xref: /openbmc/linux/drivers/scsi/hpsa.c (revision b34e08d5)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <asm/div64.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "3.4.4-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 #define HPSA "hpsa"
59 
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63 
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66 
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 	HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74 
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 	"Use 'simple mode' rather than 'performant mode'");
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
121 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
122 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
123 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
124 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
125 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
126 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
127 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
128 	{0,}
129 };
130 
131 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
132 
133 /*  board_id = Subsystem Device ID & Vendor ID
134  *  product = Marketing Name for the board
135  *  access = Address of the struct of function pointers
136  */
137 static struct board_type products[] = {
138 	{0x3241103C, "Smart Array P212", &SA5_access},
139 	{0x3243103C, "Smart Array P410", &SA5_access},
140 	{0x3245103C, "Smart Array P410i", &SA5_access},
141 	{0x3247103C, "Smart Array P411", &SA5_access},
142 	{0x3249103C, "Smart Array P812", &SA5_access},
143 	{0x324A103C, "Smart Array P712m", &SA5_access},
144 	{0x324B103C, "Smart Array P711m", &SA5_access},
145 	{0x3350103C, "Smart Array P222", &SA5_access},
146 	{0x3351103C, "Smart Array P420", &SA5_access},
147 	{0x3352103C, "Smart Array P421", &SA5_access},
148 	{0x3353103C, "Smart Array P822", &SA5_access},
149 	{0x3354103C, "Smart Array P420i", &SA5_access},
150 	{0x3355103C, "Smart Array P220i", &SA5_access},
151 	{0x3356103C, "Smart Array P721m", &SA5_access},
152 	{0x1921103C, "Smart Array P830i", &SA5_access},
153 	{0x1922103C, "Smart Array P430", &SA5_access},
154 	{0x1923103C, "Smart Array P431", &SA5_access},
155 	{0x1924103C, "Smart Array P830", &SA5_access},
156 	{0x1926103C, "Smart Array P731m", &SA5_access},
157 	{0x1928103C, "Smart Array P230i", &SA5_access},
158 	{0x1929103C, "Smart Array P530", &SA5_access},
159 	{0x21BD103C, "Smart Array", &SA5_access},
160 	{0x21BE103C, "Smart Array", &SA5_access},
161 	{0x21BF103C, "Smart Array", &SA5_access},
162 	{0x21C0103C, "Smart Array", &SA5_access},
163 	{0x21C1103C, "Smart Array", &SA5_access},
164 	{0x21C2103C, "Smart Array", &SA5_access},
165 	{0x21C3103C, "Smart Array", &SA5_access},
166 	{0x21C4103C, "Smart Array", &SA5_access},
167 	{0x21C5103C, "Smart Array", &SA5_access},
168 	{0x21C7103C, "Smart Array", &SA5_access},
169 	{0x21C8103C, "Smart Array", &SA5_access},
170 	{0x21C9103C, "Smart Array", &SA5_access},
171 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
172 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
173 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
174 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
175 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
176 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
177 };
178 
179 static int number_of_controllers;
180 
181 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
182 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
183 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
184 static void start_io(struct ctlr_info *h);
185 
186 #ifdef CONFIG_COMPAT
187 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
188 #endif
189 
190 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
191 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
192 static struct CommandList *cmd_alloc(struct ctlr_info *h);
193 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
194 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
195 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
196 	int cmd_type);
197 #define VPD_PAGE (1 << 8)
198 
199 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
200 static void hpsa_scan_start(struct Scsi_Host *);
201 static int hpsa_scan_finished(struct Scsi_Host *sh,
202 	unsigned long elapsed_time);
203 static int hpsa_change_queue_depth(struct scsi_device *sdev,
204 	int qdepth, int reason);
205 
206 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
207 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
208 static int hpsa_slave_alloc(struct scsi_device *sdev);
209 static void hpsa_slave_destroy(struct scsi_device *sdev);
210 
211 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
212 static int check_for_unit_attention(struct ctlr_info *h,
213 	struct CommandList *c);
214 static void check_ioctl_unit_attention(struct ctlr_info *h,
215 	struct CommandList *c);
216 /* performant mode helper functions */
217 static void calc_bucket_map(int *bucket, int num_buckets,
218 	int nsgs, int min_blocks, int *bucket_map);
219 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
220 static inline u32 next_command(struct ctlr_info *h, u8 q);
221 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
222 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
223 			       u64 *cfg_offset);
224 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
225 				    unsigned long *memory_bar);
226 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
227 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
228 				     int wait_for_ready);
229 static inline void finish_cmd(struct CommandList *c);
230 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
231 #define BOARD_NOT_READY 0
232 #define BOARD_READY 1
233 static void hpsa_drain_accel_commands(struct ctlr_info *h);
234 static void hpsa_flush_cache(struct ctlr_info *h);
235 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
236 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
237 	u8 *scsi3addr);
238 
239 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
240 {
241 	unsigned long *priv = shost_priv(sdev->host);
242 	return (struct ctlr_info *) *priv;
243 }
244 
245 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
246 {
247 	unsigned long *priv = shost_priv(sh);
248 	return (struct ctlr_info *) *priv;
249 }
250 
251 static int check_for_unit_attention(struct ctlr_info *h,
252 	struct CommandList *c)
253 {
254 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
255 		return 0;
256 
257 	switch (c->err_info->SenseInfo[12]) {
258 	case STATE_CHANGED:
259 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
260 			"detected, command retried\n", h->ctlr);
261 		break;
262 	case LUN_FAILED:
263 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
264 			"detected, action required\n", h->ctlr);
265 		break;
266 	case REPORT_LUNS_CHANGED:
267 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
268 			"changed, action required\n", h->ctlr);
269 	/*
270 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
271 	 * target (array) devices.
272 	 */
273 		break;
274 	case POWER_OR_RESET:
275 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
276 			"or device reset detected\n", h->ctlr);
277 		break;
278 	case UNIT_ATTENTION_CLEARED:
279 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
280 		    "cleared by another initiator\n", h->ctlr);
281 		break;
282 	default:
283 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
284 			"unit attention detected\n", h->ctlr);
285 		break;
286 	}
287 	return 1;
288 }
289 
290 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
291 {
292 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
293 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
294 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
295 		return 0;
296 	dev_warn(&h->pdev->dev, HPSA "device busy");
297 	return 1;
298 }
299 
300 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
301 					 struct device_attribute *attr,
302 					 const char *buf, size_t count)
303 {
304 	int status, len;
305 	struct ctlr_info *h;
306 	struct Scsi_Host *shost = class_to_shost(dev);
307 	char tmpbuf[10];
308 
309 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
310 		return -EACCES;
311 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
312 	strncpy(tmpbuf, buf, len);
313 	tmpbuf[len] = '\0';
314 	if (sscanf(tmpbuf, "%d", &status) != 1)
315 		return -EINVAL;
316 	h = shost_to_hba(shost);
317 	h->acciopath_status = !!status;
318 	dev_warn(&h->pdev->dev,
319 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
320 		h->acciopath_status ? "enabled" : "disabled");
321 	return count;
322 }
323 
324 static ssize_t host_store_raid_offload_debug(struct device *dev,
325 					 struct device_attribute *attr,
326 					 const char *buf, size_t count)
327 {
328 	int debug_level, len;
329 	struct ctlr_info *h;
330 	struct Scsi_Host *shost = class_to_shost(dev);
331 	char tmpbuf[10];
332 
333 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
334 		return -EACCES;
335 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
336 	strncpy(tmpbuf, buf, len);
337 	tmpbuf[len] = '\0';
338 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
339 		return -EINVAL;
340 	if (debug_level < 0)
341 		debug_level = 0;
342 	h = shost_to_hba(shost);
343 	h->raid_offload_debug = debug_level;
344 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
345 		h->raid_offload_debug);
346 	return count;
347 }
348 
349 static ssize_t host_store_rescan(struct device *dev,
350 				 struct device_attribute *attr,
351 				 const char *buf, size_t count)
352 {
353 	struct ctlr_info *h;
354 	struct Scsi_Host *shost = class_to_shost(dev);
355 	h = shost_to_hba(shost);
356 	hpsa_scan_start(h->scsi_host);
357 	return count;
358 }
359 
360 static ssize_t host_show_firmware_revision(struct device *dev,
361 	     struct device_attribute *attr, char *buf)
362 {
363 	struct ctlr_info *h;
364 	struct Scsi_Host *shost = class_to_shost(dev);
365 	unsigned char *fwrev;
366 
367 	h = shost_to_hba(shost);
368 	if (!h->hba_inquiry_data)
369 		return 0;
370 	fwrev = &h->hba_inquiry_data[32];
371 	return snprintf(buf, 20, "%c%c%c%c\n",
372 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
373 }
374 
375 static ssize_t host_show_commands_outstanding(struct device *dev,
376 	     struct device_attribute *attr, char *buf)
377 {
378 	struct Scsi_Host *shost = class_to_shost(dev);
379 	struct ctlr_info *h = shost_to_hba(shost);
380 
381 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
382 }
383 
384 static ssize_t host_show_transport_mode(struct device *dev,
385 	struct device_attribute *attr, char *buf)
386 {
387 	struct ctlr_info *h;
388 	struct Scsi_Host *shost = class_to_shost(dev);
389 
390 	h = shost_to_hba(shost);
391 	return snprintf(buf, 20, "%s\n",
392 		h->transMethod & CFGTBL_Trans_Performant ?
393 			"performant" : "simple");
394 }
395 
396 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
397 	struct device_attribute *attr, char *buf)
398 {
399 	struct ctlr_info *h;
400 	struct Scsi_Host *shost = class_to_shost(dev);
401 
402 	h = shost_to_hba(shost);
403 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
404 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
405 }
406 
407 /* List of controllers which cannot be hard reset on kexec with reset_devices */
408 static u32 unresettable_controller[] = {
409 	0x324a103C, /* Smart Array P712m */
410 	0x324b103C, /* SmartArray P711m */
411 	0x3223103C, /* Smart Array P800 */
412 	0x3234103C, /* Smart Array P400 */
413 	0x3235103C, /* Smart Array P400i */
414 	0x3211103C, /* Smart Array E200i */
415 	0x3212103C, /* Smart Array E200 */
416 	0x3213103C, /* Smart Array E200i */
417 	0x3214103C, /* Smart Array E200i */
418 	0x3215103C, /* Smart Array E200i */
419 	0x3237103C, /* Smart Array E500 */
420 	0x323D103C, /* Smart Array P700m */
421 	0x40800E11, /* Smart Array 5i */
422 	0x409C0E11, /* Smart Array 6400 */
423 	0x409D0E11, /* Smart Array 6400 EM */
424 	0x40700E11, /* Smart Array 5300 */
425 	0x40820E11, /* Smart Array 532 */
426 	0x40830E11, /* Smart Array 5312 */
427 	0x409A0E11, /* Smart Array 641 */
428 	0x409B0E11, /* Smart Array 642 */
429 	0x40910E11, /* Smart Array 6i */
430 };
431 
432 /* List of controllers which cannot even be soft reset */
433 static u32 soft_unresettable_controller[] = {
434 	0x40800E11, /* Smart Array 5i */
435 	0x40700E11, /* Smart Array 5300 */
436 	0x40820E11, /* Smart Array 532 */
437 	0x40830E11, /* Smart Array 5312 */
438 	0x409A0E11, /* Smart Array 641 */
439 	0x409B0E11, /* Smart Array 642 */
440 	0x40910E11, /* Smart Array 6i */
441 	/* Exclude 640x boards.  These are two pci devices in one slot
442 	 * which share a battery backed cache module.  One controls the
443 	 * cache, the other accesses the cache through the one that controls
444 	 * it.  If we reset the one controlling the cache, the other will
445 	 * likely not be happy.  Just forbid resetting this conjoined mess.
446 	 * The 640x isn't really supported by hpsa anyway.
447 	 */
448 	0x409C0E11, /* Smart Array 6400 */
449 	0x409D0E11, /* Smart Array 6400 EM */
450 };
451 
452 static int ctlr_is_hard_resettable(u32 board_id)
453 {
454 	int i;
455 
456 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
457 		if (unresettable_controller[i] == board_id)
458 			return 0;
459 	return 1;
460 }
461 
462 static int ctlr_is_soft_resettable(u32 board_id)
463 {
464 	int i;
465 
466 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
467 		if (soft_unresettable_controller[i] == board_id)
468 			return 0;
469 	return 1;
470 }
471 
472 static int ctlr_is_resettable(u32 board_id)
473 {
474 	return ctlr_is_hard_resettable(board_id) ||
475 		ctlr_is_soft_resettable(board_id);
476 }
477 
478 static ssize_t host_show_resettable(struct device *dev,
479 	struct device_attribute *attr, char *buf)
480 {
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 
484 	h = shost_to_hba(shost);
485 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
486 }
487 
488 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
489 {
490 	return (scsi3addr[3] & 0xC0) == 0x40;
491 }
492 
493 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
494 	"1(ADM)", "UNKNOWN"
495 };
496 #define HPSA_RAID_0	0
497 #define HPSA_RAID_4	1
498 #define HPSA_RAID_1	2	/* also used for RAID 10 */
499 #define HPSA_RAID_5	3	/* also used for RAID 50 */
500 #define HPSA_RAID_51	4
501 #define HPSA_RAID_6	5	/* also used for RAID 60 */
502 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
503 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
504 
505 static ssize_t raid_level_show(struct device *dev,
506 	     struct device_attribute *attr, char *buf)
507 {
508 	ssize_t l = 0;
509 	unsigned char rlevel;
510 	struct ctlr_info *h;
511 	struct scsi_device *sdev;
512 	struct hpsa_scsi_dev_t *hdev;
513 	unsigned long flags;
514 
515 	sdev = to_scsi_device(dev);
516 	h = sdev_to_hba(sdev);
517 	spin_lock_irqsave(&h->lock, flags);
518 	hdev = sdev->hostdata;
519 	if (!hdev) {
520 		spin_unlock_irqrestore(&h->lock, flags);
521 		return -ENODEV;
522 	}
523 
524 	/* Is this even a logical drive? */
525 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
526 		spin_unlock_irqrestore(&h->lock, flags);
527 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
528 		return l;
529 	}
530 
531 	rlevel = hdev->raid_level;
532 	spin_unlock_irqrestore(&h->lock, flags);
533 	if (rlevel > RAID_UNKNOWN)
534 		rlevel = RAID_UNKNOWN;
535 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
536 	return l;
537 }
538 
539 static ssize_t lunid_show(struct device *dev,
540 	     struct device_attribute *attr, char *buf)
541 {
542 	struct ctlr_info *h;
543 	struct scsi_device *sdev;
544 	struct hpsa_scsi_dev_t *hdev;
545 	unsigned long flags;
546 	unsigned char lunid[8];
547 
548 	sdev = to_scsi_device(dev);
549 	h = sdev_to_hba(sdev);
550 	spin_lock_irqsave(&h->lock, flags);
551 	hdev = sdev->hostdata;
552 	if (!hdev) {
553 		spin_unlock_irqrestore(&h->lock, flags);
554 		return -ENODEV;
555 	}
556 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
557 	spin_unlock_irqrestore(&h->lock, flags);
558 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
559 		lunid[0], lunid[1], lunid[2], lunid[3],
560 		lunid[4], lunid[5], lunid[6], lunid[7]);
561 }
562 
563 static ssize_t unique_id_show(struct device *dev,
564 	     struct device_attribute *attr, char *buf)
565 {
566 	struct ctlr_info *h;
567 	struct scsi_device *sdev;
568 	struct hpsa_scsi_dev_t *hdev;
569 	unsigned long flags;
570 	unsigned char sn[16];
571 
572 	sdev = to_scsi_device(dev);
573 	h = sdev_to_hba(sdev);
574 	spin_lock_irqsave(&h->lock, flags);
575 	hdev = sdev->hostdata;
576 	if (!hdev) {
577 		spin_unlock_irqrestore(&h->lock, flags);
578 		return -ENODEV;
579 	}
580 	memcpy(sn, hdev->device_id, sizeof(sn));
581 	spin_unlock_irqrestore(&h->lock, flags);
582 	return snprintf(buf, 16 * 2 + 2,
583 			"%02X%02X%02X%02X%02X%02X%02X%02X"
584 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
585 			sn[0], sn[1], sn[2], sn[3],
586 			sn[4], sn[5], sn[6], sn[7],
587 			sn[8], sn[9], sn[10], sn[11],
588 			sn[12], sn[13], sn[14], sn[15]);
589 }
590 
591 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
592 	     struct device_attribute *attr, char *buf)
593 {
594 	struct ctlr_info *h;
595 	struct scsi_device *sdev;
596 	struct hpsa_scsi_dev_t *hdev;
597 	unsigned long flags;
598 	int offload_enabled;
599 
600 	sdev = to_scsi_device(dev);
601 	h = sdev_to_hba(sdev);
602 	spin_lock_irqsave(&h->lock, flags);
603 	hdev = sdev->hostdata;
604 	if (!hdev) {
605 		spin_unlock_irqrestore(&h->lock, flags);
606 		return -ENODEV;
607 	}
608 	offload_enabled = hdev->offload_enabled;
609 	spin_unlock_irqrestore(&h->lock, flags);
610 	return snprintf(buf, 20, "%d\n", offload_enabled);
611 }
612 
613 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
614 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
615 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
616 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
617 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
618 			host_show_hp_ssd_smart_path_enabled, NULL);
619 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
620 		host_show_hp_ssd_smart_path_status,
621 		host_store_hp_ssd_smart_path_status);
622 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
623 			host_store_raid_offload_debug);
624 static DEVICE_ATTR(firmware_revision, S_IRUGO,
625 	host_show_firmware_revision, NULL);
626 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
627 	host_show_commands_outstanding, NULL);
628 static DEVICE_ATTR(transport_mode, S_IRUGO,
629 	host_show_transport_mode, NULL);
630 static DEVICE_ATTR(resettable, S_IRUGO,
631 	host_show_resettable, NULL);
632 
633 static struct device_attribute *hpsa_sdev_attrs[] = {
634 	&dev_attr_raid_level,
635 	&dev_attr_lunid,
636 	&dev_attr_unique_id,
637 	&dev_attr_hp_ssd_smart_path_enabled,
638 	NULL,
639 };
640 
641 static struct device_attribute *hpsa_shost_attrs[] = {
642 	&dev_attr_rescan,
643 	&dev_attr_firmware_revision,
644 	&dev_attr_commands_outstanding,
645 	&dev_attr_transport_mode,
646 	&dev_attr_resettable,
647 	&dev_attr_hp_ssd_smart_path_status,
648 	&dev_attr_raid_offload_debug,
649 	NULL,
650 };
651 
652 static struct scsi_host_template hpsa_driver_template = {
653 	.module			= THIS_MODULE,
654 	.name			= HPSA,
655 	.proc_name		= HPSA,
656 	.queuecommand		= hpsa_scsi_queue_command,
657 	.scan_start		= hpsa_scan_start,
658 	.scan_finished		= hpsa_scan_finished,
659 	.change_queue_depth	= hpsa_change_queue_depth,
660 	.this_id		= -1,
661 	.use_clustering		= ENABLE_CLUSTERING,
662 	.eh_abort_handler	= hpsa_eh_abort_handler,
663 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
664 	.ioctl			= hpsa_ioctl,
665 	.slave_alloc		= hpsa_slave_alloc,
666 	.slave_destroy		= hpsa_slave_destroy,
667 #ifdef CONFIG_COMPAT
668 	.compat_ioctl		= hpsa_compat_ioctl,
669 #endif
670 	.sdev_attrs = hpsa_sdev_attrs,
671 	.shost_attrs = hpsa_shost_attrs,
672 	.max_sectors = 8192,
673 	.no_write_same = 1,
674 };
675 
676 
677 /* Enqueuing and dequeuing functions for cmdlists. */
678 static inline void addQ(struct list_head *list, struct CommandList *c)
679 {
680 	list_add_tail(&c->list, list);
681 }
682 
683 static inline u32 next_command(struct ctlr_info *h, u8 q)
684 {
685 	u32 a;
686 	struct reply_pool *rq = &h->reply_queue[q];
687 	unsigned long flags;
688 
689 	if (h->transMethod & CFGTBL_Trans_io_accel1)
690 		return h->access.command_completed(h, q);
691 
692 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
693 		return h->access.command_completed(h, q);
694 
695 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
696 		a = rq->head[rq->current_entry];
697 		rq->current_entry++;
698 		spin_lock_irqsave(&h->lock, flags);
699 		h->commands_outstanding--;
700 		spin_unlock_irqrestore(&h->lock, flags);
701 	} else {
702 		a = FIFO_EMPTY;
703 	}
704 	/* Check for wraparound */
705 	if (rq->current_entry == h->max_commands) {
706 		rq->current_entry = 0;
707 		rq->wraparound ^= 1;
708 	}
709 	return a;
710 }
711 
712 /*
713  * There are some special bits in the bus address of the
714  * command that we have to set for the controller to know
715  * how to process the command:
716  *
717  * Normal performant mode:
718  * bit 0: 1 means performant mode, 0 means simple mode.
719  * bits 1-3 = block fetch table entry
720  * bits 4-6 = command type (== 0)
721  *
722  * ioaccel1 mode:
723  * bit 0 = "performant mode" bit.
724  * bits 1-3 = block fetch table entry
725  * bits 4-6 = command type (== 110)
726  * (command type is needed because ioaccel1 mode
727  * commands are submitted through the same register as normal
728  * mode commands, so this is how the controller knows whether
729  * the command is normal mode or ioaccel1 mode.)
730  *
731  * ioaccel2 mode:
732  * bit 0 = "performant mode" bit.
733  * bits 1-4 = block fetch table entry (note extra bit)
734  * bits 4-6 = not needed, because ioaccel2 mode has
735  * a separate special register for submitting commands.
736  */
737 
738 /* set_performant_mode: Modify the tag for cciss performant
739  * set bit 0 for pull model, bits 3-1 for block fetch
740  * register number
741  */
742 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
743 {
744 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
745 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
746 		if (likely(h->msix_vector > 0))
747 			c->Header.ReplyQueue =
748 				raw_smp_processor_id() % h->nreply_queues;
749 	}
750 }
751 
752 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
753 						struct CommandList *c)
754 {
755 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
756 
757 	/* Tell the controller to post the reply to the queue for this
758 	 * processor.  This seems to give the best I/O throughput.
759 	 */
760 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
761 	/* Set the bits in the address sent down to include:
762 	 *  - performant mode bit (bit 0)
763 	 *  - pull count (bits 1-3)
764 	 *  - command type (bits 4-6)
765 	 */
766 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
767 					IOACCEL1_BUSADDR_CMDTYPE;
768 }
769 
770 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
771 						struct CommandList *c)
772 {
773 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
774 
775 	/* Tell the controller to post the reply to the queue for this
776 	 * processor.  This seems to give the best I/O throughput.
777 	 */
778 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
779 	/* Set the bits in the address sent down to include:
780 	 *  - performant mode bit not used in ioaccel mode 2
781 	 *  - pull count (bits 0-3)
782 	 *  - command type isn't needed for ioaccel2
783 	 */
784 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
785 }
786 
787 static int is_firmware_flash_cmd(u8 *cdb)
788 {
789 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
790 }
791 
792 /*
793  * During firmware flash, the heartbeat register may not update as frequently
794  * as it should.  So we dial down lockup detection during firmware flash. and
795  * dial it back up when firmware flash completes.
796  */
797 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
798 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
799 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
800 		struct CommandList *c)
801 {
802 	if (!is_firmware_flash_cmd(c->Request.CDB))
803 		return;
804 	atomic_inc(&h->firmware_flash_in_progress);
805 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
806 }
807 
808 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
809 		struct CommandList *c)
810 {
811 	if (is_firmware_flash_cmd(c->Request.CDB) &&
812 		atomic_dec_and_test(&h->firmware_flash_in_progress))
813 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
814 }
815 
816 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
817 	struct CommandList *c)
818 {
819 	unsigned long flags;
820 
821 	switch (c->cmd_type) {
822 	case CMD_IOACCEL1:
823 		set_ioaccel1_performant_mode(h, c);
824 		break;
825 	case CMD_IOACCEL2:
826 		set_ioaccel2_performant_mode(h, c);
827 		break;
828 	default:
829 		set_performant_mode(h, c);
830 	}
831 	dial_down_lockup_detection_during_fw_flash(h, c);
832 	spin_lock_irqsave(&h->lock, flags);
833 	addQ(&h->reqQ, c);
834 	h->Qdepth++;
835 	spin_unlock_irqrestore(&h->lock, flags);
836 	start_io(h);
837 }
838 
839 static inline void removeQ(struct CommandList *c)
840 {
841 	if (WARN_ON(list_empty(&c->list)))
842 		return;
843 	list_del_init(&c->list);
844 }
845 
846 static inline int is_hba_lunid(unsigned char scsi3addr[])
847 {
848 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
849 }
850 
851 static inline int is_scsi_rev_5(struct ctlr_info *h)
852 {
853 	if (!h->hba_inquiry_data)
854 		return 0;
855 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
856 		return 1;
857 	return 0;
858 }
859 
860 static int hpsa_find_target_lun(struct ctlr_info *h,
861 	unsigned char scsi3addr[], int bus, int *target, int *lun)
862 {
863 	/* finds an unused bus, target, lun for a new physical device
864 	 * assumes h->devlock is held
865 	 */
866 	int i, found = 0;
867 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
868 
869 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
870 
871 	for (i = 0; i < h->ndevices; i++) {
872 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
873 			__set_bit(h->dev[i]->target, lun_taken);
874 	}
875 
876 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
877 	if (i < HPSA_MAX_DEVICES) {
878 		/* *bus = 1; */
879 		*target = i;
880 		*lun = 0;
881 		found = 1;
882 	}
883 	return !found;
884 }
885 
886 /* Add an entry into h->dev[] array. */
887 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
888 		struct hpsa_scsi_dev_t *device,
889 		struct hpsa_scsi_dev_t *added[], int *nadded)
890 {
891 	/* assumes h->devlock is held */
892 	int n = h->ndevices;
893 	int i;
894 	unsigned char addr1[8], addr2[8];
895 	struct hpsa_scsi_dev_t *sd;
896 
897 	if (n >= HPSA_MAX_DEVICES) {
898 		dev_err(&h->pdev->dev, "too many devices, some will be "
899 			"inaccessible.\n");
900 		return -1;
901 	}
902 
903 	/* physical devices do not have lun or target assigned until now. */
904 	if (device->lun != -1)
905 		/* Logical device, lun is already assigned. */
906 		goto lun_assigned;
907 
908 	/* If this device a non-zero lun of a multi-lun device
909 	 * byte 4 of the 8-byte LUN addr will contain the logical
910 	 * unit no, zero otherise.
911 	 */
912 	if (device->scsi3addr[4] == 0) {
913 		/* This is not a non-zero lun of a multi-lun device */
914 		if (hpsa_find_target_lun(h, device->scsi3addr,
915 			device->bus, &device->target, &device->lun) != 0)
916 			return -1;
917 		goto lun_assigned;
918 	}
919 
920 	/* This is a non-zero lun of a multi-lun device.
921 	 * Search through our list and find the device which
922 	 * has the same 8 byte LUN address, excepting byte 4.
923 	 * Assign the same bus and target for this new LUN.
924 	 * Use the logical unit number from the firmware.
925 	 */
926 	memcpy(addr1, device->scsi3addr, 8);
927 	addr1[4] = 0;
928 	for (i = 0; i < n; i++) {
929 		sd = h->dev[i];
930 		memcpy(addr2, sd->scsi3addr, 8);
931 		addr2[4] = 0;
932 		/* differ only in byte 4? */
933 		if (memcmp(addr1, addr2, 8) == 0) {
934 			device->bus = sd->bus;
935 			device->target = sd->target;
936 			device->lun = device->scsi3addr[4];
937 			break;
938 		}
939 	}
940 	if (device->lun == -1) {
941 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
942 			" suspect firmware bug or unsupported hardware "
943 			"configuration.\n");
944 			return -1;
945 	}
946 
947 lun_assigned:
948 
949 	h->dev[n] = device;
950 	h->ndevices++;
951 	added[*nadded] = device;
952 	(*nadded)++;
953 
954 	/* initially, (before registering with scsi layer) we don't
955 	 * know our hostno and we don't want to print anything first
956 	 * time anyway (the scsi layer's inquiries will show that info)
957 	 */
958 	/* if (hostno != -1) */
959 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
960 			scsi_device_type(device->devtype), hostno,
961 			device->bus, device->target, device->lun);
962 	return 0;
963 }
964 
965 /* Update an entry in h->dev[] array. */
966 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
967 	int entry, struct hpsa_scsi_dev_t *new_entry)
968 {
969 	/* assumes h->devlock is held */
970 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
971 
972 	/* Raid level changed. */
973 	h->dev[entry]->raid_level = new_entry->raid_level;
974 
975 	/* Raid offload parameters changed. */
976 	h->dev[entry]->offload_config = new_entry->offload_config;
977 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
978 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
979 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
980 	h->dev[entry]->raid_map = new_entry->raid_map;
981 
982 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
983 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
984 		new_entry->target, new_entry->lun);
985 }
986 
987 /* Replace an entry from h->dev[] array. */
988 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
989 	int entry, struct hpsa_scsi_dev_t *new_entry,
990 	struct hpsa_scsi_dev_t *added[], int *nadded,
991 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
992 {
993 	/* assumes h->devlock is held */
994 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
995 	removed[*nremoved] = h->dev[entry];
996 	(*nremoved)++;
997 
998 	/*
999 	 * New physical devices won't have target/lun assigned yet
1000 	 * so we need to preserve the values in the slot we are replacing.
1001 	 */
1002 	if (new_entry->target == -1) {
1003 		new_entry->target = h->dev[entry]->target;
1004 		new_entry->lun = h->dev[entry]->lun;
1005 	}
1006 
1007 	h->dev[entry] = new_entry;
1008 	added[*nadded] = new_entry;
1009 	(*nadded)++;
1010 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1011 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1012 			new_entry->target, new_entry->lun);
1013 }
1014 
1015 /* Remove an entry from h->dev[] array. */
1016 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1017 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1018 {
1019 	/* assumes h->devlock is held */
1020 	int i;
1021 	struct hpsa_scsi_dev_t *sd;
1022 
1023 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1024 
1025 	sd = h->dev[entry];
1026 	removed[*nremoved] = h->dev[entry];
1027 	(*nremoved)++;
1028 
1029 	for (i = entry; i < h->ndevices-1; i++)
1030 		h->dev[i] = h->dev[i+1];
1031 	h->ndevices--;
1032 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1033 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1034 		sd->lun);
1035 }
1036 
1037 #define SCSI3ADDR_EQ(a, b) ( \
1038 	(a)[7] == (b)[7] && \
1039 	(a)[6] == (b)[6] && \
1040 	(a)[5] == (b)[5] && \
1041 	(a)[4] == (b)[4] && \
1042 	(a)[3] == (b)[3] && \
1043 	(a)[2] == (b)[2] && \
1044 	(a)[1] == (b)[1] && \
1045 	(a)[0] == (b)[0])
1046 
1047 static void fixup_botched_add(struct ctlr_info *h,
1048 	struct hpsa_scsi_dev_t *added)
1049 {
1050 	/* called when scsi_add_device fails in order to re-adjust
1051 	 * h->dev[] to match the mid layer's view.
1052 	 */
1053 	unsigned long flags;
1054 	int i, j;
1055 
1056 	spin_lock_irqsave(&h->lock, flags);
1057 	for (i = 0; i < h->ndevices; i++) {
1058 		if (h->dev[i] == added) {
1059 			for (j = i; j < h->ndevices-1; j++)
1060 				h->dev[j] = h->dev[j+1];
1061 			h->ndevices--;
1062 			break;
1063 		}
1064 	}
1065 	spin_unlock_irqrestore(&h->lock, flags);
1066 	kfree(added);
1067 }
1068 
1069 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1070 	struct hpsa_scsi_dev_t *dev2)
1071 {
1072 	/* we compare everything except lun and target as these
1073 	 * are not yet assigned.  Compare parts likely
1074 	 * to differ first
1075 	 */
1076 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1077 		sizeof(dev1->scsi3addr)) != 0)
1078 		return 0;
1079 	if (memcmp(dev1->device_id, dev2->device_id,
1080 		sizeof(dev1->device_id)) != 0)
1081 		return 0;
1082 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1083 		return 0;
1084 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1085 		return 0;
1086 	if (dev1->devtype != dev2->devtype)
1087 		return 0;
1088 	if (dev1->bus != dev2->bus)
1089 		return 0;
1090 	return 1;
1091 }
1092 
1093 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1094 	struct hpsa_scsi_dev_t *dev2)
1095 {
1096 	/* Device attributes that can change, but don't mean
1097 	 * that the device is a different device, nor that the OS
1098 	 * needs to be told anything about the change.
1099 	 */
1100 	if (dev1->raid_level != dev2->raid_level)
1101 		return 1;
1102 	if (dev1->offload_config != dev2->offload_config)
1103 		return 1;
1104 	if (dev1->offload_enabled != dev2->offload_enabled)
1105 		return 1;
1106 	return 0;
1107 }
1108 
1109 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1110  * and return needle location in *index.  If scsi3addr matches, but not
1111  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1112  * location in *index.
1113  * In the case of a minor device attribute change, such as RAID level, just
1114  * return DEVICE_UPDATED, along with the updated device's location in index.
1115  * If needle not found, return DEVICE_NOT_FOUND.
1116  */
1117 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1118 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1119 	int *index)
1120 {
1121 	int i;
1122 #define DEVICE_NOT_FOUND 0
1123 #define DEVICE_CHANGED 1
1124 #define DEVICE_SAME 2
1125 #define DEVICE_UPDATED 3
1126 	for (i = 0; i < haystack_size; i++) {
1127 		if (haystack[i] == NULL) /* previously removed. */
1128 			continue;
1129 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1130 			*index = i;
1131 			if (device_is_the_same(needle, haystack[i])) {
1132 				if (device_updated(needle, haystack[i]))
1133 					return DEVICE_UPDATED;
1134 				return DEVICE_SAME;
1135 			} else {
1136 				/* Keep offline devices offline */
1137 				if (needle->volume_offline)
1138 					return DEVICE_NOT_FOUND;
1139 				return DEVICE_CHANGED;
1140 			}
1141 		}
1142 	}
1143 	*index = -1;
1144 	return DEVICE_NOT_FOUND;
1145 }
1146 
1147 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1148 					unsigned char scsi3addr[])
1149 {
1150 	struct offline_device_entry *device;
1151 	unsigned long flags;
1152 
1153 	/* Check to see if device is already on the list */
1154 	spin_lock_irqsave(&h->offline_device_lock, flags);
1155 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1156 		if (memcmp(device->scsi3addr, scsi3addr,
1157 			sizeof(device->scsi3addr)) == 0) {
1158 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1159 			return;
1160 		}
1161 	}
1162 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1163 
1164 	/* Device is not on the list, add it. */
1165 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1166 	if (!device) {
1167 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1168 		return;
1169 	}
1170 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1171 	spin_lock_irqsave(&h->offline_device_lock, flags);
1172 	list_add_tail(&device->offline_list, &h->offline_device_list);
1173 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1174 }
1175 
1176 /* Print a message explaining various offline volume states */
1177 static void hpsa_show_volume_status(struct ctlr_info *h,
1178 	struct hpsa_scsi_dev_t *sd)
1179 {
1180 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1181 		dev_info(&h->pdev->dev,
1182 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1183 			h->scsi_host->host_no,
1184 			sd->bus, sd->target, sd->lun);
1185 	switch (sd->volume_offline) {
1186 	case HPSA_LV_OK:
1187 		break;
1188 	case HPSA_LV_UNDERGOING_ERASE:
1189 		dev_info(&h->pdev->dev,
1190 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1191 			h->scsi_host->host_no,
1192 			sd->bus, sd->target, sd->lun);
1193 		break;
1194 	case HPSA_LV_UNDERGOING_RPI:
1195 		dev_info(&h->pdev->dev,
1196 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1197 			h->scsi_host->host_no,
1198 			sd->bus, sd->target, sd->lun);
1199 		break;
1200 	case HPSA_LV_PENDING_RPI:
1201 		dev_info(&h->pdev->dev,
1202 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1203 				h->scsi_host->host_no,
1204 				sd->bus, sd->target, sd->lun);
1205 		break;
1206 	case HPSA_LV_ENCRYPTED_NO_KEY:
1207 		dev_info(&h->pdev->dev,
1208 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1209 			h->scsi_host->host_no,
1210 			sd->bus, sd->target, sd->lun);
1211 		break;
1212 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1213 		dev_info(&h->pdev->dev,
1214 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1215 			h->scsi_host->host_no,
1216 			sd->bus, sd->target, sd->lun);
1217 		break;
1218 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1219 		dev_info(&h->pdev->dev,
1220 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1221 			h->scsi_host->host_no,
1222 			sd->bus, sd->target, sd->lun);
1223 		break;
1224 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1225 		dev_info(&h->pdev->dev,
1226 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1227 			h->scsi_host->host_no,
1228 			sd->bus, sd->target, sd->lun);
1229 		break;
1230 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1231 		dev_info(&h->pdev->dev,
1232 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1233 			h->scsi_host->host_no,
1234 			sd->bus, sd->target, sd->lun);
1235 		break;
1236 	case HPSA_LV_PENDING_ENCRYPTION:
1237 		dev_info(&h->pdev->dev,
1238 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1239 			h->scsi_host->host_no,
1240 			sd->bus, sd->target, sd->lun);
1241 		break;
1242 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1243 		dev_info(&h->pdev->dev,
1244 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1245 			h->scsi_host->host_no,
1246 			sd->bus, sd->target, sd->lun);
1247 		break;
1248 	}
1249 }
1250 
1251 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1252 	struct hpsa_scsi_dev_t *sd[], int nsds)
1253 {
1254 	/* sd contains scsi3 addresses and devtypes, and inquiry
1255 	 * data.  This function takes what's in sd to be the current
1256 	 * reality and updates h->dev[] to reflect that reality.
1257 	 */
1258 	int i, entry, device_change, changes = 0;
1259 	struct hpsa_scsi_dev_t *csd;
1260 	unsigned long flags;
1261 	struct hpsa_scsi_dev_t **added, **removed;
1262 	int nadded, nremoved;
1263 	struct Scsi_Host *sh = NULL;
1264 
1265 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1266 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1267 
1268 	if (!added || !removed) {
1269 		dev_warn(&h->pdev->dev, "out of memory in "
1270 			"adjust_hpsa_scsi_table\n");
1271 		goto free_and_out;
1272 	}
1273 
1274 	spin_lock_irqsave(&h->devlock, flags);
1275 
1276 	/* find any devices in h->dev[] that are not in
1277 	 * sd[] and remove them from h->dev[], and for any
1278 	 * devices which have changed, remove the old device
1279 	 * info and add the new device info.
1280 	 * If minor device attributes change, just update
1281 	 * the existing device structure.
1282 	 */
1283 	i = 0;
1284 	nremoved = 0;
1285 	nadded = 0;
1286 	while (i < h->ndevices) {
1287 		csd = h->dev[i];
1288 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1289 		if (device_change == DEVICE_NOT_FOUND) {
1290 			changes++;
1291 			hpsa_scsi_remove_entry(h, hostno, i,
1292 				removed, &nremoved);
1293 			continue; /* remove ^^^, hence i not incremented */
1294 		} else if (device_change == DEVICE_CHANGED) {
1295 			changes++;
1296 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1297 				added, &nadded, removed, &nremoved);
1298 			/* Set it to NULL to prevent it from being freed
1299 			 * at the bottom of hpsa_update_scsi_devices()
1300 			 */
1301 			sd[entry] = NULL;
1302 		} else if (device_change == DEVICE_UPDATED) {
1303 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1304 		}
1305 		i++;
1306 	}
1307 
1308 	/* Now, make sure every device listed in sd[] is also
1309 	 * listed in h->dev[], adding them if they aren't found
1310 	 */
1311 
1312 	for (i = 0; i < nsds; i++) {
1313 		if (!sd[i]) /* if already added above. */
1314 			continue;
1315 
1316 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1317 		 * as the SCSI mid-layer does not handle such devices well.
1318 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1319 		 * at 160Hz, and prevents the system from coming up.
1320 		 */
1321 		if (sd[i]->volume_offline) {
1322 			hpsa_show_volume_status(h, sd[i]);
1323 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1324 				h->scsi_host->host_no,
1325 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1326 			continue;
1327 		}
1328 
1329 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1330 					h->ndevices, &entry);
1331 		if (device_change == DEVICE_NOT_FOUND) {
1332 			changes++;
1333 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1334 				added, &nadded) != 0)
1335 				break;
1336 			sd[i] = NULL; /* prevent from being freed later. */
1337 		} else if (device_change == DEVICE_CHANGED) {
1338 			/* should never happen... */
1339 			changes++;
1340 			dev_warn(&h->pdev->dev,
1341 				"device unexpectedly changed.\n");
1342 			/* but if it does happen, we just ignore that device */
1343 		}
1344 	}
1345 	spin_unlock_irqrestore(&h->devlock, flags);
1346 
1347 	/* Monitor devices which are in one of several NOT READY states to be
1348 	 * brought online later. This must be done without holding h->devlock,
1349 	 * so don't touch h->dev[]
1350 	 */
1351 	for (i = 0; i < nsds; i++) {
1352 		if (!sd[i]) /* if already added above. */
1353 			continue;
1354 		if (sd[i]->volume_offline)
1355 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1356 	}
1357 
1358 	/* Don't notify scsi mid layer of any changes the first time through
1359 	 * (or if there are no changes) scsi_scan_host will do it later the
1360 	 * first time through.
1361 	 */
1362 	if (hostno == -1 || !changes)
1363 		goto free_and_out;
1364 
1365 	sh = h->scsi_host;
1366 	/* Notify scsi mid layer of any removed devices */
1367 	for (i = 0; i < nremoved; i++) {
1368 		struct scsi_device *sdev =
1369 			scsi_device_lookup(sh, removed[i]->bus,
1370 				removed[i]->target, removed[i]->lun);
1371 		if (sdev != NULL) {
1372 			scsi_remove_device(sdev);
1373 			scsi_device_put(sdev);
1374 		} else {
1375 			/* We don't expect to get here.
1376 			 * future cmds to this device will get selection
1377 			 * timeout as if the device was gone.
1378 			 */
1379 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1380 				" for removal.", hostno, removed[i]->bus,
1381 				removed[i]->target, removed[i]->lun);
1382 		}
1383 		kfree(removed[i]);
1384 		removed[i] = NULL;
1385 	}
1386 
1387 	/* Notify scsi mid layer of any added devices */
1388 	for (i = 0; i < nadded; i++) {
1389 		if (scsi_add_device(sh, added[i]->bus,
1390 			added[i]->target, added[i]->lun) == 0)
1391 			continue;
1392 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1393 			"device not added.\n", hostno, added[i]->bus,
1394 			added[i]->target, added[i]->lun);
1395 		/* now we have to remove it from h->dev,
1396 		 * since it didn't get added to scsi mid layer
1397 		 */
1398 		fixup_botched_add(h, added[i]);
1399 	}
1400 
1401 free_and_out:
1402 	kfree(added);
1403 	kfree(removed);
1404 }
1405 
1406 /*
1407  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1408  * Assume's h->devlock is held.
1409  */
1410 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1411 	int bus, int target, int lun)
1412 {
1413 	int i;
1414 	struct hpsa_scsi_dev_t *sd;
1415 
1416 	for (i = 0; i < h->ndevices; i++) {
1417 		sd = h->dev[i];
1418 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1419 			return sd;
1420 	}
1421 	return NULL;
1422 }
1423 
1424 /* link sdev->hostdata to our per-device structure. */
1425 static int hpsa_slave_alloc(struct scsi_device *sdev)
1426 {
1427 	struct hpsa_scsi_dev_t *sd;
1428 	unsigned long flags;
1429 	struct ctlr_info *h;
1430 
1431 	h = sdev_to_hba(sdev);
1432 	spin_lock_irqsave(&h->devlock, flags);
1433 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1434 		sdev_id(sdev), sdev->lun);
1435 	if (sd != NULL)
1436 		sdev->hostdata = sd;
1437 	spin_unlock_irqrestore(&h->devlock, flags);
1438 	return 0;
1439 }
1440 
1441 static void hpsa_slave_destroy(struct scsi_device *sdev)
1442 {
1443 	/* nothing to do. */
1444 }
1445 
1446 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1447 {
1448 	int i;
1449 
1450 	if (!h->cmd_sg_list)
1451 		return;
1452 	for (i = 0; i < h->nr_cmds; i++) {
1453 		kfree(h->cmd_sg_list[i]);
1454 		h->cmd_sg_list[i] = NULL;
1455 	}
1456 	kfree(h->cmd_sg_list);
1457 	h->cmd_sg_list = NULL;
1458 }
1459 
1460 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462 	int i;
1463 
1464 	if (h->chainsize <= 0)
1465 		return 0;
1466 
1467 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1468 				GFP_KERNEL);
1469 	if (!h->cmd_sg_list)
1470 		return -ENOMEM;
1471 	for (i = 0; i < h->nr_cmds; i++) {
1472 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1473 						h->chainsize, GFP_KERNEL);
1474 		if (!h->cmd_sg_list[i])
1475 			goto clean;
1476 	}
1477 	return 0;
1478 
1479 clean:
1480 	hpsa_free_sg_chain_blocks(h);
1481 	return -ENOMEM;
1482 }
1483 
1484 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1485 	struct CommandList *c)
1486 {
1487 	struct SGDescriptor *chain_sg, *chain_block;
1488 	u64 temp64;
1489 
1490 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1491 	chain_block = h->cmd_sg_list[c->cmdindex];
1492 	chain_sg->Ext = HPSA_SG_CHAIN;
1493 	chain_sg->Len = sizeof(*chain_sg) *
1494 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1495 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1496 				PCI_DMA_TODEVICE);
1497 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1498 		/* prevent subsequent unmapping */
1499 		chain_sg->Addr.lower = 0;
1500 		chain_sg->Addr.upper = 0;
1501 		return -1;
1502 	}
1503 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1504 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1505 	return 0;
1506 }
1507 
1508 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1509 	struct CommandList *c)
1510 {
1511 	struct SGDescriptor *chain_sg;
1512 	union u64bit temp64;
1513 
1514 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1515 		return;
1516 
1517 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1518 	temp64.val32.lower = chain_sg->Addr.lower;
1519 	temp64.val32.upper = chain_sg->Addr.upper;
1520 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1521 }
1522 
1523 
1524 /* Decode the various types of errors on ioaccel2 path.
1525  * Return 1 for any error that should generate a RAID path retry.
1526  * Return 0 for errors that don't require a RAID path retry.
1527  */
1528 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1529 					struct CommandList *c,
1530 					struct scsi_cmnd *cmd,
1531 					struct io_accel2_cmd *c2)
1532 {
1533 	int data_len;
1534 	int retry = 0;
1535 
1536 	switch (c2->error_data.serv_response) {
1537 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1538 		switch (c2->error_data.status) {
1539 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1540 			break;
1541 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1542 			dev_warn(&h->pdev->dev,
1543 				"%s: task complete with check condition.\n",
1544 				"HP SSD Smart Path");
1545 			if (c2->error_data.data_present !=
1546 					IOACCEL2_SENSE_DATA_PRESENT)
1547 				break;
1548 			/* copy the sense data */
1549 			data_len = c2->error_data.sense_data_len;
1550 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1551 				data_len = SCSI_SENSE_BUFFERSIZE;
1552 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1553 				data_len =
1554 					sizeof(c2->error_data.sense_data_buff);
1555 			memcpy(cmd->sense_buffer,
1556 				c2->error_data.sense_data_buff, data_len);
1557 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1558 			retry = 1;
1559 			break;
1560 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1561 			dev_warn(&h->pdev->dev,
1562 				"%s: task complete with BUSY status.\n",
1563 				"HP SSD Smart Path");
1564 			retry = 1;
1565 			break;
1566 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1567 			dev_warn(&h->pdev->dev,
1568 				"%s: task complete with reservation conflict.\n",
1569 				"HP SSD Smart Path");
1570 			retry = 1;
1571 			break;
1572 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1573 			/* Make scsi midlayer do unlimited retries */
1574 			cmd->result = DID_IMM_RETRY << 16;
1575 			break;
1576 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1577 			dev_warn(&h->pdev->dev,
1578 				"%s: task complete with aborted status.\n",
1579 				"HP SSD Smart Path");
1580 			retry = 1;
1581 			break;
1582 		default:
1583 			dev_warn(&h->pdev->dev,
1584 				"%s: task complete with unrecognized status: 0x%02x\n",
1585 				"HP SSD Smart Path", c2->error_data.status);
1586 			retry = 1;
1587 			break;
1588 		}
1589 		break;
1590 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1591 		/* don't expect to get here. */
1592 		dev_warn(&h->pdev->dev,
1593 			"unexpected delivery or target failure, status = 0x%02x\n",
1594 			c2->error_data.status);
1595 		retry = 1;
1596 		break;
1597 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1598 		break;
1599 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1600 		break;
1601 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1602 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1603 		retry = 1;
1604 		break;
1605 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1606 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1607 		break;
1608 	default:
1609 		dev_warn(&h->pdev->dev,
1610 			"%s: Unrecognized server response: 0x%02x\n",
1611 			"HP SSD Smart Path",
1612 			c2->error_data.serv_response);
1613 		retry = 1;
1614 		break;
1615 	}
1616 
1617 	return retry;	/* retry on raid path? */
1618 }
1619 
1620 static void process_ioaccel2_completion(struct ctlr_info *h,
1621 		struct CommandList *c, struct scsi_cmnd *cmd,
1622 		struct hpsa_scsi_dev_t *dev)
1623 {
1624 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1625 	int raid_retry = 0;
1626 
1627 	/* check for good status */
1628 	if (likely(c2->error_data.serv_response == 0 &&
1629 			c2->error_data.status == 0)) {
1630 		cmd_free(h, c);
1631 		cmd->scsi_done(cmd);
1632 		return;
1633 	}
1634 
1635 	/* Any RAID offload error results in retry which will use
1636 	 * the normal I/O path so the controller can handle whatever's
1637 	 * wrong.
1638 	 */
1639 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1640 		c2->error_data.serv_response ==
1641 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1642 		if (c2->error_data.status ==
1643 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1644 			dev_warn(&h->pdev->dev,
1645 				"%s: Path is unavailable, retrying on standard path.\n",
1646 				"HP SSD Smart Path");
1647 		else
1648 			dev_warn(&h->pdev->dev,
1649 				"%s: Error 0x%02x, retrying on standard path.\n",
1650 				"HP SSD Smart Path", c2->error_data.status);
1651 
1652 		dev->offload_enabled = 0;
1653 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1654 		cmd->result = DID_SOFT_ERROR << 16;
1655 		cmd_free(h, c);
1656 		cmd->scsi_done(cmd);
1657 		return;
1658 	}
1659 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1660 	/* If error found, disable Smart Path, schedule a rescan,
1661 	 * and force a retry on the standard path.
1662 	 */
1663 	if (raid_retry) {
1664 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1665 			"HP SSD Smart Path");
1666 		dev->offload_enabled = 0; /* Disable Smart Path */
1667 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1668 		cmd->result = DID_SOFT_ERROR << 16;
1669 	}
1670 	cmd_free(h, c);
1671 	cmd->scsi_done(cmd);
1672 }
1673 
1674 static void complete_scsi_command(struct CommandList *cp)
1675 {
1676 	struct scsi_cmnd *cmd;
1677 	struct ctlr_info *h;
1678 	struct ErrorInfo *ei;
1679 	struct hpsa_scsi_dev_t *dev;
1680 
1681 	unsigned char sense_key;
1682 	unsigned char asc;      /* additional sense code */
1683 	unsigned char ascq;     /* additional sense code qualifier */
1684 	unsigned long sense_data_size;
1685 
1686 	ei = cp->err_info;
1687 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1688 	h = cp->h;
1689 	dev = cmd->device->hostdata;
1690 
1691 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1692 	if ((cp->cmd_type == CMD_SCSI) &&
1693 		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1694 		hpsa_unmap_sg_chain_block(h, cp);
1695 
1696 	cmd->result = (DID_OK << 16); 		/* host byte */
1697 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1698 
1699 	if (cp->cmd_type == CMD_IOACCEL2)
1700 		return process_ioaccel2_completion(h, cp, cmd, dev);
1701 
1702 	cmd->result |= ei->ScsiStatus;
1703 
1704 	/* copy the sense data whether we need to or not. */
1705 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1706 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1707 	else
1708 		sense_data_size = sizeof(ei->SenseInfo);
1709 	if (ei->SenseLen < sense_data_size)
1710 		sense_data_size = ei->SenseLen;
1711 
1712 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1713 	scsi_set_resid(cmd, ei->ResidualCnt);
1714 
1715 	if (ei->CommandStatus == 0) {
1716 		cmd_free(h, cp);
1717 		cmd->scsi_done(cmd);
1718 		return;
1719 	}
1720 
1721 	/* For I/O accelerator commands, copy over some fields to the normal
1722 	 * CISS header used below for error handling.
1723 	 */
1724 	if (cp->cmd_type == CMD_IOACCEL1) {
1725 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1726 		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1727 		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1728 		cp->Header.Tag.lower = c->Tag.lower;
1729 		cp->Header.Tag.upper = c->Tag.upper;
1730 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1731 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1732 
1733 		/* Any RAID offload error results in retry which will use
1734 		 * the normal I/O path so the controller can handle whatever's
1735 		 * wrong.
1736 		 */
1737 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1738 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1739 				dev->offload_enabled = 0;
1740 			cmd->result = DID_SOFT_ERROR << 16;
1741 			cmd_free(h, cp);
1742 			cmd->scsi_done(cmd);
1743 			return;
1744 		}
1745 	}
1746 
1747 	/* an error has occurred */
1748 	switch (ei->CommandStatus) {
1749 
1750 	case CMD_TARGET_STATUS:
1751 		if (ei->ScsiStatus) {
1752 			/* Get sense key */
1753 			sense_key = 0xf & ei->SenseInfo[2];
1754 			/* Get additional sense code */
1755 			asc = ei->SenseInfo[12];
1756 			/* Get addition sense code qualifier */
1757 			ascq = ei->SenseInfo[13];
1758 		}
1759 
1760 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1761 			if (check_for_unit_attention(h, cp))
1762 				break;
1763 			if (sense_key == ILLEGAL_REQUEST) {
1764 				/*
1765 				 * SCSI REPORT_LUNS is commonly unsupported on
1766 				 * Smart Array.  Suppress noisy complaint.
1767 				 */
1768 				if (cp->Request.CDB[0] == REPORT_LUNS)
1769 					break;
1770 
1771 				/* If ASC/ASCQ indicate Logical Unit
1772 				 * Not Supported condition,
1773 				 */
1774 				if ((asc == 0x25) && (ascq == 0x0)) {
1775 					dev_warn(&h->pdev->dev, "cp %p "
1776 						"has check condition\n", cp);
1777 					break;
1778 				}
1779 			}
1780 
1781 			if (sense_key == NOT_READY) {
1782 				/* If Sense is Not Ready, Logical Unit
1783 				 * Not ready, Manual Intervention
1784 				 * required
1785 				 */
1786 				if ((asc == 0x04) && (ascq == 0x03)) {
1787 					dev_warn(&h->pdev->dev, "cp %p "
1788 						"has check condition: unit "
1789 						"not ready, manual "
1790 						"intervention required\n", cp);
1791 					break;
1792 				}
1793 			}
1794 			if (sense_key == ABORTED_COMMAND) {
1795 				/* Aborted command is retryable */
1796 				dev_warn(&h->pdev->dev, "cp %p "
1797 					"has check condition: aborted command: "
1798 					"ASC: 0x%x, ASCQ: 0x%x\n",
1799 					cp, asc, ascq);
1800 				cmd->result |= DID_SOFT_ERROR << 16;
1801 				break;
1802 			}
1803 			/* Must be some other type of check condition */
1804 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1805 					"unknown type: "
1806 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1807 					"Returning result: 0x%x, "
1808 					"cmd=[%02x %02x %02x %02x %02x "
1809 					"%02x %02x %02x %02x %02x %02x "
1810 					"%02x %02x %02x %02x %02x]\n",
1811 					cp, sense_key, asc, ascq,
1812 					cmd->result,
1813 					cmd->cmnd[0], cmd->cmnd[1],
1814 					cmd->cmnd[2], cmd->cmnd[3],
1815 					cmd->cmnd[4], cmd->cmnd[5],
1816 					cmd->cmnd[6], cmd->cmnd[7],
1817 					cmd->cmnd[8], cmd->cmnd[9],
1818 					cmd->cmnd[10], cmd->cmnd[11],
1819 					cmd->cmnd[12], cmd->cmnd[13],
1820 					cmd->cmnd[14], cmd->cmnd[15]);
1821 			break;
1822 		}
1823 
1824 
1825 		/* Problem was not a check condition
1826 		 * Pass it up to the upper layers...
1827 		 */
1828 		if (ei->ScsiStatus) {
1829 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1830 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1831 				"Returning result: 0x%x\n",
1832 				cp, ei->ScsiStatus,
1833 				sense_key, asc, ascq,
1834 				cmd->result);
1835 		} else {  /* scsi status is zero??? How??? */
1836 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1837 				"Returning no connection.\n", cp),
1838 
1839 			/* Ordinarily, this case should never happen,
1840 			 * but there is a bug in some released firmware
1841 			 * revisions that allows it to happen if, for
1842 			 * example, a 4100 backplane loses power and
1843 			 * the tape drive is in it.  We assume that
1844 			 * it's a fatal error of some kind because we
1845 			 * can't show that it wasn't. We will make it
1846 			 * look like selection timeout since that is
1847 			 * the most common reason for this to occur,
1848 			 * and it's severe enough.
1849 			 */
1850 
1851 			cmd->result = DID_NO_CONNECT << 16;
1852 		}
1853 		break;
1854 
1855 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1856 		break;
1857 	case CMD_DATA_OVERRUN:
1858 		dev_warn(&h->pdev->dev, "cp %p has"
1859 			" completed with data overrun "
1860 			"reported\n", cp);
1861 		break;
1862 	case CMD_INVALID: {
1863 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1864 		print_cmd(cp); */
1865 		/* We get CMD_INVALID if you address a non-existent device
1866 		 * instead of a selection timeout (no response).  You will
1867 		 * see this if you yank out a drive, then try to access it.
1868 		 * This is kind of a shame because it means that any other
1869 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1870 		 * missing target. */
1871 		cmd->result = DID_NO_CONNECT << 16;
1872 	}
1873 		break;
1874 	case CMD_PROTOCOL_ERR:
1875 		cmd->result = DID_ERROR << 16;
1876 		dev_warn(&h->pdev->dev, "cp %p has "
1877 			"protocol error\n", cp);
1878 		break;
1879 	case CMD_HARDWARE_ERR:
1880 		cmd->result = DID_ERROR << 16;
1881 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1882 		break;
1883 	case CMD_CONNECTION_LOST:
1884 		cmd->result = DID_ERROR << 16;
1885 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1886 		break;
1887 	case CMD_ABORTED:
1888 		cmd->result = DID_ABORT << 16;
1889 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1890 				cp, ei->ScsiStatus);
1891 		break;
1892 	case CMD_ABORT_FAILED:
1893 		cmd->result = DID_ERROR << 16;
1894 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1895 		break;
1896 	case CMD_UNSOLICITED_ABORT:
1897 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1898 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1899 			"abort\n", cp);
1900 		break;
1901 	case CMD_TIMEOUT:
1902 		cmd->result = DID_TIME_OUT << 16;
1903 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1904 		break;
1905 	case CMD_UNABORTABLE:
1906 		cmd->result = DID_ERROR << 16;
1907 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1908 		break;
1909 	case CMD_IOACCEL_DISABLED:
1910 		/* This only handles the direct pass-through case since RAID
1911 		 * offload is handled above.  Just attempt a retry.
1912 		 */
1913 		cmd->result = DID_SOFT_ERROR << 16;
1914 		dev_warn(&h->pdev->dev,
1915 				"cp %p had HP SSD Smart Path error\n", cp);
1916 		break;
1917 	default:
1918 		cmd->result = DID_ERROR << 16;
1919 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1920 				cp, ei->CommandStatus);
1921 	}
1922 	cmd_free(h, cp);
1923 	cmd->scsi_done(cmd);
1924 }
1925 
1926 static void hpsa_pci_unmap(struct pci_dev *pdev,
1927 	struct CommandList *c, int sg_used, int data_direction)
1928 {
1929 	int i;
1930 	union u64bit addr64;
1931 
1932 	for (i = 0; i < sg_used; i++) {
1933 		addr64.val32.lower = c->SG[i].Addr.lower;
1934 		addr64.val32.upper = c->SG[i].Addr.upper;
1935 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1936 			data_direction);
1937 	}
1938 }
1939 
1940 static int hpsa_map_one(struct pci_dev *pdev,
1941 		struct CommandList *cp,
1942 		unsigned char *buf,
1943 		size_t buflen,
1944 		int data_direction)
1945 {
1946 	u64 addr64;
1947 
1948 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1949 		cp->Header.SGList = 0;
1950 		cp->Header.SGTotal = 0;
1951 		return 0;
1952 	}
1953 
1954 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1955 	if (dma_mapping_error(&pdev->dev, addr64)) {
1956 		/* Prevent subsequent unmap of something never mapped */
1957 		cp->Header.SGList = 0;
1958 		cp->Header.SGTotal = 0;
1959 		return -1;
1960 	}
1961 	cp->SG[0].Addr.lower =
1962 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1963 	cp->SG[0].Addr.upper =
1964 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1965 	cp->SG[0].Len = buflen;
1966 	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1967 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1968 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1969 	return 0;
1970 }
1971 
1972 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1973 	struct CommandList *c)
1974 {
1975 	DECLARE_COMPLETION_ONSTACK(wait);
1976 
1977 	c->waiting = &wait;
1978 	enqueue_cmd_and_start_io(h, c);
1979 	wait_for_completion(&wait);
1980 }
1981 
1982 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1983 	struct CommandList *c)
1984 {
1985 	unsigned long flags;
1986 
1987 	/* If controller lockup detected, fake a hardware error. */
1988 	spin_lock_irqsave(&h->lock, flags);
1989 	if (unlikely(h->lockup_detected)) {
1990 		spin_unlock_irqrestore(&h->lock, flags);
1991 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1992 	} else {
1993 		spin_unlock_irqrestore(&h->lock, flags);
1994 		hpsa_scsi_do_simple_cmd_core(h, c);
1995 	}
1996 }
1997 
1998 #define MAX_DRIVER_CMD_RETRIES 25
1999 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2000 	struct CommandList *c, int data_direction)
2001 {
2002 	int backoff_time = 10, retry_count = 0;
2003 
2004 	do {
2005 		memset(c->err_info, 0, sizeof(*c->err_info));
2006 		hpsa_scsi_do_simple_cmd_core(h, c);
2007 		retry_count++;
2008 		if (retry_count > 3) {
2009 			msleep(backoff_time);
2010 			if (backoff_time < 1000)
2011 				backoff_time *= 2;
2012 		}
2013 	} while ((check_for_unit_attention(h, c) ||
2014 			check_for_busy(h, c)) &&
2015 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2016 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2017 }
2018 
2019 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2020 				struct CommandList *c)
2021 {
2022 	const u8 *cdb = c->Request.CDB;
2023 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2024 
2025 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2026 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2027 		txt, lun[0], lun[1], lun[2], lun[3],
2028 		lun[4], lun[5], lun[6], lun[7],
2029 		cdb[0], cdb[1], cdb[2], cdb[3],
2030 		cdb[4], cdb[5], cdb[6], cdb[7],
2031 		cdb[8], cdb[9], cdb[10], cdb[11],
2032 		cdb[12], cdb[13], cdb[14], cdb[15]);
2033 }
2034 
2035 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2036 			struct CommandList *cp)
2037 {
2038 	const struct ErrorInfo *ei = cp->err_info;
2039 	struct device *d = &cp->h->pdev->dev;
2040 	const u8 *sd = ei->SenseInfo;
2041 
2042 	switch (ei->CommandStatus) {
2043 	case CMD_TARGET_STATUS:
2044 		hpsa_print_cmd(h, "SCSI status", cp);
2045 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2046 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2047 				sd[2] & 0x0f, sd[12], sd[13]);
2048 		else
2049 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2050 		if (ei->ScsiStatus == 0)
2051 			dev_warn(d, "SCSI status is abnormally zero.  "
2052 			"(probably indicates selection timeout "
2053 			"reported incorrectly due to a known "
2054 			"firmware bug, circa July, 2001.)\n");
2055 		break;
2056 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2057 		break;
2058 	case CMD_DATA_OVERRUN:
2059 		hpsa_print_cmd(h, "overrun condition", cp);
2060 		break;
2061 	case CMD_INVALID: {
2062 		/* controller unfortunately reports SCSI passthru's
2063 		 * to non-existent targets as invalid commands.
2064 		 */
2065 		hpsa_print_cmd(h, "invalid command", cp);
2066 		dev_warn(d, "probably means device no longer present\n");
2067 		}
2068 		break;
2069 	case CMD_PROTOCOL_ERR:
2070 		hpsa_print_cmd(h, "protocol error", cp);
2071 		break;
2072 	case CMD_HARDWARE_ERR:
2073 		hpsa_print_cmd(h, "hardware error", cp);
2074 		break;
2075 	case CMD_CONNECTION_LOST:
2076 		hpsa_print_cmd(h, "connection lost", cp);
2077 		break;
2078 	case CMD_ABORTED:
2079 		hpsa_print_cmd(h, "aborted", cp);
2080 		break;
2081 	case CMD_ABORT_FAILED:
2082 		hpsa_print_cmd(h, "abort failed", cp);
2083 		break;
2084 	case CMD_UNSOLICITED_ABORT:
2085 		hpsa_print_cmd(h, "unsolicited abort", cp);
2086 		break;
2087 	case CMD_TIMEOUT:
2088 		hpsa_print_cmd(h, "timed out", cp);
2089 		break;
2090 	case CMD_UNABORTABLE:
2091 		hpsa_print_cmd(h, "unabortable", cp);
2092 		break;
2093 	default:
2094 		hpsa_print_cmd(h, "unknown status", cp);
2095 		dev_warn(d, "Unknown command status %x\n",
2096 				ei->CommandStatus);
2097 	}
2098 }
2099 
2100 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2101 			u16 page, unsigned char *buf,
2102 			unsigned char bufsize)
2103 {
2104 	int rc = IO_OK;
2105 	struct CommandList *c;
2106 	struct ErrorInfo *ei;
2107 
2108 	c = cmd_special_alloc(h);
2109 
2110 	if (c == NULL) {			/* trouble... */
2111 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2112 		return -ENOMEM;
2113 	}
2114 
2115 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2116 			page, scsi3addr, TYPE_CMD)) {
2117 		rc = -1;
2118 		goto out;
2119 	}
2120 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2121 	ei = c->err_info;
2122 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2123 		hpsa_scsi_interpret_error(h, c);
2124 		rc = -1;
2125 	}
2126 out:
2127 	cmd_special_free(h, c);
2128 	return rc;
2129 }
2130 
2131 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2132 		unsigned char *scsi3addr, unsigned char page,
2133 		struct bmic_controller_parameters *buf, size_t bufsize)
2134 {
2135 	int rc = IO_OK;
2136 	struct CommandList *c;
2137 	struct ErrorInfo *ei;
2138 
2139 	c = cmd_special_alloc(h);
2140 
2141 	if (c == NULL) {			/* trouble... */
2142 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2143 		return -ENOMEM;
2144 	}
2145 
2146 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2147 			page, scsi3addr, TYPE_CMD)) {
2148 		rc = -1;
2149 		goto out;
2150 	}
2151 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2152 	ei = c->err_info;
2153 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2154 		hpsa_scsi_interpret_error(h, c);
2155 		rc = -1;
2156 	}
2157 out:
2158 	cmd_special_free(h, c);
2159 	return rc;
2160 	}
2161 
2162 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2163 	u8 reset_type)
2164 {
2165 	int rc = IO_OK;
2166 	struct CommandList *c;
2167 	struct ErrorInfo *ei;
2168 
2169 	c = cmd_special_alloc(h);
2170 
2171 	if (c == NULL) {			/* trouble... */
2172 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2173 		return -ENOMEM;
2174 	}
2175 
2176 	/* fill_cmd can't fail here, no data buffer to map. */
2177 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2178 			scsi3addr, TYPE_MSG);
2179 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2180 	hpsa_scsi_do_simple_cmd_core(h, c);
2181 	/* no unmap needed here because no data xfer. */
2182 
2183 	ei = c->err_info;
2184 	if (ei->CommandStatus != 0) {
2185 		hpsa_scsi_interpret_error(h, c);
2186 		rc = -1;
2187 	}
2188 	cmd_special_free(h, c);
2189 	return rc;
2190 }
2191 
2192 static void hpsa_get_raid_level(struct ctlr_info *h,
2193 	unsigned char *scsi3addr, unsigned char *raid_level)
2194 {
2195 	int rc;
2196 	unsigned char *buf;
2197 
2198 	*raid_level = RAID_UNKNOWN;
2199 	buf = kzalloc(64, GFP_KERNEL);
2200 	if (!buf)
2201 		return;
2202 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2203 	if (rc == 0)
2204 		*raid_level = buf[8];
2205 	if (*raid_level > RAID_UNKNOWN)
2206 		*raid_level = RAID_UNKNOWN;
2207 	kfree(buf);
2208 	return;
2209 }
2210 
2211 #define HPSA_MAP_DEBUG
2212 #ifdef HPSA_MAP_DEBUG
2213 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2214 				struct raid_map_data *map_buff)
2215 {
2216 	struct raid_map_disk_data *dd = &map_buff->data[0];
2217 	int map, row, col;
2218 	u16 map_cnt, row_cnt, disks_per_row;
2219 
2220 	if (rc != 0)
2221 		return;
2222 
2223 	/* Show details only if debugging has been activated. */
2224 	if (h->raid_offload_debug < 2)
2225 		return;
2226 
2227 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2228 				le32_to_cpu(map_buff->structure_size));
2229 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2230 			le32_to_cpu(map_buff->volume_blk_size));
2231 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2232 			le64_to_cpu(map_buff->volume_blk_cnt));
2233 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2234 			map_buff->phys_blk_shift);
2235 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2236 			map_buff->parity_rotation_shift);
2237 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2238 			le16_to_cpu(map_buff->strip_size));
2239 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2240 			le64_to_cpu(map_buff->disk_starting_blk));
2241 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2242 			le64_to_cpu(map_buff->disk_blk_cnt));
2243 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2244 			le16_to_cpu(map_buff->data_disks_per_row));
2245 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2246 			le16_to_cpu(map_buff->metadata_disks_per_row));
2247 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2248 			le16_to_cpu(map_buff->row_cnt));
2249 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2250 			le16_to_cpu(map_buff->layout_map_count));
2251 	dev_info(&h->pdev->dev, "flags = %u\n",
2252 			le16_to_cpu(map_buff->flags));
2253 	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2254 		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2255 	else
2256 		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2257 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2258 			le16_to_cpu(map_buff->dekindex));
2259 
2260 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2261 	for (map = 0; map < map_cnt; map++) {
2262 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2263 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2264 		for (row = 0; row < row_cnt; row++) {
2265 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2266 			disks_per_row =
2267 				le16_to_cpu(map_buff->data_disks_per_row);
2268 			for (col = 0; col < disks_per_row; col++, dd++)
2269 				dev_info(&h->pdev->dev,
2270 					"    D%02u: h=0x%04x xor=%u,%u\n",
2271 					col, dd->ioaccel_handle,
2272 					dd->xor_mult[0], dd->xor_mult[1]);
2273 			disks_per_row =
2274 				le16_to_cpu(map_buff->metadata_disks_per_row);
2275 			for (col = 0; col < disks_per_row; col++, dd++)
2276 				dev_info(&h->pdev->dev,
2277 					"    M%02u: h=0x%04x xor=%u,%u\n",
2278 					col, dd->ioaccel_handle,
2279 					dd->xor_mult[0], dd->xor_mult[1]);
2280 		}
2281 	}
2282 }
2283 #else
2284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2285 			__attribute__((unused)) int rc,
2286 			__attribute__((unused)) struct raid_map_data *map_buff)
2287 {
2288 }
2289 #endif
2290 
2291 static int hpsa_get_raid_map(struct ctlr_info *h,
2292 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2293 {
2294 	int rc = 0;
2295 	struct CommandList *c;
2296 	struct ErrorInfo *ei;
2297 
2298 	c = cmd_special_alloc(h);
2299 	if (c == NULL) {
2300 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2301 		return -ENOMEM;
2302 	}
2303 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2304 			sizeof(this_device->raid_map), 0,
2305 			scsi3addr, TYPE_CMD)) {
2306 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2307 		cmd_special_free(h, c);
2308 		return -ENOMEM;
2309 	}
2310 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2311 	ei = c->err_info;
2312 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2313 		hpsa_scsi_interpret_error(h, c);
2314 		cmd_special_free(h, c);
2315 		return -1;
2316 	}
2317 	cmd_special_free(h, c);
2318 
2319 	/* @todo in the future, dynamically allocate RAID map memory */
2320 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2321 				sizeof(this_device->raid_map)) {
2322 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2323 		rc = -1;
2324 	}
2325 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2326 	return rc;
2327 }
2328 
2329 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2330 	unsigned char scsi3addr[], u8 page)
2331 {
2332 	int rc;
2333 	int i;
2334 	int pages;
2335 	unsigned char *buf, bufsize;
2336 
2337 	buf = kzalloc(256, GFP_KERNEL);
2338 	if (!buf)
2339 		return 0;
2340 
2341 	/* Get the size of the page list first */
2342 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2343 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2344 				buf, HPSA_VPD_HEADER_SZ);
2345 	if (rc != 0)
2346 		goto exit_unsupported;
2347 	pages = buf[3];
2348 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2349 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2350 	else
2351 		bufsize = 255;
2352 
2353 	/* Get the whole VPD page list */
2354 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2355 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2356 				buf, bufsize);
2357 	if (rc != 0)
2358 		goto exit_unsupported;
2359 
2360 	pages = buf[3];
2361 	for (i = 1; i <= pages; i++)
2362 		if (buf[3 + i] == page)
2363 			goto exit_supported;
2364 exit_unsupported:
2365 	kfree(buf);
2366 	return 0;
2367 exit_supported:
2368 	kfree(buf);
2369 	return 1;
2370 }
2371 
2372 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2373 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2374 {
2375 	int rc;
2376 	unsigned char *buf;
2377 	u8 ioaccel_status;
2378 
2379 	this_device->offload_config = 0;
2380 	this_device->offload_enabled = 0;
2381 
2382 	buf = kzalloc(64, GFP_KERNEL);
2383 	if (!buf)
2384 		return;
2385 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2386 		goto out;
2387 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2388 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2389 	if (rc != 0)
2390 		goto out;
2391 
2392 #define IOACCEL_STATUS_BYTE 4
2393 #define OFFLOAD_CONFIGURED_BIT 0x01
2394 #define OFFLOAD_ENABLED_BIT 0x02
2395 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2396 	this_device->offload_config =
2397 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2398 	if (this_device->offload_config) {
2399 		this_device->offload_enabled =
2400 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2401 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2402 			this_device->offload_enabled = 0;
2403 	}
2404 out:
2405 	kfree(buf);
2406 	return;
2407 }
2408 
2409 /* Get the device id from inquiry page 0x83 */
2410 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2411 	unsigned char *device_id, int buflen)
2412 {
2413 	int rc;
2414 	unsigned char *buf;
2415 
2416 	if (buflen > 16)
2417 		buflen = 16;
2418 	buf = kzalloc(64, GFP_KERNEL);
2419 	if (!buf)
2420 		return -1;
2421 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2422 	if (rc == 0)
2423 		memcpy(device_id, &buf[8], buflen);
2424 	kfree(buf);
2425 	return rc != 0;
2426 }
2427 
2428 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2429 		struct ReportLUNdata *buf, int bufsize,
2430 		int extended_response)
2431 {
2432 	int rc = IO_OK;
2433 	struct CommandList *c;
2434 	unsigned char scsi3addr[8];
2435 	struct ErrorInfo *ei;
2436 
2437 	c = cmd_special_alloc(h);
2438 	if (c == NULL) {			/* trouble... */
2439 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2440 		return -1;
2441 	}
2442 	/* address the controller */
2443 	memset(scsi3addr, 0, sizeof(scsi3addr));
2444 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2445 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2446 		rc = -1;
2447 		goto out;
2448 	}
2449 	if (extended_response)
2450 		c->Request.CDB[1] = extended_response;
2451 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2452 	ei = c->err_info;
2453 	if (ei->CommandStatus != 0 &&
2454 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2455 		hpsa_scsi_interpret_error(h, c);
2456 		rc = -1;
2457 	} else {
2458 		if (buf->extended_response_flag != extended_response) {
2459 			dev_err(&h->pdev->dev,
2460 				"report luns requested format %u, got %u\n",
2461 				extended_response,
2462 				buf->extended_response_flag);
2463 			rc = -1;
2464 		}
2465 	}
2466 out:
2467 	cmd_special_free(h, c);
2468 	return rc;
2469 }
2470 
2471 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2472 		struct ReportLUNdata *buf,
2473 		int bufsize, int extended_response)
2474 {
2475 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2476 }
2477 
2478 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2479 		struct ReportLUNdata *buf, int bufsize)
2480 {
2481 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2482 }
2483 
2484 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2485 	int bus, int target, int lun)
2486 {
2487 	device->bus = bus;
2488 	device->target = target;
2489 	device->lun = lun;
2490 }
2491 
2492 /* Use VPD inquiry to get details of volume status */
2493 static int hpsa_get_volume_status(struct ctlr_info *h,
2494 					unsigned char scsi3addr[])
2495 {
2496 	int rc;
2497 	int status;
2498 	int size;
2499 	unsigned char *buf;
2500 
2501 	buf = kzalloc(64, GFP_KERNEL);
2502 	if (!buf)
2503 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2504 
2505 	/* Does controller have VPD for logical volume status? */
2506 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) {
2507 		dev_warn(&h->pdev->dev, "Logical volume status VPD page is unsupported.\n");
2508 		goto exit_failed;
2509 	}
2510 
2511 	/* Get the size of the VPD return buffer */
2512 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2513 					buf, HPSA_VPD_HEADER_SZ);
2514 	if (rc != 0) {
2515 		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2516 		goto exit_failed;
2517 	}
2518 	size = buf[3];
2519 
2520 	/* Now get the whole VPD buffer */
2521 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2522 					buf, size + HPSA_VPD_HEADER_SZ);
2523 	if (rc != 0) {
2524 		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2525 		goto exit_failed;
2526 	}
2527 	status = buf[4]; /* status byte */
2528 
2529 	kfree(buf);
2530 	return status;
2531 exit_failed:
2532 	kfree(buf);
2533 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2534 }
2535 
2536 /* Determine offline status of a volume.
2537  * Return either:
2538  *  0 (not offline)
2539  * -1 (offline for unknown reasons)
2540  *  # (integer code indicating one of several NOT READY states
2541  *     describing why a volume is to be kept offline)
2542  */
2543 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
2544 					unsigned char scsi3addr[])
2545 {
2546 	struct CommandList *c;
2547 	unsigned char *sense, sense_key, asc, ascq;
2548 	int ldstat = 0;
2549 	u16 cmd_status;
2550 	u8 scsi_status;
2551 #define ASC_LUN_NOT_READY 0x04
2552 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2553 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2554 
2555 	c = cmd_alloc(h);
2556 	if (!c)
2557 		return 0;
2558 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2559 	hpsa_scsi_do_simple_cmd_core(h, c);
2560 	sense = c->err_info->SenseInfo;
2561 	sense_key = sense[2];
2562 	asc = sense[12];
2563 	ascq = sense[13];
2564 	cmd_status = c->err_info->CommandStatus;
2565 	scsi_status = c->err_info->ScsiStatus;
2566 	cmd_free(h, c);
2567 	/* Is the volume 'not ready'? */
2568 	if (cmd_status != CMD_TARGET_STATUS ||
2569 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2570 		sense_key != NOT_READY ||
2571 		asc != ASC_LUN_NOT_READY)  {
2572 		return 0;
2573 	}
2574 
2575 	/* Determine the reason for not ready state */
2576 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2577 
2578 	/* Keep volume offline in certain cases: */
2579 	switch (ldstat) {
2580 	case HPSA_LV_UNDERGOING_ERASE:
2581 	case HPSA_LV_UNDERGOING_RPI:
2582 	case HPSA_LV_PENDING_RPI:
2583 	case HPSA_LV_ENCRYPTED_NO_KEY:
2584 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2585 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2586 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2587 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2588 		return ldstat;
2589 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2590 		/* If VPD status page isn't available,
2591 		 * use ASC/ASCQ to determine state
2592 		 */
2593 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2594 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2595 			return ldstat;
2596 		break;
2597 	default:
2598 		break;
2599 	}
2600 	return 0;
2601 }
2602 
2603 static int hpsa_update_device_info(struct ctlr_info *h,
2604 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2605 	unsigned char *is_OBDR_device)
2606 {
2607 
2608 #define OBDR_SIG_OFFSET 43
2609 #define OBDR_TAPE_SIG "$DR-10"
2610 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2611 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2612 
2613 	unsigned char *inq_buff;
2614 	unsigned char *obdr_sig;
2615 
2616 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2617 	if (!inq_buff)
2618 		goto bail_out;
2619 
2620 	/* Do an inquiry to the device to see what it is. */
2621 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2622 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2623 		/* Inquiry failed (msg printed already) */
2624 		dev_err(&h->pdev->dev,
2625 			"hpsa_update_device_info: inquiry failed\n");
2626 		goto bail_out;
2627 	}
2628 
2629 	this_device->devtype = (inq_buff[0] & 0x1f);
2630 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2631 	memcpy(this_device->vendor, &inq_buff[8],
2632 		sizeof(this_device->vendor));
2633 	memcpy(this_device->model, &inq_buff[16],
2634 		sizeof(this_device->model));
2635 	memset(this_device->device_id, 0,
2636 		sizeof(this_device->device_id));
2637 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2638 		sizeof(this_device->device_id));
2639 
2640 	if (this_device->devtype == TYPE_DISK &&
2641 		is_logical_dev_addr_mode(scsi3addr)) {
2642 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2643 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2644 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2645 		this_device->volume_offline =
2646 			hpsa_volume_offline(h, scsi3addr);
2647 	} else {
2648 		this_device->raid_level = RAID_UNKNOWN;
2649 		this_device->offload_config = 0;
2650 		this_device->offload_enabled = 0;
2651 		this_device->volume_offline = 0;
2652 	}
2653 
2654 	if (is_OBDR_device) {
2655 		/* See if this is a One-Button-Disaster-Recovery device
2656 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2657 		 */
2658 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2659 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2660 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2661 						OBDR_SIG_LEN) == 0);
2662 	}
2663 
2664 	kfree(inq_buff);
2665 	return 0;
2666 
2667 bail_out:
2668 	kfree(inq_buff);
2669 	return 1;
2670 }
2671 
2672 static unsigned char *ext_target_model[] = {
2673 	"MSA2012",
2674 	"MSA2024",
2675 	"MSA2312",
2676 	"MSA2324",
2677 	"P2000 G3 SAS",
2678 	"MSA 2040 SAS",
2679 	NULL,
2680 };
2681 
2682 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2683 {
2684 	int i;
2685 
2686 	for (i = 0; ext_target_model[i]; i++)
2687 		if (strncmp(device->model, ext_target_model[i],
2688 			strlen(ext_target_model[i])) == 0)
2689 			return 1;
2690 	return 0;
2691 }
2692 
2693 /* Helper function to assign bus, target, lun mapping of devices.
2694  * Puts non-external target logical volumes on bus 0, external target logical
2695  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2696  * Logical drive target and lun are assigned at this time, but
2697  * physical device lun and target assignment are deferred (assigned
2698  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2699  */
2700 static void figure_bus_target_lun(struct ctlr_info *h,
2701 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2702 {
2703 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2704 
2705 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2706 		/* physical device, target and lun filled in later */
2707 		if (is_hba_lunid(lunaddrbytes))
2708 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2709 		else
2710 			/* defer target, lun assignment for physical devices */
2711 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2712 		return;
2713 	}
2714 	/* It's a logical device */
2715 	if (is_ext_target(h, device)) {
2716 		/* external target way, put logicals on bus 1
2717 		 * and match target/lun numbers box
2718 		 * reports, other smart array, bus 0, target 0, match lunid
2719 		 */
2720 		hpsa_set_bus_target_lun(device,
2721 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2722 		return;
2723 	}
2724 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2725 }
2726 
2727 /*
2728  * If there is no lun 0 on a target, linux won't find any devices.
2729  * For the external targets (arrays), we have to manually detect the enclosure
2730  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2731  * it for some reason.  *tmpdevice is the target we're adding,
2732  * this_device is a pointer into the current element of currentsd[]
2733  * that we're building up in update_scsi_devices(), below.
2734  * lunzerobits is a bitmap that tracks which targets already have a
2735  * lun 0 assigned.
2736  * Returns 1 if an enclosure was added, 0 if not.
2737  */
2738 static int add_ext_target_dev(struct ctlr_info *h,
2739 	struct hpsa_scsi_dev_t *tmpdevice,
2740 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2741 	unsigned long lunzerobits[], int *n_ext_target_devs)
2742 {
2743 	unsigned char scsi3addr[8];
2744 
2745 	if (test_bit(tmpdevice->target, lunzerobits))
2746 		return 0; /* There is already a lun 0 on this target. */
2747 
2748 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2749 		return 0; /* It's the logical targets that may lack lun 0. */
2750 
2751 	if (!is_ext_target(h, tmpdevice))
2752 		return 0; /* Only external target devices have this problem. */
2753 
2754 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2755 		return 0;
2756 
2757 	memset(scsi3addr, 0, 8);
2758 	scsi3addr[3] = tmpdevice->target;
2759 	if (is_hba_lunid(scsi3addr))
2760 		return 0; /* Don't add the RAID controller here. */
2761 
2762 	if (is_scsi_rev_5(h))
2763 		return 0; /* p1210m doesn't need to do this. */
2764 
2765 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2766 		dev_warn(&h->pdev->dev, "Maximum number of external "
2767 			"target devices exceeded.  Check your hardware "
2768 			"configuration.");
2769 		return 0;
2770 	}
2771 
2772 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2773 		return 0;
2774 	(*n_ext_target_devs)++;
2775 	hpsa_set_bus_target_lun(this_device,
2776 				tmpdevice->bus, tmpdevice->target, 0);
2777 	set_bit(tmpdevice->target, lunzerobits);
2778 	return 1;
2779 }
2780 
2781 /*
2782  * Get address of physical disk used for an ioaccel2 mode command:
2783  *	1. Extract ioaccel2 handle from the command.
2784  *	2. Find a matching ioaccel2 handle from list of physical disks.
2785  *	3. Return:
2786  *		1 and set scsi3addr to address of matching physical
2787  *		0 if no matching physical disk was found.
2788  */
2789 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2790 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2791 {
2792 	struct ReportExtendedLUNdata *physicals = NULL;
2793 	int responsesize = 24;	/* size of physical extended response */
2794 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2795 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2796 	u32 nphysicals = 0;	/* number of reported physical devs */
2797 	int found = 0;		/* found match (1) or not (0) */
2798 	u32 find;		/* handle we need to match */
2799 	int i;
2800 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2801 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2802 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2803 	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2804 	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2805 
2806 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2807 		return 0; /* no match */
2808 
2809 	/* point to the ioaccel2 device handle */
2810 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2811 	if (c2a == NULL)
2812 		return 0; /* no match */
2813 
2814 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2815 	if (scmd == NULL)
2816 		return 0; /* no match */
2817 
2818 	d = scmd->device->hostdata;
2819 	if (d == NULL)
2820 		return 0; /* no match */
2821 
2822 	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2823 	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2824 	find = c2a->scsi_nexus;
2825 
2826 	if (h->raid_offload_debug > 0)
2827 		dev_info(&h->pdev->dev,
2828 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2829 			__func__, scsi_nexus,
2830 			d->device_id[0], d->device_id[1], d->device_id[2],
2831 			d->device_id[3], d->device_id[4], d->device_id[5],
2832 			d->device_id[6], d->device_id[7], d->device_id[8],
2833 			d->device_id[9], d->device_id[10], d->device_id[11],
2834 			d->device_id[12], d->device_id[13], d->device_id[14],
2835 			d->device_id[15]);
2836 
2837 	/* Get the list of physical devices */
2838 	physicals = kzalloc(reportsize, GFP_KERNEL);
2839 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2840 		reportsize, extended)) {
2841 		dev_err(&h->pdev->dev,
2842 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2843 			"HP SSD Smart Path");
2844 		kfree(physicals);
2845 		return 0;
2846 	}
2847 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2848 							responsesize;
2849 
2850 
2851 	/* find ioaccel2 handle in list of physicals: */
2852 	for (i = 0; i < nphysicals; i++) {
2853 		/* handle is in bytes 28-31 of each lun */
2854 		if (memcmp(&((struct ReportExtendedLUNdata *)
2855 				physicals)->LUN[i][20], &find, 4) != 0) {
2856 			continue; /* didn't match */
2857 		}
2858 		found = 1;
2859 		memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
2860 					physicals)->LUN[i][0], 8);
2861 		if (h->raid_offload_debug > 0)
2862 			dev_info(&h->pdev->dev,
2863 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2864 				__func__, find,
2865 				((struct ReportExtendedLUNdata *)
2866 					physicals)->LUN[i][20],
2867 				scsi3addr[0], scsi3addr[1], scsi3addr[2],
2868 				scsi3addr[3], scsi3addr[4], scsi3addr[5],
2869 				scsi3addr[6], scsi3addr[7]);
2870 		break; /* found it */
2871 	}
2872 
2873 	kfree(physicals);
2874 	if (found)
2875 		return 1;
2876 	else
2877 		return 0;
2878 
2879 }
2880 /*
2881  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2882  * logdev.  The number of luns in physdev and logdev are returned in
2883  * *nphysicals and *nlogicals, respectively.
2884  * Returns 0 on success, -1 otherwise.
2885  */
2886 static int hpsa_gather_lun_info(struct ctlr_info *h,
2887 	int reportlunsize,
2888 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2889 	struct ReportLUNdata *logdev, u32 *nlogicals)
2890 {
2891 	int physical_entry_size = 8;
2892 
2893 	*physical_mode = 0;
2894 
2895 	/* For I/O accelerator mode we need to read physical device handles */
2896 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2897 		h->transMethod & CFGTBL_Trans_io_accel2) {
2898 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2899 		physical_entry_size = 24;
2900 	}
2901 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2902 							*physical_mode)) {
2903 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2904 		return -1;
2905 	}
2906 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2907 							physical_entry_size;
2908 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2909 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2910 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2911 			*nphysicals - HPSA_MAX_PHYS_LUN);
2912 		*nphysicals = HPSA_MAX_PHYS_LUN;
2913 	}
2914 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2915 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2916 		return -1;
2917 	}
2918 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2919 	/* Reject Logicals in excess of our max capability. */
2920 	if (*nlogicals > HPSA_MAX_LUN) {
2921 		dev_warn(&h->pdev->dev,
2922 			"maximum logical LUNs (%d) exceeded.  "
2923 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2924 			*nlogicals - HPSA_MAX_LUN);
2925 			*nlogicals = HPSA_MAX_LUN;
2926 	}
2927 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2928 		dev_warn(&h->pdev->dev,
2929 			"maximum logical + physical LUNs (%d) exceeded. "
2930 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2931 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2932 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2933 	}
2934 	return 0;
2935 }
2936 
2937 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2938 	int nphysicals, int nlogicals,
2939 	struct ReportExtendedLUNdata *physdev_list,
2940 	struct ReportLUNdata *logdev_list)
2941 {
2942 	/* Helper function, figure out where the LUN ID info is coming from
2943 	 * given index i, lists of physical and logical devices, where in
2944 	 * the list the raid controller is supposed to appear (first or last)
2945 	 */
2946 
2947 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2948 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2949 
2950 	if (i == raid_ctlr_position)
2951 		return RAID_CTLR_LUNID;
2952 
2953 	if (i < logicals_start)
2954 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
2955 
2956 	if (i < last_device)
2957 		return &logdev_list->LUN[i - nphysicals -
2958 			(raid_ctlr_position == 0)][0];
2959 	BUG();
2960 	return NULL;
2961 }
2962 
2963 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2964 {
2965 	int rc;
2966 	struct bmic_controller_parameters *ctlr_params;
2967 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2968 		GFP_KERNEL);
2969 
2970 	if (!ctlr_params)
2971 		return 0;
2972 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2973 		sizeof(struct bmic_controller_parameters));
2974 	if (rc != 0) {
2975 		kfree(ctlr_params);
2976 		return 0;
2977 	}
2978 	return ctlr_params->nvram_flags & (1 << 3) ? 1 : 0;
2979 }
2980 
2981 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2982 {
2983 	/* the idea here is we could get notified
2984 	 * that some devices have changed, so we do a report
2985 	 * physical luns and report logical luns cmd, and adjust
2986 	 * our list of devices accordingly.
2987 	 *
2988 	 * The scsi3addr's of devices won't change so long as the
2989 	 * adapter is not reset.  That means we can rescan and
2990 	 * tell which devices we already know about, vs. new
2991 	 * devices, vs.  disappearing devices.
2992 	 */
2993 	struct ReportExtendedLUNdata *physdev_list = NULL;
2994 	struct ReportLUNdata *logdev_list = NULL;
2995 	u32 nphysicals = 0;
2996 	u32 nlogicals = 0;
2997 	int physical_mode = 0;
2998 	u32 ndev_allocated = 0;
2999 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3000 	int ncurrent = 0;
3001 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3002 	int i, n_ext_target_devs, ndevs_to_allocate;
3003 	int raid_ctlr_position;
3004 	u8 rescan_hba_mode;
3005 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3006 
3007 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3008 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3009 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3010 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3011 
3012 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3013 		dev_err(&h->pdev->dev, "out of memory\n");
3014 		goto out;
3015 	}
3016 	memset(lunzerobits, 0, sizeof(lunzerobits));
3017 
3018 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3019 
3020 	if (!h->hba_mode_enabled && rescan_hba_mode)
3021 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3022 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3023 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3024 
3025 	h->hba_mode_enabled = rescan_hba_mode;
3026 
3027 	if (hpsa_gather_lun_info(h, reportlunsize,
3028 			(struct ReportLUNdata *) physdev_list, &nphysicals,
3029 			&physical_mode, logdev_list, &nlogicals))
3030 		goto out;
3031 
3032 	/* We might see up to the maximum number of logical and physical disks
3033 	 * plus external target devices, and a device for the local RAID
3034 	 * controller.
3035 	 */
3036 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3037 
3038 	/* Allocate the per device structures */
3039 	for (i = 0; i < ndevs_to_allocate; i++) {
3040 		if (i >= HPSA_MAX_DEVICES) {
3041 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3042 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3043 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3044 			break;
3045 		}
3046 
3047 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3048 		if (!currentsd[i]) {
3049 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3050 				__FILE__, __LINE__);
3051 			goto out;
3052 		}
3053 		ndev_allocated++;
3054 	}
3055 
3056 	if (unlikely(is_scsi_rev_5(h)))
3057 		raid_ctlr_position = 0;
3058 	else
3059 		raid_ctlr_position = nphysicals + nlogicals;
3060 
3061 	/* adjust our table of devices */
3062 	n_ext_target_devs = 0;
3063 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3064 		u8 *lunaddrbytes, is_OBDR = 0;
3065 
3066 		/* Figure out where the LUN ID info is coming from */
3067 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3068 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3069 		/* skip masked physical devices. */
3070 		if (lunaddrbytes[3] & 0xC0 &&
3071 			i < nphysicals + (raid_ctlr_position == 0))
3072 			continue;
3073 
3074 		/* Get device type, vendor, model, device id */
3075 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3076 							&is_OBDR))
3077 			continue; /* skip it if we can't talk to it. */
3078 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3079 		this_device = currentsd[ncurrent];
3080 
3081 		/*
3082 		 * For external target devices, we have to insert a LUN 0 which
3083 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3084 		 * is nonetheless an enclosure device there.  We have to
3085 		 * present that otherwise linux won't find anything if
3086 		 * there is no lun 0.
3087 		 */
3088 		if (add_ext_target_dev(h, tmpdevice, this_device,
3089 				lunaddrbytes, lunzerobits,
3090 				&n_ext_target_devs)) {
3091 			ncurrent++;
3092 			this_device = currentsd[ncurrent];
3093 		}
3094 
3095 		*this_device = *tmpdevice;
3096 
3097 		switch (this_device->devtype) {
3098 		case TYPE_ROM:
3099 			/* We don't *really* support actual CD-ROM devices,
3100 			 * just "One Button Disaster Recovery" tape drive
3101 			 * which temporarily pretends to be a CD-ROM drive.
3102 			 * So we check that the device is really an OBDR tape
3103 			 * device by checking for "$DR-10" in bytes 43-48 of
3104 			 * the inquiry data.
3105 			 */
3106 			if (is_OBDR)
3107 				ncurrent++;
3108 			break;
3109 		case TYPE_DISK:
3110 			if (h->hba_mode_enabled) {
3111 				/* never use raid mapper in HBA mode */
3112 				this_device->offload_enabled = 0;
3113 				ncurrent++;
3114 				break;
3115 			} else if (h->acciopath_status) {
3116 				if (i >= nphysicals) {
3117 					ncurrent++;
3118 					break;
3119 				}
3120 			} else {
3121 				if (i < nphysicals)
3122 					break;
3123 				ncurrent++;
3124 				break;
3125 			}
3126 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3127 				memcpy(&this_device->ioaccel_handle,
3128 					&lunaddrbytes[20],
3129 					sizeof(this_device->ioaccel_handle));
3130 				ncurrent++;
3131 			}
3132 			break;
3133 		case TYPE_TAPE:
3134 		case TYPE_MEDIUM_CHANGER:
3135 			ncurrent++;
3136 			break;
3137 		case TYPE_RAID:
3138 			/* Only present the Smartarray HBA as a RAID controller.
3139 			 * If it's a RAID controller other than the HBA itself
3140 			 * (an external RAID controller, MSA500 or similar)
3141 			 * don't present it.
3142 			 */
3143 			if (!is_hba_lunid(lunaddrbytes))
3144 				break;
3145 			ncurrent++;
3146 			break;
3147 		default:
3148 			break;
3149 		}
3150 		if (ncurrent >= HPSA_MAX_DEVICES)
3151 			break;
3152 	}
3153 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3154 out:
3155 	kfree(tmpdevice);
3156 	for (i = 0; i < ndev_allocated; i++)
3157 		kfree(currentsd[i]);
3158 	kfree(currentsd);
3159 	kfree(physdev_list);
3160 	kfree(logdev_list);
3161 }
3162 
3163 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3164  * dma mapping  and fills in the scatter gather entries of the
3165  * hpsa command, cp.
3166  */
3167 static int hpsa_scatter_gather(struct ctlr_info *h,
3168 		struct CommandList *cp,
3169 		struct scsi_cmnd *cmd)
3170 {
3171 	unsigned int len;
3172 	struct scatterlist *sg;
3173 	u64 addr64;
3174 	int use_sg, i, sg_index, chained;
3175 	struct SGDescriptor *curr_sg;
3176 
3177 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3178 
3179 	use_sg = scsi_dma_map(cmd);
3180 	if (use_sg < 0)
3181 		return use_sg;
3182 
3183 	if (!use_sg)
3184 		goto sglist_finished;
3185 
3186 	curr_sg = cp->SG;
3187 	chained = 0;
3188 	sg_index = 0;
3189 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3190 		if (i == h->max_cmd_sg_entries - 1 &&
3191 			use_sg > h->max_cmd_sg_entries) {
3192 			chained = 1;
3193 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3194 			sg_index = 0;
3195 		}
3196 		addr64 = (u64) sg_dma_address(sg);
3197 		len  = sg_dma_len(sg);
3198 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3199 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3200 		curr_sg->Len = len;
3201 		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3202 		curr_sg++;
3203 	}
3204 
3205 	if (use_sg + chained > h->maxSG)
3206 		h->maxSG = use_sg + chained;
3207 
3208 	if (chained) {
3209 		cp->Header.SGList = h->max_cmd_sg_entries;
3210 		cp->Header.SGTotal = (u16) (use_sg + 1);
3211 		if (hpsa_map_sg_chain_block(h, cp)) {
3212 			scsi_dma_unmap(cmd);
3213 			return -1;
3214 		}
3215 		return 0;
3216 	}
3217 
3218 sglist_finished:
3219 
3220 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3221 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3222 	return 0;
3223 }
3224 
3225 #define IO_ACCEL_INELIGIBLE (1)
3226 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3227 {
3228 	int is_write = 0;
3229 	u32 block;
3230 	u32 block_cnt;
3231 
3232 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3233 	switch (cdb[0]) {
3234 	case WRITE_6:
3235 	case WRITE_12:
3236 		is_write = 1;
3237 	case READ_6:
3238 	case READ_12:
3239 		if (*cdb_len == 6) {
3240 			block = (((u32) cdb[2]) << 8) | cdb[3];
3241 			block_cnt = cdb[4];
3242 		} else {
3243 			BUG_ON(*cdb_len != 12);
3244 			block = (((u32) cdb[2]) << 24) |
3245 				(((u32) cdb[3]) << 16) |
3246 				(((u32) cdb[4]) << 8) |
3247 				cdb[5];
3248 			block_cnt =
3249 				(((u32) cdb[6]) << 24) |
3250 				(((u32) cdb[7]) << 16) |
3251 				(((u32) cdb[8]) << 8) |
3252 				cdb[9];
3253 		}
3254 		if (block_cnt > 0xffff)
3255 			return IO_ACCEL_INELIGIBLE;
3256 
3257 		cdb[0] = is_write ? WRITE_10 : READ_10;
3258 		cdb[1] = 0;
3259 		cdb[2] = (u8) (block >> 24);
3260 		cdb[3] = (u8) (block >> 16);
3261 		cdb[4] = (u8) (block >> 8);
3262 		cdb[5] = (u8) (block);
3263 		cdb[6] = 0;
3264 		cdb[7] = (u8) (block_cnt >> 8);
3265 		cdb[8] = (u8) (block_cnt);
3266 		cdb[9] = 0;
3267 		*cdb_len = 10;
3268 		break;
3269 	}
3270 	return 0;
3271 }
3272 
3273 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3274 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3275 	u8 *scsi3addr)
3276 {
3277 	struct scsi_cmnd *cmd = c->scsi_cmd;
3278 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3279 	unsigned int len;
3280 	unsigned int total_len = 0;
3281 	struct scatterlist *sg;
3282 	u64 addr64;
3283 	int use_sg, i;
3284 	struct SGDescriptor *curr_sg;
3285 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3286 
3287 	/* TODO: implement chaining support */
3288 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3289 		return IO_ACCEL_INELIGIBLE;
3290 
3291 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3292 
3293 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3294 		return IO_ACCEL_INELIGIBLE;
3295 
3296 	c->cmd_type = CMD_IOACCEL1;
3297 
3298 	/* Adjust the DMA address to point to the accelerated command buffer */
3299 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3300 				(c->cmdindex * sizeof(*cp));
3301 	BUG_ON(c->busaddr & 0x0000007F);
3302 
3303 	use_sg = scsi_dma_map(cmd);
3304 	if (use_sg < 0)
3305 		return use_sg;
3306 
3307 	if (use_sg) {
3308 		curr_sg = cp->SG;
3309 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3310 			addr64 = (u64) sg_dma_address(sg);
3311 			len  = sg_dma_len(sg);
3312 			total_len += len;
3313 			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3314 			curr_sg->Addr.upper =
3315 				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3316 			curr_sg->Len = len;
3317 
3318 			if (i == (scsi_sg_count(cmd) - 1))
3319 				curr_sg->Ext = HPSA_SG_LAST;
3320 			else
3321 				curr_sg->Ext = 0;  /* we are not chaining */
3322 			curr_sg++;
3323 		}
3324 
3325 		switch (cmd->sc_data_direction) {
3326 		case DMA_TO_DEVICE:
3327 			control |= IOACCEL1_CONTROL_DATA_OUT;
3328 			break;
3329 		case DMA_FROM_DEVICE:
3330 			control |= IOACCEL1_CONTROL_DATA_IN;
3331 			break;
3332 		case DMA_NONE:
3333 			control |= IOACCEL1_CONTROL_NODATAXFER;
3334 			break;
3335 		default:
3336 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3337 			cmd->sc_data_direction);
3338 			BUG();
3339 			break;
3340 		}
3341 	} else {
3342 		control |= IOACCEL1_CONTROL_NODATAXFER;
3343 	}
3344 
3345 	c->Header.SGList = use_sg;
3346 	/* Fill out the command structure to submit */
3347 	cp->dev_handle = ioaccel_handle & 0xFFFF;
3348 	cp->transfer_len = total_len;
3349 	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3350 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3351 	cp->control = control;
3352 	memcpy(cp->CDB, cdb, cdb_len);
3353 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3354 	/* Tag was already set at init time. */
3355 	enqueue_cmd_and_start_io(h, c);
3356 	return 0;
3357 }
3358 
3359 /*
3360  * Queue a command directly to a device behind the controller using the
3361  * I/O accelerator path.
3362  */
3363 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3364 	struct CommandList *c)
3365 {
3366 	struct scsi_cmnd *cmd = c->scsi_cmd;
3367 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3368 
3369 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3370 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3371 }
3372 
3373 /*
3374  * Set encryption parameters for the ioaccel2 request
3375  */
3376 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3377 	struct CommandList *c, struct io_accel2_cmd *cp)
3378 {
3379 	struct scsi_cmnd *cmd = c->scsi_cmd;
3380 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3381 	struct raid_map_data *map = &dev->raid_map;
3382 	u64 first_block;
3383 
3384 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3385 
3386 	/* Are we doing encryption on this device */
3387 	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3388 		return;
3389 	/* Set the data encryption key index. */
3390 	cp->dekindex = map->dekindex;
3391 
3392 	/* Set the encryption enable flag, encoded into direction field. */
3393 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3394 
3395 	/* Set encryption tweak values based on logical block address
3396 	 * If block size is 512, tweak value is LBA.
3397 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3398 	 */
3399 	switch (cmd->cmnd[0]) {
3400 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3401 	case WRITE_6:
3402 	case READ_6:
3403 		if (map->volume_blk_size == 512) {
3404 			cp->tweak_lower =
3405 				(((u32) cmd->cmnd[2]) << 8) |
3406 					cmd->cmnd[3];
3407 			cp->tweak_upper = 0;
3408 		} else {
3409 			first_block =
3410 				(((u64) cmd->cmnd[2]) << 8) |
3411 					cmd->cmnd[3];
3412 			first_block = (first_block * map->volume_blk_size)/512;
3413 			cp->tweak_lower = (u32)first_block;
3414 			cp->tweak_upper = (u32)(first_block >> 32);
3415 		}
3416 		break;
3417 	case WRITE_10:
3418 	case READ_10:
3419 		if (map->volume_blk_size == 512) {
3420 			cp->tweak_lower =
3421 				(((u32) cmd->cmnd[2]) << 24) |
3422 				(((u32) cmd->cmnd[3]) << 16) |
3423 				(((u32) cmd->cmnd[4]) << 8) |
3424 					cmd->cmnd[5];
3425 			cp->tweak_upper = 0;
3426 		} else {
3427 			first_block =
3428 				(((u64) cmd->cmnd[2]) << 24) |
3429 				(((u64) cmd->cmnd[3]) << 16) |
3430 				(((u64) cmd->cmnd[4]) << 8) |
3431 					cmd->cmnd[5];
3432 			first_block = (first_block * map->volume_blk_size)/512;
3433 			cp->tweak_lower = (u32)first_block;
3434 			cp->tweak_upper = (u32)(first_block >> 32);
3435 		}
3436 		break;
3437 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3438 	case WRITE_12:
3439 	case READ_12:
3440 		if (map->volume_blk_size == 512) {
3441 			cp->tweak_lower =
3442 				(((u32) cmd->cmnd[2]) << 24) |
3443 				(((u32) cmd->cmnd[3]) << 16) |
3444 				(((u32) cmd->cmnd[4]) << 8) |
3445 					cmd->cmnd[5];
3446 			cp->tweak_upper = 0;
3447 		} else {
3448 			first_block =
3449 				(((u64) cmd->cmnd[2]) << 24) |
3450 				(((u64) cmd->cmnd[3]) << 16) |
3451 				(((u64) cmd->cmnd[4]) << 8) |
3452 					cmd->cmnd[5];
3453 			first_block = (first_block * map->volume_blk_size)/512;
3454 			cp->tweak_lower = (u32)first_block;
3455 			cp->tweak_upper = (u32)(first_block >> 32);
3456 		}
3457 		break;
3458 	case WRITE_16:
3459 	case READ_16:
3460 		if (map->volume_blk_size == 512) {
3461 			cp->tweak_lower =
3462 				(((u32) cmd->cmnd[6]) << 24) |
3463 				(((u32) cmd->cmnd[7]) << 16) |
3464 				(((u32) cmd->cmnd[8]) << 8) |
3465 					cmd->cmnd[9];
3466 			cp->tweak_upper =
3467 				(((u32) cmd->cmnd[2]) << 24) |
3468 				(((u32) cmd->cmnd[3]) << 16) |
3469 				(((u32) cmd->cmnd[4]) << 8) |
3470 					cmd->cmnd[5];
3471 		} else {
3472 			first_block =
3473 				(((u64) cmd->cmnd[2]) << 56) |
3474 				(((u64) cmd->cmnd[3]) << 48) |
3475 				(((u64) cmd->cmnd[4]) << 40) |
3476 				(((u64) cmd->cmnd[5]) << 32) |
3477 				(((u64) cmd->cmnd[6]) << 24) |
3478 				(((u64) cmd->cmnd[7]) << 16) |
3479 				(((u64) cmd->cmnd[8]) << 8) |
3480 					cmd->cmnd[9];
3481 			first_block = (first_block * map->volume_blk_size)/512;
3482 			cp->tweak_lower = (u32)first_block;
3483 			cp->tweak_upper = (u32)(first_block >> 32);
3484 		}
3485 		break;
3486 	default:
3487 		dev_err(&h->pdev->dev,
3488 			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3489 			__func__);
3490 		BUG();
3491 		break;
3492 	}
3493 }
3494 
3495 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3496 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3497 	u8 *scsi3addr)
3498 {
3499 	struct scsi_cmnd *cmd = c->scsi_cmd;
3500 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3501 	struct ioaccel2_sg_element *curr_sg;
3502 	int use_sg, i;
3503 	struct scatterlist *sg;
3504 	u64 addr64;
3505 	u32 len;
3506 	u32 total_len = 0;
3507 
3508 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3509 		return IO_ACCEL_INELIGIBLE;
3510 
3511 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3512 		return IO_ACCEL_INELIGIBLE;
3513 	c->cmd_type = CMD_IOACCEL2;
3514 	/* Adjust the DMA address to point to the accelerated command buffer */
3515 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3516 				(c->cmdindex * sizeof(*cp));
3517 	BUG_ON(c->busaddr & 0x0000007F);
3518 
3519 	memset(cp, 0, sizeof(*cp));
3520 	cp->IU_type = IOACCEL2_IU_TYPE;
3521 
3522 	use_sg = scsi_dma_map(cmd);
3523 	if (use_sg < 0)
3524 		return use_sg;
3525 
3526 	if (use_sg) {
3527 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3528 		curr_sg = cp->sg;
3529 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3530 			addr64 = (u64) sg_dma_address(sg);
3531 			len  = sg_dma_len(sg);
3532 			total_len += len;
3533 			curr_sg->address = cpu_to_le64(addr64);
3534 			curr_sg->length = cpu_to_le32(len);
3535 			curr_sg->reserved[0] = 0;
3536 			curr_sg->reserved[1] = 0;
3537 			curr_sg->reserved[2] = 0;
3538 			curr_sg->chain_indicator = 0;
3539 			curr_sg++;
3540 		}
3541 
3542 		switch (cmd->sc_data_direction) {
3543 		case DMA_TO_DEVICE:
3544 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3545 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3546 			break;
3547 		case DMA_FROM_DEVICE:
3548 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3549 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3550 			break;
3551 		case DMA_NONE:
3552 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3553 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3554 			break;
3555 		default:
3556 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3557 				cmd->sc_data_direction);
3558 			BUG();
3559 			break;
3560 		}
3561 	} else {
3562 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3563 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3564 	}
3565 
3566 	/* Set encryption parameters, if necessary */
3567 	set_encrypt_ioaccel2(h, c, cp);
3568 
3569 	cp->scsi_nexus = ioaccel_handle;
3570 	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3571 				DIRECT_LOOKUP_BIT;
3572 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3573 
3574 	/* fill in sg elements */
3575 	cp->sg_count = (u8) use_sg;
3576 
3577 	cp->data_len = cpu_to_le32(total_len);
3578 	cp->err_ptr = cpu_to_le64(c->busaddr +
3579 			offsetof(struct io_accel2_cmd, error_data));
3580 	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3581 
3582 	enqueue_cmd_and_start_io(h, c);
3583 	return 0;
3584 }
3585 
3586 /*
3587  * Queue a command to the correct I/O accelerator path.
3588  */
3589 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3590 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3591 	u8 *scsi3addr)
3592 {
3593 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3594 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3595 						cdb, cdb_len, scsi3addr);
3596 	else
3597 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3598 						cdb, cdb_len, scsi3addr);
3599 }
3600 
3601 static void raid_map_helper(struct raid_map_data *map,
3602 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3603 {
3604 	if (offload_to_mirror == 0)  {
3605 		/* use physical disk in the first mirrored group. */
3606 		*map_index %= map->data_disks_per_row;
3607 		return;
3608 	}
3609 	do {
3610 		/* determine mirror group that *map_index indicates */
3611 		*current_group = *map_index / map->data_disks_per_row;
3612 		if (offload_to_mirror == *current_group)
3613 			continue;
3614 		if (*current_group < (map->layout_map_count - 1)) {
3615 			/* select map index from next group */
3616 			*map_index += map->data_disks_per_row;
3617 			(*current_group)++;
3618 		} else {
3619 			/* select map index from first group */
3620 			*map_index %= map->data_disks_per_row;
3621 			*current_group = 0;
3622 		}
3623 	} while (offload_to_mirror != *current_group);
3624 }
3625 
3626 /*
3627  * Attempt to perform offload RAID mapping for a logical volume I/O.
3628  */
3629 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3630 	struct CommandList *c)
3631 {
3632 	struct scsi_cmnd *cmd = c->scsi_cmd;
3633 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3634 	struct raid_map_data *map = &dev->raid_map;
3635 	struct raid_map_disk_data *dd = &map->data[0];
3636 	int is_write = 0;
3637 	u32 map_index;
3638 	u64 first_block, last_block;
3639 	u32 block_cnt;
3640 	u32 blocks_per_row;
3641 	u64 first_row, last_row;
3642 	u32 first_row_offset, last_row_offset;
3643 	u32 first_column, last_column;
3644 	u64 r0_first_row, r0_last_row;
3645 	u32 r5or6_blocks_per_row;
3646 	u64 r5or6_first_row, r5or6_last_row;
3647 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3648 	u32 r5or6_first_column, r5or6_last_column;
3649 	u32 total_disks_per_row;
3650 	u32 stripesize;
3651 	u32 first_group, last_group, current_group;
3652 	u32 map_row;
3653 	u32 disk_handle;
3654 	u64 disk_block;
3655 	u32 disk_block_cnt;
3656 	u8 cdb[16];
3657 	u8 cdb_len;
3658 #if BITS_PER_LONG == 32
3659 	u64 tmpdiv;
3660 #endif
3661 	int offload_to_mirror;
3662 
3663 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3664 
3665 	/* check for valid opcode, get LBA and block count */
3666 	switch (cmd->cmnd[0]) {
3667 	case WRITE_6:
3668 		is_write = 1;
3669 	case READ_6:
3670 		first_block =
3671 			(((u64) cmd->cmnd[2]) << 8) |
3672 			cmd->cmnd[3];
3673 		block_cnt = cmd->cmnd[4];
3674 		break;
3675 	case WRITE_10:
3676 		is_write = 1;
3677 	case READ_10:
3678 		first_block =
3679 			(((u64) cmd->cmnd[2]) << 24) |
3680 			(((u64) cmd->cmnd[3]) << 16) |
3681 			(((u64) cmd->cmnd[4]) << 8) |
3682 			cmd->cmnd[5];
3683 		block_cnt =
3684 			(((u32) cmd->cmnd[7]) << 8) |
3685 			cmd->cmnd[8];
3686 		break;
3687 	case WRITE_12:
3688 		is_write = 1;
3689 	case READ_12:
3690 		first_block =
3691 			(((u64) cmd->cmnd[2]) << 24) |
3692 			(((u64) cmd->cmnd[3]) << 16) |
3693 			(((u64) cmd->cmnd[4]) << 8) |
3694 			cmd->cmnd[5];
3695 		block_cnt =
3696 			(((u32) cmd->cmnd[6]) << 24) |
3697 			(((u32) cmd->cmnd[7]) << 16) |
3698 			(((u32) cmd->cmnd[8]) << 8) |
3699 		cmd->cmnd[9];
3700 		break;
3701 	case WRITE_16:
3702 		is_write = 1;
3703 	case READ_16:
3704 		first_block =
3705 			(((u64) cmd->cmnd[2]) << 56) |
3706 			(((u64) cmd->cmnd[3]) << 48) |
3707 			(((u64) cmd->cmnd[4]) << 40) |
3708 			(((u64) cmd->cmnd[5]) << 32) |
3709 			(((u64) cmd->cmnd[6]) << 24) |
3710 			(((u64) cmd->cmnd[7]) << 16) |
3711 			(((u64) cmd->cmnd[8]) << 8) |
3712 			cmd->cmnd[9];
3713 		block_cnt =
3714 			(((u32) cmd->cmnd[10]) << 24) |
3715 			(((u32) cmd->cmnd[11]) << 16) |
3716 			(((u32) cmd->cmnd[12]) << 8) |
3717 			cmd->cmnd[13];
3718 		break;
3719 	default:
3720 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3721 	}
3722 	BUG_ON(block_cnt == 0);
3723 	last_block = first_block + block_cnt - 1;
3724 
3725 	/* check for write to non-RAID-0 */
3726 	if (is_write && dev->raid_level != 0)
3727 		return IO_ACCEL_INELIGIBLE;
3728 
3729 	/* check for invalid block or wraparound */
3730 	if (last_block >= map->volume_blk_cnt || last_block < first_block)
3731 		return IO_ACCEL_INELIGIBLE;
3732 
3733 	/* calculate stripe information for the request */
3734 	blocks_per_row = map->data_disks_per_row * map->strip_size;
3735 #if BITS_PER_LONG == 32
3736 	tmpdiv = first_block;
3737 	(void) do_div(tmpdiv, blocks_per_row);
3738 	first_row = tmpdiv;
3739 	tmpdiv = last_block;
3740 	(void) do_div(tmpdiv, blocks_per_row);
3741 	last_row = tmpdiv;
3742 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3743 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3744 	tmpdiv = first_row_offset;
3745 	(void) do_div(tmpdiv,  map->strip_size);
3746 	first_column = tmpdiv;
3747 	tmpdiv = last_row_offset;
3748 	(void) do_div(tmpdiv, map->strip_size);
3749 	last_column = tmpdiv;
3750 #else
3751 	first_row = first_block / blocks_per_row;
3752 	last_row = last_block / blocks_per_row;
3753 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3754 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3755 	first_column = first_row_offset / map->strip_size;
3756 	last_column = last_row_offset / map->strip_size;
3757 #endif
3758 
3759 	/* if this isn't a single row/column then give to the controller */
3760 	if ((first_row != last_row) || (first_column != last_column))
3761 		return IO_ACCEL_INELIGIBLE;
3762 
3763 	/* proceeding with driver mapping */
3764 	total_disks_per_row = map->data_disks_per_row +
3765 				map->metadata_disks_per_row;
3766 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3767 				map->row_cnt;
3768 	map_index = (map_row * total_disks_per_row) + first_column;
3769 
3770 	switch (dev->raid_level) {
3771 	case HPSA_RAID_0:
3772 		break; /* nothing special to do */
3773 	case HPSA_RAID_1:
3774 		/* Handles load balance across RAID 1 members.
3775 		 * (2-drive R1 and R10 with even # of drives.)
3776 		 * Appropriate for SSDs, not optimal for HDDs
3777 		 */
3778 		BUG_ON(map->layout_map_count != 2);
3779 		if (dev->offload_to_mirror)
3780 			map_index += map->data_disks_per_row;
3781 		dev->offload_to_mirror = !dev->offload_to_mirror;
3782 		break;
3783 	case HPSA_RAID_ADM:
3784 		/* Handles N-way mirrors  (R1-ADM)
3785 		 * and R10 with # of drives divisible by 3.)
3786 		 */
3787 		BUG_ON(map->layout_map_count != 3);
3788 
3789 		offload_to_mirror = dev->offload_to_mirror;
3790 		raid_map_helper(map, offload_to_mirror,
3791 				&map_index, &current_group);
3792 		/* set mirror group to use next time */
3793 		offload_to_mirror =
3794 			(offload_to_mirror >= map->layout_map_count - 1)
3795 			? 0 : offload_to_mirror + 1;
3796 		/* FIXME: remove after debug/dev */
3797 		BUG_ON(offload_to_mirror >= map->layout_map_count);
3798 		dev_warn(&h->pdev->dev,
3799 			"DEBUG: Using physical disk map index %d from mirror group %d\n",
3800 			map_index, offload_to_mirror);
3801 		dev->offload_to_mirror = offload_to_mirror;
3802 		/* Avoid direct use of dev->offload_to_mirror within this
3803 		 * function since multiple threads might simultaneously
3804 		 * increment it beyond the range of dev->layout_map_count -1.
3805 		 */
3806 		break;
3807 	case HPSA_RAID_5:
3808 	case HPSA_RAID_6:
3809 		if (map->layout_map_count <= 1)
3810 			break;
3811 
3812 		/* Verify first and last block are in same RAID group */
3813 		r5or6_blocks_per_row =
3814 			map->strip_size * map->data_disks_per_row;
3815 		BUG_ON(r5or6_blocks_per_row == 0);
3816 		stripesize = r5or6_blocks_per_row * map->layout_map_count;
3817 #if BITS_PER_LONG == 32
3818 		tmpdiv = first_block;
3819 		first_group = do_div(tmpdiv, stripesize);
3820 		tmpdiv = first_group;
3821 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3822 		first_group = tmpdiv;
3823 		tmpdiv = last_block;
3824 		last_group = do_div(tmpdiv, stripesize);
3825 		tmpdiv = last_group;
3826 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3827 		last_group = tmpdiv;
3828 #else
3829 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3830 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3831 #endif
3832 		if (first_group != last_group)
3833 			return IO_ACCEL_INELIGIBLE;
3834 
3835 		/* Verify request is in a single row of RAID 5/6 */
3836 #if BITS_PER_LONG == 32
3837 		tmpdiv = first_block;
3838 		(void) do_div(tmpdiv, stripesize);
3839 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3840 		tmpdiv = last_block;
3841 		(void) do_div(tmpdiv, stripesize);
3842 		r5or6_last_row = r0_last_row = tmpdiv;
3843 #else
3844 		first_row = r5or6_first_row = r0_first_row =
3845 						first_block / stripesize;
3846 		r5or6_last_row = r0_last_row = last_block / stripesize;
3847 #endif
3848 		if (r5or6_first_row != r5or6_last_row)
3849 			return IO_ACCEL_INELIGIBLE;
3850 
3851 
3852 		/* Verify request is in a single column */
3853 #if BITS_PER_LONG == 32
3854 		tmpdiv = first_block;
3855 		first_row_offset = do_div(tmpdiv, stripesize);
3856 		tmpdiv = first_row_offset;
3857 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3858 		r5or6_first_row_offset = first_row_offset;
3859 		tmpdiv = last_block;
3860 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3861 		tmpdiv = r5or6_last_row_offset;
3862 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3863 		tmpdiv = r5or6_first_row_offset;
3864 		(void) do_div(tmpdiv, map->strip_size);
3865 		first_column = r5or6_first_column = tmpdiv;
3866 		tmpdiv = r5or6_last_row_offset;
3867 		(void) do_div(tmpdiv, map->strip_size);
3868 		r5or6_last_column = tmpdiv;
3869 #else
3870 		first_row_offset = r5or6_first_row_offset =
3871 			(u32)((first_block % stripesize) %
3872 						r5or6_blocks_per_row);
3873 
3874 		r5or6_last_row_offset =
3875 			(u32)((last_block % stripesize) %
3876 						r5or6_blocks_per_row);
3877 
3878 		first_column = r5or6_first_column =
3879 			r5or6_first_row_offset / map->strip_size;
3880 		r5or6_last_column =
3881 			r5or6_last_row_offset / map->strip_size;
3882 #endif
3883 		if (r5or6_first_column != r5or6_last_column)
3884 			return IO_ACCEL_INELIGIBLE;
3885 
3886 		/* Request is eligible */
3887 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3888 			map->row_cnt;
3889 
3890 		map_index = (first_group *
3891 			(map->row_cnt * total_disks_per_row)) +
3892 			(map_row * total_disks_per_row) + first_column;
3893 		break;
3894 	default:
3895 		return IO_ACCEL_INELIGIBLE;
3896 	}
3897 
3898 	disk_handle = dd[map_index].ioaccel_handle;
3899 	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3900 			(first_row_offset - (first_column * map->strip_size));
3901 	disk_block_cnt = block_cnt;
3902 
3903 	/* handle differing logical/physical block sizes */
3904 	if (map->phys_blk_shift) {
3905 		disk_block <<= map->phys_blk_shift;
3906 		disk_block_cnt <<= map->phys_blk_shift;
3907 	}
3908 	BUG_ON(disk_block_cnt > 0xffff);
3909 
3910 	/* build the new CDB for the physical disk I/O */
3911 	if (disk_block > 0xffffffff) {
3912 		cdb[0] = is_write ? WRITE_16 : READ_16;
3913 		cdb[1] = 0;
3914 		cdb[2] = (u8) (disk_block >> 56);
3915 		cdb[3] = (u8) (disk_block >> 48);
3916 		cdb[4] = (u8) (disk_block >> 40);
3917 		cdb[5] = (u8) (disk_block >> 32);
3918 		cdb[6] = (u8) (disk_block >> 24);
3919 		cdb[7] = (u8) (disk_block >> 16);
3920 		cdb[8] = (u8) (disk_block >> 8);
3921 		cdb[9] = (u8) (disk_block);
3922 		cdb[10] = (u8) (disk_block_cnt >> 24);
3923 		cdb[11] = (u8) (disk_block_cnt >> 16);
3924 		cdb[12] = (u8) (disk_block_cnt >> 8);
3925 		cdb[13] = (u8) (disk_block_cnt);
3926 		cdb[14] = 0;
3927 		cdb[15] = 0;
3928 		cdb_len = 16;
3929 	} else {
3930 		cdb[0] = is_write ? WRITE_10 : READ_10;
3931 		cdb[1] = 0;
3932 		cdb[2] = (u8) (disk_block >> 24);
3933 		cdb[3] = (u8) (disk_block >> 16);
3934 		cdb[4] = (u8) (disk_block >> 8);
3935 		cdb[5] = (u8) (disk_block);
3936 		cdb[6] = 0;
3937 		cdb[7] = (u8) (disk_block_cnt >> 8);
3938 		cdb[8] = (u8) (disk_block_cnt);
3939 		cdb[9] = 0;
3940 		cdb_len = 10;
3941 	}
3942 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3943 						dev->scsi3addr);
3944 }
3945 
3946 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3947 	void (*done)(struct scsi_cmnd *))
3948 {
3949 	struct ctlr_info *h;
3950 	struct hpsa_scsi_dev_t *dev;
3951 	unsigned char scsi3addr[8];
3952 	struct CommandList *c;
3953 	unsigned long flags;
3954 	int rc = 0;
3955 
3956 	/* Get the ptr to our adapter structure out of cmd->host. */
3957 	h = sdev_to_hba(cmd->device);
3958 	dev = cmd->device->hostdata;
3959 	if (!dev) {
3960 		cmd->result = DID_NO_CONNECT << 16;
3961 		done(cmd);
3962 		return 0;
3963 	}
3964 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3965 
3966 	spin_lock_irqsave(&h->lock, flags);
3967 	if (unlikely(h->lockup_detected)) {
3968 		spin_unlock_irqrestore(&h->lock, flags);
3969 		cmd->result = DID_ERROR << 16;
3970 		done(cmd);
3971 		return 0;
3972 	}
3973 	spin_unlock_irqrestore(&h->lock, flags);
3974 	c = cmd_alloc(h);
3975 	if (c == NULL) {			/* trouble... */
3976 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3977 		return SCSI_MLQUEUE_HOST_BUSY;
3978 	}
3979 
3980 	/* Fill in the command list header */
3981 
3982 	cmd->scsi_done = done;    /* save this for use by completion code */
3983 
3984 	/* save c in case we have to abort it  */
3985 	cmd->host_scribble = (unsigned char *) c;
3986 
3987 	c->cmd_type = CMD_SCSI;
3988 	c->scsi_cmd = cmd;
3989 
3990 	/* Call alternate submit routine for I/O accelerated commands.
3991 	 * Retries always go down the normal I/O path.
3992 	 */
3993 	if (likely(cmd->retries == 0 &&
3994 		cmd->request->cmd_type == REQ_TYPE_FS &&
3995 		h->acciopath_status)) {
3996 		if (dev->offload_enabled) {
3997 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
3998 			if (rc == 0)
3999 				return 0; /* Sent on ioaccel path */
4000 			if (rc < 0) {   /* scsi_dma_map failed. */
4001 				cmd_free(h, c);
4002 				return SCSI_MLQUEUE_HOST_BUSY;
4003 			}
4004 		} else if (dev->ioaccel_handle) {
4005 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4006 			if (rc == 0)
4007 				return 0; /* Sent on direct map path */
4008 			if (rc < 0) {   /* scsi_dma_map failed. */
4009 				cmd_free(h, c);
4010 				return SCSI_MLQUEUE_HOST_BUSY;
4011 			}
4012 		}
4013 	}
4014 
4015 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4016 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4017 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4018 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4019 
4020 	/* Fill in the request block... */
4021 
4022 	c->Request.Timeout = 0;
4023 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4024 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4025 	c->Request.CDBLen = cmd->cmd_len;
4026 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4027 	c->Request.Type.Type = TYPE_CMD;
4028 	c->Request.Type.Attribute = ATTR_SIMPLE;
4029 	switch (cmd->sc_data_direction) {
4030 	case DMA_TO_DEVICE:
4031 		c->Request.Type.Direction = XFER_WRITE;
4032 		break;
4033 	case DMA_FROM_DEVICE:
4034 		c->Request.Type.Direction = XFER_READ;
4035 		break;
4036 	case DMA_NONE:
4037 		c->Request.Type.Direction = XFER_NONE;
4038 		break;
4039 	case DMA_BIDIRECTIONAL:
4040 		/* This can happen if a buggy application does a scsi passthru
4041 		 * and sets both inlen and outlen to non-zero. ( see
4042 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4043 		 */
4044 
4045 		c->Request.Type.Direction = XFER_RSVD;
4046 		/* This is technically wrong, and hpsa controllers should
4047 		 * reject it with CMD_INVALID, which is the most correct
4048 		 * response, but non-fibre backends appear to let it
4049 		 * slide by, and give the same results as if this field
4050 		 * were set correctly.  Either way is acceptable for
4051 		 * our purposes here.
4052 		 */
4053 
4054 		break;
4055 
4056 	default:
4057 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4058 			cmd->sc_data_direction);
4059 		BUG();
4060 		break;
4061 	}
4062 
4063 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4064 		cmd_free(h, c);
4065 		return SCSI_MLQUEUE_HOST_BUSY;
4066 	}
4067 	enqueue_cmd_and_start_io(h, c);
4068 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4069 	return 0;
4070 }
4071 
4072 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4073 
4074 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4075 {
4076 	unsigned long flags;
4077 
4078 	/*
4079 	 * Don't let rescans be initiated on a controller known
4080 	 * to be locked up.  If the controller locks up *during*
4081 	 * a rescan, that thread is probably hosed, but at least
4082 	 * we can prevent new rescan threads from piling up on a
4083 	 * locked up controller.
4084 	 */
4085 	spin_lock_irqsave(&h->lock, flags);
4086 	if (unlikely(h->lockup_detected)) {
4087 		spin_unlock_irqrestore(&h->lock, flags);
4088 		spin_lock_irqsave(&h->scan_lock, flags);
4089 		h->scan_finished = 1;
4090 		wake_up_all(&h->scan_wait_queue);
4091 		spin_unlock_irqrestore(&h->scan_lock, flags);
4092 		return 1;
4093 	}
4094 	spin_unlock_irqrestore(&h->lock, flags);
4095 	return 0;
4096 }
4097 
4098 static void hpsa_scan_start(struct Scsi_Host *sh)
4099 {
4100 	struct ctlr_info *h = shost_to_hba(sh);
4101 	unsigned long flags;
4102 
4103 	if (do_not_scan_if_controller_locked_up(h))
4104 		return;
4105 
4106 	/* wait until any scan already in progress is finished. */
4107 	while (1) {
4108 		spin_lock_irqsave(&h->scan_lock, flags);
4109 		if (h->scan_finished)
4110 			break;
4111 		spin_unlock_irqrestore(&h->scan_lock, flags);
4112 		wait_event(h->scan_wait_queue, h->scan_finished);
4113 		/* Note: We don't need to worry about a race between this
4114 		 * thread and driver unload because the midlayer will
4115 		 * have incremented the reference count, so unload won't
4116 		 * happen if we're in here.
4117 		 */
4118 	}
4119 	h->scan_finished = 0; /* mark scan as in progress */
4120 	spin_unlock_irqrestore(&h->scan_lock, flags);
4121 
4122 	if (do_not_scan_if_controller_locked_up(h))
4123 		return;
4124 
4125 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4126 
4127 	spin_lock_irqsave(&h->scan_lock, flags);
4128 	h->scan_finished = 1; /* mark scan as finished. */
4129 	wake_up_all(&h->scan_wait_queue);
4130 	spin_unlock_irqrestore(&h->scan_lock, flags);
4131 }
4132 
4133 static int hpsa_scan_finished(struct Scsi_Host *sh,
4134 	unsigned long elapsed_time)
4135 {
4136 	struct ctlr_info *h = shost_to_hba(sh);
4137 	unsigned long flags;
4138 	int finished;
4139 
4140 	spin_lock_irqsave(&h->scan_lock, flags);
4141 	finished = h->scan_finished;
4142 	spin_unlock_irqrestore(&h->scan_lock, flags);
4143 	return finished;
4144 }
4145 
4146 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4147 	int qdepth, int reason)
4148 {
4149 	struct ctlr_info *h = sdev_to_hba(sdev);
4150 
4151 	if (reason != SCSI_QDEPTH_DEFAULT)
4152 		return -ENOTSUPP;
4153 
4154 	if (qdepth < 1)
4155 		qdepth = 1;
4156 	else
4157 		if (qdepth > h->nr_cmds)
4158 			qdepth = h->nr_cmds;
4159 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4160 	return sdev->queue_depth;
4161 }
4162 
4163 static void hpsa_unregister_scsi(struct ctlr_info *h)
4164 {
4165 	/* we are being forcibly unloaded, and may not refuse. */
4166 	scsi_remove_host(h->scsi_host);
4167 	scsi_host_put(h->scsi_host);
4168 	h->scsi_host = NULL;
4169 }
4170 
4171 static int hpsa_register_scsi(struct ctlr_info *h)
4172 {
4173 	struct Scsi_Host *sh;
4174 	int error;
4175 
4176 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4177 	if (sh == NULL)
4178 		goto fail;
4179 
4180 	sh->io_port = 0;
4181 	sh->n_io_port = 0;
4182 	sh->this_id = -1;
4183 	sh->max_channel = 3;
4184 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4185 	sh->max_lun = HPSA_MAX_LUN;
4186 	sh->max_id = HPSA_MAX_LUN;
4187 	sh->can_queue = h->nr_cmds;
4188 	if (h->hba_mode_enabled)
4189 		sh->cmd_per_lun = 7;
4190 	else
4191 		sh->cmd_per_lun = h->nr_cmds;
4192 	sh->sg_tablesize = h->maxsgentries;
4193 	h->scsi_host = sh;
4194 	sh->hostdata[0] = (unsigned long) h;
4195 	sh->irq = h->intr[h->intr_mode];
4196 	sh->unique_id = sh->irq;
4197 	error = scsi_add_host(sh, &h->pdev->dev);
4198 	if (error)
4199 		goto fail_host_put;
4200 	scsi_scan_host(sh);
4201 	return 0;
4202 
4203  fail_host_put:
4204 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4205 		" failed for controller %d\n", __func__, h->ctlr);
4206 	scsi_host_put(sh);
4207 	return error;
4208  fail:
4209 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4210 		" failed for controller %d\n", __func__, h->ctlr);
4211 	return -ENOMEM;
4212 }
4213 
4214 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4215 	unsigned char lunaddr[])
4216 {
4217 	int rc;
4218 	int count = 0;
4219 	int waittime = 1; /* seconds */
4220 	struct CommandList *c;
4221 
4222 	c = cmd_special_alloc(h);
4223 	if (!c) {
4224 		dev_warn(&h->pdev->dev, "out of memory in "
4225 			"wait_for_device_to_become_ready.\n");
4226 		return IO_ERROR;
4227 	}
4228 
4229 	/* Send test unit ready until device ready, or give up. */
4230 	while (count < HPSA_TUR_RETRY_LIMIT) {
4231 
4232 		/* Wait for a bit.  do this first, because if we send
4233 		 * the TUR right away, the reset will just abort it.
4234 		 */
4235 		msleep(1000 * waittime);
4236 		count++;
4237 		rc = 0; /* Device ready. */
4238 
4239 		/* Increase wait time with each try, up to a point. */
4240 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4241 			waittime = waittime * 2;
4242 
4243 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4244 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4245 				NULL, 0, 0, lunaddr, TYPE_CMD);
4246 		hpsa_scsi_do_simple_cmd_core(h, c);
4247 		/* no unmap needed here because no data xfer. */
4248 
4249 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4250 			break;
4251 
4252 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4253 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4254 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4255 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4256 			break;
4257 
4258 		dev_warn(&h->pdev->dev, "waiting %d secs "
4259 			"for device to become ready.\n", waittime);
4260 		rc = 1; /* device not ready. */
4261 	}
4262 
4263 	if (rc)
4264 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4265 	else
4266 		dev_warn(&h->pdev->dev, "device is ready.\n");
4267 
4268 	cmd_special_free(h, c);
4269 	return rc;
4270 }
4271 
4272 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4273  * complaining.  Doing a host- or bus-reset can't do anything good here.
4274  */
4275 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4276 {
4277 	int rc;
4278 	struct ctlr_info *h;
4279 	struct hpsa_scsi_dev_t *dev;
4280 
4281 	/* find the controller to which the command to be aborted was sent */
4282 	h = sdev_to_hba(scsicmd->device);
4283 	if (h == NULL) /* paranoia */
4284 		return FAILED;
4285 	dev = scsicmd->device->hostdata;
4286 	if (!dev) {
4287 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4288 			"device lookup failed.\n");
4289 		return FAILED;
4290 	}
4291 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4292 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4293 	/* send a reset to the SCSI LUN which the command was sent to */
4294 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4295 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4296 		return SUCCESS;
4297 
4298 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4299 	return FAILED;
4300 }
4301 
4302 static void swizzle_abort_tag(u8 *tag)
4303 {
4304 	u8 original_tag[8];
4305 
4306 	memcpy(original_tag, tag, 8);
4307 	tag[0] = original_tag[3];
4308 	tag[1] = original_tag[2];
4309 	tag[2] = original_tag[1];
4310 	tag[3] = original_tag[0];
4311 	tag[4] = original_tag[7];
4312 	tag[5] = original_tag[6];
4313 	tag[6] = original_tag[5];
4314 	tag[7] = original_tag[4];
4315 }
4316 
4317 static void hpsa_get_tag(struct ctlr_info *h,
4318 	struct CommandList *c, u32 *taglower, u32 *tagupper)
4319 {
4320 	if (c->cmd_type == CMD_IOACCEL1) {
4321 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4322 			&h->ioaccel_cmd_pool[c->cmdindex];
4323 		*tagupper = cm1->Tag.upper;
4324 		*taglower = cm1->Tag.lower;
4325 		return;
4326 	}
4327 	if (c->cmd_type == CMD_IOACCEL2) {
4328 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4329 			&h->ioaccel2_cmd_pool[c->cmdindex];
4330 		/* upper tag not used in ioaccel2 mode */
4331 		memset(tagupper, 0, sizeof(*tagupper));
4332 		*taglower = cm2->Tag;
4333 		return;
4334 	}
4335 	*tagupper = c->Header.Tag.upper;
4336 	*taglower = c->Header.Tag.lower;
4337 }
4338 
4339 
4340 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4341 	struct CommandList *abort, int swizzle)
4342 {
4343 	int rc = IO_OK;
4344 	struct CommandList *c;
4345 	struct ErrorInfo *ei;
4346 	u32 tagupper, taglower;
4347 
4348 	c = cmd_special_alloc(h);
4349 	if (c == NULL) {	/* trouble... */
4350 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4351 		return -ENOMEM;
4352 	}
4353 
4354 	/* fill_cmd can't fail here, no buffer to map */
4355 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4356 		0, 0, scsi3addr, TYPE_MSG);
4357 	if (swizzle)
4358 		swizzle_abort_tag(&c->Request.CDB[4]);
4359 	hpsa_scsi_do_simple_cmd_core(h, c);
4360 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4361 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4362 		__func__, tagupper, taglower);
4363 	/* no unmap needed here because no data xfer. */
4364 
4365 	ei = c->err_info;
4366 	switch (ei->CommandStatus) {
4367 	case CMD_SUCCESS:
4368 		break;
4369 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4370 		rc = -1;
4371 		break;
4372 	default:
4373 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4374 			__func__, tagupper, taglower);
4375 		hpsa_scsi_interpret_error(h, c);
4376 		rc = -1;
4377 		break;
4378 	}
4379 	cmd_special_free(h, c);
4380 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4381 		__func__, tagupper, taglower);
4382 	return rc;
4383 }
4384 
4385 /*
4386  * hpsa_find_cmd_in_queue
4387  *
4388  * Used to determine whether a command (find) is still present
4389  * in queue_head.   Optionally excludes the last element of queue_head.
4390  *
4391  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4392  * not yet been submitted, and so can be aborted by the driver without
4393  * sending an abort to the hardware.
4394  *
4395  * Returns pointer to command if found in queue, NULL otherwise.
4396  */
4397 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4398 			struct scsi_cmnd *find, struct list_head *queue_head)
4399 {
4400 	unsigned long flags;
4401 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4402 
4403 	if (!find)
4404 		return 0;
4405 	spin_lock_irqsave(&h->lock, flags);
4406 	list_for_each_entry(c, queue_head, list) {
4407 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4408 			continue;
4409 		if (c->scsi_cmd == find) {
4410 			spin_unlock_irqrestore(&h->lock, flags);
4411 			return c;
4412 		}
4413 	}
4414 	spin_unlock_irqrestore(&h->lock, flags);
4415 	return NULL;
4416 }
4417 
4418 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4419 					u8 *tag, struct list_head *queue_head)
4420 {
4421 	unsigned long flags;
4422 	struct CommandList *c;
4423 
4424 	spin_lock_irqsave(&h->lock, flags);
4425 	list_for_each_entry(c, queue_head, list) {
4426 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
4427 			continue;
4428 		spin_unlock_irqrestore(&h->lock, flags);
4429 		return c;
4430 	}
4431 	spin_unlock_irqrestore(&h->lock, flags);
4432 	return NULL;
4433 }
4434 
4435 /* ioaccel2 path firmware cannot handle abort task requests.
4436  * Change abort requests to physical target reset, and send to the
4437  * address of the physical disk used for the ioaccel 2 command.
4438  * Return 0 on success (IO_OK)
4439  *	 -1 on failure
4440  */
4441 
4442 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4443 	unsigned char *scsi3addr, struct CommandList *abort)
4444 {
4445 	int rc = IO_OK;
4446 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4447 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4448 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4449 	unsigned char *psa = &phys_scsi3addr[0];
4450 
4451 	/* Get a pointer to the hpsa logical device. */
4452 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4453 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4454 	if (dev == NULL) {
4455 		dev_warn(&h->pdev->dev,
4456 			"Cannot abort: no device pointer for command.\n");
4457 			return -1; /* not abortable */
4458 	}
4459 
4460 	if (h->raid_offload_debug > 0)
4461 		dev_info(&h->pdev->dev,
4462 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4463 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4464 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4465 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4466 
4467 	if (!dev->offload_enabled) {
4468 		dev_warn(&h->pdev->dev,
4469 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4470 		return -1; /* not abortable */
4471 	}
4472 
4473 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4474 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4475 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4476 		return -1; /* not abortable */
4477 	}
4478 
4479 	/* send the reset */
4480 	if (h->raid_offload_debug > 0)
4481 		dev_info(&h->pdev->dev,
4482 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4483 			psa[0], psa[1], psa[2], psa[3],
4484 			psa[4], psa[5], psa[6], psa[7]);
4485 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4486 	if (rc != 0) {
4487 		dev_warn(&h->pdev->dev,
4488 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4489 			psa[0], psa[1], psa[2], psa[3],
4490 			psa[4], psa[5], psa[6], psa[7]);
4491 		return rc; /* failed to reset */
4492 	}
4493 
4494 	/* wait for device to recover */
4495 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4496 		dev_warn(&h->pdev->dev,
4497 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4498 			psa[0], psa[1], psa[2], psa[3],
4499 			psa[4], psa[5], psa[6], psa[7]);
4500 		return -1;  /* failed to recover */
4501 	}
4502 
4503 	/* device recovered */
4504 	dev_info(&h->pdev->dev,
4505 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506 		psa[0], psa[1], psa[2], psa[3],
4507 		psa[4], psa[5], psa[6], psa[7]);
4508 
4509 	return rc; /* success */
4510 }
4511 
4512 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4513  * tell which kind we're dealing with, so we send the abort both ways.  There
4514  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4515  * way we construct our tags but we check anyway in case the assumptions which
4516  * make this true someday become false.
4517  */
4518 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4519 	unsigned char *scsi3addr, struct CommandList *abort)
4520 {
4521 	u8 swizzled_tag[8];
4522 	struct CommandList *c;
4523 	int rc = 0, rc2 = 0;
4524 
4525 	/* ioccelerator mode 2 commands should be aborted via the
4526 	 * accelerated path, since RAID path is unaware of these commands,
4527 	 * but underlying firmware can't handle abort TMF.
4528 	 * Change abort to physical device reset.
4529 	 */
4530 	if (abort->cmd_type == CMD_IOACCEL2)
4531 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4532 
4533 	/* we do not expect to find the swizzled tag in our queue, but
4534 	 * check anyway just to be sure the assumptions which make this
4535 	 * the case haven't become wrong.
4536 	 */
4537 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4538 	swizzle_abort_tag(swizzled_tag);
4539 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4540 	if (c != NULL) {
4541 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4542 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4543 	}
4544 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4545 
4546 	/* if the command is still in our queue, we can't conclude that it was
4547 	 * aborted (it might have just completed normally) but in any case
4548 	 * we don't need to try to abort it another way.
4549 	 */
4550 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4551 	if (c)
4552 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4553 	return rc && rc2;
4554 }
4555 
4556 /* Send an abort for the specified command.
4557  *	If the device and controller support it,
4558  *		send a task abort request.
4559  */
4560 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4561 {
4562 
4563 	int i, rc;
4564 	struct ctlr_info *h;
4565 	struct hpsa_scsi_dev_t *dev;
4566 	struct CommandList *abort; /* pointer to command to be aborted */
4567 	struct CommandList *found;
4568 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4569 	char msg[256];		/* For debug messaging. */
4570 	int ml = 0;
4571 	u32 tagupper, taglower;
4572 
4573 	/* Find the controller of the command to be aborted */
4574 	h = sdev_to_hba(sc->device);
4575 	if (WARN(h == NULL,
4576 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4577 		return FAILED;
4578 
4579 	/* Check that controller supports some kind of task abort */
4580 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4581 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4582 		return FAILED;
4583 
4584 	memset(msg, 0, sizeof(msg));
4585 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4586 		h->scsi_host->host_no, sc->device->channel,
4587 		sc->device->id, sc->device->lun);
4588 
4589 	/* Find the device of the command to be aborted */
4590 	dev = sc->device->hostdata;
4591 	if (!dev) {
4592 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4593 				msg);
4594 		return FAILED;
4595 	}
4596 
4597 	/* Get SCSI command to be aborted */
4598 	abort = (struct CommandList *) sc->host_scribble;
4599 	if (abort == NULL) {
4600 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4601 				msg);
4602 		return FAILED;
4603 	}
4604 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4605 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4606 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4607 	if (as != NULL)
4608 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4609 			as->cmnd[0], as->serial_number);
4610 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4611 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4612 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4613 
4614 	/* Search reqQ to See if command is queued but not submitted,
4615 	 * if so, complete the command with aborted status and remove
4616 	 * it from the reqQ.
4617 	 */
4618 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4619 	if (found) {
4620 		found->err_info->CommandStatus = CMD_ABORTED;
4621 		finish_cmd(found);
4622 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4623 				msg);
4624 		return SUCCESS;
4625 	}
4626 
4627 	/* not in reqQ, if also not in cmpQ, must have already completed */
4628 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4629 	if (!found)  {
4630 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4631 				msg);
4632 		return SUCCESS;
4633 	}
4634 
4635 	/*
4636 	 * Command is in flight, or possibly already completed
4637 	 * by the firmware (but not to the scsi mid layer) but we can't
4638 	 * distinguish which.  Send the abort down.
4639 	 */
4640 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4641 	if (rc != 0) {
4642 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4643 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4644 			h->scsi_host->host_no,
4645 			dev->bus, dev->target, dev->lun);
4646 		return FAILED;
4647 	}
4648 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4649 
4650 	/* If the abort(s) above completed and actually aborted the
4651 	 * command, then the command to be aborted should already be
4652 	 * completed.  If not, wait around a bit more to see if they
4653 	 * manage to complete normally.
4654 	 */
4655 #define ABORT_COMPLETE_WAIT_SECS 30
4656 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4657 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4658 		if (!found)
4659 			return SUCCESS;
4660 		msleep(100);
4661 	}
4662 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4663 		msg, ABORT_COMPLETE_WAIT_SECS);
4664 	return FAILED;
4665 }
4666 
4667 
4668 /*
4669  * For operations that cannot sleep, a command block is allocated at init,
4670  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4671  * which ones are free or in use.  Lock must be held when calling this.
4672  * cmd_free() is the complement.
4673  */
4674 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4675 {
4676 	struct CommandList *c;
4677 	int i;
4678 	union u64bit temp64;
4679 	dma_addr_t cmd_dma_handle, err_dma_handle;
4680 	unsigned long flags;
4681 
4682 	spin_lock_irqsave(&h->lock, flags);
4683 	do {
4684 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4685 		if (i == h->nr_cmds) {
4686 			spin_unlock_irqrestore(&h->lock, flags);
4687 			return NULL;
4688 		}
4689 	} while (test_and_set_bit
4690 		 (i & (BITS_PER_LONG - 1),
4691 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4692 	spin_unlock_irqrestore(&h->lock, flags);
4693 
4694 	c = h->cmd_pool + i;
4695 	memset(c, 0, sizeof(*c));
4696 	cmd_dma_handle = h->cmd_pool_dhandle
4697 	    + i * sizeof(*c);
4698 	c->err_info = h->errinfo_pool + i;
4699 	memset(c->err_info, 0, sizeof(*c->err_info));
4700 	err_dma_handle = h->errinfo_pool_dhandle
4701 	    + i * sizeof(*c->err_info);
4702 
4703 	c->cmdindex = i;
4704 
4705 	INIT_LIST_HEAD(&c->list);
4706 	c->busaddr = (u32) cmd_dma_handle;
4707 	temp64.val = (u64) err_dma_handle;
4708 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4709 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4710 	c->ErrDesc.Len = sizeof(*c->err_info);
4711 
4712 	c->h = h;
4713 	return c;
4714 }
4715 
4716 /* For operations that can wait for kmalloc to possibly sleep,
4717  * this routine can be called. Lock need not be held to call
4718  * cmd_special_alloc. cmd_special_free() is the complement.
4719  */
4720 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4721 {
4722 	struct CommandList *c;
4723 	union u64bit temp64;
4724 	dma_addr_t cmd_dma_handle, err_dma_handle;
4725 
4726 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4727 	if (c == NULL)
4728 		return NULL;
4729 	memset(c, 0, sizeof(*c));
4730 
4731 	c->cmd_type = CMD_SCSI;
4732 	c->cmdindex = -1;
4733 
4734 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4735 		    &err_dma_handle);
4736 
4737 	if (c->err_info == NULL) {
4738 		pci_free_consistent(h->pdev,
4739 			sizeof(*c), c, cmd_dma_handle);
4740 		return NULL;
4741 	}
4742 	memset(c->err_info, 0, sizeof(*c->err_info));
4743 
4744 	INIT_LIST_HEAD(&c->list);
4745 	c->busaddr = (u32) cmd_dma_handle;
4746 	temp64.val = (u64) err_dma_handle;
4747 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4748 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4749 	c->ErrDesc.Len = sizeof(*c->err_info);
4750 
4751 	c->h = h;
4752 	return c;
4753 }
4754 
4755 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4756 {
4757 	int i;
4758 	unsigned long flags;
4759 
4760 	i = c - h->cmd_pool;
4761 	spin_lock_irqsave(&h->lock, flags);
4762 	clear_bit(i & (BITS_PER_LONG - 1),
4763 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4764 	spin_unlock_irqrestore(&h->lock, flags);
4765 }
4766 
4767 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4768 {
4769 	union u64bit temp64;
4770 
4771 	temp64.val32.lower = c->ErrDesc.Addr.lower;
4772 	temp64.val32.upper = c->ErrDesc.Addr.upper;
4773 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4774 			    c->err_info, (dma_addr_t) temp64.val);
4775 	pci_free_consistent(h->pdev, sizeof(*c),
4776 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4777 }
4778 
4779 #ifdef CONFIG_COMPAT
4780 
4781 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4782 {
4783 	IOCTL32_Command_struct __user *arg32 =
4784 	    (IOCTL32_Command_struct __user *) arg;
4785 	IOCTL_Command_struct arg64;
4786 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4787 	int err;
4788 	u32 cp;
4789 
4790 	memset(&arg64, 0, sizeof(arg64));
4791 	err = 0;
4792 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4793 			   sizeof(arg64.LUN_info));
4794 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4795 			   sizeof(arg64.Request));
4796 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4797 			   sizeof(arg64.error_info));
4798 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4799 	err |= get_user(cp, &arg32->buf);
4800 	arg64.buf = compat_ptr(cp);
4801 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4802 
4803 	if (err)
4804 		return -EFAULT;
4805 
4806 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4807 	if (err)
4808 		return err;
4809 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4810 			 sizeof(arg32->error_info));
4811 	if (err)
4812 		return -EFAULT;
4813 	return err;
4814 }
4815 
4816 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4817 	int cmd, void *arg)
4818 {
4819 	BIG_IOCTL32_Command_struct __user *arg32 =
4820 	    (BIG_IOCTL32_Command_struct __user *) arg;
4821 	BIG_IOCTL_Command_struct arg64;
4822 	BIG_IOCTL_Command_struct __user *p =
4823 	    compat_alloc_user_space(sizeof(arg64));
4824 	int err;
4825 	u32 cp;
4826 
4827 	memset(&arg64, 0, sizeof(arg64));
4828 	err = 0;
4829 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4830 			   sizeof(arg64.LUN_info));
4831 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4832 			   sizeof(arg64.Request));
4833 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4834 			   sizeof(arg64.error_info));
4835 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4836 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4837 	err |= get_user(cp, &arg32->buf);
4838 	arg64.buf = compat_ptr(cp);
4839 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4840 
4841 	if (err)
4842 		return -EFAULT;
4843 
4844 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4845 	if (err)
4846 		return err;
4847 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4848 			 sizeof(arg32->error_info));
4849 	if (err)
4850 		return -EFAULT;
4851 	return err;
4852 }
4853 
4854 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4855 {
4856 	switch (cmd) {
4857 	case CCISS_GETPCIINFO:
4858 	case CCISS_GETINTINFO:
4859 	case CCISS_SETINTINFO:
4860 	case CCISS_GETNODENAME:
4861 	case CCISS_SETNODENAME:
4862 	case CCISS_GETHEARTBEAT:
4863 	case CCISS_GETBUSTYPES:
4864 	case CCISS_GETFIRMVER:
4865 	case CCISS_GETDRIVVER:
4866 	case CCISS_REVALIDVOLS:
4867 	case CCISS_DEREGDISK:
4868 	case CCISS_REGNEWDISK:
4869 	case CCISS_REGNEWD:
4870 	case CCISS_RESCANDISK:
4871 	case CCISS_GETLUNINFO:
4872 		return hpsa_ioctl(dev, cmd, arg);
4873 
4874 	case CCISS_PASSTHRU32:
4875 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4876 	case CCISS_BIG_PASSTHRU32:
4877 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4878 
4879 	default:
4880 		return -ENOIOCTLCMD;
4881 	}
4882 }
4883 #endif
4884 
4885 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4886 {
4887 	struct hpsa_pci_info pciinfo;
4888 
4889 	if (!argp)
4890 		return -EINVAL;
4891 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4892 	pciinfo.bus = h->pdev->bus->number;
4893 	pciinfo.dev_fn = h->pdev->devfn;
4894 	pciinfo.board_id = h->board_id;
4895 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4896 		return -EFAULT;
4897 	return 0;
4898 }
4899 
4900 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4901 {
4902 	DriverVer_type DriverVer;
4903 	unsigned char vmaj, vmin, vsubmin;
4904 	int rc;
4905 
4906 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4907 		&vmaj, &vmin, &vsubmin);
4908 	if (rc != 3) {
4909 		dev_info(&h->pdev->dev, "driver version string '%s' "
4910 			"unrecognized.", HPSA_DRIVER_VERSION);
4911 		vmaj = 0;
4912 		vmin = 0;
4913 		vsubmin = 0;
4914 	}
4915 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4916 	if (!argp)
4917 		return -EINVAL;
4918 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4919 		return -EFAULT;
4920 	return 0;
4921 }
4922 
4923 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4924 {
4925 	IOCTL_Command_struct iocommand;
4926 	struct CommandList *c;
4927 	char *buff = NULL;
4928 	union u64bit temp64;
4929 	int rc = 0;
4930 
4931 	if (!argp)
4932 		return -EINVAL;
4933 	if (!capable(CAP_SYS_RAWIO))
4934 		return -EPERM;
4935 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4936 		return -EFAULT;
4937 	if ((iocommand.buf_size < 1) &&
4938 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4939 		return -EINVAL;
4940 	}
4941 	if (iocommand.buf_size > 0) {
4942 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4943 		if (buff == NULL)
4944 			return -EFAULT;
4945 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
4946 			/* Copy the data into the buffer we created */
4947 			if (copy_from_user(buff, iocommand.buf,
4948 				iocommand.buf_size)) {
4949 				rc = -EFAULT;
4950 				goto out_kfree;
4951 			}
4952 		} else {
4953 			memset(buff, 0, iocommand.buf_size);
4954 		}
4955 	}
4956 	c = cmd_special_alloc(h);
4957 	if (c == NULL) {
4958 		rc = -ENOMEM;
4959 		goto out_kfree;
4960 	}
4961 	/* Fill in the command type */
4962 	c->cmd_type = CMD_IOCTL_PEND;
4963 	/* Fill in Command Header */
4964 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4965 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4966 		c->Header.SGList = 1;
4967 		c->Header.SGTotal = 1;
4968 	} else	{ /* no buffers to fill */
4969 		c->Header.SGList = 0;
4970 		c->Header.SGTotal = 0;
4971 	}
4972 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4973 	/* use the kernel address the cmd block for tag */
4974 	c->Header.Tag.lower = c->busaddr;
4975 
4976 	/* Fill in Request block */
4977 	memcpy(&c->Request, &iocommand.Request,
4978 		sizeof(c->Request));
4979 
4980 	/* Fill in the scatter gather information */
4981 	if (iocommand.buf_size > 0) {
4982 		temp64.val = pci_map_single(h->pdev, buff,
4983 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4984 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4985 			c->SG[0].Addr.lower = 0;
4986 			c->SG[0].Addr.upper = 0;
4987 			c->SG[0].Len = 0;
4988 			rc = -ENOMEM;
4989 			goto out;
4990 		}
4991 		c->SG[0].Addr.lower = temp64.val32.lower;
4992 		c->SG[0].Addr.upper = temp64.val32.upper;
4993 		c->SG[0].Len = iocommand.buf_size;
4994 		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4995 	}
4996 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4997 	if (iocommand.buf_size > 0)
4998 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4999 	check_ioctl_unit_attention(h, c);
5000 
5001 	/* Copy the error information out */
5002 	memcpy(&iocommand.error_info, c->err_info,
5003 		sizeof(iocommand.error_info));
5004 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5005 		rc = -EFAULT;
5006 		goto out;
5007 	}
5008 	if (iocommand.Request.Type.Direction == XFER_READ &&
5009 		iocommand.buf_size > 0) {
5010 		/* Copy the data out of the buffer we created */
5011 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5012 			rc = -EFAULT;
5013 			goto out;
5014 		}
5015 	}
5016 out:
5017 	cmd_special_free(h, c);
5018 out_kfree:
5019 	kfree(buff);
5020 	return rc;
5021 }
5022 
5023 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5024 {
5025 	BIG_IOCTL_Command_struct *ioc;
5026 	struct CommandList *c;
5027 	unsigned char **buff = NULL;
5028 	int *buff_size = NULL;
5029 	union u64bit temp64;
5030 	BYTE sg_used = 0;
5031 	int status = 0;
5032 	int i;
5033 	u32 left;
5034 	u32 sz;
5035 	BYTE __user *data_ptr;
5036 
5037 	if (!argp)
5038 		return -EINVAL;
5039 	if (!capable(CAP_SYS_RAWIO))
5040 		return -EPERM;
5041 	ioc = (BIG_IOCTL_Command_struct *)
5042 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5043 	if (!ioc) {
5044 		status = -ENOMEM;
5045 		goto cleanup1;
5046 	}
5047 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5048 		status = -EFAULT;
5049 		goto cleanup1;
5050 	}
5051 	if ((ioc->buf_size < 1) &&
5052 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5053 		status = -EINVAL;
5054 		goto cleanup1;
5055 	}
5056 	/* Check kmalloc limits  using all SGs */
5057 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5058 		status = -EINVAL;
5059 		goto cleanup1;
5060 	}
5061 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5062 		status = -EINVAL;
5063 		goto cleanup1;
5064 	}
5065 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5066 	if (!buff) {
5067 		status = -ENOMEM;
5068 		goto cleanup1;
5069 	}
5070 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5071 	if (!buff_size) {
5072 		status = -ENOMEM;
5073 		goto cleanup1;
5074 	}
5075 	left = ioc->buf_size;
5076 	data_ptr = ioc->buf;
5077 	while (left) {
5078 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5079 		buff_size[sg_used] = sz;
5080 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5081 		if (buff[sg_used] == NULL) {
5082 			status = -ENOMEM;
5083 			goto cleanup1;
5084 		}
5085 		if (ioc->Request.Type.Direction == XFER_WRITE) {
5086 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5087 				status = -ENOMEM;
5088 				goto cleanup1;
5089 			}
5090 		} else
5091 			memset(buff[sg_used], 0, sz);
5092 		left -= sz;
5093 		data_ptr += sz;
5094 		sg_used++;
5095 	}
5096 	c = cmd_special_alloc(h);
5097 	if (c == NULL) {
5098 		status = -ENOMEM;
5099 		goto cleanup1;
5100 	}
5101 	c->cmd_type = CMD_IOCTL_PEND;
5102 	c->Header.ReplyQueue = 0;
5103 	c->Header.SGList = c->Header.SGTotal = sg_used;
5104 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5105 	c->Header.Tag.lower = c->busaddr;
5106 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5107 	if (ioc->buf_size > 0) {
5108 		int i;
5109 		for (i = 0; i < sg_used; i++) {
5110 			temp64.val = pci_map_single(h->pdev, buff[i],
5111 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5112 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5113 				c->SG[i].Addr.lower = 0;
5114 				c->SG[i].Addr.upper = 0;
5115 				c->SG[i].Len = 0;
5116 				hpsa_pci_unmap(h->pdev, c, i,
5117 					PCI_DMA_BIDIRECTIONAL);
5118 				status = -ENOMEM;
5119 				goto cleanup0;
5120 			}
5121 			c->SG[i].Addr.lower = temp64.val32.lower;
5122 			c->SG[i].Addr.upper = temp64.val32.upper;
5123 			c->SG[i].Len = buff_size[i];
5124 			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5125 		}
5126 	}
5127 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5128 	if (sg_used)
5129 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5130 	check_ioctl_unit_attention(h, c);
5131 	/* Copy the error information out */
5132 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5133 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5134 		status = -EFAULT;
5135 		goto cleanup0;
5136 	}
5137 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
5138 		/* Copy the data out of the buffer we created */
5139 		BYTE __user *ptr = ioc->buf;
5140 		for (i = 0; i < sg_used; i++) {
5141 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5142 				status = -EFAULT;
5143 				goto cleanup0;
5144 			}
5145 			ptr += buff_size[i];
5146 		}
5147 	}
5148 	status = 0;
5149 cleanup0:
5150 	cmd_special_free(h, c);
5151 cleanup1:
5152 	if (buff) {
5153 		for (i = 0; i < sg_used; i++)
5154 			kfree(buff[i]);
5155 		kfree(buff);
5156 	}
5157 	kfree(buff_size);
5158 	kfree(ioc);
5159 	return status;
5160 }
5161 
5162 static void check_ioctl_unit_attention(struct ctlr_info *h,
5163 	struct CommandList *c)
5164 {
5165 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5166 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5167 		(void) check_for_unit_attention(h, c);
5168 }
5169 
5170 static int increment_passthru_count(struct ctlr_info *h)
5171 {
5172 	unsigned long flags;
5173 
5174 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5175 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5176 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5177 		return -1;
5178 	}
5179 	h->passthru_count++;
5180 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5181 	return 0;
5182 }
5183 
5184 static void decrement_passthru_count(struct ctlr_info *h)
5185 {
5186 	unsigned long flags;
5187 
5188 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5189 	if (h->passthru_count <= 0) {
5190 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5191 		/* not expecting to get here. */
5192 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5193 		return;
5194 	}
5195 	h->passthru_count--;
5196 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5197 }
5198 
5199 /*
5200  * ioctl
5201  */
5202 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5203 {
5204 	struct ctlr_info *h;
5205 	void __user *argp = (void __user *)arg;
5206 	int rc;
5207 
5208 	h = sdev_to_hba(dev);
5209 
5210 	switch (cmd) {
5211 	case CCISS_DEREGDISK:
5212 	case CCISS_REGNEWDISK:
5213 	case CCISS_REGNEWD:
5214 		hpsa_scan_start(h->scsi_host);
5215 		return 0;
5216 	case CCISS_GETPCIINFO:
5217 		return hpsa_getpciinfo_ioctl(h, argp);
5218 	case CCISS_GETDRIVVER:
5219 		return hpsa_getdrivver_ioctl(h, argp);
5220 	case CCISS_PASSTHRU:
5221 		if (increment_passthru_count(h))
5222 			return -EAGAIN;
5223 		rc = hpsa_passthru_ioctl(h, argp);
5224 		decrement_passthru_count(h);
5225 		return rc;
5226 	case CCISS_BIG_PASSTHRU:
5227 		if (increment_passthru_count(h))
5228 			return -EAGAIN;
5229 		rc = hpsa_big_passthru_ioctl(h, argp);
5230 		decrement_passthru_count(h);
5231 		return rc;
5232 	default:
5233 		return -ENOTTY;
5234 	}
5235 }
5236 
5237 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5238 				u8 reset_type)
5239 {
5240 	struct CommandList *c;
5241 
5242 	c = cmd_alloc(h);
5243 	if (!c)
5244 		return -ENOMEM;
5245 	/* fill_cmd can't fail here, no data buffer to map */
5246 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5247 		RAID_CTLR_LUNID, TYPE_MSG);
5248 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5249 	c->waiting = NULL;
5250 	enqueue_cmd_and_start_io(h, c);
5251 	/* Don't wait for completion, the reset won't complete.  Don't free
5252 	 * the command either.  This is the last command we will send before
5253 	 * re-initializing everything, so it doesn't matter and won't leak.
5254 	 */
5255 	return 0;
5256 }
5257 
5258 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5259 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5260 	int cmd_type)
5261 {
5262 	int pci_dir = XFER_NONE;
5263 	struct CommandList *a; /* for commands to be aborted */
5264 
5265 	c->cmd_type = CMD_IOCTL_PEND;
5266 	c->Header.ReplyQueue = 0;
5267 	if (buff != NULL && size > 0) {
5268 		c->Header.SGList = 1;
5269 		c->Header.SGTotal = 1;
5270 	} else {
5271 		c->Header.SGList = 0;
5272 		c->Header.SGTotal = 0;
5273 	}
5274 	c->Header.Tag.lower = c->busaddr;
5275 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5276 
5277 	c->Request.Type.Type = cmd_type;
5278 	if (cmd_type == TYPE_CMD) {
5279 		switch (cmd) {
5280 		case HPSA_INQUIRY:
5281 			/* are we trying to read a vital product page */
5282 			if (page_code & VPD_PAGE) {
5283 				c->Request.CDB[1] = 0x01;
5284 				c->Request.CDB[2] = (page_code & 0xff);
5285 			}
5286 			c->Request.CDBLen = 6;
5287 			c->Request.Type.Attribute = ATTR_SIMPLE;
5288 			c->Request.Type.Direction = XFER_READ;
5289 			c->Request.Timeout = 0;
5290 			c->Request.CDB[0] = HPSA_INQUIRY;
5291 			c->Request.CDB[4] = size & 0xFF;
5292 			break;
5293 		case HPSA_REPORT_LOG:
5294 		case HPSA_REPORT_PHYS:
5295 			/* Talking to controller so It's a physical command
5296 			   mode = 00 target = 0.  Nothing to write.
5297 			 */
5298 			c->Request.CDBLen = 12;
5299 			c->Request.Type.Attribute = ATTR_SIMPLE;
5300 			c->Request.Type.Direction = XFER_READ;
5301 			c->Request.Timeout = 0;
5302 			c->Request.CDB[0] = cmd;
5303 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5304 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5305 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5306 			c->Request.CDB[9] = size & 0xFF;
5307 			break;
5308 		case HPSA_CACHE_FLUSH:
5309 			c->Request.CDBLen = 12;
5310 			c->Request.Type.Attribute = ATTR_SIMPLE;
5311 			c->Request.Type.Direction = XFER_WRITE;
5312 			c->Request.Timeout = 0;
5313 			c->Request.CDB[0] = BMIC_WRITE;
5314 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5315 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5316 			c->Request.CDB[8] = size & 0xFF;
5317 			break;
5318 		case TEST_UNIT_READY:
5319 			c->Request.CDBLen = 6;
5320 			c->Request.Type.Attribute = ATTR_SIMPLE;
5321 			c->Request.Type.Direction = XFER_NONE;
5322 			c->Request.Timeout = 0;
5323 			break;
5324 		case HPSA_GET_RAID_MAP:
5325 			c->Request.CDBLen = 12;
5326 			c->Request.Type.Attribute = ATTR_SIMPLE;
5327 			c->Request.Type.Direction = XFER_READ;
5328 			c->Request.Timeout = 0;
5329 			c->Request.CDB[0] = HPSA_CISS_READ;
5330 			c->Request.CDB[1] = cmd;
5331 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5332 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5333 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5334 			c->Request.CDB[9] = size & 0xFF;
5335 			break;
5336 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5337 			c->Request.CDBLen = 10;
5338 			c->Request.Type.Attribute = ATTR_SIMPLE;
5339 			c->Request.Type.Direction = XFER_READ;
5340 			c->Request.Timeout = 0;
5341 			c->Request.CDB[0] = BMIC_READ;
5342 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5343 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5344 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5345 			break;
5346 		default:
5347 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5348 			BUG();
5349 			return -1;
5350 		}
5351 	} else if (cmd_type == TYPE_MSG) {
5352 		switch (cmd) {
5353 
5354 		case  HPSA_DEVICE_RESET_MSG:
5355 			c->Request.CDBLen = 16;
5356 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5357 			c->Request.Type.Attribute = ATTR_SIMPLE;
5358 			c->Request.Type.Direction = XFER_NONE;
5359 			c->Request.Timeout = 0; /* Don't time out */
5360 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5361 			c->Request.CDB[0] =  cmd;
5362 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5363 			/* If bytes 4-7 are zero, it means reset the */
5364 			/* LunID device */
5365 			c->Request.CDB[4] = 0x00;
5366 			c->Request.CDB[5] = 0x00;
5367 			c->Request.CDB[6] = 0x00;
5368 			c->Request.CDB[7] = 0x00;
5369 			break;
5370 		case  HPSA_ABORT_MSG:
5371 			a = buff;       /* point to command to be aborted */
5372 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5373 				a->Header.Tag.upper, a->Header.Tag.lower,
5374 				c->Header.Tag.upper, c->Header.Tag.lower);
5375 			c->Request.CDBLen = 16;
5376 			c->Request.Type.Type = TYPE_MSG;
5377 			c->Request.Type.Attribute = ATTR_SIMPLE;
5378 			c->Request.Type.Direction = XFER_WRITE;
5379 			c->Request.Timeout = 0; /* Don't time out */
5380 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5381 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5382 			c->Request.CDB[2] = 0x00; /* reserved */
5383 			c->Request.CDB[3] = 0x00; /* reserved */
5384 			/* Tag to abort goes in CDB[4]-CDB[11] */
5385 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5386 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5387 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5388 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5389 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5390 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5391 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5392 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5393 			c->Request.CDB[12] = 0x00; /* reserved */
5394 			c->Request.CDB[13] = 0x00; /* reserved */
5395 			c->Request.CDB[14] = 0x00; /* reserved */
5396 			c->Request.CDB[15] = 0x00; /* reserved */
5397 		break;
5398 		default:
5399 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5400 				cmd);
5401 			BUG();
5402 		}
5403 	} else {
5404 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5405 		BUG();
5406 	}
5407 
5408 	switch (c->Request.Type.Direction) {
5409 	case XFER_READ:
5410 		pci_dir = PCI_DMA_FROMDEVICE;
5411 		break;
5412 	case XFER_WRITE:
5413 		pci_dir = PCI_DMA_TODEVICE;
5414 		break;
5415 	case XFER_NONE:
5416 		pci_dir = PCI_DMA_NONE;
5417 		break;
5418 	default:
5419 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5420 	}
5421 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5422 		return -1;
5423 	return 0;
5424 }
5425 
5426 /*
5427  * Map (physical) PCI mem into (virtual) kernel space
5428  */
5429 static void __iomem *remap_pci_mem(ulong base, ulong size)
5430 {
5431 	ulong page_base = ((ulong) base) & PAGE_MASK;
5432 	ulong page_offs = ((ulong) base) - page_base;
5433 	void __iomem *page_remapped = ioremap_nocache(page_base,
5434 		page_offs + size);
5435 
5436 	return page_remapped ? (page_remapped + page_offs) : NULL;
5437 }
5438 
5439 /* Takes cmds off the submission queue and sends them to the hardware,
5440  * then puts them on the queue of cmds waiting for completion.
5441  */
5442 static void start_io(struct ctlr_info *h)
5443 {
5444 	struct CommandList *c;
5445 	unsigned long flags;
5446 
5447 	spin_lock_irqsave(&h->lock, flags);
5448 	while (!list_empty(&h->reqQ)) {
5449 		c = list_entry(h->reqQ.next, struct CommandList, list);
5450 		/* can't do anything if fifo is full */
5451 		if ((h->access.fifo_full(h))) {
5452 			h->fifo_recently_full = 1;
5453 			dev_warn(&h->pdev->dev, "fifo full\n");
5454 			break;
5455 		}
5456 		h->fifo_recently_full = 0;
5457 
5458 		/* Get the first entry from the Request Q */
5459 		removeQ(c);
5460 		h->Qdepth--;
5461 
5462 		/* Put job onto the completed Q */
5463 		addQ(&h->cmpQ, c);
5464 
5465 		/* Must increment commands_outstanding before unlocking
5466 		 * and submitting to avoid race checking for fifo full
5467 		 * condition.
5468 		 */
5469 		h->commands_outstanding++;
5470 		if (h->commands_outstanding > h->max_outstanding)
5471 			h->max_outstanding = h->commands_outstanding;
5472 
5473 		/* Tell the controller execute command */
5474 		spin_unlock_irqrestore(&h->lock, flags);
5475 		h->access.submit_command(h, c);
5476 		spin_lock_irqsave(&h->lock, flags);
5477 	}
5478 	spin_unlock_irqrestore(&h->lock, flags);
5479 }
5480 
5481 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5482 {
5483 	return h->access.command_completed(h, q);
5484 }
5485 
5486 static inline bool interrupt_pending(struct ctlr_info *h)
5487 {
5488 	return h->access.intr_pending(h);
5489 }
5490 
5491 static inline long interrupt_not_for_us(struct ctlr_info *h)
5492 {
5493 	return (h->access.intr_pending(h) == 0) ||
5494 		(h->interrupts_enabled == 0);
5495 }
5496 
5497 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5498 	u32 raw_tag)
5499 {
5500 	if (unlikely(tag_index >= h->nr_cmds)) {
5501 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5502 		return 1;
5503 	}
5504 	return 0;
5505 }
5506 
5507 static inline void finish_cmd(struct CommandList *c)
5508 {
5509 	unsigned long flags;
5510 	int io_may_be_stalled = 0;
5511 	struct ctlr_info *h = c->h;
5512 
5513 	spin_lock_irqsave(&h->lock, flags);
5514 	removeQ(c);
5515 
5516 	/*
5517 	 * Check for possibly stalled i/o.
5518 	 *
5519 	 * If a fifo_full condition is encountered, requests will back up
5520 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5521 	 * only called when a new i/o request comes in.  If no i/o's are
5522 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5523 	 * start_io from here if we detect such a danger.
5524 	 *
5525 	 * Normally, we shouldn't hit this case, but pounding on the
5526 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5527 	 * commands_outstanding is low.  We want to avoid calling
5528 	 * start_io from in here as much as possible, and esp. don't
5529 	 * want to get in a cycle where we call start_io every time
5530 	 * through here.
5531 	 */
5532 	if (unlikely(h->fifo_recently_full) &&
5533 		h->commands_outstanding < 5)
5534 		io_may_be_stalled = 1;
5535 
5536 	spin_unlock_irqrestore(&h->lock, flags);
5537 
5538 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5539 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5540 			|| c->cmd_type == CMD_IOACCEL2))
5541 		complete_scsi_command(c);
5542 	else if (c->cmd_type == CMD_IOCTL_PEND)
5543 		complete(c->waiting);
5544 	if (unlikely(io_may_be_stalled))
5545 		start_io(h);
5546 }
5547 
5548 static inline u32 hpsa_tag_contains_index(u32 tag)
5549 {
5550 	return tag & DIRECT_LOOKUP_BIT;
5551 }
5552 
5553 static inline u32 hpsa_tag_to_index(u32 tag)
5554 {
5555 	return tag >> DIRECT_LOOKUP_SHIFT;
5556 }
5557 
5558 
5559 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5560 {
5561 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5562 #define HPSA_SIMPLE_ERROR_BITS 0x03
5563 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5564 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5565 	return tag & ~HPSA_PERF_ERROR_BITS;
5566 }
5567 
5568 /* process completion of an indexed ("direct lookup") command */
5569 static inline void process_indexed_cmd(struct ctlr_info *h,
5570 	u32 raw_tag)
5571 {
5572 	u32 tag_index;
5573 	struct CommandList *c;
5574 
5575 	tag_index = hpsa_tag_to_index(raw_tag);
5576 	if (!bad_tag(h, tag_index, raw_tag)) {
5577 		c = h->cmd_pool + tag_index;
5578 		finish_cmd(c);
5579 	}
5580 }
5581 
5582 /* process completion of a non-indexed command */
5583 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5584 	u32 raw_tag)
5585 {
5586 	u32 tag;
5587 	struct CommandList *c = NULL;
5588 	unsigned long flags;
5589 
5590 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5591 	spin_lock_irqsave(&h->lock, flags);
5592 	list_for_each_entry(c, &h->cmpQ, list) {
5593 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5594 			spin_unlock_irqrestore(&h->lock, flags);
5595 			finish_cmd(c);
5596 			return;
5597 		}
5598 	}
5599 	spin_unlock_irqrestore(&h->lock, flags);
5600 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5601 }
5602 
5603 /* Some controllers, like p400, will give us one interrupt
5604  * after a soft reset, even if we turned interrupts off.
5605  * Only need to check for this in the hpsa_xxx_discard_completions
5606  * functions.
5607  */
5608 static int ignore_bogus_interrupt(struct ctlr_info *h)
5609 {
5610 	if (likely(!reset_devices))
5611 		return 0;
5612 
5613 	if (likely(h->interrupts_enabled))
5614 		return 0;
5615 
5616 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5617 		"(known firmware bug.)  Ignoring.\n");
5618 
5619 	return 1;
5620 }
5621 
5622 /*
5623  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5624  * Relies on (h-q[x] == x) being true for x such that
5625  * 0 <= x < MAX_REPLY_QUEUES.
5626  */
5627 static struct ctlr_info *queue_to_hba(u8 *queue)
5628 {
5629 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5630 }
5631 
5632 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5633 {
5634 	struct ctlr_info *h = queue_to_hba(queue);
5635 	u8 q = *(u8 *) queue;
5636 	u32 raw_tag;
5637 
5638 	if (ignore_bogus_interrupt(h))
5639 		return IRQ_NONE;
5640 
5641 	if (interrupt_not_for_us(h))
5642 		return IRQ_NONE;
5643 	h->last_intr_timestamp = get_jiffies_64();
5644 	while (interrupt_pending(h)) {
5645 		raw_tag = get_next_completion(h, q);
5646 		while (raw_tag != FIFO_EMPTY)
5647 			raw_tag = next_command(h, q);
5648 	}
5649 	return IRQ_HANDLED;
5650 }
5651 
5652 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5653 {
5654 	struct ctlr_info *h = queue_to_hba(queue);
5655 	u32 raw_tag;
5656 	u8 q = *(u8 *) queue;
5657 
5658 	if (ignore_bogus_interrupt(h))
5659 		return IRQ_NONE;
5660 
5661 	h->last_intr_timestamp = get_jiffies_64();
5662 	raw_tag = get_next_completion(h, q);
5663 	while (raw_tag != FIFO_EMPTY)
5664 		raw_tag = next_command(h, q);
5665 	return IRQ_HANDLED;
5666 }
5667 
5668 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5669 {
5670 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5671 	u32 raw_tag;
5672 	u8 q = *(u8 *) queue;
5673 
5674 	if (interrupt_not_for_us(h))
5675 		return IRQ_NONE;
5676 	h->last_intr_timestamp = get_jiffies_64();
5677 	while (interrupt_pending(h)) {
5678 		raw_tag = get_next_completion(h, q);
5679 		while (raw_tag != FIFO_EMPTY) {
5680 			if (likely(hpsa_tag_contains_index(raw_tag)))
5681 				process_indexed_cmd(h, raw_tag);
5682 			else
5683 				process_nonindexed_cmd(h, raw_tag);
5684 			raw_tag = next_command(h, q);
5685 		}
5686 	}
5687 	return IRQ_HANDLED;
5688 }
5689 
5690 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5691 {
5692 	struct ctlr_info *h = queue_to_hba(queue);
5693 	u32 raw_tag;
5694 	u8 q = *(u8 *) queue;
5695 
5696 	h->last_intr_timestamp = get_jiffies_64();
5697 	raw_tag = get_next_completion(h, q);
5698 	while (raw_tag != FIFO_EMPTY) {
5699 		if (likely(hpsa_tag_contains_index(raw_tag)))
5700 			process_indexed_cmd(h, raw_tag);
5701 		else
5702 			process_nonindexed_cmd(h, raw_tag);
5703 		raw_tag = next_command(h, q);
5704 	}
5705 	return IRQ_HANDLED;
5706 }
5707 
5708 /* Send a message CDB to the firmware. Careful, this only works
5709  * in simple mode, not performant mode due to the tag lookup.
5710  * We only ever use this immediately after a controller reset.
5711  */
5712 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5713 			unsigned char type)
5714 {
5715 	struct Command {
5716 		struct CommandListHeader CommandHeader;
5717 		struct RequestBlock Request;
5718 		struct ErrDescriptor ErrorDescriptor;
5719 	};
5720 	struct Command *cmd;
5721 	static const size_t cmd_sz = sizeof(*cmd) +
5722 					sizeof(cmd->ErrorDescriptor);
5723 	dma_addr_t paddr64;
5724 	uint32_t paddr32, tag;
5725 	void __iomem *vaddr;
5726 	int i, err;
5727 
5728 	vaddr = pci_ioremap_bar(pdev, 0);
5729 	if (vaddr == NULL)
5730 		return -ENOMEM;
5731 
5732 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5733 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5734 	 * memory.
5735 	 */
5736 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5737 	if (err) {
5738 		iounmap(vaddr);
5739 		return -ENOMEM;
5740 	}
5741 
5742 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5743 	if (cmd == NULL) {
5744 		iounmap(vaddr);
5745 		return -ENOMEM;
5746 	}
5747 
5748 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5749 	 * although there's no guarantee, we assume that the address is at
5750 	 * least 4-byte aligned (most likely, it's page-aligned).
5751 	 */
5752 	paddr32 = paddr64;
5753 
5754 	cmd->CommandHeader.ReplyQueue = 0;
5755 	cmd->CommandHeader.SGList = 0;
5756 	cmd->CommandHeader.SGTotal = 0;
5757 	cmd->CommandHeader.Tag.lower = paddr32;
5758 	cmd->CommandHeader.Tag.upper = 0;
5759 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5760 
5761 	cmd->Request.CDBLen = 16;
5762 	cmd->Request.Type.Type = TYPE_MSG;
5763 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5764 	cmd->Request.Type.Direction = XFER_NONE;
5765 	cmd->Request.Timeout = 0; /* Don't time out */
5766 	cmd->Request.CDB[0] = opcode;
5767 	cmd->Request.CDB[1] = type;
5768 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5769 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5770 	cmd->ErrorDescriptor.Addr.upper = 0;
5771 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5772 
5773 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5774 
5775 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5776 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5777 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5778 			break;
5779 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5780 	}
5781 
5782 	iounmap(vaddr);
5783 
5784 	/* we leak the DMA buffer here ... no choice since the controller could
5785 	 *  still complete the command.
5786 	 */
5787 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5788 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5789 			opcode, type);
5790 		return -ETIMEDOUT;
5791 	}
5792 
5793 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5794 
5795 	if (tag & HPSA_ERROR_BIT) {
5796 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5797 			opcode, type);
5798 		return -EIO;
5799 	}
5800 
5801 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5802 		opcode, type);
5803 	return 0;
5804 }
5805 
5806 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5807 
5808 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5809 	void * __iomem vaddr, u32 use_doorbell)
5810 {
5811 	u16 pmcsr;
5812 	int pos;
5813 
5814 	if (use_doorbell) {
5815 		/* For everything after the P600, the PCI power state method
5816 		 * of resetting the controller doesn't work, so we have this
5817 		 * other way using the doorbell register.
5818 		 */
5819 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5820 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5821 
5822 		/* PMC hardware guys tell us we need a 5 second delay after
5823 		 * doorbell reset and before any attempt to talk to the board
5824 		 * at all to ensure that this actually works and doesn't fall
5825 		 * over in some weird corner cases.
5826 		 */
5827 		msleep(5000);
5828 	} else { /* Try to do it the PCI power state way */
5829 
5830 		/* Quoting from the Open CISS Specification: "The Power
5831 		 * Management Control/Status Register (CSR) controls the power
5832 		 * state of the device.  The normal operating state is D0,
5833 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5834 		 * the controller, place the interface device in D3 then to D0,
5835 		 * this causes a secondary PCI reset which will reset the
5836 		 * controller." */
5837 
5838 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5839 		if (pos == 0) {
5840 			dev_err(&pdev->dev,
5841 				"hpsa_reset_controller: "
5842 				"PCI PM not supported\n");
5843 			return -ENODEV;
5844 		}
5845 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5846 		/* enter the D3hot power management state */
5847 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5848 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5849 		pmcsr |= PCI_D3hot;
5850 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5851 
5852 		msleep(500);
5853 
5854 		/* enter the D0 power management state */
5855 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5856 		pmcsr |= PCI_D0;
5857 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5858 
5859 		/*
5860 		 * The P600 requires a small delay when changing states.
5861 		 * Otherwise we may think the board did not reset and we bail.
5862 		 * This for kdump only and is particular to the P600.
5863 		 */
5864 		msleep(500);
5865 	}
5866 	return 0;
5867 }
5868 
5869 static void init_driver_version(char *driver_version, int len)
5870 {
5871 	memset(driver_version, 0, len);
5872 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5873 }
5874 
5875 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5876 {
5877 	char *driver_version;
5878 	int i, size = sizeof(cfgtable->driver_version);
5879 
5880 	driver_version = kmalloc(size, GFP_KERNEL);
5881 	if (!driver_version)
5882 		return -ENOMEM;
5883 
5884 	init_driver_version(driver_version, size);
5885 	for (i = 0; i < size; i++)
5886 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5887 	kfree(driver_version);
5888 	return 0;
5889 }
5890 
5891 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5892 					  unsigned char *driver_ver)
5893 {
5894 	int i;
5895 
5896 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5897 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5898 }
5899 
5900 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5901 {
5902 
5903 	char *driver_ver, *old_driver_ver;
5904 	int rc, size = sizeof(cfgtable->driver_version);
5905 
5906 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5907 	if (!old_driver_ver)
5908 		return -ENOMEM;
5909 	driver_ver = old_driver_ver + size;
5910 
5911 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5912 	 * should have been changed, otherwise we know the reset failed.
5913 	 */
5914 	init_driver_version(old_driver_ver, size);
5915 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5916 	rc = !memcmp(driver_ver, old_driver_ver, size);
5917 	kfree(old_driver_ver);
5918 	return rc;
5919 }
5920 /* This does a hard reset of the controller using PCI power management
5921  * states or the using the doorbell register.
5922  */
5923 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5924 {
5925 	u64 cfg_offset;
5926 	u32 cfg_base_addr;
5927 	u64 cfg_base_addr_index;
5928 	void __iomem *vaddr;
5929 	unsigned long paddr;
5930 	u32 misc_fw_support;
5931 	int rc;
5932 	struct CfgTable __iomem *cfgtable;
5933 	u32 use_doorbell;
5934 	u32 board_id;
5935 	u16 command_register;
5936 
5937 	/* For controllers as old as the P600, this is very nearly
5938 	 * the same thing as
5939 	 *
5940 	 * pci_save_state(pci_dev);
5941 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5942 	 * pci_set_power_state(pci_dev, PCI_D0);
5943 	 * pci_restore_state(pci_dev);
5944 	 *
5945 	 * For controllers newer than the P600, the pci power state
5946 	 * method of resetting doesn't work so we have another way
5947 	 * using the doorbell register.
5948 	 */
5949 
5950 	rc = hpsa_lookup_board_id(pdev, &board_id);
5951 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5952 		dev_warn(&pdev->dev, "Not resetting device.\n");
5953 		return -ENODEV;
5954 	}
5955 
5956 	/* if controller is soft- but not hard resettable... */
5957 	if (!ctlr_is_hard_resettable(board_id))
5958 		return -ENOTSUPP; /* try soft reset later. */
5959 
5960 	/* Save the PCI command register */
5961 	pci_read_config_word(pdev, 4, &command_register);
5962 	/* Turn the board off.  This is so that later pci_restore_state()
5963 	 * won't turn the board on before the rest of config space is ready.
5964 	 */
5965 	pci_disable_device(pdev);
5966 	pci_save_state(pdev);
5967 
5968 	/* find the first memory BAR, so we can find the cfg table */
5969 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5970 	if (rc)
5971 		return rc;
5972 	vaddr = remap_pci_mem(paddr, 0x250);
5973 	if (!vaddr)
5974 		return -ENOMEM;
5975 
5976 	/* find cfgtable in order to check if reset via doorbell is supported */
5977 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5978 					&cfg_base_addr_index, &cfg_offset);
5979 	if (rc)
5980 		goto unmap_vaddr;
5981 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5982 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5983 	if (!cfgtable) {
5984 		rc = -ENOMEM;
5985 		goto unmap_vaddr;
5986 	}
5987 	rc = write_driver_ver_to_cfgtable(cfgtable);
5988 	if (rc)
5989 		goto unmap_vaddr;
5990 
5991 	/* If reset via doorbell register is supported, use that.
5992 	 * There are two such methods.  Favor the newest method.
5993 	 */
5994 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5995 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5996 	if (use_doorbell) {
5997 		use_doorbell = DOORBELL_CTLR_RESET2;
5998 	} else {
5999 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6000 		if (use_doorbell) {
6001 			dev_warn(&pdev->dev, "Soft reset not supported. "
6002 				"Firmware update is required.\n");
6003 			rc = -ENOTSUPP; /* try soft reset */
6004 			goto unmap_cfgtable;
6005 		}
6006 	}
6007 
6008 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6009 	if (rc)
6010 		goto unmap_cfgtable;
6011 
6012 	pci_restore_state(pdev);
6013 	rc = pci_enable_device(pdev);
6014 	if (rc) {
6015 		dev_warn(&pdev->dev, "failed to enable device.\n");
6016 		goto unmap_cfgtable;
6017 	}
6018 	pci_write_config_word(pdev, 4, command_register);
6019 
6020 	/* Some devices (notably the HP Smart Array 5i Controller)
6021 	   need a little pause here */
6022 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6023 
6024 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6025 	if (rc) {
6026 		dev_warn(&pdev->dev,
6027 			"failed waiting for board to become ready "
6028 			"after hard reset\n");
6029 		goto unmap_cfgtable;
6030 	}
6031 
6032 	rc = controller_reset_failed(vaddr);
6033 	if (rc < 0)
6034 		goto unmap_cfgtable;
6035 	if (rc) {
6036 		dev_warn(&pdev->dev, "Unable to successfully reset "
6037 			"controller. Will try soft reset.\n");
6038 		rc = -ENOTSUPP;
6039 	} else {
6040 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6041 	}
6042 
6043 unmap_cfgtable:
6044 	iounmap(cfgtable);
6045 
6046 unmap_vaddr:
6047 	iounmap(vaddr);
6048 	return rc;
6049 }
6050 
6051 /*
6052  *  We cannot read the structure directly, for portability we must use
6053  *   the io functions.
6054  *   This is for debug only.
6055  */
6056 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6057 {
6058 #ifdef HPSA_DEBUG
6059 	int i;
6060 	char temp_name[17];
6061 
6062 	dev_info(dev, "Controller Configuration information\n");
6063 	dev_info(dev, "------------------------------------\n");
6064 	for (i = 0; i < 4; i++)
6065 		temp_name[i] = readb(&(tb->Signature[i]));
6066 	temp_name[4] = '\0';
6067 	dev_info(dev, "   Signature = %s\n", temp_name);
6068 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6069 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6070 	       readl(&(tb->TransportSupport)));
6071 	dev_info(dev, "   Transport methods active = 0x%x\n",
6072 	       readl(&(tb->TransportActive)));
6073 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6074 	       readl(&(tb->HostWrite.TransportRequest)));
6075 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6076 	       readl(&(tb->HostWrite.CoalIntDelay)));
6077 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6078 	       readl(&(tb->HostWrite.CoalIntCount)));
6079 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
6080 	       readl(&(tb->CmdsOutMax)));
6081 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6082 	for (i = 0; i < 16; i++)
6083 		temp_name[i] = readb(&(tb->ServerName[i]));
6084 	temp_name[16] = '\0';
6085 	dev_info(dev, "   Server Name = %s\n", temp_name);
6086 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6087 		readl(&(tb->HeartBeat)));
6088 #endif				/* HPSA_DEBUG */
6089 }
6090 
6091 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6092 {
6093 	int i, offset, mem_type, bar_type;
6094 
6095 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6096 		return 0;
6097 	offset = 0;
6098 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6099 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6100 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6101 			offset += 4;
6102 		else {
6103 			mem_type = pci_resource_flags(pdev, i) &
6104 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6105 			switch (mem_type) {
6106 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6107 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6108 				offset += 4;	/* 32 bit */
6109 				break;
6110 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6111 				offset += 8;
6112 				break;
6113 			default:	/* reserved in PCI 2.2 */
6114 				dev_warn(&pdev->dev,
6115 				       "base address is invalid\n");
6116 				return -1;
6117 				break;
6118 			}
6119 		}
6120 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6121 			return i + 1;
6122 	}
6123 	return -1;
6124 }
6125 
6126 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6127  * controllers that are capable. If not, we use IO-APIC mode.
6128  */
6129 
6130 static void hpsa_interrupt_mode(struct ctlr_info *h)
6131 {
6132 #ifdef CONFIG_PCI_MSI
6133 	int err, i;
6134 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6135 
6136 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6137 		hpsa_msix_entries[i].vector = 0;
6138 		hpsa_msix_entries[i].entry = i;
6139 	}
6140 
6141 	/* Some boards advertise MSI but don't really support it */
6142 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6143 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6144 		goto default_int_mode;
6145 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6146 		dev_info(&h->pdev->dev, "MSIX\n");
6147 		h->msix_vector = MAX_REPLY_QUEUES;
6148 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6149 				      h->msix_vector);
6150 		if (err > 0) {
6151 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6152 			       "available\n", err);
6153 			h->msix_vector = err;
6154 			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6155 					      h->msix_vector);
6156 		}
6157 		if (!err) {
6158 			for (i = 0; i < h->msix_vector; i++)
6159 				h->intr[i] = hpsa_msix_entries[i].vector;
6160 			return;
6161 		} else {
6162 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6163 			       err);
6164 			h->msix_vector = 0;
6165 			goto default_int_mode;
6166 		}
6167 	}
6168 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6169 		dev_info(&h->pdev->dev, "MSI\n");
6170 		if (!pci_enable_msi(h->pdev))
6171 			h->msi_vector = 1;
6172 		else
6173 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6174 	}
6175 default_int_mode:
6176 #endif				/* CONFIG_PCI_MSI */
6177 	/* if we get here we're going to use the default interrupt mode */
6178 	h->intr[h->intr_mode] = h->pdev->irq;
6179 }
6180 
6181 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6182 {
6183 	int i;
6184 	u32 subsystem_vendor_id, subsystem_device_id;
6185 
6186 	subsystem_vendor_id = pdev->subsystem_vendor;
6187 	subsystem_device_id = pdev->subsystem_device;
6188 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6189 		    subsystem_vendor_id;
6190 
6191 	for (i = 0; i < ARRAY_SIZE(products); i++)
6192 		if (*board_id == products[i].board_id)
6193 			return i;
6194 
6195 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6196 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6197 		!hpsa_allow_any) {
6198 		dev_warn(&pdev->dev, "unrecognized board ID: "
6199 			"0x%08x, ignoring.\n", *board_id);
6200 			return -ENODEV;
6201 	}
6202 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6203 }
6204 
6205 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6206 				    unsigned long *memory_bar)
6207 {
6208 	int i;
6209 
6210 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6211 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6212 			/* addressing mode bits already removed */
6213 			*memory_bar = pci_resource_start(pdev, i);
6214 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6215 				*memory_bar);
6216 			return 0;
6217 		}
6218 	dev_warn(&pdev->dev, "no memory BAR found\n");
6219 	return -ENODEV;
6220 }
6221 
6222 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6223 				     int wait_for_ready)
6224 {
6225 	int i, iterations;
6226 	u32 scratchpad;
6227 	if (wait_for_ready)
6228 		iterations = HPSA_BOARD_READY_ITERATIONS;
6229 	else
6230 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6231 
6232 	for (i = 0; i < iterations; i++) {
6233 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6234 		if (wait_for_ready) {
6235 			if (scratchpad == HPSA_FIRMWARE_READY)
6236 				return 0;
6237 		} else {
6238 			if (scratchpad != HPSA_FIRMWARE_READY)
6239 				return 0;
6240 		}
6241 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6242 	}
6243 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6244 	return -ENODEV;
6245 }
6246 
6247 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6248 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6249 			       u64 *cfg_offset)
6250 {
6251 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6252 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6253 	*cfg_base_addr &= (u32) 0x0000ffff;
6254 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6255 	if (*cfg_base_addr_index == -1) {
6256 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6257 		return -ENODEV;
6258 	}
6259 	return 0;
6260 }
6261 
6262 static int hpsa_find_cfgtables(struct ctlr_info *h)
6263 {
6264 	u64 cfg_offset;
6265 	u32 cfg_base_addr;
6266 	u64 cfg_base_addr_index;
6267 	u32 trans_offset;
6268 	int rc;
6269 
6270 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6271 		&cfg_base_addr_index, &cfg_offset);
6272 	if (rc)
6273 		return rc;
6274 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6275 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6276 	if (!h->cfgtable)
6277 		return -ENOMEM;
6278 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6279 	if (rc)
6280 		return rc;
6281 	/* Find performant mode table. */
6282 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6283 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6284 				cfg_base_addr_index)+cfg_offset+trans_offset,
6285 				sizeof(*h->transtable));
6286 	if (!h->transtable)
6287 		return -ENOMEM;
6288 	return 0;
6289 }
6290 
6291 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6292 {
6293 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6294 
6295 	/* Limit commands in memory limited kdump scenario. */
6296 	if (reset_devices && h->max_commands > 32)
6297 		h->max_commands = 32;
6298 
6299 	if (h->max_commands < 16) {
6300 		dev_warn(&h->pdev->dev, "Controller reports "
6301 			"max supported commands of %d, an obvious lie. "
6302 			"Using 16.  Ensure that firmware is up to date.\n",
6303 			h->max_commands);
6304 		h->max_commands = 16;
6305 	}
6306 }
6307 
6308 /* Interrogate the hardware for some limits:
6309  * max commands, max SG elements without chaining, and with chaining,
6310  * SG chain block size, etc.
6311  */
6312 static void hpsa_find_board_params(struct ctlr_info *h)
6313 {
6314 	hpsa_get_max_perf_mode_cmds(h);
6315 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6316 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6317 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6318 	/*
6319 	 * Limit in-command s/g elements to 32 save dma'able memory.
6320 	 * Howvever spec says if 0, use 31
6321 	 */
6322 	h->max_cmd_sg_entries = 31;
6323 	if (h->maxsgentries > 512) {
6324 		h->max_cmd_sg_entries = 32;
6325 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6326 		h->maxsgentries--; /* save one for chain pointer */
6327 	} else {
6328 		h->maxsgentries = 31; /* default to traditional values */
6329 		h->chainsize = 0;
6330 	}
6331 
6332 	/* Find out what task management functions are supported and cache */
6333 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6334 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6335 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6336 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6337 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6338 }
6339 
6340 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6341 {
6342 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6343 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6344 		return false;
6345 	}
6346 	return true;
6347 }
6348 
6349 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6350 {
6351 	u32 driver_support;
6352 
6353 #ifdef CONFIG_X86
6354 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6355 	driver_support = readl(&(h->cfgtable->driver_support));
6356 	driver_support |= ENABLE_SCSI_PREFETCH;
6357 #endif
6358 	driver_support |= ENABLE_UNIT_ATTN;
6359 	writel(driver_support, &(h->cfgtable->driver_support));
6360 }
6361 
6362 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6363  * in a prefetch beyond physical memory.
6364  */
6365 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6366 {
6367 	u32 dma_prefetch;
6368 
6369 	if (h->board_id != 0x3225103C)
6370 		return;
6371 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6372 	dma_prefetch |= 0x8000;
6373 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6374 }
6375 
6376 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6377 {
6378 	int i;
6379 	u32 doorbell_value;
6380 	unsigned long flags;
6381 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6382 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6383 		spin_lock_irqsave(&h->lock, flags);
6384 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6385 		spin_unlock_irqrestore(&h->lock, flags);
6386 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6387 			break;
6388 		/* delay and try again */
6389 		msleep(20);
6390 	}
6391 }
6392 
6393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6394 {
6395 	int i;
6396 	u32 doorbell_value;
6397 	unsigned long flags;
6398 
6399 	/* under certain very rare conditions, this can take awhile.
6400 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6401 	 * as we enter this code.)
6402 	 */
6403 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6404 		spin_lock_irqsave(&h->lock, flags);
6405 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6406 		spin_unlock_irqrestore(&h->lock, flags);
6407 		if (!(doorbell_value & CFGTBL_ChangeReq))
6408 			break;
6409 		/* delay and try again */
6410 		usleep_range(10000, 20000);
6411 	}
6412 }
6413 
6414 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6415 {
6416 	u32 trans_support;
6417 
6418 	trans_support = readl(&(h->cfgtable->TransportSupport));
6419 	if (!(trans_support & SIMPLE_MODE))
6420 		return -ENOTSUPP;
6421 
6422 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6423 
6424 	/* Update the field, and then ring the doorbell */
6425 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6426 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6427 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6428 	hpsa_wait_for_mode_change_ack(h);
6429 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6430 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6431 		goto error;
6432 	h->transMethod = CFGTBL_Trans_Simple;
6433 	return 0;
6434 error:
6435 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6436 	return -ENODEV;
6437 }
6438 
6439 static int hpsa_pci_init(struct ctlr_info *h)
6440 {
6441 	int prod_index, err;
6442 
6443 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6444 	if (prod_index < 0)
6445 		return -ENODEV;
6446 	h->product_name = products[prod_index].product_name;
6447 	h->access = *(products[prod_index].access);
6448 
6449 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6450 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6451 
6452 	err = pci_enable_device(h->pdev);
6453 	if (err) {
6454 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6455 		return err;
6456 	}
6457 
6458 	/* Enable bus mastering (pci_disable_device may disable this) */
6459 	pci_set_master(h->pdev);
6460 
6461 	err = pci_request_regions(h->pdev, HPSA);
6462 	if (err) {
6463 		dev_err(&h->pdev->dev,
6464 			"cannot obtain PCI resources, aborting\n");
6465 		return err;
6466 	}
6467 	hpsa_interrupt_mode(h);
6468 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6469 	if (err)
6470 		goto err_out_free_res;
6471 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6472 	if (!h->vaddr) {
6473 		err = -ENOMEM;
6474 		goto err_out_free_res;
6475 	}
6476 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6477 	if (err)
6478 		goto err_out_free_res;
6479 	err = hpsa_find_cfgtables(h);
6480 	if (err)
6481 		goto err_out_free_res;
6482 	hpsa_find_board_params(h);
6483 
6484 	if (!hpsa_CISS_signature_present(h)) {
6485 		err = -ENODEV;
6486 		goto err_out_free_res;
6487 	}
6488 	hpsa_set_driver_support_bits(h);
6489 	hpsa_p600_dma_prefetch_quirk(h);
6490 	err = hpsa_enter_simple_mode(h);
6491 	if (err)
6492 		goto err_out_free_res;
6493 	return 0;
6494 
6495 err_out_free_res:
6496 	if (h->transtable)
6497 		iounmap(h->transtable);
6498 	if (h->cfgtable)
6499 		iounmap(h->cfgtable);
6500 	if (h->vaddr)
6501 		iounmap(h->vaddr);
6502 	pci_disable_device(h->pdev);
6503 	pci_release_regions(h->pdev);
6504 	return err;
6505 }
6506 
6507 static void hpsa_hba_inquiry(struct ctlr_info *h)
6508 {
6509 	int rc;
6510 
6511 #define HBA_INQUIRY_BYTE_COUNT 64
6512 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6513 	if (!h->hba_inquiry_data)
6514 		return;
6515 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6516 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6517 	if (rc != 0) {
6518 		kfree(h->hba_inquiry_data);
6519 		h->hba_inquiry_data = NULL;
6520 	}
6521 }
6522 
6523 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6524 {
6525 	int rc, i;
6526 
6527 	if (!reset_devices)
6528 		return 0;
6529 
6530 	/* Reset the controller with a PCI power-cycle or via doorbell */
6531 	rc = hpsa_kdump_hard_reset_controller(pdev);
6532 
6533 	/* -ENOTSUPP here means we cannot reset the controller
6534 	 * but it's already (and still) up and running in
6535 	 * "performant mode".  Or, it might be 640x, which can't reset
6536 	 * due to concerns about shared bbwc between 6402/6404 pair.
6537 	 */
6538 	if (rc == -ENOTSUPP)
6539 		return rc; /* just try to do the kdump anyhow. */
6540 	if (rc)
6541 		return -ENODEV;
6542 
6543 	/* Now try to get the controller to respond to a no-op */
6544 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6545 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6546 		if (hpsa_noop(pdev) == 0)
6547 			break;
6548 		else
6549 			dev_warn(&pdev->dev, "no-op failed%s\n",
6550 					(i < 11 ? "; re-trying" : ""));
6551 	}
6552 	return 0;
6553 }
6554 
6555 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6556 {
6557 	h->cmd_pool_bits = kzalloc(
6558 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6559 		sizeof(unsigned long), GFP_KERNEL);
6560 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6561 		    h->nr_cmds * sizeof(*h->cmd_pool),
6562 		    &(h->cmd_pool_dhandle));
6563 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6564 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6565 		    &(h->errinfo_pool_dhandle));
6566 	if ((h->cmd_pool_bits == NULL)
6567 	    || (h->cmd_pool == NULL)
6568 	    || (h->errinfo_pool == NULL)) {
6569 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6570 		return -ENOMEM;
6571 	}
6572 	return 0;
6573 }
6574 
6575 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6576 {
6577 	kfree(h->cmd_pool_bits);
6578 	if (h->cmd_pool)
6579 		pci_free_consistent(h->pdev,
6580 			    h->nr_cmds * sizeof(struct CommandList),
6581 			    h->cmd_pool, h->cmd_pool_dhandle);
6582 	if (h->ioaccel2_cmd_pool)
6583 		pci_free_consistent(h->pdev,
6584 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6585 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6586 	if (h->errinfo_pool)
6587 		pci_free_consistent(h->pdev,
6588 			    h->nr_cmds * sizeof(struct ErrorInfo),
6589 			    h->errinfo_pool,
6590 			    h->errinfo_pool_dhandle);
6591 	if (h->ioaccel_cmd_pool)
6592 		pci_free_consistent(h->pdev,
6593 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6594 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6595 }
6596 
6597 static int hpsa_request_irq(struct ctlr_info *h,
6598 	irqreturn_t (*msixhandler)(int, void *),
6599 	irqreturn_t (*intxhandler)(int, void *))
6600 {
6601 	int rc, i;
6602 
6603 	/*
6604 	 * initialize h->q[x] = x so that interrupt handlers know which
6605 	 * queue to process.
6606 	 */
6607 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6608 		h->q[i] = (u8) i;
6609 
6610 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6611 		/* If performant mode and MSI-X, use multiple reply queues */
6612 		for (i = 0; i < h->msix_vector; i++)
6613 			rc = request_irq(h->intr[i], msixhandler,
6614 					0, h->devname,
6615 					&h->q[i]);
6616 	} else {
6617 		/* Use single reply pool */
6618 		if (h->msix_vector > 0 || h->msi_vector) {
6619 			rc = request_irq(h->intr[h->intr_mode],
6620 				msixhandler, 0, h->devname,
6621 				&h->q[h->intr_mode]);
6622 		} else {
6623 			rc = request_irq(h->intr[h->intr_mode],
6624 				intxhandler, IRQF_SHARED, h->devname,
6625 				&h->q[h->intr_mode]);
6626 		}
6627 	}
6628 	if (rc) {
6629 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6630 		       h->intr[h->intr_mode], h->devname);
6631 		return -ENODEV;
6632 	}
6633 	return 0;
6634 }
6635 
6636 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6637 {
6638 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6639 		HPSA_RESET_TYPE_CONTROLLER)) {
6640 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6641 		return -EIO;
6642 	}
6643 
6644 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6645 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6646 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6647 		return -1;
6648 	}
6649 
6650 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6651 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6652 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6653 			"after soft reset.\n");
6654 		return -1;
6655 	}
6656 
6657 	return 0;
6658 }
6659 
6660 static void free_irqs(struct ctlr_info *h)
6661 {
6662 	int i;
6663 
6664 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6665 		/* Single reply queue, only one irq to free */
6666 		i = h->intr_mode;
6667 		free_irq(h->intr[i], &h->q[i]);
6668 		return;
6669 	}
6670 
6671 	for (i = 0; i < h->msix_vector; i++)
6672 		free_irq(h->intr[i], &h->q[i]);
6673 }
6674 
6675 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6676 {
6677 	free_irqs(h);
6678 #ifdef CONFIG_PCI_MSI
6679 	if (h->msix_vector) {
6680 		if (h->pdev->msix_enabled)
6681 			pci_disable_msix(h->pdev);
6682 	} else if (h->msi_vector) {
6683 		if (h->pdev->msi_enabled)
6684 			pci_disable_msi(h->pdev);
6685 	}
6686 #endif /* CONFIG_PCI_MSI */
6687 }
6688 
6689 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6690 {
6691 	hpsa_free_irqs_and_disable_msix(h);
6692 	hpsa_free_sg_chain_blocks(h);
6693 	hpsa_free_cmd_pool(h);
6694 	kfree(h->ioaccel1_blockFetchTable);
6695 	kfree(h->blockFetchTable);
6696 	pci_free_consistent(h->pdev, h->reply_pool_size,
6697 		h->reply_pool, h->reply_pool_dhandle);
6698 	if (h->vaddr)
6699 		iounmap(h->vaddr);
6700 	if (h->transtable)
6701 		iounmap(h->transtable);
6702 	if (h->cfgtable)
6703 		iounmap(h->cfgtable);
6704 	pci_release_regions(h->pdev);
6705 	kfree(h);
6706 }
6707 
6708 /* Called when controller lockup detected. */
6709 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6710 {
6711 	struct CommandList *c = NULL;
6712 
6713 	assert_spin_locked(&h->lock);
6714 	/* Mark all outstanding commands as failed and complete them. */
6715 	while (!list_empty(list)) {
6716 		c = list_entry(list->next, struct CommandList, list);
6717 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6718 		finish_cmd(c);
6719 	}
6720 }
6721 
6722 static void controller_lockup_detected(struct ctlr_info *h)
6723 {
6724 	unsigned long flags;
6725 
6726 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6727 	spin_lock_irqsave(&h->lock, flags);
6728 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6729 	spin_unlock_irqrestore(&h->lock, flags);
6730 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6731 			h->lockup_detected);
6732 	pci_disable_device(h->pdev);
6733 	spin_lock_irqsave(&h->lock, flags);
6734 	fail_all_cmds_on_list(h, &h->cmpQ);
6735 	fail_all_cmds_on_list(h, &h->reqQ);
6736 	spin_unlock_irqrestore(&h->lock, flags);
6737 }
6738 
6739 static void detect_controller_lockup(struct ctlr_info *h)
6740 {
6741 	u64 now;
6742 	u32 heartbeat;
6743 	unsigned long flags;
6744 
6745 	now = get_jiffies_64();
6746 	/* If we've received an interrupt recently, we're ok. */
6747 	if (time_after64(h->last_intr_timestamp +
6748 				(h->heartbeat_sample_interval), now))
6749 		return;
6750 
6751 	/*
6752 	 * If we've already checked the heartbeat recently, we're ok.
6753 	 * This could happen if someone sends us a signal. We
6754 	 * otherwise don't care about signals in this thread.
6755 	 */
6756 	if (time_after64(h->last_heartbeat_timestamp +
6757 				(h->heartbeat_sample_interval), now))
6758 		return;
6759 
6760 	/* If heartbeat has not changed since we last looked, we're not ok. */
6761 	spin_lock_irqsave(&h->lock, flags);
6762 	heartbeat = readl(&h->cfgtable->HeartBeat);
6763 	spin_unlock_irqrestore(&h->lock, flags);
6764 	if (h->last_heartbeat == heartbeat) {
6765 		controller_lockup_detected(h);
6766 		return;
6767 	}
6768 
6769 	/* We're ok. */
6770 	h->last_heartbeat = heartbeat;
6771 	h->last_heartbeat_timestamp = now;
6772 }
6773 
6774 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6775 {
6776 	int i;
6777 	char *event_type;
6778 
6779 	/* Clear the driver-requested rescan flag */
6780 	h->drv_req_rescan = 0;
6781 
6782 	/* Ask the controller to clear the events we're handling. */
6783 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6784 			| CFGTBL_Trans_io_accel2)) &&
6785 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6786 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6787 
6788 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6789 			event_type = "state change";
6790 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6791 			event_type = "configuration change";
6792 		/* Stop sending new RAID offload reqs via the IO accelerator */
6793 		scsi_block_requests(h->scsi_host);
6794 		for (i = 0; i < h->ndevices; i++)
6795 			h->dev[i]->offload_enabled = 0;
6796 		hpsa_drain_accel_commands(h);
6797 		/* Set 'accelerator path config change' bit */
6798 		dev_warn(&h->pdev->dev,
6799 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6800 			h->events, event_type);
6801 		writel(h->events, &(h->cfgtable->clear_event_notify));
6802 		/* Set the "clear event notify field update" bit 6 */
6803 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6804 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6805 		hpsa_wait_for_clear_event_notify_ack(h);
6806 		scsi_unblock_requests(h->scsi_host);
6807 	} else {
6808 		/* Acknowledge controller notification events. */
6809 		writel(h->events, &(h->cfgtable->clear_event_notify));
6810 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6811 		hpsa_wait_for_clear_event_notify_ack(h);
6812 #if 0
6813 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6814 		hpsa_wait_for_mode_change_ack(h);
6815 #endif
6816 	}
6817 	return;
6818 }
6819 
6820 /* Check a register on the controller to see if there are configuration
6821  * changes (added/changed/removed logical drives, etc.) which mean that
6822  * we should rescan the controller for devices.
6823  * Also check flag for driver-initiated rescan.
6824  */
6825 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6826 {
6827 	if (h->drv_req_rescan)
6828 		return 1;
6829 
6830 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6831 		return 0;
6832 
6833 	h->events = readl(&(h->cfgtable->event_notify));
6834 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6835 }
6836 
6837 /*
6838  * Check if any of the offline devices have become ready
6839  */
6840 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6841 {
6842 	unsigned long flags;
6843 	struct offline_device_entry *d;
6844 	struct list_head *this, *tmp;
6845 
6846 	spin_lock_irqsave(&h->offline_device_lock, flags);
6847 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6848 		d = list_entry(this, struct offline_device_entry,
6849 				offline_list);
6850 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6851 		if (!hpsa_volume_offline(h, d->scsi3addr))
6852 			return 1;
6853 		spin_lock_irqsave(&h->offline_device_lock, flags);
6854 	}
6855 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6856 	return 0;
6857 }
6858 
6859 
6860 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6861 {
6862 	unsigned long flags;
6863 	struct ctlr_info *h = container_of(to_delayed_work(work),
6864 					struct ctlr_info, monitor_ctlr_work);
6865 	detect_controller_lockup(h);
6866 	if (h->lockup_detected)
6867 		return;
6868 
6869 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6870 		scsi_host_get(h->scsi_host);
6871 		h->drv_req_rescan = 0;
6872 		hpsa_ack_ctlr_events(h);
6873 		hpsa_scan_start(h->scsi_host);
6874 		scsi_host_put(h->scsi_host);
6875 	}
6876 
6877 	spin_lock_irqsave(&h->lock, flags);
6878 	if (h->remove_in_progress) {
6879 		spin_unlock_irqrestore(&h->lock, flags);
6880 		return;
6881 	}
6882 	schedule_delayed_work(&h->monitor_ctlr_work,
6883 				h->heartbeat_sample_interval);
6884 	spin_unlock_irqrestore(&h->lock, flags);
6885 }
6886 
6887 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6888 {
6889 	int dac, rc;
6890 	struct ctlr_info *h;
6891 	int try_soft_reset = 0;
6892 	unsigned long flags;
6893 
6894 	if (number_of_controllers == 0)
6895 		printk(KERN_INFO DRIVER_NAME "\n");
6896 
6897 	rc = hpsa_init_reset_devices(pdev);
6898 	if (rc) {
6899 		if (rc != -ENOTSUPP)
6900 			return rc;
6901 		/* If the reset fails in a particular way (it has no way to do
6902 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6903 		 * a soft reset once we get the controller configured up to the
6904 		 * point that it can accept a command.
6905 		 */
6906 		try_soft_reset = 1;
6907 		rc = 0;
6908 	}
6909 
6910 reinit_after_soft_reset:
6911 
6912 	/* Command structures must be aligned on a 32-byte boundary because
6913 	 * the 5 lower bits of the address are used by the hardware. and by
6914 	 * the driver.  See comments in hpsa.h for more info.
6915 	 */
6916 #define COMMANDLIST_ALIGNMENT 128
6917 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6918 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6919 	if (!h)
6920 		return -ENOMEM;
6921 
6922 	h->pdev = pdev;
6923 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6924 	INIT_LIST_HEAD(&h->cmpQ);
6925 	INIT_LIST_HEAD(&h->reqQ);
6926 	INIT_LIST_HEAD(&h->offline_device_list);
6927 	spin_lock_init(&h->lock);
6928 	spin_lock_init(&h->offline_device_lock);
6929 	spin_lock_init(&h->scan_lock);
6930 	spin_lock_init(&h->passthru_count_lock);
6931 	rc = hpsa_pci_init(h);
6932 	if (rc != 0)
6933 		goto clean1;
6934 
6935 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6936 	h->ctlr = number_of_controllers;
6937 	number_of_controllers++;
6938 
6939 	/* configure PCI DMA stuff */
6940 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6941 	if (rc == 0) {
6942 		dac = 1;
6943 	} else {
6944 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6945 		if (rc == 0) {
6946 			dac = 0;
6947 		} else {
6948 			dev_err(&pdev->dev, "no suitable DMA available\n");
6949 			goto clean1;
6950 		}
6951 	}
6952 
6953 	/* make sure the board interrupts are off */
6954 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6955 
6956 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6957 		goto clean2;
6958 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6959 	       h->devname, pdev->device,
6960 	       h->intr[h->intr_mode], dac ? "" : " not");
6961 	if (hpsa_allocate_cmd_pool(h))
6962 		goto clean4;
6963 	if (hpsa_allocate_sg_chain_blocks(h))
6964 		goto clean4;
6965 	init_waitqueue_head(&h->scan_wait_queue);
6966 	h->scan_finished = 1; /* no scan currently in progress */
6967 
6968 	pci_set_drvdata(pdev, h);
6969 	h->ndevices = 0;
6970 	h->hba_mode_enabled = 0;
6971 	h->scsi_host = NULL;
6972 	spin_lock_init(&h->devlock);
6973 	hpsa_put_ctlr_into_performant_mode(h);
6974 
6975 	/* At this point, the controller is ready to take commands.
6976 	 * Now, if reset_devices and the hard reset didn't work, try
6977 	 * the soft reset and see if that works.
6978 	 */
6979 	if (try_soft_reset) {
6980 
6981 		/* This is kind of gross.  We may or may not get a completion
6982 		 * from the soft reset command, and if we do, then the value
6983 		 * from the fifo may or may not be valid.  So, we wait 10 secs
6984 		 * after the reset throwing away any completions we get during
6985 		 * that time.  Unregister the interrupt handler and register
6986 		 * fake ones to scoop up any residual completions.
6987 		 */
6988 		spin_lock_irqsave(&h->lock, flags);
6989 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6990 		spin_unlock_irqrestore(&h->lock, flags);
6991 		free_irqs(h);
6992 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6993 					hpsa_intx_discard_completions);
6994 		if (rc) {
6995 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
6996 				"soft reset.\n");
6997 			goto clean4;
6998 		}
6999 
7000 		rc = hpsa_kdump_soft_reset(h);
7001 		if (rc)
7002 			/* Neither hard nor soft reset worked, we're hosed. */
7003 			goto clean4;
7004 
7005 		dev_info(&h->pdev->dev, "Board READY.\n");
7006 		dev_info(&h->pdev->dev,
7007 			"Waiting for stale completions to drain.\n");
7008 		h->access.set_intr_mask(h, HPSA_INTR_ON);
7009 		msleep(10000);
7010 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7011 
7012 		rc = controller_reset_failed(h->cfgtable);
7013 		if (rc)
7014 			dev_info(&h->pdev->dev,
7015 				"Soft reset appears to have failed.\n");
7016 
7017 		/* since the controller's reset, we have to go back and re-init
7018 		 * everything.  Easiest to just forget what we've done and do it
7019 		 * all over again.
7020 		 */
7021 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7022 		try_soft_reset = 0;
7023 		if (rc)
7024 			/* don't go to clean4, we already unallocated */
7025 			return -ENODEV;
7026 
7027 		goto reinit_after_soft_reset;
7028 	}
7029 
7030 		/* Enable Accelerated IO path at driver layer */
7031 		h->acciopath_status = 1;
7032 
7033 	h->drv_req_rescan = 0;
7034 
7035 	/* Turn the interrupts on so we can service requests */
7036 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7037 
7038 	hpsa_hba_inquiry(h);
7039 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7040 
7041 	/* Monitor the controller for firmware lockups */
7042 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7043 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7044 	schedule_delayed_work(&h->monitor_ctlr_work,
7045 				h->heartbeat_sample_interval);
7046 	return 0;
7047 
7048 clean4:
7049 	hpsa_free_sg_chain_blocks(h);
7050 	hpsa_free_cmd_pool(h);
7051 	free_irqs(h);
7052 clean2:
7053 clean1:
7054 	kfree(h);
7055 	return rc;
7056 }
7057 
7058 static void hpsa_flush_cache(struct ctlr_info *h)
7059 {
7060 	char *flush_buf;
7061 	struct CommandList *c;
7062 	unsigned long flags;
7063 
7064 	/* Don't bother trying to flush the cache if locked up */
7065 	spin_lock_irqsave(&h->lock, flags);
7066 	if (unlikely(h->lockup_detected)) {
7067 		spin_unlock_irqrestore(&h->lock, flags);
7068 		return;
7069 	}
7070 	spin_unlock_irqrestore(&h->lock, flags);
7071 
7072 	flush_buf = kzalloc(4, GFP_KERNEL);
7073 	if (!flush_buf)
7074 		return;
7075 
7076 	c = cmd_special_alloc(h);
7077 	if (!c) {
7078 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7079 		goto out_of_memory;
7080 	}
7081 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7082 		RAID_CTLR_LUNID, TYPE_CMD)) {
7083 		goto out;
7084 	}
7085 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7086 	if (c->err_info->CommandStatus != 0)
7087 out:
7088 		dev_warn(&h->pdev->dev,
7089 			"error flushing cache on controller\n");
7090 	cmd_special_free(h, c);
7091 out_of_memory:
7092 	kfree(flush_buf);
7093 }
7094 
7095 static void hpsa_shutdown(struct pci_dev *pdev)
7096 {
7097 	struct ctlr_info *h;
7098 
7099 	h = pci_get_drvdata(pdev);
7100 	/* Turn board interrupts off  and send the flush cache command
7101 	 * sendcmd will turn off interrupt, and send the flush...
7102 	 * To write all data in the battery backed cache to disks
7103 	 */
7104 	hpsa_flush_cache(h);
7105 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7106 	hpsa_free_irqs_and_disable_msix(h);
7107 }
7108 
7109 static void hpsa_free_device_info(struct ctlr_info *h)
7110 {
7111 	int i;
7112 
7113 	for (i = 0; i < h->ndevices; i++)
7114 		kfree(h->dev[i]);
7115 }
7116 
7117 static void hpsa_remove_one(struct pci_dev *pdev)
7118 {
7119 	struct ctlr_info *h;
7120 	unsigned long flags;
7121 
7122 	if (pci_get_drvdata(pdev) == NULL) {
7123 		dev_err(&pdev->dev, "unable to remove device\n");
7124 		return;
7125 	}
7126 	h = pci_get_drvdata(pdev);
7127 
7128 	/* Get rid of any controller monitoring work items */
7129 	spin_lock_irqsave(&h->lock, flags);
7130 	h->remove_in_progress = 1;
7131 	cancel_delayed_work(&h->monitor_ctlr_work);
7132 	spin_unlock_irqrestore(&h->lock, flags);
7133 
7134 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7135 	hpsa_shutdown(pdev);
7136 	iounmap(h->vaddr);
7137 	iounmap(h->transtable);
7138 	iounmap(h->cfgtable);
7139 	hpsa_free_device_info(h);
7140 	hpsa_free_sg_chain_blocks(h);
7141 	pci_free_consistent(h->pdev,
7142 		h->nr_cmds * sizeof(struct CommandList),
7143 		h->cmd_pool, h->cmd_pool_dhandle);
7144 	pci_free_consistent(h->pdev,
7145 		h->nr_cmds * sizeof(struct ErrorInfo),
7146 		h->errinfo_pool, h->errinfo_pool_dhandle);
7147 	pci_free_consistent(h->pdev, h->reply_pool_size,
7148 		h->reply_pool, h->reply_pool_dhandle);
7149 	kfree(h->cmd_pool_bits);
7150 	kfree(h->blockFetchTable);
7151 	kfree(h->ioaccel1_blockFetchTable);
7152 	kfree(h->ioaccel2_blockFetchTable);
7153 	kfree(h->hba_inquiry_data);
7154 	pci_disable_device(pdev);
7155 	pci_release_regions(pdev);
7156 	kfree(h);
7157 }
7158 
7159 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7160 	__attribute__((unused)) pm_message_t state)
7161 {
7162 	return -ENOSYS;
7163 }
7164 
7165 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7166 {
7167 	return -ENOSYS;
7168 }
7169 
7170 static struct pci_driver hpsa_pci_driver = {
7171 	.name = HPSA,
7172 	.probe = hpsa_init_one,
7173 	.remove = hpsa_remove_one,
7174 	.id_table = hpsa_pci_device_id,	/* id_table */
7175 	.shutdown = hpsa_shutdown,
7176 	.suspend = hpsa_suspend,
7177 	.resume = hpsa_resume,
7178 };
7179 
7180 /* Fill in bucket_map[], given nsgs (the max number of
7181  * scatter gather elements supported) and bucket[],
7182  * which is an array of 8 integers.  The bucket[] array
7183  * contains 8 different DMA transfer sizes (in 16
7184  * byte increments) which the controller uses to fetch
7185  * commands.  This function fills in bucket_map[], which
7186  * maps a given number of scatter gather elements to one of
7187  * the 8 DMA transfer sizes.  The point of it is to allow the
7188  * controller to only do as much DMA as needed to fetch the
7189  * command, with the DMA transfer size encoded in the lower
7190  * bits of the command address.
7191  */
7192 static void  calc_bucket_map(int bucket[], int num_buckets,
7193 	int nsgs, int min_blocks, int *bucket_map)
7194 {
7195 	int i, j, b, size;
7196 
7197 	/* Note, bucket_map must have nsgs+1 entries. */
7198 	for (i = 0; i <= nsgs; i++) {
7199 		/* Compute size of a command with i SG entries */
7200 		size = i + min_blocks;
7201 		b = num_buckets; /* Assume the biggest bucket */
7202 		/* Find the bucket that is just big enough */
7203 		for (j = 0; j < num_buckets; j++) {
7204 			if (bucket[j] >= size) {
7205 				b = j;
7206 				break;
7207 			}
7208 		}
7209 		/* for a command with i SG entries, use bucket b. */
7210 		bucket_map[i] = b;
7211 	}
7212 }
7213 
7214 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7215 {
7216 	int i;
7217 	unsigned long register_value;
7218 	unsigned long transMethod = CFGTBL_Trans_Performant |
7219 			(trans_support & CFGTBL_Trans_use_short_tags) |
7220 				CFGTBL_Trans_enable_directed_msix |
7221 			(trans_support & (CFGTBL_Trans_io_accel1 |
7222 				CFGTBL_Trans_io_accel2));
7223 	struct access_method access = SA5_performant_access;
7224 
7225 	/* This is a bit complicated.  There are 8 registers on
7226 	 * the controller which we write to to tell it 8 different
7227 	 * sizes of commands which there may be.  It's a way of
7228 	 * reducing the DMA done to fetch each command.  Encoded into
7229 	 * each command's tag are 3 bits which communicate to the controller
7230 	 * which of the eight sizes that command fits within.  The size of
7231 	 * each command depends on how many scatter gather entries there are.
7232 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7233 	 * with the number of 16-byte blocks a command of that size requires.
7234 	 * The smallest command possible requires 5 such 16 byte blocks.
7235 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7236 	 * blocks.  Note, this only extends to the SG entries contained
7237 	 * within the command block, and does not extend to chained blocks
7238 	 * of SG elements.   bft[] contains the eight values we write to
7239 	 * the registers.  They are not evenly distributed, but have more
7240 	 * sizes for small commands, and fewer sizes for larger commands.
7241 	 */
7242 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7243 #define MIN_IOACCEL2_BFT_ENTRY 5
7244 #define HPSA_IOACCEL2_HEADER_SZ 4
7245 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7246 			13, 14, 15, 16, 17, 18, 19,
7247 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7248 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7249 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7250 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7251 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7252 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7253 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7254 	/*  5 = 1 s/g entry or 4k
7255 	 *  6 = 2 s/g entry or 8k
7256 	 *  8 = 4 s/g entry or 16k
7257 	 * 10 = 6 s/g entry or 24k
7258 	 */
7259 
7260 	/* Controller spec: zero out this buffer. */
7261 	memset(h->reply_pool, 0, h->reply_pool_size);
7262 
7263 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7264 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7265 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7266 	for (i = 0; i < 8; i++)
7267 		writel(bft[i], &h->transtable->BlockFetch[i]);
7268 
7269 	/* size of controller ring buffer */
7270 	writel(h->max_commands, &h->transtable->RepQSize);
7271 	writel(h->nreply_queues, &h->transtable->RepQCount);
7272 	writel(0, &h->transtable->RepQCtrAddrLow32);
7273 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7274 
7275 	for (i = 0; i < h->nreply_queues; i++) {
7276 		writel(0, &h->transtable->RepQAddr[i].upper);
7277 		writel(h->reply_pool_dhandle +
7278 			(h->max_commands * sizeof(u64) * i),
7279 			&h->transtable->RepQAddr[i].lower);
7280 	}
7281 
7282 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7283 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7284 	/*
7285 	 * enable outbound interrupt coalescing in accelerator mode;
7286 	 */
7287 	if (trans_support & CFGTBL_Trans_io_accel1) {
7288 		access = SA5_ioaccel_mode1_access;
7289 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7290 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7291 	} else {
7292 		if (trans_support & CFGTBL_Trans_io_accel2) {
7293 			access = SA5_ioaccel_mode2_access;
7294 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7295 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7296 		}
7297 	}
7298 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7299 	hpsa_wait_for_mode_change_ack(h);
7300 	register_value = readl(&(h->cfgtable->TransportActive));
7301 	if (!(register_value & CFGTBL_Trans_Performant)) {
7302 		dev_warn(&h->pdev->dev, "unable to get board into"
7303 					" performant mode\n");
7304 		return;
7305 	}
7306 	/* Change the access methods to the performant access methods */
7307 	h->access = access;
7308 	h->transMethod = transMethod;
7309 
7310 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7311 		(trans_support & CFGTBL_Trans_io_accel2)))
7312 		return;
7313 
7314 	if (trans_support & CFGTBL_Trans_io_accel1) {
7315 		/* Set up I/O accelerator mode */
7316 		for (i = 0; i < h->nreply_queues; i++) {
7317 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7318 			h->reply_queue[i].current_entry =
7319 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7320 		}
7321 		bft[7] = h->ioaccel_maxsg + 8;
7322 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7323 				h->ioaccel1_blockFetchTable);
7324 
7325 		/* initialize all reply queue entries to unused */
7326 		memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
7327 				h->reply_pool_size);
7328 
7329 		/* set all the constant fields in the accelerator command
7330 		 * frames once at init time to save CPU cycles later.
7331 		 */
7332 		for (i = 0; i < h->nr_cmds; i++) {
7333 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7334 
7335 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7336 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7337 					(i * sizeof(struct ErrorInfo)));
7338 			cp->err_info_len = sizeof(struct ErrorInfo);
7339 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7340 			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7341 			cp->timeout_sec = 0;
7342 			cp->ReplyQueue = 0;
7343 			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7344 						DIRECT_LOOKUP_BIT;
7345 			cp->Tag.upper = 0;
7346 			cp->host_addr.lower =
7347 				(u32) (h->ioaccel_cmd_pool_dhandle +
7348 					(i * sizeof(struct io_accel1_cmd)));
7349 			cp->host_addr.upper = 0;
7350 		}
7351 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7352 		u64 cfg_offset, cfg_base_addr_index;
7353 		u32 bft2_offset, cfg_base_addr;
7354 		int rc;
7355 
7356 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7357 			&cfg_base_addr_index, &cfg_offset);
7358 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7359 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7360 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7361 				4, h->ioaccel2_blockFetchTable);
7362 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7363 		BUILD_BUG_ON(offsetof(struct CfgTable,
7364 				io_accel_request_size_offset) != 0xb8);
7365 		h->ioaccel2_bft2_regs =
7366 			remap_pci_mem(pci_resource_start(h->pdev,
7367 					cfg_base_addr_index) +
7368 					cfg_offset + bft2_offset,
7369 					ARRAY_SIZE(bft2) *
7370 					sizeof(*h->ioaccel2_bft2_regs));
7371 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7372 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7373 	}
7374 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7375 	hpsa_wait_for_mode_change_ack(h);
7376 }
7377 
7378 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7379 {
7380 	h->ioaccel_maxsg =
7381 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7382 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7383 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7384 
7385 	/* Command structures must be aligned on a 128-byte boundary
7386 	 * because the 7 lower bits of the address are used by the
7387 	 * hardware.
7388 	 */
7389 #define IOACCEL1_COMMANDLIST_ALIGNMENT 128
7390 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7391 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7392 	h->ioaccel_cmd_pool =
7393 		pci_alloc_consistent(h->pdev,
7394 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7395 			&(h->ioaccel_cmd_pool_dhandle));
7396 
7397 	h->ioaccel1_blockFetchTable =
7398 		kmalloc(((h->ioaccel_maxsg + 1) *
7399 				sizeof(u32)), GFP_KERNEL);
7400 
7401 	if ((h->ioaccel_cmd_pool == NULL) ||
7402 		(h->ioaccel1_blockFetchTable == NULL))
7403 		goto clean_up;
7404 
7405 	memset(h->ioaccel_cmd_pool, 0,
7406 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7407 	return 0;
7408 
7409 clean_up:
7410 	if (h->ioaccel_cmd_pool)
7411 		pci_free_consistent(h->pdev,
7412 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7413 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7414 	kfree(h->ioaccel1_blockFetchTable);
7415 	return 1;
7416 }
7417 
7418 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7419 {
7420 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7421 
7422 	h->ioaccel_maxsg =
7423 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7424 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7425 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7426 
7427 #define IOACCEL2_COMMANDLIST_ALIGNMENT 128
7428 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7429 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7430 	h->ioaccel2_cmd_pool =
7431 		pci_alloc_consistent(h->pdev,
7432 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7433 			&(h->ioaccel2_cmd_pool_dhandle));
7434 
7435 	h->ioaccel2_blockFetchTable =
7436 		kmalloc(((h->ioaccel_maxsg + 1) *
7437 				sizeof(u32)), GFP_KERNEL);
7438 
7439 	if ((h->ioaccel2_cmd_pool == NULL) ||
7440 		(h->ioaccel2_blockFetchTable == NULL))
7441 		goto clean_up;
7442 
7443 	memset(h->ioaccel2_cmd_pool, 0,
7444 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7445 	return 0;
7446 
7447 clean_up:
7448 	if (h->ioaccel2_cmd_pool)
7449 		pci_free_consistent(h->pdev,
7450 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7451 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7452 	kfree(h->ioaccel2_blockFetchTable);
7453 	return 1;
7454 }
7455 
7456 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7457 {
7458 	u32 trans_support;
7459 	unsigned long transMethod = CFGTBL_Trans_Performant |
7460 					CFGTBL_Trans_use_short_tags;
7461 	int i;
7462 
7463 	if (hpsa_simple_mode)
7464 		return;
7465 
7466 	/* Check for I/O accelerator mode support */
7467 	if (trans_support & CFGTBL_Trans_io_accel1) {
7468 		transMethod |= CFGTBL_Trans_io_accel1 |
7469 				CFGTBL_Trans_enable_directed_msix;
7470 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7471 			goto clean_up;
7472 	} else {
7473 		if (trans_support & CFGTBL_Trans_io_accel2) {
7474 				transMethod |= CFGTBL_Trans_io_accel2 |
7475 				CFGTBL_Trans_enable_directed_msix;
7476 		if (ioaccel2_alloc_cmds_and_bft(h))
7477 			goto clean_up;
7478 		}
7479 	}
7480 
7481 	/* TODO, check that this next line h->nreply_queues is correct */
7482 	trans_support = readl(&(h->cfgtable->TransportSupport));
7483 	if (!(trans_support & PERFORMANT_MODE))
7484 		return;
7485 
7486 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7487 	hpsa_get_max_perf_mode_cmds(h);
7488 	/* Performant mode ring buffer and supporting data structures */
7489 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
7490 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
7491 				&(h->reply_pool_dhandle));
7492 
7493 	for (i = 0; i < h->nreply_queues; i++) {
7494 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
7495 		h->reply_queue[i].size = h->max_commands;
7496 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7497 		h->reply_queue[i].current_entry = 0;
7498 	}
7499 
7500 	/* Need a block fetch table for performant mode */
7501 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7502 				sizeof(u32)), GFP_KERNEL);
7503 
7504 	if ((h->reply_pool == NULL)
7505 		|| (h->blockFetchTable == NULL))
7506 		goto clean_up;
7507 
7508 	hpsa_enter_performant_mode(h, trans_support);
7509 	return;
7510 
7511 clean_up:
7512 	if (h->reply_pool)
7513 		pci_free_consistent(h->pdev, h->reply_pool_size,
7514 			h->reply_pool, h->reply_pool_dhandle);
7515 	kfree(h->blockFetchTable);
7516 }
7517 
7518 static int is_accelerated_cmd(struct CommandList *c)
7519 {
7520 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7521 }
7522 
7523 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7524 {
7525 	struct CommandList *c = NULL;
7526 	unsigned long flags;
7527 	int accel_cmds_out;
7528 
7529 	do { /* wait for all outstanding commands to drain out */
7530 		accel_cmds_out = 0;
7531 		spin_lock_irqsave(&h->lock, flags);
7532 		list_for_each_entry(c, &h->cmpQ, list)
7533 			accel_cmds_out += is_accelerated_cmd(c);
7534 		list_for_each_entry(c, &h->reqQ, list)
7535 			accel_cmds_out += is_accelerated_cmd(c);
7536 		spin_unlock_irqrestore(&h->lock, flags);
7537 		if (accel_cmds_out <= 0)
7538 			break;
7539 		msleep(100);
7540 	} while (1);
7541 }
7542 
7543 /*
7544  *  This is it.  Register the PCI driver information for the cards we control
7545  *  the OS will call our registered routines when it finds one of our cards.
7546  */
7547 static int __init hpsa_init(void)
7548 {
7549 	return pci_register_driver(&hpsa_pci_driver);
7550 }
7551 
7552 static void __exit hpsa_cleanup(void)
7553 {
7554 	pci_unregister_driver(&hpsa_pci_driver);
7555 }
7556 
7557 static void __attribute__((unused)) verify_offsets(void)
7558 {
7559 #define VERIFY_OFFSET(member, offset) \
7560 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7561 
7562 	VERIFY_OFFSET(structure_size, 0);
7563 	VERIFY_OFFSET(volume_blk_size, 4);
7564 	VERIFY_OFFSET(volume_blk_cnt, 8);
7565 	VERIFY_OFFSET(phys_blk_shift, 16);
7566 	VERIFY_OFFSET(parity_rotation_shift, 17);
7567 	VERIFY_OFFSET(strip_size, 18);
7568 	VERIFY_OFFSET(disk_starting_blk, 20);
7569 	VERIFY_OFFSET(disk_blk_cnt, 28);
7570 	VERIFY_OFFSET(data_disks_per_row, 36);
7571 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7572 	VERIFY_OFFSET(row_cnt, 40);
7573 	VERIFY_OFFSET(layout_map_count, 42);
7574 	VERIFY_OFFSET(flags, 44);
7575 	VERIFY_OFFSET(dekindex, 46);
7576 	/* VERIFY_OFFSET(reserved, 48 */
7577 	VERIFY_OFFSET(data, 64);
7578 
7579 #undef VERIFY_OFFSET
7580 
7581 #define VERIFY_OFFSET(member, offset) \
7582 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7583 
7584 	VERIFY_OFFSET(IU_type, 0);
7585 	VERIFY_OFFSET(direction, 1);
7586 	VERIFY_OFFSET(reply_queue, 2);
7587 	/* VERIFY_OFFSET(reserved1, 3);  */
7588 	VERIFY_OFFSET(scsi_nexus, 4);
7589 	VERIFY_OFFSET(Tag, 8);
7590 	VERIFY_OFFSET(cdb, 16);
7591 	VERIFY_OFFSET(cciss_lun, 32);
7592 	VERIFY_OFFSET(data_len, 40);
7593 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7594 	VERIFY_OFFSET(sg_count, 45);
7595 	/* VERIFY_OFFSET(reserved3 */
7596 	VERIFY_OFFSET(err_ptr, 48);
7597 	VERIFY_OFFSET(err_len, 56);
7598 	/* VERIFY_OFFSET(reserved4  */
7599 	VERIFY_OFFSET(sg, 64);
7600 
7601 #undef VERIFY_OFFSET
7602 
7603 #define VERIFY_OFFSET(member, offset) \
7604 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7605 
7606 	VERIFY_OFFSET(dev_handle, 0x00);
7607 	VERIFY_OFFSET(reserved1, 0x02);
7608 	VERIFY_OFFSET(function, 0x03);
7609 	VERIFY_OFFSET(reserved2, 0x04);
7610 	VERIFY_OFFSET(err_info, 0x0C);
7611 	VERIFY_OFFSET(reserved3, 0x10);
7612 	VERIFY_OFFSET(err_info_len, 0x12);
7613 	VERIFY_OFFSET(reserved4, 0x13);
7614 	VERIFY_OFFSET(sgl_offset, 0x14);
7615 	VERIFY_OFFSET(reserved5, 0x15);
7616 	VERIFY_OFFSET(transfer_len, 0x1C);
7617 	VERIFY_OFFSET(reserved6, 0x20);
7618 	VERIFY_OFFSET(io_flags, 0x24);
7619 	VERIFY_OFFSET(reserved7, 0x26);
7620 	VERIFY_OFFSET(LUN, 0x34);
7621 	VERIFY_OFFSET(control, 0x3C);
7622 	VERIFY_OFFSET(CDB, 0x40);
7623 	VERIFY_OFFSET(reserved8, 0x50);
7624 	VERIFY_OFFSET(host_context_flags, 0x60);
7625 	VERIFY_OFFSET(timeout_sec, 0x62);
7626 	VERIFY_OFFSET(ReplyQueue, 0x64);
7627 	VERIFY_OFFSET(reserved9, 0x65);
7628 	VERIFY_OFFSET(Tag, 0x68);
7629 	VERIFY_OFFSET(host_addr, 0x70);
7630 	VERIFY_OFFSET(CISS_LUN, 0x78);
7631 	VERIFY_OFFSET(SG, 0x78 + 8);
7632 #undef VERIFY_OFFSET
7633 }
7634 
7635 module_init(hpsa_init);
7636 module_exit(hpsa_cleanup);
7637