xref: /openbmc/linux/drivers/scsi/hpsa.c (revision a7b12a27)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62 
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65 
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69 	HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73 
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77 		"Allow hpsa driver to access unknown HP Smart Array hardware");
78 
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
94 #define PCI_DEVICE_ID_HP_CISSF 0x333f
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
96 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
97 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
98 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
99 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
100 	{0,}
101 };
102 
103 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
104 
105 /*  board_id = Subsystem Device ID & Vendor ID
106  *  product = Marketing Name for the board
107  *  access = Address of the struct of function pointers
108  */
109 static struct board_type products[] = {
110 	{0x3241103C, "Smart Array P212", &SA5_access},
111 	{0x3243103C, "Smart Array P410", &SA5_access},
112 	{0x3245103C, "Smart Array P410i", &SA5_access},
113 	{0x3247103C, "Smart Array P411", &SA5_access},
114 	{0x3249103C, "Smart Array P812", &SA5_access},
115 	{0x324a103C, "Smart Array P712m", &SA5_access},
116 	{0x324b103C, "Smart Array P711m", &SA5_access},
117 	{0x3233103C, "StorageWorks P1210m", &SA5_access},
118 	{0x333F103C, "StorageWorks P1210m", &SA5_access},
119 	{0x3250103C, "Smart Array", &SA5_access},
120 	{0x3250113C, "Smart Array", &SA5_access},
121 	{0x3250123C, "Smart Array", &SA5_access},
122 	{0x3250133C, "Smart Array", &SA5_access},
123 	{0x3250143C, "Smart Array", &SA5_access},
124 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
125 };
126 
127 static int number_of_controllers;
128 
129 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
130 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
131 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
132 static void start_io(struct ctlr_info *h);
133 
134 #ifdef CONFIG_COMPAT
135 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
136 #endif
137 
138 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
139 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
140 static struct CommandList *cmd_alloc(struct ctlr_info *h);
141 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
142 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
143 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
144 	int cmd_type);
145 
146 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
147 		void (*done)(struct scsi_cmnd *));
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static ssize_t raid_level_show(struct device *dev,
159 	struct device_attribute *attr, char *buf);
160 static ssize_t lunid_show(struct device *dev,
161 	struct device_attribute *attr, char *buf);
162 static ssize_t unique_id_show(struct device *dev,
163 	struct device_attribute *attr, char *buf);
164 static ssize_t host_show_firmware_revision(struct device *dev,
165 	     struct device_attribute *attr, char *buf);
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static ssize_t host_store_rescan(struct device *dev,
168 	 struct device_attribute *attr, const char *buf, size_t count);
169 static int check_for_unit_attention(struct ctlr_info *h,
170 	struct CommandList *c);
171 static void check_ioctl_unit_attention(struct ctlr_info *h,
172 	struct CommandList *c);
173 /* performant mode helper functions */
174 static void calc_bucket_map(int *bucket, int num_buckets,
175 	int nsgs, int *bucket_map);
176 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
177 static inline u32 next_command(struct ctlr_info *h);
178 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
179 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
180 	u64 *cfg_offset);
181 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
182 	unsigned long *memory_bar);
183 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
184 
185 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
186 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
187 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
188 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
189 static DEVICE_ATTR(firmware_revision, S_IRUGO,
190 	host_show_firmware_revision, NULL);
191 
192 static struct device_attribute *hpsa_sdev_attrs[] = {
193 	&dev_attr_raid_level,
194 	&dev_attr_lunid,
195 	&dev_attr_unique_id,
196 	NULL,
197 };
198 
199 static struct device_attribute *hpsa_shost_attrs[] = {
200 	&dev_attr_rescan,
201 	&dev_attr_firmware_revision,
202 	NULL,
203 };
204 
205 static struct scsi_host_template hpsa_driver_template = {
206 	.module			= THIS_MODULE,
207 	.name			= "hpsa",
208 	.proc_name		= "hpsa",
209 	.queuecommand		= hpsa_scsi_queue_command,
210 	.scan_start		= hpsa_scan_start,
211 	.scan_finished		= hpsa_scan_finished,
212 	.change_queue_depth	= hpsa_change_queue_depth,
213 	.this_id		= -1,
214 	.use_clustering		= ENABLE_CLUSTERING,
215 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
216 	.ioctl			= hpsa_ioctl,
217 	.slave_alloc		= hpsa_slave_alloc,
218 	.slave_destroy		= hpsa_slave_destroy,
219 #ifdef CONFIG_COMPAT
220 	.compat_ioctl		= hpsa_compat_ioctl,
221 #endif
222 	.sdev_attrs = hpsa_sdev_attrs,
223 	.shost_attrs = hpsa_shost_attrs,
224 };
225 
226 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
227 {
228 	unsigned long *priv = shost_priv(sdev->host);
229 	return (struct ctlr_info *) *priv;
230 }
231 
232 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
233 {
234 	unsigned long *priv = shost_priv(sh);
235 	return (struct ctlr_info *) *priv;
236 }
237 
238 static int check_for_unit_attention(struct ctlr_info *h,
239 	struct CommandList *c)
240 {
241 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
242 		return 0;
243 
244 	switch (c->err_info->SenseInfo[12]) {
245 	case STATE_CHANGED:
246 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
247 			"detected, command retried\n", h->ctlr);
248 		break;
249 	case LUN_FAILED:
250 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
251 			"detected, action required\n", h->ctlr);
252 		break;
253 	case REPORT_LUNS_CHANGED:
254 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
255 			"changed, action required\n", h->ctlr);
256 	/*
257 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
258 	 */
259 		break;
260 	case POWER_OR_RESET:
261 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
262 			"or device reset detected\n", h->ctlr);
263 		break;
264 	case UNIT_ATTENTION_CLEARED:
265 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
266 		    "cleared by another initiator\n", h->ctlr);
267 		break;
268 	default:
269 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
270 			"unit attention detected\n", h->ctlr);
271 		break;
272 	}
273 	return 1;
274 }
275 
276 static ssize_t host_store_rescan(struct device *dev,
277 				 struct device_attribute *attr,
278 				 const char *buf, size_t count)
279 {
280 	struct ctlr_info *h;
281 	struct Scsi_Host *shost = class_to_shost(dev);
282 	h = shost_to_hba(shost);
283 	hpsa_scan_start(h->scsi_host);
284 	return count;
285 }
286 
287 static ssize_t host_show_firmware_revision(struct device *dev,
288 	     struct device_attribute *attr, char *buf)
289 {
290 	struct ctlr_info *h;
291 	struct Scsi_Host *shost = class_to_shost(dev);
292 	unsigned char *fwrev;
293 
294 	h = shost_to_hba(shost);
295 	if (!h->hba_inquiry_data)
296 		return 0;
297 	fwrev = &h->hba_inquiry_data[32];
298 	return snprintf(buf, 20, "%c%c%c%c\n",
299 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
300 }
301 
302 /* Enqueuing and dequeuing functions for cmdlists. */
303 static inline void addQ(struct hlist_head *list, struct CommandList *c)
304 {
305 	hlist_add_head(&c->list, list);
306 }
307 
308 static inline u32 next_command(struct ctlr_info *h)
309 {
310 	u32 a;
311 
312 	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
313 		return h->access.command_completed(h);
314 
315 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
316 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
317 		(h->reply_pool_head)++;
318 		h->commands_outstanding--;
319 	} else {
320 		a = FIFO_EMPTY;
321 	}
322 	/* Check for wraparound */
323 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
324 		h->reply_pool_head = h->reply_pool;
325 		h->reply_pool_wraparound ^= 1;
326 	}
327 	return a;
328 }
329 
330 /* set_performant_mode: Modify the tag for cciss performant
331  * set bit 0 for pull model, bits 3-1 for block fetch
332  * register number
333  */
334 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
335 {
336 	if (likely(h->transMethod == CFGTBL_Trans_Performant))
337 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
338 }
339 
340 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
341 	struct CommandList *c)
342 {
343 	unsigned long flags;
344 
345 	set_performant_mode(h, c);
346 	spin_lock_irqsave(&h->lock, flags);
347 	addQ(&h->reqQ, c);
348 	h->Qdepth++;
349 	start_io(h);
350 	spin_unlock_irqrestore(&h->lock, flags);
351 }
352 
353 static inline void removeQ(struct CommandList *c)
354 {
355 	if (WARN_ON(hlist_unhashed(&c->list)))
356 		return;
357 	hlist_del_init(&c->list);
358 }
359 
360 static inline int is_hba_lunid(unsigned char scsi3addr[])
361 {
362 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
363 }
364 
365 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
366 {
367 	return (scsi3addr[3] & 0xC0) == 0x40;
368 }
369 
370 static inline int is_scsi_rev_5(struct ctlr_info *h)
371 {
372 	if (!h->hba_inquiry_data)
373 		return 0;
374 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
375 		return 1;
376 	return 0;
377 }
378 
379 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
380 	"UNKNOWN"
381 };
382 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
383 
384 static ssize_t raid_level_show(struct device *dev,
385 	     struct device_attribute *attr, char *buf)
386 {
387 	ssize_t l = 0;
388 	unsigned char rlevel;
389 	struct ctlr_info *h;
390 	struct scsi_device *sdev;
391 	struct hpsa_scsi_dev_t *hdev;
392 	unsigned long flags;
393 
394 	sdev = to_scsi_device(dev);
395 	h = sdev_to_hba(sdev);
396 	spin_lock_irqsave(&h->lock, flags);
397 	hdev = sdev->hostdata;
398 	if (!hdev) {
399 		spin_unlock_irqrestore(&h->lock, flags);
400 		return -ENODEV;
401 	}
402 
403 	/* Is this even a logical drive? */
404 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
405 		spin_unlock_irqrestore(&h->lock, flags);
406 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
407 		return l;
408 	}
409 
410 	rlevel = hdev->raid_level;
411 	spin_unlock_irqrestore(&h->lock, flags);
412 	if (rlevel > RAID_UNKNOWN)
413 		rlevel = RAID_UNKNOWN;
414 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
415 	return l;
416 }
417 
418 static ssize_t lunid_show(struct device *dev,
419 	     struct device_attribute *attr, char *buf)
420 {
421 	struct ctlr_info *h;
422 	struct scsi_device *sdev;
423 	struct hpsa_scsi_dev_t *hdev;
424 	unsigned long flags;
425 	unsigned char lunid[8];
426 
427 	sdev = to_scsi_device(dev);
428 	h = sdev_to_hba(sdev);
429 	spin_lock_irqsave(&h->lock, flags);
430 	hdev = sdev->hostdata;
431 	if (!hdev) {
432 		spin_unlock_irqrestore(&h->lock, flags);
433 		return -ENODEV;
434 	}
435 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
436 	spin_unlock_irqrestore(&h->lock, flags);
437 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
438 		lunid[0], lunid[1], lunid[2], lunid[3],
439 		lunid[4], lunid[5], lunid[6], lunid[7]);
440 }
441 
442 static ssize_t unique_id_show(struct device *dev,
443 	     struct device_attribute *attr, char *buf)
444 {
445 	struct ctlr_info *h;
446 	struct scsi_device *sdev;
447 	struct hpsa_scsi_dev_t *hdev;
448 	unsigned long flags;
449 	unsigned char sn[16];
450 
451 	sdev = to_scsi_device(dev);
452 	h = sdev_to_hba(sdev);
453 	spin_lock_irqsave(&h->lock, flags);
454 	hdev = sdev->hostdata;
455 	if (!hdev) {
456 		spin_unlock_irqrestore(&h->lock, flags);
457 		return -ENODEV;
458 	}
459 	memcpy(sn, hdev->device_id, sizeof(sn));
460 	spin_unlock_irqrestore(&h->lock, flags);
461 	return snprintf(buf, 16 * 2 + 2,
462 			"%02X%02X%02X%02X%02X%02X%02X%02X"
463 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
464 			sn[0], sn[1], sn[2], sn[3],
465 			sn[4], sn[5], sn[6], sn[7],
466 			sn[8], sn[9], sn[10], sn[11],
467 			sn[12], sn[13], sn[14], sn[15]);
468 }
469 
470 static int hpsa_find_target_lun(struct ctlr_info *h,
471 	unsigned char scsi3addr[], int bus, int *target, int *lun)
472 {
473 	/* finds an unused bus, target, lun for a new physical device
474 	 * assumes h->devlock is held
475 	 */
476 	int i, found = 0;
477 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
478 
479 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
480 
481 	for (i = 0; i < h->ndevices; i++) {
482 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
483 			set_bit(h->dev[i]->target, lun_taken);
484 	}
485 
486 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
487 		if (!test_bit(i, lun_taken)) {
488 			/* *bus = 1; */
489 			*target = i;
490 			*lun = 0;
491 			found = 1;
492 			break;
493 		}
494 	}
495 	return !found;
496 }
497 
498 /* Add an entry into h->dev[] array. */
499 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
500 		struct hpsa_scsi_dev_t *device,
501 		struct hpsa_scsi_dev_t *added[], int *nadded)
502 {
503 	/* assumes h->devlock is held */
504 	int n = h->ndevices;
505 	int i;
506 	unsigned char addr1[8], addr2[8];
507 	struct hpsa_scsi_dev_t *sd;
508 
509 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
510 		dev_err(&h->pdev->dev, "too many devices, some will be "
511 			"inaccessible.\n");
512 		return -1;
513 	}
514 
515 	/* physical devices do not have lun or target assigned until now. */
516 	if (device->lun != -1)
517 		/* Logical device, lun is already assigned. */
518 		goto lun_assigned;
519 
520 	/* If this device a non-zero lun of a multi-lun device
521 	 * byte 4 of the 8-byte LUN addr will contain the logical
522 	 * unit no, zero otherise.
523 	 */
524 	if (device->scsi3addr[4] == 0) {
525 		/* This is not a non-zero lun of a multi-lun device */
526 		if (hpsa_find_target_lun(h, device->scsi3addr,
527 			device->bus, &device->target, &device->lun) != 0)
528 			return -1;
529 		goto lun_assigned;
530 	}
531 
532 	/* This is a non-zero lun of a multi-lun device.
533 	 * Search through our list and find the device which
534 	 * has the same 8 byte LUN address, excepting byte 4.
535 	 * Assign the same bus and target for this new LUN.
536 	 * Use the logical unit number from the firmware.
537 	 */
538 	memcpy(addr1, device->scsi3addr, 8);
539 	addr1[4] = 0;
540 	for (i = 0; i < n; i++) {
541 		sd = h->dev[i];
542 		memcpy(addr2, sd->scsi3addr, 8);
543 		addr2[4] = 0;
544 		/* differ only in byte 4? */
545 		if (memcmp(addr1, addr2, 8) == 0) {
546 			device->bus = sd->bus;
547 			device->target = sd->target;
548 			device->lun = device->scsi3addr[4];
549 			break;
550 		}
551 	}
552 	if (device->lun == -1) {
553 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
554 			" suspect firmware bug or unsupported hardware "
555 			"configuration.\n");
556 			return -1;
557 	}
558 
559 lun_assigned:
560 
561 	h->dev[n] = device;
562 	h->ndevices++;
563 	added[*nadded] = device;
564 	(*nadded)++;
565 
566 	/* initially, (before registering with scsi layer) we don't
567 	 * know our hostno and we don't want to print anything first
568 	 * time anyway (the scsi layer's inquiries will show that info)
569 	 */
570 	/* if (hostno != -1) */
571 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
572 			scsi_device_type(device->devtype), hostno,
573 			device->bus, device->target, device->lun);
574 	return 0;
575 }
576 
577 /* Replace an entry from h->dev[] array. */
578 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
579 	int entry, struct hpsa_scsi_dev_t *new_entry,
580 	struct hpsa_scsi_dev_t *added[], int *nadded,
581 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
582 {
583 	/* assumes h->devlock is held */
584 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
585 	removed[*nremoved] = h->dev[entry];
586 	(*nremoved)++;
587 	h->dev[entry] = new_entry;
588 	added[*nadded] = new_entry;
589 	(*nadded)++;
590 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
591 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
592 			new_entry->target, new_entry->lun);
593 }
594 
595 /* Remove an entry from h->dev[] array. */
596 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
597 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
598 {
599 	/* assumes h->devlock is held */
600 	int i;
601 	struct hpsa_scsi_dev_t *sd;
602 
603 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
604 
605 	sd = h->dev[entry];
606 	removed[*nremoved] = h->dev[entry];
607 	(*nremoved)++;
608 
609 	for (i = entry; i < h->ndevices-1; i++)
610 		h->dev[i] = h->dev[i+1];
611 	h->ndevices--;
612 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
613 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
614 		sd->lun);
615 }
616 
617 #define SCSI3ADDR_EQ(a, b) ( \
618 	(a)[7] == (b)[7] && \
619 	(a)[6] == (b)[6] && \
620 	(a)[5] == (b)[5] && \
621 	(a)[4] == (b)[4] && \
622 	(a)[3] == (b)[3] && \
623 	(a)[2] == (b)[2] && \
624 	(a)[1] == (b)[1] && \
625 	(a)[0] == (b)[0])
626 
627 static void fixup_botched_add(struct ctlr_info *h,
628 	struct hpsa_scsi_dev_t *added)
629 {
630 	/* called when scsi_add_device fails in order to re-adjust
631 	 * h->dev[] to match the mid layer's view.
632 	 */
633 	unsigned long flags;
634 	int i, j;
635 
636 	spin_lock_irqsave(&h->lock, flags);
637 	for (i = 0; i < h->ndevices; i++) {
638 		if (h->dev[i] == added) {
639 			for (j = i; j < h->ndevices-1; j++)
640 				h->dev[j] = h->dev[j+1];
641 			h->ndevices--;
642 			break;
643 		}
644 	}
645 	spin_unlock_irqrestore(&h->lock, flags);
646 	kfree(added);
647 }
648 
649 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
650 	struct hpsa_scsi_dev_t *dev2)
651 {
652 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
653 		(dev1->lun != -1 && dev2->lun != -1)) &&
654 		dev1->devtype != 0x0C)
655 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
656 
657 	/* we compare everything except lun and target as these
658 	 * are not yet assigned.  Compare parts likely
659 	 * to differ first
660 	 */
661 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
662 		sizeof(dev1->scsi3addr)) != 0)
663 		return 0;
664 	if (memcmp(dev1->device_id, dev2->device_id,
665 		sizeof(dev1->device_id)) != 0)
666 		return 0;
667 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
668 		return 0;
669 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
670 		return 0;
671 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
672 		return 0;
673 	if (dev1->devtype != dev2->devtype)
674 		return 0;
675 	if (dev1->raid_level != dev2->raid_level)
676 		return 0;
677 	if (dev1->bus != dev2->bus)
678 		return 0;
679 	return 1;
680 }
681 
682 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
683  * and return needle location in *index.  If scsi3addr matches, but not
684  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
685  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
686  */
687 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
688 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
689 	int *index)
690 {
691 	int i;
692 #define DEVICE_NOT_FOUND 0
693 #define DEVICE_CHANGED 1
694 #define DEVICE_SAME 2
695 	for (i = 0; i < haystack_size; i++) {
696 		if (haystack[i] == NULL) /* previously removed. */
697 			continue;
698 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
699 			*index = i;
700 			if (device_is_the_same(needle, haystack[i]))
701 				return DEVICE_SAME;
702 			else
703 				return DEVICE_CHANGED;
704 		}
705 	}
706 	*index = -1;
707 	return DEVICE_NOT_FOUND;
708 }
709 
710 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
711 	struct hpsa_scsi_dev_t *sd[], int nsds)
712 {
713 	/* sd contains scsi3 addresses and devtypes, and inquiry
714 	 * data.  This function takes what's in sd to be the current
715 	 * reality and updates h->dev[] to reflect that reality.
716 	 */
717 	int i, entry, device_change, changes = 0;
718 	struct hpsa_scsi_dev_t *csd;
719 	unsigned long flags;
720 	struct hpsa_scsi_dev_t **added, **removed;
721 	int nadded, nremoved;
722 	struct Scsi_Host *sh = NULL;
723 
724 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
725 		GFP_KERNEL);
726 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
727 		GFP_KERNEL);
728 
729 	if (!added || !removed) {
730 		dev_warn(&h->pdev->dev, "out of memory in "
731 			"adjust_hpsa_scsi_table\n");
732 		goto free_and_out;
733 	}
734 
735 	spin_lock_irqsave(&h->devlock, flags);
736 
737 	/* find any devices in h->dev[] that are not in
738 	 * sd[] and remove them from h->dev[], and for any
739 	 * devices which have changed, remove the old device
740 	 * info and add the new device info.
741 	 */
742 	i = 0;
743 	nremoved = 0;
744 	nadded = 0;
745 	while (i < h->ndevices) {
746 		csd = h->dev[i];
747 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
748 		if (device_change == DEVICE_NOT_FOUND) {
749 			changes++;
750 			hpsa_scsi_remove_entry(h, hostno, i,
751 				removed, &nremoved);
752 			continue; /* remove ^^^, hence i not incremented */
753 		} else if (device_change == DEVICE_CHANGED) {
754 			changes++;
755 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
756 				added, &nadded, removed, &nremoved);
757 			/* Set it to NULL to prevent it from being freed
758 			 * at the bottom of hpsa_update_scsi_devices()
759 			 */
760 			sd[entry] = NULL;
761 		}
762 		i++;
763 	}
764 
765 	/* Now, make sure every device listed in sd[] is also
766 	 * listed in h->dev[], adding them if they aren't found
767 	 */
768 
769 	for (i = 0; i < nsds; i++) {
770 		if (!sd[i]) /* if already added above. */
771 			continue;
772 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
773 					h->ndevices, &entry);
774 		if (device_change == DEVICE_NOT_FOUND) {
775 			changes++;
776 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
777 				added, &nadded) != 0)
778 				break;
779 			sd[i] = NULL; /* prevent from being freed later. */
780 		} else if (device_change == DEVICE_CHANGED) {
781 			/* should never happen... */
782 			changes++;
783 			dev_warn(&h->pdev->dev,
784 				"device unexpectedly changed.\n");
785 			/* but if it does happen, we just ignore that device */
786 		}
787 	}
788 	spin_unlock_irqrestore(&h->devlock, flags);
789 
790 	/* Don't notify scsi mid layer of any changes the first time through
791 	 * (or if there are no changes) scsi_scan_host will do it later the
792 	 * first time through.
793 	 */
794 	if (hostno == -1 || !changes)
795 		goto free_and_out;
796 
797 	sh = h->scsi_host;
798 	/* Notify scsi mid layer of any removed devices */
799 	for (i = 0; i < nremoved; i++) {
800 		struct scsi_device *sdev =
801 			scsi_device_lookup(sh, removed[i]->bus,
802 				removed[i]->target, removed[i]->lun);
803 		if (sdev != NULL) {
804 			scsi_remove_device(sdev);
805 			scsi_device_put(sdev);
806 		} else {
807 			/* We don't expect to get here.
808 			 * future cmds to this device will get selection
809 			 * timeout as if the device was gone.
810 			 */
811 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
812 				" for removal.", hostno, removed[i]->bus,
813 				removed[i]->target, removed[i]->lun);
814 		}
815 		kfree(removed[i]);
816 		removed[i] = NULL;
817 	}
818 
819 	/* Notify scsi mid layer of any added devices */
820 	for (i = 0; i < nadded; i++) {
821 		if (scsi_add_device(sh, added[i]->bus,
822 			added[i]->target, added[i]->lun) == 0)
823 			continue;
824 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
825 			"device not added.\n", hostno, added[i]->bus,
826 			added[i]->target, added[i]->lun);
827 		/* now we have to remove it from h->dev,
828 		 * since it didn't get added to scsi mid layer
829 		 */
830 		fixup_botched_add(h, added[i]);
831 	}
832 
833 free_and_out:
834 	kfree(added);
835 	kfree(removed);
836 }
837 
838 /*
839  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
840  * Assume's h->devlock is held.
841  */
842 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
843 	int bus, int target, int lun)
844 {
845 	int i;
846 	struct hpsa_scsi_dev_t *sd;
847 
848 	for (i = 0; i < h->ndevices; i++) {
849 		sd = h->dev[i];
850 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
851 			return sd;
852 	}
853 	return NULL;
854 }
855 
856 /* link sdev->hostdata to our per-device structure. */
857 static int hpsa_slave_alloc(struct scsi_device *sdev)
858 {
859 	struct hpsa_scsi_dev_t *sd;
860 	unsigned long flags;
861 	struct ctlr_info *h;
862 
863 	h = sdev_to_hba(sdev);
864 	spin_lock_irqsave(&h->devlock, flags);
865 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
866 		sdev_id(sdev), sdev->lun);
867 	if (sd != NULL)
868 		sdev->hostdata = sd;
869 	spin_unlock_irqrestore(&h->devlock, flags);
870 	return 0;
871 }
872 
873 static void hpsa_slave_destroy(struct scsi_device *sdev)
874 {
875 	/* nothing to do. */
876 }
877 
878 static void hpsa_scsi_setup(struct ctlr_info *h)
879 {
880 	h->ndevices = 0;
881 	h->scsi_host = NULL;
882 	spin_lock_init(&h->devlock);
883 }
884 
885 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
886 {
887 	int i;
888 
889 	if (!h->cmd_sg_list)
890 		return;
891 	for (i = 0; i < h->nr_cmds; i++) {
892 		kfree(h->cmd_sg_list[i]);
893 		h->cmd_sg_list[i] = NULL;
894 	}
895 	kfree(h->cmd_sg_list);
896 	h->cmd_sg_list = NULL;
897 }
898 
899 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
900 {
901 	int i;
902 
903 	if (h->chainsize <= 0)
904 		return 0;
905 
906 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
907 				GFP_KERNEL);
908 	if (!h->cmd_sg_list)
909 		return -ENOMEM;
910 	for (i = 0; i < h->nr_cmds; i++) {
911 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
912 						h->chainsize, GFP_KERNEL);
913 		if (!h->cmd_sg_list[i])
914 			goto clean;
915 	}
916 	return 0;
917 
918 clean:
919 	hpsa_free_sg_chain_blocks(h);
920 	return -ENOMEM;
921 }
922 
923 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
924 	struct CommandList *c)
925 {
926 	struct SGDescriptor *chain_sg, *chain_block;
927 	u64 temp64;
928 
929 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
930 	chain_block = h->cmd_sg_list[c->cmdindex];
931 	chain_sg->Ext = HPSA_SG_CHAIN;
932 	chain_sg->Len = sizeof(*chain_sg) *
933 		(c->Header.SGTotal - h->max_cmd_sg_entries);
934 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
935 				PCI_DMA_TODEVICE);
936 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
937 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
938 }
939 
940 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
941 	struct CommandList *c)
942 {
943 	struct SGDescriptor *chain_sg;
944 	union u64bit temp64;
945 
946 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
947 		return;
948 
949 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
950 	temp64.val32.lower = chain_sg->Addr.lower;
951 	temp64.val32.upper = chain_sg->Addr.upper;
952 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
953 }
954 
955 static void complete_scsi_command(struct CommandList *cp,
956 	int timeout, u32 tag)
957 {
958 	struct scsi_cmnd *cmd;
959 	struct ctlr_info *h;
960 	struct ErrorInfo *ei;
961 
962 	unsigned char sense_key;
963 	unsigned char asc;      /* additional sense code */
964 	unsigned char ascq;     /* additional sense code qualifier */
965 
966 	ei = cp->err_info;
967 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
968 	h = cp->h;
969 
970 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
971 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
972 		hpsa_unmap_sg_chain_block(h, cp);
973 
974 	cmd->result = (DID_OK << 16); 		/* host byte */
975 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
976 	cmd->result |= ei->ScsiStatus;
977 
978 	/* copy the sense data whether we need to or not. */
979 	memcpy(cmd->sense_buffer, ei->SenseInfo,
980 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
981 			SCSI_SENSE_BUFFERSIZE :
982 			ei->SenseLen);
983 	scsi_set_resid(cmd, ei->ResidualCnt);
984 
985 	if (ei->CommandStatus == 0) {
986 		cmd->scsi_done(cmd);
987 		cmd_free(h, cp);
988 		return;
989 	}
990 
991 	/* an error has occurred */
992 	switch (ei->CommandStatus) {
993 
994 	case CMD_TARGET_STATUS:
995 		if (ei->ScsiStatus) {
996 			/* Get sense key */
997 			sense_key = 0xf & ei->SenseInfo[2];
998 			/* Get additional sense code */
999 			asc = ei->SenseInfo[12];
1000 			/* Get addition sense code qualifier */
1001 			ascq = ei->SenseInfo[13];
1002 		}
1003 
1004 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1005 			if (check_for_unit_attention(h, cp)) {
1006 				cmd->result = DID_SOFT_ERROR << 16;
1007 				break;
1008 			}
1009 			if (sense_key == ILLEGAL_REQUEST) {
1010 				/*
1011 				 * SCSI REPORT_LUNS is commonly unsupported on
1012 				 * Smart Array.  Suppress noisy complaint.
1013 				 */
1014 				if (cp->Request.CDB[0] == REPORT_LUNS)
1015 					break;
1016 
1017 				/* If ASC/ASCQ indicate Logical Unit
1018 				 * Not Supported condition,
1019 				 */
1020 				if ((asc == 0x25) && (ascq == 0x0)) {
1021 					dev_warn(&h->pdev->dev, "cp %p "
1022 						"has check condition\n", cp);
1023 					break;
1024 				}
1025 			}
1026 
1027 			if (sense_key == NOT_READY) {
1028 				/* If Sense is Not Ready, Logical Unit
1029 				 * Not ready, Manual Intervention
1030 				 * required
1031 				 */
1032 				if ((asc == 0x04) && (ascq == 0x03)) {
1033 					dev_warn(&h->pdev->dev, "cp %p "
1034 						"has check condition: unit "
1035 						"not ready, manual "
1036 						"intervention required\n", cp);
1037 					break;
1038 				}
1039 			}
1040 			if (sense_key == ABORTED_COMMAND) {
1041 				/* Aborted command is retryable */
1042 				dev_warn(&h->pdev->dev, "cp %p "
1043 					"has check condition: aborted command: "
1044 					"ASC: 0x%x, ASCQ: 0x%x\n",
1045 					cp, asc, ascq);
1046 				cmd->result = DID_SOFT_ERROR << 16;
1047 				break;
1048 			}
1049 			/* Must be some other type of check condition */
1050 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1051 					"unknown type: "
1052 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1053 					"Returning result: 0x%x, "
1054 					"cmd=[%02x %02x %02x %02x %02x "
1055 					"%02x %02x %02x %02x %02x %02x "
1056 					"%02x %02x %02x %02x %02x]\n",
1057 					cp, sense_key, asc, ascq,
1058 					cmd->result,
1059 					cmd->cmnd[0], cmd->cmnd[1],
1060 					cmd->cmnd[2], cmd->cmnd[3],
1061 					cmd->cmnd[4], cmd->cmnd[5],
1062 					cmd->cmnd[6], cmd->cmnd[7],
1063 					cmd->cmnd[8], cmd->cmnd[9],
1064 					cmd->cmnd[10], cmd->cmnd[11],
1065 					cmd->cmnd[12], cmd->cmnd[13],
1066 					cmd->cmnd[14], cmd->cmnd[15]);
1067 			break;
1068 		}
1069 
1070 
1071 		/* Problem was not a check condition
1072 		 * Pass it up to the upper layers...
1073 		 */
1074 		if (ei->ScsiStatus) {
1075 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1076 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1077 				"Returning result: 0x%x\n",
1078 				cp, ei->ScsiStatus,
1079 				sense_key, asc, ascq,
1080 				cmd->result);
1081 		} else {  /* scsi status is zero??? How??? */
1082 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1083 				"Returning no connection.\n", cp),
1084 
1085 			/* Ordinarily, this case should never happen,
1086 			 * but there is a bug in some released firmware
1087 			 * revisions that allows it to happen if, for
1088 			 * example, a 4100 backplane loses power and
1089 			 * the tape drive is in it.  We assume that
1090 			 * it's a fatal error of some kind because we
1091 			 * can't show that it wasn't. We will make it
1092 			 * look like selection timeout since that is
1093 			 * the most common reason for this to occur,
1094 			 * and it's severe enough.
1095 			 */
1096 
1097 			cmd->result = DID_NO_CONNECT << 16;
1098 		}
1099 		break;
1100 
1101 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1102 		break;
1103 	case CMD_DATA_OVERRUN:
1104 		dev_warn(&h->pdev->dev, "cp %p has"
1105 			" completed with data overrun "
1106 			"reported\n", cp);
1107 		break;
1108 	case CMD_INVALID: {
1109 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1110 		print_cmd(cp); */
1111 		/* We get CMD_INVALID if you address a non-existent device
1112 		 * instead of a selection timeout (no response).  You will
1113 		 * see this if you yank out a drive, then try to access it.
1114 		 * This is kind of a shame because it means that any other
1115 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1116 		 * missing target. */
1117 		cmd->result = DID_NO_CONNECT << 16;
1118 	}
1119 		break;
1120 	case CMD_PROTOCOL_ERR:
1121 		dev_warn(&h->pdev->dev, "cp %p has "
1122 			"protocol error \n", cp);
1123 		break;
1124 	case CMD_HARDWARE_ERR:
1125 		cmd->result = DID_ERROR << 16;
1126 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1127 		break;
1128 	case CMD_CONNECTION_LOST:
1129 		cmd->result = DID_ERROR << 16;
1130 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1131 		break;
1132 	case CMD_ABORTED:
1133 		cmd->result = DID_ABORT << 16;
1134 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1135 				cp, ei->ScsiStatus);
1136 		break;
1137 	case CMD_ABORT_FAILED:
1138 		cmd->result = DID_ERROR << 16;
1139 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1140 		break;
1141 	case CMD_UNSOLICITED_ABORT:
1142 		cmd->result = DID_RESET << 16;
1143 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1144 			"abort\n", cp);
1145 		break;
1146 	case CMD_TIMEOUT:
1147 		cmd->result = DID_TIME_OUT << 16;
1148 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1149 		break;
1150 	default:
1151 		cmd->result = DID_ERROR << 16;
1152 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1153 				cp, ei->CommandStatus);
1154 	}
1155 	cmd->scsi_done(cmd);
1156 	cmd_free(h, cp);
1157 }
1158 
1159 static int hpsa_scsi_detect(struct ctlr_info *h)
1160 {
1161 	struct Scsi_Host *sh;
1162 	int error;
1163 
1164 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1165 	if (sh == NULL)
1166 		goto fail;
1167 
1168 	sh->io_port = 0;
1169 	sh->n_io_port = 0;
1170 	sh->this_id = -1;
1171 	sh->max_channel = 3;
1172 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1173 	sh->max_lun = HPSA_MAX_LUN;
1174 	sh->max_id = HPSA_MAX_LUN;
1175 	sh->can_queue = h->nr_cmds;
1176 	sh->cmd_per_lun = h->nr_cmds;
1177 	sh->sg_tablesize = h->maxsgentries;
1178 	h->scsi_host = sh;
1179 	sh->hostdata[0] = (unsigned long) h;
1180 	sh->irq = h->intr[PERF_MODE_INT];
1181 	sh->unique_id = sh->irq;
1182 	error = scsi_add_host(sh, &h->pdev->dev);
1183 	if (error)
1184 		goto fail_host_put;
1185 	scsi_scan_host(sh);
1186 	return 0;
1187 
1188  fail_host_put:
1189 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1190 		" failed for controller %d\n", h->ctlr);
1191 	scsi_host_put(sh);
1192 	return error;
1193  fail:
1194 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1195 		" failed for controller %d\n", h->ctlr);
1196 	return -ENOMEM;
1197 }
1198 
1199 static void hpsa_pci_unmap(struct pci_dev *pdev,
1200 	struct CommandList *c, int sg_used, int data_direction)
1201 {
1202 	int i;
1203 	union u64bit addr64;
1204 
1205 	for (i = 0; i < sg_used; i++) {
1206 		addr64.val32.lower = c->SG[i].Addr.lower;
1207 		addr64.val32.upper = c->SG[i].Addr.upper;
1208 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1209 			data_direction);
1210 	}
1211 }
1212 
1213 static void hpsa_map_one(struct pci_dev *pdev,
1214 		struct CommandList *cp,
1215 		unsigned char *buf,
1216 		size_t buflen,
1217 		int data_direction)
1218 {
1219 	u64 addr64;
1220 
1221 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1222 		cp->Header.SGList = 0;
1223 		cp->Header.SGTotal = 0;
1224 		return;
1225 	}
1226 
1227 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1228 	cp->SG[0].Addr.lower =
1229 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1230 	cp->SG[0].Addr.upper =
1231 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1232 	cp->SG[0].Len = buflen;
1233 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1234 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1235 }
1236 
1237 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1238 	struct CommandList *c)
1239 {
1240 	DECLARE_COMPLETION_ONSTACK(wait);
1241 
1242 	c->waiting = &wait;
1243 	enqueue_cmd_and_start_io(h, c);
1244 	wait_for_completion(&wait);
1245 }
1246 
1247 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1248 	struct CommandList *c, int data_direction)
1249 {
1250 	int retry_count = 0;
1251 
1252 	do {
1253 		memset(c->err_info, 0, sizeof(c->err_info));
1254 		hpsa_scsi_do_simple_cmd_core(h, c);
1255 		retry_count++;
1256 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1257 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1258 }
1259 
1260 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1261 {
1262 	struct ErrorInfo *ei;
1263 	struct device *d = &cp->h->pdev->dev;
1264 
1265 	ei = cp->err_info;
1266 	switch (ei->CommandStatus) {
1267 	case CMD_TARGET_STATUS:
1268 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1269 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1270 				ei->ScsiStatus);
1271 		if (ei->ScsiStatus == 0)
1272 			dev_warn(d, "SCSI status is abnormally zero.  "
1273 			"(probably indicates selection timeout "
1274 			"reported incorrectly due to a known "
1275 			"firmware bug, circa July, 2001.)\n");
1276 		break;
1277 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1278 			dev_info(d, "UNDERRUN\n");
1279 		break;
1280 	case CMD_DATA_OVERRUN:
1281 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1282 		break;
1283 	case CMD_INVALID: {
1284 		/* controller unfortunately reports SCSI passthru's
1285 		 * to non-existent targets as invalid commands.
1286 		 */
1287 		dev_warn(d, "cp %p is reported invalid (probably means "
1288 			"target device no longer present)\n", cp);
1289 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1290 		print_cmd(cp);  */
1291 		}
1292 		break;
1293 	case CMD_PROTOCOL_ERR:
1294 		dev_warn(d, "cp %p has protocol error \n", cp);
1295 		break;
1296 	case CMD_HARDWARE_ERR:
1297 		/* cmd->result = DID_ERROR << 16; */
1298 		dev_warn(d, "cp %p had hardware error\n", cp);
1299 		break;
1300 	case CMD_CONNECTION_LOST:
1301 		dev_warn(d, "cp %p had connection lost\n", cp);
1302 		break;
1303 	case CMD_ABORTED:
1304 		dev_warn(d, "cp %p was aborted\n", cp);
1305 		break;
1306 	case CMD_ABORT_FAILED:
1307 		dev_warn(d, "cp %p reports abort failed\n", cp);
1308 		break;
1309 	case CMD_UNSOLICITED_ABORT:
1310 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1311 		break;
1312 	case CMD_TIMEOUT:
1313 		dev_warn(d, "cp %p timed out\n", cp);
1314 		break;
1315 	default:
1316 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1317 				ei->CommandStatus);
1318 	}
1319 }
1320 
1321 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1322 			unsigned char page, unsigned char *buf,
1323 			unsigned char bufsize)
1324 {
1325 	int rc = IO_OK;
1326 	struct CommandList *c;
1327 	struct ErrorInfo *ei;
1328 
1329 	c = cmd_special_alloc(h);
1330 
1331 	if (c == NULL) {			/* trouble... */
1332 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1333 		return -ENOMEM;
1334 	}
1335 
1336 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1337 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1338 	ei = c->err_info;
1339 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1340 		hpsa_scsi_interpret_error(c);
1341 		rc = -1;
1342 	}
1343 	cmd_special_free(h, c);
1344 	return rc;
1345 }
1346 
1347 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1348 {
1349 	int rc = IO_OK;
1350 	struct CommandList *c;
1351 	struct ErrorInfo *ei;
1352 
1353 	c = cmd_special_alloc(h);
1354 
1355 	if (c == NULL) {			/* trouble... */
1356 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1357 		return -ENOMEM;
1358 	}
1359 
1360 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1361 	hpsa_scsi_do_simple_cmd_core(h, c);
1362 	/* no unmap needed here because no data xfer. */
1363 
1364 	ei = c->err_info;
1365 	if (ei->CommandStatus != 0) {
1366 		hpsa_scsi_interpret_error(c);
1367 		rc = -1;
1368 	}
1369 	cmd_special_free(h, c);
1370 	return rc;
1371 }
1372 
1373 static void hpsa_get_raid_level(struct ctlr_info *h,
1374 	unsigned char *scsi3addr, unsigned char *raid_level)
1375 {
1376 	int rc;
1377 	unsigned char *buf;
1378 
1379 	*raid_level = RAID_UNKNOWN;
1380 	buf = kzalloc(64, GFP_KERNEL);
1381 	if (!buf)
1382 		return;
1383 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1384 	if (rc == 0)
1385 		*raid_level = buf[8];
1386 	if (*raid_level > RAID_UNKNOWN)
1387 		*raid_level = RAID_UNKNOWN;
1388 	kfree(buf);
1389 	return;
1390 }
1391 
1392 /* Get the device id from inquiry page 0x83 */
1393 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1394 	unsigned char *device_id, int buflen)
1395 {
1396 	int rc;
1397 	unsigned char *buf;
1398 
1399 	if (buflen > 16)
1400 		buflen = 16;
1401 	buf = kzalloc(64, GFP_KERNEL);
1402 	if (!buf)
1403 		return -1;
1404 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1405 	if (rc == 0)
1406 		memcpy(device_id, &buf[8], buflen);
1407 	kfree(buf);
1408 	return rc != 0;
1409 }
1410 
1411 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1412 		struct ReportLUNdata *buf, int bufsize,
1413 		int extended_response)
1414 {
1415 	int rc = IO_OK;
1416 	struct CommandList *c;
1417 	unsigned char scsi3addr[8];
1418 	struct ErrorInfo *ei;
1419 
1420 	c = cmd_special_alloc(h);
1421 	if (c == NULL) {			/* trouble... */
1422 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1423 		return -1;
1424 	}
1425 	/* address the controller */
1426 	memset(scsi3addr, 0, sizeof(scsi3addr));
1427 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1428 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1429 	if (extended_response)
1430 		c->Request.CDB[1] = extended_response;
1431 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1432 	ei = c->err_info;
1433 	if (ei->CommandStatus != 0 &&
1434 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1435 		hpsa_scsi_interpret_error(c);
1436 		rc = -1;
1437 	}
1438 	cmd_special_free(h, c);
1439 	return rc;
1440 }
1441 
1442 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1443 		struct ReportLUNdata *buf,
1444 		int bufsize, int extended_response)
1445 {
1446 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1447 }
1448 
1449 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1450 		struct ReportLUNdata *buf, int bufsize)
1451 {
1452 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1453 }
1454 
1455 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1456 	int bus, int target, int lun)
1457 {
1458 	device->bus = bus;
1459 	device->target = target;
1460 	device->lun = lun;
1461 }
1462 
1463 static int hpsa_update_device_info(struct ctlr_info *h,
1464 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1465 {
1466 #define OBDR_TAPE_INQ_SIZE 49
1467 	unsigned char *inq_buff;
1468 
1469 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1470 	if (!inq_buff)
1471 		goto bail_out;
1472 
1473 	/* Do an inquiry to the device to see what it is. */
1474 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1475 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1476 		/* Inquiry failed (msg printed already) */
1477 		dev_err(&h->pdev->dev,
1478 			"hpsa_update_device_info: inquiry failed\n");
1479 		goto bail_out;
1480 	}
1481 
1482 	this_device->devtype = (inq_buff[0] & 0x1f);
1483 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1484 	memcpy(this_device->vendor, &inq_buff[8],
1485 		sizeof(this_device->vendor));
1486 	memcpy(this_device->model, &inq_buff[16],
1487 		sizeof(this_device->model));
1488 	memcpy(this_device->revision, &inq_buff[32],
1489 		sizeof(this_device->revision));
1490 	memset(this_device->device_id, 0,
1491 		sizeof(this_device->device_id));
1492 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1493 		sizeof(this_device->device_id));
1494 
1495 	if (this_device->devtype == TYPE_DISK &&
1496 		is_logical_dev_addr_mode(scsi3addr))
1497 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1498 	else
1499 		this_device->raid_level = RAID_UNKNOWN;
1500 
1501 	kfree(inq_buff);
1502 	return 0;
1503 
1504 bail_out:
1505 	kfree(inq_buff);
1506 	return 1;
1507 }
1508 
1509 static unsigned char *msa2xxx_model[] = {
1510 	"MSA2012",
1511 	"MSA2024",
1512 	"MSA2312",
1513 	"MSA2324",
1514 	NULL,
1515 };
1516 
1517 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1518 {
1519 	int i;
1520 
1521 	for (i = 0; msa2xxx_model[i]; i++)
1522 		if (strncmp(device->model, msa2xxx_model[i],
1523 			strlen(msa2xxx_model[i])) == 0)
1524 			return 1;
1525 	return 0;
1526 }
1527 
1528 /* Helper function to assign bus, target, lun mapping of devices.
1529  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1530  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1531  * Logical drive target and lun are assigned at this time, but
1532  * physical device lun and target assignment are deferred (assigned
1533  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1534  */
1535 static void figure_bus_target_lun(struct ctlr_info *h,
1536 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1537 	struct hpsa_scsi_dev_t *device)
1538 {
1539 	u32 lunid;
1540 
1541 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1542 		/* logical device */
1543 		if (unlikely(is_scsi_rev_5(h))) {
1544 			/* p1210m, logical drives lun assignments
1545 			 * match SCSI REPORT LUNS data.
1546 			 */
1547 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1548 			*bus = 0;
1549 			*target = 0;
1550 			*lun = (lunid & 0x3fff) + 1;
1551 		} else {
1552 			/* not p1210m... */
1553 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1554 			if (is_msa2xxx(h, device)) {
1555 				/* msa2xxx way, put logicals on bus 1
1556 				 * and match target/lun numbers box
1557 				 * reports.
1558 				 */
1559 				*bus = 1;
1560 				*target = (lunid >> 16) & 0x3fff;
1561 				*lun = lunid & 0x00ff;
1562 			} else {
1563 				/* Traditional smart array way. */
1564 				*bus = 0;
1565 				*lun = 0;
1566 				*target = lunid & 0x3fff;
1567 			}
1568 		}
1569 	} else {
1570 		/* physical device */
1571 		if (is_hba_lunid(lunaddrbytes))
1572 			if (unlikely(is_scsi_rev_5(h))) {
1573 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1574 				*target = 0;
1575 				*lun = 0;
1576 				return;
1577 			} else
1578 				*bus = 3; /* traditional smartarray */
1579 		else
1580 			*bus = 2; /* physical disk */
1581 		*target = -1;
1582 		*lun = -1; /* we will fill these in later. */
1583 	}
1584 }
1585 
1586 /*
1587  * If there is no lun 0 on a target, linux won't find any devices.
1588  * For the MSA2xxx boxes, we have to manually detect the enclosure
1589  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1590  * it for some reason.  *tmpdevice is the target we're adding,
1591  * this_device is a pointer into the current element of currentsd[]
1592  * that we're building up in update_scsi_devices(), below.
1593  * lunzerobits is a bitmap that tracks which targets already have a
1594  * lun 0 assigned.
1595  * Returns 1 if an enclosure was added, 0 if not.
1596  */
1597 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1598 	struct hpsa_scsi_dev_t *tmpdevice,
1599 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1600 	int bus, int target, int lun, unsigned long lunzerobits[],
1601 	int *nmsa2xxx_enclosures)
1602 {
1603 	unsigned char scsi3addr[8];
1604 
1605 	if (test_bit(target, lunzerobits))
1606 		return 0; /* There is already a lun 0 on this target. */
1607 
1608 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1609 		return 0; /* It's the logical targets that may lack lun 0. */
1610 
1611 	if (!is_msa2xxx(h, tmpdevice))
1612 		return 0; /* It's only the MSA2xxx that have this problem. */
1613 
1614 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1615 		return 0;
1616 
1617 	if (is_hba_lunid(scsi3addr))
1618 		return 0; /* Don't add the RAID controller here. */
1619 
1620 	if (is_scsi_rev_5(h))
1621 		return 0; /* p1210m doesn't need to do this. */
1622 
1623 #define MAX_MSA2XXX_ENCLOSURES 32
1624 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1625 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1626 			"enclosures exceeded.  Check your hardware "
1627 			"configuration.");
1628 		return 0;
1629 	}
1630 
1631 	memset(scsi3addr, 0, 8);
1632 	scsi3addr[3] = target;
1633 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1634 		return 0;
1635 	(*nmsa2xxx_enclosures)++;
1636 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1637 	set_bit(target, lunzerobits);
1638 	return 1;
1639 }
1640 
1641 /*
1642  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1643  * logdev.  The number of luns in physdev and logdev are returned in
1644  * *nphysicals and *nlogicals, respectively.
1645  * Returns 0 on success, -1 otherwise.
1646  */
1647 static int hpsa_gather_lun_info(struct ctlr_info *h,
1648 	int reportlunsize,
1649 	struct ReportLUNdata *physdev, u32 *nphysicals,
1650 	struct ReportLUNdata *logdev, u32 *nlogicals)
1651 {
1652 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1653 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1654 		return -1;
1655 	}
1656 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1657 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1658 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1659 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1660 			*nphysicals - HPSA_MAX_PHYS_LUN);
1661 		*nphysicals = HPSA_MAX_PHYS_LUN;
1662 	}
1663 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1664 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1665 		return -1;
1666 	}
1667 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1668 	/* Reject Logicals in excess of our max capability. */
1669 	if (*nlogicals > HPSA_MAX_LUN) {
1670 		dev_warn(&h->pdev->dev,
1671 			"maximum logical LUNs (%d) exceeded.  "
1672 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1673 			*nlogicals - HPSA_MAX_LUN);
1674 			*nlogicals = HPSA_MAX_LUN;
1675 	}
1676 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1677 		dev_warn(&h->pdev->dev,
1678 			"maximum logical + physical LUNs (%d) exceeded. "
1679 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1680 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1681 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1682 	}
1683 	return 0;
1684 }
1685 
1686 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1687 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1688 	struct ReportLUNdata *logdev_list)
1689 {
1690 	/* Helper function, figure out where the LUN ID info is coming from
1691 	 * given index i, lists of physical and logical devices, where in
1692 	 * the list the raid controller is supposed to appear (first or last)
1693 	 */
1694 
1695 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1696 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1697 
1698 	if (i == raid_ctlr_position)
1699 		return RAID_CTLR_LUNID;
1700 
1701 	if (i < logicals_start)
1702 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1703 
1704 	if (i < last_device)
1705 		return &logdev_list->LUN[i - nphysicals -
1706 			(raid_ctlr_position == 0)][0];
1707 	BUG();
1708 	return NULL;
1709 }
1710 
1711 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1712 {
1713 	/* the idea here is we could get notified
1714 	 * that some devices have changed, so we do a report
1715 	 * physical luns and report logical luns cmd, and adjust
1716 	 * our list of devices accordingly.
1717 	 *
1718 	 * The scsi3addr's of devices won't change so long as the
1719 	 * adapter is not reset.  That means we can rescan and
1720 	 * tell which devices we already know about, vs. new
1721 	 * devices, vs.  disappearing devices.
1722 	 */
1723 	struct ReportLUNdata *physdev_list = NULL;
1724 	struct ReportLUNdata *logdev_list = NULL;
1725 	unsigned char *inq_buff = NULL;
1726 	u32 nphysicals = 0;
1727 	u32 nlogicals = 0;
1728 	u32 ndev_allocated = 0;
1729 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1730 	int ncurrent = 0;
1731 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1732 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1733 	int bus, target, lun;
1734 	int raid_ctlr_position;
1735 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1736 
1737 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1738 		GFP_KERNEL);
1739 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1740 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1741 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1742 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1743 
1744 	if (!currentsd || !physdev_list || !logdev_list ||
1745 		!inq_buff || !tmpdevice) {
1746 		dev_err(&h->pdev->dev, "out of memory\n");
1747 		goto out;
1748 	}
1749 	memset(lunzerobits, 0, sizeof(lunzerobits));
1750 
1751 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1752 			logdev_list, &nlogicals))
1753 		goto out;
1754 
1755 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1756 	 * but each of them 4 times through different paths.  The plus 1
1757 	 * is for the RAID controller.
1758 	 */
1759 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1760 
1761 	/* Allocate the per device structures */
1762 	for (i = 0; i < ndevs_to_allocate; i++) {
1763 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1764 		if (!currentsd[i]) {
1765 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1766 				__FILE__, __LINE__);
1767 			goto out;
1768 		}
1769 		ndev_allocated++;
1770 	}
1771 
1772 	if (unlikely(is_scsi_rev_5(h)))
1773 		raid_ctlr_position = 0;
1774 	else
1775 		raid_ctlr_position = nphysicals + nlogicals;
1776 
1777 	/* adjust our table of devices */
1778 	nmsa2xxx_enclosures = 0;
1779 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1780 		u8 *lunaddrbytes;
1781 
1782 		/* Figure out where the LUN ID info is coming from */
1783 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1784 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1785 		/* skip masked physical devices. */
1786 		if (lunaddrbytes[3] & 0xC0 &&
1787 			i < nphysicals + (raid_ctlr_position == 0))
1788 			continue;
1789 
1790 		/* Get device type, vendor, model, device id */
1791 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1792 			continue; /* skip it if we can't talk to it. */
1793 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1794 			tmpdevice);
1795 		this_device = currentsd[ncurrent];
1796 
1797 		/*
1798 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1799 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1800 		 * is nonetheless an enclosure device there.  We have to
1801 		 * present that otherwise linux won't find anything if
1802 		 * there is no lun 0.
1803 		 */
1804 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1805 				lunaddrbytes, bus, target, lun, lunzerobits,
1806 				&nmsa2xxx_enclosures)) {
1807 			ncurrent++;
1808 			this_device = currentsd[ncurrent];
1809 		}
1810 
1811 		*this_device = *tmpdevice;
1812 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1813 
1814 		switch (this_device->devtype) {
1815 		case TYPE_ROM: {
1816 			/* We don't *really* support actual CD-ROM devices,
1817 			 * just "One Button Disaster Recovery" tape drive
1818 			 * which temporarily pretends to be a CD-ROM drive.
1819 			 * So we check that the device is really an OBDR tape
1820 			 * device by checking for "$DR-10" in bytes 43-48 of
1821 			 * the inquiry data.
1822 			 */
1823 				char obdr_sig[7];
1824 #define OBDR_TAPE_SIG "$DR-10"
1825 				strncpy(obdr_sig, &inq_buff[43], 6);
1826 				obdr_sig[6] = '\0';
1827 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1828 					/* Not OBDR device, ignore it. */
1829 					break;
1830 			}
1831 			ncurrent++;
1832 			break;
1833 		case TYPE_DISK:
1834 			if (i < nphysicals)
1835 				break;
1836 			ncurrent++;
1837 			break;
1838 		case TYPE_TAPE:
1839 		case TYPE_MEDIUM_CHANGER:
1840 			ncurrent++;
1841 			break;
1842 		case TYPE_RAID:
1843 			/* Only present the Smartarray HBA as a RAID controller.
1844 			 * If it's a RAID controller other than the HBA itself
1845 			 * (an external RAID controller, MSA500 or similar)
1846 			 * don't present it.
1847 			 */
1848 			if (!is_hba_lunid(lunaddrbytes))
1849 				break;
1850 			ncurrent++;
1851 			break;
1852 		default:
1853 			break;
1854 		}
1855 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1856 			break;
1857 	}
1858 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1859 out:
1860 	kfree(tmpdevice);
1861 	for (i = 0; i < ndev_allocated; i++)
1862 		kfree(currentsd[i]);
1863 	kfree(currentsd);
1864 	kfree(inq_buff);
1865 	kfree(physdev_list);
1866 	kfree(logdev_list);
1867 }
1868 
1869 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1870  * dma mapping  and fills in the scatter gather entries of the
1871  * hpsa command, cp.
1872  */
1873 static int hpsa_scatter_gather(struct ctlr_info *h,
1874 		struct CommandList *cp,
1875 		struct scsi_cmnd *cmd)
1876 {
1877 	unsigned int len;
1878 	struct scatterlist *sg;
1879 	u64 addr64;
1880 	int use_sg, i, sg_index, chained;
1881 	struct SGDescriptor *curr_sg;
1882 
1883 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1884 
1885 	use_sg = scsi_dma_map(cmd);
1886 	if (use_sg < 0)
1887 		return use_sg;
1888 
1889 	if (!use_sg)
1890 		goto sglist_finished;
1891 
1892 	curr_sg = cp->SG;
1893 	chained = 0;
1894 	sg_index = 0;
1895 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1896 		if (i == h->max_cmd_sg_entries - 1 &&
1897 			use_sg > h->max_cmd_sg_entries) {
1898 			chained = 1;
1899 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1900 			sg_index = 0;
1901 		}
1902 		addr64 = (u64) sg_dma_address(sg);
1903 		len  = sg_dma_len(sg);
1904 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1905 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1906 		curr_sg->Len = len;
1907 		curr_sg->Ext = 0;  /* we are not chaining */
1908 		curr_sg++;
1909 	}
1910 
1911 	if (use_sg + chained > h->maxSG)
1912 		h->maxSG = use_sg + chained;
1913 
1914 	if (chained) {
1915 		cp->Header.SGList = h->max_cmd_sg_entries;
1916 		cp->Header.SGTotal = (u16) (use_sg + 1);
1917 		hpsa_map_sg_chain_block(h, cp);
1918 		return 0;
1919 	}
1920 
1921 sglist_finished:
1922 
1923 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1924 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1925 	return 0;
1926 }
1927 
1928 
1929 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1930 	void (*done)(struct scsi_cmnd *))
1931 {
1932 	struct ctlr_info *h;
1933 	struct hpsa_scsi_dev_t *dev;
1934 	unsigned char scsi3addr[8];
1935 	struct CommandList *c;
1936 	unsigned long flags;
1937 
1938 	/* Get the ptr to our adapter structure out of cmd->host. */
1939 	h = sdev_to_hba(cmd->device);
1940 	dev = cmd->device->hostdata;
1941 	if (!dev) {
1942 		cmd->result = DID_NO_CONNECT << 16;
1943 		done(cmd);
1944 		return 0;
1945 	}
1946 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1947 
1948 	/* Need a lock as this is being allocated from the pool */
1949 	spin_lock_irqsave(&h->lock, flags);
1950 	c = cmd_alloc(h);
1951 	spin_unlock_irqrestore(&h->lock, flags);
1952 	if (c == NULL) {			/* trouble... */
1953 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1954 		return SCSI_MLQUEUE_HOST_BUSY;
1955 	}
1956 
1957 	/* Fill in the command list header */
1958 
1959 	cmd->scsi_done = done;    /* save this for use by completion code */
1960 
1961 	/* save c in case we have to abort it  */
1962 	cmd->host_scribble = (unsigned char *) c;
1963 
1964 	c->cmd_type = CMD_SCSI;
1965 	c->scsi_cmd = cmd;
1966 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1967 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1968 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1969 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1970 
1971 	/* Fill in the request block... */
1972 
1973 	c->Request.Timeout = 0;
1974 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1975 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1976 	c->Request.CDBLen = cmd->cmd_len;
1977 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1978 	c->Request.Type.Type = TYPE_CMD;
1979 	c->Request.Type.Attribute = ATTR_SIMPLE;
1980 	switch (cmd->sc_data_direction) {
1981 	case DMA_TO_DEVICE:
1982 		c->Request.Type.Direction = XFER_WRITE;
1983 		break;
1984 	case DMA_FROM_DEVICE:
1985 		c->Request.Type.Direction = XFER_READ;
1986 		break;
1987 	case DMA_NONE:
1988 		c->Request.Type.Direction = XFER_NONE;
1989 		break;
1990 	case DMA_BIDIRECTIONAL:
1991 		/* This can happen if a buggy application does a scsi passthru
1992 		 * and sets both inlen and outlen to non-zero. ( see
1993 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1994 		 */
1995 
1996 		c->Request.Type.Direction = XFER_RSVD;
1997 		/* This is technically wrong, and hpsa controllers should
1998 		 * reject it with CMD_INVALID, which is the most correct
1999 		 * response, but non-fibre backends appear to let it
2000 		 * slide by, and give the same results as if this field
2001 		 * were set correctly.  Either way is acceptable for
2002 		 * our purposes here.
2003 		 */
2004 
2005 		break;
2006 
2007 	default:
2008 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2009 			cmd->sc_data_direction);
2010 		BUG();
2011 		break;
2012 	}
2013 
2014 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2015 		cmd_free(h, c);
2016 		return SCSI_MLQUEUE_HOST_BUSY;
2017 	}
2018 	enqueue_cmd_and_start_io(h, c);
2019 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2020 	return 0;
2021 }
2022 
2023 static void hpsa_scan_start(struct Scsi_Host *sh)
2024 {
2025 	struct ctlr_info *h = shost_to_hba(sh);
2026 	unsigned long flags;
2027 
2028 	/* wait until any scan already in progress is finished. */
2029 	while (1) {
2030 		spin_lock_irqsave(&h->scan_lock, flags);
2031 		if (h->scan_finished)
2032 			break;
2033 		spin_unlock_irqrestore(&h->scan_lock, flags);
2034 		wait_event(h->scan_wait_queue, h->scan_finished);
2035 		/* Note: We don't need to worry about a race between this
2036 		 * thread and driver unload because the midlayer will
2037 		 * have incremented the reference count, so unload won't
2038 		 * happen if we're in here.
2039 		 */
2040 	}
2041 	h->scan_finished = 0; /* mark scan as in progress */
2042 	spin_unlock_irqrestore(&h->scan_lock, flags);
2043 
2044 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2045 
2046 	spin_lock_irqsave(&h->scan_lock, flags);
2047 	h->scan_finished = 1; /* mark scan as finished. */
2048 	wake_up_all(&h->scan_wait_queue);
2049 	spin_unlock_irqrestore(&h->scan_lock, flags);
2050 }
2051 
2052 static int hpsa_scan_finished(struct Scsi_Host *sh,
2053 	unsigned long elapsed_time)
2054 {
2055 	struct ctlr_info *h = shost_to_hba(sh);
2056 	unsigned long flags;
2057 	int finished;
2058 
2059 	spin_lock_irqsave(&h->scan_lock, flags);
2060 	finished = h->scan_finished;
2061 	spin_unlock_irqrestore(&h->scan_lock, flags);
2062 	return finished;
2063 }
2064 
2065 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2066 	int qdepth, int reason)
2067 {
2068 	struct ctlr_info *h = sdev_to_hba(sdev);
2069 
2070 	if (reason != SCSI_QDEPTH_DEFAULT)
2071 		return -ENOTSUPP;
2072 
2073 	if (qdepth < 1)
2074 		qdepth = 1;
2075 	else
2076 		if (qdepth > h->nr_cmds)
2077 			qdepth = h->nr_cmds;
2078 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2079 	return sdev->queue_depth;
2080 }
2081 
2082 static void hpsa_unregister_scsi(struct ctlr_info *h)
2083 {
2084 	/* we are being forcibly unloaded, and may not refuse. */
2085 	scsi_remove_host(h->scsi_host);
2086 	scsi_host_put(h->scsi_host);
2087 	h->scsi_host = NULL;
2088 }
2089 
2090 static int hpsa_register_scsi(struct ctlr_info *h)
2091 {
2092 	int rc;
2093 
2094 	rc = hpsa_scsi_detect(h);
2095 	if (rc != 0)
2096 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2097 			" hpsa_scsi_detect(), rc is %d\n", rc);
2098 	return rc;
2099 }
2100 
2101 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2102 	unsigned char lunaddr[])
2103 {
2104 	int rc = 0;
2105 	int count = 0;
2106 	int waittime = 1; /* seconds */
2107 	struct CommandList *c;
2108 
2109 	c = cmd_special_alloc(h);
2110 	if (!c) {
2111 		dev_warn(&h->pdev->dev, "out of memory in "
2112 			"wait_for_device_to_become_ready.\n");
2113 		return IO_ERROR;
2114 	}
2115 
2116 	/* Send test unit ready until device ready, or give up. */
2117 	while (count < HPSA_TUR_RETRY_LIMIT) {
2118 
2119 		/* Wait for a bit.  do this first, because if we send
2120 		 * the TUR right away, the reset will just abort it.
2121 		 */
2122 		msleep(1000 * waittime);
2123 		count++;
2124 
2125 		/* Increase wait time with each try, up to a point. */
2126 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2127 			waittime = waittime * 2;
2128 
2129 		/* Send the Test Unit Ready */
2130 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2131 		hpsa_scsi_do_simple_cmd_core(h, c);
2132 		/* no unmap needed here because no data xfer. */
2133 
2134 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2135 			break;
2136 
2137 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2138 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2139 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2140 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2141 			break;
2142 
2143 		dev_warn(&h->pdev->dev, "waiting %d secs "
2144 			"for device to become ready.\n", waittime);
2145 		rc = 1; /* device not ready. */
2146 	}
2147 
2148 	if (rc)
2149 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2150 	else
2151 		dev_warn(&h->pdev->dev, "device is ready.\n");
2152 
2153 	cmd_special_free(h, c);
2154 	return rc;
2155 }
2156 
2157 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2158  * complaining.  Doing a host- or bus-reset can't do anything good here.
2159  */
2160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2161 {
2162 	int rc;
2163 	struct ctlr_info *h;
2164 	struct hpsa_scsi_dev_t *dev;
2165 
2166 	/* find the controller to which the command to be aborted was sent */
2167 	h = sdev_to_hba(scsicmd->device);
2168 	if (h == NULL) /* paranoia */
2169 		return FAILED;
2170 	dev = scsicmd->device->hostdata;
2171 	if (!dev) {
2172 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2173 			"device lookup failed.\n");
2174 		return FAILED;
2175 	}
2176 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2177 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2178 	/* send a reset to the SCSI LUN which the command was sent to */
2179 	rc = hpsa_send_reset(h, dev->scsi3addr);
2180 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2181 		return SUCCESS;
2182 
2183 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2184 	return FAILED;
2185 }
2186 
2187 /*
2188  * For operations that cannot sleep, a command block is allocated at init,
2189  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2190  * which ones are free or in use.  Lock must be held when calling this.
2191  * cmd_free() is the complement.
2192  */
2193 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2194 {
2195 	struct CommandList *c;
2196 	int i;
2197 	union u64bit temp64;
2198 	dma_addr_t cmd_dma_handle, err_dma_handle;
2199 
2200 	do {
2201 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2202 		if (i == h->nr_cmds)
2203 			return NULL;
2204 	} while (test_and_set_bit
2205 		 (i & (BITS_PER_LONG - 1),
2206 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2207 	c = h->cmd_pool + i;
2208 	memset(c, 0, sizeof(*c));
2209 	cmd_dma_handle = h->cmd_pool_dhandle
2210 	    + i * sizeof(*c);
2211 	c->err_info = h->errinfo_pool + i;
2212 	memset(c->err_info, 0, sizeof(*c->err_info));
2213 	err_dma_handle = h->errinfo_pool_dhandle
2214 	    + i * sizeof(*c->err_info);
2215 	h->nr_allocs++;
2216 
2217 	c->cmdindex = i;
2218 
2219 	INIT_HLIST_NODE(&c->list);
2220 	c->busaddr = (u32) cmd_dma_handle;
2221 	temp64.val = (u64) err_dma_handle;
2222 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2223 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2224 	c->ErrDesc.Len = sizeof(*c->err_info);
2225 
2226 	c->h = h;
2227 	return c;
2228 }
2229 
2230 /* For operations that can wait for kmalloc to possibly sleep,
2231  * this routine can be called. Lock need not be held to call
2232  * cmd_special_alloc. cmd_special_free() is the complement.
2233  */
2234 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2235 {
2236 	struct CommandList *c;
2237 	union u64bit temp64;
2238 	dma_addr_t cmd_dma_handle, err_dma_handle;
2239 
2240 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2241 	if (c == NULL)
2242 		return NULL;
2243 	memset(c, 0, sizeof(*c));
2244 
2245 	c->cmdindex = -1;
2246 
2247 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2248 		    &err_dma_handle);
2249 
2250 	if (c->err_info == NULL) {
2251 		pci_free_consistent(h->pdev,
2252 			sizeof(*c), c, cmd_dma_handle);
2253 		return NULL;
2254 	}
2255 	memset(c->err_info, 0, sizeof(*c->err_info));
2256 
2257 	INIT_HLIST_NODE(&c->list);
2258 	c->busaddr = (u32) cmd_dma_handle;
2259 	temp64.val = (u64) err_dma_handle;
2260 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2261 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2262 	c->ErrDesc.Len = sizeof(*c->err_info);
2263 
2264 	c->h = h;
2265 	return c;
2266 }
2267 
2268 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2269 {
2270 	int i;
2271 
2272 	i = c - h->cmd_pool;
2273 	clear_bit(i & (BITS_PER_LONG - 1),
2274 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2275 	h->nr_frees++;
2276 }
2277 
2278 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2279 {
2280 	union u64bit temp64;
2281 
2282 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2283 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2284 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2285 			    c->err_info, (dma_addr_t) temp64.val);
2286 	pci_free_consistent(h->pdev, sizeof(*c),
2287 			    c, (dma_addr_t) c->busaddr);
2288 }
2289 
2290 #ifdef CONFIG_COMPAT
2291 
2292 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2293 {
2294 	IOCTL32_Command_struct __user *arg32 =
2295 	    (IOCTL32_Command_struct __user *) arg;
2296 	IOCTL_Command_struct arg64;
2297 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2298 	int err;
2299 	u32 cp;
2300 
2301 	err = 0;
2302 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2303 			   sizeof(arg64.LUN_info));
2304 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2305 			   sizeof(arg64.Request));
2306 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2307 			   sizeof(arg64.error_info));
2308 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2309 	err |= get_user(cp, &arg32->buf);
2310 	arg64.buf = compat_ptr(cp);
2311 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2312 
2313 	if (err)
2314 		return -EFAULT;
2315 
2316 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2317 	if (err)
2318 		return err;
2319 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2320 			 sizeof(arg32->error_info));
2321 	if (err)
2322 		return -EFAULT;
2323 	return err;
2324 }
2325 
2326 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2327 	int cmd, void *arg)
2328 {
2329 	BIG_IOCTL32_Command_struct __user *arg32 =
2330 	    (BIG_IOCTL32_Command_struct __user *) arg;
2331 	BIG_IOCTL_Command_struct arg64;
2332 	BIG_IOCTL_Command_struct __user *p =
2333 	    compat_alloc_user_space(sizeof(arg64));
2334 	int err;
2335 	u32 cp;
2336 
2337 	err = 0;
2338 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2339 			   sizeof(arg64.LUN_info));
2340 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2341 			   sizeof(arg64.Request));
2342 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2343 			   sizeof(arg64.error_info));
2344 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2345 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2346 	err |= get_user(cp, &arg32->buf);
2347 	arg64.buf = compat_ptr(cp);
2348 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2349 
2350 	if (err)
2351 		return -EFAULT;
2352 
2353 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2354 	if (err)
2355 		return err;
2356 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2357 			 sizeof(arg32->error_info));
2358 	if (err)
2359 		return -EFAULT;
2360 	return err;
2361 }
2362 
2363 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2364 {
2365 	switch (cmd) {
2366 	case CCISS_GETPCIINFO:
2367 	case CCISS_GETINTINFO:
2368 	case CCISS_SETINTINFO:
2369 	case CCISS_GETNODENAME:
2370 	case CCISS_SETNODENAME:
2371 	case CCISS_GETHEARTBEAT:
2372 	case CCISS_GETBUSTYPES:
2373 	case CCISS_GETFIRMVER:
2374 	case CCISS_GETDRIVVER:
2375 	case CCISS_REVALIDVOLS:
2376 	case CCISS_DEREGDISK:
2377 	case CCISS_REGNEWDISK:
2378 	case CCISS_REGNEWD:
2379 	case CCISS_RESCANDISK:
2380 	case CCISS_GETLUNINFO:
2381 		return hpsa_ioctl(dev, cmd, arg);
2382 
2383 	case CCISS_PASSTHRU32:
2384 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2385 	case CCISS_BIG_PASSTHRU32:
2386 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2387 
2388 	default:
2389 		return -ENOIOCTLCMD;
2390 	}
2391 }
2392 #endif
2393 
2394 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2395 {
2396 	struct hpsa_pci_info pciinfo;
2397 
2398 	if (!argp)
2399 		return -EINVAL;
2400 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2401 	pciinfo.bus = h->pdev->bus->number;
2402 	pciinfo.dev_fn = h->pdev->devfn;
2403 	pciinfo.board_id = h->board_id;
2404 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2405 		return -EFAULT;
2406 	return 0;
2407 }
2408 
2409 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2410 {
2411 	DriverVer_type DriverVer;
2412 	unsigned char vmaj, vmin, vsubmin;
2413 	int rc;
2414 
2415 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2416 		&vmaj, &vmin, &vsubmin);
2417 	if (rc != 3) {
2418 		dev_info(&h->pdev->dev, "driver version string '%s' "
2419 			"unrecognized.", HPSA_DRIVER_VERSION);
2420 		vmaj = 0;
2421 		vmin = 0;
2422 		vsubmin = 0;
2423 	}
2424 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2425 	if (!argp)
2426 		return -EINVAL;
2427 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2428 		return -EFAULT;
2429 	return 0;
2430 }
2431 
2432 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2433 {
2434 	IOCTL_Command_struct iocommand;
2435 	struct CommandList *c;
2436 	char *buff = NULL;
2437 	union u64bit temp64;
2438 
2439 	if (!argp)
2440 		return -EINVAL;
2441 	if (!capable(CAP_SYS_RAWIO))
2442 		return -EPERM;
2443 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2444 		return -EFAULT;
2445 	if ((iocommand.buf_size < 1) &&
2446 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2447 		return -EINVAL;
2448 	}
2449 	if (iocommand.buf_size > 0) {
2450 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2451 		if (buff == NULL)
2452 			return -EFAULT;
2453 	}
2454 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2455 		/* Copy the data into the buffer we created */
2456 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2457 			kfree(buff);
2458 			return -EFAULT;
2459 		}
2460 	} else
2461 		memset(buff, 0, iocommand.buf_size);
2462 	c = cmd_special_alloc(h);
2463 	if (c == NULL) {
2464 		kfree(buff);
2465 		return -ENOMEM;
2466 	}
2467 	/* Fill in the command type */
2468 	c->cmd_type = CMD_IOCTL_PEND;
2469 	/* Fill in Command Header */
2470 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2471 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2472 		c->Header.SGList = 1;
2473 		c->Header.SGTotal = 1;
2474 	} else	{ /* no buffers to fill */
2475 		c->Header.SGList = 0;
2476 		c->Header.SGTotal = 0;
2477 	}
2478 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2479 	/* use the kernel address the cmd block for tag */
2480 	c->Header.Tag.lower = c->busaddr;
2481 
2482 	/* Fill in Request block */
2483 	memcpy(&c->Request, &iocommand.Request,
2484 		sizeof(c->Request));
2485 
2486 	/* Fill in the scatter gather information */
2487 	if (iocommand.buf_size > 0) {
2488 		temp64.val = pci_map_single(h->pdev, buff,
2489 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2490 		c->SG[0].Addr.lower = temp64.val32.lower;
2491 		c->SG[0].Addr.upper = temp64.val32.upper;
2492 		c->SG[0].Len = iocommand.buf_size;
2493 		c->SG[0].Ext = 0; /* we are not chaining*/
2494 	}
2495 	hpsa_scsi_do_simple_cmd_core(h, c);
2496 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2497 	check_ioctl_unit_attention(h, c);
2498 
2499 	/* Copy the error information out */
2500 	memcpy(&iocommand.error_info, c->err_info,
2501 		sizeof(iocommand.error_info));
2502 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2503 		kfree(buff);
2504 		cmd_special_free(h, c);
2505 		return -EFAULT;
2506 	}
2507 
2508 	if (iocommand.Request.Type.Direction == XFER_READ) {
2509 		/* Copy the data out of the buffer we created */
2510 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2511 			kfree(buff);
2512 			cmd_special_free(h, c);
2513 			return -EFAULT;
2514 		}
2515 	}
2516 	kfree(buff);
2517 	cmd_special_free(h, c);
2518 	return 0;
2519 }
2520 
2521 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2522 {
2523 	BIG_IOCTL_Command_struct *ioc;
2524 	struct CommandList *c;
2525 	unsigned char **buff = NULL;
2526 	int *buff_size = NULL;
2527 	union u64bit temp64;
2528 	BYTE sg_used = 0;
2529 	int status = 0;
2530 	int i;
2531 	u32 left;
2532 	u32 sz;
2533 	BYTE __user *data_ptr;
2534 
2535 	if (!argp)
2536 		return -EINVAL;
2537 	if (!capable(CAP_SYS_RAWIO))
2538 		return -EPERM;
2539 	ioc = (BIG_IOCTL_Command_struct *)
2540 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2541 	if (!ioc) {
2542 		status = -ENOMEM;
2543 		goto cleanup1;
2544 	}
2545 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2546 		status = -EFAULT;
2547 		goto cleanup1;
2548 	}
2549 	if ((ioc->buf_size < 1) &&
2550 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2551 		status = -EINVAL;
2552 		goto cleanup1;
2553 	}
2554 	/* Check kmalloc limits  using all SGs */
2555 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2556 		status = -EINVAL;
2557 		goto cleanup1;
2558 	}
2559 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2560 		status = -EINVAL;
2561 		goto cleanup1;
2562 	}
2563 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2564 	if (!buff) {
2565 		status = -ENOMEM;
2566 		goto cleanup1;
2567 	}
2568 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2569 	if (!buff_size) {
2570 		status = -ENOMEM;
2571 		goto cleanup1;
2572 	}
2573 	left = ioc->buf_size;
2574 	data_ptr = ioc->buf;
2575 	while (left) {
2576 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2577 		buff_size[sg_used] = sz;
2578 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2579 		if (buff[sg_used] == NULL) {
2580 			status = -ENOMEM;
2581 			goto cleanup1;
2582 		}
2583 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2584 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2585 				status = -ENOMEM;
2586 				goto cleanup1;
2587 			}
2588 		} else
2589 			memset(buff[sg_used], 0, sz);
2590 		left -= sz;
2591 		data_ptr += sz;
2592 		sg_used++;
2593 	}
2594 	c = cmd_special_alloc(h);
2595 	if (c == NULL) {
2596 		status = -ENOMEM;
2597 		goto cleanup1;
2598 	}
2599 	c->cmd_type = CMD_IOCTL_PEND;
2600 	c->Header.ReplyQueue = 0;
2601 
2602 	if (ioc->buf_size > 0) {
2603 		c->Header.SGList = sg_used;
2604 		c->Header.SGTotal = sg_used;
2605 	} else {
2606 		c->Header.SGList = 0;
2607 		c->Header.SGTotal = 0;
2608 	}
2609 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2610 	c->Header.Tag.lower = c->busaddr;
2611 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2612 	if (ioc->buf_size > 0) {
2613 		int i;
2614 		for (i = 0; i < sg_used; i++) {
2615 			temp64.val = pci_map_single(h->pdev, buff[i],
2616 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2617 			c->SG[i].Addr.lower = temp64.val32.lower;
2618 			c->SG[i].Addr.upper = temp64.val32.upper;
2619 			c->SG[i].Len = buff_size[i];
2620 			/* we are not chaining */
2621 			c->SG[i].Ext = 0;
2622 		}
2623 	}
2624 	hpsa_scsi_do_simple_cmd_core(h, c);
2625 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2626 	check_ioctl_unit_attention(h, c);
2627 	/* Copy the error information out */
2628 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2629 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2630 		cmd_special_free(h, c);
2631 		status = -EFAULT;
2632 		goto cleanup1;
2633 	}
2634 	if (ioc->Request.Type.Direction == XFER_READ) {
2635 		/* Copy the data out of the buffer we created */
2636 		BYTE __user *ptr = ioc->buf;
2637 		for (i = 0; i < sg_used; i++) {
2638 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2639 				cmd_special_free(h, c);
2640 				status = -EFAULT;
2641 				goto cleanup1;
2642 			}
2643 			ptr += buff_size[i];
2644 		}
2645 	}
2646 	cmd_special_free(h, c);
2647 	status = 0;
2648 cleanup1:
2649 	if (buff) {
2650 		for (i = 0; i < sg_used; i++)
2651 			kfree(buff[i]);
2652 		kfree(buff);
2653 	}
2654 	kfree(buff_size);
2655 	kfree(ioc);
2656 	return status;
2657 }
2658 
2659 static void check_ioctl_unit_attention(struct ctlr_info *h,
2660 	struct CommandList *c)
2661 {
2662 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2663 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2664 		(void) check_for_unit_attention(h, c);
2665 }
2666 /*
2667  * ioctl
2668  */
2669 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2670 {
2671 	struct ctlr_info *h;
2672 	void __user *argp = (void __user *)arg;
2673 
2674 	h = sdev_to_hba(dev);
2675 
2676 	switch (cmd) {
2677 	case CCISS_DEREGDISK:
2678 	case CCISS_REGNEWDISK:
2679 	case CCISS_REGNEWD:
2680 		hpsa_scan_start(h->scsi_host);
2681 		return 0;
2682 	case CCISS_GETPCIINFO:
2683 		return hpsa_getpciinfo_ioctl(h, argp);
2684 	case CCISS_GETDRIVVER:
2685 		return hpsa_getdrivver_ioctl(h, argp);
2686 	case CCISS_PASSTHRU:
2687 		return hpsa_passthru_ioctl(h, argp);
2688 	case CCISS_BIG_PASSTHRU:
2689 		return hpsa_big_passthru_ioctl(h, argp);
2690 	default:
2691 		return -ENOTTY;
2692 	}
2693 }
2694 
2695 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2696 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2697 	int cmd_type)
2698 {
2699 	int pci_dir = XFER_NONE;
2700 
2701 	c->cmd_type = CMD_IOCTL_PEND;
2702 	c->Header.ReplyQueue = 0;
2703 	if (buff != NULL && size > 0) {
2704 		c->Header.SGList = 1;
2705 		c->Header.SGTotal = 1;
2706 	} else {
2707 		c->Header.SGList = 0;
2708 		c->Header.SGTotal = 0;
2709 	}
2710 	c->Header.Tag.lower = c->busaddr;
2711 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2712 
2713 	c->Request.Type.Type = cmd_type;
2714 	if (cmd_type == TYPE_CMD) {
2715 		switch (cmd) {
2716 		case HPSA_INQUIRY:
2717 			/* are we trying to read a vital product page */
2718 			if (page_code != 0) {
2719 				c->Request.CDB[1] = 0x01;
2720 				c->Request.CDB[2] = page_code;
2721 			}
2722 			c->Request.CDBLen = 6;
2723 			c->Request.Type.Attribute = ATTR_SIMPLE;
2724 			c->Request.Type.Direction = XFER_READ;
2725 			c->Request.Timeout = 0;
2726 			c->Request.CDB[0] = HPSA_INQUIRY;
2727 			c->Request.CDB[4] = size & 0xFF;
2728 			break;
2729 		case HPSA_REPORT_LOG:
2730 		case HPSA_REPORT_PHYS:
2731 			/* Talking to controller so It's a physical command
2732 			   mode = 00 target = 0.  Nothing to write.
2733 			 */
2734 			c->Request.CDBLen = 12;
2735 			c->Request.Type.Attribute = ATTR_SIMPLE;
2736 			c->Request.Type.Direction = XFER_READ;
2737 			c->Request.Timeout = 0;
2738 			c->Request.CDB[0] = cmd;
2739 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2740 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2741 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2742 			c->Request.CDB[9] = size & 0xFF;
2743 			break;
2744 		case HPSA_CACHE_FLUSH:
2745 			c->Request.CDBLen = 12;
2746 			c->Request.Type.Attribute = ATTR_SIMPLE;
2747 			c->Request.Type.Direction = XFER_WRITE;
2748 			c->Request.Timeout = 0;
2749 			c->Request.CDB[0] = BMIC_WRITE;
2750 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2751 			break;
2752 		case TEST_UNIT_READY:
2753 			c->Request.CDBLen = 6;
2754 			c->Request.Type.Attribute = ATTR_SIMPLE;
2755 			c->Request.Type.Direction = XFER_NONE;
2756 			c->Request.Timeout = 0;
2757 			break;
2758 		default:
2759 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2760 			BUG();
2761 			return;
2762 		}
2763 	} else if (cmd_type == TYPE_MSG) {
2764 		switch (cmd) {
2765 
2766 		case  HPSA_DEVICE_RESET_MSG:
2767 			c->Request.CDBLen = 16;
2768 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2769 			c->Request.Type.Attribute = ATTR_SIMPLE;
2770 			c->Request.Type.Direction = XFER_NONE;
2771 			c->Request.Timeout = 0; /* Don't time out */
2772 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2773 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2774 			/* If bytes 4-7 are zero, it means reset the */
2775 			/* LunID device */
2776 			c->Request.CDB[4] = 0x00;
2777 			c->Request.CDB[5] = 0x00;
2778 			c->Request.CDB[6] = 0x00;
2779 			c->Request.CDB[7] = 0x00;
2780 		break;
2781 
2782 		default:
2783 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2784 				cmd);
2785 			BUG();
2786 		}
2787 	} else {
2788 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2789 		BUG();
2790 	}
2791 
2792 	switch (c->Request.Type.Direction) {
2793 	case XFER_READ:
2794 		pci_dir = PCI_DMA_FROMDEVICE;
2795 		break;
2796 	case XFER_WRITE:
2797 		pci_dir = PCI_DMA_TODEVICE;
2798 		break;
2799 	case XFER_NONE:
2800 		pci_dir = PCI_DMA_NONE;
2801 		break;
2802 	default:
2803 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2804 	}
2805 
2806 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2807 
2808 	return;
2809 }
2810 
2811 /*
2812  * Map (physical) PCI mem into (virtual) kernel space
2813  */
2814 static void __iomem *remap_pci_mem(ulong base, ulong size)
2815 {
2816 	ulong page_base = ((ulong) base) & PAGE_MASK;
2817 	ulong page_offs = ((ulong) base) - page_base;
2818 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2819 
2820 	return page_remapped ? (page_remapped + page_offs) : NULL;
2821 }
2822 
2823 /* Takes cmds off the submission queue and sends them to the hardware,
2824  * then puts them on the queue of cmds waiting for completion.
2825  */
2826 static void start_io(struct ctlr_info *h)
2827 {
2828 	struct CommandList *c;
2829 
2830 	while (!hlist_empty(&h->reqQ)) {
2831 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2832 		/* can't do anything if fifo is full */
2833 		if ((h->access.fifo_full(h))) {
2834 			dev_warn(&h->pdev->dev, "fifo full\n");
2835 			break;
2836 		}
2837 
2838 		/* Get the first entry from the Request Q */
2839 		removeQ(c);
2840 		h->Qdepth--;
2841 
2842 		/* Tell the controller execute command */
2843 		h->access.submit_command(h, c);
2844 
2845 		/* Put job onto the completed Q */
2846 		addQ(&h->cmpQ, c);
2847 	}
2848 }
2849 
2850 static inline unsigned long get_next_completion(struct ctlr_info *h)
2851 {
2852 	return h->access.command_completed(h);
2853 }
2854 
2855 static inline bool interrupt_pending(struct ctlr_info *h)
2856 {
2857 	return h->access.intr_pending(h);
2858 }
2859 
2860 static inline long interrupt_not_for_us(struct ctlr_info *h)
2861 {
2862 	return (h->access.intr_pending(h) == 0) ||
2863 		(h->interrupts_enabled == 0);
2864 }
2865 
2866 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2867 	u32 raw_tag)
2868 {
2869 	if (unlikely(tag_index >= h->nr_cmds)) {
2870 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2871 		return 1;
2872 	}
2873 	return 0;
2874 }
2875 
2876 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2877 {
2878 	removeQ(c);
2879 	if (likely(c->cmd_type == CMD_SCSI))
2880 		complete_scsi_command(c, 0, raw_tag);
2881 	else if (c->cmd_type == CMD_IOCTL_PEND)
2882 		complete(c->waiting);
2883 }
2884 
2885 static inline u32 hpsa_tag_contains_index(u32 tag)
2886 {
2887 #define DIRECT_LOOKUP_BIT 0x10
2888 	return tag & DIRECT_LOOKUP_BIT;
2889 }
2890 
2891 static inline u32 hpsa_tag_to_index(u32 tag)
2892 {
2893 #define DIRECT_LOOKUP_SHIFT 5
2894 	return tag >> DIRECT_LOOKUP_SHIFT;
2895 }
2896 
2897 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2898 {
2899 #define HPSA_ERROR_BITS 0x03
2900 	return tag & ~HPSA_ERROR_BITS;
2901 }
2902 
2903 /* process completion of an indexed ("direct lookup") command */
2904 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2905 	u32 raw_tag)
2906 {
2907 	u32 tag_index;
2908 	struct CommandList *c;
2909 
2910 	tag_index = hpsa_tag_to_index(raw_tag);
2911 	if (bad_tag(h, tag_index, raw_tag))
2912 		return next_command(h);
2913 	c = h->cmd_pool + tag_index;
2914 	finish_cmd(c, raw_tag);
2915 	return next_command(h);
2916 }
2917 
2918 /* process completion of a non-indexed command */
2919 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2920 	u32 raw_tag)
2921 {
2922 	u32 tag;
2923 	struct CommandList *c = NULL;
2924 	struct hlist_node *tmp;
2925 
2926 	tag = hpsa_tag_discard_error_bits(raw_tag);
2927 	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2928 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2929 			finish_cmd(c, raw_tag);
2930 			return next_command(h);
2931 		}
2932 	}
2933 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2934 	return next_command(h);
2935 }
2936 
2937 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2938 {
2939 	struct ctlr_info *h = dev_id;
2940 	unsigned long flags;
2941 	u32 raw_tag;
2942 
2943 	if (interrupt_not_for_us(h))
2944 		return IRQ_NONE;
2945 	spin_lock_irqsave(&h->lock, flags);
2946 	while (interrupt_pending(h)) {
2947 		raw_tag = get_next_completion(h);
2948 		while (raw_tag != FIFO_EMPTY) {
2949 			if (hpsa_tag_contains_index(raw_tag))
2950 				raw_tag = process_indexed_cmd(h, raw_tag);
2951 			else
2952 				raw_tag = process_nonindexed_cmd(h, raw_tag);
2953 		}
2954 	}
2955 	spin_unlock_irqrestore(&h->lock, flags);
2956 	return IRQ_HANDLED;
2957 }
2958 
2959 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2960 {
2961 	struct ctlr_info *h = dev_id;
2962 	unsigned long flags;
2963 	u32 raw_tag;
2964 
2965 	spin_lock_irqsave(&h->lock, flags);
2966 	raw_tag = get_next_completion(h);
2967 	while (raw_tag != FIFO_EMPTY) {
2968 		if (hpsa_tag_contains_index(raw_tag))
2969 			raw_tag = process_indexed_cmd(h, raw_tag);
2970 		else
2971 			raw_tag = process_nonindexed_cmd(h, raw_tag);
2972 	}
2973 	spin_unlock_irqrestore(&h->lock, flags);
2974 	return IRQ_HANDLED;
2975 }
2976 
2977 /* Send a message CDB to the firmware. */
2978 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2979 						unsigned char type)
2980 {
2981 	struct Command {
2982 		struct CommandListHeader CommandHeader;
2983 		struct RequestBlock Request;
2984 		struct ErrDescriptor ErrorDescriptor;
2985 	};
2986 	struct Command *cmd;
2987 	static const size_t cmd_sz = sizeof(*cmd) +
2988 					sizeof(cmd->ErrorDescriptor);
2989 	dma_addr_t paddr64;
2990 	uint32_t paddr32, tag;
2991 	void __iomem *vaddr;
2992 	int i, err;
2993 
2994 	vaddr = pci_ioremap_bar(pdev, 0);
2995 	if (vaddr == NULL)
2996 		return -ENOMEM;
2997 
2998 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2999 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3000 	 * memory.
3001 	 */
3002 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3003 	if (err) {
3004 		iounmap(vaddr);
3005 		return -ENOMEM;
3006 	}
3007 
3008 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3009 	if (cmd == NULL) {
3010 		iounmap(vaddr);
3011 		return -ENOMEM;
3012 	}
3013 
3014 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3015 	 * although there's no guarantee, we assume that the address is at
3016 	 * least 4-byte aligned (most likely, it's page-aligned).
3017 	 */
3018 	paddr32 = paddr64;
3019 
3020 	cmd->CommandHeader.ReplyQueue = 0;
3021 	cmd->CommandHeader.SGList = 0;
3022 	cmd->CommandHeader.SGTotal = 0;
3023 	cmd->CommandHeader.Tag.lower = paddr32;
3024 	cmd->CommandHeader.Tag.upper = 0;
3025 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3026 
3027 	cmd->Request.CDBLen = 16;
3028 	cmd->Request.Type.Type = TYPE_MSG;
3029 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3030 	cmd->Request.Type.Direction = XFER_NONE;
3031 	cmd->Request.Timeout = 0; /* Don't time out */
3032 	cmd->Request.CDB[0] = opcode;
3033 	cmd->Request.CDB[1] = type;
3034 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3035 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3036 	cmd->ErrorDescriptor.Addr.upper = 0;
3037 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3038 
3039 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3040 
3041 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3042 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3043 		if (hpsa_tag_discard_error_bits(tag) == paddr32)
3044 			break;
3045 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3046 	}
3047 
3048 	iounmap(vaddr);
3049 
3050 	/* we leak the DMA buffer here ... no choice since the controller could
3051 	 *  still complete the command.
3052 	 */
3053 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3054 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3055 			opcode, type);
3056 		return -ETIMEDOUT;
3057 	}
3058 
3059 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3060 
3061 	if (tag & HPSA_ERROR_BIT) {
3062 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3063 			opcode, type);
3064 		return -EIO;
3065 	}
3066 
3067 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3068 		opcode, type);
3069 	return 0;
3070 }
3071 
3072 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3073 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3074 
3075 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3076 {
3077 /* the #defines are stolen from drivers/pci/msi.h. */
3078 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
3079 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
3080 
3081 	int pos;
3082 	u16 control = 0;
3083 
3084 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3085 	if (pos) {
3086 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3087 		if (control & PCI_MSI_FLAGS_ENABLE) {
3088 			dev_info(&pdev->dev, "resetting MSI\n");
3089 			pci_write_config_word(pdev, msi_control_reg(pos),
3090 					control & ~PCI_MSI_FLAGS_ENABLE);
3091 		}
3092 	}
3093 
3094 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3095 	if (pos) {
3096 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3097 		if (control & PCI_MSIX_FLAGS_ENABLE) {
3098 			dev_info(&pdev->dev, "resetting MSI-X\n");
3099 			pci_write_config_word(pdev, msi_control_reg(pos),
3100 					control & ~PCI_MSIX_FLAGS_ENABLE);
3101 		}
3102 	}
3103 
3104 	return 0;
3105 }
3106 
3107 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3108 	void * __iomem vaddr, bool use_doorbell)
3109 {
3110 	u16 pmcsr;
3111 	int pos;
3112 
3113 	if (use_doorbell) {
3114 		/* For everything after the P600, the PCI power state method
3115 		 * of resetting the controller doesn't work, so we have this
3116 		 * other way using the doorbell register.
3117 		 */
3118 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3119 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3120 		msleep(1000);
3121 	} else { /* Try to do it the PCI power state way */
3122 
3123 		/* Quoting from the Open CISS Specification: "The Power
3124 		 * Management Control/Status Register (CSR) controls the power
3125 		 * state of the device.  The normal operating state is D0,
3126 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3127 		 * the controller, place the interface device in D3 then to D0,
3128 		 * this causes a secondary PCI reset which will reset the
3129 		 * controller." */
3130 
3131 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3132 		if (pos == 0) {
3133 			dev_err(&pdev->dev,
3134 				"hpsa_reset_controller: "
3135 				"PCI PM not supported\n");
3136 			return -ENODEV;
3137 		}
3138 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3139 		/* enter the D3hot power management state */
3140 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142 		pmcsr |= PCI_D3hot;
3143 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144 
3145 		msleep(500);
3146 
3147 		/* enter the D0 power management state */
3148 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149 		pmcsr |= PCI_D0;
3150 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151 
3152 		msleep(500);
3153 	}
3154 	return 0;
3155 }
3156 
3157 /* This does a hard reset of the controller using PCI power management
3158  * states or the using the doorbell register.
3159  */
3160 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3161 {
3162 	u16 saved_config_space[32];
3163 	u64 cfg_offset;
3164 	u32 cfg_base_addr;
3165 	u64 cfg_base_addr_index;
3166 	void __iomem *vaddr;
3167 	unsigned long paddr;
3168 	u32 misc_fw_support, active_transport;
3169 	int rc, i;
3170 	struct CfgTable __iomem *cfgtable;
3171 	bool use_doorbell;
3172 	u32 board_id;
3173 
3174 	/* For controllers as old as the P600, this is very nearly
3175 	 * the same thing as
3176 	 *
3177 	 * pci_save_state(pci_dev);
3178 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3179 	 * pci_set_power_state(pci_dev, PCI_D0);
3180 	 * pci_restore_state(pci_dev);
3181 	 *
3182 	 * but we can't use these nice canned kernel routines on
3183 	 * kexec, because they also check the MSI/MSI-X state in PCI
3184 	 * configuration space and do the wrong thing when it is
3185 	 * set/cleared.  Also, the pci_save/restore_state functions
3186 	 * violate the ordering requirements for restoring the
3187 	 * configuration space from the CCISS document (see the
3188 	 * comment below).  So we roll our own ....
3189 	 *
3190 	 * For controllers newer than the P600, the pci power state
3191 	 * method of resetting doesn't work so we have another way
3192 	 * using the doorbell register.
3193 	 */
3194 
3195 	/* Exclude 640x boards.  These are two pci devices in one slot
3196 	 * which share a battery backed cache module.  One controls the
3197 	 * cache, the other accesses the cache through the one that controls
3198 	 * it.  If we reset the one controlling the cache, the other will
3199 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3200 	 * The 640x isn't really supported by hpsa anyway.
3201 	 */
3202 	hpsa_lookup_board_id(pdev, &board_id);
3203 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3204 		return -ENOTSUPP;
3205 
3206 	for (i = 0; i < 32; i++)
3207 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3208 
3209 
3210 	/* find the first memory BAR, so we can find the cfg table */
3211 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3212 	if (rc)
3213 		return rc;
3214 	vaddr = remap_pci_mem(paddr, 0x250);
3215 	if (!vaddr)
3216 		return -ENOMEM;
3217 
3218 	/* find cfgtable in order to check if reset via doorbell is supported */
3219 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3220 					&cfg_base_addr_index, &cfg_offset);
3221 	if (rc)
3222 		goto unmap_vaddr;
3223 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3224 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3225 	if (!cfgtable) {
3226 		rc = -ENOMEM;
3227 		goto unmap_vaddr;
3228 	}
3229 
3230 	/* If reset via doorbell register is supported, use that. */
3231 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3232 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3233 
3234 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3235 	if (rc)
3236 		goto unmap_cfgtable;
3237 
3238 	/* Restore the PCI configuration space.  The Open CISS
3239 	 * Specification says, "Restore the PCI Configuration
3240 	 * Registers, offsets 00h through 60h. It is important to
3241 	 * restore the command register, 16-bits at offset 04h,
3242 	 * last. Do not restore the configuration status register,
3243 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
3244 	 */
3245 	for (i = 0; i < 32; i++) {
3246 		if (i == 2 || i == 3)
3247 			continue;
3248 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3249 	}
3250 	wmb();
3251 	pci_write_config_word(pdev, 4, saved_config_space[2]);
3252 
3253 	/* Some devices (notably the HP Smart Array 5i Controller)
3254 	   need a little pause here */
3255 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3256 
3257 	/* Controller should be in simple mode at this point.  If it's not,
3258 	 * It means we're on one of those controllers which doesn't support
3259 	 * the doorbell reset method and on which the PCI power management reset
3260 	 * method doesn't work (P800, for example.)
3261 	 * In those cases, pretend the reset worked and hope for the best.
3262 	 */
3263 	active_transport = readl(&cfgtable->TransportActive);
3264 	if (active_transport & PERFORMANT_MODE) {
3265 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3266 			" proceeding anyway.\n");
3267 		rc = -ENOTSUPP;
3268 	}
3269 
3270 unmap_cfgtable:
3271 	iounmap(cfgtable);
3272 
3273 unmap_vaddr:
3274 	iounmap(vaddr);
3275 	return rc;
3276 }
3277 
3278 /*
3279  *  We cannot read the structure directly, for portability we must use
3280  *   the io functions.
3281  *   This is for debug only.
3282  */
3283 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3284 {
3285 #ifdef HPSA_DEBUG
3286 	int i;
3287 	char temp_name[17];
3288 
3289 	dev_info(dev, "Controller Configuration information\n");
3290 	dev_info(dev, "------------------------------------\n");
3291 	for (i = 0; i < 4; i++)
3292 		temp_name[i] = readb(&(tb->Signature[i]));
3293 	temp_name[4] = '\0';
3294 	dev_info(dev, "   Signature = %s\n", temp_name);
3295 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3296 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3297 	       readl(&(tb->TransportSupport)));
3298 	dev_info(dev, "   Transport methods active = 0x%x\n",
3299 	       readl(&(tb->TransportActive)));
3300 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3301 	       readl(&(tb->HostWrite.TransportRequest)));
3302 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3303 	       readl(&(tb->HostWrite.CoalIntDelay)));
3304 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3305 	       readl(&(tb->HostWrite.CoalIntCount)));
3306 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3307 	       readl(&(tb->CmdsOutMax)));
3308 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3309 	for (i = 0; i < 16; i++)
3310 		temp_name[i] = readb(&(tb->ServerName[i]));
3311 	temp_name[16] = '\0';
3312 	dev_info(dev, "   Server Name = %s\n", temp_name);
3313 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3314 		readl(&(tb->HeartBeat)));
3315 #endif				/* HPSA_DEBUG */
3316 }
3317 
3318 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3319 {
3320 	int i, offset, mem_type, bar_type;
3321 
3322 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3323 		return 0;
3324 	offset = 0;
3325 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3326 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3327 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3328 			offset += 4;
3329 		else {
3330 			mem_type = pci_resource_flags(pdev, i) &
3331 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3332 			switch (mem_type) {
3333 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3334 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3335 				offset += 4;	/* 32 bit */
3336 				break;
3337 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3338 				offset += 8;
3339 				break;
3340 			default:	/* reserved in PCI 2.2 */
3341 				dev_warn(&pdev->dev,
3342 				       "base address is invalid\n");
3343 				return -1;
3344 				break;
3345 			}
3346 		}
3347 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3348 			return i + 1;
3349 	}
3350 	return -1;
3351 }
3352 
3353 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3354  * controllers that are capable. If not, we use IO-APIC mode.
3355  */
3356 
3357 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3358 {
3359 #ifdef CONFIG_PCI_MSI
3360 	int err;
3361 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3362 	{0, 2}, {0, 3}
3363 	};
3364 
3365 	/* Some boards advertise MSI but don't really support it */
3366 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3367 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3368 		goto default_int_mode;
3369 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3370 		dev_info(&h->pdev->dev, "MSIX\n");
3371 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3372 		if (!err) {
3373 			h->intr[0] = hpsa_msix_entries[0].vector;
3374 			h->intr[1] = hpsa_msix_entries[1].vector;
3375 			h->intr[2] = hpsa_msix_entries[2].vector;
3376 			h->intr[3] = hpsa_msix_entries[3].vector;
3377 			h->msix_vector = 1;
3378 			return;
3379 		}
3380 		if (err > 0) {
3381 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3382 			       "available\n", err);
3383 			goto default_int_mode;
3384 		} else {
3385 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3386 			       err);
3387 			goto default_int_mode;
3388 		}
3389 	}
3390 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3391 		dev_info(&h->pdev->dev, "MSI\n");
3392 		if (!pci_enable_msi(h->pdev))
3393 			h->msi_vector = 1;
3394 		else
3395 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3396 	}
3397 default_int_mode:
3398 #endif				/* CONFIG_PCI_MSI */
3399 	/* if we get here we're going to use the default interrupt mode */
3400 	h->intr[PERF_MODE_INT] = h->pdev->irq;
3401 }
3402 
3403 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3404 {
3405 	int i;
3406 	u32 subsystem_vendor_id, subsystem_device_id;
3407 
3408 	subsystem_vendor_id = pdev->subsystem_vendor;
3409 	subsystem_device_id = pdev->subsystem_device;
3410 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3411 		    subsystem_vendor_id;
3412 
3413 	for (i = 0; i < ARRAY_SIZE(products); i++)
3414 		if (*board_id == products[i].board_id)
3415 			return i;
3416 
3417 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3418 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3419 		!hpsa_allow_any) {
3420 		dev_warn(&pdev->dev, "unrecognized board ID: "
3421 			"0x%08x, ignoring.\n", *board_id);
3422 			return -ENODEV;
3423 	}
3424 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3425 }
3426 
3427 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3428 {
3429 	u16 command;
3430 
3431 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3432 	return ((command & PCI_COMMAND_MEMORY) == 0);
3433 }
3434 
3435 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3436 	unsigned long *memory_bar)
3437 {
3438 	int i;
3439 
3440 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3441 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3442 			/* addressing mode bits already removed */
3443 			*memory_bar = pci_resource_start(pdev, i);
3444 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3445 				*memory_bar);
3446 			return 0;
3447 		}
3448 	dev_warn(&pdev->dev, "no memory BAR found\n");
3449 	return -ENODEV;
3450 }
3451 
3452 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3453 {
3454 	int i;
3455 	u32 scratchpad;
3456 
3457 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3458 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3459 		if (scratchpad == HPSA_FIRMWARE_READY)
3460 			return 0;
3461 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3462 	}
3463 	dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3464 	return -ENODEV;
3465 }
3466 
3467 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3468 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3469 	u64 *cfg_offset)
3470 {
3471 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3472 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3473 	*cfg_base_addr &= (u32) 0x0000ffff;
3474 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3475 	if (*cfg_base_addr_index == -1) {
3476 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3477 		return -ENODEV;
3478 	}
3479 	return 0;
3480 }
3481 
3482 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3483 {
3484 	u64 cfg_offset;
3485 	u32 cfg_base_addr;
3486 	u64 cfg_base_addr_index;
3487 	u32 trans_offset;
3488 	int rc;
3489 
3490 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3491 		&cfg_base_addr_index, &cfg_offset);
3492 	if (rc)
3493 		return rc;
3494 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3495 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3496 	if (!h->cfgtable)
3497 		return -ENOMEM;
3498 	/* Find performant mode table. */
3499 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3500 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3501 				cfg_base_addr_index)+cfg_offset+trans_offset,
3502 				sizeof(*h->transtable));
3503 	if (!h->transtable)
3504 		return -ENOMEM;
3505 	return 0;
3506 }
3507 
3508 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3509 {
3510 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3511 	if (h->max_commands < 16) {
3512 		dev_warn(&h->pdev->dev, "Controller reports "
3513 			"max supported commands of %d, an obvious lie. "
3514 			"Using 16.  Ensure that firmware is up to date.\n",
3515 			h->max_commands);
3516 		h->max_commands = 16;
3517 	}
3518 }
3519 
3520 /* Interrogate the hardware for some limits:
3521  * max commands, max SG elements without chaining, and with chaining,
3522  * SG chain block size, etc.
3523  */
3524 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3525 {
3526 	hpsa_get_max_perf_mode_cmds(h);
3527 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3528 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3529 	/*
3530 	 * Limit in-command s/g elements to 32 save dma'able memory.
3531 	 * Howvever spec says if 0, use 31
3532 	 */
3533 	h->max_cmd_sg_entries = 31;
3534 	if (h->maxsgentries > 512) {
3535 		h->max_cmd_sg_entries = 32;
3536 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3537 		h->maxsgentries--; /* save one for chain pointer */
3538 	} else {
3539 		h->maxsgentries = 31; /* default to traditional values */
3540 		h->chainsize = 0;
3541 	}
3542 }
3543 
3544 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3545 {
3546 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3547 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3548 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3549 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3550 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3551 		return false;
3552 	}
3553 	return true;
3554 }
3555 
3556 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3557 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3558 {
3559 #ifdef CONFIG_X86
3560 	u32 prefetch;
3561 
3562 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3563 	prefetch |= 0x100;
3564 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3565 #endif
3566 }
3567 
3568 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3569  * in a prefetch beyond physical memory.
3570  */
3571 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3572 {
3573 	u32 dma_prefetch;
3574 
3575 	if (h->board_id != 0x3225103C)
3576 		return;
3577 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3578 	dma_prefetch |= 0x8000;
3579 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3580 }
3581 
3582 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3583 {
3584 	int i;
3585 
3586 	/* under certain very rare conditions, this can take awhile.
3587 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3588 	 * as we enter this code.)
3589 	 */
3590 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3591 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3592 			break;
3593 		/* delay and try again */
3594 		msleep(10);
3595 	}
3596 }
3597 
3598 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3599 {
3600 	u32 trans_support;
3601 
3602 	trans_support = readl(&(h->cfgtable->TransportSupport));
3603 	if (!(trans_support & SIMPLE_MODE))
3604 		return -ENOTSUPP;
3605 
3606 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3607 	/* Update the field, and then ring the doorbell */
3608 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3609 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3610 	hpsa_wait_for_mode_change_ack(h);
3611 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3612 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3613 		dev_warn(&h->pdev->dev,
3614 			"unable to get board into simple mode\n");
3615 		return -ENODEV;
3616 	}
3617 	return 0;
3618 }
3619 
3620 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3621 {
3622 	int prod_index, err;
3623 
3624 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3625 	if (prod_index < 0)
3626 		return -ENODEV;
3627 	h->product_name = products[prod_index].product_name;
3628 	h->access = *(products[prod_index].access);
3629 
3630 	if (hpsa_board_disabled(h->pdev)) {
3631 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3632 		return -ENODEV;
3633 	}
3634 	err = pci_enable_device(h->pdev);
3635 	if (err) {
3636 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3637 		return err;
3638 	}
3639 
3640 	err = pci_request_regions(h->pdev, "hpsa");
3641 	if (err) {
3642 		dev_err(&h->pdev->dev,
3643 			"cannot obtain PCI resources, aborting\n");
3644 		return err;
3645 	}
3646 	hpsa_interrupt_mode(h);
3647 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3648 	if (err)
3649 		goto err_out_free_res;
3650 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3651 	if (!h->vaddr) {
3652 		err = -ENOMEM;
3653 		goto err_out_free_res;
3654 	}
3655 	err = hpsa_wait_for_board_ready(h);
3656 	if (err)
3657 		goto err_out_free_res;
3658 	err = hpsa_find_cfgtables(h);
3659 	if (err)
3660 		goto err_out_free_res;
3661 	hpsa_find_board_params(h);
3662 
3663 	if (!hpsa_CISS_signature_present(h)) {
3664 		err = -ENODEV;
3665 		goto err_out_free_res;
3666 	}
3667 	hpsa_enable_scsi_prefetch(h);
3668 	hpsa_p600_dma_prefetch_quirk(h);
3669 	err = hpsa_enter_simple_mode(h);
3670 	if (err)
3671 		goto err_out_free_res;
3672 	return 0;
3673 
3674 err_out_free_res:
3675 	if (h->transtable)
3676 		iounmap(h->transtable);
3677 	if (h->cfgtable)
3678 		iounmap(h->cfgtable);
3679 	if (h->vaddr)
3680 		iounmap(h->vaddr);
3681 	/*
3682 	 * Deliberately omit pci_disable_device(): it does something nasty to
3683 	 * Smart Array controllers that pci_enable_device does not undo
3684 	 */
3685 	pci_release_regions(h->pdev);
3686 	return err;
3687 }
3688 
3689 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3690 {
3691 	int rc;
3692 
3693 #define HBA_INQUIRY_BYTE_COUNT 64
3694 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3695 	if (!h->hba_inquiry_data)
3696 		return;
3697 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3698 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3699 	if (rc != 0) {
3700 		kfree(h->hba_inquiry_data);
3701 		h->hba_inquiry_data = NULL;
3702 	}
3703 }
3704 
3705 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3706 {
3707 	int rc, i;
3708 
3709 	if (!reset_devices)
3710 		return 0;
3711 
3712 	/* Reset the controller with a PCI power-cycle or via doorbell */
3713 	rc = hpsa_kdump_hard_reset_controller(pdev);
3714 
3715 	/* -ENOTSUPP here means we cannot reset the controller
3716 	 * but it's already (and still) up and running in
3717 	 * "performant mode".  Or, it might be 640x, which can't reset
3718 	 * due to concerns about shared bbwc between 6402/6404 pair.
3719 	 */
3720 	if (rc == -ENOTSUPP)
3721 		return 0; /* just try to do the kdump anyhow. */
3722 	if (rc)
3723 		return -ENODEV;
3724 	if (hpsa_reset_msi(pdev))
3725 		return -ENODEV;
3726 
3727 	/* Now try to get the controller to respond to a no-op */
3728 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3729 		if (hpsa_noop(pdev) == 0)
3730 			break;
3731 		else
3732 			dev_warn(&pdev->dev, "no-op failed%s\n",
3733 					(i < 11 ? "; re-trying" : ""));
3734 	}
3735 	return 0;
3736 }
3737 
3738 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3739 				    const struct pci_device_id *ent)
3740 {
3741 	int dac, rc;
3742 	struct ctlr_info *h;
3743 
3744 	if (number_of_controllers == 0)
3745 		printk(KERN_INFO DRIVER_NAME "\n");
3746 
3747 	rc = hpsa_init_reset_devices(pdev);
3748 	if (rc)
3749 		return rc;
3750 
3751 	/* Command structures must be aligned on a 32-byte boundary because
3752 	 * the 5 lower bits of the address are used by the hardware. and by
3753 	 * the driver.  See comments in hpsa.h for more info.
3754 	 */
3755 #define COMMANDLIST_ALIGNMENT 32
3756 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3757 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3758 	if (!h)
3759 		return -ENOMEM;
3760 
3761 	h->pdev = pdev;
3762 	h->busy_initializing = 1;
3763 	INIT_HLIST_HEAD(&h->cmpQ);
3764 	INIT_HLIST_HEAD(&h->reqQ);
3765 	rc = hpsa_pci_init(h);
3766 	if (rc != 0)
3767 		goto clean1;
3768 
3769 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3770 	h->ctlr = number_of_controllers;
3771 	number_of_controllers++;
3772 
3773 	/* configure PCI DMA stuff */
3774 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3775 	if (rc == 0) {
3776 		dac = 1;
3777 	} else {
3778 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3779 		if (rc == 0) {
3780 			dac = 0;
3781 		} else {
3782 			dev_err(&pdev->dev, "no suitable DMA available\n");
3783 			goto clean1;
3784 		}
3785 	}
3786 
3787 	/* make sure the board interrupts are off */
3788 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3789 
3790 	if (h->msix_vector || h->msi_vector)
3791 		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3792 				IRQF_DISABLED, h->devname, h);
3793 	else
3794 		rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3795 				IRQF_DISABLED, h->devname, h);
3796 	if (rc) {
3797 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3798 		       h->intr[PERF_MODE_INT], h->devname);
3799 		goto clean2;
3800 	}
3801 
3802 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3803 	       h->devname, pdev->device,
3804 	       h->intr[PERF_MODE_INT], dac ? "" : " not");
3805 
3806 	h->cmd_pool_bits =
3807 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3808 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3809 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3810 		    h->nr_cmds * sizeof(*h->cmd_pool),
3811 		    &(h->cmd_pool_dhandle));
3812 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3813 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3814 		    &(h->errinfo_pool_dhandle));
3815 	if ((h->cmd_pool_bits == NULL)
3816 	    || (h->cmd_pool == NULL)
3817 	    || (h->errinfo_pool == NULL)) {
3818 		dev_err(&pdev->dev, "out of memory");
3819 		rc = -ENOMEM;
3820 		goto clean4;
3821 	}
3822 	if (hpsa_allocate_sg_chain_blocks(h))
3823 		goto clean4;
3824 	spin_lock_init(&h->lock);
3825 	spin_lock_init(&h->scan_lock);
3826 	init_waitqueue_head(&h->scan_wait_queue);
3827 	h->scan_finished = 1; /* no scan currently in progress */
3828 
3829 	pci_set_drvdata(pdev, h);
3830 	memset(h->cmd_pool_bits, 0,
3831 	       ((h->nr_cmds + BITS_PER_LONG -
3832 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3833 
3834 	hpsa_scsi_setup(h);
3835 
3836 	/* Turn the interrupts on so we can service requests */
3837 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3838 
3839 	hpsa_put_ctlr_into_performant_mode(h);
3840 	hpsa_hba_inquiry(h);
3841 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3842 	h->busy_initializing = 0;
3843 	return 1;
3844 
3845 clean4:
3846 	hpsa_free_sg_chain_blocks(h);
3847 	kfree(h->cmd_pool_bits);
3848 	if (h->cmd_pool)
3849 		pci_free_consistent(h->pdev,
3850 			    h->nr_cmds * sizeof(struct CommandList),
3851 			    h->cmd_pool, h->cmd_pool_dhandle);
3852 	if (h->errinfo_pool)
3853 		pci_free_consistent(h->pdev,
3854 			    h->nr_cmds * sizeof(struct ErrorInfo),
3855 			    h->errinfo_pool,
3856 			    h->errinfo_pool_dhandle);
3857 	free_irq(h->intr[PERF_MODE_INT], h);
3858 clean2:
3859 clean1:
3860 	h->busy_initializing = 0;
3861 	kfree(h);
3862 	return rc;
3863 }
3864 
3865 static void hpsa_flush_cache(struct ctlr_info *h)
3866 {
3867 	char *flush_buf;
3868 	struct CommandList *c;
3869 
3870 	flush_buf = kzalloc(4, GFP_KERNEL);
3871 	if (!flush_buf)
3872 		return;
3873 
3874 	c = cmd_special_alloc(h);
3875 	if (!c) {
3876 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3877 		goto out_of_memory;
3878 	}
3879 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3880 		RAID_CTLR_LUNID, TYPE_CMD);
3881 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3882 	if (c->err_info->CommandStatus != 0)
3883 		dev_warn(&h->pdev->dev,
3884 			"error flushing cache on controller\n");
3885 	cmd_special_free(h, c);
3886 out_of_memory:
3887 	kfree(flush_buf);
3888 }
3889 
3890 static void hpsa_shutdown(struct pci_dev *pdev)
3891 {
3892 	struct ctlr_info *h;
3893 
3894 	h = pci_get_drvdata(pdev);
3895 	/* Turn board interrupts off  and send the flush cache command
3896 	 * sendcmd will turn off interrupt, and send the flush...
3897 	 * To write all data in the battery backed cache to disks
3898 	 */
3899 	hpsa_flush_cache(h);
3900 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3901 	free_irq(h->intr[PERF_MODE_INT], h);
3902 #ifdef CONFIG_PCI_MSI
3903 	if (h->msix_vector)
3904 		pci_disable_msix(h->pdev);
3905 	else if (h->msi_vector)
3906 		pci_disable_msi(h->pdev);
3907 #endif				/* CONFIG_PCI_MSI */
3908 }
3909 
3910 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3911 {
3912 	struct ctlr_info *h;
3913 
3914 	if (pci_get_drvdata(pdev) == NULL) {
3915 		dev_err(&pdev->dev, "unable to remove device \n");
3916 		return;
3917 	}
3918 	h = pci_get_drvdata(pdev);
3919 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3920 	hpsa_shutdown(pdev);
3921 	iounmap(h->vaddr);
3922 	iounmap(h->transtable);
3923 	iounmap(h->cfgtable);
3924 	hpsa_free_sg_chain_blocks(h);
3925 	pci_free_consistent(h->pdev,
3926 		h->nr_cmds * sizeof(struct CommandList),
3927 		h->cmd_pool, h->cmd_pool_dhandle);
3928 	pci_free_consistent(h->pdev,
3929 		h->nr_cmds * sizeof(struct ErrorInfo),
3930 		h->errinfo_pool, h->errinfo_pool_dhandle);
3931 	pci_free_consistent(h->pdev, h->reply_pool_size,
3932 		h->reply_pool, h->reply_pool_dhandle);
3933 	kfree(h->cmd_pool_bits);
3934 	kfree(h->blockFetchTable);
3935 	kfree(h->hba_inquiry_data);
3936 	/*
3937 	 * Deliberately omit pci_disable_device(): it does something nasty to
3938 	 * Smart Array controllers that pci_enable_device does not undo
3939 	 */
3940 	pci_release_regions(pdev);
3941 	pci_set_drvdata(pdev, NULL);
3942 	kfree(h);
3943 }
3944 
3945 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3946 	__attribute__((unused)) pm_message_t state)
3947 {
3948 	return -ENOSYS;
3949 }
3950 
3951 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3952 {
3953 	return -ENOSYS;
3954 }
3955 
3956 static struct pci_driver hpsa_pci_driver = {
3957 	.name = "hpsa",
3958 	.probe = hpsa_init_one,
3959 	.remove = __devexit_p(hpsa_remove_one),
3960 	.id_table = hpsa_pci_device_id,	/* id_table */
3961 	.shutdown = hpsa_shutdown,
3962 	.suspend = hpsa_suspend,
3963 	.resume = hpsa_resume,
3964 };
3965 
3966 /* Fill in bucket_map[], given nsgs (the max number of
3967  * scatter gather elements supported) and bucket[],
3968  * which is an array of 8 integers.  The bucket[] array
3969  * contains 8 different DMA transfer sizes (in 16
3970  * byte increments) which the controller uses to fetch
3971  * commands.  This function fills in bucket_map[], which
3972  * maps a given number of scatter gather elements to one of
3973  * the 8 DMA transfer sizes.  The point of it is to allow the
3974  * controller to only do as much DMA as needed to fetch the
3975  * command, with the DMA transfer size encoded in the lower
3976  * bits of the command address.
3977  */
3978 static void  calc_bucket_map(int bucket[], int num_buckets,
3979 	int nsgs, int *bucket_map)
3980 {
3981 	int i, j, b, size;
3982 
3983 	/* even a command with 0 SGs requires 4 blocks */
3984 #define MINIMUM_TRANSFER_BLOCKS 4
3985 #define NUM_BUCKETS 8
3986 	/* Note, bucket_map must have nsgs+1 entries. */
3987 	for (i = 0; i <= nsgs; i++) {
3988 		/* Compute size of a command with i SG entries */
3989 		size = i + MINIMUM_TRANSFER_BLOCKS;
3990 		b = num_buckets; /* Assume the biggest bucket */
3991 		/* Find the bucket that is just big enough */
3992 		for (j = 0; j < 8; j++) {
3993 			if (bucket[j] >= size) {
3994 				b = j;
3995 				break;
3996 			}
3997 		}
3998 		/* for a command with i SG entries, use bucket b. */
3999 		bucket_map[i] = b;
4000 	}
4001 }
4002 
4003 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
4004 {
4005 	int i;
4006 	unsigned long register_value;
4007 
4008 	/* This is a bit complicated.  There are 8 registers on
4009 	 * the controller which we write to to tell it 8 different
4010 	 * sizes of commands which there may be.  It's a way of
4011 	 * reducing the DMA done to fetch each command.  Encoded into
4012 	 * each command's tag are 3 bits which communicate to the controller
4013 	 * which of the eight sizes that command fits within.  The size of
4014 	 * each command depends on how many scatter gather entries there are.
4015 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4016 	 * with the number of 16-byte blocks a command of that size requires.
4017 	 * The smallest command possible requires 5 such 16 byte blocks.
4018 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4019 	 * blocks.  Note, this only extends to the SG entries contained
4020 	 * within the command block, and does not extend to chained blocks
4021 	 * of SG elements.   bft[] contains the eight values we write to
4022 	 * the registers.  They are not evenly distributed, but have more
4023 	 * sizes for small commands, and fewer sizes for larger commands.
4024 	 */
4025 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4026 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4027 	/*  5 = 1 s/g entry or 4k
4028 	 *  6 = 2 s/g entry or 8k
4029 	 *  8 = 4 s/g entry or 16k
4030 	 * 10 = 6 s/g entry or 24k
4031 	 */
4032 
4033 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4034 
4035 	/* Controller spec: zero out this buffer. */
4036 	memset(h->reply_pool, 0, h->reply_pool_size);
4037 	h->reply_pool_head = h->reply_pool;
4038 
4039 	bft[7] = h->max_sg_entries + 4;
4040 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4041 	for (i = 0; i < 8; i++)
4042 		writel(bft[i], &h->transtable->BlockFetch[i]);
4043 
4044 	/* size of controller ring buffer */
4045 	writel(h->max_commands, &h->transtable->RepQSize);
4046 	writel(1, &h->transtable->RepQCount);
4047 	writel(0, &h->transtable->RepQCtrAddrLow32);
4048 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4049 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4050 	writel(0, &h->transtable->RepQAddr0High32);
4051 	writel(CFGTBL_Trans_Performant,
4052 		&(h->cfgtable->HostWrite.TransportRequest));
4053 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4054 	hpsa_wait_for_mode_change_ack(h);
4055 	register_value = readl(&(h->cfgtable->TransportActive));
4056 	if (!(register_value & CFGTBL_Trans_Performant)) {
4057 		dev_warn(&h->pdev->dev, "unable to get board into"
4058 					" performant mode\n");
4059 		return;
4060 	}
4061 }
4062 
4063 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4064 {
4065 	u32 trans_support;
4066 
4067 	trans_support = readl(&(h->cfgtable->TransportSupport));
4068 	if (!(trans_support & PERFORMANT_MODE))
4069 		return;
4070 
4071 	hpsa_get_max_perf_mode_cmds(h);
4072 	h->max_sg_entries = 32;
4073 	/* Performant mode ring buffer and supporting data structures */
4074 	h->reply_pool_size = h->max_commands * sizeof(u64);
4075 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4076 				&(h->reply_pool_dhandle));
4077 
4078 	/* Need a block fetch table for performant mode */
4079 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4080 				sizeof(u32)), GFP_KERNEL);
4081 
4082 	if ((h->reply_pool == NULL)
4083 		|| (h->blockFetchTable == NULL))
4084 		goto clean_up;
4085 
4086 	hpsa_enter_performant_mode(h);
4087 
4088 	/* Change the access methods to the performant access methods */
4089 	h->access = SA5_performant_access;
4090 	h->transMethod = CFGTBL_Trans_Performant;
4091 
4092 	return;
4093 
4094 clean_up:
4095 	if (h->reply_pool)
4096 		pci_free_consistent(h->pdev, h->reply_pool_size,
4097 			h->reply_pool, h->reply_pool_dhandle);
4098 	kfree(h->blockFetchTable);
4099 }
4100 
4101 /*
4102  *  This is it.  Register the PCI driver information for the cards we control
4103  *  the OS will call our registered routines when it finds one of our cards.
4104  */
4105 static int __init hpsa_init(void)
4106 {
4107 	return pci_register_driver(&hpsa_pci_driver);
4108 }
4109 
4110 static void __exit hpsa_cleanup(void)
4111 {
4112 	pci_unregister_driver(&hpsa_pci_driver);
4113 }
4114 
4115 module_init(hpsa_init);
4116 module_exit(hpsa_cleanup);
4117