xref: /openbmc/linux/drivers/scsi/hpsa.c (revision b896c54e)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.use_clustering		= ENABLE_CLUSTERING,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 1024,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 			return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1927 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2181 					h->maxsgentries, GFP_KERNEL);
2182 		if (!h->ioaccel2_cmd_sg_list[i])
2183 			goto clean;
2184 	}
2185 	return 0;
2186 
2187 clean:
2188 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2189 	return -ENOMEM;
2190 }
2191 
2192 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193 {
2194 	int i;
2195 
2196 	if (!h->cmd_sg_list)
2197 		return;
2198 	for (i = 0; i < h->nr_cmds; i++) {
2199 		kfree(h->cmd_sg_list[i]);
2200 		h->cmd_sg_list[i] = NULL;
2201 	}
2202 	kfree(h->cmd_sg_list);
2203 	h->cmd_sg_list = NULL;
2204 }
2205 
2206 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208 	int i;
2209 
2210 	if (h->chainsize <= 0)
2211 		return 0;
2212 
2213 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2214 				GFP_KERNEL);
2215 	if (!h->cmd_sg_list)
2216 		return -ENOMEM;
2217 
2218 	for (i = 0; i < h->nr_cmds; i++) {
2219 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2220 						h->chainsize, GFP_KERNEL);
2221 		if (!h->cmd_sg_list[i])
2222 			goto clean;
2223 
2224 	}
2225 	return 0;
2226 
2227 clean:
2228 	hpsa_free_sg_chain_blocks(h);
2229 	return -ENOMEM;
2230 }
2231 
2232 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2233 	struct io_accel2_cmd *cp, struct CommandList *c)
2234 {
2235 	struct ioaccel2_sg_element *chain_block;
2236 	u64 temp64;
2237 	u32 chain_size;
2238 
2239 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2240 	chain_size = le32_to_cpu(cp->sg[0].length);
2241 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2242 				PCI_DMA_TODEVICE);
2243 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2244 		/* prevent subsequent unmapping */
2245 		cp->sg->address = 0;
2246 		return -1;
2247 	}
2248 	cp->sg->address = cpu_to_le64(temp64);
2249 	return 0;
2250 }
2251 
2252 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253 	struct io_accel2_cmd *cp)
2254 {
2255 	struct ioaccel2_sg_element *chain_sg;
2256 	u64 temp64;
2257 	u32 chain_size;
2258 
2259 	chain_sg = cp->sg;
2260 	temp64 = le64_to_cpu(chain_sg->address);
2261 	chain_size = le32_to_cpu(cp->sg[0].length);
2262 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2263 }
2264 
2265 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2266 	struct CommandList *c)
2267 {
2268 	struct SGDescriptor *chain_sg, *chain_block;
2269 	u64 temp64;
2270 	u32 chain_len;
2271 
2272 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2273 	chain_block = h->cmd_sg_list[c->cmdindex];
2274 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2275 	chain_len = sizeof(*chain_sg) *
2276 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2277 	chain_sg->Len = cpu_to_le32(chain_len);
2278 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2279 				PCI_DMA_TODEVICE);
2280 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2281 		/* prevent subsequent unmapping */
2282 		chain_sg->Addr = cpu_to_le64(0);
2283 		return -1;
2284 	}
2285 	chain_sg->Addr = cpu_to_le64(temp64);
2286 	return 0;
2287 }
2288 
2289 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2290 	struct CommandList *c)
2291 {
2292 	struct SGDescriptor *chain_sg;
2293 
2294 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2295 		return;
2296 
2297 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2298 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2299 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2300 }
2301 
2302 
2303 /* Decode the various types of errors on ioaccel2 path.
2304  * Return 1 for any error that should generate a RAID path retry.
2305  * Return 0 for errors that don't require a RAID path retry.
2306  */
2307 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2308 					struct CommandList *c,
2309 					struct scsi_cmnd *cmd,
2310 					struct io_accel2_cmd *c2,
2311 					struct hpsa_scsi_dev_t *dev)
2312 {
2313 	int data_len;
2314 	int retry = 0;
2315 	u32 ioaccel2_resid = 0;
2316 
2317 	switch (c2->error_data.serv_response) {
2318 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2319 		switch (c2->error_data.status) {
2320 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2321 			break;
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2323 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2324 			if (c2->error_data.data_present !=
2325 					IOACCEL2_SENSE_DATA_PRESENT) {
2326 				memset(cmd->sense_buffer, 0,
2327 					SCSI_SENSE_BUFFERSIZE);
2328 				break;
2329 			}
2330 			/* copy the sense data */
2331 			data_len = c2->error_data.sense_data_len;
2332 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2333 				data_len = SCSI_SENSE_BUFFERSIZE;
2334 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2335 				data_len =
2336 					sizeof(c2->error_data.sense_data_buff);
2337 			memcpy(cmd->sense_buffer,
2338 				c2->error_data.sense_data_buff, data_len);
2339 			retry = 1;
2340 			break;
2341 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2342 			retry = 1;
2343 			break;
2344 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2345 			retry = 1;
2346 			break;
2347 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2348 			retry = 1;
2349 			break;
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2351 			retry = 1;
2352 			break;
2353 		default:
2354 			retry = 1;
2355 			break;
2356 		}
2357 		break;
2358 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2359 		switch (c2->error_data.status) {
2360 		case IOACCEL2_STATUS_SR_IO_ERROR:
2361 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2362 		case IOACCEL2_STATUS_SR_OVERRUN:
2363 			retry = 1;
2364 			break;
2365 		case IOACCEL2_STATUS_SR_UNDERRUN:
2366 			cmd->result = (DID_OK << 16);		/* host byte */
2367 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2368 			ioaccel2_resid = get_unaligned_le32(
2369 						&c2->error_data.resid_cnt[0]);
2370 			scsi_set_resid(cmd, ioaccel2_resid);
2371 			break;
2372 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2373 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2374 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2375 			/*
2376 			 * Did an HBA disk disappear? We will eventually
2377 			 * get a state change event from the controller but
2378 			 * in the meantime, we need to tell the OS that the
2379 			 * HBA disk is no longer there and stop I/O
2380 			 * from going down. This allows the potential re-insert
2381 			 * of the disk to get the same device node.
2382 			 */
2383 			if (dev->physical_device && dev->expose_device) {
2384 				cmd->result = DID_NO_CONNECT << 16;
2385 				dev->removed = 1;
2386 				h->drv_req_rescan = 1;
2387 				dev_warn(&h->pdev->dev,
2388 					"%s: device is gone!\n", __func__);
2389 			} else
2390 				/*
2391 				 * Retry by sending down the RAID path.
2392 				 * We will get an event from ctlr to
2393 				 * trigger rescan regardless.
2394 				 */
2395 				retry = 1;
2396 			break;
2397 		default:
2398 			retry = 1;
2399 		}
2400 		break;
2401 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2406 		retry = 1;
2407 		break;
2408 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2409 		break;
2410 	default:
2411 		retry = 1;
2412 		break;
2413 	}
2414 
2415 	return retry;	/* retry on raid path? */
2416 }
2417 
2418 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2419 		struct CommandList *c)
2420 {
2421 	bool do_wake = false;
2422 
2423 	/*
2424 	 * Reset c->scsi_cmd here so that the reset handler will know
2425 	 * this command has completed.  Then, check to see if the handler is
2426 	 * waiting for this command, and, if so, wake it.
2427 	 */
2428 	c->scsi_cmd = SCSI_CMD_IDLE;
2429 	mb();	/* Declare command idle before checking for pending events. */
2430 	if (c->reset_pending) {
2431 		unsigned long flags;
2432 		struct hpsa_scsi_dev_t *dev;
2433 
2434 		/*
2435 		 * There appears to be a reset pending; lock the lock and
2436 		 * reconfirm.  If so, then decrement the count of outstanding
2437 		 * commands and wake the reset command if this is the last one.
2438 		 */
2439 		spin_lock_irqsave(&h->lock, flags);
2440 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2441 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2442 			do_wake = true;
2443 		c->reset_pending = NULL;
2444 		spin_unlock_irqrestore(&h->lock, flags);
2445 	}
2446 
2447 	if (do_wake)
2448 		wake_up_all(&h->event_sync_wait_queue);
2449 }
2450 
2451 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2452 				      struct CommandList *c)
2453 {
2454 	hpsa_cmd_resolve_events(h, c);
2455 	cmd_tagged_free(h, c);
2456 }
2457 
2458 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2459 		struct CommandList *c, struct scsi_cmnd *cmd)
2460 {
2461 	hpsa_cmd_resolve_and_free(h, c);
2462 	if (cmd && cmd->scsi_done)
2463 		cmd->scsi_done(cmd);
2464 }
2465 
2466 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2467 {
2468 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2469 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2470 }
2471 
2472 static void process_ioaccel2_completion(struct ctlr_info *h,
2473 		struct CommandList *c, struct scsi_cmnd *cmd,
2474 		struct hpsa_scsi_dev_t *dev)
2475 {
2476 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2477 
2478 	/* check for good status */
2479 	if (likely(c2->error_data.serv_response == 0 &&
2480 			c2->error_data.status == 0))
2481 		return hpsa_cmd_free_and_done(h, c, cmd);
2482 
2483 	/*
2484 	 * Any RAID offload error results in retry which will use
2485 	 * the normal I/O path so the controller can handle whatever is
2486 	 * wrong.
2487 	 */
2488 	if (is_logical_device(dev) &&
2489 		c2->error_data.serv_response ==
2490 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2491 		if (c2->error_data.status ==
2492 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2493 			dev->offload_enabled = 0;
2494 			dev->offload_to_be_enabled = 0;
2495 		}
2496 
2497 		return hpsa_retry_cmd(h, c);
2498 	}
2499 
2500 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2501 		return hpsa_retry_cmd(h, c);
2502 
2503 	return hpsa_cmd_free_and_done(h, c, cmd);
2504 }
2505 
2506 /* Returns 0 on success, < 0 otherwise. */
2507 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2508 					struct CommandList *cp)
2509 {
2510 	u8 tmf_status = cp->err_info->ScsiStatus;
2511 
2512 	switch (tmf_status) {
2513 	case CISS_TMF_COMPLETE:
2514 		/*
2515 		 * CISS_TMF_COMPLETE never happens, instead,
2516 		 * ei->CommandStatus == 0 for this case.
2517 		 */
2518 	case CISS_TMF_SUCCESS:
2519 		return 0;
2520 	case CISS_TMF_INVALID_FRAME:
2521 	case CISS_TMF_NOT_SUPPORTED:
2522 	case CISS_TMF_FAILED:
2523 	case CISS_TMF_WRONG_LUN:
2524 	case CISS_TMF_OVERLAPPED_TAG:
2525 		break;
2526 	default:
2527 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2528 				tmf_status);
2529 		break;
2530 	}
2531 	return -tmf_status;
2532 }
2533 
2534 static void complete_scsi_command(struct CommandList *cp)
2535 {
2536 	struct scsi_cmnd *cmd;
2537 	struct ctlr_info *h;
2538 	struct ErrorInfo *ei;
2539 	struct hpsa_scsi_dev_t *dev;
2540 	struct io_accel2_cmd *c2;
2541 
2542 	u8 sense_key;
2543 	u8 asc;      /* additional sense code */
2544 	u8 ascq;     /* additional sense code qualifier */
2545 	unsigned long sense_data_size;
2546 
2547 	ei = cp->err_info;
2548 	cmd = cp->scsi_cmd;
2549 	h = cp->h;
2550 
2551 	if (!cmd->device) {
2552 		cmd->result = DID_NO_CONNECT << 16;
2553 		return hpsa_cmd_free_and_done(h, cp, cmd);
2554 	}
2555 
2556 	dev = cmd->device->hostdata;
2557 	if (!dev) {
2558 		cmd->result = DID_NO_CONNECT << 16;
2559 		return hpsa_cmd_free_and_done(h, cp, cmd);
2560 	}
2561 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2562 
2563 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2564 	if ((cp->cmd_type == CMD_SCSI) &&
2565 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2566 		hpsa_unmap_sg_chain_block(h, cp);
2567 
2568 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2569 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2570 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2571 
2572 	cmd->result = (DID_OK << 16); 		/* host byte */
2573 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2574 
2575 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2576 		if (dev->physical_device && dev->expose_device &&
2577 			dev->removed) {
2578 			cmd->result = DID_NO_CONNECT << 16;
2579 			return hpsa_cmd_free_and_done(h, cp, cmd);
2580 		}
2581 		if (likely(cp->phys_disk != NULL))
2582 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2583 	}
2584 
2585 	/*
2586 	 * We check for lockup status here as it may be set for
2587 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588 	 * fail_all_oustanding_cmds()
2589 	 */
2590 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2591 		/* DID_NO_CONNECT will prevent a retry */
2592 		cmd->result = DID_NO_CONNECT << 16;
2593 		return hpsa_cmd_free_and_done(h, cp, cmd);
2594 	}
2595 
2596 	if ((unlikely(hpsa_is_pending_event(cp))))
2597 		if (cp->reset_pending)
2598 			return hpsa_cmd_free_and_done(h, cp, cmd);
2599 
2600 	if (cp->cmd_type == CMD_IOACCEL2)
2601 		return process_ioaccel2_completion(h, cp, cmd, dev);
2602 
2603 	scsi_set_resid(cmd, ei->ResidualCnt);
2604 	if (ei->CommandStatus == 0)
2605 		return hpsa_cmd_free_and_done(h, cp, cmd);
2606 
2607 	/* For I/O accelerator commands, copy over some fields to the normal
2608 	 * CISS header used below for error handling.
2609 	 */
2610 	if (cp->cmd_type == CMD_IOACCEL1) {
2611 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2612 		cp->Header.SGList = scsi_sg_count(cmd);
2613 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2614 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2615 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2616 		cp->Header.tag = c->tag;
2617 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2618 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2619 
2620 		/* Any RAID offload error results in retry which will use
2621 		 * the normal I/O path so the controller can handle whatever's
2622 		 * wrong.
2623 		 */
2624 		if (is_logical_device(dev)) {
2625 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2626 				dev->offload_enabled = 0;
2627 			return hpsa_retry_cmd(h, cp);
2628 		}
2629 	}
2630 
2631 	/* an error has occurred */
2632 	switch (ei->CommandStatus) {
2633 
2634 	case CMD_TARGET_STATUS:
2635 		cmd->result |= ei->ScsiStatus;
2636 		/* copy the sense data */
2637 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2638 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2639 		else
2640 			sense_data_size = sizeof(ei->SenseInfo);
2641 		if (ei->SenseLen < sense_data_size)
2642 			sense_data_size = ei->SenseLen;
2643 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2644 		if (ei->ScsiStatus)
2645 			decode_sense_data(ei->SenseInfo, sense_data_size,
2646 				&sense_key, &asc, &ascq);
2647 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2648 			if (sense_key == ABORTED_COMMAND) {
2649 				cmd->result |= DID_SOFT_ERROR << 16;
2650 				break;
2651 			}
2652 			break;
2653 		}
2654 		/* Problem was not a check condition
2655 		 * Pass it up to the upper layers...
2656 		 */
2657 		if (ei->ScsiStatus) {
2658 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2659 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660 				"Returning result: 0x%x\n",
2661 				cp, ei->ScsiStatus,
2662 				sense_key, asc, ascq,
2663 				cmd->result);
2664 		} else {  /* scsi status is zero??? How??? */
2665 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2666 				"Returning no connection.\n", cp),
2667 
2668 			/* Ordinarily, this case should never happen,
2669 			 * but there is a bug in some released firmware
2670 			 * revisions that allows it to happen if, for
2671 			 * example, a 4100 backplane loses power and
2672 			 * the tape drive is in it.  We assume that
2673 			 * it's a fatal error of some kind because we
2674 			 * can't show that it wasn't. We will make it
2675 			 * look like selection timeout since that is
2676 			 * the most common reason for this to occur,
2677 			 * and it's severe enough.
2678 			 */
2679 
2680 			cmd->result = DID_NO_CONNECT << 16;
2681 		}
2682 		break;
2683 
2684 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2685 		break;
2686 	case CMD_DATA_OVERRUN:
2687 		dev_warn(&h->pdev->dev,
2688 			"CDB %16phN data overrun\n", cp->Request.CDB);
2689 		break;
2690 	case CMD_INVALID: {
2691 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2692 		print_cmd(cp); */
2693 		/* We get CMD_INVALID if you address a non-existent device
2694 		 * instead of a selection timeout (no response).  You will
2695 		 * see this if you yank out a drive, then try to access it.
2696 		 * This is kind of a shame because it means that any other
2697 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698 		 * missing target. */
2699 		cmd->result = DID_NO_CONNECT << 16;
2700 	}
2701 		break;
2702 	case CMD_PROTOCOL_ERR:
2703 		cmd->result = DID_ERROR << 16;
2704 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2705 				cp->Request.CDB);
2706 		break;
2707 	case CMD_HARDWARE_ERR:
2708 		cmd->result = DID_ERROR << 16;
2709 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2710 			cp->Request.CDB);
2711 		break;
2712 	case CMD_CONNECTION_LOST:
2713 		cmd->result = DID_ERROR << 16;
2714 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2715 			cp->Request.CDB);
2716 		break;
2717 	case CMD_ABORTED:
2718 		cmd->result = DID_ABORT << 16;
2719 		break;
2720 	case CMD_ABORT_FAILED:
2721 		cmd->result = DID_ERROR << 16;
2722 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2723 			cp->Request.CDB);
2724 		break;
2725 	case CMD_UNSOLICITED_ABORT:
2726 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2727 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2728 			cp->Request.CDB);
2729 		break;
2730 	case CMD_TIMEOUT:
2731 		cmd->result = DID_TIME_OUT << 16;
2732 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2733 			cp->Request.CDB);
2734 		break;
2735 	case CMD_UNABORTABLE:
2736 		cmd->result = DID_ERROR << 16;
2737 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2738 		break;
2739 	case CMD_TMF_STATUS:
2740 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2741 			cmd->result = DID_ERROR << 16;
2742 		break;
2743 	case CMD_IOACCEL_DISABLED:
2744 		/* This only handles the direct pass-through case since RAID
2745 		 * offload is handled above.  Just attempt a retry.
2746 		 */
2747 		cmd->result = DID_SOFT_ERROR << 16;
2748 		dev_warn(&h->pdev->dev,
2749 				"cp %p had HP SSD Smart Path error\n", cp);
2750 		break;
2751 	default:
2752 		cmd->result = DID_ERROR << 16;
2753 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2754 				cp, ei->CommandStatus);
2755 	}
2756 
2757 	return hpsa_cmd_free_and_done(h, cp, cmd);
2758 }
2759 
2760 static void hpsa_pci_unmap(struct pci_dev *pdev,
2761 	struct CommandList *c, int sg_used, int data_direction)
2762 {
2763 	int i;
2764 
2765 	for (i = 0; i < sg_used; i++)
2766 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2767 				le32_to_cpu(c->SG[i].Len),
2768 				data_direction);
2769 }
2770 
2771 static int hpsa_map_one(struct pci_dev *pdev,
2772 		struct CommandList *cp,
2773 		unsigned char *buf,
2774 		size_t buflen,
2775 		int data_direction)
2776 {
2777 	u64 addr64;
2778 
2779 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2780 		cp->Header.SGList = 0;
2781 		cp->Header.SGTotal = cpu_to_le16(0);
2782 		return 0;
2783 	}
2784 
2785 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2786 	if (dma_mapping_error(&pdev->dev, addr64)) {
2787 		/* Prevent subsequent unmap of something never mapped */
2788 		cp->Header.SGList = 0;
2789 		cp->Header.SGTotal = cpu_to_le16(0);
2790 		return -1;
2791 	}
2792 	cp->SG[0].Addr = cpu_to_le64(addr64);
2793 	cp->SG[0].Len = cpu_to_le32(buflen);
2794 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2795 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2796 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2797 	return 0;
2798 }
2799 
2800 #define NO_TIMEOUT ((unsigned long) -1)
2801 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2803 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2804 {
2805 	DECLARE_COMPLETION_ONSTACK(wait);
2806 
2807 	c->waiting = &wait;
2808 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2809 	if (timeout_msecs == NO_TIMEOUT) {
2810 		/* TODO: get rid of this no-timeout thing */
2811 		wait_for_completion_io(&wait);
2812 		return IO_OK;
2813 	}
2814 	if (!wait_for_completion_io_timeout(&wait,
2815 					msecs_to_jiffies(timeout_msecs))) {
2816 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2817 		return -ETIMEDOUT;
2818 	}
2819 	return IO_OK;
2820 }
2821 
2822 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2823 				   int reply_queue, unsigned long timeout_msecs)
2824 {
2825 	if (unlikely(lockup_detected(h))) {
2826 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2827 		return IO_OK;
2828 	}
2829 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2830 }
2831 
2832 static u32 lockup_detected(struct ctlr_info *h)
2833 {
2834 	int cpu;
2835 	u32 rc, *lockup_detected;
2836 
2837 	cpu = get_cpu();
2838 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2839 	rc = *lockup_detected;
2840 	put_cpu();
2841 	return rc;
2842 }
2843 
2844 #define MAX_DRIVER_CMD_RETRIES 25
2845 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2846 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2847 {
2848 	int backoff_time = 10, retry_count = 0;
2849 	int rc;
2850 
2851 	do {
2852 		memset(c->err_info, 0, sizeof(*c->err_info));
2853 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2854 						  timeout_msecs);
2855 		if (rc)
2856 			break;
2857 		retry_count++;
2858 		if (retry_count > 3) {
2859 			msleep(backoff_time);
2860 			if (backoff_time < 1000)
2861 				backoff_time *= 2;
2862 		}
2863 	} while ((check_for_unit_attention(h, c) ||
2864 			check_for_busy(h, c)) &&
2865 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2866 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2867 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2868 		rc = -EIO;
2869 	return rc;
2870 }
2871 
2872 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2873 				struct CommandList *c)
2874 {
2875 	const u8 *cdb = c->Request.CDB;
2876 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2877 
2878 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2879 		 txt, lun, cdb);
2880 }
2881 
2882 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2883 			struct CommandList *cp)
2884 {
2885 	const struct ErrorInfo *ei = cp->err_info;
2886 	struct device *d = &cp->h->pdev->dev;
2887 	u8 sense_key, asc, ascq;
2888 	int sense_len;
2889 
2890 	switch (ei->CommandStatus) {
2891 	case CMD_TARGET_STATUS:
2892 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2893 			sense_len = sizeof(ei->SenseInfo);
2894 		else
2895 			sense_len = ei->SenseLen;
2896 		decode_sense_data(ei->SenseInfo, sense_len,
2897 					&sense_key, &asc, &ascq);
2898 		hpsa_print_cmd(h, "SCSI status", cp);
2899 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2900 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901 				sense_key, asc, ascq);
2902 		else
2903 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2904 		if (ei->ScsiStatus == 0)
2905 			dev_warn(d, "SCSI status is abnormally zero.  "
2906 			"(probably indicates selection timeout "
2907 			"reported incorrectly due to a known "
2908 			"firmware bug, circa July, 2001.)\n");
2909 		break;
2910 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2911 		break;
2912 	case CMD_DATA_OVERRUN:
2913 		hpsa_print_cmd(h, "overrun condition", cp);
2914 		break;
2915 	case CMD_INVALID: {
2916 		/* controller unfortunately reports SCSI passthru's
2917 		 * to non-existent targets as invalid commands.
2918 		 */
2919 		hpsa_print_cmd(h, "invalid command", cp);
2920 		dev_warn(d, "probably means device no longer present\n");
2921 		}
2922 		break;
2923 	case CMD_PROTOCOL_ERR:
2924 		hpsa_print_cmd(h, "protocol error", cp);
2925 		break;
2926 	case CMD_HARDWARE_ERR:
2927 		hpsa_print_cmd(h, "hardware error", cp);
2928 		break;
2929 	case CMD_CONNECTION_LOST:
2930 		hpsa_print_cmd(h, "connection lost", cp);
2931 		break;
2932 	case CMD_ABORTED:
2933 		hpsa_print_cmd(h, "aborted", cp);
2934 		break;
2935 	case CMD_ABORT_FAILED:
2936 		hpsa_print_cmd(h, "abort failed", cp);
2937 		break;
2938 	case CMD_UNSOLICITED_ABORT:
2939 		hpsa_print_cmd(h, "unsolicited abort", cp);
2940 		break;
2941 	case CMD_TIMEOUT:
2942 		hpsa_print_cmd(h, "timed out", cp);
2943 		break;
2944 	case CMD_UNABORTABLE:
2945 		hpsa_print_cmd(h, "unabortable", cp);
2946 		break;
2947 	case CMD_CTLR_LOCKUP:
2948 		hpsa_print_cmd(h, "controller lockup detected", cp);
2949 		break;
2950 	default:
2951 		hpsa_print_cmd(h, "unknown status", cp);
2952 		dev_warn(d, "Unknown command status %x\n",
2953 				ei->CommandStatus);
2954 	}
2955 }
2956 
2957 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2958 					u8 page, u8 *buf, size_t bufsize)
2959 {
2960 	int rc = IO_OK;
2961 	struct CommandList *c;
2962 	struct ErrorInfo *ei;
2963 
2964 	c = cmd_alloc(h);
2965 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2966 			page, scsi3addr, TYPE_CMD)) {
2967 		rc = -1;
2968 		goto out;
2969 	}
2970 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2971 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2972 	if (rc)
2973 		goto out;
2974 	ei = c->err_info;
2975 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2976 		hpsa_scsi_interpret_error(h, c);
2977 		rc = -1;
2978 	}
2979 out:
2980 	cmd_free(h, c);
2981 	return rc;
2982 }
2983 
2984 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2985 						u8 *scsi3addr)
2986 {
2987 	u8 *buf;
2988 	u64 sa = 0;
2989 	int rc = 0;
2990 
2991 	buf = kzalloc(1024, GFP_KERNEL);
2992 	if (!buf)
2993 		return 0;
2994 
2995 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2996 					buf, 1024);
2997 
2998 	if (rc)
2999 		goto out;
3000 
3001 	sa = get_unaligned_be64(buf+12);
3002 
3003 out:
3004 	kfree(buf);
3005 	return sa;
3006 }
3007 
3008 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3009 			u16 page, unsigned char *buf,
3010 			unsigned char bufsize)
3011 {
3012 	int rc = IO_OK;
3013 	struct CommandList *c;
3014 	struct ErrorInfo *ei;
3015 
3016 	c = cmd_alloc(h);
3017 
3018 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3019 			page, scsi3addr, TYPE_CMD)) {
3020 		rc = -1;
3021 		goto out;
3022 	}
3023 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3024 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3025 	if (rc)
3026 		goto out;
3027 	ei = c->err_info;
3028 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3029 		hpsa_scsi_interpret_error(h, c);
3030 		rc = -1;
3031 	}
3032 out:
3033 	cmd_free(h, c);
3034 	return rc;
3035 }
3036 
3037 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3038 	u8 reset_type, int reply_queue)
3039 {
3040 	int rc = IO_OK;
3041 	struct CommandList *c;
3042 	struct ErrorInfo *ei;
3043 
3044 	c = cmd_alloc(h);
3045 
3046 
3047 	/* fill_cmd can't fail here, no data buffer to map. */
3048 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3049 			scsi3addr, TYPE_MSG);
3050 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3051 	if (rc) {
3052 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3053 		goto out;
3054 	}
3055 	/* no unmap needed here because no data xfer. */
3056 
3057 	ei = c->err_info;
3058 	if (ei->CommandStatus != 0) {
3059 		hpsa_scsi_interpret_error(h, c);
3060 		rc = -1;
3061 	}
3062 out:
3063 	cmd_free(h, c);
3064 	return rc;
3065 }
3066 
3067 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3068 			       struct hpsa_scsi_dev_t *dev,
3069 			       unsigned char *scsi3addr)
3070 {
3071 	int i;
3072 	bool match = false;
3073 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3074 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3075 
3076 	if (hpsa_is_cmd_idle(c))
3077 		return false;
3078 
3079 	switch (c->cmd_type) {
3080 	case CMD_SCSI:
3081 	case CMD_IOCTL_PEND:
3082 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3083 				sizeof(c->Header.LUN.LunAddrBytes));
3084 		break;
3085 
3086 	case CMD_IOACCEL1:
3087 	case CMD_IOACCEL2:
3088 		if (c->phys_disk == dev) {
3089 			/* HBA mode match */
3090 			match = true;
3091 		} else {
3092 			/* Possible RAID mode -- check each phys dev. */
3093 			/* FIXME:  Do we need to take out a lock here?  If
3094 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3095 			 * instead. */
3096 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3097 				/* FIXME: an alternate test might be
3098 				 *
3099 				 * match = dev->phys_disk[i]->ioaccel_handle
3100 				 *              == c2->scsi_nexus;      */
3101 				match = dev->phys_disk[i] == c->phys_disk;
3102 			}
3103 		}
3104 		break;
3105 
3106 	case IOACCEL2_TMF:
3107 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108 			match = dev->phys_disk[i]->ioaccel_handle ==
3109 					le32_to_cpu(ac->it_nexus);
3110 		}
3111 		break;
3112 
3113 	case 0:		/* The command is in the middle of being initialized. */
3114 		match = false;
3115 		break;
3116 
3117 	default:
3118 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3119 			c->cmd_type);
3120 		BUG();
3121 	}
3122 
3123 	return match;
3124 }
3125 
3126 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3127 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3128 {
3129 	int i;
3130 	int rc = 0;
3131 
3132 	/* We can really only handle one reset at a time */
3133 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3134 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3135 		return -EINTR;
3136 	}
3137 
3138 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3139 
3140 	for (i = 0; i < h->nr_cmds; i++) {
3141 		struct CommandList *c = h->cmd_pool + i;
3142 		int refcount = atomic_inc_return(&c->refcount);
3143 
3144 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3145 			unsigned long flags;
3146 
3147 			/*
3148 			 * Mark the target command as having a reset pending,
3149 			 * then lock a lock so that the command cannot complete
3150 			 * while we're considering it.  If the command is not
3151 			 * idle then count it; otherwise revoke the event.
3152 			 */
3153 			c->reset_pending = dev;
3154 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3155 			if (!hpsa_is_cmd_idle(c))
3156 				atomic_inc(&dev->reset_cmds_out);
3157 			else
3158 				c->reset_pending = NULL;
3159 			spin_unlock_irqrestore(&h->lock, flags);
3160 		}
3161 
3162 		cmd_free(h, c);
3163 	}
3164 
3165 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3166 	if (!rc)
3167 		wait_event(h->event_sync_wait_queue,
3168 			atomic_read(&dev->reset_cmds_out) == 0 ||
3169 			lockup_detected(h));
3170 
3171 	if (unlikely(lockup_detected(h))) {
3172 		dev_warn(&h->pdev->dev,
3173 			 "Controller lockup detected during reset wait\n");
3174 		rc = -ENODEV;
3175 	}
3176 
3177 	if (unlikely(rc))
3178 		atomic_set(&dev->reset_cmds_out, 0);
3179 	else
3180 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3181 
3182 	mutex_unlock(&h->reset_mutex);
3183 	return rc;
3184 }
3185 
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187 	unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189 	int rc;
3190 	unsigned char *buf;
3191 
3192 	*raid_level = RAID_UNKNOWN;
3193 	buf = kzalloc(64, GFP_KERNEL);
3194 	if (!buf)
3195 		return;
3196 
3197 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3198 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3199 		goto exit;
3200 
3201 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203 
3204 	if (rc == 0)
3205 		*raid_level = buf[8];
3206 	if (*raid_level > RAID_UNKNOWN)
3207 		*raid_level = RAID_UNKNOWN;
3208 exit:
3209 	kfree(buf);
3210 	return;
3211 }
3212 
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216 				struct raid_map_data *map_buff)
3217 {
3218 	struct raid_map_disk_data *dd = &map_buff->data[0];
3219 	int map, row, col;
3220 	u16 map_cnt, row_cnt, disks_per_row;
3221 
3222 	if (rc != 0)
3223 		return;
3224 
3225 	/* Show details only if debugging has been activated. */
3226 	if (h->raid_offload_debug < 2)
3227 		return;
3228 
3229 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3230 				le32_to_cpu(map_buff->structure_size));
3231 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232 			le32_to_cpu(map_buff->volume_blk_size));
3233 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234 			le64_to_cpu(map_buff->volume_blk_cnt));
3235 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236 			map_buff->phys_blk_shift);
3237 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238 			map_buff->parity_rotation_shift);
3239 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3240 			le16_to_cpu(map_buff->strip_size));
3241 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242 			le64_to_cpu(map_buff->disk_starting_blk));
3243 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244 			le64_to_cpu(map_buff->disk_blk_cnt));
3245 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246 			le16_to_cpu(map_buff->data_disks_per_row));
3247 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248 			le16_to_cpu(map_buff->metadata_disks_per_row));
3249 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250 			le16_to_cpu(map_buff->row_cnt));
3251 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252 			le16_to_cpu(map_buff->layout_map_count));
3253 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254 			le16_to_cpu(map_buff->flags));
3255 	dev_info(&h->pdev->dev, "encryption = %s\n",
3256 			le16_to_cpu(map_buff->flags) &
3257 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3259 			le16_to_cpu(map_buff->dekindex));
3260 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261 	for (map = 0; map < map_cnt; map++) {
3262 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3263 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3264 		for (row = 0; row < row_cnt; row++) {
3265 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266 			disks_per_row =
3267 				le16_to_cpu(map_buff->data_disks_per_row);
3268 			for (col = 0; col < disks_per_row; col++, dd++)
3269 				dev_info(&h->pdev->dev,
3270 					"    D%02u: h=0x%04x xor=%u,%u\n",
3271 					col, dd->ioaccel_handle,
3272 					dd->xor_mult[0], dd->xor_mult[1]);
3273 			disks_per_row =
3274 				le16_to_cpu(map_buff->metadata_disks_per_row);
3275 			for (col = 0; col < disks_per_row; col++, dd++)
3276 				dev_info(&h->pdev->dev,
3277 					"    M%02u: h=0x%04x xor=%u,%u\n",
3278 					col, dd->ioaccel_handle,
3279 					dd->xor_mult[0], dd->xor_mult[1]);
3280 		}
3281 	}
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285 			__attribute__((unused)) int rc,
3286 			__attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290 
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294 	int rc = 0;
3295 	struct CommandList *c;
3296 	struct ErrorInfo *ei;
3297 
3298 	c = cmd_alloc(h);
3299 
3300 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301 			sizeof(this_device->raid_map), 0,
3302 			scsi3addr, TYPE_CMD)) {
3303 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304 		cmd_free(h, c);
3305 		return -1;
3306 	}
3307 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3308 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3309 	if (rc)
3310 		goto out;
3311 	ei = c->err_info;
3312 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313 		hpsa_scsi_interpret_error(h, c);
3314 		rc = -1;
3315 		goto out;
3316 	}
3317 	cmd_free(h, c);
3318 
3319 	/* @todo in the future, dynamically allocate RAID map memory */
3320 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3321 				sizeof(this_device->raid_map)) {
3322 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323 		rc = -1;
3324 	}
3325 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326 	return rc;
3327 out:
3328 	cmd_free(h, c);
3329 	return rc;
3330 }
3331 
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333 		unsigned char scsi3addr[], u16 bmic_device_index,
3334 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336 	int rc = IO_OK;
3337 	struct CommandList *c;
3338 	struct ErrorInfo *ei;
3339 
3340 	c = cmd_alloc(h);
3341 
3342 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343 		0, RAID_CTLR_LUNID, TYPE_CMD);
3344 	if (rc)
3345 		goto out;
3346 
3347 	c->Request.CDB[2] = bmic_device_index & 0xff;
3348 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349 
3350 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3351 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3352 	if (rc)
3353 		goto out;
3354 	ei = c->err_info;
3355 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356 		hpsa_scsi_interpret_error(h, c);
3357 		rc = -1;
3358 	}
3359 out:
3360 	cmd_free(h, c);
3361 	return rc;
3362 }
3363 
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365 	struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367 	int rc = IO_OK;
3368 	struct CommandList *c;
3369 	struct ErrorInfo *ei;
3370 
3371 	c = cmd_alloc(h);
3372 
3373 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374 		0, RAID_CTLR_LUNID, TYPE_CMD);
3375 	if (rc)
3376 		goto out;
3377 
3378 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380 	if (rc)
3381 		goto out;
3382 	ei = c->err_info;
3383 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384 		hpsa_scsi_interpret_error(h, c);
3385 		rc = -1;
3386 	}
3387 out:
3388 	cmd_free(h, c);
3389 	return rc;
3390 }
3391 
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393 		unsigned char scsi3addr[], u16 bmic_device_index,
3394 		struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396 	int rc = IO_OK;
3397 	struct CommandList *c;
3398 	struct ErrorInfo *ei;
3399 
3400 	c = cmd_alloc(h);
3401 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402 		0, RAID_CTLR_LUNID, TYPE_CMD);
3403 	if (rc)
3404 		goto out;
3405 
3406 	c->Request.CDB[2] = bmic_device_index & 0xff;
3407 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408 
3409 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3410 						NO_TIMEOUT);
3411 	ei = c->err_info;
3412 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413 		hpsa_scsi_interpret_error(h, c);
3414 		rc = -1;
3415 	}
3416 out:
3417 	cmd_free(h, c);
3418 
3419 	return rc;
3420 }
3421 
3422 /*
3423  * get enclosure information
3424  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426  * Uses id_physical_device to determine the box_index.
3427  */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429 			unsigned char *scsi3addr,
3430 			struct ReportExtendedLUNdata *rlep, int rle_index,
3431 			struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433 	int rc = -1;
3434 	struct CommandList *c = NULL;
3435 	struct ErrorInfo *ei = NULL;
3436 	struct bmic_sense_storage_box_params *bssbp = NULL;
3437 	struct bmic_identify_physical_device *id_phys = NULL;
3438 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439 	u16 bmic_device_index = 0;
3440 
3441 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442 
3443 	encl_dev->sas_address =
3444 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445 
3446 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447 		rc = IO_OK;
3448 		goto out;
3449 	}
3450 
3451 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452 		rc = IO_OK;
3453 		goto out;
3454 	}
3455 
3456 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457 	if (!bssbp)
3458 		goto out;
3459 
3460 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461 	if (!id_phys)
3462 		goto out;
3463 
3464 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465 						id_phys, sizeof(*id_phys));
3466 	if (rc) {
3467 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468 			__func__, encl_dev->external, bmic_device_index);
3469 		goto out;
3470 	}
3471 
3472 	c = cmd_alloc(h);
3473 
3474 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476 
3477 	if (rc)
3478 		goto out;
3479 
3480 	if (id_phys->phys_connector[1] == 'E')
3481 		c->Request.CDB[5] = id_phys->box_index;
3482 	else
3483 		c->Request.CDB[5] = 0;
3484 
3485 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3486 						NO_TIMEOUT);
3487 	if (rc)
3488 		goto out;
3489 
3490 	ei = c->err_info;
3491 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492 		rc = -1;
3493 		goto out;
3494 	}
3495 
3496 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499 
3500 	rc = IO_OK;
3501 out:
3502 	kfree(bssbp);
3503 	kfree(id_phys);
3504 
3505 	if (c)
3506 		cmd_free(h, c);
3507 
3508 	if (rc != IO_OK)
3509 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510 			"Error, could not get enclosure information");
3511 }
3512 
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514 						unsigned char *scsi3addr)
3515 {
3516 	struct ReportExtendedLUNdata *physdev;
3517 	u32 nphysicals;
3518 	u64 sa = 0;
3519 	int i;
3520 
3521 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522 	if (!physdev)
3523 		return 0;
3524 
3525 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527 		kfree(physdev);
3528 		return 0;
3529 	}
3530 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531 
3532 	for (i = 0; i < nphysicals; i++)
3533 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535 			break;
3536 		}
3537 
3538 	kfree(physdev);
3539 
3540 	return sa;
3541 }
3542 
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544 					struct hpsa_scsi_dev_t *dev)
3545 {
3546 	int rc;
3547 	u64 sa = 0;
3548 
3549 	if (is_hba_lunid(scsi3addr)) {
3550 		struct bmic_sense_subsystem_info *ssi;
3551 
3552 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553 		if (!ssi)
3554 			return;
3555 
3556 		rc = hpsa_bmic_sense_subsystem_information(h,
3557 					scsi3addr, 0, ssi, sizeof(*ssi));
3558 		if (rc == 0) {
3559 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560 			h->sas_address = sa;
3561 		}
3562 
3563 		kfree(ssi);
3564 	} else
3565 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566 
3567 	dev->sas_address = sa;
3568 }
3569 
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571 	struct ReportExtendedLUNdata *physdev)
3572 {
3573 	u32 nphysicals;
3574 	int i;
3575 
3576 	if (h->discovery_polling)
3577 		return;
3578 
3579 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580 
3581 	for (i = 0; i < nphysicals; i++) {
3582 		if (physdev->LUN[i].device_type ==
3583 			BMIC_DEVICE_TYPE_CONTROLLER
3584 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3585 			dev_info(&h->pdev->dev,
3586 				"External controller present, activate discovery polling and disable rld caching\n");
3587 			hpsa_disable_rld_caching(h);
3588 			h->discovery_polling = 1;
3589 			break;
3590 		}
3591 	}
3592 }
3593 
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596 	unsigned char scsi3addr[], u8 page)
3597 {
3598 	int rc;
3599 	int i;
3600 	int pages;
3601 	unsigned char *buf, bufsize;
3602 
3603 	buf = kzalloc(256, GFP_KERNEL);
3604 	if (!buf)
3605 		return false;
3606 
3607 	/* Get the size of the page list first */
3608 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610 				buf, HPSA_VPD_HEADER_SZ);
3611 	if (rc != 0)
3612 		goto exit_unsupported;
3613 	pages = buf[3];
3614 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3616 	else
3617 		bufsize = 255;
3618 
3619 	/* Get the whole VPD page list */
3620 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622 				buf, bufsize);
3623 	if (rc != 0)
3624 		goto exit_unsupported;
3625 
3626 	pages = buf[3];
3627 	for (i = 1; i <= pages; i++)
3628 		if (buf[3 + i] == page)
3629 			goto exit_supported;
3630 exit_unsupported:
3631 	kfree(buf);
3632 	return false;
3633 exit_supported:
3634 	kfree(buf);
3635 	return true;
3636 }
3637 
3638 /*
3639  * Called during a scan operation.
3640  * Sets ioaccel status on the new device list, not the existing device list
3641  *
3642  * The device list used during I/O will be updated later in
3643  * adjust_hpsa_scsi_table.
3644  */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648 	int rc;
3649 	unsigned char *buf;
3650 	u8 ioaccel_status;
3651 
3652 	this_device->offload_config = 0;
3653 	this_device->offload_enabled = 0;
3654 	this_device->offload_to_be_enabled = 0;
3655 
3656 	buf = kzalloc(64, GFP_KERNEL);
3657 	if (!buf)
3658 		return;
3659 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660 		goto out;
3661 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663 	if (rc != 0)
3664 		goto out;
3665 
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670 	this_device->offload_config =
3671 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672 	if (this_device->offload_config) {
3673 		this_device->offload_to_be_enabled =
3674 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676 			this_device->offload_to_be_enabled = 0;
3677 	}
3678 
3679 out:
3680 	kfree(buf);
3681 	return;
3682 }
3683 
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686 	unsigned char *device_id, int index, int buflen)
3687 {
3688 	int rc;
3689 	unsigned char *buf;
3690 
3691 	/* Does controller have VPD for device id? */
3692 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693 		return 1; /* not supported */
3694 
3695 	buf = kzalloc(64, GFP_KERNEL);
3696 	if (!buf)
3697 		return -ENOMEM;
3698 
3699 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701 	if (rc == 0) {
3702 		if (buflen > 16)
3703 			buflen = 16;
3704 		memcpy(device_id, &buf[8], buflen);
3705 	}
3706 
3707 	kfree(buf);
3708 
3709 	return rc; /*0 - got id,  otherwise, didn't */
3710 }
3711 
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713 		void *buf, int bufsize,
3714 		int extended_response)
3715 {
3716 	int rc = IO_OK;
3717 	struct CommandList *c;
3718 	unsigned char scsi3addr[8];
3719 	struct ErrorInfo *ei;
3720 
3721 	c = cmd_alloc(h);
3722 
3723 	/* address the controller */
3724 	memset(scsi3addr, 0, sizeof(scsi3addr));
3725 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727 		rc = -EAGAIN;
3728 		goto out;
3729 	}
3730 	if (extended_response)
3731 		c->Request.CDB[1] = extended_response;
3732 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3733 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3734 	if (rc)
3735 		goto out;
3736 	ei = c->err_info;
3737 	if (ei->CommandStatus != 0 &&
3738 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739 		hpsa_scsi_interpret_error(h, c);
3740 		rc = -EIO;
3741 	} else {
3742 		struct ReportLUNdata *rld = buf;
3743 
3744 		if (rld->extended_response_flag != extended_response) {
3745 			if (!h->legacy_board) {
3746 				dev_err(&h->pdev->dev,
3747 					"report luns requested format %u, got %u\n",
3748 					extended_response,
3749 					rld->extended_response_flag);
3750 				rc = -EINVAL;
3751 			} else
3752 				rc = -EOPNOTSUPP;
3753 		}
3754 	}
3755 out:
3756 	cmd_free(h, c);
3757 	return rc;
3758 }
3759 
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761 		struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763 	int rc;
3764 	struct ReportLUNdata *lbuf;
3765 
3766 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767 				      HPSA_REPORT_PHYS_EXTENDED);
3768 	if (!rc || rc != -EOPNOTSUPP)
3769 		return rc;
3770 
3771 	/* REPORT PHYS EXTENDED is not supported */
3772 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773 	if (!lbuf)
3774 		return -ENOMEM;
3775 
3776 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777 	if (!rc) {
3778 		int i;
3779 		u32 nphys;
3780 
3781 		/* Copy ReportLUNdata header */
3782 		memcpy(buf, lbuf, 8);
3783 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784 		for (i = 0; i < nphys; i++)
3785 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786 	}
3787 	kfree(lbuf);
3788 	return rc;
3789 }
3790 
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792 		struct ReportLUNdata *buf, int bufsize)
3793 {
3794 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796 
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798 	int bus, int target, int lun)
3799 {
3800 	device->bus = bus;
3801 	device->target = target;
3802 	device->lun = lun;
3803 }
3804 
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807 					unsigned char scsi3addr[])
3808 {
3809 	int rc;
3810 	int status;
3811 	int size;
3812 	unsigned char *buf;
3813 
3814 	buf = kzalloc(64, GFP_KERNEL);
3815 	if (!buf)
3816 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817 
3818 	/* Does controller have VPD for logical volume status? */
3819 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820 		goto exit_failed;
3821 
3822 	/* Get the size of the VPD return buffer */
3823 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824 					buf, HPSA_VPD_HEADER_SZ);
3825 	if (rc != 0)
3826 		goto exit_failed;
3827 	size = buf[3];
3828 
3829 	/* Now get the whole VPD buffer */
3830 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831 					buf, size + HPSA_VPD_HEADER_SZ);
3832 	if (rc != 0)
3833 		goto exit_failed;
3834 	status = buf[4]; /* status byte */
3835 
3836 	kfree(buf);
3837 	return status;
3838 exit_failed:
3839 	kfree(buf);
3840 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842 
3843 /* Determine offline status of a volume.
3844  * Return either:
3845  *  0 (not offline)
3846  *  0xff (offline for unknown reasons)
3847  *  # (integer code indicating one of several NOT READY states
3848  *     describing why a volume is to be kept offline)
3849  */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851 					unsigned char scsi3addr[])
3852 {
3853 	struct CommandList *c;
3854 	unsigned char *sense;
3855 	u8 sense_key, asc, ascq;
3856 	int sense_len;
3857 	int rc, ldstat = 0;
3858 	u16 cmd_status;
3859 	u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863 
3864 	c = cmd_alloc(h);
3865 
3866 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868 					NO_TIMEOUT);
3869 	if (rc) {
3870 		cmd_free(h, c);
3871 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872 	}
3873 	sense = c->err_info->SenseInfo;
3874 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875 		sense_len = sizeof(c->err_info->SenseInfo);
3876 	else
3877 		sense_len = c->err_info->SenseLen;
3878 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879 	cmd_status = c->err_info->CommandStatus;
3880 	scsi_status = c->err_info->ScsiStatus;
3881 	cmd_free(h, c);
3882 
3883 	/* Determine the reason for not ready state */
3884 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3885 
3886 	/* Keep volume offline in certain cases: */
3887 	switch (ldstat) {
3888 	case HPSA_LV_FAILED:
3889 	case HPSA_LV_UNDERGOING_ERASE:
3890 	case HPSA_LV_NOT_AVAILABLE:
3891 	case HPSA_LV_UNDERGOING_RPI:
3892 	case HPSA_LV_PENDING_RPI:
3893 	case HPSA_LV_ENCRYPTED_NO_KEY:
3894 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3896 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898 		return ldstat;
3899 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900 		/* If VPD status page isn't available,
3901 		 * use ASC/ASCQ to determine state
3902 		 */
3903 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905 			return ldstat;
3906 		break;
3907 	default:
3908 		break;
3909 	}
3910 	return HPSA_LV_OK;
3911 }
3912 
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915 	unsigned char *is_OBDR_device)
3916 {
3917 
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922 
3923 	unsigned char *inq_buff;
3924 	unsigned char *obdr_sig;
3925 	int rc = 0;
3926 
3927 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928 	if (!inq_buff) {
3929 		rc = -ENOMEM;
3930 		goto bail_out;
3931 	}
3932 
3933 	/* Do an inquiry to the device to see what it is. */
3934 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936 		dev_err(&h->pdev->dev,
3937 			"%s: inquiry failed, device will be skipped.\n",
3938 			__func__);
3939 		rc = HPSA_INQUIRY_FAILED;
3940 		goto bail_out;
3941 	}
3942 
3943 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945 
3946 	this_device->devtype = (inq_buff[0] & 0x1f);
3947 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3948 	memcpy(this_device->vendor, &inq_buff[8],
3949 		sizeof(this_device->vendor));
3950 	memcpy(this_device->model, &inq_buff[16],
3951 		sizeof(this_device->model));
3952 	this_device->rev = inq_buff[2];
3953 	memset(this_device->device_id, 0,
3954 		sizeof(this_device->device_id));
3955 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956 		sizeof(this_device->device_id)) < 0)
3957 		dev_err(&h->pdev->dev,
3958 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3959 			h->ctlr, __func__,
3960 			h->scsi_host->host_no,
3961 			this_device->target, this_device->lun,
3962 			scsi_device_type(this_device->devtype),
3963 			this_device->model);
3964 
3965 	if ((this_device->devtype == TYPE_DISK ||
3966 		this_device->devtype == TYPE_ZBC) &&
3967 		is_logical_dev_addr_mode(scsi3addr)) {
3968 		unsigned char volume_offline;
3969 
3970 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3974 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975 		    h->legacy_board) {
3976 			/*
3977 			 * Legacy boards might not support volume status
3978 			 */
3979 			dev_info(&h->pdev->dev,
3980 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3981 				 this_device->target, this_device->lun);
3982 			volume_offline = 0;
3983 		}
3984 		this_device->volume_offline = volume_offline;
3985 		if (volume_offline == HPSA_LV_FAILED) {
3986 			rc = HPSA_LV_FAILED;
3987 			dev_err(&h->pdev->dev,
3988 				"%s: LV failed, device will be skipped.\n",
3989 				__func__);
3990 			goto bail_out;
3991 		}
3992 	} else {
3993 		this_device->raid_level = RAID_UNKNOWN;
3994 		this_device->offload_config = 0;
3995 		this_device->offload_enabled = 0;
3996 		this_device->offload_to_be_enabled = 0;
3997 		this_device->hba_ioaccel_enabled = 0;
3998 		this_device->volume_offline = 0;
3999 		this_device->queue_depth = h->nr_cmds;
4000 	}
4001 
4002 	if (this_device->external)
4003 		this_device->queue_depth = EXTERNAL_QD;
4004 
4005 	if (is_OBDR_device) {
4006 		/* See if this is a One-Button-Disaster-Recovery device
4007 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4008 		 */
4009 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4012 						OBDR_SIG_LEN) == 0);
4013 	}
4014 	kfree(inq_buff);
4015 	return 0;
4016 
4017 bail_out:
4018 	kfree(inq_buff);
4019 	return rc;
4020 }
4021 
4022 /*
4023  * Helper function to assign bus, target, lun mapping of devices.
4024  * Logical drive target and lun are assigned at this time, but
4025  * physical device lun and target assignment are deferred (assigned
4026  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027 */
4028 static void figure_bus_target_lun(struct ctlr_info *h,
4029 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4030 {
4031 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4032 
4033 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034 		/* physical device, target and lun filled in later */
4035 		if (is_hba_lunid(lunaddrbytes)) {
4036 			int bus = HPSA_HBA_BUS;
4037 
4038 			if (!device->rev)
4039 				bus = HPSA_LEGACY_HBA_BUS;
4040 			hpsa_set_bus_target_lun(device,
4041 					bus, 0, lunid & 0x3fff);
4042 		} else
4043 			/* defer target, lun assignment for physical devices */
4044 			hpsa_set_bus_target_lun(device,
4045 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046 		return;
4047 	}
4048 	/* It's a logical device */
4049 	if (device->external) {
4050 		hpsa_set_bus_target_lun(device,
4051 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052 			lunid & 0x00ff);
4053 		return;
4054 	}
4055 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056 				0, lunid & 0x3fff);
4057 }
4058 
4059 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060 	int i, int nphysicals, int nlocal_logicals)
4061 {
4062 	/* In report logicals, local logicals are listed first,
4063 	* then any externals.
4064 	*/
4065 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4066 
4067 	if (i == raid_ctlr_position)
4068 		return 0;
4069 
4070 	if (i < logicals_start)
4071 		return 0;
4072 
4073 	/* i is in logicals range, but still within local logicals */
4074 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075 		return 0;
4076 
4077 	return 1; /* it's an external lun */
4078 }
4079 
4080 /*
4081  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082  * logdev.  The number of luns in physdev and logdev are returned in
4083  * *nphysicals and *nlogicals, respectively.
4084  * Returns 0 on success, -1 otherwise.
4085  */
4086 static int hpsa_gather_lun_info(struct ctlr_info *h,
4087 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4088 	struct ReportLUNdata *logdev, u32 *nlogicals)
4089 {
4090 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092 		return -1;
4093 	}
4094 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4098 		*nphysicals = HPSA_MAX_PHYS_LUN;
4099 	}
4100 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102 		return -1;
4103 	}
4104 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105 	/* Reject Logicals in excess of our max capability. */
4106 	if (*nlogicals > HPSA_MAX_LUN) {
4107 		dev_warn(&h->pdev->dev,
4108 			"maximum logical LUNs (%d) exceeded.  "
4109 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4110 			*nlogicals - HPSA_MAX_LUN);
4111 			*nlogicals = HPSA_MAX_LUN;
4112 	}
4113 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114 		dev_warn(&h->pdev->dev,
4115 			"maximum logical + physical LUNs (%d) exceeded. "
4116 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119 	}
4120 	return 0;
4121 }
4122 
4123 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124 	int i, int nphysicals, int nlogicals,
4125 	struct ReportExtendedLUNdata *physdev_list,
4126 	struct ReportLUNdata *logdev_list)
4127 {
4128 	/* Helper function, figure out where the LUN ID info is coming from
4129 	 * given index i, lists of physical and logical devices, where in
4130 	 * the list the raid controller is supposed to appear (first or last)
4131 	 */
4132 
4133 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135 
4136 	if (i == raid_ctlr_position)
4137 		return RAID_CTLR_LUNID;
4138 
4139 	if (i < logicals_start)
4140 		return &physdev_list->LUN[i -
4141 				(raid_ctlr_position == 0)].lunid[0];
4142 
4143 	if (i < last_device)
4144 		return &logdev_list->LUN[i - nphysicals -
4145 			(raid_ctlr_position == 0)][0];
4146 	BUG();
4147 	return NULL;
4148 }
4149 
4150 /* get physical drive ioaccel handle and queue depth */
4151 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152 		struct hpsa_scsi_dev_t *dev,
4153 		struct ReportExtendedLUNdata *rlep, int rle_index,
4154 		struct bmic_identify_physical_device *id_phys)
4155 {
4156 	int rc;
4157 	struct ext_report_lun_entry *rle;
4158 
4159 	rle = &rlep->LUN[rle_index];
4160 
4161 	dev->ioaccel_handle = rle->ioaccel_handle;
4162 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163 		dev->hba_ioaccel_enabled = 1;
4164 	memset(id_phys, 0, sizeof(*id_phys));
4165 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167 			sizeof(*id_phys));
4168 	if (!rc)
4169 		/* Reserve space for FW operations */
4170 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4171 #define DRIVE_QUEUE_DEPTH 7
4172 		dev->queue_depth =
4173 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4174 				DRIVE_CMDS_RESERVED_FOR_FW;
4175 	else
4176 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177 }
4178 
4179 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180 	struct ReportExtendedLUNdata *rlep, int rle_index,
4181 	struct bmic_identify_physical_device *id_phys)
4182 {
4183 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4184 
4185 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186 		this_device->hba_ioaccel_enabled = 1;
4187 
4188 	memcpy(&this_device->active_path_index,
4189 		&id_phys->active_path_number,
4190 		sizeof(this_device->active_path_index));
4191 	memcpy(&this_device->path_map,
4192 		&id_phys->redundant_path_present_map,
4193 		sizeof(this_device->path_map));
4194 	memcpy(&this_device->box,
4195 		&id_phys->alternate_paths_phys_box_on_port,
4196 		sizeof(this_device->box));
4197 	memcpy(&this_device->phys_connector,
4198 		&id_phys->alternate_paths_phys_connector,
4199 		sizeof(this_device->phys_connector));
4200 	memcpy(&this_device->bay,
4201 		&id_phys->phys_bay_in_box,
4202 		sizeof(this_device->bay));
4203 }
4204 
4205 /* get number of local logical disks. */
4206 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207 	struct bmic_identify_controller *id_ctlr,
4208 	u32 *nlocals)
4209 {
4210 	int rc;
4211 
4212 	if (!id_ctlr) {
4213 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214 			__func__);
4215 		return -ENOMEM;
4216 	}
4217 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4218 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219 	if (!rc)
4220 		if (id_ctlr->configured_logical_drive_count < 255)
4221 			*nlocals = id_ctlr->configured_logical_drive_count;
4222 		else
4223 			*nlocals = le16_to_cpu(
4224 					id_ctlr->extended_logical_unit_count);
4225 	else
4226 		*nlocals = -1;
4227 	return rc;
4228 }
4229 
4230 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231 {
4232 	struct bmic_identify_physical_device *id_phys;
4233 	bool is_spare = false;
4234 	int rc;
4235 
4236 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237 	if (!id_phys)
4238 		return false;
4239 
4240 	rc = hpsa_bmic_id_physical_device(h,
4241 					lunaddrbytes,
4242 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243 					id_phys, sizeof(*id_phys));
4244 	if (rc == 0)
4245 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4246 
4247 	kfree(id_phys);
4248 	return is_spare;
4249 }
4250 
4251 #define RPL_DEV_FLAG_NON_DISK                           0x1
4252 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254 
4255 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256 
4257 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258 				struct ext_report_lun_entry *rle)
4259 {
4260 	u8 device_flags;
4261 	u8 device_type;
4262 
4263 	if (!MASKED_DEVICE(lunaddrbytes))
4264 		return false;
4265 
4266 	device_flags = rle->device_flags;
4267 	device_type = rle->device_type;
4268 
4269 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271 			return false;
4272 		return true;
4273 	}
4274 
4275 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276 		return false;
4277 
4278 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279 		return false;
4280 
4281 	/*
4282 	 * Spares may be spun down, we do not want to
4283 	 * do an Inquiry to a RAID set spare drive as
4284 	 * that would have them spun up, that is a
4285 	 * performance hit because I/O to the RAID device
4286 	 * stops while the spin up occurs which can take
4287 	 * over 50 seconds.
4288 	 */
4289 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4290 		return true;
4291 
4292 	return false;
4293 }
4294 
4295 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296 {
4297 	/* the idea here is we could get notified
4298 	 * that some devices have changed, so we do a report
4299 	 * physical luns and report logical luns cmd, and adjust
4300 	 * our list of devices accordingly.
4301 	 *
4302 	 * The scsi3addr's of devices won't change so long as the
4303 	 * adapter is not reset.  That means we can rescan and
4304 	 * tell which devices we already know about, vs. new
4305 	 * devices, vs.  disappearing devices.
4306 	 */
4307 	struct ReportExtendedLUNdata *physdev_list = NULL;
4308 	struct ReportLUNdata *logdev_list = NULL;
4309 	struct bmic_identify_physical_device *id_phys = NULL;
4310 	struct bmic_identify_controller *id_ctlr = NULL;
4311 	u32 nphysicals = 0;
4312 	u32 nlogicals = 0;
4313 	u32 nlocal_logicals = 0;
4314 	u32 ndev_allocated = 0;
4315 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316 	int ncurrent = 0;
4317 	int i, n_ext_target_devs, ndevs_to_allocate;
4318 	int raid_ctlr_position;
4319 	bool physical_device;
4320 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321 
4322 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4323 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4325 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328 
4329 	if (!currentsd || !physdev_list || !logdev_list ||
4330 		!tmpdevice || !id_phys || !id_ctlr) {
4331 		dev_err(&h->pdev->dev, "out of memory\n");
4332 		goto out;
4333 	}
4334 	memset(lunzerobits, 0, sizeof(lunzerobits));
4335 
4336 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337 
4338 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339 			logdev_list, &nlogicals)) {
4340 		h->drv_req_rescan = 1;
4341 		goto out;
4342 	}
4343 
4344 	/* Set number of local logicals (non PTRAID) */
4345 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346 		dev_warn(&h->pdev->dev,
4347 			"%s: Can't determine number of local logical devices.\n",
4348 			__func__);
4349 	}
4350 
4351 	/* We might see up to the maximum number of logical and physical disks
4352 	 * plus external target devices, and a device for the local RAID
4353 	 * controller.
4354 	 */
4355 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356 
4357 	hpsa_ext_ctrl_present(h, physdev_list);
4358 
4359 	/* Allocate the per device structures */
4360 	for (i = 0; i < ndevs_to_allocate; i++) {
4361 		if (i >= HPSA_MAX_DEVICES) {
4362 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4365 			break;
4366 		}
4367 
4368 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369 		if (!currentsd[i]) {
4370 			h->drv_req_rescan = 1;
4371 			goto out;
4372 		}
4373 		ndev_allocated++;
4374 	}
4375 
4376 	if (is_scsi_rev_5(h))
4377 		raid_ctlr_position = 0;
4378 	else
4379 		raid_ctlr_position = nphysicals + nlogicals;
4380 
4381 	/* adjust our table of devices */
4382 	n_ext_target_devs = 0;
4383 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384 		u8 *lunaddrbytes, is_OBDR = 0;
4385 		int rc = 0;
4386 		int phys_dev_index = i - (raid_ctlr_position == 0);
4387 		bool skip_device = false;
4388 
4389 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4390 
4391 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392 
4393 		/* Figure out where the LUN ID info is coming from */
4394 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4396 
4397 		/* Determine if this is a lun from an external target array */
4398 		tmpdevice->external =
4399 			figure_external_status(h, raid_ctlr_position, i,
4400 						nphysicals, nlocal_logicals);
4401 
4402 		/*
4403 		 * Skip over some devices such as a spare.
4404 		 */
4405 		if (!tmpdevice->external && physical_device) {
4406 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4407 					&physdev_list->LUN[phys_dev_index]);
4408 			if (skip_device)
4409 				continue;
4410 		}
4411 
4412 		/* Get device type, vendor, model, device id, raid_map */
4413 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414 							&is_OBDR);
4415 		if (rc == -ENOMEM) {
4416 			dev_warn(&h->pdev->dev,
4417 				"Out of memory, rescan deferred.\n");
4418 			h->drv_req_rescan = 1;
4419 			goto out;
4420 		}
4421 		if (rc) {
4422 			h->drv_req_rescan = 1;
4423 			continue;
4424 		}
4425 
4426 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427 		this_device = currentsd[ncurrent];
4428 
4429 		*this_device = *tmpdevice;
4430 		this_device->physical_device = physical_device;
4431 
4432 		/*
4433 		 * Expose all devices except for physical devices that
4434 		 * are masked.
4435 		 */
4436 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437 			this_device->expose_device = 0;
4438 		else
4439 			this_device->expose_device = 1;
4440 
4441 
4442 		/*
4443 		 * Get the SAS address for physical devices that are exposed.
4444 		 */
4445 		if (this_device->physical_device && this_device->expose_device)
4446 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447 
4448 		switch (this_device->devtype) {
4449 		case TYPE_ROM:
4450 			/* We don't *really* support actual CD-ROM devices,
4451 			 * just "One Button Disaster Recovery" tape drive
4452 			 * which temporarily pretends to be a CD-ROM drive.
4453 			 * So we check that the device is really an OBDR tape
4454 			 * device by checking for "$DR-10" in bytes 43-48 of
4455 			 * the inquiry data.
4456 			 */
4457 			if (is_OBDR)
4458 				ncurrent++;
4459 			break;
4460 		case TYPE_DISK:
4461 		case TYPE_ZBC:
4462 			if (this_device->physical_device) {
4463 				/* The disk is in HBA mode. */
4464 				/* Never use RAID mapper in HBA mode. */
4465 				this_device->offload_enabled = 0;
4466 				hpsa_get_ioaccel_drive_info(h, this_device,
4467 					physdev_list, phys_dev_index, id_phys);
4468 				hpsa_get_path_info(this_device,
4469 					physdev_list, phys_dev_index, id_phys);
4470 			}
4471 			ncurrent++;
4472 			break;
4473 		case TYPE_TAPE:
4474 		case TYPE_MEDIUM_CHANGER:
4475 			ncurrent++;
4476 			break;
4477 		case TYPE_ENCLOSURE:
4478 			if (!this_device->external)
4479 				hpsa_get_enclosure_info(h, lunaddrbytes,
4480 						physdev_list, phys_dev_index,
4481 						this_device);
4482 			ncurrent++;
4483 			break;
4484 		case TYPE_RAID:
4485 			/* Only present the Smartarray HBA as a RAID controller.
4486 			 * If it's a RAID controller other than the HBA itself
4487 			 * (an external RAID controller, MSA500 or similar)
4488 			 * don't present it.
4489 			 */
4490 			if (!is_hba_lunid(lunaddrbytes))
4491 				break;
4492 			ncurrent++;
4493 			break;
4494 		default:
4495 			break;
4496 		}
4497 		if (ncurrent >= HPSA_MAX_DEVICES)
4498 			break;
4499 	}
4500 
4501 	if (h->sas_host == NULL) {
4502 		int rc = 0;
4503 
4504 		rc = hpsa_add_sas_host(h);
4505 		if (rc) {
4506 			dev_warn(&h->pdev->dev,
4507 				"Could not add sas host %d\n", rc);
4508 			goto out;
4509 		}
4510 	}
4511 
4512 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513 out:
4514 	kfree(tmpdevice);
4515 	for (i = 0; i < ndev_allocated; i++)
4516 		kfree(currentsd[i]);
4517 	kfree(currentsd);
4518 	kfree(physdev_list);
4519 	kfree(logdev_list);
4520 	kfree(id_ctlr);
4521 	kfree(id_phys);
4522 }
4523 
4524 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525 				   struct scatterlist *sg)
4526 {
4527 	u64 addr64 = (u64) sg_dma_address(sg);
4528 	unsigned int len = sg_dma_len(sg);
4529 
4530 	desc->Addr = cpu_to_le64(addr64);
4531 	desc->Len = cpu_to_le32(len);
4532 	desc->Ext = 0;
4533 }
4534 
4535 /*
4536  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537  * dma mapping  and fills in the scatter gather entries of the
4538  * hpsa command, cp.
4539  */
4540 static int hpsa_scatter_gather(struct ctlr_info *h,
4541 		struct CommandList *cp,
4542 		struct scsi_cmnd *cmd)
4543 {
4544 	struct scatterlist *sg;
4545 	int use_sg, i, sg_limit, chained, last_sg;
4546 	struct SGDescriptor *curr_sg;
4547 
4548 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549 
4550 	use_sg = scsi_dma_map(cmd);
4551 	if (use_sg < 0)
4552 		return use_sg;
4553 
4554 	if (!use_sg)
4555 		goto sglist_finished;
4556 
4557 	/*
4558 	 * If the number of entries is greater than the max for a single list,
4559 	 * then we have a chained list; we will set up all but one entry in the
4560 	 * first list (the last entry is saved for link information);
4561 	 * otherwise, we don't have a chained list and we'll set up at each of
4562 	 * the entries in the one list.
4563 	 */
4564 	curr_sg = cp->SG;
4565 	chained = use_sg > h->max_cmd_sg_entries;
4566 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567 	last_sg = scsi_sg_count(cmd) - 1;
4568 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569 		hpsa_set_sg_descriptor(curr_sg, sg);
4570 		curr_sg++;
4571 	}
4572 
4573 	if (chained) {
4574 		/*
4575 		 * Continue with the chained list.  Set curr_sg to the chained
4576 		 * list.  Modify the limit to the total count less the entries
4577 		 * we've already set up.  Resume the scan at the list entry
4578 		 * where the previous loop left off.
4579 		 */
4580 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4581 		sg_limit = use_sg - sg_limit;
4582 		for_each_sg(sg, sg, sg_limit, i) {
4583 			hpsa_set_sg_descriptor(curr_sg, sg);
4584 			curr_sg++;
4585 		}
4586 	}
4587 
4588 	/* Back the pointer up to the last entry and mark it as "last". */
4589 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590 
4591 	if (use_sg + chained > h->maxSG)
4592 		h->maxSG = use_sg + chained;
4593 
4594 	if (chained) {
4595 		cp->Header.SGList = h->max_cmd_sg_entries;
4596 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597 		if (hpsa_map_sg_chain_block(h, cp)) {
4598 			scsi_dma_unmap(cmd);
4599 			return -1;
4600 		}
4601 		return 0;
4602 	}
4603 
4604 sglist_finished:
4605 
4606 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608 	return 0;
4609 }
4610 
4611 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612 						u8 *cdb, int cdb_len,
4613 						const char *func)
4614 {
4615 	dev_warn(&h->pdev->dev,
4616 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4617 		 func, cdb_len, cdb);
4618 }
4619 
4620 #define IO_ACCEL_INELIGIBLE 1
4621 /* zero-length transfers trigger hardware errors. */
4622 static bool is_zero_length_transfer(u8 *cdb)
4623 {
4624 	u32 block_cnt;
4625 
4626 	/* Block zero-length transfer sizes on certain commands. */
4627 	switch (cdb[0]) {
4628 	case READ_10:
4629 	case WRITE_10:
4630 	case VERIFY:		/* 0x2F */
4631 	case WRITE_VERIFY:	/* 0x2E */
4632 		block_cnt = get_unaligned_be16(&cdb[7]);
4633 		break;
4634 	case READ_12:
4635 	case WRITE_12:
4636 	case VERIFY_12: /* 0xAF */
4637 	case WRITE_VERIFY_12:	/* 0xAE */
4638 		block_cnt = get_unaligned_be32(&cdb[6]);
4639 		break;
4640 	case READ_16:
4641 	case WRITE_16:
4642 	case VERIFY_16:		/* 0x8F */
4643 		block_cnt = get_unaligned_be32(&cdb[10]);
4644 		break;
4645 	default:
4646 		return false;
4647 	}
4648 
4649 	return block_cnt == 0;
4650 }
4651 
4652 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4653 {
4654 	int is_write = 0;
4655 	u32 block;
4656 	u32 block_cnt;
4657 
4658 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659 	switch (cdb[0]) {
4660 	case WRITE_6:
4661 	case WRITE_12:
4662 		is_write = 1;
4663 	case READ_6:
4664 	case READ_12:
4665 		if (*cdb_len == 6) {
4666 			block = (((cdb[1] & 0x1F) << 16) |
4667 				(cdb[2] << 8) |
4668 				cdb[3]);
4669 			block_cnt = cdb[4];
4670 			if (block_cnt == 0)
4671 				block_cnt = 256;
4672 		} else {
4673 			BUG_ON(*cdb_len != 12);
4674 			block = get_unaligned_be32(&cdb[2]);
4675 			block_cnt = get_unaligned_be32(&cdb[6]);
4676 		}
4677 		if (block_cnt > 0xffff)
4678 			return IO_ACCEL_INELIGIBLE;
4679 
4680 		cdb[0] = is_write ? WRITE_10 : READ_10;
4681 		cdb[1] = 0;
4682 		cdb[2] = (u8) (block >> 24);
4683 		cdb[3] = (u8) (block >> 16);
4684 		cdb[4] = (u8) (block >> 8);
4685 		cdb[5] = (u8) (block);
4686 		cdb[6] = 0;
4687 		cdb[7] = (u8) (block_cnt >> 8);
4688 		cdb[8] = (u8) (block_cnt);
4689 		cdb[9] = 0;
4690 		*cdb_len = 10;
4691 		break;
4692 	}
4693 	return 0;
4694 }
4695 
4696 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4697 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4698 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4699 {
4700 	struct scsi_cmnd *cmd = c->scsi_cmd;
4701 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4702 	unsigned int len;
4703 	unsigned int total_len = 0;
4704 	struct scatterlist *sg;
4705 	u64 addr64;
4706 	int use_sg, i;
4707 	struct SGDescriptor *curr_sg;
4708 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4709 
4710 	/* TODO: implement chaining support */
4711 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4712 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4713 		return IO_ACCEL_INELIGIBLE;
4714 	}
4715 
4716 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4717 
4718 	if (is_zero_length_transfer(cdb)) {
4719 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4720 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4721 		return IO_ACCEL_INELIGIBLE;
4722 	}
4723 
4724 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4725 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4726 		return IO_ACCEL_INELIGIBLE;
4727 	}
4728 
4729 	c->cmd_type = CMD_IOACCEL1;
4730 
4731 	/* Adjust the DMA address to point to the accelerated command buffer */
4732 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4733 				(c->cmdindex * sizeof(*cp));
4734 	BUG_ON(c->busaddr & 0x0000007F);
4735 
4736 	use_sg = scsi_dma_map(cmd);
4737 	if (use_sg < 0) {
4738 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4739 		return use_sg;
4740 	}
4741 
4742 	if (use_sg) {
4743 		curr_sg = cp->SG;
4744 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4745 			addr64 = (u64) sg_dma_address(sg);
4746 			len  = sg_dma_len(sg);
4747 			total_len += len;
4748 			curr_sg->Addr = cpu_to_le64(addr64);
4749 			curr_sg->Len = cpu_to_le32(len);
4750 			curr_sg->Ext = cpu_to_le32(0);
4751 			curr_sg++;
4752 		}
4753 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4754 
4755 		switch (cmd->sc_data_direction) {
4756 		case DMA_TO_DEVICE:
4757 			control |= IOACCEL1_CONTROL_DATA_OUT;
4758 			break;
4759 		case DMA_FROM_DEVICE:
4760 			control |= IOACCEL1_CONTROL_DATA_IN;
4761 			break;
4762 		case DMA_NONE:
4763 			control |= IOACCEL1_CONTROL_NODATAXFER;
4764 			break;
4765 		default:
4766 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4767 			cmd->sc_data_direction);
4768 			BUG();
4769 			break;
4770 		}
4771 	} else {
4772 		control |= IOACCEL1_CONTROL_NODATAXFER;
4773 	}
4774 
4775 	c->Header.SGList = use_sg;
4776 	/* Fill out the command structure to submit */
4777 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4778 	cp->transfer_len = cpu_to_le32(total_len);
4779 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4780 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4781 	cp->control = cpu_to_le32(control);
4782 	memcpy(cp->CDB, cdb, cdb_len);
4783 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4784 	/* Tag was already set at init time. */
4785 	enqueue_cmd_and_start_io(h, c);
4786 	return 0;
4787 }
4788 
4789 /*
4790  * Queue a command directly to a device behind the controller using the
4791  * I/O accelerator path.
4792  */
4793 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4794 	struct CommandList *c)
4795 {
4796 	struct scsi_cmnd *cmd = c->scsi_cmd;
4797 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4798 
4799 	if (!dev)
4800 		return -1;
4801 
4802 	c->phys_disk = dev;
4803 
4804 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4805 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4806 }
4807 
4808 /*
4809  * Set encryption parameters for the ioaccel2 request
4810  */
4811 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4812 	struct CommandList *c, struct io_accel2_cmd *cp)
4813 {
4814 	struct scsi_cmnd *cmd = c->scsi_cmd;
4815 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4816 	struct raid_map_data *map = &dev->raid_map;
4817 	u64 first_block;
4818 
4819 	/* Are we doing encryption on this device */
4820 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4821 		return;
4822 	/* Set the data encryption key index. */
4823 	cp->dekindex = map->dekindex;
4824 
4825 	/* Set the encryption enable flag, encoded into direction field. */
4826 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4827 
4828 	/* Set encryption tweak values based on logical block address
4829 	 * If block size is 512, tweak value is LBA.
4830 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4831 	 */
4832 	switch (cmd->cmnd[0]) {
4833 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4834 	case READ_6:
4835 	case WRITE_6:
4836 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4837 				(cmd->cmnd[2] << 8) |
4838 				cmd->cmnd[3]);
4839 		break;
4840 	case WRITE_10:
4841 	case READ_10:
4842 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4843 	case WRITE_12:
4844 	case READ_12:
4845 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4846 		break;
4847 	case WRITE_16:
4848 	case READ_16:
4849 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4850 		break;
4851 	default:
4852 		dev_err(&h->pdev->dev,
4853 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4854 			__func__, cmd->cmnd[0]);
4855 		BUG();
4856 		break;
4857 	}
4858 
4859 	if (le32_to_cpu(map->volume_blk_size) != 512)
4860 		first_block = first_block *
4861 				le32_to_cpu(map->volume_blk_size)/512;
4862 
4863 	cp->tweak_lower = cpu_to_le32(first_block);
4864 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4865 }
4866 
4867 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4868 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4869 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4870 {
4871 	struct scsi_cmnd *cmd = c->scsi_cmd;
4872 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4873 	struct ioaccel2_sg_element *curr_sg;
4874 	int use_sg, i;
4875 	struct scatterlist *sg;
4876 	u64 addr64;
4877 	u32 len;
4878 	u32 total_len = 0;
4879 
4880 	if (!cmd->device)
4881 		return -1;
4882 
4883 	if (!cmd->device->hostdata)
4884 		return -1;
4885 
4886 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4887 
4888 	if (is_zero_length_transfer(cdb)) {
4889 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4890 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4891 		return IO_ACCEL_INELIGIBLE;
4892 	}
4893 
4894 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4895 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4896 		return IO_ACCEL_INELIGIBLE;
4897 	}
4898 
4899 	c->cmd_type = CMD_IOACCEL2;
4900 	/* Adjust the DMA address to point to the accelerated command buffer */
4901 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4902 				(c->cmdindex * sizeof(*cp));
4903 	BUG_ON(c->busaddr & 0x0000007F);
4904 
4905 	memset(cp, 0, sizeof(*cp));
4906 	cp->IU_type = IOACCEL2_IU_TYPE;
4907 
4908 	use_sg = scsi_dma_map(cmd);
4909 	if (use_sg < 0) {
4910 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4911 		return use_sg;
4912 	}
4913 
4914 	if (use_sg) {
4915 		curr_sg = cp->sg;
4916 		if (use_sg > h->ioaccel_maxsg) {
4917 			addr64 = le64_to_cpu(
4918 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4919 			curr_sg->address = cpu_to_le64(addr64);
4920 			curr_sg->length = 0;
4921 			curr_sg->reserved[0] = 0;
4922 			curr_sg->reserved[1] = 0;
4923 			curr_sg->reserved[2] = 0;
4924 			curr_sg->chain_indicator = 0x80;
4925 
4926 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4927 		}
4928 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4929 			addr64 = (u64) sg_dma_address(sg);
4930 			len  = sg_dma_len(sg);
4931 			total_len += len;
4932 			curr_sg->address = cpu_to_le64(addr64);
4933 			curr_sg->length = cpu_to_le32(len);
4934 			curr_sg->reserved[0] = 0;
4935 			curr_sg->reserved[1] = 0;
4936 			curr_sg->reserved[2] = 0;
4937 			curr_sg->chain_indicator = 0;
4938 			curr_sg++;
4939 		}
4940 
4941 		switch (cmd->sc_data_direction) {
4942 		case DMA_TO_DEVICE:
4943 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4944 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4945 			break;
4946 		case DMA_FROM_DEVICE:
4947 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4949 			break;
4950 		case DMA_NONE:
4951 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4953 			break;
4954 		default:
4955 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4956 				cmd->sc_data_direction);
4957 			BUG();
4958 			break;
4959 		}
4960 	} else {
4961 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4963 	}
4964 
4965 	/* Set encryption parameters, if necessary */
4966 	set_encrypt_ioaccel2(h, c, cp);
4967 
4968 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4969 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4970 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4971 
4972 	cp->data_len = cpu_to_le32(total_len);
4973 	cp->err_ptr = cpu_to_le64(c->busaddr +
4974 			offsetof(struct io_accel2_cmd, error_data));
4975 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4976 
4977 	/* fill in sg elements */
4978 	if (use_sg > h->ioaccel_maxsg) {
4979 		cp->sg_count = 1;
4980 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4981 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4982 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4983 			scsi_dma_unmap(cmd);
4984 			return -1;
4985 		}
4986 	} else
4987 		cp->sg_count = (u8) use_sg;
4988 
4989 	enqueue_cmd_and_start_io(h, c);
4990 	return 0;
4991 }
4992 
4993 /*
4994  * Queue a command to the correct I/O accelerator path.
4995  */
4996 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4997 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4998 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4999 {
5000 	if (!c->scsi_cmd->device)
5001 		return -1;
5002 
5003 	if (!c->scsi_cmd->device->hostdata)
5004 		return -1;
5005 
5006 	/* Try to honor the device's queue depth */
5007 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5008 					phys_disk->queue_depth) {
5009 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5010 		return IO_ACCEL_INELIGIBLE;
5011 	}
5012 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5013 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5014 						cdb, cdb_len, scsi3addr,
5015 						phys_disk);
5016 	else
5017 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5018 						cdb, cdb_len, scsi3addr,
5019 						phys_disk);
5020 }
5021 
5022 static void raid_map_helper(struct raid_map_data *map,
5023 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5024 {
5025 	if (offload_to_mirror == 0)  {
5026 		/* use physical disk in the first mirrored group. */
5027 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5028 		return;
5029 	}
5030 	do {
5031 		/* determine mirror group that *map_index indicates */
5032 		*current_group = *map_index /
5033 			le16_to_cpu(map->data_disks_per_row);
5034 		if (offload_to_mirror == *current_group)
5035 			continue;
5036 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5037 			/* select map index from next group */
5038 			*map_index += le16_to_cpu(map->data_disks_per_row);
5039 			(*current_group)++;
5040 		} else {
5041 			/* select map index from first group */
5042 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5043 			*current_group = 0;
5044 		}
5045 	} while (offload_to_mirror != *current_group);
5046 }
5047 
5048 /*
5049  * Attempt to perform offload RAID mapping for a logical volume I/O.
5050  */
5051 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5052 	struct CommandList *c)
5053 {
5054 	struct scsi_cmnd *cmd = c->scsi_cmd;
5055 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5056 	struct raid_map_data *map = &dev->raid_map;
5057 	struct raid_map_disk_data *dd = &map->data[0];
5058 	int is_write = 0;
5059 	u32 map_index;
5060 	u64 first_block, last_block;
5061 	u32 block_cnt;
5062 	u32 blocks_per_row;
5063 	u64 first_row, last_row;
5064 	u32 first_row_offset, last_row_offset;
5065 	u32 first_column, last_column;
5066 	u64 r0_first_row, r0_last_row;
5067 	u32 r5or6_blocks_per_row;
5068 	u64 r5or6_first_row, r5or6_last_row;
5069 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5070 	u32 r5or6_first_column, r5or6_last_column;
5071 	u32 total_disks_per_row;
5072 	u32 stripesize;
5073 	u32 first_group, last_group, current_group;
5074 	u32 map_row;
5075 	u32 disk_handle;
5076 	u64 disk_block;
5077 	u32 disk_block_cnt;
5078 	u8 cdb[16];
5079 	u8 cdb_len;
5080 	u16 strip_size;
5081 #if BITS_PER_LONG == 32
5082 	u64 tmpdiv;
5083 #endif
5084 	int offload_to_mirror;
5085 
5086 	if (!dev)
5087 		return -1;
5088 
5089 	/* check for valid opcode, get LBA and block count */
5090 	switch (cmd->cmnd[0]) {
5091 	case WRITE_6:
5092 		is_write = 1;
5093 	case READ_6:
5094 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5095 				(cmd->cmnd[2] << 8) |
5096 				cmd->cmnd[3]);
5097 		block_cnt = cmd->cmnd[4];
5098 		if (block_cnt == 0)
5099 			block_cnt = 256;
5100 		break;
5101 	case WRITE_10:
5102 		is_write = 1;
5103 	case READ_10:
5104 		first_block =
5105 			(((u64) cmd->cmnd[2]) << 24) |
5106 			(((u64) cmd->cmnd[3]) << 16) |
5107 			(((u64) cmd->cmnd[4]) << 8) |
5108 			cmd->cmnd[5];
5109 		block_cnt =
5110 			(((u32) cmd->cmnd[7]) << 8) |
5111 			cmd->cmnd[8];
5112 		break;
5113 	case WRITE_12:
5114 		is_write = 1;
5115 	case READ_12:
5116 		first_block =
5117 			(((u64) cmd->cmnd[2]) << 24) |
5118 			(((u64) cmd->cmnd[3]) << 16) |
5119 			(((u64) cmd->cmnd[4]) << 8) |
5120 			cmd->cmnd[5];
5121 		block_cnt =
5122 			(((u32) cmd->cmnd[6]) << 24) |
5123 			(((u32) cmd->cmnd[7]) << 16) |
5124 			(((u32) cmd->cmnd[8]) << 8) |
5125 		cmd->cmnd[9];
5126 		break;
5127 	case WRITE_16:
5128 		is_write = 1;
5129 	case READ_16:
5130 		first_block =
5131 			(((u64) cmd->cmnd[2]) << 56) |
5132 			(((u64) cmd->cmnd[3]) << 48) |
5133 			(((u64) cmd->cmnd[4]) << 40) |
5134 			(((u64) cmd->cmnd[5]) << 32) |
5135 			(((u64) cmd->cmnd[6]) << 24) |
5136 			(((u64) cmd->cmnd[7]) << 16) |
5137 			(((u64) cmd->cmnd[8]) << 8) |
5138 			cmd->cmnd[9];
5139 		block_cnt =
5140 			(((u32) cmd->cmnd[10]) << 24) |
5141 			(((u32) cmd->cmnd[11]) << 16) |
5142 			(((u32) cmd->cmnd[12]) << 8) |
5143 			cmd->cmnd[13];
5144 		break;
5145 	default:
5146 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5147 	}
5148 	last_block = first_block + block_cnt - 1;
5149 
5150 	/* check for write to non-RAID-0 */
5151 	if (is_write && dev->raid_level != 0)
5152 		return IO_ACCEL_INELIGIBLE;
5153 
5154 	/* check for invalid block or wraparound */
5155 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5156 		last_block < first_block)
5157 		return IO_ACCEL_INELIGIBLE;
5158 
5159 	/* calculate stripe information for the request */
5160 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5161 				le16_to_cpu(map->strip_size);
5162 	strip_size = le16_to_cpu(map->strip_size);
5163 #if BITS_PER_LONG == 32
5164 	tmpdiv = first_block;
5165 	(void) do_div(tmpdiv, blocks_per_row);
5166 	first_row = tmpdiv;
5167 	tmpdiv = last_block;
5168 	(void) do_div(tmpdiv, blocks_per_row);
5169 	last_row = tmpdiv;
5170 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5171 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5172 	tmpdiv = first_row_offset;
5173 	(void) do_div(tmpdiv, strip_size);
5174 	first_column = tmpdiv;
5175 	tmpdiv = last_row_offset;
5176 	(void) do_div(tmpdiv, strip_size);
5177 	last_column = tmpdiv;
5178 #else
5179 	first_row = first_block / blocks_per_row;
5180 	last_row = last_block / blocks_per_row;
5181 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183 	first_column = first_row_offset / strip_size;
5184 	last_column = last_row_offset / strip_size;
5185 #endif
5186 
5187 	/* if this isn't a single row/column then give to the controller */
5188 	if ((first_row != last_row) || (first_column != last_column))
5189 		return IO_ACCEL_INELIGIBLE;
5190 
5191 	/* proceeding with driver mapping */
5192 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5193 				le16_to_cpu(map->metadata_disks_per_row);
5194 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5195 				le16_to_cpu(map->row_cnt);
5196 	map_index = (map_row * total_disks_per_row) + first_column;
5197 
5198 	switch (dev->raid_level) {
5199 	case HPSA_RAID_0:
5200 		break; /* nothing special to do */
5201 	case HPSA_RAID_1:
5202 		/* Handles load balance across RAID 1 members.
5203 		 * (2-drive R1 and R10 with even # of drives.)
5204 		 * Appropriate for SSDs, not optimal for HDDs
5205 		 */
5206 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5207 		if (dev->offload_to_mirror)
5208 			map_index += le16_to_cpu(map->data_disks_per_row);
5209 		dev->offload_to_mirror = !dev->offload_to_mirror;
5210 		break;
5211 	case HPSA_RAID_ADM:
5212 		/* Handles N-way mirrors  (R1-ADM)
5213 		 * and R10 with # of drives divisible by 3.)
5214 		 */
5215 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5216 
5217 		offload_to_mirror = dev->offload_to_mirror;
5218 		raid_map_helper(map, offload_to_mirror,
5219 				&map_index, &current_group);
5220 		/* set mirror group to use next time */
5221 		offload_to_mirror =
5222 			(offload_to_mirror >=
5223 			le16_to_cpu(map->layout_map_count) - 1)
5224 			? 0 : offload_to_mirror + 1;
5225 		dev->offload_to_mirror = offload_to_mirror;
5226 		/* Avoid direct use of dev->offload_to_mirror within this
5227 		 * function since multiple threads might simultaneously
5228 		 * increment it beyond the range of dev->layout_map_count -1.
5229 		 */
5230 		break;
5231 	case HPSA_RAID_5:
5232 	case HPSA_RAID_6:
5233 		if (le16_to_cpu(map->layout_map_count) <= 1)
5234 			break;
5235 
5236 		/* Verify first and last block are in same RAID group */
5237 		r5or6_blocks_per_row =
5238 			le16_to_cpu(map->strip_size) *
5239 			le16_to_cpu(map->data_disks_per_row);
5240 		BUG_ON(r5or6_blocks_per_row == 0);
5241 		stripesize = r5or6_blocks_per_row *
5242 			le16_to_cpu(map->layout_map_count);
5243 #if BITS_PER_LONG == 32
5244 		tmpdiv = first_block;
5245 		first_group = do_div(tmpdiv, stripesize);
5246 		tmpdiv = first_group;
5247 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5248 		first_group = tmpdiv;
5249 		tmpdiv = last_block;
5250 		last_group = do_div(tmpdiv, stripesize);
5251 		tmpdiv = last_group;
5252 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5253 		last_group = tmpdiv;
5254 #else
5255 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5256 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5257 #endif
5258 		if (first_group != last_group)
5259 			return IO_ACCEL_INELIGIBLE;
5260 
5261 		/* Verify request is in a single row of RAID 5/6 */
5262 #if BITS_PER_LONG == 32
5263 		tmpdiv = first_block;
5264 		(void) do_div(tmpdiv, stripesize);
5265 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5266 		tmpdiv = last_block;
5267 		(void) do_div(tmpdiv, stripesize);
5268 		r5or6_last_row = r0_last_row = tmpdiv;
5269 #else
5270 		first_row = r5or6_first_row = r0_first_row =
5271 						first_block / stripesize;
5272 		r5or6_last_row = r0_last_row = last_block / stripesize;
5273 #endif
5274 		if (r5or6_first_row != r5or6_last_row)
5275 			return IO_ACCEL_INELIGIBLE;
5276 
5277 
5278 		/* Verify request is in a single column */
5279 #if BITS_PER_LONG == 32
5280 		tmpdiv = first_block;
5281 		first_row_offset = do_div(tmpdiv, stripesize);
5282 		tmpdiv = first_row_offset;
5283 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5284 		r5or6_first_row_offset = first_row_offset;
5285 		tmpdiv = last_block;
5286 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5287 		tmpdiv = r5or6_last_row_offset;
5288 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5289 		tmpdiv = r5or6_first_row_offset;
5290 		(void) do_div(tmpdiv, map->strip_size);
5291 		first_column = r5or6_first_column = tmpdiv;
5292 		tmpdiv = r5or6_last_row_offset;
5293 		(void) do_div(tmpdiv, map->strip_size);
5294 		r5or6_last_column = tmpdiv;
5295 #else
5296 		first_row_offset = r5or6_first_row_offset =
5297 			(u32)((first_block % stripesize) %
5298 						r5or6_blocks_per_row);
5299 
5300 		r5or6_last_row_offset =
5301 			(u32)((last_block % stripesize) %
5302 						r5or6_blocks_per_row);
5303 
5304 		first_column = r5or6_first_column =
5305 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5306 		r5or6_last_column =
5307 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5308 #endif
5309 		if (r5or6_first_column != r5or6_last_column)
5310 			return IO_ACCEL_INELIGIBLE;
5311 
5312 		/* Request is eligible */
5313 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5314 			le16_to_cpu(map->row_cnt);
5315 
5316 		map_index = (first_group *
5317 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5318 			(map_row * total_disks_per_row) + first_column;
5319 		break;
5320 	default:
5321 		return IO_ACCEL_INELIGIBLE;
5322 	}
5323 
5324 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5325 		return IO_ACCEL_INELIGIBLE;
5326 
5327 	c->phys_disk = dev->phys_disk[map_index];
5328 	if (!c->phys_disk)
5329 		return IO_ACCEL_INELIGIBLE;
5330 
5331 	disk_handle = dd[map_index].ioaccel_handle;
5332 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5333 			first_row * le16_to_cpu(map->strip_size) +
5334 			(first_row_offset - first_column *
5335 			le16_to_cpu(map->strip_size));
5336 	disk_block_cnt = block_cnt;
5337 
5338 	/* handle differing logical/physical block sizes */
5339 	if (map->phys_blk_shift) {
5340 		disk_block <<= map->phys_blk_shift;
5341 		disk_block_cnt <<= map->phys_blk_shift;
5342 	}
5343 	BUG_ON(disk_block_cnt > 0xffff);
5344 
5345 	/* build the new CDB for the physical disk I/O */
5346 	if (disk_block > 0xffffffff) {
5347 		cdb[0] = is_write ? WRITE_16 : READ_16;
5348 		cdb[1] = 0;
5349 		cdb[2] = (u8) (disk_block >> 56);
5350 		cdb[3] = (u8) (disk_block >> 48);
5351 		cdb[4] = (u8) (disk_block >> 40);
5352 		cdb[5] = (u8) (disk_block >> 32);
5353 		cdb[6] = (u8) (disk_block >> 24);
5354 		cdb[7] = (u8) (disk_block >> 16);
5355 		cdb[8] = (u8) (disk_block >> 8);
5356 		cdb[9] = (u8) (disk_block);
5357 		cdb[10] = (u8) (disk_block_cnt >> 24);
5358 		cdb[11] = (u8) (disk_block_cnt >> 16);
5359 		cdb[12] = (u8) (disk_block_cnt >> 8);
5360 		cdb[13] = (u8) (disk_block_cnt);
5361 		cdb[14] = 0;
5362 		cdb[15] = 0;
5363 		cdb_len = 16;
5364 	} else {
5365 		cdb[0] = is_write ? WRITE_10 : READ_10;
5366 		cdb[1] = 0;
5367 		cdb[2] = (u8) (disk_block >> 24);
5368 		cdb[3] = (u8) (disk_block >> 16);
5369 		cdb[4] = (u8) (disk_block >> 8);
5370 		cdb[5] = (u8) (disk_block);
5371 		cdb[6] = 0;
5372 		cdb[7] = (u8) (disk_block_cnt >> 8);
5373 		cdb[8] = (u8) (disk_block_cnt);
5374 		cdb[9] = 0;
5375 		cdb_len = 10;
5376 	}
5377 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5378 						dev->scsi3addr,
5379 						dev->phys_disk[map_index]);
5380 }
5381 
5382 /*
5383  * Submit commands down the "normal" RAID stack path
5384  * All callers to hpsa_ciss_submit must check lockup_detected
5385  * beforehand, before (opt.) and after calling cmd_alloc
5386  */
5387 static int hpsa_ciss_submit(struct ctlr_info *h,
5388 	struct CommandList *c, struct scsi_cmnd *cmd,
5389 	unsigned char scsi3addr[])
5390 {
5391 	cmd->host_scribble = (unsigned char *) c;
5392 	c->cmd_type = CMD_SCSI;
5393 	c->scsi_cmd = cmd;
5394 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5395 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5396 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5397 
5398 	/* Fill in the request block... */
5399 
5400 	c->Request.Timeout = 0;
5401 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5402 	c->Request.CDBLen = cmd->cmd_len;
5403 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5404 	switch (cmd->sc_data_direction) {
5405 	case DMA_TO_DEVICE:
5406 		c->Request.type_attr_dir =
5407 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5408 		break;
5409 	case DMA_FROM_DEVICE:
5410 		c->Request.type_attr_dir =
5411 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5412 		break;
5413 	case DMA_NONE:
5414 		c->Request.type_attr_dir =
5415 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5416 		break;
5417 	case DMA_BIDIRECTIONAL:
5418 		/* This can happen if a buggy application does a scsi passthru
5419 		 * and sets both inlen and outlen to non-zero. ( see
5420 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5421 		 */
5422 
5423 		c->Request.type_attr_dir =
5424 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5425 		/* This is technically wrong, and hpsa controllers should
5426 		 * reject it with CMD_INVALID, which is the most correct
5427 		 * response, but non-fibre backends appear to let it
5428 		 * slide by, and give the same results as if this field
5429 		 * were set correctly.  Either way is acceptable for
5430 		 * our purposes here.
5431 		 */
5432 
5433 		break;
5434 
5435 	default:
5436 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5437 			cmd->sc_data_direction);
5438 		BUG();
5439 		break;
5440 	}
5441 
5442 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5443 		hpsa_cmd_resolve_and_free(h, c);
5444 		return SCSI_MLQUEUE_HOST_BUSY;
5445 	}
5446 	enqueue_cmd_and_start_io(h, c);
5447 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5448 	return 0;
5449 }
5450 
5451 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5452 				struct CommandList *c)
5453 {
5454 	dma_addr_t cmd_dma_handle, err_dma_handle;
5455 
5456 	/* Zero out all of commandlist except the last field, refcount */
5457 	memset(c, 0, offsetof(struct CommandList, refcount));
5458 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5459 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5460 	c->err_info = h->errinfo_pool + index;
5461 	memset(c->err_info, 0, sizeof(*c->err_info));
5462 	err_dma_handle = h->errinfo_pool_dhandle
5463 	    + index * sizeof(*c->err_info);
5464 	c->cmdindex = index;
5465 	c->busaddr = (u32) cmd_dma_handle;
5466 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5467 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5468 	c->h = h;
5469 	c->scsi_cmd = SCSI_CMD_IDLE;
5470 }
5471 
5472 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5473 {
5474 	int i;
5475 
5476 	for (i = 0; i < h->nr_cmds; i++) {
5477 		struct CommandList *c = h->cmd_pool + i;
5478 
5479 		hpsa_cmd_init(h, i, c);
5480 		atomic_set(&c->refcount, 0);
5481 	}
5482 }
5483 
5484 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5485 				struct CommandList *c)
5486 {
5487 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488 
5489 	BUG_ON(c->cmdindex != index);
5490 
5491 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5492 	memset(c->err_info, 0, sizeof(*c->err_info));
5493 	c->busaddr = (u32) cmd_dma_handle;
5494 }
5495 
5496 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5497 		struct CommandList *c, struct scsi_cmnd *cmd,
5498 		unsigned char *scsi3addr)
5499 {
5500 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5501 	int rc = IO_ACCEL_INELIGIBLE;
5502 
5503 	if (!dev)
5504 		return SCSI_MLQUEUE_HOST_BUSY;
5505 
5506 	cmd->host_scribble = (unsigned char *) c;
5507 
5508 	if (dev->offload_enabled) {
5509 		hpsa_cmd_init(h, c->cmdindex, c);
5510 		c->cmd_type = CMD_SCSI;
5511 		c->scsi_cmd = cmd;
5512 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5513 		if (rc < 0)     /* scsi_dma_map failed. */
5514 			rc = SCSI_MLQUEUE_HOST_BUSY;
5515 	} else if (dev->hba_ioaccel_enabled) {
5516 		hpsa_cmd_init(h, c->cmdindex, c);
5517 		c->cmd_type = CMD_SCSI;
5518 		c->scsi_cmd = cmd;
5519 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5520 		if (rc < 0)     /* scsi_dma_map failed. */
5521 			rc = SCSI_MLQUEUE_HOST_BUSY;
5522 	}
5523 	return rc;
5524 }
5525 
5526 static void hpsa_command_resubmit_worker(struct work_struct *work)
5527 {
5528 	struct scsi_cmnd *cmd;
5529 	struct hpsa_scsi_dev_t *dev;
5530 	struct CommandList *c = container_of(work, struct CommandList, work);
5531 
5532 	cmd = c->scsi_cmd;
5533 	dev = cmd->device->hostdata;
5534 	if (!dev) {
5535 		cmd->result = DID_NO_CONNECT << 16;
5536 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5537 	}
5538 	if (c->reset_pending)
5539 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5540 	if (c->cmd_type == CMD_IOACCEL2) {
5541 		struct ctlr_info *h = c->h;
5542 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5543 		int rc;
5544 
5545 		if (c2->error_data.serv_response ==
5546 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5547 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5548 			if (rc == 0)
5549 				return;
5550 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5551 				/*
5552 				 * If we get here, it means dma mapping failed.
5553 				 * Try again via scsi mid layer, which will
5554 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5555 				 */
5556 				cmd->result = DID_IMM_RETRY << 16;
5557 				return hpsa_cmd_free_and_done(h, c, cmd);
5558 			}
5559 			/* else, fall thru and resubmit down CISS path */
5560 		}
5561 	}
5562 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5563 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5564 		/*
5565 		 * If we get here, it means dma mapping failed. Try
5566 		 * again via scsi mid layer, which will then get
5567 		 * SCSI_MLQUEUE_HOST_BUSY.
5568 		 *
5569 		 * hpsa_ciss_submit will have already freed c
5570 		 * if it encountered a dma mapping failure.
5571 		 */
5572 		cmd->result = DID_IMM_RETRY << 16;
5573 		cmd->scsi_done(cmd);
5574 	}
5575 }
5576 
5577 /* Running in struct Scsi_Host->host_lock less mode */
5578 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5579 {
5580 	struct ctlr_info *h;
5581 	struct hpsa_scsi_dev_t *dev;
5582 	unsigned char scsi3addr[8];
5583 	struct CommandList *c;
5584 	int rc = 0;
5585 
5586 	/* Get the ptr to our adapter structure out of cmd->host. */
5587 	h = sdev_to_hba(cmd->device);
5588 
5589 	BUG_ON(cmd->request->tag < 0);
5590 
5591 	dev = cmd->device->hostdata;
5592 	if (!dev) {
5593 		cmd->result = DID_NO_CONNECT << 16;
5594 		cmd->scsi_done(cmd);
5595 		return 0;
5596 	}
5597 
5598 	if (dev->removed) {
5599 		cmd->result = DID_NO_CONNECT << 16;
5600 		cmd->scsi_done(cmd);
5601 		return 0;
5602 	}
5603 
5604 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5605 
5606 	if (unlikely(lockup_detected(h))) {
5607 		cmd->result = DID_NO_CONNECT << 16;
5608 		cmd->scsi_done(cmd);
5609 		return 0;
5610 	}
5611 	c = cmd_tagged_alloc(h, cmd);
5612 
5613 	/*
5614 	 * Call alternate submit routine for I/O accelerated commands.
5615 	 * Retries always go down the normal I/O path.
5616 	 */
5617 	if (likely(cmd->retries == 0 &&
5618 			!blk_rq_is_passthrough(cmd->request) &&
5619 			h->acciopath_status)) {
5620 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5621 		if (rc == 0)
5622 			return 0;
5623 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5624 			hpsa_cmd_resolve_and_free(h, c);
5625 			return SCSI_MLQUEUE_HOST_BUSY;
5626 		}
5627 	}
5628 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5629 }
5630 
5631 static void hpsa_scan_complete(struct ctlr_info *h)
5632 {
5633 	unsigned long flags;
5634 
5635 	spin_lock_irqsave(&h->scan_lock, flags);
5636 	h->scan_finished = 1;
5637 	wake_up(&h->scan_wait_queue);
5638 	spin_unlock_irqrestore(&h->scan_lock, flags);
5639 }
5640 
5641 static void hpsa_scan_start(struct Scsi_Host *sh)
5642 {
5643 	struct ctlr_info *h = shost_to_hba(sh);
5644 	unsigned long flags;
5645 
5646 	/*
5647 	 * Don't let rescans be initiated on a controller known to be locked
5648 	 * up.  If the controller locks up *during* a rescan, that thread is
5649 	 * probably hosed, but at least we can prevent new rescan threads from
5650 	 * piling up on a locked up controller.
5651 	 */
5652 	if (unlikely(lockup_detected(h)))
5653 		return hpsa_scan_complete(h);
5654 
5655 	/*
5656 	 * If a scan is already waiting to run, no need to add another
5657 	 */
5658 	spin_lock_irqsave(&h->scan_lock, flags);
5659 	if (h->scan_waiting) {
5660 		spin_unlock_irqrestore(&h->scan_lock, flags);
5661 		return;
5662 	}
5663 
5664 	spin_unlock_irqrestore(&h->scan_lock, flags);
5665 
5666 	/* wait until any scan already in progress is finished. */
5667 	while (1) {
5668 		spin_lock_irqsave(&h->scan_lock, flags);
5669 		if (h->scan_finished)
5670 			break;
5671 		h->scan_waiting = 1;
5672 		spin_unlock_irqrestore(&h->scan_lock, flags);
5673 		wait_event(h->scan_wait_queue, h->scan_finished);
5674 		/* Note: We don't need to worry about a race between this
5675 		 * thread and driver unload because the midlayer will
5676 		 * have incremented the reference count, so unload won't
5677 		 * happen if we're in here.
5678 		 */
5679 	}
5680 	h->scan_finished = 0; /* mark scan as in progress */
5681 	h->scan_waiting = 0;
5682 	spin_unlock_irqrestore(&h->scan_lock, flags);
5683 
5684 	if (unlikely(lockup_detected(h)))
5685 		return hpsa_scan_complete(h);
5686 
5687 	/*
5688 	 * Do the scan after a reset completion
5689 	 */
5690 	spin_lock_irqsave(&h->reset_lock, flags);
5691 	if (h->reset_in_progress) {
5692 		h->drv_req_rescan = 1;
5693 		spin_unlock_irqrestore(&h->reset_lock, flags);
5694 		hpsa_scan_complete(h);
5695 		return;
5696 	}
5697 	spin_unlock_irqrestore(&h->reset_lock, flags);
5698 
5699 	hpsa_update_scsi_devices(h);
5700 
5701 	hpsa_scan_complete(h);
5702 }
5703 
5704 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5705 {
5706 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5707 
5708 	if (!logical_drive)
5709 		return -ENODEV;
5710 
5711 	if (qdepth < 1)
5712 		qdepth = 1;
5713 	else if (qdepth > logical_drive->queue_depth)
5714 		qdepth = logical_drive->queue_depth;
5715 
5716 	return scsi_change_queue_depth(sdev, qdepth);
5717 }
5718 
5719 static int hpsa_scan_finished(struct Scsi_Host *sh,
5720 	unsigned long elapsed_time)
5721 {
5722 	struct ctlr_info *h = shost_to_hba(sh);
5723 	unsigned long flags;
5724 	int finished;
5725 
5726 	spin_lock_irqsave(&h->scan_lock, flags);
5727 	finished = h->scan_finished;
5728 	spin_unlock_irqrestore(&h->scan_lock, flags);
5729 	return finished;
5730 }
5731 
5732 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5733 {
5734 	struct Scsi_Host *sh;
5735 
5736 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5737 	if (sh == NULL) {
5738 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5739 		return -ENOMEM;
5740 	}
5741 
5742 	sh->io_port = 0;
5743 	sh->n_io_port = 0;
5744 	sh->this_id = -1;
5745 	sh->max_channel = 3;
5746 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5747 	sh->max_lun = HPSA_MAX_LUN;
5748 	sh->max_id = HPSA_MAX_LUN;
5749 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5750 	sh->cmd_per_lun = sh->can_queue;
5751 	sh->sg_tablesize = h->maxsgentries;
5752 	sh->transportt = hpsa_sas_transport_template;
5753 	sh->hostdata[0] = (unsigned long) h;
5754 	sh->irq = pci_irq_vector(h->pdev, 0);
5755 	sh->unique_id = sh->irq;
5756 
5757 	h->scsi_host = sh;
5758 	return 0;
5759 }
5760 
5761 static int hpsa_scsi_add_host(struct ctlr_info *h)
5762 {
5763 	int rv;
5764 
5765 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5766 	if (rv) {
5767 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5768 		return rv;
5769 	}
5770 	scsi_scan_host(h->scsi_host);
5771 	return 0;
5772 }
5773 
5774 /*
5775  * The block layer has already gone to the trouble of picking out a unique,
5776  * small-integer tag for this request.  We use an offset from that value as
5777  * an index to select our command block.  (The offset allows us to reserve the
5778  * low-numbered entries for our own uses.)
5779  */
5780 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5781 {
5782 	int idx = scmd->request->tag;
5783 
5784 	if (idx < 0)
5785 		return idx;
5786 
5787 	/* Offset to leave space for internal cmds. */
5788 	return idx += HPSA_NRESERVED_CMDS;
5789 }
5790 
5791 /*
5792  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5794  */
5795 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5796 				struct CommandList *c, unsigned char lunaddr[],
5797 				int reply_queue)
5798 {
5799 	int rc;
5800 
5801 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5803 			NULL, 0, 0, lunaddr, TYPE_CMD);
5804 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5805 	if (rc)
5806 		return rc;
5807 	/* no unmap needed here because no data xfer. */
5808 
5809 	/* Check if the unit is already ready. */
5810 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5811 		return 0;
5812 
5813 	/*
5814 	 * The first command sent after reset will receive "unit attention" to
5815 	 * indicate that the LUN has been reset...this is actually what we're
5816 	 * looking for (but, success is good too).
5817 	 */
5818 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5819 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5820 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5821 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5822 		return 0;
5823 
5824 	return 1;
5825 }
5826 
5827 /*
5828  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829  * returns zero when the unit is ready, and non-zero when giving up.
5830  */
5831 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5832 				struct CommandList *c,
5833 				unsigned char lunaddr[], int reply_queue)
5834 {
5835 	int rc;
5836 	int count = 0;
5837 	int waittime = 1; /* seconds */
5838 
5839 	/* Send test unit ready until device ready, or give up. */
5840 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5841 
5842 		/*
5843 		 * Wait for a bit.  do this first, because if we send
5844 		 * the TUR right away, the reset will just abort it.
5845 		 */
5846 		msleep(1000 * waittime);
5847 
5848 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5849 		if (!rc)
5850 			break;
5851 
5852 		/* Increase wait time with each try, up to a point. */
5853 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5854 			waittime *= 2;
5855 
5856 		dev_warn(&h->pdev->dev,
5857 			 "waiting %d secs for device to become ready.\n",
5858 			 waittime);
5859 	}
5860 
5861 	return rc;
5862 }
5863 
5864 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5865 					   unsigned char lunaddr[],
5866 					   int reply_queue)
5867 {
5868 	int first_queue;
5869 	int last_queue;
5870 	int rq;
5871 	int rc = 0;
5872 	struct CommandList *c;
5873 
5874 	c = cmd_alloc(h);
5875 
5876 	/*
5877 	 * If no specific reply queue was requested, then send the TUR
5878 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5879 	 * the loop exactly once using only the specified queue.
5880 	 */
5881 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5882 		first_queue = 0;
5883 		last_queue = h->nreply_queues - 1;
5884 	} else {
5885 		first_queue = reply_queue;
5886 		last_queue = reply_queue;
5887 	}
5888 
5889 	for (rq = first_queue; rq <= last_queue; rq++) {
5890 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5891 		if (rc)
5892 			break;
5893 	}
5894 
5895 	if (rc)
5896 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5897 	else
5898 		dev_warn(&h->pdev->dev, "device is ready.\n");
5899 
5900 	cmd_free(h, c);
5901 	return rc;
5902 }
5903 
5904 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905  * complaining.  Doing a host- or bus-reset can't do anything good here.
5906  */
5907 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5908 {
5909 	int rc = SUCCESS;
5910 	struct ctlr_info *h;
5911 	struct hpsa_scsi_dev_t *dev;
5912 	u8 reset_type;
5913 	char msg[48];
5914 	unsigned long flags;
5915 
5916 	/* find the controller to which the command to be aborted was sent */
5917 	h = sdev_to_hba(scsicmd->device);
5918 	if (h == NULL) /* paranoia */
5919 		return FAILED;
5920 
5921 	spin_lock_irqsave(&h->reset_lock, flags);
5922 	h->reset_in_progress = 1;
5923 	spin_unlock_irqrestore(&h->reset_lock, flags);
5924 
5925 	if (lockup_detected(h)) {
5926 		rc = FAILED;
5927 		goto return_reset_status;
5928 	}
5929 
5930 	dev = scsicmd->device->hostdata;
5931 	if (!dev) {
5932 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5933 		rc = FAILED;
5934 		goto return_reset_status;
5935 	}
5936 
5937 	if (dev->devtype == TYPE_ENCLOSURE) {
5938 		rc = SUCCESS;
5939 		goto return_reset_status;
5940 	}
5941 
5942 	/* if controller locked up, we can guarantee command won't complete */
5943 	if (lockup_detected(h)) {
5944 		snprintf(msg, sizeof(msg),
5945 			 "cmd %d RESET FAILED, lockup detected",
5946 			 hpsa_get_cmd_index(scsicmd));
5947 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5948 		rc = FAILED;
5949 		goto return_reset_status;
5950 	}
5951 
5952 	/* this reset request might be the result of a lockup; check */
5953 	if (detect_controller_lockup(h)) {
5954 		snprintf(msg, sizeof(msg),
5955 			 "cmd %d RESET FAILED, new lockup detected",
5956 			 hpsa_get_cmd_index(scsicmd));
5957 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5958 		rc = FAILED;
5959 		goto return_reset_status;
5960 	}
5961 
5962 	/* Do not attempt on controller */
5963 	if (is_hba_lunid(dev->scsi3addr)) {
5964 		rc = SUCCESS;
5965 		goto return_reset_status;
5966 	}
5967 
5968 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5969 		reset_type = HPSA_DEVICE_RESET_MSG;
5970 	else
5971 		reset_type = HPSA_PHYS_TARGET_RESET;
5972 
5973 	sprintf(msg, "resetting %s",
5974 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5975 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976 
5977 	/* send a reset to the SCSI LUN which the command was sent to */
5978 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5979 			   DEFAULT_REPLY_QUEUE);
5980 	if (rc == 0)
5981 		rc = SUCCESS;
5982 	else
5983 		rc = FAILED;
5984 
5985 	sprintf(msg, "reset %s %s",
5986 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5987 		rc == SUCCESS ? "completed successfully" : "failed");
5988 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5989 
5990 return_reset_status:
5991 	spin_lock_irqsave(&h->reset_lock, flags);
5992 	h->reset_in_progress = 0;
5993 	spin_unlock_irqrestore(&h->reset_lock, flags);
5994 	return rc;
5995 }
5996 
5997 /*
5998  * For operations with an associated SCSI command, a command block is allocated
5999  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6001  * the complement, although cmd_free() may be called instead.
6002  */
6003 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6004 					    struct scsi_cmnd *scmd)
6005 {
6006 	int idx = hpsa_get_cmd_index(scmd);
6007 	struct CommandList *c = h->cmd_pool + idx;
6008 
6009 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6010 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6011 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6012 		/* The index value comes from the block layer, so if it's out of
6013 		 * bounds, it's probably not our bug.
6014 		 */
6015 		BUG();
6016 	}
6017 
6018 	atomic_inc(&c->refcount);
6019 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6020 		/*
6021 		 * We expect that the SCSI layer will hand us a unique tag
6022 		 * value.  Thus, there should never be a collision here between
6023 		 * two requests...because if the selected command isn't idle
6024 		 * then someone is going to be very disappointed.
6025 		 */
6026 		dev_err(&h->pdev->dev,
6027 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6028 			idx);
6029 		if (c->scsi_cmd != NULL)
6030 			scsi_print_command(c->scsi_cmd);
6031 		scsi_print_command(scmd);
6032 	}
6033 
6034 	hpsa_cmd_partial_init(h, idx, c);
6035 	return c;
6036 }
6037 
6038 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6039 {
6040 	/*
6041 	 * Release our reference to the block.  We don't need to do anything
6042 	 * else to free it, because it is accessed by index.
6043 	 */
6044 	(void)atomic_dec(&c->refcount);
6045 }
6046 
6047 /*
6048  * For operations that cannot sleep, a command block is allocated at init,
6049  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050  * which ones are free or in use.  Lock must be held when calling this.
6051  * cmd_free() is the complement.
6052  * This function never gives up and returns NULL.  If it hangs,
6053  * another thread must call cmd_free() to free some tags.
6054  */
6055 
6056 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6057 {
6058 	struct CommandList *c;
6059 	int refcount, i;
6060 	int offset = 0;
6061 
6062 	/*
6063 	 * There is some *extremely* small but non-zero chance that that
6064 	 * multiple threads could get in here, and one thread could
6065 	 * be scanning through the list of bits looking for a free
6066 	 * one, but the free ones are always behind him, and other
6067 	 * threads sneak in behind him and eat them before he can
6068 	 * get to them, so that while there is always a free one, a
6069 	 * very unlucky thread might be starved anyway, never able to
6070 	 * beat the other threads.  In reality, this happens so
6071 	 * infrequently as to be indistinguishable from never.
6072 	 *
6073 	 * Note that we start allocating commands before the SCSI host structure
6074 	 * is initialized.  Since the search starts at bit zero, this
6075 	 * all works, since we have at least one command structure available;
6076 	 * however, it means that the structures with the low indexes have to be
6077 	 * reserved for driver-initiated requests, while requests from the block
6078 	 * layer will use the higher indexes.
6079 	 */
6080 
6081 	for (;;) {
6082 		i = find_next_zero_bit(h->cmd_pool_bits,
6083 					HPSA_NRESERVED_CMDS,
6084 					offset);
6085 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6086 			offset = 0;
6087 			continue;
6088 		}
6089 		c = h->cmd_pool + i;
6090 		refcount = atomic_inc_return(&c->refcount);
6091 		if (unlikely(refcount > 1)) {
6092 			cmd_free(h, c); /* already in use */
6093 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6094 			continue;
6095 		}
6096 		set_bit(i & (BITS_PER_LONG - 1),
6097 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6098 		break; /* it's ours now. */
6099 	}
6100 	hpsa_cmd_partial_init(h, i, c);
6101 	return c;
6102 }
6103 
6104 /*
6105  * This is the complementary operation to cmd_alloc().  Note, however, in some
6106  * corner cases it may also be used to free blocks allocated by
6107  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108  * the clear-bit is harmless.
6109  */
6110 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6111 {
6112 	if (atomic_dec_and_test(&c->refcount)) {
6113 		int i;
6114 
6115 		i = c - h->cmd_pool;
6116 		clear_bit(i & (BITS_PER_LONG - 1),
6117 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6118 	}
6119 }
6120 
6121 #ifdef CONFIG_COMPAT
6122 
6123 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6124 	void __user *arg)
6125 {
6126 	IOCTL32_Command_struct __user *arg32 =
6127 	    (IOCTL32_Command_struct __user *) arg;
6128 	IOCTL_Command_struct arg64;
6129 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6130 	int err;
6131 	u32 cp;
6132 
6133 	memset(&arg64, 0, sizeof(arg64));
6134 	err = 0;
6135 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6136 			   sizeof(arg64.LUN_info));
6137 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6138 			   sizeof(arg64.Request));
6139 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6140 			   sizeof(arg64.error_info));
6141 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6142 	err |= get_user(cp, &arg32->buf);
6143 	arg64.buf = compat_ptr(cp);
6144 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6145 
6146 	if (err)
6147 		return -EFAULT;
6148 
6149 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6150 	if (err)
6151 		return err;
6152 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6153 			 sizeof(arg32->error_info));
6154 	if (err)
6155 		return -EFAULT;
6156 	return err;
6157 }
6158 
6159 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6160 	int cmd, void __user *arg)
6161 {
6162 	BIG_IOCTL32_Command_struct __user *arg32 =
6163 	    (BIG_IOCTL32_Command_struct __user *) arg;
6164 	BIG_IOCTL_Command_struct arg64;
6165 	BIG_IOCTL_Command_struct __user *p =
6166 	    compat_alloc_user_space(sizeof(arg64));
6167 	int err;
6168 	u32 cp;
6169 
6170 	memset(&arg64, 0, sizeof(arg64));
6171 	err = 0;
6172 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6173 			   sizeof(arg64.LUN_info));
6174 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6175 			   sizeof(arg64.Request));
6176 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6177 			   sizeof(arg64.error_info));
6178 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6179 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6180 	err |= get_user(cp, &arg32->buf);
6181 	arg64.buf = compat_ptr(cp);
6182 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6183 
6184 	if (err)
6185 		return -EFAULT;
6186 
6187 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6188 	if (err)
6189 		return err;
6190 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6191 			 sizeof(arg32->error_info));
6192 	if (err)
6193 		return -EFAULT;
6194 	return err;
6195 }
6196 
6197 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6198 {
6199 	switch (cmd) {
6200 	case CCISS_GETPCIINFO:
6201 	case CCISS_GETINTINFO:
6202 	case CCISS_SETINTINFO:
6203 	case CCISS_GETNODENAME:
6204 	case CCISS_SETNODENAME:
6205 	case CCISS_GETHEARTBEAT:
6206 	case CCISS_GETBUSTYPES:
6207 	case CCISS_GETFIRMVER:
6208 	case CCISS_GETDRIVVER:
6209 	case CCISS_REVALIDVOLS:
6210 	case CCISS_DEREGDISK:
6211 	case CCISS_REGNEWDISK:
6212 	case CCISS_REGNEWD:
6213 	case CCISS_RESCANDISK:
6214 	case CCISS_GETLUNINFO:
6215 		return hpsa_ioctl(dev, cmd, arg);
6216 
6217 	case CCISS_PASSTHRU32:
6218 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6219 	case CCISS_BIG_PASSTHRU32:
6220 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6221 
6222 	default:
6223 		return -ENOIOCTLCMD;
6224 	}
6225 }
6226 #endif
6227 
6228 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6229 {
6230 	struct hpsa_pci_info pciinfo;
6231 
6232 	if (!argp)
6233 		return -EINVAL;
6234 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6235 	pciinfo.bus = h->pdev->bus->number;
6236 	pciinfo.dev_fn = h->pdev->devfn;
6237 	pciinfo.board_id = h->board_id;
6238 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6239 		return -EFAULT;
6240 	return 0;
6241 }
6242 
6243 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6244 {
6245 	DriverVer_type DriverVer;
6246 	unsigned char vmaj, vmin, vsubmin;
6247 	int rc;
6248 
6249 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6250 		&vmaj, &vmin, &vsubmin);
6251 	if (rc != 3) {
6252 		dev_info(&h->pdev->dev, "driver version string '%s' "
6253 			"unrecognized.", HPSA_DRIVER_VERSION);
6254 		vmaj = 0;
6255 		vmin = 0;
6256 		vsubmin = 0;
6257 	}
6258 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6259 	if (!argp)
6260 		return -EINVAL;
6261 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6262 		return -EFAULT;
6263 	return 0;
6264 }
6265 
6266 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6267 {
6268 	IOCTL_Command_struct iocommand;
6269 	struct CommandList *c;
6270 	char *buff = NULL;
6271 	u64 temp64;
6272 	int rc = 0;
6273 
6274 	if (!argp)
6275 		return -EINVAL;
6276 	if (!capable(CAP_SYS_RAWIO))
6277 		return -EPERM;
6278 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6279 		return -EFAULT;
6280 	if ((iocommand.buf_size < 1) &&
6281 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6282 		return -EINVAL;
6283 	}
6284 	if (iocommand.buf_size > 0) {
6285 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6286 		if (buff == NULL)
6287 			return -ENOMEM;
6288 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6289 			/* Copy the data into the buffer we created */
6290 			if (copy_from_user(buff, iocommand.buf,
6291 				iocommand.buf_size)) {
6292 				rc = -EFAULT;
6293 				goto out_kfree;
6294 			}
6295 		} else {
6296 			memset(buff, 0, iocommand.buf_size);
6297 		}
6298 	}
6299 	c = cmd_alloc(h);
6300 
6301 	/* Fill in the command type */
6302 	c->cmd_type = CMD_IOCTL_PEND;
6303 	c->scsi_cmd = SCSI_CMD_BUSY;
6304 	/* Fill in Command Header */
6305 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6306 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6307 		c->Header.SGList = 1;
6308 		c->Header.SGTotal = cpu_to_le16(1);
6309 	} else	{ /* no buffers to fill */
6310 		c->Header.SGList = 0;
6311 		c->Header.SGTotal = cpu_to_le16(0);
6312 	}
6313 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6314 
6315 	/* Fill in Request block */
6316 	memcpy(&c->Request, &iocommand.Request,
6317 		sizeof(c->Request));
6318 
6319 	/* Fill in the scatter gather information */
6320 	if (iocommand.buf_size > 0) {
6321 		temp64 = pci_map_single(h->pdev, buff,
6322 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6323 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6324 			c->SG[0].Addr = cpu_to_le64(0);
6325 			c->SG[0].Len = cpu_to_le32(0);
6326 			rc = -ENOMEM;
6327 			goto out;
6328 		}
6329 		c->SG[0].Addr = cpu_to_le64(temp64);
6330 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6331 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6332 	}
6333 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6334 					NO_TIMEOUT);
6335 	if (iocommand.buf_size > 0)
6336 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337 	check_ioctl_unit_attention(h, c);
6338 	if (rc) {
6339 		rc = -EIO;
6340 		goto out;
6341 	}
6342 
6343 	/* Copy the error information out */
6344 	memcpy(&iocommand.error_info, c->err_info,
6345 		sizeof(iocommand.error_info));
6346 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347 		rc = -EFAULT;
6348 		goto out;
6349 	}
6350 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351 		iocommand.buf_size > 0) {
6352 		/* Copy the data out of the buffer we created */
6353 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354 			rc = -EFAULT;
6355 			goto out;
6356 		}
6357 	}
6358 out:
6359 	cmd_free(h, c);
6360 out_kfree:
6361 	kfree(buff);
6362 	return rc;
6363 }
6364 
6365 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367 	BIG_IOCTL_Command_struct *ioc;
6368 	struct CommandList *c;
6369 	unsigned char **buff = NULL;
6370 	int *buff_size = NULL;
6371 	u64 temp64;
6372 	BYTE sg_used = 0;
6373 	int status = 0;
6374 	u32 left;
6375 	u32 sz;
6376 	BYTE __user *data_ptr;
6377 
6378 	if (!argp)
6379 		return -EINVAL;
6380 	if (!capable(CAP_SYS_RAWIO))
6381 		return -EPERM;
6382 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6383 	if (!ioc) {
6384 		status = -ENOMEM;
6385 		goto cleanup1;
6386 	}
6387 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6388 		status = -EFAULT;
6389 		goto cleanup1;
6390 	}
6391 	if ((ioc->buf_size < 1) &&
6392 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6393 		status = -EINVAL;
6394 		goto cleanup1;
6395 	}
6396 	/* Check kmalloc limits  using all SGs */
6397 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6398 		status = -EINVAL;
6399 		goto cleanup1;
6400 	}
6401 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6402 		status = -EINVAL;
6403 		goto cleanup1;
6404 	}
6405 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6406 	if (!buff) {
6407 		status = -ENOMEM;
6408 		goto cleanup1;
6409 	}
6410 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6411 	if (!buff_size) {
6412 		status = -ENOMEM;
6413 		goto cleanup1;
6414 	}
6415 	left = ioc->buf_size;
6416 	data_ptr = ioc->buf;
6417 	while (left) {
6418 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6419 		buff_size[sg_used] = sz;
6420 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6421 		if (buff[sg_used] == NULL) {
6422 			status = -ENOMEM;
6423 			goto cleanup1;
6424 		}
6425 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6426 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6427 				status = -EFAULT;
6428 				goto cleanup1;
6429 			}
6430 		} else
6431 			memset(buff[sg_used], 0, sz);
6432 		left -= sz;
6433 		data_ptr += sz;
6434 		sg_used++;
6435 	}
6436 	c = cmd_alloc(h);
6437 
6438 	c->cmd_type = CMD_IOCTL_PEND;
6439 	c->scsi_cmd = SCSI_CMD_BUSY;
6440 	c->Header.ReplyQueue = 0;
6441 	c->Header.SGList = (u8) sg_used;
6442 	c->Header.SGTotal = cpu_to_le16(sg_used);
6443 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6444 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6445 	if (ioc->buf_size > 0) {
6446 		int i;
6447 		for (i = 0; i < sg_used; i++) {
6448 			temp64 = pci_map_single(h->pdev, buff[i],
6449 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6450 			if (dma_mapping_error(&h->pdev->dev,
6451 							(dma_addr_t) temp64)) {
6452 				c->SG[i].Addr = cpu_to_le64(0);
6453 				c->SG[i].Len = cpu_to_le32(0);
6454 				hpsa_pci_unmap(h->pdev, c, i,
6455 					PCI_DMA_BIDIRECTIONAL);
6456 				status = -ENOMEM;
6457 				goto cleanup0;
6458 			}
6459 			c->SG[i].Addr = cpu_to_le64(temp64);
6460 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6461 			c->SG[i].Ext = cpu_to_le32(0);
6462 		}
6463 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6464 	}
6465 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466 						NO_TIMEOUT);
6467 	if (sg_used)
6468 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469 	check_ioctl_unit_attention(h, c);
6470 	if (status) {
6471 		status = -EIO;
6472 		goto cleanup0;
6473 	}
6474 
6475 	/* Copy the error information out */
6476 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6478 		status = -EFAULT;
6479 		goto cleanup0;
6480 	}
6481 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482 		int i;
6483 
6484 		/* Copy the data out of the buffer we created */
6485 		BYTE __user *ptr = ioc->buf;
6486 		for (i = 0; i < sg_used; i++) {
6487 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6488 				status = -EFAULT;
6489 				goto cleanup0;
6490 			}
6491 			ptr += buff_size[i];
6492 		}
6493 	}
6494 	status = 0;
6495 cleanup0:
6496 	cmd_free(h, c);
6497 cleanup1:
6498 	if (buff) {
6499 		int i;
6500 
6501 		for (i = 0; i < sg_used; i++)
6502 			kfree(buff[i]);
6503 		kfree(buff);
6504 	}
6505 	kfree(buff_size);
6506 	kfree(ioc);
6507 	return status;
6508 }
6509 
6510 static void check_ioctl_unit_attention(struct ctlr_info *h,
6511 	struct CommandList *c)
6512 {
6513 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515 		(void) check_for_unit_attention(h, c);
6516 }
6517 
6518 /*
6519  * ioctl
6520  */
6521 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6522 {
6523 	struct ctlr_info *h;
6524 	void __user *argp = (void __user *)arg;
6525 	int rc;
6526 
6527 	h = sdev_to_hba(dev);
6528 
6529 	switch (cmd) {
6530 	case CCISS_DEREGDISK:
6531 	case CCISS_REGNEWDISK:
6532 	case CCISS_REGNEWD:
6533 		hpsa_scan_start(h->scsi_host);
6534 		return 0;
6535 	case CCISS_GETPCIINFO:
6536 		return hpsa_getpciinfo_ioctl(h, argp);
6537 	case CCISS_GETDRIVVER:
6538 		return hpsa_getdrivver_ioctl(h, argp);
6539 	case CCISS_PASSTHRU:
6540 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541 			return -EAGAIN;
6542 		rc = hpsa_passthru_ioctl(h, argp);
6543 		atomic_inc(&h->passthru_cmds_avail);
6544 		return rc;
6545 	case CCISS_BIG_PASSTHRU:
6546 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547 			return -EAGAIN;
6548 		rc = hpsa_big_passthru_ioctl(h, argp);
6549 		atomic_inc(&h->passthru_cmds_avail);
6550 		return rc;
6551 	default:
6552 		return -ENOTTY;
6553 	}
6554 }
6555 
6556 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557 				u8 reset_type)
6558 {
6559 	struct CommandList *c;
6560 
6561 	c = cmd_alloc(h);
6562 
6563 	/* fill_cmd can't fail here, no data buffer to map */
6564 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565 		RAID_CTLR_LUNID, TYPE_MSG);
6566 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567 	c->waiting = NULL;
6568 	enqueue_cmd_and_start_io(h, c);
6569 	/* Don't wait for completion, the reset won't complete.  Don't free
6570 	 * the command either.  This is the last command we will send before
6571 	 * re-initializing everything, so it doesn't matter and won't leak.
6572 	 */
6573 	return;
6574 }
6575 
6576 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578 	int cmd_type)
6579 {
6580 	int pci_dir = XFER_NONE;
6581 
6582 	c->cmd_type = CMD_IOCTL_PEND;
6583 	c->scsi_cmd = SCSI_CMD_BUSY;
6584 	c->Header.ReplyQueue = 0;
6585 	if (buff != NULL && size > 0) {
6586 		c->Header.SGList = 1;
6587 		c->Header.SGTotal = cpu_to_le16(1);
6588 	} else {
6589 		c->Header.SGList = 0;
6590 		c->Header.SGTotal = cpu_to_le16(0);
6591 	}
6592 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6593 
6594 	if (cmd_type == TYPE_CMD) {
6595 		switch (cmd) {
6596 		case HPSA_INQUIRY:
6597 			/* are we trying to read a vital product page */
6598 			if (page_code & VPD_PAGE) {
6599 				c->Request.CDB[1] = 0x01;
6600 				c->Request.CDB[2] = (page_code & 0xff);
6601 			}
6602 			c->Request.CDBLen = 6;
6603 			c->Request.type_attr_dir =
6604 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605 			c->Request.Timeout = 0;
6606 			c->Request.CDB[0] = HPSA_INQUIRY;
6607 			c->Request.CDB[4] = size & 0xFF;
6608 			break;
6609 		case RECEIVE_DIAGNOSTIC:
6610 			c->Request.CDBLen = 6;
6611 			c->Request.type_attr_dir =
6612 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6613 			c->Request.Timeout = 0;
6614 			c->Request.CDB[0] = cmd;
6615 			c->Request.CDB[1] = 1;
6616 			c->Request.CDB[2] = 1;
6617 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6618 			c->Request.CDB[4] = size & 0xFF;
6619 			break;
6620 		case HPSA_REPORT_LOG:
6621 		case HPSA_REPORT_PHYS:
6622 			/* Talking to controller so It's a physical command
6623 			   mode = 00 target = 0.  Nothing to write.
6624 			 */
6625 			c->Request.CDBLen = 12;
6626 			c->Request.type_attr_dir =
6627 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6628 			c->Request.Timeout = 0;
6629 			c->Request.CDB[0] = cmd;
6630 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6631 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6632 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6633 			c->Request.CDB[9] = size & 0xFF;
6634 			break;
6635 		case BMIC_SENSE_DIAG_OPTIONS:
6636 			c->Request.CDBLen = 16;
6637 			c->Request.type_attr_dir =
6638 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639 			c->Request.Timeout = 0;
6640 			/* Spec says this should be BMIC_WRITE */
6641 			c->Request.CDB[0] = BMIC_READ;
6642 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6643 			break;
6644 		case BMIC_SET_DIAG_OPTIONS:
6645 			c->Request.CDBLen = 16;
6646 			c->Request.type_attr_dir =
6647 					TYPE_ATTR_DIR(cmd_type,
6648 						ATTR_SIMPLE, XFER_WRITE);
6649 			c->Request.Timeout = 0;
6650 			c->Request.CDB[0] = BMIC_WRITE;
6651 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6652 			break;
6653 		case HPSA_CACHE_FLUSH:
6654 			c->Request.CDBLen = 12;
6655 			c->Request.type_attr_dir =
6656 					TYPE_ATTR_DIR(cmd_type,
6657 						ATTR_SIMPLE, XFER_WRITE);
6658 			c->Request.Timeout = 0;
6659 			c->Request.CDB[0] = BMIC_WRITE;
6660 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6661 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6662 			c->Request.CDB[8] = size & 0xFF;
6663 			break;
6664 		case TEST_UNIT_READY:
6665 			c->Request.CDBLen = 6;
6666 			c->Request.type_attr_dir =
6667 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668 			c->Request.Timeout = 0;
6669 			break;
6670 		case HPSA_GET_RAID_MAP:
6671 			c->Request.CDBLen = 12;
6672 			c->Request.type_attr_dir =
6673 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6674 			c->Request.Timeout = 0;
6675 			c->Request.CDB[0] = HPSA_CISS_READ;
6676 			c->Request.CDB[1] = cmd;
6677 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6678 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6679 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6680 			c->Request.CDB[9] = size & 0xFF;
6681 			break;
6682 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6683 			c->Request.CDBLen = 10;
6684 			c->Request.type_attr_dir =
6685 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686 			c->Request.Timeout = 0;
6687 			c->Request.CDB[0] = BMIC_READ;
6688 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6689 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6690 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6691 			break;
6692 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6693 			c->Request.CDBLen = 10;
6694 			c->Request.type_attr_dir =
6695 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696 			c->Request.Timeout = 0;
6697 			c->Request.CDB[0] = BMIC_READ;
6698 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6699 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6700 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6701 			break;
6702 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6703 			c->Request.CDBLen = 10;
6704 			c->Request.type_attr_dir =
6705 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706 			c->Request.Timeout = 0;
6707 			c->Request.CDB[0] = BMIC_READ;
6708 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6709 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6710 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6711 			break;
6712 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6713 			c->Request.CDBLen = 10;
6714 			c->Request.type_attr_dir =
6715 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6716 			c->Request.Timeout = 0;
6717 			c->Request.CDB[0] = BMIC_READ;
6718 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6719 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6720 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6721 			break;
6722 		case BMIC_IDENTIFY_CONTROLLER:
6723 			c->Request.CDBLen = 10;
6724 			c->Request.type_attr_dir =
6725 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726 			c->Request.Timeout = 0;
6727 			c->Request.CDB[0] = BMIC_READ;
6728 			c->Request.CDB[1] = 0;
6729 			c->Request.CDB[2] = 0;
6730 			c->Request.CDB[3] = 0;
6731 			c->Request.CDB[4] = 0;
6732 			c->Request.CDB[5] = 0;
6733 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6734 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6735 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6736 			c->Request.CDB[9] = 0;
6737 			break;
6738 		default:
6739 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6740 			BUG();
6741 		}
6742 	} else if (cmd_type == TYPE_MSG) {
6743 		switch (cmd) {
6744 
6745 		case  HPSA_PHYS_TARGET_RESET:
6746 			c->Request.CDBLen = 16;
6747 			c->Request.type_attr_dir =
6748 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6749 			c->Request.Timeout = 0; /* Don't time out */
6750 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6751 			c->Request.CDB[0] = HPSA_RESET;
6752 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6753 			/* Physical target reset needs no control bytes 4-7*/
6754 			c->Request.CDB[4] = 0x00;
6755 			c->Request.CDB[5] = 0x00;
6756 			c->Request.CDB[6] = 0x00;
6757 			c->Request.CDB[7] = 0x00;
6758 			break;
6759 		case  HPSA_DEVICE_RESET_MSG:
6760 			c->Request.CDBLen = 16;
6761 			c->Request.type_attr_dir =
6762 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6763 			c->Request.Timeout = 0; /* Don't time out */
6764 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6765 			c->Request.CDB[0] =  cmd;
6766 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6767 			/* If bytes 4-7 are zero, it means reset the */
6768 			/* LunID device */
6769 			c->Request.CDB[4] = 0x00;
6770 			c->Request.CDB[5] = 0x00;
6771 			c->Request.CDB[6] = 0x00;
6772 			c->Request.CDB[7] = 0x00;
6773 			break;
6774 		default:
6775 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6776 				cmd);
6777 			BUG();
6778 		}
6779 	} else {
6780 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6781 		BUG();
6782 	}
6783 
6784 	switch (GET_DIR(c->Request.type_attr_dir)) {
6785 	case XFER_READ:
6786 		pci_dir = PCI_DMA_FROMDEVICE;
6787 		break;
6788 	case XFER_WRITE:
6789 		pci_dir = PCI_DMA_TODEVICE;
6790 		break;
6791 	case XFER_NONE:
6792 		pci_dir = PCI_DMA_NONE;
6793 		break;
6794 	default:
6795 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6796 	}
6797 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6798 		return -1;
6799 	return 0;
6800 }
6801 
6802 /*
6803  * Map (physical) PCI mem into (virtual) kernel space
6804  */
6805 static void __iomem *remap_pci_mem(ulong base, ulong size)
6806 {
6807 	ulong page_base = ((ulong) base) & PAGE_MASK;
6808 	ulong page_offs = ((ulong) base) - page_base;
6809 	void __iomem *page_remapped = ioremap_nocache(page_base,
6810 		page_offs + size);
6811 
6812 	return page_remapped ? (page_remapped + page_offs) : NULL;
6813 }
6814 
6815 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6816 {
6817 	return h->access.command_completed(h, q);
6818 }
6819 
6820 static inline bool interrupt_pending(struct ctlr_info *h)
6821 {
6822 	return h->access.intr_pending(h);
6823 }
6824 
6825 static inline long interrupt_not_for_us(struct ctlr_info *h)
6826 {
6827 	return (h->access.intr_pending(h) == 0) ||
6828 		(h->interrupts_enabled == 0);
6829 }
6830 
6831 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6832 	u32 raw_tag)
6833 {
6834 	if (unlikely(tag_index >= h->nr_cmds)) {
6835 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6836 		return 1;
6837 	}
6838 	return 0;
6839 }
6840 
6841 static inline void finish_cmd(struct CommandList *c)
6842 {
6843 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6844 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6845 			|| c->cmd_type == CMD_IOACCEL2))
6846 		complete_scsi_command(c);
6847 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6848 		complete(c->waiting);
6849 }
6850 
6851 /* process completion of an indexed ("direct lookup") command */
6852 static inline void process_indexed_cmd(struct ctlr_info *h,
6853 	u32 raw_tag)
6854 {
6855 	u32 tag_index;
6856 	struct CommandList *c;
6857 
6858 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6859 	if (!bad_tag(h, tag_index, raw_tag)) {
6860 		c = h->cmd_pool + tag_index;
6861 		finish_cmd(c);
6862 	}
6863 }
6864 
6865 /* Some controllers, like p400, will give us one interrupt
6866  * after a soft reset, even if we turned interrupts off.
6867  * Only need to check for this in the hpsa_xxx_discard_completions
6868  * functions.
6869  */
6870 static int ignore_bogus_interrupt(struct ctlr_info *h)
6871 {
6872 	if (likely(!reset_devices))
6873 		return 0;
6874 
6875 	if (likely(h->interrupts_enabled))
6876 		return 0;
6877 
6878 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6879 		"(known firmware bug.)  Ignoring.\n");
6880 
6881 	return 1;
6882 }
6883 
6884 /*
6885  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886  * Relies on (h-q[x] == x) being true for x such that
6887  * 0 <= x < MAX_REPLY_QUEUES.
6888  */
6889 static struct ctlr_info *queue_to_hba(u8 *queue)
6890 {
6891 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6892 }
6893 
6894 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6895 {
6896 	struct ctlr_info *h = queue_to_hba(queue);
6897 	u8 q = *(u8 *) queue;
6898 	u32 raw_tag;
6899 
6900 	if (ignore_bogus_interrupt(h))
6901 		return IRQ_NONE;
6902 
6903 	if (interrupt_not_for_us(h))
6904 		return IRQ_NONE;
6905 	h->last_intr_timestamp = get_jiffies_64();
6906 	while (interrupt_pending(h)) {
6907 		raw_tag = get_next_completion(h, q);
6908 		while (raw_tag != FIFO_EMPTY)
6909 			raw_tag = next_command(h, q);
6910 	}
6911 	return IRQ_HANDLED;
6912 }
6913 
6914 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6915 {
6916 	struct ctlr_info *h = queue_to_hba(queue);
6917 	u32 raw_tag;
6918 	u8 q = *(u8 *) queue;
6919 
6920 	if (ignore_bogus_interrupt(h))
6921 		return IRQ_NONE;
6922 
6923 	h->last_intr_timestamp = get_jiffies_64();
6924 	raw_tag = get_next_completion(h, q);
6925 	while (raw_tag != FIFO_EMPTY)
6926 		raw_tag = next_command(h, q);
6927 	return IRQ_HANDLED;
6928 }
6929 
6930 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6931 {
6932 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6933 	u32 raw_tag;
6934 	u8 q = *(u8 *) queue;
6935 
6936 	if (interrupt_not_for_us(h))
6937 		return IRQ_NONE;
6938 	h->last_intr_timestamp = get_jiffies_64();
6939 	while (interrupt_pending(h)) {
6940 		raw_tag = get_next_completion(h, q);
6941 		while (raw_tag != FIFO_EMPTY) {
6942 			process_indexed_cmd(h, raw_tag);
6943 			raw_tag = next_command(h, q);
6944 		}
6945 	}
6946 	return IRQ_HANDLED;
6947 }
6948 
6949 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6950 {
6951 	struct ctlr_info *h = queue_to_hba(queue);
6952 	u32 raw_tag;
6953 	u8 q = *(u8 *) queue;
6954 
6955 	h->last_intr_timestamp = get_jiffies_64();
6956 	raw_tag = get_next_completion(h, q);
6957 	while (raw_tag != FIFO_EMPTY) {
6958 		process_indexed_cmd(h, raw_tag);
6959 		raw_tag = next_command(h, q);
6960 	}
6961 	return IRQ_HANDLED;
6962 }
6963 
6964 /* Send a message CDB to the firmware. Careful, this only works
6965  * in simple mode, not performant mode due to the tag lookup.
6966  * We only ever use this immediately after a controller reset.
6967  */
6968 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6969 			unsigned char type)
6970 {
6971 	struct Command {
6972 		struct CommandListHeader CommandHeader;
6973 		struct RequestBlock Request;
6974 		struct ErrDescriptor ErrorDescriptor;
6975 	};
6976 	struct Command *cmd;
6977 	static const size_t cmd_sz = sizeof(*cmd) +
6978 					sizeof(cmd->ErrorDescriptor);
6979 	dma_addr_t paddr64;
6980 	__le32 paddr32;
6981 	u32 tag;
6982 	void __iomem *vaddr;
6983 	int i, err;
6984 
6985 	vaddr = pci_ioremap_bar(pdev, 0);
6986 	if (vaddr == NULL)
6987 		return -ENOMEM;
6988 
6989 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6991 	 * memory.
6992 	 */
6993 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6994 	if (err) {
6995 		iounmap(vaddr);
6996 		return err;
6997 	}
6998 
6999 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7000 	if (cmd == NULL) {
7001 		iounmap(vaddr);
7002 		return -ENOMEM;
7003 	}
7004 
7005 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7006 	 * although there's no guarantee, we assume that the address is at
7007 	 * least 4-byte aligned (most likely, it's page-aligned).
7008 	 */
7009 	paddr32 = cpu_to_le32(paddr64);
7010 
7011 	cmd->CommandHeader.ReplyQueue = 0;
7012 	cmd->CommandHeader.SGList = 0;
7013 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7014 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7015 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7016 
7017 	cmd->Request.CDBLen = 16;
7018 	cmd->Request.type_attr_dir =
7019 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7020 	cmd->Request.Timeout = 0; /* Don't time out */
7021 	cmd->Request.CDB[0] = opcode;
7022 	cmd->Request.CDB[1] = type;
7023 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7024 	cmd->ErrorDescriptor.Addr =
7025 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7026 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7027 
7028 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7029 
7030 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7031 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7032 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7033 			break;
7034 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7035 	}
7036 
7037 	iounmap(vaddr);
7038 
7039 	/* we leak the DMA buffer here ... no choice since the controller could
7040 	 *  still complete the command.
7041 	 */
7042 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7043 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7044 			opcode, type);
7045 		return -ETIMEDOUT;
7046 	}
7047 
7048 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7049 
7050 	if (tag & HPSA_ERROR_BIT) {
7051 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7052 			opcode, type);
7053 		return -EIO;
7054 	}
7055 
7056 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7057 		opcode, type);
7058 	return 0;
7059 }
7060 
7061 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7062 
7063 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7064 	void __iomem *vaddr, u32 use_doorbell)
7065 {
7066 
7067 	if (use_doorbell) {
7068 		/* For everything after the P600, the PCI power state method
7069 		 * of resetting the controller doesn't work, so we have this
7070 		 * other way using the doorbell register.
7071 		 */
7072 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7073 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7074 
7075 		/* PMC hardware guys tell us we need a 10 second delay after
7076 		 * doorbell reset and before any attempt to talk to the board
7077 		 * at all to ensure that this actually works and doesn't fall
7078 		 * over in some weird corner cases.
7079 		 */
7080 		msleep(10000);
7081 	} else { /* Try to do it the PCI power state way */
7082 
7083 		/* Quoting from the Open CISS Specification: "The Power
7084 		 * Management Control/Status Register (CSR) controls the power
7085 		 * state of the device.  The normal operating state is D0,
7086 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7087 		 * the controller, place the interface device in D3 then to D0,
7088 		 * this causes a secondary PCI reset which will reset the
7089 		 * controller." */
7090 
7091 		int rc = 0;
7092 
7093 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7094 
7095 		/* enter the D3hot power management state */
7096 		rc = pci_set_power_state(pdev, PCI_D3hot);
7097 		if (rc)
7098 			return rc;
7099 
7100 		msleep(500);
7101 
7102 		/* enter the D0 power management state */
7103 		rc = pci_set_power_state(pdev, PCI_D0);
7104 		if (rc)
7105 			return rc;
7106 
7107 		/*
7108 		 * The P600 requires a small delay when changing states.
7109 		 * Otherwise we may think the board did not reset and we bail.
7110 		 * This for kdump only and is particular to the P600.
7111 		 */
7112 		msleep(500);
7113 	}
7114 	return 0;
7115 }
7116 
7117 static void init_driver_version(char *driver_version, int len)
7118 {
7119 	memset(driver_version, 0, len);
7120 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7121 }
7122 
7123 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7124 {
7125 	char *driver_version;
7126 	int i, size = sizeof(cfgtable->driver_version);
7127 
7128 	driver_version = kmalloc(size, GFP_KERNEL);
7129 	if (!driver_version)
7130 		return -ENOMEM;
7131 
7132 	init_driver_version(driver_version, size);
7133 	for (i = 0; i < size; i++)
7134 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7135 	kfree(driver_version);
7136 	return 0;
7137 }
7138 
7139 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7140 					  unsigned char *driver_ver)
7141 {
7142 	int i;
7143 
7144 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7145 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7146 }
7147 
7148 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7149 {
7150 
7151 	char *driver_ver, *old_driver_ver;
7152 	int rc, size = sizeof(cfgtable->driver_version);
7153 
7154 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7155 	if (!old_driver_ver)
7156 		return -ENOMEM;
7157 	driver_ver = old_driver_ver + size;
7158 
7159 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7160 	 * should have been changed, otherwise we know the reset failed.
7161 	 */
7162 	init_driver_version(old_driver_ver, size);
7163 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7164 	rc = !memcmp(driver_ver, old_driver_ver, size);
7165 	kfree(old_driver_ver);
7166 	return rc;
7167 }
7168 /* This does a hard reset of the controller using PCI power management
7169  * states or the using the doorbell register.
7170  */
7171 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7172 {
7173 	u64 cfg_offset;
7174 	u32 cfg_base_addr;
7175 	u64 cfg_base_addr_index;
7176 	void __iomem *vaddr;
7177 	unsigned long paddr;
7178 	u32 misc_fw_support;
7179 	int rc;
7180 	struct CfgTable __iomem *cfgtable;
7181 	u32 use_doorbell;
7182 	u16 command_register;
7183 
7184 	/* For controllers as old as the P600, this is very nearly
7185 	 * the same thing as
7186 	 *
7187 	 * pci_save_state(pci_dev);
7188 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7189 	 * pci_set_power_state(pci_dev, PCI_D0);
7190 	 * pci_restore_state(pci_dev);
7191 	 *
7192 	 * For controllers newer than the P600, the pci power state
7193 	 * method of resetting doesn't work so we have another way
7194 	 * using the doorbell register.
7195 	 */
7196 
7197 	if (!ctlr_is_resettable(board_id)) {
7198 		dev_warn(&pdev->dev, "Controller not resettable\n");
7199 		return -ENODEV;
7200 	}
7201 
7202 	/* if controller is soft- but not hard resettable... */
7203 	if (!ctlr_is_hard_resettable(board_id))
7204 		return -ENOTSUPP; /* try soft reset later. */
7205 
7206 	/* Save the PCI command register */
7207 	pci_read_config_word(pdev, 4, &command_register);
7208 	pci_save_state(pdev);
7209 
7210 	/* find the first memory BAR, so we can find the cfg table */
7211 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7212 	if (rc)
7213 		return rc;
7214 	vaddr = remap_pci_mem(paddr, 0x250);
7215 	if (!vaddr)
7216 		return -ENOMEM;
7217 
7218 	/* find cfgtable in order to check if reset via doorbell is supported */
7219 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7220 					&cfg_base_addr_index, &cfg_offset);
7221 	if (rc)
7222 		goto unmap_vaddr;
7223 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7224 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7225 	if (!cfgtable) {
7226 		rc = -ENOMEM;
7227 		goto unmap_vaddr;
7228 	}
7229 	rc = write_driver_ver_to_cfgtable(cfgtable);
7230 	if (rc)
7231 		goto unmap_cfgtable;
7232 
7233 	/* If reset via doorbell register is supported, use that.
7234 	 * There are two such methods.  Favor the newest method.
7235 	 */
7236 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7237 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7238 	if (use_doorbell) {
7239 		use_doorbell = DOORBELL_CTLR_RESET2;
7240 	} else {
7241 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7242 		if (use_doorbell) {
7243 			dev_warn(&pdev->dev,
7244 				"Soft reset not supported. Firmware update is required.\n");
7245 			rc = -ENOTSUPP; /* try soft reset */
7246 			goto unmap_cfgtable;
7247 		}
7248 	}
7249 
7250 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7251 	if (rc)
7252 		goto unmap_cfgtable;
7253 
7254 	pci_restore_state(pdev);
7255 	pci_write_config_word(pdev, 4, command_register);
7256 
7257 	/* Some devices (notably the HP Smart Array 5i Controller)
7258 	   need a little pause here */
7259 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7260 
7261 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7262 	if (rc) {
7263 		dev_warn(&pdev->dev,
7264 			"Failed waiting for board to become ready after hard reset\n");
7265 		goto unmap_cfgtable;
7266 	}
7267 
7268 	rc = controller_reset_failed(vaddr);
7269 	if (rc < 0)
7270 		goto unmap_cfgtable;
7271 	if (rc) {
7272 		dev_warn(&pdev->dev, "Unable to successfully reset "
7273 			"controller. Will try soft reset.\n");
7274 		rc = -ENOTSUPP;
7275 	} else {
7276 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7277 	}
7278 
7279 unmap_cfgtable:
7280 	iounmap(cfgtable);
7281 
7282 unmap_vaddr:
7283 	iounmap(vaddr);
7284 	return rc;
7285 }
7286 
7287 /*
7288  *  We cannot read the structure directly, for portability we must use
7289  *   the io functions.
7290  *   This is for debug only.
7291  */
7292 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7293 {
7294 #ifdef HPSA_DEBUG
7295 	int i;
7296 	char temp_name[17];
7297 
7298 	dev_info(dev, "Controller Configuration information\n");
7299 	dev_info(dev, "------------------------------------\n");
7300 	for (i = 0; i < 4; i++)
7301 		temp_name[i] = readb(&(tb->Signature[i]));
7302 	temp_name[4] = '\0';
7303 	dev_info(dev, "   Signature = %s\n", temp_name);
7304 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7305 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7306 	       readl(&(tb->TransportSupport)));
7307 	dev_info(dev, "   Transport methods active = 0x%x\n",
7308 	       readl(&(tb->TransportActive)));
7309 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7310 	       readl(&(tb->HostWrite.TransportRequest)));
7311 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7312 	       readl(&(tb->HostWrite.CoalIntDelay)));
7313 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7314 	       readl(&(tb->HostWrite.CoalIntCount)));
7315 	dev_info(dev, "   Max outstanding commands = %d\n",
7316 	       readl(&(tb->CmdsOutMax)));
7317 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7318 	for (i = 0; i < 16; i++)
7319 		temp_name[i] = readb(&(tb->ServerName[i]));
7320 	temp_name[16] = '\0';
7321 	dev_info(dev, "   Server Name = %s\n", temp_name);
7322 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7323 		readl(&(tb->HeartBeat)));
7324 #endif				/* HPSA_DEBUG */
7325 }
7326 
7327 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7328 {
7329 	int i, offset, mem_type, bar_type;
7330 
7331 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7332 		return 0;
7333 	offset = 0;
7334 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7335 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7336 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7337 			offset += 4;
7338 		else {
7339 			mem_type = pci_resource_flags(pdev, i) &
7340 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7341 			switch (mem_type) {
7342 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7343 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7344 				offset += 4;	/* 32 bit */
7345 				break;
7346 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7347 				offset += 8;
7348 				break;
7349 			default:	/* reserved in PCI 2.2 */
7350 				dev_warn(&pdev->dev,
7351 				       "base address is invalid\n");
7352 				return -1;
7353 				break;
7354 			}
7355 		}
7356 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7357 			return i + 1;
7358 	}
7359 	return -1;
7360 }
7361 
7362 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7363 {
7364 	pci_free_irq_vectors(h->pdev);
7365 	h->msix_vectors = 0;
7366 }
7367 
7368 static void hpsa_setup_reply_map(struct ctlr_info *h)
7369 {
7370 	const struct cpumask *mask;
7371 	unsigned int queue, cpu;
7372 
7373 	for (queue = 0; queue < h->msix_vectors; queue++) {
7374 		mask = pci_irq_get_affinity(h->pdev, queue);
7375 		if (!mask)
7376 			goto fallback;
7377 
7378 		for_each_cpu(cpu, mask)
7379 			h->reply_map[cpu] = queue;
7380 	}
7381 	return;
7382 
7383 fallback:
7384 	for_each_possible_cpu(cpu)
7385 		h->reply_map[cpu] = 0;
7386 }
7387 
7388 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389  * controllers that are capable. If not, we use legacy INTx mode.
7390  */
7391 static int hpsa_interrupt_mode(struct ctlr_info *h)
7392 {
7393 	unsigned int flags = PCI_IRQ_LEGACY;
7394 	int ret;
7395 
7396 	/* Some boards advertise MSI but don't really support it */
7397 	switch (h->board_id) {
7398 	case 0x40700E11:
7399 	case 0x40800E11:
7400 	case 0x40820E11:
7401 	case 0x40830E11:
7402 		break;
7403 	default:
7404 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7405 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7406 		if (ret > 0) {
7407 			h->msix_vectors = ret;
7408 			return 0;
7409 		}
7410 
7411 		flags |= PCI_IRQ_MSI;
7412 		break;
7413 	}
7414 
7415 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7416 	if (ret < 0)
7417 		return ret;
7418 	return 0;
7419 }
7420 
7421 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7422 				bool *legacy_board)
7423 {
7424 	int i;
7425 	u32 subsystem_vendor_id, subsystem_device_id;
7426 
7427 	subsystem_vendor_id = pdev->subsystem_vendor;
7428 	subsystem_device_id = pdev->subsystem_device;
7429 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7430 		    subsystem_vendor_id;
7431 
7432 	if (legacy_board)
7433 		*legacy_board = false;
7434 	for (i = 0; i < ARRAY_SIZE(products); i++)
7435 		if (*board_id == products[i].board_id) {
7436 			if (products[i].access != &SA5A_access &&
7437 			    products[i].access != &SA5B_access)
7438 				return i;
7439 			dev_warn(&pdev->dev,
7440 				 "legacy board ID: 0x%08x\n",
7441 				 *board_id);
7442 			if (legacy_board)
7443 			    *legacy_board = true;
7444 			return i;
7445 		}
7446 
7447 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7448 	if (legacy_board)
7449 		*legacy_board = true;
7450 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451 }
7452 
7453 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454 				    unsigned long *memory_bar)
7455 {
7456 	int i;
7457 
7458 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460 			/* addressing mode bits already removed */
7461 			*memory_bar = pci_resource_start(pdev, i);
7462 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463 				*memory_bar);
7464 			return 0;
7465 		}
7466 	dev_warn(&pdev->dev, "no memory BAR found\n");
7467 	return -ENODEV;
7468 }
7469 
7470 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471 				     int wait_for_ready)
7472 {
7473 	int i, iterations;
7474 	u32 scratchpad;
7475 	if (wait_for_ready)
7476 		iterations = HPSA_BOARD_READY_ITERATIONS;
7477 	else
7478 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479 
7480 	for (i = 0; i < iterations; i++) {
7481 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482 		if (wait_for_ready) {
7483 			if (scratchpad == HPSA_FIRMWARE_READY)
7484 				return 0;
7485 		} else {
7486 			if (scratchpad != HPSA_FIRMWARE_READY)
7487 				return 0;
7488 		}
7489 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490 	}
7491 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492 	return -ENODEV;
7493 }
7494 
7495 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497 			       u64 *cfg_offset)
7498 {
7499 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501 	*cfg_base_addr &= (u32) 0x0000ffff;
7502 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503 	if (*cfg_base_addr_index == -1) {
7504 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505 		return -ENODEV;
7506 	}
7507 	return 0;
7508 }
7509 
7510 static void hpsa_free_cfgtables(struct ctlr_info *h)
7511 {
7512 	if (h->transtable) {
7513 		iounmap(h->transtable);
7514 		h->transtable = NULL;
7515 	}
7516 	if (h->cfgtable) {
7517 		iounmap(h->cfgtable);
7518 		h->cfgtable = NULL;
7519 	}
7520 }
7521 
7522 /* Find and map CISS config table and transfer table
7523 + * several items must be unmapped (freed) later
7524 + * */
7525 static int hpsa_find_cfgtables(struct ctlr_info *h)
7526 {
7527 	u64 cfg_offset;
7528 	u32 cfg_base_addr;
7529 	u64 cfg_base_addr_index;
7530 	u32 trans_offset;
7531 	int rc;
7532 
7533 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534 		&cfg_base_addr_index, &cfg_offset);
7535 	if (rc)
7536 		return rc;
7537 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539 	if (!h->cfgtable) {
7540 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541 		return -ENOMEM;
7542 	}
7543 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544 	if (rc)
7545 		return rc;
7546 	/* Find performant mode table. */
7547 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549 				cfg_base_addr_index)+cfg_offset+trans_offset,
7550 				sizeof(*h->transtable));
7551 	if (!h->transtable) {
7552 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553 		hpsa_free_cfgtables(h);
7554 		return -ENOMEM;
7555 	}
7556 	return 0;
7557 }
7558 
7559 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560 {
7561 #define MIN_MAX_COMMANDS 16
7562 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563 
7564 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565 
7566 	/* Limit commands in memory limited kdump scenario. */
7567 	if (reset_devices && h->max_commands > 32)
7568 		h->max_commands = 32;
7569 
7570 	if (h->max_commands < MIN_MAX_COMMANDS) {
7571 		dev_warn(&h->pdev->dev,
7572 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573 			h->max_commands,
7574 			MIN_MAX_COMMANDS);
7575 		h->max_commands = MIN_MAX_COMMANDS;
7576 	}
7577 }
7578 
7579 /* If the controller reports that the total max sg entries is greater than 512,
7580  * then we know that chained SG blocks work.  (Original smart arrays did not
7581  * support chained SG blocks and would return zero for max sg entries.)
7582  */
7583 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584 {
7585 	return h->maxsgentries > 512;
7586 }
7587 
7588 /* Interrogate the hardware for some limits:
7589  * max commands, max SG elements without chaining, and with chaining,
7590  * SG chain block size, etc.
7591  */
7592 static void hpsa_find_board_params(struct ctlr_info *h)
7593 {
7594 	hpsa_get_max_perf_mode_cmds(h);
7595 	h->nr_cmds = h->max_commands;
7596 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598 	if (hpsa_supports_chained_sg_blocks(h)) {
7599 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7600 		h->max_cmd_sg_entries = 32;
7601 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602 		h->maxsgentries--; /* save one for chain pointer */
7603 	} else {
7604 		/*
7605 		 * Original smart arrays supported at most 31 s/g entries
7606 		 * embedded inline in the command (trying to use more
7607 		 * would lock up the controller)
7608 		 */
7609 		h->max_cmd_sg_entries = 31;
7610 		h->maxsgentries = 31; /* default to traditional values */
7611 		h->chainsize = 0;
7612 	}
7613 
7614 	/* Find out what task management functions are supported and cache */
7615 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622 }
7623 
7624 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625 {
7626 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7628 		return false;
7629 	}
7630 	return true;
7631 }
7632 
7633 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7634 {
7635 	u32 driver_support;
7636 
7637 	driver_support = readl(&(h->cfgtable->driver_support));
7638 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639 #ifdef CONFIG_X86
7640 	driver_support |= ENABLE_SCSI_PREFETCH;
7641 #endif
7642 	driver_support |= ENABLE_UNIT_ATTN;
7643 	writel(driver_support, &(h->cfgtable->driver_support));
7644 }
7645 
7646 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647  * in a prefetch beyond physical memory.
7648  */
7649 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650 {
7651 	u32 dma_prefetch;
7652 
7653 	if (h->board_id != 0x3225103C)
7654 		return;
7655 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656 	dma_prefetch |= 0x8000;
7657 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658 }
7659 
7660 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661 {
7662 	int i;
7663 	u32 doorbell_value;
7664 	unsigned long flags;
7665 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7666 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667 		spin_lock_irqsave(&h->lock, flags);
7668 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669 		spin_unlock_irqrestore(&h->lock, flags);
7670 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671 			goto done;
7672 		/* delay and try again */
7673 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674 	}
7675 	return -ENODEV;
7676 done:
7677 	return 0;
7678 }
7679 
7680 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681 {
7682 	int i;
7683 	u32 doorbell_value;
7684 	unsigned long flags;
7685 
7686 	/* under certain very rare conditions, this can take awhile.
7687 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688 	 * as we enter this code.)
7689 	 */
7690 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691 		if (h->remove_in_progress)
7692 			goto done;
7693 		spin_lock_irqsave(&h->lock, flags);
7694 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695 		spin_unlock_irqrestore(&h->lock, flags);
7696 		if (!(doorbell_value & CFGTBL_ChangeReq))
7697 			goto done;
7698 		/* delay and try again */
7699 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7700 	}
7701 	return -ENODEV;
7702 done:
7703 	return 0;
7704 }
7705 
7706 /* return -ENODEV or other reason on error, 0 on success */
7707 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708 {
7709 	u32 trans_support;
7710 
7711 	trans_support = readl(&(h->cfgtable->TransportSupport));
7712 	if (!(trans_support & SIMPLE_MODE))
7713 		return -ENOTSUPP;
7714 
7715 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716 
7717 	/* Update the field, and then ring the doorbell */
7718 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721 	if (hpsa_wait_for_mode_change_ack(h))
7722 		goto error;
7723 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7724 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725 		goto error;
7726 	h->transMethod = CFGTBL_Trans_Simple;
7727 	return 0;
7728 error:
7729 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730 	return -ENODEV;
7731 }
7732 
7733 /* free items allocated or mapped by hpsa_pci_init */
7734 static void hpsa_free_pci_init(struct ctlr_info *h)
7735 {
7736 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7737 	iounmap(h->vaddr);			/* pci_init 3 */
7738 	h->vaddr = NULL;
7739 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7740 	/*
7741 	 * call pci_disable_device before pci_release_regions per
7742 	 * Documentation/PCI/pci.txt
7743 	 */
7744 	pci_disable_device(h->pdev);		/* pci_init 1 */
7745 	pci_release_regions(h->pdev);		/* pci_init 2 */
7746 }
7747 
7748 /* several items must be freed later */
7749 static int hpsa_pci_init(struct ctlr_info *h)
7750 {
7751 	int prod_index, err;
7752 	bool legacy_board;
7753 
7754 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7755 	if (prod_index < 0)
7756 		return prod_index;
7757 	h->product_name = products[prod_index].product_name;
7758 	h->access = *(products[prod_index].access);
7759 	h->legacy_board = legacy_board;
7760 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7761 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7762 
7763 	err = pci_enable_device(h->pdev);
7764 	if (err) {
7765 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7766 		pci_disable_device(h->pdev);
7767 		return err;
7768 	}
7769 
7770 	err = pci_request_regions(h->pdev, HPSA);
7771 	if (err) {
7772 		dev_err(&h->pdev->dev,
7773 			"failed to obtain PCI resources\n");
7774 		pci_disable_device(h->pdev);
7775 		return err;
7776 	}
7777 
7778 	pci_set_master(h->pdev);
7779 
7780 	err = hpsa_interrupt_mode(h);
7781 	if (err)
7782 		goto clean1;
7783 
7784 	/* setup mapping between CPU and reply queue */
7785 	hpsa_setup_reply_map(h);
7786 
7787 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7788 	if (err)
7789 		goto clean2;	/* intmode+region, pci */
7790 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7791 	if (!h->vaddr) {
7792 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7793 		err = -ENOMEM;
7794 		goto clean2;	/* intmode+region, pci */
7795 	}
7796 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7797 	if (err)
7798 		goto clean3;	/* vaddr, intmode+region, pci */
7799 	err = hpsa_find_cfgtables(h);
7800 	if (err)
7801 		goto clean3;	/* vaddr, intmode+region, pci */
7802 	hpsa_find_board_params(h);
7803 
7804 	if (!hpsa_CISS_signature_present(h)) {
7805 		err = -ENODEV;
7806 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7807 	}
7808 	hpsa_set_driver_support_bits(h);
7809 	hpsa_p600_dma_prefetch_quirk(h);
7810 	err = hpsa_enter_simple_mode(h);
7811 	if (err)
7812 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7813 	return 0;
7814 
7815 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7816 	hpsa_free_cfgtables(h);
7817 clean3:	/* vaddr, intmode+region, pci */
7818 	iounmap(h->vaddr);
7819 	h->vaddr = NULL;
7820 clean2:	/* intmode+region, pci */
7821 	hpsa_disable_interrupt_mode(h);
7822 clean1:
7823 	/*
7824 	 * call pci_disable_device before pci_release_regions per
7825 	 * Documentation/PCI/pci.txt
7826 	 */
7827 	pci_disable_device(h->pdev);
7828 	pci_release_regions(h->pdev);
7829 	return err;
7830 }
7831 
7832 static void hpsa_hba_inquiry(struct ctlr_info *h)
7833 {
7834 	int rc;
7835 
7836 #define HBA_INQUIRY_BYTE_COUNT 64
7837 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7838 	if (!h->hba_inquiry_data)
7839 		return;
7840 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7841 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7842 	if (rc != 0) {
7843 		kfree(h->hba_inquiry_data);
7844 		h->hba_inquiry_data = NULL;
7845 	}
7846 }
7847 
7848 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7849 {
7850 	int rc, i;
7851 	void __iomem *vaddr;
7852 
7853 	if (!reset_devices)
7854 		return 0;
7855 
7856 	/* kdump kernel is loading, we don't know in which state is
7857 	 * the pci interface. The dev->enable_cnt is equal zero
7858 	 * so we call enable+disable, wait a while and switch it on.
7859 	 */
7860 	rc = pci_enable_device(pdev);
7861 	if (rc) {
7862 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7863 		return -ENODEV;
7864 	}
7865 	pci_disable_device(pdev);
7866 	msleep(260);			/* a randomly chosen number */
7867 	rc = pci_enable_device(pdev);
7868 	if (rc) {
7869 		dev_warn(&pdev->dev, "failed to enable device.\n");
7870 		return -ENODEV;
7871 	}
7872 
7873 	pci_set_master(pdev);
7874 
7875 	vaddr = pci_ioremap_bar(pdev, 0);
7876 	if (vaddr == NULL) {
7877 		rc = -ENOMEM;
7878 		goto out_disable;
7879 	}
7880 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7881 	iounmap(vaddr);
7882 
7883 	/* Reset the controller with a PCI power-cycle or via doorbell */
7884 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7885 
7886 	/* -ENOTSUPP here means we cannot reset the controller
7887 	 * but it's already (and still) up and running in
7888 	 * "performant mode".  Or, it might be 640x, which can't reset
7889 	 * due to concerns about shared bbwc between 6402/6404 pair.
7890 	 */
7891 	if (rc)
7892 		goto out_disable;
7893 
7894 	/* Now try to get the controller to respond to a no-op */
7895 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7896 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7897 		if (hpsa_noop(pdev) == 0)
7898 			break;
7899 		else
7900 			dev_warn(&pdev->dev, "no-op failed%s\n",
7901 					(i < 11 ? "; re-trying" : ""));
7902 	}
7903 
7904 out_disable:
7905 
7906 	pci_disable_device(pdev);
7907 	return rc;
7908 }
7909 
7910 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7911 {
7912 	kfree(h->cmd_pool_bits);
7913 	h->cmd_pool_bits = NULL;
7914 	if (h->cmd_pool) {
7915 		pci_free_consistent(h->pdev,
7916 				h->nr_cmds * sizeof(struct CommandList),
7917 				h->cmd_pool,
7918 				h->cmd_pool_dhandle);
7919 		h->cmd_pool = NULL;
7920 		h->cmd_pool_dhandle = 0;
7921 	}
7922 	if (h->errinfo_pool) {
7923 		pci_free_consistent(h->pdev,
7924 				h->nr_cmds * sizeof(struct ErrorInfo),
7925 				h->errinfo_pool,
7926 				h->errinfo_pool_dhandle);
7927 		h->errinfo_pool = NULL;
7928 		h->errinfo_pool_dhandle = 0;
7929 	}
7930 }
7931 
7932 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7933 {
7934 	h->cmd_pool_bits = kzalloc(
7935 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7936 		sizeof(unsigned long), GFP_KERNEL);
7937 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7938 		    h->nr_cmds * sizeof(*h->cmd_pool),
7939 		    &(h->cmd_pool_dhandle));
7940 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7941 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7942 		    &(h->errinfo_pool_dhandle));
7943 	if ((h->cmd_pool_bits == NULL)
7944 	    || (h->cmd_pool == NULL)
7945 	    || (h->errinfo_pool == NULL)) {
7946 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7947 		goto clean_up;
7948 	}
7949 	hpsa_preinitialize_commands(h);
7950 	return 0;
7951 clean_up:
7952 	hpsa_free_cmd_pool(h);
7953 	return -ENOMEM;
7954 }
7955 
7956 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957 static void hpsa_free_irqs(struct ctlr_info *h)
7958 {
7959 	int i;
7960 
7961 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7962 		/* Single reply queue, only one irq to free */
7963 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7964 		h->q[h->intr_mode] = 0;
7965 		return;
7966 	}
7967 
7968 	for (i = 0; i < h->msix_vectors; i++) {
7969 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7970 		h->q[i] = 0;
7971 	}
7972 	for (; i < MAX_REPLY_QUEUES; i++)
7973 		h->q[i] = 0;
7974 }
7975 
7976 /* returns 0 on success; cleans up and returns -Enn on error */
7977 static int hpsa_request_irqs(struct ctlr_info *h,
7978 	irqreturn_t (*msixhandler)(int, void *),
7979 	irqreturn_t (*intxhandler)(int, void *))
7980 {
7981 	int rc, i;
7982 
7983 	/*
7984 	 * initialize h->q[x] = x so that interrupt handlers know which
7985 	 * queue to process.
7986 	 */
7987 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7988 		h->q[i] = (u8) i;
7989 
7990 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7991 		/* If performant mode and MSI-X, use multiple reply queues */
7992 		for (i = 0; i < h->msix_vectors; i++) {
7993 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7994 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7995 					0, h->intrname[i],
7996 					&h->q[i]);
7997 			if (rc) {
7998 				int j;
7999 
8000 				dev_err(&h->pdev->dev,
8001 					"failed to get irq %d for %s\n",
8002 				       pci_irq_vector(h->pdev, i), h->devname);
8003 				for (j = 0; j < i; j++) {
8004 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8005 					h->q[j] = 0;
8006 				}
8007 				for (; j < MAX_REPLY_QUEUES; j++)
8008 					h->q[j] = 0;
8009 				return rc;
8010 			}
8011 		}
8012 	} else {
8013 		/* Use single reply pool */
8014 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8015 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8016 				h->msix_vectors ? "x" : "");
8017 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8018 				msixhandler, 0,
8019 				h->intrname[0],
8020 				&h->q[h->intr_mode]);
8021 		} else {
8022 			sprintf(h->intrname[h->intr_mode],
8023 				"%s-intx", h->devname);
8024 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8025 				intxhandler, IRQF_SHARED,
8026 				h->intrname[0],
8027 				&h->q[h->intr_mode]);
8028 		}
8029 	}
8030 	if (rc) {
8031 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8032 		       pci_irq_vector(h->pdev, 0), h->devname);
8033 		hpsa_free_irqs(h);
8034 		return -ENODEV;
8035 	}
8036 	return 0;
8037 }
8038 
8039 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8040 {
8041 	int rc;
8042 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8043 
8044 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8045 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8046 	if (rc) {
8047 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8048 		return rc;
8049 	}
8050 
8051 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8052 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8053 	if (rc) {
8054 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8055 			"after soft reset.\n");
8056 		return rc;
8057 	}
8058 
8059 	return 0;
8060 }
8061 
8062 static void hpsa_free_reply_queues(struct ctlr_info *h)
8063 {
8064 	int i;
8065 
8066 	for (i = 0; i < h->nreply_queues; i++) {
8067 		if (!h->reply_queue[i].head)
8068 			continue;
8069 		pci_free_consistent(h->pdev,
8070 					h->reply_queue_size,
8071 					h->reply_queue[i].head,
8072 					h->reply_queue[i].busaddr);
8073 		h->reply_queue[i].head = NULL;
8074 		h->reply_queue[i].busaddr = 0;
8075 	}
8076 	h->reply_queue_size = 0;
8077 }
8078 
8079 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8080 {
8081 	hpsa_free_performant_mode(h);		/* init_one 7 */
8082 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8083 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8084 	hpsa_free_irqs(h);			/* init_one 4 */
8085 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8086 	h->scsi_host = NULL;			/* init_one 3 */
8087 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8088 	free_percpu(h->lockup_detected);	/* init_one 2 */
8089 	h->lockup_detected = NULL;		/* init_one 2 */
8090 	if (h->resubmit_wq) {
8091 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8092 		h->resubmit_wq = NULL;
8093 	}
8094 	if (h->rescan_ctlr_wq) {
8095 		destroy_workqueue(h->rescan_ctlr_wq);
8096 		h->rescan_ctlr_wq = NULL;
8097 	}
8098 	kfree(h);				/* init_one 1 */
8099 }
8100 
8101 /* Called when controller lockup detected. */
8102 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8103 {
8104 	int i, refcount;
8105 	struct CommandList *c;
8106 	int failcount = 0;
8107 
8108 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8109 	for (i = 0; i < h->nr_cmds; i++) {
8110 		c = h->cmd_pool + i;
8111 		refcount = atomic_inc_return(&c->refcount);
8112 		if (refcount > 1) {
8113 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8114 			finish_cmd(c);
8115 			atomic_dec(&h->commands_outstanding);
8116 			failcount++;
8117 		}
8118 		cmd_free(h, c);
8119 	}
8120 	dev_warn(&h->pdev->dev,
8121 		"failed %d commands in fail_all\n", failcount);
8122 }
8123 
8124 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8125 {
8126 	int cpu;
8127 
8128 	for_each_online_cpu(cpu) {
8129 		u32 *lockup_detected;
8130 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8131 		*lockup_detected = value;
8132 	}
8133 	wmb(); /* be sure the per-cpu variables are out to memory */
8134 }
8135 
8136 static void controller_lockup_detected(struct ctlr_info *h)
8137 {
8138 	unsigned long flags;
8139 	u32 lockup_detected;
8140 
8141 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8142 	spin_lock_irqsave(&h->lock, flags);
8143 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8144 	if (!lockup_detected) {
8145 		/* no heartbeat, but controller gave us a zero. */
8146 		dev_warn(&h->pdev->dev,
8147 			"lockup detected after %d but scratchpad register is zero\n",
8148 			h->heartbeat_sample_interval / HZ);
8149 		lockup_detected = 0xffffffff;
8150 	}
8151 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8152 	spin_unlock_irqrestore(&h->lock, flags);
8153 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8154 			lockup_detected, h->heartbeat_sample_interval / HZ);
8155 	if (lockup_detected == 0xffff0000) {
8156 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8157 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8158 	}
8159 	pci_disable_device(h->pdev);
8160 	fail_all_outstanding_cmds(h);
8161 }
8162 
8163 static int detect_controller_lockup(struct ctlr_info *h)
8164 {
8165 	u64 now;
8166 	u32 heartbeat;
8167 	unsigned long flags;
8168 
8169 	now = get_jiffies_64();
8170 	/* If we've received an interrupt recently, we're ok. */
8171 	if (time_after64(h->last_intr_timestamp +
8172 				(h->heartbeat_sample_interval), now))
8173 		return false;
8174 
8175 	/*
8176 	 * If we've already checked the heartbeat recently, we're ok.
8177 	 * This could happen if someone sends us a signal. We
8178 	 * otherwise don't care about signals in this thread.
8179 	 */
8180 	if (time_after64(h->last_heartbeat_timestamp +
8181 				(h->heartbeat_sample_interval), now))
8182 		return false;
8183 
8184 	/* If heartbeat has not changed since we last looked, we're not ok. */
8185 	spin_lock_irqsave(&h->lock, flags);
8186 	heartbeat = readl(&h->cfgtable->HeartBeat);
8187 	spin_unlock_irqrestore(&h->lock, flags);
8188 	if (h->last_heartbeat == heartbeat) {
8189 		controller_lockup_detected(h);
8190 		return true;
8191 	}
8192 
8193 	/* We're ok. */
8194 	h->last_heartbeat = heartbeat;
8195 	h->last_heartbeat_timestamp = now;
8196 	return false;
8197 }
8198 
8199 /*
8200  * Set ioaccel status for all ioaccel volumes.
8201  *
8202  * Called from monitor controller worker (hpsa_event_monitor_worker)
8203  *
8204  * A Volume (or Volumes that comprise an Array set may be undergoing a
8205  * transformation, so we will be turning off ioaccel for all volumes that
8206  * make up the Array.
8207  */
8208 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8209 {
8210 	int rc;
8211 	int i;
8212 	u8 ioaccel_status;
8213 	unsigned char *buf;
8214 	struct hpsa_scsi_dev_t *device;
8215 
8216 	if (!h)
8217 		return;
8218 
8219 	buf = kmalloc(64, GFP_KERNEL);
8220 	if (!buf)
8221 		return;
8222 
8223 	/*
8224 	 * Run through current device list used during I/O requests.
8225 	 */
8226 	for (i = 0; i < h->ndevices; i++) {
8227 		device = h->dev[i];
8228 
8229 		if (!device)
8230 			continue;
8231 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8232 						HPSA_VPD_LV_IOACCEL_STATUS))
8233 			continue;
8234 
8235 		memset(buf, 0, 64);
8236 
8237 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8238 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8239 					buf, 64);
8240 		if (rc != 0)
8241 			continue;
8242 
8243 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8244 		device->offload_config =
8245 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8246 		if (device->offload_config)
8247 			device->offload_to_be_enabled =
8248 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8249 
8250 		/*
8251 		 * Immediately turn off ioaccel for any volume the
8252 		 * controller tells us to. Some of the reasons could be:
8253 		 *    transformation - change to the LVs of an Array.
8254 		 *    degraded volume - component failure
8255 		 *
8256 		 * If ioaccel is to be re-enabled, re-enable later during the
8257 		 * scan operation so the driver can get a fresh raidmap
8258 		 * before turning ioaccel back on.
8259 		 *
8260 		 */
8261 		if (!device->offload_to_be_enabled)
8262 			device->offload_enabled = 0;
8263 	}
8264 
8265 	kfree(buf);
8266 }
8267 
8268 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8269 {
8270 	char *event_type;
8271 
8272 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8273 		return;
8274 
8275 	/* Ask the controller to clear the events we're handling. */
8276 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8277 			| CFGTBL_Trans_io_accel2)) &&
8278 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8279 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8280 
8281 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8282 			event_type = "state change";
8283 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8284 			event_type = "configuration change";
8285 		/* Stop sending new RAID offload reqs via the IO accelerator */
8286 		scsi_block_requests(h->scsi_host);
8287 		hpsa_set_ioaccel_status(h);
8288 		hpsa_drain_accel_commands(h);
8289 		/* Set 'accelerator path config change' bit */
8290 		dev_warn(&h->pdev->dev,
8291 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292 			h->events, event_type);
8293 		writel(h->events, &(h->cfgtable->clear_event_notify));
8294 		/* Set the "clear event notify field update" bit 6 */
8295 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8296 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8297 		hpsa_wait_for_clear_event_notify_ack(h);
8298 		scsi_unblock_requests(h->scsi_host);
8299 	} else {
8300 		/* Acknowledge controller notification events. */
8301 		writel(h->events, &(h->cfgtable->clear_event_notify));
8302 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8303 		hpsa_wait_for_clear_event_notify_ack(h);
8304 	}
8305 	return;
8306 }
8307 
8308 /* Check a register on the controller to see if there are configuration
8309  * changes (added/changed/removed logical drives, etc.) which mean that
8310  * we should rescan the controller for devices.
8311  * Also check flag for driver-initiated rescan.
8312  */
8313 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8314 {
8315 	if (h->drv_req_rescan) {
8316 		h->drv_req_rescan = 0;
8317 		return 1;
8318 	}
8319 
8320 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8321 		return 0;
8322 
8323 	h->events = readl(&(h->cfgtable->event_notify));
8324 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8325 }
8326 
8327 /*
8328  * Check if any of the offline devices have become ready
8329  */
8330 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8331 {
8332 	unsigned long flags;
8333 	struct offline_device_entry *d;
8334 	struct list_head *this, *tmp;
8335 
8336 	spin_lock_irqsave(&h->offline_device_lock, flags);
8337 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8338 		d = list_entry(this, struct offline_device_entry,
8339 				offline_list);
8340 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8341 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8342 			spin_lock_irqsave(&h->offline_device_lock, flags);
8343 			list_del(&d->offline_list);
8344 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8345 			return 1;
8346 		}
8347 		spin_lock_irqsave(&h->offline_device_lock, flags);
8348 	}
8349 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8350 	return 0;
8351 }
8352 
8353 static int hpsa_luns_changed(struct ctlr_info *h)
8354 {
8355 	int rc = 1; /* assume there are changes */
8356 	struct ReportLUNdata *logdev = NULL;
8357 
8358 	/* if we can't find out if lun data has changed,
8359 	 * assume that it has.
8360 	 */
8361 
8362 	if (!h->lastlogicals)
8363 		return rc;
8364 
8365 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8366 	if (!logdev)
8367 		return rc;
8368 
8369 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8370 		dev_warn(&h->pdev->dev,
8371 			"report luns failed, can't track lun changes.\n");
8372 		goto out;
8373 	}
8374 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8375 		dev_info(&h->pdev->dev,
8376 			"Lun changes detected.\n");
8377 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8378 		goto out;
8379 	} else
8380 		rc = 0; /* no changes detected. */
8381 out:
8382 	kfree(logdev);
8383 	return rc;
8384 }
8385 
8386 static void hpsa_perform_rescan(struct ctlr_info *h)
8387 {
8388 	struct Scsi_Host *sh = NULL;
8389 	unsigned long flags;
8390 
8391 	/*
8392 	 * Do the scan after the reset
8393 	 */
8394 	spin_lock_irqsave(&h->reset_lock, flags);
8395 	if (h->reset_in_progress) {
8396 		h->drv_req_rescan = 1;
8397 		spin_unlock_irqrestore(&h->reset_lock, flags);
8398 		return;
8399 	}
8400 	spin_unlock_irqrestore(&h->reset_lock, flags);
8401 
8402 	sh = scsi_host_get(h->scsi_host);
8403 	if (sh != NULL) {
8404 		hpsa_scan_start(sh);
8405 		scsi_host_put(sh);
8406 		h->drv_req_rescan = 0;
8407 	}
8408 }
8409 
8410 /*
8411  * watch for controller events
8412  */
8413 static void hpsa_event_monitor_worker(struct work_struct *work)
8414 {
8415 	struct ctlr_info *h = container_of(to_delayed_work(work),
8416 					struct ctlr_info, event_monitor_work);
8417 	unsigned long flags;
8418 
8419 	spin_lock_irqsave(&h->lock, flags);
8420 	if (h->remove_in_progress) {
8421 		spin_unlock_irqrestore(&h->lock, flags);
8422 		return;
8423 	}
8424 	spin_unlock_irqrestore(&h->lock, flags);
8425 
8426 	if (hpsa_ctlr_needs_rescan(h)) {
8427 		hpsa_ack_ctlr_events(h);
8428 		hpsa_perform_rescan(h);
8429 	}
8430 
8431 	spin_lock_irqsave(&h->lock, flags);
8432 	if (!h->remove_in_progress)
8433 		schedule_delayed_work(&h->event_monitor_work,
8434 					HPSA_EVENT_MONITOR_INTERVAL);
8435 	spin_unlock_irqrestore(&h->lock, flags);
8436 }
8437 
8438 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8439 {
8440 	unsigned long flags;
8441 	struct ctlr_info *h = container_of(to_delayed_work(work),
8442 					struct ctlr_info, rescan_ctlr_work);
8443 
8444 	spin_lock_irqsave(&h->lock, flags);
8445 	if (h->remove_in_progress) {
8446 		spin_unlock_irqrestore(&h->lock, flags);
8447 		return;
8448 	}
8449 	spin_unlock_irqrestore(&h->lock, flags);
8450 
8451 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8452 		hpsa_perform_rescan(h);
8453 	} else if (h->discovery_polling) {
8454 		if (hpsa_luns_changed(h)) {
8455 			dev_info(&h->pdev->dev,
8456 				"driver discovery polling rescan.\n");
8457 			hpsa_perform_rescan(h);
8458 		}
8459 	}
8460 	spin_lock_irqsave(&h->lock, flags);
8461 	if (!h->remove_in_progress)
8462 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8463 				h->heartbeat_sample_interval);
8464 	spin_unlock_irqrestore(&h->lock, flags);
8465 }
8466 
8467 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8468 {
8469 	unsigned long flags;
8470 	struct ctlr_info *h = container_of(to_delayed_work(work),
8471 					struct ctlr_info, monitor_ctlr_work);
8472 
8473 	detect_controller_lockup(h);
8474 	if (lockup_detected(h))
8475 		return;
8476 
8477 	spin_lock_irqsave(&h->lock, flags);
8478 	if (!h->remove_in_progress)
8479 		schedule_delayed_work(&h->monitor_ctlr_work,
8480 				h->heartbeat_sample_interval);
8481 	spin_unlock_irqrestore(&h->lock, flags);
8482 }
8483 
8484 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8485 						char *name)
8486 {
8487 	struct workqueue_struct *wq = NULL;
8488 
8489 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8490 	if (!wq)
8491 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8492 
8493 	return wq;
8494 }
8495 
8496 static void hpda_free_ctlr_info(struct ctlr_info *h)
8497 {
8498 	kfree(h->reply_map);
8499 	kfree(h);
8500 }
8501 
8502 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8503 {
8504 	struct ctlr_info *h;
8505 
8506 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8507 	if (!h)
8508 		return NULL;
8509 
8510 	h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8511 	if (!h->reply_map) {
8512 		kfree(h);
8513 		return NULL;
8514 	}
8515 	return h;
8516 }
8517 
8518 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8519 {
8520 	int dac, rc;
8521 	struct ctlr_info *h;
8522 	int try_soft_reset = 0;
8523 	unsigned long flags;
8524 	u32 board_id;
8525 
8526 	if (number_of_controllers == 0)
8527 		printk(KERN_INFO DRIVER_NAME "\n");
8528 
8529 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8530 	if (rc < 0) {
8531 		dev_warn(&pdev->dev, "Board ID not found\n");
8532 		return rc;
8533 	}
8534 
8535 	rc = hpsa_init_reset_devices(pdev, board_id);
8536 	if (rc) {
8537 		if (rc != -ENOTSUPP)
8538 			return rc;
8539 		/* If the reset fails in a particular way (it has no way to do
8540 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541 		 * a soft reset once we get the controller configured up to the
8542 		 * point that it can accept a command.
8543 		 */
8544 		try_soft_reset = 1;
8545 		rc = 0;
8546 	}
8547 
8548 reinit_after_soft_reset:
8549 
8550 	/* Command structures must be aligned on a 32-byte boundary because
8551 	 * the 5 lower bits of the address are used by the hardware. and by
8552 	 * the driver.  See comments in hpsa.h for more info.
8553 	 */
8554 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8555 	h = hpda_alloc_ctlr_info();
8556 	if (!h) {
8557 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8558 		return -ENOMEM;
8559 	}
8560 
8561 	h->pdev = pdev;
8562 
8563 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8564 	INIT_LIST_HEAD(&h->offline_device_list);
8565 	spin_lock_init(&h->lock);
8566 	spin_lock_init(&h->offline_device_lock);
8567 	spin_lock_init(&h->scan_lock);
8568 	spin_lock_init(&h->reset_lock);
8569 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8570 
8571 	/* Allocate and clear per-cpu variable lockup_detected */
8572 	h->lockup_detected = alloc_percpu(u32);
8573 	if (!h->lockup_detected) {
8574 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8575 		rc = -ENOMEM;
8576 		goto clean1;	/* aer/h */
8577 	}
8578 	set_lockup_detected_for_all_cpus(h, 0);
8579 
8580 	rc = hpsa_pci_init(h);
8581 	if (rc)
8582 		goto clean2;	/* lu, aer/h */
8583 
8584 	/* relies on h-> settings made by hpsa_pci_init, including
8585 	 * interrupt_mode h->intr */
8586 	rc = hpsa_scsi_host_alloc(h);
8587 	if (rc)
8588 		goto clean2_5;	/* pci, lu, aer/h */
8589 
8590 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8591 	h->ctlr = number_of_controllers;
8592 	number_of_controllers++;
8593 
8594 	/* configure PCI DMA stuff */
8595 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8596 	if (rc == 0) {
8597 		dac = 1;
8598 	} else {
8599 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8600 		if (rc == 0) {
8601 			dac = 0;
8602 		} else {
8603 			dev_err(&pdev->dev, "no suitable DMA available\n");
8604 			goto clean3;	/* shost, pci, lu, aer/h */
8605 		}
8606 	}
8607 
8608 	/* make sure the board interrupts are off */
8609 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610 
8611 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8612 	if (rc)
8613 		goto clean3;	/* shost, pci, lu, aer/h */
8614 	rc = hpsa_alloc_cmd_pool(h);
8615 	if (rc)
8616 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8617 	rc = hpsa_alloc_sg_chain_blocks(h);
8618 	if (rc)
8619 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8620 	init_waitqueue_head(&h->scan_wait_queue);
8621 	init_waitqueue_head(&h->event_sync_wait_queue);
8622 	mutex_init(&h->reset_mutex);
8623 	h->scan_finished = 1; /* no scan currently in progress */
8624 	h->scan_waiting = 0;
8625 
8626 	pci_set_drvdata(pdev, h);
8627 	h->ndevices = 0;
8628 
8629 	spin_lock_init(&h->devlock);
8630 	rc = hpsa_put_ctlr_into_performant_mode(h);
8631 	if (rc)
8632 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8633 
8634 	/* create the resubmit workqueue */
8635 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8636 	if (!h->rescan_ctlr_wq) {
8637 		rc = -ENOMEM;
8638 		goto clean7;
8639 	}
8640 
8641 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8642 	if (!h->resubmit_wq) {
8643 		rc = -ENOMEM;
8644 		goto clean7;	/* aer/h */
8645 	}
8646 
8647 	/*
8648 	 * At this point, the controller is ready to take commands.
8649 	 * Now, if reset_devices and the hard reset didn't work, try
8650 	 * the soft reset and see if that works.
8651 	 */
8652 	if (try_soft_reset) {
8653 
8654 		/* This is kind of gross.  We may or may not get a completion
8655 		 * from the soft reset command, and if we do, then the value
8656 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8657 		 * after the reset throwing away any completions we get during
8658 		 * that time.  Unregister the interrupt handler and register
8659 		 * fake ones to scoop up any residual completions.
8660 		 */
8661 		spin_lock_irqsave(&h->lock, flags);
8662 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663 		spin_unlock_irqrestore(&h->lock, flags);
8664 		hpsa_free_irqs(h);
8665 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8666 					hpsa_intx_discard_completions);
8667 		if (rc) {
8668 			dev_warn(&h->pdev->dev,
8669 				"Failed to request_irq after soft reset.\n");
8670 			/*
8671 			 * cannot goto clean7 or free_irqs will be called
8672 			 * again. Instead, do its work
8673 			 */
8674 			hpsa_free_performant_mode(h);	/* clean7 */
8675 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8676 			hpsa_free_cmd_pool(h);		/* clean5 */
8677 			/*
8678 			 * skip hpsa_free_irqs(h) clean4 since that
8679 			 * was just called before request_irqs failed
8680 			 */
8681 			goto clean3;
8682 		}
8683 
8684 		rc = hpsa_kdump_soft_reset(h);
8685 		if (rc)
8686 			/* Neither hard nor soft reset worked, we're hosed. */
8687 			goto clean7;
8688 
8689 		dev_info(&h->pdev->dev, "Board READY.\n");
8690 		dev_info(&h->pdev->dev,
8691 			"Waiting for stale completions to drain.\n");
8692 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8693 		msleep(10000);
8694 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8695 
8696 		rc = controller_reset_failed(h->cfgtable);
8697 		if (rc)
8698 			dev_info(&h->pdev->dev,
8699 				"Soft reset appears to have failed.\n");
8700 
8701 		/* since the controller's reset, we have to go back and re-init
8702 		 * everything.  Easiest to just forget what we've done and do it
8703 		 * all over again.
8704 		 */
8705 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8706 		try_soft_reset = 0;
8707 		if (rc)
8708 			/* don't goto clean, we already unallocated */
8709 			return -ENODEV;
8710 
8711 		goto reinit_after_soft_reset;
8712 	}
8713 
8714 	/* Enable Accelerated IO path at driver layer */
8715 	h->acciopath_status = 1;
8716 	/* Disable discovery polling.*/
8717 	h->discovery_polling = 0;
8718 
8719 
8720 	/* Turn the interrupts on so we can service requests */
8721 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8722 
8723 	hpsa_hba_inquiry(h);
8724 
8725 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8726 	if (!h->lastlogicals)
8727 		dev_info(&h->pdev->dev,
8728 			"Can't track change to report lun data\n");
8729 
8730 	/* hook into SCSI subsystem */
8731 	rc = hpsa_scsi_add_host(h);
8732 	if (rc)
8733 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8734 
8735 	/* Monitor the controller for firmware lockups */
8736 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8737 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8738 	schedule_delayed_work(&h->monitor_ctlr_work,
8739 				h->heartbeat_sample_interval);
8740 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8741 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8742 				h->heartbeat_sample_interval);
8743 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8744 	schedule_delayed_work(&h->event_monitor_work,
8745 				HPSA_EVENT_MONITOR_INTERVAL);
8746 	return 0;
8747 
8748 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749 	hpsa_free_performant_mode(h);
8750 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8751 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752 	hpsa_free_sg_chain_blocks(h);
8753 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8754 	hpsa_free_cmd_pool(h);
8755 clean4: /* irq, shost, pci, lu, aer/h */
8756 	hpsa_free_irqs(h);
8757 clean3: /* shost, pci, lu, aer/h */
8758 	scsi_host_put(h->scsi_host);
8759 	h->scsi_host = NULL;
8760 clean2_5: /* pci, lu, aer/h */
8761 	hpsa_free_pci_init(h);
8762 clean2: /* lu, aer/h */
8763 	if (h->lockup_detected) {
8764 		free_percpu(h->lockup_detected);
8765 		h->lockup_detected = NULL;
8766 	}
8767 clean1:	/* wq/aer/h */
8768 	if (h->resubmit_wq) {
8769 		destroy_workqueue(h->resubmit_wq);
8770 		h->resubmit_wq = NULL;
8771 	}
8772 	if (h->rescan_ctlr_wq) {
8773 		destroy_workqueue(h->rescan_ctlr_wq);
8774 		h->rescan_ctlr_wq = NULL;
8775 	}
8776 	kfree(h);
8777 	return rc;
8778 }
8779 
8780 static void hpsa_flush_cache(struct ctlr_info *h)
8781 {
8782 	char *flush_buf;
8783 	struct CommandList *c;
8784 	int rc;
8785 
8786 	if (unlikely(lockup_detected(h)))
8787 		return;
8788 	flush_buf = kzalloc(4, GFP_KERNEL);
8789 	if (!flush_buf)
8790 		return;
8791 
8792 	c = cmd_alloc(h);
8793 
8794 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8795 		RAID_CTLR_LUNID, TYPE_CMD)) {
8796 		goto out;
8797 	}
8798 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8799 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8800 	if (rc)
8801 		goto out;
8802 	if (c->err_info->CommandStatus != 0)
8803 out:
8804 		dev_warn(&h->pdev->dev,
8805 			"error flushing cache on controller\n");
8806 	cmd_free(h, c);
8807 	kfree(flush_buf);
8808 }
8809 
8810 /* Make controller gather fresh report lun data each time we
8811  * send down a report luns request
8812  */
8813 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8814 {
8815 	u32 *options;
8816 	struct CommandList *c;
8817 	int rc;
8818 
8819 	/* Don't bother trying to set diag options if locked up */
8820 	if (unlikely(h->lockup_detected))
8821 		return;
8822 
8823 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8824 	if (!options)
8825 		return;
8826 
8827 	c = cmd_alloc(h);
8828 
8829 	/* first, get the current diag options settings */
8830 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8831 		RAID_CTLR_LUNID, TYPE_CMD))
8832 		goto errout;
8833 
8834 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8835 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8836 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8837 		goto errout;
8838 
8839 	/* Now, set the bit for disabling the RLD caching */
8840 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8841 
8842 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8843 		RAID_CTLR_LUNID, TYPE_CMD))
8844 		goto errout;
8845 
8846 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8847 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8848 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8849 		goto errout;
8850 
8851 	/* Now verify that it got set: */
8852 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8853 		RAID_CTLR_LUNID, TYPE_CMD))
8854 		goto errout;
8855 
8856 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8857 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8858 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8859 		goto errout;
8860 
8861 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8862 		goto out;
8863 
8864 errout:
8865 	dev_err(&h->pdev->dev,
8866 			"Error: failed to disable report lun data caching.\n");
8867 out:
8868 	cmd_free(h, c);
8869 	kfree(options);
8870 }
8871 
8872 static void hpsa_shutdown(struct pci_dev *pdev)
8873 {
8874 	struct ctlr_info *h;
8875 
8876 	h = pci_get_drvdata(pdev);
8877 	/* Turn board interrupts off  and send the flush cache command
8878 	 * sendcmd will turn off interrupt, and send the flush...
8879 	 * To write all data in the battery backed cache to disks
8880 	 */
8881 	hpsa_flush_cache(h);
8882 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8883 	hpsa_free_irqs(h);			/* init_one 4 */
8884 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8885 }
8886 
8887 static void hpsa_free_device_info(struct ctlr_info *h)
8888 {
8889 	int i;
8890 
8891 	for (i = 0; i < h->ndevices; i++) {
8892 		kfree(h->dev[i]);
8893 		h->dev[i] = NULL;
8894 	}
8895 }
8896 
8897 static void hpsa_remove_one(struct pci_dev *pdev)
8898 {
8899 	struct ctlr_info *h;
8900 	unsigned long flags;
8901 
8902 	if (pci_get_drvdata(pdev) == NULL) {
8903 		dev_err(&pdev->dev, "unable to remove device\n");
8904 		return;
8905 	}
8906 	h = pci_get_drvdata(pdev);
8907 
8908 	/* Get rid of any controller monitoring work items */
8909 	spin_lock_irqsave(&h->lock, flags);
8910 	h->remove_in_progress = 1;
8911 	spin_unlock_irqrestore(&h->lock, flags);
8912 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8913 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8914 	cancel_delayed_work_sync(&h->event_monitor_work);
8915 	destroy_workqueue(h->rescan_ctlr_wq);
8916 	destroy_workqueue(h->resubmit_wq);
8917 
8918 	hpsa_delete_sas_host(h);
8919 
8920 	/*
8921 	 * Call before disabling interrupts.
8922 	 * scsi_remove_host can trigger I/O operations especially
8923 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924 	 * operations which cannot complete and will hang the system.
8925 	 */
8926 	if (h->scsi_host)
8927 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8928 	/* includes hpsa_free_irqs - init_one 4 */
8929 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930 	hpsa_shutdown(pdev);
8931 
8932 	hpsa_free_device_info(h);		/* scan */
8933 
8934 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8935 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8936 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8937 	hpsa_free_performant_mode(h);			/* init_one 7 */
8938 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8939 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8940 	kfree(h->lastlogicals);
8941 
8942 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8943 
8944 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8945 	h->scsi_host = NULL;				/* init_one 3 */
8946 
8947 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8949 
8950 	free_percpu(h->lockup_detected);		/* init_one 2 */
8951 	h->lockup_detected = NULL;			/* init_one 2 */
8952 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8953 
8954 	hpda_free_ctlr_info(h);				/* init_one 1 */
8955 }
8956 
8957 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8958 	__attribute__((unused)) pm_message_t state)
8959 {
8960 	return -ENOSYS;
8961 }
8962 
8963 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8964 {
8965 	return -ENOSYS;
8966 }
8967 
8968 static struct pci_driver hpsa_pci_driver = {
8969 	.name = HPSA,
8970 	.probe = hpsa_init_one,
8971 	.remove = hpsa_remove_one,
8972 	.id_table = hpsa_pci_device_id,	/* id_table */
8973 	.shutdown = hpsa_shutdown,
8974 	.suspend = hpsa_suspend,
8975 	.resume = hpsa_resume,
8976 };
8977 
8978 /* Fill in bucket_map[], given nsgs (the max number of
8979  * scatter gather elements supported) and bucket[],
8980  * which is an array of 8 integers.  The bucket[] array
8981  * contains 8 different DMA transfer sizes (in 16
8982  * byte increments) which the controller uses to fetch
8983  * commands.  This function fills in bucket_map[], which
8984  * maps a given number of scatter gather elements to one of
8985  * the 8 DMA transfer sizes.  The point of it is to allow the
8986  * controller to only do as much DMA as needed to fetch the
8987  * command, with the DMA transfer size encoded in the lower
8988  * bits of the command address.
8989  */
8990 static void  calc_bucket_map(int bucket[], int num_buckets,
8991 	int nsgs, int min_blocks, u32 *bucket_map)
8992 {
8993 	int i, j, b, size;
8994 
8995 	/* Note, bucket_map must have nsgs+1 entries. */
8996 	for (i = 0; i <= nsgs; i++) {
8997 		/* Compute size of a command with i SG entries */
8998 		size = i + min_blocks;
8999 		b = num_buckets; /* Assume the biggest bucket */
9000 		/* Find the bucket that is just big enough */
9001 		for (j = 0; j < num_buckets; j++) {
9002 			if (bucket[j] >= size) {
9003 				b = j;
9004 				break;
9005 			}
9006 		}
9007 		/* for a command with i SG entries, use bucket b. */
9008 		bucket_map[i] = b;
9009 	}
9010 }
9011 
9012 /*
9013  * return -ENODEV on err, 0 on success (or no action)
9014  * allocates numerous items that must be freed later
9015  */
9016 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9017 {
9018 	int i;
9019 	unsigned long register_value;
9020 	unsigned long transMethod = CFGTBL_Trans_Performant |
9021 			(trans_support & CFGTBL_Trans_use_short_tags) |
9022 				CFGTBL_Trans_enable_directed_msix |
9023 			(trans_support & (CFGTBL_Trans_io_accel1 |
9024 				CFGTBL_Trans_io_accel2));
9025 	struct access_method access = SA5_performant_access;
9026 
9027 	/* This is a bit complicated.  There are 8 registers on
9028 	 * the controller which we write to to tell it 8 different
9029 	 * sizes of commands which there may be.  It's a way of
9030 	 * reducing the DMA done to fetch each command.  Encoded into
9031 	 * each command's tag are 3 bits which communicate to the controller
9032 	 * which of the eight sizes that command fits within.  The size of
9033 	 * each command depends on how many scatter gather entries there are.
9034 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9035 	 * with the number of 16-byte blocks a command of that size requires.
9036 	 * The smallest command possible requires 5 such 16 byte blocks.
9037 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038 	 * blocks.  Note, this only extends to the SG entries contained
9039 	 * within the command block, and does not extend to chained blocks
9040 	 * of SG elements.   bft[] contains the eight values we write to
9041 	 * the registers.  They are not evenly distributed, but have more
9042 	 * sizes for small commands, and fewer sizes for larger commands.
9043 	 */
9044 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9045 #define MIN_IOACCEL2_BFT_ENTRY 5
9046 #define HPSA_IOACCEL2_HEADER_SZ 4
9047 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9048 			13, 14, 15, 16, 17, 18, 19,
9049 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9050 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9051 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9052 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9053 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9054 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9055 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9056 	/*  5 = 1 s/g entry or 4k
9057 	 *  6 = 2 s/g entry or 8k
9058 	 *  8 = 4 s/g entry or 16k
9059 	 * 10 = 6 s/g entry or 24k
9060 	 */
9061 
9062 	/* If the controller supports either ioaccel method then
9063 	 * we can also use the RAID stack submit path that does not
9064 	 * perform the superfluous readl() after each command submission.
9065 	 */
9066 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9067 		access = SA5_performant_access_no_read;
9068 
9069 	/* Controller spec: zero out this buffer. */
9070 	for (i = 0; i < h->nreply_queues; i++)
9071 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9072 
9073 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9074 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9075 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9076 	for (i = 0; i < 8; i++)
9077 		writel(bft[i], &h->transtable->BlockFetch[i]);
9078 
9079 	/* size of controller ring buffer */
9080 	writel(h->max_commands, &h->transtable->RepQSize);
9081 	writel(h->nreply_queues, &h->transtable->RepQCount);
9082 	writel(0, &h->transtable->RepQCtrAddrLow32);
9083 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9084 
9085 	for (i = 0; i < h->nreply_queues; i++) {
9086 		writel(0, &h->transtable->RepQAddr[i].upper);
9087 		writel(h->reply_queue[i].busaddr,
9088 			&h->transtable->RepQAddr[i].lower);
9089 	}
9090 
9091 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9092 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9093 	/*
9094 	 * enable outbound interrupt coalescing in accelerator mode;
9095 	 */
9096 	if (trans_support & CFGTBL_Trans_io_accel1) {
9097 		access = SA5_ioaccel_mode1_access;
9098 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9099 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9100 	} else
9101 		if (trans_support & CFGTBL_Trans_io_accel2)
9102 			access = SA5_ioaccel_mode2_access;
9103 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9104 	if (hpsa_wait_for_mode_change_ack(h)) {
9105 		dev_err(&h->pdev->dev,
9106 			"performant mode problem - doorbell timeout\n");
9107 		return -ENODEV;
9108 	}
9109 	register_value = readl(&(h->cfgtable->TransportActive));
9110 	if (!(register_value & CFGTBL_Trans_Performant)) {
9111 		dev_err(&h->pdev->dev,
9112 			"performant mode problem - transport not active\n");
9113 		return -ENODEV;
9114 	}
9115 	/* Change the access methods to the performant access methods */
9116 	h->access = access;
9117 	h->transMethod = transMethod;
9118 
9119 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9120 		(trans_support & CFGTBL_Trans_io_accel2)))
9121 		return 0;
9122 
9123 	if (trans_support & CFGTBL_Trans_io_accel1) {
9124 		/* Set up I/O accelerator mode */
9125 		for (i = 0; i < h->nreply_queues; i++) {
9126 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9127 			h->reply_queue[i].current_entry =
9128 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9129 		}
9130 		bft[7] = h->ioaccel_maxsg + 8;
9131 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9132 				h->ioaccel1_blockFetchTable);
9133 
9134 		/* initialize all reply queue entries to unused */
9135 		for (i = 0; i < h->nreply_queues; i++)
9136 			memset(h->reply_queue[i].head,
9137 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9138 				h->reply_queue_size);
9139 
9140 		/* set all the constant fields in the accelerator command
9141 		 * frames once at init time to save CPU cycles later.
9142 		 */
9143 		for (i = 0; i < h->nr_cmds; i++) {
9144 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9145 
9146 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9147 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9148 					(i * sizeof(struct ErrorInfo)));
9149 			cp->err_info_len = sizeof(struct ErrorInfo);
9150 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9151 			cp->host_context_flags =
9152 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9153 			cp->timeout_sec = 0;
9154 			cp->ReplyQueue = 0;
9155 			cp->tag =
9156 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9157 			cp->host_addr =
9158 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9159 					(i * sizeof(struct io_accel1_cmd)));
9160 		}
9161 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9162 		u64 cfg_offset, cfg_base_addr_index;
9163 		u32 bft2_offset, cfg_base_addr;
9164 		int rc;
9165 
9166 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9167 			&cfg_base_addr_index, &cfg_offset);
9168 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9169 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9170 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9171 				4, h->ioaccel2_blockFetchTable);
9172 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9173 		BUILD_BUG_ON(offsetof(struct CfgTable,
9174 				io_accel_request_size_offset) != 0xb8);
9175 		h->ioaccel2_bft2_regs =
9176 			remap_pci_mem(pci_resource_start(h->pdev,
9177 					cfg_base_addr_index) +
9178 					cfg_offset + bft2_offset,
9179 					ARRAY_SIZE(bft2) *
9180 					sizeof(*h->ioaccel2_bft2_regs));
9181 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9182 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9183 	}
9184 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9185 	if (hpsa_wait_for_mode_change_ack(h)) {
9186 		dev_err(&h->pdev->dev,
9187 			"performant mode problem - enabling ioaccel mode\n");
9188 		return -ENODEV;
9189 	}
9190 	return 0;
9191 }
9192 
9193 /* Free ioaccel1 mode command blocks and block fetch table */
9194 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9195 {
9196 	if (h->ioaccel_cmd_pool) {
9197 		pci_free_consistent(h->pdev,
9198 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9199 			h->ioaccel_cmd_pool,
9200 			h->ioaccel_cmd_pool_dhandle);
9201 		h->ioaccel_cmd_pool = NULL;
9202 		h->ioaccel_cmd_pool_dhandle = 0;
9203 	}
9204 	kfree(h->ioaccel1_blockFetchTable);
9205 	h->ioaccel1_blockFetchTable = NULL;
9206 }
9207 
9208 /* Allocate ioaccel1 mode command blocks and block fetch table */
9209 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9210 {
9211 	h->ioaccel_maxsg =
9212 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9213 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9214 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9215 
9216 	/* Command structures must be aligned on a 128-byte boundary
9217 	 * because the 7 lower bits of the address are used by the
9218 	 * hardware.
9219 	 */
9220 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9221 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9222 	h->ioaccel_cmd_pool =
9223 		pci_alloc_consistent(h->pdev,
9224 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9225 			&(h->ioaccel_cmd_pool_dhandle));
9226 
9227 	h->ioaccel1_blockFetchTable =
9228 		kmalloc(((h->ioaccel_maxsg + 1) *
9229 				sizeof(u32)), GFP_KERNEL);
9230 
9231 	if ((h->ioaccel_cmd_pool == NULL) ||
9232 		(h->ioaccel1_blockFetchTable == NULL))
9233 		goto clean_up;
9234 
9235 	memset(h->ioaccel_cmd_pool, 0,
9236 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9237 	return 0;
9238 
9239 clean_up:
9240 	hpsa_free_ioaccel1_cmd_and_bft(h);
9241 	return -ENOMEM;
9242 }
9243 
9244 /* Free ioaccel2 mode command blocks and block fetch table */
9245 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9246 {
9247 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9248 
9249 	if (h->ioaccel2_cmd_pool) {
9250 		pci_free_consistent(h->pdev,
9251 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9252 			h->ioaccel2_cmd_pool,
9253 			h->ioaccel2_cmd_pool_dhandle);
9254 		h->ioaccel2_cmd_pool = NULL;
9255 		h->ioaccel2_cmd_pool_dhandle = 0;
9256 	}
9257 	kfree(h->ioaccel2_blockFetchTable);
9258 	h->ioaccel2_blockFetchTable = NULL;
9259 }
9260 
9261 /* Allocate ioaccel2 mode command blocks and block fetch table */
9262 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9263 {
9264 	int rc;
9265 
9266 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9267 
9268 	h->ioaccel_maxsg =
9269 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9270 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9271 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9272 
9273 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9274 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9275 	h->ioaccel2_cmd_pool =
9276 		pci_alloc_consistent(h->pdev,
9277 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9278 			&(h->ioaccel2_cmd_pool_dhandle));
9279 
9280 	h->ioaccel2_blockFetchTable =
9281 		kmalloc(((h->ioaccel_maxsg + 1) *
9282 				sizeof(u32)), GFP_KERNEL);
9283 
9284 	if ((h->ioaccel2_cmd_pool == NULL) ||
9285 		(h->ioaccel2_blockFetchTable == NULL)) {
9286 		rc = -ENOMEM;
9287 		goto clean_up;
9288 	}
9289 
9290 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9291 	if (rc)
9292 		goto clean_up;
9293 
9294 	memset(h->ioaccel2_cmd_pool, 0,
9295 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9296 	return 0;
9297 
9298 clean_up:
9299 	hpsa_free_ioaccel2_cmd_and_bft(h);
9300 	return rc;
9301 }
9302 
9303 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304 static void hpsa_free_performant_mode(struct ctlr_info *h)
9305 {
9306 	kfree(h->blockFetchTable);
9307 	h->blockFetchTable = NULL;
9308 	hpsa_free_reply_queues(h);
9309 	hpsa_free_ioaccel1_cmd_and_bft(h);
9310 	hpsa_free_ioaccel2_cmd_and_bft(h);
9311 }
9312 
9313 /* return -ENODEV on error, 0 on success (or no action)
9314  * allocates numerous items that must be freed later
9315  */
9316 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9317 {
9318 	u32 trans_support;
9319 	unsigned long transMethod = CFGTBL_Trans_Performant |
9320 					CFGTBL_Trans_use_short_tags;
9321 	int i, rc;
9322 
9323 	if (hpsa_simple_mode)
9324 		return 0;
9325 
9326 	trans_support = readl(&(h->cfgtable->TransportSupport));
9327 	if (!(trans_support & PERFORMANT_MODE))
9328 		return 0;
9329 
9330 	/* Check for I/O accelerator mode support */
9331 	if (trans_support & CFGTBL_Trans_io_accel1) {
9332 		transMethod |= CFGTBL_Trans_io_accel1 |
9333 				CFGTBL_Trans_enable_directed_msix;
9334 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9335 		if (rc)
9336 			return rc;
9337 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9338 		transMethod |= CFGTBL_Trans_io_accel2 |
9339 				CFGTBL_Trans_enable_directed_msix;
9340 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9341 		if (rc)
9342 			return rc;
9343 	}
9344 
9345 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9346 	hpsa_get_max_perf_mode_cmds(h);
9347 	/* Performant mode ring buffer and supporting data structures */
9348 	h->reply_queue_size = h->max_commands * sizeof(u64);
9349 
9350 	for (i = 0; i < h->nreply_queues; i++) {
9351 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9352 						h->reply_queue_size,
9353 						&(h->reply_queue[i].busaddr));
9354 		if (!h->reply_queue[i].head) {
9355 			rc = -ENOMEM;
9356 			goto clean1;	/* rq, ioaccel */
9357 		}
9358 		h->reply_queue[i].size = h->max_commands;
9359 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9360 		h->reply_queue[i].current_entry = 0;
9361 	}
9362 
9363 	/* Need a block fetch table for performant mode */
9364 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9365 				sizeof(u32)), GFP_KERNEL);
9366 	if (!h->blockFetchTable) {
9367 		rc = -ENOMEM;
9368 		goto clean1;	/* rq, ioaccel */
9369 	}
9370 
9371 	rc = hpsa_enter_performant_mode(h, trans_support);
9372 	if (rc)
9373 		goto clean2;	/* bft, rq, ioaccel */
9374 	return 0;
9375 
9376 clean2:	/* bft, rq, ioaccel */
9377 	kfree(h->blockFetchTable);
9378 	h->blockFetchTable = NULL;
9379 clean1:	/* rq, ioaccel */
9380 	hpsa_free_reply_queues(h);
9381 	hpsa_free_ioaccel1_cmd_and_bft(h);
9382 	hpsa_free_ioaccel2_cmd_and_bft(h);
9383 	return rc;
9384 }
9385 
9386 static int is_accelerated_cmd(struct CommandList *c)
9387 {
9388 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9389 }
9390 
9391 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9392 {
9393 	struct CommandList *c = NULL;
9394 	int i, accel_cmds_out;
9395 	int refcount;
9396 
9397 	do { /* wait for all outstanding ioaccel commands to drain out */
9398 		accel_cmds_out = 0;
9399 		for (i = 0; i < h->nr_cmds; i++) {
9400 			c = h->cmd_pool + i;
9401 			refcount = atomic_inc_return(&c->refcount);
9402 			if (refcount > 1) /* Command is allocated */
9403 				accel_cmds_out += is_accelerated_cmd(c);
9404 			cmd_free(h, c);
9405 		}
9406 		if (accel_cmds_out <= 0)
9407 			break;
9408 		msleep(100);
9409 	} while (1);
9410 }
9411 
9412 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9413 				struct hpsa_sas_port *hpsa_sas_port)
9414 {
9415 	struct hpsa_sas_phy *hpsa_sas_phy;
9416 	struct sas_phy *phy;
9417 
9418 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9419 	if (!hpsa_sas_phy)
9420 		return NULL;
9421 
9422 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9423 		hpsa_sas_port->next_phy_index);
9424 	if (!phy) {
9425 		kfree(hpsa_sas_phy);
9426 		return NULL;
9427 	}
9428 
9429 	hpsa_sas_port->next_phy_index++;
9430 	hpsa_sas_phy->phy = phy;
9431 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9432 
9433 	return hpsa_sas_phy;
9434 }
9435 
9436 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9437 {
9438 	struct sas_phy *phy = hpsa_sas_phy->phy;
9439 
9440 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9441 	if (hpsa_sas_phy->added_to_port)
9442 		list_del(&hpsa_sas_phy->phy_list_entry);
9443 	sas_phy_delete(phy);
9444 	kfree(hpsa_sas_phy);
9445 }
9446 
9447 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9448 {
9449 	int rc;
9450 	struct hpsa_sas_port *hpsa_sas_port;
9451 	struct sas_phy *phy;
9452 	struct sas_identify *identify;
9453 
9454 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9455 	phy = hpsa_sas_phy->phy;
9456 
9457 	identify = &phy->identify;
9458 	memset(identify, 0, sizeof(*identify));
9459 	identify->sas_address = hpsa_sas_port->sas_address;
9460 	identify->device_type = SAS_END_DEVICE;
9461 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9462 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9463 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9464 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9465 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9466 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9467 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9468 
9469 	rc = sas_phy_add(hpsa_sas_phy->phy);
9470 	if (rc)
9471 		return rc;
9472 
9473 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9474 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9475 			&hpsa_sas_port->phy_list_head);
9476 	hpsa_sas_phy->added_to_port = true;
9477 
9478 	return 0;
9479 }
9480 
9481 static int
9482 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9483 				struct sas_rphy *rphy)
9484 {
9485 	struct sas_identify *identify;
9486 
9487 	identify = &rphy->identify;
9488 	identify->sas_address = hpsa_sas_port->sas_address;
9489 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9491 
9492 	return sas_rphy_add(rphy);
9493 }
9494 
9495 static struct hpsa_sas_port
9496 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9497 				u64 sas_address)
9498 {
9499 	int rc;
9500 	struct hpsa_sas_port *hpsa_sas_port;
9501 	struct sas_port *port;
9502 
9503 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9504 	if (!hpsa_sas_port)
9505 		return NULL;
9506 
9507 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9508 	hpsa_sas_port->parent_node = hpsa_sas_node;
9509 
9510 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9511 	if (!port)
9512 		goto free_hpsa_port;
9513 
9514 	rc = sas_port_add(port);
9515 	if (rc)
9516 		goto free_sas_port;
9517 
9518 	hpsa_sas_port->port = port;
9519 	hpsa_sas_port->sas_address = sas_address;
9520 	list_add_tail(&hpsa_sas_port->port_list_entry,
9521 			&hpsa_sas_node->port_list_head);
9522 
9523 	return hpsa_sas_port;
9524 
9525 free_sas_port:
9526 	sas_port_free(port);
9527 free_hpsa_port:
9528 	kfree(hpsa_sas_port);
9529 
9530 	return NULL;
9531 }
9532 
9533 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9534 {
9535 	struct hpsa_sas_phy *hpsa_sas_phy;
9536 	struct hpsa_sas_phy *next;
9537 
9538 	list_for_each_entry_safe(hpsa_sas_phy, next,
9539 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9540 		hpsa_free_sas_phy(hpsa_sas_phy);
9541 
9542 	sas_port_delete(hpsa_sas_port->port);
9543 	list_del(&hpsa_sas_port->port_list_entry);
9544 	kfree(hpsa_sas_port);
9545 }
9546 
9547 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9548 {
9549 	struct hpsa_sas_node *hpsa_sas_node;
9550 
9551 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9552 	if (hpsa_sas_node) {
9553 		hpsa_sas_node->parent_dev = parent_dev;
9554 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9555 	}
9556 
9557 	return hpsa_sas_node;
9558 }
9559 
9560 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9561 {
9562 	struct hpsa_sas_port *hpsa_sas_port;
9563 	struct hpsa_sas_port *next;
9564 
9565 	if (!hpsa_sas_node)
9566 		return;
9567 
9568 	list_for_each_entry_safe(hpsa_sas_port, next,
9569 			&hpsa_sas_node->port_list_head, port_list_entry)
9570 		hpsa_free_sas_port(hpsa_sas_port);
9571 
9572 	kfree(hpsa_sas_node);
9573 }
9574 
9575 static struct hpsa_scsi_dev_t
9576 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9577 					struct sas_rphy *rphy)
9578 {
9579 	int i;
9580 	struct hpsa_scsi_dev_t *device;
9581 
9582 	for (i = 0; i < h->ndevices; i++) {
9583 		device = h->dev[i];
9584 		if (!device->sas_port)
9585 			continue;
9586 		if (device->sas_port->rphy == rphy)
9587 			return device;
9588 	}
9589 
9590 	return NULL;
9591 }
9592 
9593 static int hpsa_add_sas_host(struct ctlr_info *h)
9594 {
9595 	int rc;
9596 	struct device *parent_dev;
9597 	struct hpsa_sas_node *hpsa_sas_node;
9598 	struct hpsa_sas_port *hpsa_sas_port;
9599 	struct hpsa_sas_phy *hpsa_sas_phy;
9600 
9601 	parent_dev = &h->scsi_host->shost_dev;
9602 
9603 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9604 	if (!hpsa_sas_node)
9605 		return -ENOMEM;
9606 
9607 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9608 	if (!hpsa_sas_port) {
9609 		rc = -ENODEV;
9610 		goto free_sas_node;
9611 	}
9612 
9613 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9614 	if (!hpsa_sas_phy) {
9615 		rc = -ENODEV;
9616 		goto free_sas_port;
9617 	}
9618 
9619 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9620 	if (rc)
9621 		goto free_sas_phy;
9622 
9623 	h->sas_host = hpsa_sas_node;
9624 
9625 	return 0;
9626 
9627 free_sas_phy:
9628 	hpsa_free_sas_phy(hpsa_sas_phy);
9629 free_sas_port:
9630 	hpsa_free_sas_port(hpsa_sas_port);
9631 free_sas_node:
9632 	hpsa_free_sas_node(hpsa_sas_node);
9633 
9634 	return rc;
9635 }
9636 
9637 static void hpsa_delete_sas_host(struct ctlr_info *h)
9638 {
9639 	hpsa_free_sas_node(h->sas_host);
9640 }
9641 
9642 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9643 				struct hpsa_scsi_dev_t *device)
9644 {
9645 	int rc;
9646 	struct hpsa_sas_port *hpsa_sas_port;
9647 	struct sas_rphy *rphy;
9648 
9649 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9650 	if (!hpsa_sas_port)
9651 		return -ENOMEM;
9652 
9653 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9654 	if (!rphy) {
9655 		rc = -ENODEV;
9656 		goto free_sas_port;
9657 	}
9658 
9659 	hpsa_sas_port->rphy = rphy;
9660 	device->sas_port = hpsa_sas_port;
9661 
9662 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9663 	if (rc)
9664 		goto free_sas_port;
9665 
9666 	return 0;
9667 
9668 free_sas_port:
9669 	hpsa_free_sas_port(hpsa_sas_port);
9670 	device->sas_port = NULL;
9671 
9672 	return rc;
9673 }
9674 
9675 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9676 {
9677 	if (device->sas_port) {
9678 		hpsa_free_sas_port(device->sas_port);
9679 		device->sas_port = NULL;
9680 	}
9681 }
9682 
9683 static int
9684 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9685 {
9686 	return 0;
9687 }
9688 
9689 static int
9690 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9691 {
9692 	*identifier = rphy->identify.sas_address;
9693 	return 0;
9694 }
9695 
9696 static int
9697 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9698 {
9699 	return -ENXIO;
9700 }
9701 
9702 static int
9703 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9704 {
9705 	return 0;
9706 }
9707 
9708 static int
9709 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9710 {
9711 	return 0;
9712 }
9713 
9714 static int
9715 hpsa_sas_phy_setup(struct sas_phy *phy)
9716 {
9717 	return 0;
9718 }
9719 
9720 static void
9721 hpsa_sas_phy_release(struct sas_phy *phy)
9722 {
9723 }
9724 
9725 static int
9726 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9727 {
9728 	return -EINVAL;
9729 }
9730 
9731 static struct sas_function_template hpsa_sas_transport_functions = {
9732 	.get_linkerrors = hpsa_sas_get_linkerrors,
9733 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9734 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9735 	.phy_reset = hpsa_sas_phy_reset,
9736 	.phy_enable = hpsa_sas_phy_enable,
9737 	.phy_setup = hpsa_sas_phy_setup,
9738 	.phy_release = hpsa_sas_phy_release,
9739 	.set_phy_speed = hpsa_sas_phy_speed,
9740 };
9741 
9742 /*
9743  *  This is it.  Register the PCI driver information for the cards we control
9744  *  the OS will call our registered routines when it finds one of our cards.
9745  */
9746 static int __init hpsa_init(void)
9747 {
9748 	int rc;
9749 
9750 	hpsa_sas_transport_template =
9751 		sas_attach_transport(&hpsa_sas_transport_functions);
9752 	if (!hpsa_sas_transport_template)
9753 		return -ENODEV;
9754 
9755 	rc = pci_register_driver(&hpsa_pci_driver);
9756 
9757 	if (rc)
9758 		sas_release_transport(hpsa_sas_transport_template);
9759 
9760 	return rc;
9761 }
9762 
9763 static void __exit hpsa_cleanup(void)
9764 {
9765 	pci_unregister_driver(&hpsa_pci_driver);
9766 	sas_release_transport(hpsa_sas_transport_template);
9767 }
9768 
9769 static void __attribute__((unused)) verify_offsets(void)
9770 {
9771 #define VERIFY_OFFSET(member, offset) \
9772 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9773 
9774 	VERIFY_OFFSET(structure_size, 0);
9775 	VERIFY_OFFSET(volume_blk_size, 4);
9776 	VERIFY_OFFSET(volume_blk_cnt, 8);
9777 	VERIFY_OFFSET(phys_blk_shift, 16);
9778 	VERIFY_OFFSET(parity_rotation_shift, 17);
9779 	VERIFY_OFFSET(strip_size, 18);
9780 	VERIFY_OFFSET(disk_starting_blk, 20);
9781 	VERIFY_OFFSET(disk_blk_cnt, 28);
9782 	VERIFY_OFFSET(data_disks_per_row, 36);
9783 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9784 	VERIFY_OFFSET(row_cnt, 40);
9785 	VERIFY_OFFSET(layout_map_count, 42);
9786 	VERIFY_OFFSET(flags, 44);
9787 	VERIFY_OFFSET(dekindex, 46);
9788 	/* VERIFY_OFFSET(reserved, 48 */
9789 	VERIFY_OFFSET(data, 64);
9790 
9791 #undef VERIFY_OFFSET
9792 
9793 #define VERIFY_OFFSET(member, offset) \
9794 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9795 
9796 	VERIFY_OFFSET(IU_type, 0);
9797 	VERIFY_OFFSET(direction, 1);
9798 	VERIFY_OFFSET(reply_queue, 2);
9799 	/* VERIFY_OFFSET(reserved1, 3);  */
9800 	VERIFY_OFFSET(scsi_nexus, 4);
9801 	VERIFY_OFFSET(Tag, 8);
9802 	VERIFY_OFFSET(cdb, 16);
9803 	VERIFY_OFFSET(cciss_lun, 32);
9804 	VERIFY_OFFSET(data_len, 40);
9805 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9806 	VERIFY_OFFSET(sg_count, 45);
9807 	/* VERIFY_OFFSET(reserved3 */
9808 	VERIFY_OFFSET(err_ptr, 48);
9809 	VERIFY_OFFSET(err_len, 56);
9810 	/* VERIFY_OFFSET(reserved4  */
9811 	VERIFY_OFFSET(sg, 64);
9812 
9813 #undef VERIFY_OFFSET
9814 
9815 #define VERIFY_OFFSET(member, offset) \
9816 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9817 
9818 	VERIFY_OFFSET(dev_handle, 0x00);
9819 	VERIFY_OFFSET(reserved1, 0x02);
9820 	VERIFY_OFFSET(function, 0x03);
9821 	VERIFY_OFFSET(reserved2, 0x04);
9822 	VERIFY_OFFSET(err_info, 0x0C);
9823 	VERIFY_OFFSET(reserved3, 0x10);
9824 	VERIFY_OFFSET(err_info_len, 0x12);
9825 	VERIFY_OFFSET(reserved4, 0x13);
9826 	VERIFY_OFFSET(sgl_offset, 0x14);
9827 	VERIFY_OFFSET(reserved5, 0x15);
9828 	VERIFY_OFFSET(transfer_len, 0x1C);
9829 	VERIFY_OFFSET(reserved6, 0x20);
9830 	VERIFY_OFFSET(io_flags, 0x24);
9831 	VERIFY_OFFSET(reserved7, 0x26);
9832 	VERIFY_OFFSET(LUN, 0x34);
9833 	VERIFY_OFFSET(control, 0x3C);
9834 	VERIFY_OFFSET(CDB, 0x40);
9835 	VERIFY_OFFSET(reserved8, 0x50);
9836 	VERIFY_OFFSET(host_context_flags, 0x60);
9837 	VERIFY_OFFSET(timeout_sec, 0x62);
9838 	VERIFY_OFFSET(ReplyQueue, 0x64);
9839 	VERIFY_OFFSET(reserved9, 0x65);
9840 	VERIFY_OFFSET(tag, 0x68);
9841 	VERIFY_OFFSET(host_addr, 0x70);
9842 	VERIFY_OFFSET(CISS_LUN, 0x78);
9843 	VERIFY_OFFSET(SG, 0x78 + 8);
9844 #undef VERIFY_OFFSET
9845 }
9846 
9847 module_init(hpsa_init);
9848 module_exit(hpsa_cleanup);
9849