct work_struct *work)
5338 {
5339 	struct scsi_cmnd *cmd;
5340 	struct hpsa_scsi_dev_t *dev;
5341 	struct CommandList *c = container_of(work, struct CommandList, work);
5342 
5343 	cmd = c->scsi_cmd;
5344 	dev = cmd->device->hostdata;
5345 	if (!dev) {
5346 		cmd->result = DID_NO_CONNECT << 16;
5347 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5348 	}
5349 	if (c->reset_pending)
5350 		return hpsa_cmd_resolve_and_free(c->h, c);
5351 	if (c->abort_pending)
5352 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5353 	if (c->cmd_type == CMD_IOACCEL2) {
5354 		struct ctlr_info *h = c->h;
5355 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5356 		int rc;
5357 
5358 		if (c2->error_data.serv_response ==
5359 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5360 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5361 			if (rc == 0)
5362 				return;
5363 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5364 				/*
5365 				 * If we get here, it means dma mapping failed.
5366 				 * Try again via scsi mid layer, which will
5367 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5368 				 */
5369 				cmd->result = DID_IMM_RETRY << 16;
5370 				return hpsa_cmd_free_and_done(h, c, cmd);
5371 			}
5372 			/* else, fall thru and resubmit down CISS path */
5373 		}
5374 	}
5375 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5376 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5377 		/*
5378 		 * If we get here, it means dma mapping failed. Try
5379 		 * again via scsi mid layer, which will then get
5380 		 * SCSI_MLQUEUE_HOST_BUSY.
5381 		 *
5382 		 * hpsa_ciss_submit will have already freed c
5383 		 * if it encountered a dma mapping failure.
5384 		 */
5385 		cmd->result = DID_IMM_RETRY << 16;
5386 		cmd->scsi_done(cmd);
5387 	}
5388 }
5389 
5390 /* Running in struct Scsi_Host->host_lock less mode */
5391 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5392 {
5393 	struct ctlr_info *h;
5394 	struct hpsa_scsi_dev_t *dev;
5395 	unsigned char scsi3addr[8];
5396 	struct CommandList *c;
5397 	int rc = 0;
5398 
5399 	/* Get the ptr to our adapter structure out of cmd->host. */
5400 	h = sdev_to_hba(cmd->device);
5401 
5402 	BUG_ON(cmd->request->tag < 0);
5403 
5404 	dev = cmd->device->hostdata;
5405 	if (!dev) {
5406 		cmd->result = NOT_READY << 16; /* host byte */
5407 		cmd->scsi_done(cmd);
5408 		return 0;
5409 	}
5410 
5411 	if (dev->removed) {
5412 		cmd->result = DID_NO_CONNECT << 16;
5413 		cmd->scsi_done(cmd);
5414 		return 0;
5415 	}
5416 
5417 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5418 
5419 	if (unlikely(lockup_detected(h))) {
5420 		cmd->result = DID_NO_CONNECT << 16;
5421 		cmd->scsi_done(cmd);
5422 		return 0;
5423 	}
5424 	c = cmd_tagged_alloc(h, cmd);
5425 
5426 	/*
5427 	 * Call alternate submit routine for I/O accelerated commands.
5428 	 * Retries always go down the normal I/O path.
5429 	 */
5430 	if (likely(cmd->retries == 0 &&
5431 		cmd->request->cmd_type == REQ_TYPE_FS &&
5432 		h->acciopath_status)) {
5433 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5434 		if (rc == 0)
5435 			return 0;
5436 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5437 			hpsa_cmd_resolve_and_free(h, c);
5438 			return SCSI_MLQUEUE_HOST_BUSY;
5439 		}
5440 	}
5441 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5442 }
5443 
5444 static void hpsa_scan_complete(struct ctlr_info *h)
5445 {
5446 	unsigned long flags;
5447 
5448 	spin_lock_irqsave(&h->scan_lock, flags);
5449 	h->scan_finished = 1;
5450 	wake_up_all(&h->scan_wait_queue);
5451 	spin_unlock_irqrestore(&h->scan_lock, flags);
5452 }
5453 
5454 static void hpsa_scan_start(struct Scsi_Host *sh)
5455 {
5456 	struct ctlr_info *h = shost_to_hba(sh);
5457 	unsigned long flags;
5458 
5459 	/*
5460 	 * Don't let rescans be initiated on a controller known to be locked
5461 	 * up.  If the controller locks up *during* a rescan, that thread is
5462 	 * probably hosed, but at least we can prevent new rescan threads from
5463 	 * piling up on a locked up controller.
5464 	 */
5465 	if (unlikely(lockup_detected(h)))
5466 		return hpsa_scan_complete(h);
5467 
5468 	/* wait until any scan already in progress is finished. */
5469 	while (1) {
5470 		spin_lock_irqsave(&h->scan_lock, flags);
5471 		if (h->scan_finished)
5472 			break;
5473 		spin_unlock_irqrestore(&h->scan_lock, flags);
5474 		wait_event(h->scan_wait_queue, h->scan_finished);
5475 		/* Note: We don't need to worry about a race between this
5476 		 * thread and driver unload because the midlayer will
5477 		 * have incremented the reference count, so unload won't
5478 		 * happen if we're in here.
5479 		 */
5480 	}
5481 	h->scan_finished = 0; /* mark scan as in progress */
5482 	spin_unlock_irqrestore(&h->scan_lock, flags);
5483 
5484 	if (unlikely(lockup_detected(h)))
5485 		return hpsa_scan_complete(h);
5486 
5487 	hpsa_update_scsi_devices(h);
5488 
5489 	hpsa_scan_complete(h);
5490 }
5491 
5492 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5493 {
5494 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5495 
5496 	if (!logical_drive)
5497 		return -ENODEV;
5498 
5499 	if (qdepth < 1)
5500 		qdepth = 1;
5501 	else if (qdepth > logical_drive->queue_depth)
5502 		qdepth = logical_drive->queue_depth;
5503 
5504 	return scsi_change_queue_depth(sdev, qdepth);
5505 }
5506 
5507 static int hpsa_scan_finished(struct Scsi_Host *sh,
5508 	unsigned long elapsed_time)
5509 {
5510 	struct ctlr_info *h = shost_to_hba(sh);
5511 	unsigned long flags;
5512 	int finished;
5513 
5514 	spin_lock_irqsave(&h->scan_lock, flags);
5515 	finished = h->scan_finished;
5516 	spin_unlock_irqrestore(&h->scan_lock, flags);
5517 	return finished;
5518 }
5519 
5520 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5521 {
5522 	struct Scsi_Host *sh;
5523 
5524 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5525 	if (sh == NULL) {
5526 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5527 		return -ENOMEM;
5528 	}
5529 
5530 	sh->io_port = 0;
5531 	sh->n_io_port = 0;
5532 	sh->this_id = -1;
5533 	sh->max_channel = 3;
5534 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5535 	sh->max_lun = HPSA_MAX_LUN;
5536 	sh->max_id = HPSA_MAX_LUN;
5537 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5538 	sh->cmd_per_lun = sh->can_queue;
5539 	sh->sg_tablesize = h->maxsgentries;
5540 	sh->transportt = hpsa_sas_transport_template;
5541 	sh->hostdata[0] = (unsigned long) h;
5542 	sh->irq = h->intr[h->intr_mode];
5543 	sh->unique_id = sh->irq;
5544 
5545 	h->scsi_host = sh;
5546 	return 0;
5547 }
5548 
5549 static int hpsa_scsi_add_host(struct ctlr_info *h)
5550 {
5551 	int rv;
5552 
5553 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5554 	if (rv) {
5555 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5556 		return rv;
5557 	}
5558 	scsi_scan_host(h->scsi_host);
5559 	return 0;
5560 }
5561 
5562 /*
5563  * The block layer has already gone to the trouble of picking out a unique,
5564  * small-integer tag for this request.  We use an offset from that value as
5565  * an index to select our command block.  (The offset allows us to reserve the
5566  * low-numbered entries for our own uses.)
5567  */
5568 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5569 {
5570 	int idx = scmd->request->tag;
5571 
5572 	if (idx < 0)
5573 		return idx;
5574 
5575 	/* Offset to leave space for internal cmds. */
5576 	return idx += HPSA_NRESERVED_CMDS;
5577 }
5578 
5579 /*
5580  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5581  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5582  */
5583 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5584 				struct CommandList *c, unsigned char lunaddr[],
5585 				int reply_queue)
5586 {
5587 	int rc;
5588 
5589 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5590 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5591 			NULL, 0, 0, lunaddr, TYPE_CMD);
5592 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5593 	if (rc)
5594 		return rc;
5595 	/* no unmap needed here because no data xfer. */
5596 
5597 	/* Check if the unit is already ready. */
5598 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5599 		return 0;
5600 
5601 	/*
5602 	 * The first command sent after reset will receive "unit attention" to
5603 	 * indicate that the LUN has been reset...this is actually what we're
5604 	 * looking for (but, success is good too).
5605 	 */
5606 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5607 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5608 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5609 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5610 		return 0;
5611 
5612 	return 1;
5613 }
5614 
5615 /*
5616  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5617  * returns zero when the unit is ready, and non-zero when giving up.
5618  */
5619 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5620 				struct CommandList *c,
5621 				unsigned char lunaddr[], int reply_queue)
5622 {
5623 	int rc;
5624 	int count = 0;
5625 	int waittime = 1; /* seconds */
5626 
5627 	/* Send test unit ready until device ready, or give up. */
5628 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5629 
5630 		/*
5631 		 * Wait for a bit.  do this first, because if we send
5632 		 * the TUR right away, the reset will just abort it.
5633 		 */
5634 		msleep(1000 * waittime);
5635 
5636 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5637 		if (!rc)
5638 			break;
5639 
5640 		/* Increase wait time with each try, up to a point. */
5641 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5642 			waittime *= 2;
5643 
5644 		dev_warn(&h->pdev->dev,
5645 			 "waiting %d secs for device to become ready.\n",
5646 			 waittime);
5647 	}
5648 
5649 	return rc;
5650 }
5651 
5652 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5653 					   unsigned char lunaddr[],
5654 					   int reply_queue)
5655 {
5656 	int first_queue;
5657 	int last_queue;
5658 	int rq;
5659 	int rc = 0;
5660 	struct CommandList *c;
5661 
5662 	c = cmd_alloc(h);
5663 
5664 	/*
5665 	 * If no specific reply queue was requested, then send the TUR
5666 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5667 	 * the loop exactly once using only the specified queue.
5668 	 */
5669 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5670 		first_queue = 0;
5671 		last_queue = h->nreply_queues - 1;
5672 	} else {
5673 		first_queue = reply_queue;
5674 		last_queue = reply_queue;
5675 	}
5676 
5677 	for (rq = first_queue; rq <= last_queue; rq++) {
5678 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5679 		if (rc)
5680 			break;
5681 	}
5682 
5683 	if (rc)
5684 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5685 	else
5686 		dev_warn(&h->pdev->dev, "device is ready.\n");
5687 
5688 	cmd_free(h, c);
5689 	return rc;
5690 }
5691 
5692 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5693  * complaining.  Doing a host- or bus-reset can't do anything good here.
5694  */
5695 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5696 {
5697 	int rc;
5698 	struct ctlr_info *h;
5699 	struct hpsa_scsi_dev_t *dev;
5700 	u8 reset_type;
5701 	char msg[48];
5702 
5703 	/* find the controller to which the command to be aborted was sent */
5704 	h = sdev_to_hba(scsicmd->device);
5705 	if (h == NULL) /* paranoia */
5706 		return FAILED;
5707 
5708 	if (lockup_detected(h))
5709 		return FAILED;
5710 
5711 	dev = scsicmd->device->hostdata;
5712 	if (!dev) {
5713 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5714 		return FAILED;
5715 	}
5716 
5717 	/* if controller locked up, we can guarantee command won't complete */
5718 	if (lockup_detected(h)) {
5719 		snprintf(msg, sizeof(msg),
5720 			 "cmd %d RESET FAILED, lockup detected",
5721 			 hpsa_get_cmd_index(scsicmd));
5722 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5723 		return FAILED;
5724 	}
5725 
5726 	/* this reset request might be the result of a lockup; check */
5727 	if (detect_controller_lockup(h)) {
5728 		snprintf(msg, sizeof(msg),
5729 			 "cmd %d RESET FAILED, new lockup detected",
5730 			 hpsa_get_cmd_index(scsicmd));
5731 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5732 		return FAILED;
5733 	}
5734 
5735 	/* Do not attempt on controller */
5736 	if (is_hba_lunid(dev->scsi3addr))
5737 		return SUCCESS;
5738 
5739 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5740 		reset_type = HPSA_DEVICE_RESET_MSG;
5741 	else
5742 		reset_type = HPSA_PHYS_TARGET_RESET;
5743 
5744 	sprintf(msg, "resetting %s",
5745 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5746 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5747 
5748 	h->reset_in_progress = 1;
5749 
5750 	/* send a reset to the SCSI LUN which the command was sent to */
5751 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5752 			   DEFAULT_REPLY_QUEUE);
5753 	sprintf(msg, "reset %s %s",
5754 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5755 		rc == 0 ? "completed successfully" : "failed");
5756 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5757 	h->reset_in_progress = 0;
5758 	return rc == 0 ? SUCCESS : FAILED;
5759 }
5760 
5761 static void swizzle_abort_tag(u8 *tag)
5762 {
5763 	u8 original_tag[8];
5764 
5765 	memcpy(original_tag, tag, 8);
5766 	tag[0] = original_tag[3];
5767 	tag[1] = original_tag[2];
5768 	tag[2] = original_tag[1];
5769 	tag[3] = original_tag[0];
5770 	tag[4] = original_tag[7];
5771 	tag[5] = original_tag[6];
5772 	tag[6] = original_tag[5];
5773 	tag[7] = original_tag[4];
5774 }
5775 
5776 static void hpsa_get_tag(struct ctlr_info *h,
5777 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5778 {
5779 	u64 tag;
5780 	if (c->cmd_type == CMD_IOACCEL1) {
5781 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5782 			&h->ioaccel_cmd_pool[c->cmdindex];
5783 		tag = le64_to_cpu(cm1->tag);
5784 		*tagupper = cpu_to_le32(tag >> 32);
5785 		*taglower = cpu_to_le32(tag);
5786 		return;
5787 	}
5788 	if (c->cmd_type == CMD_IOACCEL2) {
5789 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5790 			&h->ioaccel2_cmd_pool[c->cmdindex];
5791 		/* upper tag not used in ioaccel2 mode */
5792 		memset(tagupper, 0, sizeof(*tagupper));
5793 		*taglower = cm2->Tag;
5794 		return;
5795 	}
5796 	tag = le64_to_cpu(c->Header.tag);
5797 	*tagupper = cpu_to_le32(tag >> 32);
5798 	*taglower = cpu_to_le32(tag);
5799 }
5800 
5801 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5802 	struct CommandList *abort, int reply_queue)
5803 {
5804 	int rc = IO_OK;
5805 	struct CommandList *c;
5806 	struct ErrorInfo *ei;
5807 	__le32 tagupper, taglower;
5808 
5809 	c = cmd_alloc(h);
5810 
5811 	/* fill_cmd can't fail here, no buffer to map */
5812 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5813 		0, 0, scsi3addr, TYPE_MSG);
5814 	if (h->needs_abort_tags_swizzled)
5815 		swizzle_abort_tag(&c->Request.CDB[4]);
5816 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5817 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5818 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5819 		__func__, tagupper, taglower);
5820 	/* no unmap needed here because no data xfer. */
5821 
5822 	ei = c->err_info;
5823 	switch (ei->CommandStatus) {
5824 	case CMD_SUCCESS:
5825 		break;
5826 	case CMD_TMF_STATUS:
5827 		rc = hpsa_evaluate_tmf_status(h, c);
5828 		break;
5829 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5830 		rc = -1;
5831 		break;
5832 	default:
5833 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5834 			__func__, tagupper, taglower);
5835 		hpsa_scsi_interpret_error(h, c);
5836 		rc = -1;
5837 		break;
5838 	}
5839 	cmd_free(h, c);
5840 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5841 		__func__, tagupper, taglower);
5842 	return rc;
5843 }
5844 
5845 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5846 	struct CommandList *command_to_abort, int reply_queue)
5847 {
5848 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5849 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5850 	struct io_accel2_cmd *c2a =
5851 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5852 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5853 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5854 
5855 	/*
5856 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5857 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5858 	 * actually fits, and doesn't overrun the error info space.
5859 	 */
5860 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5861 			sizeof(struct io_accel2_cmd));
5862 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5863 			offsetof(struct hpsa_tmf_struct, error_len) +
5864 				sizeof(ac->error_len));
5865 
5866 	c->cmd_type = IOACCEL2_TMF;
5867 	c->scsi_cmd = SCSI_CMD_BUSY;
5868 
5869 	/* Adjust the DMA address to point to the accelerated command buffer */
5870 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5871 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5872 	BUG_ON(c->busaddr & 0x0000007F);
5873 
5874 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5875 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5876 	ac->reply_queue = reply_queue;
5877 	ac->tmf = IOACCEL2_TMF_ABORT;
5878 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5879 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5880 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5881 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5882 	ac->error_ptr = cpu_to_le64(c->busaddr +
5883 			offsetof(struct io_accel2_cmd, error_data));
5884 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5885 }
5886 
5887 /* ioaccel2 path firmware cannot handle abort task requests.
5888  * Change abort requests to physical target reset, and send to the
5889  * address of the physical disk used for the ioaccel 2 command.
5890  * Return 0 on success (IO_OK)
5891  *	 -1 on failure
5892  */
5893 
5894 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5895 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5896 {
5897 	int rc = IO_OK;
5898 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5899 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5900 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5901 	unsigned char *psa = &phys_scsi3addr[0];
5902 
5903 	/* Get a pointer to the hpsa logical device. */
5904 	scmd = abort->scsi_cmd;
5905 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5906 	if (dev == NULL) {
5907 		dev_warn(&h->pdev->dev,
5908 			"Cannot abort: no device pointer for command.\n");
5909 			return -1; /* not abortable */
5910 	}
5911 
5912 	if (h->raid_offload_debug > 0)
5913 		dev_info(&h->pdev->dev,
5914 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5915 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5916 			"Reset as abort",
5917 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5918 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5919 
5920 	if (!dev->offload_enabled) {
5921 		dev_warn(&h->pdev->dev,
5922 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5923 		return -1; /* not abortable */
5924 	}
5925 
5926 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5927 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5928 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5929 		return -1; /* not abortable */
5930 	}
5931 
5932 	/* send the reset */
5933 	if (h->raid_offload_debug > 0)
5934 		dev_info(&h->pdev->dev,
5935 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5936 			psa[0], psa[1], psa[2], psa[3],
5937 			psa[4], psa[5], psa[6], psa[7]);
5938 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5939 	if (rc != 0) {
5940 		dev_warn(&h->pdev->dev,
5941 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5942 			psa[0], psa[1], psa[2], psa[3],
5943 			psa[4], psa[5], psa[6], psa[7]);
5944 		return rc; /* failed to reset */
5945 	}
5946 
5947 	/* wait for device to recover */
5948 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5949 		dev_warn(&h->pdev->dev,
5950 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5951 			psa[0], psa[1], psa[2], psa[3],
5952 			psa[4], psa[5], psa[6], psa[7]);
5953 		return -1;  /* failed to recover */
5954 	}
5955 
5956 	/* device recovered */
5957 	dev_info(&h->pdev->dev,
5958 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5959 		psa[0], psa[1], psa[2], psa[3],
5960 		psa[4], psa[5], psa[6], psa[7]);
5961 
5962 	return rc; /* success */
5963 }
5964 
5965 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5966 	struct CommandList *abort, int reply_queue)
5967 {
5968 	int rc = IO_OK;
5969 	struct CommandList *c;
5970 	__le32 taglower, tagupper;
5971 	struct hpsa_scsi_dev_t *dev;
5972 	struct io_accel2_cmd *c2;
5973 
5974 	dev = abort->scsi_cmd->device->hostdata;
5975 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5976 		return -1;
5977 
5978 	c = cmd_alloc(h);
5979 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5980 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5981 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5982 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5983 	dev_dbg(&h->pdev->dev,
5984 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5985 		__func__, tagupper, taglower);
5986 	/* no unmap needed here because no data xfer. */
5987 
5988 	dev_dbg(&h->pdev->dev,
5989 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5990 		__func__, tagupper, taglower, c2->error_data.serv_response);
5991 	switch (c2->error_data.serv_response) {
5992 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5993 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5994 		rc = 0;
5995 		break;
5996 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5997 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5998 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5999 		rc = -1;
6000 		break;
6001 	default:
6002 		dev_warn(&h->pdev->dev,
6003 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6004 			__func__, tagupper, taglower,
6005 			c2->error_data.serv_response);
6006 		rc = -1;
6007 	}
6008 	cmd_free(h, c);
6009 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6010 		tagupper, taglower);
6011 	return rc;
6012 }
6013 
6014 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6015 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6016 {
6017 	/*
6018 	 * ioccelerator mode 2 commands should be aborted via the
6019 	 * accelerated path, since RAID path is unaware of these commands,
6020 	 * but not all underlying firmware can handle abort TMF.
6021 	 * Change abort to physical device reset when abort TMF is unsupported.
6022 	 */
6023 	if (abort->cmd_type == CMD_IOACCEL2) {
6024 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6025 			dev->physical_device)
6026 			return hpsa_send_abort_ioaccel2(h, abort,
6027 						reply_queue);
6028 		else
6029 			return hpsa_send_reset_as_abort_ioaccel2(h,
6030 							dev->scsi3addr,
6031 							abort, reply_queue);
6032 	}
6033 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6034 }
6035 
6036 /* Find out which reply queue a command was meant to return on */
6037 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6038 					struct CommandList *c)
6039 {
6040 	if (c->cmd_type == CMD_IOACCEL2)
6041 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6042 	return c->Header.ReplyQueue;
6043 }
6044 
6045 /*
6046  * Limit concurrency of abort commands to prevent
6047  * over-subscription of commands
6048  */
6049 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6050 {
6051 #define ABORT_CMD_WAIT_MSECS 5000
6052 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6053 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6054 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6055 }
6056 
6057 /* Send an abort for the specified command.
6058  *	If the device and controller support it,
6059  *		send a task abort request.
6060  */
6061 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6062 {
6063 
6064 	int rc;
6065 	struct ctlr_info *h;
6066 	struct hpsa_scsi_dev_t *dev;
6067 	struct CommandList *abort; /* pointer to command to be aborted */
6068 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6069 	char msg[256];		/* For debug messaging. */
6070 	int ml = 0;
6071 	__le32 tagupper, taglower;
6072 	int refcount, reply_queue;
6073 
6074 	if (sc == NULL)
6075 		return FAILED;
6076 
6077 	if (sc->device == NULL)
6078 		return FAILED;
6079 
6080 	/* Find the controller of the command to be aborted */
6081 	h = sdev_to_hba(sc->device);
6082 	if (h == NULL)
6083 		return FAILED;
6084 
6085 	/* Find the device of the command to be aborted */
6086 	dev = sc->device->hostdata;
6087 	if (!dev) {
6088 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6089 				msg);
6090 		return FAILED;
6091 	}
6092 
6093 	/* If controller locked up, we can guarantee command won't complete */
6094 	if (lockup_detected(h)) {
6095 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6096 					"ABORT FAILED, lockup detected");
6097 		return FAILED;
6098 	}
6099 
6100 	/* This is a good time to check if controller lockup has occurred */
6101 	if (detect_controller_lockup(h)) {
6102 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6103 					"ABORT FAILED, new lockup detected");
6104 		return FAILED;
6105 	}
6106 
6107 	/* Check that controller supports some kind of task abort */
6108 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6109 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6110 		return FAILED;
6111 
6112 	memset(msg, 0, sizeof(msg));
6113 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6114 		h->scsi_host->host_no, sc->device->channel,
6115 		sc->device->id, sc->device->lun,
6116 		"Aborting command", sc);
6117 
6118 	/* Get SCSI command to be aborted */
6119 	abort = (struct CommandList *) sc->host_scribble;
6120 	if (abort == NULL) {
6121 		/* This can happen if the command already completed. */
6122 		return SUCCESS;
6123 	}
6124 	refcount = atomic_inc_return(&abort->refcount);
6125 	if (refcount == 1) { /* Command is done already. */
6126 		cmd_free(h, abort);
6127 		return SUCCESS;
6128 	}
6129 
6130 	/* Don't bother trying the abort if we know it won't work. */
6131 	if (abort->cmd_type != CMD_IOACCEL2 &&
6132 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6133 		cmd_free(h, abort);
6134 		return FAILED;
6135 	}
6136 
6137 	/*
6138 	 * Check that we're aborting the right command.
6139 	 * It's possible the CommandList already completed and got re-used.
6140 	 */
6141 	if (abort->scsi_cmd != sc) {
6142 		cmd_free(h, abort);
6143 		return SUCCESS;
6144 	}
6145 
6146 	abort->abort_pending = true;
6147 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6148 	reply_queue = hpsa_extract_reply_queue(h, abort);
6149 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6150 	as  = abort->scsi_cmd;
6151 	if (as != NULL)
6152 		ml += sprintf(msg+ml,
6153 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6154 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6155 			as->serial_number);
6156 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6157 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6158 
6159 	/*
6160 	 * Command is in flight, or possibly already completed
6161 	 * by the firmware (but not to the scsi mid layer) but we can't
6162 	 * distinguish which.  Send the abort down.
6163 	 */
6164 	if (wait_for_available_abort_cmd(h)) {
6165 		dev_warn(&h->pdev->dev,
6166 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6167 			msg);
6168 		cmd_free(h, abort);
6169 		return FAILED;
6170 	}
6171 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6172 	atomic_inc(&h->abort_cmds_available);
6173 	wake_up_all(&h->abort_cmd_wait_queue);
6174 	if (rc != 0) {
6175 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6176 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6177 				"FAILED to abort command");
6178 		cmd_free(h, abort);
6179 		return FAILED;
6180 	}
6181 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6182 	wait_event(h->event_sync_wait_queue,
6183 		   abort->scsi_cmd != sc || lockup_detected(h));
6184 	cmd_free(h, abort);
6185 	return !lockup_detected(h) ? SUCCESS : FAILED;
6186 }
6187 
6188 /*
6189  * For operations with an associated SCSI command, a command block is allocated
6190  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6191  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6192  * the complement, although cmd_free() may be called instead.
6193  */
6194 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6195 					    struct scsi_cmnd *scmd)
6196 {
6197 	int idx = hpsa_get_cmd_index(scmd);
6198 	struct CommandList *c = h->cmd_pool + idx;
6199 
6200 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6201 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6202 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6203 		/* The index value comes from the block layer, so if it's out of
6204 		 * bounds, it's probably not our bug.
6205 		 */
6206 		BUG();
6207 	}
6208 
6209 	atomic_inc(&c->refcount);
6210 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6211 		/*
6212 		 * We expect that the SCSI layer will hand us a unique tag
6213 		 * value.  Thus, there should never be a collision here between
6214 		 * two requests...because if the selected command isn't idle
6215 		 * then someone is going to be very disappointed.
6216 		 */
6217 		dev_err(&h->pdev->dev,
6218 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6219 			idx);
6220 		if (c->scsi_cmd != NULL)
6221 			scsi_print_command(c->scsi_cmd);
6222 		scsi_print_command(scmd);
6223 	}
6224 
6225 	hpsa_cmd_partial_init(h, idx, c);
6226 	return c;
6227 }
6228 
6229 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6230 {
6231 	/*
6232 	 * Release our reference to the block.  We don't need to do anything
6233 	 * else to free it, because it is accessed by index.  (There's no point
6234 	 * in checking the result of the decrement, since we cannot guarantee
6235 	 * that there isn't a concurrent abort which is also accessing it.)
6236 	 */
6237 	(void)atomic_dec(&c->refcount);
6238 }
6239 
6240 /*
6241  * For operations that cannot sleep, a command block is allocated at init,
6242  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6243  * which ones are free or in use.  Lock must be held when calling this.
6244  * cmd_free() is the complement.
6245  * This function never gives up and returns NULL.  If it hangs,
6246  * another thread must call cmd_free() to free some tags.
6247  */
6248 
6249 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6250 {
6251 	struct CommandList *c;
6252 	int refcount, i;
6253 	int offset = 0;
6254 
6255 	/*
6256 	 * There is some *extremely* small but non-zero chance that that
6257 	 * multiple threads could get in here, and one thread could
6258 	 * be scanning through the list of bits looking for a free
6259 	 * one, but the free ones are always behind him, and other
6260 	 * threads sneak in behind him and eat them before he can
6261 	 * get to them, so that while there is always a free one, a
6262 	 * very unlucky thread might be starved anyway, never able to
6263 	 * beat the other threads.  In reality, this happens so
6264 	 * infrequently as to be indistinguishable from never.
6265 	 *
6266 	 * Note that we start allocating commands before the SCSI host structure
6267 	 * is initialized.  Since the search starts at bit zero, this
6268 	 * all works, since we have at least one command structure available;
6269 	 * however, it means that the structures with the low indexes have to be
6270 	 * reserved for driver-initiated requests, while requests from the block
6271 	 * layer will use the higher indexes.
6272 	 */
6273 
6274 	for (;;) {
6275 		i = find_next_zero_bit(h->cmd_pool_bits,
6276 					HPSA_NRESERVED_CMDS,
6277 					offset);
6278 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6279 			offset = 0;
6280 			continue;
6281 		}
6282 		c = h->cmd_pool + i;
6283 		refcount = atomic_inc_return(&c->refcount);
6284 		if (unlikely(refcount > 1)) {
6285 			cmd_free(h, c); /* already in use */
6286 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6287 			continue;
6288 		}
6289 		set_bit(i & (BITS_PER_LONG - 1),
6290 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6291 		break; /* it's ours now. */
6292 	}
6293 	hpsa_cmd_partial_init(h, i, c);
6294 	return c;
6295 }
6296 
6297 /*
6298  * This is the complementary operation to cmd_alloc().  Note, however, in some
6299  * corner cases it may also be used to free blocks allocated by
6300  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6301  * the clear-bit is harmless.
6302  */
6303 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6304 {
6305 	if (atomic_dec_and_test(&c->refcount)) {
6306 		int i;
6307 
6308 		i = c - h->cmd_pool;
6309 		clear_bit(i & (BITS_PER_LONG - 1),
6310 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6311 	}
6312 }
6313 
6314 #ifdef CONFIG_COMPAT
6315 
6316 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6317 	void __user *arg)
6318 {
6319 	IOCTL32_Command_struct __user *arg32 =
6320 	    (IOCTL32_Command_struct __user *) arg;
6321 	IOCTL_Command_struct arg64;
6322 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6323 	int err;
6324 	u32 cp;
6325 
6326 	memset(&arg64, 0, sizeof(arg64));
6327 	err = 0;
6328 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6329 			   sizeof(arg64.LUN_info));
6330 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6331 			   sizeof(arg64.Request));
6332 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6333 			   sizeof(arg64.error_info));
6334 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6335 	err |= get_user(cp, &arg32->buf);
6336 	arg64.buf = compat_ptr(cp);
6337 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6338 
6339 	if (err)
6340 		return -EFAULT;
6341 
6342 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6343 	if (err)
6344 		return err;
6345 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6346 			 sizeof(arg32->error_info));
6347 	if (err)
6348 		return -EFAULT;
6349 	return err;
6350 }
6351 
6352 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6353 	int cmd, void __user *arg)
6354 {
6355 	BIG_IOCTL32_Command_struct __user *arg32 =
6356 	    (BIG_IOCTL32_Command_struct __user *) arg;
6357 	BIG_IOCTL_Command_struct arg64;
6358 	BIG_IOCTL_Command_struct __user *p =
6359 	    compat_alloc_user_space(sizeof(arg64));
6360 	int err;
6361 	u32 cp;
6362 
6363 	memset(&arg64, 0, sizeof(arg64));
6364 	err = 0;
6365 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6366 			   sizeof(arg64.LUN_info));
6367 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6368 			   sizeof(arg64.Request));
6369 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6370 			   sizeof(arg64.error_info));
6371 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6372 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6373 	err |= get_user(cp, &arg32->buf);
6374 	arg64.buf = compat_ptr(cp);
6375 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6376 
6377 	if (err)
6378 		return -EFAULT;
6379 
6380 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6381 	if (err)
6382 		return err;
6383 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6384 			 sizeof(arg32->error_info));
6385 	if (err)
6386 		return -EFAULT;
6387 	return err;
6388 }
6389 
6390 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6391 {
6392 	switch (cmd) {
6393 	case CCISS_GETPCIINFO:
6394 	case CCISS_GETINTINFO:
6395 	case CCISS_SETINTINFO:
6396 	case CCISS_GETNODENAME:
6397 	case CCISS_SETNODENAME:
6398 	case CCISS_GETHEARTBEAT:
6399 	case CCISS_GETBUSTYPES:
6400 	case CCISS_GETFIRMVER:
6401 	case CCISS_GETDRIVVER:
6402 	case CCISS_REVALIDVOLS:
6403 	case CCISS_DEREGDISK:
6404 	case CCISS_REGNEWDISK:
6405 	case CCISS_REGNEWD:
6406 	case CCISS_RESCANDISK:
6407 	case CCISS_GETLUNINFO:
6408 		return hpsa_ioctl(dev, cmd, arg);
6409 
6410 	case CCISS_PASSTHRU32:
6411 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6412 	case CCISS_BIG_PASSTHRU32:
6413 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6414 
6415 	default:
6416 		return -ENOIOCTLCMD;
6417 	}
6418 }
6419 #endif
6420 
6421 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6422 {
6423 	struct hpsa_pci_info pciinfo;
6424 
6425 	if (!argp)
6426 		return -EINVAL;
6427 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6428 	pciinfo.bus = h->pdev->bus->number;
6429 	pciinfo.dev_fn = h->pdev->devfn;
6430 	pciinfo.board_id = h->board_id;
6431 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6432 		return -EFAULT;
6433 	return 0;
6434 }
6435 
6436 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6437 {
6438 	DriverVer_type DriverVer;
6439 	unsigned char vmaj, vmin, vsubmin;
6440 	int rc;
6441 
6442 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6443 		&vmaj, &vmin, &vsubmin);
6444 	if (rc != 3) {
6445 		dev_info(&h->pdev->dev, "driver version string '%s' "
6446 			"unrecognized.", HPSA_DRIVER_VERSION);
6447 		vmaj = 0;
6448 		vmin = 0;
6449 		vsubmin = 0;
6450 	}
6451 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6452 	if (!argp)
6453 		return -EINVAL;
6454 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6455 		return -EFAULT;
6456 	return 0;
6457 }
6458 
6459 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6460 {
6461 	IOCTL_Command_struct iocommand;
6462 	struct CommandList *c;
6463 	char *buff = NULL;
6464 	u64 temp64;
6465 	int rc = 0;
6466 
6467 	if (!argp)
6468 		return -EINVAL;
6469 	if (!capable(CAP_SYS_RAWIO))
6470 		return -EPERM;
6471 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6472 		return -EFAULT;
6473 	if ((iocommand.buf_size < 1) &&
6474 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6475 		return -EINVAL;
6476 	}
6477 	if (iocommand.buf_size > 0) {
6478 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6479 		if (buff == NULL)
6480 			return -ENOMEM;
6481 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6482 			/* Copy the data into the buffer we created */
6483 			if (copy_from_user(buff, iocommand.buf,
6484 				iocommand.buf_size)) {
6485 				rc = -EFAULT;
6486 				goto out_kfree;
6487 			}
6488 		} else {
6489 			memset(buff, 0, iocommand.buf_size);
6490 		}
6491 	}
6492 	c = cmd_alloc(h);
6493 
6494 	/* Fill in the command type */
6495 	c->cmd_type = CMD_IOCTL_PEND;
6496 	c->scsi_cmd = SCSI_CMD_BUSY;
6497 	/* Fill in Command Header */
6498 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6499 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6500 		c->Header.SGList = 1;
6501 		c->Header.SGTotal = cpu_to_le16(1);
6502 	} else	{ /* no buffers to fill */
6503 		c->Header.SGList = 0;
6504 		c->Header.SGTotal = cpu_to_le16(0);
6505 	}
6506 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6507 
6508 	/* Fill in Request block */
6509 	memcpy(&c->Request, &iocommand.Request,
6510 		sizeof(c->Request));
6511 
6512 	/* Fill in the scatter gather information */
6513 	if (iocommand.buf_size > 0) {
6514 		temp64 = pci_map_single(h->pdev, buff,
6515 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6516 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6517 			c->SG[0].Addr = cpu_to_le64(0);
6518 			c->SG[0].Len = cpu_to_le32(0);
6519 			rc = -ENOMEM;
6520 			goto out;
6521 		}
6522 		c->SG[0].Addr = cpu_to_le64(temp64);
6523 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6524 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6525 	}
6526 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6527 					NO_TIMEOUT);
6528 	if (iocommand.buf_size > 0)
6529 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6530 	check_ioctl_unit_attention(h, c);
6531 	if (rc) {
6532 		rc = -EIO;
6533 		goto out;
6534 	}
6535 
6536 	/* Copy the error information out */
6537 	memcpy(&iocommand.error_info, c->err_info,
6538 		sizeof(iocommand.error_info));
6539 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6540 		rc = -EFAULT;
6541 		goto out;
6542 	}
6543 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6544 		iocommand.buf_size > 0) {
6545 		/* Copy the data out of the buffer we created */
6546 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6547 			rc = -EFAULT;
6548 			goto out;
6549 		}
6550 	}
6551 out:
6552 	cmd_free(h, c);
6553 out_kfree:
6554 	kfree(buff);
6555 	return rc;
6556 }
6557 
6558 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6559 {
6560 	BIG_IOCTL_Command_struct *ioc;
6561 	struct CommandList *c;
6562 	unsigned char **buff = NULL;
6563 	int *buff_size = NULL;
6564 	u64 temp64;
6565 	BYTE sg_used = 0;
6566 	int status = 0;
6567 	u32 left;
6568 	u32 sz;
6569 	BYTE __user *data_ptr;
6570 
6571 	if (!argp)
6572 		return -EINVAL;
6573 	if (!capable(CAP_SYS_RAWIO))
6574 		return -EPERM;
6575 	ioc = (BIG_IOCTL_Command_struct *)
6576 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6577 	if (!ioc) {
6578 		status = -ENOMEM;
6579 		goto cleanup1;
6580 	}
6581 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6582 		status = -EFAULT;
6583 		goto cleanup1;
6584 	}
6585 	if ((ioc->buf_size < 1) &&
6586 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6587 		status = -EINVAL;
6588 		goto cleanup1;
6589 	}
6590 	/* Check kmalloc limits  using all SGs */
6591 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6592 		status = -EINVAL;
6593 		goto cleanup1;
6594 	}
6595 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6596 		status = -EINVAL;
6597 		goto cleanup1;
6598 	}
6599 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6600 	if (!buff) {
6601 		status = -ENOMEM;
6602 		goto cleanup1;
6603 	}
6604 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6605 	if (!buff_size) {
6606 		status = -ENOMEM;
6607 		goto cleanup1;
6608 	}
6609 	left = ioc->buf_size;
6610 	data_ptr = ioc->buf;
6611 	while (left) {
6612 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6613 		buff_size[sg_used] = sz;
6614 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6615 		if (buff[sg_used] == NULL) {
6616 			status = -ENOMEM;
6617 			goto cleanup1;
6618 		}
6619 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6620 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6621 				status = -EFAULT;
6622 				goto cleanup1;
6623 			}
6624 		} else
6625 			memset(buff[sg_used], 0, sz);
6626 		left -= sz;
6627 		data_ptr += sz;
6628 		sg_used++;
6629 	}
6630 	c = cmd_alloc(h);
6631 
6632 	c->cmd_type = CMD_IOCTL_PEND;
6633 	c->scsi_cmd = SCSI_CMD_BUSY;
6634 	c->Header.ReplyQueue = 0;
6635 	c->Header.SGList = (u8) sg_used;
6636 	c->Header.SGTotal = cpu_to_le16(sg_used);
6637 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6638 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6639 	if (ioc->buf_size > 0) {
6640 		int i;
6641 		for (i = 0; i < sg_used; i++) {
6642 			temp64 = pci_map_single(h->pdev, buff[i],
6643 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6644 			if (dma_mapping_error(&h->pdev->dev,
6645 							(dma_addr_t) temp64)) {
6646 				c->SG[i].Addr = cpu_to_le64(0);
6647 				c->SG[i].Len = cpu_to_le32(0);
6648 				hpsa_pci_unmap(h->pdev, c, i,
6649 					PCI_DMA_BIDIRECTIONAL);
6650 				status = -ENOMEM;
6651 				goto cleanup0;
6652 			}
6653 			c->SG[i].Addr = cpu_to_le64(temp64);
6654 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6655 			c->SG[i].Ext = cpu_to_le32(0);
6656 		}
6657 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6658 	}
6659 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6660 						NO_TIMEOUT);
6661 	if (sg_used)
6662 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6663 	check_ioctl_unit_attention(h, c);
6664 	if (status) {
6665 		status = -EIO;
6666 		goto cleanup0;
6667 	}
6668 
6669 	/* Copy the error information out */
6670 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6671 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6672 		status = -EFAULT;
6673 		goto cleanup0;
6674 	}
6675 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6676 		int i;
6677 
6678 		/* Copy the data out of the buffer we created */
6679 		BYTE __user *ptr = ioc->buf;
6680 		for (i = 0; i < sg_used; i++) {
6681 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6682 				status = -EFAULT;
6683 				goto cleanup0;
6684 			}
6685 			ptr += buff_size[i];
6686 		}
6687 	}
6688 	status = 0;
6689 cleanup0:
6690 	cmd_free(h, c);
6691 cleanup1:
6692 	if (buff) {
6693 		int i;
6694 
6695 		for (i = 0; i < sg_used; i++)
6696 			kfree(buff[i]);
6697 		kfree(buff);
6698 	}
6699 	kfree(buff_size);
6700 	kfree(ioc);
6701 	return status;
6702 }
6703 
6704 static void check_ioctl_unit_attention(struct ctlr_info *h,
6705 	struct CommandList *c)
6706 {
6707 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6708 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6709 		(void) check_for_unit_attention(h, c);
6710 }
6711 
6712 /*
6713  * ioctl
6714  */
6715 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6716 {
6717 	struct ctlr_info *h;
6718 	void __user *argp = (void __user *)arg;
6719 	int rc;
6720 
6721 	h = sdev_to_hba(dev);
6722 
6723 	switch (cmd) {
6724 	case CCISS_DEREGDISK:
6725 	case CCISS_REGNEWDISK:
6726 	case CCISS_REGNEWD:
6727 		hpsa_scan_start(h->scsi_host);
6728 		return 0;
6729 	case CCISS_GETPCIINFO:
6730 		return hpsa_getpciinfo_ioctl(h, argp);
6731 	case CCISS_GETDRIVVER:
6732 		return hpsa_getdrivver_ioctl(h, argp);
6733 	case CCISS_PASSTHRU:
6734 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6735 			return -EAGAIN;
6736 		rc = hpsa_passthru_ioctl(h, argp);
6737 		atomic_inc(&h->passthru_cmds_avail);
6738 		return rc;
6739 	case CCISS_BIG_PASSTHRU:
6740 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6741 			return -EAGAIN;
6742 		rc = hpsa_big_passthru_ioctl(h, argp);
6743 		atomic_inc(&h->passthru_cmds_avail);
6744 		return rc;
6745 	default:
6746 		return -ENOTTY;
6747 	}
6748 }
6749 
6750 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6751 				u8 reset_type)
6752 {
6753 	struct CommandList *c;
6754 
6755 	c = cmd_alloc(h);
6756 
6757 	/* fill_cmd can't fail here, no data buffer to map */
6758 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6759 		RAID_CTLR_LUNID, TYPE_MSG);
6760 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6761 	c->waiting = NULL;
6762 	enqueue_cmd_and_start_io(h, c);
6763 	/* Don't wait for completion, the reset won't complete.  Don't free
6764 	 * the command either.  This is the last command we will send before
6765 	 * re-initializing everything, so it doesn't matter and won't leak.
6766 	 */
6767 	return;
6768 }
6769 
6770 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6771 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6772 	int cmd_type)
6773 {
6774 	int pci_dir = XFER_NONE;
6775 	u64 tag; /* for commands to be aborted */
6776 
6777 	c->cmd_type = CMD_IOCTL_PEND;
6778 	c->scsi_cmd = SCSI_CMD_BUSY;
6779 	c->Header.ReplyQueue = 0;
6780 	if (buff != NULL && size > 0) {
6781 		c->Header.SGList = 1;
6782 		c->Header.SGTotal = cpu_to_le16(1);
6783 	} else {
6784 		c->Header.SGList = 0;
6785 		c->Header.SGTotal = cpu_to_le16(0);
6786 	}
6787 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6788 
6789 	if (cmd_type == TYPE_CMD) {
6790 		switch (cmd) {
6791 		case HPSA_INQUIRY:
6792 			/* are we trying to read a vital product page */
6793 			if (page_code & VPD_PAGE) {
6794 				c->Request.CDB[1] = 0x01;
6795 				c->Request.CDB[2] = (page_code & 0xff);
6796 			}
6797 			c->Request.CDBLen = 6;
6798 			c->Request.type_attr_dir =
6799 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6800 			c->Request.Timeout = 0;
6801 			c->Request.CDB[0] = HPSA_INQUIRY;
6802 			c->Request.CDB[4] = size & 0xFF;
6803 			break;
6804 		case HPSA_REPORT_LOG:
6805 		case HPSA_REPORT_PHYS:
6806 			/* Talking to controller so It's a physical command
6807 			   mode = 00 target = 0.  Nothing to write.
6808 			 */
6809 			c->Request.CDBLen = 12;
6810 			c->Request.type_attr_dir =
6811 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6812 			c->Request.Timeout = 0;
6813 			c->Request.CDB[0] = cmd;
6814 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6815 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6816 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6817 			c->Request.CDB[9] = size & 0xFF;
6818 			break;
6819 		case BMIC_SENSE_DIAG_OPTIONS:
6820 			c->Request.CDBLen = 16;
6821 			c->Request.type_attr_dir =
6822 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6823 			c->Request.Timeout = 0;
6824 			/* Spec says this should be BMIC_WRITE */
6825 			c->Request.CDB[0] = BMIC_READ;
6826 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6827 			break;
6828 		case BMIC_SET_DIAG_OPTIONS:
6829 			c->Request.CDBLen = 16;
6830 			c->Request.type_attr_dir =
6831 					TYPE_ATTR_DIR(cmd_type,
6832 						ATTR_SIMPLE, XFER_WRITE);
6833 			c->Request.Timeout = 0;
6834 			c->Request.CDB[0] = BMIC_WRITE;
6835 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6836 			break;
6837 		case HPSA_CACHE_FLUSH:
6838 			c->Request.CDBLen = 12;
6839 			c->Request.type_attr_dir =
6840 					TYPE_ATTR_DIR(cmd_type,
6841 						ATTR_SIMPLE, XFER_WRITE);
6842 			c->Request.Timeout = 0;
6843 			c->Request.CDB[0] = BMIC_WRITE;
6844 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6845 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6846 			c->Request.CDB[8] = size & 0xFF;
6847 			break;
6848 		case TEST_UNIT_READY:
6849 			c->Request.CDBLen = 6;
6850 			c->Request.type_attr_dir =
6851 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6852 			c->Request.Timeout = 0;
6853 			break;
6854 		case HPSA_GET_RAID_MAP:
6855 			c->Request.CDBLen = 12;
6856 			c->Request.type_attr_dir =
6857 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6858 			c->Request.Timeout = 0;
6859 			c->Request.CDB[0] = HPSA_CISS_READ;
6860 			c->Request.CDB[1] = cmd;
6861 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6862 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6863 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6864 			c->Request.CDB[9] = size & 0xFF;
6865 			break;
6866 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6867 			c->Request.CDBLen = 10;
6868 			c->Request.type_attr_dir =
6869 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6870 			c->Request.Timeout = 0;
6871 			c->Request.CDB[0] = BMIC_READ;
6872 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6873 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6874 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6875 			break;
6876 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6877 			c->Request.CDBLen = 10;
6878 			c->Request.type_attr_dir =
6879 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6880 			c->Request.Timeout = 0;
6881 			c->Request.CDB[0] = BMIC_READ;
6882 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6883 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6884 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6885 			break;
6886 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6887 			c->Request.CDBLen = 10;
6888 			c->Request.type_attr_dir =
6889 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6890 			c->Request.Timeout = 0;
6891 			c->Request.CDB[0] = BMIC_READ;
6892 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6893 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6894 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6895 			break;
6896 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6897 			c->Request.CDBLen = 10;
6898 			c->Request.type_attr_dir =
6899 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6900 			c->Request.Timeout = 0;
6901 			c->Request.CDB[0] = BMIC_READ;
6902 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6903 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6904 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6905 			break;
6906 		case BMIC_IDENTIFY_CONTROLLER:
6907 			c->Request.CDBLen = 10;
6908 			c->Request.type_attr_dir =
6909 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6910 			c->Request.Timeout = 0;
6911 			c->Request.CDB[0] = BMIC_READ;
6912 			c->Request.CDB[1] = 0;
6913 			c->Request.CDB[2] = 0;
6914 			c->Request.CDB[3] = 0;
6915 			c->Request.CDB[4] = 0;
6916 			c->Request.CDB[5] = 0;
6917 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6918 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6919 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6920 			c->Request.CDB[9] = 0;
6921 			break;
6922 		default:
6923 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6924 			BUG();
6925 			return -1;
6926 		}
6927 	} else if (cmd_type == TYPE_MSG) {
6928 		switch (cmd) {
6929 
6930 		case  HPSA_PHYS_TARGET_RESET:
6931 			c->Request.CDBLen = 16;
6932 			c->Request.type_attr_dir =
6933 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6934 			c->Request.Timeout = 0; /* Don't time out */
6935 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6936 			c->Request.CDB[0] = HPSA_RESET;
6937 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6938 			/* Physical target reset needs no control bytes 4-7*/
6939 			c->Request.CDB[4] = 0x00;
6940 			c->Request.CDB[5] = 0x00;
6941 			c->Request.CDB[6] = 0x00;
6942 			c->Request.CDB[7] = 0x00;
6943 			break;
6944 		case  HPSA_DEVICE_RESET_MSG:
6945 			c->Request.CDBLen = 16;
6946 			c->Request.type_attr_dir =
6947 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6948 			c->Request.Timeout = 0; /* Don't time out */
6949 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6950 			c->Request.CDB[0] =  cmd;
6951 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6952 			/* If bytes 4-7 are zero, it means reset the */
6953 			/* LunID device */
6954 			c->Request.CDB[4] = 0x00;
6955 			c->Request.CDB[5] = 0x00;
6956 			c->Request.CDB[6] = 0x00;
6957 			c->Request.CDB[7] = 0x00;
6958 			break;
6959 		case  HPSA_ABORT_MSG:
6960 			memcpy(&tag, buff, sizeof(tag));
6961 			dev_dbg(&h->pdev->dev,
6962 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6963 				tag, c->Header.tag);
6964 			c->Request.CDBLen = 16;
6965 			c->Request.type_attr_dir =
6966 					TYPE_ATTR_DIR(cmd_type,
6967 						ATTR_SIMPLE, XFER_WRITE);
6968 			c->Request.Timeout = 0; /* Don't time out */
6969 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6970 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6971 			c->Request.CDB[2] = 0x00; /* reserved */
6972 			c->Request.CDB[3] = 0x00; /* reserved */
6973 			/* Tag to abort goes in CDB[4]-CDB[11] */
6974 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6975 			c->Request.CDB[12] = 0x00; /* reserved */
6976 			c->Request.CDB[13] = 0x00; /* reserved */
6977 			c->Request.CDB[14] = 0x00; /* reserved */
6978 			c->Request.CDB[15] = 0x00; /* reserved */
6979 		break;
6980 		default:
6981 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6982 				cmd);
6983 			BUG();
6984 		}
6985 	} else {
6986 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6987 		BUG();
6988 	}
6989 
6990 	switch (GET_DIR(c->Request.type_attr_dir)) {
6991 	case XFER_READ:
6992 		pci_dir = PCI_DMA_FROMDEVICE;
6993 		break;
6994 	case XFER_WRITE:
6995 		pci_dir = PCI_DMA_TODEVICE;
6996 		break;
6997 	case XFER_NONE:
6998 		pci_dir = PCI_DMA_NONE;
6999 		break;
7000 	default:
7001 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7002 	}
7003 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7004 		return -1;
7005 	return 0;
7006 }
7007 
7008 /*
7009  * Map (physical) PCI mem into (virtual) kernel space
7010  */
7011 static void __iomem *remap_pci_mem(ulong base, ulong size)
7012 {
7013 	ulong page_base = ((ulong) base) & PAGE_MASK;
7014 	ulong page_offs = ((ulong) base) - page_base;
7015 	void __iomem *page_remapped = ioremap_nocache(page_base,
7016 		page_offs + size);
7017 
7018 	return page_remapped ? (page_remapped + page_offs) : NULL;
7019 }
7020 
7021 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7022 {
7023 	return h->access.command_completed(h, q);
7024 }
7025 
7026 static inline bool interrupt_pending(struct ctlr_info *h)
7027 {
7028 	return h->access.intr_pending(h);
7029 }
7030 
7031 static inline long interrupt_not_for_us(struct ctlr_info *h)
7032 {
7033 	return (h->access.intr_pending(h) == 0) ||
7034 		(h->interrupts_enabled == 0);
7035 }
7036 
7037 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7038 	u32 raw_tag)
7039 {
7040 	if (unlikely(tag_index >= h->nr_cmds)) {
7041 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7042 		return 1;
7043 	}
7044 	return 0;
7045 }
7046 
7047 static inline void finish_cmd(struct CommandList *c)
7048 {
7049 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7050 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7051 			|| c->cmd_type == CMD_IOACCEL2))
7052 		complete_scsi_command(c);
7053 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7054 		complete(c->waiting);
7055 }
7056 
7057 /* process completion of an indexed ("direct lookup") command */
7058 static inline void process_indexed_cmd(struct ctlr_info *h,
7059 	u32 raw_tag)
7060 {
7061 	u32 tag_index;
7062 	struct CommandList *c;
7063 
7064 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7065 	if (!bad_tag(h, tag_index, raw_tag)) {
7066 		c = h->cmd_pool + tag_index;
7067 		finish_cmd(c);
7068 	}
7069 }
7070 
7071 /* Some controllers, like p400, will give us one interrupt
7072  * after a soft reset, even if we turned interrupts off.
7073  * Only need to check for this in the hpsa_xxx_discard_completions
7074  * functions.
7075  */
7076 static int ignore_bogus_interrupt(struct ctlr_info *h)
7077 {
7078 	if (likely(!reset_devices))
7079 		return 0;
7080 
7081 	if (likely(h->interrupts_enabled))
7082 		return 0;
7083 
7084 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7085 		"(known firmware bug.)  Ignoring.\n");
7086 
7087 	return 1;
7088 }
7089 
7090 /*
7091  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7092  * Relies on (h-q[x] == x) being true for x such that
7093  * 0 <= x < MAX_REPLY_QUEUES.
7094  */
7095 static struct ctlr_info *queue_to_hba(u8 *queue)
7096 {
7097 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7098 }
7099 
7100 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7101 {
7102 	struct ctlr_info *h = queue_to_hba(queue);
7103 	u8 q = *(u8 *) queue;
7104 	u32 raw_tag;
7105 
7106 	if (ignore_bogus_interrupt(h))
7107 		return IRQ_NONE;
7108 
7109 	if (interrupt_not_for_us(h))
7110 		return IRQ_NONE;
7111 	h->last_intr_timestamp = get_jiffies_64();
7112 	while (interrupt_pending(h)) {
7113 		raw_tag = get_next_completion(h, q);
7114 		while (raw_tag != FIFO_EMPTY)
7115 			raw_tag = next_command(h, q);
7116 	}
7117 	return IRQ_HANDLED;
7118 }
7119 
7120 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7121 {
7122 	struct ctlr_info *h = queue_to_hba(queue);
7123 	u32 raw_tag;
7124 	u8 q = *(u8 *) queue;
7125 
7126 	if (ignore_bogus_interrupt(h))
7127 		return IRQ_NONE;
7128 
7129 	h->last_intr_timestamp = get_jiffies_64();
7130 	raw_tag = get_next_completion(h, q);
7131 	while (raw_tag != FIFO_EMPTY)
7132 		raw_tag = next_command(h, q);
7133 	return IRQ_HANDLED;
7134 }
7135 
7136 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7137 {
7138 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7139 	u32 raw_tag;
7140 	u8 q = *(u8 *) queue;
7141 
7142 	if (interrupt_not_for_us(h))
7143 		return IRQ_NONE;
7144 	h->last_intr_timestamp = get_jiffies_64();
7145 	while (interrupt_pending(h)) {
7146 		raw_tag = get_next_completion(h, q);
7147 		while (raw_tag != FIFO_EMPTY) {
7148 			process_indexed_cmd(h, raw_tag);
7149 			raw_tag = next_command(h, q);
7150 		}
7151 	}
7152 	return IRQ_HANDLED;
7153 }
7154 
7155 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7156 {
7157 	struct ctlr_info *h = queue_to_hba(queue);
7158 	u32 raw_tag;
7159 	u8 q = *(u8 *) queue;
7160 
7161 	h->last_intr_timestamp = get_jiffies_64();
7162 	raw_tag = get_next_completion(h, q);
7163 	while (raw_tag != FIFO_EMPTY) {
7164 		process_indexed_cmd(h, raw_tag);
7165 		raw_tag = next_command(h, q);
7166 	}
7167 	return IRQ_HANDLED;
7168 }
7169 
7170 /* Send a message CDB to the firmware. Careful, this only works
7171  * in simple mode, not performant mode due to the tag lookup.
7172  * We only ever use this immediately after a controller reset.
7173  */
7174 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7175 			unsigned char type)
7176 {
7177 	struct Command {
7178 		struct CommandListHeader CommandHeader;
7179 		struct RequestBlock Request;
7180 		struct ErrDescriptor ErrorDescriptor;
7181 	};
7182 	struct Command *cmd;
7183 	static const size_t cmd_sz = sizeof(*cmd) +
7184 					sizeof(cmd->ErrorDescriptor);
7185 	dma_addr_t paddr64;
7186 	__le32 paddr32;
7187 	u32 tag;
7188 	void __iomem *vaddr;
7189 	int i, err;
7190 
7191 	vaddr = pci_ioremap_bar(pdev, 0);
7192 	if (vaddr == NULL)
7193 		return -ENOMEM;
7194 
7195 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7196 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7197 	 * memory.
7198 	 */
7199 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7200 	if (err) {
7201 		iounmap(vaddr);
7202 		return err;
7203 	}
7204 
7205 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7206 	if (cmd == NULL) {
7207 		iounmap(vaddr);
7208 		return -ENOMEM;
7209 	}
7210 
7211 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7212 	 * although there's no guarantee, we assume that the address is at
7213 	 * least 4-byte aligned (most likely, it's page-aligned).
7214 	 */
7215 	paddr32 = cpu_to_le32(paddr64);
7216 
7217 	cmd->CommandHeader.ReplyQueue = 0;
7218 	cmd->CommandHeader.SGList = 0;
7219 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7220 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7221 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7222 
7223 	cmd->Request.CDBLen = 16;
7224 	cmd->Request.type_attr_dir =
7225 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7226 	cmd->Request.Timeout = 0; /* Don't time out */
7227 	cmd->Request.CDB[0] = opcode;
7228 	cmd->Request.CDB[1] = type;
7229 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7230 	cmd->ErrorDescriptor.Addr =
7231 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7232 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7233 
7234 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7235 
7236 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7237 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7238 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7239 			break;
7240 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7241 	}
7242 
7243 	iounmap(vaddr);
7244 
7245 	/* we leak the DMA buffer here ... no choice since the controller could
7246 	 *  still complete the command.
7247 	 */
7248 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7249 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7250 			opcode, type);
7251 		return -ETIMEDOUT;
7252 	}
7253 
7254 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7255 
7256 	if (tag & HPSA_ERROR_BIT) {
7257 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7258 			opcode, type);
7259 		return -EIO;
7260 	}
7261 
7262 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7263 		opcode, type);
7264 	return 0;
7265 }
7266 
7267 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7268 
7269 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7270 	void __iomem *vaddr, u32 use_doorbell)
7271 {
7272 
7273 	if (use_doorbell) {
7274 		/* For everything after the P600, the PCI power state method
7275 		 * of resetting the controller doesn't work, so we have this
7276 		 * other way using the doorbell register.
7277 		 */
7278 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7279 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7280 
7281 		/* PMC hardware guys tell us we need a 10 second delay after
7282 		 * doorbell reset and before any attempt to talk to the board
7283 		 * at all to ensure that this actually works and doesn't fall
7284 		 * over in some weird corner cases.
7285 		 */
7286 		msleep(10000);
7287 	} else { /* Try to do it the PCI power state way */
7288 
7289 		/* Quoting from the Open CISS Specification: "The Power
7290 		 * Management Control/Status Register (CSR) controls the power
7291 		 * state of the device.  The normal operating state is D0,
7292 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7293 		 * the controller, place the interface device in D3 then to D0,
7294 		 * this causes a secondary PCI reset which will reset the
7295 		 * controller." */
7296 
7297 		int rc = 0;
7298 
7299 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7300 
7301 		/* enter the D3hot power management state */
7302 		rc = pci_set_power_state(pdev, PCI_D3hot);
7303 		if (rc)
7304 			return rc;
7305 
7306 		msleep(500);
7307 
7308 		/* enter the D0 power management state */
7309 		rc = pci_set_power_state(pdev, PCI_D0);
7310 		if (rc)
7311 			return rc;
7312 
7313 		/*
7314 		 * The P600 requires a small delay when changing states.
7315 		 * Otherwise we may think the board did not reset and we bail.
7316 		 * This for kdump only and is particular to the P600.
7317 		 */
7318 		msleep(500);
7319 	}
7320 	return 0;
7321 }
7322 
7323 static void init_driver_version(char *driver_version, int len)
7324 {
7325 	memset(driver_version, 0, len);
7326 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7327 }
7328 
7329 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7330 {
7331 	char *driver_version;
7332 	int i, size = sizeof(cfgtable->driver_version);
7333 
7334 	driver_version = kmalloc(size, GFP_KERNEL);
7335 	if (!driver_version)
7336 		return -ENOMEM;
7337 
7338 	init_driver_version(driver_version, size);
7339 	for (i = 0; i < size; i++)
7340 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7341 	kfree(driver_version);
7342 	return 0;
7343 }
7344 
7345 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7346 					  unsigned char *driver_ver)
7347 {
7348 	int i;
7349 
7350 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7351 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7352 }
7353 
7354 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7355 {
7356 
7357 	char *driver_ver, *old_driver_ver;
7358 	int rc, size = sizeof(cfgtable->driver_version);
7359 
7360 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7361 	if (!old_driver_ver)
7362 		return -ENOMEM;
7363 	driver_ver = old_driver_ver + size;
7364 
7365 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7366 	 * should have been changed, otherwise we know the reset failed.
7367 	 */
7368 	init_driver_version(old_driver_ver, size);
7369 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7370 	rc = !memcmp(driver_ver, old_driver_ver, size);
7371 	kfree(old_driver_ver);
7372 	return rc;
7373 }
7374 /* This does a hard reset of the controller using PCI power management
7375  * states or the using the doorbell register.
7376  */
7377 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7378 {
7379 	u64 cfg_offset;
7380 	u32 cfg_base_addr;
7381 	u64 cfg_base_addr_index;
7382 	void __iomem *vaddr;
7383 	unsigned long paddr;
7384 	u32 misc_fw_support;
7385 	int rc;
7386 	struct CfgTable __iomem *cfgtable;
7387 	u32 use_doorbell;
7388 	u16 command_register;
7389 
7390 	/* For controllers as old as the P600, this is very nearly
7391 	 * the same thing as
7392 	 *
7393 	 * pci_save_state(pci_dev);
7394 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7395 	 * pci_set_power_state(pci_dev, PCI_D0);
7396 	 * pci_restore_state(pci_dev);
7397 	 *
7398 	 * For controllers newer than the P600, the pci power state
7399 	 * method of resetting doesn't work so we have another way
7400 	 * using the doorbell register.
7401 	 */
7402 
7403 	if (!ctlr_is_resettable(board_id)) {
7404 		dev_warn(&pdev->dev, "Controller not resettable\n");
7405 		return -ENODEV;
7406 	}
7407 
7408 	/* if controller is soft- but not hard resettable... */
7409 	if (!ctlr_is_hard_resettable(board_id))
7410 		return -ENOTSUPP; /* try soft reset later. */
7411 
7412 	/* Save the PCI command register */
7413 	pci_read_config_word(pdev, 4, &command_register);
7414 	pci_save_state(pdev);
7415 
7416 	/* find the first memory BAR, so we can find the cfg table */
7417 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7418 	if (rc)
7419 		return rc;
7420 	vaddr = remap_pci_mem(paddr, 0x250);
7421 	if (!vaddr)
7422 		return -ENOMEM;
7423 
7424 	/* find cfgtable in order to check if reset via doorbell is supported */
7425 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7426 					&cfg_base_addr_index, &cfg_offset);
7427 	if (rc)
7428 		goto unmap_vaddr;
7429 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7430 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7431 	if (!cfgtable) {
7432 		rc = -ENOMEM;
7433 		goto unmap_vaddr;
7434 	}
7435 	rc = write_driver_ver_to_cfgtable(cfgtable);
7436 	if (rc)
7437 		goto unmap_cfgtable;
7438 
7439 	/* If reset via doorbell register is supported, use that.
7440 	 * There are two such methods.  Favor the newest method.
7441 	 */
7442 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7443 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7444 	if (use_doorbell) {
7445 		use_doorbell = DOORBELL_CTLR_RESET2;
7446 	} else {
7447 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7448 		if (use_doorbell) {
7449 			dev_warn(&pdev->dev,
7450 				"Soft reset not supported. Firmware update is required.\n");
7451 			rc = -ENOTSUPP; /* try soft reset */
7452 			goto unmap_cfgtable;
7453 		}
7454 	}
7455 
7456 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7457 	if (rc)
7458 		goto unmap_cfgtable;
7459 
7460 	pci_restore_state(pdev);
7461 	pci_write_config_word(pdev, 4, command_register);
7462 
7463 	/* Some devices (notably the HP Smart Array 5i Controller)
7464 	   need a little pause here */
7465 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7466 
7467 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7468 	if (rc) {
7469 		dev_warn(&pdev->dev,
7470 			"Failed waiting for board to become ready after hard reset\n");
7471 		goto unmap_cfgtable;
7472 	}
7473 
7474 	rc = controller_reset_failed(vaddr);
7475 	if (rc < 0)
7476 		goto unmap_cfgtable;
7477 	if (rc) {
7478 		dev_warn(&pdev->dev, "Unable to successfully reset "
7479 			"controller. Will try soft reset.\n");
7480 		rc = -ENOTSUPP;
7481 	} else {
7482 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7483 	}
7484 
7485 unmap_cfgtable:
7486 	iounmap(cfgtable);
7487 
7488 unmap_vaddr:
7489 	iounmap(vaddr);
7490 	return rc;
7491 }
7492 
7493 /*
7494  *  We cannot read the structure directly, for portability we must use
7495  *   the io functions.
7496  *   This is for debug only.
7497  */
7498 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7499 {
7500 #ifdef HPSA_DEBUG
7501 	int i;
7502 	char temp_name[17];
7503 
7504 	dev_info(dev, "Controller Configuration information\n");
7505 	dev_info(dev, "------------------------------------\n");
7506 	for (i = 0; i < 4; i++)
7507 		temp_name[i] = readb(&(tb->Signature[i]));
7508 	temp_name[4] = '\0';
7509 	dev_info(dev, "   Signature = %s\n", temp_name);
7510 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7511 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7512 	       readl(&(tb->TransportSupport)));
7513 	dev_info(dev, "   Transport methods active = 0x%x\n",
7514 	       readl(&(tb->TransportActive)));
7515 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7516 	       readl(&(tb->HostWrite.TransportRequest)));
7517 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7518 	       readl(&(tb->HostWrite.CoalIntDelay)));
7519 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7520 	       readl(&(tb->HostWrite.CoalIntCount)));
7521 	dev_info(dev, "   Max outstanding commands = %d\n",
7522 	       readl(&(tb->CmdsOutMax)));
7523 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7524 	for (i = 0; i < 16; i++)
7525 		temp_name[i] = readb(&(tb->ServerName[i]));
7526 	temp_name[16] = '\0';
7527 	dev_info(dev, "   Server Name = %s\n", temp_name);
7528 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7529 		readl(&(tb->HeartBeat)));
7530 #endif				/* HPSA_DEBUG */
7531 }
7532 
7533 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7534 {
7535 	int i, offset, mem_type, bar_type;
7536 
7537 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7538 		return 0;
7539 	offset = 0;
7540 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7541 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7542 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7543 			offset += 4;
7544 		else {
7545 			mem_type = pci_resource_flags(pdev, i) &
7546 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7547 			switch (mem_type) {
7548 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7549 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7550 				offset += 4;	/* 32 bit */
7551 				break;
7552 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7553 				offset += 8;
7554 				break;
7555 			default:	/* reserved in PCI 2.2 */
7556 				dev_warn(&pdev->dev,
7557 				       "base address is invalid\n");
7558 				return -1;
7559 				break;
7560 			}
7561 		}
7562 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7563 			return i + 1;
7564 	}
7565 	return -1;
7566 }
7567 
7568 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7569 {
7570 	if (h->msix_vector) {
7571 		if (h->pdev->msix_enabled)
7572 			pci_disable_msix(h->pdev);
7573 		h->msix_vector = 0;
7574 	} else if (h->msi_vector) {
7575 		if (h->pdev->msi_enabled)
7576 			pci_disable_msi(h->pdev);
7577 		h->msi_vector = 0;
7578 	}
7579 }
7580 
7581 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7582  * controllers that are capable. If not, we use legacy INTx mode.
7583  */
7584 static void hpsa_interrupt_mode(struct ctlr_info *h)
7585 {
7586 #ifdef CONFIG_PCI_MSI
7587 	int err, i;
7588 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7589 
7590 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7591 		hpsa_msix_entries[i].vector = 0;
7592 		hpsa_msix_entries[i].entry = i;
7593 	}
7594 
7595 	/* Some boards advertise MSI but don't really support it */
7596 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7597 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7598 		goto default_int_mode;
7599 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7600 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7601 		h->msix_vector = MAX_REPLY_QUEUES;
7602 		if (h->msix_vector > num_online_cpus())
7603 			h->msix_vector = num_online_cpus();
7604 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7605 					    1, h->msix_vector);
7606 		if (err < 0) {
7607 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7608 			h->msix_vector = 0;
7609 			goto single_msi_mode;
7610 		} else if (err < h->msix_vector) {
7611 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7612 			       "available\n", err);
7613 		}
7614 		h->msix_vector = err;
7615 		for (i = 0; i < h->msix_vector; i++)
7616 			h->intr[i] = hpsa_msix_entries[i].vector;
7617 		return;
7618 	}
7619 single_msi_mode:
7620 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7621 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7622 		if (!pci_enable_msi(h->pdev))
7623 			h->msi_vector = 1;
7624 		else
7625 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7626 	}
7627 default_int_mode:
7628 #endif				/* CONFIG_PCI_MSI */
7629 	/* if we get here we're going to use the default interrupt mode */
7630 	h->intr[h->intr_mode] = h->pdev->irq;
7631 }
7632 
7633 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7634 {
7635 	int i;
7636 	u32 subsystem_vendor_id, subsystem_device_id;
7637 
7638 	subsystem_vendor_id = pdev->subsystem_vendor;
7639 	subsystem_device_id = pdev->subsystem_device;
7640 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7641 		    subsystem_vendor_id;
7642 
7643 	for (i = 0; i < ARRAY_SIZE(products); i++)
7644 		if (*board_id == products[i].board_id)
7645 			return i;
7646 
7647 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7648 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7649 		!hpsa_allow_any) {
7650 		dev_warn(&pdev->dev, "unrecognized board ID: "
7651 			"0x%08x, ignoring.\n", *board_id);
7652 			return -ENODEV;
7653 	}
7654 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7655 }
7656 
7657 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7658 				    unsigned long *memory_bar)
7659 {
7660 	int i;
7661 
7662 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7663 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7664 			/* addressing mode bits already removed */
7665 			*memory_bar = pci_resource_start(pdev, i);
7666 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7667 				*memory_bar);
7668 			return 0;
7669 		}
7670 	dev_warn(&pdev->dev, "no memory BAR found\n");
7671 	return -ENODEV;
7672 }
7673 
7674 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7675 				     int wait_for_ready)
7676 {
7677 	int i, iterations;
7678 	u32 scratchpad;
7679 	if (wait_for_ready)
7680 		iterations = HPSA_BOARD_READY_ITERATIONS;
7681 	else
7682 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7683 
7684 	for (i = 0; i < iterations; i++) {
7685 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7686 		if (wait_for_ready) {
7687 			if (scratchpad == HPSA_FIRMWARE_READY)
7688 				return 0;
7689 		} else {
7690 			if (scratchpad != HPSA_FIRMWARE_READY)
7691 				return 0;
7692 		}
7693 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7694 	}
7695 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7696 	return -ENODEV;
7697 }
7698 
7699 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7700 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7701 			       u64 *cfg_offset)
7702 {
7703 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7704 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7705 	*cfg_base_addr &= (u32) 0x0000ffff;
7706 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7707 	if (*cfg_base_addr_index == -1) {
7708 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7709 		return -ENODEV;
7710 	}
7711 	return 0;
7712 }
7713 
7714 static void hpsa_free_cfgtables(struct ctlr_info *h)
7715 {
7716 	if (h->transtable) {
7717 		iounmap(h->transtable);
7718 		h->transtable = NULL;
7719 	}
7720 	if (h->cfgtable) {
7721 		iounmap(h->cfgtable);
7722 		h->cfgtable = NULL;
7723 	}
7724 }
7725 
7726 /* Find and map CISS config table and transfer table
7727 + * several items must be unmapped (freed) later
7728 + * */
7729 static int hpsa_find_cfgtables(struct ctlr_info *h)
7730 {
7731 	u64 cfg_offset;
7732 	u32 cfg_base_addr;
7733 	u64 cfg_base_addr_index;
7734 	u32 trans_offset;
7735 	int rc;
7736 
7737 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7738 		&cfg_base_addr_index, &cfg_offset);
7739 	if (rc)
7740 		return rc;
7741 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7742 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7743 	if (!h->cfgtable) {
7744 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7745 		return -ENOMEM;
7746 	}
7747 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7748 	if (rc)
7749 		return rc;
7750 	/* Find performant mode table. */
7751 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7752 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7753 				cfg_base_addr_index)+cfg_offset+trans_offset,
7754 				sizeof(*h->transtable));
7755 	if (!h->transtable) {
7756 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7757 		hpsa_free_cfgtables(h);
7758 		return -ENOMEM;
7759 	}
7760 	return 0;
7761 }
7762 
7763 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7764 {
7765 #define MIN_MAX_COMMANDS 16
7766 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7767 
7768 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7769 
7770 	/* Limit commands in memory limited kdump scenario. */
7771 	if (reset_devices && h->max_commands > 32)
7772 		h->max_commands = 32;
7773 
7774 	if (h->max_commands < MIN_MAX_COMMANDS) {
7775 		dev_warn(&h->pdev->dev,
7776 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7777 			h->max_commands,
7778 			MIN_MAX_COMMANDS);
7779 		h->max_commands = MIN_MAX_COMMANDS;
7780 	}
7781 }
7782 
7783 /* If the controller reports that the total max sg entries is greater than 512,
7784  * then we know that chained SG blocks work.  (Original smart arrays did not
7785  * support chained SG blocks and would return zero for max sg entries.)
7786  */
7787 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7788 {
7789 	return h->maxsgentries > 512;
7790 }
7791 
7792 /* Interrogate the hardware for some limits:
7793  * max commands, max SG elements without chaining, and with chaining,
7794  * SG chain block size, etc.
7795  */
7796 static void hpsa_find_board_params(struct ctlr_info *h)
7797 {
7798 	hpsa_get_max_perf_mode_cmds(h);
7799 	h->nr_cmds = h->max_commands;
7800 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7801 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7802 	if (hpsa_supports_chained_sg_blocks(h)) {
7803 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7804 		h->max_cmd_sg_entries = 32;
7805 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7806 		h->maxsgentries--; /* save one for chain pointer */
7807 	} else {
7808 		/*
7809 		 * Original smart arrays supported at most 31 s/g entries
7810 		 * embedded inline in the command (trying to use more
7811 		 * would lock up the controller)
7812 		 */
7813 		h->max_cmd_sg_entries = 31;
7814 		h->maxsgentries = 31; /* default to traditional values */
7815 		h->chainsize = 0;
7816 	}
7817 
7818 	/* Find out what task management functions are supported and cache */
7819 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7820 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7821 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7822 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7823 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7824 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7825 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7826 }
7827 
7828 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7829 {
7830 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7831 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7832 		return false;
7833 	}
7834 	return true;
7835 }
7836 
7837 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7838 {
7839 	u32 driver_support;
7840 
7841 	driver_support = readl(&(h->cfgtable->driver_support));
7842 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7843 #ifdef CONFIG_X86
7844 	driver_support |= ENABLE_SCSI_PREFETCH;
7845 #endif
7846 	driver_support |= ENABLE_UNIT_ATTN;
7847 	writel(driver_support, &(h->cfgtable->driver_support));
7848 }
7849 
7850 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7851  * in a prefetch beyond physical memory.
7852  */
7853 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7854 {
7855 	u32 dma_prefetch;
7856 
7857 	if (h->board_id != 0x3225103C)
7858 		return;
7859 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7860 	dma_prefetch |= 0x8000;
7861 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7862 }
7863 
7864 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7865 {
7866 	int i;
7867 	u32 doorbell_value;
7868 	unsigned long flags;
7869 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7870 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7871 		spin_lock_irqsave(&h->lock, flags);
7872 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7873 		spin_unlock_irqrestore(&h->lock, flags);
7874 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7875 			goto done;
7876 		/* delay and try again */
7877 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7878 	}
7879 	return -ENODEV;
7880 done:
7881 	return 0;
7882 }
7883 
7884 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7885 {
7886 	int i;
7887 	u32 doorbell_value;
7888 	unsigned long flags;
7889 
7890 	/* under certain very rare conditions, this can take awhile.
7891 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7892 	 * as we enter this code.)
7893 	 */
7894 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7895 		if (h->remove_in_progress)
7896 			goto done;
7897 		spin_lock_irqsave(&h->lock, flags);
7898 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7899 		spin_unlock_irqrestore(&h->lock, flags);
7900 		if (!(doorbell_value & CFGTBL_ChangeReq))
7901 			goto done;
7902 		/* delay and try again */
7903 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7904 	}
7905 	return -ENODEV;
7906 done:
7907 	return 0;
7908 }
7909 
7910 /* return -ENODEV or other reason on error, 0 on success */
7911 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7912 {
7913 	u32 trans_support;
7914 
7915 	trans_support = readl(&(h->cfgtable->TransportSupport));
7916 	if (!(trans_support & SIMPLE_MODE))
7917 		return -ENOTSUPP;
7918 
7919 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7920 
7921 	/* Update the field, and then ring the doorbell */
7922 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7923 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7924 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7925 	if (hpsa_wait_for_mode_change_ack(h))
7926 		goto error;
7927 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7928 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7929 		goto error;
7930 	h->transMethod = CFGTBL_Trans_Simple;
7931 	return 0;
7932 error:
7933 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7934 	return -ENODEV;
7935 }
7936 
7937 /* free items allocated or mapped by hpsa_pci_init */
7938 static void hpsa_free_pci_init(struct ctlr_info *h)
7939 {
7940 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7941 	iounmap(h->vaddr);			/* pci_init 3 */
7942 	h->vaddr = NULL;
7943 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7944 	/*
7945 	 * call pci_disable_device before pci_release_regions per
7946 	 * Documentation/PCI/pci.txt
7947 	 */
7948 	pci_disable_device(h->pdev);		/* pci_init 1 */
7949 	pci_release_regions(h->pdev);		/* pci_init 2 */
7950 }
7951 
7952 /* several items must be freed later */
7953 static int hpsa_pci_init(struct ctlr_info *h)
7954 {
7955 	int prod_index, err;
7956 
7957 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7958 	if (prod_index < 0)
7959 		return prod_index;
7960 	h->product_name = products[prod_index].product_name;
7961 	h->access = *(products[prod_index].access);
7962 
7963 	h->needs_abort_tags_swizzled =
7964 		ctlr_needs_abort_tags_swizzled(h->board_id);
7965 
7966 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7967 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7968 
7969 	err = pci_enable_device(h->pdev);
7970 	if (err) {
7971 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7972 		pci_disable_device(h->pdev);
7973 		return err;
7974 	}
7975 
7976 	err = pci_request_regions(h->pdev, HPSA);
7977 	if (err) {
7978 		dev_err(&h->pdev->dev,
7979 			"failed to obtain PCI resources\n");
7980 		pci_disable_device(h->pdev);
7981 		return err;
7982 	}
7983 
7984 	pci_set_master(h->pdev);
7985 
7986 	hpsa_interrupt_mode(h);
7987 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7988 	if (err)
7989 		goto clean2;	/* intmode+region, pci */
7990 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7991 	if (!h->vaddr) {
7992 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7993 		err = -ENOMEM;
7994 		goto clean2;	/* intmode+region, pci */
7995 	}
7996 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7997 	if (err)
7998 		goto clean3;	/* vaddr, intmode+region, pci */
7999 	err = hpsa_find_cfgtables(h);
8000 	if (err)
8001 		goto clean3;	/* vaddr, intmode+region, pci */
8002 	hpsa_find_board_params(h);
8003 
8004 	if (!hpsa_CISS_signature_present(h)) {
8005 		err = -ENODEV;
8006 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8007 	}
8008 	hpsa_set_driver_support_bits(h);
8009 	hpsa_p600_dma_prefetch_quirk(h);
8010 	err = hpsa_enter_simple_mode(h);
8011 	if (err)
8012 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8013 	return 0;
8014 
8015 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8016 	hpsa_free_cfgtables(h);
8017 clean3:	/* vaddr, intmode+region, pci */
8018 	iounmap(h->vaddr);
8019 	h->vaddr = NULL;
8020 clean2:	/* intmode+region, pci */
8021 	hpsa_disable_interrupt_mode(h);
8022 	/*
8023 	 * call pci_disable_device before pci_release_regions per
8024 	 * Documentation/PCI/pci.txt
8025 	 */
8026 	pci_disable_device(h->pdev);
8027 	pci_release_regions(h->pdev);
8028 	return err;
8029 }
8030 
8031 static void hpsa_hba_inquiry(struct ctlr_info *h)
8032 {
8033 	int rc;
8034 
8035 #define HBA_INQUIRY_BYTE_COUNT 64
8036 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8037 	if (!h->hba_inquiry_data)
8038 		return;
8039 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8040 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8041 	if (rc != 0) {
8042 		kfree(h->hba_inquiry_data);
8043 		h->hba_inquiry_data = NULL;
8044 	}
8045 }
8046 
8047 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8048 {
8049 	int rc, i;
8050 	void __iomem *vaddr;
8051 
8052 	if (!reset_devices)
8053 		return 0;
8054 
8055 	/* kdump kernel is loading, we don't know in which state is
8056 	 * the pci interface. The dev->enable_cnt is equal zero
8057 	 * so we call enable+disable, wait a while and switch it on.
8058 	 */
8059 	rc = pci_enable_device(pdev);
8060 	if (rc) {
8061 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8062 		return -ENODEV;
8063 	}
8064 	pci_disable_device(pdev);
8065 	msleep(260);			/* a randomly chosen number */
8066 	rc = pci_enable_device(pdev);
8067 	if (rc) {
8068 		dev_warn(&pdev->dev, "failed to enable device.\n");
8069 		return -ENODEV;
8070 	}
8071 
8072 	pci_set_master(pdev);
8073 
8074 	vaddr = pci_ioremap_bar(pdev, 0);
8075 	if (vaddr == NULL) {
8076 		rc = -ENOMEM;
8077 		goto out_disable;
8078 	}
8079 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8080 	iounmap(vaddr);
8081 
8082 	/* Reset the controller with a PCI power-cycle or via doorbell */
8083 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8084 
8085 	/* -ENOTSUPP here means we cannot reset the controller
8086 	 * but it's already (and still) up and running in
8087 	 * "performant mode".  Or, it might be 640x, which can't reset
8088 	 * due to concerns about shared bbwc between 6402/6404 pair.
8089 	 */
8090 	if (rc)
8091 		goto out_disable;
8092 
8093 	/* Now try to get the controller to respond to a no-op */
8094 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8095 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8096 		if (hpsa_noop(pdev) == 0)
8097 			break;
8098 		else
8099 			dev_warn(&pdev->dev, "no-op failed%s\n",
8100 					(i < 11 ? "; re-trying" : ""));
8101 	}
8102 
8103 out_disable:
8104 
8105 	pci_disable_device(pdev);
8106 	return rc;
8107 }
8108 
8109 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8110 {
8111 	kfree(h->cmd_pool_bits);
8112 	h->cmd_pool_bits = NULL;
8113 	if (h->cmd_pool) {
8114 		pci_free_consistent(h->pdev,
8115 				h->nr_cmds * sizeof(struct CommandList),
8116 				h->cmd_pool,
8117 				h->cmd_pool_dhandle);
8118 		h->cmd_pool = NULL;
8119 		h->cmd_pool_dhandle = 0;
8120 	}
8121 	if (h->errinfo_pool) {
8122 		pci_free_consistent(h->pdev,
8123 				h->nr_cmds * sizeof(struct ErrorInfo),
8124 				h->errinfo_pool,
8125 				h->errinfo_pool_dhandle);
8126 		h->errinfo_pool = NULL;
8127 		h->errinfo_pool_dhandle = 0;
8128 	}
8129 }
8130 
8131 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8132 {
8133 	h->cmd_pool_bits = kzalloc(
8134 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8135 		sizeof(unsigned long), GFP_KERNEL);
8136 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8137 		    h->nr_cmds * sizeof(*h->cmd_pool),
8138 		    &(h->cmd_pool_dhandle));
8139 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8140 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8141 		    &(h->errinfo_pool_dhandle));
8142 	if ((h->cmd_pool_bits == NULL)
8143 	    || (h->cmd_pool == NULL)
8144 	    || (h->errinfo_pool == NULL)) {
8145 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8146 		goto clean_up;
8147 	}
8148 	hpsa_preinitialize_commands(h);
8149 	return 0;
8150 clean_up:
8151 	hpsa_free_cmd_pool(h);
8152 	return -ENOMEM;
8153 }
8154 
8155 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8156 {
8157 	int i, cpu;
8158 
8159 	cpu = cpumask_first(cpu_online_mask);
8160 	for (i = 0; i < h->msix_vector; i++) {
8161 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8162 		cpu = cpumask_next(cpu, cpu_online_mask);
8163 	}
8164 }
8165 
8166 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8167 static void hpsa_free_irqs(struct ctlr_info *h)
8168 {
8169 	int i;
8170 
8171 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8172 		/* Single reply queue, only one irq to free */
8173 		i = h->intr_mode;
8174 		irq_set_affinity_hint(h->intr[i], NULL);
8175 		free_irq(h->intr[i], &h->q[i]);
8176 		h->q[i] = 0;
8177 		return;
8178 	}
8179 
8180 	for (i = 0; i < h->msix_vector; i++) {
8181 		irq_set_affinity_hint(h->intr[i], NULL);
8182 		free_irq(h->intr[i], &h->q[i]);
8183 		h->q[i] = 0;
8184 	}
8185 	for (; i < MAX_REPLY_QUEUES; i++)
8186 		h->q[i] = 0;
8187 }
8188 
8189 /* returns 0 on success; cleans up and returns -Enn on error */
8190 static int hpsa_request_irqs(struct ctlr_info *h,
8191 	irqreturn_t (*msixhandler)(int, void *),
8192 	irqreturn_t (*intxhandler)(int, void *))
8193 {
8194 	int rc, i;
8195 
8196 	/*
8197 	 * initialize h->q[x] = x so that interrupt handlers know which
8198 	 * queue to process.
8199 	 */
8200 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8201 		h->q[i] = (u8) i;
8202 
8203 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8204 		/* If performant mode and MSI-X, use multiple reply queues */
8205 		for (i = 0; i < h->msix_vector; i++) {
8206 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8207 			rc = request_irq(h->intr[i], msixhandler,
8208 					0, h->intrname[i],
8209 					&h->q[i]);
8210 			if (rc) {
8211 				int j;
8212 
8213 				dev_err(&h->pdev->dev,
8214 					"failed to get irq %d for %s\n",
8215 				       h->intr[i], h->devname);
8216 				for (j = 0; j < i; j++) {
8217 					free_irq(h->intr[j], &h->q[j]);
8218 					h->q[j] = 0;
8219 				}
8220 				for (; j < MAX_REPLY_QUEUES; j++)
8221 					h->q[j] = 0;
8222 				return rc;
8223 			}
8224 		}
8225 		hpsa_irq_affinity_hints(h);
8226 	} else {
8227 		/* Use single reply pool */
8228 		if (h->msix_vector > 0 || h->msi_vector) {
8229 			if (h->msix_vector)
8230 				sprintf(h->intrname[h->intr_mode],
8231 					"%s-msix", h->devname);
8232 			else
8233 				sprintf(h->intrname[h->intr_mode],
8234 					"%s-msi", h->devname);
8235 			rc = request_irq(h->intr[h->intr_mode],
8236 				msixhandler, 0,
8237 				h->intrname[h->intr_mode],
8238 				&h->q[h->intr_mode]);
8239 		} else {
8240 			sprintf(h->intrname[h->intr_mode],
8241 				"%s-intx", h->devname);
8242 			rc = request_irq(h->intr[h->intr_mode],
8243 				intxhandler, IRQF_SHARED,
8244 				h->intrname[h->intr_mode],
8245 				&h->q[h->intr_mode]);
8246 		}
8247 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8248 	}
8249 	if (rc) {
8250 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8251 		       h->intr[h->intr_mode], h->devname);
8252 		hpsa_free_irqs(h);
8253 		return -ENODEV;
8254 	}
8255 	return 0;
8256 }
8257 
8258 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8259 {
8260 	int rc;
8261 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8262 
8263 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8264 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8265 	if (rc) {
8266 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8267 		return rc;
8268 	}
8269 
8270 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8271 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8272 	if (rc) {
8273 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8274 			"after soft reset.\n");
8275 		return rc;
8276 	}
8277 
8278 	return 0;
8279 }
8280 
8281 static void hpsa_free_reply_queues(struct ctlr_info *h)
8282 {
8283 	int i;
8284 
8285 	for (i = 0; i < h->nreply_queues; i++) {
8286 		if (!h->reply_queue[i].head)
8287 			continue;
8288 		pci_free_consistent(h->pdev,
8289 					h->reply_queue_size,
8290 					h->reply_queue[i].head,
8291 					h->reply_queue[i].busaddr);
8292 		h->reply_queue[i].head = NULL;
8293 		h->reply_queue[i].busaddr = 0;
8294 	}
8295 	h->reply_queue_size = 0;
8296 }
8297 
8298 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8299 {
8300 	hpsa_free_performant_mode(h);		/* init_one 7 */
8301 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8302 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8303 	hpsa_free_irqs(h);			/* init_one 4 */
8304 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8305 	h->scsi_host = NULL;			/* init_one 3 */
8306 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8307 	free_percpu(h->lockup_detected);	/* init_one 2 */
8308 	h->lockup_detected = NULL;		/* init_one 2 */
8309 	if (h->resubmit_wq) {
8310 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8311 		h->resubmit_wq = NULL;
8312 	}
8313 	if (h->rescan_ctlr_wq) {
8314 		destroy_workqueue(h->rescan_ctlr_wq);
8315 		h->rescan_ctlr_wq = NULL;
8316 	}
8317 	kfree(h);				/* init_one 1 */
8318 }
8319 
8320 /* Called when controller lockup detected. */
8321 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8322 {
8323 	int i, refcount;
8324 	struct CommandList *c;
8325 	int failcount = 0;
8326 
8327 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8328 	for (i = 0; i < h->nr_cmds; i++) {
8329 		c = h->cmd_pool + i;
8330 		refcount = atomic_inc_return(&c->refcount);
8331 		if (refcount > 1) {
8332 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8333 			finish_cmd(c);
8334 			atomic_dec(&h->commands_outstanding);
8335 			failcount++;
8336 		}
8337 		cmd_free(h, c);
8338 	}
8339 	dev_warn(&h->pdev->dev,
8340 		"failed %d commands in fail_all\n", failcount);
8341 }
8342 
8343 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8344 {
8345 	int cpu;
8346 
8347 	for_each_online_cpu(cpu) {
8348 		u32 *lockup_detected;
8349 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8350 		*lockup_detected = value;
8351 	}
8352 	wmb(); /* be sure the per-cpu variables are out to memory */
8353 }
8354 
8355 static void controller_lockup_detected(struct ctlr_info *h)
8356 {
8357 	unsigned long flags;
8358 	u32 lockup_detected;
8359 
8360 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8361 	spin_lock_irqsave(&h->lock, flags);
8362 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8363 	if (!lockup_detected) {
8364 		/* no heartbeat, but controller gave us a zero. */
8365 		dev_warn(&h->pdev->dev,
8366 			"lockup detected after %d but scratchpad register is zero\n",
8367 			h->heartbeat_sample_interval / HZ);
8368 		lockup_detected = 0xffffffff;
8369 	}
8370 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8371 	spin_unlock_irqrestore(&h->lock, flags);
8372 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8373 			lockup_detected, h->heartbeat_sample_interval / HZ);
8374 	pci_disable_device(h->pdev);
8375 	fail_all_outstanding_cmds(h);
8376 }
8377 
8378 static int detect_controller_lockup(struct ctlr_info *h)
8379 {
8380 	u64 now;
8381 	u32 heartbeat;
8382 	unsigned long flags;
8383 
8384 	now = get_jiffies_64();
8385 	/* If we've received an interrupt recently, we're ok. */
8386 	if (time_after64(h->last_intr_timestamp +
8387 				(h->heartbeat_sample_interval), now))
8388 		return false;
8389 
8390 	/*
8391 	 * If we've already checked the heartbeat recently, we're ok.
8392 	 * This could happen if someone sends us a signal. We
8393 	 * otherwise don't care about signals in this thread.
8394 	 */
8395 	if (time_after64(h->last_heartbeat_timestamp +
8396 				(h->heartbeat_sample_interval), now))
8397 		return false;
8398 
8399 	/* If heartbeat has not changed since we last looked, we're not ok. */
8400 	spin_lock_irqsave(&h->lock, flags);
8401 	heartbeat = readl(&h->cfgtable->HeartBeat);
8402 	spin_unlock_irqrestore(&h->lock, flags);
8403 	if (h->last_heartbeat == heartbeat) {
8404 		controller_lockup_detected(h);
8405 		return true;
8406 	}
8407 
8408 	/* We're ok. */
8409 	h->last_heartbeat = heartbeat;
8410 	h->last_heartbeat_timestamp = now;
8411 	return false;
8412 }
8413 
8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416 	int i;
8417 	char *event_type;
8418 
8419 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8420 		return;
8421 
8422 	/* Ask the controller to clear the events we're handling. */
8423 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8424 			| CFGTBL_Trans_io_accel2)) &&
8425 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8426 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8427 
8428 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8429 			event_type = "state change";
8430 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8431 			event_type = "configuration change";
8432 		/* Stop sending new RAID offload reqs via the IO accelerator */
8433 		scsi_block_requests(h->scsi_host);
8434 		for (i = 0; i < h->ndevices; i++) {
8435 			h->dev[i]->offload_enabled = 0;
8436 			h->dev[i]->offload_to_be_enabled = 0;
8437 		}
8438 		hpsa_drain_accel_commands(h);
8439 		/* Set 'accelerator path config change' bit */
8440 		dev_warn(&h->pdev->dev,
8441 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8442 			h->events, event_type);
8443 		writel(h->events, &(h->cfgtable->clear_event_notify));
8444 		/* Set the "clear event notify field update" bit 6 */
8445 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8446 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8447 		hpsa_wait_for_clear_event_notify_ack(h);
8448 		scsi_unblock_requests(h->scsi_host);
8449 	} else {
8450 		/* Acknowledge controller notification events. */
8451 		writel(h->events, &(h->cfgtable->clear_event_notify));
8452 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8453 		hpsa_wait_for_clear_event_notify_ack(h);
8454 #if 0
8455 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8456 		hpsa_wait_for_mode_change_ack(h);
8457 #endif
8458 	}
8459 	return;
8460 }
8461 
8462 /* Check a register on the controller to see if there are configuration
8463  * changes (added/changed/removed logical drives, etc.) which mean that
8464  * we should rescan the controller for devices.
8465  * Also check flag for driver-initiated rescan.
8466  */
8467 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8468 {
8469 	if (h->drv_req_rescan) {
8470 		h->drv_req_rescan = 0;
8471 		return 1;
8472 	}
8473 
8474 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8475 		return 0;
8476 
8477 	h->events = readl(&(h->cfgtable->event_notify));
8478 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8479 }
8480 
8481 /*
8482  * Check if any of the offline devices have become ready
8483  */
8484 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8485 {
8486 	unsigned long flags;
8487 	struct offline_device_entry *d;
8488 	struct list_head *this, *tmp;
8489 
8490 	spin_lock_irqsave(&h->offline_device_lock, flags);
8491 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8492 		d = list_entry(this, struct offline_device_entry,
8493 				offline_list);
8494 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8495 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8496 			spin_lock_irqsave(&h->offline_device_lock, flags);
8497 			list_del(&d->offline_list);
8498 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8499 			return 1;
8500 		}
8501 		spin_lock_irqsave(&h->offline_device_lock, flags);
8502 	}
8503 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8504 	return 0;
8505 }
8506 
8507 static int hpsa_luns_changed(struct ctlr_info *h)
8508 {
8509 	int rc = 1; /* assume there are changes */
8510 	struct ReportLUNdata *logdev = NULL;
8511 
8512 	/* if we can't find out if lun data has changed,
8513 	 * assume that it has.
8514 	 */
8515 
8516 	if (!h->lastlogicals)
8517 		goto out;
8518 
8519 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8520 	if (!logdev) {
8521 		dev_warn(&h->pdev->dev,
8522 			"Out of memory, can't track lun changes.\n");
8523 		goto out;
8524 	}
8525 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8526 		dev_warn(&h->pdev->dev,
8527 			"report luns failed, can't track lun changes.\n");
8528 		goto out;
8529 	}
8530 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8531 		dev_info(&h->pdev->dev,
8532 			"Lun changes detected.\n");
8533 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8534 		goto out;
8535 	} else
8536 		rc = 0; /* no changes detected. */
8537 out:
8538 	kfree(logdev);
8539 	return rc;
8540 }
8541 
8542 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8543 {
8544 	unsigned long flags;
8545 	struct ctlr_info *h = container_of(to_delayed_work(work),
8546 					struct ctlr_info, rescan_ctlr_work);
8547 
8548 
8549 	if (h->remove_in_progress)
8550 		return;
8551 
8552 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8553 		scsi_host_get(h->scsi_host);
8554 		hpsa_ack_ctlr_events(h);
8555 		hpsa_scan_start(h->scsi_host);
8556 		scsi_host_put(h->scsi_host);
8557 	} else if (h->discovery_polling) {
8558 		hpsa_disable_rld_caching(h);
8559 		if (hpsa_luns_changed(h)) {
8560 			struct Scsi_Host *sh = NULL;
8561 
8562 			dev_info(&h->pdev->dev,
8563 				"driver discovery polling rescan.\n");
8564 			sh = scsi_host_get(h->scsi_host);
8565 			if (sh != NULL) {
8566 				hpsa_scan_start(sh);
8567 				scsi_host_put(sh);
8568 			}
8569 		}
8570 	}
8571 	spin_lock_irqsave(&h->lock, flags);
8572 	if (!h->remove_in_progress)
8573 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8574 				h->heartbeat_sample_interval);
8575 	spin_unlock_irqrestore(&h->lock, flags);
8576 }
8577 
8578 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8579 {
8580 	unsigned long flags;
8581 	struct ctlr_info *h = container_of(to_delayed_work(work),
8582 					struct ctlr_info, monitor_ctlr_work);
8583 
8584 	detect_controller_lockup(h);
8585 	if (lockup_detected(h))
8586 		return;
8587 
8588 	spin_lock_irqsave(&h->lock, flags);
8589 	if (!h->remove_in_progress)
8590 		schedule_delayed_work(&h->monitor_ctlr_work,
8591 				h->heartbeat_sample_interval);
8592 	spin_unlock_irqrestore(&h->lock, flags);
8593 }
8594 
8595 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8596 						char *name)
8597 {
8598 	struct workqueue_struct *wq = NULL;
8599 
8600 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8601 	if (!wq)
8602 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8603 
8604 	return wq;
8605 }
8606 
8607 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8608 {
8609 	int dac, rc;
8610 	struct ctlr_info *h;
8611 	int try_soft_reset = 0;
8612 	unsigned long flags;
8613 	u32 board_id;
8614 
8615 	if (number_of_controllers == 0)
8616 		printk(KERN_INFO DRIVER_NAME "\n");
8617 
8618 	rc = hpsa_lookup_board_id(pdev, &board_id);
8619 	if (rc < 0) {
8620 		dev_warn(&pdev->dev, "Board ID not found\n");
8621 		return rc;
8622 	}
8623 
8624 	rc = hpsa_init_reset_devices(pdev, board_id);
8625 	if (rc) {
8626 		if (rc != -ENOTSUPP)
8627 			return rc;
8628 		/* If the reset fails in a particular way (it has no way to do
8629 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8630 		 * a soft reset once we get the controller configured up to the
8631 		 * point that it can accept a command.
8632 		 */
8633 		try_soft_reset = 1;
8634 		rc = 0;
8635 	}
8636 
8637 reinit_after_soft_reset:
8638 
8639 	/* Command structures must be aligned on a 32-byte boundary because
8640 	 * the 5 lower bits of the address are used by the hardware. and by
8641 	 * the driver.  See comments in hpsa.h for more info.
8642 	 */
8643 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8644 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8645 	if (!h) {
8646 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8647 		return -ENOMEM;
8648 	}
8649 
8650 	h->pdev = pdev;
8651 
8652 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8653 	INIT_LIST_HEAD(&h->offline_device_list);
8654 	spin_lock_init(&h->lock);
8655 	spin_lock_init(&h->offline_device_lock);
8656 	spin_lock_init(&h->scan_lock);
8657 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8658 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8659 
8660 	/* Allocate and clear per-cpu variable lockup_detected */
8661 	h->lockup_detected = alloc_percpu(u32);
8662 	if (!h->lockup_detected) {
8663 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8664 		rc = -ENOMEM;
8665 		goto clean1;	/* aer/h */
8666 	}
8667 	set_lockup_detected_for_all_cpus(h, 0);
8668 
8669 	rc = hpsa_pci_init(h);
8670 	if (rc)
8671 		goto clean2;	/* lu, aer/h */
8672 
8673 	/* relies on h-> settings made by hpsa_pci_init, including
8674 	 * interrupt_mode h->intr */
8675 	rc = hpsa_scsi_host_alloc(h);
8676 	if (rc)
8677 		goto clean2_5;	/* pci, lu, aer/h */
8678 
8679 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8680 	h->ctlr = number_of_controllers;
8681 	number_of_controllers++;
8682 
8683 	/* configure PCI DMA stuff */
8684 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8685 	if (rc == 0) {
8686 		dac = 1;
8687 	} else {
8688 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8689 		if (rc == 0) {
8690 			dac = 0;
8691 		} else {
8692 			dev_err(&pdev->dev, "no suitable DMA available\n");
8693 			goto clean3;	/* shost, pci, lu, aer/h */
8694 		}
8695 	}
8696 
8697 	/* make sure the board interrupts are off */
8698 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8699 
8700 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8701 	if (rc)
8702 		goto clean3;	/* shost, pci, lu, aer/h */
8703 	rc = hpsa_alloc_cmd_pool(h);
8704 	if (rc)
8705 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8706 	rc = hpsa_alloc_sg_chain_blocks(h);
8707 	if (rc)
8708 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8709 	init_waitqueue_head(&h->scan_wait_queue);
8710 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8711 	init_waitqueue_head(&h->event_sync_wait_queue);
8712 	mutex_init(&h->reset_mutex);
8713 	h->scan_finished = 1; /* no scan currently in progress */
8714 
8715 	pci_set_drvdata(pdev, h);
8716 	h->ndevices = 0;
8717 
8718 	spin_lock_init(&h->devlock);
8719 	rc = hpsa_put_ctlr_into_performant_mode(h);
8720 	if (rc)
8721 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8722 
8723 	/* create the resubmit workqueue */
8724 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8725 	if (!h->rescan_ctlr_wq) {
8726 		rc = -ENOMEM;
8727 		goto clean7;
8728 	}
8729 
8730 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8731 	if (!h->resubmit_wq) {
8732 		rc = -ENOMEM;
8733 		goto clean7;	/* aer/h */
8734 	}
8735 
8736 	/*
8737 	 * At this point, the controller is ready to take commands.
8738 	 * Now, if reset_devices and the hard reset didn't work, try
8739 	 * the soft reset and see if that works.
8740 	 */
8741 	if (try_soft_reset) {
8742 
8743 		/* This is kind of gross.  We may or may not get a completion
8744 		 * from the soft reset command, and if we do, then the value
8745 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8746 		 * after the reset throwing away any completions we get during
8747 		 * that time.  Unregister the interrupt handler and register
8748 		 * fake ones to scoop up any residual completions.
8749 		 */
8750 		spin_lock_irqsave(&h->lock, flags);
8751 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752 		spin_unlock_irqrestore(&h->lock, flags);
8753 		hpsa_free_irqs(h);
8754 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8755 					hpsa_intx_discard_completions);
8756 		if (rc) {
8757 			dev_warn(&h->pdev->dev,
8758 				"Failed to request_irq after soft reset.\n");
8759 			/*
8760 			 * cannot goto clean7 or free_irqs will be called
8761 			 * again. Instead, do its work
8762 			 */
8763 			hpsa_free_performant_mode(h);	/* clean7 */
8764 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8765 			hpsa_free_cmd_pool(h);		/* clean5 */
8766 			/*
8767 			 * skip hpsa_free_irqs(h) clean4 since that
8768 			 * was just called before request_irqs failed
8769 			 */
8770 			goto clean3;
8771 		}
8772 
8773 		rc = hpsa_kdump_soft_reset(h);
8774 		if (rc)
8775 			/* Neither hard nor soft reset worked, we're hosed. */
8776 			goto clean7;
8777 
8778 		dev_info(&h->pdev->dev, "Board READY.\n");
8779 		dev_info(&h->pdev->dev,
8780 			"Waiting for stale completions to drain.\n");
8781 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8782 		msleep(10000);
8783 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8784 
8785 		rc = controller_reset_failed(h->cfgtable);
8786 		if (rc)
8787 			dev_info(&h->pdev->dev,
8788 				"Soft reset appears to have failed.\n");
8789 
8790 		/* since the controller's reset, we have to go back and re-init
8791 		 * everything.  Easiest to just forget what we've done and do it
8792 		 * all over again.
8793 		 */
8794 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8795 		try_soft_reset = 0;
8796 		if (rc)
8797 			/* don't goto clean, we already unallocated */
8798 			return -ENODEV;
8799 
8800 		goto reinit_after_soft_reset;
8801 	}
8802 
8803 	/* Enable Accelerated IO path at driver layer */
8804 	h->acciopath_status = 1;
8805 	/* Disable discovery polling.*/
8806 	h->discovery_polling = 0;
8807 
8808 
8809 	/* Turn the interrupts on so we can service requests */
8810 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8811 
8812 	hpsa_hba_inquiry(h);
8813 
8814 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8815 	if (!h->lastlogicals)
8816 		dev_info(&h->pdev->dev,
8817 			"Can't track change to report lun data\n");
8818 
8819 	/* hook into SCSI subsystem */
8820 	rc = hpsa_scsi_add_host(h);
8821 	if (rc)
8822 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8823 
8824 	/* Monitor the controller for firmware lockups */
8825 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8826 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8827 	schedule_delayed_work(&h->monitor_ctlr_work,
8828 				h->heartbeat_sample_interval);
8829 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8830 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8831 				h->heartbeat_sample_interval);
8832 	return 0;
8833 
8834 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8835 	hpsa_free_performant_mode(h);
8836 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8838 	hpsa_free_sg_chain_blocks(h);
8839 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8840 	hpsa_free_cmd_pool(h);
8841 clean4: /* irq, shost, pci, lu, aer/h */
8842 	hpsa_free_irqs(h);
8843 clean3: /* shost, pci, lu, aer/h */
8844 	scsi_host_put(h->scsi_host);
8845 	h->scsi_host = NULL;
8846 clean2_5: /* pci, lu, aer/h */
8847 	hpsa_free_pci_init(h);
8848 clean2: /* lu, aer/h */
8849 	if (h->lockup_detected) {
8850 		free_percpu(h->lockup_detected);
8851 		h->lockup_detected = NULL;
8852 	}
8853 clean1:	/* wq/aer/h */
8854 	if (h->resubmit_wq) {
8855 		destroy_workqueue(h->resubmit_wq);
8856 		h->resubmit_wq = NULL;
8857 	}
8858 	if (h->rescan_ctlr_wq) {
8859 		destroy_workqueue(h->rescan_ctlr_wq);
8860 		h->rescan_ctlr_wq = NULL;
8861 	}
8862 	kfree(h);
8863 	return rc;
8864 }
8865 
8866 static void hpsa_flush_cache(struct ctlr_info *h)
8867 {
8868 	char *flush_buf;
8869 	struct CommandList *c;
8870 	int rc;
8871 
8872 	if (unlikely(lockup_detected(h)))
8873 		return;
8874 	flush_buf = kzalloc(4, GFP_KERNEL);
8875 	if (!flush_buf)
8876 		return;
8877 
8878 	c = cmd_alloc(h);
8879 
8880 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8881 		RAID_CTLR_LUNID, TYPE_CMD)) {
8882 		goto out;
8883 	}
8884 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8885 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8886 	if (rc)
8887 		goto out;
8888 	if (c->err_info->CommandStatus != 0)
8889 out:
8890 		dev_warn(&h->pdev->dev,
8891 			"error flushing cache on controller\n");
8892 	cmd_free(h, c);
8893 	kfree(flush_buf);
8894 }
8895 
8896 /* Make controller gather fresh report lun data each time we
8897  * send down a report luns request
8898  */
8899 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8900 {
8901 	u32 *options;
8902 	struct CommandList *c;
8903 	int rc;
8904 
8905 	/* Don't bother trying to set diag options if locked up */
8906 	if (unlikely(h->lockup_detected))
8907 		return;
8908 
8909 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8910 	if (!options) {
8911 		dev_err(&h->pdev->dev,
8912 			"Error: failed to disable rld caching, during alloc.\n");
8913 		return;
8914 	}
8915 
8916 	c = cmd_alloc(h);
8917 
8918 	/* first, get the current diag options settings */
8919 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8920 		RAID_CTLR_LUNID, TYPE_CMD))
8921 		goto errout;
8922 
8923 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8924 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8925 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8926 		goto errout;
8927 
8928 	/* Now, set the bit for disabling the RLD caching */
8929 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8930 
8931 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8932 		RAID_CTLR_LUNID, TYPE_CMD))
8933 		goto errout;
8934 
8935 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8936 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8937 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8938 		goto errout;
8939 
8940 	/* Now verify that it got set: */
8941 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8942 		RAID_CTLR_LUNID, TYPE_CMD))
8943 		goto errout;
8944 
8945 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8946 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8947 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8948 		goto errout;
8949 
8950 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8951 		goto out;
8952 
8953 errout:
8954 	dev_err(&h->pdev->dev,
8955 			"Error: failed to disable report lun data caching.\n");
8956 out:
8957 	cmd_free(h, c);
8958 	kfree(options);
8959 }
8960 
8961 static void hpsa_shutdown(struct pci_dev *pdev)
8962 {
8963 	struct ctlr_info *h;
8964 
8965 	h = pci_get_drvdata(pdev);
8966 	/* Turn board interrupts off  and send the flush cache command
8967 	 * sendcmd will turn off interrupt, and send the flush...
8968 	 * To write all data in the battery backed cache to disks
8969 	 */
8970 	hpsa_flush_cache(h);
8971 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8972 	hpsa_free_irqs(h);			/* init_one 4 */
8973 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8974 }
8975 
8976 static void hpsa_free_device_info(struct ctlr_info *h)
8977 {
8978 	int i;
8979 
8980 	for (i = 0; i < h->ndevices; i++) {
8981 		kfree(h->dev[i]);
8982 		h->dev[i] = NULL;
8983 	}
8984 }
8985 
8986 static void hpsa_remove_one(struct pci_dev *pdev)
8987 {
8988 	struct ctlr_info *h;
8989 	unsigned long flags;
8990 
8991 	if (pci_get_drvdata(pdev) == NULL) {
8992 		dev_err(&pdev->dev, "unable to remove device\n");
8993 		return;
8994 	}
8995 	h = pci_get_drvdata(pdev);
8996 
8997 	/* Get rid of any controller monitoring work items */
8998 	spin_lock_irqsave(&h->lock, flags);
8999 	h->remove_in_progress = 1;
9000 	spin_unlock_irqrestore(&h->lock, flags);
9001 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9002 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9003 	destroy_workqueue(h->rescan_ctlr_wq);
9004 	destroy_workqueue(h->resubmit_wq);
9005 
9006 	/*
9007 	 * Call before disabling interrupts.
9008 	 * scsi_remove_host can trigger I/O operations especially
9009 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9010 	 * operations which cannot complete and will hang the system.
9011 	 */
9012 	if (h->scsi_host)
9013 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9014 	/* includes hpsa_free_irqs - init_one 4 */
9015 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9016 	hpsa_shutdown(pdev);
9017 
9018 	hpsa_free_device_info(h);		/* scan */
9019 
9020 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9021 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9022 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9023 	hpsa_free_performant_mode(h);			/* init_one 7 */
9024 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9025 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9026 	kfree(h->lastlogicals);
9027 
9028 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9029 
9030 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9031 	h->scsi_host = NULL;				/* init_one 3 */
9032 
9033 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9034 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9035 
9036 	free_percpu(h->lockup_detected);		/* init_one 2 */
9037 	h->lockup_detected = NULL;			/* init_one 2 */
9038 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9039 
9040 	hpsa_delete_sas_host(h);
9041 
9042 	kfree(h);					/* init_one 1 */
9043 }
9044 
9045 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9046 	__attribute__((unused)) pm_message_t state)
9047 {
9048 	return -ENOSYS;
9049 }
9050 
9051 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9052 {
9053 	return -ENOSYS;
9054 }
9055 
9056 static struct pci_driver hpsa_pci_driver = {
9057 	.name = HPSA,
9058 	.probe = hpsa_init_one,
9059 	.remove = hpsa_remove_one,
9060 	.id_table = hpsa_pci_device_id,	/* id_table */
9061 	.shutdown = hpsa_shutdown,
9062 	.suspend = hpsa_suspend,
9063 	.resume = hpsa_resume,
9064 };
9065 
9066 /* Fill in bucket_map[], given nsgs (the max number of
9067  * scatter gather elements supported) and bucket[],
9068  * which is an array of 8 integers.  The bucket[] array
9069  * contains 8 different DMA transfer sizes (in 16
9070  * byte increments) which the controller uses to fetch
9071  * commands.  This function fills in bucket_map[], which
9072  * maps a given number of scatter gather elements to one of
9073  * the 8 DMA transfer sizes.  The point of it is to allow the
9074  * controller to only do as much DMA as needed to fetch the
9075  * command, with the DMA transfer size encoded in the lower
9076  * bits of the command address.
9077  */
9078 static void  calc_bucket_map(int bucket[], int num_buckets,
9079 	int nsgs, int min_blocks, u32 *bucket_map)
9080 {
9081 	int i, j, b, size;
9082 
9083 	/* Note, bucket_map must have nsgs+1 entries. */
9084 	for (i = 0; i <= nsgs; i++) {
9085 		/* Compute size of a command with i SG entries */
9086 		size = i + min_blocks;
9087 		b = num_buckets; /* Assume the biggest bucket */
9088 		/* Find the bucket that is just big enough */
9089 		for (j = 0; j < num_buckets; j++) {
9090 			if (bucket[j] >= size) {
9091 				b = j;
9092 				break;
9093 			}
9094 		}
9095 		/* for a command with i SG entries, use bucket b. */
9096 		bucket_map[i] = b;
9097 	}
9098 }
9099 
9100 /*
9101  * return -ENODEV on err, 0 on success (or no action)
9102  * allocates numerous items that must be freed later
9103  */
9104 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9105 {
9106 	int i;
9107 	unsigned long register_value;
9108 	unsigned long transMethod = CFGTBL_Trans_Performant |
9109 			(trans_support & CFGTBL_Trans_use_short_tags) |
9110 				CFGTBL_Trans_enable_directed_msix |
9111 			(trans_support & (CFGTBL_Trans_io_accel1 |
9112 				CFGTBL_Trans_io_accel2));
9113 	struct access_method access = SA5_performant_access;
9114 
9115 	/* This is a bit complicated.  There are 8 registers on
9116 	 * the controller which we write to to tell it 8 different
9117 	 * sizes of commands which there may be.  It's a way of
9118 	 * reducing the DMA done to fetch each command.  Encoded into
9119 	 * each command's tag are 3 bits which communicate to the controller
9120 	 * which of the eight sizes that command fits within.  The size of
9121 	 * each command depends on how many scatter gather entries there are.
9122 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9123 	 * with the number of 16-byte blocks a command of that size requires.
9124 	 * The smallest command possible requires 5 such 16 byte blocks.
9125 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9126 	 * blocks.  Note, this only extends to the SG entries contained
9127 	 * within the command block, and does not extend to chained blocks
9128 	 * of SG elements.   bft[] contains the eight values we write to
9129 	 * the registers.  They are not evenly distributed, but have more
9130 	 * sizes for small commands, and fewer sizes for larger commands.
9131 	 */
9132 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9133 #define MIN_IOACCEL2_BFT_ENTRY 5
9134 #define HPSA_IOACCEL2_HEADER_SZ 4
9135 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9136 			13, 14, 15, 16, 17, 18, 19,
9137 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9138 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9139 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9140 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9141 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9142 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9143 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9144 	/*  5 = 1 s/g entry or 4k
9145 	 *  6 = 2 s/g entry or 8k
9146 	 *  8 = 4 s/g entry or 16k
9147 	 * 10 = 6 s/g entry or 24k
9148 	 */
9149 
9150 	/* If the controller supports either ioaccel method then
9151 	 * we can also use the RAID stack submit path that does not
9152 	 * perform the superfluous readl() after each command submission.
9153 	 */
9154 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9155 		access = SA5_performant_access_no_read;
9156 
9157 	/* Controller spec: zero out this buffer. */
9158 	for (i = 0; i < h->nreply_queues; i++)
9159 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9160 
9161 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9162 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9163 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9164 	for (i = 0; i < 8; i++)
9165 		writel(bft[i], &h->transtable->BlockFetch[i]);
9166 
9167 	/* size of controller ring buffer */
9168 	writel(h->max_commands, &h->transtable->RepQSize);
9169 	writel(h->nreply_queues, &h->transtable->RepQCount);
9170 	writel(0, &h->transtable->RepQCtrAddrLow32);
9171 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9172 
9173 	for (i = 0; i < h->nreply_queues; i++) {
9174 		writel(0, &h->transtable->RepQAddr[i].upper);
9175 		writel(h->reply_queue[i].busaddr,
9176 			&h->transtable->RepQAddr[i].lower);
9177 	}
9178 
9179 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9180 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9181 	/*
9182 	 * enable outbound interrupt coalescing in accelerator mode;
9183 	 */
9184 	if (trans_support & CFGTBL_Trans_io_accel1) {
9185 		access = SA5_ioaccel_mode1_access;
9186 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9187 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9188 	} else {
9189 		if (trans_support & CFGTBL_Trans_io_accel2) {
9190 			access = SA5_ioaccel_mode2_access;
9191 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9192 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9193 		}
9194 	}
9195 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9196 	if (hpsa_wait_for_mode_change_ack(h)) {
9197 		dev_err(&h->pdev->dev,
9198 			"performant mode problem - doorbell timeout\n");
9199 		return -ENODEV;
9200 	}
9201 	register_value = readl(&(h->cfgtable->TransportActive));
9202 	if (!(register_value & CFGTBL_Trans_Performant)) {
9203 		dev_err(&h->pdev->dev,
9204 			"performant mode problem - transport not active\n");
9205 		return -ENODEV;
9206 	}
9207 	/* Change the access methods to the performant access methods */
9208 	h->access = access;
9209 	h->transMethod = transMethod;
9210 
9211 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9212 		(trans_support & CFGTBL_Trans_io_accel2)))
9213 		return 0;
9214 
9215 	if (trans_support & CFGTBL_Trans_io_accel1) {
9216 		/* Set up I/O accelerator mode */
9217 		for (i = 0; i < h->nreply_queues; i++) {
9218 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9219 			h->reply_queue[i].current_entry =
9220 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9221 		}
9222 		bft[7] = h->ioaccel_maxsg + 8;
9223 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9224 				h->ioaccel1_blockFetchTable);
9225 
9226 		/* initialize all reply queue entries to unused */
9227 		for (i = 0; i < h->nreply_queues; i++)
9228 			memset(h->reply_queue[i].head,
9229 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9230 				h->reply_queue_size);
9231 
9232 		/* set all the constant fields in the accelerator command
9233 		 * frames once at init time to save CPU cycles later.
9234 		 */
9235 		for (i = 0; i < h->nr_cmds; i++) {
9236 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9237 
9238 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9239 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9240 					(i * sizeof(struct ErrorInfo)));
9241 			cp->err_info_len = sizeof(struct ErrorInfo);
9242 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9243 			cp->host_context_flags =
9244 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9245 			cp->timeout_sec = 0;
9246 			cp->ReplyQueue = 0;
9247 			cp->tag =
9248 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9249 			cp->host_addr =
9250 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9251 					(i * sizeof(struct io_accel1_cmd)));
9252 		}
9253 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9254 		u64 cfg_offset, cfg_base_addr_index;
9255 		u32 bft2_offset, cfg_base_addr;
9256 		int rc;
9257 
9258 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9259 			&cfg_base_addr_index, &cfg_offset);
9260 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9261 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9262 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9263 				4, h->ioaccel2_blockFetchTable);
9264 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9265 		BUILD_BUG_ON(offsetof(struct CfgTable,
9266 				io_accel_request_size_offset) != 0xb8);
9267 		h->ioaccel2_bft2_regs =
9268 			remap_pci_mem(pci_resource_start(h->pdev,
9269 					cfg_base_addr_index) +
9270 					cfg_offset + bft2_offset,
9271 					ARRAY_SIZE(bft2) *
9272 					sizeof(*h->ioaccel2_bft2_regs));
9273 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9274 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9275 	}
9276 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9277 	if (hpsa_wait_for_mode_change_ack(h)) {
9278 		dev_err(&h->pdev->dev,
9279 			"performant mode problem - enabling ioaccel mode\n");
9280 		return -ENODEV;
9281 	}
9282 	return 0;
9283 }
9284 
9285 /* Free ioaccel1 mode command blocks and block fetch table */
9286 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9287 {
9288 	if (h->ioaccel_cmd_pool) {
9289 		pci_free_consistent(h->pdev,
9290 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9291 			h->ioaccel_cmd_pool,
9292 			h->ioaccel_cmd_pool_dhandle);
9293 		h->ioaccel_cmd_pool = NULL;
9294 		h->ioaccel_cmd_pool_dhandle = 0;
9295 	}
9296 	kfree(h->ioaccel1_blockFetchTable);
9297 	h->ioaccel1_blockFetchTable = NULL;
9298 }
9299 
9300 /* Allocate ioaccel1 mode command blocks and block fetch table */
9301 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9302 {
9303 	h->ioaccel_maxsg =
9304 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9305 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9306 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9307 
9308 	/* Command structures must be aligned on a 128-byte boundary
9309 	 * because the 7 lower bits of the address are used by the
9310 	 * hardware.
9311 	 */
9312 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9313 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9314 	h->ioaccel_cmd_pool =
9315 		pci_alloc_consistent(h->pdev,
9316 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9317 			&(h->ioaccel_cmd_pool_dhandle));
9318 
9319 	h->ioaccel1_blockFetchTable =
9320 		kmalloc(((h->ioaccel_maxsg + 1) *
9321 				sizeof(u32)), GFP_KERNEL);
9322 
9323 	if ((h->ioaccel_cmd_pool == NULL) ||
9324 		(h->ioaccel1_blockFetchTable == NULL))
9325 		goto clean_up;
9326 
9327 	memset(h->ioaccel_cmd_pool, 0,
9328 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9329 	return 0;
9330 
9331 clean_up:
9332 	hpsa_free_ioaccel1_cmd_and_bft(h);
9333 	return -ENOMEM;
9334 }
9335 
9336 /* Free ioaccel2 mode command blocks and block fetch table */
9337 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9338 {
9339 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9340 
9341 	if (h->ioaccel2_cmd_pool) {
9342 		pci_free_consistent(h->pdev,
9343 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9344 			h->ioaccel2_cmd_pool,
9345 			h->ioaccel2_cmd_pool_dhandle);
9346 		h->ioaccel2_cmd_pool = NULL;
9347 		h->ioaccel2_cmd_pool_dhandle = 0;
9348 	}
9349 	kfree(h->ioaccel2_blockFetchTable);
9350 	h->ioaccel2_blockFetchTable = NULL;
9351 }
9352 
9353 /* Allocate ioaccel2 mode command blocks and block fetch table */
9354 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9355 {
9356 	int rc;
9357 
9358 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9359 
9360 	h->ioaccel_maxsg =
9361 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9362 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9363 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9364 
9365 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9366 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9367 	h->ioaccel2_cmd_pool =
9368 		pci_alloc_consistent(h->pdev,
9369 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9370 			&(h->ioaccel2_cmd_pool_dhandle));
9371 
9372 	h->ioaccel2_blockFetchTable =
9373 		kmalloc(((h->ioaccel_maxsg + 1) *
9374 				sizeof(u32)), GFP_KERNEL);
9375 
9376 	if ((h->ioaccel2_cmd_pool == NULL) ||
9377 		(h->ioaccel2_blockFetchTable == NULL)) {
9378 		rc = -ENOMEM;
9379 		goto clean_up;
9380 	}
9381 
9382 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9383 	if (rc)
9384 		goto clean_up;
9385 
9386 	memset(h->ioaccel2_cmd_pool, 0,
9387 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9388 	return 0;
9389 
9390 clean_up:
9391 	hpsa_free_ioaccel2_cmd_and_bft(h);
9392 	return rc;
9393 }
9394 
9395 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9396 static void hpsa_free_performant_mode(struct ctlr_info *h)
9397 {
9398 	kfree(h->blockFetchTable);
9399 	h->blockFetchTable = NULL;
9400 	hpsa_free_reply_queues(h);
9401 	hpsa_free_ioaccel1_cmd_and_bft(h);
9402 	hpsa_free_ioaccel2_cmd_and_bft(h);
9403 }
9404 
9405 /* return -ENODEV on error, 0 on success (or no action)
9406  * allocates numerous items that must be freed later
9407  */
9408 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9409 {
9410 	u32 trans_support;
9411 	unsigned long transMethod = CFGTBL_Trans_Performant |
9412 					CFGTBL_Trans_use_short_tags;
9413 	int i, rc;
9414 
9415 	if (hpsa_simple_mode)
9416 		return 0;
9417 
9418 	trans_support = readl(&(h->cfgtable->TransportSupport));
9419 	if (!(trans_support & PERFORMANT_MODE))
9420 		return 0;
9421 
9422 	/* Check for I/O accelerator mode support */
9423 	if (trans_support & CFGTBL_Trans_io_accel1) {
9424 		transMethod |= CFGTBL_Trans_io_accel1 |
9425 				CFGTBL_Trans_enable_directed_msix;
9426 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9427 		if (rc)
9428 			return rc;
9429 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9430 		transMethod |= CFGTBL_Trans_io_accel2 |
9431 				CFGTBL_Trans_enable_directed_msix;
9432 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9433 		if (rc)
9434 			return rc;
9435 	}
9436 
9437 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9438 	hpsa_get_max_perf_mode_cmds(h);
9439 	/* Performant mode ring buffer and supporting data structures */
9440 	h->reply_queue_size = h->max_commands * sizeof(u64);
9441 
9442 	for (i = 0; i < h->nreply_queues; i++) {
9443 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9444 						h->reply_queue_size,
9445 						&(h->reply_queue[i].busaddr));
9446 		if (!h->reply_queue[i].head) {
9447 			rc = -ENOMEM;
9448 			goto clean1;	/* rq, ioaccel */
9449 		}
9450 		h->reply_queue[i].size = h->max_commands;
9451 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9452 		h->reply_queue[i].current_entry = 0;
9453 	}
9454 
9455 	/* Need a block fetch table for performant mode */
9456 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9457 				sizeof(u32)), GFP_KERNEL);
9458 	if (!h->blockFetchTable) {
9459 		rc = -ENOMEM;
9460 		goto clean1;	/* rq, ioaccel */
9461 	}
9462 
9463 	rc = hpsa_enter_performant_mode(h, trans_support);
9464 	if (rc)
9465 		goto clean2;	/* bft, rq, ioaccel */
9466 	return 0;
9467 
9468 clean2:	/* bft, rq, ioaccel */
9469 	kfree(h->blockFetchTable);
9470 	h->blockFetchTable = NULL;
9471 clean1:	/* rq, ioaccel */
9472 	hpsa_free_reply_queues(h);
9473 	hpsa_free_ioaccel1_cmd_and_bft(h);
9474 	hpsa_free_ioaccel2_cmd_and_bft(h);
9475 	return rc;
9476 }
9477 
9478 static int is_accelerated_cmd(struct CommandList *c)
9479 {
9480 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9481 }
9482 
9483 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9484 {
9485 	struct CommandList *c = NULL;
9486 	int i, accel_cmds_out;
9487 	int refcount;
9488 
9489 	do { /* wait for all outstanding ioaccel commands to drain out */
9490 		accel_cmds_out = 0;
9491 		for (i = 0; i < h->nr_cmds; i++) {
9492 			c = h->cmd_pool + i;
9493 			refcount = atomic_inc_return(&c->refcount);
9494 			if (refcount > 1) /* Command is allocated */
9495 				accel_cmds_out += is_accelerated_cmd(c);
9496 			cmd_free(h, c);
9497 		}
9498 		if (accel_cmds_out <= 0)
9499 			break;
9500 		msleep(100);
9501 	} while (1);
9502 }
9503 
9504 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9505 				struct hpsa_sas_port *hpsa_sas_port)
9506 {
9507 	struct hpsa_sas_phy *hpsa_sas_phy;
9508 	struct sas_phy *phy;
9509 
9510 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9511 	if (!hpsa_sas_phy)
9512 		return NULL;
9513 
9514 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9515 		hpsa_sas_port->next_phy_index);
9516 	if (!phy) {
9517 		kfree(hpsa_sas_phy);
9518 		return NULL;
9519 	}
9520 
9521 	hpsa_sas_port->next_phy_index++;
9522 	hpsa_sas_phy->phy = phy;
9523 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9524 
9525 	return hpsa_sas_phy;
9526 }
9527 
9528 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9529 {
9530 	struct sas_phy *phy = hpsa_sas_phy->phy;
9531 
9532 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9533 	sas_phy_free(phy);
9534 	if (hpsa_sas_phy->added_to_port)
9535 		list_del(&hpsa_sas_phy->phy_list_entry);
9536 	kfree(hpsa_sas_phy);
9537 }
9538 
9539 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9540 {
9541 	int rc;
9542 	struct hpsa_sas_port *hpsa_sas_port;
9543 	struct sas_phy *phy;
9544 	struct sas_identify *identify;
9545 
9546 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9547 	phy = hpsa_sas_phy->phy;
9548 
9549 	identify = &phy->identify;
9550 	memset(identify, 0, sizeof(*identify));
9551 	identify->sas_address = hpsa_sas_port->sas_address;
9552 	identify->device_type = SAS_END_DEVICE;
9553 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9554 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9555 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9556 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9557 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9558 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9559 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9560 
9561 	rc = sas_phy_add(hpsa_sas_phy->phy);
9562 	if (rc)
9563 		return rc;
9564 
9565 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9566 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9567 			&hpsa_sas_port->phy_list_head);
9568 	hpsa_sas_phy->added_to_port = true;
9569 
9570 	return 0;
9571 }
9572 
9573 static int
9574 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9575 				struct sas_rphy *rphy)
9576 {
9577 	struct sas_identify *identify;
9578 
9579 	identify = &rphy->identify;
9580 	identify->sas_address = hpsa_sas_port->sas_address;
9581 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9582 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9583 
9584 	return sas_rphy_add(rphy);
9585 }
9586 
9587 static struct hpsa_sas_port
9588 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9589 				u64 sas_address)
9590 {
9591 	int rc;
9592 	struct hpsa_sas_port *hpsa_sas_port;
9593 	struct sas_port *port;
9594 
9595 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9596 	if (!hpsa_sas_port)
9597 		return NULL;
9598 
9599 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9600 	hpsa_sas_port->parent_node = hpsa_sas_node;
9601 
9602 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9603 	if (!port)
9604 		goto free_hpsa_port;
9605 
9606 	rc = sas_port_add(port);
9607 	if (rc)
9608 		goto free_sas_port;
9609 
9610 	hpsa_sas_port->port = port;
9611 	hpsa_sas_port->sas_address = sas_address;
9612 	list_add_tail(&hpsa_sas_port->port_list_entry,
9613 			&hpsa_sas_node->port_list_head);
9614 
9615 	return hpsa_sas_port;
9616 
9617 free_sas_port:
9618 	sas_port_free(port);
9619 free_hpsa_port:
9620 	kfree(hpsa_sas_port);
9621 
9622 	return NULL;
9623 }
9624 
9625 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9626 {
9627 	struct hpsa_sas_phy *hpsa_sas_phy;
9628 	struct hpsa_sas_phy *next;
9629 
9630 	list_for_each_entry_safe(hpsa_sas_phy, next,
9631 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9632 		hpsa_free_sas_phy(hpsa_sas_phy);
9633 
9634 	sas_port_delete(hpsa_sas_port->port);
9635 	list_del(&hpsa_sas_port->port_list_entry);
9636 	kfree(hpsa_sas_port);
9637 }
9638 
9639 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9640 {
9641 	struct hpsa_sas_node *hpsa_sas_node;
9642 
9643 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9644 	if (hpsa_sas_node) {
9645 		hpsa_sas_node->parent_dev = parent_dev;
9646 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9647 	}
9648 
9649 	return hpsa_sas_node;
9650 }
9651 
9652 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9653 {
9654 	struct hpsa_sas_port *hpsa_sas_port;
9655 	struct hpsa_sas_port *next;
9656 
9657 	if (!hpsa_sas_node)
9658 		return;
9659 
9660 	list_for_each_entry_safe(hpsa_sas_port, next,
9661 			&hpsa_sas_node->port_list_head, port_list_entry)
9662 		hpsa_free_sas_port(hpsa_sas_port);
9663 
9664 	kfree(hpsa_sas_node);
9665 }
9666 
9667 static struct hpsa_scsi_dev_t
9668 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9669 					struct sas_rphy *rphy)
9670 {
9671 	int i;
9672 	struct hpsa_scsi_dev_t *device;
9673 
9674 	for (i = 0; i < h->ndevices; i++) {
9675 		device = h->dev[i];
9676 		if (!device->sas_port)
9677 			continue;
9678 		if (device->sas_port->rphy == rphy)
9679 			return device;
9680 	}
9681 
9682 	return NULL;
9683 }
9684 
9685 static int hpsa_add_sas_host(struct ctlr_info *h)
9686 {
9687 	int rc;
9688 	struct device *parent_dev;
9689 	struct hpsa_sas_node *hpsa_sas_node;
9690 	struct hpsa_sas_port *hpsa_sas_port;
9691 	struct hpsa_sas_phy *hpsa_sas_phy;
9692 
9693 	parent_dev = &h->scsi_host->shost_gendev;
9694 
9695 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9696 	if (!hpsa_sas_node)
9697 		return -ENOMEM;
9698 
9699 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9700 	if (!hpsa_sas_port) {
9701 		rc = -ENODEV;
9702 		goto free_sas_node;
9703 	}
9704 
9705 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9706 	if (!hpsa_sas_phy) {
9707 		rc = -ENODEV;
9708 		goto free_sas_port;
9709 	}
9710 
9711 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9712 	if (rc)
9713 		goto free_sas_phy;
9714 
9715 	h->sas_host = hpsa_sas_node;
9716 
9717 	return 0;
9718 
9719 free_sas_phy:
9720 	hpsa_free_sas_phy(hpsa_sas_phy);
9721 free_sas_port:
9722 	hpsa_free_sas_port(hpsa_sas_port);
9723 free_sas_node:
9724 	hpsa_free_sas_node(hpsa_sas_node);
9725 
9726 	return rc;
9727 }
9728 
9729 static void hpsa_delete_sas_host(struct ctlr_info *h)
9730 {
9731 	hpsa_free_sas_node(h->sas_host);
9732 }
9733 
9734 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9735 				struct hpsa_scsi_dev_t *device)
9736 {
9737 	int rc;
9738 	struct hpsa_sas_port *hpsa_sas_port;
9739 	struct sas_rphy *rphy;
9740 
9741 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9742 	if (!hpsa_sas_port)
9743 		return -ENOMEM;
9744 
9745 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9746 	if (!rphy) {
9747 		rc = -ENODEV;
9748 		goto free_sas_port;
9749 	}
9750 
9751 	hpsa_sas_port->rphy = rphy;
9752 	device->sas_port = hpsa_sas_port;
9753 
9754 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9755 	if (rc)
9756 		goto free_sas_port;
9757 
9758 	return 0;
9759 
9760 free_sas_port:
9761 	hpsa_free_sas_port(hpsa_sas_port);
9762 	device->sas_port = NULL;
9763 
9764 	return rc;
9765 }
9766 
9767 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9768 {
9769 	if (device->sas_port) {
9770 		hpsa_free_sas_port(device->sas_port);
9771 		device->sas_port = NULL;
9772 	}
9773 }
9774 
9775 static int
9776 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9777 {
9778 	return 0;
9779 }
9780 
9781 static int
9782 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9783 {
9784 	*identifier = 0;
9785 	return 0;
9786 }
9787 
9788 static int
9789 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9790 {
9791 	return -ENXIO;
9792 }
9793 
9794 static int
9795 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9796 {
9797 	return 0;
9798 }
9799 
9800 static int
9801 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9802 {
9803 	return 0;
9804 }
9805 
9806 static int
9807 hpsa_sas_phy_setup(struct sas_phy *phy)
9808 {
9809 	return 0;
9810 }
9811 
9812 static void
9813 hpsa_sas_phy_release(struct sas_phy *phy)
9814 {
9815 }
9816 
9817 static int
9818 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9819 {
9820 	return -EINVAL;
9821 }
9822 
9823 /* SMP = Serial Management Protocol */
9824 static int
9825 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9826 struct request *req)
9827 {
9828 	return -EINVAL;
9829 }
9830 
9831 static struct sas_function_template hpsa_sas_transport_functions = {
9832 	.get_linkerrors = hpsa_sas_get_linkerrors,
9833 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9834 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9835 	.phy_reset = hpsa_sas_phy_reset,
9836 	.phy_enable = hpsa_sas_phy_enable,
9837 	.phy_setup = hpsa_sas_phy_setup,
9838 	.phy_release = hpsa_sas_phy_release,
9839 	.set_phy_speed = hpsa_sas_phy_speed,
9840 	.smp_handler = hpsa_sas_smp_handler,
9841 };
9842 
9843 /*
9844  *  This is it.  Register the PCI driver information for the cards we control
9845  *  the OS will call our registered routines when it finds one of our cards.
9846  */
9847 static int __init hpsa_init(void)
9848 {
9849 	int rc;
9850 
9851 	hpsa_sas_transport_template =
9852 		sas_attach_transport(&hpsa_sas_transport_functions);
9853 	if (!hpsa_sas_transport_template)
9854 		return -ENODEV;
9855 
9856 	rc = pci_register_driver(&hpsa_pci_driver);
9857 
9858 	if (rc)
9859 		sas_release_transport(hpsa_sas_transport_template);
9860 
9861 	return rc;
9862 }
9863 
9864 static void __exit hpsa_cleanup(void)
9865 {
9866 	pci_unregister_driver(&hpsa_pci_driver);
9867 	sas_release_transport(hpsa_sas_transport_template);
9868 }
9869 
9870 static void __attribute__((unused)) verify_offsets(void)
9871 {
9872 #define VERIFY_OFFSET(member, offset) \
9873 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9874 
9875 	VERIFY_OFFSET(structure_size, 0);
9876 	VERIFY_OFFSET(volume_blk_size, 4);
9877 	VERIFY_OFFSET(volume_blk_cnt, 8);
9878 	VERIFY_OFFSET(phys_blk_shift, 16);
9879 	VERIFY_OFFSET(parity_rotation_shift, 17);
9880 	VERIFY_OFFSET(strip_size, 18);
9881 	VERIFY_OFFSET(disk_starting_blk, 20);
9882 	VERIFY_OFFSET(disk_blk_cnt, 28);
9883 	VERIFY_OFFSET(data_disks_per_row, 36);
9884 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9885 	VERIFY_OFFSET(row_cnt, 40);
9886 	VERIFY_OFFSET(layout_map_count, 42);
9887 	VERIFY_OFFSET(flags, 44);
9888 	VERIFY_OFFSET(dekindex, 46);
9889 	/* VERIFY_OFFSET(reserved, 48 */
9890 	VERIFY_OFFSET(data, 64);
9891 
9892 #undef VERIFY_OFFSET
9893 
9894 #define VERIFY_OFFSET(member, offset) \
9895 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9896 
9897 	VERIFY_OFFSET(IU_type, 0);
9898 	VERIFY_OFFSET(direction, 1);
9899 	VERIFY_OFFSET(reply_queue, 2);
9900 	/* VERIFY_OFFSET(reserved1, 3);  */
9901 	VERIFY_OFFSET(scsi_nexus, 4);
9902 	VERIFY_OFFSET(Tag, 8);
9903 	VERIFY_OFFSET(cdb, 16);
9904 	VERIFY_OFFSET(cciss_lun, 32);
9905 	VERIFY_OFFSET(data_len, 40);
9906 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9907 	VERIFY_OFFSET(sg_count, 45);
9908 	/* VERIFY_OFFSET(reserved3 */
9909 	VERIFY_OFFSET(err_ptr, 48);
9910 	VERIFY_OFFSET(err_len, 56);
9911 	/* VERIFY_OFFSET(reserved4  */
9912 	VERIFY_OFFSET(sg, 64);
9913 
9914 #undef VERIFY_OFFSET
9915 
9916 #define VERIFY_OFFSET(member, offset) \
9917 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9918 
9919 	VERIFY_OFFSET(dev_handle, 0x00);
9920 	VERIFY_OFFSET(reserved1, 0x02);
9921 	VERIFY_OFFSET(function, 0x03);
9922 	VERIFY_OFFSET(reserved2, 0x04);
9923 	VERIFY_OFFSET(err_info, 0x0C);
9924 	VERIFY_OFFSET(reserved3, 0x10);
9925 	VERIFY_OFFSET(err_info_len, 0x12);
9926 	VERIFY_OFFSET(reserved4, 0x13);
9927 	VERIFY_OFFSET(sgl_offset, 0x14);
9928 	VERIFY_OFFSET(reserved5, 0x15);
9929 	VERIFY_OFFSET(transfer_len, 0x1C);
9930 	VERIFY_OFFSET(reserved6, 0x20);
9931 	VERIFY_OFFSET(io_flags, 0x24);
9932 	VERIFY_OFFSET(reserved7, 0x26);
9933 	VERIFY_OFFSET(LUN, 0x34);
9934 	VERIFY_OFFSET(control, 0x3C);
9935 	VERIFY_OFFSET(CDB, 0x40);
9936 	VERIFY_OFFSET(reserved8, 0x50);
9937 	VERIFY_OFFSET(host_context_flags, 0x60);
9938 	VERIFY_OFFSET(timeout_sec, 0x62);
9939 	VERIFY_OFFSET(ReplyQueue, 0x64);
9940 	VERIFY_OFFSET(reserved9, 0x65);
9941 	VERIFY_OFFSET(tag, 0x68);
9942 	VERIFY_OFFSET(host_addr, 0x70);
9943 	VERIFY_OFFSET(CISS_LUN, 0x78);
9944 	VERIFY_OFFSET(SG, 0x78 + 8);
9945 #undef VERIFY_OFFSET
9946 }
9947 
9948 module_init(hpsa_init);
9949 module_exit(hpsa_cleanup);
9950