xref: /openbmc/linux/drivers/scsi/hpsa.c (revision b6dcefde)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
90 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92 	{0,}
93 };
94 
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96 
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102 	{0x3223103C, "Smart Array P800", &SA5_access},
103 	{0x3234103C, "Smart Array P400", &SA5_access},
104 	{0x323d103c, "Smart Array P700M", &SA5_access},
105 	{0x3241103C, "Smart Array P212", &SA5_access},
106 	{0x3243103C, "Smart Array P410", &SA5_access},
107 	{0x3245103C, "Smart Array P410i", &SA5_access},
108 	{0x3247103C, "Smart Array P411", &SA5_access},
109 	{0x3249103C, "Smart Array P812", &SA5_access},
110 	{0x324a103C, "Smart Array P712m", &SA5_access},
111 	{0x324b103C, "Smart Array P711m", &SA5_access},
112 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114 
115 static int number_of_controllers;
116 
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120 
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124 
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h,
130 	void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr,
131 	int cmd_type);
132 
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134 		void (*done)(struct scsi_cmnd *));
135 
136 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
137 static int hpsa_slave_alloc(struct scsi_device *sdev);
138 static void hpsa_slave_destroy(struct scsi_device *sdev);
139 
140 static ssize_t raid_level_show(struct device *dev,
141 	struct device_attribute *attr, char *buf);
142 static ssize_t lunid_show(struct device *dev,
143 	struct device_attribute *attr, char *buf);
144 static ssize_t unique_id_show(struct device *dev,
145 	struct device_attribute *attr, char *buf);
146 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
147 static ssize_t host_store_rescan(struct device *dev,
148 	 struct device_attribute *attr, const char *buf, size_t count);
149 static int check_for_unit_attention(struct ctlr_info *h,
150 	struct CommandList *c);
151 static void check_ioctl_unit_attention(struct ctlr_info *h,
152 	struct CommandList *c);
153 
154 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
155 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
156 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
157 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
158 
159 static struct device_attribute *hpsa_sdev_attrs[] = {
160 	&dev_attr_raid_level,
161 	&dev_attr_lunid,
162 	&dev_attr_unique_id,
163 	NULL,
164 };
165 
166 static struct device_attribute *hpsa_shost_attrs[] = {
167 	&dev_attr_rescan,
168 	NULL,
169 };
170 
171 static struct scsi_host_template hpsa_driver_template = {
172 	.module			= THIS_MODULE,
173 	.name			= "hpsa",
174 	.proc_name		= "hpsa",
175 	.queuecommand		= hpsa_scsi_queue_command,
176 	.can_queue		= 512,
177 	.this_id		= -1,
178 	.sg_tablesize		= MAXSGENTRIES,
179 	.cmd_per_lun		= 512,
180 	.use_clustering		= ENABLE_CLUSTERING,
181 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
182 	.ioctl			= hpsa_ioctl,
183 	.slave_alloc		= hpsa_slave_alloc,
184 	.slave_destroy		= hpsa_slave_destroy,
185 #ifdef CONFIG_COMPAT
186 	.compat_ioctl		= hpsa_compat_ioctl,
187 #endif
188 	.sdev_attrs = hpsa_sdev_attrs,
189 	.shost_attrs = hpsa_shost_attrs,
190 };
191 
192 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
193 {
194 	unsigned long *priv = shost_priv(sdev->host);
195 	return (struct ctlr_info *) *priv;
196 }
197 
198 static struct task_struct *hpsa_scan_thread;
199 static DEFINE_MUTEX(hpsa_scan_mutex);
200 static LIST_HEAD(hpsa_scan_q);
201 static int hpsa_scan_func(void *data);
202 
203 /**
204  * add_to_scan_list() - add controller to rescan queue
205  * @h:		      Pointer to the controller.
206  *
207  * Adds the controller to the rescan queue if not already on the queue.
208  *
209  * returns 1 if added to the queue, 0 if skipped (could be on the
210  * queue already, or the controller could be initializing or shutting
211  * down).
212  **/
213 static int add_to_scan_list(struct ctlr_info *h)
214 {
215 	struct ctlr_info *test_h;
216 	int found = 0;
217 	int ret = 0;
218 
219 	if (h->busy_initializing)
220 		return 0;
221 
222 	/*
223 	 * If we don't get the lock, it means the driver is unloading
224 	 * and there's no point in scheduling a new scan.
225 	 */
226 	if (!mutex_trylock(&h->busy_shutting_down))
227 		return 0;
228 
229 	mutex_lock(&hpsa_scan_mutex);
230 	list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
231 		if (test_h == h) {
232 			found = 1;
233 			break;
234 		}
235 	}
236 	if (!found && !h->busy_scanning) {
237 		INIT_COMPLETION(h->scan_wait);
238 		list_add_tail(&h->scan_list, &hpsa_scan_q);
239 		ret = 1;
240 	}
241 	mutex_unlock(&hpsa_scan_mutex);
242 	mutex_unlock(&h->busy_shutting_down);
243 
244 	return ret;
245 }
246 
247 /**
248  * remove_from_scan_list() - remove controller from rescan queue
249  * @h:			   Pointer to the controller.
250  *
251  * Removes the controller from the rescan queue if present. Blocks if
252  * the controller is currently conducting a rescan.  The controller
253  * can be in one of three states:
254  * 1. Doesn't need a scan
255  * 2. On the scan list, but not scanning yet (we remove it)
256  * 3. Busy scanning (and not on the list). In this case we want to wait for
257  *    the scan to complete to make sure the scanning thread for this
258  *    controller is completely idle.
259  **/
260 static void remove_from_scan_list(struct ctlr_info *h)
261 {
262 	struct ctlr_info *test_h, *tmp_h;
263 
264 	mutex_lock(&hpsa_scan_mutex);
265 	list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
266 		if (test_h == h) { /* state 2. */
267 			list_del(&h->scan_list);
268 			complete_all(&h->scan_wait);
269 			mutex_unlock(&hpsa_scan_mutex);
270 			return;
271 		}
272 	}
273 	if (h->busy_scanning) { /* state 3. */
274 		mutex_unlock(&hpsa_scan_mutex);
275 		wait_for_completion(&h->scan_wait);
276 	} else { /* state 1, nothing to do. */
277 		mutex_unlock(&hpsa_scan_mutex);
278 	}
279 }
280 
281 /* hpsa_scan_func() - kernel thread used to rescan controllers
282  * @data:	 Ignored.
283  *
284  * A kernel thread used scan for drive topology changes on
285  * controllers. The thread processes only one controller at a time
286  * using a queue.  Controllers are added to the queue using
287  * add_to_scan_list() and removed from the queue either after done
288  * processing or using remove_from_scan_list().
289  *
290  * returns 0.
291  **/
292 static int hpsa_scan_func(__attribute__((unused)) void *data)
293 {
294 	struct ctlr_info *h;
295 	int host_no;
296 
297 	while (1) {
298 		set_current_state(TASK_INTERRUPTIBLE);
299 		schedule();
300 		if (kthread_should_stop())
301 			break;
302 
303 		while (1) {
304 			mutex_lock(&hpsa_scan_mutex);
305 			if (list_empty(&hpsa_scan_q)) {
306 				mutex_unlock(&hpsa_scan_mutex);
307 				break;
308 			}
309 			h = list_entry(hpsa_scan_q.next, struct ctlr_info,
310 					scan_list);
311 			list_del(&h->scan_list);
312 			h->busy_scanning = 1;
313 			mutex_unlock(&hpsa_scan_mutex);
314 			host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
315 			hpsa_update_scsi_devices(h, host_no);
316 			complete_all(&h->scan_wait);
317 			mutex_lock(&hpsa_scan_mutex);
318 			h->busy_scanning = 0;
319 			mutex_unlock(&hpsa_scan_mutex);
320 		}
321 	}
322 	return 0;
323 }
324 
325 static int check_for_unit_attention(struct ctlr_info *h,
326 	struct CommandList *c)
327 {
328 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
329 		return 0;
330 
331 	switch (c->err_info->SenseInfo[12]) {
332 	case STATE_CHANGED:
333 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
334 			"detected, command retried\n", h->ctlr);
335 		break;
336 	case LUN_FAILED:
337 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
338 			"detected, action required\n", h->ctlr);
339 		break;
340 	case REPORT_LUNS_CHANGED:
341 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
342 			"changed\n", h->ctlr);
343 	/*
344 	 * Here, we could call add_to_scan_list and wake up the scan thread,
345 	 * except that it's quite likely that we will get more than one
346 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
347 	 * that those which occur after the first one will likely happen
348 	 * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
349 	 * robust enough to restart in the middle, undoing what it has already
350 	 * done, and it's not clear that it's even possible to do this, since
351 	 * part of what it does is notify the SCSI mid layer, which starts
352 	 * doing it's own i/o to read partition tables and so on, and the
353 	 * driver doesn't have visibility to know what might need undoing.
354 	 * In any event, if possible, it is horribly complicated to get right
355 	 * so we just don't do it for now.
356 	 *
357 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
358 	 */
359 		break;
360 	case POWER_OR_RESET:
361 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
362 			"or device reset detected\n", h->ctlr);
363 		break;
364 	case UNIT_ATTENTION_CLEARED:
365 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
366 		    "cleared by another initiator\n", h->ctlr);
367 		break;
368 	default:
369 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
370 			"unit attention detected\n", h->ctlr);
371 		break;
372 	}
373 	return 1;
374 }
375 
376 static ssize_t host_store_rescan(struct device *dev,
377 				 struct device_attribute *attr,
378 				 const char *buf, size_t count)
379 {
380 	struct ctlr_info *h;
381 	struct Scsi_Host *shost = class_to_shost(dev);
382 	unsigned long *priv = shost_priv(shost);
383 	h = (struct ctlr_info *) *priv;
384 	if (add_to_scan_list(h)) {
385 		wake_up_process(hpsa_scan_thread);
386 		wait_for_completion_interruptible(&h->scan_wait);
387 	}
388 	return count;
389 }
390 
391 /* Enqueuing and dequeuing functions for cmdlists. */
392 static inline void addQ(struct hlist_head *list, struct CommandList *c)
393 {
394 	hlist_add_head(&c->list, list);
395 }
396 
397 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
398 	struct CommandList *c)
399 {
400 	unsigned long flags;
401 	spin_lock_irqsave(&h->lock, flags);
402 	addQ(&h->reqQ, c);
403 	h->Qdepth++;
404 	start_io(h);
405 	spin_unlock_irqrestore(&h->lock, flags);
406 }
407 
408 static inline void removeQ(struct CommandList *c)
409 {
410 	if (WARN_ON(hlist_unhashed(&c->list)))
411 		return;
412 	hlist_del_init(&c->list);
413 }
414 
415 static inline int is_hba_lunid(unsigned char scsi3addr[])
416 {
417 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
418 }
419 
420 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
421 {
422 	return (scsi3addr[3] & 0xC0) == 0x40;
423 }
424 
425 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
426 	"UNKNOWN"
427 };
428 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429 
430 static ssize_t raid_level_show(struct device *dev,
431 	     struct device_attribute *attr, char *buf)
432 {
433 	ssize_t l = 0;
434 	int rlevel;
435 	struct ctlr_info *h;
436 	struct scsi_device *sdev;
437 	struct hpsa_scsi_dev_t *hdev;
438 	unsigned long flags;
439 
440 	sdev = to_scsi_device(dev);
441 	h = sdev_to_hba(sdev);
442 	spin_lock_irqsave(&h->lock, flags);
443 	hdev = sdev->hostdata;
444 	if (!hdev) {
445 		spin_unlock_irqrestore(&h->lock, flags);
446 		return -ENODEV;
447 	}
448 
449 	/* Is this even a logical drive? */
450 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
451 		spin_unlock_irqrestore(&h->lock, flags);
452 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
453 		return l;
454 	}
455 
456 	rlevel = hdev->raid_level;
457 	spin_unlock_irqrestore(&h->lock, flags);
458 	if (rlevel < 0 || rlevel > RAID_UNKNOWN)
459 		rlevel = RAID_UNKNOWN;
460 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
461 	return l;
462 }
463 
464 static ssize_t lunid_show(struct device *dev,
465 	     struct device_attribute *attr, char *buf)
466 {
467 	struct ctlr_info *h;
468 	struct scsi_device *sdev;
469 	struct hpsa_scsi_dev_t *hdev;
470 	unsigned long flags;
471 	unsigned char lunid[8];
472 
473 	sdev = to_scsi_device(dev);
474 	h = sdev_to_hba(sdev);
475 	spin_lock_irqsave(&h->lock, flags);
476 	hdev = sdev->hostdata;
477 	if (!hdev) {
478 		spin_unlock_irqrestore(&h->lock, flags);
479 		return -ENODEV;
480 	}
481 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
482 	spin_unlock_irqrestore(&h->lock, flags);
483 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
484 		lunid[0], lunid[1], lunid[2], lunid[3],
485 		lunid[4], lunid[5], lunid[6], lunid[7]);
486 }
487 
488 static ssize_t unique_id_show(struct device *dev,
489 	     struct device_attribute *attr, char *buf)
490 {
491 	struct ctlr_info *h;
492 	struct scsi_device *sdev;
493 	struct hpsa_scsi_dev_t *hdev;
494 	unsigned long flags;
495 	unsigned char sn[16];
496 
497 	sdev = to_scsi_device(dev);
498 	h = sdev_to_hba(sdev);
499 	spin_lock_irqsave(&h->lock, flags);
500 	hdev = sdev->hostdata;
501 	if (!hdev) {
502 		spin_unlock_irqrestore(&h->lock, flags);
503 		return -ENODEV;
504 	}
505 	memcpy(sn, hdev->device_id, sizeof(sn));
506 	spin_unlock_irqrestore(&h->lock, flags);
507 	return snprintf(buf, 16 * 2 + 2,
508 			"%02X%02X%02X%02X%02X%02X%02X%02X"
509 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
510 			sn[0], sn[1], sn[2], sn[3],
511 			sn[4], sn[5], sn[6], sn[7],
512 			sn[8], sn[9], sn[10], sn[11],
513 			sn[12], sn[13], sn[14], sn[15]);
514 }
515 
516 static int hpsa_find_target_lun(struct ctlr_info *h,
517 	unsigned char scsi3addr[], int bus, int *target, int *lun)
518 {
519 	/* finds an unused bus, target, lun for a new physical device
520 	 * assumes h->devlock is held
521 	 */
522 	int i, found = 0;
523 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
524 
525 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
526 
527 	for (i = 0; i < h->ndevices; i++) {
528 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
529 			set_bit(h->dev[i]->target, lun_taken);
530 	}
531 
532 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
533 		if (!test_bit(i, lun_taken)) {
534 			/* *bus = 1; */
535 			*target = i;
536 			*lun = 0;
537 			found = 1;
538 			break;
539 		}
540 	}
541 	return !found;
542 }
543 
544 /* Add an entry into h->dev[] array. */
545 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
546 		struct hpsa_scsi_dev_t *device,
547 		struct hpsa_scsi_dev_t *added[], int *nadded)
548 {
549 	/* assumes h->devlock is held */
550 	int n = h->ndevices;
551 	int i;
552 	unsigned char addr1[8], addr2[8];
553 	struct hpsa_scsi_dev_t *sd;
554 
555 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
556 		dev_err(&h->pdev->dev, "too many devices, some will be "
557 			"inaccessible.\n");
558 		return -1;
559 	}
560 
561 	/* physical devices do not have lun or target assigned until now. */
562 	if (device->lun != -1)
563 		/* Logical device, lun is already assigned. */
564 		goto lun_assigned;
565 
566 	/* If this device a non-zero lun of a multi-lun device
567 	 * byte 4 of the 8-byte LUN addr will contain the logical
568 	 * unit no, zero otherise.
569 	 */
570 	if (device->scsi3addr[4] == 0) {
571 		/* This is not a non-zero lun of a multi-lun device */
572 		if (hpsa_find_target_lun(h, device->scsi3addr,
573 			device->bus, &device->target, &device->lun) != 0)
574 			return -1;
575 		goto lun_assigned;
576 	}
577 
578 	/* This is a non-zero lun of a multi-lun device.
579 	 * Search through our list and find the device which
580 	 * has the same 8 byte LUN address, excepting byte 4.
581 	 * Assign the same bus and target for this new LUN.
582 	 * Use the logical unit number from the firmware.
583 	 */
584 	memcpy(addr1, device->scsi3addr, 8);
585 	addr1[4] = 0;
586 	for (i = 0; i < n; i++) {
587 		sd = h->dev[i];
588 		memcpy(addr2, sd->scsi3addr, 8);
589 		addr2[4] = 0;
590 		/* differ only in byte 4? */
591 		if (memcmp(addr1, addr2, 8) == 0) {
592 			device->bus = sd->bus;
593 			device->target = sd->target;
594 			device->lun = device->scsi3addr[4];
595 			break;
596 		}
597 	}
598 	if (device->lun == -1) {
599 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
600 			" suspect firmware bug or unsupported hardware "
601 			"configuration.\n");
602 			return -1;
603 	}
604 
605 lun_assigned:
606 
607 	h->dev[n] = device;
608 	h->ndevices++;
609 	added[*nadded] = device;
610 	(*nadded)++;
611 
612 	/* initially, (before registering with scsi layer) we don't
613 	 * know our hostno and we don't want to print anything first
614 	 * time anyway (the scsi layer's inquiries will show that info)
615 	 */
616 	/* if (hostno != -1) */
617 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
618 			scsi_device_type(device->devtype), hostno,
619 			device->bus, device->target, device->lun);
620 	return 0;
621 }
622 
623 /* Remove an entry from h->dev[] array. */
624 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
625 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
626 {
627 	/* assumes h->devlock is held */
628 	int i;
629 	struct hpsa_scsi_dev_t *sd;
630 
631 	if (entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA)
632 		BUG();
633 
634 	sd = h->dev[entry];
635 	removed[*nremoved] = h->dev[entry];
636 	(*nremoved)++;
637 
638 	for (i = entry; i < h->ndevices-1; i++)
639 		h->dev[i] = h->dev[i+1];
640 	h->ndevices--;
641 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
642 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
643 		sd->lun);
644 }
645 
646 #define SCSI3ADDR_EQ(a, b) ( \
647 	(a)[7] == (b)[7] && \
648 	(a)[6] == (b)[6] && \
649 	(a)[5] == (b)[5] && \
650 	(a)[4] == (b)[4] && \
651 	(a)[3] == (b)[3] && \
652 	(a)[2] == (b)[2] && \
653 	(a)[1] == (b)[1] && \
654 	(a)[0] == (b)[0])
655 
656 static void fixup_botched_add(struct ctlr_info *h,
657 	struct hpsa_scsi_dev_t *added)
658 {
659 	/* called when scsi_add_device fails in order to re-adjust
660 	 * h->dev[] to match the mid layer's view.
661 	 */
662 	unsigned long flags;
663 	int i, j;
664 
665 	spin_lock_irqsave(&h->lock, flags);
666 	for (i = 0; i < h->ndevices; i++) {
667 		if (h->dev[i] == added) {
668 			for (j = i; j < h->ndevices-1; j++)
669 				h->dev[j] = h->dev[j+1];
670 			h->ndevices--;
671 			break;
672 		}
673 	}
674 	spin_unlock_irqrestore(&h->lock, flags);
675 	kfree(added);
676 }
677 
678 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
679 	struct hpsa_scsi_dev_t *dev2)
680 {
681 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
682 		(dev1->lun != -1 && dev2->lun != -1)) &&
683 		dev1->devtype != 0x0C)
684 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
685 
686 	/* we compare everything except lun and target as these
687 	 * are not yet assigned.  Compare parts likely
688 	 * to differ first
689 	 */
690 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
691 		sizeof(dev1->scsi3addr)) != 0)
692 		return 0;
693 	if (memcmp(dev1->device_id, dev2->device_id,
694 		sizeof(dev1->device_id)) != 0)
695 		return 0;
696 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
697 		return 0;
698 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
699 		return 0;
700 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
701 		return 0;
702 	if (dev1->devtype != dev2->devtype)
703 		return 0;
704 	if (dev1->raid_level != dev2->raid_level)
705 		return 0;
706 	if (dev1->bus != dev2->bus)
707 		return 0;
708 	return 1;
709 }
710 
711 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
712  * and return needle location in *index.  If scsi3addr matches, but not
713  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
714  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
715  */
716 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
717 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
718 	int *index)
719 {
720 	int i;
721 #define DEVICE_NOT_FOUND 0
722 #define DEVICE_CHANGED 1
723 #define DEVICE_SAME 2
724 	for (i = 0; i < haystack_size; i++) {
725 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
726 			*index = i;
727 			if (device_is_the_same(needle, haystack[i]))
728 				return DEVICE_SAME;
729 			else
730 				return DEVICE_CHANGED;
731 		}
732 	}
733 	*index = -1;
734 	return DEVICE_NOT_FOUND;
735 }
736 
737 static int adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
738 	struct hpsa_scsi_dev_t *sd[], int nsds)
739 {
740 	/* sd contains scsi3 addresses and devtypes, and inquiry
741 	 * data.  This function takes what's in sd to be the current
742 	 * reality and updates h->dev[] to reflect that reality.
743 	 */
744 	int i, entry, device_change, changes = 0;
745 	struct hpsa_scsi_dev_t *csd;
746 	unsigned long flags;
747 	struct hpsa_scsi_dev_t **added, **removed;
748 	int nadded, nremoved;
749 	struct Scsi_Host *sh = NULL;
750 
751 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
752 		GFP_KERNEL);
753 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
754 		GFP_KERNEL);
755 
756 	if (!added || !removed) {
757 		dev_warn(&h->pdev->dev, "out of memory in "
758 			"adjust_hpsa_scsi_table\n");
759 		goto free_and_out;
760 	}
761 
762 	spin_lock_irqsave(&h->devlock, flags);
763 
764 	/* find any devices in h->dev[] that are not in
765 	 * sd[] and remove them from h->dev[], and for any
766 	 * devices which have changed, remove the old device
767 	 * info and add the new device info.
768 	 */
769 	i = 0;
770 	nremoved = 0;
771 	nadded = 0;
772 	while (i < h->ndevices) {
773 		csd = h->dev[i];
774 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
775 		if (device_change == DEVICE_NOT_FOUND) {
776 			changes++;
777 			hpsa_scsi_remove_entry(h, hostno, i,
778 				removed, &nremoved);
779 			continue; /* remove ^^^, hence i not incremented */
780 		} else if (device_change == DEVICE_CHANGED) {
781 			changes++;
782 			hpsa_scsi_remove_entry(h, hostno, i,
783 				removed, &nremoved);
784 			(void) hpsa_scsi_add_entry(h, hostno, sd[entry],
785 				added, &nadded);
786 			/* add can't fail, we just removed one. */
787 			sd[entry] = NULL; /* prevent it from being freed */
788 		}
789 		i++;
790 	}
791 
792 	/* Now, make sure every device listed in sd[] is also
793 	 * listed in h->dev[], adding them if they aren't found
794 	 */
795 
796 	for (i = 0; i < nsds; i++) {
797 		if (!sd[i]) /* if already added above. */
798 			continue;
799 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
800 					h->ndevices, &entry);
801 		if (device_change == DEVICE_NOT_FOUND) {
802 			changes++;
803 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
804 				added, &nadded) != 0)
805 				break;
806 			sd[i] = NULL; /* prevent from being freed later. */
807 		} else if (device_change == DEVICE_CHANGED) {
808 			/* should never happen... */
809 			changes++;
810 			dev_warn(&h->pdev->dev,
811 				"device unexpectedly changed.\n");
812 			/* but if it does happen, we just ignore that device */
813 		}
814 	}
815 	spin_unlock_irqrestore(&h->devlock, flags);
816 
817 	/* Don't notify scsi mid layer of any changes the first time through
818 	 * (or if there are no changes) scsi_scan_host will do it later the
819 	 * first time through.
820 	 */
821 	if (hostno == -1 || !changes)
822 		goto free_and_out;
823 
824 	sh = h->scsi_host;
825 	/* Notify scsi mid layer of any removed devices */
826 	for (i = 0; i < nremoved; i++) {
827 		struct scsi_device *sdev =
828 			scsi_device_lookup(sh, removed[i]->bus,
829 				removed[i]->target, removed[i]->lun);
830 		if (sdev != NULL) {
831 			scsi_remove_device(sdev);
832 			scsi_device_put(sdev);
833 		} else {
834 			/* We don't expect to get here.
835 			 * future cmds to this device will get selection
836 			 * timeout as if the device was gone.
837 			 */
838 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
839 				" for removal.", hostno, removed[i]->bus,
840 				removed[i]->target, removed[i]->lun);
841 		}
842 		kfree(removed[i]);
843 		removed[i] = NULL;
844 	}
845 
846 	/* Notify scsi mid layer of any added devices */
847 	for (i = 0; i < nadded; i++) {
848 		if (scsi_add_device(sh, added[i]->bus,
849 			added[i]->target, added[i]->lun) == 0)
850 			continue;
851 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
852 			"device not added.\n", hostno, added[i]->bus,
853 			added[i]->target, added[i]->lun);
854 		/* now we have to remove it from h->dev,
855 		 * since it didn't get added to scsi mid layer
856 		 */
857 		fixup_botched_add(h, added[i]);
858 	}
859 
860 free_and_out:
861 	kfree(added);
862 	kfree(removed);
863 	return 0;
864 }
865 
866 /*
867  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
868  * Assume's h->devlock is held.
869  */
870 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
871 	int bus, int target, int lun)
872 {
873 	int i;
874 	struct hpsa_scsi_dev_t *sd;
875 
876 	for (i = 0; i < h->ndevices; i++) {
877 		sd = h->dev[i];
878 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
879 			return sd;
880 	}
881 	return NULL;
882 }
883 
884 /* link sdev->hostdata to our per-device structure. */
885 static int hpsa_slave_alloc(struct scsi_device *sdev)
886 {
887 	struct hpsa_scsi_dev_t *sd;
888 	unsigned long flags;
889 	struct ctlr_info *h;
890 
891 	h = sdev_to_hba(sdev);
892 	spin_lock_irqsave(&h->devlock, flags);
893 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
894 		sdev_id(sdev), sdev->lun);
895 	if (sd != NULL)
896 		sdev->hostdata = sd;
897 	spin_unlock_irqrestore(&h->devlock, flags);
898 	return 0;
899 }
900 
901 static void hpsa_slave_destroy(struct scsi_device *sdev)
902 {
903 	return; /* nothing to do. */
904 }
905 
906 static void hpsa_scsi_setup(struct ctlr_info *h)
907 {
908 	h->ndevices = 0;
909 	h->scsi_host = NULL;
910 	spin_lock_init(&h->devlock);
911 	return;
912 }
913 
914 static void complete_scsi_command(struct CommandList *cp,
915 	int timeout, __u32 tag)
916 {
917 	struct scsi_cmnd *cmd;
918 	struct ctlr_info *h;
919 	struct ErrorInfo *ei;
920 
921 	unsigned char sense_key;
922 	unsigned char asc;      /* additional sense code */
923 	unsigned char ascq;     /* additional sense code qualifier */
924 
925 	ei = cp->err_info;
926 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
927 	h = cp->h;
928 
929 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
930 
931 	cmd->result = (DID_OK << 16); 		/* host byte */
932 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
933 	cmd->result |= (ei->ScsiStatus << 1);
934 
935 	/* copy the sense data whether we need to or not. */
936 	memcpy(cmd->sense_buffer, ei->SenseInfo,
937 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
938 			SCSI_SENSE_BUFFERSIZE :
939 			ei->SenseLen);
940 	scsi_set_resid(cmd, ei->ResidualCnt);
941 
942 	if (ei->CommandStatus == 0) {
943 		cmd->scsi_done(cmd);
944 		cmd_free(h, cp);
945 		return;
946 	}
947 
948 	/* an error has occurred */
949 	switch (ei->CommandStatus) {
950 
951 	case CMD_TARGET_STATUS:
952 		if (ei->ScsiStatus) {
953 			/* Get sense key */
954 			sense_key = 0xf & ei->SenseInfo[2];
955 			/* Get additional sense code */
956 			asc = ei->SenseInfo[12];
957 			/* Get addition sense code qualifier */
958 			ascq = ei->SenseInfo[13];
959 		}
960 
961 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
962 			if (check_for_unit_attention(h, cp)) {
963 				cmd->result = DID_SOFT_ERROR << 16;
964 				break;
965 			}
966 			if (sense_key == ILLEGAL_REQUEST) {
967 				/*
968 				 * SCSI REPORT_LUNS is commonly unsupported on
969 				 * Smart Array.  Suppress noisy complaint.
970 				 */
971 				if (cp->Request.CDB[0] == REPORT_LUNS)
972 					break;
973 
974 				/* If ASC/ASCQ indicate Logical Unit
975 				 * Not Supported condition,
976 				 */
977 				if ((asc == 0x25) && (ascq == 0x0)) {
978 					dev_warn(&h->pdev->dev, "cp %p "
979 						"has check condition\n", cp);
980 					break;
981 				}
982 			}
983 
984 			if (sense_key == NOT_READY) {
985 				/* If Sense is Not Ready, Logical Unit
986 				 * Not ready, Manual Intervention
987 				 * required
988 				 */
989 				if ((asc == 0x04) && (ascq == 0x03)) {
990 					cmd->result = DID_NO_CONNECT << 16;
991 					dev_warn(&h->pdev->dev, "cp %p "
992 						"has check condition: unit "
993 						"not ready, manual "
994 						"intervention required\n", cp);
995 					break;
996 				}
997 			}
998 
999 
1000 			/* Must be some other type of check condition */
1001 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1002 					"unknown type: "
1003 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1004 					"Returning result: 0x%x, "
1005 					"cmd=[%02x %02x %02x %02x %02x "
1006 					"%02x %02x %02x %02x %02x]\n",
1007 					cp, sense_key, asc, ascq,
1008 					cmd->result,
1009 					cmd->cmnd[0], cmd->cmnd[1],
1010 					cmd->cmnd[2], cmd->cmnd[3],
1011 					cmd->cmnd[4], cmd->cmnd[5],
1012 					cmd->cmnd[6], cmd->cmnd[7],
1013 					cmd->cmnd[8], cmd->cmnd[9]);
1014 			break;
1015 		}
1016 
1017 
1018 		/* Problem was not a check condition
1019 		 * Pass it up to the upper layers...
1020 		 */
1021 		if (ei->ScsiStatus) {
1022 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1023 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1024 				"Returning result: 0x%x\n",
1025 				cp, ei->ScsiStatus,
1026 				sense_key, asc, ascq,
1027 				cmd->result);
1028 		} else {  /* scsi status is zero??? How??? */
1029 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1030 				"Returning no connection.\n", cp),
1031 
1032 			/* Ordinarily, this case should never happen,
1033 			 * but there is a bug in some released firmware
1034 			 * revisions that allows it to happen if, for
1035 			 * example, a 4100 backplane loses power and
1036 			 * the tape drive is in it.  We assume that
1037 			 * it's a fatal error of some kind because we
1038 			 * can't show that it wasn't. We will make it
1039 			 * look like selection timeout since that is
1040 			 * the most common reason for this to occur,
1041 			 * and it's severe enough.
1042 			 */
1043 
1044 			cmd->result = DID_NO_CONNECT << 16;
1045 		}
1046 		break;
1047 
1048 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1049 		break;
1050 	case CMD_DATA_OVERRUN:
1051 		dev_warn(&h->pdev->dev, "cp %p has"
1052 			" completed with data overrun "
1053 			"reported\n", cp);
1054 		break;
1055 	case CMD_INVALID: {
1056 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1057 		print_cmd(cp); */
1058 		/* We get CMD_INVALID if you address a non-existent device
1059 		 * instead of a selection timeout (no response).  You will
1060 		 * see this if you yank out a drive, then try to access it.
1061 		 * This is kind of a shame because it means that any other
1062 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1063 		 * missing target. */
1064 		cmd->result = DID_NO_CONNECT << 16;
1065 	}
1066 		break;
1067 	case CMD_PROTOCOL_ERR:
1068 		dev_warn(&h->pdev->dev, "cp %p has "
1069 			"protocol error \n", cp);
1070 		break;
1071 	case CMD_HARDWARE_ERR:
1072 		cmd->result = DID_ERROR << 16;
1073 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1074 		break;
1075 	case CMD_CONNECTION_LOST:
1076 		cmd->result = DID_ERROR << 16;
1077 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1078 		break;
1079 	case CMD_ABORTED:
1080 		cmd->result = DID_ABORT << 16;
1081 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1082 				cp, ei->ScsiStatus);
1083 		break;
1084 	case CMD_ABORT_FAILED:
1085 		cmd->result = DID_ERROR << 16;
1086 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1087 		break;
1088 	case CMD_UNSOLICITED_ABORT:
1089 		cmd->result = DID_ABORT << 16;
1090 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1091 			"abort\n", cp);
1092 		break;
1093 	case CMD_TIMEOUT:
1094 		cmd->result = DID_TIME_OUT << 16;
1095 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1096 		break;
1097 	default:
1098 		cmd->result = DID_ERROR << 16;
1099 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1100 				cp, ei->CommandStatus);
1101 	}
1102 	cmd->scsi_done(cmd);
1103 	cmd_free(h, cp);
1104 }
1105 
1106 static int hpsa_scsi_detect(struct ctlr_info *h)
1107 {
1108 	struct Scsi_Host *sh;
1109 	int error;
1110 
1111 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1112 	if (sh == NULL)
1113 		goto fail;
1114 
1115 	sh->io_port = 0;
1116 	sh->n_io_port = 0;
1117 	sh->this_id = -1;
1118 	sh->max_channel = 3;
1119 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1120 	sh->max_lun = HPSA_MAX_LUN;
1121 	sh->max_id = HPSA_MAX_LUN;
1122 	h->scsi_host = sh;
1123 	sh->hostdata[0] = (unsigned long) h;
1124 	sh->irq = h->intr[SIMPLE_MODE_INT];
1125 	sh->unique_id = sh->irq;
1126 	error = scsi_add_host(sh, &h->pdev->dev);
1127 	if (error)
1128 		goto fail_host_put;
1129 	scsi_scan_host(sh);
1130 	return 0;
1131 
1132  fail_host_put:
1133 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1134 		" failed for controller %d\n", h->ctlr);
1135 	scsi_host_put(sh);
1136 	return -1;
1137  fail:
1138 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1139 		" failed for controller %d\n", h->ctlr);
1140 	return -1;
1141 }
1142 
1143 static void hpsa_pci_unmap(struct pci_dev *pdev,
1144 	struct CommandList *c, int sg_used, int data_direction)
1145 {
1146 	int i;
1147 	union u64bit addr64;
1148 
1149 	for (i = 0; i < sg_used; i++) {
1150 		addr64.val32.lower = c->SG[i].Addr.lower;
1151 		addr64.val32.upper = c->SG[i].Addr.upper;
1152 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1153 			data_direction);
1154 	}
1155 }
1156 
1157 static void hpsa_map_one(struct pci_dev *pdev,
1158 		struct CommandList *cp,
1159 		unsigned char *buf,
1160 		size_t buflen,
1161 		int data_direction)
1162 {
1163 	__u64 addr64;
1164 
1165 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1166 		cp->Header.SGList = 0;
1167 		cp->Header.SGTotal = 0;
1168 		return;
1169 	}
1170 
1171 	addr64 = (__u64) pci_map_single(pdev, buf, buflen, data_direction);
1172 	cp->SG[0].Addr.lower =
1173 	  (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF);
1174 	cp->SG[0].Addr.upper =
1175 	  (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF);
1176 	cp->SG[0].Len = buflen;
1177 	cp->Header.SGList = (__u8) 1;   /* no. SGs contig in this cmd */
1178 	cp->Header.SGTotal = (__u16) 1; /* total sgs in this cmd list */
1179 }
1180 
1181 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1182 	struct CommandList *c)
1183 {
1184 	DECLARE_COMPLETION_ONSTACK(wait);
1185 
1186 	c->waiting = &wait;
1187 	enqueue_cmd_and_start_io(h, c);
1188 	wait_for_completion(&wait);
1189 }
1190 
1191 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1192 	struct CommandList *c, int data_direction)
1193 {
1194 	int retry_count = 0;
1195 
1196 	do {
1197 		memset(c->err_info, 0, sizeof(c->err_info));
1198 		hpsa_scsi_do_simple_cmd_core(h, c);
1199 		retry_count++;
1200 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1201 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1202 }
1203 
1204 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1205 {
1206 	struct ErrorInfo *ei;
1207 	struct device *d = &cp->h->pdev->dev;
1208 
1209 	ei = cp->err_info;
1210 	switch (ei->CommandStatus) {
1211 	case CMD_TARGET_STATUS:
1212 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1213 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1214 				ei->ScsiStatus);
1215 		if (ei->ScsiStatus == 0)
1216 			dev_warn(d, "SCSI status is abnormally zero.  "
1217 			"(probably indicates selection timeout "
1218 			"reported incorrectly due to a known "
1219 			"firmware bug, circa July, 2001.)\n");
1220 		break;
1221 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1222 			dev_info(d, "UNDERRUN\n");
1223 		break;
1224 	case CMD_DATA_OVERRUN:
1225 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1226 		break;
1227 	case CMD_INVALID: {
1228 		/* controller unfortunately reports SCSI passthru's
1229 		 * to non-existent targets as invalid commands.
1230 		 */
1231 		dev_warn(d, "cp %p is reported invalid (probably means "
1232 			"target device no longer present)\n", cp);
1233 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1234 		print_cmd(cp);  */
1235 		}
1236 		break;
1237 	case CMD_PROTOCOL_ERR:
1238 		dev_warn(d, "cp %p has protocol error \n", cp);
1239 		break;
1240 	case CMD_HARDWARE_ERR:
1241 		/* cmd->result = DID_ERROR << 16; */
1242 		dev_warn(d, "cp %p had hardware error\n", cp);
1243 		break;
1244 	case CMD_CONNECTION_LOST:
1245 		dev_warn(d, "cp %p had connection lost\n", cp);
1246 		break;
1247 	case CMD_ABORTED:
1248 		dev_warn(d, "cp %p was aborted\n", cp);
1249 		break;
1250 	case CMD_ABORT_FAILED:
1251 		dev_warn(d, "cp %p reports abort failed\n", cp);
1252 		break;
1253 	case CMD_UNSOLICITED_ABORT:
1254 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1255 		break;
1256 	case CMD_TIMEOUT:
1257 		dev_warn(d, "cp %p timed out\n", cp);
1258 		break;
1259 	default:
1260 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1261 				ei->CommandStatus);
1262 	}
1263 }
1264 
1265 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1266 			unsigned char page, unsigned char *buf,
1267 			unsigned char bufsize)
1268 {
1269 	int rc = IO_OK;
1270 	struct CommandList *c;
1271 	struct ErrorInfo *ei;
1272 
1273 	c = cmd_special_alloc(h);
1274 
1275 	if (c == NULL) {			/* trouble... */
1276 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1277 		return -1;
1278 	}
1279 
1280 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1281 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1282 	ei = c->err_info;
1283 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1284 		hpsa_scsi_interpret_error(c);
1285 		rc = -1;
1286 	}
1287 	cmd_special_free(h, c);
1288 	return rc;
1289 }
1290 
1291 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1292 {
1293 	int rc = IO_OK;
1294 	struct CommandList *c;
1295 	struct ErrorInfo *ei;
1296 
1297 	c = cmd_special_alloc(h);
1298 
1299 	if (c == NULL) {			/* trouble... */
1300 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1301 		return -1;
1302 	}
1303 
1304 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1305 	hpsa_scsi_do_simple_cmd_core(h, c);
1306 	/* no unmap needed here because no data xfer. */
1307 
1308 	ei = c->err_info;
1309 	if (ei->CommandStatus != 0) {
1310 		hpsa_scsi_interpret_error(c);
1311 		rc = -1;
1312 	}
1313 	cmd_special_free(h, c);
1314 	return rc;
1315 }
1316 
1317 static void hpsa_get_raid_level(struct ctlr_info *h,
1318 	unsigned char *scsi3addr, unsigned char *raid_level)
1319 {
1320 	int rc;
1321 	unsigned char *buf;
1322 
1323 	*raid_level = RAID_UNKNOWN;
1324 	buf = kzalloc(64, GFP_KERNEL);
1325 	if (!buf)
1326 		return;
1327 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1328 	if (rc == 0)
1329 		*raid_level = buf[8];
1330 	if (*raid_level > RAID_UNKNOWN)
1331 		*raid_level = RAID_UNKNOWN;
1332 	kfree(buf);
1333 	return;
1334 }
1335 
1336 /* Get the device id from inquiry page 0x83 */
1337 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1338 	unsigned char *device_id, int buflen)
1339 {
1340 	int rc;
1341 	unsigned char *buf;
1342 
1343 	if (buflen > 16)
1344 		buflen = 16;
1345 	buf = kzalloc(64, GFP_KERNEL);
1346 	if (!buf)
1347 		return -1;
1348 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1349 	if (rc == 0)
1350 		memcpy(device_id, &buf[8], buflen);
1351 	kfree(buf);
1352 	return rc != 0;
1353 }
1354 
1355 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1356 		struct ReportLUNdata *buf, int bufsize,
1357 		int extended_response)
1358 {
1359 	int rc = IO_OK;
1360 	struct CommandList *c;
1361 	unsigned char scsi3addr[8];
1362 	struct ErrorInfo *ei;
1363 
1364 	c = cmd_special_alloc(h);
1365 	if (c == NULL) {			/* trouble... */
1366 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1367 		return -1;
1368 	}
1369 
1370 	memset(&scsi3addr[0], 0, 8); /* address the controller */
1371 
1372 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1373 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1374 	if (extended_response)
1375 		c->Request.CDB[1] = extended_response;
1376 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1377 	ei = c->err_info;
1378 	if (ei->CommandStatus != 0 &&
1379 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1380 		hpsa_scsi_interpret_error(c);
1381 		rc = -1;
1382 	}
1383 	cmd_special_free(h, c);
1384 	return rc;
1385 }
1386 
1387 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1388 		struct ReportLUNdata *buf,
1389 		int bufsize, int extended_response)
1390 {
1391 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1392 }
1393 
1394 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1395 		struct ReportLUNdata *buf, int bufsize)
1396 {
1397 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1398 }
1399 
1400 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1401 	int bus, int target, int lun)
1402 {
1403 	device->bus = bus;
1404 	device->target = target;
1405 	device->lun = lun;
1406 }
1407 
1408 static int hpsa_update_device_info(struct ctlr_info *h,
1409 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1410 {
1411 #define OBDR_TAPE_INQ_SIZE 49
1412 	unsigned char *inq_buff = NULL;
1413 
1414 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1415 	if (!inq_buff)
1416 		goto bail_out;
1417 
1418 	memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE);
1419 	/* Do an inquiry to the device to see what it is. */
1420 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1421 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1422 		/* Inquiry failed (msg printed already) */
1423 		dev_err(&h->pdev->dev,
1424 			"hpsa_update_device_info: inquiry failed\n");
1425 		goto bail_out;
1426 	}
1427 
1428 	/* As a side effect, record the firmware version number
1429 	 * if we happen to be talking to the RAID controller.
1430 	 */
1431 	if (is_hba_lunid(scsi3addr))
1432 		memcpy(h->firm_ver, &inq_buff[32], 4);
1433 
1434 	this_device->devtype = (inq_buff[0] & 0x1f);
1435 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1436 	memcpy(this_device->vendor, &inq_buff[8],
1437 		sizeof(this_device->vendor));
1438 	memcpy(this_device->model, &inq_buff[16],
1439 		sizeof(this_device->model));
1440 	memcpy(this_device->revision, &inq_buff[32],
1441 		sizeof(this_device->revision));
1442 	memset(this_device->device_id, 0,
1443 		sizeof(this_device->device_id));
1444 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1445 		sizeof(this_device->device_id));
1446 
1447 	if (this_device->devtype == TYPE_DISK &&
1448 		is_logical_dev_addr_mode(scsi3addr))
1449 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1450 	else
1451 		this_device->raid_level = RAID_UNKNOWN;
1452 
1453 	kfree(inq_buff);
1454 	return 0;
1455 
1456 bail_out:
1457 	kfree(inq_buff);
1458 	return 1;
1459 }
1460 
1461 static unsigned char *msa2xxx_model[] = {
1462 	"MSA2012",
1463 	"MSA2024",
1464 	"MSA2312",
1465 	"MSA2324",
1466 	NULL,
1467 };
1468 
1469 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1470 {
1471 	int i;
1472 
1473 	for (i = 0; msa2xxx_model[i]; i++)
1474 		if (strncmp(device->model, msa2xxx_model[i],
1475 			strlen(msa2xxx_model[i])) == 0)
1476 			return 1;
1477 	return 0;
1478 }
1479 
1480 /* Helper function to assign bus, target, lun mapping of devices.
1481  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1482  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1483  * Logical drive target and lun are assigned at this time, but
1484  * physical device lun and target assignment are deferred (assigned
1485  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1486  */
1487 static void figure_bus_target_lun(struct ctlr_info *h,
1488 	__u8 *lunaddrbytes, int *bus, int *target, int *lun,
1489 	struct hpsa_scsi_dev_t *device)
1490 {
1491 
1492 	__u32 lunid;
1493 
1494 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1495 		/* logical device */
1496 		memcpy(&lunid, lunaddrbytes, sizeof(lunid));
1497 		lunid = le32_to_cpu(lunid);
1498 
1499 		if (is_msa2xxx(h, device)) {
1500 			*bus = 1;
1501 			*target = (lunid >> 16) & 0x3fff;
1502 			*lun = lunid & 0x00ff;
1503 		} else {
1504 			*bus = 0;
1505 			*lun = 0;
1506 			*target = lunid & 0x3fff;
1507 		}
1508 	} else {
1509 		/* physical device */
1510 		if (is_hba_lunid(lunaddrbytes))
1511 			*bus = 3;
1512 		else
1513 			*bus = 2;
1514 		*target = -1;
1515 		*lun = -1; /* we will fill these in later. */
1516 	}
1517 }
1518 
1519 /*
1520  * If there is no lun 0 on a target, linux won't find any devices.
1521  * For the MSA2xxx boxes, we have to manually detect the enclosure
1522  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1523  * it for some reason.  *tmpdevice is the target we're adding,
1524  * this_device is a pointer into the current element of currentsd[]
1525  * that we're building up in update_scsi_devices(), below.
1526  * lunzerobits is a bitmap that tracks which targets already have a
1527  * lun 0 assigned.
1528  * Returns 1 if an enclosure was added, 0 if not.
1529  */
1530 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1531 	struct hpsa_scsi_dev_t *tmpdevice,
1532 	struct hpsa_scsi_dev_t *this_device, __u8 *lunaddrbytes,
1533 	int bus, int target, int lun, unsigned long lunzerobits[],
1534 	int *nmsa2xxx_enclosures)
1535 {
1536 	unsigned char scsi3addr[8];
1537 
1538 	if (test_bit(target, lunzerobits))
1539 		return 0; /* There is already a lun 0 on this target. */
1540 
1541 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1542 		return 0; /* It's the logical targets that may lack lun 0. */
1543 
1544 	if (!is_msa2xxx(h, tmpdevice))
1545 		return 0; /* It's only the MSA2xxx that have this problem. */
1546 
1547 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1548 		return 0;
1549 
1550 	if (is_hba_lunid(scsi3addr))
1551 		return 0; /* Don't add the RAID controller here. */
1552 
1553 #define MAX_MSA2XXX_ENCLOSURES 32
1554 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1555 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1556 			"enclosures exceeded.  Check your hardware "
1557 			"configuration.");
1558 		return 0;
1559 	}
1560 
1561 	memset(scsi3addr, 0, 8);
1562 	scsi3addr[3] = target;
1563 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1564 		return 0;
1565 	(*nmsa2xxx_enclosures)++;
1566 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1567 	set_bit(target, lunzerobits);
1568 	return 1;
1569 }
1570 
1571 /*
1572  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1573  * logdev.  The number of luns in physdev and logdev are returned in
1574  * *nphysicals and *nlogicals, respectively.
1575  * Returns 0 on success, -1 otherwise.
1576  */
1577 static int hpsa_gather_lun_info(struct ctlr_info *h,
1578 	int reportlunsize,
1579 	struct ReportLUNdata *physdev, __u32 *nphysicals,
1580 	struct ReportLUNdata *logdev, __u32 *nlogicals)
1581 {
1582 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1583 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1584 		return -1;
1585 	}
1586 	memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals));
1587 	*nphysicals = be32_to_cpu(*nphysicals) / 8;
1588 #ifdef DEBUG
1589 	dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals);
1590 #endif
1591 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1592 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1593 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1594 			*nphysicals - HPSA_MAX_PHYS_LUN);
1595 		*nphysicals = HPSA_MAX_PHYS_LUN;
1596 	}
1597 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1598 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1599 		return -1;
1600 	}
1601 	memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals));
1602 	*nlogicals = be32_to_cpu(*nlogicals) / 8;
1603 #ifdef DEBUG
1604 	dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals);
1605 #endif
1606 	/* Reject Logicals in excess of our max capability. */
1607 	if (*nlogicals > HPSA_MAX_LUN) {
1608 		dev_warn(&h->pdev->dev,
1609 			"maximum logical LUNs (%d) exceeded.  "
1610 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1611 			*nlogicals - HPSA_MAX_LUN);
1612 			*nlogicals = HPSA_MAX_LUN;
1613 	}
1614 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1615 		dev_warn(&h->pdev->dev,
1616 			"maximum logical + physical LUNs (%d) exceeded. "
1617 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1618 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1619 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1620 	}
1621 	return 0;
1622 }
1623 
1624 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1625 {
1626 	/* the idea here is we could get notified
1627 	 * that some devices have changed, so we do a report
1628 	 * physical luns and report logical luns cmd, and adjust
1629 	 * our list of devices accordingly.
1630 	 *
1631 	 * The scsi3addr's of devices won't change so long as the
1632 	 * adapter is not reset.  That means we can rescan and
1633 	 * tell which devices we already know about, vs. new
1634 	 * devices, vs.  disappearing devices.
1635 	 */
1636 	struct ReportLUNdata *physdev_list = NULL;
1637 	struct ReportLUNdata *logdev_list = NULL;
1638 	unsigned char *inq_buff = NULL;
1639 	__u32 nphysicals = 0;
1640 	__u32 nlogicals = 0;
1641 	__u32 ndev_allocated = 0;
1642 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1643 	int ncurrent = 0;
1644 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1645 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1646 	int bus, target, lun;
1647 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1648 
1649 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1650 		GFP_KERNEL);
1651 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1652 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1653 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1654 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1655 
1656 	if (!currentsd || !physdev_list || !logdev_list ||
1657 		!inq_buff || !tmpdevice) {
1658 		dev_err(&h->pdev->dev, "out of memory\n");
1659 		goto out;
1660 	}
1661 	memset(lunzerobits, 0, sizeof(lunzerobits));
1662 
1663 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1664 			logdev_list, &nlogicals))
1665 		goto out;
1666 
1667 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1668 	 * but each of them 4 times through different paths.  The plus 1
1669 	 * is for the RAID controller.
1670 	 */
1671 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1672 
1673 	/* Allocate the per device structures */
1674 	for (i = 0; i < ndevs_to_allocate; i++) {
1675 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1676 		if (!currentsd[i]) {
1677 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1678 				__FILE__, __LINE__);
1679 			goto out;
1680 		}
1681 		ndev_allocated++;
1682 	}
1683 
1684 	/* adjust our table of devices */
1685 	nmsa2xxx_enclosures = 0;
1686 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1687 		__u8 *lunaddrbytes;
1688 
1689 		/* Figure out where the LUN ID info is coming from */
1690 		if (i < nphysicals)
1691 			lunaddrbytes = &physdev_list->LUN[i][0];
1692 		else
1693 			if (i < nphysicals + nlogicals)
1694 				lunaddrbytes =
1695 					&logdev_list->LUN[i-nphysicals][0];
1696 			else /* jam in the RAID controller at the end */
1697 				lunaddrbytes = RAID_CTLR_LUNID;
1698 
1699 		/* skip masked physical devices. */
1700 		if (lunaddrbytes[3] & 0xC0 && i < nphysicals)
1701 			continue;
1702 
1703 		/* Get device type, vendor, model, device id */
1704 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1705 			continue; /* skip it if we can't talk to it. */
1706 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1707 			tmpdevice);
1708 		this_device = currentsd[ncurrent];
1709 
1710 		/*
1711 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1712 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1713 		 * is nonetheless an enclosure device there.  We have to
1714 		 * present that otherwise linux won't find anything if
1715 		 * there is no lun 0.
1716 		 */
1717 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1718 				lunaddrbytes, bus, target, lun, lunzerobits,
1719 				&nmsa2xxx_enclosures)) {
1720 			ncurrent++;
1721 			this_device = currentsd[ncurrent];
1722 		}
1723 
1724 		*this_device = *tmpdevice;
1725 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1726 
1727 		switch (this_device->devtype) {
1728 		case TYPE_ROM: {
1729 			/* We don't *really* support actual CD-ROM devices,
1730 			 * just "One Button Disaster Recovery" tape drive
1731 			 * which temporarily pretends to be a CD-ROM drive.
1732 			 * So we check that the device is really an OBDR tape
1733 			 * device by checking for "$DR-10" in bytes 43-48 of
1734 			 * the inquiry data.
1735 			 */
1736 				char obdr_sig[7];
1737 #define OBDR_TAPE_SIG "$DR-10"
1738 				strncpy(obdr_sig, &inq_buff[43], 6);
1739 				obdr_sig[6] = '\0';
1740 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1741 					/* Not OBDR device, ignore it. */
1742 					break;
1743 			}
1744 			ncurrent++;
1745 			break;
1746 		case TYPE_DISK:
1747 			if (i < nphysicals)
1748 				break;
1749 			ncurrent++;
1750 			break;
1751 		case TYPE_TAPE:
1752 		case TYPE_MEDIUM_CHANGER:
1753 			ncurrent++;
1754 			break;
1755 		case TYPE_RAID:
1756 			/* Only present the Smartarray HBA as a RAID controller.
1757 			 * If it's a RAID controller other than the HBA itself
1758 			 * (an external RAID controller, MSA500 or similar)
1759 			 * don't present it.
1760 			 */
1761 			if (!is_hba_lunid(lunaddrbytes))
1762 				break;
1763 			ncurrent++;
1764 			break;
1765 		default:
1766 			break;
1767 		}
1768 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1769 			break;
1770 	}
1771 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1772 out:
1773 	kfree(tmpdevice);
1774 	for (i = 0; i < ndev_allocated; i++)
1775 		kfree(currentsd[i]);
1776 	kfree(currentsd);
1777 	kfree(inq_buff);
1778 	kfree(physdev_list);
1779 	kfree(logdev_list);
1780 	return;
1781 }
1782 
1783 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1784  * dma mapping  and fills in the scatter gather entries of the
1785  * hpsa command, cp.
1786  */
1787 static int hpsa_scatter_gather(struct pci_dev *pdev,
1788 		struct CommandList *cp,
1789 		struct scsi_cmnd *cmd)
1790 {
1791 	unsigned int len;
1792 	struct scatterlist *sg;
1793 	__u64 addr64;
1794 	int use_sg, i;
1795 
1796 	BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1797 
1798 	use_sg = scsi_dma_map(cmd);
1799 	if (use_sg < 0)
1800 		return use_sg;
1801 
1802 	if (!use_sg)
1803 		goto sglist_finished;
1804 
1805 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1806 		addr64 = (__u64) sg_dma_address(sg);
1807 		len  = sg_dma_len(sg);
1808 		cp->SG[i].Addr.lower =
1809 			(__u32) (addr64 & (__u64) 0x00000000FFFFFFFF);
1810 		cp->SG[i].Addr.upper =
1811 			(__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF);
1812 		cp->SG[i].Len = len;
1813 		cp->SG[i].Ext = 0;  /* we are not chaining */
1814 	}
1815 
1816 sglist_finished:
1817 
1818 	cp->Header.SGList = (__u8) use_sg;   /* no. SGs contig in this cmd */
1819 	cp->Header.SGTotal = (__u16) use_sg; /* total sgs in this cmd list */
1820 	return 0;
1821 }
1822 
1823 
1824 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1825 	void (*done)(struct scsi_cmnd *))
1826 {
1827 	struct ctlr_info *h;
1828 	struct hpsa_scsi_dev_t *dev;
1829 	unsigned char scsi3addr[8];
1830 	struct CommandList *c;
1831 	unsigned long flags;
1832 
1833 	/* Get the ptr to our adapter structure out of cmd->host. */
1834 	h = sdev_to_hba(cmd->device);
1835 	dev = cmd->device->hostdata;
1836 	if (!dev) {
1837 		cmd->result = DID_NO_CONNECT << 16;
1838 		done(cmd);
1839 		return 0;
1840 	}
1841 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1842 
1843 	/* Need a lock as this is being allocated from the pool */
1844 	spin_lock_irqsave(&h->lock, flags);
1845 	c = cmd_alloc(h);
1846 	spin_unlock_irqrestore(&h->lock, flags);
1847 	if (c == NULL) {			/* trouble... */
1848 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1849 		return SCSI_MLQUEUE_HOST_BUSY;
1850 	}
1851 
1852 	/* Fill in the command list header */
1853 
1854 	cmd->scsi_done = done;    /* save this for use by completion code */
1855 
1856 	/* save c in case we have to abort it  */
1857 	cmd->host_scribble = (unsigned char *) c;
1858 
1859 	c->cmd_type = CMD_SCSI;
1860 	c->scsi_cmd = cmd;
1861 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1862 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1863 	c->Header.Tag.lower = c->busaddr;  /* Use k. address of cmd as tag */
1864 
1865 	/* Fill in the request block... */
1866 
1867 	c->Request.Timeout = 0;
1868 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1869 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1870 	c->Request.CDBLen = cmd->cmd_len;
1871 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1872 	c->Request.Type.Type = TYPE_CMD;
1873 	c->Request.Type.Attribute = ATTR_SIMPLE;
1874 	switch (cmd->sc_data_direction) {
1875 	case DMA_TO_DEVICE:
1876 		c->Request.Type.Direction = XFER_WRITE;
1877 		break;
1878 	case DMA_FROM_DEVICE:
1879 		c->Request.Type.Direction = XFER_READ;
1880 		break;
1881 	case DMA_NONE:
1882 		c->Request.Type.Direction = XFER_NONE;
1883 		break;
1884 	case DMA_BIDIRECTIONAL:
1885 		/* This can happen if a buggy application does a scsi passthru
1886 		 * and sets both inlen and outlen to non-zero. ( see
1887 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1888 		 */
1889 
1890 		c->Request.Type.Direction = XFER_RSVD;
1891 		/* This is technically wrong, and hpsa controllers should
1892 		 * reject it with CMD_INVALID, which is the most correct
1893 		 * response, but non-fibre backends appear to let it
1894 		 * slide by, and give the same results as if this field
1895 		 * were set correctly.  Either way is acceptable for
1896 		 * our purposes here.
1897 		 */
1898 
1899 		break;
1900 
1901 	default:
1902 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1903 			cmd->sc_data_direction);
1904 		BUG();
1905 		break;
1906 	}
1907 
1908 	if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1909 		cmd_free(h, c);
1910 		return SCSI_MLQUEUE_HOST_BUSY;
1911 	}
1912 	enqueue_cmd_and_start_io(h, c);
1913 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
1914 	return 0;
1915 }
1916 
1917 static void hpsa_unregister_scsi(struct ctlr_info *h)
1918 {
1919 	/* we are being forcibly unloaded, and may not refuse. */
1920 	scsi_remove_host(h->scsi_host);
1921 	scsi_host_put(h->scsi_host);
1922 	h->scsi_host = NULL;
1923 }
1924 
1925 static int hpsa_register_scsi(struct ctlr_info *h)
1926 {
1927 	int rc;
1928 
1929 	hpsa_update_scsi_devices(h, -1);
1930 	rc = hpsa_scsi_detect(h);
1931 	if (rc != 0)
1932 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
1933 			" hpsa_scsi_detect(), rc is %d\n", rc);
1934 	return rc;
1935 }
1936 
1937 static int wait_for_device_to_become_ready(struct ctlr_info *h,
1938 	unsigned char lunaddr[])
1939 {
1940 	int rc = 0;
1941 	int count = 0;
1942 	int waittime = 1; /* seconds */
1943 	struct CommandList *c;
1944 
1945 	c = cmd_special_alloc(h);
1946 	if (!c) {
1947 		dev_warn(&h->pdev->dev, "out of memory in "
1948 			"wait_for_device_to_become_ready.\n");
1949 		return IO_ERROR;
1950 	}
1951 
1952 	/* Send test unit ready until device ready, or give up. */
1953 	while (count < HPSA_TUR_RETRY_LIMIT) {
1954 
1955 		/* Wait for a bit.  do this first, because if we send
1956 		 * the TUR right away, the reset will just abort it.
1957 		 */
1958 		msleep(1000 * waittime);
1959 		count++;
1960 
1961 		/* Increase wait time with each try, up to a point. */
1962 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
1963 			waittime = waittime * 2;
1964 
1965 		/* Send the Test Unit Ready */
1966 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
1967 		hpsa_scsi_do_simple_cmd_core(h, c);
1968 		/* no unmap needed here because no data xfer. */
1969 
1970 		if (c->err_info->CommandStatus == CMD_SUCCESS)
1971 			break;
1972 
1973 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1974 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
1975 			(c->err_info->SenseInfo[2] == NO_SENSE ||
1976 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
1977 			break;
1978 
1979 		dev_warn(&h->pdev->dev, "waiting %d secs "
1980 			"for device to become ready.\n", waittime);
1981 		rc = 1; /* device not ready. */
1982 	}
1983 
1984 	if (rc)
1985 		dev_warn(&h->pdev->dev, "giving up on device.\n");
1986 	else
1987 		dev_warn(&h->pdev->dev, "device is ready.\n");
1988 
1989 	cmd_special_free(h, c);
1990 	return rc;
1991 }
1992 
1993 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
1994  * complaining.  Doing a host- or bus-reset can't do anything good here.
1995  */
1996 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
1997 {
1998 	int rc;
1999 	struct ctlr_info *h;
2000 	struct hpsa_scsi_dev_t *dev;
2001 
2002 	/* find the controller to which the command to be aborted was sent */
2003 	h = sdev_to_hba(scsicmd->device);
2004 	if (h == NULL) /* paranoia */
2005 		return FAILED;
2006 	dev_warn(&h->pdev->dev, "resetting drive\n");
2007 
2008 	dev = scsicmd->device->hostdata;
2009 	if (!dev) {
2010 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2011 			"device lookup failed.\n");
2012 		return FAILED;
2013 	}
2014 	/* send a reset to the SCSI LUN which the command was sent to */
2015 	rc = hpsa_send_reset(h, dev->scsi3addr);
2016 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2017 		return SUCCESS;
2018 
2019 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2020 	return FAILED;
2021 }
2022 
2023 /*
2024  * For operations that cannot sleep, a command block is allocated at init,
2025  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2026  * which ones are free or in use.  Lock must be held when calling this.
2027  * cmd_free() is the complement.
2028  */
2029 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2030 {
2031 	struct CommandList *c;
2032 	int i;
2033 	union u64bit temp64;
2034 	dma_addr_t cmd_dma_handle, err_dma_handle;
2035 
2036 	do {
2037 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2038 		if (i == h->nr_cmds)
2039 			return NULL;
2040 	} while (test_and_set_bit
2041 		 (i & (BITS_PER_LONG - 1),
2042 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2043 	c = h->cmd_pool + i;
2044 	memset(c, 0, sizeof(*c));
2045 	cmd_dma_handle = h->cmd_pool_dhandle
2046 	    + i * sizeof(*c);
2047 	c->err_info = h->errinfo_pool + i;
2048 	memset(c->err_info, 0, sizeof(*c->err_info));
2049 	err_dma_handle = h->errinfo_pool_dhandle
2050 	    + i * sizeof(*c->err_info);
2051 	h->nr_allocs++;
2052 
2053 	c->cmdindex = i;
2054 
2055 	INIT_HLIST_NODE(&c->list);
2056 	c->busaddr = (__u32) cmd_dma_handle;
2057 	temp64.val = (__u64) err_dma_handle;
2058 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2059 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2060 	c->ErrDesc.Len = sizeof(*c->err_info);
2061 
2062 	c->h = h;
2063 	return c;
2064 }
2065 
2066 /* For operations that can wait for kmalloc to possibly sleep,
2067  * this routine can be called. Lock need not be held to call
2068  * cmd_special_alloc. cmd_special_free() is the complement.
2069  */
2070 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2071 {
2072 	struct CommandList *c;
2073 	union u64bit temp64;
2074 	dma_addr_t cmd_dma_handle, err_dma_handle;
2075 
2076 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2077 	if (c == NULL)
2078 		return NULL;
2079 	memset(c, 0, sizeof(*c));
2080 
2081 	c->cmdindex = -1;
2082 
2083 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2084 		    &err_dma_handle);
2085 
2086 	if (c->err_info == NULL) {
2087 		pci_free_consistent(h->pdev,
2088 			sizeof(*c), c, cmd_dma_handle);
2089 		return NULL;
2090 	}
2091 	memset(c->err_info, 0, sizeof(*c->err_info));
2092 
2093 	INIT_HLIST_NODE(&c->list);
2094 	c->busaddr = (__u32) cmd_dma_handle;
2095 	temp64.val = (__u64) err_dma_handle;
2096 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2097 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2098 	c->ErrDesc.Len = sizeof(*c->err_info);
2099 
2100 	c->h = h;
2101 	return c;
2102 }
2103 
2104 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2105 {
2106 	int i;
2107 
2108 	i = c - h->cmd_pool;
2109 	clear_bit(i & (BITS_PER_LONG - 1),
2110 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2111 	h->nr_frees++;
2112 }
2113 
2114 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2115 {
2116 	union u64bit temp64;
2117 
2118 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2119 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2120 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2121 			    c->err_info, (dma_addr_t) temp64.val);
2122 	pci_free_consistent(h->pdev, sizeof(*c),
2123 			    c, (dma_addr_t) c->busaddr);
2124 }
2125 
2126 #ifdef CONFIG_COMPAT
2127 
2128 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2129 {
2130 	int ret;
2131 
2132 	lock_kernel();
2133 	ret = hpsa_ioctl(dev, cmd, arg);
2134 	unlock_kernel();
2135 	return ret;
2136 }
2137 
2138 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2139 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2140 	int cmd, void *arg);
2141 
2142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2143 {
2144 	switch (cmd) {
2145 	case CCISS_GETPCIINFO:
2146 	case CCISS_GETINTINFO:
2147 	case CCISS_SETINTINFO:
2148 	case CCISS_GETNODENAME:
2149 	case CCISS_SETNODENAME:
2150 	case CCISS_GETHEARTBEAT:
2151 	case CCISS_GETBUSTYPES:
2152 	case CCISS_GETFIRMVER:
2153 	case CCISS_GETDRIVVER:
2154 	case CCISS_REVALIDVOLS:
2155 	case CCISS_DEREGDISK:
2156 	case CCISS_REGNEWDISK:
2157 	case CCISS_REGNEWD:
2158 	case CCISS_RESCANDISK:
2159 	case CCISS_GETLUNINFO:
2160 		return do_ioctl(dev, cmd, arg);
2161 
2162 	case CCISS_PASSTHRU32:
2163 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2164 	case CCISS_BIG_PASSTHRU32:
2165 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2166 
2167 	default:
2168 		return -ENOIOCTLCMD;
2169 	}
2170 }
2171 
2172 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2173 {
2174 	IOCTL32_Command_struct __user *arg32 =
2175 	    (IOCTL32_Command_struct __user *) arg;
2176 	IOCTL_Command_struct arg64;
2177 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2178 	int err;
2179 	u32 cp;
2180 
2181 	err = 0;
2182 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2183 			   sizeof(arg64.LUN_info));
2184 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2185 			   sizeof(arg64.Request));
2186 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2187 			   sizeof(arg64.error_info));
2188 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2189 	err |= get_user(cp, &arg32->buf);
2190 	arg64.buf = compat_ptr(cp);
2191 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2192 
2193 	if (err)
2194 		return -EFAULT;
2195 
2196 	err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2197 	if (err)
2198 		return err;
2199 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2200 			 sizeof(arg32->error_info));
2201 	if (err)
2202 		return -EFAULT;
2203 	return err;
2204 }
2205 
2206 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2207 	int cmd, void *arg)
2208 {
2209 	BIG_IOCTL32_Command_struct __user *arg32 =
2210 	    (BIG_IOCTL32_Command_struct __user *) arg;
2211 	BIG_IOCTL_Command_struct arg64;
2212 	BIG_IOCTL_Command_struct __user *p =
2213 	    compat_alloc_user_space(sizeof(arg64));
2214 	int err;
2215 	u32 cp;
2216 
2217 	err = 0;
2218 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2219 			   sizeof(arg64.LUN_info));
2220 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2221 			   sizeof(arg64.Request));
2222 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2223 			   sizeof(arg64.error_info));
2224 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2225 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2226 	err |= get_user(cp, &arg32->buf);
2227 	arg64.buf = compat_ptr(cp);
2228 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2229 
2230 	if (err)
2231 		return -EFAULT;
2232 
2233 	err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2234 	if (err)
2235 		return err;
2236 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2237 			 sizeof(arg32->error_info));
2238 	if (err)
2239 		return -EFAULT;
2240 	return err;
2241 }
2242 #endif
2243 
2244 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2245 {
2246 	struct hpsa_pci_info pciinfo;
2247 
2248 	if (!argp)
2249 		return -EINVAL;
2250 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2251 	pciinfo.bus = h->pdev->bus->number;
2252 	pciinfo.dev_fn = h->pdev->devfn;
2253 	pciinfo.board_id = h->board_id;
2254 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2255 		return -EFAULT;
2256 	return 0;
2257 }
2258 
2259 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2260 {
2261 	DriverVer_type DriverVer;
2262 	unsigned char vmaj, vmin, vsubmin;
2263 	int rc;
2264 
2265 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2266 		&vmaj, &vmin, &vsubmin);
2267 	if (rc != 3) {
2268 		dev_info(&h->pdev->dev, "driver version string '%s' "
2269 			"unrecognized.", HPSA_DRIVER_VERSION);
2270 		vmaj = 0;
2271 		vmin = 0;
2272 		vsubmin = 0;
2273 	}
2274 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2275 	if (!argp)
2276 		return -EINVAL;
2277 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2278 		return -EFAULT;
2279 	return 0;
2280 }
2281 
2282 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2283 {
2284 	IOCTL_Command_struct iocommand;
2285 	struct CommandList *c;
2286 	char *buff = NULL;
2287 	union u64bit temp64;
2288 
2289 	if (!argp)
2290 		return -EINVAL;
2291 	if (!capable(CAP_SYS_RAWIO))
2292 		return -EPERM;
2293 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2294 		return -EFAULT;
2295 	if ((iocommand.buf_size < 1) &&
2296 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2297 		return -EINVAL;
2298 	}
2299 	if (iocommand.buf_size > 0) {
2300 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2301 		if (buff == NULL)
2302 			return -EFAULT;
2303 	}
2304 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2305 		/* Copy the data into the buffer we created */
2306 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2307 			kfree(buff);
2308 			return -EFAULT;
2309 		}
2310 	} else
2311 		memset(buff, 0, iocommand.buf_size);
2312 	c = cmd_special_alloc(h);
2313 	if (c == NULL) {
2314 		kfree(buff);
2315 		return -ENOMEM;
2316 	}
2317 	/* Fill in the command type */
2318 	c->cmd_type = CMD_IOCTL_PEND;
2319 	/* Fill in Command Header */
2320 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2321 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2322 		c->Header.SGList = 1;
2323 		c->Header.SGTotal = 1;
2324 	} else	{ /* no buffers to fill */
2325 		c->Header.SGList = 0;
2326 		c->Header.SGTotal = 0;
2327 	}
2328 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2329 	/* use the kernel address the cmd block for tag */
2330 	c->Header.Tag.lower = c->busaddr;
2331 
2332 	/* Fill in Request block */
2333 	memcpy(&c->Request, &iocommand.Request,
2334 		sizeof(c->Request));
2335 
2336 	/* Fill in the scatter gather information */
2337 	if (iocommand.buf_size > 0) {
2338 		temp64.val = pci_map_single(h->pdev, buff,
2339 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2340 		c->SG[0].Addr.lower = temp64.val32.lower;
2341 		c->SG[0].Addr.upper = temp64.val32.upper;
2342 		c->SG[0].Len = iocommand.buf_size;
2343 		c->SG[0].Ext = 0; /* we are not chaining*/
2344 	}
2345 	hpsa_scsi_do_simple_cmd_core(h, c);
2346 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2347 	check_ioctl_unit_attention(h, c);
2348 
2349 	/* Copy the error information out */
2350 	memcpy(&iocommand.error_info, c->err_info,
2351 		sizeof(iocommand.error_info));
2352 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2353 		kfree(buff);
2354 		cmd_special_free(h, c);
2355 		return -EFAULT;
2356 	}
2357 
2358 	if (iocommand.Request.Type.Direction == XFER_READ) {
2359 		/* Copy the data out of the buffer we created */
2360 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2361 			kfree(buff);
2362 			cmd_special_free(h, c);
2363 			return -EFAULT;
2364 		}
2365 	}
2366 	kfree(buff);
2367 	cmd_special_free(h, c);
2368 	return 0;
2369 }
2370 
2371 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2372 {
2373 	BIG_IOCTL_Command_struct *ioc;
2374 	struct CommandList *c;
2375 	unsigned char **buff = NULL;
2376 	int *buff_size = NULL;
2377 	union u64bit temp64;
2378 	BYTE sg_used = 0;
2379 	int status = 0;
2380 	int i;
2381 	__u32 left;
2382 	__u32 sz;
2383 	BYTE __user *data_ptr;
2384 
2385 	if (!argp)
2386 		return -EINVAL;
2387 	if (!capable(CAP_SYS_RAWIO))
2388 		return -EPERM;
2389 	ioc = (BIG_IOCTL_Command_struct *)
2390 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2391 	if (!ioc) {
2392 		status = -ENOMEM;
2393 		goto cleanup1;
2394 	}
2395 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2396 		status = -EFAULT;
2397 		goto cleanup1;
2398 	}
2399 	if ((ioc->buf_size < 1) &&
2400 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2401 		status = -EINVAL;
2402 		goto cleanup1;
2403 	}
2404 	/* Check kmalloc limits  using all SGs */
2405 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2406 		status = -EINVAL;
2407 		goto cleanup1;
2408 	}
2409 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2410 		status = -EINVAL;
2411 		goto cleanup1;
2412 	}
2413 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2414 	if (!buff) {
2415 		status = -ENOMEM;
2416 		goto cleanup1;
2417 	}
2418 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2419 	if (!buff_size) {
2420 		status = -ENOMEM;
2421 		goto cleanup1;
2422 	}
2423 	left = ioc->buf_size;
2424 	data_ptr = ioc->buf;
2425 	while (left) {
2426 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2427 		buff_size[sg_used] = sz;
2428 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2429 		if (buff[sg_used] == NULL) {
2430 			status = -ENOMEM;
2431 			goto cleanup1;
2432 		}
2433 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2434 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2435 				status = -ENOMEM;
2436 				goto cleanup1;
2437 			}
2438 		} else
2439 			memset(buff[sg_used], 0, sz);
2440 		left -= sz;
2441 		data_ptr += sz;
2442 		sg_used++;
2443 	}
2444 	c = cmd_special_alloc(h);
2445 	if (c == NULL) {
2446 		status = -ENOMEM;
2447 		goto cleanup1;
2448 	}
2449 	c->cmd_type = CMD_IOCTL_PEND;
2450 	c->Header.ReplyQueue = 0;
2451 
2452 	if (ioc->buf_size > 0) {
2453 		c->Header.SGList = sg_used;
2454 		c->Header.SGTotal = sg_used;
2455 	} else {
2456 		c->Header.SGList = 0;
2457 		c->Header.SGTotal = 0;
2458 	}
2459 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2460 	c->Header.Tag.lower = c->busaddr;
2461 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2462 	if (ioc->buf_size > 0) {
2463 		int i;
2464 		for (i = 0; i < sg_used; i++) {
2465 			temp64.val = pci_map_single(h->pdev, buff[i],
2466 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2467 			c->SG[i].Addr.lower = temp64.val32.lower;
2468 			c->SG[i].Addr.upper = temp64.val32.upper;
2469 			c->SG[i].Len = buff_size[i];
2470 			/* we are not chaining */
2471 			c->SG[i].Ext = 0;
2472 		}
2473 	}
2474 	hpsa_scsi_do_simple_cmd_core(h, c);
2475 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2476 	check_ioctl_unit_attention(h, c);
2477 	/* Copy the error information out */
2478 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2479 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2480 		cmd_special_free(h, c);
2481 		status = -EFAULT;
2482 		goto cleanup1;
2483 	}
2484 	if (ioc->Request.Type.Direction == XFER_READ) {
2485 		/* Copy the data out of the buffer we created */
2486 		BYTE __user *ptr = ioc->buf;
2487 		for (i = 0; i < sg_used; i++) {
2488 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2489 				cmd_special_free(h, c);
2490 				status = -EFAULT;
2491 				goto cleanup1;
2492 			}
2493 			ptr += buff_size[i];
2494 		}
2495 	}
2496 	cmd_special_free(h, c);
2497 	status = 0;
2498 cleanup1:
2499 	if (buff) {
2500 		for (i = 0; i < sg_used; i++)
2501 			kfree(buff[i]);
2502 		kfree(buff);
2503 	}
2504 	kfree(buff_size);
2505 	kfree(ioc);
2506 	return status;
2507 }
2508 
2509 static void check_ioctl_unit_attention(struct ctlr_info *h,
2510 	struct CommandList *c)
2511 {
2512 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2513 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2514 		(void) check_for_unit_attention(h, c);
2515 }
2516 /*
2517  * ioctl
2518  */
2519 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2520 {
2521 	struct ctlr_info *h;
2522 	void __user *argp = (void __user *)arg;
2523 
2524 	h = sdev_to_hba(dev);
2525 
2526 	switch (cmd) {
2527 	case CCISS_DEREGDISK:
2528 	case CCISS_REGNEWDISK:
2529 	case CCISS_REGNEWD:
2530 		hpsa_update_scsi_devices(h, dev->host->host_no);
2531 		return 0;
2532 	case CCISS_GETPCIINFO:
2533 		return hpsa_getpciinfo_ioctl(h, argp);
2534 	case CCISS_GETDRIVVER:
2535 		return hpsa_getdrivver_ioctl(h, argp);
2536 	case CCISS_PASSTHRU:
2537 		return hpsa_passthru_ioctl(h, argp);
2538 	case CCISS_BIG_PASSTHRU:
2539 		return hpsa_big_passthru_ioctl(h, argp);
2540 	default:
2541 		return -ENOTTY;
2542 	}
2543 }
2544 
2545 static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h,
2546 	void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr,
2547 	int cmd_type)
2548 {
2549 	int pci_dir = XFER_NONE;
2550 
2551 	c->cmd_type = CMD_IOCTL_PEND;
2552 	c->Header.ReplyQueue = 0;
2553 	if (buff != NULL && size > 0) {
2554 		c->Header.SGList = 1;
2555 		c->Header.SGTotal = 1;
2556 	} else {
2557 		c->Header.SGList = 0;
2558 		c->Header.SGTotal = 0;
2559 	}
2560 	c->Header.Tag.lower = c->busaddr;
2561 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2562 
2563 	c->Request.Type.Type = cmd_type;
2564 	if (cmd_type == TYPE_CMD) {
2565 		switch (cmd) {
2566 		case HPSA_INQUIRY:
2567 			/* are we trying to read a vital product page */
2568 			if (page_code != 0) {
2569 				c->Request.CDB[1] = 0x01;
2570 				c->Request.CDB[2] = page_code;
2571 			}
2572 			c->Request.CDBLen = 6;
2573 			c->Request.Type.Attribute = ATTR_SIMPLE;
2574 			c->Request.Type.Direction = XFER_READ;
2575 			c->Request.Timeout = 0;
2576 			c->Request.CDB[0] = HPSA_INQUIRY;
2577 			c->Request.CDB[4] = size & 0xFF;
2578 			break;
2579 		case HPSA_REPORT_LOG:
2580 		case HPSA_REPORT_PHYS:
2581 			/* Talking to controller so It's a physical command
2582 			   mode = 00 target = 0.  Nothing to write.
2583 			 */
2584 			c->Request.CDBLen = 12;
2585 			c->Request.Type.Attribute = ATTR_SIMPLE;
2586 			c->Request.Type.Direction = XFER_READ;
2587 			c->Request.Timeout = 0;
2588 			c->Request.CDB[0] = cmd;
2589 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2590 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2591 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2592 			c->Request.CDB[9] = size & 0xFF;
2593 			break;
2594 
2595 		case HPSA_READ_CAPACITY:
2596 			c->Request.CDBLen = 10;
2597 			c->Request.Type.Attribute = ATTR_SIMPLE;
2598 			c->Request.Type.Direction = XFER_READ;
2599 			c->Request.Timeout = 0;
2600 			c->Request.CDB[0] = cmd;
2601 			break;
2602 		case HPSA_CACHE_FLUSH:
2603 			c->Request.CDBLen = 12;
2604 			c->Request.Type.Attribute = ATTR_SIMPLE;
2605 			c->Request.Type.Direction = XFER_WRITE;
2606 			c->Request.Timeout = 0;
2607 			c->Request.CDB[0] = BMIC_WRITE;
2608 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2609 			break;
2610 		case TEST_UNIT_READY:
2611 			c->Request.CDBLen = 6;
2612 			c->Request.Type.Attribute = ATTR_SIMPLE;
2613 			c->Request.Type.Direction = XFER_NONE;
2614 			c->Request.Timeout = 0;
2615 			break;
2616 		default:
2617 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2618 			BUG();
2619 			return;
2620 		}
2621 	} else if (cmd_type == TYPE_MSG) {
2622 		switch (cmd) {
2623 
2624 		case  HPSA_DEVICE_RESET_MSG:
2625 			c->Request.CDBLen = 16;
2626 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2627 			c->Request.Type.Attribute = ATTR_SIMPLE;
2628 			c->Request.Type.Direction = XFER_NONE;
2629 			c->Request.Timeout = 0; /* Don't time out */
2630 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2631 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2632 			/* If bytes 4-7 are zero, it means reset the */
2633 			/* LunID device */
2634 			c->Request.CDB[4] = 0x00;
2635 			c->Request.CDB[5] = 0x00;
2636 			c->Request.CDB[6] = 0x00;
2637 			c->Request.CDB[7] = 0x00;
2638 		break;
2639 
2640 		default:
2641 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2642 				cmd);
2643 			BUG();
2644 		}
2645 	} else {
2646 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2647 		BUG();
2648 	}
2649 
2650 	switch (c->Request.Type.Direction) {
2651 	case XFER_READ:
2652 		pci_dir = PCI_DMA_FROMDEVICE;
2653 		break;
2654 	case XFER_WRITE:
2655 		pci_dir = PCI_DMA_TODEVICE;
2656 		break;
2657 	case XFER_NONE:
2658 		pci_dir = PCI_DMA_NONE;
2659 		break;
2660 	default:
2661 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2662 	}
2663 
2664 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2665 
2666 	return;
2667 }
2668 
2669 /*
2670  * Map (physical) PCI mem into (virtual) kernel space
2671  */
2672 static void __iomem *remap_pci_mem(ulong base, ulong size)
2673 {
2674 	ulong page_base = ((ulong) base) & PAGE_MASK;
2675 	ulong page_offs = ((ulong) base) - page_base;
2676 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2677 
2678 	return page_remapped ? (page_remapped + page_offs) : NULL;
2679 }
2680 
2681 /* Takes cmds off the submission queue and sends them to the hardware,
2682  * then puts them on the queue of cmds waiting for completion.
2683  */
2684 static void start_io(struct ctlr_info *h)
2685 {
2686 	struct CommandList *c;
2687 
2688 	while (!hlist_empty(&h->reqQ)) {
2689 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2690 		/* can't do anything if fifo is full */
2691 		if ((h->access.fifo_full(h))) {
2692 			dev_warn(&h->pdev->dev, "fifo full\n");
2693 			break;
2694 		}
2695 
2696 		/* Get the first entry from the Request Q */
2697 		removeQ(c);
2698 		h->Qdepth--;
2699 
2700 		/* Tell the controller execute command */
2701 		h->access.submit_command(h, c);
2702 
2703 		/* Put job onto the completed Q */
2704 		addQ(&h->cmpQ, c);
2705 	}
2706 }
2707 
2708 static inline unsigned long get_next_completion(struct ctlr_info *h)
2709 {
2710 	return h->access.command_completed(h);
2711 }
2712 
2713 static inline int interrupt_pending(struct ctlr_info *h)
2714 {
2715 	return h->access.intr_pending(h);
2716 }
2717 
2718 static inline long interrupt_not_for_us(struct ctlr_info *h)
2719 {
2720 	return ((h->access.intr_pending(h) == 0) ||
2721 		 (h->interrupts_enabled == 0));
2722 }
2723 
2724 static inline int bad_tag(struct ctlr_info *h, __u32 tag_index,
2725 	__u32 raw_tag)
2726 {
2727 	if (unlikely(tag_index >= h->nr_cmds)) {
2728 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2729 		return 1;
2730 	}
2731 	return 0;
2732 }
2733 
2734 static inline void finish_cmd(struct CommandList *c, __u32 raw_tag)
2735 {
2736 	removeQ(c);
2737 	if (likely(c->cmd_type == CMD_SCSI))
2738 		complete_scsi_command(c, 0, raw_tag);
2739 	else if (c->cmd_type == CMD_IOCTL_PEND)
2740 		complete(c->waiting);
2741 }
2742 
2743 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2744 {
2745 	struct ctlr_info *h = dev_id;
2746 	struct CommandList *c;
2747 	unsigned long flags;
2748 	__u32 raw_tag, tag, tag_index;
2749 	struct hlist_node *tmp;
2750 
2751 	if (interrupt_not_for_us(h))
2752 		return IRQ_NONE;
2753 	spin_lock_irqsave(&h->lock, flags);
2754 	while (interrupt_pending(h)) {
2755 		while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) {
2756 			if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) {
2757 				tag_index = HPSA_TAG_TO_INDEX(raw_tag);
2758 				if (bad_tag(h, tag_index, raw_tag))
2759 					return IRQ_HANDLED;
2760 				c = h->cmd_pool + tag_index;
2761 				finish_cmd(c, raw_tag);
2762 				continue;
2763 			}
2764 			tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag);
2765 			c = NULL;
2766 			hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2767 				if (c->busaddr == tag) {
2768 					finish_cmd(c, raw_tag);
2769 					break;
2770 				}
2771 			}
2772 		}
2773 	}
2774 	spin_unlock_irqrestore(&h->lock, flags);
2775 	return IRQ_HANDLED;
2776 }
2777 
2778 /* Send a message CDB to the firmware. */
2779 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2780 						unsigned char type)
2781 {
2782 	struct Command {
2783 		struct CommandListHeader CommandHeader;
2784 		struct RequestBlock Request;
2785 		struct ErrDescriptor ErrorDescriptor;
2786 	};
2787 	struct Command *cmd;
2788 	static const size_t cmd_sz = sizeof(*cmd) +
2789 					sizeof(cmd->ErrorDescriptor);
2790 	dma_addr_t paddr64;
2791 	uint32_t paddr32, tag;
2792 	void __iomem *vaddr;
2793 	int i, err;
2794 
2795 	vaddr = pci_ioremap_bar(pdev, 0);
2796 	if (vaddr == NULL)
2797 		return -ENOMEM;
2798 
2799 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2800 	 * CCISS commands, so they must be allocated from the lower 4GiB of
2801 	 * memory.
2802 	 */
2803 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2804 	if (err) {
2805 		iounmap(vaddr);
2806 		return -ENOMEM;
2807 	}
2808 
2809 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2810 	if (cmd == NULL) {
2811 		iounmap(vaddr);
2812 		return -ENOMEM;
2813 	}
2814 
2815 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
2816 	 * although there's no guarantee, we assume that the address is at
2817 	 * least 4-byte aligned (most likely, it's page-aligned).
2818 	 */
2819 	paddr32 = paddr64;
2820 
2821 	cmd->CommandHeader.ReplyQueue = 0;
2822 	cmd->CommandHeader.SGList = 0;
2823 	cmd->CommandHeader.SGTotal = 0;
2824 	cmd->CommandHeader.Tag.lower = paddr32;
2825 	cmd->CommandHeader.Tag.upper = 0;
2826 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2827 
2828 	cmd->Request.CDBLen = 16;
2829 	cmd->Request.Type.Type = TYPE_MSG;
2830 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2831 	cmd->Request.Type.Direction = XFER_NONE;
2832 	cmd->Request.Timeout = 0; /* Don't time out */
2833 	cmd->Request.CDB[0] = opcode;
2834 	cmd->Request.CDB[1] = type;
2835 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2836 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2837 	cmd->ErrorDescriptor.Addr.upper = 0;
2838 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2839 
2840 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2841 
2842 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2843 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2844 		if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32)
2845 			break;
2846 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2847 	}
2848 
2849 	iounmap(vaddr);
2850 
2851 	/* we leak the DMA buffer here ... no choice since the controller could
2852 	 *  still complete the command.
2853 	 */
2854 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2855 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2856 			opcode, type);
2857 		return -ETIMEDOUT;
2858 	}
2859 
2860 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2861 
2862 	if (tag & HPSA_ERROR_BIT) {
2863 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2864 			opcode, type);
2865 		return -EIO;
2866 	}
2867 
2868 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2869 		opcode, type);
2870 	return 0;
2871 }
2872 
2873 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2874 #define hpsa_noop(p) hpsa_message(p, 3, 0)
2875 
2876 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2877 {
2878 /* the #defines are stolen from drivers/pci/msi.h. */
2879 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
2880 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
2881 
2882 	int pos;
2883 	u16 control = 0;
2884 
2885 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2886 	if (pos) {
2887 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
2888 		if (control & PCI_MSI_FLAGS_ENABLE) {
2889 			dev_info(&pdev->dev, "resetting MSI\n");
2890 			pci_write_config_word(pdev, msi_control_reg(pos),
2891 					control & ~PCI_MSI_FLAGS_ENABLE);
2892 		}
2893 	}
2894 
2895 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2896 	if (pos) {
2897 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
2898 		if (control & PCI_MSIX_FLAGS_ENABLE) {
2899 			dev_info(&pdev->dev, "resetting MSI-X\n");
2900 			pci_write_config_word(pdev, msi_control_reg(pos),
2901 					control & ~PCI_MSIX_FLAGS_ENABLE);
2902 		}
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 /* This does a hard reset of the controller using PCI power management
2909  * states.
2910  */
2911 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
2912 {
2913 	u16 pmcsr, saved_config_space[32];
2914 	int i, pos;
2915 
2916 	dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2917 
2918 	/* This is very nearly the same thing as
2919 	 *
2920 	 * pci_save_state(pci_dev);
2921 	 * pci_set_power_state(pci_dev, PCI_D3hot);
2922 	 * pci_set_power_state(pci_dev, PCI_D0);
2923 	 * pci_restore_state(pci_dev);
2924 	 *
2925 	 * but we can't use these nice canned kernel routines on
2926 	 * kexec, because they also check the MSI/MSI-X state in PCI
2927 	 * configuration space and do the wrong thing when it is
2928 	 * set/cleared.  Also, the pci_save/restore_state functions
2929 	 * violate the ordering requirements for restoring the
2930 	 * configuration space from the CCISS document (see the
2931 	 * comment below).  So we roll our own ....
2932 	 */
2933 
2934 	for (i = 0; i < 32; i++)
2935 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
2936 
2937 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
2938 	if (pos == 0) {
2939 		dev_err(&pdev->dev,
2940 			"hpsa_reset_controller: PCI PM not supported\n");
2941 		return -ENODEV;
2942 	}
2943 
2944 	/* Quoting from the Open CISS Specification: "The Power
2945 	 * Management Control/Status Register (CSR) controls the power
2946 	 * state of the device.  The normal operating state is D0,
2947 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
2948 	 * the controller, place the interface device in D3 then to
2949 	 * D0, this causes a secondary PCI reset which will reset the
2950 	 * controller."
2951 	 */
2952 
2953 	/* enter the D3hot power management state */
2954 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
2955 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2956 	pmcsr |= PCI_D3hot;
2957 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2958 
2959 	msleep(500);
2960 
2961 	/* enter the D0 power management state */
2962 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2963 	pmcsr |= PCI_D0;
2964 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2965 
2966 	msleep(500);
2967 
2968 	/* Restore the PCI configuration space.  The Open CISS
2969 	 * Specification says, "Restore the PCI Configuration
2970 	 * Registers, offsets 00h through 60h. It is important to
2971 	 * restore the command register, 16-bits at offset 04h,
2972 	 * last. Do not restore the configuration status register,
2973 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
2974 	 */
2975 	for (i = 0; i < 32; i++) {
2976 		if (i == 2 || i == 3)
2977 			continue;
2978 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
2979 	}
2980 	wmb();
2981 	pci_write_config_word(pdev, 4, saved_config_space[2]);
2982 
2983 	return 0;
2984 }
2985 
2986 /*
2987  *  We cannot read the structure directly, for portability we must use
2988  *   the io functions.
2989  *   This is for debug only.
2990  */
2991 #ifdef HPSA_DEBUG
2992 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
2993 {
2994 	int i;
2995 	char temp_name[17];
2996 
2997 	dev_info(dev, "Controller Configuration information\n");
2998 	dev_info(dev, "------------------------------------\n");
2999 	for (i = 0; i < 4; i++)
3000 		temp_name[i] = readb(&(tb->Signature[i]));
3001 	temp_name[4] = '\0';
3002 	dev_info(dev, "   Signature = %s\n", temp_name);
3003 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3004 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3005 	       readl(&(tb->TransportSupport)));
3006 	dev_info(dev, "   Transport methods active = 0x%x\n",
3007 	       readl(&(tb->TransportActive)));
3008 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3009 	       readl(&(tb->HostWrite.TransportRequest)));
3010 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3011 	       readl(&(tb->HostWrite.CoalIntDelay)));
3012 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3013 	       readl(&(tb->HostWrite.CoalIntCount)));
3014 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3015 	       readl(&(tb->CmdsOutMax)));
3016 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3017 	for (i = 0; i < 16; i++)
3018 		temp_name[i] = readb(&(tb->ServerName[i]));
3019 	temp_name[16] = '\0';
3020 	dev_info(dev, "   Server Name = %s\n", temp_name);
3021 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3022 		readl(&(tb->HeartBeat)));
3023 }
3024 #endif				/* HPSA_DEBUG */
3025 
3026 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3027 {
3028 	int i, offset, mem_type, bar_type;
3029 
3030 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3031 		return 0;
3032 	offset = 0;
3033 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3034 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3035 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3036 			offset += 4;
3037 		else {
3038 			mem_type = pci_resource_flags(pdev, i) &
3039 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3040 			switch (mem_type) {
3041 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3042 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3043 				offset += 4;	/* 32 bit */
3044 				break;
3045 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3046 				offset += 8;
3047 				break;
3048 			default:	/* reserved in PCI 2.2 */
3049 				dev_warn(&pdev->dev,
3050 				       "base address is invalid\n");
3051 				return -1;
3052 				break;
3053 			}
3054 		}
3055 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3056 			return i + 1;
3057 	}
3058 	return -1;
3059 }
3060 
3061 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3062  * controllers that are capable. If not, we use IO-APIC mode.
3063  */
3064 
3065 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3066 					   struct pci_dev *pdev, __u32 board_id)
3067 {
3068 #ifdef CONFIG_PCI_MSI
3069 	int err;
3070 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3071 	{0, 2}, {0, 3}
3072 	};
3073 
3074 	/* Some boards advertise MSI but don't really support it */
3075 	if ((board_id == 0x40700E11) ||
3076 	    (board_id == 0x40800E11) ||
3077 	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
3078 		goto default_int_mode;
3079 	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3080 		dev_info(&pdev->dev, "MSIX\n");
3081 		err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3082 		if (!err) {
3083 			h->intr[0] = hpsa_msix_entries[0].vector;
3084 			h->intr[1] = hpsa_msix_entries[1].vector;
3085 			h->intr[2] = hpsa_msix_entries[2].vector;
3086 			h->intr[3] = hpsa_msix_entries[3].vector;
3087 			h->msix_vector = 1;
3088 			return;
3089 		}
3090 		if (err > 0) {
3091 			dev_warn(&pdev->dev, "only %d MSI-X vectors "
3092 			       "available\n", err);
3093 			goto default_int_mode;
3094 		} else {
3095 			dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3096 			       err);
3097 			goto default_int_mode;
3098 		}
3099 	}
3100 	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3101 		dev_info(&pdev->dev, "MSI\n");
3102 		if (!pci_enable_msi(pdev))
3103 			h->msi_vector = 1;
3104 		else
3105 			dev_warn(&pdev->dev, "MSI init failed\n");
3106 	}
3107 default_int_mode:
3108 #endif				/* CONFIG_PCI_MSI */
3109 	/* if we get here we're going to use the default interrupt mode */
3110 	h->intr[SIMPLE_MODE_INT] = pdev->irq;
3111 	return;
3112 }
3113 
3114 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3115 {
3116 	ushort subsystem_vendor_id, subsystem_device_id, command;
3117 	__u32 board_id, scratchpad = 0;
3118 	__u64 cfg_offset;
3119 	__u32 cfg_base_addr;
3120 	__u64 cfg_base_addr_index;
3121 	int i, prod_index, err;
3122 
3123 	subsystem_vendor_id = pdev->subsystem_vendor;
3124 	subsystem_device_id = pdev->subsystem_device;
3125 	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3126 		    subsystem_vendor_id);
3127 
3128 	for (i = 0; i < ARRAY_SIZE(products); i++)
3129 		if (board_id == products[i].board_id)
3130 			break;
3131 
3132 	prod_index = i;
3133 
3134 	if (prod_index == ARRAY_SIZE(products)) {
3135 		prod_index--;
3136 		if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3137 				!hpsa_allow_any) {
3138 			dev_warn(&pdev->dev, "unrecognized board ID:"
3139 				" 0x%08lx, ignoring.\n",
3140 				(unsigned long) board_id);
3141 			return -ENODEV;
3142 		}
3143 	}
3144 	/* check to see if controller has been disabled
3145 	 * BEFORE trying to enable it
3146 	 */
3147 	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3148 	if (!(command & 0x02)) {
3149 		dev_warn(&pdev->dev, "controller appears to be disabled\n");
3150 		return -ENODEV;
3151 	}
3152 
3153 	err = pci_enable_device(pdev);
3154 	if (err) {
3155 		dev_warn(&pdev->dev, "unable to enable PCI device\n");
3156 		return err;
3157 	}
3158 
3159 	err = pci_request_regions(pdev, "hpsa");
3160 	if (err) {
3161 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3162 		return err;
3163 	}
3164 
3165 	/* If the kernel supports MSI/MSI-X we will try to enable that,
3166 	 * else we use the IO-APIC interrupt assigned to us by system ROM.
3167 	 */
3168 	hpsa_interrupt_mode(h, pdev, board_id);
3169 
3170 	/* find the memory BAR */
3171 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3172 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3173 			break;
3174 	}
3175 	if (i == DEVICE_COUNT_RESOURCE) {
3176 		dev_warn(&pdev->dev, "no memory BAR found\n");
3177 		err = -ENODEV;
3178 		goto err_out_free_res;
3179 	}
3180 
3181 	h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3182 						 * already removed
3183 						 */
3184 
3185 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3186 
3187 	/* Wait for the board to become ready.  */
3188 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3189 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3190 		if (scratchpad == HPSA_FIRMWARE_READY)
3191 			break;
3192 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3193 	}
3194 	if (scratchpad != HPSA_FIRMWARE_READY) {
3195 		dev_warn(&pdev->dev, "board not ready, timed out.\n");
3196 		err = -ENODEV;
3197 		goto err_out_free_res;
3198 	}
3199 
3200 	/* get the address index number */
3201 	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3202 	cfg_base_addr &= (__u32) 0x0000ffff;
3203 	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3204 	if (cfg_base_addr_index == -1) {
3205 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3206 		err = -ENODEV;
3207 		goto err_out_free_res;
3208 	}
3209 
3210 	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3211 	h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3212 			       cfg_base_addr_index) + cfg_offset,
3213 				sizeof(h->cfgtable));
3214 	h->board_id = board_id;
3215 
3216 	/* Query controller for max supported commands: */
3217 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3218 
3219 	h->product_name = products[prod_index].product_name;
3220 	h->access = *(products[prod_index].access);
3221 	/* Allow room for some ioctls */
3222 	h->nr_cmds = h->max_commands - 4;
3223 
3224 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3225 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3226 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3227 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3228 		dev_warn(&pdev->dev, "not a valid CISS config table\n");
3229 		err = -ENODEV;
3230 		goto err_out_free_res;
3231 	}
3232 #ifdef CONFIG_X86
3233 	{
3234 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3235 		__u32 prefetch;
3236 		prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3237 		prefetch |= 0x100;
3238 		writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3239 	}
3240 #endif
3241 
3242 	/* Disabling DMA prefetch for the P600
3243 	 * An ASIC bug may result in a prefetch beyond
3244 	 * physical memory.
3245 	 */
3246 	if (board_id == 0x3225103C) {
3247 		__u32 dma_prefetch;
3248 		dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3249 		dma_prefetch |= 0x8000;
3250 		writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3251 	}
3252 
3253 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3254 	/* Update the field, and then ring the doorbell */
3255 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3256 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3257 
3258 	/* under certain very rare conditions, this can take awhile.
3259 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3260 	 * as we enter this code.)
3261 	 */
3262 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3263 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3264 			break;
3265 		/* delay and try again */
3266 		msleep(10);
3267 	}
3268 
3269 #ifdef HPSA_DEBUG
3270 	print_cfg_table(&pdev->dev, h->cfgtable);
3271 #endif				/* HPSA_DEBUG */
3272 
3273 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3274 		dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3275 		err = -ENODEV;
3276 		goto err_out_free_res;
3277 	}
3278 	return 0;
3279 
3280 err_out_free_res:
3281 	/*
3282 	 * Deliberately omit pci_disable_device(): it does something nasty to
3283 	 * Smart Array controllers that pci_enable_device does not undo
3284 	 */
3285 	pci_release_regions(pdev);
3286 	return err;
3287 }
3288 
3289 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3290 				    const struct pci_device_id *ent)
3291 {
3292 	int i;
3293 	int dac;
3294 	struct ctlr_info *h;
3295 
3296 	if (number_of_controllers == 0)
3297 		printk(KERN_INFO DRIVER_NAME "\n");
3298 	if (reset_devices) {
3299 		/* Reset the controller with a PCI power-cycle */
3300 		if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3301 			return -ENODEV;
3302 
3303 		/* Some devices (notably the HP Smart Array 5i Controller)
3304 		   need a little pause here */
3305 		msleep(HPSA_POST_RESET_PAUSE_MSECS);
3306 
3307 		/* Now try to get the controller to respond to a no-op */
3308 		for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3309 			if (hpsa_noop(pdev) == 0)
3310 				break;
3311 			else
3312 				dev_warn(&pdev->dev, "no-op failed%s\n",
3313 						(i < 11 ? "; re-trying" : ""));
3314 		}
3315 	}
3316 
3317 	BUILD_BUG_ON(sizeof(struct CommandList) % 8);
3318 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3319 	if (!h)
3320 		return -1;
3321 
3322 	h->busy_initializing = 1;
3323 	INIT_HLIST_HEAD(&h->cmpQ);
3324 	INIT_HLIST_HEAD(&h->reqQ);
3325 	mutex_init(&h->busy_shutting_down);
3326 	init_completion(&h->scan_wait);
3327 	if (hpsa_pci_init(h, pdev) != 0)
3328 		goto clean1;
3329 
3330 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3331 	h->ctlr = number_of_controllers;
3332 	number_of_controllers++;
3333 	h->pdev = pdev;
3334 
3335 	/* configure PCI DMA stuff */
3336 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3337 		dac = 1;
3338 	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3339 		dac = 0;
3340 	else {
3341 		dev_err(&pdev->dev, "no suitable DMA available\n");
3342 		goto clean1;
3343 	}
3344 
3345 	/* make sure the board interrupts are off */
3346 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3347 	if (request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr,
3348 			IRQF_DISABLED | IRQF_SHARED, h->devname, h)) {
3349 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3350 		       h->intr[SIMPLE_MODE_INT], h->devname);
3351 		goto clean2;
3352 	}
3353 
3354 	dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3355 	       h->devname, pdev->device, pci_name(pdev),
3356 	       h->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3357 
3358 	h->cmd_pool_bits =
3359 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3360 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3361 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3362 		    h->nr_cmds * sizeof(*h->cmd_pool),
3363 		    &(h->cmd_pool_dhandle));
3364 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3365 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3366 		    &(h->errinfo_pool_dhandle));
3367 	if ((h->cmd_pool_bits == NULL)
3368 	    || (h->cmd_pool == NULL)
3369 	    || (h->errinfo_pool == NULL)) {
3370 		dev_err(&pdev->dev, "out of memory");
3371 		goto clean4;
3372 	}
3373 	spin_lock_init(&h->lock);
3374 
3375 	pci_set_drvdata(pdev, h);
3376 	memset(h->cmd_pool_bits, 0,
3377 	       ((h->nr_cmds + BITS_PER_LONG -
3378 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3379 
3380 	hpsa_scsi_setup(h);
3381 
3382 	/* Turn the interrupts on so we can service requests */
3383 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3384 
3385 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3386 	h->busy_initializing = 0;
3387 	return 1;
3388 
3389 clean4:
3390 	kfree(h->cmd_pool_bits);
3391 	if (h->cmd_pool)
3392 		pci_free_consistent(h->pdev,
3393 			    h->nr_cmds * sizeof(struct CommandList),
3394 			    h->cmd_pool, h->cmd_pool_dhandle);
3395 	if (h->errinfo_pool)
3396 		pci_free_consistent(h->pdev,
3397 			    h->nr_cmds * sizeof(struct ErrorInfo),
3398 			    h->errinfo_pool,
3399 			    h->errinfo_pool_dhandle);
3400 	free_irq(h->intr[SIMPLE_MODE_INT], h);
3401 clean2:
3402 clean1:
3403 	h->busy_initializing = 0;
3404 	kfree(h);
3405 	return -1;
3406 }
3407 
3408 static void hpsa_flush_cache(struct ctlr_info *h)
3409 {
3410 	char *flush_buf;
3411 	struct CommandList *c;
3412 
3413 	flush_buf = kzalloc(4, GFP_KERNEL);
3414 	if (!flush_buf)
3415 		return;
3416 
3417 	c = cmd_special_alloc(h);
3418 	if (!c) {
3419 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3420 		goto out_of_memory;
3421 	}
3422 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3423 		RAID_CTLR_LUNID, TYPE_CMD);
3424 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3425 	if (c->err_info->CommandStatus != 0)
3426 		dev_warn(&h->pdev->dev,
3427 			"error flushing cache on controller\n");
3428 	cmd_special_free(h, c);
3429 out_of_memory:
3430 	kfree(flush_buf);
3431 }
3432 
3433 static void hpsa_shutdown(struct pci_dev *pdev)
3434 {
3435 	struct ctlr_info *h;
3436 
3437 	h = pci_get_drvdata(pdev);
3438 	/* Turn board interrupts off  and send the flush cache command
3439 	 * sendcmd will turn off interrupt, and send the flush...
3440 	 * To write all data in the battery backed cache to disks
3441 	 */
3442 	hpsa_flush_cache(h);
3443 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3444 	free_irq(h->intr[2], h);
3445 #ifdef CONFIG_PCI_MSI
3446 	if (h->msix_vector)
3447 		pci_disable_msix(h->pdev);
3448 	else if (h->msi_vector)
3449 		pci_disable_msi(h->pdev);
3450 #endif				/* CONFIG_PCI_MSI */
3451 }
3452 
3453 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3454 {
3455 	struct ctlr_info *h;
3456 
3457 	if (pci_get_drvdata(pdev) == NULL) {
3458 		dev_err(&pdev->dev, "unable to remove device \n");
3459 		return;
3460 	}
3461 	h = pci_get_drvdata(pdev);
3462 	mutex_lock(&h->busy_shutting_down);
3463 	remove_from_scan_list(h);
3464 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3465 	hpsa_shutdown(pdev);
3466 	iounmap(h->vaddr);
3467 	pci_free_consistent(h->pdev,
3468 		h->nr_cmds * sizeof(struct CommandList),
3469 		h->cmd_pool, h->cmd_pool_dhandle);
3470 	pci_free_consistent(h->pdev,
3471 		h->nr_cmds * sizeof(struct ErrorInfo),
3472 		h->errinfo_pool, h->errinfo_pool_dhandle);
3473 	kfree(h->cmd_pool_bits);
3474 	/*
3475 	 * Deliberately omit pci_disable_device(): it does something nasty to
3476 	 * Smart Array controllers that pci_enable_device does not undo
3477 	 */
3478 	pci_release_regions(pdev);
3479 	pci_set_drvdata(pdev, NULL);
3480 	mutex_unlock(&h->busy_shutting_down);
3481 	kfree(h);
3482 }
3483 
3484 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3485 	__attribute__((unused)) pm_message_t state)
3486 {
3487 	return -ENOSYS;
3488 }
3489 
3490 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3491 {
3492 	return -ENOSYS;
3493 }
3494 
3495 static struct pci_driver hpsa_pci_driver = {
3496 	.name = "hpsa",
3497 	.probe = hpsa_init_one,
3498 	.remove = __devexit_p(hpsa_remove_one),
3499 	.id_table = hpsa_pci_device_id,	/* id_table */
3500 	.shutdown = hpsa_shutdown,
3501 	.suspend = hpsa_suspend,
3502 	.resume = hpsa_resume,
3503 };
3504 
3505 /*
3506  *  This is it.  Register the PCI driver information for the cards we control
3507  *  the OS will call our registered routines when it finds one of our cards.
3508  */
3509 static int __init hpsa_init(void)
3510 {
3511 	int err;
3512 	/* Start the scan thread */
3513 	hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3514 	if (IS_ERR(hpsa_scan_thread)) {
3515 		err = PTR_ERR(hpsa_scan_thread);
3516 		return -ENODEV;
3517 	}
3518 	err = pci_register_driver(&hpsa_pci_driver);
3519 	if (err)
3520 		kthread_stop(hpsa_scan_thread);
3521 	return err;
3522 }
3523 
3524 static void __exit hpsa_cleanup(void)
3525 {
3526 	pci_unregister_driver(&hpsa_pci_driver);
3527 	kthread_stop(hpsa_scan_thread);
3528 }
3529 
3530 module_init(hpsa_init);
3531 module_exit(hpsa_cleanup);
3532