1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp_lock.h> 35 #include <linux/compat.h> 36 #include <linux/blktrace_api.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/completion.h> 41 #include <linux/moduleparam.h> 42 #include <scsi/scsi.h> 43 #include <scsi/scsi_cmnd.h> 44 #include <scsi/scsi_device.h> 45 #include <scsi/scsi_host.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "1.0.0" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 78 /* define the PCI info for the cards we can control */ 79 static const struct pci_device_id hpsa_pci_device_id[] = { 80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, 81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, 82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, 83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 90 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 91 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 92 {0,} 93 }; 94 95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 96 97 /* board_id = Subsystem Device ID & Vendor ID 98 * product = Marketing Name for the board 99 * access = Address of the struct of function pointers 100 */ 101 static struct board_type products[] = { 102 {0x3223103C, "Smart Array P800", &SA5_access}, 103 {0x3234103C, "Smart Array P400", &SA5_access}, 104 {0x323d103c, "Smart Array P700M", &SA5_access}, 105 {0x3241103C, "Smart Array P212", &SA5_access}, 106 {0x3243103C, "Smart Array P410", &SA5_access}, 107 {0x3245103C, "Smart Array P410i", &SA5_access}, 108 {0x3247103C, "Smart Array P411", &SA5_access}, 109 {0x3249103C, "Smart Array P812", &SA5_access}, 110 {0x324a103C, "Smart Array P712m", &SA5_access}, 111 {0x324b103C, "Smart Array P711m", &SA5_access}, 112 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 113 }; 114 115 static int number_of_controllers; 116 117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id); 118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 119 static void start_io(struct ctlr_info *h); 120 121 #ifdef CONFIG_COMPAT 122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 123 #endif 124 125 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 127 static struct CommandList *cmd_alloc(struct ctlr_info *h); 128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 129 static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, 130 void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, 131 int cmd_type); 132 133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 134 void (*done)(struct scsi_cmnd *)); 135 136 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 137 static int hpsa_slave_alloc(struct scsi_device *sdev); 138 static void hpsa_slave_destroy(struct scsi_device *sdev); 139 140 static ssize_t raid_level_show(struct device *dev, 141 struct device_attribute *attr, char *buf); 142 static ssize_t lunid_show(struct device *dev, 143 struct device_attribute *attr, char *buf); 144 static ssize_t unique_id_show(struct device *dev, 145 struct device_attribute *attr, char *buf); 146 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 147 static ssize_t host_store_rescan(struct device *dev, 148 struct device_attribute *attr, const char *buf, size_t count); 149 static int check_for_unit_attention(struct ctlr_info *h, 150 struct CommandList *c); 151 static void check_ioctl_unit_attention(struct ctlr_info *h, 152 struct CommandList *c); 153 154 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 155 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 156 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 157 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 158 159 static struct device_attribute *hpsa_sdev_attrs[] = { 160 &dev_attr_raid_level, 161 &dev_attr_lunid, 162 &dev_attr_unique_id, 163 NULL, 164 }; 165 166 static struct device_attribute *hpsa_shost_attrs[] = { 167 &dev_attr_rescan, 168 NULL, 169 }; 170 171 static struct scsi_host_template hpsa_driver_template = { 172 .module = THIS_MODULE, 173 .name = "hpsa", 174 .proc_name = "hpsa", 175 .queuecommand = hpsa_scsi_queue_command, 176 .can_queue = 512, 177 .this_id = -1, 178 .sg_tablesize = MAXSGENTRIES, 179 .cmd_per_lun = 512, 180 .use_clustering = ENABLE_CLUSTERING, 181 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 182 .ioctl = hpsa_ioctl, 183 .slave_alloc = hpsa_slave_alloc, 184 .slave_destroy = hpsa_slave_destroy, 185 #ifdef CONFIG_COMPAT 186 .compat_ioctl = hpsa_compat_ioctl, 187 #endif 188 .sdev_attrs = hpsa_sdev_attrs, 189 .shost_attrs = hpsa_shost_attrs, 190 }; 191 192 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 193 { 194 unsigned long *priv = shost_priv(sdev->host); 195 return (struct ctlr_info *) *priv; 196 } 197 198 static struct task_struct *hpsa_scan_thread; 199 static DEFINE_MUTEX(hpsa_scan_mutex); 200 static LIST_HEAD(hpsa_scan_q); 201 static int hpsa_scan_func(void *data); 202 203 /** 204 * add_to_scan_list() - add controller to rescan queue 205 * @h: Pointer to the controller. 206 * 207 * Adds the controller to the rescan queue if not already on the queue. 208 * 209 * returns 1 if added to the queue, 0 if skipped (could be on the 210 * queue already, or the controller could be initializing or shutting 211 * down). 212 **/ 213 static int add_to_scan_list(struct ctlr_info *h) 214 { 215 struct ctlr_info *test_h; 216 int found = 0; 217 int ret = 0; 218 219 if (h->busy_initializing) 220 return 0; 221 222 /* 223 * If we don't get the lock, it means the driver is unloading 224 * and there's no point in scheduling a new scan. 225 */ 226 if (!mutex_trylock(&h->busy_shutting_down)) 227 return 0; 228 229 mutex_lock(&hpsa_scan_mutex); 230 list_for_each_entry(test_h, &hpsa_scan_q, scan_list) { 231 if (test_h == h) { 232 found = 1; 233 break; 234 } 235 } 236 if (!found && !h->busy_scanning) { 237 INIT_COMPLETION(h->scan_wait); 238 list_add_tail(&h->scan_list, &hpsa_scan_q); 239 ret = 1; 240 } 241 mutex_unlock(&hpsa_scan_mutex); 242 mutex_unlock(&h->busy_shutting_down); 243 244 return ret; 245 } 246 247 /** 248 * remove_from_scan_list() - remove controller from rescan queue 249 * @h: Pointer to the controller. 250 * 251 * Removes the controller from the rescan queue if present. Blocks if 252 * the controller is currently conducting a rescan. The controller 253 * can be in one of three states: 254 * 1. Doesn't need a scan 255 * 2. On the scan list, but not scanning yet (we remove it) 256 * 3. Busy scanning (and not on the list). In this case we want to wait for 257 * the scan to complete to make sure the scanning thread for this 258 * controller is completely idle. 259 **/ 260 static void remove_from_scan_list(struct ctlr_info *h) 261 { 262 struct ctlr_info *test_h, *tmp_h; 263 264 mutex_lock(&hpsa_scan_mutex); 265 list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) { 266 if (test_h == h) { /* state 2. */ 267 list_del(&h->scan_list); 268 complete_all(&h->scan_wait); 269 mutex_unlock(&hpsa_scan_mutex); 270 return; 271 } 272 } 273 if (h->busy_scanning) { /* state 3. */ 274 mutex_unlock(&hpsa_scan_mutex); 275 wait_for_completion(&h->scan_wait); 276 } else { /* state 1, nothing to do. */ 277 mutex_unlock(&hpsa_scan_mutex); 278 } 279 } 280 281 /* hpsa_scan_func() - kernel thread used to rescan controllers 282 * @data: Ignored. 283 * 284 * A kernel thread used scan for drive topology changes on 285 * controllers. The thread processes only one controller at a time 286 * using a queue. Controllers are added to the queue using 287 * add_to_scan_list() and removed from the queue either after done 288 * processing or using remove_from_scan_list(). 289 * 290 * returns 0. 291 **/ 292 static int hpsa_scan_func(__attribute__((unused)) void *data) 293 { 294 struct ctlr_info *h; 295 int host_no; 296 297 while (1) { 298 set_current_state(TASK_INTERRUPTIBLE); 299 schedule(); 300 if (kthread_should_stop()) 301 break; 302 303 while (1) { 304 mutex_lock(&hpsa_scan_mutex); 305 if (list_empty(&hpsa_scan_q)) { 306 mutex_unlock(&hpsa_scan_mutex); 307 break; 308 } 309 h = list_entry(hpsa_scan_q.next, struct ctlr_info, 310 scan_list); 311 list_del(&h->scan_list); 312 h->busy_scanning = 1; 313 mutex_unlock(&hpsa_scan_mutex); 314 host_no = h->scsi_host ? h->scsi_host->host_no : -1; 315 hpsa_update_scsi_devices(h, host_no); 316 complete_all(&h->scan_wait); 317 mutex_lock(&hpsa_scan_mutex); 318 h->busy_scanning = 0; 319 mutex_unlock(&hpsa_scan_mutex); 320 } 321 } 322 return 0; 323 } 324 325 static int check_for_unit_attention(struct ctlr_info *h, 326 struct CommandList *c) 327 { 328 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 329 return 0; 330 331 switch (c->err_info->SenseInfo[12]) { 332 case STATE_CHANGED: 333 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 334 "detected, command retried\n", h->ctlr); 335 break; 336 case LUN_FAILED: 337 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 338 "detected, action required\n", h->ctlr); 339 break; 340 case REPORT_LUNS_CHANGED: 341 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 342 "changed\n", h->ctlr); 343 /* 344 * Here, we could call add_to_scan_list and wake up the scan thread, 345 * except that it's quite likely that we will get more than one 346 * REPORT_LUNS_CHANGED condition in quick succession, which means 347 * that those which occur after the first one will likely happen 348 * *during* the hpsa_scan_thread's rescan. And the rescan code is not 349 * robust enough to restart in the middle, undoing what it has already 350 * done, and it's not clear that it's even possible to do this, since 351 * part of what it does is notify the SCSI mid layer, which starts 352 * doing it's own i/o to read partition tables and so on, and the 353 * driver doesn't have visibility to know what might need undoing. 354 * In any event, if possible, it is horribly complicated to get right 355 * so we just don't do it for now. 356 * 357 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 358 */ 359 break; 360 case POWER_OR_RESET: 361 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 362 "or device reset detected\n", h->ctlr); 363 break; 364 case UNIT_ATTENTION_CLEARED: 365 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 366 "cleared by another initiator\n", h->ctlr); 367 break; 368 default: 369 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 370 "unit attention detected\n", h->ctlr); 371 break; 372 } 373 return 1; 374 } 375 376 static ssize_t host_store_rescan(struct device *dev, 377 struct device_attribute *attr, 378 const char *buf, size_t count) 379 { 380 struct ctlr_info *h; 381 struct Scsi_Host *shost = class_to_shost(dev); 382 unsigned long *priv = shost_priv(shost); 383 h = (struct ctlr_info *) *priv; 384 if (add_to_scan_list(h)) { 385 wake_up_process(hpsa_scan_thread); 386 wait_for_completion_interruptible(&h->scan_wait); 387 } 388 return count; 389 } 390 391 /* Enqueuing and dequeuing functions for cmdlists. */ 392 static inline void addQ(struct hlist_head *list, struct CommandList *c) 393 { 394 hlist_add_head(&c->list, list); 395 } 396 397 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 398 struct CommandList *c) 399 { 400 unsigned long flags; 401 spin_lock_irqsave(&h->lock, flags); 402 addQ(&h->reqQ, c); 403 h->Qdepth++; 404 start_io(h); 405 spin_unlock_irqrestore(&h->lock, flags); 406 } 407 408 static inline void removeQ(struct CommandList *c) 409 { 410 if (WARN_ON(hlist_unhashed(&c->list))) 411 return; 412 hlist_del_init(&c->list); 413 } 414 415 static inline int is_hba_lunid(unsigned char scsi3addr[]) 416 { 417 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 418 } 419 420 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 421 { 422 return (scsi3addr[3] & 0xC0) == 0x40; 423 } 424 425 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 426 "UNKNOWN" 427 }; 428 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 429 430 static ssize_t raid_level_show(struct device *dev, 431 struct device_attribute *attr, char *buf) 432 { 433 ssize_t l = 0; 434 int rlevel; 435 struct ctlr_info *h; 436 struct scsi_device *sdev; 437 struct hpsa_scsi_dev_t *hdev; 438 unsigned long flags; 439 440 sdev = to_scsi_device(dev); 441 h = sdev_to_hba(sdev); 442 spin_lock_irqsave(&h->lock, flags); 443 hdev = sdev->hostdata; 444 if (!hdev) { 445 spin_unlock_irqrestore(&h->lock, flags); 446 return -ENODEV; 447 } 448 449 /* Is this even a logical drive? */ 450 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 451 spin_unlock_irqrestore(&h->lock, flags); 452 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 453 return l; 454 } 455 456 rlevel = hdev->raid_level; 457 spin_unlock_irqrestore(&h->lock, flags); 458 if (rlevel < 0 || rlevel > RAID_UNKNOWN) 459 rlevel = RAID_UNKNOWN; 460 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 461 return l; 462 } 463 464 static ssize_t lunid_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct ctlr_info *h; 468 struct scsi_device *sdev; 469 struct hpsa_scsi_dev_t *hdev; 470 unsigned long flags; 471 unsigned char lunid[8]; 472 473 sdev = to_scsi_device(dev); 474 h = sdev_to_hba(sdev); 475 spin_lock_irqsave(&h->lock, flags); 476 hdev = sdev->hostdata; 477 if (!hdev) { 478 spin_unlock_irqrestore(&h->lock, flags); 479 return -ENODEV; 480 } 481 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 482 spin_unlock_irqrestore(&h->lock, flags); 483 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 484 lunid[0], lunid[1], lunid[2], lunid[3], 485 lunid[4], lunid[5], lunid[6], lunid[7]); 486 } 487 488 static ssize_t unique_id_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct ctlr_info *h; 492 struct scsi_device *sdev; 493 struct hpsa_scsi_dev_t *hdev; 494 unsigned long flags; 495 unsigned char sn[16]; 496 497 sdev = to_scsi_device(dev); 498 h = sdev_to_hba(sdev); 499 spin_lock_irqsave(&h->lock, flags); 500 hdev = sdev->hostdata; 501 if (!hdev) { 502 spin_unlock_irqrestore(&h->lock, flags); 503 return -ENODEV; 504 } 505 memcpy(sn, hdev->device_id, sizeof(sn)); 506 spin_unlock_irqrestore(&h->lock, flags); 507 return snprintf(buf, 16 * 2 + 2, 508 "%02X%02X%02X%02X%02X%02X%02X%02X" 509 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 510 sn[0], sn[1], sn[2], sn[3], 511 sn[4], sn[5], sn[6], sn[7], 512 sn[8], sn[9], sn[10], sn[11], 513 sn[12], sn[13], sn[14], sn[15]); 514 } 515 516 static int hpsa_find_target_lun(struct ctlr_info *h, 517 unsigned char scsi3addr[], int bus, int *target, int *lun) 518 { 519 /* finds an unused bus, target, lun for a new physical device 520 * assumes h->devlock is held 521 */ 522 int i, found = 0; 523 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 524 525 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 526 527 for (i = 0; i < h->ndevices; i++) { 528 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 529 set_bit(h->dev[i]->target, lun_taken); 530 } 531 532 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 533 if (!test_bit(i, lun_taken)) { 534 /* *bus = 1; */ 535 *target = i; 536 *lun = 0; 537 found = 1; 538 break; 539 } 540 } 541 return !found; 542 } 543 544 /* Add an entry into h->dev[] array. */ 545 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 546 struct hpsa_scsi_dev_t *device, 547 struct hpsa_scsi_dev_t *added[], int *nadded) 548 { 549 /* assumes h->devlock is held */ 550 int n = h->ndevices; 551 int i; 552 unsigned char addr1[8], addr2[8]; 553 struct hpsa_scsi_dev_t *sd; 554 555 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 556 dev_err(&h->pdev->dev, "too many devices, some will be " 557 "inaccessible.\n"); 558 return -1; 559 } 560 561 /* physical devices do not have lun or target assigned until now. */ 562 if (device->lun != -1) 563 /* Logical device, lun is already assigned. */ 564 goto lun_assigned; 565 566 /* If this device a non-zero lun of a multi-lun device 567 * byte 4 of the 8-byte LUN addr will contain the logical 568 * unit no, zero otherise. 569 */ 570 if (device->scsi3addr[4] == 0) { 571 /* This is not a non-zero lun of a multi-lun device */ 572 if (hpsa_find_target_lun(h, device->scsi3addr, 573 device->bus, &device->target, &device->lun) != 0) 574 return -1; 575 goto lun_assigned; 576 } 577 578 /* This is a non-zero lun of a multi-lun device. 579 * Search through our list and find the device which 580 * has the same 8 byte LUN address, excepting byte 4. 581 * Assign the same bus and target for this new LUN. 582 * Use the logical unit number from the firmware. 583 */ 584 memcpy(addr1, device->scsi3addr, 8); 585 addr1[4] = 0; 586 for (i = 0; i < n; i++) { 587 sd = h->dev[i]; 588 memcpy(addr2, sd->scsi3addr, 8); 589 addr2[4] = 0; 590 /* differ only in byte 4? */ 591 if (memcmp(addr1, addr2, 8) == 0) { 592 device->bus = sd->bus; 593 device->target = sd->target; 594 device->lun = device->scsi3addr[4]; 595 break; 596 } 597 } 598 if (device->lun == -1) { 599 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 600 " suspect firmware bug or unsupported hardware " 601 "configuration.\n"); 602 return -1; 603 } 604 605 lun_assigned: 606 607 h->dev[n] = device; 608 h->ndevices++; 609 added[*nadded] = device; 610 (*nadded)++; 611 612 /* initially, (before registering with scsi layer) we don't 613 * know our hostno and we don't want to print anything first 614 * time anyway (the scsi layer's inquiries will show that info) 615 */ 616 /* if (hostno != -1) */ 617 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 618 scsi_device_type(device->devtype), hostno, 619 device->bus, device->target, device->lun); 620 return 0; 621 } 622 623 /* Remove an entry from h->dev[] array. */ 624 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 625 struct hpsa_scsi_dev_t *removed[], int *nremoved) 626 { 627 /* assumes h->devlock is held */ 628 int i; 629 struct hpsa_scsi_dev_t *sd; 630 631 if (entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA) 632 BUG(); 633 634 sd = h->dev[entry]; 635 removed[*nremoved] = h->dev[entry]; 636 (*nremoved)++; 637 638 for (i = entry; i < h->ndevices-1; i++) 639 h->dev[i] = h->dev[i+1]; 640 h->ndevices--; 641 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 642 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 643 sd->lun); 644 } 645 646 #define SCSI3ADDR_EQ(a, b) ( \ 647 (a)[7] == (b)[7] && \ 648 (a)[6] == (b)[6] && \ 649 (a)[5] == (b)[5] && \ 650 (a)[4] == (b)[4] && \ 651 (a)[3] == (b)[3] && \ 652 (a)[2] == (b)[2] && \ 653 (a)[1] == (b)[1] && \ 654 (a)[0] == (b)[0]) 655 656 static void fixup_botched_add(struct ctlr_info *h, 657 struct hpsa_scsi_dev_t *added) 658 { 659 /* called when scsi_add_device fails in order to re-adjust 660 * h->dev[] to match the mid layer's view. 661 */ 662 unsigned long flags; 663 int i, j; 664 665 spin_lock_irqsave(&h->lock, flags); 666 for (i = 0; i < h->ndevices; i++) { 667 if (h->dev[i] == added) { 668 for (j = i; j < h->ndevices-1; j++) 669 h->dev[j] = h->dev[j+1]; 670 h->ndevices--; 671 break; 672 } 673 } 674 spin_unlock_irqrestore(&h->lock, flags); 675 kfree(added); 676 } 677 678 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 679 struct hpsa_scsi_dev_t *dev2) 680 { 681 if ((is_logical_dev_addr_mode(dev1->scsi3addr) || 682 (dev1->lun != -1 && dev2->lun != -1)) && 683 dev1->devtype != 0x0C) 684 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); 685 686 /* we compare everything except lun and target as these 687 * are not yet assigned. Compare parts likely 688 * to differ first 689 */ 690 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 691 sizeof(dev1->scsi3addr)) != 0) 692 return 0; 693 if (memcmp(dev1->device_id, dev2->device_id, 694 sizeof(dev1->device_id)) != 0) 695 return 0; 696 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 697 return 0; 698 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 699 return 0; 700 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) 701 return 0; 702 if (dev1->devtype != dev2->devtype) 703 return 0; 704 if (dev1->raid_level != dev2->raid_level) 705 return 0; 706 if (dev1->bus != dev2->bus) 707 return 0; 708 return 1; 709 } 710 711 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 712 * and return needle location in *index. If scsi3addr matches, but not 713 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 714 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 715 */ 716 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 717 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 718 int *index) 719 { 720 int i; 721 #define DEVICE_NOT_FOUND 0 722 #define DEVICE_CHANGED 1 723 #define DEVICE_SAME 2 724 for (i = 0; i < haystack_size; i++) { 725 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 726 *index = i; 727 if (device_is_the_same(needle, haystack[i])) 728 return DEVICE_SAME; 729 else 730 return DEVICE_CHANGED; 731 } 732 } 733 *index = -1; 734 return DEVICE_NOT_FOUND; 735 } 736 737 static int adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 738 struct hpsa_scsi_dev_t *sd[], int nsds) 739 { 740 /* sd contains scsi3 addresses and devtypes, and inquiry 741 * data. This function takes what's in sd to be the current 742 * reality and updates h->dev[] to reflect that reality. 743 */ 744 int i, entry, device_change, changes = 0; 745 struct hpsa_scsi_dev_t *csd; 746 unsigned long flags; 747 struct hpsa_scsi_dev_t **added, **removed; 748 int nadded, nremoved; 749 struct Scsi_Host *sh = NULL; 750 751 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 752 GFP_KERNEL); 753 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 754 GFP_KERNEL); 755 756 if (!added || !removed) { 757 dev_warn(&h->pdev->dev, "out of memory in " 758 "adjust_hpsa_scsi_table\n"); 759 goto free_and_out; 760 } 761 762 spin_lock_irqsave(&h->devlock, flags); 763 764 /* find any devices in h->dev[] that are not in 765 * sd[] and remove them from h->dev[], and for any 766 * devices which have changed, remove the old device 767 * info and add the new device info. 768 */ 769 i = 0; 770 nremoved = 0; 771 nadded = 0; 772 while (i < h->ndevices) { 773 csd = h->dev[i]; 774 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 775 if (device_change == DEVICE_NOT_FOUND) { 776 changes++; 777 hpsa_scsi_remove_entry(h, hostno, i, 778 removed, &nremoved); 779 continue; /* remove ^^^, hence i not incremented */ 780 } else if (device_change == DEVICE_CHANGED) { 781 changes++; 782 hpsa_scsi_remove_entry(h, hostno, i, 783 removed, &nremoved); 784 (void) hpsa_scsi_add_entry(h, hostno, sd[entry], 785 added, &nadded); 786 /* add can't fail, we just removed one. */ 787 sd[entry] = NULL; /* prevent it from being freed */ 788 } 789 i++; 790 } 791 792 /* Now, make sure every device listed in sd[] is also 793 * listed in h->dev[], adding them if they aren't found 794 */ 795 796 for (i = 0; i < nsds; i++) { 797 if (!sd[i]) /* if already added above. */ 798 continue; 799 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 800 h->ndevices, &entry); 801 if (device_change == DEVICE_NOT_FOUND) { 802 changes++; 803 if (hpsa_scsi_add_entry(h, hostno, sd[i], 804 added, &nadded) != 0) 805 break; 806 sd[i] = NULL; /* prevent from being freed later. */ 807 } else if (device_change == DEVICE_CHANGED) { 808 /* should never happen... */ 809 changes++; 810 dev_warn(&h->pdev->dev, 811 "device unexpectedly changed.\n"); 812 /* but if it does happen, we just ignore that device */ 813 } 814 } 815 spin_unlock_irqrestore(&h->devlock, flags); 816 817 /* Don't notify scsi mid layer of any changes the first time through 818 * (or if there are no changes) scsi_scan_host will do it later the 819 * first time through. 820 */ 821 if (hostno == -1 || !changes) 822 goto free_and_out; 823 824 sh = h->scsi_host; 825 /* Notify scsi mid layer of any removed devices */ 826 for (i = 0; i < nremoved; i++) { 827 struct scsi_device *sdev = 828 scsi_device_lookup(sh, removed[i]->bus, 829 removed[i]->target, removed[i]->lun); 830 if (sdev != NULL) { 831 scsi_remove_device(sdev); 832 scsi_device_put(sdev); 833 } else { 834 /* We don't expect to get here. 835 * future cmds to this device will get selection 836 * timeout as if the device was gone. 837 */ 838 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 839 " for removal.", hostno, removed[i]->bus, 840 removed[i]->target, removed[i]->lun); 841 } 842 kfree(removed[i]); 843 removed[i] = NULL; 844 } 845 846 /* Notify scsi mid layer of any added devices */ 847 for (i = 0; i < nadded; i++) { 848 if (scsi_add_device(sh, added[i]->bus, 849 added[i]->target, added[i]->lun) == 0) 850 continue; 851 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 852 "device not added.\n", hostno, added[i]->bus, 853 added[i]->target, added[i]->lun); 854 /* now we have to remove it from h->dev, 855 * since it didn't get added to scsi mid layer 856 */ 857 fixup_botched_add(h, added[i]); 858 } 859 860 free_and_out: 861 kfree(added); 862 kfree(removed); 863 return 0; 864 } 865 866 /* 867 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 868 * Assume's h->devlock is held. 869 */ 870 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 871 int bus, int target, int lun) 872 { 873 int i; 874 struct hpsa_scsi_dev_t *sd; 875 876 for (i = 0; i < h->ndevices; i++) { 877 sd = h->dev[i]; 878 if (sd->bus == bus && sd->target == target && sd->lun == lun) 879 return sd; 880 } 881 return NULL; 882 } 883 884 /* link sdev->hostdata to our per-device structure. */ 885 static int hpsa_slave_alloc(struct scsi_device *sdev) 886 { 887 struct hpsa_scsi_dev_t *sd; 888 unsigned long flags; 889 struct ctlr_info *h; 890 891 h = sdev_to_hba(sdev); 892 spin_lock_irqsave(&h->devlock, flags); 893 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 894 sdev_id(sdev), sdev->lun); 895 if (sd != NULL) 896 sdev->hostdata = sd; 897 spin_unlock_irqrestore(&h->devlock, flags); 898 return 0; 899 } 900 901 static void hpsa_slave_destroy(struct scsi_device *sdev) 902 { 903 return; /* nothing to do. */ 904 } 905 906 static void hpsa_scsi_setup(struct ctlr_info *h) 907 { 908 h->ndevices = 0; 909 h->scsi_host = NULL; 910 spin_lock_init(&h->devlock); 911 return; 912 } 913 914 static void complete_scsi_command(struct CommandList *cp, 915 int timeout, __u32 tag) 916 { 917 struct scsi_cmnd *cmd; 918 struct ctlr_info *h; 919 struct ErrorInfo *ei; 920 921 unsigned char sense_key; 922 unsigned char asc; /* additional sense code */ 923 unsigned char ascq; /* additional sense code qualifier */ 924 925 ei = cp->err_info; 926 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 927 h = cp->h; 928 929 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 930 931 cmd->result = (DID_OK << 16); /* host byte */ 932 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 933 cmd->result |= (ei->ScsiStatus << 1); 934 935 /* copy the sense data whether we need to or not. */ 936 memcpy(cmd->sense_buffer, ei->SenseInfo, 937 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 938 SCSI_SENSE_BUFFERSIZE : 939 ei->SenseLen); 940 scsi_set_resid(cmd, ei->ResidualCnt); 941 942 if (ei->CommandStatus == 0) { 943 cmd->scsi_done(cmd); 944 cmd_free(h, cp); 945 return; 946 } 947 948 /* an error has occurred */ 949 switch (ei->CommandStatus) { 950 951 case CMD_TARGET_STATUS: 952 if (ei->ScsiStatus) { 953 /* Get sense key */ 954 sense_key = 0xf & ei->SenseInfo[2]; 955 /* Get additional sense code */ 956 asc = ei->SenseInfo[12]; 957 /* Get addition sense code qualifier */ 958 ascq = ei->SenseInfo[13]; 959 } 960 961 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 962 if (check_for_unit_attention(h, cp)) { 963 cmd->result = DID_SOFT_ERROR << 16; 964 break; 965 } 966 if (sense_key == ILLEGAL_REQUEST) { 967 /* 968 * SCSI REPORT_LUNS is commonly unsupported on 969 * Smart Array. Suppress noisy complaint. 970 */ 971 if (cp->Request.CDB[0] == REPORT_LUNS) 972 break; 973 974 /* If ASC/ASCQ indicate Logical Unit 975 * Not Supported condition, 976 */ 977 if ((asc == 0x25) && (ascq == 0x0)) { 978 dev_warn(&h->pdev->dev, "cp %p " 979 "has check condition\n", cp); 980 break; 981 } 982 } 983 984 if (sense_key == NOT_READY) { 985 /* If Sense is Not Ready, Logical Unit 986 * Not ready, Manual Intervention 987 * required 988 */ 989 if ((asc == 0x04) && (ascq == 0x03)) { 990 cmd->result = DID_NO_CONNECT << 16; 991 dev_warn(&h->pdev->dev, "cp %p " 992 "has check condition: unit " 993 "not ready, manual " 994 "intervention required\n", cp); 995 break; 996 } 997 } 998 999 1000 /* Must be some other type of check condition */ 1001 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1002 "unknown type: " 1003 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1004 "Returning result: 0x%x, " 1005 "cmd=[%02x %02x %02x %02x %02x " 1006 "%02x %02x %02x %02x %02x]\n", 1007 cp, sense_key, asc, ascq, 1008 cmd->result, 1009 cmd->cmnd[0], cmd->cmnd[1], 1010 cmd->cmnd[2], cmd->cmnd[3], 1011 cmd->cmnd[4], cmd->cmnd[5], 1012 cmd->cmnd[6], cmd->cmnd[7], 1013 cmd->cmnd[8], cmd->cmnd[9]); 1014 break; 1015 } 1016 1017 1018 /* Problem was not a check condition 1019 * Pass it up to the upper layers... 1020 */ 1021 if (ei->ScsiStatus) { 1022 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1023 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1024 "Returning result: 0x%x\n", 1025 cp, ei->ScsiStatus, 1026 sense_key, asc, ascq, 1027 cmd->result); 1028 } else { /* scsi status is zero??? How??? */ 1029 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1030 "Returning no connection.\n", cp), 1031 1032 /* Ordinarily, this case should never happen, 1033 * but there is a bug in some released firmware 1034 * revisions that allows it to happen if, for 1035 * example, a 4100 backplane loses power and 1036 * the tape drive is in it. We assume that 1037 * it's a fatal error of some kind because we 1038 * can't show that it wasn't. We will make it 1039 * look like selection timeout since that is 1040 * the most common reason for this to occur, 1041 * and it's severe enough. 1042 */ 1043 1044 cmd->result = DID_NO_CONNECT << 16; 1045 } 1046 break; 1047 1048 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1049 break; 1050 case CMD_DATA_OVERRUN: 1051 dev_warn(&h->pdev->dev, "cp %p has" 1052 " completed with data overrun " 1053 "reported\n", cp); 1054 break; 1055 case CMD_INVALID: { 1056 /* print_bytes(cp, sizeof(*cp), 1, 0); 1057 print_cmd(cp); */ 1058 /* We get CMD_INVALID if you address a non-existent device 1059 * instead of a selection timeout (no response). You will 1060 * see this if you yank out a drive, then try to access it. 1061 * This is kind of a shame because it means that any other 1062 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1063 * missing target. */ 1064 cmd->result = DID_NO_CONNECT << 16; 1065 } 1066 break; 1067 case CMD_PROTOCOL_ERR: 1068 dev_warn(&h->pdev->dev, "cp %p has " 1069 "protocol error \n", cp); 1070 break; 1071 case CMD_HARDWARE_ERR: 1072 cmd->result = DID_ERROR << 16; 1073 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1074 break; 1075 case CMD_CONNECTION_LOST: 1076 cmd->result = DID_ERROR << 16; 1077 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1078 break; 1079 case CMD_ABORTED: 1080 cmd->result = DID_ABORT << 16; 1081 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1082 cp, ei->ScsiStatus); 1083 break; 1084 case CMD_ABORT_FAILED: 1085 cmd->result = DID_ERROR << 16; 1086 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1087 break; 1088 case CMD_UNSOLICITED_ABORT: 1089 cmd->result = DID_ABORT << 16; 1090 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1091 "abort\n", cp); 1092 break; 1093 case CMD_TIMEOUT: 1094 cmd->result = DID_TIME_OUT << 16; 1095 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1096 break; 1097 default: 1098 cmd->result = DID_ERROR << 16; 1099 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1100 cp, ei->CommandStatus); 1101 } 1102 cmd->scsi_done(cmd); 1103 cmd_free(h, cp); 1104 } 1105 1106 static int hpsa_scsi_detect(struct ctlr_info *h) 1107 { 1108 struct Scsi_Host *sh; 1109 int error; 1110 1111 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1112 if (sh == NULL) 1113 goto fail; 1114 1115 sh->io_port = 0; 1116 sh->n_io_port = 0; 1117 sh->this_id = -1; 1118 sh->max_channel = 3; 1119 sh->max_cmd_len = MAX_COMMAND_SIZE; 1120 sh->max_lun = HPSA_MAX_LUN; 1121 sh->max_id = HPSA_MAX_LUN; 1122 h->scsi_host = sh; 1123 sh->hostdata[0] = (unsigned long) h; 1124 sh->irq = h->intr[SIMPLE_MODE_INT]; 1125 sh->unique_id = sh->irq; 1126 error = scsi_add_host(sh, &h->pdev->dev); 1127 if (error) 1128 goto fail_host_put; 1129 scsi_scan_host(sh); 1130 return 0; 1131 1132 fail_host_put: 1133 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1134 " failed for controller %d\n", h->ctlr); 1135 scsi_host_put(sh); 1136 return -1; 1137 fail: 1138 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1139 " failed for controller %d\n", h->ctlr); 1140 return -1; 1141 } 1142 1143 static void hpsa_pci_unmap(struct pci_dev *pdev, 1144 struct CommandList *c, int sg_used, int data_direction) 1145 { 1146 int i; 1147 union u64bit addr64; 1148 1149 for (i = 0; i < sg_used; i++) { 1150 addr64.val32.lower = c->SG[i].Addr.lower; 1151 addr64.val32.upper = c->SG[i].Addr.upper; 1152 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1153 data_direction); 1154 } 1155 } 1156 1157 static void hpsa_map_one(struct pci_dev *pdev, 1158 struct CommandList *cp, 1159 unsigned char *buf, 1160 size_t buflen, 1161 int data_direction) 1162 { 1163 __u64 addr64; 1164 1165 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1166 cp->Header.SGList = 0; 1167 cp->Header.SGTotal = 0; 1168 return; 1169 } 1170 1171 addr64 = (__u64) pci_map_single(pdev, buf, buflen, data_direction); 1172 cp->SG[0].Addr.lower = 1173 (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); 1174 cp->SG[0].Addr.upper = 1175 (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); 1176 cp->SG[0].Len = buflen; 1177 cp->Header.SGList = (__u8) 1; /* no. SGs contig in this cmd */ 1178 cp->Header.SGTotal = (__u16) 1; /* total sgs in this cmd list */ 1179 } 1180 1181 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1182 struct CommandList *c) 1183 { 1184 DECLARE_COMPLETION_ONSTACK(wait); 1185 1186 c->waiting = &wait; 1187 enqueue_cmd_and_start_io(h, c); 1188 wait_for_completion(&wait); 1189 } 1190 1191 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1192 struct CommandList *c, int data_direction) 1193 { 1194 int retry_count = 0; 1195 1196 do { 1197 memset(c->err_info, 0, sizeof(c->err_info)); 1198 hpsa_scsi_do_simple_cmd_core(h, c); 1199 retry_count++; 1200 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1201 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1202 } 1203 1204 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1205 { 1206 struct ErrorInfo *ei; 1207 struct device *d = &cp->h->pdev->dev; 1208 1209 ei = cp->err_info; 1210 switch (ei->CommandStatus) { 1211 case CMD_TARGET_STATUS: 1212 dev_warn(d, "cmd %p has completed with errors\n", cp); 1213 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1214 ei->ScsiStatus); 1215 if (ei->ScsiStatus == 0) 1216 dev_warn(d, "SCSI status is abnormally zero. " 1217 "(probably indicates selection timeout " 1218 "reported incorrectly due to a known " 1219 "firmware bug, circa July, 2001.)\n"); 1220 break; 1221 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1222 dev_info(d, "UNDERRUN\n"); 1223 break; 1224 case CMD_DATA_OVERRUN: 1225 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1226 break; 1227 case CMD_INVALID: { 1228 /* controller unfortunately reports SCSI passthru's 1229 * to non-existent targets as invalid commands. 1230 */ 1231 dev_warn(d, "cp %p is reported invalid (probably means " 1232 "target device no longer present)\n", cp); 1233 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1234 print_cmd(cp); */ 1235 } 1236 break; 1237 case CMD_PROTOCOL_ERR: 1238 dev_warn(d, "cp %p has protocol error \n", cp); 1239 break; 1240 case CMD_HARDWARE_ERR: 1241 /* cmd->result = DID_ERROR << 16; */ 1242 dev_warn(d, "cp %p had hardware error\n", cp); 1243 break; 1244 case CMD_CONNECTION_LOST: 1245 dev_warn(d, "cp %p had connection lost\n", cp); 1246 break; 1247 case CMD_ABORTED: 1248 dev_warn(d, "cp %p was aborted\n", cp); 1249 break; 1250 case CMD_ABORT_FAILED: 1251 dev_warn(d, "cp %p reports abort failed\n", cp); 1252 break; 1253 case CMD_UNSOLICITED_ABORT: 1254 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1255 break; 1256 case CMD_TIMEOUT: 1257 dev_warn(d, "cp %p timed out\n", cp); 1258 break; 1259 default: 1260 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1261 ei->CommandStatus); 1262 } 1263 } 1264 1265 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1266 unsigned char page, unsigned char *buf, 1267 unsigned char bufsize) 1268 { 1269 int rc = IO_OK; 1270 struct CommandList *c; 1271 struct ErrorInfo *ei; 1272 1273 c = cmd_special_alloc(h); 1274 1275 if (c == NULL) { /* trouble... */ 1276 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1277 return -1; 1278 } 1279 1280 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1281 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1282 ei = c->err_info; 1283 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1284 hpsa_scsi_interpret_error(c); 1285 rc = -1; 1286 } 1287 cmd_special_free(h, c); 1288 return rc; 1289 } 1290 1291 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1292 { 1293 int rc = IO_OK; 1294 struct CommandList *c; 1295 struct ErrorInfo *ei; 1296 1297 c = cmd_special_alloc(h); 1298 1299 if (c == NULL) { /* trouble... */ 1300 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1301 return -1; 1302 } 1303 1304 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1305 hpsa_scsi_do_simple_cmd_core(h, c); 1306 /* no unmap needed here because no data xfer. */ 1307 1308 ei = c->err_info; 1309 if (ei->CommandStatus != 0) { 1310 hpsa_scsi_interpret_error(c); 1311 rc = -1; 1312 } 1313 cmd_special_free(h, c); 1314 return rc; 1315 } 1316 1317 static void hpsa_get_raid_level(struct ctlr_info *h, 1318 unsigned char *scsi3addr, unsigned char *raid_level) 1319 { 1320 int rc; 1321 unsigned char *buf; 1322 1323 *raid_level = RAID_UNKNOWN; 1324 buf = kzalloc(64, GFP_KERNEL); 1325 if (!buf) 1326 return; 1327 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1328 if (rc == 0) 1329 *raid_level = buf[8]; 1330 if (*raid_level > RAID_UNKNOWN) 1331 *raid_level = RAID_UNKNOWN; 1332 kfree(buf); 1333 return; 1334 } 1335 1336 /* Get the device id from inquiry page 0x83 */ 1337 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1338 unsigned char *device_id, int buflen) 1339 { 1340 int rc; 1341 unsigned char *buf; 1342 1343 if (buflen > 16) 1344 buflen = 16; 1345 buf = kzalloc(64, GFP_KERNEL); 1346 if (!buf) 1347 return -1; 1348 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1349 if (rc == 0) 1350 memcpy(device_id, &buf[8], buflen); 1351 kfree(buf); 1352 return rc != 0; 1353 } 1354 1355 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1356 struct ReportLUNdata *buf, int bufsize, 1357 int extended_response) 1358 { 1359 int rc = IO_OK; 1360 struct CommandList *c; 1361 unsigned char scsi3addr[8]; 1362 struct ErrorInfo *ei; 1363 1364 c = cmd_special_alloc(h); 1365 if (c == NULL) { /* trouble... */ 1366 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1367 return -1; 1368 } 1369 1370 memset(&scsi3addr[0], 0, 8); /* address the controller */ 1371 1372 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1373 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1374 if (extended_response) 1375 c->Request.CDB[1] = extended_response; 1376 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1377 ei = c->err_info; 1378 if (ei->CommandStatus != 0 && 1379 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1380 hpsa_scsi_interpret_error(c); 1381 rc = -1; 1382 } 1383 cmd_special_free(h, c); 1384 return rc; 1385 } 1386 1387 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1388 struct ReportLUNdata *buf, 1389 int bufsize, int extended_response) 1390 { 1391 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1392 } 1393 1394 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1395 struct ReportLUNdata *buf, int bufsize) 1396 { 1397 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1398 } 1399 1400 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1401 int bus, int target, int lun) 1402 { 1403 device->bus = bus; 1404 device->target = target; 1405 device->lun = lun; 1406 } 1407 1408 static int hpsa_update_device_info(struct ctlr_info *h, 1409 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1410 { 1411 #define OBDR_TAPE_INQ_SIZE 49 1412 unsigned char *inq_buff = NULL; 1413 1414 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1415 if (!inq_buff) 1416 goto bail_out; 1417 1418 memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE); 1419 /* Do an inquiry to the device to see what it is. */ 1420 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1421 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1422 /* Inquiry failed (msg printed already) */ 1423 dev_err(&h->pdev->dev, 1424 "hpsa_update_device_info: inquiry failed\n"); 1425 goto bail_out; 1426 } 1427 1428 /* As a side effect, record the firmware version number 1429 * if we happen to be talking to the RAID controller. 1430 */ 1431 if (is_hba_lunid(scsi3addr)) 1432 memcpy(h->firm_ver, &inq_buff[32], 4); 1433 1434 this_device->devtype = (inq_buff[0] & 0x1f); 1435 memcpy(this_device->scsi3addr, scsi3addr, 8); 1436 memcpy(this_device->vendor, &inq_buff[8], 1437 sizeof(this_device->vendor)); 1438 memcpy(this_device->model, &inq_buff[16], 1439 sizeof(this_device->model)); 1440 memcpy(this_device->revision, &inq_buff[32], 1441 sizeof(this_device->revision)); 1442 memset(this_device->device_id, 0, 1443 sizeof(this_device->device_id)); 1444 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1445 sizeof(this_device->device_id)); 1446 1447 if (this_device->devtype == TYPE_DISK && 1448 is_logical_dev_addr_mode(scsi3addr)) 1449 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1450 else 1451 this_device->raid_level = RAID_UNKNOWN; 1452 1453 kfree(inq_buff); 1454 return 0; 1455 1456 bail_out: 1457 kfree(inq_buff); 1458 return 1; 1459 } 1460 1461 static unsigned char *msa2xxx_model[] = { 1462 "MSA2012", 1463 "MSA2024", 1464 "MSA2312", 1465 "MSA2324", 1466 NULL, 1467 }; 1468 1469 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1470 { 1471 int i; 1472 1473 for (i = 0; msa2xxx_model[i]; i++) 1474 if (strncmp(device->model, msa2xxx_model[i], 1475 strlen(msa2xxx_model[i])) == 0) 1476 return 1; 1477 return 0; 1478 } 1479 1480 /* Helper function to assign bus, target, lun mapping of devices. 1481 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1482 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1483 * Logical drive target and lun are assigned at this time, but 1484 * physical device lun and target assignment are deferred (assigned 1485 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1486 */ 1487 static void figure_bus_target_lun(struct ctlr_info *h, 1488 __u8 *lunaddrbytes, int *bus, int *target, int *lun, 1489 struct hpsa_scsi_dev_t *device) 1490 { 1491 1492 __u32 lunid; 1493 1494 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1495 /* logical device */ 1496 memcpy(&lunid, lunaddrbytes, sizeof(lunid)); 1497 lunid = le32_to_cpu(lunid); 1498 1499 if (is_msa2xxx(h, device)) { 1500 *bus = 1; 1501 *target = (lunid >> 16) & 0x3fff; 1502 *lun = lunid & 0x00ff; 1503 } else { 1504 *bus = 0; 1505 *lun = 0; 1506 *target = lunid & 0x3fff; 1507 } 1508 } else { 1509 /* physical device */ 1510 if (is_hba_lunid(lunaddrbytes)) 1511 *bus = 3; 1512 else 1513 *bus = 2; 1514 *target = -1; 1515 *lun = -1; /* we will fill these in later. */ 1516 } 1517 } 1518 1519 /* 1520 * If there is no lun 0 on a target, linux won't find any devices. 1521 * For the MSA2xxx boxes, we have to manually detect the enclosure 1522 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1523 * it for some reason. *tmpdevice is the target we're adding, 1524 * this_device is a pointer into the current element of currentsd[] 1525 * that we're building up in update_scsi_devices(), below. 1526 * lunzerobits is a bitmap that tracks which targets already have a 1527 * lun 0 assigned. 1528 * Returns 1 if an enclosure was added, 0 if not. 1529 */ 1530 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1531 struct hpsa_scsi_dev_t *tmpdevice, 1532 struct hpsa_scsi_dev_t *this_device, __u8 *lunaddrbytes, 1533 int bus, int target, int lun, unsigned long lunzerobits[], 1534 int *nmsa2xxx_enclosures) 1535 { 1536 unsigned char scsi3addr[8]; 1537 1538 if (test_bit(target, lunzerobits)) 1539 return 0; /* There is already a lun 0 on this target. */ 1540 1541 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1542 return 0; /* It's the logical targets that may lack lun 0. */ 1543 1544 if (!is_msa2xxx(h, tmpdevice)) 1545 return 0; /* It's only the MSA2xxx that have this problem. */ 1546 1547 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1548 return 0; 1549 1550 if (is_hba_lunid(scsi3addr)) 1551 return 0; /* Don't add the RAID controller here. */ 1552 1553 #define MAX_MSA2XXX_ENCLOSURES 32 1554 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1555 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1556 "enclosures exceeded. Check your hardware " 1557 "configuration."); 1558 return 0; 1559 } 1560 1561 memset(scsi3addr, 0, 8); 1562 scsi3addr[3] = target; 1563 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1564 return 0; 1565 (*nmsa2xxx_enclosures)++; 1566 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1567 set_bit(target, lunzerobits); 1568 return 1; 1569 } 1570 1571 /* 1572 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1573 * logdev. The number of luns in physdev and logdev are returned in 1574 * *nphysicals and *nlogicals, respectively. 1575 * Returns 0 on success, -1 otherwise. 1576 */ 1577 static int hpsa_gather_lun_info(struct ctlr_info *h, 1578 int reportlunsize, 1579 struct ReportLUNdata *physdev, __u32 *nphysicals, 1580 struct ReportLUNdata *logdev, __u32 *nlogicals) 1581 { 1582 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1583 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1584 return -1; 1585 } 1586 memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals)); 1587 *nphysicals = be32_to_cpu(*nphysicals) / 8; 1588 #ifdef DEBUG 1589 dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals); 1590 #endif 1591 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1592 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1593 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1594 *nphysicals - HPSA_MAX_PHYS_LUN); 1595 *nphysicals = HPSA_MAX_PHYS_LUN; 1596 } 1597 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1598 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1599 return -1; 1600 } 1601 memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals)); 1602 *nlogicals = be32_to_cpu(*nlogicals) / 8; 1603 #ifdef DEBUG 1604 dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals); 1605 #endif 1606 /* Reject Logicals in excess of our max capability. */ 1607 if (*nlogicals > HPSA_MAX_LUN) { 1608 dev_warn(&h->pdev->dev, 1609 "maximum logical LUNs (%d) exceeded. " 1610 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1611 *nlogicals - HPSA_MAX_LUN); 1612 *nlogicals = HPSA_MAX_LUN; 1613 } 1614 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1615 dev_warn(&h->pdev->dev, 1616 "maximum logical + physical LUNs (%d) exceeded. " 1617 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1618 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1619 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1620 } 1621 return 0; 1622 } 1623 1624 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1625 { 1626 /* the idea here is we could get notified 1627 * that some devices have changed, so we do a report 1628 * physical luns and report logical luns cmd, and adjust 1629 * our list of devices accordingly. 1630 * 1631 * The scsi3addr's of devices won't change so long as the 1632 * adapter is not reset. That means we can rescan and 1633 * tell which devices we already know about, vs. new 1634 * devices, vs. disappearing devices. 1635 */ 1636 struct ReportLUNdata *physdev_list = NULL; 1637 struct ReportLUNdata *logdev_list = NULL; 1638 unsigned char *inq_buff = NULL; 1639 __u32 nphysicals = 0; 1640 __u32 nlogicals = 0; 1641 __u32 ndev_allocated = 0; 1642 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1643 int ncurrent = 0; 1644 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1645 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1646 int bus, target, lun; 1647 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1648 1649 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1650 GFP_KERNEL); 1651 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1652 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1653 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1654 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1655 1656 if (!currentsd || !physdev_list || !logdev_list || 1657 !inq_buff || !tmpdevice) { 1658 dev_err(&h->pdev->dev, "out of memory\n"); 1659 goto out; 1660 } 1661 memset(lunzerobits, 0, sizeof(lunzerobits)); 1662 1663 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1664 logdev_list, &nlogicals)) 1665 goto out; 1666 1667 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1668 * but each of them 4 times through different paths. The plus 1 1669 * is for the RAID controller. 1670 */ 1671 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1672 1673 /* Allocate the per device structures */ 1674 for (i = 0; i < ndevs_to_allocate; i++) { 1675 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1676 if (!currentsd[i]) { 1677 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1678 __FILE__, __LINE__); 1679 goto out; 1680 } 1681 ndev_allocated++; 1682 } 1683 1684 /* adjust our table of devices */ 1685 nmsa2xxx_enclosures = 0; 1686 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1687 __u8 *lunaddrbytes; 1688 1689 /* Figure out where the LUN ID info is coming from */ 1690 if (i < nphysicals) 1691 lunaddrbytes = &physdev_list->LUN[i][0]; 1692 else 1693 if (i < nphysicals + nlogicals) 1694 lunaddrbytes = 1695 &logdev_list->LUN[i-nphysicals][0]; 1696 else /* jam in the RAID controller at the end */ 1697 lunaddrbytes = RAID_CTLR_LUNID; 1698 1699 /* skip masked physical devices. */ 1700 if (lunaddrbytes[3] & 0xC0 && i < nphysicals) 1701 continue; 1702 1703 /* Get device type, vendor, model, device id */ 1704 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1705 continue; /* skip it if we can't talk to it. */ 1706 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1707 tmpdevice); 1708 this_device = currentsd[ncurrent]; 1709 1710 /* 1711 * For the msa2xxx boxes, we have to insert a LUN 0 which 1712 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1713 * is nonetheless an enclosure device there. We have to 1714 * present that otherwise linux won't find anything if 1715 * there is no lun 0. 1716 */ 1717 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1718 lunaddrbytes, bus, target, lun, lunzerobits, 1719 &nmsa2xxx_enclosures)) { 1720 ncurrent++; 1721 this_device = currentsd[ncurrent]; 1722 } 1723 1724 *this_device = *tmpdevice; 1725 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1726 1727 switch (this_device->devtype) { 1728 case TYPE_ROM: { 1729 /* We don't *really* support actual CD-ROM devices, 1730 * just "One Button Disaster Recovery" tape drive 1731 * which temporarily pretends to be a CD-ROM drive. 1732 * So we check that the device is really an OBDR tape 1733 * device by checking for "$DR-10" in bytes 43-48 of 1734 * the inquiry data. 1735 */ 1736 char obdr_sig[7]; 1737 #define OBDR_TAPE_SIG "$DR-10" 1738 strncpy(obdr_sig, &inq_buff[43], 6); 1739 obdr_sig[6] = '\0'; 1740 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1741 /* Not OBDR device, ignore it. */ 1742 break; 1743 } 1744 ncurrent++; 1745 break; 1746 case TYPE_DISK: 1747 if (i < nphysicals) 1748 break; 1749 ncurrent++; 1750 break; 1751 case TYPE_TAPE: 1752 case TYPE_MEDIUM_CHANGER: 1753 ncurrent++; 1754 break; 1755 case TYPE_RAID: 1756 /* Only present the Smartarray HBA as a RAID controller. 1757 * If it's a RAID controller other than the HBA itself 1758 * (an external RAID controller, MSA500 or similar) 1759 * don't present it. 1760 */ 1761 if (!is_hba_lunid(lunaddrbytes)) 1762 break; 1763 ncurrent++; 1764 break; 1765 default: 1766 break; 1767 } 1768 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1769 break; 1770 } 1771 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1772 out: 1773 kfree(tmpdevice); 1774 for (i = 0; i < ndev_allocated; i++) 1775 kfree(currentsd[i]); 1776 kfree(currentsd); 1777 kfree(inq_buff); 1778 kfree(physdev_list); 1779 kfree(logdev_list); 1780 return; 1781 } 1782 1783 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1784 * dma mapping and fills in the scatter gather entries of the 1785 * hpsa command, cp. 1786 */ 1787 static int hpsa_scatter_gather(struct pci_dev *pdev, 1788 struct CommandList *cp, 1789 struct scsi_cmnd *cmd) 1790 { 1791 unsigned int len; 1792 struct scatterlist *sg; 1793 __u64 addr64; 1794 int use_sg, i; 1795 1796 BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES); 1797 1798 use_sg = scsi_dma_map(cmd); 1799 if (use_sg < 0) 1800 return use_sg; 1801 1802 if (!use_sg) 1803 goto sglist_finished; 1804 1805 scsi_for_each_sg(cmd, sg, use_sg, i) { 1806 addr64 = (__u64) sg_dma_address(sg); 1807 len = sg_dma_len(sg); 1808 cp->SG[i].Addr.lower = 1809 (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); 1810 cp->SG[i].Addr.upper = 1811 (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); 1812 cp->SG[i].Len = len; 1813 cp->SG[i].Ext = 0; /* we are not chaining */ 1814 } 1815 1816 sglist_finished: 1817 1818 cp->Header.SGList = (__u8) use_sg; /* no. SGs contig in this cmd */ 1819 cp->Header.SGTotal = (__u16) use_sg; /* total sgs in this cmd list */ 1820 return 0; 1821 } 1822 1823 1824 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 1825 void (*done)(struct scsi_cmnd *)) 1826 { 1827 struct ctlr_info *h; 1828 struct hpsa_scsi_dev_t *dev; 1829 unsigned char scsi3addr[8]; 1830 struct CommandList *c; 1831 unsigned long flags; 1832 1833 /* Get the ptr to our adapter structure out of cmd->host. */ 1834 h = sdev_to_hba(cmd->device); 1835 dev = cmd->device->hostdata; 1836 if (!dev) { 1837 cmd->result = DID_NO_CONNECT << 16; 1838 done(cmd); 1839 return 0; 1840 } 1841 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 1842 1843 /* Need a lock as this is being allocated from the pool */ 1844 spin_lock_irqsave(&h->lock, flags); 1845 c = cmd_alloc(h); 1846 spin_unlock_irqrestore(&h->lock, flags); 1847 if (c == NULL) { /* trouble... */ 1848 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 1849 return SCSI_MLQUEUE_HOST_BUSY; 1850 } 1851 1852 /* Fill in the command list header */ 1853 1854 cmd->scsi_done = done; /* save this for use by completion code */ 1855 1856 /* save c in case we have to abort it */ 1857 cmd->host_scribble = (unsigned char *) c; 1858 1859 c->cmd_type = CMD_SCSI; 1860 c->scsi_cmd = cmd; 1861 c->Header.ReplyQueue = 0; /* unused in simple mode */ 1862 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 1863 c->Header.Tag.lower = c->busaddr; /* Use k. address of cmd as tag */ 1864 1865 /* Fill in the request block... */ 1866 1867 c->Request.Timeout = 0; 1868 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 1869 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 1870 c->Request.CDBLen = cmd->cmd_len; 1871 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 1872 c->Request.Type.Type = TYPE_CMD; 1873 c->Request.Type.Attribute = ATTR_SIMPLE; 1874 switch (cmd->sc_data_direction) { 1875 case DMA_TO_DEVICE: 1876 c->Request.Type.Direction = XFER_WRITE; 1877 break; 1878 case DMA_FROM_DEVICE: 1879 c->Request.Type.Direction = XFER_READ; 1880 break; 1881 case DMA_NONE: 1882 c->Request.Type.Direction = XFER_NONE; 1883 break; 1884 case DMA_BIDIRECTIONAL: 1885 /* This can happen if a buggy application does a scsi passthru 1886 * and sets both inlen and outlen to non-zero. ( see 1887 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 1888 */ 1889 1890 c->Request.Type.Direction = XFER_RSVD; 1891 /* This is technically wrong, and hpsa controllers should 1892 * reject it with CMD_INVALID, which is the most correct 1893 * response, but non-fibre backends appear to let it 1894 * slide by, and give the same results as if this field 1895 * were set correctly. Either way is acceptable for 1896 * our purposes here. 1897 */ 1898 1899 break; 1900 1901 default: 1902 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 1903 cmd->sc_data_direction); 1904 BUG(); 1905 break; 1906 } 1907 1908 if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */ 1909 cmd_free(h, c); 1910 return SCSI_MLQUEUE_HOST_BUSY; 1911 } 1912 enqueue_cmd_and_start_io(h, c); 1913 /* the cmd'll come back via intr handler in complete_scsi_command() */ 1914 return 0; 1915 } 1916 1917 static void hpsa_unregister_scsi(struct ctlr_info *h) 1918 { 1919 /* we are being forcibly unloaded, and may not refuse. */ 1920 scsi_remove_host(h->scsi_host); 1921 scsi_host_put(h->scsi_host); 1922 h->scsi_host = NULL; 1923 } 1924 1925 static int hpsa_register_scsi(struct ctlr_info *h) 1926 { 1927 int rc; 1928 1929 hpsa_update_scsi_devices(h, -1); 1930 rc = hpsa_scsi_detect(h); 1931 if (rc != 0) 1932 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 1933 " hpsa_scsi_detect(), rc is %d\n", rc); 1934 return rc; 1935 } 1936 1937 static int wait_for_device_to_become_ready(struct ctlr_info *h, 1938 unsigned char lunaddr[]) 1939 { 1940 int rc = 0; 1941 int count = 0; 1942 int waittime = 1; /* seconds */ 1943 struct CommandList *c; 1944 1945 c = cmd_special_alloc(h); 1946 if (!c) { 1947 dev_warn(&h->pdev->dev, "out of memory in " 1948 "wait_for_device_to_become_ready.\n"); 1949 return IO_ERROR; 1950 } 1951 1952 /* Send test unit ready until device ready, or give up. */ 1953 while (count < HPSA_TUR_RETRY_LIMIT) { 1954 1955 /* Wait for a bit. do this first, because if we send 1956 * the TUR right away, the reset will just abort it. 1957 */ 1958 msleep(1000 * waittime); 1959 count++; 1960 1961 /* Increase wait time with each try, up to a point. */ 1962 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 1963 waittime = waittime * 2; 1964 1965 /* Send the Test Unit Ready */ 1966 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 1967 hpsa_scsi_do_simple_cmd_core(h, c); 1968 /* no unmap needed here because no data xfer. */ 1969 1970 if (c->err_info->CommandStatus == CMD_SUCCESS) 1971 break; 1972 1973 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 1974 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 1975 (c->err_info->SenseInfo[2] == NO_SENSE || 1976 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 1977 break; 1978 1979 dev_warn(&h->pdev->dev, "waiting %d secs " 1980 "for device to become ready.\n", waittime); 1981 rc = 1; /* device not ready. */ 1982 } 1983 1984 if (rc) 1985 dev_warn(&h->pdev->dev, "giving up on device.\n"); 1986 else 1987 dev_warn(&h->pdev->dev, "device is ready.\n"); 1988 1989 cmd_special_free(h, c); 1990 return rc; 1991 } 1992 1993 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 1994 * complaining. Doing a host- or bus-reset can't do anything good here. 1995 */ 1996 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 1997 { 1998 int rc; 1999 struct ctlr_info *h; 2000 struct hpsa_scsi_dev_t *dev; 2001 2002 /* find the controller to which the command to be aborted was sent */ 2003 h = sdev_to_hba(scsicmd->device); 2004 if (h == NULL) /* paranoia */ 2005 return FAILED; 2006 dev_warn(&h->pdev->dev, "resetting drive\n"); 2007 2008 dev = scsicmd->device->hostdata; 2009 if (!dev) { 2010 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2011 "device lookup failed.\n"); 2012 return FAILED; 2013 } 2014 /* send a reset to the SCSI LUN which the command was sent to */ 2015 rc = hpsa_send_reset(h, dev->scsi3addr); 2016 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2017 return SUCCESS; 2018 2019 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2020 return FAILED; 2021 } 2022 2023 /* 2024 * For operations that cannot sleep, a command block is allocated at init, 2025 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2026 * which ones are free or in use. Lock must be held when calling this. 2027 * cmd_free() is the complement. 2028 */ 2029 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2030 { 2031 struct CommandList *c; 2032 int i; 2033 union u64bit temp64; 2034 dma_addr_t cmd_dma_handle, err_dma_handle; 2035 2036 do { 2037 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2038 if (i == h->nr_cmds) 2039 return NULL; 2040 } while (test_and_set_bit 2041 (i & (BITS_PER_LONG - 1), 2042 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2043 c = h->cmd_pool + i; 2044 memset(c, 0, sizeof(*c)); 2045 cmd_dma_handle = h->cmd_pool_dhandle 2046 + i * sizeof(*c); 2047 c->err_info = h->errinfo_pool + i; 2048 memset(c->err_info, 0, sizeof(*c->err_info)); 2049 err_dma_handle = h->errinfo_pool_dhandle 2050 + i * sizeof(*c->err_info); 2051 h->nr_allocs++; 2052 2053 c->cmdindex = i; 2054 2055 INIT_HLIST_NODE(&c->list); 2056 c->busaddr = (__u32) cmd_dma_handle; 2057 temp64.val = (__u64) err_dma_handle; 2058 c->ErrDesc.Addr.lower = temp64.val32.lower; 2059 c->ErrDesc.Addr.upper = temp64.val32.upper; 2060 c->ErrDesc.Len = sizeof(*c->err_info); 2061 2062 c->h = h; 2063 return c; 2064 } 2065 2066 /* For operations that can wait for kmalloc to possibly sleep, 2067 * this routine can be called. Lock need not be held to call 2068 * cmd_special_alloc. cmd_special_free() is the complement. 2069 */ 2070 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2071 { 2072 struct CommandList *c; 2073 union u64bit temp64; 2074 dma_addr_t cmd_dma_handle, err_dma_handle; 2075 2076 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2077 if (c == NULL) 2078 return NULL; 2079 memset(c, 0, sizeof(*c)); 2080 2081 c->cmdindex = -1; 2082 2083 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2084 &err_dma_handle); 2085 2086 if (c->err_info == NULL) { 2087 pci_free_consistent(h->pdev, 2088 sizeof(*c), c, cmd_dma_handle); 2089 return NULL; 2090 } 2091 memset(c->err_info, 0, sizeof(*c->err_info)); 2092 2093 INIT_HLIST_NODE(&c->list); 2094 c->busaddr = (__u32) cmd_dma_handle; 2095 temp64.val = (__u64) err_dma_handle; 2096 c->ErrDesc.Addr.lower = temp64.val32.lower; 2097 c->ErrDesc.Addr.upper = temp64.val32.upper; 2098 c->ErrDesc.Len = sizeof(*c->err_info); 2099 2100 c->h = h; 2101 return c; 2102 } 2103 2104 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2105 { 2106 int i; 2107 2108 i = c - h->cmd_pool; 2109 clear_bit(i & (BITS_PER_LONG - 1), 2110 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2111 h->nr_frees++; 2112 } 2113 2114 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2115 { 2116 union u64bit temp64; 2117 2118 temp64.val32.lower = c->ErrDesc.Addr.lower; 2119 temp64.val32.upper = c->ErrDesc.Addr.upper; 2120 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2121 c->err_info, (dma_addr_t) temp64.val); 2122 pci_free_consistent(h->pdev, sizeof(*c), 2123 c, (dma_addr_t) c->busaddr); 2124 } 2125 2126 #ifdef CONFIG_COMPAT 2127 2128 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg) 2129 { 2130 int ret; 2131 2132 lock_kernel(); 2133 ret = hpsa_ioctl(dev, cmd, arg); 2134 unlock_kernel(); 2135 return ret; 2136 } 2137 2138 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg); 2139 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2140 int cmd, void *arg); 2141 2142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2143 { 2144 switch (cmd) { 2145 case CCISS_GETPCIINFO: 2146 case CCISS_GETINTINFO: 2147 case CCISS_SETINTINFO: 2148 case CCISS_GETNODENAME: 2149 case CCISS_SETNODENAME: 2150 case CCISS_GETHEARTBEAT: 2151 case CCISS_GETBUSTYPES: 2152 case CCISS_GETFIRMVER: 2153 case CCISS_GETDRIVVER: 2154 case CCISS_REVALIDVOLS: 2155 case CCISS_DEREGDISK: 2156 case CCISS_REGNEWDISK: 2157 case CCISS_REGNEWD: 2158 case CCISS_RESCANDISK: 2159 case CCISS_GETLUNINFO: 2160 return do_ioctl(dev, cmd, arg); 2161 2162 case CCISS_PASSTHRU32: 2163 return hpsa_ioctl32_passthru(dev, cmd, arg); 2164 case CCISS_BIG_PASSTHRU32: 2165 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2166 2167 default: 2168 return -ENOIOCTLCMD; 2169 } 2170 } 2171 2172 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2173 { 2174 IOCTL32_Command_struct __user *arg32 = 2175 (IOCTL32_Command_struct __user *) arg; 2176 IOCTL_Command_struct arg64; 2177 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2178 int err; 2179 u32 cp; 2180 2181 err = 0; 2182 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2183 sizeof(arg64.LUN_info)); 2184 err |= copy_from_user(&arg64.Request, &arg32->Request, 2185 sizeof(arg64.Request)); 2186 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2187 sizeof(arg64.error_info)); 2188 err |= get_user(arg64.buf_size, &arg32->buf_size); 2189 err |= get_user(cp, &arg32->buf); 2190 arg64.buf = compat_ptr(cp); 2191 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2192 2193 if (err) 2194 return -EFAULT; 2195 2196 err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2197 if (err) 2198 return err; 2199 err |= copy_in_user(&arg32->error_info, &p->error_info, 2200 sizeof(arg32->error_info)); 2201 if (err) 2202 return -EFAULT; 2203 return err; 2204 } 2205 2206 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2207 int cmd, void *arg) 2208 { 2209 BIG_IOCTL32_Command_struct __user *arg32 = 2210 (BIG_IOCTL32_Command_struct __user *) arg; 2211 BIG_IOCTL_Command_struct arg64; 2212 BIG_IOCTL_Command_struct __user *p = 2213 compat_alloc_user_space(sizeof(arg64)); 2214 int err; 2215 u32 cp; 2216 2217 err = 0; 2218 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2219 sizeof(arg64.LUN_info)); 2220 err |= copy_from_user(&arg64.Request, &arg32->Request, 2221 sizeof(arg64.Request)); 2222 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2223 sizeof(arg64.error_info)); 2224 err |= get_user(arg64.buf_size, &arg32->buf_size); 2225 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2226 err |= get_user(cp, &arg32->buf); 2227 arg64.buf = compat_ptr(cp); 2228 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2229 2230 if (err) 2231 return -EFAULT; 2232 2233 err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2234 if (err) 2235 return err; 2236 err |= copy_in_user(&arg32->error_info, &p->error_info, 2237 sizeof(arg32->error_info)); 2238 if (err) 2239 return -EFAULT; 2240 return err; 2241 } 2242 #endif 2243 2244 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2245 { 2246 struct hpsa_pci_info pciinfo; 2247 2248 if (!argp) 2249 return -EINVAL; 2250 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2251 pciinfo.bus = h->pdev->bus->number; 2252 pciinfo.dev_fn = h->pdev->devfn; 2253 pciinfo.board_id = h->board_id; 2254 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2255 return -EFAULT; 2256 return 0; 2257 } 2258 2259 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2260 { 2261 DriverVer_type DriverVer; 2262 unsigned char vmaj, vmin, vsubmin; 2263 int rc; 2264 2265 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2266 &vmaj, &vmin, &vsubmin); 2267 if (rc != 3) { 2268 dev_info(&h->pdev->dev, "driver version string '%s' " 2269 "unrecognized.", HPSA_DRIVER_VERSION); 2270 vmaj = 0; 2271 vmin = 0; 2272 vsubmin = 0; 2273 } 2274 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2275 if (!argp) 2276 return -EINVAL; 2277 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2278 return -EFAULT; 2279 return 0; 2280 } 2281 2282 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2283 { 2284 IOCTL_Command_struct iocommand; 2285 struct CommandList *c; 2286 char *buff = NULL; 2287 union u64bit temp64; 2288 2289 if (!argp) 2290 return -EINVAL; 2291 if (!capable(CAP_SYS_RAWIO)) 2292 return -EPERM; 2293 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2294 return -EFAULT; 2295 if ((iocommand.buf_size < 1) && 2296 (iocommand.Request.Type.Direction != XFER_NONE)) { 2297 return -EINVAL; 2298 } 2299 if (iocommand.buf_size > 0) { 2300 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2301 if (buff == NULL) 2302 return -EFAULT; 2303 } 2304 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2305 /* Copy the data into the buffer we created */ 2306 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { 2307 kfree(buff); 2308 return -EFAULT; 2309 } 2310 } else 2311 memset(buff, 0, iocommand.buf_size); 2312 c = cmd_special_alloc(h); 2313 if (c == NULL) { 2314 kfree(buff); 2315 return -ENOMEM; 2316 } 2317 /* Fill in the command type */ 2318 c->cmd_type = CMD_IOCTL_PEND; 2319 /* Fill in Command Header */ 2320 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2321 if (iocommand.buf_size > 0) { /* buffer to fill */ 2322 c->Header.SGList = 1; 2323 c->Header.SGTotal = 1; 2324 } else { /* no buffers to fill */ 2325 c->Header.SGList = 0; 2326 c->Header.SGTotal = 0; 2327 } 2328 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2329 /* use the kernel address the cmd block for tag */ 2330 c->Header.Tag.lower = c->busaddr; 2331 2332 /* Fill in Request block */ 2333 memcpy(&c->Request, &iocommand.Request, 2334 sizeof(c->Request)); 2335 2336 /* Fill in the scatter gather information */ 2337 if (iocommand.buf_size > 0) { 2338 temp64.val = pci_map_single(h->pdev, buff, 2339 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2340 c->SG[0].Addr.lower = temp64.val32.lower; 2341 c->SG[0].Addr.upper = temp64.val32.upper; 2342 c->SG[0].Len = iocommand.buf_size; 2343 c->SG[0].Ext = 0; /* we are not chaining*/ 2344 } 2345 hpsa_scsi_do_simple_cmd_core(h, c); 2346 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2347 check_ioctl_unit_attention(h, c); 2348 2349 /* Copy the error information out */ 2350 memcpy(&iocommand.error_info, c->err_info, 2351 sizeof(iocommand.error_info)); 2352 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2353 kfree(buff); 2354 cmd_special_free(h, c); 2355 return -EFAULT; 2356 } 2357 2358 if (iocommand.Request.Type.Direction == XFER_READ) { 2359 /* Copy the data out of the buffer we created */ 2360 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2361 kfree(buff); 2362 cmd_special_free(h, c); 2363 return -EFAULT; 2364 } 2365 } 2366 kfree(buff); 2367 cmd_special_free(h, c); 2368 return 0; 2369 } 2370 2371 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2372 { 2373 BIG_IOCTL_Command_struct *ioc; 2374 struct CommandList *c; 2375 unsigned char **buff = NULL; 2376 int *buff_size = NULL; 2377 union u64bit temp64; 2378 BYTE sg_used = 0; 2379 int status = 0; 2380 int i; 2381 __u32 left; 2382 __u32 sz; 2383 BYTE __user *data_ptr; 2384 2385 if (!argp) 2386 return -EINVAL; 2387 if (!capable(CAP_SYS_RAWIO)) 2388 return -EPERM; 2389 ioc = (BIG_IOCTL_Command_struct *) 2390 kmalloc(sizeof(*ioc), GFP_KERNEL); 2391 if (!ioc) { 2392 status = -ENOMEM; 2393 goto cleanup1; 2394 } 2395 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2396 status = -EFAULT; 2397 goto cleanup1; 2398 } 2399 if ((ioc->buf_size < 1) && 2400 (ioc->Request.Type.Direction != XFER_NONE)) { 2401 status = -EINVAL; 2402 goto cleanup1; 2403 } 2404 /* Check kmalloc limits using all SGs */ 2405 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2406 status = -EINVAL; 2407 goto cleanup1; 2408 } 2409 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2410 status = -EINVAL; 2411 goto cleanup1; 2412 } 2413 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2414 if (!buff) { 2415 status = -ENOMEM; 2416 goto cleanup1; 2417 } 2418 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2419 if (!buff_size) { 2420 status = -ENOMEM; 2421 goto cleanup1; 2422 } 2423 left = ioc->buf_size; 2424 data_ptr = ioc->buf; 2425 while (left) { 2426 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2427 buff_size[sg_used] = sz; 2428 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2429 if (buff[sg_used] == NULL) { 2430 status = -ENOMEM; 2431 goto cleanup1; 2432 } 2433 if (ioc->Request.Type.Direction == XFER_WRITE) { 2434 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2435 status = -ENOMEM; 2436 goto cleanup1; 2437 } 2438 } else 2439 memset(buff[sg_used], 0, sz); 2440 left -= sz; 2441 data_ptr += sz; 2442 sg_used++; 2443 } 2444 c = cmd_special_alloc(h); 2445 if (c == NULL) { 2446 status = -ENOMEM; 2447 goto cleanup1; 2448 } 2449 c->cmd_type = CMD_IOCTL_PEND; 2450 c->Header.ReplyQueue = 0; 2451 2452 if (ioc->buf_size > 0) { 2453 c->Header.SGList = sg_used; 2454 c->Header.SGTotal = sg_used; 2455 } else { 2456 c->Header.SGList = 0; 2457 c->Header.SGTotal = 0; 2458 } 2459 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2460 c->Header.Tag.lower = c->busaddr; 2461 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2462 if (ioc->buf_size > 0) { 2463 int i; 2464 for (i = 0; i < sg_used; i++) { 2465 temp64.val = pci_map_single(h->pdev, buff[i], 2466 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2467 c->SG[i].Addr.lower = temp64.val32.lower; 2468 c->SG[i].Addr.upper = temp64.val32.upper; 2469 c->SG[i].Len = buff_size[i]; 2470 /* we are not chaining */ 2471 c->SG[i].Ext = 0; 2472 } 2473 } 2474 hpsa_scsi_do_simple_cmd_core(h, c); 2475 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2476 check_ioctl_unit_attention(h, c); 2477 /* Copy the error information out */ 2478 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2479 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2480 cmd_special_free(h, c); 2481 status = -EFAULT; 2482 goto cleanup1; 2483 } 2484 if (ioc->Request.Type.Direction == XFER_READ) { 2485 /* Copy the data out of the buffer we created */ 2486 BYTE __user *ptr = ioc->buf; 2487 for (i = 0; i < sg_used; i++) { 2488 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2489 cmd_special_free(h, c); 2490 status = -EFAULT; 2491 goto cleanup1; 2492 } 2493 ptr += buff_size[i]; 2494 } 2495 } 2496 cmd_special_free(h, c); 2497 status = 0; 2498 cleanup1: 2499 if (buff) { 2500 for (i = 0; i < sg_used; i++) 2501 kfree(buff[i]); 2502 kfree(buff); 2503 } 2504 kfree(buff_size); 2505 kfree(ioc); 2506 return status; 2507 } 2508 2509 static void check_ioctl_unit_attention(struct ctlr_info *h, 2510 struct CommandList *c) 2511 { 2512 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2513 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2514 (void) check_for_unit_attention(h, c); 2515 } 2516 /* 2517 * ioctl 2518 */ 2519 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2520 { 2521 struct ctlr_info *h; 2522 void __user *argp = (void __user *)arg; 2523 2524 h = sdev_to_hba(dev); 2525 2526 switch (cmd) { 2527 case CCISS_DEREGDISK: 2528 case CCISS_REGNEWDISK: 2529 case CCISS_REGNEWD: 2530 hpsa_update_scsi_devices(h, dev->host->host_no); 2531 return 0; 2532 case CCISS_GETPCIINFO: 2533 return hpsa_getpciinfo_ioctl(h, argp); 2534 case CCISS_GETDRIVVER: 2535 return hpsa_getdrivver_ioctl(h, argp); 2536 case CCISS_PASSTHRU: 2537 return hpsa_passthru_ioctl(h, argp); 2538 case CCISS_BIG_PASSTHRU: 2539 return hpsa_big_passthru_ioctl(h, argp); 2540 default: 2541 return -ENOTTY; 2542 } 2543 } 2544 2545 static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, 2546 void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, 2547 int cmd_type) 2548 { 2549 int pci_dir = XFER_NONE; 2550 2551 c->cmd_type = CMD_IOCTL_PEND; 2552 c->Header.ReplyQueue = 0; 2553 if (buff != NULL && size > 0) { 2554 c->Header.SGList = 1; 2555 c->Header.SGTotal = 1; 2556 } else { 2557 c->Header.SGList = 0; 2558 c->Header.SGTotal = 0; 2559 } 2560 c->Header.Tag.lower = c->busaddr; 2561 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2562 2563 c->Request.Type.Type = cmd_type; 2564 if (cmd_type == TYPE_CMD) { 2565 switch (cmd) { 2566 case HPSA_INQUIRY: 2567 /* are we trying to read a vital product page */ 2568 if (page_code != 0) { 2569 c->Request.CDB[1] = 0x01; 2570 c->Request.CDB[2] = page_code; 2571 } 2572 c->Request.CDBLen = 6; 2573 c->Request.Type.Attribute = ATTR_SIMPLE; 2574 c->Request.Type.Direction = XFER_READ; 2575 c->Request.Timeout = 0; 2576 c->Request.CDB[0] = HPSA_INQUIRY; 2577 c->Request.CDB[4] = size & 0xFF; 2578 break; 2579 case HPSA_REPORT_LOG: 2580 case HPSA_REPORT_PHYS: 2581 /* Talking to controller so It's a physical command 2582 mode = 00 target = 0. Nothing to write. 2583 */ 2584 c->Request.CDBLen = 12; 2585 c->Request.Type.Attribute = ATTR_SIMPLE; 2586 c->Request.Type.Direction = XFER_READ; 2587 c->Request.Timeout = 0; 2588 c->Request.CDB[0] = cmd; 2589 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2590 c->Request.CDB[7] = (size >> 16) & 0xFF; 2591 c->Request.CDB[8] = (size >> 8) & 0xFF; 2592 c->Request.CDB[9] = size & 0xFF; 2593 break; 2594 2595 case HPSA_READ_CAPACITY: 2596 c->Request.CDBLen = 10; 2597 c->Request.Type.Attribute = ATTR_SIMPLE; 2598 c->Request.Type.Direction = XFER_READ; 2599 c->Request.Timeout = 0; 2600 c->Request.CDB[0] = cmd; 2601 break; 2602 case HPSA_CACHE_FLUSH: 2603 c->Request.CDBLen = 12; 2604 c->Request.Type.Attribute = ATTR_SIMPLE; 2605 c->Request.Type.Direction = XFER_WRITE; 2606 c->Request.Timeout = 0; 2607 c->Request.CDB[0] = BMIC_WRITE; 2608 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2609 break; 2610 case TEST_UNIT_READY: 2611 c->Request.CDBLen = 6; 2612 c->Request.Type.Attribute = ATTR_SIMPLE; 2613 c->Request.Type.Direction = XFER_NONE; 2614 c->Request.Timeout = 0; 2615 break; 2616 default: 2617 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2618 BUG(); 2619 return; 2620 } 2621 } else if (cmd_type == TYPE_MSG) { 2622 switch (cmd) { 2623 2624 case HPSA_DEVICE_RESET_MSG: 2625 c->Request.CDBLen = 16; 2626 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2627 c->Request.Type.Attribute = ATTR_SIMPLE; 2628 c->Request.Type.Direction = XFER_NONE; 2629 c->Request.Timeout = 0; /* Don't time out */ 2630 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2631 c->Request.CDB[1] = 0x03; /* Reset target above */ 2632 /* If bytes 4-7 are zero, it means reset the */ 2633 /* LunID device */ 2634 c->Request.CDB[4] = 0x00; 2635 c->Request.CDB[5] = 0x00; 2636 c->Request.CDB[6] = 0x00; 2637 c->Request.CDB[7] = 0x00; 2638 break; 2639 2640 default: 2641 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2642 cmd); 2643 BUG(); 2644 } 2645 } else { 2646 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2647 BUG(); 2648 } 2649 2650 switch (c->Request.Type.Direction) { 2651 case XFER_READ: 2652 pci_dir = PCI_DMA_FROMDEVICE; 2653 break; 2654 case XFER_WRITE: 2655 pci_dir = PCI_DMA_TODEVICE; 2656 break; 2657 case XFER_NONE: 2658 pci_dir = PCI_DMA_NONE; 2659 break; 2660 default: 2661 pci_dir = PCI_DMA_BIDIRECTIONAL; 2662 } 2663 2664 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2665 2666 return; 2667 } 2668 2669 /* 2670 * Map (physical) PCI mem into (virtual) kernel space 2671 */ 2672 static void __iomem *remap_pci_mem(ulong base, ulong size) 2673 { 2674 ulong page_base = ((ulong) base) & PAGE_MASK; 2675 ulong page_offs = ((ulong) base) - page_base; 2676 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2677 2678 return page_remapped ? (page_remapped + page_offs) : NULL; 2679 } 2680 2681 /* Takes cmds off the submission queue and sends them to the hardware, 2682 * then puts them on the queue of cmds waiting for completion. 2683 */ 2684 static void start_io(struct ctlr_info *h) 2685 { 2686 struct CommandList *c; 2687 2688 while (!hlist_empty(&h->reqQ)) { 2689 c = hlist_entry(h->reqQ.first, struct CommandList, list); 2690 /* can't do anything if fifo is full */ 2691 if ((h->access.fifo_full(h))) { 2692 dev_warn(&h->pdev->dev, "fifo full\n"); 2693 break; 2694 } 2695 2696 /* Get the first entry from the Request Q */ 2697 removeQ(c); 2698 h->Qdepth--; 2699 2700 /* Tell the controller execute command */ 2701 h->access.submit_command(h, c); 2702 2703 /* Put job onto the completed Q */ 2704 addQ(&h->cmpQ, c); 2705 } 2706 } 2707 2708 static inline unsigned long get_next_completion(struct ctlr_info *h) 2709 { 2710 return h->access.command_completed(h); 2711 } 2712 2713 static inline int interrupt_pending(struct ctlr_info *h) 2714 { 2715 return h->access.intr_pending(h); 2716 } 2717 2718 static inline long interrupt_not_for_us(struct ctlr_info *h) 2719 { 2720 return ((h->access.intr_pending(h) == 0) || 2721 (h->interrupts_enabled == 0)); 2722 } 2723 2724 static inline int bad_tag(struct ctlr_info *h, __u32 tag_index, 2725 __u32 raw_tag) 2726 { 2727 if (unlikely(tag_index >= h->nr_cmds)) { 2728 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2729 return 1; 2730 } 2731 return 0; 2732 } 2733 2734 static inline void finish_cmd(struct CommandList *c, __u32 raw_tag) 2735 { 2736 removeQ(c); 2737 if (likely(c->cmd_type == CMD_SCSI)) 2738 complete_scsi_command(c, 0, raw_tag); 2739 else if (c->cmd_type == CMD_IOCTL_PEND) 2740 complete(c->waiting); 2741 } 2742 2743 static irqreturn_t do_hpsa_intr(int irq, void *dev_id) 2744 { 2745 struct ctlr_info *h = dev_id; 2746 struct CommandList *c; 2747 unsigned long flags; 2748 __u32 raw_tag, tag, tag_index; 2749 struct hlist_node *tmp; 2750 2751 if (interrupt_not_for_us(h)) 2752 return IRQ_NONE; 2753 spin_lock_irqsave(&h->lock, flags); 2754 while (interrupt_pending(h)) { 2755 while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) { 2756 if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) { 2757 tag_index = HPSA_TAG_TO_INDEX(raw_tag); 2758 if (bad_tag(h, tag_index, raw_tag)) 2759 return IRQ_HANDLED; 2760 c = h->cmd_pool + tag_index; 2761 finish_cmd(c, raw_tag); 2762 continue; 2763 } 2764 tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag); 2765 c = NULL; 2766 hlist_for_each_entry(c, tmp, &h->cmpQ, list) { 2767 if (c->busaddr == tag) { 2768 finish_cmd(c, raw_tag); 2769 break; 2770 } 2771 } 2772 } 2773 } 2774 spin_unlock_irqrestore(&h->lock, flags); 2775 return IRQ_HANDLED; 2776 } 2777 2778 /* Send a message CDB to the firmware. */ 2779 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 2780 unsigned char type) 2781 { 2782 struct Command { 2783 struct CommandListHeader CommandHeader; 2784 struct RequestBlock Request; 2785 struct ErrDescriptor ErrorDescriptor; 2786 }; 2787 struct Command *cmd; 2788 static const size_t cmd_sz = sizeof(*cmd) + 2789 sizeof(cmd->ErrorDescriptor); 2790 dma_addr_t paddr64; 2791 uint32_t paddr32, tag; 2792 void __iomem *vaddr; 2793 int i, err; 2794 2795 vaddr = pci_ioremap_bar(pdev, 0); 2796 if (vaddr == NULL) 2797 return -ENOMEM; 2798 2799 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 2800 * CCISS commands, so they must be allocated from the lower 4GiB of 2801 * memory. 2802 */ 2803 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 2804 if (err) { 2805 iounmap(vaddr); 2806 return -ENOMEM; 2807 } 2808 2809 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 2810 if (cmd == NULL) { 2811 iounmap(vaddr); 2812 return -ENOMEM; 2813 } 2814 2815 /* This must fit, because of the 32-bit consistent DMA mask. Also, 2816 * although there's no guarantee, we assume that the address is at 2817 * least 4-byte aligned (most likely, it's page-aligned). 2818 */ 2819 paddr32 = paddr64; 2820 2821 cmd->CommandHeader.ReplyQueue = 0; 2822 cmd->CommandHeader.SGList = 0; 2823 cmd->CommandHeader.SGTotal = 0; 2824 cmd->CommandHeader.Tag.lower = paddr32; 2825 cmd->CommandHeader.Tag.upper = 0; 2826 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 2827 2828 cmd->Request.CDBLen = 16; 2829 cmd->Request.Type.Type = TYPE_MSG; 2830 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 2831 cmd->Request.Type.Direction = XFER_NONE; 2832 cmd->Request.Timeout = 0; /* Don't time out */ 2833 cmd->Request.CDB[0] = opcode; 2834 cmd->Request.CDB[1] = type; 2835 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 2836 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 2837 cmd->ErrorDescriptor.Addr.upper = 0; 2838 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 2839 2840 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 2841 2842 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 2843 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 2844 if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32) 2845 break; 2846 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 2847 } 2848 2849 iounmap(vaddr); 2850 2851 /* we leak the DMA buffer here ... no choice since the controller could 2852 * still complete the command. 2853 */ 2854 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 2855 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 2856 opcode, type); 2857 return -ETIMEDOUT; 2858 } 2859 2860 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 2861 2862 if (tag & HPSA_ERROR_BIT) { 2863 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 2864 opcode, type); 2865 return -EIO; 2866 } 2867 2868 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 2869 opcode, type); 2870 return 0; 2871 } 2872 2873 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 2874 #define hpsa_noop(p) hpsa_message(p, 3, 0) 2875 2876 static __devinit int hpsa_reset_msi(struct pci_dev *pdev) 2877 { 2878 /* the #defines are stolen from drivers/pci/msi.h. */ 2879 #define msi_control_reg(base) (base + PCI_MSI_FLAGS) 2880 #define PCI_MSIX_FLAGS_ENABLE (1 << 15) 2881 2882 int pos; 2883 u16 control = 0; 2884 2885 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); 2886 if (pos) { 2887 pci_read_config_word(pdev, msi_control_reg(pos), &control); 2888 if (control & PCI_MSI_FLAGS_ENABLE) { 2889 dev_info(&pdev->dev, "resetting MSI\n"); 2890 pci_write_config_word(pdev, msi_control_reg(pos), 2891 control & ~PCI_MSI_FLAGS_ENABLE); 2892 } 2893 } 2894 2895 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 2896 if (pos) { 2897 pci_read_config_word(pdev, msi_control_reg(pos), &control); 2898 if (control & PCI_MSIX_FLAGS_ENABLE) { 2899 dev_info(&pdev->dev, "resetting MSI-X\n"); 2900 pci_write_config_word(pdev, msi_control_reg(pos), 2901 control & ~PCI_MSIX_FLAGS_ENABLE); 2902 } 2903 } 2904 2905 return 0; 2906 } 2907 2908 /* This does a hard reset of the controller using PCI power management 2909 * states. 2910 */ 2911 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) 2912 { 2913 u16 pmcsr, saved_config_space[32]; 2914 int i, pos; 2915 2916 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 2917 2918 /* This is very nearly the same thing as 2919 * 2920 * pci_save_state(pci_dev); 2921 * pci_set_power_state(pci_dev, PCI_D3hot); 2922 * pci_set_power_state(pci_dev, PCI_D0); 2923 * pci_restore_state(pci_dev); 2924 * 2925 * but we can't use these nice canned kernel routines on 2926 * kexec, because they also check the MSI/MSI-X state in PCI 2927 * configuration space and do the wrong thing when it is 2928 * set/cleared. Also, the pci_save/restore_state functions 2929 * violate the ordering requirements for restoring the 2930 * configuration space from the CCISS document (see the 2931 * comment below). So we roll our own .... 2932 */ 2933 2934 for (i = 0; i < 32; i++) 2935 pci_read_config_word(pdev, 2*i, &saved_config_space[i]); 2936 2937 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 2938 if (pos == 0) { 2939 dev_err(&pdev->dev, 2940 "hpsa_reset_controller: PCI PM not supported\n"); 2941 return -ENODEV; 2942 } 2943 2944 /* Quoting from the Open CISS Specification: "The Power 2945 * Management Control/Status Register (CSR) controls the power 2946 * state of the device. The normal operating state is D0, 2947 * CSR=00h. The software off state is D3, CSR=03h. To reset 2948 * the controller, place the interface device in D3 then to 2949 * D0, this causes a secondary PCI reset which will reset the 2950 * controller." 2951 */ 2952 2953 /* enter the D3hot power management state */ 2954 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 2955 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2956 pmcsr |= PCI_D3hot; 2957 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 2958 2959 msleep(500); 2960 2961 /* enter the D0 power management state */ 2962 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 2963 pmcsr |= PCI_D0; 2964 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 2965 2966 msleep(500); 2967 2968 /* Restore the PCI configuration space. The Open CISS 2969 * Specification says, "Restore the PCI Configuration 2970 * Registers, offsets 00h through 60h. It is important to 2971 * restore the command register, 16-bits at offset 04h, 2972 * last. Do not restore the configuration status register, 2973 * 16-bits at offset 06h." Note that the offset is 2*i. 2974 */ 2975 for (i = 0; i < 32; i++) { 2976 if (i == 2 || i == 3) 2977 continue; 2978 pci_write_config_word(pdev, 2*i, saved_config_space[i]); 2979 } 2980 wmb(); 2981 pci_write_config_word(pdev, 4, saved_config_space[2]); 2982 2983 return 0; 2984 } 2985 2986 /* 2987 * We cannot read the structure directly, for portability we must use 2988 * the io functions. 2989 * This is for debug only. 2990 */ 2991 #ifdef HPSA_DEBUG 2992 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 2993 { 2994 int i; 2995 char temp_name[17]; 2996 2997 dev_info(dev, "Controller Configuration information\n"); 2998 dev_info(dev, "------------------------------------\n"); 2999 for (i = 0; i < 4; i++) 3000 temp_name[i] = readb(&(tb->Signature[i])); 3001 temp_name[4] = '\0'; 3002 dev_info(dev, " Signature = %s\n", temp_name); 3003 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3004 dev_info(dev, " Transport methods supported = 0x%x\n", 3005 readl(&(tb->TransportSupport))); 3006 dev_info(dev, " Transport methods active = 0x%x\n", 3007 readl(&(tb->TransportActive))); 3008 dev_info(dev, " Requested transport Method = 0x%x\n", 3009 readl(&(tb->HostWrite.TransportRequest))); 3010 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3011 readl(&(tb->HostWrite.CoalIntDelay))); 3012 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3013 readl(&(tb->HostWrite.CoalIntCount))); 3014 dev_info(dev, " Max outstanding commands = 0x%d\n", 3015 readl(&(tb->CmdsOutMax))); 3016 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3017 for (i = 0; i < 16; i++) 3018 temp_name[i] = readb(&(tb->ServerName[i])); 3019 temp_name[16] = '\0'; 3020 dev_info(dev, " Server Name = %s\n", temp_name); 3021 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3022 readl(&(tb->HeartBeat))); 3023 } 3024 #endif /* HPSA_DEBUG */ 3025 3026 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3027 { 3028 int i, offset, mem_type, bar_type; 3029 3030 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3031 return 0; 3032 offset = 0; 3033 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3034 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3035 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3036 offset += 4; 3037 else { 3038 mem_type = pci_resource_flags(pdev, i) & 3039 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3040 switch (mem_type) { 3041 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3042 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3043 offset += 4; /* 32 bit */ 3044 break; 3045 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3046 offset += 8; 3047 break; 3048 default: /* reserved in PCI 2.2 */ 3049 dev_warn(&pdev->dev, 3050 "base address is invalid\n"); 3051 return -1; 3052 break; 3053 } 3054 } 3055 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3056 return i + 1; 3057 } 3058 return -1; 3059 } 3060 3061 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3062 * controllers that are capable. If not, we use IO-APIC mode. 3063 */ 3064 3065 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h, 3066 struct pci_dev *pdev, __u32 board_id) 3067 { 3068 #ifdef CONFIG_PCI_MSI 3069 int err; 3070 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3071 {0, 2}, {0, 3} 3072 }; 3073 3074 /* Some boards advertise MSI but don't really support it */ 3075 if ((board_id == 0x40700E11) || 3076 (board_id == 0x40800E11) || 3077 (board_id == 0x40820E11) || (board_id == 0x40830E11)) 3078 goto default_int_mode; 3079 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { 3080 dev_info(&pdev->dev, "MSIX\n"); 3081 err = pci_enable_msix(pdev, hpsa_msix_entries, 4); 3082 if (!err) { 3083 h->intr[0] = hpsa_msix_entries[0].vector; 3084 h->intr[1] = hpsa_msix_entries[1].vector; 3085 h->intr[2] = hpsa_msix_entries[2].vector; 3086 h->intr[3] = hpsa_msix_entries[3].vector; 3087 h->msix_vector = 1; 3088 return; 3089 } 3090 if (err > 0) { 3091 dev_warn(&pdev->dev, "only %d MSI-X vectors " 3092 "available\n", err); 3093 goto default_int_mode; 3094 } else { 3095 dev_warn(&pdev->dev, "MSI-X init failed %d\n", 3096 err); 3097 goto default_int_mode; 3098 } 3099 } 3100 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { 3101 dev_info(&pdev->dev, "MSI\n"); 3102 if (!pci_enable_msi(pdev)) 3103 h->msi_vector = 1; 3104 else 3105 dev_warn(&pdev->dev, "MSI init failed\n"); 3106 } 3107 default_int_mode: 3108 #endif /* CONFIG_PCI_MSI */ 3109 /* if we get here we're going to use the default interrupt mode */ 3110 h->intr[SIMPLE_MODE_INT] = pdev->irq; 3111 return; 3112 } 3113 3114 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev) 3115 { 3116 ushort subsystem_vendor_id, subsystem_device_id, command; 3117 __u32 board_id, scratchpad = 0; 3118 __u64 cfg_offset; 3119 __u32 cfg_base_addr; 3120 __u64 cfg_base_addr_index; 3121 int i, prod_index, err; 3122 3123 subsystem_vendor_id = pdev->subsystem_vendor; 3124 subsystem_device_id = pdev->subsystem_device; 3125 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | 3126 subsystem_vendor_id); 3127 3128 for (i = 0; i < ARRAY_SIZE(products); i++) 3129 if (board_id == products[i].board_id) 3130 break; 3131 3132 prod_index = i; 3133 3134 if (prod_index == ARRAY_SIZE(products)) { 3135 prod_index--; 3136 if (subsystem_vendor_id != PCI_VENDOR_ID_HP || 3137 !hpsa_allow_any) { 3138 dev_warn(&pdev->dev, "unrecognized board ID:" 3139 " 0x%08lx, ignoring.\n", 3140 (unsigned long) board_id); 3141 return -ENODEV; 3142 } 3143 } 3144 /* check to see if controller has been disabled 3145 * BEFORE trying to enable it 3146 */ 3147 (void)pci_read_config_word(pdev, PCI_COMMAND, &command); 3148 if (!(command & 0x02)) { 3149 dev_warn(&pdev->dev, "controller appears to be disabled\n"); 3150 return -ENODEV; 3151 } 3152 3153 err = pci_enable_device(pdev); 3154 if (err) { 3155 dev_warn(&pdev->dev, "unable to enable PCI device\n"); 3156 return err; 3157 } 3158 3159 err = pci_request_regions(pdev, "hpsa"); 3160 if (err) { 3161 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 3162 return err; 3163 } 3164 3165 /* If the kernel supports MSI/MSI-X we will try to enable that, 3166 * else we use the IO-APIC interrupt assigned to us by system ROM. 3167 */ 3168 hpsa_interrupt_mode(h, pdev, board_id); 3169 3170 /* find the memory BAR */ 3171 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3172 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) 3173 break; 3174 } 3175 if (i == DEVICE_COUNT_RESOURCE) { 3176 dev_warn(&pdev->dev, "no memory BAR found\n"); 3177 err = -ENODEV; 3178 goto err_out_free_res; 3179 } 3180 3181 h->paddr = pci_resource_start(pdev, i); /* addressing mode bits 3182 * already removed 3183 */ 3184 3185 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3186 3187 /* Wait for the board to become ready. */ 3188 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { 3189 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 3190 if (scratchpad == HPSA_FIRMWARE_READY) 3191 break; 3192 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3193 } 3194 if (scratchpad != HPSA_FIRMWARE_READY) { 3195 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 3196 err = -ENODEV; 3197 goto err_out_free_res; 3198 } 3199 3200 /* get the address index number */ 3201 cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); 3202 cfg_base_addr &= (__u32) 0x0000ffff; 3203 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); 3204 if (cfg_base_addr_index == -1) { 3205 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3206 err = -ENODEV; 3207 goto err_out_free_res; 3208 } 3209 3210 cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); 3211 h->cfgtable = remap_pci_mem(pci_resource_start(pdev, 3212 cfg_base_addr_index) + cfg_offset, 3213 sizeof(h->cfgtable)); 3214 h->board_id = board_id; 3215 3216 /* Query controller for max supported commands: */ 3217 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3218 3219 h->product_name = products[prod_index].product_name; 3220 h->access = *(products[prod_index].access); 3221 /* Allow room for some ioctls */ 3222 h->nr_cmds = h->max_commands - 4; 3223 3224 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3225 (readb(&h->cfgtable->Signature[1]) != 'I') || 3226 (readb(&h->cfgtable->Signature[2]) != 'S') || 3227 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3228 dev_warn(&pdev->dev, "not a valid CISS config table\n"); 3229 err = -ENODEV; 3230 goto err_out_free_res; 3231 } 3232 #ifdef CONFIG_X86 3233 { 3234 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3235 __u32 prefetch; 3236 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3237 prefetch |= 0x100; 3238 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3239 } 3240 #endif 3241 3242 /* Disabling DMA prefetch for the P600 3243 * An ASIC bug may result in a prefetch beyond 3244 * physical memory. 3245 */ 3246 if (board_id == 0x3225103C) { 3247 __u32 dma_prefetch; 3248 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3249 dma_prefetch |= 0x8000; 3250 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3251 } 3252 3253 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3254 /* Update the field, and then ring the doorbell */ 3255 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3256 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3257 3258 /* under certain very rare conditions, this can take awhile. 3259 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3260 * as we enter this code.) 3261 */ 3262 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3263 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) 3264 break; 3265 /* delay and try again */ 3266 msleep(10); 3267 } 3268 3269 #ifdef HPSA_DEBUG 3270 print_cfg_table(&pdev->dev, h->cfgtable); 3271 #endif /* HPSA_DEBUG */ 3272 3273 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3274 dev_warn(&pdev->dev, "unable to get board into simple mode\n"); 3275 err = -ENODEV; 3276 goto err_out_free_res; 3277 } 3278 return 0; 3279 3280 err_out_free_res: 3281 /* 3282 * Deliberately omit pci_disable_device(): it does something nasty to 3283 * Smart Array controllers that pci_enable_device does not undo 3284 */ 3285 pci_release_regions(pdev); 3286 return err; 3287 } 3288 3289 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3290 const struct pci_device_id *ent) 3291 { 3292 int i; 3293 int dac; 3294 struct ctlr_info *h; 3295 3296 if (number_of_controllers == 0) 3297 printk(KERN_INFO DRIVER_NAME "\n"); 3298 if (reset_devices) { 3299 /* Reset the controller with a PCI power-cycle */ 3300 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) 3301 return -ENODEV; 3302 3303 /* Some devices (notably the HP Smart Array 5i Controller) 3304 need a little pause here */ 3305 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3306 3307 /* Now try to get the controller to respond to a no-op */ 3308 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3309 if (hpsa_noop(pdev) == 0) 3310 break; 3311 else 3312 dev_warn(&pdev->dev, "no-op failed%s\n", 3313 (i < 11 ? "; re-trying" : "")); 3314 } 3315 } 3316 3317 BUILD_BUG_ON(sizeof(struct CommandList) % 8); 3318 h = kzalloc(sizeof(*h), GFP_KERNEL); 3319 if (!h) 3320 return -1; 3321 3322 h->busy_initializing = 1; 3323 INIT_HLIST_HEAD(&h->cmpQ); 3324 INIT_HLIST_HEAD(&h->reqQ); 3325 mutex_init(&h->busy_shutting_down); 3326 init_completion(&h->scan_wait); 3327 if (hpsa_pci_init(h, pdev) != 0) 3328 goto clean1; 3329 3330 sprintf(h->devname, "hpsa%d", number_of_controllers); 3331 h->ctlr = number_of_controllers; 3332 number_of_controllers++; 3333 h->pdev = pdev; 3334 3335 /* configure PCI DMA stuff */ 3336 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) 3337 dac = 1; 3338 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) 3339 dac = 0; 3340 else { 3341 dev_err(&pdev->dev, "no suitable DMA available\n"); 3342 goto clean1; 3343 } 3344 3345 /* make sure the board interrupts are off */ 3346 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3347 if (request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr, 3348 IRQF_DISABLED | IRQF_SHARED, h->devname, h)) { 3349 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3350 h->intr[SIMPLE_MODE_INT], h->devname); 3351 goto clean2; 3352 } 3353 3354 dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", 3355 h->devname, pdev->device, pci_name(pdev), 3356 h->intr[SIMPLE_MODE_INT], dac ? "" : " not"); 3357 3358 h->cmd_pool_bits = 3359 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3360 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3361 h->cmd_pool = pci_alloc_consistent(h->pdev, 3362 h->nr_cmds * sizeof(*h->cmd_pool), 3363 &(h->cmd_pool_dhandle)); 3364 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3365 h->nr_cmds * sizeof(*h->errinfo_pool), 3366 &(h->errinfo_pool_dhandle)); 3367 if ((h->cmd_pool_bits == NULL) 3368 || (h->cmd_pool == NULL) 3369 || (h->errinfo_pool == NULL)) { 3370 dev_err(&pdev->dev, "out of memory"); 3371 goto clean4; 3372 } 3373 spin_lock_init(&h->lock); 3374 3375 pci_set_drvdata(pdev, h); 3376 memset(h->cmd_pool_bits, 0, 3377 ((h->nr_cmds + BITS_PER_LONG - 3378 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3379 3380 hpsa_scsi_setup(h); 3381 3382 /* Turn the interrupts on so we can service requests */ 3383 h->access.set_intr_mask(h, HPSA_INTR_ON); 3384 3385 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3386 h->busy_initializing = 0; 3387 return 1; 3388 3389 clean4: 3390 kfree(h->cmd_pool_bits); 3391 if (h->cmd_pool) 3392 pci_free_consistent(h->pdev, 3393 h->nr_cmds * sizeof(struct CommandList), 3394 h->cmd_pool, h->cmd_pool_dhandle); 3395 if (h->errinfo_pool) 3396 pci_free_consistent(h->pdev, 3397 h->nr_cmds * sizeof(struct ErrorInfo), 3398 h->errinfo_pool, 3399 h->errinfo_pool_dhandle); 3400 free_irq(h->intr[SIMPLE_MODE_INT], h); 3401 clean2: 3402 clean1: 3403 h->busy_initializing = 0; 3404 kfree(h); 3405 return -1; 3406 } 3407 3408 static void hpsa_flush_cache(struct ctlr_info *h) 3409 { 3410 char *flush_buf; 3411 struct CommandList *c; 3412 3413 flush_buf = kzalloc(4, GFP_KERNEL); 3414 if (!flush_buf) 3415 return; 3416 3417 c = cmd_special_alloc(h); 3418 if (!c) { 3419 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3420 goto out_of_memory; 3421 } 3422 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3423 RAID_CTLR_LUNID, TYPE_CMD); 3424 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3425 if (c->err_info->CommandStatus != 0) 3426 dev_warn(&h->pdev->dev, 3427 "error flushing cache on controller\n"); 3428 cmd_special_free(h, c); 3429 out_of_memory: 3430 kfree(flush_buf); 3431 } 3432 3433 static void hpsa_shutdown(struct pci_dev *pdev) 3434 { 3435 struct ctlr_info *h; 3436 3437 h = pci_get_drvdata(pdev); 3438 /* Turn board interrupts off and send the flush cache command 3439 * sendcmd will turn off interrupt, and send the flush... 3440 * To write all data in the battery backed cache to disks 3441 */ 3442 hpsa_flush_cache(h); 3443 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3444 free_irq(h->intr[2], h); 3445 #ifdef CONFIG_PCI_MSI 3446 if (h->msix_vector) 3447 pci_disable_msix(h->pdev); 3448 else if (h->msi_vector) 3449 pci_disable_msi(h->pdev); 3450 #endif /* CONFIG_PCI_MSI */ 3451 } 3452 3453 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3454 { 3455 struct ctlr_info *h; 3456 3457 if (pci_get_drvdata(pdev) == NULL) { 3458 dev_err(&pdev->dev, "unable to remove device \n"); 3459 return; 3460 } 3461 h = pci_get_drvdata(pdev); 3462 mutex_lock(&h->busy_shutting_down); 3463 remove_from_scan_list(h); 3464 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3465 hpsa_shutdown(pdev); 3466 iounmap(h->vaddr); 3467 pci_free_consistent(h->pdev, 3468 h->nr_cmds * sizeof(struct CommandList), 3469 h->cmd_pool, h->cmd_pool_dhandle); 3470 pci_free_consistent(h->pdev, 3471 h->nr_cmds * sizeof(struct ErrorInfo), 3472 h->errinfo_pool, h->errinfo_pool_dhandle); 3473 kfree(h->cmd_pool_bits); 3474 /* 3475 * Deliberately omit pci_disable_device(): it does something nasty to 3476 * Smart Array controllers that pci_enable_device does not undo 3477 */ 3478 pci_release_regions(pdev); 3479 pci_set_drvdata(pdev, NULL); 3480 mutex_unlock(&h->busy_shutting_down); 3481 kfree(h); 3482 } 3483 3484 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 3485 __attribute__((unused)) pm_message_t state) 3486 { 3487 return -ENOSYS; 3488 } 3489 3490 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 3491 { 3492 return -ENOSYS; 3493 } 3494 3495 static struct pci_driver hpsa_pci_driver = { 3496 .name = "hpsa", 3497 .probe = hpsa_init_one, 3498 .remove = __devexit_p(hpsa_remove_one), 3499 .id_table = hpsa_pci_device_id, /* id_table */ 3500 .shutdown = hpsa_shutdown, 3501 .suspend = hpsa_suspend, 3502 .resume = hpsa_resume, 3503 }; 3504 3505 /* 3506 * This is it. Register the PCI driver information for the cards we control 3507 * the OS will call our registered routines when it finds one of our cards. 3508 */ 3509 static int __init hpsa_init(void) 3510 { 3511 int err; 3512 /* Start the scan thread */ 3513 hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan"); 3514 if (IS_ERR(hpsa_scan_thread)) { 3515 err = PTR_ERR(hpsa_scan_thread); 3516 return -ENODEV; 3517 } 3518 err = pci_register_driver(&hpsa_pci_driver); 3519 if (err) 3520 kthread_stop(hpsa_scan_thread); 3521 return err; 3522 } 3523 3524 static void __exit hpsa_cleanup(void) 3525 { 3526 pci_unregister_driver(&hpsa_pci_driver); 3527 kthread_stop(hpsa_scan_thread); 3528 } 3529 3530 module_init(hpsa_init); 3531 module_exit(hpsa_cleanup); 3532