xref: /openbmc/linux/drivers/scsi/hpsa.c (revision abe9af53)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259 			       IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261 				   BIG_IOCTL_Command_struct *ioc);
262 
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265 	void __user *arg);
266 #endif
267 
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272 					    struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275 	int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283 	unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285 
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status, len;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 	char tmpbuf[10];
460 
461 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 		return -EACCES;
463 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 	strncpy(tmpbuf, buf, len);
465 	tmpbuf[len] = '\0';
466 	if (sscanf(tmpbuf, "%d", &status) != 1)
467 		return -EINVAL;
468 	h = shost_to_hba(shost);
469 	h->acciopath_status = !!status;
470 	dev_warn(&h->pdev->dev,
471 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 		h->acciopath_status ? "enabled" : "disabled");
473 	return count;
474 }
475 
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 					 struct device_attribute *attr,
478 					 const char *buf, size_t count)
479 {
480 	int debug_level, len;
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	char tmpbuf[10];
484 
485 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 		return -EACCES;
487 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 	strncpy(tmpbuf, buf, len);
489 	tmpbuf[len] = '\0';
490 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491 		return -EINVAL;
492 	if (debug_level < 0)
493 		debug_level = 0;
494 	h = shost_to_hba(shost);
495 	h->raid_offload_debug = debug_level;
496 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 		h->raid_offload_debug);
498 	return count;
499 }
500 
501 static ssize_t host_store_rescan(struct device *dev,
502 				 struct device_attribute *attr,
503 				 const char *buf, size_t count)
504 {
505 	struct ctlr_info *h;
506 	struct Scsi_Host *shost = class_to_shost(dev);
507 	h = shost_to_hba(shost);
508 	hpsa_scan_start(h->scsi_host);
509 	return count;
510 }
511 
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514 	device->offload_enabled = 0;
515 	device->offload_to_be_enabled = 0;
516 }
517 
518 static ssize_t host_show_firmware_revision(struct device *dev,
519 	     struct device_attribute *attr, char *buf)
520 {
521 	struct ctlr_info *h;
522 	struct Scsi_Host *shost = class_to_shost(dev);
523 	unsigned char *fwrev;
524 
525 	h = shost_to_hba(shost);
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	fwrev = &h->hba_inquiry_data[32];
529 	return snprintf(buf, 20, "%c%c%c%c\n",
530 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532 
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 	     struct device_attribute *attr, char *buf)
535 {
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 	struct ctlr_info *h = shost_to_hba(shost);
538 
539 	return snprintf(buf, 20, "%d\n",
540 			atomic_read(&h->commands_outstanding));
541 }
542 
543 static ssize_t host_show_transport_mode(struct device *dev,
544 	struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct Scsi_Host *shost = class_to_shost(dev);
548 
549 	h = shost_to_hba(shost);
550 	return snprintf(buf, 20, "%s\n",
551 		h->transMethod & CFGTBL_Trans_Performant ?
552 			"performant" : "simple");
553 }
554 
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 	struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct Scsi_Host *shost = class_to_shost(dev);
560 
561 	h = shost_to_hba(shost);
562 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565 
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 	0x324a103C, /* Smart Array P712m */
569 	0x324b103C, /* Smart Array P711m */
570 	0x3223103C, /* Smart Array P800 */
571 	0x3234103C, /* Smart Array P400 */
572 	0x3235103C, /* Smart Array P400i */
573 	0x3211103C, /* Smart Array E200i */
574 	0x3212103C, /* Smart Array E200 */
575 	0x3213103C, /* Smart Array E200i */
576 	0x3214103C, /* Smart Array E200i */
577 	0x3215103C, /* Smart Array E200i */
578 	0x3237103C, /* Smart Array E500 */
579 	0x323D103C, /* Smart Array P700m */
580 	0x40800E11, /* Smart Array 5i */
581 	0x409C0E11, /* Smart Array 6400 */
582 	0x409D0E11, /* Smart Array 6400 EM */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 };
590 
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 	0x40800E11, /* Smart Array 5i */
594 	0x40700E11, /* Smart Array 5300 */
595 	0x40820E11, /* Smart Array 532 */
596 	0x40830E11, /* Smart Array 5312 */
597 	0x409A0E11, /* Smart Array 641 */
598 	0x409B0E11, /* Smart Array 642 */
599 	0x40910E11, /* Smart Array 6i */
600 	/* Exclude 640x boards.  These are two pci devices in one slot
601 	 * which share a battery backed cache module.  One controls the
602 	 * cache, the other accesses the cache through the one that controls
603 	 * it.  If we reset the one controlling the cache, the other will
604 	 * likely not be happy.  Just forbid resetting this conjoined mess.
605 	 * The 640x isn't really supported by hpsa anyway.
606 	 */
607 	0x409C0E11, /* Smart Array 6400 */
608 	0x409D0E11, /* Smart Array 6400 EM */
609 };
610 
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613 	int i;
614 
615 	for (i = 0; i < nelems; i++)
616 		if (a[i] == board_id)
617 			return 1;
618 	return 0;
619 }
620 
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623 	return !board_id_in_array(unresettable_controller,
624 			ARRAY_SIZE(unresettable_controller), board_id);
625 }
626 
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629 	return !board_id_in_array(soft_unresettable_controller,
630 			ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632 
633 static int ctlr_is_resettable(u32 board_id)
634 {
635 	return ctlr_is_hard_resettable(board_id) ||
636 		ctlr_is_soft_resettable(board_id);
637 }
638 
639 static ssize_t host_show_resettable(struct device *dev,
640 	struct device_attribute *attr, char *buf)
641 {
642 	struct ctlr_info *h;
643 	struct Scsi_Host *shost = class_to_shost(dev);
644 
645 	h = shost_to_hba(shost);
646 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648 
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651 	return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653 
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0	0
658 #define HPSA_RAID_4	1
659 #define HPSA_RAID_1	2	/* also used for RAID 10 */
660 #define HPSA_RAID_5	3	/* also used for RAID 50 */
661 #define HPSA_RAID_51	4
662 #define HPSA_RAID_6	5	/* also used for RAID 60 */
663 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669 	return !device->physical_device;
670 }
671 
672 static ssize_t raid_level_show(struct device *dev,
673 	     struct device_attribute *attr, char *buf)
674 {
675 	ssize_t l = 0;
676 	unsigned char rlevel;
677 	struct ctlr_info *h;
678 	struct scsi_device *sdev;
679 	struct hpsa_scsi_dev_t *hdev;
680 	unsigned long flags;
681 
682 	sdev = to_scsi_device(dev);
683 	h = sdev_to_hba(sdev);
684 	spin_lock_irqsave(&h->lock, flags);
685 	hdev = sdev->hostdata;
686 	if (!hdev) {
687 		spin_unlock_irqrestore(&h->lock, flags);
688 		return -ENODEV;
689 	}
690 
691 	/* Is this even a logical drive? */
692 	if (!is_logical_device(hdev)) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
695 		return l;
696 	}
697 
698 	rlevel = hdev->raid_level;
699 	spin_unlock_irqrestore(&h->lock, flags);
700 	if (rlevel > RAID_UNKNOWN)
701 		rlevel = RAID_UNKNOWN;
702 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703 	return l;
704 }
705 
706 static ssize_t lunid_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char lunid[8];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727 
728 static ssize_t unique_id_show(struct device *dev,
729 	     struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	unsigned char sn[16];
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	memcpy(sn, hdev->device_id, sizeof(sn));
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	return snprintf(buf, 16 * 2 + 2,
748 			"%02X%02X%02X%02X%02X%02X%02X%02X"
749 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 			sn[0], sn[1], sn[2], sn[3],
751 			sn[4], sn[5], sn[6], sn[7],
752 			sn[8], sn[9], sn[10], sn[11],
753 			sn[12], sn[13], sn[14], sn[15]);
754 }
755 
756 static ssize_t sas_address_show(struct device *dev,
757 	      struct device_attribute *attr, char *buf)
758 {
759 	struct ctlr_info *h;
760 	struct scsi_device *sdev;
761 	struct hpsa_scsi_dev_t *hdev;
762 	unsigned long flags;
763 	u64 sas_address;
764 
765 	sdev = to_scsi_device(dev);
766 	h = sdev_to_hba(sdev);
767 	spin_lock_irqsave(&h->lock, flags);
768 	hdev = sdev->hostdata;
769 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 		spin_unlock_irqrestore(&h->lock, flags);
771 		return -ENODEV;
772 	}
773 	sas_address = hdev->sas_address;
774 	spin_unlock_irqrestore(&h->lock, flags);
775 
776 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778 
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 	     struct device_attribute *attr, char *buf)
781 {
782 	struct ctlr_info *h;
783 	struct scsi_device *sdev;
784 	struct hpsa_scsi_dev_t *hdev;
785 	unsigned long flags;
786 	int offload_enabled;
787 
788 	sdev = to_scsi_device(dev);
789 	h = sdev_to_hba(sdev);
790 	spin_lock_irqsave(&h->lock, flags);
791 	hdev = sdev->hostdata;
792 	if (!hdev) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENODEV;
795 	}
796 	offload_enabled = hdev->offload_enabled;
797 	spin_unlock_irqrestore(&h->lock, flags);
798 
799 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 		return snprintf(buf, 20, "%d\n", offload_enabled);
801 	else
802 		return snprintf(buf, 40, "%s\n",
803 				"Not applicable for a controller");
804 }
805 
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808 	     struct device_attribute *attr, char *buf)
809 {
810 	struct ctlr_info *h;
811 	struct scsi_device *sdev;
812 	struct hpsa_scsi_dev_t *hdev;
813 	unsigned long flags;
814 	int i;
815 	int output_len = 0;
816 	u8 box;
817 	u8 bay;
818 	u8 path_map_index = 0;
819 	char *active;
820 	unsigned char phys_connector[2];
821 
822 	sdev = to_scsi_device(dev);
823 	h = sdev_to_hba(sdev);
824 	spin_lock_irqsave(&h->devlock, flags);
825 	hdev = sdev->hostdata;
826 	if (!hdev) {
827 		spin_unlock_irqrestore(&h->devlock, flags);
828 		return -ENODEV;
829 	}
830 
831 	bay = hdev->bay;
832 	for (i = 0; i < MAX_PATHS; i++) {
833 		path_map_index = 1<<i;
834 		if (i == hdev->active_path_index)
835 			active = "Active";
836 		else if (hdev->path_map & path_map_index)
837 			active = "Inactive";
838 		else
839 			continue;
840 
841 		output_len += scnprintf(buf + output_len,
842 				PAGE_SIZE - output_len,
843 				"[%d:%d:%d:%d] %20.20s ",
844 				h->scsi_host->host_no,
845 				hdev->bus, hdev->target, hdev->lun,
846 				scsi_device_type(hdev->devtype));
847 
848 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 			output_len += scnprintf(buf + output_len,
850 						PAGE_SIZE - output_len,
851 						"%s\n", active);
852 			continue;
853 		}
854 
855 		box = hdev->box[i];
856 		memcpy(&phys_connector, &hdev->phys_connector[i],
857 			sizeof(phys_connector));
858 		if (phys_connector[0] < '0')
859 			phys_connector[0] = '0';
860 		if (phys_connector[1] < '0')
861 			phys_connector[1] = '0';
862 		output_len += scnprintf(buf + output_len,
863 				PAGE_SIZE - output_len,
864 				"PORT: %.2s ",
865 				phys_connector);
866 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 			hdev->expose_device) {
868 			if (box == 0 || box == 0xFF) {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BAY: %hhu %s\n",
872 					bay, active);
873 			} else {
874 				output_len += scnprintf(buf + output_len,
875 					PAGE_SIZE - output_len,
876 					"BOX: %hhu BAY: %hhu %s\n",
877 					box, bay, active);
878 			}
879 		} else if (box != 0 && box != 0xFF) {
880 			output_len += scnprintf(buf + output_len,
881 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882 				box, active);
883 		} else
884 			output_len += scnprintf(buf + output_len,
885 				PAGE_SIZE - output_len, "%s\n", active);
886 	}
887 
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 	return output_len;
890 }
891 
892 static ssize_t host_show_ctlr_num(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901 
902 static ssize_t host_show_legacy_board(struct device *dev,
903 	struct device_attribute *attr, char *buf)
904 {
905 	struct ctlr_info *h;
906 	struct Scsi_Host *shost = class_to_shost(dev);
907 
908 	h = shost_to_hba(shost);
909 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911 
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 			host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 		host_show_hp_ssd_smart_path_status,
922 		host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 			host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 	host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 	host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 	host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 	host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 	host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 	host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 	host_show_legacy_board, NULL);
939 
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941 	&dev_attr_raid_level,
942 	&dev_attr_lunid,
943 	&dev_attr_unique_id,
944 	&dev_attr_hp_ssd_smart_path_enabled,
945 	&dev_attr_path_info,
946 	&dev_attr_sas_address,
947 	NULL,
948 };
949 
950 static struct device_attribute *hpsa_shost_attrs[] = {
951 	&dev_attr_rescan,
952 	&dev_attr_firmware_revision,
953 	&dev_attr_commands_outstanding,
954 	&dev_attr_transport_mode,
955 	&dev_attr_resettable,
956 	&dev_attr_hp_ssd_smart_path_status,
957 	&dev_attr_raid_offload_debug,
958 	&dev_attr_lockup_detected,
959 	&dev_attr_ctlr_num,
960 	&dev_attr_legacy_board,
961 	NULL,
962 };
963 
964 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
966 
967 static struct scsi_host_template hpsa_driver_template = {
968 	.module			= THIS_MODULE,
969 	.name			= HPSA,
970 	.proc_name		= HPSA,
971 	.queuecommand		= hpsa_scsi_queue_command,
972 	.scan_start		= hpsa_scan_start,
973 	.scan_finished		= hpsa_scan_finished,
974 	.change_queue_depth	= hpsa_change_queue_depth,
975 	.this_id		= -1,
976 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
977 	.ioctl			= hpsa_ioctl,
978 	.slave_alloc		= hpsa_slave_alloc,
979 	.slave_configure	= hpsa_slave_configure,
980 	.slave_destroy		= hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982 	.compat_ioctl		= hpsa_compat_ioctl,
983 #endif
984 	.sdev_attrs = hpsa_sdev_attrs,
985 	.shost_attrs = hpsa_shost_attrs,
986 	.max_sectors = 2048,
987 	.no_write_same = 1,
988 };
989 
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992 	u32 a;
993 	struct reply_queue_buffer *rq = &h->reply_queue[q];
994 
995 	if (h->transMethod & CFGTBL_Trans_io_accel1)
996 		return h->access.command_completed(h, q);
997 
998 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999 		return h->access.command_completed(h, q);
1000 
1001 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002 		a = rq->head[rq->current_entry];
1003 		rq->current_entry++;
1004 		atomic_dec(&h->commands_outstanding);
1005 	} else {
1006 		a = FIFO_EMPTY;
1007 	}
1008 	/* Check for wraparound */
1009 	if (rq->current_entry == h->max_commands) {
1010 		rq->current_entry = 0;
1011 		rq->wraparound ^= 1;
1012 	}
1013 	return a;
1014 }
1015 
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041 
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049 					int reply_queue)
1050 {
1051 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053 		if (unlikely(!h->msix_vectors))
1054 			return;
1055 		c->Header.ReplyQueue = reply_queue;
1056 	}
1057 }
1058 
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060 						struct CommandList *c,
1061 						int reply_queue)
1062 {
1063 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064 
1065 	/*
1066 	 * Tell the controller to post the reply to the queue for this
1067 	 * processor.  This seems to give the best I/O throughput.
1068 	 */
1069 	cp->ReplyQueue = reply_queue;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	cp->reply_queue = reply_queue;
1091 	/* Set the bits in the address sent down to include:
1092 	 *  - performant mode bit not used in ioaccel mode 2
1093 	 *  - pull count (bits 0-3)
1094 	 *  - command type isn't needed for ioaccel2
1095 	 */
1096 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098 
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100 						struct CommandList *c,
1101 						int reply_queue)
1102 {
1103 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104 
1105 	/*
1106 	 * Tell the controller to post the reply to the queue for this
1107 	 * processor.  This seems to give the best I/O throughput.
1108 	 */
1109 	cp->reply_queue = reply_queue;
1110 	/*
1111 	 * Set the bits in the address sent down to include:
1112 	 *  - performant mode bit not used in ioaccel mode 2
1113 	 *  - pull count (bits 0-3)
1114 	 *  - command type isn't needed for ioaccel2
1115 	 */
1116 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118 
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123 
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133 		struct CommandList *c)
1134 {
1135 	if (!is_firmware_flash_cmd(c->Request.CDB))
1136 		return;
1137 	atomic_inc(&h->firmware_flash_in_progress);
1138 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140 
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142 		struct CommandList *c)
1143 {
1144 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1145 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1146 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148 
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150 	struct CommandList *c, int reply_queue)
1151 {
1152 	dial_down_lockup_detection_during_fw_flash(h, c);
1153 	atomic_inc(&h->commands_outstanding);
1154 	if (c->device)
1155 		atomic_inc(&c->device->commands_outstanding);
1156 
1157 	reply_queue = h->reply_map[raw_smp_processor_id()];
1158 	switch (c->cmd_type) {
1159 	case CMD_IOACCEL1:
1160 		set_ioaccel1_performant_mode(h, c, reply_queue);
1161 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162 		break;
1163 	case CMD_IOACCEL2:
1164 		set_ioaccel2_performant_mode(h, c, reply_queue);
1165 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166 		break;
1167 	case IOACCEL2_TMF:
1168 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170 		break;
1171 	default:
1172 		set_performant_mode(h, c, reply_queue);
1173 		h->access.submit_command(h, c);
1174 	}
1175 }
1176 
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181 
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186 
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 	if (!h->hba_inquiry_data)
1190 		return 0;
1191 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 	/* finds an unused bus, target, lun for a new physical device
1200 	 * assumes h->devlock is held
1201 	 */
1202 	int i, found = 0;
1203 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204 
1205 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	for (i = 0; i < h->ndevices; i++) {
1208 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 			__set_bit(h->dev[i]->target, lun_taken);
1210 	}
1211 
1212 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 	if (i < HPSA_MAX_DEVICES) {
1214 		/* *bus = 1; */
1215 		*target = i;
1216 		*lun = 0;
1217 		found = 1;
1218 	}
1219 	return !found;
1220 }
1221 
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 	struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 	char label[LABEL_SIZE];
1227 
1228 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 		return;
1230 
1231 	switch (dev->devtype) {
1232 	case TYPE_RAID:
1233 		snprintf(label, LABEL_SIZE, "controller");
1234 		break;
1235 	case TYPE_ENCLOSURE:
1236 		snprintf(label, LABEL_SIZE, "enclosure");
1237 		break;
1238 	case TYPE_DISK:
1239 	case TYPE_ZBC:
1240 		if (dev->external)
1241 			snprintf(label, LABEL_SIZE, "external");
1242 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 			snprintf(label, LABEL_SIZE, "%s",
1244 				raid_label[PHYSICAL_DRIVE]);
1245 		else
1246 			snprintf(label, LABEL_SIZE, "RAID-%s",
1247 				dev->raid_level > RAID_UNKNOWN ? "?" :
1248 				raid_label[dev->raid_level]);
1249 		break;
1250 	case TYPE_ROM:
1251 		snprintf(label, LABEL_SIZE, "rom");
1252 		break;
1253 	case TYPE_TAPE:
1254 		snprintf(label, LABEL_SIZE, "tape");
1255 		break;
1256 	case TYPE_MEDIUM_CHANGER:
1257 		snprintf(label, LABEL_SIZE, "changer");
1258 		break;
1259 	default:
1260 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 		break;
1262 	}
1263 
1264 	dev_printk(level, &h->pdev->dev,
1265 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 			description,
1268 			scsi_device_type(dev->devtype),
1269 			dev->vendor,
1270 			dev->model,
1271 			label,
1272 			dev->offload_config ? '+' : '-',
1273 			dev->offload_to_be_enabled ? '+' : '-',
1274 			dev->expose_device);
1275 }
1276 
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 		struct hpsa_scsi_dev_t *device,
1280 		struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 	/* assumes h->devlock is held */
1283 	int n = h->ndevices;
1284 	int i;
1285 	unsigned char addr1[8], addr2[8];
1286 	struct hpsa_scsi_dev_t *sd;
1287 
1288 	if (n >= HPSA_MAX_DEVICES) {
1289 		dev_err(&h->pdev->dev, "too many devices, some will be "
1290 			"inaccessible.\n");
1291 		return -1;
1292 	}
1293 
1294 	/* physical devices do not have lun or target assigned until now. */
1295 	if (device->lun != -1)
1296 		/* Logical device, lun is already assigned. */
1297 		goto lun_assigned;
1298 
1299 	/* If this device a non-zero lun of a multi-lun device
1300 	 * byte 4 of the 8-byte LUN addr will contain the logical
1301 	 * unit no, zero otherwise.
1302 	 */
1303 	if (device->scsi3addr[4] == 0) {
1304 		/* This is not a non-zero lun of a multi-lun device */
1305 		if (hpsa_find_target_lun(h, device->scsi3addr,
1306 			device->bus, &device->target, &device->lun) != 0)
1307 			return -1;
1308 		goto lun_assigned;
1309 	}
1310 
1311 	/* This is a non-zero lun of a multi-lun device.
1312 	 * Search through our list and find the device which
1313 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 	 * Assign the same bus and target for this new LUN.
1315 	 * Use the logical unit number from the firmware.
1316 	 */
1317 	memcpy(addr1, device->scsi3addr, 8);
1318 	addr1[4] = 0;
1319 	addr1[5] = 0;
1320 	for (i = 0; i < n; i++) {
1321 		sd = h->dev[i];
1322 		memcpy(addr2, sd->scsi3addr, 8);
1323 		addr2[4] = 0;
1324 		addr2[5] = 0;
1325 		/* differ only in byte 4 and 5? */
1326 		if (memcmp(addr1, addr2, 8) == 0) {
1327 			device->bus = sd->bus;
1328 			device->target = sd->target;
1329 			device->lun = device->scsi3addr[4];
1330 			break;
1331 		}
1332 	}
1333 	if (device->lun == -1) {
1334 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 			" suspect firmware bug or unsupported hardware "
1336 			"configuration.\n");
1337 		return -1;
1338 	}
1339 
1340 lun_assigned:
1341 
1342 	h->dev[n] = device;
1343 	h->ndevices++;
1344 	added[*nadded] = device;
1345 	(*nadded)++;
1346 	hpsa_show_dev_msg(KERN_INFO, h, device,
1347 		device->expose_device ? "added" : "masked");
1348 	return 0;
1349 }
1350 
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357 	int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359 	/* assumes h->devlock is held */
1360 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361 
1362 	/* Raid level changed. */
1363 	h->dev[entry]->raid_level = new_entry->raid_level;
1364 
1365 	/*
1366 	 * ioacccel_handle may have changed for a dual domain disk
1367 	 */
1368 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369 
1370 	/* Raid offload parameters changed.  Careful about the ordering. */
1371 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372 		/*
1373 		 * if drive is newly offload_enabled, we want to copy the
1374 		 * raid map data first.  If previously offload_enabled and
1375 		 * offload_config were set, raid map data had better be
1376 		 * the same as it was before. If raid map data has changed
1377 		 * then it had better be the case that
1378 		 * h->dev[entry]->offload_enabled is currently 0.
1379 		 */
1380 		h->dev[entry]->raid_map = new_entry->raid_map;
1381 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382 	}
1383 	if (new_entry->offload_to_be_enabled) {
1384 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386 	}
1387 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388 	h->dev[entry]->offload_config = new_entry->offload_config;
1389 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1391 
1392 	/*
1393 	 * We can turn off ioaccel offload now, but need to delay turning
1394 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395 	 * can't do that until all the devices are updated.
1396 	 */
1397 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398 
1399 	/*
1400 	 * turn ioaccel off immediately if told to do so.
1401 	 */
1402 	if (!new_entry->offload_to_be_enabled)
1403 		h->dev[entry]->offload_enabled = 0;
1404 
1405 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407 
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410 	int entry, struct hpsa_scsi_dev_t *new_entry,
1411 	struct hpsa_scsi_dev_t *added[], int *nadded,
1412 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414 	/* assumes h->devlock is held */
1415 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416 	removed[*nremoved] = h->dev[entry];
1417 	(*nremoved)++;
1418 
1419 	/*
1420 	 * New physical devices won't have target/lun assigned yet
1421 	 * so we need to preserve the values in the slot we are replacing.
1422 	 */
1423 	if (new_entry->target == -1) {
1424 		new_entry->target = h->dev[entry]->target;
1425 		new_entry->lun = h->dev[entry]->lun;
1426 	}
1427 
1428 	h->dev[entry] = new_entry;
1429 	added[*nadded] = new_entry;
1430 	(*nadded)++;
1431 
1432 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434 
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439 	/* assumes h->devlock is held */
1440 	int i;
1441 	struct hpsa_scsi_dev_t *sd;
1442 
1443 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444 
1445 	sd = h->dev[entry];
1446 	removed[*nremoved] = h->dev[entry];
1447 	(*nremoved)++;
1448 
1449 	for (i = entry; i < h->ndevices-1; i++)
1450 		h->dev[i] = h->dev[i+1];
1451 	h->ndevices--;
1452 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454 
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456 	(a)[7] == (b)[7] && \
1457 	(a)[6] == (b)[6] && \
1458 	(a)[5] == (b)[5] && \
1459 	(a)[4] == (b)[4] && \
1460 	(a)[3] == (b)[3] && \
1461 	(a)[2] == (b)[2] && \
1462 	(a)[1] == (b)[1] && \
1463 	(a)[0] == (b)[0])
1464 
1465 static void fixup_botched_add(struct ctlr_info *h,
1466 	struct hpsa_scsi_dev_t *added)
1467 {
1468 	/* called when scsi_add_device fails in order to re-adjust
1469 	 * h->dev[] to match the mid layer's view.
1470 	 */
1471 	unsigned long flags;
1472 	int i, j;
1473 
1474 	spin_lock_irqsave(&h->lock, flags);
1475 	for (i = 0; i < h->ndevices; i++) {
1476 		if (h->dev[i] == added) {
1477 			for (j = i; j < h->ndevices-1; j++)
1478 				h->dev[j] = h->dev[j+1];
1479 			h->ndevices--;
1480 			break;
1481 		}
1482 	}
1483 	spin_unlock_irqrestore(&h->lock, flags);
1484 	kfree(added);
1485 }
1486 
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488 	struct hpsa_scsi_dev_t *dev2)
1489 {
1490 	/* we compare everything except lun and target as these
1491 	 * are not yet assigned.  Compare parts likely
1492 	 * to differ first
1493 	 */
1494 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495 		sizeof(dev1->scsi3addr)) != 0)
1496 		return 0;
1497 	if (memcmp(dev1->device_id, dev2->device_id,
1498 		sizeof(dev1->device_id)) != 0)
1499 		return 0;
1500 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503 		return 0;
1504 	if (dev1->devtype != dev2->devtype)
1505 		return 0;
1506 	if (dev1->bus != dev2->bus)
1507 		return 0;
1508 	return 1;
1509 }
1510 
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512 	struct hpsa_scsi_dev_t *dev2)
1513 {
1514 	/* Device attributes that can change, but don't mean
1515 	 * that the device is a different device, nor that the OS
1516 	 * needs to be told anything about the change.
1517 	 */
1518 	if (dev1->raid_level != dev2->raid_level)
1519 		return 1;
1520 	if (dev1->offload_config != dev2->offload_config)
1521 		return 1;
1522 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523 		return 1;
1524 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525 		if (dev1->queue_depth != dev2->queue_depth)
1526 			return 1;
1527 	/*
1528 	 * This can happen for dual domain devices. An active
1529 	 * path change causes the ioaccel handle to change
1530 	 *
1531 	 * for example note the handle differences between p0 and p1
1532 	 * Device                    WWN               ,WWN hash,Handle
1533 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535 	 */
1536 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537 		return 1;
1538 	return 0;
1539 }
1540 
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551 	int *index)
1552 {
1553 	int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558 	if (needle == NULL)
1559 		return DEVICE_NOT_FOUND;
1560 
1561 	for (i = 0; i < haystack_size; i++) {
1562 		if (haystack[i] == NULL) /* previously removed. */
1563 			continue;
1564 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565 			*index = i;
1566 			if (device_is_the_same(needle, haystack[i])) {
1567 				if (device_updated(needle, haystack[i]))
1568 					return DEVICE_UPDATED;
1569 				return DEVICE_SAME;
1570 			} else {
1571 				/* Keep offline devices offline */
1572 				if (needle->volume_offline)
1573 					return DEVICE_NOT_FOUND;
1574 				return DEVICE_CHANGED;
1575 			}
1576 		}
1577 	}
1578 	*index = -1;
1579 	return DEVICE_NOT_FOUND;
1580 }
1581 
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583 					unsigned char scsi3addr[])
1584 {
1585 	struct offline_device_entry *device;
1586 	unsigned long flags;
1587 
1588 	/* Check to see if device is already on the list */
1589 	spin_lock_irqsave(&h->offline_device_lock, flags);
1590 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591 		if (memcmp(device->scsi3addr, scsi3addr,
1592 			sizeof(device->scsi3addr)) == 0) {
1593 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594 			return;
1595 		}
1596 	}
1597 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 
1599 	/* Device is not on the list, add it. */
1600 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1601 	if (!device)
1602 		return;
1603 
1604 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605 	spin_lock_irqsave(&h->offline_device_lock, flags);
1606 	list_add_tail(&device->offline_list, &h->offline_device_list);
1607 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609 
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612 	struct hpsa_scsi_dev_t *sd)
1613 {
1614 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 	switch (sd->volume_offline) {
1620 	case HPSA_LV_OK:
1621 		break;
1622 	case HPSA_LV_UNDERGOING_ERASE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_NOT_AVAILABLE:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_UNDERGOING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_PENDING_RPI:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_ENCRYPTED_NO_KEY:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683 		dev_info(&h->pdev->dev,
1684 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685 			h->scsi_host->host_no,
1686 			sd->bus, sd->target, sd->lun);
1687 		break;
1688 	}
1689 }
1690 
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1697 				struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699 	struct raid_map_data *map = &logical_drive->raid_map;
1700 	struct raid_map_disk_data *dd = &map->data[0];
1701 	int i, j;
1702 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703 				le16_to_cpu(map->metadata_disks_per_row);
1704 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705 				le16_to_cpu(map->layout_map_count) *
1706 				total_disks_per_row;
1707 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708 				total_disks_per_row;
1709 	int qdepth;
1710 
1711 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713 
1714 	logical_drive->nphysical_disks = nraid_map_entries;
1715 
1716 	qdepth = 0;
1717 	for (i = 0; i < nraid_map_entries; i++) {
1718 		logical_drive->phys_disk[i] = NULL;
1719 		if (!logical_drive->offload_config)
1720 			continue;
1721 		for (j = 0; j < ndevices; j++) {
1722 			if (dev[j] == NULL)
1723 				continue;
1724 			if (dev[j]->devtype != TYPE_DISK &&
1725 			    dev[j]->devtype != TYPE_ZBC)
1726 				continue;
1727 			if (is_logical_device(dev[j]))
1728 				continue;
1729 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730 				continue;
1731 
1732 			logical_drive->phys_disk[i] = dev[j];
1733 			if (i < nphys_disk)
1734 				qdepth = min(h->nr_cmds, qdepth +
1735 				    logical_drive->phys_disk[i]->queue_depth);
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * This can happen if a physical drive is removed and
1741 		 * the logical drive is degraded.  In that case, the RAID
1742 		 * map data will refer to a physical disk which isn't actually
1743 		 * present.  And in that case offload_enabled should already
1744 		 * be 0, but we'll turn it off here just in case
1745 		 */
1746 		if (!logical_drive->phys_disk[i]) {
1747 			dev_warn(&h->pdev->dev,
1748 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749 				__func__,
1750 				h->scsi_host->host_no, logical_drive->bus,
1751 				logical_drive->target, logical_drive->lun);
1752 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1753 			logical_drive->queue_depth = 8;
1754 		}
1755 	}
1756 	if (nraid_map_entries)
1757 		/*
1758 		 * This is correct for reads, too high for full stripe writes,
1759 		 * way too high for partial stripe writes
1760 		 */
1761 		logical_drive->queue_depth = qdepth;
1762 	else {
1763 		if (logical_drive->external)
1764 			logical_drive->queue_depth = EXTERNAL_QD;
1765 		else
1766 			logical_drive->queue_depth = h->nr_cmds;
1767 	}
1768 }
1769 
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < ndevices; i++) {
1776 		if (dev[i] == NULL)
1777 			continue;
1778 		if (dev[i]->devtype != TYPE_DISK &&
1779 		    dev[i]->devtype != TYPE_ZBC)
1780 			continue;
1781 		if (!is_logical_device(dev[i]))
1782 			continue;
1783 
1784 		/*
1785 		 * If offload is currently enabled, the RAID map and
1786 		 * phys_disk[] assignment *better* not be changing
1787 		 * because we would be changing ioaccel phsy_disk[] pointers
1788 		 * on a ioaccel volume processing I/O requests.
1789 		 *
1790 		 * If an ioaccel volume status changed, initially because it was
1791 		 * re-configured and thus underwent a transformation, or
1792 		 * a drive failed, we would have received a state change
1793 		 * request and ioaccel should have been turned off. When the
1794 		 * transformation completes, we get another state change
1795 		 * request to turn ioaccel back on. In this case, we need
1796 		 * to update the ioaccel information.
1797 		 *
1798 		 * Thus: If it is not currently enabled, but will be after
1799 		 * the scan completes, make sure the ioaccel pointers
1800 		 * are up to date.
1801 		 */
1802 
1803 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805 	}
1806 }
1807 
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810 	int rc = 0;
1811 
1812 	if (!h->scsi_host)
1813 		return 1;
1814 
1815 	if (is_logical_device(device)) /* RAID */
1816 		rc = scsi_add_device(h->scsi_host, device->bus,
1817 					device->target, device->lun);
1818 	else /* HBA */
1819 		rc = hpsa_add_sas_device(h->sas_host, device);
1820 
1821 	return rc;
1822 }
1823 
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825 						struct hpsa_scsi_dev_t *dev)
1826 {
1827 	int i;
1828 	int count = 0;
1829 
1830 	for (i = 0; i < h->nr_cmds; i++) {
1831 		struct CommandList *c = h->cmd_pool + i;
1832 		int refcount = atomic_inc_return(&c->refcount);
1833 
1834 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835 				dev->scsi3addr)) {
1836 			unsigned long flags;
1837 
1838 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1839 			if (!hpsa_is_cmd_idle(c))
1840 				++count;
1841 			spin_unlock_irqrestore(&h->lock, flags);
1842 		}
1843 
1844 		cmd_free(h, c);
1845 	}
1846 
1847 	return count;
1848 }
1849 
1850 #define NUM_WAIT 20
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852 						struct hpsa_scsi_dev_t *device)
1853 {
1854 	int cmds = 0;
1855 	int waits = 0;
1856 	int num_wait = NUM_WAIT;
1857 
1858 	if (device->external)
1859 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860 
1861 	while (1) {
1862 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863 		if (cmds == 0)
1864 			break;
1865 		if (++waits > num_wait)
1866 			break;
1867 		msleep(1000);
1868 	}
1869 
1870 	if (waits > num_wait) {
1871 		dev_warn(&h->pdev->dev,
1872 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873 			__func__,
1874 			h->scsi_host->host_no,
1875 			device->bus, device->target, device->lun, cmds);
1876 	}
1877 }
1878 
1879 static void hpsa_remove_device(struct ctlr_info *h,
1880 			struct hpsa_scsi_dev_t *device)
1881 {
1882 	struct scsi_device *sdev = NULL;
1883 
1884 	if (!h->scsi_host)
1885 		return;
1886 
1887 	/*
1888 	 * Allow for commands to drain
1889 	 */
1890 	device->removed = 1;
1891 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892 
1893 	if (is_logical_device(device)) { /* RAID */
1894 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895 						device->target, device->lun);
1896 		if (sdev) {
1897 			scsi_remove_device(sdev);
1898 			scsi_device_put(sdev);
1899 		} else {
1900 			/*
1901 			 * We don't expect to get here.  Future commands
1902 			 * to this device will get a selection timeout as
1903 			 * if the device were gone.
1904 			 */
1905 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1906 					"didn't find device for removal.");
1907 		}
1908 	} else { /* HBA */
1909 
1910 		hpsa_remove_sas_device(device);
1911 	}
1912 }
1913 
1914 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915 	struct hpsa_scsi_dev_t *sd[], int nsds)
1916 {
1917 	/* sd contains scsi3 addresses and devtypes, and inquiry
1918 	 * data.  This function takes what's in sd to be the current
1919 	 * reality and updates h->dev[] to reflect that reality.
1920 	 */
1921 	int i, entry, device_change, changes = 0;
1922 	struct hpsa_scsi_dev_t *csd;
1923 	unsigned long flags;
1924 	struct hpsa_scsi_dev_t **added, **removed;
1925 	int nadded, nremoved;
1926 
1927 	/*
1928 	 * A reset can cause a device status to change
1929 	 * re-schedule the scan to see what happened.
1930 	 */
1931 	spin_lock_irqsave(&h->reset_lock, flags);
1932 	if (h->reset_in_progress) {
1933 		h->drv_req_rescan = 1;
1934 		spin_unlock_irqrestore(&h->reset_lock, flags);
1935 		return;
1936 	}
1937 	spin_unlock_irqrestore(&h->reset_lock, flags);
1938 
1939 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941 
1942 	if (!added || !removed) {
1943 		dev_warn(&h->pdev->dev, "out of memory in "
1944 			"adjust_hpsa_scsi_table\n");
1945 		goto free_and_out;
1946 	}
1947 
1948 	spin_lock_irqsave(&h->devlock, flags);
1949 
1950 	/* find any devices in h->dev[] that are not in
1951 	 * sd[] and remove them from h->dev[], and for any
1952 	 * devices which have changed, remove the old device
1953 	 * info and add the new device info.
1954 	 * If minor device attributes change, just update
1955 	 * the existing device structure.
1956 	 */
1957 	i = 0;
1958 	nremoved = 0;
1959 	nadded = 0;
1960 	while (i < h->ndevices) {
1961 		csd = h->dev[i];
1962 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963 		if (device_change == DEVICE_NOT_FOUND) {
1964 			changes++;
1965 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966 			continue; /* remove ^^^, hence i not incremented */
1967 		} else if (device_change == DEVICE_CHANGED) {
1968 			changes++;
1969 			hpsa_scsi_replace_entry(h, i, sd[entry],
1970 				added, &nadded, removed, &nremoved);
1971 			/* Set it to NULL to prevent it from being freed
1972 			 * at the bottom of hpsa_update_scsi_devices()
1973 			 */
1974 			sd[entry] = NULL;
1975 		} else if (device_change == DEVICE_UPDATED) {
1976 			hpsa_scsi_update_entry(h, i, sd[entry]);
1977 		}
1978 		i++;
1979 	}
1980 
1981 	/* Now, make sure every device listed in sd[] is also
1982 	 * listed in h->dev[], adding them if they aren't found
1983 	 */
1984 
1985 	for (i = 0; i < nsds; i++) {
1986 		if (!sd[i]) /* if already added above. */
1987 			continue;
1988 
1989 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990 		 * as the SCSI mid-layer does not handle such devices well.
1991 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992 		 * at 160Hz, and prevents the system from coming up.
1993 		 */
1994 		if (sd[i]->volume_offline) {
1995 			hpsa_show_volume_status(h, sd[i]);
1996 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997 			continue;
1998 		}
1999 
2000 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001 					h->ndevices, &entry);
2002 		if (device_change == DEVICE_NOT_FOUND) {
2003 			changes++;
2004 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005 				break;
2006 			sd[i] = NULL; /* prevent from being freed later. */
2007 		} else if (device_change == DEVICE_CHANGED) {
2008 			/* should never happen... */
2009 			changes++;
2010 			dev_warn(&h->pdev->dev,
2011 				"device unexpectedly changed.\n");
2012 			/* but if it does happen, we just ignore that device */
2013 		}
2014 	}
2015 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016 
2017 	/*
2018 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019 	 * any logical drives that need it enabled.
2020 	 *
2021 	 * The raid map should be current by now.
2022 	 *
2023 	 * We are updating the device list used for I/O requests.
2024 	 */
2025 	for (i = 0; i < h->ndevices; i++) {
2026 		if (h->dev[i] == NULL)
2027 			continue;
2028 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029 	}
2030 
2031 	spin_unlock_irqrestore(&h->devlock, flags);
2032 
2033 	/* Monitor devices which are in one of several NOT READY states to be
2034 	 * brought online later. This must be done without holding h->devlock,
2035 	 * so don't touch h->dev[]
2036 	 */
2037 	for (i = 0; i < nsds; i++) {
2038 		if (!sd[i]) /* if already added above. */
2039 			continue;
2040 		if (sd[i]->volume_offline)
2041 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042 	}
2043 
2044 	/* Don't notify scsi mid layer of any changes the first time through
2045 	 * (or if there are no changes) scsi_scan_host will do it later the
2046 	 * first time through.
2047 	 */
2048 	if (!changes)
2049 		goto free_and_out;
2050 
2051 	/* Notify scsi mid layer of any removed devices */
2052 	for (i = 0; i < nremoved; i++) {
2053 		if (removed[i] == NULL)
2054 			continue;
2055 		if (removed[i]->expose_device)
2056 			hpsa_remove_device(h, removed[i]);
2057 		kfree(removed[i]);
2058 		removed[i] = NULL;
2059 	}
2060 
2061 	/* Notify scsi mid layer of any added devices */
2062 	for (i = 0; i < nadded; i++) {
2063 		int rc = 0;
2064 
2065 		if (added[i] == NULL)
2066 			continue;
2067 		if (!(added[i]->expose_device))
2068 			continue;
2069 		rc = hpsa_add_device(h, added[i]);
2070 		if (!rc)
2071 			continue;
2072 		dev_warn(&h->pdev->dev,
2073 			"addition failed %d, device not added.", rc);
2074 		/* now we have to remove it from h->dev,
2075 		 * since it didn't get added to scsi mid layer
2076 		 */
2077 		fixup_botched_add(h, added[i]);
2078 		h->drv_req_rescan = 1;
2079 	}
2080 
2081 free_and_out:
2082 	kfree(added);
2083 	kfree(removed);
2084 }
2085 
2086 /*
2087  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088  * Assume's h->devlock is held.
2089  */
2090 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091 	int bus, int target, int lun)
2092 {
2093 	int i;
2094 	struct hpsa_scsi_dev_t *sd;
2095 
2096 	for (i = 0; i < h->ndevices; i++) {
2097 		sd = h->dev[i];
2098 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099 			return sd;
2100 	}
2101 	return NULL;
2102 }
2103 
2104 static int hpsa_slave_alloc(struct scsi_device *sdev)
2105 {
2106 	struct hpsa_scsi_dev_t *sd = NULL;
2107 	unsigned long flags;
2108 	struct ctlr_info *h;
2109 
2110 	h = sdev_to_hba(sdev);
2111 	spin_lock_irqsave(&h->devlock, flags);
2112 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113 		struct scsi_target *starget;
2114 		struct sas_rphy *rphy;
2115 
2116 		starget = scsi_target(sdev);
2117 		rphy = target_to_rphy(starget);
2118 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119 		if (sd) {
2120 			sd->target = sdev_id(sdev);
2121 			sd->lun = sdev->lun;
2122 		}
2123 	}
2124 	if (!sd)
2125 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126 					sdev_id(sdev), sdev->lun);
2127 
2128 	if (sd && sd->expose_device) {
2129 		atomic_set(&sd->ioaccel_cmds_out, 0);
2130 		sdev->hostdata = sd;
2131 	} else
2132 		sdev->hostdata = NULL;
2133 	spin_unlock_irqrestore(&h->devlock, flags);
2134 	return 0;
2135 }
2136 
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device *sdev)
2140 {
2141 	struct hpsa_scsi_dev_t *sd;
2142 	int queue_depth;
2143 
2144 	sd = sdev->hostdata;
2145 	sdev->no_uld_attach = !sd || !sd->expose_device;
2146 
2147 	if (sd) {
2148 		sd->was_removed = 0;
2149 		queue_depth = sd->queue_depth != 0 ?
2150 				sd->queue_depth : sdev->host->can_queue;
2151 		if (sd->external) {
2152 			queue_depth = EXTERNAL_QD;
2153 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154 			blk_queue_rq_timeout(sdev->request_queue,
2155 						HPSA_EH_PTRAID_TIMEOUT);
2156 		}
2157 		if (is_hba_lunid(sd->scsi3addr)) {
2158 			sdev->eh_timeout = CTLR_TIMEOUT;
2159 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160 		}
2161 	} else {
2162 		queue_depth = sdev->host->can_queue;
2163 	}
2164 
2165 	scsi_change_queue_depth(sdev, queue_depth);
2166 
2167 	return 0;
2168 }
2169 
2170 static void hpsa_slave_destroy(struct scsi_device *sdev)
2171 {
2172 	struct hpsa_scsi_dev_t *hdev = NULL;
2173 
2174 	hdev = sdev->hostdata;
2175 
2176 	if (hdev)
2177 		hdev->was_removed = 1;
2178 }
2179 
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (!h->ioaccel2_cmd_sg_list)
2185 		return;
2186 	for (i = 0; i < h->nr_cmds; i++) {
2187 		kfree(h->ioaccel2_cmd_sg_list[i]);
2188 		h->ioaccel2_cmd_sg_list[i] = NULL;
2189 	}
2190 	kfree(h->ioaccel2_cmd_sg_list);
2191 	h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193 
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196 	int i;
2197 
2198 	if (h->chainsize <= 0)
2199 		return 0;
2200 
2201 	h->ioaccel2_cmd_sg_list =
2202 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203 					GFP_KERNEL);
2204 	if (!h->ioaccel2_cmd_sg_list)
2205 		return -ENOMEM;
2206 	for (i = 0; i < h->nr_cmds; i++) {
2207 		h->ioaccel2_cmd_sg_list[i] =
2208 			kmalloc_array(h->maxsgentries,
2209 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210 				      GFP_KERNEL);
2211 		if (!h->ioaccel2_cmd_sg_list[i])
2212 			goto clean;
2213 	}
2214 	return 0;
2215 
2216 clean:
2217 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2218 	return -ENOMEM;
2219 }
2220 
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (!h->cmd_sg_list)
2226 		return;
2227 	for (i = 0; i < h->nr_cmds; i++) {
2228 		kfree(h->cmd_sg_list[i]);
2229 		h->cmd_sg_list[i] = NULL;
2230 	}
2231 	kfree(h->cmd_sg_list);
2232 	h->cmd_sg_list = NULL;
2233 }
2234 
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237 	int i;
2238 
2239 	if (h->chainsize <= 0)
2240 		return 0;
2241 
2242 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243 				 GFP_KERNEL);
2244 	if (!h->cmd_sg_list)
2245 		return -ENOMEM;
2246 
2247 	for (i = 0; i < h->nr_cmds; i++) {
2248 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249 						  sizeof(*h->cmd_sg_list[i]),
2250 						  GFP_KERNEL);
2251 		if (!h->cmd_sg_list[i])
2252 			goto clean;
2253 
2254 	}
2255 	return 0;
2256 
2257 clean:
2258 	hpsa_free_sg_chain_blocks(h);
2259 	return -ENOMEM;
2260 }
2261 
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263 	struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265 	struct ioaccel2_sg_element *chain_block;
2266 	u64 temp64;
2267 	u32 chain_size;
2268 
2269 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270 	chain_size = le32_to_cpu(cp->sg[0].length);
2271 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272 				DMA_TO_DEVICE);
2273 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274 		/* prevent subsequent unmapping */
2275 		cp->sg->address = 0;
2276 		return -1;
2277 	}
2278 	cp->sg->address = cpu_to_le64(temp64);
2279 	return 0;
2280 }
2281 
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283 	struct io_accel2_cmd *cp)
2284 {
2285 	struct ioaccel2_sg_element *chain_sg;
2286 	u64 temp64;
2287 	u32 chain_size;
2288 
2289 	chain_sg = cp->sg;
2290 	temp64 = le64_to_cpu(chain_sg->address);
2291 	chain_size = le32_to_cpu(cp->sg[0].length);
2292 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294 
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296 	struct CommandList *c)
2297 {
2298 	struct SGDescriptor *chain_sg, *chain_block;
2299 	u64 temp64;
2300 	u32 chain_len;
2301 
2302 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303 	chain_block = h->cmd_sg_list[c->cmdindex];
2304 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305 	chain_len = sizeof(*chain_sg) *
2306 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307 	chain_sg->Len = cpu_to_le32(chain_len);
2308 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309 				DMA_TO_DEVICE);
2310 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311 		/* prevent subsequent unmapping */
2312 		chain_sg->Addr = cpu_to_le64(0);
2313 		return -1;
2314 	}
2315 	chain_sg->Addr = cpu_to_le64(temp64);
2316 	return 0;
2317 }
2318 
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320 	struct CommandList *c)
2321 {
2322 	struct SGDescriptor *chain_sg;
2323 
2324 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325 		return;
2326 
2327 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331 
2332 
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338 					struct CommandList *c,
2339 					struct scsi_cmnd *cmd,
2340 					struct io_accel2_cmd *c2,
2341 					struct hpsa_scsi_dev_t *dev)
2342 {
2343 	int data_len;
2344 	int retry = 0;
2345 	u32 ioaccel2_resid = 0;
2346 
2347 	switch (c2->error_data.serv_response) {
2348 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349 		switch (c2->error_data.status) {
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351 			if (cmd)
2352 				cmd->result = 0;
2353 			break;
2354 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2356 			if (c2->error_data.data_present !=
2357 					IOACCEL2_SENSE_DATA_PRESENT) {
2358 				memset(cmd->sense_buffer, 0,
2359 					SCSI_SENSE_BUFFERSIZE);
2360 				break;
2361 			}
2362 			/* copy the sense data */
2363 			data_len = c2->error_data.sense_data_len;
2364 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2365 				data_len = SCSI_SENSE_BUFFERSIZE;
2366 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2367 				data_len =
2368 					sizeof(c2->error_data.sense_data_buff);
2369 			memcpy(cmd->sense_buffer,
2370 				c2->error_data.sense_data_buff, data_len);
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383 			retry = 1;
2384 			break;
2385 		default:
2386 			retry = 1;
2387 			break;
2388 		}
2389 		break;
2390 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2391 		switch (c2->error_data.status) {
2392 		case IOACCEL2_STATUS_SR_IO_ERROR:
2393 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2394 		case IOACCEL2_STATUS_SR_OVERRUN:
2395 			retry = 1;
2396 			break;
2397 		case IOACCEL2_STATUS_SR_UNDERRUN:
2398 			cmd->result = (DID_OK << 16);		/* host byte */
2399 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2400 			ioaccel2_resid = get_unaligned_le32(
2401 						&c2->error_data.resid_cnt[0]);
2402 			scsi_set_resid(cmd, ioaccel2_resid);
2403 			break;
2404 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2405 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2406 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2407 			/*
2408 			 * Did an HBA disk disappear? We will eventually
2409 			 * get a state change event from the controller but
2410 			 * in the meantime, we need to tell the OS that the
2411 			 * HBA disk is no longer there and stop I/O
2412 			 * from going down. This allows the potential re-insert
2413 			 * of the disk to get the same device node.
2414 			 */
2415 			if (dev->physical_device && dev->expose_device) {
2416 				cmd->result = DID_NO_CONNECT << 16;
2417 				dev->removed = 1;
2418 				h->drv_req_rescan = 1;
2419 				dev_warn(&h->pdev->dev,
2420 					"%s: device is gone!\n", __func__);
2421 			} else
2422 				/*
2423 				 * Retry by sending down the RAID path.
2424 				 * We will get an event from ctlr to
2425 				 * trigger rescan regardless.
2426 				 */
2427 				retry = 1;
2428 			break;
2429 		default:
2430 			retry = 1;
2431 		}
2432 		break;
2433 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2434 		break;
2435 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2436 		break;
2437 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2438 		retry = 1;
2439 		break;
2440 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2441 		break;
2442 	default:
2443 		retry = 1;
2444 		break;
2445 	}
2446 
2447 	if (dev->in_reset)
2448 		retry = 0;
2449 
2450 	return retry;	/* retry on raid path? */
2451 }
2452 
2453 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2454 		struct CommandList *c)
2455 {
2456 	struct hpsa_scsi_dev_t *dev = c->device;
2457 
2458 	/*
2459 	 * Reset c->scsi_cmd here so that the reset handler will know
2460 	 * this command has completed.  Then, check to see if the handler is
2461 	 * waiting for this command, and, if so, wake it.
2462 	 */
2463 	c->scsi_cmd = SCSI_CMD_IDLE;
2464 	mb();	/* Declare command idle before checking for pending events. */
2465 	if (dev) {
2466 		atomic_dec(&dev->commands_outstanding);
2467 		if (dev->in_reset &&
2468 			atomic_read(&dev->commands_outstanding) <= 0)
2469 			wake_up_all(&h->event_sync_wait_queue);
2470 	}
2471 }
2472 
2473 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2474 				      struct CommandList *c)
2475 {
2476 	hpsa_cmd_resolve_events(h, c);
2477 	cmd_tagged_free(h, c);
2478 }
2479 
2480 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2481 		struct CommandList *c, struct scsi_cmnd *cmd)
2482 {
2483 	hpsa_cmd_resolve_and_free(h, c);
2484 	if (cmd && cmd->scsi_done)
2485 		cmd->scsi_done(cmd);
2486 }
2487 
2488 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2489 {
2490 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2491 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2492 }
2493 
2494 static void process_ioaccel2_completion(struct ctlr_info *h,
2495 		struct CommandList *c, struct scsi_cmnd *cmd,
2496 		struct hpsa_scsi_dev_t *dev)
2497 {
2498 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2499 
2500 	/* check for good status */
2501 	if (likely(c2->error_data.serv_response == 0 &&
2502 			c2->error_data.status == 0)) {
2503 		cmd->result = 0;
2504 		return hpsa_cmd_free_and_done(h, c, cmd);
2505 	}
2506 
2507 	/*
2508 	 * Any RAID offload error results in retry which will use
2509 	 * the normal I/O path so the controller can handle whatever is
2510 	 * wrong.
2511 	 */
2512 	if (is_logical_device(dev) &&
2513 		c2->error_data.serv_response ==
2514 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2515 		if (c2->error_data.status ==
2516 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2517 			hpsa_turn_off_ioaccel_for_device(dev);
2518 		}
2519 
2520 		if (dev->in_reset) {
2521 			cmd->result = DID_RESET << 16;
2522 			return hpsa_cmd_free_and_done(h, c, cmd);
2523 		}
2524 
2525 		return hpsa_retry_cmd(h, c);
2526 	}
2527 
2528 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2529 		return hpsa_retry_cmd(h, c);
2530 
2531 	return hpsa_cmd_free_and_done(h, c, cmd);
2532 }
2533 
2534 /* Returns 0 on success, < 0 otherwise. */
2535 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2536 					struct CommandList *cp)
2537 {
2538 	u8 tmf_status = cp->err_info->ScsiStatus;
2539 
2540 	switch (tmf_status) {
2541 	case CISS_TMF_COMPLETE:
2542 		/*
2543 		 * CISS_TMF_COMPLETE never happens, instead,
2544 		 * ei->CommandStatus == 0 for this case.
2545 		 */
2546 	case CISS_TMF_SUCCESS:
2547 		return 0;
2548 	case CISS_TMF_INVALID_FRAME:
2549 	case CISS_TMF_NOT_SUPPORTED:
2550 	case CISS_TMF_FAILED:
2551 	case CISS_TMF_WRONG_LUN:
2552 	case CISS_TMF_OVERLAPPED_TAG:
2553 		break;
2554 	default:
2555 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2556 				tmf_status);
2557 		break;
2558 	}
2559 	return -tmf_status;
2560 }
2561 
2562 static void complete_scsi_command(struct CommandList *cp)
2563 {
2564 	struct scsi_cmnd *cmd;
2565 	struct ctlr_info *h;
2566 	struct ErrorInfo *ei;
2567 	struct hpsa_scsi_dev_t *dev;
2568 	struct io_accel2_cmd *c2;
2569 
2570 	u8 sense_key;
2571 	u8 asc;      /* additional sense code */
2572 	u8 ascq;     /* additional sense code qualifier */
2573 	unsigned long sense_data_size;
2574 
2575 	ei = cp->err_info;
2576 	cmd = cp->scsi_cmd;
2577 	h = cp->h;
2578 
2579 	if (!cmd->device) {
2580 		cmd->result = DID_NO_CONNECT << 16;
2581 		return hpsa_cmd_free_and_done(h, cp, cmd);
2582 	}
2583 
2584 	dev = cmd->device->hostdata;
2585 	if (!dev) {
2586 		cmd->result = DID_NO_CONNECT << 16;
2587 		return hpsa_cmd_free_and_done(h, cp, cmd);
2588 	}
2589 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2590 
2591 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2592 	if ((cp->cmd_type == CMD_SCSI) &&
2593 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2594 		hpsa_unmap_sg_chain_block(h, cp);
2595 
2596 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2597 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2598 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2599 
2600 	cmd->result = (DID_OK << 16); 		/* host byte */
2601 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2602 
2603 	/* SCSI command has already been cleaned up in SML */
2604 	if (dev->was_removed) {
2605 		hpsa_cmd_resolve_and_free(h, cp);
2606 		return;
2607 	}
2608 
2609 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610 		if (dev->physical_device && dev->expose_device &&
2611 			dev->removed) {
2612 			cmd->result = DID_NO_CONNECT << 16;
2613 			return hpsa_cmd_free_and_done(h, cp, cmd);
2614 		}
2615 		if (likely(cp->phys_disk != NULL))
2616 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617 	}
2618 
2619 	/*
2620 	 * We check for lockup status here as it may be set for
2621 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622 	 * fail_all_oustanding_cmds()
2623 	 */
2624 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625 		/* DID_NO_CONNECT will prevent a retry */
2626 		cmd->result = DID_NO_CONNECT << 16;
2627 		return hpsa_cmd_free_and_done(h, cp, cmd);
2628 	}
2629 
2630 	if (cp->cmd_type == CMD_IOACCEL2)
2631 		return process_ioaccel2_completion(h, cp, cmd, dev);
2632 
2633 	scsi_set_resid(cmd, ei->ResidualCnt);
2634 	if (ei->CommandStatus == 0)
2635 		return hpsa_cmd_free_and_done(h, cp, cmd);
2636 
2637 	/* For I/O accelerator commands, copy over some fields to the normal
2638 	 * CISS header used below for error handling.
2639 	 */
2640 	if (cp->cmd_type == CMD_IOACCEL1) {
2641 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642 		cp->Header.SGList = scsi_sg_count(cmd);
2643 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646 		cp->Header.tag = c->tag;
2647 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649 
2650 		/* Any RAID offload error results in retry which will use
2651 		 * the normal I/O path so the controller can handle whatever's
2652 		 * wrong.
2653 		 */
2654 		if (is_logical_device(dev)) {
2655 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656 				dev->offload_enabled = 0;
2657 			return hpsa_retry_cmd(h, cp);
2658 		}
2659 	}
2660 
2661 	/* an error has occurred */
2662 	switch (ei->CommandStatus) {
2663 
2664 	case CMD_TARGET_STATUS:
2665 		cmd->result |= ei->ScsiStatus;
2666 		/* copy the sense data */
2667 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669 		else
2670 			sense_data_size = sizeof(ei->SenseInfo);
2671 		if (ei->SenseLen < sense_data_size)
2672 			sense_data_size = ei->SenseLen;
2673 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674 		if (ei->ScsiStatus)
2675 			decode_sense_data(ei->SenseInfo, sense_data_size,
2676 				&sense_key, &asc, &ascq);
2677 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678 			switch (sense_key) {
2679 			case ABORTED_COMMAND:
2680 				cmd->result |= DID_SOFT_ERROR << 16;
2681 				break;
2682 			case UNIT_ATTENTION:
2683 				if (asc == 0x3F && ascq == 0x0E)
2684 					h->drv_req_rescan = 1;
2685 				break;
2686 			case ILLEGAL_REQUEST:
2687 				if (asc == 0x25 && ascq == 0x00) {
2688 					dev->removed = 1;
2689 					cmd->result = DID_NO_CONNECT << 16;
2690 				}
2691 				break;
2692 			}
2693 			break;
2694 		}
2695 		/* Problem was not a check condition
2696 		 * Pass it up to the upper layers...
2697 		 */
2698 		if (ei->ScsiStatus) {
2699 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701 				"Returning result: 0x%x\n",
2702 				cp, ei->ScsiStatus,
2703 				sense_key, asc, ascq,
2704 				cmd->result);
2705 		} else {  /* scsi status is zero??? How??? */
2706 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707 				"Returning no connection.\n", cp),
2708 
2709 			/* Ordinarily, this case should never happen,
2710 			 * but there is a bug in some released firmware
2711 			 * revisions that allows it to happen if, for
2712 			 * example, a 4100 backplane loses power and
2713 			 * the tape drive is in it.  We assume that
2714 			 * it's a fatal error of some kind because we
2715 			 * can't show that it wasn't. We will make it
2716 			 * look like selection timeout since that is
2717 			 * the most common reason for this to occur,
2718 			 * and it's severe enough.
2719 			 */
2720 
2721 			cmd->result = DID_NO_CONNECT << 16;
2722 		}
2723 		break;
2724 
2725 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726 		break;
2727 	case CMD_DATA_OVERRUN:
2728 		dev_warn(&h->pdev->dev,
2729 			"CDB %16phN data overrun\n", cp->Request.CDB);
2730 		break;
2731 	case CMD_INVALID: {
2732 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2733 		print_cmd(cp); */
2734 		/* We get CMD_INVALID if you address a non-existent device
2735 		 * instead of a selection timeout (no response).  You will
2736 		 * see this if you yank out a drive, then try to access it.
2737 		 * This is kind of a shame because it means that any other
2738 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739 		 * missing target. */
2740 		cmd->result = DID_NO_CONNECT << 16;
2741 	}
2742 		break;
2743 	case CMD_PROTOCOL_ERR:
2744 		cmd->result = DID_ERROR << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746 				cp->Request.CDB);
2747 		break;
2748 	case CMD_HARDWARE_ERR:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751 			cp->Request.CDB);
2752 		break;
2753 	case CMD_CONNECTION_LOST:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756 			cp->Request.CDB);
2757 		break;
2758 	case CMD_ABORTED:
2759 		cmd->result = DID_ABORT << 16;
2760 		break;
2761 	case CMD_ABORT_FAILED:
2762 		cmd->result = DID_ERROR << 16;
2763 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764 			cp->Request.CDB);
2765 		break;
2766 	case CMD_UNSOLICITED_ABORT:
2767 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769 			cp->Request.CDB);
2770 		break;
2771 	case CMD_TIMEOUT:
2772 		cmd->result = DID_TIME_OUT << 16;
2773 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774 			cp->Request.CDB);
2775 		break;
2776 	case CMD_UNABORTABLE:
2777 		cmd->result = DID_ERROR << 16;
2778 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2779 		break;
2780 	case CMD_TMF_STATUS:
2781 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782 			cmd->result = DID_ERROR << 16;
2783 		break;
2784 	case CMD_IOACCEL_DISABLED:
2785 		/* This only handles the direct pass-through case since RAID
2786 		 * offload is handled above.  Just attempt a retry.
2787 		 */
2788 		cmd->result = DID_SOFT_ERROR << 16;
2789 		dev_warn(&h->pdev->dev,
2790 				"cp %p had HP SSD Smart Path error\n", cp);
2791 		break;
2792 	default:
2793 		cmd->result = DID_ERROR << 16;
2794 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795 				cp, ei->CommandStatus);
2796 	}
2797 
2798 	return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800 
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802 		int sg_used, enum dma_data_direction data_direction)
2803 {
2804 	int i;
2805 
2806 	for (i = 0; i < sg_used; i++)
2807 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808 				le32_to_cpu(c->SG[i].Len),
2809 				data_direction);
2810 }
2811 
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813 		struct CommandList *cp,
2814 		unsigned char *buf,
2815 		size_t buflen,
2816 		enum dma_data_direction data_direction)
2817 {
2818 	u64 addr64;
2819 
2820 	if (buflen == 0 || data_direction == DMA_NONE) {
2821 		cp->Header.SGList = 0;
2822 		cp->Header.SGTotal = cpu_to_le16(0);
2823 		return 0;
2824 	}
2825 
2826 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827 	if (dma_mapping_error(&pdev->dev, addr64)) {
2828 		/* Prevent subsequent unmap of something never mapped */
2829 		cp->Header.SGList = 0;
2830 		cp->Header.SGTotal = cpu_to_le16(0);
2831 		return -1;
2832 	}
2833 	cp->SG[0].Addr = cpu_to_le64(addr64);
2834 	cp->SG[0].Len = cpu_to_le32(buflen);
2835 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838 	return 0;
2839 }
2840 
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846 	DECLARE_COMPLETION_ONSTACK(wait);
2847 
2848 	c->waiting = &wait;
2849 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2850 	if (timeout_msecs == NO_TIMEOUT) {
2851 		/* TODO: get rid of this no-timeout thing */
2852 		wait_for_completion_io(&wait);
2853 		return IO_OK;
2854 	}
2855 	if (!wait_for_completion_io_timeout(&wait,
2856 					msecs_to_jiffies(timeout_msecs))) {
2857 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2858 		return -ETIMEDOUT;
2859 	}
2860 	return IO_OK;
2861 }
2862 
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864 				   int reply_queue, unsigned long timeout_msecs)
2865 {
2866 	if (unlikely(lockup_detected(h))) {
2867 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868 		return IO_OK;
2869 	}
2870 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872 
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875 	int cpu;
2876 	u32 rc, *lockup_detected;
2877 
2878 	cpu = get_cpu();
2879 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880 	rc = *lockup_detected;
2881 	put_cpu();
2882 	return rc;
2883 }
2884 
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887 		struct CommandList *c, enum dma_data_direction data_direction,
2888 		unsigned long timeout_msecs)
2889 {
2890 	int backoff_time = 10, retry_count = 0;
2891 	int rc;
2892 
2893 	do {
2894 		memset(c->err_info, 0, sizeof(*c->err_info));
2895 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896 						  timeout_msecs);
2897 		if (rc)
2898 			break;
2899 		retry_count++;
2900 		if (retry_count > 3) {
2901 			msleep(backoff_time);
2902 			if (backoff_time < 1000)
2903 				backoff_time *= 2;
2904 		}
2905 	} while ((check_for_unit_attention(h, c) ||
2906 			check_for_busy(h, c)) &&
2907 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2908 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910 		rc = -EIO;
2911 	return rc;
2912 }
2913 
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915 				struct CommandList *c)
2916 {
2917 	const u8 *cdb = c->Request.CDB;
2918 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2919 
2920 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921 		 txt, lun, cdb);
2922 }
2923 
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925 			struct CommandList *cp)
2926 {
2927 	const struct ErrorInfo *ei = cp->err_info;
2928 	struct device *d = &cp->h->pdev->dev;
2929 	u8 sense_key, asc, ascq;
2930 	int sense_len;
2931 
2932 	switch (ei->CommandStatus) {
2933 	case CMD_TARGET_STATUS:
2934 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2935 			sense_len = sizeof(ei->SenseInfo);
2936 		else
2937 			sense_len = ei->SenseLen;
2938 		decode_sense_data(ei->SenseInfo, sense_len,
2939 					&sense_key, &asc, &ascq);
2940 		hpsa_print_cmd(h, "SCSI status", cp);
2941 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943 				sense_key, asc, ascq);
2944 		else
2945 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946 		if (ei->ScsiStatus == 0)
2947 			dev_warn(d, "SCSI status is abnormally zero.  "
2948 			"(probably indicates selection timeout "
2949 			"reported incorrectly due to a known "
2950 			"firmware bug, circa July, 2001.)\n");
2951 		break;
2952 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953 		break;
2954 	case CMD_DATA_OVERRUN:
2955 		hpsa_print_cmd(h, "overrun condition", cp);
2956 		break;
2957 	case CMD_INVALID: {
2958 		/* controller unfortunately reports SCSI passthru's
2959 		 * to non-existent targets as invalid commands.
2960 		 */
2961 		hpsa_print_cmd(h, "invalid command", cp);
2962 		dev_warn(d, "probably means device no longer present\n");
2963 		}
2964 		break;
2965 	case CMD_PROTOCOL_ERR:
2966 		hpsa_print_cmd(h, "protocol error", cp);
2967 		break;
2968 	case CMD_HARDWARE_ERR:
2969 		hpsa_print_cmd(h, "hardware error", cp);
2970 		break;
2971 	case CMD_CONNECTION_LOST:
2972 		hpsa_print_cmd(h, "connection lost", cp);
2973 		break;
2974 	case CMD_ABORTED:
2975 		hpsa_print_cmd(h, "aborted", cp);
2976 		break;
2977 	case CMD_ABORT_FAILED:
2978 		hpsa_print_cmd(h, "abort failed", cp);
2979 		break;
2980 	case CMD_UNSOLICITED_ABORT:
2981 		hpsa_print_cmd(h, "unsolicited abort", cp);
2982 		break;
2983 	case CMD_TIMEOUT:
2984 		hpsa_print_cmd(h, "timed out", cp);
2985 		break;
2986 	case CMD_UNABORTABLE:
2987 		hpsa_print_cmd(h, "unabortable", cp);
2988 		break;
2989 	case CMD_CTLR_LOCKUP:
2990 		hpsa_print_cmd(h, "controller lockup detected", cp);
2991 		break;
2992 	default:
2993 		hpsa_print_cmd(h, "unknown status", cp);
2994 		dev_warn(d, "Unknown command status %x\n",
2995 				ei->CommandStatus);
2996 	}
2997 }
2998 
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000 					u8 page, u8 *buf, size_t bufsize)
3001 {
3002 	int rc = IO_OK;
3003 	struct CommandList *c;
3004 	struct ErrorInfo *ei;
3005 
3006 	c = cmd_alloc(h);
3007 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008 			page, scsi3addr, TYPE_CMD)) {
3009 		rc = -1;
3010 		goto out;
3011 	}
3012 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013 			NO_TIMEOUT);
3014 	if (rc)
3015 		goto out;
3016 	ei = c->err_info;
3017 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018 		hpsa_scsi_interpret_error(h, c);
3019 		rc = -1;
3020 	}
3021 out:
3022 	cmd_free(h, c);
3023 	return rc;
3024 }
3025 
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027 						u8 *scsi3addr)
3028 {
3029 	u8 *buf;
3030 	u64 sa = 0;
3031 	int rc = 0;
3032 
3033 	buf = kzalloc(1024, GFP_KERNEL);
3034 	if (!buf)
3035 		return 0;
3036 
3037 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038 					buf, 1024);
3039 
3040 	if (rc)
3041 		goto out;
3042 
3043 	sa = get_unaligned_be64(buf+12);
3044 
3045 out:
3046 	kfree(buf);
3047 	return sa;
3048 }
3049 
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051 			u16 page, unsigned char *buf,
3052 			unsigned char bufsize)
3053 {
3054 	int rc = IO_OK;
3055 	struct CommandList *c;
3056 	struct ErrorInfo *ei;
3057 
3058 	c = cmd_alloc(h);
3059 
3060 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061 			page, scsi3addr, TYPE_CMD)) {
3062 		rc = -1;
3063 		goto out;
3064 	}
3065 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066 			NO_TIMEOUT);
3067 	if (rc)
3068 		goto out;
3069 	ei = c->err_info;
3070 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071 		hpsa_scsi_interpret_error(h, c);
3072 		rc = -1;
3073 	}
3074 out:
3075 	cmd_free(h, c);
3076 	return rc;
3077 }
3078 
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080 	u8 reset_type, int reply_queue)
3081 {
3082 	int rc = IO_OK;
3083 	struct CommandList *c;
3084 	struct ErrorInfo *ei;
3085 
3086 	c = cmd_alloc(h);
3087 	c->device = dev;
3088 
3089 	/* fill_cmd can't fail here, no data buffer to map. */
3090 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092 	if (rc) {
3093 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094 		goto out;
3095 	}
3096 	/* no unmap needed here because no data xfer. */
3097 
3098 	ei = c->err_info;
3099 	if (ei->CommandStatus != 0) {
3100 		hpsa_scsi_interpret_error(h, c);
3101 		rc = -1;
3102 	}
3103 out:
3104 	cmd_free(h, c);
3105 	return rc;
3106 }
3107 
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109 			       struct hpsa_scsi_dev_t *dev,
3110 			       unsigned char *scsi3addr)
3111 {
3112 	int i;
3113 	bool match = false;
3114 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116 
3117 	if (hpsa_is_cmd_idle(c))
3118 		return false;
3119 
3120 	switch (c->cmd_type) {
3121 	case CMD_SCSI:
3122 	case CMD_IOCTL_PEND:
3123 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124 				sizeof(c->Header.LUN.LunAddrBytes));
3125 		break;
3126 
3127 	case CMD_IOACCEL1:
3128 	case CMD_IOACCEL2:
3129 		if (c->phys_disk == dev) {
3130 			/* HBA mode match */
3131 			match = true;
3132 		} else {
3133 			/* Possible RAID mode -- check each phys dev. */
3134 			/* FIXME:  Do we need to take out a lock here?  If
3135 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136 			 * instead. */
3137 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138 				/* FIXME: an alternate test might be
3139 				 *
3140 				 * match = dev->phys_disk[i]->ioaccel_handle
3141 				 *              == c2->scsi_nexus;      */
3142 				match = dev->phys_disk[i] == c->phys_disk;
3143 			}
3144 		}
3145 		break;
3146 
3147 	case IOACCEL2_TMF:
3148 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149 			match = dev->phys_disk[i]->ioaccel_handle ==
3150 					le32_to_cpu(ac->it_nexus);
3151 		}
3152 		break;
3153 
3154 	case 0:		/* The command is in the middle of being initialized. */
3155 		match = false;
3156 		break;
3157 
3158 	default:
3159 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160 			c->cmd_type);
3161 		BUG();
3162 	}
3163 
3164 	return match;
3165 }
3166 
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168 	u8 reset_type, int reply_queue)
3169 {
3170 	int rc = 0;
3171 
3172 	/* We can really only handle one reset at a time */
3173 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175 		return -EINTR;
3176 	}
3177 
3178 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179 	if (!rc) {
3180 		/* incremented by sending the reset request */
3181 		atomic_dec(&dev->commands_outstanding);
3182 		wait_event(h->event_sync_wait_queue,
3183 			atomic_read(&dev->commands_outstanding) <= 0 ||
3184 			lockup_detected(h));
3185 	}
3186 
3187 	if (unlikely(lockup_detected(h))) {
3188 		dev_warn(&h->pdev->dev,
3189 			 "Controller lockup detected during reset wait\n");
3190 		rc = -ENODEV;
3191 	}
3192 
3193 	if (!rc)
3194 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195 
3196 	mutex_unlock(&h->reset_mutex);
3197 	return rc;
3198 }
3199 
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 	unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 	int rc;
3204 	unsigned char *buf;
3205 
3206 	*raid_level = RAID_UNKNOWN;
3207 	buf = kzalloc(64, GFP_KERNEL);
3208 	if (!buf)
3209 		return;
3210 
3211 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 		goto exit;
3214 
3215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217 
3218 	if (rc == 0)
3219 		*raid_level = buf[8];
3220 	if (*raid_level > RAID_UNKNOWN)
3221 		*raid_level = RAID_UNKNOWN;
3222 exit:
3223 	kfree(buf);
3224 	return;
3225 }
3226 
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 				struct raid_map_data *map_buff)
3231 {
3232 	struct raid_map_disk_data *dd = &map_buff->data[0];
3233 	int map, row, col;
3234 	u16 map_cnt, row_cnt, disks_per_row;
3235 
3236 	if (rc != 0)
3237 		return;
3238 
3239 	/* Show details only if debugging has been activated. */
3240 	if (h->raid_offload_debug < 2)
3241 		return;
3242 
3243 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 				le32_to_cpu(map_buff->structure_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 			le32_to_cpu(map_buff->volume_blk_size));
3247 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->volume_blk_cnt));
3249 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 			map_buff->phys_blk_shift);
3251 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 			map_buff->parity_rotation_shift);
3253 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 			le16_to_cpu(map_buff->strip_size));
3255 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_starting_blk));
3257 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 			le64_to_cpu(map_buff->disk_blk_cnt));
3259 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->data_disks_per_row));
3261 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 			le16_to_cpu(map_buff->metadata_disks_per_row));
3263 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 			le16_to_cpu(map_buff->row_cnt));
3265 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 			le16_to_cpu(map_buff->layout_map_count));
3267 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 			le16_to_cpu(map_buff->flags));
3269 	dev_info(&h->pdev->dev, "encryption = %s\n",
3270 			le16_to_cpu(map_buff->flags) &
3271 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 			le16_to_cpu(map_buff->dekindex));
3274 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 	for (map = 0; map < map_cnt; map++) {
3276 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 		for (row = 0; row < row_cnt; row++) {
3279 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280 			disks_per_row =
3281 				le16_to_cpu(map_buff->data_disks_per_row);
3282 			for (col = 0; col < disks_per_row; col++, dd++)
3283 				dev_info(&h->pdev->dev,
3284 					"    D%02u: h=0x%04x xor=%u,%u\n",
3285 					col, dd->ioaccel_handle,
3286 					dd->xor_mult[0], dd->xor_mult[1]);
3287 			disks_per_row =
3288 				le16_to_cpu(map_buff->metadata_disks_per_row);
3289 			for (col = 0; col < disks_per_row; col++, dd++)
3290 				dev_info(&h->pdev->dev,
3291 					"    M%02u: h=0x%04x xor=%u,%u\n",
3292 					col, dd->ioaccel_handle,
3293 					dd->xor_mult[0], dd->xor_mult[1]);
3294 		}
3295 	}
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 			__attribute__((unused)) int rc,
3300 			__attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304 
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 	int rc = 0;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 
3314 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 			sizeof(this_device->raid_map), 0,
3316 			scsi3addr, TYPE_CMD)) {
3317 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 		cmd_free(h, c);
3319 		return -1;
3320 	}
3321 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 			NO_TIMEOUT);
3323 	if (rc)
3324 		goto out;
3325 	ei = c->err_info;
3326 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 		hpsa_scsi_interpret_error(h, c);
3328 		rc = -1;
3329 		goto out;
3330 	}
3331 	cmd_free(h, c);
3332 
3333 	/* @todo in the future, dynamically allocate RAID map memory */
3334 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 				sizeof(this_device->raid_map)) {
3336 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 		rc = -1;
3338 	}
3339 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 	return rc;
3341 out:
3342 	cmd_free(h, c);
3343 	return rc;
3344 }
3345 
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 		unsigned char scsi3addr[], u16 bmic_device_index,
3348 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 	int rc = IO_OK;
3351 	struct CommandList *c;
3352 	struct ErrorInfo *ei;
3353 
3354 	c = cmd_alloc(h);
3355 
3356 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 		0, RAID_CTLR_LUNID, TYPE_CMD);
3358 	if (rc)
3359 		goto out;
3360 
3361 	c->Request.CDB[2] = bmic_device_index & 0xff;
3362 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363 
3364 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 			NO_TIMEOUT);
3366 	if (rc)
3367 		goto out;
3368 	ei = c->err_info;
3369 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 		hpsa_scsi_interpret_error(h, c);
3371 		rc = -1;
3372 	}
3373 out:
3374 	cmd_free(h, c);
3375 	return rc;
3376 }
3377 
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 	struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 	int rc = IO_OK;
3382 	struct CommandList *c;
3383 	struct ErrorInfo *ei;
3384 
3385 	c = cmd_alloc(h);
3386 
3387 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 		0, RAID_CTLR_LUNID, TYPE_CMD);
3389 	if (rc)
3390 		goto out;
3391 
3392 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 			NO_TIMEOUT);
3394 	if (rc)
3395 		goto out;
3396 	ei = c->err_info;
3397 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 		hpsa_scsi_interpret_error(h, c);
3399 		rc = -1;
3400 	}
3401 out:
3402 	cmd_free(h, c);
3403 	return rc;
3404 }
3405 
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 		unsigned char scsi3addr[], u16 bmic_device_index,
3408 		struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 	int rc = IO_OK;
3411 	struct CommandList *c;
3412 	struct ErrorInfo *ei;
3413 
3414 	c = cmd_alloc(h);
3415 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 		0, RAID_CTLR_LUNID, TYPE_CMD);
3417 	if (rc)
3418 		goto out;
3419 
3420 	c->Request.CDB[2] = bmic_device_index & 0xff;
3421 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422 
3423 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 						NO_TIMEOUT);
3425 	ei = c->err_info;
3426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 		hpsa_scsi_interpret_error(h, c);
3428 		rc = -1;
3429 	}
3430 out:
3431 	cmd_free(h, c);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 			unsigned char *scsi3addr,
3444 			struct ReportExtendedLUNdata *rlep, int rle_index,
3445 			struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 	int rc = -1;
3448 	struct CommandList *c = NULL;
3449 	struct ErrorInfo *ei = NULL;
3450 	struct bmic_sense_storage_box_params *bssbp = NULL;
3451 	struct bmic_identify_physical_device *id_phys = NULL;
3452 	struct ext_report_lun_entry *rle;
3453 	u16 bmic_device_index = 0;
3454 
3455 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456 		return;
3457 
3458 	rle = &rlep->LUN[rle_index];
3459 
3460 	encl_dev->eli =
3461 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462 
3463 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464 
3465 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466 		rc = IO_OK;
3467 		goto out;
3468 	}
3469 
3470 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471 		rc = IO_OK;
3472 		goto out;
3473 	}
3474 
3475 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476 	if (!bssbp)
3477 		goto out;
3478 
3479 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480 	if (!id_phys)
3481 		goto out;
3482 
3483 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484 						id_phys, sizeof(*id_phys));
3485 	if (rc) {
3486 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487 			__func__, encl_dev->external, bmic_device_index);
3488 		goto out;
3489 	}
3490 
3491 	c = cmd_alloc(h);
3492 
3493 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495 
3496 	if (rc)
3497 		goto out;
3498 
3499 	if (id_phys->phys_connector[1] == 'E')
3500 		c->Request.CDB[5] = id_phys->box_index;
3501 	else
3502 		c->Request.CDB[5] = 0;
3503 
3504 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505 						NO_TIMEOUT);
3506 	if (rc)
3507 		goto out;
3508 
3509 	ei = c->err_info;
3510 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511 		rc = -1;
3512 		goto out;
3513 	}
3514 
3515 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518 
3519 	rc = IO_OK;
3520 out:
3521 	kfree(bssbp);
3522 	kfree(id_phys);
3523 
3524 	if (c)
3525 		cmd_free(h, c);
3526 
3527 	if (rc != IO_OK)
3528 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529 			"Error, could not get enclosure information");
3530 }
3531 
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533 						unsigned char *scsi3addr)
3534 {
3535 	struct ReportExtendedLUNdata *physdev;
3536 	u32 nphysicals;
3537 	u64 sa = 0;
3538 	int i;
3539 
3540 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541 	if (!physdev)
3542 		return 0;
3543 
3544 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546 		kfree(physdev);
3547 		return 0;
3548 	}
3549 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550 
3551 	for (i = 0; i < nphysicals; i++)
3552 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554 			break;
3555 		}
3556 
3557 	kfree(physdev);
3558 
3559 	return sa;
3560 }
3561 
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563 					struct hpsa_scsi_dev_t *dev)
3564 {
3565 	int rc;
3566 	u64 sa = 0;
3567 
3568 	if (is_hba_lunid(scsi3addr)) {
3569 		struct bmic_sense_subsystem_info *ssi;
3570 
3571 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572 		if (!ssi)
3573 			return;
3574 
3575 		rc = hpsa_bmic_sense_subsystem_information(h,
3576 					scsi3addr, 0, ssi, sizeof(*ssi));
3577 		if (rc == 0) {
3578 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579 			h->sas_address = sa;
3580 		}
3581 
3582 		kfree(ssi);
3583 	} else
3584 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585 
3586 	dev->sas_address = sa;
3587 }
3588 
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590 	struct ReportExtendedLUNdata *physdev)
3591 {
3592 	u32 nphysicals;
3593 	int i;
3594 
3595 	if (h->discovery_polling)
3596 		return;
3597 
3598 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599 
3600 	for (i = 0; i < nphysicals; i++) {
3601 		if (physdev->LUN[i].device_type ==
3602 			BMIC_DEVICE_TYPE_CONTROLLER
3603 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3604 			dev_info(&h->pdev->dev,
3605 				"External controller present, activate discovery polling and disable rld caching\n");
3606 			hpsa_disable_rld_caching(h);
3607 			h->discovery_polling = 1;
3608 			break;
3609 		}
3610 	}
3611 }
3612 
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615 	unsigned char scsi3addr[], u8 page)
3616 {
3617 	int rc;
3618 	int i;
3619 	int pages;
3620 	unsigned char *buf, bufsize;
3621 
3622 	buf = kzalloc(256, GFP_KERNEL);
3623 	if (!buf)
3624 		return false;
3625 
3626 	/* Get the size of the page list first */
3627 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629 				buf, HPSA_VPD_HEADER_SZ);
3630 	if (rc != 0)
3631 		goto exit_unsupported;
3632 	pages = buf[3];
3633 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3635 	else
3636 		bufsize = 255;
3637 
3638 	/* Get the whole VPD page list */
3639 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641 				buf, bufsize);
3642 	if (rc != 0)
3643 		goto exit_unsupported;
3644 
3645 	pages = buf[3];
3646 	for (i = 1; i <= pages; i++)
3647 		if (buf[3 + i] == page)
3648 			goto exit_supported;
3649 exit_unsupported:
3650 	kfree(buf);
3651 	return false;
3652 exit_supported:
3653 	kfree(buf);
3654 	return true;
3655 }
3656 
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667 	int rc;
3668 	unsigned char *buf;
3669 	u8 ioaccel_status;
3670 
3671 	this_device->offload_config = 0;
3672 	this_device->offload_enabled = 0;
3673 	this_device->offload_to_be_enabled = 0;
3674 
3675 	buf = kzalloc(64, GFP_KERNEL);
3676 	if (!buf)
3677 		return;
3678 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679 		goto out;
3680 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682 	if (rc != 0)
3683 		goto out;
3684 
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689 	this_device->offload_config =
3690 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691 	if (this_device->offload_config) {
3692 		bool offload_enabled =
3693 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694 		/*
3695 		 * Check to see if offload can be enabled.
3696 		 */
3697 		if (offload_enabled) {
3698 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699 			if (rc) /* could not load raid_map */
3700 				goto out;
3701 			this_device->offload_to_be_enabled = 1;
3702 		}
3703 	}
3704 
3705 out:
3706 	kfree(buf);
3707 	return;
3708 }
3709 
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712 	unsigned char *device_id, int index, int buflen)
3713 {
3714 	int rc;
3715 	unsigned char *buf;
3716 
3717 	/* Does controller have VPD for device id? */
3718 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719 		return 1; /* not supported */
3720 
3721 	buf = kzalloc(64, GFP_KERNEL);
3722 	if (!buf)
3723 		return -ENOMEM;
3724 
3725 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727 	if (rc == 0) {
3728 		if (buflen > 16)
3729 			buflen = 16;
3730 		memcpy(device_id, &buf[8], buflen);
3731 	}
3732 
3733 	kfree(buf);
3734 
3735 	return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737 
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739 		void *buf, int bufsize,
3740 		int extended_response)
3741 {
3742 	int rc = IO_OK;
3743 	struct CommandList *c;
3744 	unsigned char scsi3addr[8];
3745 	struct ErrorInfo *ei;
3746 
3747 	c = cmd_alloc(h);
3748 
3749 	/* address the controller */
3750 	memset(scsi3addr, 0, sizeof(scsi3addr));
3751 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753 		rc = -EAGAIN;
3754 		goto out;
3755 	}
3756 	if (extended_response)
3757 		c->Request.CDB[1] = extended_response;
3758 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759 			NO_TIMEOUT);
3760 	if (rc)
3761 		goto out;
3762 	ei = c->err_info;
3763 	if (ei->CommandStatus != 0 &&
3764 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765 		hpsa_scsi_interpret_error(h, c);
3766 		rc = -EIO;
3767 	} else {
3768 		struct ReportLUNdata *rld = buf;
3769 
3770 		if (rld->extended_response_flag != extended_response) {
3771 			if (!h->legacy_board) {
3772 				dev_err(&h->pdev->dev,
3773 					"report luns requested format %u, got %u\n",
3774 					extended_response,
3775 					rld->extended_response_flag);
3776 				rc = -EINVAL;
3777 			} else
3778 				rc = -EOPNOTSUPP;
3779 		}
3780 	}
3781 out:
3782 	cmd_free(h, c);
3783 	return rc;
3784 }
3785 
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787 		struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789 	int rc;
3790 	struct ReportLUNdata *lbuf;
3791 
3792 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793 				      HPSA_REPORT_PHYS_EXTENDED);
3794 	if (!rc || rc != -EOPNOTSUPP)
3795 		return rc;
3796 
3797 	/* REPORT PHYS EXTENDED is not supported */
3798 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799 	if (!lbuf)
3800 		return -ENOMEM;
3801 
3802 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803 	if (!rc) {
3804 		int i;
3805 		u32 nphys;
3806 
3807 		/* Copy ReportLUNdata header */
3808 		memcpy(buf, lbuf, 8);
3809 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810 		for (i = 0; i < nphys; i++)
3811 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812 	}
3813 	kfree(lbuf);
3814 	return rc;
3815 }
3816 
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818 		struct ReportLUNdata *buf, int bufsize)
3819 {
3820 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822 
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824 	int bus, int target, int lun)
3825 {
3826 	device->bus = bus;
3827 	device->target = target;
3828 	device->lun = lun;
3829 }
3830 
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833 					unsigned char scsi3addr[])
3834 {
3835 	int rc;
3836 	int status;
3837 	int size;
3838 	unsigned char *buf;
3839 
3840 	buf = kzalloc(64, GFP_KERNEL);
3841 	if (!buf)
3842 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 
3844 	/* Does controller have VPD for logical volume status? */
3845 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846 		goto exit_failed;
3847 
3848 	/* Get the size of the VPD return buffer */
3849 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850 					buf, HPSA_VPD_HEADER_SZ);
3851 	if (rc != 0)
3852 		goto exit_failed;
3853 	size = buf[3];
3854 
3855 	/* Now get the whole VPD buffer */
3856 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857 					buf, size + HPSA_VPD_HEADER_SZ);
3858 	if (rc != 0)
3859 		goto exit_failed;
3860 	status = buf[4]; /* status byte */
3861 
3862 	kfree(buf);
3863 	return status;
3864 exit_failed:
3865 	kfree(buf);
3866 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868 
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877 					unsigned char scsi3addr[])
3878 {
3879 	struct CommandList *c;
3880 	unsigned char *sense;
3881 	u8 sense_key, asc, ascq;
3882 	int sense_len;
3883 	int rc, ldstat = 0;
3884 	u16 cmd_status;
3885 	u8 scsi_status;
3886 #define ASC_LUN_NOT_READY 0x04
3887 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3888 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3889 
3890 	c = cmd_alloc(h);
3891 
3892 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3893 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3894 					NO_TIMEOUT);
3895 	if (rc) {
3896 		cmd_free(h, c);
3897 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3898 	}
3899 	sense = c->err_info->SenseInfo;
3900 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3901 		sense_len = sizeof(c->err_info->SenseInfo);
3902 	else
3903 		sense_len = c->err_info->SenseLen;
3904 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3905 	cmd_status = c->err_info->CommandStatus;
3906 	scsi_status = c->err_info->ScsiStatus;
3907 	cmd_free(h, c);
3908 
3909 	/* Determine the reason for not ready state */
3910 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3911 
3912 	/* Keep volume offline in certain cases: */
3913 	switch (ldstat) {
3914 	case HPSA_LV_FAILED:
3915 	case HPSA_LV_UNDERGOING_ERASE:
3916 	case HPSA_LV_NOT_AVAILABLE:
3917 	case HPSA_LV_UNDERGOING_RPI:
3918 	case HPSA_LV_PENDING_RPI:
3919 	case HPSA_LV_ENCRYPTED_NO_KEY:
3920 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3922 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924 		return ldstat;
3925 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926 		/* If VPD status page isn't available,
3927 		 * use ASC/ASCQ to determine state
3928 		 */
3929 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931 			return ldstat;
3932 		break;
3933 	default:
3934 		break;
3935 	}
3936 	return HPSA_LV_OK;
3937 }
3938 
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941 	unsigned char *is_OBDR_device)
3942 {
3943 
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948 
3949 	unsigned char *inq_buff;
3950 	unsigned char *obdr_sig;
3951 	int rc = 0;
3952 
3953 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954 	if (!inq_buff) {
3955 		rc = -ENOMEM;
3956 		goto bail_out;
3957 	}
3958 
3959 	/* Do an inquiry to the device to see what it is. */
3960 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962 		dev_err(&h->pdev->dev,
3963 			"%s: inquiry failed, device will be skipped.\n",
3964 			__func__);
3965 		rc = HPSA_INQUIRY_FAILED;
3966 		goto bail_out;
3967 	}
3968 
3969 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971 
3972 	this_device->devtype = (inq_buff[0] & 0x1f);
3973 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3974 	memcpy(this_device->vendor, &inq_buff[8],
3975 		sizeof(this_device->vendor));
3976 	memcpy(this_device->model, &inq_buff[16],
3977 		sizeof(this_device->model));
3978 	this_device->rev = inq_buff[2];
3979 	memset(this_device->device_id, 0,
3980 		sizeof(this_device->device_id));
3981 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982 		sizeof(this_device->device_id)) < 0) {
3983 		dev_err(&h->pdev->dev,
3984 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985 			h->ctlr, __func__,
3986 			h->scsi_host->host_no,
3987 			this_device->bus, this_device->target,
3988 			this_device->lun,
3989 			scsi_device_type(this_device->devtype),
3990 			this_device->model);
3991 		rc = HPSA_LV_FAILED;
3992 		goto bail_out;
3993 	}
3994 
3995 	if ((this_device->devtype == TYPE_DISK ||
3996 		this_device->devtype == TYPE_ZBC) &&
3997 		is_logical_dev_addr_mode(scsi3addr)) {
3998 		unsigned char volume_offline;
3999 
4000 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4004 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005 		    h->legacy_board) {
4006 			/*
4007 			 * Legacy boards might not support volume status
4008 			 */
4009 			dev_info(&h->pdev->dev,
4010 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011 				 this_device->target, this_device->lun);
4012 			volume_offline = 0;
4013 		}
4014 		this_device->volume_offline = volume_offline;
4015 		if (volume_offline == HPSA_LV_FAILED) {
4016 			rc = HPSA_LV_FAILED;
4017 			dev_err(&h->pdev->dev,
4018 				"%s: LV failed, device will be skipped.\n",
4019 				__func__);
4020 			goto bail_out;
4021 		}
4022 	} else {
4023 		this_device->raid_level = RAID_UNKNOWN;
4024 		this_device->offload_config = 0;
4025 		hpsa_turn_off_ioaccel_for_device(this_device);
4026 		this_device->hba_ioaccel_enabled = 0;
4027 		this_device->volume_offline = 0;
4028 		this_device->queue_depth = h->nr_cmds;
4029 	}
4030 
4031 	if (this_device->external)
4032 		this_device->queue_depth = EXTERNAL_QD;
4033 
4034 	if (is_OBDR_device) {
4035 		/* See if this is a One-Button-Disaster-Recovery device
4036 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4037 		 */
4038 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4041 						OBDR_SIG_LEN) == 0);
4042 	}
4043 	kfree(inq_buff);
4044 	return 0;
4045 
4046 bail_out:
4047 	kfree(inq_buff);
4048 	return rc;
4049 }
4050 
4051 /*
4052  * Helper function to assign bus, target, lun mapping of devices.
4053  * Logical drive target and lun are assigned at this time, but
4054  * physical device lun and target assignment are deferred (assigned
4055  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4061 
4062 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063 		/* physical device, target and lun filled in later */
4064 		if (is_hba_lunid(lunaddrbytes)) {
4065 			int bus = HPSA_HBA_BUS;
4066 
4067 			if (!device->rev)
4068 				bus = HPSA_LEGACY_HBA_BUS;
4069 			hpsa_set_bus_target_lun(device,
4070 					bus, 0, lunid & 0x3fff);
4071 		} else
4072 			/* defer target, lun assignment for physical devices */
4073 			hpsa_set_bus_target_lun(device,
4074 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075 		return;
4076 	}
4077 	/* It's a logical device */
4078 	if (device->external) {
4079 		hpsa_set_bus_target_lun(device,
4080 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081 			lunid & 0x00ff);
4082 		return;
4083 	}
4084 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085 				0, lunid & 0x3fff);
4086 }
4087 
4088 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089 	int i, int nphysicals, int nlocal_logicals)
4090 {
4091 	/* In report logicals, local logicals are listed first,
4092 	* then any externals.
4093 	*/
4094 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095 
4096 	if (i == raid_ctlr_position)
4097 		return 0;
4098 
4099 	if (i < logicals_start)
4100 		return 0;
4101 
4102 	/* i is in logicals range, but still within local logicals */
4103 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104 		return 0;
4105 
4106 	return 1; /* it's an external lun */
4107 }
4108 
4109 /*
4110  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111  * logdev.  The number of luns in physdev and logdev are returned in
4112  * *nphysicals and *nlogicals, respectively.
4113  * Returns 0 on success, -1 otherwise.
4114  */
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117 	struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121 		return -1;
4122 	}
4123 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127 		*nphysicals = HPSA_MAX_PHYS_LUN;
4128 	}
4129 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131 		return -1;
4132 	}
4133 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134 	/* Reject Logicals in excess of our max capability. */
4135 	if (*nlogicals > HPSA_MAX_LUN) {
4136 		dev_warn(&h->pdev->dev,
4137 			"maximum logical LUNs (%d) exceeded.  "
4138 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4139 			*nlogicals - HPSA_MAX_LUN);
4140 		*nlogicals = HPSA_MAX_LUN;
4141 	}
4142 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143 		dev_warn(&h->pdev->dev,
4144 			"maximum logical + physical LUNs (%d) exceeded. "
4145 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148 	}
4149 	return 0;
4150 }
4151 
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153 	int i, int nphysicals, int nlogicals,
4154 	struct ReportExtendedLUNdata *physdev_list,
4155 	struct ReportLUNdata *logdev_list)
4156 {
4157 	/* Helper function, figure out where the LUN ID info is coming from
4158 	 * given index i, lists of physical and logical devices, where in
4159 	 * the list the raid controller is supposed to appear (first or last)
4160 	 */
4161 
4162 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164 
4165 	if (i == raid_ctlr_position)
4166 		return RAID_CTLR_LUNID;
4167 
4168 	if (i < logicals_start)
4169 		return &physdev_list->LUN[i -
4170 				(raid_ctlr_position == 0)].lunid[0];
4171 
4172 	if (i < last_device)
4173 		return &logdev_list->LUN[i - nphysicals -
4174 			(raid_ctlr_position == 0)][0];
4175 	BUG();
4176 	return NULL;
4177 }
4178 
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181 		struct hpsa_scsi_dev_t *dev,
4182 		struct ReportExtendedLUNdata *rlep, int rle_index,
4183 		struct bmic_identify_physical_device *id_phys)
4184 {
4185 	int rc;
4186 	struct ext_report_lun_entry *rle;
4187 
4188 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189 		return;
4190 
4191 	rle = &rlep->LUN[rle_index];
4192 
4193 	dev->ioaccel_handle = rle->ioaccel_handle;
4194 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195 		dev->hba_ioaccel_enabled = 1;
4196 	memset(id_phys, 0, sizeof(*id_phys));
4197 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199 			sizeof(*id_phys));
4200 	if (!rc)
4201 		/* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204 		dev->queue_depth =
4205 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4206 				DRIVE_CMDS_RESERVED_FOR_FW;
4207 	else
4208 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210 
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212 	struct ReportExtendedLUNdata *rlep, int rle_index,
4213 	struct bmic_identify_physical_device *id_phys)
4214 {
4215 	struct ext_report_lun_entry *rle;
4216 
4217 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218 		return;
4219 
4220 	rle = &rlep->LUN[rle_index];
4221 
4222 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223 		this_device->hba_ioaccel_enabled = 1;
4224 
4225 	memcpy(&this_device->active_path_index,
4226 		&id_phys->active_path_number,
4227 		sizeof(this_device->active_path_index));
4228 	memcpy(&this_device->path_map,
4229 		&id_phys->redundant_path_present_map,
4230 		sizeof(this_device->path_map));
4231 	memcpy(&this_device->box,
4232 		&id_phys->alternate_paths_phys_box_on_port,
4233 		sizeof(this_device->box));
4234 	memcpy(&this_device->phys_connector,
4235 		&id_phys->alternate_paths_phys_connector,
4236 		sizeof(this_device->phys_connector));
4237 	memcpy(&this_device->bay,
4238 		&id_phys->phys_bay_in_box,
4239 		sizeof(this_device->bay));
4240 }
4241 
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244 	struct bmic_identify_controller *id_ctlr,
4245 	u32 *nlocals)
4246 {
4247 	int rc;
4248 
4249 	if (!id_ctlr) {
4250 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251 			__func__);
4252 		return -ENOMEM;
4253 	}
4254 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4255 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256 	if (!rc)
4257 		if (id_ctlr->configured_logical_drive_count < 255)
4258 			*nlocals = id_ctlr->configured_logical_drive_count;
4259 		else
4260 			*nlocals = le16_to_cpu(
4261 					id_ctlr->extended_logical_unit_count);
4262 	else
4263 		*nlocals = -1;
4264 	return rc;
4265 }
4266 
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269 	struct bmic_identify_physical_device *id_phys;
4270 	bool is_spare = false;
4271 	int rc;
4272 
4273 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274 	if (!id_phys)
4275 		return false;
4276 
4277 	rc = hpsa_bmic_id_physical_device(h,
4278 					lunaddrbytes,
4279 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280 					id_phys, sizeof(*id_phys));
4281 	if (rc == 0)
4282 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4283 
4284 	kfree(id_phys);
4285 	return is_spare;
4286 }
4287 
4288 #define RPL_DEV_FLAG_NON_DISK                           0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291 
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293 
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295 				struct ext_report_lun_entry *rle)
4296 {
4297 	u8 device_flags;
4298 	u8 device_type;
4299 
4300 	if (!MASKED_DEVICE(lunaddrbytes))
4301 		return false;
4302 
4303 	device_flags = rle->device_flags;
4304 	device_type = rle->device_type;
4305 
4306 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308 			return false;
4309 		return true;
4310 	}
4311 
4312 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313 		return false;
4314 
4315 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316 		return false;
4317 
4318 	/*
4319 	 * Spares may be spun down, we do not want to
4320 	 * do an Inquiry to a RAID set spare drive as
4321 	 * that would have them spun up, that is a
4322 	 * performance hit because I/O to the RAID device
4323 	 * stops while the spin up occurs which can take
4324 	 * over 50 seconds.
4325 	 */
4326 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4327 		return true;
4328 
4329 	return false;
4330 }
4331 
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334 	/* the idea here is we could get notified
4335 	 * that some devices have changed, so we do a report
4336 	 * physical luns and report logical luns cmd, and adjust
4337 	 * our list of devices accordingly.
4338 	 *
4339 	 * The scsi3addr's of devices won't change so long as the
4340 	 * adapter is not reset.  That means we can rescan and
4341 	 * tell which devices we already know about, vs. new
4342 	 * devices, vs.  disappearing devices.
4343 	 */
4344 	struct ReportExtendedLUNdata *physdev_list = NULL;
4345 	struct ReportLUNdata *logdev_list = NULL;
4346 	struct bmic_identify_physical_device *id_phys = NULL;
4347 	struct bmic_identify_controller *id_ctlr = NULL;
4348 	u32 nphysicals = 0;
4349 	u32 nlogicals = 0;
4350 	u32 nlocal_logicals = 0;
4351 	u32 ndev_allocated = 0;
4352 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353 	int ncurrent = 0;
4354 	int i, n_ext_target_devs, ndevs_to_allocate;
4355 	int raid_ctlr_position;
4356 	bool physical_device;
4357 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4358 
4359 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4360 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4361 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4362 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4363 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4364 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4365 
4366 	if (!currentsd || !physdev_list || !logdev_list ||
4367 		!tmpdevice || !id_phys || !id_ctlr) {
4368 		dev_err(&h->pdev->dev, "out of memory\n");
4369 		goto out;
4370 	}
4371 	memset(lunzerobits, 0, sizeof(lunzerobits));
4372 
4373 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4374 
4375 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4376 			logdev_list, &nlogicals)) {
4377 		h->drv_req_rescan = 1;
4378 		goto out;
4379 	}
4380 
4381 	/* Set number of local logicals (non PTRAID) */
4382 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4383 		dev_warn(&h->pdev->dev,
4384 			"%s: Can't determine number of local logical devices.\n",
4385 			__func__);
4386 	}
4387 
4388 	/* We might see up to the maximum number of logical and physical disks
4389 	 * plus external target devices, and a device for the local RAID
4390 	 * controller.
4391 	 */
4392 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4393 
4394 	hpsa_ext_ctrl_present(h, physdev_list);
4395 
4396 	/* Allocate the per device structures */
4397 	for (i = 0; i < ndevs_to_allocate; i++) {
4398 		if (i >= HPSA_MAX_DEVICES) {
4399 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4400 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4401 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4402 			break;
4403 		}
4404 
4405 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4406 		if (!currentsd[i]) {
4407 			h->drv_req_rescan = 1;
4408 			goto out;
4409 		}
4410 		ndev_allocated++;
4411 	}
4412 
4413 	if (is_scsi_rev_5(h))
4414 		raid_ctlr_position = 0;
4415 	else
4416 		raid_ctlr_position = nphysicals + nlogicals;
4417 
4418 	/* adjust our table of devices */
4419 	n_ext_target_devs = 0;
4420 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4421 		u8 *lunaddrbytes, is_OBDR = 0;
4422 		int rc = 0;
4423 		int phys_dev_index = i - (raid_ctlr_position == 0);
4424 		bool skip_device = false;
4425 
4426 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4427 
4428 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4429 
4430 		/* Figure out where the LUN ID info is coming from */
4431 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4432 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4433 
4434 		/* Determine if this is a lun from an external target array */
4435 		tmpdevice->external =
4436 			figure_external_status(h, raid_ctlr_position, i,
4437 						nphysicals, nlocal_logicals);
4438 
4439 		/*
4440 		 * Skip over some devices such as a spare.
4441 		 */
4442 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4443 			physical_device) {
4444 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4445 					&physdev_list->LUN[phys_dev_index]);
4446 			if (skip_device)
4447 				continue;
4448 		}
4449 
4450 		/* Get device type, vendor, model, device id, raid_map */
4451 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4452 							&is_OBDR);
4453 		if (rc == -ENOMEM) {
4454 			dev_warn(&h->pdev->dev,
4455 				"Out of memory, rescan deferred.\n");
4456 			h->drv_req_rescan = 1;
4457 			goto out;
4458 		}
4459 		if (rc) {
4460 			h->drv_req_rescan = 1;
4461 			continue;
4462 		}
4463 
4464 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4465 		this_device = currentsd[ncurrent];
4466 
4467 		*this_device = *tmpdevice;
4468 		this_device->physical_device = physical_device;
4469 
4470 		/*
4471 		 * Expose all devices except for physical devices that
4472 		 * are masked.
4473 		 */
4474 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4475 			this_device->expose_device = 0;
4476 		else
4477 			this_device->expose_device = 1;
4478 
4479 
4480 		/*
4481 		 * Get the SAS address for physical devices that are exposed.
4482 		 */
4483 		if (this_device->physical_device && this_device->expose_device)
4484 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4485 
4486 		switch (this_device->devtype) {
4487 		case TYPE_ROM:
4488 			/* We don't *really* support actual CD-ROM devices,
4489 			 * just "One Button Disaster Recovery" tape drive
4490 			 * which temporarily pretends to be a CD-ROM drive.
4491 			 * So we check that the device is really an OBDR tape
4492 			 * device by checking for "$DR-10" in bytes 43-48 of
4493 			 * the inquiry data.
4494 			 */
4495 			if (is_OBDR)
4496 				ncurrent++;
4497 			break;
4498 		case TYPE_DISK:
4499 		case TYPE_ZBC:
4500 			if (this_device->physical_device) {
4501 				/* The disk is in HBA mode. */
4502 				/* Never use RAID mapper in HBA mode. */
4503 				this_device->offload_enabled = 0;
4504 				hpsa_get_ioaccel_drive_info(h, this_device,
4505 					physdev_list, phys_dev_index, id_phys);
4506 				hpsa_get_path_info(this_device,
4507 					physdev_list, phys_dev_index, id_phys);
4508 			}
4509 			ncurrent++;
4510 			break;
4511 		case TYPE_TAPE:
4512 		case TYPE_MEDIUM_CHANGER:
4513 			ncurrent++;
4514 			break;
4515 		case TYPE_ENCLOSURE:
4516 			if (!this_device->external)
4517 				hpsa_get_enclosure_info(h, lunaddrbytes,
4518 						physdev_list, phys_dev_index,
4519 						this_device);
4520 			ncurrent++;
4521 			break;
4522 		case TYPE_RAID:
4523 			/* Only present the Smartarray HBA as a RAID controller.
4524 			 * If it's a RAID controller other than the HBA itself
4525 			 * (an external RAID controller, MSA500 or similar)
4526 			 * don't present it.
4527 			 */
4528 			if (!is_hba_lunid(lunaddrbytes))
4529 				break;
4530 			ncurrent++;
4531 			break;
4532 		default:
4533 			break;
4534 		}
4535 		if (ncurrent >= HPSA_MAX_DEVICES)
4536 			break;
4537 	}
4538 
4539 	if (h->sas_host == NULL) {
4540 		int rc = 0;
4541 
4542 		rc = hpsa_add_sas_host(h);
4543 		if (rc) {
4544 			dev_warn(&h->pdev->dev,
4545 				"Could not add sas host %d\n", rc);
4546 			goto out;
4547 		}
4548 	}
4549 
4550 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4551 out:
4552 	kfree(tmpdevice);
4553 	for (i = 0; i < ndev_allocated; i++)
4554 		kfree(currentsd[i]);
4555 	kfree(currentsd);
4556 	kfree(physdev_list);
4557 	kfree(logdev_list);
4558 	kfree(id_ctlr);
4559 	kfree(id_phys);
4560 }
4561 
4562 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4563 				   struct scatterlist *sg)
4564 {
4565 	u64 addr64 = (u64) sg_dma_address(sg);
4566 	unsigned int len = sg_dma_len(sg);
4567 
4568 	desc->Addr = cpu_to_le64(addr64);
4569 	desc->Len = cpu_to_le32(len);
4570 	desc->Ext = 0;
4571 }
4572 
4573 /*
4574  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4575  * dma mapping  and fills in the scatter gather entries of the
4576  * hpsa command, cp.
4577  */
4578 static int hpsa_scatter_gather(struct ctlr_info *h,
4579 		struct CommandList *cp,
4580 		struct scsi_cmnd *cmd)
4581 {
4582 	struct scatterlist *sg;
4583 	int use_sg, i, sg_limit, chained, last_sg;
4584 	struct SGDescriptor *curr_sg;
4585 
4586 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4587 
4588 	use_sg = scsi_dma_map(cmd);
4589 	if (use_sg < 0)
4590 		return use_sg;
4591 
4592 	if (!use_sg)
4593 		goto sglist_finished;
4594 
4595 	/*
4596 	 * If the number of entries is greater than the max for a single list,
4597 	 * then we have a chained list; we will set up all but one entry in the
4598 	 * first list (the last entry is saved for link information);
4599 	 * otherwise, we don't have a chained list and we'll set up at each of
4600 	 * the entries in the one list.
4601 	 */
4602 	curr_sg = cp->SG;
4603 	chained = use_sg > h->max_cmd_sg_entries;
4604 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4605 	last_sg = scsi_sg_count(cmd) - 1;
4606 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4607 		hpsa_set_sg_descriptor(curr_sg, sg);
4608 		curr_sg++;
4609 	}
4610 
4611 	if (chained) {
4612 		/*
4613 		 * Continue with the chained list.  Set curr_sg to the chained
4614 		 * list.  Modify the limit to the total count less the entries
4615 		 * we've already set up.  Resume the scan at the list entry
4616 		 * where the previous loop left off.
4617 		 */
4618 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4619 		sg_limit = use_sg - sg_limit;
4620 		for_each_sg(sg, sg, sg_limit, i) {
4621 			hpsa_set_sg_descriptor(curr_sg, sg);
4622 			curr_sg++;
4623 		}
4624 	}
4625 
4626 	/* Back the pointer up to the last entry and mark it as "last". */
4627 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4628 
4629 	if (use_sg + chained > h->maxSG)
4630 		h->maxSG = use_sg + chained;
4631 
4632 	if (chained) {
4633 		cp->Header.SGList = h->max_cmd_sg_entries;
4634 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4635 		if (hpsa_map_sg_chain_block(h, cp)) {
4636 			scsi_dma_unmap(cmd);
4637 			return -1;
4638 		}
4639 		return 0;
4640 	}
4641 
4642 sglist_finished:
4643 
4644 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4645 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4646 	return 0;
4647 }
4648 
4649 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4650 						u8 *cdb, int cdb_len,
4651 						const char *func)
4652 {
4653 	dev_warn(&h->pdev->dev,
4654 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4655 		 func, cdb_len, cdb);
4656 }
4657 
4658 #define IO_ACCEL_INELIGIBLE 1
4659 /* zero-length transfers trigger hardware errors. */
4660 static bool is_zero_length_transfer(u8 *cdb)
4661 {
4662 	u32 block_cnt;
4663 
4664 	/* Block zero-length transfer sizes on certain commands. */
4665 	switch (cdb[0]) {
4666 	case READ_10:
4667 	case WRITE_10:
4668 	case VERIFY:		/* 0x2F */
4669 	case WRITE_VERIFY:	/* 0x2E */
4670 		block_cnt = get_unaligned_be16(&cdb[7]);
4671 		break;
4672 	case READ_12:
4673 	case WRITE_12:
4674 	case VERIFY_12: /* 0xAF */
4675 	case WRITE_VERIFY_12:	/* 0xAE */
4676 		block_cnt = get_unaligned_be32(&cdb[6]);
4677 		break;
4678 	case READ_16:
4679 	case WRITE_16:
4680 	case VERIFY_16:		/* 0x8F */
4681 		block_cnt = get_unaligned_be32(&cdb[10]);
4682 		break;
4683 	default:
4684 		return false;
4685 	}
4686 
4687 	return block_cnt == 0;
4688 }
4689 
4690 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4691 {
4692 	int is_write = 0;
4693 	u32 block;
4694 	u32 block_cnt;
4695 
4696 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4697 	switch (cdb[0]) {
4698 	case WRITE_6:
4699 	case WRITE_12:
4700 		is_write = 1;
4701 		fallthrough;
4702 	case READ_6:
4703 	case READ_12:
4704 		if (*cdb_len == 6) {
4705 			block = (((cdb[1] & 0x1F) << 16) |
4706 				(cdb[2] << 8) |
4707 				cdb[3]);
4708 			block_cnt = cdb[4];
4709 			if (block_cnt == 0)
4710 				block_cnt = 256;
4711 		} else {
4712 			BUG_ON(*cdb_len != 12);
4713 			block = get_unaligned_be32(&cdb[2]);
4714 			block_cnt = get_unaligned_be32(&cdb[6]);
4715 		}
4716 		if (block_cnt > 0xffff)
4717 			return IO_ACCEL_INELIGIBLE;
4718 
4719 		cdb[0] = is_write ? WRITE_10 : READ_10;
4720 		cdb[1] = 0;
4721 		cdb[2] = (u8) (block >> 24);
4722 		cdb[3] = (u8) (block >> 16);
4723 		cdb[4] = (u8) (block >> 8);
4724 		cdb[5] = (u8) (block);
4725 		cdb[6] = 0;
4726 		cdb[7] = (u8) (block_cnt >> 8);
4727 		cdb[8] = (u8) (block_cnt);
4728 		cdb[9] = 0;
4729 		*cdb_len = 10;
4730 		break;
4731 	}
4732 	return 0;
4733 }
4734 
4735 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4736 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4737 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4738 {
4739 	struct scsi_cmnd *cmd = c->scsi_cmd;
4740 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4741 	unsigned int len;
4742 	unsigned int total_len = 0;
4743 	struct scatterlist *sg;
4744 	u64 addr64;
4745 	int use_sg, i;
4746 	struct SGDescriptor *curr_sg;
4747 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4748 
4749 	/* TODO: implement chaining support */
4750 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4751 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4752 		return IO_ACCEL_INELIGIBLE;
4753 	}
4754 
4755 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4756 
4757 	if (is_zero_length_transfer(cdb)) {
4758 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4759 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4760 		return IO_ACCEL_INELIGIBLE;
4761 	}
4762 
4763 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4764 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4765 		return IO_ACCEL_INELIGIBLE;
4766 	}
4767 
4768 	c->cmd_type = CMD_IOACCEL1;
4769 
4770 	/* Adjust the DMA address to point to the accelerated command buffer */
4771 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4772 				(c->cmdindex * sizeof(*cp));
4773 	BUG_ON(c->busaddr & 0x0000007F);
4774 
4775 	use_sg = scsi_dma_map(cmd);
4776 	if (use_sg < 0) {
4777 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4778 		return use_sg;
4779 	}
4780 
4781 	if (use_sg) {
4782 		curr_sg = cp->SG;
4783 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4784 			addr64 = (u64) sg_dma_address(sg);
4785 			len  = sg_dma_len(sg);
4786 			total_len += len;
4787 			curr_sg->Addr = cpu_to_le64(addr64);
4788 			curr_sg->Len = cpu_to_le32(len);
4789 			curr_sg->Ext = cpu_to_le32(0);
4790 			curr_sg++;
4791 		}
4792 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4793 
4794 		switch (cmd->sc_data_direction) {
4795 		case DMA_TO_DEVICE:
4796 			control |= IOACCEL1_CONTROL_DATA_OUT;
4797 			break;
4798 		case DMA_FROM_DEVICE:
4799 			control |= IOACCEL1_CONTROL_DATA_IN;
4800 			break;
4801 		case DMA_NONE:
4802 			control |= IOACCEL1_CONTROL_NODATAXFER;
4803 			break;
4804 		default:
4805 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4806 			cmd->sc_data_direction);
4807 			BUG();
4808 			break;
4809 		}
4810 	} else {
4811 		control |= IOACCEL1_CONTROL_NODATAXFER;
4812 	}
4813 
4814 	c->Header.SGList = use_sg;
4815 	/* Fill out the command structure to submit */
4816 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4817 	cp->transfer_len = cpu_to_le32(total_len);
4818 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4819 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4820 	cp->control = cpu_to_le32(control);
4821 	memcpy(cp->CDB, cdb, cdb_len);
4822 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4823 	/* Tag was already set at init time. */
4824 	enqueue_cmd_and_start_io(h, c);
4825 	return 0;
4826 }
4827 
4828 /*
4829  * Queue a command directly to a device behind the controller using the
4830  * I/O accelerator path.
4831  */
4832 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4833 	struct CommandList *c)
4834 {
4835 	struct scsi_cmnd *cmd = c->scsi_cmd;
4836 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4837 
4838 	if (!dev)
4839 		return -1;
4840 
4841 	c->phys_disk = dev;
4842 
4843 	if (dev->in_reset)
4844 		return -1;
4845 
4846 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4847 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4848 }
4849 
4850 /*
4851  * Set encryption parameters for the ioaccel2 request
4852  */
4853 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4854 	struct CommandList *c, struct io_accel2_cmd *cp)
4855 {
4856 	struct scsi_cmnd *cmd = c->scsi_cmd;
4857 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4858 	struct raid_map_data *map = &dev->raid_map;
4859 	u64 first_block;
4860 
4861 	/* Are we doing encryption on this device */
4862 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4863 		return;
4864 	/* Set the data encryption key index. */
4865 	cp->dekindex = map->dekindex;
4866 
4867 	/* Set the encryption enable flag, encoded into direction field. */
4868 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4869 
4870 	/* Set encryption tweak values based on logical block address
4871 	 * If block size is 512, tweak value is LBA.
4872 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4873 	 */
4874 	switch (cmd->cmnd[0]) {
4875 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4876 	case READ_6:
4877 	case WRITE_6:
4878 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4879 				(cmd->cmnd[2] << 8) |
4880 				cmd->cmnd[3]);
4881 		break;
4882 	case WRITE_10:
4883 	case READ_10:
4884 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4885 	case WRITE_12:
4886 	case READ_12:
4887 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4888 		break;
4889 	case WRITE_16:
4890 	case READ_16:
4891 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4892 		break;
4893 	default:
4894 		dev_err(&h->pdev->dev,
4895 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4896 			__func__, cmd->cmnd[0]);
4897 		BUG();
4898 		break;
4899 	}
4900 
4901 	if (le32_to_cpu(map->volume_blk_size) != 512)
4902 		first_block = first_block *
4903 				le32_to_cpu(map->volume_blk_size)/512;
4904 
4905 	cp->tweak_lower = cpu_to_le32(first_block);
4906 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4907 }
4908 
4909 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4910 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4911 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4912 {
4913 	struct scsi_cmnd *cmd = c->scsi_cmd;
4914 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4915 	struct ioaccel2_sg_element *curr_sg;
4916 	int use_sg, i;
4917 	struct scatterlist *sg;
4918 	u64 addr64;
4919 	u32 len;
4920 	u32 total_len = 0;
4921 
4922 	if (!cmd->device)
4923 		return -1;
4924 
4925 	if (!cmd->device->hostdata)
4926 		return -1;
4927 
4928 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4929 
4930 	if (is_zero_length_transfer(cdb)) {
4931 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4932 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4933 		return IO_ACCEL_INELIGIBLE;
4934 	}
4935 
4936 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4937 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4938 		return IO_ACCEL_INELIGIBLE;
4939 	}
4940 
4941 	c->cmd_type = CMD_IOACCEL2;
4942 	/* Adjust the DMA address to point to the accelerated command buffer */
4943 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4944 				(c->cmdindex * sizeof(*cp));
4945 	BUG_ON(c->busaddr & 0x0000007F);
4946 
4947 	memset(cp, 0, sizeof(*cp));
4948 	cp->IU_type = IOACCEL2_IU_TYPE;
4949 
4950 	use_sg = scsi_dma_map(cmd);
4951 	if (use_sg < 0) {
4952 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4953 		return use_sg;
4954 	}
4955 
4956 	if (use_sg) {
4957 		curr_sg = cp->sg;
4958 		if (use_sg > h->ioaccel_maxsg) {
4959 			addr64 = le64_to_cpu(
4960 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4961 			curr_sg->address = cpu_to_le64(addr64);
4962 			curr_sg->length = 0;
4963 			curr_sg->reserved[0] = 0;
4964 			curr_sg->reserved[1] = 0;
4965 			curr_sg->reserved[2] = 0;
4966 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4967 
4968 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4969 		}
4970 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4971 			addr64 = (u64) sg_dma_address(sg);
4972 			len  = sg_dma_len(sg);
4973 			total_len += len;
4974 			curr_sg->address = cpu_to_le64(addr64);
4975 			curr_sg->length = cpu_to_le32(len);
4976 			curr_sg->reserved[0] = 0;
4977 			curr_sg->reserved[1] = 0;
4978 			curr_sg->reserved[2] = 0;
4979 			curr_sg->chain_indicator = 0;
4980 			curr_sg++;
4981 		}
4982 
4983 		/*
4984 		 * Set the last s/g element bit
4985 		 */
4986 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4987 
4988 		switch (cmd->sc_data_direction) {
4989 		case DMA_TO_DEVICE:
4990 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4992 			break;
4993 		case DMA_FROM_DEVICE:
4994 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4996 			break;
4997 		case DMA_NONE:
4998 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4999 			cp->direction |= IOACCEL2_DIR_NO_DATA;
5000 			break;
5001 		default:
5002 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5003 				cmd->sc_data_direction);
5004 			BUG();
5005 			break;
5006 		}
5007 	} else {
5008 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5009 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5010 	}
5011 
5012 	/* Set encryption parameters, if necessary */
5013 	set_encrypt_ioaccel2(h, c, cp);
5014 
5015 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5016 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5017 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5018 
5019 	cp->data_len = cpu_to_le32(total_len);
5020 	cp->err_ptr = cpu_to_le64(c->busaddr +
5021 			offsetof(struct io_accel2_cmd, error_data));
5022 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5023 
5024 	/* fill in sg elements */
5025 	if (use_sg > h->ioaccel_maxsg) {
5026 		cp->sg_count = 1;
5027 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5028 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5029 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5030 			scsi_dma_unmap(cmd);
5031 			return -1;
5032 		}
5033 	} else
5034 		cp->sg_count = (u8) use_sg;
5035 
5036 	if (phys_disk->in_reset) {
5037 		cmd->result = DID_RESET << 16;
5038 		return -1;
5039 	}
5040 
5041 	enqueue_cmd_and_start_io(h, c);
5042 	return 0;
5043 }
5044 
5045 /*
5046  * Queue a command to the correct I/O accelerator path.
5047  */
5048 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5049 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5050 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5051 {
5052 	if (!c->scsi_cmd->device)
5053 		return -1;
5054 
5055 	if (!c->scsi_cmd->device->hostdata)
5056 		return -1;
5057 
5058 	if (phys_disk->in_reset)
5059 		return -1;
5060 
5061 	/* Try to honor the device's queue depth */
5062 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5063 					phys_disk->queue_depth) {
5064 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5065 		return IO_ACCEL_INELIGIBLE;
5066 	}
5067 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5068 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5069 						cdb, cdb_len, scsi3addr,
5070 						phys_disk);
5071 	else
5072 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5073 						cdb, cdb_len, scsi3addr,
5074 						phys_disk);
5075 }
5076 
5077 static void raid_map_helper(struct raid_map_data *map,
5078 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5079 {
5080 	if (offload_to_mirror == 0)  {
5081 		/* use physical disk in the first mirrored group. */
5082 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5083 		return;
5084 	}
5085 	do {
5086 		/* determine mirror group that *map_index indicates */
5087 		*current_group = *map_index /
5088 			le16_to_cpu(map->data_disks_per_row);
5089 		if (offload_to_mirror == *current_group)
5090 			continue;
5091 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5092 			/* select map index from next group */
5093 			*map_index += le16_to_cpu(map->data_disks_per_row);
5094 			(*current_group)++;
5095 		} else {
5096 			/* select map index from first group */
5097 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5098 			*current_group = 0;
5099 		}
5100 	} while (offload_to_mirror != *current_group);
5101 }
5102 
5103 /*
5104  * Attempt to perform offload RAID mapping for a logical volume I/O.
5105  */
5106 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5107 	struct CommandList *c)
5108 {
5109 	struct scsi_cmnd *cmd = c->scsi_cmd;
5110 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5111 	struct raid_map_data *map = &dev->raid_map;
5112 	struct raid_map_disk_data *dd = &map->data[0];
5113 	int is_write = 0;
5114 	u32 map_index;
5115 	u64 first_block, last_block;
5116 	u32 block_cnt;
5117 	u32 blocks_per_row;
5118 	u64 first_row, last_row;
5119 	u32 first_row_offset, last_row_offset;
5120 	u32 first_column, last_column;
5121 	u64 r0_first_row, r0_last_row;
5122 	u32 r5or6_blocks_per_row;
5123 	u64 r5or6_first_row, r5or6_last_row;
5124 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5125 	u32 r5or6_first_column, r5or6_last_column;
5126 	u32 total_disks_per_row;
5127 	u32 stripesize;
5128 	u32 first_group, last_group, current_group;
5129 	u32 map_row;
5130 	u32 disk_handle;
5131 	u64 disk_block;
5132 	u32 disk_block_cnt;
5133 	u8 cdb[16];
5134 	u8 cdb_len;
5135 	u16 strip_size;
5136 #if BITS_PER_LONG == 32
5137 	u64 tmpdiv;
5138 #endif
5139 	int offload_to_mirror;
5140 
5141 	if (!dev)
5142 		return -1;
5143 
5144 	if (dev->in_reset)
5145 		return -1;
5146 
5147 	/* check for valid opcode, get LBA and block count */
5148 	switch (cmd->cmnd[0]) {
5149 	case WRITE_6:
5150 		is_write = 1;
5151 		fallthrough;
5152 	case READ_6:
5153 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5154 				(cmd->cmnd[2] << 8) |
5155 				cmd->cmnd[3]);
5156 		block_cnt = cmd->cmnd[4];
5157 		if (block_cnt == 0)
5158 			block_cnt = 256;
5159 		break;
5160 	case WRITE_10:
5161 		is_write = 1;
5162 		fallthrough;
5163 	case READ_10:
5164 		first_block =
5165 			(((u64) cmd->cmnd[2]) << 24) |
5166 			(((u64) cmd->cmnd[3]) << 16) |
5167 			(((u64) cmd->cmnd[4]) << 8) |
5168 			cmd->cmnd[5];
5169 		block_cnt =
5170 			(((u32) cmd->cmnd[7]) << 8) |
5171 			cmd->cmnd[8];
5172 		break;
5173 	case WRITE_12:
5174 		is_write = 1;
5175 		fallthrough;
5176 	case READ_12:
5177 		first_block =
5178 			(((u64) cmd->cmnd[2]) << 24) |
5179 			(((u64) cmd->cmnd[3]) << 16) |
5180 			(((u64) cmd->cmnd[4]) << 8) |
5181 			cmd->cmnd[5];
5182 		block_cnt =
5183 			(((u32) cmd->cmnd[6]) << 24) |
5184 			(((u32) cmd->cmnd[7]) << 16) |
5185 			(((u32) cmd->cmnd[8]) << 8) |
5186 		cmd->cmnd[9];
5187 		break;
5188 	case WRITE_16:
5189 		is_write = 1;
5190 		fallthrough;
5191 	case READ_16:
5192 		first_block =
5193 			(((u64) cmd->cmnd[2]) << 56) |
5194 			(((u64) cmd->cmnd[3]) << 48) |
5195 			(((u64) cmd->cmnd[4]) << 40) |
5196 			(((u64) cmd->cmnd[5]) << 32) |
5197 			(((u64) cmd->cmnd[6]) << 24) |
5198 			(((u64) cmd->cmnd[7]) << 16) |
5199 			(((u64) cmd->cmnd[8]) << 8) |
5200 			cmd->cmnd[9];
5201 		block_cnt =
5202 			(((u32) cmd->cmnd[10]) << 24) |
5203 			(((u32) cmd->cmnd[11]) << 16) |
5204 			(((u32) cmd->cmnd[12]) << 8) |
5205 			cmd->cmnd[13];
5206 		break;
5207 	default:
5208 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5209 	}
5210 	last_block = first_block + block_cnt - 1;
5211 
5212 	/* check for write to non-RAID-0 */
5213 	if (is_write && dev->raid_level != 0)
5214 		return IO_ACCEL_INELIGIBLE;
5215 
5216 	/* check for invalid block or wraparound */
5217 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5218 		last_block < first_block)
5219 		return IO_ACCEL_INELIGIBLE;
5220 
5221 	/* calculate stripe information for the request */
5222 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5223 				le16_to_cpu(map->strip_size);
5224 	strip_size = le16_to_cpu(map->strip_size);
5225 #if BITS_PER_LONG == 32
5226 	tmpdiv = first_block;
5227 	(void) do_div(tmpdiv, blocks_per_row);
5228 	first_row = tmpdiv;
5229 	tmpdiv = last_block;
5230 	(void) do_div(tmpdiv, blocks_per_row);
5231 	last_row = tmpdiv;
5232 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5233 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5234 	tmpdiv = first_row_offset;
5235 	(void) do_div(tmpdiv, strip_size);
5236 	first_column = tmpdiv;
5237 	tmpdiv = last_row_offset;
5238 	(void) do_div(tmpdiv, strip_size);
5239 	last_column = tmpdiv;
5240 #else
5241 	first_row = first_block / blocks_per_row;
5242 	last_row = last_block / blocks_per_row;
5243 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5244 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5245 	first_column = first_row_offset / strip_size;
5246 	last_column = last_row_offset / strip_size;
5247 #endif
5248 
5249 	/* if this isn't a single row/column then give to the controller */
5250 	if ((first_row != last_row) || (first_column != last_column))
5251 		return IO_ACCEL_INELIGIBLE;
5252 
5253 	/* proceeding with driver mapping */
5254 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5255 				le16_to_cpu(map->metadata_disks_per_row);
5256 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5257 				le16_to_cpu(map->row_cnt);
5258 	map_index = (map_row * total_disks_per_row) + first_column;
5259 
5260 	switch (dev->raid_level) {
5261 	case HPSA_RAID_0:
5262 		break; /* nothing special to do */
5263 	case HPSA_RAID_1:
5264 		/* Handles load balance across RAID 1 members.
5265 		 * (2-drive R1 and R10 with even # of drives.)
5266 		 * Appropriate for SSDs, not optimal for HDDs
5267 		 * Ensure we have the correct raid_map.
5268 		 */
5269 		if (le16_to_cpu(map->layout_map_count) != 2) {
5270 			hpsa_turn_off_ioaccel_for_device(dev);
5271 			return IO_ACCEL_INELIGIBLE;
5272 		}
5273 		if (dev->offload_to_mirror)
5274 			map_index += le16_to_cpu(map->data_disks_per_row);
5275 		dev->offload_to_mirror = !dev->offload_to_mirror;
5276 		break;
5277 	case HPSA_RAID_ADM:
5278 		/* Handles N-way mirrors  (R1-ADM)
5279 		 * and R10 with # of drives divisible by 3.)
5280 		 * Ensure we have the correct raid_map.
5281 		 */
5282 		if (le16_to_cpu(map->layout_map_count) != 3) {
5283 			hpsa_turn_off_ioaccel_for_device(dev);
5284 			return IO_ACCEL_INELIGIBLE;
5285 		}
5286 
5287 		offload_to_mirror = dev->offload_to_mirror;
5288 		raid_map_helper(map, offload_to_mirror,
5289 				&map_index, &current_group);
5290 		/* set mirror group to use next time */
5291 		offload_to_mirror =
5292 			(offload_to_mirror >=
5293 			le16_to_cpu(map->layout_map_count) - 1)
5294 			? 0 : offload_to_mirror + 1;
5295 		dev->offload_to_mirror = offload_to_mirror;
5296 		/* Avoid direct use of dev->offload_to_mirror within this
5297 		 * function since multiple threads might simultaneously
5298 		 * increment it beyond the range of dev->layout_map_count -1.
5299 		 */
5300 		break;
5301 	case HPSA_RAID_5:
5302 	case HPSA_RAID_6:
5303 		if (le16_to_cpu(map->layout_map_count) <= 1)
5304 			break;
5305 
5306 		/* Verify first and last block are in same RAID group */
5307 		r5or6_blocks_per_row =
5308 			le16_to_cpu(map->strip_size) *
5309 			le16_to_cpu(map->data_disks_per_row);
5310 		if (r5or6_blocks_per_row == 0) {
5311 			hpsa_turn_off_ioaccel_for_device(dev);
5312 			return IO_ACCEL_INELIGIBLE;
5313 		}
5314 		stripesize = r5or6_blocks_per_row *
5315 			le16_to_cpu(map->layout_map_count);
5316 #if BITS_PER_LONG == 32
5317 		tmpdiv = first_block;
5318 		first_group = do_div(tmpdiv, stripesize);
5319 		tmpdiv = first_group;
5320 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5321 		first_group = tmpdiv;
5322 		tmpdiv = last_block;
5323 		last_group = do_div(tmpdiv, stripesize);
5324 		tmpdiv = last_group;
5325 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5326 		last_group = tmpdiv;
5327 #else
5328 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5329 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5330 #endif
5331 		if (first_group != last_group)
5332 			return IO_ACCEL_INELIGIBLE;
5333 
5334 		/* Verify request is in a single row of RAID 5/6 */
5335 #if BITS_PER_LONG == 32
5336 		tmpdiv = first_block;
5337 		(void) do_div(tmpdiv, stripesize);
5338 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5339 		tmpdiv = last_block;
5340 		(void) do_div(tmpdiv, stripesize);
5341 		r5or6_last_row = r0_last_row = tmpdiv;
5342 #else
5343 		first_row = r5or6_first_row = r0_first_row =
5344 						first_block / stripesize;
5345 		r5or6_last_row = r0_last_row = last_block / stripesize;
5346 #endif
5347 		if (r5or6_first_row != r5or6_last_row)
5348 			return IO_ACCEL_INELIGIBLE;
5349 
5350 
5351 		/* Verify request is in a single column */
5352 #if BITS_PER_LONG == 32
5353 		tmpdiv = first_block;
5354 		first_row_offset = do_div(tmpdiv, stripesize);
5355 		tmpdiv = first_row_offset;
5356 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5357 		r5or6_first_row_offset = first_row_offset;
5358 		tmpdiv = last_block;
5359 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5360 		tmpdiv = r5or6_last_row_offset;
5361 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5362 		tmpdiv = r5or6_first_row_offset;
5363 		(void) do_div(tmpdiv, map->strip_size);
5364 		first_column = r5or6_first_column = tmpdiv;
5365 		tmpdiv = r5or6_last_row_offset;
5366 		(void) do_div(tmpdiv, map->strip_size);
5367 		r5or6_last_column = tmpdiv;
5368 #else
5369 		first_row_offset = r5or6_first_row_offset =
5370 			(u32)((first_block % stripesize) %
5371 						r5or6_blocks_per_row);
5372 
5373 		r5or6_last_row_offset =
5374 			(u32)((last_block % stripesize) %
5375 						r5or6_blocks_per_row);
5376 
5377 		first_column = r5or6_first_column =
5378 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5379 		r5or6_last_column =
5380 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5381 #endif
5382 		if (r5or6_first_column != r5or6_last_column)
5383 			return IO_ACCEL_INELIGIBLE;
5384 
5385 		/* Request is eligible */
5386 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5387 			le16_to_cpu(map->row_cnt);
5388 
5389 		map_index = (first_group *
5390 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5391 			(map_row * total_disks_per_row) + first_column;
5392 		break;
5393 	default:
5394 		return IO_ACCEL_INELIGIBLE;
5395 	}
5396 
5397 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5398 		return IO_ACCEL_INELIGIBLE;
5399 
5400 	c->phys_disk = dev->phys_disk[map_index];
5401 	if (!c->phys_disk)
5402 		return IO_ACCEL_INELIGIBLE;
5403 
5404 	disk_handle = dd[map_index].ioaccel_handle;
5405 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5406 			first_row * le16_to_cpu(map->strip_size) +
5407 			(first_row_offset - first_column *
5408 			le16_to_cpu(map->strip_size));
5409 	disk_block_cnt = block_cnt;
5410 
5411 	/* handle differing logical/physical block sizes */
5412 	if (map->phys_blk_shift) {
5413 		disk_block <<= map->phys_blk_shift;
5414 		disk_block_cnt <<= map->phys_blk_shift;
5415 	}
5416 	BUG_ON(disk_block_cnt > 0xffff);
5417 
5418 	/* build the new CDB for the physical disk I/O */
5419 	if (disk_block > 0xffffffff) {
5420 		cdb[0] = is_write ? WRITE_16 : READ_16;
5421 		cdb[1] = 0;
5422 		cdb[2] = (u8) (disk_block >> 56);
5423 		cdb[3] = (u8) (disk_block >> 48);
5424 		cdb[4] = (u8) (disk_block >> 40);
5425 		cdb[5] = (u8) (disk_block >> 32);
5426 		cdb[6] = (u8) (disk_block >> 24);
5427 		cdb[7] = (u8) (disk_block >> 16);
5428 		cdb[8] = (u8) (disk_block >> 8);
5429 		cdb[9] = (u8) (disk_block);
5430 		cdb[10] = (u8) (disk_block_cnt >> 24);
5431 		cdb[11] = (u8) (disk_block_cnt >> 16);
5432 		cdb[12] = (u8) (disk_block_cnt >> 8);
5433 		cdb[13] = (u8) (disk_block_cnt);
5434 		cdb[14] = 0;
5435 		cdb[15] = 0;
5436 		cdb_len = 16;
5437 	} else {
5438 		cdb[0] = is_write ? WRITE_10 : READ_10;
5439 		cdb[1] = 0;
5440 		cdb[2] = (u8) (disk_block >> 24);
5441 		cdb[3] = (u8) (disk_block >> 16);
5442 		cdb[4] = (u8) (disk_block >> 8);
5443 		cdb[5] = (u8) (disk_block);
5444 		cdb[6] = 0;
5445 		cdb[7] = (u8) (disk_block_cnt >> 8);
5446 		cdb[8] = (u8) (disk_block_cnt);
5447 		cdb[9] = 0;
5448 		cdb_len = 10;
5449 	}
5450 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5451 						dev->scsi3addr,
5452 						dev->phys_disk[map_index]);
5453 }
5454 
5455 /*
5456  * Submit commands down the "normal" RAID stack path
5457  * All callers to hpsa_ciss_submit must check lockup_detected
5458  * beforehand, before (opt.) and after calling cmd_alloc
5459  */
5460 static int hpsa_ciss_submit(struct ctlr_info *h,
5461 	struct CommandList *c, struct scsi_cmnd *cmd,
5462 	struct hpsa_scsi_dev_t *dev)
5463 {
5464 	cmd->host_scribble = (unsigned char *) c;
5465 	c->cmd_type = CMD_SCSI;
5466 	c->scsi_cmd = cmd;
5467 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5468 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5469 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5470 
5471 	/* Fill in the request block... */
5472 
5473 	c->Request.Timeout = 0;
5474 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5475 	c->Request.CDBLen = cmd->cmd_len;
5476 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5477 	switch (cmd->sc_data_direction) {
5478 	case DMA_TO_DEVICE:
5479 		c->Request.type_attr_dir =
5480 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5481 		break;
5482 	case DMA_FROM_DEVICE:
5483 		c->Request.type_attr_dir =
5484 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5485 		break;
5486 	case DMA_NONE:
5487 		c->Request.type_attr_dir =
5488 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5489 		break;
5490 	case DMA_BIDIRECTIONAL:
5491 		/* This can happen if a buggy application does a scsi passthru
5492 		 * and sets both inlen and outlen to non-zero. ( see
5493 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5494 		 */
5495 
5496 		c->Request.type_attr_dir =
5497 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5498 		/* This is technically wrong, and hpsa controllers should
5499 		 * reject it with CMD_INVALID, which is the most correct
5500 		 * response, but non-fibre backends appear to let it
5501 		 * slide by, and give the same results as if this field
5502 		 * were set correctly.  Either way is acceptable for
5503 		 * our purposes here.
5504 		 */
5505 
5506 		break;
5507 
5508 	default:
5509 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5510 			cmd->sc_data_direction);
5511 		BUG();
5512 		break;
5513 	}
5514 
5515 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5516 		hpsa_cmd_resolve_and_free(h, c);
5517 		return SCSI_MLQUEUE_HOST_BUSY;
5518 	}
5519 
5520 	if (dev->in_reset) {
5521 		hpsa_cmd_resolve_and_free(h, c);
5522 		return SCSI_MLQUEUE_HOST_BUSY;
5523 	}
5524 
5525 	c->device = dev;
5526 
5527 	enqueue_cmd_and_start_io(h, c);
5528 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5529 	return 0;
5530 }
5531 
5532 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5533 				struct CommandList *c)
5534 {
5535 	dma_addr_t cmd_dma_handle, err_dma_handle;
5536 
5537 	/* Zero out all of commandlist except the last field, refcount */
5538 	memset(c, 0, offsetof(struct CommandList, refcount));
5539 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5540 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5541 	c->err_info = h->errinfo_pool + index;
5542 	memset(c->err_info, 0, sizeof(*c->err_info));
5543 	err_dma_handle = h->errinfo_pool_dhandle
5544 	    + index * sizeof(*c->err_info);
5545 	c->cmdindex = index;
5546 	c->busaddr = (u32) cmd_dma_handle;
5547 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5548 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5549 	c->h = h;
5550 	c->scsi_cmd = SCSI_CMD_IDLE;
5551 }
5552 
5553 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5554 {
5555 	int i;
5556 
5557 	for (i = 0; i < h->nr_cmds; i++) {
5558 		struct CommandList *c = h->cmd_pool + i;
5559 
5560 		hpsa_cmd_init(h, i, c);
5561 		atomic_set(&c->refcount, 0);
5562 	}
5563 }
5564 
5565 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5566 				struct CommandList *c)
5567 {
5568 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5569 
5570 	BUG_ON(c->cmdindex != index);
5571 
5572 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5573 	memset(c->err_info, 0, sizeof(*c->err_info));
5574 	c->busaddr = (u32) cmd_dma_handle;
5575 }
5576 
5577 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5578 		struct CommandList *c, struct scsi_cmnd *cmd)
5579 {
5580 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5581 	int rc = IO_ACCEL_INELIGIBLE;
5582 
5583 	if (!dev)
5584 		return SCSI_MLQUEUE_HOST_BUSY;
5585 
5586 	if (dev->in_reset)
5587 		return SCSI_MLQUEUE_HOST_BUSY;
5588 
5589 	if (hpsa_simple_mode)
5590 		return IO_ACCEL_INELIGIBLE;
5591 
5592 	cmd->host_scribble = (unsigned char *) c;
5593 
5594 	if (dev->offload_enabled) {
5595 		hpsa_cmd_init(h, c->cmdindex, c);
5596 		c->cmd_type = CMD_SCSI;
5597 		c->scsi_cmd = cmd;
5598 		c->device = dev;
5599 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5600 		if (rc < 0)     /* scsi_dma_map failed. */
5601 			rc = SCSI_MLQUEUE_HOST_BUSY;
5602 	} else if (dev->hba_ioaccel_enabled) {
5603 		hpsa_cmd_init(h, c->cmdindex, c);
5604 		c->cmd_type = CMD_SCSI;
5605 		c->scsi_cmd = cmd;
5606 		c->device = dev;
5607 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5608 		if (rc < 0)     /* scsi_dma_map failed. */
5609 			rc = SCSI_MLQUEUE_HOST_BUSY;
5610 	}
5611 	return rc;
5612 }
5613 
5614 static void hpsa_command_resubmit_worker(struct work_struct *work)
5615 {
5616 	struct scsi_cmnd *cmd;
5617 	struct hpsa_scsi_dev_t *dev;
5618 	struct CommandList *c = container_of(work, struct CommandList, work);
5619 
5620 	cmd = c->scsi_cmd;
5621 	dev = cmd->device->hostdata;
5622 	if (!dev) {
5623 		cmd->result = DID_NO_CONNECT << 16;
5624 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5625 	}
5626 
5627 	if (dev->in_reset) {
5628 		cmd->result = DID_RESET << 16;
5629 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5630 	}
5631 
5632 	if (c->cmd_type == CMD_IOACCEL2) {
5633 		struct ctlr_info *h = c->h;
5634 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5635 		int rc;
5636 
5637 		if (c2->error_data.serv_response ==
5638 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5639 			rc = hpsa_ioaccel_submit(h, c, cmd);
5640 			if (rc == 0)
5641 				return;
5642 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643 				/*
5644 				 * If we get here, it means dma mapping failed.
5645 				 * Try again via scsi mid layer, which will
5646 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5647 				 */
5648 				cmd->result = DID_IMM_RETRY << 16;
5649 				return hpsa_cmd_free_and_done(h, c, cmd);
5650 			}
5651 			/* else, fall thru and resubmit down CISS path */
5652 		}
5653 	}
5654 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5656 		/*
5657 		 * If we get here, it means dma mapping failed. Try
5658 		 * again via scsi mid layer, which will then get
5659 		 * SCSI_MLQUEUE_HOST_BUSY.
5660 		 *
5661 		 * hpsa_ciss_submit will have already freed c
5662 		 * if it encountered a dma mapping failure.
5663 		 */
5664 		cmd->result = DID_IMM_RETRY << 16;
5665 		cmd->scsi_done(cmd);
5666 	}
5667 }
5668 
5669 /* Running in struct Scsi_Host->host_lock less mode */
5670 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5671 {
5672 	struct ctlr_info *h;
5673 	struct hpsa_scsi_dev_t *dev;
5674 	struct CommandList *c;
5675 	int rc = 0;
5676 
5677 	/* Get the ptr to our adapter structure out of cmd->host. */
5678 	h = sdev_to_hba(cmd->device);
5679 
5680 	BUG_ON(cmd->request->tag < 0);
5681 
5682 	dev = cmd->device->hostdata;
5683 	if (!dev) {
5684 		cmd->result = DID_NO_CONNECT << 16;
5685 		cmd->scsi_done(cmd);
5686 		return 0;
5687 	}
5688 
5689 	if (dev->removed) {
5690 		cmd->result = DID_NO_CONNECT << 16;
5691 		cmd->scsi_done(cmd);
5692 		return 0;
5693 	}
5694 
5695 	if (unlikely(lockup_detected(h))) {
5696 		cmd->result = DID_NO_CONNECT << 16;
5697 		cmd->scsi_done(cmd);
5698 		return 0;
5699 	}
5700 
5701 	if (dev->in_reset)
5702 		return SCSI_MLQUEUE_DEVICE_BUSY;
5703 
5704 	c = cmd_tagged_alloc(h, cmd);
5705 	if (c == NULL)
5706 		return SCSI_MLQUEUE_DEVICE_BUSY;
5707 
5708 	/*
5709 	 * This is necessary because the SML doesn't zero out this field during
5710 	 * error recovery.
5711 	 */
5712 	cmd->result = 0;
5713 
5714 	/*
5715 	 * Call alternate submit routine for I/O accelerated commands.
5716 	 * Retries always go down the normal I/O path.
5717 	 */
5718 	if (likely(cmd->retries == 0 &&
5719 			!blk_rq_is_passthrough(cmd->request) &&
5720 			h->acciopath_status)) {
5721 		rc = hpsa_ioaccel_submit(h, c, cmd);
5722 		if (rc == 0)
5723 			return 0;
5724 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5725 			hpsa_cmd_resolve_and_free(h, c);
5726 			return SCSI_MLQUEUE_HOST_BUSY;
5727 		}
5728 	}
5729 	return hpsa_ciss_submit(h, c, cmd, dev);
5730 }
5731 
5732 static void hpsa_scan_complete(struct ctlr_info *h)
5733 {
5734 	unsigned long flags;
5735 
5736 	spin_lock_irqsave(&h->scan_lock, flags);
5737 	h->scan_finished = 1;
5738 	wake_up(&h->scan_wait_queue);
5739 	spin_unlock_irqrestore(&h->scan_lock, flags);
5740 }
5741 
5742 static void hpsa_scan_start(struct Scsi_Host *sh)
5743 {
5744 	struct ctlr_info *h = shost_to_hba(sh);
5745 	unsigned long flags;
5746 
5747 	/*
5748 	 * Don't let rescans be initiated on a controller known to be locked
5749 	 * up.  If the controller locks up *during* a rescan, that thread is
5750 	 * probably hosed, but at least we can prevent new rescan threads from
5751 	 * piling up on a locked up controller.
5752 	 */
5753 	if (unlikely(lockup_detected(h)))
5754 		return hpsa_scan_complete(h);
5755 
5756 	/*
5757 	 * If a scan is already waiting to run, no need to add another
5758 	 */
5759 	spin_lock_irqsave(&h->scan_lock, flags);
5760 	if (h->scan_waiting) {
5761 		spin_unlock_irqrestore(&h->scan_lock, flags);
5762 		return;
5763 	}
5764 
5765 	spin_unlock_irqrestore(&h->scan_lock, flags);
5766 
5767 	/* wait until any scan already in progress is finished. */
5768 	while (1) {
5769 		spin_lock_irqsave(&h->scan_lock, flags);
5770 		if (h->scan_finished)
5771 			break;
5772 		h->scan_waiting = 1;
5773 		spin_unlock_irqrestore(&h->scan_lock, flags);
5774 		wait_event(h->scan_wait_queue, h->scan_finished);
5775 		/* Note: We don't need to worry about a race between this
5776 		 * thread and driver unload because the midlayer will
5777 		 * have incremented the reference count, so unload won't
5778 		 * happen if we're in here.
5779 		 */
5780 	}
5781 	h->scan_finished = 0; /* mark scan as in progress */
5782 	h->scan_waiting = 0;
5783 	spin_unlock_irqrestore(&h->scan_lock, flags);
5784 
5785 	if (unlikely(lockup_detected(h)))
5786 		return hpsa_scan_complete(h);
5787 
5788 	/*
5789 	 * Do the scan after a reset completion
5790 	 */
5791 	spin_lock_irqsave(&h->reset_lock, flags);
5792 	if (h->reset_in_progress) {
5793 		h->drv_req_rescan = 1;
5794 		spin_unlock_irqrestore(&h->reset_lock, flags);
5795 		hpsa_scan_complete(h);
5796 		return;
5797 	}
5798 	spin_unlock_irqrestore(&h->reset_lock, flags);
5799 
5800 	hpsa_update_scsi_devices(h);
5801 
5802 	hpsa_scan_complete(h);
5803 }
5804 
5805 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5806 {
5807 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5808 
5809 	if (!logical_drive)
5810 		return -ENODEV;
5811 
5812 	if (qdepth < 1)
5813 		qdepth = 1;
5814 	else if (qdepth > logical_drive->queue_depth)
5815 		qdepth = logical_drive->queue_depth;
5816 
5817 	return scsi_change_queue_depth(sdev, qdepth);
5818 }
5819 
5820 static int hpsa_scan_finished(struct Scsi_Host *sh,
5821 	unsigned long elapsed_time)
5822 {
5823 	struct ctlr_info *h = shost_to_hba(sh);
5824 	unsigned long flags;
5825 	int finished;
5826 
5827 	spin_lock_irqsave(&h->scan_lock, flags);
5828 	finished = h->scan_finished;
5829 	spin_unlock_irqrestore(&h->scan_lock, flags);
5830 	return finished;
5831 }
5832 
5833 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5834 {
5835 	struct Scsi_Host *sh;
5836 
5837 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5838 	if (sh == NULL) {
5839 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5840 		return -ENOMEM;
5841 	}
5842 
5843 	sh->io_port = 0;
5844 	sh->n_io_port = 0;
5845 	sh->this_id = -1;
5846 	sh->max_channel = 3;
5847 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5848 	sh->max_lun = HPSA_MAX_LUN;
5849 	sh->max_id = HPSA_MAX_LUN;
5850 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5851 	sh->cmd_per_lun = sh->can_queue;
5852 	sh->sg_tablesize = h->maxsgentries;
5853 	sh->transportt = hpsa_sas_transport_template;
5854 	sh->hostdata[0] = (unsigned long) h;
5855 	sh->irq = pci_irq_vector(h->pdev, 0);
5856 	sh->unique_id = sh->irq;
5857 
5858 	h->scsi_host = sh;
5859 	return 0;
5860 }
5861 
5862 static int hpsa_scsi_add_host(struct ctlr_info *h)
5863 {
5864 	int rv;
5865 
5866 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5867 	if (rv) {
5868 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5869 		return rv;
5870 	}
5871 	scsi_scan_host(h->scsi_host);
5872 	return 0;
5873 }
5874 
5875 /*
5876  * The block layer has already gone to the trouble of picking out a unique,
5877  * small-integer tag for this request.  We use an offset from that value as
5878  * an index to select our command block.  (The offset allows us to reserve the
5879  * low-numbered entries for our own uses.)
5880  */
5881 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5882 {
5883 	int idx = scmd->request->tag;
5884 
5885 	if (idx < 0)
5886 		return idx;
5887 
5888 	/* Offset to leave space for internal cmds. */
5889 	return idx += HPSA_NRESERVED_CMDS;
5890 }
5891 
5892 /*
5893  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5894  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5895  */
5896 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5897 				struct CommandList *c, unsigned char lunaddr[],
5898 				int reply_queue)
5899 {
5900 	int rc;
5901 
5902 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5903 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5904 			NULL, 0, 0, lunaddr, TYPE_CMD);
5905 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5906 	if (rc)
5907 		return rc;
5908 	/* no unmap needed here because no data xfer. */
5909 
5910 	/* Check if the unit is already ready. */
5911 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5912 		return 0;
5913 
5914 	/*
5915 	 * The first command sent after reset will receive "unit attention" to
5916 	 * indicate that the LUN has been reset...this is actually what we're
5917 	 * looking for (but, success is good too).
5918 	 */
5919 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5920 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5921 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5922 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5923 		return 0;
5924 
5925 	return 1;
5926 }
5927 
5928 /*
5929  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5930  * returns zero when the unit is ready, and non-zero when giving up.
5931  */
5932 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5933 				struct CommandList *c,
5934 				unsigned char lunaddr[], int reply_queue)
5935 {
5936 	int rc;
5937 	int count = 0;
5938 	int waittime = 1; /* seconds */
5939 
5940 	/* Send test unit ready until device ready, or give up. */
5941 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5942 
5943 		/*
5944 		 * Wait for a bit.  do this first, because if we send
5945 		 * the TUR right away, the reset will just abort it.
5946 		 */
5947 		msleep(1000 * waittime);
5948 
5949 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5950 		if (!rc)
5951 			break;
5952 
5953 		/* Increase wait time with each try, up to a point. */
5954 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5955 			waittime *= 2;
5956 
5957 		dev_warn(&h->pdev->dev,
5958 			 "waiting %d secs for device to become ready.\n",
5959 			 waittime);
5960 	}
5961 
5962 	return rc;
5963 }
5964 
5965 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5966 					   unsigned char lunaddr[],
5967 					   int reply_queue)
5968 {
5969 	int first_queue;
5970 	int last_queue;
5971 	int rq;
5972 	int rc = 0;
5973 	struct CommandList *c;
5974 
5975 	c = cmd_alloc(h);
5976 
5977 	/*
5978 	 * If no specific reply queue was requested, then send the TUR
5979 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5980 	 * the loop exactly once using only the specified queue.
5981 	 */
5982 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5983 		first_queue = 0;
5984 		last_queue = h->nreply_queues - 1;
5985 	} else {
5986 		first_queue = reply_queue;
5987 		last_queue = reply_queue;
5988 	}
5989 
5990 	for (rq = first_queue; rq <= last_queue; rq++) {
5991 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5992 		if (rc)
5993 			break;
5994 	}
5995 
5996 	if (rc)
5997 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5998 	else
5999 		dev_warn(&h->pdev->dev, "device is ready.\n");
6000 
6001 	cmd_free(h, c);
6002 	return rc;
6003 }
6004 
6005 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6006  * complaining.  Doing a host- or bus-reset can't do anything good here.
6007  */
6008 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6009 {
6010 	int rc = SUCCESS;
6011 	int i;
6012 	struct ctlr_info *h;
6013 	struct hpsa_scsi_dev_t *dev = NULL;
6014 	u8 reset_type;
6015 	char msg[48];
6016 	unsigned long flags;
6017 
6018 	/* find the controller to which the command to be aborted was sent */
6019 	h = sdev_to_hba(scsicmd->device);
6020 	if (h == NULL) /* paranoia */
6021 		return FAILED;
6022 
6023 	spin_lock_irqsave(&h->reset_lock, flags);
6024 	h->reset_in_progress = 1;
6025 	spin_unlock_irqrestore(&h->reset_lock, flags);
6026 
6027 	if (lockup_detected(h)) {
6028 		rc = FAILED;
6029 		goto return_reset_status;
6030 	}
6031 
6032 	dev = scsicmd->device->hostdata;
6033 	if (!dev) {
6034 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6035 		rc = FAILED;
6036 		goto return_reset_status;
6037 	}
6038 
6039 	if (dev->devtype == TYPE_ENCLOSURE) {
6040 		rc = SUCCESS;
6041 		goto return_reset_status;
6042 	}
6043 
6044 	/* if controller locked up, we can guarantee command won't complete */
6045 	if (lockup_detected(h)) {
6046 		snprintf(msg, sizeof(msg),
6047 			 "cmd %d RESET FAILED, lockup detected",
6048 			 hpsa_get_cmd_index(scsicmd));
6049 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6050 		rc = FAILED;
6051 		goto return_reset_status;
6052 	}
6053 
6054 	/* this reset request might be the result of a lockup; check */
6055 	if (detect_controller_lockup(h)) {
6056 		snprintf(msg, sizeof(msg),
6057 			 "cmd %d RESET FAILED, new lockup detected",
6058 			 hpsa_get_cmd_index(scsicmd));
6059 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6060 		rc = FAILED;
6061 		goto return_reset_status;
6062 	}
6063 
6064 	/* Do not attempt on controller */
6065 	if (is_hba_lunid(dev->scsi3addr)) {
6066 		rc = SUCCESS;
6067 		goto return_reset_status;
6068 	}
6069 
6070 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6071 		reset_type = HPSA_DEVICE_RESET_MSG;
6072 	else
6073 		reset_type = HPSA_PHYS_TARGET_RESET;
6074 
6075 	sprintf(msg, "resetting %s",
6076 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6077 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6078 
6079 	/*
6080 	 * wait to see if any commands will complete before sending reset
6081 	 */
6082 	dev->in_reset = true; /* block any new cmds from OS for this device */
6083 	for (i = 0; i < 10; i++) {
6084 		if (atomic_read(&dev->commands_outstanding) > 0)
6085 			msleep(1000);
6086 		else
6087 			break;
6088 	}
6089 
6090 	/* send a reset to the SCSI LUN which the command was sent to */
6091 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6092 	if (rc == 0)
6093 		rc = SUCCESS;
6094 	else
6095 		rc = FAILED;
6096 
6097 	sprintf(msg, "reset %s %s",
6098 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6099 		rc == SUCCESS ? "completed successfully" : "failed");
6100 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6101 
6102 return_reset_status:
6103 	spin_lock_irqsave(&h->reset_lock, flags);
6104 	h->reset_in_progress = 0;
6105 	if (dev)
6106 		dev->in_reset = false;
6107 	spin_unlock_irqrestore(&h->reset_lock, flags);
6108 	return rc;
6109 }
6110 
6111 /*
6112  * For operations with an associated SCSI command, a command block is allocated
6113  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6114  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6115  * the complement, although cmd_free() may be called instead.
6116  */
6117 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6118 					    struct scsi_cmnd *scmd)
6119 {
6120 	int idx = hpsa_get_cmd_index(scmd);
6121 	struct CommandList *c = h->cmd_pool + idx;
6122 
6123 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6124 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6125 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6126 		/* The index value comes from the block layer, so if it's out of
6127 		 * bounds, it's probably not our bug.
6128 		 */
6129 		BUG();
6130 	}
6131 
6132 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6133 		/*
6134 		 * We expect that the SCSI layer will hand us a unique tag
6135 		 * value.  Thus, there should never be a collision here between
6136 		 * two requests...because if the selected command isn't idle
6137 		 * then someone is going to be very disappointed.
6138 		 */
6139 		if (idx != h->last_collision_tag) { /* Print once per tag */
6140 			dev_warn(&h->pdev->dev,
6141 				"%s: tag collision (tag=%d)\n", __func__, idx);
6142 			if (scmd)
6143 				scsi_print_command(scmd);
6144 			h->last_collision_tag = idx;
6145 		}
6146 		return NULL;
6147 	}
6148 
6149 	atomic_inc(&c->refcount);
6150 
6151 	hpsa_cmd_partial_init(h, idx, c);
6152 	return c;
6153 }
6154 
6155 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6156 {
6157 	/*
6158 	 * Release our reference to the block.  We don't need to do anything
6159 	 * else to free it, because it is accessed by index.
6160 	 */
6161 	(void)atomic_dec(&c->refcount);
6162 }
6163 
6164 /*
6165  * For operations that cannot sleep, a command block is allocated at init,
6166  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6167  * which ones are free or in use.  Lock must be held when calling this.
6168  * cmd_free() is the complement.
6169  * This function never gives up and returns NULL.  If it hangs,
6170  * another thread must call cmd_free() to free some tags.
6171  */
6172 
6173 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6174 {
6175 	struct CommandList *c;
6176 	int refcount, i;
6177 	int offset = 0;
6178 
6179 	/*
6180 	 * There is some *extremely* small but non-zero chance that that
6181 	 * multiple threads could get in here, and one thread could
6182 	 * be scanning through the list of bits looking for a free
6183 	 * one, but the free ones are always behind him, and other
6184 	 * threads sneak in behind him and eat them before he can
6185 	 * get to them, so that while there is always a free one, a
6186 	 * very unlucky thread might be starved anyway, never able to
6187 	 * beat the other threads.  In reality, this happens so
6188 	 * infrequently as to be indistinguishable from never.
6189 	 *
6190 	 * Note that we start allocating commands before the SCSI host structure
6191 	 * is initialized.  Since the search starts at bit zero, this
6192 	 * all works, since we have at least one command structure available;
6193 	 * however, it means that the structures with the low indexes have to be
6194 	 * reserved for driver-initiated requests, while requests from the block
6195 	 * layer will use the higher indexes.
6196 	 */
6197 
6198 	for (;;) {
6199 		i = find_next_zero_bit(h->cmd_pool_bits,
6200 					HPSA_NRESERVED_CMDS,
6201 					offset);
6202 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6203 			offset = 0;
6204 			continue;
6205 		}
6206 		c = h->cmd_pool + i;
6207 		refcount = atomic_inc_return(&c->refcount);
6208 		if (unlikely(refcount > 1)) {
6209 			cmd_free(h, c); /* already in use */
6210 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6211 			continue;
6212 		}
6213 		set_bit(i & (BITS_PER_LONG - 1),
6214 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6215 		break; /* it's ours now. */
6216 	}
6217 	hpsa_cmd_partial_init(h, i, c);
6218 	c->device = NULL;
6219 	return c;
6220 }
6221 
6222 /*
6223  * This is the complementary operation to cmd_alloc().  Note, however, in some
6224  * corner cases it may also be used to free blocks allocated by
6225  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6226  * the clear-bit is harmless.
6227  */
6228 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6229 {
6230 	if (atomic_dec_and_test(&c->refcount)) {
6231 		int i;
6232 
6233 		i = c - h->cmd_pool;
6234 		clear_bit(i & (BITS_PER_LONG - 1),
6235 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6236 	}
6237 }
6238 
6239 #ifdef CONFIG_COMPAT
6240 
6241 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6242 	void __user *arg)
6243 {
6244 	struct ctlr_info *h = sdev_to_hba(dev);
6245 	IOCTL32_Command_struct __user *arg32 = arg;
6246 	IOCTL_Command_struct arg64;
6247 	int err;
6248 	u32 cp;
6249 
6250 	if (!arg)
6251 		return -EINVAL;
6252 
6253 	memset(&arg64, 0, sizeof(arg64));
6254 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6255 		return -EFAULT;
6256 	if (get_user(cp, &arg32->buf))
6257 		return -EFAULT;
6258 	arg64.buf = compat_ptr(cp);
6259 
6260 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6261 		return -EAGAIN;
6262 	err = hpsa_passthru_ioctl(h, &arg64);
6263 	atomic_inc(&h->passthru_cmds_avail);
6264 	if (err)
6265 		return err;
6266 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6267 			 sizeof(arg32->error_info)))
6268 		return -EFAULT;
6269 	return 0;
6270 }
6271 
6272 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6273 	unsigned int cmd, void __user *arg)
6274 {
6275 	struct ctlr_info *h = sdev_to_hba(dev);
6276 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6277 	BIG_IOCTL_Command_struct arg64;
6278 	int err;
6279 	u32 cp;
6280 
6281 	if (!arg)
6282 		return -EINVAL;
6283 	memset(&arg64, 0, sizeof(arg64));
6284 	if (copy_from_user(&arg64, arg32,
6285 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6286 		return -EFAULT;
6287 	if (get_user(cp, &arg32->buf))
6288 		return -EFAULT;
6289 	arg64.buf = compat_ptr(cp);
6290 
6291 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6292 		return -EAGAIN;
6293 	err = hpsa_big_passthru_ioctl(h, &arg64);
6294 	atomic_inc(&h->passthru_cmds_avail);
6295 	if (err)
6296 		return err;
6297 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6298 			 sizeof(arg32->error_info)))
6299 		return -EFAULT;
6300 	return 0;
6301 }
6302 
6303 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6304 			     void __user *arg)
6305 {
6306 	switch (cmd) {
6307 	case CCISS_GETPCIINFO:
6308 	case CCISS_GETINTINFO:
6309 	case CCISS_SETINTINFO:
6310 	case CCISS_GETNODENAME:
6311 	case CCISS_SETNODENAME:
6312 	case CCISS_GETHEARTBEAT:
6313 	case CCISS_GETBUSTYPES:
6314 	case CCISS_GETFIRMVER:
6315 	case CCISS_GETDRIVVER:
6316 	case CCISS_REVALIDVOLS:
6317 	case CCISS_DEREGDISK:
6318 	case CCISS_REGNEWDISK:
6319 	case CCISS_REGNEWD:
6320 	case CCISS_RESCANDISK:
6321 	case CCISS_GETLUNINFO:
6322 		return hpsa_ioctl(dev, cmd, arg);
6323 
6324 	case CCISS_PASSTHRU32:
6325 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6326 	case CCISS_BIG_PASSTHRU32:
6327 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6328 
6329 	default:
6330 		return -ENOIOCTLCMD;
6331 	}
6332 }
6333 #endif
6334 
6335 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6336 {
6337 	struct hpsa_pci_info pciinfo;
6338 
6339 	if (!argp)
6340 		return -EINVAL;
6341 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6342 	pciinfo.bus = h->pdev->bus->number;
6343 	pciinfo.dev_fn = h->pdev->devfn;
6344 	pciinfo.board_id = h->board_id;
6345 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6346 		return -EFAULT;
6347 	return 0;
6348 }
6349 
6350 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6351 {
6352 	DriverVer_type DriverVer;
6353 	unsigned char vmaj, vmin, vsubmin;
6354 	int rc;
6355 
6356 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6357 		&vmaj, &vmin, &vsubmin);
6358 	if (rc != 3) {
6359 		dev_info(&h->pdev->dev, "driver version string '%s' "
6360 			"unrecognized.", HPSA_DRIVER_VERSION);
6361 		vmaj = 0;
6362 		vmin = 0;
6363 		vsubmin = 0;
6364 	}
6365 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6366 	if (!argp)
6367 		return -EINVAL;
6368 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6369 		return -EFAULT;
6370 	return 0;
6371 }
6372 
6373 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6374 			       IOCTL_Command_struct *iocommand)
6375 {
6376 	struct CommandList *c;
6377 	char *buff = NULL;
6378 	u64 temp64;
6379 	int rc = 0;
6380 
6381 	if (!capable(CAP_SYS_RAWIO))
6382 		return -EPERM;
6383 	if ((iocommand->buf_size < 1) &&
6384 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6385 		return -EINVAL;
6386 	}
6387 	if (iocommand->buf_size > 0) {
6388 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6389 		if (buff == NULL)
6390 			return -ENOMEM;
6391 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6392 			/* Copy the data into the buffer we created */
6393 			if (copy_from_user(buff, iocommand->buf,
6394 				iocommand->buf_size)) {
6395 				rc = -EFAULT;
6396 				goto out_kfree;
6397 			}
6398 		} else {
6399 			memset(buff, 0, iocommand->buf_size);
6400 		}
6401 	}
6402 	c = cmd_alloc(h);
6403 
6404 	/* Fill in the command type */
6405 	c->cmd_type = CMD_IOCTL_PEND;
6406 	c->scsi_cmd = SCSI_CMD_BUSY;
6407 	/* Fill in Command Header */
6408 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6409 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6410 		c->Header.SGList = 1;
6411 		c->Header.SGTotal = cpu_to_le16(1);
6412 	} else	{ /* no buffers to fill */
6413 		c->Header.SGList = 0;
6414 		c->Header.SGTotal = cpu_to_le16(0);
6415 	}
6416 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6417 
6418 	/* Fill in Request block */
6419 	memcpy(&c->Request, &iocommand->Request,
6420 		sizeof(c->Request));
6421 
6422 	/* Fill in the scatter gather information */
6423 	if (iocommand->buf_size > 0) {
6424 		temp64 = dma_map_single(&h->pdev->dev, buff,
6425 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6426 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6427 			c->SG[0].Addr = cpu_to_le64(0);
6428 			c->SG[0].Len = cpu_to_le32(0);
6429 			rc = -ENOMEM;
6430 			goto out;
6431 		}
6432 		c->SG[0].Addr = cpu_to_le64(temp64);
6433 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6434 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6435 	}
6436 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6437 					NO_TIMEOUT);
6438 	if (iocommand->buf_size > 0)
6439 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6440 	check_ioctl_unit_attention(h, c);
6441 	if (rc) {
6442 		rc = -EIO;
6443 		goto out;
6444 	}
6445 
6446 	/* Copy the error information out */
6447 	memcpy(&iocommand->error_info, c->err_info,
6448 		sizeof(iocommand->error_info));
6449 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6450 		iocommand->buf_size > 0) {
6451 		/* Copy the data out of the buffer we created */
6452 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6453 			rc = -EFAULT;
6454 			goto out;
6455 		}
6456 	}
6457 out:
6458 	cmd_free(h, c);
6459 out_kfree:
6460 	kfree(buff);
6461 	return rc;
6462 }
6463 
6464 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6465 				   BIG_IOCTL_Command_struct *ioc)
6466 {
6467 	struct CommandList *c;
6468 	unsigned char **buff = NULL;
6469 	int *buff_size = NULL;
6470 	u64 temp64;
6471 	BYTE sg_used = 0;
6472 	int status = 0;
6473 	u32 left;
6474 	u32 sz;
6475 	BYTE __user *data_ptr;
6476 
6477 	if (!capable(CAP_SYS_RAWIO))
6478 		return -EPERM;
6479 
6480 	if ((ioc->buf_size < 1) &&
6481 	    (ioc->Request.Type.Direction != XFER_NONE))
6482 		return -EINVAL;
6483 	/* Check kmalloc limits  using all SGs */
6484 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6485 		return -EINVAL;
6486 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6487 		return -EINVAL;
6488 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6489 	if (!buff) {
6490 		status = -ENOMEM;
6491 		goto cleanup1;
6492 	}
6493 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6494 	if (!buff_size) {
6495 		status = -ENOMEM;
6496 		goto cleanup1;
6497 	}
6498 	left = ioc->buf_size;
6499 	data_ptr = ioc->buf;
6500 	while (left) {
6501 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6502 		buff_size[sg_used] = sz;
6503 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6504 		if (buff[sg_used] == NULL) {
6505 			status = -ENOMEM;
6506 			goto cleanup1;
6507 		}
6508 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6509 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6510 				status = -EFAULT;
6511 				goto cleanup1;
6512 			}
6513 		} else
6514 			memset(buff[sg_used], 0, sz);
6515 		left -= sz;
6516 		data_ptr += sz;
6517 		sg_used++;
6518 	}
6519 	c = cmd_alloc(h);
6520 
6521 	c->cmd_type = CMD_IOCTL_PEND;
6522 	c->scsi_cmd = SCSI_CMD_BUSY;
6523 	c->Header.ReplyQueue = 0;
6524 	c->Header.SGList = (u8) sg_used;
6525 	c->Header.SGTotal = cpu_to_le16(sg_used);
6526 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6527 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6528 	if (ioc->buf_size > 0) {
6529 		int i;
6530 		for (i = 0; i < sg_used; i++) {
6531 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6532 				    buff_size[i], DMA_BIDIRECTIONAL);
6533 			if (dma_mapping_error(&h->pdev->dev,
6534 							(dma_addr_t) temp64)) {
6535 				c->SG[i].Addr = cpu_to_le64(0);
6536 				c->SG[i].Len = cpu_to_le32(0);
6537 				hpsa_pci_unmap(h->pdev, c, i,
6538 					DMA_BIDIRECTIONAL);
6539 				status = -ENOMEM;
6540 				goto cleanup0;
6541 			}
6542 			c->SG[i].Addr = cpu_to_le64(temp64);
6543 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6544 			c->SG[i].Ext = cpu_to_le32(0);
6545 		}
6546 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6547 	}
6548 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6549 						NO_TIMEOUT);
6550 	if (sg_used)
6551 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6552 	check_ioctl_unit_attention(h, c);
6553 	if (status) {
6554 		status = -EIO;
6555 		goto cleanup0;
6556 	}
6557 
6558 	/* Copy the error information out */
6559 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6560 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6561 		int i;
6562 
6563 		/* Copy the data out of the buffer we created */
6564 		BYTE __user *ptr = ioc->buf;
6565 		for (i = 0; i < sg_used; i++) {
6566 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6567 				status = -EFAULT;
6568 				goto cleanup0;
6569 			}
6570 			ptr += buff_size[i];
6571 		}
6572 	}
6573 	status = 0;
6574 cleanup0:
6575 	cmd_free(h, c);
6576 cleanup1:
6577 	if (buff) {
6578 		int i;
6579 
6580 		for (i = 0; i < sg_used; i++)
6581 			kfree(buff[i]);
6582 		kfree(buff);
6583 	}
6584 	kfree(buff_size);
6585 	return status;
6586 }
6587 
6588 static void check_ioctl_unit_attention(struct ctlr_info *h,
6589 	struct CommandList *c)
6590 {
6591 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6592 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6593 		(void) check_for_unit_attention(h, c);
6594 }
6595 
6596 /*
6597  * ioctl
6598  */
6599 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6600 		      void __user *argp)
6601 {
6602 	struct ctlr_info *h = sdev_to_hba(dev);
6603 	int rc;
6604 
6605 	switch (cmd) {
6606 	case CCISS_DEREGDISK:
6607 	case CCISS_REGNEWDISK:
6608 	case CCISS_REGNEWD:
6609 		hpsa_scan_start(h->scsi_host);
6610 		return 0;
6611 	case CCISS_GETPCIINFO:
6612 		return hpsa_getpciinfo_ioctl(h, argp);
6613 	case CCISS_GETDRIVVER:
6614 		return hpsa_getdrivver_ioctl(h, argp);
6615 	case CCISS_PASSTHRU: {
6616 		IOCTL_Command_struct iocommand;
6617 
6618 		if (!argp)
6619 			return -EINVAL;
6620 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6621 			return -EFAULT;
6622 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6623 			return -EAGAIN;
6624 		rc = hpsa_passthru_ioctl(h, &iocommand);
6625 		atomic_inc(&h->passthru_cmds_avail);
6626 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6627 			rc = -EFAULT;
6628 		return rc;
6629 	}
6630 	case CCISS_BIG_PASSTHRU: {
6631 		BIG_IOCTL_Command_struct ioc;
6632 		if (!argp)
6633 			return -EINVAL;
6634 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6635 			return -EFAULT;
6636 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6637 			return -EAGAIN;
6638 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6639 		atomic_inc(&h->passthru_cmds_avail);
6640 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6641 			rc = -EFAULT;
6642 		return rc;
6643 	}
6644 	default:
6645 		return -ENOTTY;
6646 	}
6647 }
6648 
6649 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6650 {
6651 	struct CommandList *c;
6652 
6653 	c = cmd_alloc(h);
6654 
6655 	/* fill_cmd can't fail here, no data buffer to map */
6656 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6657 		RAID_CTLR_LUNID, TYPE_MSG);
6658 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6659 	c->waiting = NULL;
6660 	enqueue_cmd_and_start_io(h, c);
6661 	/* Don't wait for completion, the reset won't complete.  Don't free
6662 	 * the command either.  This is the last command we will send before
6663 	 * re-initializing everything, so it doesn't matter and won't leak.
6664 	 */
6665 	return;
6666 }
6667 
6668 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6669 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6670 	int cmd_type)
6671 {
6672 	enum dma_data_direction dir = DMA_NONE;
6673 
6674 	c->cmd_type = CMD_IOCTL_PEND;
6675 	c->scsi_cmd = SCSI_CMD_BUSY;
6676 	c->Header.ReplyQueue = 0;
6677 	if (buff != NULL && size > 0) {
6678 		c->Header.SGList = 1;
6679 		c->Header.SGTotal = cpu_to_le16(1);
6680 	} else {
6681 		c->Header.SGList = 0;
6682 		c->Header.SGTotal = cpu_to_le16(0);
6683 	}
6684 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6685 
6686 	if (cmd_type == TYPE_CMD) {
6687 		switch (cmd) {
6688 		case HPSA_INQUIRY:
6689 			/* are we trying to read a vital product page */
6690 			if (page_code & VPD_PAGE) {
6691 				c->Request.CDB[1] = 0x01;
6692 				c->Request.CDB[2] = (page_code & 0xff);
6693 			}
6694 			c->Request.CDBLen = 6;
6695 			c->Request.type_attr_dir =
6696 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697 			c->Request.Timeout = 0;
6698 			c->Request.CDB[0] = HPSA_INQUIRY;
6699 			c->Request.CDB[4] = size & 0xFF;
6700 			break;
6701 		case RECEIVE_DIAGNOSTIC:
6702 			c->Request.CDBLen = 6;
6703 			c->Request.type_attr_dir =
6704 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705 			c->Request.Timeout = 0;
6706 			c->Request.CDB[0] = cmd;
6707 			c->Request.CDB[1] = 1;
6708 			c->Request.CDB[2] = 1;
6709 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6710 			c->Request.CDB[4] = size & 0xFF;
6711 			break;
6712 		case HPSA_REPORT_LOG:
6713 		case HPSA_REPORT_PHYS:
6714 			/* Talking to controller so It's a physical command
6715 			   mode = 00 target = 0.  Nothing to write.
6716 			 */
6717 			c->Request.CDBLen = 12;
6718 			c->Request.type_attr_dir =
6719 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6720 			c->Request.Timeout = 0;
6721 			c->Request.CDB[0] = cmd;
6722 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6723 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6724 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6725 			c->Request.CDB[9] = size & 0xFF;
6726 			break;
6727 		case BMIC_SENSE_DIAG_OPTIONS:
6728 			c->Request.CDBLen = 16;
6729 			c->Request.type_attr_dir =
6730 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731 			c->Request.Timeout = 0;
6732 			/* Spec says this should be BMIC_WRITE */
6733 			c->Request.CDB[0] = BMIC_READ;
6734 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6735 			break;
6736 		case BMIC_SET_DIAG_OPTIONS:
6737 			c->Request.CDBLen = 16;
6738 			c->Request.type_attr_dir =
6739 					TYPE_ATTR_DIR(cmd_type,
6740 						ATTR_SIMPLE, XFER_WRITE);
6741 			c->Request.Timeout = 0;
6742 			c->Request.CDB[0] = BMIC_WRITE;
6743 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6744 			break;
6745 		case HPSA_CACHE_FLUSH:
6746 			c->Request.CDBLen = 12;
6747 			c->Request.type_attr_dir =
6748 					TYPE_ATTR_DIR(cmd_type,
6749 						ATTR_SIMPLE, XFER_WRITE);
6750 			c->Request.Timeout = 0;
6751 			c->Request.CDB[0] = BMIC_WRITE;
6752 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6753 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6754 			c->Request.CDB[8] = size & 0xFF;
6755 			break;
6756 		case TEST_UNIT_READY:
6757 			c->Request.CDBLen = 6;
6758 			c->Request.type_attr_dir =
6759 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760 			c->Request.Timeout = 0;
6761 			break;
6762 		case HPSA_GET_RAID_MAP:
6763 			c->Request.CDBLen = 12;
6764 			c->Request.type_attr_dir =
6765 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766 			c->Request.Timeout = 0;
6767 			c->Request.CDB[0] = HPSA_CISS_READ;
6768 			c->Request.CDB[1] = cmd;
6769 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6770 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6771 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6772 			c->Request.CDB[9] = size & 0xFF;
6773 			break;
6774 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6775 			c->Request.CDBLen = 10;
6776 			c->Request.type_attr_dir =
6777 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6778 			c->Request.Timeout = 0;
6779 			c->Request.CDB[0] = BMIC_READ;
6780 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6781 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6782 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6783 			break;
6784 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6785 			c->Request.CDBLen = 10;
6786 			c->Request.type_attr_dir =
6787 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788 			c->Request.Timeout = 0;
6789 			c->Request.CDB[0] = BMIC_READ;
6790 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6791 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6792 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6793 			break;
6794 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6795 			c->Request.CDBLen = 10;
6796 			c->Request.type_attr_dir =
6797 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798 			c->Request.Timeout = 0;
6799 			c->Request.CDB[0] = BMIC_READ;
6800 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6801 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6802 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6803 			break;
6804 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6805 			c->Request.CDBLen = 10;
6806 			c->Request.type_attr_dir =
6807 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808 			c->Request.Timeout = 0;
6809 			c->Request.CDB[0] = BMIC_READ;
6810 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6811 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6812 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6813 			break;
6814 		case BMIC_IDENTIFY_CONTROLLER:
6815 			c->Request.CDBLen = 10;
6816 			c->Request.type_attr_dir =
6817 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818 			c->Request.Timeout = 0;
6819 			c->Request.CDB[0] = BMIC_READ;
6820 			c->Request.CDB[1] = 0;
6821 			c->Request.CDB[2] = 0;
6822 			c->Request.CDB[3] = 0;
6823 			c->Request.CDB[4] = 0;
6824 			c->Request.CDB[5] = 0;
6825 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6826 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6827 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6828 			c->Request.CDB[9] = 0;
6829 			break;
6830 		default:
6831 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6832 			BUG();
6833 		}
6834 	} else if (cmd_type == TYPE_MSG) {
6835 		switch (cmd) {
6836 
6837 		case  HPSA_PHYS_TARGET_RESET:
6838 			c->Request.CDBLen = 16;
6839 			c->Request.type_attr_dir =
6840 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6841 			c->Request.Timeout = 0; /* Don't time out */
6842 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6843 			c->Request.CDB[0] = HPSA_RESET;
6844 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6845 			/* Physical target reset needs no control bytes 4-7*/
6846 			c->Request.CDB[4] = 0x00;
6847 			c->Request.CDB[5] = 0x00;
6848 			c->Request.CDB[6] = 0x00;
6849 			c->Request.CDB[7] = 0x00;
6850 			break;
6851 		case  HPSA_DEVICE_RESET_MSG:
6852 			c->Request.CDBLen = 16;
6853 			c->Request.type_attr_dir =
6854 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6855 			c->Request.Timeout = 0; /* Don't time out */
6856 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6857 			c->Request.CDB[0] =  cmd;
6858 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6859 			/* If bytes 4-7 are zero, it means reset the */
6860 			/* LunID device */
6861 			c->Request.CDB[4] = 0x00;
6862 			c->Request.CDB[5] = 0x00;
6863 			c->Request.CDB[6] = 0x00;
6864 			c->Request.CDB[7] = 0x00;
6865 			break;
6866 		default:
6867 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6868 				cmd);
6869 			BUG();
6870 		}
6871 	} else {
6872 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6873 		BUG();
6874 	}
6875 
6876 	switch (GET_DIR(c->Request.type_attr_dir)) {
6877 	case XFER_READ:
6878 		dir = DMA_FROM_DEVICE;
6879 		break;
6880 	case XFER_WRITE:
6881 		dir = DMA_TO_DEVICE;
6882 		break;
6883 	case XFER_NONE:
6884 		dir = DMA_NONE;
6885 		break;
6886 	default:
6887 		dir = DMA_BIDIRECTIONAL;
6888 	}
6889 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6890 		return -1;
6891 	return 0;
6892 }
6893 
6894 /*
6895  * Map (physical) PCI mem into (virtual) kernel space
6896  */
6897 static void __iomem *remap_pci_mem(ulong base, ulong size)
6898 {
6899 	ulong page_base = ((ulong) base) & PAGE_MASK;
6900 	ulong page_offs = ((ulong) base) - page_base;
6901 	void __iomem *page_remapped = ioremap(page_base,
6902 		page_offs + size);
6903 
6904 	return page_remapped ? (page_remapped + page_offs) : NULL;
6905 }
6906 
6907 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6908 {
6909 	return h->access.command_completed(h, q);
6910 }
6911 
6912 static inline bool interrupt_pending(struct ctlr_info *h)
6913 {
6914 	return h->access.intr_pending(h);
6915 }
6916 
6917 static inline long interrupt_not_for_us(struct ctlr_info *h)
6918 {
6919 	return (h->access.intr_pending(h) == 0) ||
6920 		(h->interrupts_enabled == 0);
6921 }
6922 
6923 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6924 	u32 raw_tag)
6925 {
6926 	if (unlikely(tag_index >= h->nr_cmds)) {
6927 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6928 		return 1;
6929 	}
6930 	return 0;
6931 }
6932 
6933 static inline void finish_cmd(struct CommandList *c)
6934 {
6935 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6936 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6937 			|| c->cmd_type == CMD_IOACCEL2))
6938 		complete_scsi_command(c);
6939 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6940 		complete(c->waiting);
6941 }
6942 
6943 /* process completion of an indexed ("direct lookup") command */
6944 static inline void process_indexed_cmd(struct ctlr_info *h,
6945 	u32 raw_tag)
6946 {
6947 	u32 tag_index;
6948 	struct CommandList *c;
6949 
6950 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6951 	if (!bad_tag(h, tag_index, raw_tag)) {
6952 		c = h->cmd_pool + tag_index;
6953 		finish_cmd(c);
6954 	}
6955 }
6956 
6957 /* Some controllers, like p400, will give us one interrupt
6958  * after a soft reset, even if we turned interrupts off.
6959  * Only need to check for this in the hpsa_xxx_discard_completions
6960  * functions.
6961  */
6962 static int ignore_bogus_interrupt(struct ctlr_info *h)
6963 {
6964 	if (likely(!reset_devices))
6965 		return 0;
6966 
6967 	if (likely(h->interrupts_enabled))
6968 		return 0;
6969 
6970 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6971 		"(known firmware bug.)  Ignoring.\n");
6972 
6973 	return 1;
6974 }
6975 
6976 /*
6977  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6978  * Relies on (h-q[x] == x) being true for x such that
6979  * 0 <= x < MAX_REPLY_QUEUES.
6980  */
6981 static struct ctlr_info *queue_to_hba(u8 *queue)
6982 {
6983 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6984 }
6985 
6986 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6987 {
6988 	struct ctlr_info *h = queue_to_hba(queue);
6989 	u8 q = *(u8 *) queue;
6990 	u32 raw_tag;
6991 
6992 	if (ignore_bogus_interrupt(h))
6993 		return IRQ_NONE;
6994 
6995 	if (interrupt_not_for_us(h))
6996 		return IRQ_NONE;
6997 	h->last_intr_timestamp = get_jiffies_64();
6998 	while (interrupt_pending(h)) {
6999 		raw_tag = get_next_completion(h, q);
7000 		while (raw_tag != FIFO_EMPTY)
7001 			raw_tag = next_command(h, q);
7002 	}
7003 	return IRQ_HANDLED;
7004 }
7005 
7006 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7007 {
7008 	struct ctlr_info *h = queue_to_hba(queue);
7009 	u32 raw_tag;
7010 	u8 q = *(u8 *) queue;
7011 
7012 	if (ignore_bogus_interrupt(h))
7013 		return IRQ_NONE;
7014 
7015 	h->last_intr_timestamp = get_jiffies_64();
7016 	raw_tag = get_next_completion(h, q);
7017 	while (raw_tag != FIFO_EMPTY)
7018 		raw_tag = next_command(h, q);
7019 	return IRQ_HANDLED;
7020 }
7021 
7022 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7023 {
7024 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7025 	u32 raw_tag;
7026 	u8 q = *(u8 *) queue;
7027 
7028 	if (interrupt_not_for_us(h))
7029 		return IRQ_NONE;
7030 	h->last_intr_timestamp = get_jiffies_64();
7031 	while (interrupt_pending(h)) {
7032 		raw_tag = get_next_completion(h, q);
7033 		while (raw_tag != FIFO_EMPTY) {
7034 			process_indexed_cmd(h, raw_tag);
7035 			raw_tag = next_command(h, q);
7036 		}
7037 	}
7038 	return IRQ_HANDLED;
7039 }
7040 
7041 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7042 {
7043 	struct ctlr_info *h = queue_to_hba(queue);
7044 	u32 raw_tag;
7045 	u8 q = *(u8 *) queue;
7046 
7047 	h->last_intr_timestamp = get_jiffies_64();
7048 	raw_tag = get_next_completion(h, q);
7049 	while (raw_tag != FIFO_EMPTY) {
7050 		process_indexed_cmd(h, raw_tag);
7051 		raw_tag = next_command(h, q);
7052 	}
7053 	return IRQ_HANDLED;
7054 }
7055 
7056 /* Send a message CDB to the firmware. Careful, this only works
7057  * in simple mode, not performant mode due to the tag lookup.
7058  * We only ever use this immediately after a controller reset.
7059  */
7060 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7061 			unsigned char type)
7062 {
7063 	struct Command {
7064 		struct CommandListHeader CommandHeader;
7065 		struct RequestBlock Request;
7066 		struct ErrDescriptor ErrorDescriptor;
7067 	};
7068 	struct Command *cmd;
7069 	static const size_t cmd_sz = sizeof(*cmd) +
7070 					sizeof(cmd->ErrorDescriptor);
7071 	dma_addr_t paddr64;
7072 	__le32 paddr32;
7073 	u32 tag;
7074 	void __iomem *vaddr;
7075 	int i, err;
7076 
7077 	vaddr = pci_ioremap_bar(pdev, 0);
7078 	if (vaddr == NULL)
7079 		return -ENOMEM;
7080 
7081 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7082 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7083 	 * memory.
7084 	 */
7085 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7086 	if (err) {
7087 		iounmap(vaddr);
7088 		return err;
7089 	}
7090 
7091 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7092 	if (cmd == NULL) {
7093 		iounmap(vaddr);
7094 		return -ENOMEM;
7095 	}
7096 
7097 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7098 	 * although there's no guarantee, we assume that the address is at
7099 	 * least 4-byte aligned (most likely, it's page-aligned).
7100 	 */
7101 	paddr32 = cpu_to_le32(paddr64);
7102 
7103 	cmd->CommandHeader.ReplyQueue = 0;
7104 	cmd->CommandHeader.SGList = 0;
7105 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7106 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7107 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7108 
7109 	cmd->Request.CDBLen = 16;
7110 	cmd->Request.type_attr_dir =
7111 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7112 	cmd->Request.Timeout = 0; /* Don't time out */
7113 	cmd->Request.CDB[0] = opcode;
7114 	cmd->Request.CDB[1] = type;
7115 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7116 	cmd->ErrorDescriptor.Addr =
7117 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7118 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7119 
7120 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7121 
7122 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7123 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7124 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7125 			break;
7126 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7127 	}
7128 
7129 	iounmap(vaddr);
7130 
7131 	/* we leak the DMA buffer here ... no choice since the controller could
7132 	 *  still complete the command.
7133 	 */
7134 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7135 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7136 			opcode, type);
7137 		return -ETIMEDOUT;
7138 	}
7139 
7140 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7141 
7142 	if (tag & HPSA_ERROR_BIT) {
7143 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7144 			opcode, type);
7145 		return -EIO;
7146 	}
7147 
7148 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7149 		opcode, type);
7150 	return 0;
7151 }
7152 
7153 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7154 
7155 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7156 	void __iomem *vaddr, u32 use_doorbell)
7157 {
7158 
7159 	if (use_doorbell) {
7160 		/* For everything after the P600, the PCI power state method
7161 		 * of resetting the controller doesn't work, so we have this
7162 		 * other way using the doorbell register.
7163 		 */
7164 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7165 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7166 
7167 		/* PMC hardware guys tell us we need a 10 second delay after
7168 		 * doorbell reset and before any attempt to talk to the board
7169 		 * at all to ensure that this actually works and doesn't fall
7170 		 * over in some weird corner cases.
7171 		 */
7172 		msleep(10000);
7173 	} else { /* Try to do it the PCI power state way */
7174 
7175 		/* Quoting from the Open CISS Specification: "The Power
7176 		 * Management Control/Status Register (CSR) controls the power
7177 		 * state of the device.  The normal operating state is D0,
7178 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7179 		 * the controller, place the interface device in D3 then to D0,
7180 		 * this causes a secondary PCI reset which will reset the
7181 		 * controller." */
7182 
7183 		int rc = 0;
7184 
7185 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7186 
7187 		/* enter the D3hot power management state */
7188 		rc = pci_set_power_state(pdev, PCI_D3hot);
7189 		if (rc)
7190 			return rc;
7191 
7192 		msleep(500);
7193 
7194 		/* enter the D0 power management state */
7195 		rc = pci_set_power_state(pdev, PCI_D0);
7196 		if (rc)
7197 			return rc;
7198 
7199 		/*
7200 		 * The P600 requires a small delay when changing states.
7201 		 * Otherwise we may think the board did not reset and we bail.
7202 		 * This for kdump only and is particular to the P600.
7203 		 */
7204 		msleep(500);
7205 	}
7206 	return 0;
7207 }
7208 
7209 static void init_driver_version(char *driver_version, int len)
7210 {
7211 	memset(driver_version, 0, len);
7212 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7213 }
7214 
7215 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7216 {
7217 	char *driver_version;
7218 	int i, size = sizeof(cfgtable->driver_version);
7219 
7220 	driver_version = kmalloc(size, GFP_KERNEL);
7221 	if (!driver_version)
7222 		return -ENOMEM;
7223 
7224 	init_driver_version(driver_version, size);
7225 	for (i = 0; i < size; i++)
7226 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7227 	kfree(driver_version);
7228 	return 0;
7229 }
7230 
7231 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7232 					  unsigned char *driver_ver)
7233 {
7234 	int i;
7235 
7236 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7237 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7238 }
7239 
7240 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7241 {
7242 
7243 	char *driver_ver, *old_driver_ver;
7244 	int rc, size = sizeof(cfgtable->driver_version);
7245 
7246 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7247 	if (!old_driver_ver)
7248 		return -ENOMEM;
7249 	driver_ver = old_driver_ver + size;
7250 
7251 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7252 	 * should have been changed, otherwise we know the reset failed.
7253 	 */
7254 	init_driver_version(old_driver_ver, size);
7255 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7256 	rc = !memcmp(driver_ver, old_driver_ver, size);
7257 	kfree(old_driver_ver);
7258 	return rc;
7259 }
7260 /* This does a hard reset of the controller using PCI power management
7261  * states or the using the doorbell register.
7262  */
7263 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7264 {
7265 	u64 cfg_offset;
7266 	u32 cfg_base_addr;
7267 	u64 cfg_base_addr_index;
7268 	void __iomem *vaddr;
7269 	unsigned long paddr;
7270 	u32 misc_fw_support;
7271 	int rc;
7272 	struct CfgTable __iomem *cfgtable;
7273 	u32 use_doorbell;
7274 	u16 command_register;
7275 
7276 	/* For controllers as old as the P600, this is very nearly
7277 	 * the same thing as
7278 	 *
7279 	 * pci_save_state(pci_dev);
7280 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7281 	 * pci_set_power_state(pci_dev, PCI_D0);
7282 	 * pci_restore_state(pci_dev);
7283 	 *
7284 	 * For controllers newer than the P600, the pci power state
7285 	 * method of resetting doesn't work so we have another way
7286 	 * using the doorbell register.
7287 	 */
7288 
7289 	if (!ctlr_is_resettable(board_id)) {
7290 		dev_warn(&pdev->dev, "Controller not resettable\n");
7291 		return -ENODEV;
7292 	}
7293 
7294 	/* if controller is soft- but not hard resettable... */
7295 	if (!ctlr_is_hard_resettable(board_id))
7296 		return -ENOTSUPP; /* try soft reset later. */
7297 
7298 	/* Save the PCI command register */
7299 	pci_read_config_word(pdev, 4, &command_register);
7300 	pci_save_state(pdev);
7301 
7302 	/* find the first memory BAR, so we can find the cfg table */
7303 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7304 	if (rc)
7305 		return rc;
7306 	vaddr = remap_pci_mem(paddr, 0x250);
7307 	if (!vaddr)
7308 		return -ENOMEM;
7309 
7310 	/* find cfgtable in order to check if reset via doorbell is supported */
7311 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7312 					&cfg_base_addr_index, &cfg_offset);
7313 	if (rc)
7314 		goto unmap_vaddr;
7315 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7316 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7317 	if (!cfgtable) {
7318 		rc = -ENOMEM;
7319 		goto unmap_vaddr;
7320 	}
7321 	rc = write_driver_ver_to_cfgtable(cfgtable);
7322 	if (rc)
7323 		goto unmap_cfgtable;
7324 
7325 	/* If reset via doorbell register is supported, use that.
7326 	 * There are two such methods.  Favor the newest method.
7327 	 */
7328 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7329 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7330 	if (use_doorbell) {
7331 		use_doorbell = DOORBELL_CTLR_RESET2;
7332 	} else {
7333 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7334 		if (use_doorbell) {
7335 			dev_warn(&pdev->dev,
7336 				"Soft reset not supported. Firmware update is required.\n");
7337 			rc = -ENOTSUPP; /* try soft reset */
7338 			goto unmap_cfgtable;
7339 		}
7340 	}
7341 
7342 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7343 	if (rc)
7344 		goto unmap_cfgtable;
7345 
7346 	pci_restore_state(pdev);
7347 	pci_write_config_word(pdev, 4, command_register);
7348 
7349 	/* Some devices (notably the HP Smart Array 5i Controller)
7350 	   need a little pause here */
7351 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7352 
7353 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7354 	if (rc) {
7355 		dev_warn(&pdev->dev,
7356 			"Failed waiting for board to become ready after hard reset\n");
7357 		goto unmap_cfgtable;
7358 	}
7359 
7360 	rc = controller_reset_failed(vaddr);
7361 	if (rc < 0)
7362 		goto unmap_cfgtable;
7363 	if (rc) {
7364 		dev_warn(&pdev->dev, "Unable to successfully reset "
7365 			"controller. Will try soft reset.\n");
7366 		rc = -ENOTSUPP;
7367 	} else {
7368 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7369 	}
7370 
7371 unmap_cfgtable:
7372 	iounmap(cfgtable);
7373 
7374 unmap_vaddr:
7375 	iounmap(vaddr);
7376 	return rc;
7377 }
7378 
7379 /*
7380  *  We cannot read the structure directly, for portability we must use
7381  *   the io functions.
7382  *   This is for debug only.
7383  */
7384 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7385 {
7386 #ifdef HPSA_DEBUG
7387 	int i;
7388 	char temp_name[17];
7389 
7390 	dev_info(dev, "Controller Configuration information\n");
7391 	dev_info(dev, "------------------------------------\n");
7392 	for (i = 0; i < 4; i++)
7393 		temp_name[i] = readb(&(tb->Signature[i]));
7394 	temp_name[4] = '\0';
7395 	dev_info(dev, "   Signature = %s\n", temp_name);
7396 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7397 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7398 	       readl(&(tb->TransportSupport)));
7399 	dev_info(dev, "   Transport methods active = 0x%x\n",
7400 	       readl(&(tb->TransportActive)));
7401 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7402 	       readl(&(tb->HostWrite.TransportRequest)));
7403 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7404 	       readl(&(tb->HostWrite.CoalIntDelay)));
7405 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7406 	       readl(&(tb->HostWrite.CoalIntCount)));
7407 	dev_info(dev, "   Max outstanding commands = %d\n",
7408 	       readl(&(tb->CmdsOutMax)));
7409 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7410 	for (i = 0; i < 16; i++)
7411 		temp_name[i] = readb(&(tb->ServerName[i]));
7412 	temp_name[16] = '\0';
7413 	dev_info(dev, "   Server Name = %s\n", temp_name);
7414 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7415 		readl(&(tb->HeartBeat)));
7416 #endif				/* HPSA_DEBUG */
7417 }
7418 
7419 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7420 {
7421 	int i, offset, mem_type, bar_type;
7422 
7423 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7424 		return 0;
7425 	offset = 0;
7426 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7427 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7428 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7429 			offset += 4;
7430 		else {
7431 			mem_type = pci_resource_flags(pdev, i) &
7432 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7433 			switch (mem_type) {
7434 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7435 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7436 				offset += 4;	/* 32 bit */
7437 				break;
7438 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7439 				offset += 8;
7440 				break;
7441 			default:	/* reserved in PCI 2.2 */
7442 				dev_warn(&pdev->dev,
7443 				       "base address is invalid\n");
7444 				return -1;
7445 				break;
7446 			}
7447 		}
7448 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7449 			return i + 1;
7450 	}
7451 	return -1;
7452 }
7453 
7454 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7455 {
7456 	pci_free_irq_vectors(h->pdev);
7457 	h->msix_vectors = 0;
7458 }
7459 
7460 static void hpsa_setup_reply_map(struct ctlr_info *h)
7461 {
7462 	const struct cpumask *mask;
7463 	unsigned int queue, cpu;
7464 
7465 	for (queue = 0; queue < h->msix_vectors; queue++) {
7466 		mask = pci_irq_get_affinity(h->pdev, queue);
7467 		if (!mask)
7468 			goto fallback;
7469 
7470 		for_each_cpu(cpu, mask)
7471 			h->reply_map[cpu] = queue;
7472 	}
7473 	return;
7474 
7475 fallback:
7476 	for_each_possible_cpu(cpu)
7477 		h->reply_map[cpu] = 0;
7478 }
7479 
7480 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7481  * controllers that are capable. If not, we use legacy INTx mode.
7482  */
7483 static int hpsa_interrupt_mode(struct ctlr_info *h)
7484 {
7485 	unsigned int flags = PCI_IRQ_LEGACY;
7486 	int ret;
7487 
7488 	/* Some boards advertise MSI but don't really support it */
7489 	switch (h->board_id) {
7490 	case 0x40700E11:
7491 	case 0x40800E11:
7492 	case 0x40820E11:
7493 	case 0x40830E11:
7494 		break;
7495 	default:
7496 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7497 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7498 		if (ret > 0) {
7499 			h->msix_vectors = ret;
7500 			return 0;
7501 		}
7502 
7503 		flags |= PCI_IRQ_MSI;
7504 		break;
7505 	}
7506 
7507 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7508 	if (ret < 0)
7509 		return ret;
7510 	return 0;
7511 }
7512 
7513 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7514 				bool *legacy_board)
7515 {
7516 	int i;
7517 	u32 subsystem_vendor_id, subsystem_device_id;
7518 
7519 	subsystem_vendor_id = pdev->subsystem_vendor;
7520 	subsystem_device_id = pdev->subsystem_device;
7521 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7522 		    subsystem_vendor_id;
7523 
7524 	if (legacy_board)
7525 		*legacy_board = false;
7526 	for (i = 0; i < ARRAY_SIZE(products); i++)
7527 		if (*board_id == products[i].board_id) {
7528 			if (products[i].access != &SA5A_access &&
7529 			    products[i].access != &SA5B_access)
7530 				return i;
7531 			dev_warn(&pdev->dev,
7532 				 "legacy board ID: 0x%08x\n",
7533 				 *board_id);
7534 			if (legacy_board)
7535 			    *legacy_board = true;
7536 			return i;
7537 		}
7538 
7539 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7540 	if (legacy_board)
7541 		*legacy_board = true;
7542 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7543 }
7544 
7545 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7546 				    unsigned long *memory_bar)
7547 {
7548 	int i;
7549 
7550 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7551 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7552 			/* addressing mode bits already removed */
7553 			*memory_bar = pci_resource_start(pdev, i);
7554 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7555 				*memory_bar);
7556 			return 0;
7557 		}
7558 	dev_warn(&pdev->dev, "no memory BAR found\n");
7559 	return -ENODEV;
7560 }
7561 
7562 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7563 				     int wait_for_ready)
7564 {
7565 	int i, iterations;
7566 	u32 scratchpad;
7567 	if (wait_for_ready)
7568 		iterations = HPSA_BOARD_READY_ITERATIONS;
7569 	else
7570 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7571 
7572 	for (i = 0; i < iterations; i++) {
7573 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7574 		if (wait_for_ready) {
7575 			if (scratchpad == HPSA_FIRMWARE_READY)
7576 				return 0;
7577 		} else {
7578 			if (scratchpad != HPSA_FIRMWARE_READY)
7579 				return 0;
7580 		}
7581 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7582 	}
7583 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7584 	return -ENODEV;
7585 }
7586 
7587 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7588 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7589 			       u64 *cfg_offset)
7590 {
7591 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7592 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7593 	*cfg_base_addr &= (u32) 0x0000ffff;
7594 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7595 	if (*cfg_base_addr_index == -1) {
7596 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7597 		return -ENODEV;
7598 	}
7599 	return 0;
7600 }
7601 
7602 static void hpsa_free_cfgtables(struct ctlr_info *h)
7603 {
7604 	if (h->transtable) {
7605 		iounmap(h->transtable);
7606 		h->transtable = NULL;
7607 	}
7608 	if (h->cfgtable) {
7609 		iounmap(h->cfgtable);
7610 		h->cfgtable = NULL;
7611 	}
7612 }
7613 
7614 /* Find and map CISS config table and transfer table
7615 + * several items must be unmapped (freed) later
7616 + * */
7617 static int hpsa_find_cfgtables(struct ctlr_info *h)
7618 {
7619 	u64 cfg_offset;
7620 	u32 cfg_base_addr;
7621 	u64 cfg_base_addr_index;
7622 	u32 trans_offset;
7623 	int rc;
7624 
7625 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7626 		&cfg_base_addr_index, &cfg_offset);
7627 	if (rc)
7628 		return rc;
7629 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7630 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7631 	if (!h->cfgtable) {
7632 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7633 		return -ENOMEM;
7634 	}
7635 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7636 	if (rc)
7637 		return rc;
7638 	/* Find performant mode table. */
7639 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7640 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7641 				cfg_base_addr_index)+cfg_offset+trans_offset,
7642 				sizeof(*h->transtable));
7643 	if (!h->transtable) {
7644 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7645 		hpsa_free_cfgtables(h);
7646 		return -ENOMEM;
7647 	}
7648 	return 0;
7649 }
7650 
7651 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7652 {
7653 #define MIN_MAX_COMMANDS 16
7654 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7655 
7656 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7657 
7658 	/* Limit commands in memory limited kdump scenario. */
7659 	if (reset_devices && h->max_commands > 32)
7660 		h->max_commands = 32;
7661 
7662 	if (h->max_commands < MIN_MAX_COMMANDS) {
7663 		dev_warn(&h->pdev->dev,
7664 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7665 			h->max_commands,
7666 			MIN_MAX_COMMANDS);
7667 		h->max_commands = MIN_MAX_COMMANDS;
7668 	}
7669 }
7670 
7671 /* If the controller reports that the total max sg entries is greater than 512,
7672  * then we know that chained SG blocks work.  (Original smart arrays did not
7673  * support chained SG blocks and would return zero for max sg entries.)
7674  */
7675 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7676 {
7677 	return h->maxsgentries > 512;
7678 }
7679 
7680 /* Interrogate the hardware for some limits:
7681  * max commands, max SG elements without chaining, and with chaining,
7682  * SG chain block size, etc.
7683  */
7684 static void hpsa_find_board_params(struct ctlr_info *h)
7685 {
7686 	hpsa_get_max_perf_mode_cmds(h);
7687 	h->nr_cmds = h->max_commands;
7688 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7689 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7690 	if (hpsa_supports_chained_sg_blocks(h)) {
7691 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7692 		h->max_cmd_sg_entries = 32;
7693 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7694 		h->maxsgentries--; /* save one for chain pointer */
7695 	} else {
7696 		/*
7697 		 * Original smart arrays supported at most 31 s/g entries
7698 		 * embedded inline in the command (trying to use more
7699 		 * would lock up the controller)
7700 		 */
7701 		h->max_cmd_sg_entries = 31;
7702 		h->maxsgentries = 31; /* default to traditional values */
7703 		h->chainsize = 0;
7704 	}
7705 
7706 	/* Find out what task management functions are supported and cache */
7707 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7708 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7709 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7710 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7711 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7712 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7713 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7714 }
7715 
7716 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7717 {
7718 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7719 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7720 		return false;
7721 	}
7722 	return true;
7723 }
7724 
7725 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7726 {
7727 	u32 driver_support;
7728 
7729 	driver_support = readl(&(h->cfgtable->driver_support));
7730 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7731 #ifdef CONFIG_X86
7732 	driver_support |= ENABLE_SCSI_PREFETCH;
7733 #endif
7734 	driver_support |= ENABLE_UNIT_ATTN;
7735 	writel(driver_support, &(h->cfgtable->driver_support));
7736 }
7737 
7738 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7739  * in a prefetch beyond physical memory.
7740  */
7741 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7742 {
7743 	u32 dma_prefetch;
7744 
7745 	if (h->board_id != 0x3225103C)
7746 		return;
7747 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7748 	dma_prefetch |= 0x8000;
7749 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7750 }
7751 
7752 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7753 {
7754 	int i;
7755 	u32 doorbell_value;
7756 	unsigned long flags;
7757 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7758 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7759 		spin_lock_irqsave(&h->lock, flags);
7760 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7761 		spin_unlock_irqrestore(&h->lock, flags);
7762 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7763 			goto done;
7764 		/* delay and try again */
7765 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7766 	}
7767 	return -ENODEV;
7768 done:
7769 	return 0;
7770 }
7771 
7772 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7773 {
7774 	int i;
7775 	u32 doorbell_value;
7776 	unsigned long flags;
7777 
7778 	/* under certain very rare conditions, this can take awhile.
7779 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7780 	 * as we enter this code.)
7781 	 */
7782 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7783 		if (h->remove_in_progress)
7784 			goto done;
7785 		spin_lock_irqsave(&h->lock, flags);
7786 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7787 		spin_unlock_irqrestore(&h->lock, flags);
7788 		if (!(doorbell_value & CFGTBL_ChangeReq))
7789 			goto done;
7790 		/* delay and try again */
7791 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7792 	}
7793 	return -ENODEV;
7794 done:
7795 	return 0;
7796 }
7797 
7798 /* return -ENODEV or other reason on error, 0 on success */
7799 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7800 {
7801 	u32 trans_support;
7802 
7803 	trans_support = readl(&(h->cfgtable->TransportSupport));
7804 	if (!(trans_support & SIMPLE_MODE))
7805 		return -ENOTSUPP;
7806 
7807 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7808 
7809 	/* Update the field, and then ring the doorbell */
7810 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7811 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7812 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7813 	if (hpsa_wait_for_mode_change_ack(h))
7814 		goto error;
7815 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7816 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7817 		goto error;
7818 	h->transMethod = CFGTBL_Trans_Simple;
7819 	return 0;
7820 error:
7821 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7822 	return -ENODEV;
7823 }
7824 
7825 /* free items allocated or mapped by hpsa_pci_init */
7826 static void hpsa_free_pci_init(struct ctlr_info *h)
7827 {
7828 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7829 	iounmap(h->vaddr);			/* pci_init 3 */
7830 	h->vaddr = NULL;
7831 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7832 	/*
7833 	 * call pci_disable_device before pci_release_regions per
7834 	 * Documentation/driver-api/pci/pci.rst
7835 	 */
7836 	pci_disable_device(h->pdev);		/* pci_init 1 */
7837 	pci_release_regions(h->pdev);		/* pci_init 2 */
7838 }
7839 
7840 /* several items must be freed later */
7841 static int hpsa_pci_init(struct ctlr_info *h)
7842 {
7843 	int prod_index, err;
7844 	bool legacy_board;
7845 
7846 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7847 	if (prod_index < 0)
7848 		return prod_index;
7849 	h->product_name = products[prod_index].product_name;
7850 	h->access = *(products[prod_index].access);
7851 	h->legacy_board = legacy_board;
7852 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7853 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7854 
7855 	err = pci_enable_device(h->pdev);
7856 	if (err) {
7857 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7858 		pci_disable_device(h->pdev);
7859 		return err;
7860 	}
7861 
7862 	err = pci_request_regions(h->pdev, HPSA);
7863 	if (err) {
7864 		dev_err(&h->pdev->dev,
7865 			"failed to obtain PCI resources\n");
7866 		pci_disable_device(h->pdev);
7867 		return err;
7868 	}
7869 
7870 	pci_set_master(h->pdev);
7871 
7872 	err = hpsa_interrupt_mode(h);
7873 	if (err)
7874 		goto clean1;
7875 
7876 	/* setup mapping between CPU and reply queue */
7877 	hpsa_setup_reply_map(h);
7878 
7879 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7880 	if (err)
7881 		goto clean2;	/* intmode+region, pci */
7882 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7883 	if (!h->vaddr) {
7884 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7885 		err = -ENOMEM;
7886 		goto clean2;	/* intmode+region, pci */
7887 	}
7888 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7889 	if (err)
7890 		goto clean3;	/* vaddr, intmode+region, pci */
7891 	err = hpsa_find_cfgtables(h);
7892 	if (err)
7893 		goto clean3;	/* vaddr, intmode+region, pci */
7894 	hpsa_find_board_params(h);
7895 
7896 	if (!hpsa_CISS_signature_present(h)) {
7897 		err = -ENODEV;
7898 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7899 	}
7900 	hpsa_set_driver_support_bits(h);
7901 	hpsa_p600_dma_prefetch_quirk(h);
7902 	err = hpsa_enter_simple_mode(h);
7903 	if (err)
7904 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7905 	return 0;
7906 
7907 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7908 	hpsa_free_cfgtables(h);
7909 clean3:	/* vaddr, intmode+region, pci */
7910 	iounmap(h->vaddr);
7911 	h->vaddr = NULL;
7912 clean2:	/* intmode+region, pci */
7913 	hpsa_disable_interrupt_mode(h);
7914 clean1:
7915 	/*
7916 	 * call pci_disable_device before pci_release_regions per
7917 	 * Documentation/driver-api/pci/pci.rst
7918 	 */
7919 	pci_disable_device(h->pdev);
7920 	pci_release_regions(h->pdev);
7921 	return err;
7922 }
7923 
7924 static void hpsa_hba_inquiry(struct ctlr_info *h)
7925 {
7926 	int rc;
7927 
7928 #define HBA_INQUIRY_BYTE_COUNT 64
7929 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7930 	if (!h->hba_inquiry_data)
7931 		return;
7932 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7933 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7934 	if (rc != 0) {
7935 		kfree(h->hba_inquiry_data);
7936 		h->hba_inquiry_data = NULL;
7937 	}
7938 }
7939 
7940 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7941 {
7942 	int rc, i;
7943 	void __iomem *vaddr;
7944 
7945 	if (!reset_devices)
7946 		return 0;
7947 
7948 	/* kdump kernel is loading, we don't know in which state is
7949 	 * the pci interface. The dev->enable_cnt is equal zero
7950 	 * so we call enable+disable, wait a while and switch it on.
7951 	 */
7952 	rc = pci_enable_device(pdev);
7953 	if (rc) {
7954 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7955 		return -ENODEV;
7956 	}
7957 	pci_disable_device(pdev);
7958 	msleep(260);			/* a randomly chosen number */
7959 	rc = pci_enable_device(pdev);
7960 	if (rc) {
7961 		dev_warn(&pdev->dev, "failed to enable device.\n");
7962 		return -ENODEV;
7963 	}
7964 
7965 	pci_set_master(pdev);
7966 
7967 	vaddr = pci_ioremap_bar(pdev, 0);
7968 	if (vaddr == NULL) {
7969 		rc = -ENOMEM;
7970 		goto out_disable;
7971 	}
7972 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7973 	iounmap(vaddr);
7974 
7975 	/* Reset the controller with a PCI power-cycle or via doorbell */
7976 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7977 
7978 	/* -ENOTSUPP here means we cannot reset the controller
7979 	 * but it's already (and still) up and running in
7980 	 * "performant mode".  Or, it might be 640x, which can't reset
7981 	 * due to concerns about shared bbwc between 6402/6404 pair.
7982 	 */
7983 	if (rc)
7984 		goto out_disable;
7985 
7986 	/* Now try to get the controller to respond to a no-op */
7987 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7988 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7989 		if (hpsa_noop(pdev) == 0)
7990 			break;
7991 		else
7992 			dev_warn(&pdev->dev, "no-op failed%s\n",
7993 					(i < 11 ? "; re-trying" : ""));
7994 	}
7995 
7996 out_disable:
7997 
7998 	pci_disable_device(pdev);
7999 	return rc;
8000 }
8001 
8002 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8003 {
8004 	kfree(h->cmd_pool_bits);
8005 	h->cmd_pool_bits = NULL;
8006 	if (h->cmd_pool) {
8007 		dma_free_coherent(&h->pdev->dev,
8008 				h->nr_cmds * sizeof(struct CommandList),
8009 				h->cmd_pool,
8010 				h->cmd_pool_dhandle);
8011 		h->cmd_pool = NULL;
8012 		h->cmd_pool_dhandle = 0;
8013 	}
8014 	if (h->errinfo_pool) {
8015 		dma_free_coherent(&h->pdev->dev,
8016 				h->nr_cmds * sizeof(struct ErrorInfo),
8017 				h->errinfo_pool,
8018 				h->errinfo_pool_dhandle);
8019 		h->errinfo_pool = NULL;
8020 		h->errinfo_pool_dhandle = 0;
8021 	}
8022 }
8023 
8024 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8025 {
8026 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8027 				   sizeof(unsigned long),
8028 				   GFP_KERNEL);
8029 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8030 		    h->nr_cmds * sizeof(*h->cmd_pool),
8031 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8032 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8033 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8034 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8035 	if ((h->cmd_pool_bits == NULL)
8036 	    || (h->cmd_pool == NULL)
8037 	    || (h->errinfo_pool == NULL)) {
8038 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8039 		goto clean_up;
8040 	}
8041 	hpsa_preinitialize_commands(h);
8042 	return 0;
8043 clean_up:
8044 	hpsa_free_cmd_pool(h);
8045 	return -ENOMEM;
8046 }
8047 
8048 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8049 static void hpsa_free_irqs(struct ctlr_info *h)
8050 {
8051 	int i;
8052 	int irq_vector = 0;
8053 
8054 	if (hpsa_simple_mode)
8055 		irq_vector = h->intr_mode;
8056 
8057 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8058 		/* Single reply queue, only one irq to free */
8059 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8060 				&h->q[h->intr_mode]);
8061 		h->q[h->intr_mode] = 0;
8062 		return;
8063 	}
8064 
8065 	for (i = 0; i < h->msix_vectors; i++) {
8066 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8067 		h->q[i] = 0;
8068 	}
8069 	for (; i < MAX_REPLY_QUEUES; i++)
8070 		h->q[i] = 0;
8071 }
8072 
8073 /* returns 0 on success; cleans up and returns -Enn on error */
8074 static int hpsa_request_irqs(struct ctlr_info *h,
8075 	irqreturn_t (*msixhandler)(int, void *),
8076 	irqreturn_t (*intxhandler)(int, void *))
8077 {
8078 	int rc, i;
8079 	int irq_vector = 0;
8080 
8081 	if (hpsa_simple_mode)
8082 		irq_vector = h->intr_mode;
8083 
8084 	/*
8085 	 * initialize h->q[x] = x so that interrupt handlers know which
8086 	 * queue to process.
8087 	 */
8088 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8089 		h->q[i] = (u8) i;
8090 
8091 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8092 		/* If performant mode and MSI-X, use multiple reply queues */
8093 		for (i = 0; i < h->msix_vectors; i++) {
8094 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8095 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8096 					0, h->intrname[i],
8097 					&h->q[i]);
8098 			if (rc) {
8099 				int j;
8100 
8101 				dev_err(&h->pdev->dev,
8102 					"failed to get irq %d for %s\n",
8103 				       pci_irq_vector(h->pdev, i), h->devname);
8104 				for (j = 0; j < i; j++) {
8105 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8106 					h->q[j] = 0;
8107 				}
8108 				for (; j < MAX_REPLY_QUEUES; j++)
8109 					h->q[j] = 0;
8110 				return rc;
8111 			}
8112 		}
8113 	} else {
8114 		/* Use single reply pool */
8115 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8116 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8117 				h->msix_vectors ? "x" : "");
8118 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8119 				msixhandler, 0,
8120 				h->intrname[0],
8121 				&h->q[h->intr_mode]);
8122 		} else {
8123 			sprintf(h->intrname[h->intr_mode],
8124 				"%s-intx", h->devname);
8125 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8126 				intxhandler, IRQF_SHARED,
8127 				h->intrname[0],
8128 				&h->q[h->intr_mode]);
8129 		}
8130 	}
8131 	if (rc) {
8132 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8133 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8134 		hpsa_free_irqs(h);
8135 		return -ENODEV;
8136 	}
8137 	return 0;
8138 }
8139 
8140 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8141 {
8142 	int rc;
8143 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8144 
8145 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8146 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8147 	if (rc) {
8148 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8149 		return rc;
8150 	}
8151 
8152 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8153 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8154 	if (rc) {
8155 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8156 			"after soft reset.\n");
8157 		return rc;
8158 	}
8159 
8160 	return 0;
8161 }
8162 
8163 static void hpsa_free_reply_queues(struct ctlr_info *h)
8164 {
8165 	int i;
8166 
8167 	for (i = 0; i < h->nreply_queues; i++) {
8168 		if (!h->reply_queue[i].head)
8169 			continue;
8170 		dma_free_coherent(&h->pdev->dev,
8171 					h->reply_queue_size,
8172 					h->reply_queue[i].head,
8173 					h->reply_queue[i].busaddr);
8174 		h->reply_queue[i].head = NULL;
8175 		h->reply_queue[i].busaddr = 0;
8176 	}
8177 	h->reply_queue_size = 0;
8178 }
8179 
8180 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8181 {
8182 	hpsa_free_performant_mode(h);		/* init_one 7 */
8183 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8184 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8185 	hpsa_free_irqs(h);			/* init_one 4 */
8186 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8187 	h->scsi_host = NULL;			/* init_one 3 */
8188 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8189 	free_percpu(h->lockup_detected);	/* init_one 2 */
8190 	h->lockup_detected = NULL;		/* init_one 2 */
8191 	if (h->resubmit_wq) {
8192 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8193 		h->resubmit_wq = NULL;
8194 	}
8195 	if (h->rescan_ctlr_wq) {
8196 		destroy_workqueue(h->rescan_ctlr_wq);
8197 		h->rescan_ctlr_wq = NULL;
8198 	}
8199 	if (h->monitor_ctlr_wq) {
8200 		destroy_workqueue(h->monitor_ctlr_wq);
8201 		h->monitor_ctlr_wq = NULL;
8202 	}
8203 
8204 	kfree(h);				/* init_one 1 */
8205 }
8206 
8207 /* Called when controller lockup detected. */
8208 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8209 {
8210 	int i, refcount;
8211 	struct CommandList *c;
8212 	int failcount = 0;
8213 
8214 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8215 	for (i = 0; i < h->nr_cmds; i++) {
8216 		c = h->cmd_pool + i;
8217 		refcount = atomic_inc_return(&c->refcount);
8218 		if (refcount > 1) {
8219 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8220 			finish_cmd(c);
8221 			atomic_dec(&h->commands_outstanding);
8222 			failcount++;
8223 		}
8224 		cmd_free(h, c);
8225 	}
8226 	dev_warn(&h->pdev->dev,
8227 		"failed %d commands in fail_all\n", failcount);
8228 }
8229 
8230 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8231 {
8232 	int cpu;
8233 
8234 	for_each_online_cpu(cpu) {
8235 		u32 *lockup_detected;
8236 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8237 		*lockup_detected = value;
8238 	}
8239 	wmb(); /* be sure the per-cpu variables are out to memory */
8240 }
8241 
8242 static void controller_lockup_detected(struct ctlr_info *h)
8243 {
8244 	unsigned long flags;
8245 	u32 lockup_detected;
8246 
8247 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8248 	spin_lock_irqsave(&h->lock, flags);
8249 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8250 	if (!lockup_detected) {
8251 		/* no heartbeat, but controller gave us a zero. */
8252 		dev_warn(&h->pdev->dev,
8253 			"lockup detected after %d but scratchpad register is zero\n",
8254 			h->heartbeat_sample_interval / HZ);
8255 		lockup_detected = 0xffffffff;
8256 	}
8257 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8258 	spin_unlock_irqrestore(&h->lock, flags);
8259 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8260 			lockup_detected, h->heartbeat_sample_interval / HZ);
8261 	if (lockup_detected == 0xffff0000) {
8262 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8263 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8264 	}
8265 	pci_disable_device(h->pdev);
8266 	fail_all_outstanding_cmds(h);
8267 }
8268 
8269 static int detect_controller_lockup(struct ctlr_info *h)
8270 {
8271 	u64 now;
8272 	u32 heartbeat;
8273 	unsigned long flags;
8274 
8275 	now = get_jiffies_64();
8276 	/* If we've received an interrupt recently, we're ok. */
8277 	if (time_after64(h->last_intr_timestamp +
8278 				(h->heartbeat_sample_interval), now))
8279 		return false;
8280 
8281 	/*
8282 	 * If we've already checked the heartbeat recently, we're ok.
8283 	 * This could happen if someone sends us a signal. We
8284 	 * otherwise don't care about signals in this thread.
8285 	 */
8286 	if (time_after64(h->last_heartbeat_timestamp +
8287 				(h->heartbeat_sample_interval), now))
8288 		return false;
8289 
8290 	/* If heartbeat has not changed since we last looked, we're not ok. */
8291 	spin_lock_irqsave(&h->lock, flags);
8292 	heartbeat = readl(&h->cfgtable->HeartBeat);
8293 	spin_unlock_irqrestore(&h->lock, flags);
8294 	if (h->last_heartbeat == heartbeat) {
8295 		controller_lockup_detected(h);
8296 		return true;
8297 	}
8298 
8299 	/* We're ok. */
8300 	h->last_heartbeat = heartbeat;
8301 	h->last_heartbeat_timestamp = now;
8302 	return false;
8303 }
8304 
8305 /*
8306  * Set ioaccel status for all ioaccel volumes.
8307  *
8308  * Called from monitor controller worker (hpsa_event_monitor_worker)
8309  *
8310  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8311  * transformation, so we will be turning off ioaccel for all volumes that
8312  * make up the Array.
8313  */
8314 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8315 {
8316 	int rc;
8317 	int i;
8318 	u8 ioaccel_status;
8319 	unsigned char *buf;
8320 	struct hpsa_scsi_dev_t *device;
8321 
8322 	if (!h)
8323 		return;
8324 
8325 	buf = kmalloc(64, GFP_KERNEL);
8326 	if (!buf)
8327 		return;
8328 
8329 	/*
8330 	 * Run through current device list used during I/O requests.
8331 	 */
8332 	for (i = 0; i < h->ndevices; i++) {
8333 		int offload_to_be_enabled = 0;
8334 		int offload_config = 0;
8335 
8336 		device = h->dev[i];
8337 
8338 		if (!device)
8339 			continue;
8340 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8341 						HPSA_VPD_LV_IOACCEL_STATUS))
8342 			continue;
8343 
8344 		memset(buf, 0, 64);
8345 
8346 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8347 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8348 					buf, 64);
8349 		if (rc != 0)
8350 			continue;
8351 
8352 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8353 
8354 		/*
8355 		 * Check if offload is still configured on
8356 		 */
8357 		offload_config =
8358 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8359 		/*
8360 		 * If offload is configured on, check to see if ioaccel
8361 		 * needs to be enabled.
8362 		 */
8363 		if (offload_config)
8364 			offload_to_be_enabled =
8365 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8366 
8367 		/*
8368 		 * If ioaccel is to be re-enabled, re-enable later during the
8369 		 * scan operation so the driver can get a fresh raidmap
8370 		 * before turning ioaccel back on.
8371 		 */
8372 		if (offload_to_be_enabled)
8373 			continue;
8374 
8375 		/*
8376 		 * Immediately turn off ioaccel for any volume the
8377 		 * controller tells us to. Some of the reasons could be:
8378 		 *    transformation - change to the LVs of an Array.
8379 		 *    degraded volume - component failure
8380 		 */
8381 		hpsa_turn_off_ioaccel_for_device(device);
8382 	}
8383 
8384 	kfree(buf);
8385 }
8386 
8387 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8388 {
8389 	char *event_type;
8390 
8391 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8392 		return;
8393 
8394 	/* Ask the controller to clear the events we're handling. */
8395 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8396 			| CFGTBL_Trans_io_accel2)) &&
8397 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8398 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8399 
8400 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8401 			event_type = "state change";
8402 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8403 			event_type = "configuration change";
8404 		/* Stop sending new RAID offload reqs via the IO accelerator */
8405 		scsi_block_requests(h->scsi_host);
8406 		hpsa_set_ioaccel_status(h);
8407 		hpsa_drain_accel_commands(h);
8408 		/* Set 'accelerator path config change' bit */
8409 		dev_warn(&h->pdev->dev,
8410 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8411 			h->events, event_type);
8412 		writel(h->events, &(h->cfgtable->clear_event_notify));
8413 		/* Set the "clear event notify field update" bit 6 */
8414 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8415 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8416 		hpsa_wait_for_clear_event_notify_ack(h);
8417 		scsi_unblock_requests(h->scsi_host);
8418 	} else {
8419 		/* Acknowledge controller notification events. */
8420 		writel(h->events, &(h->cfgtable->clear_event_notify));
8421 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8422 		hpsa_wait_for_clear_event_notify_ack(h);
8423 	}
8424 	return;
8425 }
8426 
8427 /* Check a register on the controller to see if there are configuration
8428  * changes (added/changed/removed logical drives, etc.) which mean that
8429  * we should rescan the controller for devices.
8430  * Also check flag for driver-initiated rescan.
8431  */
8432 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8433 {
8434 	if (h->drv_req_rescan) {
8435 		h->drv_req_rescan = 0;
8436 		return 1;
8437 	}
8438 
8439 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8440 		return 0;
8441 
8442 	h->events = readl(&(h->cfgtable->event_notify));
8443 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8444 }
8445 
8446 /*
8447  * Check if any of the offline devices have become ready
8448  */
8449 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8450 {
8451 	unsigned long flags;
8452 	struct offline_device_entry *d;
8453 	struct list_head *this, *tmp;
8454 
8455 	spin_lock_irqsave(&h->offline_device_lock, flags);
8456 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8457 		d = list_entry(this, struct offline_device_entry,
8458 				offline_list);
8459 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8460 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8461 			spin_lock_irqsave(&h->offline_device_lock, flags);
8462 			list_del(&d->offline_list);
8463 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8464 			return 1;
8465 		}
8466 		spin_lock_irqsave(&h->offline_device_lock, flags);
8467 	}
8468 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8469 	return 0;
8470 }
8471 
8472 static int hpsa_luns_changed(struct ctlr_info *h)
8473 {
8474 	int rc = 1; /* assume there are changes */
8475 	struct ReportLUNdata *logdev = NULL;
8476 
8477 	/* if we can't find out if lun data has changed,
8478 	 * assume that it has.
8479 	 */
8480 
8481 	if (!h->lastlogicals)
8482 		return rc;
8483 
8484 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8485 	if (!logdev)
8486 		return rc;
8487 
8488 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8489 		dev_warn(&h->pdev->dev,
8490 			"report luns failed, can't track lun changes.\n");
8491 		goto out;
8492 	}
8493 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8494 		dev_info(&h->pdev->dev,
8495 			"Lun changes detected.\n");
8496 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8497 		goto out;
8498 	} else
8499 		rc = 0; /* no changes detected. */
8500 out:
8501 	kfree(logdev);
8502 	return rc;
8503 }
8504 
8505 static void hpsa_perform_rescan(struct ctlr_info *h)
8506 {
8507 	struct Scsi_Host *sh = NULL;
8508 	unsigned long flags;
8509 
8510 	/*
8511 	 * Do the scan after the reset
8512 	 */
8513 	spin_lock_irqsave(&h->reset_lock, flags);
8514 	if (h->reset_in_progress) {
8515 		h->drv_req_rescan = 1;
8516 		spin_unlock_irqrestore(&h->reset_lock, flags);
8517 		return;
8518 	}
8519 	spin_unlock_irqrestore(&h->reset_lock, flags);
8520 
8521 	sh = scsi_host_get(h->scsi_host);
8522 	if (sh != NULL) {
8523 		hpsa_scan_start(sh);
8524 		scsi_host_put(sh);
8525 		h->drv_req_rescan = 0;
8526 	}
8527 }
8528 
8529 /*
8530  * watch for controller events
8531  */
8532 static void hpsa_event_monitor_worker(struct work_struct *work)
8533 {
8534 	struct ctlr_info *h = container_of(to_delayed_work(work),
8535 					struct ctlr_info, event_monitor_work);
8536 	unsigned long flags;
8537 
8538 	spin_lock_irqsave(&h->lock, flags);
8539 	if (h->remove_in_progress) {
8540 		spin_unlock_irqrestore(&h->lock, flags);
8541 		return;
8542 	}
8543 	spin_unlock_irqrestore(&h->lock, flags);
8544 
8545 	if (hpsa_ctlr_needs_rescan(h)) {
8546 		hpsa_ack_ctlr_events(h);
8547 		hpsa_perform_rescan(h);
8548 	}
8549 
8550 	spin_lock_irqsave(&h->lock, flags);
8551 	if (!h->remove_in_progress)
8552 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8553 				HPSA_EVENT_MONITOR_INTERVAL);
8554 	spin_unlock_irqrestore(&h->lock, flags);
8555 }
8556 
8557 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8558 {
8559 	unsigned long flags;
8560 	struct ctlr_info *h = container_of(to_delayed_work(work),
8561 					struct ctlr_info, rescan_ctlr_work);
8562 
8563 	spin_lock_irqsave(&h->lock, flags);
8564 	if (h->remove_in_progress) {
8565 		spin_unlock_irqrestore(&h->lock, flags);
8566 		return;
8567 	}
8568 	spin_unlock_irqrestore(&h->lock, flags);
8569 
8570 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8571 		hpsa_perform_rescan(h);
8572 	} else if (h->discovery_polling) {
8573 		if (hpsa_luns_changed(h)) {
8574 			dev_info(&h->pdev->dev,
8575 				"driver discovery polling rescan.\n");
8576 			hpsa_perform_rescan(h);
8577 		}
8578 	}
8579 	spin_lock_irqsave(&h->lock, flags);
8580 	if (!h->remove_in_progress)
8581 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8582 				h->heartbeat_sample_interval);
8583 	spin_unlock_irqrestore(&h->lock, flags);
8584 }
8585 
8586 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8587 {
8588 	unsigned long flags;
8589 	struct ctlr_info *h = container_of(to_delayed_work(work),
8590 					struct ctlr_info, monitor_ctlr_work);
8591 
8592 	detect_controller_lockup(h);
8593 	if (lockup_detected(h))
8594 		return;
8595 
8596 	spin_lock_irqsave(&h->lock, flags);
8597 	if (!h->remove_in_progress)
8598 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8599 				h->heartbeat_sample_interval);
8600 	spin_unlock_irqrestore(&h->lock, flags);
8601 }
8602 
8603 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8604 						char *name)
8605 {
8606 	struct workqueue_struct *wq = NULL;
8607 
8608 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8609 	if (!wq)
8610 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8611 
8612 	return wq;
8613 }
8614 
8615 static void hpda_free_ctlr_info(struct ctlr_info *h)
8616 {
8617 	kfree(h->reply_map);
8618 	kfree(h);
8619 }
8620 
8621 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8622 {
8623 	struct ctlr_info *h;
8624 
8625 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8626 	if (!h)
8627 		return NULL;
8628 
8629 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8630 	if (!h->reply_map) {
8631 		kfree(h);
8632 		return NULL;
8633 	}
8634 	return h;
8635 }
8636 
8637 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8638 {
8639 	int dac, rc;
8640 	struct ctlr_info *h;
8641 	int try_soft_reset = 0;
8642 	unsigned long flags;
8643 	u32 board_id;
8644 
8645 	if (number_of_controllers == 0)
8646 		printk(KERN_INFO DRIVER_NAME "\n");
8647 
8648 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8649 	if (rc < 0) {
8650 		dev_warn(&pdev->dev, "Board ID not found\n");
8651 		return rc;
8652 	}
8653 
8654 	rc = hpsa_init_reset_devices(pdev, board_id);
8655 	if (rc) {
8656 		if (rc != -ENOTSUPP)
8657 			return rc;
8658 		/* If the reset fails in a particular way (it has no way to do
8659 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8660 		 * a soft reset once we get the controller configured up to the
8661 		 * point that it can accept a command.
8662 		 */
8663 		try_soft_reset = 1;
8664 		rc = 0;
8665 	}
8666 
8667 reinit_after_soft_reset:
8668 
8669 	/* Command structures must be aligned on a 32-byte boundary because
8670 	 * the 5 lower bits of the address are used by the hardware. and by
8671 	 * the driver.  See comments in hpsa.h for more info.
8672 	 */
8673 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8674 	h = hpda_alloc_ctlr_info();
8675 	if (!h) {
8676 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8677 		return -ENOMEM;
8678 	}
8679 
8680 	h->pdev = pdev;
8681 
8682 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8683 	INIT_LIST_HEAD(&h->offline_device_list);
8684 	spin_lock_init(&h->lock);
8685 	spin_lock_init(&h->offline_device_lock);
8686 	spin_lock_init(&h->scan_lock);
8687 	spin_lock_init(&h->reset_lock);
8688 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8689 
8690 	/* Allocate and clear per-cpu variable lockup_detected */
8691 	h->lockup_detected = alloc_percpu(u32);
8692 	if (!h->lockup_detected) {
8693 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8694 		rc = -ENOMEM;
8695 		goto clean1;	/* aer/h */
8696 	}
8697 	set_lockup_detected_for_all_cpus(h, 0);
8698 
8699 	rc = hpsa_pci_init(h);
8700 	if (rc)
8701 		goto clean2;	/* lu, aer/h */
8702 
8703 	/* relies on h-> settings made by hpsa_pci_init, including
8704 	 * interrupt_mode h->intr */
8705 	rc = hpsa_scsi_host_alloc(h);
8706 	if (rc)
8707 		goto clean2_5;	/* pci, lu, aer/h */
8708 
8709 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8710 	h->ctlr = number_of_controllers;
8711 	number_of_controllers++;
8712 
8713 	/* configure PCI DMA stuff */
8714 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8715 	if (rc == 0) {
8716 		dac = 1;
8717 	} else {
8718 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8719 		if (rc == 0) {
8720 			dac = 0;
8721 		} else {
8722 			dev_err(&pdev->dev, "no suitable DMA available\n");
8723 			goto clean3;	/* shost, pci, lu, aer/h */
8724 		}
8725 	}
8726 
8727 	/* make sure the board interrupts are off */
8728 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8729 
8730 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8731 	if (rc)
8732 		goto clean3;	/* shost, pci, lu, aer/h */
8733 	rc = hpsa_alloc_cmd_pool(h);
8734 	if (rc)
8735 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8736 	rc = hpsa_alloc_sg_chain_blocks(h);
8737 	if (rc)
8738 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8739 	init_waitqueue_head(&h->scan_wait_queue);
8740 	init_waitqueue_head(&h->event_sync_wait_queue);
8741 	mutex_init(&h->reset_mutex);
8742 	h->scan_finished = 1; /* no scan currently in progress */
8743 	h->scan_waiting = 0;
8744 
8745 	pci_set_drvdata(pdev, h);
8746 	h->ndevices = 0;
8747 
8748 	spin_lock_init(&h->devlock);
8749 	rc = hpsa_put_ctlr_into_performant_mode(h);
8750 	if (rc)
8751 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8752 
8753 	/* create the resubmit workqueue */
8754 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8755 	if (!h->rescan_ctlr_wq) {
8756 		rc = -ENOMEM;
8757 		goto clean7;
8758 	}
8759 
8760 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8761 	if (!h->resubmit_wq) {
8762 		rc = -ENOMEM;
8763 		goto clean7;	/* aer/h */
8764 	}
8765 
8766 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8767 	if (!h->monitor_ctlr_wq) {
8768 		rc = -ENOMEM;
8769 		goto clean7;
8770 	}
8771 
8772 	/*
8773 	 * At this point, the controller is ready to take commands.
8774 	 * Now, if reset_devices and the hard reset didn't work, try
8775 	 * the soft reset and see if that works.
8776 	 */
8777 	if (try_soft_reset) {
8778 
8779 		/* This is kind of gross.  We may or may not get a completion
8780 		 * from the soft reset command, and if we do, then the value
8781 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8782 		 * after the reset throwing away any completions we get during
8783 		 * that time.  Unregister the interrupt handler and register
8784 		 * fake ones to scoop up any residual completions.
8785 		 */
8786 		spin_lock_irqsave(&h->lock, flags);
8787 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8788 		spin_unlock_irqrestore(&h->lock, flags);
8789 		hpsa_free_irqs(h);
8790 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8791 					hpsa_intx_discard_completions);
8792 		if (rc) {
8793 			dev_warn(&h->pdev->dev,
8794 				"Failed to request_irq after soft reset.\n");
8795 			/*
8796 			 * cannot goto clean7 or free_irqs will be called
8797 			 * again. Instead, do its work
8798 			 */
8799 			hpsa_free_performant_mode(h);	/* clean7 */
8800 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8801 			hpsa_free_cmd_pool(h);		/* clean5 */
8802 			/*
8803 			 * skip hpsa_free_irqs(h) clean4 since that
8804 			 * was just called before request_irqs failed
8805 			 */
8806 			goto clean3;
8807 		}
8808 
8809 		rc = hpsa_kdump_soft_reset(h);
8810 		if (rc)
8811 			/* Neither hard nor soft reset worked, we're hosed. */
8812 			goto clean7;
8813 
8814 		dev_info(&h->pdev->dev, "Board READY.\n");
8815 		dev_info(&h->pdev->dev,
8816 			"Waiting for stale completions to drain.\n");
8817 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8818 		msleep(10000);
8819 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8820 
8821 		rc = controller_reset_failed(h->cfgtable);
8822 		if (rc)
8823 			dev_info(&h->pdev->dev,
8824 				"Soft reset appears to have failed.\n");
8825 
8826 		/* since the controller's reset, we have to go back and re-init
8827 		 * everything.  Easiest to just forget what we've done and do it
8828 		 * all over again.
8829 		 */
8830 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8831 		try_soft_reset = 0;
8832 		if (rc)
8833 			/* don't goto clean, we already unallocated */
8834 			return -ENODEV;
8835 
8836 		goto reinit_after_soft_reset;
8837 	}
8838 
8839 	/* Enable Accelerated IO path at driver layer */
8840 	h->acciopath_status = 1;
8841 	/* Disable discovery polling.*/
8842 	h->discovery_polling = 0;
8843 
8844 
8845 	/* Turn the interrupts on so we can service requests */
8846 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8847 
8848 	hpsa_hba_inquiry(h);
8849 
8850 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8851 	if (!h->lastlogicals)
8852 		dev_info(&h->pdev->dev,
8853 			"Can't track change to report lun data\n");
8854 
8855 	/* hook into SCSI subsystem */
8856 	rc = hpsa_scsi_add_host(h);
8857 	if (rc)
8858 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8859 
8860 	/* Monitor the controller for firmware lockups */
8861 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8862 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8863 	schedule_delayed_work(&h->monitor_ctlr_work,
8864 				h->heartbeat_sample_interval);
8865 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8866 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8867 				h->heartbeat_sample_interval);
8868 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8869 	schedule_delayed_work(&h->event_monitor_work,
8870 				HPSA_EVENT_MONITOR_INTERVAL);
8871 	return 0;
8872 
8873 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8874 	kfree(h->lastlogicals);
8875 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8876 	hpsa_free_performant_mode(h);
8877 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8878 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8879 	hpsa_free_sg_chain_blocks(h);
8880 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8881 	hpsa_free_cmd_pool(h);
8882 clean4: /* irq, shost, pci, lu, aer/h */
8883 	hpsa_free_irqs(h);
8884 clean3: /* shost, pci, lu, aer/h */
8885 	scsi_host_put(h->scsi_host);
8886 	h->scsi_host = NULL;
8887 clean2_5: /* pci, lu, aer/h */
8888 	hpsa_free_pci_init(h);
8889 clean2: /* lu, aer/h */
8890 	if (h->lockup_detected) {
8891 		free_percpu(h->lockup_detected);
8892 		h->lockup_detected = NULL;
8893 	}
8894 clean1:	/* wq/aer/h */
8895 	if (h->resubmit_wq) {
8896 		destroy_workqueue(h->resubmit_wq);
8897 		h->resubmit_wq = NULL;
8898 	}
8899 	if (h->rescan_ctlr_wq) {
8900 		destroy_workqueue(h->rescan_ctlr_wq);
8901 		h->rescan_ctlr_wq = NULL;
8902 	}
8903 	if (h->monitor_ctlr_wq) {
8904 		destroy_workqueue(h->monitor_ctlr_wq);
8905 		h->monitor_ctlr_wq = NULL;
8906 	}
8907 	kfree(h);
8908 	return rc;
8909 }
8910 
8911 static void hpsa_flush_cache(struct ctlr_info *h)
8912 {
8913 	char *flush_buf;
8914 	struct CommandList *c;
8915 	int rc;
8916 
8917 	if (unlikely(lockup_detected(h)))
8918 		return;
8919 	flush_buf = kzalloc(4, GFP_KERNEL);
8920 	if (!flush_buf)
8921 		return;
8922 
8923 	c = cmd_alloc(h);
8924 
8925 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8926 		RAID_CTLR_LUNID, TYPE_CMD)) {
8927 		goto out;
8928 	}
8929 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8930 			DEFAULT_TIMEOUT);
8931 	if (rc)
8932 		goto out;
8933 	if (c->err_info->CommandStatus != 0)
8934 out:
8935 		dev_warn(&h->pdev->dev,
8936 			"error flushing cache on controller\n");
8937 	cmd_free(h, c);
8938 	kfree(flush_buf);
8939 }
8940 
8941 /* Make controller gather fresh report lun data each time we
8942  * send down a report luns request
8943  */
8944 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8945 {
8946 	u32 *options;
8947 	struct CommandList *c;
8948 	int rc;
8949 
8950 	/* Don't bother trying to set diag options if locked up */
8951 	if (unlikely(h->lockup_detected))
8952 		return;
8953 
8954 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8955 	if (!options)
8956 		return;
8957 
8958 	c = cmd_alloc(h);
8959 
8960 	/* first, get the current diag options settings */
8961 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8962 		RAID_CTLR_LUNID, TYPE_CMD))
8963 		goto errout;
8964 
8965 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8966 			NO_TIMEOUT);
8967 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8968 		goto errout;
8969 
8970 	/* Now, set the bit for disabling the RLD caching */
8971 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8972 
8973 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8974 		RAID_CTLR_LUNID, TYPE_CMD))
8975 		goto errout;
8976 
8977 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8978 			NO_TIMEOUT);
8979 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8980 		goto errout;
8981 
8982 	/* Now verify that it got set: */
8983 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8984 		RAID_CTLR_LUNID, TYPE_CMD))
8985 		goto errout;
8986 
8987 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8988 			NO_TIMEOUT);
8989 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8990 		goto errout;
8991 
8992 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8993 		goto out;
8994 
8995 errout:
8996 	dev_err(&h->pdev->dev,
8997 			"Error: failed to disable report lun data caching.\n");
8998 out:
8999 	cmd_free(h, c);
9000 	kfree(options);
9001 }
9002 
9003 static void __hpsa_shutdown(struct pci_dev *pdev)
9004 {
9005 	struct ctlr_info *h;
9006 
9007 	h = pci_get_drvdata(pdev);
9008 	/* Turn board interrupts off  and send the flush cache command
9009 	 * sendcmd will turn off interrupt, and send the flush...
9010 	 * To write all data in the battery backed cache to disks
9011 	 */
9012 	hpsa_flush_cache(h);
9013 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9014 	hpsa_free_irqs(h);			/* init_one 4 */
9015 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9016 }
9017 
9018 static void hpsa_shutdown(struct pci_dev *pdev)
9019 {
9020 	__hpsa_shutdown(pdev);
9021 	pci_disable_device(pdev);
9022 }
9023 
9024 static void hpsa_free_device_info(struct ctlr_info *h)
9025 {
9026 	int i;
9027 
9028 	for (i = 0; i < h->ndevices; i++) {
9029 		kfree(h->dev[i]);
9030 		h->dev[i] = NULL;
9031 	}
9032 }
9033 
9034 static void hpsa_remove_one(struct pci_dev *pdev)
9035 {
9036 	struct ctlr_info *h;
9037 	unsigned long flags;
9038 
9039 	if (pci_get_drvdata(pdev) == NULL) {
9040 		dev_err(&pdev->dev, "unable to remove device\n");
9041 		return;
9042 	}
9043 	h = pci_get_drvdata(pdev);
9044 
9045 	/* Get rid of any controller monitoring work items */
9046 	spin_lock_irqsave(&h->lock, flags);
9047 	h->remove_in_progress = 1;
9048 	spin_unlock_irqrestore(&h->lock, flags);
9049 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9050 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9051 	cancel_delayed_work_sync(&h->event_monitor_work);
9052 	destroy_workqueue(h->rescan_ctlr_wq);
9053 	destroy_workqueue(h->resubmit_wq);
9054 	destroy_workqueue(h->monitor_ctlr_wq);
9055 
9056 	hpsa_delete_sas_host(h);
9057 
9058 	/*
9059 	 * Call before disabling interrupts.
9060 	 * scsi_remove_host can trigger I/O operations especially
9061 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9062 	 * operations which cannot complete and will hang the system.
9063 	 */
9064 	if (h->scsi_host)
9065 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9066 	/* includes hpsa_free_irqs - init_one 4 */
9067 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9068 	__hpsa_shutdown(pdev);
9069 
9070 	hpsa_free_device_info(h);		/* scan */
9071 
9072 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9073 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9074 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9075 	hpsa_free_performant_mode(h);			/* init_one 7 */
9076 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9077 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9078 	kfree(h->lastlogicals);
9079 
9080 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9081 
9082 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9083 	h->scsi_host = NULL;				/* init_one 3 */
9084 
9085 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9086 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9087 
9088 	free_percpu(h->lockup_detected);		/* init_one 2 */
9089 	h->lockup_detected = NULL;			/* init_one 2 */
9090 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9091 
9092 	hpda_free_ctlr_info(h);				/* init_one 1 */
9093 }
9094 
9095 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9096 	__attribute__((unused)) pm_message_t state)
9097 {
9098 	return -ENOSYS;
9099 }
9100 
9101 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9102 {
9103 	return -ENOSYS;
9104 }
9105 
9106 static struct pci_driver hpsa_pci_driver = {
9107 	.name = HPSA,
9108 	.probe = hpsa_init_one,
9109 	.remove = hpsa_remove_one,
9110 	.id_table = hpsa_pci_device_id,	/* id_table */
9111 	.shutdown = hpsa_shutdown,
9112 	.suspend = hpsa_suspend,
9113 	.resume = hpsa_resume,
9114 };
9115 
9116 /* Fill in bucket_map[], given nsgs (the max number of
9117  * scatter gather elements supported) and bucket[],
9118  * which is an array of 8 integers.  The bucket[] array
9119  * contains 8 different DMA transfer sizes (in 16
9120  * byte increments) which the controller uses to fetch
9121  * commands.  This function fills in bucket_map[], which
9122  * maps a given number of scatter gather elements to one of
9123  * the 8 DMA transfer sizes.  The point of it is to allow the
9124  * controller to only do as much DMA as needed to fetch the
9125  * command, with the DMA transfer size encoded in the lower
9126  * bits of the command address.
9127  */
9128 static void  calc_bucket_map(int bucket[], int num_buckets,
9129 	int nsgs, int min_blocks, u32 *bucket_map)
9130 {
9131 	int i, j, b, size;
9132 
9133 	/* Note, bucket_map must have nsgs+1 entries. */
9134 	for (i = 0; i <= nsgs; i++) {
9135 		/* Compute size of a command with i SG entries */
9136 		size = i + min_blocks;
9137 		b = num_buckets; /* Assume the biggest bucket */
9138 		/* Find the bucket that is just big enough */
9139 		for (j = 0; j < num_buckets; j++) {
9140 			if (bucket[j] >= size) {
9141 				b = j;
9142 				break;
9143 			}
9144 		}
9145 		/* for a command with i SG entries, use bucket b. */
9146 		bucket_map[i] = b;
9147 	}
9148 }
9149 
9150 /*
9151  * return -ENODEV on err, 0 on success (or no action)
9152  * allocates numerous items that must be freed later
9153  */
9154 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9155 {
9156 	int i;
9157 	unsigned long register_value;
9158 	unsigned long transMethod = CFGTBL_Trans_Performant |
9159 			(trans_support & CFGTBL_Trans_use_short_tags) |
9160 				CFGTBL_Trans_enable_directed_msix |
9161 			(trans_support & (CFGTBL_Trans_io_accel1 |
9162 				CFGTBL_Trans_io_accel2));
9163 	struct access_method access = SA5_performant_access;
9164 
9165 	/* This is a bit complicated.  There are 8 registers on
9166 	 * the controller which we write to to tell it 8 different
9167 	 * sizes of commands which there may be.  It's a way of
9168 	 * reducing the DMA done to fetch each command.  Encoded into
9169 	 * each command's tag are 3 bits which communicate to the controller
9170 	 * which of the eight sizes that command fits within.  The size of
9171 	 * each command depends on how many scatter gather entries there are.
9172 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9173 	 * with the number of 16-byte blocks a command of that size requires.
9174 	 * The smallest command possible requires 5 such 16 byte blocks.
9175 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9176 	 * blocks.  Note, this only extends to the SG entries contained
9177 	 * within the command block, and does not extend to chained blocks
9178 	 * of SG elements.   bft[] contains the eight values we write to
9179 	 * the registers.  They are not evenly distributed, but have more
9180 	 * sizes for small commands, and fewer sizes for larger commands.
9181 	 */
9182 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9183 #define MIN_IOACCEL2_BFT_ENTRY 5
9184 #define HPSA_IOACCEL2_HEADER_SZ 4
9185 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9186 			13, 14, 15, 16, 17, 18, 19,
9187 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9188 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9189 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9190 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9191 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9192 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9193 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9194 	/*  5 = 1 s/g entry or 4k
9195 	 *  6 = 2 s/g entry or 8k
9196 	 *  8 = 4 s/g entry or 16k
9197 	 * 10 = 6 s/g entry or 24k
9198 	 */
9199 
9200 	/* If the controller supports either ioaccel method then
9201 	 * we can also use the RAID stack submit path that does not
9202 	 * perform the superfluous readl() after each command submission.
9203 	 */
9204 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9205 		access = SA5_performant_access_no_read;
9206 
9207 	/* Controller spec: zero out this buffer. */
9208 	for (i = 0; i < h->nreply_queues; i++)
9209 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9210 
9211 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9212 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9213 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9214 	for (i = 0; i < 8; i++)
9215 		writel(bft[i], &h->transtable->BlockFetch[i]);
9216 
9217 	/* size of controller ring buffer */
9218 	writel(h->max_commands, &h->transtable->RepQSize);
9219 	writel(h->nreply_queues, &h->transtable->RepQCount);
9220 	writel(0, &h->transtable->RepQCtrAddrLow32);
9221 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9222 
9223 	for (i = 0; i < h->nreply_queues; i++) {
9224 		writel(0, &h->transtable->RepQAddr[i].upper);
9225 		writel(h->reply_queue[i].busaddr,
9226 			&h->transtable->RepQAddr[i].lower);
9227 	}
9228 
9229 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9230 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9231 	/*
9232 	 * enable outbound interrupt coalescing in accelerator mode;
9233 	 */
9234 	if (trans_support & CFGTBL_Trans_io_accel1) {
9235 		access = SA5_ioaccel_mode1_access;
9236 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9237 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9238 	} else
9239 		if (trans_support & CFGTBL_Trans_io_accel2)
9240 			access = SA5_ioaccel_mode2_access;
9241 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9242 	if (hpsa_wait_for_mode_change_ack(h)) {
9243 		dev_err(&h->pdev->dev,
9244 			"performant mode problem - doorbell timeout\n");
9245 		return -ENODEV;
9246 	}
9247 	register_value = readl(&(h->cfgtable->TransportActive));
9248 	if (!(register_value & CFGTBL_Trans_Performant)) {
9249 		dev_err(&h->pdev->dev,
9250 			"performant mode problem - transport not active\n");
9251 		return -ENODEV;
9252 	}
9253 	/* Change the access methods to the performant access methods */
9254 	h->access = access;
9255 	h->transMethod = transMethod;
9256 
9257 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9258 		(trans_support & CFGTBL_Trans_io_accel2)))
9259 		return 0;
9260 
9261 	if (trans_support & CFGTBL_Trans_io_accel1) {
9262 		/* Set up I/O accelerator mode */
9263 		for (i = 0; i < h->nreply_queues; i++) {
9264 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9265 			h->reply_queue[i].current_entry =
9266 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9267 		}
9268 		bft[7] = h->ioaccel_maxsg + 8;
9269 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9270 				h->ioaccel1_blockFetchTable);
9271 
9272 		/* initialize all reply queue entries to unused */
9273 		for (i = 0; i < h->nreply_queues; i++)
9274 			memset(h->reply_queue[i].head,
9275 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9276 				h->reply_queue_size);
9277 
9278 		/* set all the constant fields in the accelerator command
9279 		 * frames once at init time to save CPU cycles later.
9280 		 */
9281 		for (i = 0; i < h->nr_cmds; i++) {
9282 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9283 
9284 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9285 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9286 					(i * sizeof(struct ErrorInfo)));
9287 			cp->err_info_len = sizeof(struct ErrorInfo);
9288 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9289 			cp->host_context_flags =
9290 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9291 			cp->timeout_sec = 0;
9292 			cp->ReplyQueue = 0;
9293 			cp->tag =
9294 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9295 			cp->host_addr =
9296 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9297 					(i * sizeof(struct io_accel1_cmd)));
9298 		}
9299 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9300 		u64 cfg_offset, cfg_base_addr_index;
9301 		u32 bft2_offset, cfg_base_addr;
9302 		int rc;
9303 
9304 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9305 			&cfg_base_addr_index, &cfg_offset);
9306 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9307 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9308 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9309 				4, h->ioaccel2_blockFetchTable);
9310 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9311 		BUILD_BUG_ON(offsetof(struct CfgTable,
9312 				io_accel_request_size_offset) != 0xb8);
9313 		h->ioaccel2_bft2_regs =
9314 			remap_pci_mem(pci_resource_start(h->pdev,
9315 					cfg_base_addr_index) +
9316 					cfg_offset + bft2_offset,
9317 					ARRAY_SIZE(bft2) *
9318 					sizeof(*h->ioaccel2_bft2_regs));
9319 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9320 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9321 	}
9322 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9323 	if (hpsa_wait_for_mode_change_ack(h)) {
9324 		dev_err(&h->pdev->dev,
9325 			"performant mode problem - enabling ioaccel mode\n");
9326 		return -ENODEV;
9327 	}
9328 	return 0;
9329 }
9330 
9331 /* Free ioaccel1 mode command blocks and block fetch table */
9332 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9333 {
9334 	if (h->ioaccel_cmd_pool) {
9335 		dma_free_coherent(&h->pdev->dev,
9336 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9337 				  h->ioaccel_cmd_pool,
9338 				  h->ioaccel_cmd_pool_dhandle);
9339 		h->ioaccel_cmd_pool = NULL;
9340 		h->ioaccel_cmd_pool_dhandle = 0;
9341 	}
9342 	kfree(h->ioaccel1_blockFetchTable);
9343 	h->ioaccel1_blockFetchTable = NULL;
9344 }
9345 
9346 /* Allocate ioaccel1 mode command blocks and block fetch table */
9347 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9348 {
9349 	h->ioaccel_maxsg =
9350 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9351 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9352 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9353 
9354 	/* Command structures must be aligned on a 128-byte boundary
9355 	 * because the 7 lower bits of the address are used by the
9356 	 * hardware.
9357 	 */
9358 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9359 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9360 	h->ioaccel_cmd_pool =
9361 		dma_alloc_coherent(&h->pdev->dev,
9362 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9364 
9365 	h->ioaccel1_blockFetchTable =
9366 		kmalloc(((h->ioaccel_maxsg + 1) *
9367 				sizeof(u32)), GFP_KERNEL);
9368 
9369 	if ((h->ioaccel_cmd_pool == NULL) ||
9370 		(h->ioaccel1_blockFetchTable == NULL))
9371 		goto clean_up;
9372 
9373 	memset(h->ioaccel_cmd_pool, 0,
9374 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9375 	return 0;
9376 
9377 clean_up:
9378 	hpsa_free_ioaccel1_cmd_and_bft(h);
9379 	return -ENOMEM;
9380 }
9381 
9382 /* Free ioaccel2 mode command blocks and block fetch table */
9383 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9384 {
9385 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9386 
9387 	if (h->ioaccel2_cmd_pool) {
9388 		dma_free_coherent(&h->pdev->dev,
9389 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9390 				  h->ioaccel2_cmd_pool,
9391 				  h->ioaccel2_cmd_pool_dhandle);
9392 		h->ioaccel2_cmd_pool = NULL;
9393 		h->ioaccel2_cmd_pool_dhandle = 0;
9394 	}
9395 	kfree(h->ioaccel2_blockFetchTable);
9396 	h->ioaccel2_blockFetchTable = NULL;
9397 }
9398 
9399 /* Allocate ioaccel2 mode command blocks and block fetch table */
9400 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9401 {
9402 	int rc;
9403 
9404 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9405 
9406 	h->ioaccel_maxsg =
9407 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9408 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9409 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9410 
9411 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9412 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9413 	h->ioaccel2_cmd_pool =
9414 		dma_alloc_coherent(&h->pdev->dev,
9415 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9417 
9418 	h->ioaccel2_blockFetchTable =
9419 		kmalloc(((h->ioaccel_maxsg + 1) *
9420 				sizeof(u32)), GFP_KERNEL);
9421 
9422 	if ((h->ioaccel2_cmd_pool == NULL) ||
9423 		(h->ioaccel2_blockFetchTable == NULL)) {
9424 		rc = -ENOMEM;
9425 		goto clean_up;
9426 	}
9427 
9428 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9429 	if (rc)
9430 		goto clean_up;
9431 
9432 	memset(h->ioaccel2_cmd_pool, 0,
9433 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9434 	return 0;
9435 
9436 clean_up:
9437 	hpsa_free_ioaccel2_cmd_and_bft(h);
9438 	return rc;
9439 }
9440 
9441 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9442 static void hpsa_free_performant_mode(struct ctlr_info *h)
9443 {
9444 	kfree(h->blockFetchTable);
9445 	h->blockFetchTable = NULL;
9446 	hpsa_free_reply_queues(h);
9447 	hpsa_free_ioaccel1_cmd_and_bft(h);
9448 	hpsa_free_ioaccel2_cmd_and_bft(h);
9449 }
9450 
9451 /* return -ENODEV on error, 0 on success (or no action)
9452  * allocates numerous items that must be freed later
9453  */
9454 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9455 {
9456 	u32 trans_support;
9457 	unsigned long transMethod = CFGTBL_Trans_Performant |
9458 					CFGTBL_Trans_use_short_tags;
9459 	int i, rc;
9460 
9461 	if (hpsa_simple_mode)
9462 		return 0;
9463 
9464 	trans_support = readl(&(h->cfgtable->TransportSupport));
9465 	if (!(trans_support & PERFORMANT_MODE))
9466 		return 0;
9467 
9468 	/* Check for I/O accelerator mode support */
9469 	if (trans_support & CFGTBL_Trans_io_accel1) {
9470 		transMethod |= CFGTBL_Trans_io_accel1 |
9471 				CFGTBL_Trans_enable_directed_msix;
9472 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9473 		if (rc)
9474 			return rc;
9475 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9476 		transMethod |= CFGTBL_Trans_io_accel2 |
9477 				CFGTBL_Trans_enable_directed_msix;
9478 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9479 		if (rc)
9480 			return rc;
9481 	}
9482 
9483 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9484 	hpsa_get_max_perf_mode_cmds(h);
9485 	/* Performant mode ring buffer and supporting data structures */
9486 	h->reply_queue_size = h->max_commands * sizeof(u64);
9487 
9488 	for (i = 0; i < h->nreply_queues; i++) {
9489 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9490 						h->reply_queue_size,
9491 						&h->reply_queue[i].busaddr,
9492 						GFP_KERNEL);
9493 		if (!h->reply_queue[i].head) {
9494 			rc = -ENOMEM;
9495 			goto clean1;	/* rq, ioaccel */
9496 		}
9497 		h->reply_queue[i].size = h->max_commands;
9498 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9499 		h->reply_queue[i].current_entry = 0;
9500 	}
9501 
9502 	/* Need a block fetch table for performant mode */
9503 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9504 				sizeof(u32)), GFP_KERNEL);
9505 	if (!h->blockFetchTable) {
9506 		rc = -ENOMEM;
9507 		goto clean1;	/* rq, ioaccel */
9508 	}
9509 
9510 	rc = hpsa_enter_performant_mode(h, trans_support);
9511 	if (rc)
9512 		goto clean2;	/* bft, rq, ioaccel */
9513 	return 0;
9514 
9515 clean2:	/* bft, rq, ioaccel */
9516 	kfree(h->blockFetchTable);
9517 	h->blockFetchTable = NULL;
9518 clean1:	/* rq, ioaccel */
9519 	hpsa_free_reply_queues(h);
9520 	hpsa_free_ioaccel1_cmd_and_bft(h);
9521 	hpsa_free_ioaccel2_cmd_and_bft(h);
9522 	return rc;
9523 }
9524 
9525 static int is_accelerated_cmd(struct CommandList *c)
9526 {
9527 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9528 }
9529 
9530 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9531 {
9532 	struct CommandList *c = NULL;
9533 	int i, accel_cmds_out;
9534 	int refcount;
9535 
9536 	do { /* wait for all outstanding ioaccel commands to drain out */
9537 		accel_cmds_out = 0;
9538 		for (i = 0; i < h->nr_cmds; i++) {
9539 			c = h->cmd_pool + i;
9540 			refcount = atomic_inc_return(&c->refcount);
9541 			if (refcount > 1) /* Command is allocated */
9542 				accel_cmds_out += is_accelerated_cmd(c);
9543 			cmd_free(h, c);
9544 		}
9545 		if (accel_cmds_out <= 0)
9546 			break;
9547 		msleep(100);
9548 	} while (1);
9549 }
9550 
9551 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9552 				struct hpsa_sas_port *hpsa_sas_port)
9553 {
9554 	struct hpsa_sas_phy *hpsa_sas_phy;
9555 	struct sas_phy *phy;
9556 
9557 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9558 	if (!hpsa_sas_phy)
9559 		return NULL;
9560 
9561 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9562 		hpsa_sas_port->next_phy_index);
9563 	if (!phy) {
9564 		kfree(hpsa_sas_phy);
9565 		return NULL;
9566 	}
9567 
9568 	hpsa_sas_port->next_phy_index++;
9569 	hpsa_sas_phy->phy = phy;
9570 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9571 
9572 	return hpsa_sas_phy;
9573 }
9574 
9575 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9576 {
9577 	struct sas_phy *phy = hpsa_sas_phy->phy;
9578 
9579 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9580 	if (hpsa_sas_phy->added_to_port)
9581 		list_del(&hpsa_sas_phy->phy_list_entry);
9582 	sas_phy_delete(phy);
9583 	kfree(hpsa_sas_phy);
9584 }
9585 
9586 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9587 {
9588 	int rc;
9589 	struct hpsa_sas_port *hpsa_sas_port;
9590 	struct sas_phy *phy;
9591 	struct sas_identify *identify;
9592 
9593 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9594 	phy = hpsa_sas_phy->phy;
9595 
9596 	identify = &phy->identify;
9597 	memset(identify, 0, sizeof(*identify));
9598 	identify->sas_address = hpsa_sas_port->sas_address;
9599 	identify->device_type = SAS_END_DEVICE;
9600 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9601 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9602 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9603 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9604 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9605 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9606 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9607 
9608 	rc = sas_phy_add(hpsa_sas_phy->phy);
9609 	if (rc)
9610 		return rc;
9611 
9612 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9613 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9614 			&hpsa_sas_port->phy_list_head);
9615 	hpsa_sas_phy->added_to_port = true;
9616 
9617 	return 0;
9618 }
9619 
9620 static int
9621 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9622 				struct sas_rphy *rphy)
9623 {
9624 	struct sas_identify *identify;
9625 
9626 	identify = &rphy->identify;
9627 	identify->sas_address = hpsa_sas_port->sas_address;
9628 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9629 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9630 
9631 	return sas_rphy_add(rphy);
9632 }
9633 
9634 static struct hpsa_sas_port
9635 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9636 				u64 sas_address)
9637 {
9638 	int rc;
9639 	struct hpsa_sas_port *hpsa_sas_port;
9640 	struct sas_port *port;
9641 
9642 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9643 	if (!hpsa_sas_port)
9644 		return NULL;
9645 
9646 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9647 	hpsa_sas_port->parent_node = hpsa_sas_node;
9648 
9649 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9650 	if (!port)
9651 		goto free_hpsa_port;
9652 
9653 	rc = sas_port_add(port);
9654 	if (rc)
9655 		goto free_sas_port;
9656 
9657 	hpsa_sas_port->port = port;
9658 	hpsa_sas_port->sas_address = sas_address;
9659 	list_add_tail(&hpsa_sas_port->port_list_entry,
9660 			&hpsa_sas_node->port_list_head);
9661 
9662 	return hpsa_sas_port;
9663 
9664 free_sas_port:
9665 	sas_port_free(port);
9666 free_hpsa_port:
9667 	kfree(hpsa_sas_port);
9668 
9669 	return NULL;
9670 }
9671 
9672 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9673 {
9674 	struct hpsa_sas_phy *hpsa_sas_phy;
9675 	struct hpsa_sas_phy *next;
9676 
9677 	list_for_each_entry_safe(hpsa_sas_phy, next,
9678 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9679 		hpsa_free_sas_phy(hpsa_sas_phy);
9680 
9681 	sas_port_delete(hpsa_sas_port->port);
9682 	list_del(&hpsa_sas_port->port_list_entry);
9683 	kfree(hpsa_sas_port);
9684 }
9685 
9686 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9687 {
9688 	struct hpsa_sas_node *hpsa_sas_node;
9689 
9690 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9691 	if (hpsa_sas_node) {
9692 		hpsa_sas_node->parent_dev = parent_dev;
9693 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9694 	}
9695 
9696 	return hpsa_sas_node;
9697 }
9698 
9699 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9700 {
9701 	struct hpsa_sas_port *hpsa_sas_port;
9702 	struct hpsa_sas_port *next;
9703 
9704 	if (!hpsa_sas_node)
9705 		return;
9706 
9707 	list_for_each_entry_safe(hpsa_sas_port, next,
9708 			&hpsa_sas_node->port_list_head, port_list_entry)
9709 		hpsa_free_sas_port(hpsa_sas_port);
9710 
9711 	kfree(hpsa_sas_node);
9712 }
9713 
9714 static struct hpsa_scsi_dev_t
9715 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9716 					struct sas_rphy *rphy)
9717 {
9718 	int i;
9719 	struct hpsa_scsi_dev_t *device;
9720 
9721 	for (i = 0; i < h->ndevices; i++) {
9722 		device = h->dev[i];
9723 		if (!device->sas_port)
9724 			continue;
9725 		if (device->sas_port->rphy == rphy)
9726 			return device;
9727 	}
9728 
9729 	return NULL;
9730 }
9731 
9732 static int hpsa_add_sas_host(struct ctlr_info *h)
9733 {
9734 	int rc;
9735 	struct device *parent_dev;
9736 	struct hpsa_sas_node *hpsa_sas_node;
9737 	struct hpsa_sas_port *hpsa_sas_port;
9738 	struct hpsa_sas_phy *hpsa_sas_phy;
9739 
9740 	parent_dev = &h->scsi_host->shost_dev;
9741 
9742 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9743 	if (!hpsa_sas_node)
9744 		return -ENOMEM;
9745 
9746 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9747 	if (!hpsa_sas_port) {
9748 		rc = -ENODEV;
9749 		goto free_sas_node;
9750 	}
9751 
9752 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9753 	if (!hpsa_sas_phy) {
9754 		rc = -ENODEV;
9755 		goto free_sas_port;
9756 	}
9757 
9758 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9759 	if (rc)
9760 		goto free_sas_phy;
9761 
9762 	h->sas_host = hpsa_sas_node;
9763 
9764 	return 0;
9765 
9766 free_sas_phy:
9767 	hpsa_free_sas_phy(hpsa_sas_phy);
9768 free_sas_port:
9769 	hpsa_free_sas_port(hpsa_sas_port);
9770 free_sas_node:
9771 	hpsa_free_sas_node(hpsa_sas_node);
9772 
9773 	return rc;
9774 }
9775 
9776 static void hpsa_delete_sas_host(struct ctlr_info *h)
9777 {
9778 	hpsa_free_sas_node(h->sas_host);
9779 }
9780 
9781 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9782 				struct hpsa_scsi_dev_t *device)
9783 {
9784 	int rc;
9785 	struct hpsa_sas_port *hpsa_sas_port;
9786 	struct sas_rphy *rphy;
9787 
9788 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9789 	if (!hpsa_sas_port)
9790 		return -ENOMEM;
9791 
9792 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9793 	if (!rphy) {
9794 		rc = -ENODEV;
9795 		goto free_sas_port;
9796 	}
9797 
9798 	hpsa_sas_port->rphy = rphy;
9799 	device->sas_port = hpsa_sas_port;
9800 
9801 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9802 	if (rc)
9803 		goto free_sas_port;
9804 
9805 	return 0;
9806 
9807 free_sas_port:
9808 	hpsa_free_sas_port(hpsa_sas_port);
9809 	device->sas_port = NULL;
9810 
9811 	return rc;
9812 }
9813 
9814 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9815 {
9816 	if (device->sas_port) {
9817 		hpsa_free_sas_port(device->sas_port);
9818 		device->sas_port = NULL;
9819 	}
9820 }
9821 
9822 static int
9823 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9824 {
9825 	return 0;
9826 }
9827 
9828 static int
9829 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9830 {
9831 	struct Scsi_Host *shost = phy_to_shost(rphy);
9832 	struct ctlr_info *h;
9833 	struct hpsa_scsi_dev_t *sd;
9834 
9835 	if (!shost)
9836 		return -ENXIO;
9837 
9838 	h = shost_to_hba(shost);
9839 
9840 	if (!h)
9841 		return -ENXIO;
9842 
9843 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9844 	if (!sd)
9845 		return -ENXIO;
9846 
9847 	*identifier = sd->eli;
9848 
9849 	return 0;
9850 }
9851 
9852 static int
9853 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9854 {
9855 	return -ENXIO;
9856 }
9857 
9858 static int
9859 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9860 {
9861 	return 0;
9862 }
9863 
9864 static int
9865 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9866 {
9867 	return 0;
9868 }
9869 
9870 static int
9871 hpsa_sas_phy_setup(struct sas_phy *phy)
9872 {
9873 	return 0;
9874 }
9875 
9876 static void
9877 hpsa_sas_phy_release(struct sas_phy *phy)
9878 {
9879 }
9880 
9881 static int
9882 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9883 {
9884 	return -EINVAL;
9885 }
9886 
9887 static struct sas_function_template hpsa_sas_transport_functions = {
9888 	.get_linkerrors = hpsa_sas_get_linkerrors,
9889 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9890 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9891 	.phy_reset = hpsa_sas_phy_reset,
9892 	.phy_enable = hpsa_sas_phy_enable,
9893 	.phy_setup = hpsa_sas_phy_setup,
9894 	.phy_release = hpsa_sas_phy_release,
9895 	.set_phy_speed = hpsa_sas_phy_speed,
9896 };
9897 
9898 /*
9899  *  This is it.  Register the PCI driver information for the cards we control
9900  *  the OS will call our registered routines when it finds one of our cards.
9901  */
9902 static int __init hpsa_init(void)
9903 {
9904 	int rc;
9905 
9906 	hpsa_sas_transport_template =
9907 		sas_attach_transport(&hpsa_sas_transport_functions);
9908 	if (!hpsa_sas_transport_template)
9909 		return -ENODEV;
9910 
9911 	rc = pci_register_driver(&hpsa_pci_driver);
9912 
9913 	if (rc)
9914 		sas_release_transport(hpsa_sas_transport_template);
9915 
9916 	return rc;
9917 }
9918 
9919 static void __exit hpsa_cleanup(void)
9920 {
9921 	pci_unregister_driver(&hpsa_pci_driver);
9922 	sas_release_transport(hpsa_sas_transport_template);
9923 }
9924 
9925 static void __attribute__((unused)) verify_offsets(void)
9926 {
9927 #define VERIFY_OFFSET(member, offset) \
9928 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9929 
9930 	VERIFY_OFFSET(structure_size, 0);
9931 	VERIFY_OFFSET(volume_blk_size, 4);
9932 	VERIFY_OFFSET(volume_blk_cnt, 8);
9933 	VERIFY_OFFSET(phys_blk_shift, 16);
9934 	VERIFY_OFFSET(parity_rotation_shift, 17);
9935 	VERIFY_OFFSET(strip_size, 18);
9936 	VERIFY_OFFSET(disk_starting_blk, 20);
9937 	VERIFY_OFFSET(disk_blk_cnt, 28);
9938 	VERIFY_OFFSET(data_disks_per_row, 36);
9939 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9940 	VERIFY_OFFSET(row_cnt, 40);
9941 	VERIFY_OFFSET(layout_map_count, 42);
9942 	VERIFY_OFFSET(flags, 44);
9943 	VERIFY_OFFSET(dekindex, 46);
9944 	/* VERIFY_OFFSET(reserved, 48 */
9945 	VERIFY_OFFSET(data, 64);
9946 
9947 #undef VERIFY_OFFSET
9948 
9949 #define VERIFY_OFFSET(member, offset) \
9950 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9951 
9952 	VERIFY_OFFSET(IU_type, 0);
9953 	VERIFY_OFFSET(direction, 1);
9954 	VERIFY_OFFSET(reply_queue, 2);
9955 	/* VERIFY_OFFSET(reserved1, 3);  */
9956 	VERIFY_OFFSET(scsi_nexus, 4);
9957 	VERIFY_OFFSET(Tag, 8);
9958 	VERIFY_OFFSET(cdb, 16);
9959 	VERIFY_OFFSET(cciss_lun, 32);
9960 	VERIFY_OFFSET(data_len, 40);
9961 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9962 	VERIFY_OFFSET(sg_count, 45);
9963 	/* VERIFY_OFFSET(reserved3 */
9964 	VERIFY_OFFSET(err_ptr, 48);
9965 	VERIFY_OFFSET(err_len, 56);
9966 	/* VERIFY_OFFSET(reserved4  */
9967 	VERIFY_OFFSET(sg, 64);
9968 
9969 #undef VERIFY_OFFSET
9970 
9971 #define VERIFY_OFFSET(member, offset) \
9972 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9973 
9974 	VERIFY_OFFSET(dev_handle, 0x00);
9975 	VERIFY_OFFSET(reserved1, 0x02);
9976 	VERIFY_OFFSET(function, 0x03);
9977 	VERIFY_OFFSET(reserved2, 0x04);
9978 	VERIFY_OFFSET(err_info, 0x0C);
9979 	VERIFY_OFFSET(reserved3, 0x10);
9980 	VERIFY_OFFSET(err_info_len, 0x12);
9981 	VERIFY_OFFSET(reserved4, 0x13);
9982 	VERIFY_OFFSET(sgl_offset, 0x14);
9983 	VERIFY_OFFSET(reserved5, 0x15);
9984 	VERIFY_OFFSET(transfer_len, 0x1C);
9985 	VERIFY_OFFSET(reserved6, 0x20);
9986 	VERIFY_OFFSET(io_flags, 0x24);
9987 	VERIFY_OFFSET(reserved7, 0x26);
9988 	VERIFY_OFFSET(LUN, 0x34);
9989 	VERIFY_OFFSET(control, 0x3C);
9990 	VERIFY_OFFSET(CDB, 0x40);
9991 	VERIFY_OFFSET(reserved8, 0x50);
9992 	VERIFY_OFFSET(host_context_flags, 0x60);
9993 	VERIFY_OFFSET(timeout_sec, 0x62);
9994 	VERIFY_OFFSET(ReplyQueue, 0x64);
9995 	VERIFY_OFFSET(reserved9, 0x65);
9996 	VERIFY_OFFSET(tag, 0x68);
9997 	VERIFY_OFFSET(host_addr, 0x70);
9998 	VERIFY_OFFSET(CISS_LUN, 0x78);
9999 	VERIFY_OFFSET(SG, 0x78 + 8);
10000 #undef VERIFY_OFFSET
10001 }
10002 
10003 module_init(hpsa_init);
10004 module_exit(hpsa_cleanup);
10005