xref: /openbmc/linux/drivers/scsi/hpsa.c (revision a20eefae)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-170"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 
259 #ifdef CONFIG_COMPAT
260 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
261 	void __user *arg);
262 #endif
263 
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268 					    struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
271 	int cmd_type);
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
275 
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279 	unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281 
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
286 
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289 	struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291 	struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294 	int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
300 			       u64 *cfg_offset);
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302 				    unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
304 				bool *legacy_board);
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306 					   unsigned char lunaddr[],
307 					   int reply_queue);
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
309 				     int wait_for_ready);
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324 	struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326 	unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329 			       struct hpsa_scsi_dev_t *dev,
330 			       unsigned char *scsi3addr);
331 
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 {
334 	unsigned long *priv = shost_priv(sdev->host);
335 	return (struct ctlr_info *) *priv;
336 }
337 
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 {
340 	unsigned long *priv = shost_priv(sh);
341 	return (struct ctlr_info *) *priv;
342 }
343 
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 {
346 	return c->scsi_cmd == SCSI_CMD_IDLE;
347 }
348 
349 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
350 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
351 			u8 *sense_key, u8 *asc, u8 *ascq)
352 {
353 	struct scsi_sense_hdr sshdr;
354 	bool rc;
355 
356 	*sense_key = -1;
357 	*asc = -1;
358 	*ascq = -1;
359 
360 	if (sense_data_len < 1)
361 		return;
362 
363 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
364 	if (rc) {
365 		*sense_key = sshdr.sense_key;
366 		*asc = sshdr.asc;
367 		*ascq = sshdr.ascq;
368 	}
369 }
370 
371 static int check_for_unit_attention(struct ctlr_info *h,
372 	struct CommandList *c)
373 {
374 	u8 sense_key, asc, ascq;
375 	int sense_len;
376 
377 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
378 		sense_len = sizeof(c->err_info->SenseInfo);
379 	else
380 		sense_len = c->err_info->SenseLen;
381 
382 	decode_sense_data(c->err_info->SenseInfo, sense_len,
383 				&sense_key, &asc, &ascq);
384 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
385 		return 0;
386 
387 	switch (asc) {
388 	case STATE_CHANGED:
389 		dev_warn(&h->pdev->dev,
390 			"%s: a state change detected, command retried\n",
391 			h->devname);
392 		break;
393 	case LUN_FAILED:
394 		dev_warn(&h->pdev->dev,
395 			"%s: LUN failure detected\n", h->devname);
396 		break;
397 	case REPORT_LUNS_CHANGED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: report LUN data changed\n", h->devname);
400 	/*
401 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
402 	 * target (array) devices.
403 	 */
404 		break;
405 	case POWER_OR_RESET:
406 		dev_warn(&h->pdev->dev,
407 			"%s: a power on or device reset detected\n",
408 			h->devname);
409 		break;
410 	case UNIT_ATTENTION_CLEARED:
411 		dev_warn(&h->pdev->dev,
412 			"%s: unit attention cleared by another initiator\n",
413 			h->devname);
414 		break;
415 	default:
416 		dev_warn(&h->pdev->dev,
417 			"%s: unknown unit attention detected\n",
418 			h->devname);
419 		break;
420 	}
421 	return 1;
422 }
423 
424 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
425 {
426 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
427 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
428 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
429 		return 0;
430 	dev_warn(&h->pdev->dev, HPSA "device busy");
431 	return 1;
432 }
433 
434 static u32 lockup_detected(struct ctlr_info *h);
435 static ssize_t host_show_lockup_detected(struct device *dev,
436 		struct device_attribute *attr, char *buf)
437 {
438 	int ld;
439 	struct ctlr_info *h;
440 	struct Scsi_Host *shost = class_to_shost(dev);
441 
442 	h = shost_to_hba(shost);
443 	ld = lockup_detected(h);
444 
445 	return sprintf(buf, "ld=%d\n", ld);
446 }
447 
448 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
449 					 struct device_attribute *attr,
450 					 const char *buf, size_t count)
451 {
452 	int status, len;
453 	struct ctlr_info *h;
454 	struct Scsi_Host *shost = class_to_shost(dev);
455 	char tmpbuf[10];
456 
457 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458 		return -EACCES;
459 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460 	strncpy(tmpbuf, buf, len);
461 	tmpbuf[len] = '\0';
462 	if (sscanf(tmpbuf, "%d", &status) != 1)
463 		return -EINVAL;
464 	h = shost_to_hba(shost);
465 	h->acciopath_status = !!status;
466 	dev_warn(&h->pdev->dev,
467 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
468 		h->acciopath_status ? "enabled" : "disabled");
469 	return count;
470 }
471 
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473 					 struct device_attribute *attr,
474 					 const char *buf, size_t count)
475 {
476 	int debug_level, len;
477 	struct ctlr_info *h;
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 	char tmpbuf[10];
480 
481 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
482 		return -EACCES;
483 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
484 	strncpy(tmpbuf, buf, len);
485 	tmpbuf[len] = '\0';
486 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
487 		return -EINVAL;
488 	if (debug_level < 0)
489 		debug_level = 0;
490 	h = shost_to_hba(shost);
491 	h->raid_offload_debug = debug_level;
492 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
493 		h->raid_offload_debug);
494 	return count;
495 }
496 
497 static ssize_t host_store_rescan(struct device *dev,
498 				 struct device_attribute *attr,
499 				 const char *buf, size_t count)
500 {
501 	struct ctlr_info *h;
502 	struct Scsi_Host *shost = class_to_shost(dev);
503 	h = shost_to_hba(shost);
504 	hpsa_scan_start(h->scsi_host);
505 	return count;
506 }
507 
508 static ssize_t host_show_firmware_revision(struct device *dev,
509 	     struct device_attribute *attr, char *buf)
510 {
511 	struct ctlr_info *h;
512 	struct Scsi_Host *shost = class_to_shost(dev);
513 	unsigned char *fwrev;
514 
515 	h = shost_to_hba(shost);
516 	if (!h->hba_inquiry_data)
517 		return 0;
518 	fwrev = &h->hba_inquiry_data[32];
519 	return snprintf(buf, 20, "%c%c%c%c\n",
520 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
521 }
522 
523 static ssize_t host_show_commands_outstanding(struct device *dev,
524 	     struct device_attribute *attr, char *buf)
525 {
526 	struct Scsi_Host *shost = class_to_shost(dev);
527 	struct ctlr_info *h = shost_to_hba(shost);
528 
529 	return snprintf(buf, 20, "%d\n",
530 			atomic_read(&h->commands_outstanding));
531 }
532 
533 static ssize_t host_show_transport_mode(struct device *dev,
534 	struct device_attribute *attr, char *buf)
535 {
536 	struct ctlr_info *h;
537 	struct Scsi_Host *shost = class_to_shost(dev);
538 
539 	h = shost_to_hba(shost);
540 	return snprintf(buf, 20, "%s\n",
541 		h->transMethod & CFGTBL_Trans_Performant ?
542 			"performant" : "simple");
543 }
544 
545 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
546 	struct device_attribute *attr, char *buf)
547 {
548 	struct ctlr_info *h;
549 	struct Scsi_Host *shost = class_to_shost(dev);
550 
551 	h = shost_to_hba(shost);
552 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
553 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
554 }
555 
556 /* List of controllers which cannot be hard reset on kexec with reset_devices */
557 static u32 unresettable_controller[] = {
558 	0x324a103C, /* Smart Array P712m */
559 	0x324b103C, /* Smart Array P711m */
560 	0x3223103C, /* Smart Array P800 */
561 	0x3234103C, /* Smart Array P400 */
562 	0x3235103C, /* Smart Array P400i */
563 	0x3211103C, /* Smart Array E200i */
564 	0x3212103C, /* Smart Array E200 */
565 	0x3213103C, /* Smart Array E200i */
566 	0x3214103C, /* Smart Array E200i */
567 	0x3215103C, /* Smart Array E200i */
568 	0x3237103C, /* Smart Array E500 */
569 	0x323D103C, /* Smart Array P700m */
570 	0x40800E11, /* Smart Array 5i */
571 	0x409C0E11, /* Smart Array 6400 */
572 	0x409D0E11, /* Smart Array 6400 EM */
573 	0x40700E11, /* Smart Array 5300 */
574 	0x40820E11, /* Smart Array 532 */
575 	0x40830E11, /* Smart Array 5312 */
576 	0x409A0E11, /* Smart Array 641 */
577 	0x409B0E11, /* Smart Array 642 */
578 	0x40910E11, /* Smart Array 6i */
579 };
580 
581 /* List of controllers which cannot even be soft reset */
582 static u32 soft_unresettable_controller[] = {
583 	0x40800E11, /* Smart Array 5i */
584 	0x40700E11, /* Smart Array 5300 */
585 	0x40820E11, /* Smart Array 532 */
586 	0x40830E11, /* Smart Array 5312 */
587 	0x409A0E11, /* Smart Array 641 */
588 	0x409B0E11, /* Smart Array 642 */
589 	0x40910E11, /* Smart Array 6i */
590 	/* Exclude 640x boards.  These are two pci devices in one slot
591 	 * which share a battery backed cache module.  One controls the
592 	 * cache, the other accesses the cache through the one that controls
593 	 * it.  If we reset the one controlling the cache, the other will
594 	 * likely not be happy.  Just forbid resetting this conjoined mess.
595 	 * The 640x isn't really supported by hpsa anyway.
596 	 */
597 	0x409C0E11, /* Smart Array 6400 */
598 	0x409D0E11, /* Smart Array 6400 EM */
599 };
600 
601 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
602 {
603 	int i;
604 
605 	for (i = 0; i < nelems; i++)
606 		if (a[i] == board_id)
607 			return 1;
608 	return 0;
609 }
610 
611 static int ctlr_is_hard_resettable(u32 board_id)
612 {
613 	return !board_id_in_array(unresettable_controller,
614 			ARRAY_SIZE(unresettable_controller), board_id);
615 }
616 
617 static int ctlr_is_soft_resettable(u32 board_id)
618 {
619 	return !board_id_in_array(soft_unresettable_controller,
620 			ARRAY_SIZE(soft_unresettable_controller), board_id);
621 }
622 
623 static int ctlr_is_resettable(u32 board_id)
624 {
625 	return ctlr_is_hard_resettable(board_id) ||
626 		ctlr_is_soft_resettable(board_id);
627 }
628 
629 static ssize_t host_show_resettable(struct device *dev,
630 	struct device_attribute *attr, char *buf)
631 {
632 	struct ctlr_info *h;
633 	struct Scsi_Host *shost = class_to_shost(dev);
634 
635 	h = shost_to_hba(shost);
636 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
637 }
638 
639 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
640 {
641 	return (scsi3addr[3] & 0xC0) == 0x40;
642 }
643 
644 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
645 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
646 };
647 #define HPSA_RAID_0	0
648 #define HPSA_RAID_4	1
649 #define HPSA_RAID_1	2	/* also used for RAID 10 */
650 #define HPSA_RAID_5	3	/* also used for RAID 50 */
651 #define HPSA_RAID_51	4
652 #define HPSA_RAID_6	5	/* also used for RAID 60 */
653 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
654 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
655 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
656 
657 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
658 {
659 	return !device->physical_device;
660 }
661 
662 static ssize_t raid_level_show(struct device *dev,
663 	     struct device_attribute *attr, char *buf)
664 {
665 	ssize_t l = 0;
666 	unsigned char rlevel;
667 	struct ctlr_info *h;
668 	struct scsi_device *sdev;
669 	struct hpsa_scsi_dev_t *hdev;
670 	unsigned long flags;
671 
672 	sdev = to_scsi_device(dev);
673 	h = sdev_to_hba(sdev);
674 	spin_lock_irqsave(&h->lock, flags);
675 	hdev = sdev->hostdata;
676 	if (!hdev) {
677 		spin_unlock_irqrestore(&h->lock, flags);
678 		return -ENODEV;
679 	}
680 
681 	/* Is this even a logical drive? */
682 	if (!is_logical_device(hdev)) {
683 		spin_unlock_irqrestore(&h->lock, flags);
684 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
685 		return l;
686 	}
687 
688 	rlevel = hdev->raid_level;
689 	spin_unlock_irqrestore(&h->lock, flags);
690 	if (rlevel > RAID_UNKNOWN)
691 		rlevel = RAID_UNKNOWN;
692 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
693 	return l;
694 }
695 
696 static ssize_t lunid_show(struct device *dev,
697 	     struct device_attribute *attr, char *buf)
698 {
699 	struct ctlr_info *h;
700 	struct scsi_device *sdev;
701 	struct hpsa_scsi_dev_t *hdev;
702 	unsigned long flags;
703 	unsigned char lunid[8];
704 
705 	sdev = to_scsi_device(dev);
706 	h = sdev_to_hba(sdev);
707 	spin_lock_irqsave(&h->lock, flags);
708 	hdev = sdev->hostdata;
709 	if (!hdev) {
710 		spin_unlock_irqrestore(&h->lock, flags);
711 		return -ENODEV;
712 	}
713 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
714 	spin_unlock_irqrestore(&h->lock, flags);
715 	return snprintf(buf, 20, "0x%8phN\n", lunid);
716 }
717 
718 static ssize_t unique_id_show(struct device *dev,
719 	     struct device_attribute *attr, char *buf)
720 {
721 	struct ctlr_info *h;
722 	struct scsi_device *sdev;
723 	struct hpsa_scsi_dev_t *hdev;
724 	unsigned long flags;
725 	unsigned char sn[16];
726 
727 	sdev = to_scsi_device(dev);
728 	h = sdev_to_hba(sdev);
729 	spin_lock_irqsave(&h->lock, flags);
730 	hdev = sdev->hostdata;
731 	if (!hdev) {
732 		spin_unlock_irqrestore(&h->lock, flags);
733 		return -ENODEV;
734 	}
735 	memcpy(sn, hdev->device_id, sizeof(sn));
736 	spin_unlock_irqrestore(&h->lock, flags);
737 	return snprintf(buf, 16 * 2 + 2,
738 			"%02X%02X%02X%02X%02X%02X%02X%02X"
739 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
740 			sn[0], sn[1], sn[2], sn[3],
741 			sn[4], sn[5], sn[6], sn[7],
742 			sn[8], sn[9], sn[10], sn[11],
743 			sn[12], sn[13], sn[14], sn[15]);
744 }
745 
746 static ssize_t sas_address_show(struct device *dev,
747 	      struct device_attribute *attr, char *buf)
748 {
749 	struct ctlr_info *h;
750 	struct scsi_device *sdev;
751 	struct hpsa_scsi_dev_t *hdev;
752 	unsigned long flags;
753 	u64 sas_address;
754 
755 	sdev = to_scsi_device(dev);
756 	h = sdev_to_hba(sdev);
757 	spin_lock_irqsave(&h->lock, flags);
758 	hdev = sdev->hostdata;
759 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
760 		spin_unlock_irqrestore(&h->lock, flags);
761 		return -ENODEV;
762 	}
763 	sas_address = hdev->sas_address;
764 	spin_unlock_irqrestore(&h->lock, flags);
765 
766 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
767 }
768 
769 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
770 	     struct device_attribute *attr, char *buf)
771 {
772 	struct ctlr_info *h;
773 	struct scsi_device *sdev;
774 	struct hpsa_scsi_dev_t *hdev;
775 	unsigned long flags;
776 	int offload_enabled;
777 
778 	sdev = to_scsi_device(dev);
779 	h = sdev_to_hba(sdev);
780 	spin_lock_irqsave(&h->lock, flags);
781 	hdev = sdev->hostdata;
782 	if (!hdev) {
783 		spin_unlock_irqrestore(&h->lock, flags);
784 		return -ENODEV;
785 	}
786 	offload_enabled = hdev->offload_enabled;
787 	spin_unlock_irqrestore(&h->lock, flags);
788 
789 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
790 		return snprintf(buf, 20, "%d\n", offload_enabled);
791 	else
792 		return snprintf(buf, 40, "%s\n",
793 				"Not applicable for a controller");
794 }
795 
796 #define MAX_PATHS 8
797 static ssize_t path_info_show(struct device *dev,
798 	     struct device_attribute *attr, char *buf)
799 {
800 	struct ctlr_info *h;
801 	struct scsi_device *sdev;
802 	struct hpsa_scsi_dev_t *hdev;
803 	unsigned long flags;
804 	int i;
805 	int output_len = 0;
806 	u8 box;
807 	u8 bay;
808 	u8 path_map_index = 0;
809 	char *active;
810 	unsigned char phys_connector[2];
811 
812 	sdev = to_scsi_device(dev);
813 	h = sdev_to_hba(sdev);
814 	spin_lock_irqsave(&h->devlock, flags);
815 	hdev = sdev->hostdata;
816 	if (!hdev) {
817 		spin_unlock_irqrestore(&h->devlock, flags);
818 		return -ENODEV;
819 	}
820 
821 	bay = hdev->bay;
822 	for (i = 0; i < MAX_PATHS; i++) {
823 		path_map_index = 1<<i;
824 		if (i == hdev->active_path_index)
825 			active = "Active";
826 		else if (hdev->path_map & path_map_index)
827 			active = "Inactive";
828 		else
829 			continue;
830 
831 		output_len += scnprintf(buf + output_len,
832 				PAGE_SIZE - output_len,
833 				"[%d:%d:%d:%d] %20.20s ",
834 				h->scsi_host->host_no,
835 				hdev->bus, hdev->target, hdev->lun,
836 				scsi_device_type(hdev->devtype));
837 
838 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839 			output_len += scnprintf(buf + output_len,
840 						PAGE_SIZE - output_len,
841 						"%s\n", active);
842 			continue;
843 		}
844 
845 		box = hdev->box[i];
846 		memcpy(&phys_connector, &hdev->phys_connector[i],
847 			sizeof(phys_connector));
848 		if (phys_connector[0] < '0')
849 			phys_connector[0] = '0';
850 		if (phys_connector[1] < '0')
851 			phys_connector[1] = '0';
852 		output_len += scnprintf(buf + output_len,
853 				PAGE_SIZE - output_len,
854 				"PORT: %.2s ",
855 				phys_connector);
856 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857 			hdev->expose_device) {
858 			if (box == 0 || box == 0xFF) {
859 				output_len += scnprintf(buf + output_len,
860 					PAGE_SIZE - output_len,
861 					"BAY: %hhu %s\n",
862 					bay, active);
863 			} else {
864 				output_len += scnprintf(buf + output_len,
865 					PAGE_SIZE - output_len,
866 					"BOX: %hhu BAY: %hhu %s\n",
867 					box, bay, active);
868 			}
869 		} else if (box != 0 && box != 0xFF) {
870 			output_len += scnprintf(buf + output_len,
871 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
872 				box, active);
873 		} else
874 			output_len += scnprintf(buf + output_len,
875 				PAGE_SIZE - output_len, "%s\n", active);
876 	}
877 
878 	spin_unlock_irqrestore(&h->devlock, flags);
879 	return output_len;
880 }
881 
882 static ssize_t host_show_ctlr_num(struct device *dev,
883 	struct device_attribute *attr, char *buf)
884 {
885 	struct ctlr_info *h;
886 	struct Scsi_Host *shost = class_to_shost(dev);
887 
888 	h = shost_to_hba(shost);
889 	return snprintf(buf, 20, "%d\n", h->ctlr);
890 }
891 
892 static ssize_t host_show_legacy_board(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
900 }
901 
902 static DEVICE_ATTR_RO(raid_level);
903 static DEVICE_ATTR_RO(lunid);
904 static DEVICE_ATTR_RO(unique_id);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR_RO(sas_address);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908 			host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR_RO(path_info);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911 		host_show_hp_ssd_smart_path_status,
912 		host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914 			host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916 	host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918 	host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920 	host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922 	host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924 	host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926 	host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928 	host_show_legacy_board, NULL);
929 
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931 	&dev_attr_raid_level,
932 	&dev_attr_lunid,
933 	&dev_attr_unique_id,
934 	&dev_attr_hp_ssd_smart_path_enabled,
935 	&dev_attr_path_info,
936 	&dev_attr_sas_address,
937 	NULL,
938 };
939 
940 static struct device_attribute *hpsa_shost_attrs[] = {
941 	&dev_attr_rescan,
942 	&dev_attr_firmware_revision,
943 	&dev_attr_commands_outstanding,
944 	&dev_attr_transport_mode,
945 	&dev_attr_resettable,
946 	&dev_attr_hp_ssd_smart_path_status,
947 	&dev_attr_raid_offload_debug,
948 	&dev_attr_lockup_detected,
949 	&dev_attr_ctlr_num,
950 	&dev_attr_legacy_board,
951 	NULL,
952 };
953 
954 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
955 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
956 
957 static struct scsi_host_template hpsa_driver_template = {
958 	.module			= THIS_MODULE,
959 	.name			= HPSA,
960 	.proc_name		= HPSA,
961 	.queuecommand		= hpsa_scsi_queue_command,
962 	.scan_start		= hpsa_scan_start,
963 	.scan_finished		= hpsa_scan_finished,
964 	.change_queue_depth	= hpsa_change_queue_depth,
965 	.this_id		= -1,
966 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
967 	.ioctl			= hpsa_ioctl,
968 	.slave_alloc		= hpsa_slave_alloc,
969 	.slave_configure	= hpsa_slave_configure,
970 	.slave_destroy		= hpsa_slave_destroy,
971 #ifdef CONFIG_COMPAT
972 	.compat_ioctl		= hpsa_compat_ioctl,
973 #endif
974 	.sdev_attrs = hpsa_sdev_attrs,
975 	.shost_attrs = hpsa_shost_attrs,
976 	.max_sectors = 2048,
977 	.no_write_same = 1,
978 };
979 
980 static inline u32 next_command(struct ctlr_info *h, u8 q)
981 {
982 	u32 a;
983 	struct reply_queue_buffer *rq = &h->reply_queue[q];
984 
985 	if (h->transMethod & CFGTBL_Trans_io_accel1)
986 		return h->access.command_completed(h, q);
987 
988 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
989 		return h->access.command_completed(h, q);
990 
991 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
992 		a = rq->head[rq->current_entry];
993 		rq->current_entry++;
994 		atomic_dec(&h->commands_outstanding);
995 	} else {
996 		a = FIFO_EMPTY;
997 	}
998 	/* Check for wraparound */
999 	if (rq->current_entry == h->max_commands) {
1000 		rq->current_entry = 0;
1001 		rq->wraparound ^= 1;
1002 	}
1003 	return a;
1004 }
1005 
1006 /*
1007  * There are some special bits in the bus address of the
1008  * command that we have to set for the controller to know
1009  * how to process the command:
1010  *
1011  * Normal performant mode:
1012  * bit 0: 1 means performant mode, 0 means simple mode.
1013  * bits 1-3 = block fetch table entry
1014  * bits 4-6 = command type (== 0)
1015  *
1016  * ioaccel1 mode:
1017  * bit 0 = "performant mode" bit.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 110)
1020  * (command type is needed because ioaccel1 mode
1021  * commands are submitted through the same register as normal
1022  * mode commands, so this is how the controller knows whether
1023  * the command is normal mode or ioaccel1 mode.)
1024  *
1025  * ioaccel2 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-4 = block fetch table entry (note extra bit)
1028  * bits 4-6 = not needed, because ioaccel2 mode has
1029  * a separate special register for submitting commands.
1030  */
1031 
1032 /*
1033  * set_performant_mode: Modify the tag for cciss performant
1034  * set bit 0 for pull model, bits 3-1 for block fetch
1035  * register number
1036  */
1037 #define DEFAULT_REPLY_QUEUE (-1)
1038 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1039 					int reply_queue)
1040 {
1041 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043 		if (unlikely(!h->msix_vectors))
1044 			return;
1045 		c->Header.ReplyQueue = reply_queue;
1046 	}
1047 }
1048 
1049 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050 						struct CommandList *c,
1051 						int reply_queue)
1052 {
1053 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1054 
1055 	/*
1056 	 * Tell the controller to post the reply to the queue for this
1057 	 * processor.  This seems to give the best I/O throughput.
1058 	 */
1059 	cp->ReplyQueue = reply_queue;
1060 	/*
1061 	 * Set the bits in the address sent down to include:
1062 	 *  - performant mode bit (bit 0)
1063 	 *  - pull count (bits 1-3)
1064 	 *  - command type (bits 4-6)
1065 	 */
1066 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067 					IOACCEL1_BUSADDR_CMDTYPE;
1068 }
1069 
1070 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071 						struct CommandList *c,
1072 						int reply_queue)
1073 {
1074 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075 		&h->ioaccel2_cmd_pool[c->cmdindex];
1076 
1077 	/* Tell the controller to post the reply to the queue for this
1078 	 * processor.  This seems to give the best I/O throughput.
1079 	 */
1080 	cp->reply_queue = reply_queue;
1081 	/* Set the bits in the address sent down to include:
1082 	 *  - performant mode bit not used in ioaccel mode 2
1083 	 *  - pull count (bits 0-3)
1084 	 *  - command type isn't needed for ioaccel2
1085 	 */
1086 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1087 }
1088 
1089 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090 						struct CommandList *c,
1091 						int reply_queue)
1092 {
1093 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1094 
1095 	/*
1096 	 * Tell the controller to post the reply to the queue for this
1097 	 * processor.  This seems to give the best I/O throughput.
1098 	 */
1099 	cp->reply_queue = reply_queue;
1100 	/*
1101 	 * Set the bits in the address sent down to include:
1102 	 *  - performant mode bit not used in ioaccel mode 2
1103 	 *  - pull count (bits 0-3)
1104 	 *  - command type isn't needed for ioaccel2
1105 	 */
1106 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1107 }
1108 
1109 static int is_firmware_flash_cmd(u8 *cdb)
1110 {
1111 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1112 }
1113 
1114 /*
1115  * During firmware flash, the heartbeat register may not update as frequently
1116  * as it should.  So we dial down lockup detection during firmware flash. and
1117  * dial it back up when firmware flash completes.
1118  */
1119 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123 		struct CommandList *c)
1124 {
1125 	if (!is_firmware_flash_cmd(c->Request.CDB))
1126 		return;
1127 	atomic_inc(&h->firmware_flash_in_progress);
1128 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1129 }
1130 
1131 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132 		struct CommandList *c)
1133 {
1134 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1135 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1136 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1137 }
1138 
1139 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140 	struct CommandList *c, int reply_queue)
1141 {
1142 	dial_down_lockup_detection_during_fw_flash(h, c);
1143 	atomic_inc(&h->commands_outstanding);
1144 	if (c->device)
1145 		atomic_inc(&c->device->commands_outstanding);
1146 
1147 	reply_queue = h->reply_map[raw_smp_processor_id()];
1148 	switch (c->cmd_type) {
1149 	case CMD_IOACCEL1:
1150 		set_ioaccel1_performant_mode(h, c, reply_queue);
1151 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152 		break;
1153 	case CMD_IOACCEL2:
1154 		set_ioaccel2_performant_mode(h, c, reply_queue);
1155 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156 		break;
1157 	case IOACCEL2_TMF:
1158 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160 		break;
1161 	default:
1162 		set_performant_mode(h, c, reply_queue);
1163 		h->access.submit_command(h, c);
1164 	}
1165 }
1166 
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1170 }
1171 
1172 static inline int is_hba_lunid(unsigned char scsi3addr[])
1173 {
1174 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1175 }
1176 
1177 static inline int is_scsi_rev_5(struct ctlr_info *h)
1178 {
1179 	if (!h->hba_inquiry_data)
1180 		return 0;
1181 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1182 		return 1;
1183 	return 0;
1184 }
1185 
1186 static int hpsa_find_target_lun(struct ctlr_info *h,
1187 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1188 {
1189 	/* finds an unused bus, target, lun for a new physical device
1190 	 * assumes h->devlock is held
1191 	 */
1192 	int i, found = 0;
1193 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1194 
1195 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1196 
1197 	for (i = 0; i < h->ndevices; i++) {
1198 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199 			__set_bit(h->dev[i]->target, lun_taken);
1200 	}
1201 
1202 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203 	if (i < HPSA_MAX_DEVICES) {
1204 		/* *bus = 1; */
1205 		*target = i;
1206 		*lun = 0;
1207 		found = 1;
1208 	}
1209 	return !found;
1210 }
1211 
1212 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213 	struct hpsa_scsi_dev_t *dev, char *description)
1214 {
1215 #define LABEL_SIZE 25
1216 	char label[LABEL_SIZE];
1217 
1218 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1219 		return;
1220 
1221 	switch (dev->devtype) {
1222 	case TYPE_RAID:
1223 		snprintf(label, LABEL_SIZE, "controller");
1224 		break;
1225 	case TYPE_ENCLOSURE:
1226 		snprintf(label, LABEL_SIZE, "enclosure");
1227 		break;
1228 	case TYPE_DISK:
1229 	case TYPE_ZBC:
1230 		if (dev->external)
1231 			snprintf(label, LABEL_SIZE, "external");
1232 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233 			snprintf(label, LABEL_SIZE, "%s",
1234 				raid_label[PHYSICAL_DRIVE]);
1235 		else
1236 			snprintf(label, LABEL_SIZE, "RAID-%s",
1237 				dev->raid_level > RAID_UNKNOWN ? "?" :
1238 				raid_label[dev->raid_level]);
1239 		break;
1240 	case TYPE_ROM:
1241 		snprintf(label, LABEL_SIZE, "rom");
1242 		break;
1243 	case TYPE_TAPE:
1244 		snprintf(label, LABEL_SIZE, "tape");
1245 		break;
1246 	case TYPE_MEDIUM_CHANGER:
1247 		snprintf(label, LABEL_SIZE, "changer");
1248 		break;
1249 	default:
1250 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1251 		break;
1252 	}
1253 
1254 	dev_printk(level, &h->pdev->dev,
1255 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1257 			description,
1258 			scsi_device_type(dev->devtype),
1259 			dev->vendor,
1260 			dev->model,
1261 			label,
1262 			dev->offload_config ? '+' : '-',
1263 			dev->offload_to_be_enabled ? '+' : '-',
1264 			dev->expose_device);
1265 }
1266 
1267 /* Add an entry into h->dev[] array. */
1268 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269 		struct hpsa_scsi_dev_t *device,
1270 		struct hpsa_scsi_dev_t *added[], int *nadded)
1271 {
1272 	/* assumes h->devlock is held */
1273 	int n = h->ndevices;
1274 	int i;
1275 	unsigned char addr1[8], addr2[8];
1276 	struct hpsa_scsi_dev_t *sd;
1277 
1278 	if (n >= HPSA_MAX_DEVICES) {
1279 		dev_err(&h->pdev->dev, "too many devices, some will be "
1280 			"inaccessible.\n");
1281 		return -1;
1282 	}
1283 
1284 	/* physical devices do not have lun or target assigned until now. */
1285 	if (device->lun != -1)
1286 		/* Logical device, lun is already assigned. */
1287 		goto lun_assigned;
1288 
1289 	/* If this device a non-zero lun of a multi-lun device
1290 	 * byte 4 of the 8-byte LUN addr will contain the logical
1291 	 * unit no, zero otherwise.
1292 	 */
1293 	if (device->scsi3addr[4] == 0) {
1294 		/* This is not a non-zero lun of a multi-lun device */
1295 		if (hpsa_find_target_lun(h, device->scsi3addr,
1296 			device->bus, &device->target, &device->lun) != 0)
1297 			return -1;
1298 		goto lun_assigned;
1299 	}
1300 
1301 	/* This is a non-zero lun of a multi-lun device.
1302 	 * Search through our list and find the device which
1303 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1304 	 * Assign the same bus and target for this new LUN.
1305 	 * Use the logical unit number from the firmware.
1306 	 */
1307 	memcpy(addr1, device->scsi3addr, 8);
1308 	addr1[4] = 0;
1309 	addr1[5] = 0;
1310 	for (i = 0; i < n; i++) {
1311 		sd = h->dev[i];
1312 		memcpy(addr2, sd->scsi3addr, 8);
1313 		addr2[4] = 0;
1314 		addr2[5] = 0;
1315 		/* differ only in byte 4 and 5? */
1316 		if (memcmp(addr1, addr2, 8) == 0) {
1317 			device->bus = sd->bus;
1318 			device->target = sd->target;
1319 			device->lun = device->scsi3addr[4];
1320 			break;
1321 		}
1322 	}
1323 	if (device->lun == -1) {
1324 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325 			" suspect firmware bug or unsupported hardware "
1326 			"configuration.\n");
1327 		return -1;
1328 	}
1329 
1330 lun_assigned:
1331 
1332 	h->dev[n] = device;
1333 	h->ndevices++;
1334 	added[*nadded] = device;
1335 	(*nadded)++;
1336 	hpsa_show_dev_msg(KERN_INFO, h, device,
1337 		device->expose_device ? "added" : "masked");
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Called during a scan operation.
1343  *
1344  * Update an entry in h->dev[] array.
1345  */
1346 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347 	int entry, struct hpsa_scsi_dev_t *new_entry)
1348 {
1349 	/* assumes h->devlock is held */
1350 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1351 
1352 	/* Raid level changed. */
1353 	h->dev[entry]->raid_level = new_entry->raid_level;
1354 
1355 	/*
1356 	 * ioacccel_handle may have changed for a dual domain disk
1357 	 */
1358 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 
1360 	/* Raid offload parameters changed.  Careful about the ordering. */
1361 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1362 		/*
1363 		 * if drive is newly offload_enabled, we want to copy the
1364 		 * raid map data first.  If previously offload_enabled and
1365 		 * offload_config were set, raid map data had better be
1366 		 * the same as it was before. If raid map data has changed
1367 		 * then it had better be the case that
1368 		 * h->dev[entry]->offload_enabled is currently 0.
1369 		 */
1370 		h->dev[entry]->raid_map = new_entry->raid_map;
1371 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372 	}
1373 	if (new_entry->offload_to_be_enabled) {
1374 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376 	}
1377 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378 	h->dev[entry]->offload_config = new_entry->offload_config;
1379 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1381 
1382 	/*
1383 	 * We can turn off ioaccel offload now, but need to delay turning
1384 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385 	 * can't do that until all the devices are updated.
1386 	 */
1387 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1388 
1389 	/*
1390 	 * turn ioaccel off immediately if told to do so.
1391 	 */
1392 	if (!new_entry->offload_to_be_enabled)
1393 		h->dev[entry]->offload_enabled = 0;
1394 
1395 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1396 }
1397 
1398 /* Replace an entry from h->dev[] array. */
1399 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400 	int entry, struct hpsa_scsi_dev_t *new_entry,
1401 	struct hpsa_scsi_dev_t *added[], int *nadded,
1402 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1403 {
1404 	/* assumes h->devlock is held */
1405 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406 	removed[*nremoved] = h->dev[entry];
1407 	(*nremoved)++;
1408 
1409 	/*
1410 	 * New physical devices won't have target/lun assigned yet
1411 	 * so we need to preserve the values in the slot we are replacing.
1412 	 */
1413 	if (new_entry->target == -1) {
1414 		new_entry->target = h->dev[entry]->target;
1415 		new_entry->lun = h->dev[entry]->lun;
1416 	}
1417 
1418 	h->dev[entry] = new_entry;
1419 	added[*nadded] = new_entry;
1420 	(*nadded)++;
1421 
1422 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1423 }
1424 
1425 /* Remove an entry from h->dev[] array. */
1426 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1428 {
1429 	/* assumes h->devlock is held */
1430 	int i;
1431 	struct hpsa_scsi_dev_t *sd;
1432 
1433 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1434 
1435 	sd = h->dev[entry];
1436 	removed[*nremoved] = h->dev[entry];
1437 	(*nremoved)++;
1438 
1439 	for (i = entry; i < h->ndevices-1; i++)
1440 		h->dev[i] = h->dev[i+1];
1441 	h->ndevices--;
1442 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1443 }
1444 
1445 #define SCSI3ADDR_EQ(a, b) ( \
1446 	(a)[7] == (b)[7] && \
1447 	(a)[6] == (b)[6] && \
1448 	(a)[5] == (b)[5] && \
1449 	(a)[4] == (b)[4] && \
1450 	(a)[3] == (b)[3] && \
1451 	(a)[2] == (b)[2] && \
1452 	(a)[1] == (b)[1] && \
1453 	(a)[0] == (b)[0])
1454 
1455 static void fixup_botched_add(struct ctlr_info *h,
1456 	struct hpsa_scsi_dev_t *added)
1457 {
1458 	/* called when scsi_add_device fails in order to re-adjust
1459 	 * h->dev[] to match the mid layer's view.
1460 	 */
1461 	unsigned long flags;
1462 	int i, j;
1463 
1464 	spin_lock_irqsave(&h->lock, flags);
1465 	for (i = 0; i < h->ndevices; i++) {
1466 		if (h->dev[i] == added) {
1467 			for (j = i; j < h->ndevices-1; j++)
1468 				h->dev[j] = h->dev[j+1];
1469 			h->ndevices--;
1470 			break;
1471 		}
1472 	}
1473 	spin_unlock_irqrestore(&h->lock, flags);
1474 	kfree(added);
1475 }
1476 
1477 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478 	struct hpsa_scsi_dev_t *dev2)
1479 {
1480 	/* we compare everything except lun and target as these
1481 	 * are not yet assigned.  Compare parts likely
1482 	 * to differ first
1483 	 */
1484 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485 		sizeof(dev1->scsi3addr)) != 0)
1486 		return 0;
1487 	if (memcmp(dev1->device_id, dev2->device_id,
1488 		sizeof(dev1->device_id)) != 0)
1489 		return 0;
1490 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1491 		return 0;
1492 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1493 		return 0;
1494 	if (dev1->devtype != dev2->devtype)
1495 		return 0;
1496 	if (dev1->bus != dev2->bus)
1497 		return 0;
1498 	return 1;
1499 }
1500 
1501 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502 	struct hpsa_scsi_dev_t *dev2)
1503 {
1504 	/* Device attributes that can change, but don't mean
1505 	 * that the device is a different device, nor that the OS
1506 	 * needs to be told anything about the change.
1507 	 */
1508 	if (dev1->raid_level != dev2->raid_level)
1509 		return 1;
1510 	if (dev1->offload_config != dev2->offload_config)
1511 		return 1;
1512 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1513 		return 1;
1514 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515 		if (dev1->queue_depth != dev2->queue_depth)
1516 			return 1;
1517 	/*
1518 	 * This can happen for dual domain devices. An active
1519 	 * path change causes the ioaccel handle to change
1520 	 *
1521 	 * for example note the handle differences between p0 and p1
1522 	 * Device                    WWN               ,WWN hash,Handle
1523 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525 	 */
1526 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1527 		return 1;
1528 	return 0;
1529 }
1530 
1531 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1532  * and return needle location in *index.  If scsi3addr matches, but not
1533  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534  * location in *index.
1535  * In the case of a minor device attribute change, such as RAID level, just
1536  * return DEVICE_UPDATED, along with the updated device's location in index.
1537  * If needle not found, return DEVICE_NOT_FOUND.
1538  */
1539 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1541 	int *index)
1542 {
1543 	int i;
1544 #define DEVICE_NOT_FOUND 0
1545 #define DEVICE_CHANGED 1
1546 #define DEVICE_SAME 2
1547 #define DEVICE_UPDATED 3
1548 	if (needle == NULL)
1549 		return DEVICE_NOT_FOUND;
1550 
1551 	for (i = 0; i < haystack_size; i++) {
1552 		if (haystack[i] == NULL) /* previously removed. */
1553 			continue;
1554 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1555 			*index = i;
1556 			if (device_is_the_same(needle, haystack[i])) {
1557 				if (device_updated(needle, haystack[i]))
1558 					return DEVICE_UPDATED;
1559 				return DEVICE_SAME;
1560 			} else {
1561 				/* Keep offline devices offline */
1562 				if (needle->volume_offline)
1563 					return DEVICE_NOT_FOUND;
1564 				return DEVICE_CHANGED;
1565 			}
1566 		}
1567 	}
1568 	*index = -1;
1569 	return DEVICE_NOT_FOUND;
1570 }
1571 
1572 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573 					unsigned char scsi3addr[])
1574 {
1575 	struct offline_device_entry *device;
1576 	unsigned long flags;
1577 
1578 	/* Check to see if device is already on the list */
1579 	spin_lock_irqsave(&h->offline_device_lock, flags);
1580 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581 		if (memcmp(device->scsi3addr, scsi3addr,
1582 			sizeof(device->scsi3addr)) == 0) {
1583 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584 			return;
1585 		}
1586 	}
1587 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 
1589 	/* Device is not on the list, add it. */
1590 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1591 	if (!device)
1592 		return;
1593 
1594 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595 	spin_lock_irqsave(&h->offline_device_lock, flags);
1596 	list_add_tail(&device->offline_list, &h->offline_device_list);
1597 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 }
1599 
1600 /* Print a message explaining various offline volume states */
1601 static void hpsa_show_volume_status(struct ctlr_info *h,
1602 	struct hpsa_scsi_dev_t *sd)
1603 {
1604 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605 		dev_info(&h->pdev->dev,
1606 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607 			h->scsi_host->host_no,
1608 			sd->bus, sd->target, sd->lun);
1609 	switch (sd->volume_offline) {
1610 	case HPSA_LV_OK:
1611 		break;
1612 	case HPSA_LV_UNDERGOING_ERASE:
1613 		dev_info(&h->pdev->dev,
1614 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615 			h->scsi_host->host_no,
1616 			sd->bus, sd->target, sd->lun);
1617 		break;
1618 	case HPSA_LV_NOT_AVAILABLE:
1619 		dev_info(&h->pdev->dev,
1620 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621 			h->scsi_host->host_no,
1622 			sd->bus, sd->target, sd->lun);
1623 		break;
1624 	case HPSA_LV_UNDERGOING_RPI:
1625 		dev_info(&h->pdev->dev,
1626 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627 			h->scsi_host->host_no,
1628 			sd->bus, sd->target, sd->lun);
1629 		break;
1630 	case HPSA_LV_PENDING_RPI:
1631 		dev_info(&h->pdev->dev,
1632 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633 			h->scsi_host->host_no,
1634 			sd->bus, sd->target, sd->lun);
1635 		break;
1636 	case HPSA_LV_ENCRYPTED_NO_KEY:
1637 		dev_info(&h->pdev->dev,
1638 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639 			h->scsi_host->host_no,
1640 			sd->bus, sd->target, sd->lun);
1641 		break;
1642 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643 		dev_info(&h->pdev->dev,
1644 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645 			h->scsi_host->host_no,
1646 			sd->bus, sd->target, sd->lun);
1647 		break;
1648 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1649 		dev_info(&h->pdev->dev,
1650 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651 			h->scsi_host->host_no,
1652 			sd->bus, sd->target, sd->lun);
1653 		break;
1654 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655 		dev_info(&h->pdev->dev,
1656 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657 			h->scsi_host->host_no,
1658 			sd->bus, sd->target, sd->lun);
1659 		break;
1660 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661 		dev_info(&h->pdev->dev,
1662 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663 			h->scsi_host->host_no,
1664 			sd->bus, sd->target, sd->lun);
1665 		break;
1666 	case HPSA_LV_PENDING_ENCRYPTION:
1667 		dev_info(&h->pdev->dev,
1668 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669 			h->scsi_host->host_no,
1670 			sd->bus, sd->target, sd->lun);
1671 		break;
1672 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673 		dev_info(&h->pdev->dev,
1674 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675 			h->scsi_host->host_no,
1676 			sd->bus, sd->target, sd->lun);
1677 		break;
1678 	}
1679 }
1680 
1681 /*
1682  * Figure the list of physical drive pointers for a logical drive with
1683  * raid offload configured.
1684  */
1685 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1687 				struct hpsa_scsi_dev_t *logical_drive)
1688 {
1689 	struct raid_map_data *map = &logical_drive->raid_map;
1690 	struct raid_map_disk_data *dd = &map->data[0];
1691 	int i, j;
1692 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693 				le16_to_cpu(map->metadata_disks_per_row);
1694 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695 				le16_to_cpu(map->layout_map_count) *
1696 				total_disks_per_row;
1697 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698 				total_disks_per_row;
1699 	int qdepth;
1700 
1701 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1703 
1704 	logical_drive->nphysical_disks = nraid_map_entries;
1705 
1706 	qdepth = 0;
1707 	for (i = 0; i < nraid_map_entries; i++) {
1708 		logical_drive->phys_disk[i] = NULL;
1709 		if (!logical_drive->offload_config)
1710 			continue;
1711 		for (j = 0; j < ndevices; j++) {
1712 			if (dev[j] == NULL)
1713 				continue;
1714 			if (dev[j]->devtype != TYPE_DISK &&
1715 			    dev[j]->devtype != TYPE_ZBC)
1716 				continue;
1717 			if (is_logical_device(dev[j]))
1718 				continue;
1719 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1720 				continue;
1721 
1722 			logical_drive->phys_disk[i] = dev[j];
1723 			if (i < nphys_disk)
1724 				qdepth = min(h->nr_cmds, qdepth +
1725 				    logical_drive->phys_disk[i]->queue_depth);
1726 			break;
1727 		}
1728 
1729 		/*
1730 		 * This can happen if a physical drive is removed and
1731 		 * the logical drive is degraded.  In that case, the RAID
1732 		 * map data will refer to a physical disk which isn't actually
1733 		 * present.  And in that case offload_enabled should already
1734 		 * be 0, but we'll turn it off here just in case
1735 		 */
1736 		if (!logical_drive->phys_disk[i]) {
1737 			dev_warn(&h->pdev->dev,
1738 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739 				__func__,
1740 				h->scsi_host->host_no, logical_drive->bus,
1741 				logical_drive->target, logical_drive->lun);
1742 			logical_drive->offload_enabled = 0;
1743 			logical_drive->offload_to_be_enabled = 0;
1744 			logical_drive->queue_depth = 8;
1745 		}
1746 	}
1747 	if (nraid_map_entries)
1748 		/*
1749 		 * This is correct for reads, too high for full stripe writes,
1750 		 * way too high for partial stripe writes
1751 		 */
1752 		logical_drive->queue_depth = qdepth;
1753 	else {
1754 		if (logical_drive->external)
1755 			logical_drive->queue_depth = EXTERNAL_QD;
1756 		else
1757 			logical_drive->queue_depth = h->nr_cmds;
1758 	}
1759 }
1760 
1761 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < ndevices; i++) {
1767 		if (dev[i] == NULL)
1768 			continue;
1769 		if (dev[i]->devtype != TYPE_DISK &&
1770 		    dev[i]->devtype != TYPE_ZBC)
1771 			continue;
1772 		if (!is_logical_device(dev[i]))
1773 			continue;
1774 
1775 		/*
1776 		 * If offload is currently enabled, the RAID map and
1777 		 * phys_disk[] assignment *better* not be changing
1778 		 * because we would be changing ioaccel phsy_disk[] pointers
1779 		 * on a ioaccel volume processing I/O requests.
1780 		 *
1781 		 * If an ioaccel volume status changed, initially because it was
1782 		 * re-configured and thus underwent a transformation, or
1783 		 * a drive failed, we would have received a state change
1784 		 * request and ioaccel should have been turned off. When the
1785 		 * transformation completes, we get another state change
1786 		 * request to turn ioaccel back on. In this case, we need
1787 		 * to update the ioaccel information.
1788 		 *
1789 		 * Thus: If it is not currently enabled, but will be after
1790 		 * the scan completes, make sure the ioaccel pointers
1791 		 * are up to date.
1792 		 */
1793 
1794 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1796 	}
1797 }
1798 
1799 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800 {
1801 	int rc = 0;
1802 
1803 	if (!h->scsi_host)
1804 		return 1;
1805 
1806 	if (is_logical_device(device)) /* RAID */
1807 		rc = scsi_add_device(h->scsi_host, device->bus,
1808 					device->target, device->lun);
1809 	else /* HBA */
1810 		rc = hpsa_add_sas_device(h->sas_host, device);
1811 
1812 	return rc;
1813 }
1814 
1815 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816 						struct hpsa_scsi_dev_t *dev)
1817 {
1818 	int i;
1819 	int count = 0;
1820 
1821 	for (i = 0; i < h->nr_cmds; i++) {
1822 		struct CommandList *c = h->cmd_pool + i;
1823 		int refcount = atomic_inc_return(&c->refcount);
1824 
1825 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1826 				dev->scsi3addr)) {
1827 			unsigned long flags;
1828 
1829 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1830 			if (!hpsa_is_cmd_idle(c))
1831 				++count;
1832 			spin_unlock_irqrestore(&h->lock, flags);
1833 		}
1834 
1835 		cmd_free(h, c);
1836 	}
1837 
1838 	return count;
1839 }
1840 
1841 #define NUM_WAIT 20
1842 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843 						struct hpsa_scsi_dev_t *device)
1844 {
1845 	int cmds = 0;
1846 	int waits = 0;
1847 	int num_wait = NUM_WAIT;
1848 
1849 	if (device->external)
1850 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1851 
1852 	while (1) {
1853 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1854 		if (cmds == 0)
1855 			break;
1856 		if (++waits > num_wait)
1857 			break;
1858 		msleep(1000);
1859 	}
1860 
1861 	if (waits > num_wait) {
1862 		dev_warn(&h->pdev->dev,
1863 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864 			__func__,
1865 			h->scsi_host->host_no,
1866 			device->bus, device->target, device->lun, cmds);
1867 	}
1868 }
1869 
1870 static void hpsa_remove_device(struct ctlr_info *h,
1871 			struct hpsa_scsi_dev_t *device)
1872 {
1873 	struct scsi_device *sdev = NULL;
1874 
1875 	if (!h->scsi_host)
1876 		return;
1877 
1878 	/*
1879 	 * Allow for commands to drain
1880 	 */
1881 	device->removed = 1;
1882 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1883 
1884 	if (is_logical_device(device)) { /* RAID */
1885 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886 						device->target, device->lun);
1887 		if (sdev) {
1888 			scsi_remove_device(sdev);
1889 			scsi_device_put(sdev);
1890 		} else {
1891 			/*
1892 			 * We don't expect to get here.  Future commands
1893 			 * to this device will get a selection timeout as
1894 			 * if the device were gone.
1895 			 */
1896 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1897 					"didn't find device for removal.");
1898 		}
1899 	} else { /* HBA */
1900 
1901 		hpsa_remove_sas_device(device);
1902 	}
1903 }
1904 
1905 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906 	struct hpsa_scsi_dev_t *sd[], int nsds)
1907 {
1908 	/* sd contains scsi3 addresses and devtypes, and inquiry
1909 	 * data.  This function takes what's in sd to be the current
1910 	 * reality and updates h->dev[] to reflect that reality.
1911 	 */
1912 	int i, entry, device_change, changes = 0;
1913 	struct hpsa_scsi_dev_t *csd;
1914 	unsigned long flags;
1915 	struct hpsa_scsi_dev_t **added, **removed;
1916 	int nadded, nremoved;
1917 
1918 	/*
1919 	 * A reset can cause a device status to change
1920 	 * re-schedule the scan to see what happened.
1921 	 */
1922 	spin_lock_irqsave(&h->reset_lock, flags);
1923 	if (h->reset_in_progress) {
1924 		h->drv_req_rescan = 1;
1925 		spin_unlock_irqrestore(&h->reset_lock, flags);
1926 		return;
1927 	}
1928 	spin_unlock_irqrestore(&h->reset_lock, flags);
1929 
1930 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1932 
1933 	if (!added || !removed) {
1934 		dev_warn(&h->pdev->dev, "out of memory in "
1935 			"adjust_hpsa_scsi_table\n");
1936 		goto free_and_out;
1937 	}
1938 
1939 	spin_lock_irqsave(&h->devlock, flags);
1940 
1941 	/* find any devices in h->dev[] that are not in
1942 	 * sd[] and remove them from h->dev[], and for any
1943 	 * devices which have changed, remove the old device
1944 	 * info and add the new device info.
1945 	 * If minor device attributes change, just update
1946 	 * the existing device structure.
1947 	 */
1948 	i = 0;
1949 	nremoved = 0;
1950 	nadded = 0;
1951 	while (i < h->ndevices) {
1952 		csd = h->dev[i];
1953 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954 		if (device_change == DEVICE_NOT_FOUND) {
1955 			changes++;
1956 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957 			continue; /* remove ^^^, hence i not incremented */
1958 		} else if (device_change == DEVICE_CHANGED) {
1959 			changes++;
1960 			hpsa_scsi_replace_entry(h, i, sd[entry],
1961 				added, &nadded, removed, &nremoved);
1962 			/* Set it to NULL to prevent it from being freed
1963 			 * at the bottom of hpsa_update_scsi_devices()
1964 			 */
1965 			sd[entry] = NULL;
1966 		} else if (device_change == DEVICE_UPDATED) {
1967 			hpsa_scsi_update_entry(h, i, sd[entry]);
1968 		}
1969 		i++;
1970 	}
1971 
1972 	/* Now, make sure every device listed in sd[] is also
1973 	 * listed in h->dev[], adding them if they aren't found
1974 	 */
1975 
1976 	for (i = 0; i < nsds; i++) {
1977 		if (!sd[i]) /* if already added above. */
1978 			continue;
1979 
1980 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981 		 * as the SCSI mid-layer does not handle such devices well.
1982 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983 		 * at 160Hz, and prevents the system from coming up.
1984 		 */
1985 		if (sd[i]->volume_offline) {
1986 			hpsa_show_volume_status(h, sd[i]);
1987 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1988 			continue;
1989 		}
1990 
1991 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992 					h->ndevices, &entry);
1993 		if (device_change == DEVICE_NOT_FOUND) {
1994 			changes++;
1995 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1996 				break;
1997 			sd[i] = NULL; /* prevent from being freed later. */
1998 		} else if (device_change == DEVICE_CHANGED) {
1999 			/* should never happen... */
2000 			changes++;
2001 			dev_warn(&h->pdev->dev,
2002 				"device unexpectedly changed.\n");
2003 			/* but if it does happen, we just ignore that device */
2004 		}
2005 	}
2006 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2007 
2008 	/*
2009 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010 	 * any logical drives that need it enabled.
2011 	 *
2012 	 * The raid map should be current by now.
2013 	 *
2014 	 * We are updating the device list used for I/O requests.
2015 	 */
2016 	for (i = 0; i < h->ndevices; i++) {
2017 		if (h->dev[i] == NULL)
2018 			continue;
2019 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2020 	}
2021 
2022 	spin_unlock_irqrestore(&h->devlock, flags);
2023 
2024 	/* Monitor devices which are in one of several NOT READY states to be
2025 	 * brought online later. This must be done without holding h->devlock,
2026 	 * so don't touch h->dev[]
2027 	 */
2028 	for (i = 0; i < nsds; i++) {
2029 		if (!sd[i]) /* if already added above. */
2030 			continue;
2031 		if (sd[i]->volume_offline)
2032 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2033 	}
2034 
2035 	/* Don't notify scsi mid layer of any changes the first time through
2036 	 * (or if there are no changes) scsi_scan_host will do it later the
2037 	 * first time through.
2038 	 */
2039 	if (!changes)
2040 		goto free_and_out;
2041 
2042 	/* Notify scsi mid layer of any removed devices */
2043 	for (i = 0; i < nremoved; i++) {
2044 		if (removed[i] == NULL)
2045 			continue;
2046 		if (removed[i]->expose_device)
2047 			hpsa_remove_device(h, removed[i]);
2048 		kfree(removed[i]);
2049 		removed[i] = NULL;
2050 	}
2051 
2052 	/* Notify scsi mid layer of any added devices */
2053 	for (i = 0; i < nadded; i++) {
2054 		int rc = 0;
2055 
2056 		if (added[i] == NULL)
2057 			continue;
2058 		if (!(added[i]->expose_device))
2059 			continue;
2060 		rc = hpsa_add_device(h, added[i]);
2061 		if (!rc)
2062 			continue;
2063 		dev_warn(&h->pdev->dev,
2064 			"addition failed %d, device not added.", rc);
2065 		/* now we have to remove it from h->dev,
2066 		 * since it didn't get added to scsi mid layer
2067 		 */
2068 		fixup_botched_add(h, added[i]);
2069 		h->drv_req_rescan = 1;
2070 	}
2071 
2072 free_and_out:
2073 	kfree(added);
2074 	kfree(removed);
2075 }
2076 
2077 /*
2078  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079  * Assume's h->devlock is held.
2080  */
2081 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082 	int bus, int target, int lun)
2083 {
2084 	int i;
2085 	struct hpsa_scsi_dev_t *sd;
2086 
2087 	for (i = 0; i < h->ndevices; i++) {
2088 		sd = h->dev[i];
2089 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2090 			return sd;
2091 	}
2092 	return NULL;
2093 }
2094 
2095 static int hpsa_slave_alloc(struct scsi_device *sdev)
2096 {
2097 	struct hpsa_scsi_dev_t *sd = NULL;
2098 	unsigned long flags;
2099 	struct ctlr_info *h;
2100 
2101 	h = sdev_to_hba(sdev);
2102 	spin_lock_irqsave(&h->devlock, flags);
2103 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104 		struct scsi_target *starget;
2105 		struct sas_rphy *rphy;
2106 
2107 		starget = scsi_target(sdev);
2108 		rphy = target_to_rphy(starget);
2109 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2110 		if (sd) {
2111 			sd->target = sdev_id(sdev);
2112 			sd->lun = sdev->lun;
2113 		}
2114 	}
2115 	if (!sd)
2116 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117 					sdev_id(sdev), sdev->lun);
2118 
2119 	if (sd && sd->expose_device) {
2120 		atomic_set(&sd->ioaccel_cmds_out, 0);
2121 		sdev->hostdata = sd;
2122 	} else
2123 		sdev->hostdata = NULL;
2124 	spin_unlock_irqrestore(&h->devlock, flags);
2125 	return 0;
2126 }
2127 
2128 /* configure scsi device based on internal per-device structure */
2129 static int hpsa_slave_configure(struct scsi_device *sdev)
2130 {
2131 	struct hpsa_scsi_dev_t *sd;
2132 	int queue_depth;
2133 
2134 	sd = sdev->hostdata;
2135 	sdev->no_uld_attach = !sd || !sd->expose_device;
2136 
2137 	if (sd) {
2138 		sd->was_removed = 0;
2139 		if (sd->external) {
2140 			queue_depth = EXTERNAL_QD;
2141 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142 			blk_queue_rq_timeout(sdev->request_queue,
2143 						HPSA_EH_PTRAID_TIMEOUT);
2144 		} else {
2145 			queue_depth = sd->queue_depth != 0 ?
2146 					sd->queue_depth : sdev->host->can_queue;
2147 		}
2148 	} else
2149 		queue_depth = sdev->host->can_queue;
2150 
2151 	scsi_change_queue_depth(sdev, queue_depth);
2152 
2153 	return 0;
2154 }
2155 
2156 static void hpsa_slave_destroy(struct scsi_device *sdev)
2157 {
2158 	struct hpsa_scsi_dev_t *hdev = NULL;
2159 
2160 	hdev = sdev->hostdata;
2161 
2162 	if (hdev)
2163 		hdev->was_removed = 1;
2164 }
2165 
2166 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (!h->ioaccel2_cmd_sg_list)
2171 		return;
2172 	for (i = 0; i < h->nr_cmds; i++) {
2173 		kfree(h->ioaccel2_cmd_sg_list[i]);
2174 		h->ioaccel2_cmd_sg_list[i] = NULL;
2175 	}
2176 	kfree(h->ioaccel2_cmd_sg_list);
2177 	h->ioaccel2_cmd_sg_list = NULL;
2178 }
2179 
2180 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (h->chainsize <= 0)
2185 		return 0;
2186 
2187 	h->ioaccel2_cmd_sg_list =
2188 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2189 					GFP_KERNEL);
2190 	if (!h->ioaccel2_cmd_sg_list)
2191 		return -ENOMEM;
2192 	for (i = 0; i < h->nr_cmds; i++) {
2193 		h->ioaccel2_cmd_sg_list[i] =
2194 			kmalloc_array(h->maxsgentries,
2195 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2196 				      GFP_KERNEL);
2197 		if (!h->ioaccel2_cmd_sg_list[i])
2198 			goto clean;
2199 	}
2200 	return 0;
2201 
2202 clean:
2203 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2204 	return -ENOMEM;
2205 }
2206 
2207 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (!h->cmd_sg_list)
2212 		return;
2213 	for (i = 0; i < h->nr_cmds; i++) {
2214 		kfree(h->cmd_sg_list[i]);
2215 		h->cmd_sg_list[i] = NULL;
2216 	}
2217 	kfree(h->cmd_sg_list);
2218 	h->cmd_sg_list = NULL;
2219 }
2220 
2221 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (h->chainsize <= 0)
2226 		return 0;
2227 
2228 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2229 				 GFP_KERNEL);
2230 	if (!h->cmd_sg_list)
2231 		return -ENOMEM;
2232 
2233 	for (i = 0; i < h->nr_cmds; i++) {
2234 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235 						  sizeof(*h->cmd_sg_list[i]),
2236 						  GFP_KERNEL);
2237 		if (!h->cmd_sg_list[i])
2238 			goto clean;
2239 
2240 	}
2241 	return 0;
2242 
2243 clean:
2244 	hpsa_free_sg_chain_blocks(h);
2245 	return -ENOMEM;
2246 }
2247 
2248 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249 	struct io_accel2_cmd *cp, struct CommandList *c)
2250 {
2251 	struct ioaccel2_sg_element *chain_block;
2252 	u64 temp64;
2253 	u32 chain_size;
2254 
2255 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256 	chain_size = le32_to_cpu(cp->sg[0].length);
2257 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2258 				DMA_TO_DEVICE);
2259 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260 		/* prevent subsequent unmapping */
2261 		cp->sg->address = 0;
2262 		return -1;
2263 	}
2264 	cp->sg->address = cpu_to_le64(temp64);
2265 	return 0;
2266 }
2267 
2268 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 	struct io_accel2_cmd *cp)
2270 {
2271 	struct ioaccel2_sg_element *chain_sg;
2272 	u64 temp64;
2273 	u32 chain_size;
2274 
2275 	chain_sg = cp->sg;
2276 	temp64 = le64_to_cpu(chain_sg->address);
2277 	chain_size = le32_to_cpu(cp->sg[0].length);
2278 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2279 }
2280 
2281 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282 	struct CommandList *c)
2283 {
2284 	struct SGDescriptor *chain_sg, *chain_block;
2285 	u64 temp64;
2286 	u32 chain_len;
2287 
2288 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289 	chain_block = h->cmd_sg_list[c->cmdindex];
2290 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291 	chain_len = sizeof(*chain_sg) *
2292 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293 	chain_sg->Len = cpu_to_le32(chain_len);
2294 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2295 				DMA_TO_DEVICE);
2296 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297 		/* prevent subsequent unmapping */
2298 		chain_sg->Addr = cpu_to_le64(0);
2299 		return -1;
2300 	}
2301 	chain_sg->Addr = cpu_to_le64(temp64);
2302 	return 0;
2303 }
2304 
2305 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306 	struct CommandList *c)
2307 {
2308 	struct SGDescriptor *chain_sg;
2309 
2310 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2311 		return;
2312 
2313 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2316 }
2317 
2318 
2319 /* Decode the various types of errors on ioaccel2 path.
2320  * Return 1 for any error that should generate a RAID path retry.
2321  * Return 0 for errors that don't require a RAID path retry.
2322  */
2323 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324 					struct CommandList *c,
2325 					struct scsi_cmnd *cmd,
2326 					struct io_accel2_cmd *c2,
2327 					struct hpsa_scsi_dev_t *dev)
2328 {
2329 	int data_len;
2330 	int retry = 0;
2331 	u32 ioaccel2_resid = 0;
2332 
2333 	switch (c2->error_data.serv_response) {
2334 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335 		switch (c2->error_data.status) {
2336 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2337 			break;
2338 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2339 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2340 			if (c2->error_data.data_present !=
2341 					IOACCEL2_SENSE_DATA_PRESENT) {
2342 				memset(cmd->sense_buffer, 0,
2343 					SCSI_SENSE_BUFFERSIZE);
2344 				break;
2345 			}
2346 			/* copy the sense data */
2347 			data_len = c2->error_data.sense_data_len;
2348 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2349 				data_len = SCSI_SENSE_BUFFERSIZE;
2350 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2351 				data_len =
2352 					sizeof(c2->error_data.sense_data_buff);
2353 			memcpy(cmd->sense_buffer,
2354 				c2->error_data.sense_data_buff, data_len);
2355 			retry = 1;
2356 			break;
2357 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2358 			retry = 1;
2359 			break;
2360 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2361 			retry = 1;
2362 			break;
2363 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2364 			retry = 1;
2365 			break;
2366 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2367 			retry = 1;
2368 			break;
2369 		default:
2370 			retry = 1;
2371 			break;
2372 		}
2373 		break;
2374 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2375 		switch (c2->error_data.status) {
2376 		case IOACCEL2_STATUS_SR_IO_ERROR:
2377 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2378 		case IOACCEL2_STATUS_SR_OVERRUN:
2379 			retry = 1;
2380 			break;
2381 		case IOACCEL2_STATUS_SR_UNDERRUN:
2382 			cmd->result = (DID_OK << 16);		/* host byte */
2383 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2384 			ioaccel2_resid = get_unaligned_le32(
2385 						&c2->error_data.resid_cnt[0]);
2386 			scsi_set_resid(cmd, ioaccel2_resid);
2387 			break;
2388 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2389 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2390 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2391 			/*
2392 			 * Did an HBA disk disappear? We will eventually
2393 			 * get a state change event from the controller but
2394 			 * in the meantime, we need to tell the OS that the
2395 			 * HBA disk is no longer there and stop I/O
2396 			 * from going down. This allows the potential re-insert
2397 			 * of the disk to get the same device node.
2398 			 */
2399 			if (dev->physical_device && dev->expose_device) {
2400 				cmd->result = DID_NO_CONNECT << 16;
2401 				dev->removed = 1;
2402 				h->drv_req_rescan = 1;
2403 				dev_warn(&h->pdev->dev,
2404 					"%s: device is gone!\n", __func__);
2405 			} else
2406 				/*
2407 				 * Retry by sending down the RAID path.
2408 				 * We will get an event from ctlr to
2409 				 * trigger rescan regardless.
2410 				 */
2411 				retry = 1;
2412 			break;
2413 		default:
2414 			retry = 1;
2415 		}
2416 		break;
2417 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2418 		break;
2419 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2420 		break;
2421 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2422 		retry = 1;
2423 		break;
2424 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2425 		break;
2426 	default:
2427 		retry = 1;
2428 		break;
2429 	}
2430 
2431 	if (dev->in_reset)
2432 		retry = 0;
2433 
2434 	return retry;	/* retry on raid path? */
2435 }
2436 
2437 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2438 		struct CommandList *c)
2439 {
2440 	struct hpsa_scsi_dev_t *dev = c->device;
2441 
2442 	/*
2443 	 * Reset c->scsi_cmd here so that the reset handler will know
2444 	 * this command has completed.  Then, check to see if the handler is
2445 	 * waiting for this command, and, if so, wake it.
2446 	 */
2447 	c->scsi_cmd = SCSI_CMD_IDLE;
2448 	mb();	/* Declare command idle before checking for pending events. */
2449 	if (dev) {
2450 		atomic_dec(&dev->commands_outstanding);
2451 		if (dev->in_reset &&
2452 			atomic_read(&dev->commands_outstanding) <= 0)
2453 			wake_up_all(&h->event_sync_wait_queue);
2454 	}
2455 }
2456 
2457 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2458 				      struct CommandList *c)
2459 {
2460 	hpsa_cmd_resolve_events(h, c);
2461 	cmd_tagged_free(h, c);
2462 }
2463 
2464 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2465 		struct CommandList *c, struct scsi_cmnd *cmd)
2466 {
2467 	hpsa_cmd_resolve_and_free(h, c);
2468 	if (cmd && cmd->scsi_done)
2469 		cmd->scsi_done(cmd);
2470 }
2471 
2472 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2473 {
2474 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2475 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2476 }
2477 
2478 static void process_ioaccel2_completion(struct ctlr_info *h,
2479 		struct CommandList *c, struct scsi_cmnd *cmd,
2480 		struct hpsa_scsi_dev_t *dev)
2481 {
2482 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2483 
2484 	/* check for good status */
2485 	if (likely(c2->error_data.serv_response == 0 &&
2486 			c2->error_data.status == 0))
2487 		return hpsa_cmd_free_and_done(h, c, cmd);
2488 
2489 	/*
2490 	 * Any RAID offload error results in retry which will use
2491 	 * the normal I/O path so the controller can handle whatever is
2492 	 * wrong.
2493 	 */
2494 	if (is_logical_device(dev) &&
2495 		c2->error_data.serv_response ==
2496 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2497 		if (c2->error_data.status ==
2498 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2499 			dev->offload_enabled = 0;
2500 			dev->offload_to_be_enabled = 0;
2501 		}
2502 
2503 		if (dev->in_reset) {
2504 			cmd->result = DID_RESET << 16;
2505 			return hpsa_cmd_free_and_done(h, c, cmd);
2506 		}
2507 
2508 		return hpsa_retry_cmd(h, c);
2509 	}
2510 
2511 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 		return hpsa_retry_cmd(h, c);
2513 
2514 	return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516 
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 					struct CommandList *cp)
2520 {
2521 	u8 tmf_status = cp->err_info->ScsiStatus;
2522 
2523 	switch (tmf_status) {
2524 	case CISS_TMF_COMPLETE:
2525 		/*
2526 		 * CISS_TMF_COMPLETE never happens, instead,
2527 		 * ei->CommandStatus == 0 for this case.
2528 		 */
2529 	case CISS_TMF_SUCCESS:
2530 		return 0;
2531 	case CISS_TMF_INVALID_FRAME:
2532 	case CISS_TMF_NOT_SUPPORTED:
2533 	case CISS_TMF_FAILED:
2534 	case CISS_TMF_WRONG_LUN:
2535 	case CISS_TMF_OVERLAPPED_TAG:
2536 		break;
2537 	default:
2538 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539 				tmf_status);
2540 		break;
2541 	}
2542 	return -tmf_status;
2543 }
2544 
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547 	struct scsi_cmnd *cmd;
2548 	struct ctlr_info *h;
2549 	struct ErrorInfo *ei;
2550 	struct hpsa_scsi_dev_t *dev;
2551 	struct io_accel2_cmd *c2;
2552 
2553 	u8 sense_key;
2554 	u8 asc;      /* additional sense code */
2555 	u8 ascq;     /* additional sense code qualifier */
2556 	unsigned long sense_data_size;
2557 
2558 	ei = cp->err_info;
2559 	cmd = cp->scsi_cmd;
2560 	h = cp->h;
2561 
2562 	if (!cmd->device) {
2563 		cmd->result = DID_NO_CONNECT << 16;
2564 		return hpsa_cmd_free_and_done(h, cp, cmd);
2565 	}
2566 
2567 	dev = cmd->device->hostdata;
2568 	if (!dev) {
2569 		cmd->result = DID_NO_CONNECT << 16;
2570 		return hpsa_cmd_free_and_done(h, cp, cmd);
2571 	}
2572 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573 
2574 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 	if ((cp->cmd_type == CMD_SCSI) &&
2576 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 		hpsa_unmap_sg_chain_block(h, cp);
2578 
2579 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582 
2583 	cmd->result = (DID_OK << 16); 		/* host byte */
2584 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2585 
2586 	/* SCSI command has already been cleaned up in SML */
2587 	if (dev->was_removed) {
2588 		hpsa_cmd_resolve_and_free(h, cp);
2589 		return;
2590 	}
2591 
2592 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2593 		if (dev->physical_device && dev->expose_device &&
2594 			dev->removed) {
2595 			cmd->result = DID_NO_CONNECT << 16;
2596 			return hpsa_cmd_free_and_done(h, cp, cmd);
2597 		}
2598 		if (likely(cp->phys_disk != NULL))
2599 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2600 	}
2601 
2602 	/*
2603 	 * We check for lockup status here as it may be set for
2604 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2605 	 * fail_all_oustanding_cmds()
2606 	 */
2607 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2608 		/* DID_NO_CONNECT will prevent a retry */
2609 		cmd->result = DID_NO_CONNECT << 16;
2610 		return hpsa_cmd_free_and_done(h, cp, cmd);
2611 	}
2612 
2613 	if (cp->cmd_type == CMD_IOACCEL2)
2614 		return process_ioaccel2_completion(h, cp, cmd, dev);
2615 
2616 	scsi_set_resid(cmd, ei->ResidualCnt);
2617 	if (ei->CommandStatus == 0)
2618 		return hpsa_cmd_free_and_done(h, cp, cmd);
2619 
2620 	/* For I/O accelerator commands, copy over some fields to the normal
2621 	 * CISS header used below for error handling.
2622 	 */
2623 	if (cp->cmd_type == CMD_IOACCEL1) {
2624 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2625 		cp->Header.SGList = scsi_sg_count(cmd);
2626 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2627 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2628 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2629 		cp->Header.tag = c->tag;
2630 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2631 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2632 
2633 		/* Any RAID offload error results in retry which will use
2634 		 * the normal I/O path so the controller can handle whatever's
2635 		 * wrong.
2636 		 */
2637 		if (is_logical_device(dev)) {
2638 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2639 				dev->offload_enabled = 0;
2640 			return hpsa_retry_cmd(h, cp);
2641 		}
2642 	}
2643 
2644 	/* an error has occurred */
2645 	switch (ei->CommandStatus) {
2646 
2647 	case CMD_TARGET_STATUS:
2648 		cmd->result |= ei->ScsiStatus;
2649 		/* copy the sense data */
2650 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2651 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2652 		else
2653 			sense_data_size = sizeof(ei->SenseInfo);
2654 		if (ei->SenseLen < sense_data_size)
2655 			sense_data_size = ei->SenseLen;
2656 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2657 		if (ei->ScsiStatus)
2658 			decode_sense_data(ei->SenseInfo, sense_data_size,
2659 				&sense_key, &asc, &ascq);
2660 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2661 			switch (sense_key) {
2662 			case ABORTED_COMMAND:
2663 				cmd->result |= DID_SOFT_ERROR << 16;
2664 				break;
2665 			case UNIT_ATTENTION:
2666 				if (asc == 0x3F && ascq == 0x0E)
2667 					h->drv_req_rescan = 1;
2668 				break;
2669 			case ILLEGAL_REQUEST:
2670 				if (asc == 0x25 && ascq == 0x00) {
2671 					dev->removed = 1;
2672 					cmd->result = DID_NO_CONNECT << 16;
2673 				}
2674 				break;
2675 			}
2676 			break;
2677 		}
2678 		/* Problem was not a check condition
2679 		 * Pass it up to the upper layers...
2680 		 */
2681 		if (ei->ScsiStatus) {
2682 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2683 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2684 				"Returning result: 0x%x\n",
2685 				cp, ei->ScsiStatus,
2686 				sense_key, asc, ascq,
2687 				cmd->result);
2688 		} else {  /* scsi status is zero??? How??? */
2689 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2690 				"Returning no connection.\n", cp),
2691 
2692 			/* Ordinarily, this case should never happen,
2693 			 * but there is a bug in some released firmware
2694 			 * revisions that allows it to happen if, for
2695 			 * example, a 4100 backplane loses power and
2696 			 * the tape drive is in it.  We assume that
2697 			 * it's a fatal error of some kind because we
2698 			 * can't show that it wasn't. We will make it
2699 			 * look like selection timeout since that is
2700 			 * the most common reason for this to occur,
2701 			 * and it's severe enough.
2702 			 */
2703 
2704 			cmd->result = DID_NO_CONNECT << 16;
2705 		}
2706 		break;
2707 
2708 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2709 		break;
2710 	case CMD_DATA_OVERRUN:
2711 		dev_warn(&h->pdev->dev,
2712 			"CDB %16phN data overrun\n", cp->Request.CDB);
2713 		break;
2714 	case CMD_INVALID: {
2715 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2716 		print_cmd(cp); */
2717 		/* We get CMD_INVALID if you address a non-existent device
2718 		 * instead of a selection timeout (no response).  You will
2719 		 * see this if you yank out a drive, then try to access it.
2720 		 * This is kind of a shame because it means that any other
2721 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2722 		 * missing target. */
2723 		cmd->result = DID_NO_CONNECT << 16;
2724 	}
2725 		break;
2726 	case CMD_PROTOCOL_ERR:
2727 		cmd->result = DID_ERROR << 16;
2728 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2729 				cp->Request.CDB);
2730 		break;
2731 	case CMD_HARDWARE_ERR:
2732 		cmd->result = DID_ERROR << 16;
2733 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2734 			cp->Request.CDB);
2735 		break;
2736 	case CMD_CONNECTION_LOST:
2737 		cmd->result = DID_ERROR << 16;
2738 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2739 			cp->Request.CDB);
2740 		break;
2741 	case CMD_ABORTED:
2742 		cmd->result = DID_ABORT << 16;
2743 		break;
2744 	case CMD_ABORT_FAILED:
2745 		cmd->result = DID_ERROR << 16;
2746 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2747 			cp->Request.CDB);
2748 		break;
2749 	case CMD_UNSOLICITED_ABORT:
2750 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2751 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2752 			cp->Request.CDB);
2753 		break;
2754 	case CMD_TIMEOUT:
2755 		cmd->result = DID_TIME_OUT << 16;
2756 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2757 			cp->Request.CDB);
2758 		break;
2759 	case CMD_UNABORTABLE:
2760 		cmd->result = DID_ERROR << 16;
2761 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2762 		break;
2763 	case CMD_TMF_STATUS:
2764 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2765 			cmd->result = DID_ERROR << 16;
2766 		break;
2767 	case CMD_IOACCEL_DISABLED:
2768 		/* This only handles the direct pass-through case since RAID
2769 		 * offload is handled above.  Just attempt a retry.
2770 		 */
2771 		cmd->result = DID_SOFT_ERROR << 16;
2772 		dev_warn(&h->pdev->dev,
2773 				"cp %p had HP SSD Smart Path error\n", cp);
2774 		break;
2775 	default:
2776 		cmd->result = DID_ERROR << 16;
2777 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2778 				cp, ei->CommandStatus);
2779 	}
2780 
2781 	return hpsa_cmd_free_and_done(h, cp, cmd);
2782 }
2783 
2784 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2785 		int sg_used, enum dma_data_direction data_direction)
2786 {
2787 	int i;
2788 
2789 	for (i = 0; i < sg_used; i++)
2790 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2791 				le32_to_cpu(c->SG[i].Len),
2792 				data_direction);
2793 }
2794 
2795 static int hpsa_map_one(struct pci_dev *pdev,
2796 		struct CommandList *cp,
2797 		unsigned char *buf,
2798 		size_t buflen,
2799 		enum dma_data_direction data_direction)
2800 {
2801 	u64 addr64;
2802 
2803 	if (buflen == 0 || data_direction == DMA_NONE) {
2804 		cp->Header.SGList = 0;
2805 		cp->Header.SGTotal = cpu_to_le16(0);
2806 		return 0;
2807 	}
2808 
2809 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2810 	if (dma_mapping_error(&pdev->dev, addr64)) {
2811 		/* Prevent subsequent unmap of something never mapped */
2812 		cp->Header.SGList = 0;
2813 		cp->Header.SGTotal = cpu_to_le16(0);
2814 		return -1;
2815 	}
2816 	cp->SG[0].Addr = cpu_to_le64(addr64);
2817 	cp->SG[0].Len = cpu_to_le32(buflen);
2818 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2819 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2820 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2821 	return 0;
2822 }
2823 
2824 #define NO_TIMEOUT ((unsigned long) -1)
2825 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2826 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2827 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2828 {
2829 	DECLARE_COMPLETION_ONSTACK(wait);
2830 
2831 	c->waiting = &wait;
2832 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2833 	if (timeout_msecs == NO_TIMEOUT) {
2834 		/* TODO: get rid of this no-timeout thing */
2835 		wait_for_completion_io(&wait);
2836 		return IO_OK;
2837 	}
2838 	if (!wait_for_completion_io_timeout(&wait,
2839 					msecs_to_jiffies(timeout_msecs))) {
2840 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2841 		return -ETIMEDOUT;
2842 	}
2843 	return IO_OK;
2844 }
2845 
2846 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2847 				   int reply_queue, unsigned long timeout_msecs)
2848 {
2849 	if (unlikely(lockup_detected(h))) {
2850 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2851 		return IO_OK;
2852 	}
2853 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2854 }
2855 
2856 static u32 lockup_detected(struct ctlr_info *h)
2857 {
2858 	int cpu;
2859 	u32 rc, *lockup_detected;
2860 
2861 	cpu = get_cpu();
2862 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2863 	rc = *lockup_detected;
2864 	put_cpu();
2865 	return rc;
2866 }
2867 
2868 #define MAX_DRIVER_CMD_RETRIES 25
2869 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2870 		struct CommandList *c, enum dma_data_direction data_direction,
2871 		unsigned long timeout_msecs)
2872 {
2873 	int backoff_time = 10, retry_count = 0;
2874 	int rc;
2875 
2876 	do {
2877 		memset(c->err_info, 0, sizeof(*c->err_info));
2878 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2879 						  timeout_msecs);
2880 		if (rc)
2881 			break;
2882 		retry_count++;
2883 		if (retry_count > 3) {
2884 			msleep(backoff_time);
2885 			if (backoff_time < 1000)
2886 				backoff_time *= 2;
2887 		}
2888 	} while ((check_for_unit_attention(h, c) ||
2889 			check_for_busy(h, c)) &&
2890 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2891 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2892 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2893 		rc = -EIO;
2894 	return rc;
2895 }
2896 
2897 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2898 				struct CommandList *c)
2899 {
2900 	const u8 *cdb = c->Request.CDB;
2901 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2902 
2903 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2904 		 txt, lun, cdb);
2905 }
2906 
2907 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2908 			struct CommandList *cp)
2909 {
2910 	const struct ErrorInfo *ei = cp->err_info;
2911 	struct device *d = &cp->h->pdev->dev;
2912 	u8 sense_key, asc, ascq;
2913 	int sense_len;
2914 
2915 	switch (ei->CommandStatus) {
2916 	case CMD_TARGET_STATUS:
2917 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2918 			sense_len = sizeof(ei->SenseInfo);
2919 		else
2920 			sense_len = ei->SenseLen;
2921 		decode_sense_data(ei->SenseInfo, sense_len,
2922 					&sense_key, &asc, &ascq);
2923 		hpsa_print_cmd(h, "SCSI status", cp);
2924 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2925 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2926 				sense_key, asc, ascq);
2927 		else
2928 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2929 		if (ei->ScsiStatus == 0)
2930 			dev_warn(d, "SCSI status is abnormally zero.  "
2931 			"(probably indicates selection timeout "
2932 			"reported incorrectly due to a known "
2933 			"firmware bug, circa July, 2001.)\n");
2934 		break;
2935 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2936 		break;
2937 	case CMD_DATA_OVERRUN:
2938 		hpsa_print_cmd(h, "overrun condition", cp);
2939 		break;
2940 	case CMD_INVALID: {
2941 		/* controller unfortunately reports SCSI passthru's
2942 		 * to non-existent targets as invalid commands.
2943 		 */
2944 		hpsa_print_cmd(h, "invalid command", cp);
2945 		dev_warn(d, "probably means device no longer present\n");
2946 		}
2947 		break;
2948 	case CMD_PROTOCOL_ERR:
2949 		hpsa_print_cmd(h, "protocol error", cp);
2950 		break;
2951 	case CMD_HARDWARE_ERR:
2952 		hpsa_print_cmd(h, "hardware error", cp);
2953 		break;
2954 	case CMD_CONNECTION_LOST:
2955 		hpsa_print_cmd(h, "connection lost", cp);
2956 		break;
2957 	case CMD_ABORTED:
2958 		hpsa_print_cmd(h, "aborted", cp);
2959 		break;
2960 	case CMD_ABORT_FAILED:
2961 		hpsa_print_cmd(h, "abort failed", cp);
2962 		break;
2963 	case CMD_UNSOLICITED_ABORT:
2964 		hpsa_print_cmd(h, "unsolicited abort", cp);
2965 		break;
2966 	case CMD_TIMEOUT:
2967 		hpsa_print_cmd(h, "timed out", cp);
2968 		break;
2969 	case CMD_UNABORTABLE:
2970 		hpsa_print_cmd(h, "unabortable", cp);
2971 		break;
2972 	case CMD_CTLR_LOCKUP:
2973 		hpsa_print_cmd(h, "controller lockup detected", cp);
2974 		break;
2975 	default:
2976 		hpsa_print_cmd(h, "unknown status", cp);
2977 		dev_warn(d, "Unknown command status %x\n",
2978 				ei->CommandStatus);
2979 	}
2980 }
2981 
2982 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2983 					u8 page, u8 *buf, size_t bufsize)
2984 {
2985 	int rc = IO_OK;
2986 	struct CommandList *c;
2987 	struct ErrorInfo *ei;
2988 
2989 	c = cmd_alloc(h);
2990 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2991 			page, scsi3addr, TYPE_CMD)) {
2992 		rc = -1;
2993 		goto out;
2994 	}
2995 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2996 			NO_TIMEOUT);
2997 	if (rc)
2998 		goto out;
2999 	ei = c->err_info;
3000 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3001 		hpsa_scsi_interpret_error(h, c);
3002 		rc = -1;
3003 	}
3004 out:
3005 	cmd_free(h, c);
3006 	return rc;
3007 }
3008 
3009 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3010 						u8 *scsi3addr)
3011 {
3012 	u8 *buf;
3013 	u64 sa = 0;
3014 	int rc = 0;
3015 
3016 	buf = kzalloc(1024, GFP_KERNEL);
3017 	if (!buf)
3018 		return 0;
3019 
3020 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3021 					buf, 1024);
3022 
3023 	if (rc)
3024 		goto out;
3025 
3026 	sa = get_unaligned_be64(buf+12);
3027 
3028 out:
3029 	kfree(buf);
3030 	return sa;
3031 }
3032 
3033 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3034 			u16 page, unsigned char *buf,
3035 			unsigned char bufsize)
3036 {
3037 	int rc = IO_OK;
3038 	struct CommandList *c;
3039 	struct ErrorInfo *ei;
3040 
3041 	c = cmd_alloc(h);
3042 
3043 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3044 			page, scsi3addr, TYPE_CMD)) {
3045 		rc = -1;
3046 		goto out;
3047 	}
3048 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3049 			NO_TIMEOUT);
3050 	if (rc)
3051 		goto out;
3052 	ei = c->err_info;
3053 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3054 		hpsa_scsi_interpret_error(h, c);
3055 		rc = -1;
3056 	}
3057 out:
3058 	cmd_free(h, c);
3059 	return rc;
3060 }
3061 
3062 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3063 	u8 reset_type, int reply_queue)
3064 {
3065 	int rc = IO_OK;
3066 	struct CommandList *c;
3067 	struct ErrorInfo *ei;
3068 
3069 	c = cmd_alloc(h);
3070 	c->device = dev;
3071 
3072 	/* fill_cmd can't fail here, no data buffer to map. */
3073 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3074 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3075 	if (rc) {
3076 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3077 		goto out;
3078 	}
3079 	/* no unmap needed here because no data xfer. */
3080 
3081 	ei = c->err_info;
3082 	if (ei->CommandStatus != 0) {
3083 		hpsa_scsi_interpret_error(h, c);
3084 		rc = -1;
3085 	}
3086 out:
3087 	cmd_free(h, c);
3088 	return rc;
3089 }
3090 
3091 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3092 			       struct hpsa_scsi_dev_t *dev,
3093 			       unsigned char *scsi3addr)
3094 {
3095 	int i;
3096 	bool match = false;
3097 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3098 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3099 
3100 	if (hpsa_is_cmd_idle(c))
3101 		return false;
3102 
3103 	switch (c->cmd_type) {
3104 	case CMD_SCSI:
3105 	case CMD_IOCTL_PEND:
3106 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3107 				sizeof(c->Header.LUN.LunAddrBytes));
3108 		break;
3109 
3110 	case CMD_IOACCEL1:
3111 	case CMD_IOACCEL2:
3112 		if (c->phys_disk == dev) {
3113 			/* HBA mode match */
3114 			match = true;
3115 		} else {
3116 			/* Possible RAID mode -- check each phys dev. */
3117 			/* FIXME:  Do we need to take out a lock here?  If
3118 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3119 			 * instead. */
3120 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3121 				/* FIXME: an alternate test might be
3122 				 *
3123 				 * match = dev->phys_disk[i]->ioaccel_handle
3124 				 *              == c2->scsi_nexus;      */
3125 				match = dev->phys_disk[i] == c->phys_disk;
3126 			}
3127 		}
3128 		break;
3129 
3130 	case IOACCEL2_TMF:
3131 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3132 			match = dev->phys_disk[i]->ioaccel_handle ==
3133 					le32_to_cpu(ac->it_nexus);
3134 		}
3135 		break;
3136 
3137 	case 0:		/* The command is in the middle of being initialized. */
3138 		match = false;
3139 		break;
3140 
3141 	default:
3142 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3143 			c->cmd_type);
3144 		BUG();
3145 	}
3146 
3147 	return match;
3148 }
3149 
3150 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3151 	u8 reset_type, int reply_queue)
3152 {
3153 	int rc = 0;
3154 
3155 	/* We can really only handle one reset at a time */
3156 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3157 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3158 		return -EINTR;
3159 	}
3160 
3161 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3162 	if (!rc) {
3163 		/* incremented by sending the reset request */
3164 		atomic_dec(&dev->commands_outstanding);
3165 		wait_event(h->event_sync_wait_queue,
3166 			atomic_read(&dev->commands_outstanding) <= 0 ||
3167 			lockup_detected(h));
3168 	}
3169 
3170 	if (unlikely(lockup_detected(h))) {
3171 		dev_warn(&h->pdev->dev,
3172 			 "Controller lockup detected during reset wait\n");
3173 		rc = -ENODEV;
3174 	}
3175 
3176 	if (!rc)
3177 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3178 
3179 	mutex_unlock(&h->reset_mutex);
3180 	return rc;
3181 }
3182 
3183 static void hpsa_get_raid_level(struct ctlr_info *h,
3184 	unsigned char *scsi3addr, unsigned char *raid_level)
3185 {
3186 	int rc;
3187 	unsigned char *buf;
3188 
3189 	*raid_level = RAID_UNKNOWN;
3190 	buf = kzalloc(64, GFP_KERNEL);
3191 	if (!buf)
3192 		return;
3193 
3194 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3195 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3196 		goto exit;
3197 
3198 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3199 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3200 
3201 	if (rc == 0)
3202 		*raid_level = buf[8];
3203 	if (*raid_level > RAID_UNKNOWN)
3204 		*raid_level = RAID_UNKNOWN;
3205 exit:
3206 	kfree(buf);
3207 	return;
3208 }
3209 
3210 #define HPSA_MAP_DEBUG
3211 #ifdef HPSA_MAP_DEBUG
3212 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3213 				struct raid_map_data *map_buff)
3214 {
3215 	struct raid_map_disk_data *dd = &map_buff->data[0];
3216 	int map, row, col;
3217 	u16 map_cnt, row_cnt, disks_per_row;
3218 
3219 	if (rc != 0)
3220 		return;
3221 
3222 	/* Show details only if debugging has been activated. */
3223 	if (h->raid_offload_debug < 2)
3224 		return;
3225 
3226 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3227 				le32_to_cpu(map_buff->structure_size));
3228 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3229 			le32_to_cpu(map_buff->volume_blk_size));
3230 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3231 			le64_to_cpu(map_buff->volume_blk_cnt));
3232 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3233 			map_buff->phys_blk_shift);
3234 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3235 			map_buff->parity_rotation_shift);
3236 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3237 			le16_to_cpu(map_buff->strip_size));
3238 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3239 			le64_to_cpu(map_buff->disk_starting_blk));
3240 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3241 			le64_to_cpu(map_buff->disk_blk_cnt));
3242 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3243 			le16_to_cpu(map_buff->data_disks_per_row));
3244 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3245 			le16_to_cpu(map_buff->metadata_disks_per_row));
3246 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3247 			le16_to_cpu(map_buff->row_cnt));
3248 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3249 			le16_to_cpu(map_buff->layout_map_count));
3250 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3251 			le16_to_cpu(map_buff->flags));
3252 	dev_info(&h->pdev->dev, "encryption = %s\n",
3253 			le16_to_cpu(map_buff->flags) &
3254 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3255 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3256 			le16_to_cpu(map_buff->dekindex));
3257 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3258 	for (map = 0; map < map_cnt; map++) {
3259 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3260 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3261 		for (row = 0; row < row_cnt; row++) {
3262 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3263 			disks_per_row =
3264 				le16_to_cpu(map_buff->data_disks_per_row);
3265 			for (col = 0; col < disks_per_row; col++, dd++)
3266 				dev_info(&h->pdev->dev,
3267 					"    D%02u: h=0x%04x xor=%u,%u\n",
3268 					col, dd->ioaccel_handle,
3269 					dd->xor_mult[0], dd->xor_mult[1]);
3270 			disks_per_row =
3271 				le16_to_cpu(map_buff->metadata_disks_per_row);
3272 			for (col = 0; col < disks_per_row; col++, dd++)
3273 				dev_info(&h->pdev->dev,
3274 					"    M%02u: h=0x%04x xor=%u,%u\n",
3275 					col, dd->ioaccel_handle,
3276 					dd->xor_mult[0], dd->xor_mult[1]);
3277 		}
3278 	}
3279 }
3280 #else
3281 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3282 			__attribute__((unused)) int rc,
3283 			__attribute__((unused)) struct raid_map_data *map_buff)
3284 {
3285 }
3286 #endif
3287 
3288 static int hpsa_get_raid_map(struct ctlr_info *h,
3289 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3290 {
3291 	int rc = 0;
3292 	struct CommandList *c;
3293 	struct ErrorInfo *ei;
3294 
3295 	c = cmd_alloc(h);
3296 
3297 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3298 			sizeof(this_device->raid_map), 0,
3299 			scsi3addr, TYPE_CMD)) {
3300 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3301 		cmd_free(h, c);
3302 		return -1;
3303 	}
3304 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3305 			NO_TIMEOUT);
3306 	if (rc)
3307 		goto out;
3308 	ei = c->err_info;
3309 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3310 		hpsa_scsi_interpret_error(h, c);
3311 		rc = -1;
3312 		goto out;
3313 	}
3314 	cmd_free(h, c);
3315 
3316 	/* @todo in the future, dynamically allocate RAID map memory */
3317 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3318 				sizeof(this_device->raid_map)) {
3319 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3320 		rc = -1;
3321 	}
3322 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3323 	return rc;
3324 out:
3325 	cmd_free(h, c);
3326 	return rc;
3327 }
3328 
3329 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3330 		unsigned char scsi3addr[], u16 bmic_device_index,
3331 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3332 {
3333 	int rc = IO_OK;
3334 	struct CommandList *c;
3335 	struct ErrorInfo *ei;
3336 
3337 	c = cmd_alloc(h);
3338 
3339 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3340 		0, RAID_CTLR_LUNID, TYPE_CMD);
3341 	if (rc)
3342 		goto out;
3343 
3344 	c->Request.CDB[2] = bmic_device_index & 0xff;
3345 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3346 
3347 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3348 			NO_TIMEOUT);
3349 	if (rc)
3350 		goto out;
3351 	ei = c->err_info;
3352 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3353 		hpsa_scsi_interpret_error(h, c);
3354 		rc = -1;
3355 	}
3356 out:
3357 	cmd_free(h, c);
3358 	return rc;
3359 }
3360 
3361 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3362 	struct bmic_identify_controller *buf, size_t bufsize)
3363 {
3364 	int rc = IO_OK;
3365 	struct CommandList *c;
3366 	struct ErrorInfo *ei;
3367 
3368 	c = cmd_alloc(h);
3369 
3370 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3371 		0, RAID_CTLR_LUNID, TYPE_CMD);
3372 	if (rc)
3373 		goto out;
3374 
3375 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3376 			NO_TIMEOUT);
3377 	if (rc)
3378 		goto out;
3379 	ei = c->err_info;
3380 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3381 		hpsa_scsi_interpret_error(h, c);
3382 		rc = -1;
3383 	}
3384 out:
3385 	cmd_free(h, c);
3386 	return rc;
3387 }
3388 
3389 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3390 		unsigned char scsi3addr[], u16 bmic_device_index,
3391 		struct bmic_identify_physical_device *buf, size_t bufsize)
3392 {
3393 	int rc = IO_OK;
3394 	struct CommandList *c;
3395 	struct ErrorInfo *ei;
3396 
3397 	c = cmd_alloc(h);
3398 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3399 		0, RAID_CTLR_LUNID, TYPE_CMD);
3400 	if (rc)
3401 		goto out;
3402 
3403 	c->Request.CDB[2] = bmic_device_index & 0xff;
3404 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3405 
3406 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3407 						NO_TIMEOUT);
3408 	ei = c->err_info;
3409 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3410 		hpsa_scsi_interpret_error(h, c);
3411 		rc = -1;
3412 	}
3413 out:
3414 	cmd_free(h, c);
3415 
3416 	return rc;
3417 }
3418 
3419 /*
3420  * get enclosure information
3421  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3422  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3423  * Uses id_physical_device to determine the box_index.
3424  */
3425 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3426 			unsigned char *scsi3addr,
3427 			struct ReportExtendedLUNdata *rlep, int rle_index,
3428 			struct hpsa_scsi_dev_t *encl_dev)
3429 {
3430 	int rc = -1;
3431 	struct CommandList *c = NULL;
3432 	struct ErrorInfo *ei = NULL;
3433 	struct bmic_sense_storage_box_params *bssbp = NULL;
3434 	struct bmic_identify_physical_device *id_phys = NULL;
3435 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3436 	u16 bmic_device_index = 0;
3437 
3438 	encl_dev->eli =
3439 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3440 
3441 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442 
3443 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3444 		rc = IO_OK;
3445 		goto out;
3446 	}
3447 
3448 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3449 		rc = IO_OK;
3450 		goto out;
3451 	}
3452 
3453 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3454 	if (!bssbp)
3455 		goto out;
3456 
3457 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3458 	if (!id_phys)
3459 		goto out;
3460 
3461 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3462 						id_phys, sizeof(*id_phys));
3463 	if (rc) {
3464 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3465 			__func__, encl_dev->external, bmic_device_index);
3466 		goto out;
3467 	}
3468 
3469 	c = cmd_alloc(h);
3470 
3471 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3472 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3473 
3474 	if (rc)
3475 		goto out;
3476 
3477 	if (id_phys->phys_connector[1] == 'E')
3478 		c->Request.CDB[5] = id_phys->box_index;
3479 	else
3480 		c->Request.CDB[5] = 0;
3481 
3482 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3483 						NO_TIMEOUT);
3484 	if (rc)
3485 		goto out;
3486 
3487 	ei = c->err_info;
3488 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3489 		rc = -1;
3490 		goto out;
3491 	}
3492 
3493 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3494 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3495 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3496 
3497 	rc = IO_OK;
3498 out:
3499 	kfree(bssbp);
3500 	kfree(id_phys);
3501 
3502 	if (c)
3503 		cmd_free(h, c);
3504 
3505 	if (rc != IO_OK)
3506 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3507 			"Error, could not get enclosure information");
3508 }
3509 
3510 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3511 						unsigned char *scsi3addr)
3512 {
3513 	struct ReportExtendedLUNdata *physdev;
3514 	u32 nphysicals;
3515 	u64 sa = 0;
3516 	int i;
3517 
3518 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3519 	if (!physdev)
3520 		return 0;
3521 
3522 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3523 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3524 		kfree(physdev);
3525 		return 0;
3526 	}
3527 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3528 
3529 	for (i = 0; i < nphysicals; i++)
3530 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3531 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3532 			break;
3533 		}
3534 
3535 	kfree(physdev);
3536 
3537 	return sa;
3538 }
3539 
3540 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3541 					struct hpsa_scsi_dev_t *dev)
3542 {
3543 	int rc;
3544 	u64 sa = 0;
3545 
3546 	if (is_hba_lunid(scsi3addr)) {
3547 		struct bmic_sense_subsystem_info *ssi;
3548 
3549 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3550 		if (!ssi)
3551 			return;
3552 
3553 		rc = hpsa_bmic_sense_subsystem_information(h,
3554 					scsi3addr, 0, ssi, sizeof(*ssi));
3555 		if (rc == 0) {
3556 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3557 			h->sas_address = sa;
3558 		}
3559 
3560 		kfree(ssi);
3561 	} else
3562 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3563 
3564 	dev->sas_address = sa;
3565 }
3566 
3567 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3568 	struct ReportExtendedLUNdata *physdev)
3569 {
3570 	u32 nphysicals;
3571 	int i;
3572 
3573 	if (h->discovery_polling)
3574 		return;
3575 
3576 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3577 
3578 	for (i = 0; i < nphysicals; i++) {
3579 		if (physdev->LUN[i].device_type ==
3580 			BMIC_DEVICE_TYPE_CONTROLLER
3581 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3582 			dev_info(&h->pdev->dev,
3583 				"External controller present, activate discovery polling and disable rld caching\n");
3584 			hpsa_disable_rld_caching(h);
3585 			h->discovery_polling = 1;
3586 			break;
3587 		}
3588 	}
3589 }
3590 
3591 /* Get a device id from inquiry page 0x83 */
3592 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3593 	unsigned char scsi3addr[], u8 page)
3594 {
3595 	int rc;
3596 	int i;
3597 	int pages;
3598 	unsigned char *buf, bufsize;
3599 
3600 	buf = kzalloc(256, GFP_KERNEL);
3601 	if (!buf)
3602 		return false;
3603 
3604 	/* Get the size of the page list first */
3605 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3606 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3607 				buf, HPSA_VPD_HEADER_SZ);
3608 	if (rc != 0)
3609 		goto exit_unsupported;
3610 	pages = buf[3];
3611 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3612 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3613 	else
3614 		bufsize = 255;
3615 
3616 	/* Get the whole VPD page list */
3617 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3618 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3619 				buf, bufsize);
3620 	if (rc != 0)
3621 		goto exit_unsupported;
3622 
3623 	pages = buf[3];
3624 	for (i = 1; i <= pages; i++)
3625 		if (buf[3 + i] == page)
3626 			goto exit_supported;
3627 exit_unsupported:
3628 	kfree(buf);
3629 	return false;
3630 exit_supported:
3631 	kfree(buf);
3632 	return true;
3633 }
3634 
3635 /*
3636  * Called during a scan operation.
3637  * Sets ioaccel status on the new device list, not the existing device list
3638  *
3639  * The device list used during I/O will be updated later in
3640  * adjust_hpsa_scsi_table.
3641  */
3642 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3643 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3644 {
3645 	int rc;
3646 	unsigned char *buf;
3647 	u8 ioaccel_status;
3648 
3649 	this_device->offload_config = 0;
3650 	this_device->offload_enabled = 0;
3651 	this_device->offload_to_be_enabled = 0;
3652 
3653 	buf = kzalloc(64, GFP_KERNEL);
3654 	if (!buf)
3655 		return;
3656 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3657 		goto out;
3658 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3659 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3660 	if (rc != 0)
3661 		goto out;
3662 
3663 #define IOACCEL_STATUS_BYTE 4
3664 #define OFFLOAD_CONFIGURED_BIT 0x01
3665 #define OFFLOAD_ENABLED_BIT 0x02
3666 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3667 	this_device->offload_config =
3668 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3669 	if (this_device->offload_config) {
3670 		this_device->offload_to_be_enabled =
3671 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3672 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3673 			this_device->offload_to_be_enabled = 0;
3674 	}
3675 
3676 out:
3677 	kfree(buf);
3678 	return;
3679 }
3680 
3681 /* Get the device id from inquiry page 0x83 */
3682 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3683 	unsigned char *device_id, int index, int buflen)
3684 {
3685 	int rc;
3686 	unsigned char *buf;
3687 
3688 	/* Does controller have VPD for device id? */
3689 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3690 		return 1; /* not supported */
3691 
3692 	buf = kzalloc(64, GFP_KERNEL);
3693 	if (!buf)
3694 		return -ENOMEM;
3695 
3696 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3697 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3698 	if (rc == 0) {
3699 		if (buflen > 16)
3700 			buflen = 16;
3701 		memcpy(device_id, &buf[8], buflen);
3702 	}
3703 
3704 	kfree(buf);
3705 
3706 	return rc; /*0 - got id,  otherwise, didn't */
3707 }
3708 
3709 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3710 		void *buf, int bufsize,
3711 		int extended_response)
3712 {
3713 	int rc = IO_OK;
3714 	struct CommandList *c;
3715 	unsigned char scsi3addr[8];
3716 	struct ErrorInfo *ei;
3717 
3718 	c = cmd_alloc(h);
3719 
3720 	/* address the controller */
3721 	memset(scsi3addr, 0, sizeof(scsi3addr));
3722 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3723 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3724 		rc = -EAGAIN;
3725 		goto out;
3726 	}
3727 	if (extended_response)
3728 		c->Request.CDB[1] = extended_response;
3729 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3730 			NO_TIMEOUT);
3731 	if (rc)
3732 		goto out;
3733 	ei = c->err_info;
3734 	if (ei->CommandStatus != 0 &&
3735 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3736 		hpsa_scsi_interpret_error(h, c);
3737 		rc = -EIO;
3738 	} else {
3739 		struct ReportLUNdata *rld = buf;
3740 
3741 		if (rld->extended_response_flag != extended_response) {
3742 			if (!h->legacy_board) {
3743 				dev_err(&h->pdev->dev,
3744 					"report luns requested format %u, got %u\n",
3745 					extended_response,
3746 					rld->extended_response_flag);
3747 				rc = -EINVAL;
3748 			} else
3749 				rc = -EOPNOTSUPP;
3750 		}
3751 	}
3752 out:
3753 	cmd_free(h, c);
3754 	return rc;
3755 }
3756 
3757 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3758 		struct ReportExtendedLUNdata *buf, int bufsize)
3759 {
3760 	int rc;
3761 	struct ReportLUNdata *lbuf;
3762 
3763 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3764 				      HPSA_REPORT_PHYS_EXTENDED);
3765 	if (!rc || rc != -EOPNOTSUPP)
3766 		return rc;
3767 
3768 	/* REPORT PHYS EXTENDED is not supported */
3769 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3770 	if (!lbuf)
3771 		return -ENOMEM;
3772 
3773 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3774 	if (!rc) {
3775 		int i;
3776 		u32 nphys;
3777 
3778 		/* Copy ReportLUNdata header */
3779 		memcpy(buf, lbuf, 8);
3780 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3781 		for (i = 0; i < nphys; i++)
3782 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3783 	}
3784 	kfree(lbuf);
3785 	return rc;
3786 }
3787 
3788 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3789 		struct ReportLUNdata *buf, int bufsize)
3790 {
3791 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3792 }
3793 
3794 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3795 	int bus, int target, int lun)
3796 {
3797 	device->bus = bus;
3798 	device->target = target;
3799 	device->lun = lun;
3800 }
3801 
3802 /* Use VPD inquiry to get details of volume status */
3803 static int hpsa_get_volume_status(struct ctlr_info *h,
3804 					unsigned char scsi3addr[])
3805 {
3806 	int rc;
3807 	int status;
3808 	int size;
3809 	unsigned char *buf;
3810 
3811 	buf = kzalloc(64, GFP_KERNEL);
3812 	if (!buf)
3813 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3814 
3815 	/* Does controller have VPD for logical volume status? */
3816 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3817 		goto exit_failed;
3818 
3819 	/* Get the size of the VPD return buffer */
3820 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3821 					buf, HPSA_VPD_HEADER_SZ);
3822 	if (rc != 0)
3823 		goto exit_failed;
3824 	size = buf[3];
3825 
3826 	/* Now get the whole VPD buffer */
3827 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3828 					buf, size + HPSA_VPD_HEADER_SZ);
3829 	if (rc != 0)
3830 		goto exit_failed;
3831 	status = buf[4]; /* status byte */
3832 
3833 	kfree(buf);
3834 	return status;
3835 exit_failed:
3836 	kfree(buf);
3837 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3838 }
3839 
3840 /* Determine offline status of a volume.
3841  * Return either:
3842  *  0 (not offline)
3843  *  0xff (offline for unknown reasons)
3844  *  # (integer code indicating one of several NOT READY states
3845  *     describing why a volume is to be kept offline)
3846  */
3847 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3848 					unsigned char scsi3addr[])
3849 {
3850 	struct CommandList *c;
3851 	unsigned char *sense;
3852 	u8 sense_key, asc, ascq;
3853 	int sense_len;
3854 	int rc, ldstat = 0;
3855 	u16 cmd_status;
3856 	u8 scsi_status;
3857 #define ASC_LUN_NOT_READY 0x04
3858 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3859 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3860 
3861 	c = cmd_alloc(h);
3862 
3863 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3864 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3865 					NO_TIMEOUT);
3866 	if (rc) {
3867 		cmd_free(h, c);
3868 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3869 	}
3870 	sense = c->err_info->SenseInfo;
3871 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3872 		sense_len = sizeof(c->err_info->SenseInfo);
3873 	else
3874 		sense_len = c->err_info->SenseLen;
3875 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3876 	cmd_status = c->err_info->CommandStatus;
3877 	scsi_status = c->err_info->ScsiStatus;
3878 	cmd_free(h, c);
3879 
3880 	/* Determine the reason for not ready state */
3881 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3882 
3883 	/* Keep volume offline in certain cases: */
3884 	switch (ldstat) {
3885 	case HPSA_LV_FAILED:
3886 	case HPSA_LV_UNDERGOING_ERASE:
3887 	case HPSA_LV_NOT_AVAILABLE:
3888 	case HPSA_LV_UNDERGOING_RPI:
3889 	case HPSA_LV_PENDING_RPI:
3890 	case HPSA_LV_ENCRYPTED_NO_KEY:
3891 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3892 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3893 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3894 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3895 		return ldstat;
3896 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3897 		/* If VPD status page isn't available,
3898 		 * use ASC/ASCQ to determine state
3899 		 */
3900 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3901 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3902 			return ldstat;
3903 		break;
3904 	default:
3905 		break;
3906 	}
3907 	return HPSA_LV_OK;
3908 }
3909 
3910 static int hpsa_update_device_info(struct ctlr_info *h,
3911 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3912 	unsigned char *is_OBDR_device)
3913 {
3914 
3915 #define OBDR_SIG_OFFSET 43
3916 #define OBDR_TAPE_SIG "$DR-10"
3917 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3918 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3919 
3920 	unsigned char *inq_buff;
3921 	unsigned char *obdr_sig;
3922 	int rc = 0;
3923 
3924 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3925 	if (!inq_buff) {
3926 		rc = -ENOMEM;
3927 		goto bail_out;
3928 	}
3929 
3930 	/* Do an inquiry to the device to see what it is. */
3931 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3932 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3933 		dev_err(&h->pdev->dev,
3934 			"%s: inquiry failed, device will be skipped.\n",
3935 			__func__);
3936 		rc = HPSA_INQUIRY_FAILED;
3937 		goto bail_out;
3938 	}
3939 
3940 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3941 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3942 
3943 	this_device->devtype = (inq_buff[0] & 0x1f);
3944 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3945 	memcpy(this_device->vendor, &inq_buff[8],
3946 		sizeof(this_device->vendor));
3947 	memcpy(this_device->model, &inq_buff[16],
3948 		sizeof(this_device->model));
3949 	this_device->rev = inq_buff[2];
3950 	memset(this_device->device_id, 0,
3951 		sizeof(this_device->device_id));
3952 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3953 		sizeof(this_device->device_id)) < 0) {
3954 		dev_err(&h->pdev->dev,
3955 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3956 			h->ctlr, __func__,
3957 			h->scsi_host->host_no,
3958 			this_device->bus, this_device->target,
3959 			this_device->lun,
3960 			scsi_device_type(this_device->devtype),
3961 			this_device->model);
3962 		rc = HPSA_LV_FAILED;
3963 		goto bail_out;
3964 	}
3965 
3966 	if ((this_device->devtype == TYPE_DISK ||
3967 		this_device->devtype == TYPE_ZBC) &&
3968 		is_logical_dev_addr_mode(scsi3addr)) {
3969 		unsigned char volume_offline;
3970 
3971 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3972 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3973 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3974 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3975 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3976 		    h->legacy_board) {
3977 			/*
3978 			 * Legacy boards might not support volume status
3979 			 */
3980 			dev_info(&h->pdev->dev,
3981 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3982 				 this_device->target, this_device->lun);
3983 			volume_offline = 0;
3984 		}
3985 		this_device->volume_offline = volume_offline;
3986 		if (volume_offline == HPSA_LV_FAILED) {
3987 			rc = HPSA_LV_FAILED;
3988 			dev_err(&h->pdev->dev,
3989 				"%s: LV failed, device will be skipped.\n",
3990 				__func__);
3991 			goto bail_out;
3992 		}
3993 	} else {
3994 		this_device->raid_level = RAID_UNKNOWN;
3995 		this_device->offload_config = 0;
3996 		this_device->offload_enabled = 0;
3997 		this_device->offload_to_be_enabled = 0;
3998 		this_device->hba_ioaccel_enabled = 0;
3999 		this_device->volume_offline = 0;
4000 		this_device->queue_depth = h->nr_cmds;
4001 	}
4002 
4003 	if (this_device->external)
4004 		this_device->queue_depth = EXTERNAL_QD;
4005 
4006 	if (is_OBDR_device) {
4007 		/* See if this is a One-Button-Disaster-Recovery device
4008 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4009 		 */
4010 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4011 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4012 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4013 						OBDR_SIG_LEN) == 0);
4014 	}
4015 	kfree(inq_buff);
4016 	return 0;
4017 
4018 bail_out:
4019 	kfree(inq_buff);
4020 	return rc;
4021 }
4022 
4023 /*
4024  * Helper function to assign bus, target, lun mapping of devices.
4025  * Logical drive target and lun are assigned at this time, but
4026  * physical device lun and target assignment are deferred (assigned
4027  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4028 */
4029 static void figure_bus_target_lun(struct ctlr_info *h,
4030 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4031 {
4032 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4033 
4034 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4035 		/* physical device, target and lun filled in later */
4036 		if (is_hba_lunid(lunaddrbytes)) {
4037 			int bus = HPSA_HBA_BUS;
4038 
4039 			if (!device->rev)
4040 				bus = HPSA_LEGACY_HBA_BUS;
4041 			hpsa_set_bus_target_lun(device,
4042 					bus, 0, lunid & 0x3fff);
4043 		} else
4044 			/* defer target, lun assignment for physical devices */
4045 			hpsa_set_bus_target_lun(device,
4046 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4047 		return;
4048 	}
4049 	/* It's a logical device */
4050 	if (device->external) {
4051 		hpsa_set_bus_target_lun(device,
4052 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4053 			lunid & 0x00ff);
4054 		return;
4055 	}
4056 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4057 				0, lunid & 0x3fff);
4058 }
4059 
4060 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4061 	int i, int nphysicals, int nlocal_logicals)
4062 {
4063 	/* In report logicals, local logicals are listed first,
4064 	* then any externals.
4065 	*/
4066 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4067 
4068 	if (i == raid_ctlr_position)
4069 		return 0;
4070 
4071 	if (i < logicals_start)
4072 		return 0;
4073 
4074 	/* i is in logicals range, but still within local logicals */
4075 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4076 		return 0;
4077 
4078 	return 1; /* it's an external lun */
4079 }
4080 
4081 /*
4082  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4083  * logdev.  The number of luns in physdev and logdev are returned in
4084  * *nphysicals and *nlogicals, respectively.
4085  * Returns 0 on success, -1 otherwise.
4086  */
4087 static int hpsa_gather_lun_info(struct ctlr_info *h,
4088 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4089 	struct ReportLUNdata *logdev, u32 *nlogicals)
4090 {
4091 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4092 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4093 		return -1;
4094 	}
4095 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4096 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4097 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4098 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4099 		*nphysicals = HPSA_MAX_PHYS_LUN;
4100 	}
4101 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4102 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4103 		return -1;
4104 	}
4105 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4106 	/* Reject Logicals in excess of our max capability. */
4107 	if (*nlogicals > HPSA_MAX_LUN) {
4108 		dev_warn(&h->pdev->dev,
4109 			"maximum logical LUNs (%d) exceeded.  "
4110 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4111 			*nlogicals - HPSA_MAX_LUN);
4112 		*nlogicals = HPSA_MAX_LUN;
4113 	}
4114 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4115 		dev_warn(&h->pdev->dev,
4116 			"maximum logical + physical LUNs (%d) exceeded. "
4117 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4118 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4119 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4120 	}
4121 	return 0;
4122 }
4123 
4124 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4125 	int i, int nphysicals, int nlogicals,
4126 	struct ReportExtendedLUNdata *physdev_list,
4127 	struct ReportLUNdata *logdev_list)
4128 {
4129 	/* Helper function, figure out where the LUN ID info is coming from
4130 	 * given index i, lists of physical and logical devices, where in
4131 	 * the list the raid controller is supposed to appear (first or last)
4132 	 */
4133 
4134 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4135 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4136 
4137 	if (i == raid_ctlr_position)
4138 		return RAID_CTLR_LUNID;
4139 
4140 	if (i < logicals_start)
4141 		return &physdev_list->LUN[i -
4142 				(raid_ctlr_position == 0)].lunid[0];
4143 
4144 	if (i < last_device)
4145 		return &logdev_list->LUN[i - nphysicals -
4146 			(raid_ctlr_position == 0)][0];
4147 	BUG();
4148 	return NULL;
4149 }
4150 
4151 /* get physical drive ioaccel handle and queue depth */
4152 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4153 		struct hpsa_scsi_dev_t *dev,
4154 		struct ReportExtendedLUNdata *rlep, int rle_index,
4155 		struct bmic_identify_physical_device *id_phys)
4156 {
4157 	int rc;
4158 	struct ext_report_lun_entry *rle;
4159 
4160 	rle = &rlep->LUN[rle_index];
4161 
4162 	dev->ioaccel_handle = rle->ioaccel_handle;
4163 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4164 		dev->hba_ioaccel_enabled = 1;
4165 	memset(id_phys, 0, sizeof(*id_phys));
4166 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4167 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4168 			sizeof(*id_phys));
4169 	if (!rc)
4170 		/* Reserve space for FW operations */
4171 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4172 #define DRIVE_QUEUE_DEPTH 7
4173 		dev->queue_depth =
4174 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4175 				DRIVE_CMDS_RESERVED_FOR_FW;
4176 	else
4177 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4178 }
4179 
4180 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4181 	struct ReportExtendedLUNdata *rlep, int rle_index,
4182 	struct bmic_identify_physical_device *id_phys)
4183 {
4184 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4185 
4186 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4187 		this_device->hba_ioaccel_enabled = 1;
4188 
4189 	memcpy(&this_device->active_path_index,
4190 		&id_phys->active_path_number,
4191 		sizeof(this_device->active_path_index));
4192 	memcpy(&this_device->path_map,
4193 		&id_phys->redundant_path_present_map,
4194 		sizeof(this_device->path_map));
4195 	memcpy(&this_device->box,
4196 		&id_phys->alternate_paths_phys_box_on_port,
4197 		sizeof(this_device->box));
4198 	memcpy(&this_device->phys_connector,
4199 		&id_phys->alternate_paths_phys_connector,
4200 		sizeof(this_device->phys_connector));
4201 	memcpy(&this_device->bay,
4202 		&id_phys->phys_bay_in_box,
4203 		sizeof(this_device->bay));
4204 }
4205 
4206 /* get number of local logical disks. */
4207 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4208 	struct bmic_identify_controller *id_ctlr,
4209 	u32 *nlocals)
4210 {
4211 	int rc;
4212 
4213 	if (!id_ctlr) {
4214 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4215 			__func__);
4216 		return -ENOMEM;
4217 	}
4218 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4219 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4220 	if (!rc)
4221 		if (id_ctlr->configured_logical_drive_count < 255)
4222 			*nlocals = id_ctlr->configured_logical_drive_count;
4223 		else
4224 			*nlocals = le16_to_cpu(
4225 					id_ctlr->extended_logical_unit_count);
4226 	else
4227 		*nlocals = -1;
4228 	return rc;
4229 }
4230 
4231 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4232 {
4233 	struct bmic_identify_physical_device *id_phys;
4234 	bool is_spare = false;
4235 	int rc;
4236 
4237 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4238 	if (!id_phys)
4239 		return false;
4240 
4241 	rc = hpsa_bmic_id_physical_device(h,
4242 					lunaddrbytes,
4243 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4244 					id_phys, sizeof(*id_phys));
4245 	if (rc == 0)
4246 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4247 
4248 	kfree(id_phys);
4249 	return is_spare;
4250 }
4251 
4252 #define RPL_DEV_FLAG_NON_DISK                           0x1
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4255 
4256 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4257 
4258 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4259 				struct ext_report_lun_entry *rle)
4260 {
4261 	u8 device_flags;
4262 	u8 device_type;
4263 
4264 	if (!MASKED_DEVICE(lunaddrbytes))
4265 		return false;
4266 
4267 	device_flags = rle->device_flags;
4268 	device_type = rle->device_type;
4269 
4270 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4271 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4272 			return false;
4273 		return true;
4274 	}
4275 
4276 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4277 		return false;
4278 
4279 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4280 		return false;
4281 
4282 	/*
4283 	 * Spares may be spun down, we do not want to
4284 	 * do an Inquiry to a RAID set spare drive as
4285 	 * that would have them spun up, that is a
4286 	 * performance hit because I/O to the RAID device
4287 	 * stops while the spin up occurs which can take
4288 	 * over 50 seconds.
4289 	 */
4290 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4291 		return true;
4292 
4293 	return false;
4294 }
4295 
4296 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4297 {
4298 	/* the idea here is we could get notified
4299 	 * that some devices have changed, so we do a report
4300 	 * physical luns and report logical luns cmd, and adjust
4301 	 * our list of devices accordingly.
4302 	 *
4303 	 * The scsi3addr's of devices won't change so long as the
4304 	 * adapter is not reset.  That means we can rescan and
4305 	 * tell which devices we already know about, vs. new
4306 	 * devices, vs.  disappearing devices.
4307 	 */
4308 	struct ReportExtendedLUNdata *physdev_list = NULL;
4309 	struct ReportLUNdata *logdev_list = NULL;
4310 	struct bmic_identify_physical_device *id_phys = NULL;
4311 	struct bmic_identify_controller *id_ctlr = NULL;
4312 	u32 nphysicals = 0;
4313 	u32 nlogicals = 0;
4314 	u32 nlocal_logicals = 0;
4315 	u32 ndev_allocated = 0;
4316 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4317 	int ncurrent = 0;
4318 	int i, n_ext_target_devs, ndevs_to_allocate;
4319 	int raid_ctlr_position;
4320 	bool physical_device;
4321 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4322 
4323 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4324 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4325 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4326 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4327 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4328 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4329 
4330 	if (!currentsd || !physdev_list || !logdev_list ||
4331 		!tmpdevice || !id_phys || !id_ctlr) {
4332 		dev_err(&h->pdev->dev, "out of memory\n");
4333 		goto out;
4334 	}
4335 	memset(lunzerobits, 0, sizeof(lunzerobits));
4336 
4337 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4338 
4339 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4340 			logdev_list, &nlogicals)) {
4341 		h->drv_req_rescan = 1;
4342 		goto out;
4343 	}
4344 
4345 	/* Set number of local logicals (non PTRAID) */
4346 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4347 		dev_warn(&h->pdev->dev,
4348 			"%s: Can't determine number of local logical devices.\n",
4349 			__func__);
4350 	}
4351 
4352 	/* We might see up to the maximum number of logical and physical disks
4353 	 * plus external target devices, and a device for the local RAID
4354 	 * controller.
4355 	 */
4356 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4357 
4358 	hpsa_ext_ctrl_present(h, physdev_list);
4359 
4360 	/* Allocate the per device structures */
4361 	for (i = 0; i < ndevs_to_allocate; i++) {
4362 		if (i >= HPSA_MAX_DEVICES) {
4363 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4364 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4365 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4366 			break;
4367 		}
4368 
4369 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4370 		if (!currentsd[i]) {
4371 			h->drv_req_rescan = 1;
4372 			goto out;
4373 		}
4374 		ndev_allocated++;
4375 	}
4376 
4377 	if (is_scsi_rev_5(h))
4378 		raid_ctlr_position = 0;
4379 	else
4380 		raid_ctlr_position = nphysicals + nlogicals;
4381 
4382 	/* adjust our table of devices */
4383 	n_ext_target_devs = 0;
4384 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4385 		u8 *lunaddrbytes, is_OBDR = 0;
4386 		int rc = 0;
4387 		int phys_dev_index = i - (raid_ctlr_position == 0);
4388 		bool skip_device = false;
4389 
4390 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4391 
4392 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4393 
4394 		/* Figure out where the LUN ID info is coming from */
4395 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4396 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4397 
4398 		/* Determine if this is a lun from an external target array */
4399 		tmpdevice->external =
4400 			figure_external_status(h, raid_ctlr_position, i,
4401 						nphysicals, nlocal_logicals);
4402 
4403 		/*
4404 		 * Skip over some devices such as a spare.
4405 		 */
4406 		if (!tmpdevice->external && physical_device) {
4407 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4408 					&physdev_list->LUN[phys_dev_index]);
4409 			if (skip_device)
4410 				continue;
4411 		}
4412 
4413 		/* Get device type, vendor, model, device id, raid_map */
4414 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4415 							&is_OBDR);
4416 		if (rc == -ENOMEM) {
4417 			dev_warn(&h->pdev->dev,
4418 				"Out of memory, rescan deferred.\n");
4419 			h->drv_req_rescan = 1;
4420 			goto out;
4421 		}
4422 		if (rc) {
4423 			h->drv_req_rescan = 1;
4424 			continue;
4425 		}
4426 
4427 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4428 		this_device = currentsd[ncurrent];
4429 
4430 		*this_device = *tmpdevice;
4431 		this_device->physical_device = physical_device;
4432 
4433 		/*
4434 		 * Expose all devices except for physical devices that
4435 		 * are masked.
4436 		 */
4437 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4438 			this_device->expose_device = 0;
4439 		else
4440 			this_device->expose_device = 1;
4441 
4442 
4443 		/*
4444 		 * Get the SAS address for physical devices that are exposed.
4445 		 */
4446 		if (this_device->physical_device && this_device->expose_device)
4447 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4448 
4449 		switch (this_device->devtype) {
4450 		case TYPE_ROM:
4451 			/* We don't *really* support actual CD-ROM devices,
4452 			 * just "One Button Disaster Recovery" tape drive
4453 			 * which temporarily pretends to be a CD-ROM drive.
4454 			 * So we check that the device is really an OBDR tape
4455 			 * device by checking for "$DR-10" in bytes 43-48 of
4456 			 * the inquiry data.
4457 			 */
4458 			if (is_OBDR)
4459 				ncurrent++;
4460 			break;
4461 		case TYPE_DISK:
4462 		case TYPE_ZBC:
4463 			if (this_device->physical_device) {
4464 				/* The disk is in HBA mode. */
4465 				/* Never use RAID mapper in HBA mode. */
4466 				this_device->offload_enabled = 0;
4467 				hpsa_get_ioaccel_drive_info(h, this_device,
4468 					physdev_list, phys_dev_index, id_phys);
4469 				hpsa_get_path_info(this_device,
4470 					physdev_list, phys_dev_index, id_phys);
4471 			}
4472 			ncurrent++;
4473 			break;
4474 		case TYPE_TAPE:
4475 		case TYPE_MEDIUM_CHANGER:
4476 			ncurrent++;
4477 			break;
4478 		case TYPE_ENCLOSURE:
4479 			if (!this_device->external)
4480 				hpsa_get_enclosure_info(h, lunaddrbytes,
4481 						physdev_list, phys_dev_index,
4482 						this_device);
4483 			ncurrent++;
4484 			break;
4485 		case TYPE_RAID:
4486 			/* Only present the Smartarray HBA as a RAID controller.
4487 			 * If it's a RAID controller other than the HBA itself
4488 			 * (an external RAID controller, MSA500 or similar)
4489 			 * don't present it.
4490 			 */
4491 			if (!is_hba_lunid(lunaddrbytes))
4492 				break;
4493 			ncurrent++;
4494 			break;
4495 		default:
4496 			break;
4497 		}
4498 		if (ncurrent >= HPSA_MAX_DEVICES)
4499 			break;
4500 	}
4501 
4502 	if (h->sas_host == NULL) {
4503 		int rc = 0;
4504 
4505 		rc = hpsa_add_sas_host(h);
4506 		if (rc) {
4507 			dev_warn(&h->pdev->dev,
4508 				"Could not add sas host %d\n", rc);
4509 			goto out;
4510 		}
4511 	}
4512 
4513 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4514 out:
4515 	kfree(tmpdevice);
4516 	for (i = 0; i < ndev_allocated; i++)
4517 		kfree(currentsd[i]);
4518 	kfree(currentsd);
4519 	kfree(physdev_list);
4520 	kfree(logdev_list);
4521 	kfree(id_ctlr);
4522 	kfree(id_phys);
4523 }
4524 
4525 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4526 				   struct scatterlist *sg)
4527 {
4528 	u64 addr64 = (u64) sg_dma_address(sg);
4529 	unsigned int len = sg_dma_len(sg);
4530 
4531 	desc->Addr = cpu_to_le64(addr64);
4532 	desc->Len = cpu_to_le32(len);
4533 	desc->Ext = 0;
4534 }
4535 
4536 /*
4537  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4538  * dma mapping  and fills in the scatter gather entries of the
4539  * hpsa command, cp.
4540  */
4541 static int hpsa_scatter_gather(struct ctlr_info *h,
4542 		struct CommandList *cp,
4543 		struct scsi_cmnd *cmd)
4544 {
4545 	struct scatterlist *sg;
4546 	int use_sg, i, sg_limit, chained, last_sg;
4547 	struct SGDescriptor *curr_sg;
4548 
4549 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4550 
4551 	use_sg = scsi_dma_map(cmd);
4552 	if (use_sg < 0)
4553 		return use_sg;
4554 
4555 	if (!use_sg)
4556 		goto sglist_finished;
4557 
4558 	/*
4559 	 * If the number of entries is greater than the max for a single list,
4560 	 * then we have a chained list; we will set up all but one entry in the
4561 	 * first list (the last entry is saved for link information);
4562 	 * otherwise, we don't have a chained list and we'll set up at each of
4563 	 * the entries in the one list.
4564 	 */
4565 	curr_sg = cp->SG;
4566 	chained = use_sg > h->max_cmd_sg_entries;
4567 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4568 	last_sg = scsi_sg_count(cmd) - 1;
4569 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4570 		hpsa_set_sg_descriptor(curr_sg, sg);
4571 		curr_sg++;
4572 	}
4573 
4574 	if (chained) {
4575 		/*
4576 		 * Continue with the chained list.  Set curr_sg to the chained
4577 		 * list.  Modify the limit to the total count less the entries
4578 		 * we've already set up.  Resume the scan at the list entry
4579 		 * where the previous loop left off.
4580 		 */
4581 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4582 		sg_limit = use_sg - sg_limit;
4583 		for_each_sg(sg, sg, sg_limit, i) {
4584 			hpsa_set_sg_descriptor(curr_sg, sg);
4585 			curr_sg++;
4586 		}
4587 	}
4588 
4589 	/* Back the pointer up to the last entry and mark it as "last". */
4590 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4591 
4592 	if (use_sg + chained > h->maxSG)
4593 		h->maxSG = use_sg + chained;
4594 
4595 	if (chained) {
4596 		cp->Header.SGList = h->max_cmd_sg_entries;
4597 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4598 		if (hpsa_map_sg_chain_block(h, cp)) {
4599 			scsi_dma_unmap(cmd);
4600 			return -1;
4601 		}
4602 		return 0;
4603 	}
4604 
4605 sglist_finished:
4606 
4607 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4608 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4609 	return 0;
4610 }
4611 
4612 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4613 						u8 *cdb, int cdb_len,
4614 						const char *func)
4615 {
4616 	dev_warn(&h->pdev->dev,
4617 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4618 		 func, cdb_len, cdb);
4619 }
4620 
4621 #define IO_ACCEL_INELIGIBLE 1
4622 /* zero-length transfers trigger hardware errors. */
4623 static bool is_zero_length_transfer(u8 *cdb)
4624 {
4625 	u32 block_cnt;
4626 
4627 	/* Block zero-length transfer sizes on certain commands. */
4628 	switch (cdb[0]) {
4629 	case READ_10:
4630 	case WRITE_10:
4631 	case VERIFY:		/* 0x2F */
4632 	case WRITE_VERIFY:	/* 0x2E */
4633 		block_cnt = get_unaligned_be16(&cdb[7]);
4634 		break;
4635 	case READ_12:
4636 	case WRITE_12:
4637 	case VERIFY_12: /* 0xAF */
4638 	case WRITE_VERIFY_12:	/* 0xAE */
4639 		block_cnt = get_unaligned_be32(&cdb[6]);
4640 		break;
4641 	case READ_16:
4642 	case WRITE_16:
4643 	case VERIFY_16:		/* 0x8F */
4644 		block_cnt = get_unaligned_be32(&cdb[10]);
4645 		break;
4646 	default:
4647 		return false;
4648 	}
4649 
4650 	return block_cnt == 0;
4651 }
4652 
4653 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4654 {
4655 	int is_write = 0;
4656 	u32 block;
4657 	u32 block_cnt;
4658 
4659 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4660 	switch (cdb[0]) {
4661 	case WRITE_6:
4662 	case WRITE_12:
4663 		is_write = 1;
4664 		/* fall through */
4665 	case READ_6:
4666 	case READ_12:
4667 		if (*cdb_len == 6) {
4668 			block = (((cdb[1] & 0x1F) << 16) |
4669 				(cdb[2] << 8) |
4670 				cdb[3]);
4671 			block_cnt = cdb[4];
4672 			if (block_cnt == 0)
4673 				block_cnt = 256;
4674 		} else {
4675 			BUG_ON(*cdb_len != 12);
4676 			block = get_unaligned_be32(&cdb[2]);
4677 			block_cnt = get_unaligned_be32(&cdb[6]);
4678 		}
4679 		if (block_cnt > 0xffff)
4680 			return IO_ACCEL_INELIGIBLE;
4681 
4682 		cdb[0] = is_write ? WRITE_10 : READ_10;
4683 		cdb[1] = 0;
4684 		cdb[2] = (u8) (block >> 24);
4685 		cdb[3] = (u8) (block >> 16);
4686 		cdb[4] = (u8) (block >> 8);
4687 		cdb[5] = (u8) (block);
4688 		cdb[6] = 0;
4689 		cdb[7] = (u8) (block_cnt >> 8);
4690 		cdb[8] = (u8) (block_cnt);
4691 		cdb[9] = 0;
4692 		*cdb_len = 10;
4693 		break;
4694 	}
4695 	return 0;
4696 }
4697 
4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4699 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4700 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4701 {
4702 	struct scsi_cmnd *cmd = c->scsi_cmd;
4703 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4704 	unsigned int len;
4705 	unsigned int total_len = 0;
4706 	struct scatterlist *sg;
4707 	u64 addr64;
4708 	int use_sg, i;
4709 	struct SGDescriptor *curr_sg;
4710 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4711 
4712 	/* TODO: implement chaining support */
4713 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4714 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4715 		return IO_ACCEL_INELIGIBLE;
4716 	}
4717 
4718 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4719 
4720 	if (is_zero_length_transfer(cdb)) {
4721 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4722 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4723 		return IO_ACCEL_INELIGIBLE;
4724 	}
4725 
4726 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4727 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4728 		return IO_ACCEL_INELIGIBLE;
4729 	}
4730 
4731 	c->cmd_type = CMD_IOACCEL1;
4732 
4733 	/* Adjust the DMA address to point to the accelerated command buffer */
4734 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4735 				(c->cmdindex * sizeof(*cp));
4736 	BUG_ON(c->busaddr & 0x0000007F);
4737 
4738 	use_sg = scsi_dma_map(cmd);
4739 	if (use_sg < 0) {
4740 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4741 		return use_sg;
4742 	}
4743 
4744 	if (use_sg) {
4745 		curr_sg = cp->SG;
4746 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4747 			addr64 = (u64) sg_dma_address(sg);
4748 			len  = sg_dma_len(sg);
4749 			total_len += len;
4750 			curr_sg->Addr = cpu_to_le64(addr64);
4751 			curr_sg->Len = cpu_to_le32(len);
4752 			curr_sg->Ext = cpu_to_le32(0);
4753 			curr_sg++;
4754 		}
4755 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4756 
4757 		switch (cmd->sc_data_direction) {
4758 		case DMA_TO_DEVICE:
4759 			control |= IOACCEL1_CONTROL_DATA_OUT;
4760 			break;
4761 		case DMA_FROM_DEVICE:
4762 			control |= IOACCEL1_CONTROL_DATA_IN;
4763 			break;
4764 		case DMA_NONE:
4765 			control |= IOACCEL1_CONTROL_NODATAXFER;
4766 			break;
4767 		default:
4768 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4769 			cmd->sc_data_direction);
4770 			BUG();
4771 			break;
4772 		}
4773 	} else {
4774 		control |= IOACCEL1_CONTROL_NODATAXFER;
4775 	}
4776 
4777 	c->Header.SGList = use_sg;
4778 	/* Fill out the command structure to submit */
4779 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4780 	cp->transfer_len = cpu_to_le32(total_len);
4781 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4782 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4783 	cp->control = cpu_to_le32(control);
4784 	memcpy(cp->CDB, cdb, cdb_len);
4785 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4786 	/* Tag was already set at init time. */
4787 	enqueue_cmd_and_start_io(h, c);
4788 	return 0;
4789 }
4790 
4791 /*
4792  * Queue a command directly to a device behind the controller using the
4793  * I/O accelerator path.
4794  */
4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4796 	struct CommandList *c)
4797 {
4798 	struct scsi_cmnd *cmd = c->scsi_cmd;
4799 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4800 
4801 	if (!dev)
4802 		return -1;
4803 
4804 	c->phys_disk = dev;
4805 
4806 	if (dev->in_reset)
4807 		return -1;
4808 
4809 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4810 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4811 }
4812 
4813 /*
4814  * Set encryption parameters for the ioaccel2 request
4815  */
4816 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4817 	struct CommandList *c, struct io_accel2_cmd *cp)
4818 {
4819 	struct scsi_cmnd *cmd = c->scsi_cmd;
4820 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4821 	struct raid_map_data *map = &dev->raid_map;
4822 	u64 first_block;
4823 
4824 	/* Are we doing encryption on this device */
4825 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4826 		return;
4827 	/* Set the data encryption key index. */
4828 	cp->dekindex = map->dekindex;
4829 
4830 	/* Set the encryption enable flag, encoded into direction field. */
4831 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4832 
4833 	/* Set encryption tweak values based on logical block address
4834 	 * If block size is 512, tweak value is LBA.
4835 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4836 	 */
4837 	switch (cmd->cmnd[0]) {
4838 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4839 	case READ_6:
4840 	case WRITE_6:
4841 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4842 				(cmd->cmnd[2] << 8) |
4843 				cmd->cmnd[3]);
4844 		break;
4845 	case WRITE_10:
4846 	case READ_10:
4847 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4848 	case WRITE_12:
4849 	case READ_12:
4850 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4851 		break;
4852 	case WRITE_16:
4853 	case READ_16:
4854 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4855 		break;
4856 	default:
4857 		dev_err(&h->pdev->dev,
4858 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4859 			__func__, cmd->cmnd[0]);
4860 		BUG();
4861 		break;
4862 	}
4863 
4864 	if (le32_to_cpu(map->volume_blk_size) != 512)
4865 		first_block = first_block *
4866 				le32_to_cpu(map->volume_blk_size)/512;
4867 
4868 	cp->tweak_lower = cpu_to_le32(first_block);
4869 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4870 }
4871 
4872 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4873 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4874 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4875 {
4876 	struct scsi_cmnd *cmd = c->scsi_cmd;
4877 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4878 	struct ioaccel2_sg_element *curr_sg;
4879 	int use_sg, i;
4880 	struct scatterlist *sg;
4881 	u64 addr64;
4882 	u32 len;
4883 	u32 total_len = 0;
4884 
4885 	if (!cmd->device)
4886 		return -1;
4887 
4888 	if (!cmd->device->hostdata)
4889 		return -1;
4890 
4891 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4892 
4893 	if (is_zero_length_transfer(cdb)) {
4894 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4895 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4896 		return IO_ACCEL_INELIGIBLE;
4897 	}
4898 
4899 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4900 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4901 		return IO_ACCEL_INELIGIBLE;
4902 	}
4903 
4904 	c->cmd_type = CMD_IOACCEL2;
4905 	/* Adjust the DMA address to point to the accelerated command buffer */
4906 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4907 				(c->cmdindex * sizeof(*cp));
4908 	BUG_ON(c->busaddr & 0x0000007F);
4909 
4910 	memset(cp, 0, sizeof(*cp));
4911 	cp->IU_type = IOACCEL2_IU_TYPE;
4912 
4913 	use_sg = scsi_dma_map(cmd);
4914 	if (use_sg < 0) {
4915 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4916 		return use_sg;
4917 	}
4918 
4919 	if (use_sg) {
4920 		curr_sg = cp->sg;
4921 		if (use_sg > h->ioaccel_maxsg) {
4922 			addr64 = le64_to_cpu(
4923 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4924 			curr_sg->address = cpu_to_le64(addr64);
4925 			curr_sg->length = 0;
4926 			curr_sg->reserved[0] = 0;
4927 			curr_sg->reserved[1] = 0;
4928 			curr_sg->reserved[2] = 0;
4929 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4930 
4931 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4932 		}
4933 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4934 			addr64 = (u64) sg_dma_address(sg);
4935 			len  = sg_dma_len(sg);
4936 			total_len += len;
4937 			curr_sg->address = cpu_to_le64(addr64);
4938 			curr_sg->length = cpu_to_le32(len);
4939 			curr_sg->reserved[0] = 0;
4940 			curr_sg->reserved[1] = 0;
4941 			curr_sg->reserved[2] = 0;
4942 			curr_sg->chain_indicator = 0;
4943 			curr_sg++;
4944 		}
4945 
4946 		/*
4947 		 * Set the last s/g element bit
4948 		 */
4949 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4950 
4951 		switch (cmd->sc_data_direction) {
4952 		case DMA_TO_DEVICE:
4953 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4954 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4955 			break;
4956 		case DMA_FROM_DEVICE:
4957 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4959 			break;
4960 		case DMA_NONE:
4961 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4963 			break;
4964 		default:
4965 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4966 				cmd->sc_data_direction);
4967 			BUG();
4968 			break;
4969 		}
4970 	} else {
4971 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4973 	}
4974 
4975 	/* Set encryption parameters, if necessary */
4976 	set_encrypt_ioaccel2(h, c, cp);
4977 
4978 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4979 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4980 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4981 
4982 	cp->data_len = cpu_to_le32(total_len);
4983 	cp->err_ptr = cpu_to_le64(c->busaddr +
4984 			offsetof(struct io_accel2_cmd, error_data));
4985 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4986 
4987 	/* fill in sg elements */
4988 	if (use_sg > h->ioaccel_maxsg) {
4989 		cp->sg_count = 1;
4990 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4991 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4992 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4993 			scsi_dma_unmap(cmd);
4994 			return -1;
4995 		}
4996 	} else
4997 		cp->sg_count = (u8) use_sg;
4998 
4999 	if (phys_disk->in_reset) {
5000 		cmd->result = DID_RESET << 16;
5001 		return -1;
5002 	}
5003 
5004 	enqueue_cmd_and_start_io(h, c);
5005 	return 0;
5006 }
5007 
5008 /*
5009  * Queue a command to the correct I/O accelerator path.
5010  */
5011 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5012 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5013 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5014 {
5015 	if (!c->scsi_cmd->device)
5016 		return -1;
5017 
5018 	if (!c->scsi_cmd->device->hostdata)
5019 		return -1;
5020 
5021 	if (phys_disk->in_reset)
5022 		return -1;
5023 
5024 	/* Try to honor the device's queue depth */
5025 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5026 					phys_disk->queue_depth) {
5027 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5028 		return IO_ACCEL_INELIGIBLE;
5029 	}
5030 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5031 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5032 						cdb, cdb_len, scsi3addr,
5033 						phys_disk);
5034 	else
5035 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5036 						cdb, cdb_len, scsi3addr,
5037 						phys_disk);
5038 }
5039 
5040 static void raid_map_helper(struct raid_map_data *map,
5041 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5042 {
5043 	if (offload_to_mirror == 0)  {
5044 		/* use physical disk in the first mirrored group. */
5045 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5046 		return;
5047 	}
5048 	do {
5049 		/* determine mirror group that *map_index indicates */
5050 		*current_group = *map_index /
5051 			le16_to_cpu(map->data_disks_per_row);
5052 		if (offload_to_mirror == *current_group)
5053 			continue;
5054 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5055 			/* select map index from next group */
5056 			*map_index += le16_to_cpu(map->data_disks_per_row);
5057 			(*current_group)++;
5058 		} else {
5059 			/* select map index from first group */
5060 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5061 			*current_group = 0;
5062 		}
5063 	} while (offload_to_mirror != *current_group);
5064 }
5065 
5066 /*
5067  * Attempt to perform offload RAID mapping for a logical volume I/O.
5068  */
5069 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5070 	struct CommandList *c)
5071 {
5072 	struct scsi_cmnd *cmd = c->scsi_cmd;
5073 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5074 	struct raid_map_data *map = &dev->raid_map;
5075 	struct raid_map_disk_data *dd = &map->data[0];
5076 	int is_write = 0;
5077 	u32 map_index;
5078 	u64 first_block, last_block;
5079 	u32 block_cnt;
5080 	u32 blocks_per_row;
5081 	u64 first_row, last_row;
5082 	u32 first_row_offset, last_row_offset;
5083 	u32 first_column, last_column;
5084 	u64 r0_first_row, r0_last_row;
5085 	u32 r5or6_blocks_per_row;
5086 	u64 r5or6_first_row, r5or6_last_row;
5087 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5088 	u32 r5or6_first_column, r5or6_last_column;
5089 	u32 total_disks_per_row;
5090 	u32 stripesize;
5091 	u32 first_group, last_group, current_group;
5092 	u32 map_row;
5093 	u32 disk_handle;
5094 	u64 disk_block;
5095 	u32 disk_block_cnt;
5096 	u8 cdb[16];
5097 	u8 cdb_len;
5098 	u16 strip_size;
5099 #if BITS_PER_LONG == 32
5100 	u64 tmpdiv;
5101 #endif
5102 	int offload_to_mirror;
5103 
5104 	if (!dev)
5105 		return -1;
5106 
5107 	if (dev->in_reset)
5108 		return -1;
5109 
5110 	/* check for valid opcode, get LBA and block count */
5111 	switch (cmd->cmnd[0]) {
5112 	case WRITE_6:
5113 		is_write = 1;
5114 		/* fall through */
5115 	case READ_6:
5116 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5117 				(cmd->cmnd[2] << 8) |
5118 				cmd->cmnd[3]);
5119 		block_cnt = cmd->cmnd[4];
5120 		if (block_cnt == 0)
5121 			block_cnt = 256;
5122 		break;
5123 	case WRITE_10:
5124 		is_write = 1;
5125 		/* fall through */
5126 	case READ_10:
5127 		first_block =
5128 			(((u64) cmd->cmnd[2]) << 24) |
5129 			(((u64) cmd->cmnd[3]) << 16) |
5130 			(((u64) cmd->cmnd[4]) << 8) |
5131 			cmd->cmnd[5];
5132 		block_cnt =
5133 			(((u32) cmd->cmnd[7]) << 8) |
5134 			cmd->cmnd[8];
5135 		break;
5136 	case WRITE_12:
5137 		is_write = 1;
5138 		/* fall through */
5139 	case READ_12:
5140 		first_block =
5141 			(((u64) cmd->cmnd[2]) << 24) |
5142 			(((u64) cmd->cmnd[3]) << 16) |
5143 			(((u64) cmd->cmnd[4]) << 8) |
5144 			cmd->cmnd[5];
5145 		block_cnt =
5146 			(((u32) cmd->cmnd[6]) << 24) |
5147 			(((u32) cmd->cmnd[7]) << 16) |
5148 			(((u32) cmd->cmnd[8]) << 8) |
5149 		cmd->cmnd[9];
5150 		break;
5151 	case WRITE_16:
5152 		is_write = 1;
5153 		/* fall through */
5154 	case READ_16:
5155 		first_block =
5156 			(((u64) cmd->cmnd[2]) << 56) |
5157 			(((u64) cmd->cmnd[3]) << 48) |
5158 			(((u64) cmd->cmnd[4]) << 40) |
5159 			(((u64) cmd->cmnd[5]) << 32) |
5160 			(((u64) cmd->cmnd[6]) << 24) |
5161 			(((u64) cmd->cmnd[7]) << 16) |
5162 			(((u64) cmd->cmnd[8]) << 8) |
5163 			cmd->cmnd[9];
5164 		block_cnt =
5165 			(((u32) cmd->cmnd[10]) << 24) |
5166 			(((u32) cmd->cmnd[11]) << 16) |
5167 			(((u32) cmd->cmnd[12]) << 8) |
5168 			cmd->cmnd[13];
5169 		break;
5170 	default:
5171 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5172 	}
5173 	last_block = first_block + block_cnt - 1;
5174 
5175 	/* check for write to non-RAID-0 */
5176 	if (is_write && dev->raid_level != 0)
5177 		return IO_ACCEL_INELIGIBLE;
5178 
5179 	/* check for invalid block or wraparound */
5180 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5181 		last_block < first_block)
5182 		return IO_ACCEL_INELIGIBLE;
5183 
5184 	/* calculate stripe information for the request */
5185 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5186 				le16_to_cpu(map->strip_size);
5187 	strip_size = le16_to_cpu(map->strip_size);
5188 #if BITS_PER_LONG == 32
5189 	tmpdiv = first_block;
5190 	(void) do_div(tmpdiv, blocks_per_row);
5191 	first_row = tmpdiv;
5192 	tmpdiv = last_block;
5193 	(void) do_div(tmpdiv, blocks_per_row);
5194 	last_row = tmpdiv;
5195 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5196 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5197 	tmpdiv = first_row_offset;
5198 	(void) do_div(tmpdiv, strip_size);
5199 	first_column = tmpdiv;
5200 	tmpdiv = last_row_offset;
5201 	(void) do_div(tmpdiv, strip_size);
5202 	last_column = tmpdiv;
5203 #else
5204 	first_row = first_block / blocks_per_row;
5205 	last_row = last_block / blocks_per_row;
5206 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5207 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5208 	first_column = first_row_offset / strip_size;
5209 	last_column = last_row_offset / strip_size;
5210 #endif
5211 
5212 	/* if this isn't a single row/column then give to the controller */
5213 	if ((first_row != last_row) || (first_column != last_column))
5214 		return IO_ACCEL_INELIGIBLE;
5215 
5216 	/* proceeding with driver mapping */
5217 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5218 				le16_to_cpu(map->metadata_disks_per_row);
5219 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5220 				le16_to_cpu(map->row_cnt);
5221 	map_index = (map_row * total_disks_per_row) + first_column;
5222 
5223 	switch (dev->raid_level) {
5224 	case HPSA_RAID_0:
5225 		break; /* nothing special to do */
5226 	case HPSA_RAID_1:
5227 		/* Handles load balance across RAID 1 members.
5228 		 * (2-drive R1 and R10 with even # of drives.)
5229 		 * Appropriate for SSDs, not optimal for HDDs
5230 		 */
5231 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5232 		if (dev->offload_to_mirror)
5233 			map_index += le16_to_cpu(map->data_disks_per_row);
5234 		dev->offload_to_mirror = !dev->offload_to_mirror;
5235 		break;
5236 	case HPSA_RAID_ADM:
5237 		/* Handles N-way mirrors  (R1-ADM)
5238 		 * and R10 with # of drives divisible by 3.)
5239 		 */
5240 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5241 
5242 		offload_to_mirror = dev->offload_to_mirror;
5243 		raid_map_helper(map, offload_to_mirror,
5244 				&map_index, &current_group);
5245 		/* set mirror group to use next time */
5246 		offload_to_mirror =
5247 			(offload_to_mirror >=
5248 			le16_to_cpu(map->layout_map_count) - 1)
5249 			? 0 : offload_to_mirror + 1;
5250 		dev->offload_to_mirror = offload_to_mirror;
5251 		/* Avoid direct use of dev->offload_to_mirror within this
5252 		 * function since multiple threads might simultaneously
5253 		 * increment it beyond the range of dev->layout_map_count -1.
5254 		 */
5255 		break;
5256 	case HPSA_RAID_5:
5257 	case HPSA_RAID_6:
5258 		if (le16_to_cpu(map->layout_map_count) <= 1)
5259 			break;
5260 
5261 		/* Verify first and last block are in same RAID group */
5262 		r5or6_blocks_per_row =
5263 			le16_to_cpu(map->strip_size) *
5264 			le16_to_cpu(map->data_disks_per_row);
5265 		BUG_ON(r5or6_blocks_per_row == 0);
5266 		stripesize = r5or6_blocks_per_row *
5267 			le16_to_cpu(map->layout_map_count);
5268 #if BITS_PER_LONG == 32
5269 		tmpdiv = first_block;
5270 		first_group = do_div(tmpdiv, stripesize);
5271 		tmpdiv = first_group;
5272 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5273 		first_group = tmpdiv;
5274 		tmpdiv = last_block;
5275 		last_group = do_div(tmpdiv, stripesize);
5276 		tmpdiv = last_group;
5277 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5278 		last_group = tmpdiv;
5279 #else
5280 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5281 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5282 #endif
5283 		if (first_group != last_group)
5284 			return IO_ACCEL_INELIGIBLE;
5285 
5286 		/* Verify request is in a single row of RAID 5/6 */
5287 #if BITS_PER_LONG == 32
5288 		tmpdiv = first_block;
5289 		(void) do_div(tmpdiv, stripesize);
5290 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5291 		tmpdiv = last_block;
5292 		(void) do_div(tmpdiv, stripesize);
5293 		r5or6_last_row = r0_last_row = tmpdiv;
5294 #else
5295 		first_row = r5or6_first_row = r0_first_row =
5296 						first_block / stripesize;
5297 		r5or6_last_row = r0_last_row = last_block / stripesize;
5298 #endif
5299 		if (r5or6_first_row != r5or6_last_row)
5300 			return IO_ACCEL_INELIGIBLE;
5301 
5302 
5303 		/* Verify request is in a single column */
5304 #if BITS_PER_LONG == 32
5305 		tmpdiv = first_block;
5306 		first_row_offset = do_div(tmpdiv, stripesize);
5307 		tmpdiv = first_row_offset;
5308 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5309 		r5or6_first_row_offset = first_row_offset;
5310 		tmpdiv = last_block;
5311 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5312 		tmpdiv = r5or6_last_row_offset;
5313 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5314 		tmpdiv = r5or6_first_row_offset;
5315 		(void) do_div(tmpdiv, map->strip_size);
5316 		first_column = r5or6_first_column = tmpdiv;
5317 		tmpdiv = r5or6_last_row_offset;
5318 		(void) do_div(tmpdiv, map->strip_size);
5319 		r5or6_last_column = tmpdiv;
5320 #else
5321 		first_row_offset = r5or6_first_row_offset =
5322 			(u32)((first_block % stripesize) %
5323 						r5or6_blocks_per_row);
5324 
5325 		r5or6_last_row_offset =
5326 			(u32)((last_block % stripesize) %
5327 						r5or6_blocks_per_row);
5328 
5329 		first_column = r5or6_first_column =
5330 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5331 		r5or6_last_column =
5332 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5333 #endif
5334 		if (r5or6_first_column != r5or6_last_column)
5335 			return IO_ACCEL_INELIGIBLE;
5336 
5337 		/* Request is eligible */
5338 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5339 			le16_to_cpu(map->row_cnt);
5340 
5341 		map_index = (first_group *
5342 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5343 			(map_row * total_disks_per_row) + first_column;
5344 		break;
5345 	default:
5346 		return IO_ACCEL_INELIGIBLE;
5347 	}
5348 
5349 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5350 		return IO_ACCEL_INELIGIBLE;
5351 
5352 	c->phys_disk = dev->phys_disk[map_index];
5353 	if (!c->phys_disk)
5354 		return IO_ACCEL_INELIGIBLE;
5355 
5356 	disk_handle = dd[map_index].ioaccel_handle;
5357 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5358 			first_row * le16_to_cpu(map->strip_size) +
5359 			(first_row_offset - first_column *
5360 			le16_to_cpu(map->strip_size));
5361 	disk_block_cnt = block_cnt;
5362 
5363 	/* handle differing logical/physical block sizes */
5364 	if (map->phys_blk_shift) {
5365 		disk_block <<= map->phys_blk_shift;
5366 		disk_block_cnt <<= map->phys_blk_shift;
5367 	}
5368 	BUG_ON(disk_block_cnt > 0xffff);
5369 
5370 	/* build the new CDB for the physical disk I/O */
5371 	if (disk_block > 0xffffffff) {
5372 		cdb[0] = is_write ? WRITE_16 : READ_16;
5373 		cdb[1] = 0;
5374 		cdb[2] = (u8) (disk_block >> 56);
5375 		cdb[3] = (u8) (disk_block >> 48);
5376 		cdb[4] = (u8) (disk_block >> 40);
5377 		cdb[5] = (u8) (disk_block >> 32);
5378 		cdb[6] = (u8) (disk_block >> 24);
5379 		cdb[7] = (u8) (disk_block >> 16);
5380 		cdb[8] = (u8) (disk_block >> 8);
5381 		cdb[9] = (u8) (disk_block);
5382 		cdb[10] = (u8) (disk_block_cnt >> 24);
5383 		cdb[11] = (u8) (disk_block_cnt >> 16);
5384 		cdb[12] = (u8) (disk_block_cnt >> 8);
5385 		cdb[13] = (u8) (disk_block_cnt);
5386 		cdb[14] = 0;
5387 		cdb[15] = 0;
5388 		cdb_len = 16;
5389 	} else {
5390 		cdb[0] = is_write ? WRITE_10 : READ_10;
5391 		cdb[1] = 0;
5392 		cdb[2] = (u8) (disk_block >> 24);
5393 		cdb[3] = (u8) (disk_block >> 16);
5394 		cdb[4] = (u8) (disk_block >> 8);
5395 		cdb[5] = (u8) (disk_block);
5396 		cdb[6] = 0;
5397 		cdb[7] = (u8) (disk_block_cnt >> 8);
5398 		cdb[8] = (u8) (disk_block_cnt);
5399 		cdb[9] = 0;
5400 		cdb_len = 10;
5401 	}
5402 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5403 						dev->scsi3addr,
5404 						dev->phys_disk[map_index]);
5405 }
5406 
5407 /*
5408  * Submit commands down the "normal" RAID stack path
5409  * All callers to hpsa_ciss_submit must check lockup_detected
5410  * beforehand, before (opt.) and after calling cmd_alloc
5411  */
5412 static int hpsa_ciss_submit(struct ctlr_info *h,
5413 	struct CommandList *c, struct scsi_cmnd *cmd,
5414 	struct hpsa_scsi_dev_t *dev)
5415 {
5416 	cmd->host_scribble = (unsigned char *) c;
5417 	c->cmd_type = CMD_SCSI;
5418 	c->scsi_cmd = cmd;
5419 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5420 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5421 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5422 
5423 	/* Fill in the request block... */
5424 
5425 	c->Request.Timeout = 0;
5426 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5427 	c->Request.CDBLen = cmd->cmd_len;
5428 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5429 	switch (cmd->sc_data_direction) {
5430 	case DMA_TO_DEVICE:
5431 		c->Request.type_attr_dir =
5432 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5433 		break;
5434 	case DMA_FROM_DEVICE:
5435 		c->Request.type_attr_dir =
5436 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5437 		break;
5438 	case DMA_NONE:
5439 		c->Request.type_attr_dir =
5440 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5441 		break;
5442 	case DMA_BIDIRECTIONAL:
5443 		/* This can happen if a buggy application does a scsi passthru
5444 		 * and sets both inlen and outlen to non-zero. ( see
5445 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5446 		 */
5447 
5448 		c->Request.type_attr_dir =
5449 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5450 		/* This is technically wrong, and hpsa controllers should
5451 		 * reject it with CMD_INVALID, which is the most correct
5452 		 * response, but non-fibre backends appear to let it
5453 		 * slide by, and give the same results as if this field
5454 		 * were set correctly.  Either way is acceptable for
5455 		 * our purposes here.
5456 		 */
5457 
5458 		break;
5459 
5460 	default:
5461 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5462 			cmd->sc_data_direction);
5463 		BUG();
5464 		break;
5465 	}
5466 
5467 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5468 		hpsa_cmd_resolve_and_free(h, c);
5469 		return SCSI_MLQUEUE_HOST_BUSY;
5470 	}
5471 
5472 	if (dev->in_reset) {
5473 		hpsa_cmd_resolve_and_free(h, c);
5474 		return SCSI_MLQUEUE_HOST_BUSY;
5475 	}
5476 
5477 	enqueue_cmd_and_start_io(h, c);
5478 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5479 	return 0;
5480 }
5481 
5482 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5483 				struct CommandList *c)
5484 {
5485 	dma_addr_t cmd_dma_handle, err_dma_handle;
5486 
5487 	/* Zero out all of commandlist except the last field, refcount */
5488 	memset(c, 0, offsetof(struct CommandList, refcount));
5489 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5490 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5491 	c->err_info = h->errinfo_pool + index;
5492 	memset(c->err_info, 0, sizeof(*c->err_info));
5493 	err_dma_handle = h->errinfo_pool_dhandle
5494 	    + index * sizeof(*c->err_info);
5495 	c->cmdindex = index;
5496 	c->busaddr = (u32) cmd_dma_handle;
5497 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5498 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5499 	c->h = h;
5500 	c->scsi_cmd = SCSI_CMD_IDLE;
5501 }
5502 
5503 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5504 {
5505 	int i;
5506 
5507 	for (i = 0; i < h->nr_cmds; i++) {
5508 		struct CommandList *c = h->cmd_pool + i;
5509 
5510 		hpsa_cmd_init(h, i, c);
5511 		atomic_set(&c->refcount, 0);
5512 	}
5513 }
5514 
5515 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5516 				struct CommandList *c)
5517 {
5518 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5519 
5520 	BUG_ON(c->cmdindex != index);
5521 
5522 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5523 	memset(c->err_info, 0, sizeof(*c->err_info));
5524 	c->busaddr = (u32) cmd_dma_handle;
5525 }
5526 
5527 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5528 		struct CommandList *c, struct scsi_cmnd *cmd)
5529 {
5530 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5531 	int rc = IO_ACCEL_INELIGIBLE;
5532 
5533 	if (!dev)
5534 		return SCSI_MLQUEUE_HOST_BUSY;
5535 
5536 	if (dev->in_reset)
5537 		return SCSI_MLQUEUE_HOST_BUSY;
5538 
5539 	if (hpsa_simple_mode)
5540 		return IO_ACCEL_INELIGIBLE;
5541 
5542 	cmd->host_scribble = (unsigned char *) c;
5543 
5544 	if (dev->offload_enabled) {
5545 		hpsa_cmd_init(h, c->cmdindex, c);
5546 		c->cmd_type = CMD_SCSI;
5547 		c->scsi_cmd = cmd;
5548 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5549 		if (rc < 0)     /* scsi_dma_map failed. */
5550 			rc = SCSI_MLQUEUE_HOST_BUSY;
5551 	} else if (dev->hba_ioaccel_enabled) {
5552 		hpsa_cmd_init(h, c->cmdindex, c);
5553 		c->cmd_type = CMD_SCSI;
5554 		c->scsi_cmd = cmd;
5555 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5556 		if (rc < 0)     /* scsi_dma_map failed. */
5557 			rc = SCSI_MLQUEUE_HOST_BUSY;
5558 	}
5559 	return rc;
5560 }
5561 
5562 static void hpsa_command_resubmit_worker(struct work_struct *work)
5563 {
5564 	struct scsi_cmnd *cmd;
5565 	struct hpsa_scsi_dev_t *dev;
5566 	struct CommandList *c = container_of(work, struct CommandList, work);
5567 
5568 	cmd = c->scsi_cmd;
5569 	dev = cmd->device->hostdata;
5570 	if (!dev) {
5571 		cmd->result = DID_NO_CONNECT << 16;
5572 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5573 	}
5574 
5575 	if (dev->in_reset) {
5576 		cmd->result = DID_RESET << 16;
5577 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5578 	}
5579 
5580 	if (c->cmd_type == CMD_IOACCEL2) {
5581 		struct ctlr_info *h = c->h;
5582 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5583 		int rc;
5584 
5585 		if (c2->error_data.serv_response ==
5586 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5587 			rc = hpsa_ioaccel_submit(h, c, cmd);
5588 			if (rc == 0)
5589 				return;
5590 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5591 				/*
5592 				 * If we get here, it means dma mapping failed.
5593 				 * Try again via scsi mid layer, which will
5594 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5595 				 */
5596 				cmd->result = DID_IMM_RETRY << 16;
5597 				return hpsa_cmd_free_and_done(h, c, cmd);
5598 			}
5599 			/* else, fall thru and resubmit down CISS path */
5600 		}
5601 	}
5602 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5603 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5604 		/*
5605 		 * If we get here, it means dma mapping failed. Try
5606 		 * again via scsi mid layer, which will then get
5607 		 * SCSI_MLQUEUE_HOST_BUSY.
5608 		 *
5609 		 * hpsa_ciss_submit will have already freed c
5610 		 * if it encountered a dma mapping failure.
5611 		 */
5612 		cmd->result = DID_IMM_RETRY << 16;
5613 		cmd->scsi_done(cmd);
5614 	}
5615 }
5616 
5617 /* Running in struct Scsi_Host->host_lock less mode */
5618 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5619 {
5620 	struct ctlr_info *h;
5621 	struct hpsa_scsi_dev_t *dev;
5622 	struct CommandList *c;
5623 	int rc = 0;
5624 
5625 	/* Get the ptr to our adapter structure out of cmd->host. */
5626 	h = sdev_to_hba(cmd->device);
5627 
5628 	BUG_ON(cmd->request->tag < 0);
5629 
5630 	dev = cmd->device->hostdata;
5631 	if (!dev) {
5632 		cmd->result = DID_NO_CONNECT << 16;
5633 		cmd->scsi_done(cmd);
5634 		return 0;
5635 	}
5636 
5637 	if (dev->removed) {
5638 		cmd->result = DID_NO_CONNECT << 16;
5639 		cmd->scsi_done(cmd);
5640 		return 0;
5641 	}
5642 
5643 	if (unlikely(lockup_detected(h))) {
5644 		cmd->result = DID_NO_CONNECT << 16;
5645 		cmd->scsi_done(cmd);
5646 		return 0;
5647 	}
5648 
5649 	if (dev->in_reset)
5650 		return SCSI_MLQUEUE_DEVICE_BUSY;
5651 
5652 	c = cmd_tagged_alloc(h, cmd);
5653 	if (c == NULL)
5654 		return SCSI_MLQUEUE_DEVICE_BUSY;
5655 
5656 	/*
5657 	 * Call alternate submit routine for I/O accelerated commands.
5658 	 * Retries always go down the normal I/O path.
5659 	 */
5660 	if (likely(cmd->retries == 0 &&
5661 			!blk_rq_is_passthrough(cmd->request) &&
5662 			h->acciopath_status)) {
5663 		rc = hpsa_ioaccel_submit(h, c, cmd);
5664 		if (rc == 0)
5665 			return 0;
5666 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5667 			hpsa_cmd_resolve_and_free(h, c);
5668 			return SCSI_MLQUEUE_HOST_BUSY;
5669 		}
5670 	}
5671 	return hpsa_ciss_submit(h, c, cmd, dev);
5672 }
5673 
5674 static void hpsa_scan_complete(struct ctlr_info *h)
5675 {
5676 	unsigned long flags;
5677 
5678 	spin_lock_irqsave(&h->scan_lock, flags);
5679 	h->scan_finished = 1;
5680 	wake_up(&h->scan_wait_queue);
5681 	spin_unlock_irqrestore(&h->scan_lock, flags);
5682 }
5683 
5684 static void hpsa_scan_start(struct Scsi_Host *sh)
5685 {
5686 	struct ctlr_info *h = shost_to_hba(sh);
5687 	unsigned long flags;
5688 
5689 	/*
5690 	 * Don't let rescans be initiated on a controller known to be locked
5691 	 * up.  If the controller locks up *during* a rescan, that thread is
5692 	 * probably hosed, but at least we can prevent new rescan threads from
5693 	 * piling up on a locked up controller.
5694 	 */
5695 	if (unlikely(lockup_detected(h)))
5696 		return hpsa_scan_complete(h);
5697 
5698 	/*
5699 	 * If a scan is already waiting to run, no need to add another
5700 	 */
5701 	spin_lock_irqsave(&h->scan_lock, flags);
5702 	if (h->scan_waiting) {
5703 		spin_unlock_irqrestore(&h->scan_lock, flags);
5704 		return;
5705 	}
5706 
5707 	spin_unlock_irqrestore(&h->scan_lock, flags);
5708 
5709 	/* wait until any scan already in progress is finished. */
5710 	while (1) {
5711 		spin_lock_irqsave(&h->scan_lock, flags);
5712 		if (h->scan_finished)
5713 			break;
5714 		h->scan_waiting = 1;
5715 		spin_unlock_irqrestore(&h->scan_lock, flags);
5716 		wait_event(h->scan_wait_queue, h->scan_finished);
5717 		/* Note: We don't need to worry about a race between this
5718 		 * thread and driver unload because the midlayer will
5719 		 * have incremented the reference count, so unload won't
5720 		 * happen if we're in here.
5721 		 */
5722 	}
5723 	h->scan_finished = 0; /* mark scan as in progress */
5724 	h->scan_waiting = 0;
5725 	spin_unlock_irqrestore(&h->scan_lock, flags);
5726 
5727 	if (unlikely(lockup_detected(h)))
5728 		return hpsa_scan_complete(h);
5729 
5730 	/*
5731 	 * Do the scan after a reset completion
5732 	 */
5733 	spin_lock_irqsave(&h->reset_lock, flags);
5734 	if (h->reset_in_progress) {
5735 		h->drv_req_rescan = 1;
5736 		spin_unlock_irqrestore(&h->reset_lock, flags);
5737 		hpsa_scan_complete(h);
5738 		return;
5739 	}
5740 	spin_unlock_irqrestore(&h->reset_lock, flags);
5741 
5742 	hpsa_update_scsi_devices(h);
5743 
5744 	hpsa_scan_complete(h);
5745 }
5746 
5747 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5748 {
5749 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5750 
5751 	if (!logical_drive)
5752 		return -ENODEV;
5753 
5754 	if (qdepth < 1)
5755 		qdepth = 1;
5756 	else if (qdepth > logical_drive->queue_depth)
5757 		qdepth = logical_drive->queue_depth;
5758 
5759 	return scsi_change_queue_depth(sdev, qdepth);
5760 }
5761 
5762 static int hpsa_scan_finished(struct Scsi_Host *sh,
5763 	unsigned long elapsed_time)
5764 {
5765 	struct ctlr_info *h = shost_to_hba(sh);
5766 	unsigned long flags;
5767 	int finished;
5768 
5769 	spin_lock_irqsave(&h->scan_lock, flags);
5770 	finished = h->scan_finished;
5771 	spin_unlock_irqrestore(&h->scan_lock, flags);
5772 	return finished;
5773 }
5774 
5775 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5776 {
5777 	struct Scsi_Host *sh;
5778 
5779 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5780 	if (sh == NULL) {
5781 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5782 		return -ENOMEM;
5783 	}
5784 
5785 	sh->io_port = 0;
5786 	sh->n_io_port = 0;
5787 	sh->this_id = -1;
5788 	sh->max_channel = 3;
5789 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5790 	sh->max_lun = HPSA_MAX_LUN;
5791 	sh->max_id = HPSA_MAX_LUN;
5792 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5793 	sh->cmd_per_lun = sh->can_queue;
5794 	sh->sg_tablesize = h->maxsgentries;
5795 	sh->transportt = hpsa_sas_transport_template;
5796 	sh->hostdata[0] = (unsigned long) h;
5797 	sh->irq = pci_irq_vector(h->pdev, 0);
5798 	sh->unique_id = sh->irq;
5799 
5800 	h->scsi_host = sh;
5801 	return 0;
5802 }
5803 
5804 static int hpsa_scsi_add_host(struct ctlr_info *h)
5805 {
5806 	int rv;
5807 
5808 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5809 	if (rv) {
5810 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5811 		return rv;
5812 	}
5813 	scsi_scan_host(h->scsi_host);
5814 	return 0;
5815 }
5816 
5817 /*
5818  * The block layer has already gone to the trouble of picking out a unique,
5819  * small-integer tag for this request.  We use an offset from that value as
5820  * an index to select our command block.  (The offset allows us to reserve the
5821  * low-numbered entries for our own uses.)
5822  */
5823 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5824 {
5825 	int idx = scmd->request->tag;
5826 
5827 	if (idx < 0)
5828 		return idx;
5829 
5830 	/* Offset to leave space for internal cmds. */
5831 	return idx += HPSA_NRESERVED_CMDS;
5832 }
5833 
5834 /*
5835  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5836  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5837  */
5838 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5839 				struct CommandList *c, unsigned char lunaddr[],
5840 				int reply_queue)
5841 {
5842 	int rc;
5843 
5844 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5845 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5846 			NULL, 0, 0, lunaddr, TYPE_CMD);
5847 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5848 	if (rc)
5849 		return rc;
5850 	/* no unmap needed here because no data xfer. */
5851 
5852 	/* Check if the unit is already ready. */
5853 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5854 		return 0;
5855 
5856 	/*
5857 	 * The first command sent after reset will receive "unit attention" to
5858 	 * indicate that the LUN has been reset...this is actually what we're
5859 	 * looking for (but, success is good too).
5860 	 */
5861 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5862 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5863 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5864 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5865 		return 0;
5866 
5867 	return 1;
5868 }
5869 
5870 /*
5871  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5872  * returns zero when the unit is ready, and non-zero when giving up.
5873  */
5874 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5875 				struct CommandList *c,
5876 				unsigned char lunaddr[], int reply_queue)
5877 {
5878 	int rc;
5879 	int count = 0;
5880 	int waittime = 1; /* seconds */
5881 
5882 	/* Send test unit ready until device ready, or give up. */
5883 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5884 
5885 		/*
5886 		 * Wait for a bit.  do this first, because if we send
5887 		 * the TUR right away, the reset will just abort it.
5888 		 */
5889 		msleep(1000 * waittime);
5890 
5891 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5892 		if (!rc)
5893 			break;
5894 
5895 		/* Increase wait time with each try, up to a point. */
5896 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5897 			waittime *= 2;
5898 
5899 		dev_warn(&h->pdev->dev,
5900 			 "waiting %d secs for device to become ready.\n",
5901 			 waittime);
5902 	}
5903 
5904 	return rc;
5905 }
5906 
5907 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5908 					   unsigned char lunaddr[],
5909 					   int reply_queue)
5910 {
5911 	int first_queue;
5912 	int last_queue;
5913 	int rq;
5914 	int rc = 0;
5915 	struct CommandList *c;
5916 
5917 	c = cmd_alloc(h);
5918 
5919 	/*
5920 	 * If no specific reply queue was requested, then send the TUR
5921 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5922 	 * the loop exactly once using only the specified queue.
5923 	 */
5924 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5925 		first_queue = 0;
5926 		last_queue = h->nreply_queues - 1;
5927 	} else {
5928 		first_queue = reply_queue;
5929 		last_queue = reply_queue;
5930 	}
5931 
5932 	for (rq = first_queue; rq <= last_queue; rq++) {
5933 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5934 		if (rc)
5935 			break;
5936 	}
5937 
5938 	if (rc)
5939 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5940 	else
5941 		dev_warn(&h->pdev->dev, "device is ready.\n");
5942 
5943 	cmd_free(h, c);
5944 	return rc;
5945 }
5946 
5947 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5948  * complaining.  Doing a host- or bus-reset can't do anything good here.
5949  */
5950 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5951 {
5952 	int rc = SUCCESS;
5953 	int i;
5954 	struct ctlr_info *h;
5955 	struct hpsa_scsi_dev_t *dev = NULL;
5956 	u8 reset_type;
5957 	char msg[48];
5958 	unsigned long flags;
5959 
5960 	/* find the controller to which the command to be aborted was sent */
5961 	h = sdev_to_hba(scsicmd->device);
5962 	if (h == NULL) /* paranoia */
5963 		return FAILED;
5964 
5965 	spin_lock_irqsave(&h->reset_lock, flags);
5966 	h->reset_in_progress = 1;
5967 	spin_unlock_irqrestore(&h->reset_lock, flags);
5968 
5969 	if (lockup_detected(h)) {
5970 		rc = FAILED;
5971 		goto return_reset_status;
5972 	}
5973 
5974 	dev = scsicmd->device->hostdata;
5975 	if (!dev) {
5976 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5977 		rc = FAILED;
5978 		goto return_reset_status;
5979 	}
5980 
5981 	if (dev->devtype == TYPE_ENCLOSURE) {
5982 		rc = SUCCESS;
5983 		goto return_reset_status;
5984 	}
5985 
5986 	/* if controller locked up, we can guarantee command won't complete */
5987 	if (lockup_detected(h)) {
5988 		snprintf(msg, sizeof(msg),
5989 			 "cmd %d RESET FAILED, lockup detected",
5990 			 hpsa_get_cmd_index(scsicmd));
5991 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5992 		rc = FAILED;
5993 		goto return_reset_status;
5994 	}
5995 
5996 	/* this reset request might be the result of a lockup; check */
5997 	if (detect_controller_lockup(h)) {
5998 		snprintf(msg, sizeof(msg),
5999 			 "cmd %d RESET FAILED, new lockup detected",
6000 			 hpsa_get_cmd_index(scsicmd));
6001 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6002 		rc = FAILED;
6003 		goto return_reset_status;
6004 	}
6005 
6006 	/* Do not attempt on controller */
6007 	if (is_hba_lunid(dev->scsi3addr)) {
6008 		rc = SUCCESS;
6009 		goto return_reset_status;
6010 	}
6011 
6012 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6013 		reset_type = HPSA_DEVICE_RESET_MSG;
6014 	else
6015 		reset_type = HPSA_PHYS_TARGET_RESET;
6016 
6017 	sprintf(msg, "resetting %s",
6018 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6019 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6020 
6021 	/*
6022 	 * wait to see if any commands will complete before sending reset
6023 	 */
6024 	dev->in_reset = true; /* block any new cmds from OS for this device */
6025 	for (i = 0; i < 10; i++) {
6026 		if (atomic_read(&dev->commands_outstanding) > 0)
6027 			msleep(1000);
6028 		else
6029 			break;
6030 	}
6031 
6032 	/* send a reset to the SCSI LUN which the command was sent to */
6033 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6034 	if (rc == 0)
6035 		rc = SUCCESS;
6036 	else
6037 		rc = FAILED;
6038 
6039 	sprintf(msg, "reset %s %s",
6040 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6041 		rc == SUCCESS ? "completed successfully" : "failed");
6042 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6043 
6044 return_reset_status:
6045 	spin_lock_irqsave(&h->reset_lock, flags);
6046 	h->reset_in_progress = 0;
6047 	if (dev)
6048 		dev->in_reset = false;
6049 	spin_unlock_irqrestore(&h->reset_lock, flags);
6050 	return rc;
6051 }
6052 
6053 /*
6054  * For operations with an associated SCSI command, a command block is allocated
6055  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6056  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6057  * the complement, although cmd_free() may be called instead.
6058  */
6059 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6060 					    struct scsi_cmnd *scmd)
6061 {
6062 	int idx = hpsa_get_cmd_index(scmd);
6063 	struct CommandList *c = h->cmd_pool + idx;
6064 
6065 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6066 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6067 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6068 		/* The index value comes from the block layer, so if it's out of
6069 		 * bounds, it's probably not our bug.
6070 		 */
6071 		BUG();
6072 	}
6073 
6074 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6075 		/*
6076 		 * We expect that the SCSI layer will hand us a unique tag
6077 		 * value.  Thus, there should never be a collision here between
6078 		 * two requests...because if the selected command isn't idle
6079 		 * then someone is going to be very disappointed.
6080 		 */
6081 		if (idx != h->last_collision_tag) { /* Print once per tag */
6082 			dev_warn(&h->pdev->dev,
6083 				"%s: tag collision (tag=%d)\n", __func__, idx);
6084 			if (c->scsi_cmd != NULL)
6085 				scsi_print_command(c->scsi_cmd);
6086 			if (scmd)
6087 				scsi_print_command(scmd);
6088 			h->last_collision_tag = idx;
6089 		}
6090 		return NULL;
6091 	}
6092 
6093 	atomic_inc(&c->refcount);
6094 
6095 	hpsa_cmd_partial_init(h, idx, c);
6096 	return c;
6097 }
6098 
6099 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6100 {
6101 	/*
6102 	 * Release our reference to the block.  We don't need to do anything
6103 	 * else to free it, because it is accessed by index.
6104 	 */
6105 	(void)atomic_dec(&c->refcount);
6106 }
6107 
6108 /*
6109  * For operations that cannot sleep, a command block is allocated at init,
6110  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6111  * which ones are free or in use.  Lock must be held when calling this.
6112  * cmd_free() is the complement.
6113  * This function never gives up and returns NULL.  If it hangs,
6114  * another thread must call cmd_free() to free some tags.
6115  */
6116 
6117 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6118 {
6119 	struct CommandList *c;
6120 	int refcount, i;
6121 	int offset = 0;
6122 
6123 	/*
6124 	 * There is some *extremely* small but non-zero chance that that
6125 	 * multiple threads could get in here, and one thread could
6126 	 * be scanning through the list of bits looking for a free
6127 	 * one, but the free ones are always behind him, and other
6128 	 * threads sneak in behind him and eat them before he can
6129 	 * get to them, so that while there is always a free one, a
6130 	 * very unlucky thread might be starved anyway, never able to
6131 	 * beat the other threads.  In reality, this happens so
6132 	 * infrequently as to be indistinguishable from never.
6133 	 *
6134 	 * Note that we start allocating commands before the SCSI host structure
6135 	 * is initialized.  Since the search starts at bit zero, this
6136 	 * all works, since we have at least one command structure available;
6137 	 * however, it means that the structures with the low indexes have to be
6138 	 * reserved for driver-initiated requests, while requests from the block
6139 	 * layer will use the higher indexes.
6140 	 */
6141 
6142 	for (;;) {
6143 		i = find_next_zero_bit(h->cmd_pool_bits,
6144 					HPSA_NRESERVED_CMDS,
6145 					offset);
6146 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6147 			offset = 0;
6148 			continue;
6149 		}
6150 		c = h->cmd_pool + i;
6151 		refcount = atomic_inc_return(&c->refcount);
6152 		if (unlikely(refcount > 1)) {
6153 			cmd_free(h, c); /* already in use */
6154 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6155 			continue;
6156 		}
6157 		set_bit(i & (BITS_PER_LONG - 1),
6158 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6159 		break; /* it's ours now. */
6160 	}
6161 	hpsa_cmd_partial_init(h, i, c);
6162 	c->device = NULL;
6163 	return c;
6164 }
6165 
6166 /*
6167  * This is the complementary operation to cmd_alloc().  Note, however, in some
6168  * corner cases it may also be used to free blocks allocated by
6169  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6170  * the clear-bit is harmless.
6171  */
6172 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6173 {
6174 	if (atomic_dec_and_test(&c->refcount)) {
6175 		int i;
6176 
6177 		i = c - h->cmd_pool;
6178 		clear_bit(i & (BITS_PER_LONG - 1),
6179 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6180 	}
6181 }
6182 
6183 #ifdef CONFIG_COMPAT
6184 
6185 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6186 	void __user *arg)
6187 {
6188 	IOCTL32_Command_struct __user *arg32 =
6189 	    (IOCTL32_Command_struct __user *) arg;
6190 	IOCTL_Command_struct arg64;
6191 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6192 	int err;
6193 	u32 cp;
6194 
6195 	memset(&arg64, 0, sizeof(arg64));
6196 	err = 0;
6197 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6198 			   sizeof(arg64.LUN_info));
6199 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6200 			   sizeof(arg64.Request));
6201 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6202 			   sizeof(arg64.error_info));
6203 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6204 	err |= get_user(cp, &arg32->buf);
6205 	arg64.buf = compat_ptr(cp);
6206 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6207 
6208 	if (err)
6209 		return -EFAULT;
6210 
6211 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6212 	if (err)
6213 		return err;
6214 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6215 			 sizeof(arg32->error_info));
6216 	if (err)
6217 		return -EFAULT;
6218 	return err;
6219 }
6220 
6221 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6222 	unsigned int cmd, void __user *arg)
6223 {
6224 	BIG_IOCTL32_Command_struct __user *arg32 =
6225 	    (BIG_IOCTL32_Command_struct __user *) arg;
6226 	BIG_IOCTL_Command_struct arg64;
6227 	BIG_IOCTL_Command_struct __user *p =
6228 	    compat_alloc_user_space(sizeof(arg64));
6229 	int err;
6230 	u32 cp;
6231 
6232 	memset(&arg64, 0, sizeof(arg64));
6233 	err = 0;
6234 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6235 			   sizeof(arg64.LUN_info));
6236 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6237 			   sizeof(arg64.Request));
6238 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6239 			   sizeof(arg64.error_info));
6240 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6241 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6242 	err |= get_user(cp, &arg32->buf);
6243 	arg64.buf = compat_ptr(cp);
6244 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6245 
6246 	if (err)
6247 		return -EFAULT;
6248 
6249 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6250 	if (err)
6251 		return err;
6252 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6253 			 sizeof(arg32->error_info));
6254 	if (err)
6255 		return -EFAULT;
6256 	return err;
6257 }
6258 
6259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6260 			     void __user *arg)
6261 {
6262 	switch (cmd) {
6263 	case CCISS_GETPCIINFO:
6264 	case CCISS_GETINTINFO:
6265 	case CCISS_SETINTINFO:
6266 	case CCISS_GETNODENAME:
6267 	case CCISS_SETNODENAME:
6268 	case CCISS_GETHEARTBEAT:
6269 	case CCISS_GETBUSTYPES:
6270 	case CCISS_GETFIRMVER:
6271 	case CCISS_GETDRIVVER:
6272 	case CCISS_REVALIDVOLS:
6273 	case CCISS_DEREGDISK:
6274 	case CCISS_REGNEWDISK:
6275 	case CCISS_REGNEWD:
6276 	case CCISS_RESCANDISK:
6277 	case CCISS_GETLUNINFO:
6278 		return hpsa_ioctl(dev, cmd, arg);
6279 
6280 	case CCISS_PASSTHRU32:
6281 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6282 	case CCISS_BIG_PASSTHRU32:
6283 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6284 
6285 	default:
6286 		return -ENOIOCTLCMD;
6287 	}
6288 }
6289 #endif
6290 
6291 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6292 {
6293 	struct hpsa_pci_info pciinfo;
6294 
6295 	if (!argp)
6296 		return -EINVAL;
6297 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6298 	pciinfo.bus = h->pdev->bus->number;
6299 	pciinfo.dev_fn = h->pdev->devfn;
6300 	pciinfo.board_id = h->board_id;
6301 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6302 		return -EFAULT;
6303 	return 0;
6304 }
6305 
6306 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6307 {
6308 	DriverVer_type DriverVer;
6309 	unsigned char vmaj, vmin, vsubmin;
6310 	int rc;
6311 
6312 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6313 		&vmaj, &vmin, &vsubmin);
6314 	if (rc != 3) {
6315 		dev_info(&h->pdev->dev, "driver version string '%s' "
6316 			"unrecognized.", HPSA_DRIVER_VERSION);
6317 		vmaj = 0;
6318 		vmin = 0;
6319 		vsubmin = 0;
6320 	}
6321 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6322 	if (!argp)
6323 		return -EINVAL;
6324 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6325 		return -EFAULT;
6326 	return 0;
6327 }
6328 
6329 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6330 {
6331 	IOCTL_Command_struct iocommand;
6332 	struct CommandList *c;
6333 	char *buff = NULL;
6334 	u64 temp64;
6335 	int rc = 0;
6336 
6337 	if (!argp)
6338 		return -EINVAL;
6339 	if (!capable(CAP_SYS_RAWIO))
6340 		return -EPERM;
6341 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6342 		return -EFAULT;
6343 	if ((iocommand.buf_size < 1) &&
6344 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6345 		return -EINVAL;
6346 	}
6347 	if (iocommand.buf_size > 0) {
6348 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6349 		if (buff == NULL)
6350 			return -ENOMEM;
6351 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6352 			/* Copy the data into the buffer we created */
6353 			if (copy_from_user(buff, iocommand.buf,
6354 				iocommand.buf_size)) {
6355 				rc = -EFAULT;
6356 				goto out_kfree;
6357 			}
6358 		} else {
6359 			memset(buff, 0, iocommand.buf_size);
6360 		}
6361 	}
6362 	c = cmd_alloc(h);
6363 
6364 	/* Fill in the command type */
6365 	c->cmd_type = CMD_IOCTL_PEND;
6366 	c->scsi_cmd = SCSI_CMD_BUSY;
6367 	/* Fill in Command Header */
6368 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6369 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6370 		c->Header.SGList = 1;
6371 		c->Header.SGTotal = cpu_to_le16(1);
6372 	} else	{ /* no buffers to fill */
6373 		c->Header.SGList = 0;
6374 		c->Header.SGTotal = cpu_to_le16(0);
6375 	}
6376 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6377 
6378 	/* Fill in Request block */
6379 	memcpy(&c->Request, &iocommand.Request,
6380 		sizeof(c->Request));
6381 
6382 	/* Fill in the scatter gather information */
6383 	if (iocommand.buf_size > 0) {
6384 		temp64 = dma_map_single(&h->pdev->dev, buff,
6385 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6386 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6387 			c->SG[0].Addr = cpu_to_le64(0);
6388 			c->SG[0].Len = cpu_to_le32(0);
6389 			rc = -ENOMEM;
6390 			goto out;
6391 		}
6392 		c->SG[0].Addr = cpu_to_le64(temp64);
6393 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6394 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6395 	}
6396 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6397 					NO_TIMEOUT);
6398 	if (iocommand.buf_size > 0)
6399 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6400 	check_ioctl_unit_attention(h, c);
6401 	if (rc) {
6402 		rc = -EIO;
6403 		goto out;
6404 	}
6405 
6406 	/* Copy the error information out */
6407 	memcpy(&iocommand.error_info, c->err_info,
6408 		sizeof(iocommand.error_info));
6409 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6410 		rc = -EFAULT;
6411 		goto out;
6412 	}
6413 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6414 		iocommand.buf_size > 0) {
6415 		/* Copy the data out of the buffer we created */
6416 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6417 			rc = -EFAULT;
6418 			goto out;
6419 		}
6420 	}
6421 out:
6422 	cmd_free(h, c);
6423 out_kfree:
6424 	kfree(buff);
6425 	return rc;
6426 }
6427 
6428 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6429 {
6430 	BIG_IOCTL_Command_struct *ioc;
6431 	struct CommandList *c;
6432 	unsigned char **buff = NULL;
6433 	int *buff_size = NULL;
6434 	u64 temp64;
6435 	BYTE sg_used = 0;
6436 	int status = 0;
6437 	u32 left;
6438 	u32 sz;
6439 	BYTE __user *data_ptr;
6440 
6441 	if (!argp)
6442 		return -EINVAL;
6443 	if (!capable(CAP_SYS_RAWIO))
6444 		return -EPERM;
6445 	ioc = vmemdup_user(argp, sizeof(*ioc));
6446 	if (IS_ERR(ioc)) {
6447 		status = PTR_ERR(ioc);
6448 		goto cleanup1;
6449 	}
6450 	if ((ioc->buf_size < 1) &&
6451 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6452 		status = -EINVAL;
6453 		goto cleanup1;
6454 	}
6455 	/* Check kmalloc limits  using all SGs */
6456 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6457 		status = -EINVAL;
6458 		goto cleanup1;
6459 	}
6460 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6461 		status = -EINVAL;
6462 		goto cleanup1;
6463 	}
6464 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6465 	if (!buff) {
6466 		status = -ENOMEM;
6467 		goto cleanup1;
6468 	}
6469 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6470 	if (!buff_size) {
6471 		status = -ENOMEM;
6472 		goto cleanup1;
6473 	}
6474 	left = ioc->buf_size;
6475 	data_ptr = ioc->buf;
6476 	while (left) {
6477 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6478 		buff_size[sg_used] = sz;
6479 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6480 		if (buff[sg_used] == NULL) {
6481 			status = -ENOMEM;
6482 			goto cleanup1;
6483 		}
6484 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6485 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6486 				status = -EFAULT;
6487 				goto cleanup1;
6488 			}
6489 		} else
6490 			memset(buff[sg_used], 0, sz);
6491 		left -= sz;
6492 		data_ptr += sz;
6493 		sg_used++;
6494 	}
6495 	c = cmd_alloc(h);
6496 
6497 	c->cmd_type = CMD_IOCTL_PEND;
6498 	c->scsi_cmd = SCSI_CMD_BUSY;
6499 	c->Header.ReplyQueue = 0;
6500 	c->Header.SGList = (u8) sg_used;
6501 	c->Header.SGTotal = cpu_to_le16(sg_used);
6502 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6503 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6504 	if (ioc->buf_size > 0) {
6505 		int i;
6506 		for (i = 0; i < sg_used; i++) {
6507 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6508 				    buff_size[i], DMA_BIDIRECTIONAL);
6509 			if (dma_mapping_error(&h->pdev->dev,
6510 							(dma_addr_t) temp64)) {
6511 				c->SG[i].Addr = cpu_to_le64(0);
6512 				c->SG[i].Len = cpu_to_le32(0);
6513 				hpsa_pci_unmap(h->pdev, c, i,
6514 					DMA_BIDIRECTIONAL);
6515 				status = -ENOMEM;
6516 				goto cleanup0;
6517 			}
6518 			c->SG[i].Addr = cpu_to_le64(temp64);
6519 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6520 			c->SG[i].Ext = cpu_to_le32(0);
6521 		}
6522 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6523 	}
6524 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6525 						NO_TIMEOUT);
6526 	if (sg_used)
6527 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6528 	check_ioctl_unit_attention(h, c);
6529 	if (status) {
6530 		status = -EIO;
6531 		goto cleanup0;
6532 	}
6533 
6534 	/* Copy the error information out */
6535 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6536 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6537 		status = -EFAULT;
6538 		goto cleanup0;
6539 	}
6540 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6541 		int i;
6542 
6543 		/* Copy the data out of the buffer we created */
6544 		BYTE __user *ptr = ioc->buf;
6545 		for (i = 0; i < sg_used; i++) {
6546 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6547 				status = -EFAULT;
6548 				goto cleanup0;
6549 			}
6550 			ptr += buff_size[i];
6551 		}
6552 	}
6553 	status = 0;
6554 cleanup0:
6555 	cmd_free(h, c);
6556 cleanup1:
6557 	if (buff) {
6558 		int i;
6559 
6560 		for (i = 0; i < sg_used; i++)
6561 			kfree(buff[i]);
6562 		kfree(buff);
6563 	}
6564 	kfree(buff_size);
6565 	kvfree(ioc);
6566 	return status;
6567 }
6568 
6569 static void check_ioctl_unit_attention(struct ctlr_info *h,
6570 	struct CommandList *c)
6571 {
6572 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6573 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6574 		(void) check_for_unit_attention(h, c);
6575 }
6576 
6577 /*
6578  * ioctl
6579  */
6580 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6581 		      void __user *arg)
6582 {
6583 	struct ctlr_info *h;
6584 	void __user *argp = (void __user *)arg;
6585 	int rc;
6586 
6587 	h = sdev_to_hba(dev);
6588 
6589 	switch (cmd) {
6590 	case CCISS_DEREGDISK:
6591 	case CCISS_REGNEWDISK:
6592 	case CCISS_REGNEWD:
6593 		hpsa_scan_start(h->scsi_host);
6594 		return 0;
6595 	case CCISS_GETPCIINFO:
6596 		return hpsa_getpciinfo_ioctl(h, argp);
6597 	case CCISS_GETDRIVVER:
6598 		return hpsa_getdrivver_ioctl(h, argp);
6599 	case CCISS_PASSTHRU:
6600 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6601 			return -EAGAIN;
6602 		rc = hpsa_passthru_ioctl(h, argp);
6603 		atomic_inc(&h->passthru_cmds_avail);
6604 		return rc;
6605 	case CCISS_BIG_PASSTHRU:
6606 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6607 			return -EAGAIN;
6608 		rc = hpsa_big_passthru_ioctl(h, argp);
6609 		atomic_inc(&h->passthru_cmds_avail);
6610 		return rc;
6611 	default:
6612 		return -ENOTTY;
6613 	}
6614 }
6615 
6616 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6617 {
6618 	struct CommandList *c;
6619 
6620 	c = cmd_alloc(h);
6621 
6622 	/* fill_cmd can't fail here, no data buffer to map */
6623 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6624 		RAID_CTLR_LUNID, TYPE_MSG);
6625 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6626 	c->waiting = NULL;
6627 	enqueue_cmd_and_start_io(h, c);
6628 	/* Don't wait for completion, the reset won't complete.  Don't free
6629 	 * the command either.  This is the last command we will send before
6630 	 * re-initializing everything, so it doesn't matter and won't leak.
6631 	 */
6632 	return;
6633 }
6634 
6635 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6636 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6637 	int cmd_type)
6638 {
6639 	enum dma_data_direction dir = DMA_NONE;
6640 
6641 	c->cmd_type = CMD_IOCTL_PEND;
6642 	c->scsi_cmd = SCSI_CMD_BUSY;
6643 	c->Header.ReplyQueue = 0;
6644 	if (buff != NULL && size > 0) {
6645 		c->Header.SGList = 1;
6646 		c->Header.SGTotal = cpu_to_le16(1);
6647 	} else {
6648 		c->Header.SGList = 0;
6649 		c->Header.SGTotal = cpu_to_le16(0);
6650 	}
6651 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6652 
6653 	if (cmd_type == TYPE_CMD) {
6654 		switch (cmd) {
6655 		case HPSA_INQUIRY:
6656 			/* are we trying to read a vital product page */
6657 			if (page_code & VPD_PAGE) {
6658 				c->Request.CDB[1] = 0x01;
6659 				c->Request.CDB[2] = (page_code & 0xff);
6660 			}
6661 			c->Request.CDBLen = 6;
6662 			c->Request.type_attr_dir =
6663 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6664 			c->Request.Timeout = 0;
6665 			c->Request.CDB[0] = HPSA_INQUIRY;
6666 			c->Request.CDB[4] = size & 0xFF;
6667 			break;
6668 		case RECEIVE_DIAGNOSTIC:
6669 			c->Request.CDBLen = 6;
6670 			c->Request.type_attr_dir =
6671 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672 			c->Request.Timeout = 0;
6673 			c->Request.CDB[0] = cmd;
6674 			c->Request.CDB[1] = 1;
6675 			c->Request.CDB[2] = 1;
6676 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6677 			c->Request.CDB[4] = size & 0xFF;
6678 			break;
6679 		case HPSA_REPORT_LOG:
6680 		case HPSA_REPORT_PHYS:
6681 			/* Talking to controller so It's a physical command
6682 			   mode = 00 target = 0.  Nothing to write.
6683 			 */
6684 			c->Request.CDBLen = 12;
6685 			c->Request.type_attr_dir =
6686 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6687 			c->Request.Timeout = 0;
6688 			c->Request.CDB[0] = cmd;
6689 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6690 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6691 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6692 			c->Request.CDB[9] = size & 0xFF;
6693 			break;
6694 		case BMIC_SENSE_DIAG_OPTIONS:
6695 			c->Request.CDBLen = 16;
6696 			c->Request.type_attr_dir =
6697 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698 			c->Request.Timeout = 0;
6699 			/* Spec says this should be BMIC_WRITE */
6700 			c->Request.CDB[0] = BMIC_READ;
6701 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6702 			break;
6703 		case BMIC_SET_DIAG_OPTIONS:
6704 			c->Request.CDBLen = 16;
6705 			c->Request.type_attr_dir =
6706 					TYPE_ATTR_DIR(cmd_type,
6707 						ATTR_SIMPLE, XFER_WRITE);
6708 			c->Request.Timeout = 0;
6709 			c->Request.CDB[0] = BMIC_WRITE;
6710 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6711 			break;
6712 		case HPSA_CACHE_FLUSH:
6713 			c->Request.CDBLen = 12;
6714 			c->Request.type_attr_dir =
6715 					TYPE_ATTR_DIR(cmd_type,
6716 						ATTR_SIMPLE, XFER_WRITE);
6717 			c->Request.Timeout = 0;
6718 			c->Request.CDB[0] = BMIC_WRITE;
6719 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6720 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6721 			c->Request.CDB[8] = size & 0xFF;
6722 			break;
6723 		case TEST_UNIT_READY:
6724 			c->Request.CDBLen = 6;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6727 			c->Request.Timeout = 0;
6728 			break;
6729 		case HPSA_GET_RAID_MAP:
6730 			c->Request.CDBLen = 12;
6731 			c->Request.type_attr_dir =
6732 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 			c->Request.Timeout = 0;
6734 			c->Request.CDB[0] = HPSA_CISS_READ;
6735 			c->Request.CDB[1] = cmd;
6736 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6737 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6738 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6739 			c->Request.CDB[9] = size & 0xFF;
6740 			break;
6741 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6742 			c->Request.CDBLen = 10;
6743 			c->Request.type_attr_dir =
6744 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745 			c->Request.Timeout = 0;
6746 			c->Request.CDB[0] = BMIC_READ;
6747 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6748 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6749 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6750 			break;
6751 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6752 			c->Request.CDBLen = 10;
6753 			c->Request.type_attr_dir =
6754 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6755 			c->Request.Timeout = 0;
6756 			c->Request.CDB[0] = BMIC_READ;
6757 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6758 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6759 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6760 			break;
6761 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6762 			c->Request.CDBLen = 10;
6763 			c->Request.type_attr_dir =
6764 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765 			c->Request.Timeout = 0;
6766 			c->Request.CDB[0] = BMIC_READ;
6767 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6768 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6769 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6770 			break;
6771 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6772 			c->Request.CDBLen = 10;
6773 			c->Request.type_attr_dir =
6774 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6775 			c->Request.Timeout = 0;
6776 			c->Request.CDB[0] = BMIC_READ;
6777 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6778 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6779 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6780 			break;
6781 		case BMIC_IDENTIFY_CONTROLLER:
6782 			c->Request.CDBLen = 10;
6783 			c->Request.type_attr_dir =
6784 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6785 			c->Request.Timeout = 0;
6786 			c->Request.CDB[0] = BMIC_READ;
6787 			c->Request.CDB[1] = 0;
6788 			c->Request.CDB[2] = 0;
6789 			c->Request.CDB[3] = 0;
6790 			c->Request.CDB[4] = 0;
6791 			c->Request.CDB[5] = 0;
6792 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6793 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6794 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6795 			c->Request.CDB[9] = 0;
6796 			break;
6797 		default:
6798 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6799 			BUG();
6800 		}
6801 	} else if (cmd_type == TYPE_MSG) {
6802 		switch (cmd) {
6803 
6804 		case  HPSA_PHYS_TARGET_RESET:
6805 			c->Request.CDBLen = 16;
6806 			c->Request.type_attr_dir =
6807 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6808 			c->Request.Timeout = 0; /* Don't time out */
6809 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6810 			c->Request.CDB[0] = HPSA_RESET;
6811 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6812 			/* Physical target reset needs no control bytes 4-7*/
6813 			c->Request.CDB[4] = 0x00;
6814 			c->Request.CDB[5] = 0x00;
6815 			c->Request.CDB[6] = 0x00;
6816 			c->Request.CDB[7] = 0x00;
6817 			break;
6818 		case  HPSA_DEVICE_RESET_MSG:
6819 			c->Request.CDBLen = 16;
6820 			c->Request.type_attr_dir =
6821 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6822 			c->Request.Timeout = 0; /* Don't time out */
6823 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6824 			c->Request.CDB[0] =  cmd;
6825 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6826 			/* If bytes 4-7 are zero, it means reset the */
6827 			/* LunID device */
6828 			c->Request.CDB[4] = 0x00;
6829 			c->Request.CDB[5] = 0x00;
6830 			c->Request.CDB[6] = 0x00;
6831 			c->Request.CDB[7] = 0x00;
6832 			break;
6833 		default:
6834 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6835 				cmd);
6836 			BUG();
6837 		}
6838 	} else {
6839 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6840 		BUG();
6841 	}
6842 
6843 	switch (GET_DIR(c->Request.type_attr_dir)) {
6844 	case XFER_READ:
6845 		dir = DMA_FROM_DEVICE;
6846 		break;
6847 	case XFER_WRITE:
6848 		dir = DMA_TO_DEVICE;
6849 		break;
6850 	case XFER_NONE:
6851 		dir = DMA_NONE;
6852 		break;
6853 	default:
6854 		dir = DMA_BIDIRECTIONAL;
6855 	}
6856 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6857 		return -1;
6858 	return 0;
6859 }
6860 
6861 /*
6862  * Map (physical) PCI mem into (virtual) kernel space
6863  */
6864 static void __iomem *remap_pci_mem(ulong base, ulong size)
6865 {
6866 	ulong page_base = ((ulong) base) & PAGE_MASK;
6867 	ulong page_offs = ((ulong) base) - page_base;
6868 	void __iomem *page_remapped = ioremap_nocache(page_base,
6869 		page_offs + size);
6870 
6871 	return page_remapped ? (page_remapped + page_offs) : NULL;
6872 }
6873 
6874 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6875 {
6876 	return h->access.command_completed(h, q);
6877 }
6878 
6879 static inline bool interrupt_pending(struct ctlr_info *h)
6880 {
6881 	return h->access.intr_pending(h);
6882 }
6883 
6884 static inline long interrupt_not_for_us(struct ctlr_info *h)
6885 {
6886 	return (h->access.intr_pending(h) == 0) ||
6887 		(h->interrupts_enabled == 0);
6888 }
6889 
6890 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6891 	u32 raw_tag)
6892 {
6893 	if (unlikely(tag_index >= h->nr_cmds)) {
6894 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6895 		return 1;
6896 	}
6897 	return 0;
6898 }
6899 
6900 static inline void finish_cmd(struct CommandList *c)
6901 {
6902 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6903 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6904 			|| c->cmd_type == CMD_IOACCEL2))
6905 		complete_scsi_command(c);
6906 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6907 		complete(c->waiting);
6908 }
6909 
6910 /* process completion of an indexed ("direct lookup") command */
6911 static inline void process_indexed_cmd(struct ctlr_info *h,
6912 	u32 raw_tag)
6913 {
6914 	u32 tag_index;
6915 	struct CommandList *c;
6916 
6917 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6918 	if (!bad_tag(h, tag_index, raw_tag)) {
6919 		c = h->cmd_pool + tag_index;
6920 		finish_cmd(c);
6921 	}
6922 }
6923 
6924 /* Some controllers, like p400, will give us one interrupt
6925  * after a soft reset, even if we turned interrupts off.
6926  * Only need to check for this in the hpsa_xxx_discard_completions
6927  * functions.
6928  */
6929 static int ignore_bogus_interrupt(struct ctlr_info *h)
6930 {
6931 	if (likely(!reset_devices))
6932 		return 0;
6933 
6934 	if (likely(h->interrupts_enabled))
6935 		return 0;
6936 
6937 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6938 		"(known firmware bug.)  Ignoring.\n");
6939 
6940 	return 1;
6941 }
6942 
6943 /*
6944  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6945  * Relies on (h-q[x] == x) being true for x such that
6946  * 0 <= x < MAX_REPLY_QUEUES.
6947  */
6948 static struct ctlr_info *queue_to_hba(u8 *queue)
6949 {
6950 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6951 }
6952 
6953 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6954 {
6955 	struct ctlr_info *h = queue_to_hba(queue);
6956 	u8 q = *(u8 *) queue;
6957 	u32 raw_tag;
6958 
6959 	if (ignore_bogus_interrupt(h))
6960 		return IRQ_NONE;
6961 
6962 	if (interrupt_not_for_us(h))
6963 		return IRQ_NONE;
6964 	h->last_intr_timestamp = get_jiffies_64();
6965 	while (interrupt_pending(h)) {
6966 		raw_tag = get_next_completion(h, q);
6967 		while (raw_tag != FIFO_EMPTY)
6968 			raw_tag = next_command(h, q);
6969 	}
6970 	return IRQ_HANDLED;
6971 }
6972 
6973 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6974 {
6975 	struct ctlr_info *h = queue_to_hba(queue);
6976 	u32 raw_tag;
6977 	u8 q = *(u8 *) queue;
6978 
6979 	if (ignore_bogus_interrupt(h))
6980 		return IRQ_NONE;
6981 
6982 	h->last_intr_timestamp = get_jiffies_64();
6983 	raw_tag = get_next_completion(h, q);
6984 	while (raw_tag != FIFO_EMPTY)
6985 		raw_tag = next_command(h, q);
6986 	return IRQ_HANDLED;
6987 }
6988 
6989 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6990 {
6991 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6992 	u32 raw_tag;
6993 	u8 q = *(u8 *) queue;
6994 
6995 	if (interrupt_not_for_us(h))
6996 		return IRQ_NONE;
6997 	h->last_intr_timestamp = get_jiffies_64();
6998 	while (interrupt_pending(h)) {
6999 		raw_tag = get_next_completion(h, q);
7000 		while (raw_tag != FIFO_EMPTY) {
7001 			process_indexed_cmd(h, raw_tag);
7002 			raw_tag = next_command(h, q);
7003 		}
7004 	}
7005 	return IRQ_HANDLED;
7006 }
7007 
7008 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7009 {
7010 	struct ctlr_info *h = queue_to_hba(queue);
7011 	u32 raw_tag;
7012 	u8 q = *(u8 *) queue;
7013 
7014 	h->last_intr_timestamp = get_jiffies_64();
7015 	raw_tag = get_next_completion(h, q);
7016 	while (raw_tag != FIFO_EMPTY) {
7017 		process_indexed_cmd(h, raw_tag);
7018 		raw_tag = next_command(h, q);
7019 	}
7020 	return IRQ_HANDLED;
7021 }
7022 
7023 /* Send a message CDB to the firmware. Careful, this only works
7024  * in simple mode, not performant mode due to the tag lookup.
7025  * We only ever use this immediately after a controller reset.
7026  */
7027 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7028 			unsigned char type)
7029 {
7030 	struct Command {
7031 		struct CommandListHeader CommandHeader;
7032 		struct RequestBlock Request;
7033 		struct ErrDescriptor ErrorDescriptor;
7034 	};
7035 	struct Command *cmd;
7036 	static const size_t cmd_sz = sizeof(*cmd) +
7037 					sizeof(cmd->ErrorDescriptor);
7038 	dma_addr_t paddr64;
7039 	__le32 paddr32;
7040 	u32 tag;
7041 	void __iomem *vaddr;
7042 	int i, err;
7043 
7044 	vaddr = pci_ioremap_bar(pdev, 0);
7045 	if (vaddr == NULL)
7046 		return -ENOMEM;
7047 
7048 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7049 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7050 	 * memory.
7051 	 */
7052 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7053 	if (err) {
7054 		iounmap(vaddr);
7055 		return err;
7056 	}
7057 
7058 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7059 	if (cmd == NULL) {
7060 		iounmap(vaddr);
7061 		return -ENOMEM;
7062 	}
7063 
7064 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7065 	 * although there's no guarantee, we assume that the address is at
7066 	 * least 4-byte aligned (most likely, it's page-aligned).
7067 	 */
7068 	paddr32 = cpu_to_le32(paddr64);
7069 
7070 	cmd->CommandHeader.ReplyQueue = 0;
7071 	cmd->CommandHeader.SGList = 0;
7072 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7073 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7074 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7075 
7076 	cmd->Request.CDBLen = 16;
7077 	cmd->Request.type_attr_dir =
7078 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7079 	cmd->Request.Timeout = 0; /* Don't time out */
7080 	cmd->Request.CDB[0] = opcode;
7081 	cmd->Request.CDB[1] = type;
7082 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7083 	cmd->ErrorDescriptor.Addr =
7084 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7085 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7086 
7087 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7088 
7089 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7090 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7091 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7092 			break;
7093 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7094 	}
7095 
7096 	iounmap(vaddr);
7097 
7098 	/* we leak the DMA buffer here ... no choice since the controller could
7099 	 *  still complete the command.
7100 	 */
7101 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7102 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7103 			opcode, type);
7104 		return -ETIMEDOUT;
7105 	}
7106 
7107 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7108 
7109 	if (tag & HPSA_ERROR_BIT) {
7110 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7111 			opcode, type);
7112 		return -EIO;
7113 	}
7114 
7115 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7116 		opcode, type);
7117 	return 0;
7118 }
7119 
7120 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7121 
7122 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7123 	void __iomem *vaddr, u32 use_doorbell)
7124 {
7125 
7126 	if (use_doorbell) {
7127 		/* For everything after the P600, the PCI power state method
7128 		 * of resetting the controller doesn't work, so we have this
7129 		 * other way using the doorbell register.
7130 		 */
7131 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7132 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7133 
7134 		/* PMC hardware guys tell us we need a 10 second delay after
7135 		 * doorbell reset and before any attempt to talk to the board
7136 		 * at all to ensure that this actually works and doesn't fall
7137 		 * over in some weird corner cases.
7138 		 */
7139 		msleep(10000);
7140 	} else { /* Try to do it the PCI power state way */
7141 
7142 		/* Quoting from the Open CISS Specification: "The Power
7143 		 * Management Control/Status Register (CSR) controls the power
7144 		 * state of the device.  The normal operating state is D0,
7145 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7146 		 * the controller, place the interface device in D3 then to D0,
7147 		 * this causes a secondary PCI reset which will reset the
7148 		 * controller." */
7149 
7150 		int rc = 0;
7151 
7152 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7153 
7154 		/* enter the D3hot power management state */
7155 		rc = pci_set_power_state(pdev, PCI_D3hot);
7156 		if (rc)
7157 			return rc;
7158 
7159 		msleep(500);
7160 
7161 		/* enter the D0 power management state */
7162 		rc = pci_set_power_state(pdev, PCI_D0);
7163 		if (rc)
7164 			return rc;
7165 
7166 		/*
7167 		 * The P600 requires a small delay when changing states.
7168 		 * Otherwise we may think the board did not reset and we bail.
7169 		 * This for kdump only and is particular to the P600.
7170 		 */
7171 		msleep(500);
7172 	}
7173 	return 0;
7174 }
7175 
7176 static void init_driver_version(char *driver_version, int len)
7177 {
7178 	memset(driver_version, 0, len);
7179 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7180 }
7181 
7182 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7183 {
7184 	char *driver_version;
7185 	int i, size = sizeof(cfgtable->driver_version);
7186 
7187 	driver_version = kmalloc(size, GFP_KERNEL);
7188 	if (!driver_version)
7189 		return -ENOMEM;
7190 
7191 	init_driver_version(driver_version, size);
7192 	for (i = 0; i < size; i++)
7193 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7194 	kfree(driver_version);
7195 	return 0;
7196 }
7197 
7198 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7199 					  unsigned char *driver_ver)
7200 {
7201 	int i;
7202 
7203 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7204 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7205 }
7206 
7207 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7208 {
7209 
7210 	char *driver_ver, *old_driver_ver;
7211 	int rc, size = sizeof(cfgtable->driver_version);
7212 
7213 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7214 	if (!old_driver_ver)
7215 		return -ENOMEM;
7216 	driver_ver = old_driver_ver + size;
7217 
7218 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7219 	 * should have been changed, otherwise we know the reset failed.
7220 	 */
7221 	init_driver_version(old_driver_ver, size);
7222 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7223 	rc = !memcmp(driver_ver, old_driver_ver, size);
7224 	kfree(old_driver_ver);
7225 	return rc;
7226 }
7227 /* This does a hard reset of the controller using PCI power management
7228  * states or the using the doorbell register.
7229  */
7230 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7231 {
7232 	u64 cfg_offset;
7233 	u32 cfg_base_addr;
7234 	u64 cfg_base_addr_index;
7235 	void __iomem *vaddr;
7236 	unsigned long paddr;
7237 	u32 misc_fw_support;
7238 	int rc;
7239 	struct CfgTable __iomem *cfgtable;
7240 	u32 use_doorbell;
7241 	u16 command_register;
7242 
7243 	/* For controllers as old as the P600, this is very nearly
7244 	 * the same thing as
7245 	 *
7246 	 * pci_save_state(pci_dev);
7247 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7248 	 * pci_set_power_state(pci_dev, PCI_D0);
7249 	 * pci_restore_state(pci_dev);
7250 	 *
7251 	 * For controllers newer than the P600, the pci power state
7252 	 * method of resetting doesn't work so we have another way
7253 	 * using the doorbell register.
7254 	 */
7255 
7256 	if (!ctlr_is_resettable(board_id)) {
7257 		dev_warn(&pdev->dev, "Controller not resettable\n");
7258 		return -ENODEV;
7259 	}
7260 
7261 	/* if controller is soft- but not hard resettable... */
7262 	if (!ctlr_is_hard_resettable(board_id))
7263 		return -ENOTSUPP; /* try soft reset later. */
7264 
7265 	/* Save the PCI command register */
7266 	pci_read_config_word(pdev, 4, &command_register);
7267 	pci_save_state(pdev);
7268 
7269 	/* find the first memory BAR, so we can find the cfg table */
7270 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7271 	if (rc)
7272 		return rc;
7273 	vaddr = remap_pci_mem(paddr, 0x250);
7274 	if (!vaddr)
7275 		return -ENOMEM;
7276 
7277 	/* find cfgtable in order to check if reset via doorbell is supported */
7278 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7279 					&cfg_base_addr_index, &cfg_offset);
7280 	if (rc)
7281 		goto unmap_vaddr;
7282 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7283 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7284 	if (!cfgtable) {
7285 		rc = -ENOMEM;
7286 		goto unmap_vaddr;
7287 	}
7288 	rc = write_driver_ver_to_cfgtable(cfgtable);
7289 	if (rc)
7290 		goto unmap_cfgtable;
7291 
7292 	/* If reset via doorbell register is supported, use that.
7293 	 * There are two such methods.  Favor the newest method.
7294 	 */
7295 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7296 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7297 	if (use_doorbell) {
7298 		use_doorbell = DOORBELL_CTLR_RESET2;
7299 	} else {
7300 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7301 		if (use_doorbell) {
7302 			dev_warn(&pdev->dev,
7303 				"Soft reset not supported. Firmware update is required.\n");
7304 			rc = -ENOTSUPP; /* try soft reset */
7305 			goto unmap_cfgtable;
7306 		}
7307 	}
7308 
7309 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7310 	if (rc)
7311 		goto unmap_cfgtable;
7312 
7313 	pci_restore_state(pdev);
7314 	pci_write_config_word(pdev, 4, command_register);
7315 
7316 	/* Some devices (notably the HP Smart Array 5i Controller)
7317 	   need a little pause here */
7318 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7319 
7320 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7321 	if (rc) {
7322 		dev_warn(&pdev->dev,
7323 			"Failed waiting for board to become ready after hard reset\n");
7324 		goto unmap_cfgtable;
7325 	}
7326 
7327 	rc = controller_reset_failed(vaddr);
7328 	if (rc < 0)
7329 		goto unmap_cfgtable;
7330 	if (rc) {
7331 		dev_warn(&pdev->dev, "Unable to successfully reset "
7332 			"controller. Will try soft reset.\n");
7333 		rc = -ENOTSUPP;
7334 	} else {
7335 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7336 	}
7337 
7338 unmap_cfgtable:
7339 	iounmap(cfgtable);
7340 
7341 unmap_vaddr:
7342 	iounmap(vaddr);
7343 	return rc;
7344 }
7345 
7346 /*
7347  *  We cannot read the structure directly, for portability we must use
7348  *   the io functions.
7349  *   This is for debug only.
7350  */
7351 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7352 {
7353 #ifdef HPSA_DEBUG
7354 	int i;
7355 	char temp_name[17];
7356 
7357 	dev_info(dev, "Controller Configuration information\n");
7358 	dev_info(dev, "------------------------------------\n");
7359 	for (i = 0; i < 4; i++)
7360 		temp_name[i] = readb(&(tb->Signature[i]));
7361 	temp_name[4] = '\0';
7362 	dev_info(dev, "   Signature = %s\n", temp_name);
7363 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7364 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7365 	       readl(&(tb->TransportSupport)));
7366 	dev_info(dev, "   Transport methods active = 0x%x\n",
7367 	       readl(&(tb->TransportActive)));
7368 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7369 	       readl(&(tb->HostWrite.TransportRequest)));
7370 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7371 	       readl(&(tb->HostWrite.CoalIntDelay)));
7372 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7373 	       readl(&(tb->HostWrite.CoalIntCount)));
7374 	dev_info(dev, "   Max outstanding commands = %d\n",
7375 	       readl(&(tb->CmdsOutMax)));
7376 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7377 	for (i = 0; i < 16; i++)
7378 		temp_name[i] = readb(&(tb->ServerName[i]));
7379 	temp_name[16] = '\0';
7380 	dev_info(dev, "   Server Name = %s\n", temp_name);
7381 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7382 		readl(&(tb->HeartBeat)));
7383 #endif				/* HPSA_DEBUG */
7384 }
7385 
7386 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7387 {
7388 	int i, offset, mem_type, bar_type;
7389 
7390 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7391 		return 0;
7392 	offset = 0;
7393 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7394 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7395 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7396 			offset += 4;
7397 		else {
7398 			mem_type = pci_resource_flags(pdev, i) &
7399 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7400 			switch (mem_type) {
7401 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7402 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7403 				offset += 4;	/* 32 bit */
7404 				break;
7405 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7406 				offset += 8;
7407 				break;
7408 			default:	/* reserved in PCI 2.2 */
7409 				dev_warn(&pdev->dev,
7410 				       "base address is invalid\n");
7411 				return -1;
7412 				break;
7413 			}
7414 		}
7415 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7416 			return i + 1;
7417 	}
7418 	return -1;
7419 }
7420 
7421 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7422 {
7423 	pci_free_irq_vectors(h->pdev);
7424 	h->msix_vectors = 0;
7425 }
7426 
7427 static void hpsa_setup_reply_map(struct ctlr_info *h)
7428 {
7429 	const struct cpumask *mask;
7430 	unsigned int queue, cpu;
7431 
7432 	for (queue = 0; queue < h->msix_vectors; queue++) {
7433 		mask = pci_irq_get_affinity(h->pdev, queue);
7434 		if (!mask)
7435 			goto fallback;
7436 
7437 		for_each_cpu(cpu, mask)
7438 			h->reply_map[cpu] = queue;
7439 	}
7440 	return;
7441 
7442 fallback:
7443 	for_each_possible_cpu(cpu)
7444 		h->reply_map[cpu] = 0;
7445 }
7446 
7447 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7448  * controllers that are capable. If not, we use legacy INTx mode.
7449  */
7450 static int hpsa_interrupt_mode(struct ctlr_info *h)
7451 {
7452 	unsigned int flags = PCI_IRQ_LEGACY;
7453 	int ret;
7454 
7455 	/* Some boards advertise MSI but don't really support it */
7456 	switch (h->board_id) {
7457 	case 0x40700E11:
7458 	case 0x40800E11:
7459 	case 0x40820E11:
7460 	case 0x40830E11:
7461 		break;
7462 	default:
7463 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7464 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7465 		if (ret > 0) {
7466 			h->msix_vectors = ret;
7467 			return 0;
7468 		}
7469 
7470 		flags |= PCI_IRQ_MSI;
7471 		break;
7472 	}
7473 
7474 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7475 	if (ret < 0)
7476 		return ret;
7477 	return 0;
7478 }
7479 
7480 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7481 				bool *legacy_board)
7482 {
7483 	int i;
7484 	u32 subsystem_vendor_id, subsystem_device_id;
7485 
7486 	subsystem_vendor_id = pdev->subsystem_vendor;
7487 	subsystem_device_id = pdev->subsystem_device;
7488 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7489 		    subsystem_vendor_id;
7490 
7491 	if (legacy_board)
7492 		*legacy_board = false;
7493 	for (i = 0; i < ARRAY_SIZE(products); i++)
7494 		if (*board_id == products[i].board_id) {
7495 			if (products[i].access != &SA5A_access &&
7496 			    products[i].access != &SA5B_access)
7497 				return i;
7498 			dev_warn(&pdev->dev,
7499 				 "legacy board ID: 0x%08x\n",
7500 				 *board_id);
7501 			if (legacy_board)
7502 			    *legacy_board = true;
7503 			return i;
7504 		}
7505 
7506 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7507 	if (legacy_board)
7508 		*legacy_board = true;
7509 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7510 }
7511 
7512 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7513 				    unsigned long *memory_bar)
7514 {
7515 	int i;
7516 
7517 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7518 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7519 			/* addressing mode bits already removed */
7520 			*memory_bar = pci_resource_start(pdev, i);
7521 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7522 				*memory_bar);
7523 			return 0;
7524 		}
7525 	dev_warn(&pdev->dev, "no memory BAR found\n");
7526 	return -ENODEV;
7527 }
7528 
7529 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7530 				     int wait_for_ready)
7531 {
7532 	int i, iterations;
7533 	u32 scratchpad;
7534 	if (wait_for_ready)
7535 		iterations = HPSA_BOARD_READY_ITERATIONS;
7536 	else
7537 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7538 
7539 	for (i = 0; i < iterations; i++) {
7540 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7541 		if (wait_for_ready) {
7542 			if (scratchpad == HPSA_FIRMWARE_READY)
7543 				return 0;
7544 		} else {
7545 			if (scratchpad != HPSA_FIRMWARE_READY)
7546 				return 0;
7547 		}
7548 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7549 	}
7550 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7551 	return -ENODEV;
7552 }
7553 
7554 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7555 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7556 			       u64 *cfg_offset)
7557 {
7558 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7559 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7560 	*cfg_base_addr &= (u32) 0x0000ffff;
7561 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7562 	if (*cfg_base_addr_index == -1) {
7563 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7564 		return -ENODEV;
7565 	}
7566 	return 0;
7567 }
7568 
7569 static void hpsa_free_cfgtables(struct ctlr_info *h)
7570 {
7571 	if (h->transtable) {
7572 		iounmap(h->transtable);
7573 		h->transtable = NULL;
7574 	}
7575 	if (h->cfgtable) {
7576 		iounmap(h->cfgtable);
7577 		h->cfgtable = NULL;
7578 	}
7579 }
7580 
7581 /* Find and map CISS config table and transfer table
7582 + * several items must be unmapped (freed) later
7583 + * */
7584 static int hpsa_find_cfgtables(struct ctlr_info *h)
7585 {
7586 	u64 cfg_offset;
7587 	u32 cfg_base_addr;
7588 	u64 cfg_base_addr_index;
7589 	u32 trans_offset;
7590 	int rc;
7591 
7592 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7593 		&cfg_base_addr_index, &cfg_offset);
7594 	if (rc)
7595 		return rc;
7596 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7597 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7598 	if (!h->cfgtable) {
7599 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7600 		return -ENOMEM;
7601 	}
7602 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7603 	if (rc)
7604 		return rc;
7605 	/* Find performant mode table. */
7606 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7607 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7608 				cfg_base_addr_index)+cfg_offset+trans_offset,
7609 				sizeof(*h->transtable));
7610 	if (!h->transtable) {
7611 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7612 		hpsa_free_cfgtables(h);
7613 		return -ENOMEM;
7614 	}
7615 	return 0;
7616 }
7617 
7618 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7619 {
7620 #define MIN_MAX_COMMANDS 16
7621 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7622 
7623 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7624 
7625 	/* Limit commands in memory limited kdump scenario. */
7626 	if (reset_devices && h->max_commands > 32)
7627 		h->max_commands = 32;
7628 
7629 	if (h->max_commands < MIN_MAX_COMMANDS) {
7630 		dev_warn(&h->pdev->dev,
7631 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7632 			h->max_commands,
7633 			MIN_MAX_COMMANDS);
7634 		h->max_commands = MIN_MAX_COMMANDS;
7635 	}
7636 }
7637 
7638 /* If the controller reports that the total max sg entries is greater than 512,
7639  * then we know that chained SG blocks work.  (Original smart arrays did not
7640  * support chained SG blocks and would return zero for max sg entries.)
7641  */
7642 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7643 {
7644 	return h->maxsgentries > 512;
7645 }
7646 
7647 /* Interrogate the hardware for some limits:
7648  * max commands, max SG elements without chaining, and with chaining,
7649  * SG chain block size, etc.
7650  */
7651 static void hpsa_find_board_params(struct ctlr_info *h)
7652 {
7653 	hpsa_get_max_perf_mode_cmds(h);
7654 	h->nr_cmds = h->max_commands;
7655 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7656 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7657 	if (hpsa_supports_chained_sg_blocks(h)) {
7658 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7659 		h->max_cmd_sg_entries = 32;
7660 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7661 		h->maxsgentries--; /* save one for chain pointer */
7662 	} else {
7663 		/*
7664 		 * Original smart arrays supported at most 31 s/g entries
7665 		 * embedded inline in the command (trying to use more
7666 		 * would lock up the controller)
7667 		 */
7668 		h->max_cmd_sg_entries = 31;
7669 		h->maxsgentries = 31; /* default to traditional values */
7670 		h->chainsize = 0;
7671 	}
7672 
7673 	/* Find out what task management functions are supported and cache */
7674 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7675 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7676 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7677 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7678 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7679 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7680 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7681 }
7682 
7683 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7684 {
7685 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7686 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7687 		return false;
7688 	}
7689 	return true;
7690 }
7691 
7692 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7693 {
7694 	u32 driver_support;
7695 
7696 	driver_support = readl(&(h->cfgtable->driver_support));
7697 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7698 #ifdef CONFIG_X86
7699 	driver_support |= ENABLE_SCSI_PREFETCH;
7700 #endif
7701 	driver_support |= ENABLE_UNIT_ATTN;
7702 	writel(driver_support, &(h->cfgtable->driver_support));
7703 }
7704 
7705 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7706  * in a prefetch beyond physical memory.
7707  */
7708 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7709 {
7710 	u32 dma_prefetch;
7711 
7712 	if (h->board_id != 0x3225103C)
7713 		return;
7714 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7715 	dma_prefetch |= 0x8000;
7716 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7717 }
7718 
7719 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7720 {
7721 	int i;
7722 	u32 doorbell_value;
7723 	unsigned long flags;
7724 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7725 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7726 		spin_lock_irqsave(&h->lock, flags);
7727 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7728 		spin_unlock_irqrestore(&h->lock, flags);
7729 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7730 			goto done;
7731 		/* delay and try again */
7732 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7733 	}
7734 	return -ENODEV;
7735 done:
7736 	return 0;
7737 }
7738 
7739 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7740 {
7741 	int i;
7742 	u32 doorbell_value;
7743 	unsigned long flags;
7744 
7745 	/* under certain very rare conditions, this can take awhile.
7746 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7747 	 * as we enter this code.)
7748 	 */
7749 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7750 		if (h->remove_in_progress)
7751 			goto done;
7752 		spin_lock_irqsave(&h->lock, flags);
7753 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7754 		spin_unlock_irqrestore(&h->lock, flags);
7755 		if (!(doorbell_value & CFGTBL_ChangeReq))
7756 			goto done;
7757 		/* delay and try again */
7758 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7759 	}
7760 	return -ENODEV;
7761 done:
7762 	return 0;
7763 }
7764 
7765 /* return -ENODEV or other reason on error, 0 on success */
7766 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7767 {
7768 	u32 trans_support;
7769 
7770 	trans_support = readl(&(h->cfgtable->TransportSupport));
7771 	if (!(trans_support & SIMPLE_MODE))
7772 		return -ENOTSUPP;
7773 
7774 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7775 
7776 	/* Update the field, and then ring the doorbell */
7777 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7778 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7779 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7780 	if (hpsa_wait_for_mode_change_ack(h))
7781 		goto error;
7782 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7783 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7784 		goto error;
7785 	h->transMethod = CFGTBL_Trans_Simple;
7786 	return 0;
7787 error:
7788 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7789 	return -ENODEV;
7790 }
7791 
7792 /* free items allocated or mapped by hpsa_pci_init */
7793 static void hpsa_free_pci_init(struct ctlr_info *h)
7794 {
7795 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7796 	iounmap(h->vaddr);			/* pci_init 3 */
7797 	h->vaddr = NULL;
7798 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7799 	/*
7800 	 * call pci_disable_device before pci_release_regions per
7801 	 * Documentation/PCI/pci.rst
7802 	 */
7803 	pci_disable_device(h->pdev);		/* pci_init 1 */
7804 	pci_release_regions(h->pdev);		/* pci_init 2 */
7805 }
7806 
7807 /* several items must be freed later */
7808 static int hpsa_pci_init(struct ctlr_info *h)
7809 {
7810 	int prod_index, err;
7811 	bool legacy_board;
7812 
7813 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7814 	if (prod_index < 0)
7815 		return prod_index;
7816 	h->product_name = products[prod_index].product_name;
7817 	h->access = *(products[prod_index].access);
7818 	h->legacy_board = legacy_board;
7819 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7820 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7821 
7822 	err = pci_enable_device(h->pdev);
7823 	if (err) {
7824 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7825 		pci_disable_device(h->pdev);
7826 		return err;
7827 	}
7828 
7829 	err = pci_request_regions(h->pdev, HPSA);
7830 	if (err) {
7831 		dev_err(&h->pdev->dev,
7832 			"failed to obtain PCI resources\n");
7833 		pci_disable_device(h->pdev);
7834 		return err;
7835 	}
7836 
7837 	pci_set_master(h->pdev);
7838 
7839 	err = hpsa_interrupt_mode(h);
7840 	if (err)
7841 		goto clean1;
7842 
7843 	/* setup mapping between CPU and reply queue */
7844 	hpsa_setup_reply_map(h);
7845 
7846 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7847 	if (err)
7848 		goto clean2;	/* intmode+region, pci */
7849 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7850 	if (!h->vaddr) {
7851 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7852 		err = -ENOMEM;
7853 		goto clean2;	/* intmode+region, pci */
7854 	}
7855 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7856 	if (err)
7857 		goto clean3;	/* vaddr, intmode+region, pci */
7858 	err = hpsa_find_cfgtables(h);
7859 	if (err)
7860 		goto clean3;	/* vaddr, intmode+region, pci */
7861 	hpsa_find_board_params(h);
7862 
7863 	if (!hpsa_CISS_signature_present(h)) {
7864 		err = -ENODEV;
7865 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7866 	}
7867 	hpsa_set_driver_support_bits(h);
7868 	hpsa_p600_dma_prefetch_quirk(h);
7869 	err = hpsa_enter_simple_mode(h);
7870 	if (err)
7871 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7872 	return 0;
7873 
7874 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7875 	hpsa_free_cfgtables(h);
7876 clean3:	/* vaddr, intmode+region, pci */
7877 	iounmap(h->vaddr);
7878 	h->vaddr = NULL;
7879 clean2:	/* intmode+region, pci */
7880 	hpsa_disable_interrupt_mode(h);
7881 clean1:
7882 	/*
7883 	 * call pci_disable_device before pci_release_regions per
7884 	 * Documentation/PCI/pci.rst
7885 	 */
7886 	pci_disable_device(h->pdev);
7887 	pci_release_regions(h->pdev);
7888 	return err;
7889 }
7890 
7891 static void hpsa_hba_inquiry(struct ctlr_info *h)
7892 {
7893 	int rc;
7894 
7895 #define HBA_INQUIRY_BYTE_COUNT 64
7896 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7897 	if (!h->hba_inquiry_data)
7898 		return;
7899 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7900 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7901 	if (rc != 0) {
7902 		kfree(h->hba_inquiry_data);
7903 		h->hba_inquiry_data = NULL;
7904 	}
7905 }
7906 
7907 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7908 {
7909 	int rc, i;
7910 	void __iomem *vaddr;
7911 
7912 	if (!reset_devices)
7913 		return 0;
7914 
7915 	/* kdump kernel is loading, we don't know in which state is
7916 	 * the pci interface. The dev->enable_cnt is equal zero
7917 	 * so we call enable+disable, wait a while and switch it on.
7918 	 */
7919 	rc = pci_enable_device(pdev);
7920 	if (rc) {
7921 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7922 		return -ENODEV;
7923 	}
7924 	pci_disable_device(pdev);
7925 	msleep(260);			/* a randomly chosen number */
7926 	rc = pci_enable_device(pdev);
7927 	if (rc) {
7928 		dev_warn(&pdev->dev, "failed to enable device.\n");
7929 		return -ENODEV;
7930 	}
7931 
7932 	pci_set_master(pdev);
7933 
7934 	vaddr = pci_ioremap_bar(pdev, 0);
7935 	if (vaddr == NULL) {
7936 		rc = -ENOMEM;
7937 		goto out_disable;
7938 	}
7939 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7940 	iounmap(vaddr);
7941 
7942 	/* Reset the controller with a PCI power-cycle or via doorbell */
7943 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7944 
7945 	/* -ENOTSUPP here means we cannot reset the controller
7946 	 * but it's already (and still) up and running in
7947 	 * "performant mode".  Or, it might be 640x, which can't reset
7948 	 * due to concerns about shared bbwc between 6402/6404 pair.
7949 	 */
7950 	if (rc)
7951 		goto out_disable;
7952 
7953 	/* Now try to get the controller to respond to a no-op */
7954 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7955 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7956 		if (hpsa_noop(pdev) == 0)
7957 			break;
7958 		else
7959 			dev_warn(&pdev->dev, "no-op failed%s\n",
7960 					(i < 11 ? "; re-trying" : ""));
7961 	}
7962 
7963 out_disable:
7964 
7965 	pci_disable_device(pdev);
7966 	return rc;
7967 }
7968 
7969 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7970 {
7971 	kfree(h->cmd_pool_bits);
7972 	h->cmd_pool_bits = NULL;
7973 	if (h->cmd_pool) {
7974 		dma_free_coherent(&h->pdev->dev,
7975 				h->nr_cmds * sizeof(struct CommandList),
7976 				h->cmd_pool,
7977 				h->cmd_pool_dhandle);
7978 		h->cmd_pool = NULL;
7979 		h->cmd_pool_dhandle = 0;
7980 	}
7981 	if (h->errinfo_pool) {
7982 		dma_free_coherent(&h->pdev->dev,
7983 				h->nr_cmds * sizeof(struct ErrorInfo),
7984 				h->errinfo_pool,
7985 				h->errinfo_pool_dhandle);
7986 		h->errinfo_pool = NULL;
7987 		h->errinfo_pool_dhandle = 0;
7988 	}
7989 }
7990 
7991 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7992 {
7993 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7994 				   sizeof(unsigned long),
7995 				   GFP_KERNEL);
7996 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7997 		    h->nr_cmds * sizeof(*h->cmd_pool),
7998 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7999 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8000 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8001 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8002 	if ((h->cmd_pool_bits == NULL)
8003 	    || (h->cmd_pool == NULL)
8004 	    || (h->errinfo_pool == NULL)) {
8005 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8006 		goto clean_up;
8007 	}
8008 	hpsa_preinitialize_commands(h);
8009 	return 0;
8010 clean_up:
8011 	hpsa_free_cmd_pool(h);
8012 	return -ENOMEM;
8013 }
8014 
8015 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8016 static void hpsa_free_irqs(struct ctlr_info *h)
8017 {
8018 	int i;
8019 	int irq_vector = 0;
8020 
8021 	if (hpsa_simple_mode)
8022 		irq_vector = h->intr_mode;
8023 
8024 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8025 		/* Single reply queue, only one irq to free */
8026 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8027 				&h->q[h->intr_mode]);
8028 		h->q[h->intr_mode] = 0;
8029 		return;
8030 	}
8031 
8032 	for (i = 0; i < h->msix_vectors; i++) {
8033 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8034 		h->q[i] = 0;
8035 	}
8036 	for (; i < MAX_REPLY_QUEUES; i++)
8037 		h->q[i] = 0;
8038 }
8039 
8040 /* returns 0 on success; cleans up and returns -Enn on error */
8041 static int hpsa_request_irqs(struct ctlr_info *h,
8042 	irqreturn_t (*msixhandler)(int, void *),
8043 	irqreturn_t (*intxhandler)(int, void *))
8044 {
8045 	int rc, i;
8046 	int irq_vector = 0;
8047 
8048 	if (hpsa_simple_mode)
8049 		irq_vector = h->intr_mode;
8050 
8051 	/*
8052 	 * initialize h->q[x] = x so that interrupt handlers know which
8053 	 * queue to process.
8054 	 */
8055 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8056 		h->q[i] = (u8) i;
8057 
8058 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8059 		/* If performant mode and MSI-X, use multiple reply queues */
8060 		for (i = 0; i < h->msix_vectors; i++) {
8061 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8062 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8063 					0, h->intrname[i],
8064 					&h->q[i]);
8065 			if (rc) {
8066 				int j;
8067 
8068 				dev_err(&h->pdev->dev,
8069 					"failed to get irq %d for %s\n",
8070 				       pci_irq_vector(h->pdev, i), h->devname);
8071 				for (j = 0; j < i; j++) {
8072 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8073 					h->q[j] = 0;
8074 				}
8075 				for (; j < MAX_REPLY_QUEUES; j++)
8076 					h->q[j] = 0;
8077 				return rc;
8078 			}
8079 		}
8080 	} else {
8081 		/* Use single reply pool */
8082 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8083 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8084 				h->msix_vectors ? "x" : "");
8085 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8086 				msixhandler, 0,
8087 				h->intrname[0],
8088 				&h->q[h->intr_mode]);
8089 		} else {
8090 			sprintf(h->intrname[h->intr_mode],
8091 				"%s-intx", h->devname);
8092 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8093 				intxhandler, IRQF_SHARED,
8094 				h->intrname[0],
8095 				&h->q[h->intr_mode]);
8096 		}
8097 	}
8098 	if (rc) {
8099 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8100 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8101 		hpsa_free_irqs(h);
8102 		return -ENODEV;
8103 	}
8104 	return 0;
8105 }
8106 
8107 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8108 {
8109 	int rc;
8110 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8111 
8112 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8113 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8114 	if (rc) {
8115 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8116 		return rc;
8117 	}
8118 
8119 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8120 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8121 	if (rc) {
8122 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8123 			"after soft reset.\n");
8124 		return rc;
8125 	}
8126 
8127 	return 0;
8128 }
8129 
8130 static void hpsa_free_reply_queues(struct ctlr_info *h)
8131 {
8132 	int i;
8133 
8134 	for (i = 0; i < h->nreply_queues; i++) {
8135 		if (!h->reply_queue[i].head)
8136 			continue;
8137 		dma_free_coherent(&h->pdev->dev,
8138 					h->reply_queue_size,
8139 					h->reply_queue[i].head,
8140 					h->reply_queue[i].busaddr);
8141 		h->reply_queue[i].head = NULL;
8142 		h->reply_queue[i].busaddr = 0;
8143 	}
8144 	h->reply_queue_size = 0;
8145 }
8146 
8147 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8148 {
8149 	hpsa_free_performant_mode(h);		/* init_one 7 */
8150 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8151 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8152 	hpsa_free_irqs(h);			/* init_one 4 */
8153 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8154 	h->scsi_host = NULL;			/* init_one 3 */
8155 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8156 	free_percpu(h->lockup_detected);	/* init_one 2 */
8157 	h->lockup_detected = NULL;		/* init_one 2 */
8158 	if (h->resubmit_wq) {
8159 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8160 		h->resubmit_wq = NULL;
8161 	}
8162 	if (h->rescan_ctlr_wq) {
8163 		destroy_workqueue(h->rescan_ctlr_wq);
8164 		h->rescan_ctlr_wq = NULL;
8165 	}
8166 	if (h->monitor_ctlr_wq) {
8167 		destroy_workqueue(h->monitor_ctlr_wq);
8168 		h->monitor_ctlr_wq = NULL;
8169 	}
8170 
8171 	kfree(h);				/* init_one 1 */
8172 }
8173 
8174 /* Called when controller lockup detected. */
8175 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8176 {
8177 	int i, refcount;
8178 	struct CommandList *c;
8179 	int failcount = 0;
8180 
8181 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8182 	for (i = 0; i < h->nr_cmds; i++) {
8183 		c = h->cmd_pool + i;
8184 		refcount = atomic_inc_return(&c->refcount);
8185 		if (refcount > 1) {
8186 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8187 			finish_cmd(c);
8188 			atomic_dec(&h->commands_outstanding);
8189 			failcount++;
8190 		}
8191 		cmd_free(h, c);
8192 	}
8193 	dev_warn(&h->pdev->dev,
8194 		"failed %d commands in fail_all\n", failcount);
8195 }
8196 
8197 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8198 {
8199 	int cpu;
8200 
8201 	for_each_online_cpu(cpu) {
8202 		u32 *lockup_detected;
8203 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8204 		*lockup_detected = value;
8205 	}
8206 	wmb(); /* be sure the per-cpu variables are out to memory */
8207 }
8208 
8209 static void controller_lockup_detected(struct ctlr_info *h)
8210 {
8211 	unsigned long flags;
8212 	u32 lockup_detected;
8213 
8214 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8215 	spin_lock_irqsave(&h->lock, flags);
8216 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8217 	if (!lockup_detected) {
8218 		/* no heartbeat, but controller gave us a zero. */
8219 		dev_warn(&h->pdev->dev,
8220 			"lockup detected after %d but scratchpad register is zero\n",
8221 			h->heartbeat_sample_interval / HZ);
8222 		lockup_detected = 0xffffffff;
8223 	}
8224 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8225 	spin_unlock_irqrestore(&h->lock, flags);
8226 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8227 			lockup_detected, h->heartbeat_sample_interval / HZ);
8228 	if (lockup_detected == 0xffff0000) {
8229 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8230 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8231 	}
8232 	pci_disable_device(h->pdev);
8233 	fail_all_outstanding_cmds(h);
8234 }
8235 
8236 static int detect_controller_lockup(struct ctlr_info *h)
8237 {
8238 	u64 now;
8239 	u32 heartbeat;
8240 	unsigned long flags;
8241 
8242 	now = get_jiffies_64();
8243 	/* If we've received an interrupt recently, we're ok. */
8244 	if (time_after64(h->last_intr_timestamp +
8245 				(h->heartbeat_sample_interval), now))
8246 		return false;
8247 
8248 	/*
8249 	 * If we've already checked the heartbeat recently, we're ok.
8250 	 * This could happen if someone sends us a signal. We
8251 	 * otherwise don't care about signals in this thread.
8252 	 */
8253 	if (time_after64(h->last_heartbeat_timestamp +
8254 				(h->heartbeat_sample_interval), now))
8255 		return false;
8256 
8257 	/* If heartbeat has not changed since we last looked, we're not ok. */
8258 	spin_lock_irqsave(&h->lock, flags);
8259 	heartbeat = readl(&h->cfgtable->HeartBeat);
8260 	spin_unlock_irqrestore(&h->lock, flags);
8261 	if (h->last_heartbeat == heartbeat) {
8262 		controller_lockup_detected(h);
8263 		return true;
8264 	}
8265 
8266 	/* We're ok. */
8267 	h->last_heartbeat = heartbeat;
8268 	h->last_heartbeat_timestamp = now;
8269 	return false;
8270 }
8271 
8272 /*
8273  * Set ioaccel status for all ioaccel volumes.
8274  *
8275  * Called from monitor controller worker (hpsa_event_monitor_worker)
8276  *
8277  * A Volume (or Volumes that comprise an Array set may be undergoing a
8278  * transformation, so we will be turning off ioaccel for all volumes that
8279  * make up the Array.
8280  */
8281 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8282 {
8283 	int rc;
8284 	int i;
8285 	u8 ioaccel_status;
8286 	unsigned char *buf;
8287 	struct hpsa_scsi_dev_t *device;
8288 
8289 	if (!h)
8290 		return;
8291 
8292 	buf = kmalloc(64, GFP_KERNEL);
8293 	if (!buf)
8294 		return;
8295 
8296 	/*
8297 	 * Run through current device list used during I/O requests.
8298 	 */
8299 	for (i = 0; i < h->ndevices; i++) {
8300 		device = h->dev[i];
8301 
8302 		if (!device)
8303 			continue;
8304 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8305 						HPSA_VPD_LV_IOACCEL_STATUS))
8306 			continue;
8307 
8308 		memset(buf, 0, 64);
8309 
8310 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8311 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8312 					buf, 64);
8313 		if (rc != 0)
8314 			continue;
8315 
8316 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8317 		device->offload_config =
8318 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8319 		if (device->offload_config)
8320 			device->offload_to_be_enabled =
8321 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8322 
8323 		/*
8324 		 * Immediately turn off ioaccel for any volume the
8325 		 * controller tells us to. Some of the reasons could be:
8326 		 *    transformation - change to the LVs of an Array.
8327 		 *    degraded volume - component failure
8328 		 *
8329 		 * If ioaccel is to be re-enabled, re-enable later during the
8330 		 * scan operation so the driver can get a fresh raidmap
8331 		 * before turning ioaccel back on.
8332 		 *
8333 		 */
8334 		if (!device->offload_to_be_enabled)
8335 			device->offload_enabled = 0;
8336 	}
8337 
8338 	kfree(buf);
8339 }
8340 
8341 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8342 {
8343 	char *event_type;
8344 
8345 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8346 		return;
8347 
8348 	/* Ask the controller to clear the events we're handling. */
8349 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8350 			| CFGTBL_Trans_io_accel2)) &&
8351 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8352 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8353 
8354 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8355 			event_type = "state change";
8356 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8357 			event_type = "configuration change";
8358 		/* Stop sending new RAID offload reqs via the IO accelerator */
8359 		scsi_block_requests(h->scsi_host);
8360 		hpsa_set_ioaccel_status(h);
8361 		hpsa_drain_accel_commands(h);
8362 		/* Set 'accelerator path config change' bit */
8363 		dev_warn(&h->pdev->dev,
8364 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8365 			h->events, event_type);
8366 		writel(h->events, &(h->cfgtable->clear_event_notify));
8367 		/* Set the "clear event notify field update" bit 6 */
8368 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8369 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8370 		hpsa_wait_for_clear_event_notify_ack(h);
8371 		scsi_unblock_requests(h->scsi_host);
8372 	} else {
8373 		/* Acknowledge controller notification events. */
8374 		writel(h->events, &(h->cfgtable->clear_event_notify));
8375 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8376 		hpsa_wait_for_clear_event_notify_ack(h);
8377 	}
8378 	return;
8379 }
8380 
8381 /* Check a register on the controller to see if there are configuration
8382  * changes (added/changed/removed logical drives, etc.) which mean that
8383  * we should rescan the controller for devices.
8384  * Also check flag for driver-initiated rescan.
8385  */
8386 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8387 {
8388 	if (h->drv_req_rescan) {
8389 		h->drv_req_rescan = 0;
8390 		return 1;
8391 	}
8392 
8393 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8394 		return 0;
8395 
8396 	h->events = readl(&(h->cfgtable->event_notify));
8397 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8398 }
8399 
8400 /*
8401  * Check if any of the offline devices have become ready
8402  */
8403 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8404 {
8405 	unsigned long flags;
8406 	struct offline_device_entry *d;
8407 	struct list_head *this, *tmp;
8408 
8409 	spin_lock_irqsave(&h->offline_device_lock, flags);
8410 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8411 		d = list_entry(this, struct offline_device_entry,
8412 				offline_list);
8413 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8414 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8415 			spin_lock_irqsave(&h->offline_device_lock, flags);
8416 			list_del(&d->offline_list);
8417 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8418 			return 1;
8419 		}
8420 		spin_lock_irqsave(&h->offline_device_lock, flags);
8421 	}
8422 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8423 	return 0;
8424 }
8425 
8426 static int hpsa_luns_changed(struct ctlr_info *h)
8427 {
8428 	int rc = 1; /* assume there are changes */
8429 	struct ReportLUNdata *logdev = NULL;
8430 
8431 	/* if we can't find out if lun data has changed,
8432 	 * assume that it has.
8433 	 */
8434 
8435 	if (!h->lastlogicals)
8436 		return rc;
8437 
8438 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8439 	if (!logdev)
8440 		return rc;
8441 
8442 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8443 		dev_warn(&h->pdev->dev,
8444 			"report luns failed, can't track lun changes.\n");
8445 		goto out;
8446 	}
8447 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8448 		dev_info(&h->pdev->dev,
8449 			"Lun changes detected.\n");
8450 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8451 		goto out;
8452 	} else
8453 		rc = 0; /* no changes detected. */
8454 out:
8455 	kfree(logdev);
8456 	return rc;
8457 }
8458 
8459 static void hpsa_perform_rescan(struct ctlr_info *h)
8460 {
8461 	struct Scsi_Host *sh = NULL;
8462 	unsigned long flags;
8463 
8464 	/*
8465 	 * Do the scan after the reset
8466 	 */
8467 	spin_lock_irqsave(&h->reset_lock, flags);
8468 	if (h->reset_in_progress) {
8469 		h->drv_req_rescan = 1;
8470 		spin_unlock_irqrestore(&h->reset_lock, flags);
8471 		return;
8472 	}
8473 	spin_unlock_irqrestore(&h->reset_lock, flags);
8474 
8475 	sh = scsi_host_get(h->scsi_host);
8476 	if (sh != NULL) {
8477 		hpsa_scan_start(sh);
8478 		scsi_host_put(sh);
8479 		h->drv_req_rescan = 0;
8480 	}
8481 }
8482 
8483 /*
8484  * watch for controller events
8485  */
8486 static void hpsa_event_monitor_worker(struct work_struct *work)
8487 {
8488 	struct ctlr_info *h = container_of(to_delayed_work(work),
8489 					struct ctlr_info, event_monitor_work);
8490 	unsigned long flags;
8491 
8492 	spin_lock_irqsave(&h->lock, flags);
8493 	if (h->remove_in_progress) {
8494 		spin_unlock_irqrestore(&h->lock, flags);
8495 		return;
8496 	}
8497 	spin_unlock_irqrestore(&h->lock, flags);
8498 
8499 	if (hpsa_ctlr_needs_rescan(h)) {
8500 		hpsa_ack_ctlr_events(h);
8501 		hpsa_perform_rescan(h);
8502 	}
8503 
8504 	spin_lock_irqsave(&h->lock, flags);
8505 	if (!h->remove_in_progress)
8506 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8507 				HPSA_EVENT_MONITOR_INTERVAL);
8508 	spin_unlock_irqrestore(&h->lock, flags);
8509 }
8510 
8511 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8512 {
8513 	unsigned long flags;
8514 	struct ctlr_info *h = container_of(to_delayed_work(work),
8515 					struct ctlr_info, rescan_ctlr_work);
8516 
8517 	spin_lock_irqsave(&h->lock, flags);
8518 	if (h->remove_in_progress) {
8519 		spin_unlock_irqrestore(&h->lock, flags);
8520 		return;
8521 	}
8522 	spin_unlock_irqrestore(&h->lock, flags);
8523 
8524 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8525 		hpsa_perform_rescan(h);
8526 	} else if (h->discovery_polling) {
8527 		if (hpsa_luns_changed(h)) {
8528 			dev_info(&h->pdev->dev,
8529 				"driver discovery polling rescan.\n");
8530 			hpsa_perform_rescan(h);
8531 		}
8532 	}
8533 	spin_lock_irqsave(&h->lock, flags);
8534 	if (!h->remove_in_progress)
8535 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8536 				h->heartbeat_sample_interval);
8537 	spin_unlock_irqrestore(&h->lock, flags);
8538 }
8539 
8540 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8541 {
8542 	unsigned long flags;
8543 	struct ctlr_info *h = container_of(to_delayed_work(work),
8544 					struct ctlr_info, monitor_ctlr_work);
8545 
8546 	detect_controller_lockup(h);
8547 	if (lockup_detected(h))
8548 		return;
8549 
8550 	spin_lock_irqsave(&h->lock, flags);
8551 	if (!h->remove_in_progress)
8552 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8553 				h->heartbeat_sample_interval);
8554 	spin_unlock_irqrestore(&h->lock, flags);
8555 }
8556 
8557 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8558 						char *name)
8559 {
8560 	struct workqueue_struct *wq = NULL;
8561 
8562 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8563 	if (!wq)
8564 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8565 
8566 	return wq;
8567 }
8568 
8569 static void hpda_free_ctlr_info(struct ctlr_info *h)
8570 {
8571 	kfree(h->reply_map);
8572 	kfree(h);
8573 }
8574 
8575 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8576 {
8577 	struct ctlr_info *h;
8578 
8579 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8580 	if (!h)
8581 		return NULL;
8582 
8583 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8584 	if (!h->reply_map) {
8585 		kfree(h);
8586 		return NULL;
8587 	}
8588 	return h;
8589 }
8590 
8591 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8592 {
8593 	int dac, rc;
8594 	struct ctlr_info *h;
8595 	int try_soft_reset = 0;
8596 	unsigned long flags;
8597 	u32 board_id;
8598 
8599 	if (number_of_controllers == 0)
8600 		printk(KERN_INFO DRIVER_NAME "\n");
8601 
8602 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8603 	if (rc < 0) {
8604 		dev_warn(&pdev->dev, "Board ID not found\n");
8605 		return rc;
8606 	}
8607 
8608 	rc = hpsa_init_reset_devices(pdev, board_id);
8609 	if (rc) {
8610 		if (rc != -ENOTSUPP)
8611 			return rc;
8612 		/* If the reset fails in a particular way (it has no way to do
8613 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8614 		 * a soft reset once we get the controller configured up to the
8615 		 * point that it can accept a command.
8616 		 */
8617 		try_soft_reset = 1;
8618 		rc = 0;
8619 	}
8620 
8621 reinit_after_soft_reset:
8622 
8623 	/* Command structures must be aligned on a 32-byte boundary because
8624 	 * the 5 lower bits of the address are used by the hardware. and by
8625 	 * the driver.  See comments in hpsa.h for more info.
8626 	 */
8627 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8628 	h = hpda_alloc_ctlr_info();
8629 	if (!h) {
8630 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8631 		return -ENOMEM;
8632 	}
8633 
8634 	h->pdev = pdev;
8635 
8636 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8637 	INIT_LIST_HEAD(&h->offline_device_list);
8638 	spin_lock_init(&h->lock);
8639 	spin_lock_init(&h->offline_device_lock);
8640 	spin_lock_init(&h->scan_lock);
8641 	spin_lock_init(&h->reset_lock);
8642 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8643 
8644 	/* Allocate and clear per-cpu variable lockup_detected */
8645 	h->lockup_detected = alloc_percpu(u32);
8646 	if (!h->lockup_detected) {
8647 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8648 		rc = -ENOMEM;
8649 		goto clean1;	/* aer/h */
8650 	}
8651 	set_lockup_detected_for_all_cpus(h, 0);
8652 
8653 	rc = hpsa_pci_init(h);
8654 	if (rc)
8655 		goto clean2;	/* lu, aer/h */
8656 
8657 	/* relies on h-> settings made by hpsa_pci_init, including
8658 	 * interrupt_mode h->intr */
8659 	rc = hpsa_scsi_host_alloc(h);
8660 	if (rc)
8661 		goto clean2_5;	/* pci, lu, aer/h */
8662 
8663 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8664 	h->ctlr = number_of_controllers;
8665 	number_of_controllers++;
8666 
8667 	/* configure PCI DMA stuff */
8668 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8669 	if (rc == 0) {
8670 		dac = 1;
8671 	} else {
8672 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8673 		if (rc == 0) {
8674 			dac = 0;
8675 		} else {
8676 			dev_err(&pdev->dev, "no suitable DMA available\n");
8677 			goto clean3;	/* shost, pci, lu, aer/h */
8678 		}
8679 	}
8680 
8681 	/* make sure the board interrupts are off */
8682 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683 
8684 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8685 	if (rc)
8686 		goto clean3;	/* shost, pci, lu, aer/h */
8687 	rc = hpsa_alloc_cmd_pool(h);
8688 	if (rc)
8689 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8690 	rc = hpsa_alloc_sg_chain_blocks(h);
8691 	if (rc)
8692 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8693 	init_waitqueue_head(&h->scan_wait_queue);
8694 	init_waitqueue_head(&h->event_sync_wait_queue);
8695 	mutex_init(&h->reset_mutex);
8696 	h->scan_finished = 1; /* no scan currently in progress */
8697 	h->scan_waiting = 0;
8698 
8699 	pci_set_drvdata(pdev, h);
8700 	h->ndevices = 0;
8701 
8702 	spin_lock_init(&h->devlock);
8703 	rc = hpsa_put_ctlr_into_performant_mode(h);
8704 	if (rc)
8705 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8706 
8707 	/* create the resubmit workqueue */
8708 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8709 	if (!h->rescan_ctlr_wq) {
8710 		rc = -ENOMEM;
8711 		goto clean7;
8712 	}
8713 
8714 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8715 	if (!h->resubmit_wq) {
8716 		rc = -ENOMEM;
8717 		goto clean7;	/* aer/h */
8718 	}
8719 
8720 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8721 	if (!h->monitor_ctlr_wq) {
8722 		rc = -ENOMEM;
8723 		goto clean7;
8724 	}
8725 
8726 	/*
8727 	 * At this point, the controller is ready to take commands.
8728 	 * Now, if reset_devices and the hard reset didn't work, try
8729 	 * the soft reset and see if that works.
8730 	 */
8731 	if (try_soft_reset) {
8732 
8733 		/* This is kind of gross.  We may or may not get a completion
8734 		 * from the soft reset command, and if we do, then the value
8735 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8736 		 * after the reset throwing away any completions we get during
8737 		 * that time.  Unregister the interrupt handler and register
8738 		 * fake ones to scoop up any residual completions.
8739 		 */
8740 		spin_lock_irqsave(&h->lock, flags);
8741 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8742 		spin_unlock_irqrestore(&h->lock, flags);
8743 		hpsa_free_irqs(h);
8744 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8745 					hpsa_intx_discard_completions);
8746 		if (rc) {
8747 			dev_warn(&h->pdev->dev,
8748 				"Failed to request_irq after soft reset.\n");
8749 			/*
8750 			 * cannot goto clean7 or free_irqs will be called
8751 			 * again. Instead, do its work
8752 			 */
8753 			hpsa_free_performant_mode(h);	/* clean7 */
8754 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8755 			hpsa_free_cmd_pool(h);		/* clean5 */
8756 			/*
8757 			 * skip hpsa_free_irqs(h) clean4 since that
8758 			 * was just called before request_irqs failed
8759 			 */
8760 			goto clean3;
8761 		}
8762 
8763 		rc = hpsa_kdump_soft_reset(h);
8764 		if (rc)
8765 			/* Neither hard nor soft reset worked, we're hosed. */
8766 			goto clean7;
8767 
8768 		dev_info(&h->pdev->dev, "Board READY.\n");
8769 		dev_info(&h->pdev->dev,
8770 			"Waiting for stale completions to drain.\n");
8771 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8772 		msleep(10000);
8773 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8774 
8775 		rc = controller_reset_failed(h->cfgtable);
8776 		if (rc)
8777 			dev_info(&h->pdev->dev,
8778 				"Soft reset appears to have failed.\n");
8779 
8780 		/* since the controller's reset, we have to go back and re-init
8781 		 * everything.  Easiest to just forget what we've done and do it
8782 		 * all over again.
8783 		 */
8784 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8785 		try_soft_reset = 0;
8786 		if (rc)
8787 			/* don't goto clean, we already unallocated */
8788 			return -ENODEV;
8789 
8790 		goto reinit_after_soft_reset;
8791 	}
8792 
8793 	/* Enable Accelerated IO path at driver layer */
8794 	h->acciopath_status = 1;
8795 	/* Disable discovery polling.*/
8796 	h->discovery_polling = 0;
8797 
8798 
8799 	/* Turn the interrupts on so we can service requests */
8800 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8801 
8802 	hpsa_hba_inquiry(h);
8803 
8804 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8805 	if (!h->lastlogicals)
8806 		dev_info(&h->pdev->dev,
8807 			"Can't track change to report lun data\n");
8808 
8809 	/* hook into SCSI subsystem */
8810 	rc = hpsa_scsi_add_host(h);
8811 	if (rc)
8812 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8813 
8814 	/* Monitor the controller for firmware lockups */
8815 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8816 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8817 	schedule_delayed_work(&h->monitor_ctlr_work,
8818 				h->heartbeat_sample_interval);
8819 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8820 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8821 				h->heartbeat_sample_interval);
8822 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8823 	schedule_delayed_work(&h->event_monitor_work,
8824 				HPSA_EVENT_MONITOR_INTERVAL);
8825 	return 0;
8826 
8827 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8828 	hpsa_free_performant_mode(h);
8829 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8830 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8831 	hpsa_free_sg_chain_blocks(h);
8832 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8833 	hpsa_free_cmd_pool(h);
8834 clean4: /* irq, shost, pci, lu, aer/h */
8835 	hpsa_free_irqs(h);
8836 clean3: /* shost, pci, lu, aer/h */
8837 	scsi_host_put(h->scsi_host);
8838 	h->scsi_host = NULL;
8839 clean2_5: /* pci, lu, aer/h */
8840 	hpsa_free_pci_init(h);
8841 clean2: /* lu, aer/h */
8842 	if (h->lockup_detected) {
8843 		free_percpu(h->lockup_detected);
8844 		h->lockup_detected = NULL;
8845 	}
8846 clean1:	/* wq/aer/h */
8847 	if (h->resubmit_wq) {
8848 		destroy_workqueue(h->resubmit_wq);
8849 		h->resubmit_wq = NULL;
8850 	}
8851 	if (h->rescan_ctlr_wq) {
8852 		destroy_workqueue(h->rescan_ctlr_wq);
8853 		h->rescan_ctlr_wq = NULL;
8854 	}
8855 	if (h->monitor_ctlr_wq) {
8856 		destroy_workqueue(h->monitor_ctlr_wq);
8857 		h->monitor_ctlr_wq = NULL;
8858 	}
8859 	kfree(h);
8860 	return rc;
8861 }
8862 
8863 static void hpsa_flush_cache(struct ctlr_info *h)
8864 {
8865 	char *flush_buf;
8866 	struct CommandList *c;
8867 	int rc;
8868 
8869 	if (unlikely(lockup_detected(h)))
8870 		return;
8871 	flush_buf = kzalloc(4, GFP_KERNEL);
8872 	if (!flush_buf)
8873 		return;
8874 
8875 	c = cmd_alloc(h);
8876 
8877 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8878 		RAID_CTLR_LUNID, TYPE_CMD)) {
8879 		goto out;
8880 	}
8881 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8882 			DEFAULT_TIMEOUT);
8883 	if (rc)
8884 		goto out;
8885 	if (c->err_info->CommandStatus != 0)
8886 out:
8887 		dev_warn(&h->pdev->dev,
8888 			"error flushing cache on controller\n");
8889 	cmd_free(h, c);
8890 	kfree(flush_buf);
8891 }
8892 
8893 /* Make controller gather fresh report lun data each time we
8894  * send down a report luns request
8895  */
8896 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8897 {
8898 	u32 *options;
8899 	struct CommandList *c;
8900 	int rc;
8901 
8902 	/* Don't bother trying to set diag options if locked up */
8903 	if (unlikely(h->lockup_detected))
8904 		return;
8905 
8906 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8907 	if (!options)
8908 		return;
8909 
8910 	c = cmd_alloc(h);
8911 
8912 	/* first, get the current diag options settings */
8913 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8914 		RAID_CTLR_LUNID, TYPE_CMD))
8915 		goto errout;
8916 
8917 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8918 			NO_TIMEOUT);
8919 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8920 		goto errout;
8921 
8922 	/* Now, set the bit for disabling the RLD caching */
8923 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8924 
8925 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8926 		RAID_CTLR_LUNID, TYPE_CMD))
8927 		goto errout;
8928 
8929 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8930 			NO_TIMEOUT);
8931 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8932 		goto errout;
8933 
8934 	/* Now verify that it got set: */
8935 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8936 		RAID_CTLR_LUNID, TYPE_CMD))
8937 		goto errout;
8938 
8939 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8940 			NO_TIMEOUT);
8941 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8942 		goto errout;
8943 
8944 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8945 		goto out;
8946 
8947 errout:
8948 	dev_err(&h->pdev->dev,
8949 			"Error: failed to disable report lun data caching.\n");
8950 out:
8951 	cmd_free(h, c);
8952 	kfree(options);
8953 }
8954 
8955 static void __hpsa_shutdown(struct pci_dev *pdev)
8956 {
8957 	struct ctlr_info *h;
8958 
8959 	h = pci_get_drvdata(pdev);
8960 	/* Turn board interrupts off  and send the flush cache command
8961 	 * sendcmd will turn off interrupt, and send the flush...
8962 	 * To write all data in the battery backed cache to disks
8963 	 */
8964 	hpsa_flush_cache(h);
8965 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8966 	hpsa_free_irqs(h);			/* init_one 4 */
8967 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8968 }
8969 
8970 static void hpsa_shutdown(struct pci_dev *pdev)
8971 {
8972 	__hpsa_shutdown(pdev);
8973 	pci_disable_device(pdev);
8974 }
8975 
8976 static void hpsa_free_device_info(struct ctlr_info *h)
8977 {
8978 	int i;
8979 
8980 	for (i = 0; i < h->ndevices; i++) {
8981 		kfree(h->dev[i]);
8982 		h->dev[i] = NULL;
8983 	}
8984 }
8985 
8986 static void hpsa_remove_one(struct pci_dev *pdev)
8987 {
8988 	struct ctlr_info *h;
8989 	unsigned long flags;
8990 
8991 	if (pci_get_drvdata(pdev) == NULL) {
8992 		dev_err(&pdev->dev, "unable to remove device\n");
8993 		return;
8994 	}
8995 	h = pci_get_drvdata(pdev);
8996 
8997 	/* Get rid of any controller monitoring work items */
8998 	spin_lock_irqsave(&h->lock, flags);
8999 	h->remove_in_progress = 1;
9000 	spin_unlock_irqrestore(&h->lock, flags);
9001 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9002 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9003 	cancel_delayed_work_sync(&h->event_monitor_work);
9004 	destroy_workqueue(h->rescan_ctlr_wq);
9005 	destroy_workqueue(h->resubmit_wq);
9006 	destroy_workqueue(h->monitor_ctlr_wq);
9007 
9008 	hpsa_delete_sas_host(h);
9009 
9010 	/*
9011 	 * Call before disabling interrupts.
9012 	 * scsi_remove_host can trigger I/O operations especially
9013 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9014 	 * operations which cannot complete and will hang the system.
9015 	 */
9016 	if (h->scsi_host)
9017 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9018 	/* includes hpsa_free_irqs - init_one 4 */
9019 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9020 	__hpsa_shutdown(pdev);
9021 
9022 	hpsa_free_device_info(h);		/* scan */
9023 
9024 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9025 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9026 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9027 	hpsa_free_performant_mode(h);			/* init_one 7 */
9028 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9029 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9030 	kfree(h->lastlogicals);
9031 
9032 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9033 
9034 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9035 	h->scsi_host = NULL;				/* init_one 3 */
9036 
9037 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9038 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9039 
9040 	free_percpu(h->lockup_detected);		/* init_one 2 */
9041 	h->lockup_detected = NULL;			/* init_one 2 */
9042 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9043 
9044 	hpda_free_ctlr_info(h);				/* init_one 1 */
9045 }
9046 
9047 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9048 	__attribute__((unused)) pm_message_t state)
9049 {
9050 	return -ENOSYS;
9051 }
9052 
9053 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9054 {
9055 	return -ENOSYS;
9056 }
9057 
9058 static struct pci_driver hpsa_pci_driver = {
9059 	.name = HPSA,
9060 	.probe = hpsa_init_one,
9061 	.remove = hpsa_remove_one,
9062 	.id_table = hpsa_pci_device_id,	/* id_table */
9063 	.shutdown = hpsa_shutdown,
9064 	.suspend = hpsa_suspend,
9065 	.resume = hpsa_resume,
9066 };
9067 
9068 /* Fill in bucket_map[], given nsgs (the max number of
9069  * scatter gather elements supported) and bucket[],
9070  * which is an array of 8 integers.  The bucket[] array
9071  * contains 8 different DMA transfer sizes (in 16
9072  * byte increments) which the controller uses to fetch
9073  * commands.  This function fills in bucket_map[], which
9074  * maps a given number of scatter gather elements to one of
9075  * the 8 DMA transfer sizes.  The point of it is to allow the
9076  * controller to only do as much DMA as needed to fetch the
9077  * command, with the DMA transfer size encoded in the lower
9078  * bits of the command address.
9079  */
9080 static void  calc_bucket_map(int bucket[], int num_buckets,
9081 	int nsgs, int min_blocks, u32 *bucket_map)
9082 {
9083 	int i, j, b, size;
9084 
9085 	/* Note, bucket_map must have nsgs+1 entries. */
9086 	for (i = 0; i <= nsgs; i++) {
9087 		/* Compute size of a command with i SG entries */
9088 		size = i + min_blocks;
9089 		b = num_buckets; /* Assume the biggest bucket */
9090 		/* Find the bucket that is just big enough */
9091 		for (j = 0; j < num_buckets; j++) {
9092 			if (bucket[j] >= size) {
9093 				b = j;
9094 				break;
9095 			}
9096 		}
9097 		/* for a command with i SG entries, use bucket b. */
9098 		bucket_map[i] = b;
9099 	}
9100 }
9101 
9102 /*
9103  * return -ENODEV on err, 0 on success (or no action)
9104  * allocates numerous items that must be freed later
9105  */
9106 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9107 {
9108 	int i;
9109 	unsigned long register_value;
9110 	unsigned long transMethod = CFGTBL_Trans_Performant |
9111 			(trans_support & CFGTBL_Trans_use_short_tags) |
9112 				CFGTBL_Trans_enable_directed_msix |
9113 			(trans_support & (CFGTBL_Trans_io_accel1 |
9114 				CFGTBL_Trans_io_accel2));
9115 	struct access_method access = SA5_performant_access;
9116 
9117 	/* This is a bit complicated.  There are 8 registers on
9118 	 * the controller which we write to to tell it 8 different
9119 	 * sizes of commands which there may be.  It's a way of
9120 	 * reducing the DMA done to fetch each command.  Encoded into
9121 	 * each command's tag are 3 bits which communicate to the controller
9122 	 * which of the eight sizes that command fits within.  The size of
9123 	 * each command depends on how many scatter gather entries there are.
9124 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9125 	 * with the number of 16-byte blocks a command of that size requires.
9126 	 * The smallest command possible requires 5 such 16 byte blocks.
9127 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9128 	 * blocks.  Note, this only extends to the SG entries contained
9129 	 * within the command block, and does not extend to chained blocks
9130 	 * of SG elements.   bft[] contains the eight values we write to
9131 	 * the registers.  They are not evenly distributed, but have more
9132 	 * sizes for small commands, and fewer sizes for larger commands.
9133 	 */
9134 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9135 #define MIN_IOACCEL2_BFT_ENTRY 5
9136 #define HPSA_IOACCEL2_HEADER_SZ 4
9137 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9138 			13, 14, 15, 16, 17, 18, 19,
9139 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9140 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9141 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9142 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9143 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9144 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9145 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9146 	/*  5 = 1 s/g entry or 4k
9147 	 *  6 = 2 s/g entry or 8k
9148 	 *  8 = 4 s/g entry or 16k
9149 	 * 10 = 6 s/g entry or 24k
9150 	 */
9151 
9152 	/* If the controller supports either ioaccel method then
9153 	 * we can also use the RAID stack submit path that does not
9154 	 * perform the superfluous readl() after each command submission.
9155 	 */
9156 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9157 		access = SA5_performant_access_no_read;
9158 
9159 	/* Controller spec: zero out this buffer. */
9160 	for (i = 0; i < h->nreply_queues; i++)
9161 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9162 
9163 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9164 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9165 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9166 	for (i = 0; i < 8; i++)
9167 		writel(bft[i], &h->transtable->BlockFetch[i]);
9168 
9169 	/* size of controller ring buffer */
9170 	writel(h->max_commands, &h->transtable->RepQSize);
9171 	writel(h->nreply_queues, &h->transtable->RepQCount);
9172 	writel(0, &h->transtable->RepQCtrAddrLow32);
9173 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9174 
9175 	for (i = 0; i < h->nreply_queues; i++) {
9176 		writel(0, &h->transtable->RepQAddr[i].upper);
9177 		writel(h->reply_queue[i].busaddr,
9178 			&h->transtable->RepQAddr[i].lower);
9179 	}
9180 
9181 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9182 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9183 	/*
9184 	 * enable outbound interrupt coalescing in accelerator mode;
9185 	 */
9186 	if (trans_support & CFGTBL_Trans_io_accel1) {
9187 		access = SA5_ioaccel_mode1_access;
9188 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9189 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9190 	} else
9191 		if (trans_support & CFGTBL_Trans_io_accel2)
9192 			access = SA5_ioaccel_mode2_access;
9193 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9194 	if (hpsa_wait_for_mode_change_ack(h)) {
9195 		dev_err(&h->pdev->dev,
9196 			"performant mode problem - doorbell timeout\n");
9197 		return -ENODEV;
9198 	}
9199 	register_value = readl(&(h->cfgtable->TransportActive));
9200 	if (!(register_value & CFGTBL_Trans_Performant)) {
9201 		dev_err(&h->pdev->dev,
9202 			"performant mode problem - transport not active\n");
9203 		return -ENODEV;
9204 	}
9205 	/* Change the access methods to the performant access methods */
9206 	h->access = access;
9207 	h->transMethod = transMethod;
9208 
9209 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9210 		(trans_support & CFGTBL_Trans_io_accel2)))
9211 		return 0;
9212 
9213 	if (trans_support & CFGTBL_Trans_io_accel1) {
9214 		/* Set up I/O accelerator mode */
9215 		for (i = 0; i < h->nreply_queues; i++) {
9216 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9217 			h->reply_queue[i].current_entry =
9218 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9219 		}
9220 		bft[7] = h->ioaccel_maxsg + 8;
9221 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9222 				h->ioaccel1_blockFetchTable);
9223 
9224 		/* initialize all reply queue entries to unused */
9225 		for (i = 0; i < h->nreply_queues; i++)
9226 			memset(h->reply_queue[i].head,
9227 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9228 				h->reply_queue_size);
9229 
9230 		/* set all the constant fields in the accelerator command
9231 		 * frames once at init time to save CPU cycles later.
9232 		 */
9233 		for (i = 0; i < h->nr_cmds; i++) {
9234 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9235 
9236 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9237 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9238 					(i * sizeof(struct ErrorInfo)));
9239 			cp->err_info_len = sizeof(struct ErrorInfo);
9240 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9241 			cp->host_context_flags =
9242 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9243 			cp->timeout_sec = 0;
9244 			cp->ReplyQueue = 0;
9245 			cp->tag =
9246 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9247 			cp->host_addr =
9248 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9249 					(i * sizeof(struct io_accel1_cmd)));
9250 		}
9251 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9252 		u64 cfg_offset, cfg_base_addr_index;
9253 		u32 bft2_offset, cfg_base_addr;
9254 		int rc;
9255 
9256 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9257 			&cfg_base_addr_index, &cfg_offset);
9258 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9259 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9260 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9261 				4, h->ioaccel2_blockFetchTable);
9262 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9263 		BUILD_BUG_ON(offsetof(struct CfgTable,
9264 				io_accel_request_size_offset) != 0xb8);
9265 		h->ioaccel2_bft2_regs =
9266 			remap_pci_mem(pci_resource_start(h->pdev,
9267 					cfg_base_addr_index) +
9268 					cfg_offset + bft2_offset,
9269 					ARRAY_SIZE(bft2) *
9270 					sizeof(*h->ioaccel2_bft2_regs));
9271 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9272 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9273 	}
9274 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9275 	if (hpsa_wait_for_mode_change_ack(h)) {
9276 		dev_err(&h->pdev->dev,
9277 			"performant mode problem - enabling ioaccel mode\n");
9278 		return -ENODEV;
9279 	}
9280 	return 0;
9281 }
9282 
9283 /* Free ioaccel1 mode command blocks and block fetch table */
9284 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9285 {
9286 	if (h->ioaccel_cmd_pool) {
9287 		pci_free_consistent(h->pdev,
9288 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9289 			h->ioaccel_cmd_pool,
9290 			h->ioaccel_cmd_pool_dhandle);
9291 		h->ioaccel_cmd_pool = NULL;
9292 		h->ioaccel_cmd_pool_dhandle = 0;
9293 	}
9294 	kfree(h->ioaccel1_blockFetchTable);
9295 	h->ioaccel1_blockFetchTable = NULL;
9296 }
9297 
9298 /* Allocate ioaccel1 mode command blocks and block fetch table */
9299 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9300 {
9301 	h->ioaccel_maxsg =
9302 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9303 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9304 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9305 
9306 	/* Command structures must be aligned on a 128-byte boundary
9307 	 * because the 7 lower bits of the address are used by the
9308 	 * hardware.
9309 	 */
9310 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9311 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9312 	h->ioaccel_cmd_pool =
9313 		dma_alloc_coherent(&h->pdev->dev,
9314 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9315 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9316 
9317 	h->ioaccel1_blockFetchTable =
9318 		kmalloc(((h->ioaccel_maxsg + 1) *
9319 				sizeof(u32)), GFP_KERNEL);
9320 
9321 	if ((h->ioaccel_cmd_pool == NULL) ||
9322 		(h->ioaccel1_blockFetchTable == NULL))
9323 		goto clean_up;
9324 
9325 	memset(h->ioaccel_cmd_pool, 0,
9326 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9327 	return 0;
9328 
9329 clean_up:
9330 	hpsa_free_ioaccel1_cmd_and_bft(h);
9331 	return -ENOMEM;
9332 }
9333 
9334 /* Free ioaccel2 mode command blocks and block fetch table */
9335 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9336 {
9337 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9338 
9339 	if (h->ioaccel2_cmd_pool) {
9340 		pci_free_consistent(h->pdev,
9341 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9342 			h->ioaccel2_cmd_pool,
9343 			h->ioaccel2_cmd_pool_dhandle);
9344 		h->ioaccel2_cmd_pool = NULL;
9345 		h->ioaccel2_cmd_pool_dhandle = 0;
9346 	}
9347 	kfree(h->ioaccel2_blockFetchTable);
9348 	h->ioaccel2_blockFetchTable = NULL;
9349 }
9350 
9351 /* Allocate ioaccel2 mode command blocks and block fetch table */
9352 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9353 {
9354 	int rc;
9355 
9356 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9357 
9358 	h->ioaccel_maxsg =
9359 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9360 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9361 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9362 
9363 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9364 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9365 	h->ioaccel2_cmd_pool =
9366 		dma_alloc_coherent(&h->pdev->dev,
9367 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9368 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9369 
9370 	h->ioaccel2_blockFetchTable =
9371 		kmalloc(((h->ioaccel_maxsg + 1) *
9372 				sizeof(u32)), GFP_KERNEL);
9373 
9374 	if ((h->ioaccel2_cmd_pool == NULL) ||
9375 		(h->ioaccel2_blockFetchTable == NULL)) {
9376 		rc = -ENOMEM;
9377 		goto clean_up;
9378 	}
9379 
9380 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9381 	if (rc)
9382 		goto clean_up;
9383 
9384 	memset(h->ioaccel2_cmd_pool, 0,
9385 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9386 	return 0;
9387 
9388 clean_up:
9389 	hpsa_free_ioaccel2_cmd_and_bft(h);
9390 	return rc;
9391 }
9392 
9393 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9394 static void hpsa_free_performant_mode(struct ctlr_info *h)
9395 {
9396 	kfree(h->blockFetchTable);
9397 	h->blockFetchTable = NULL;
9398 	hpsa_free_reply_queues(h);
9399 	hpsa_free_ioaccel1_cmd_and_bft(h);
9400 	hpsa_free_ioaccel2_cmd_and_bft(h);
9401 }
9402 
9403 /* return -ENODEV on error, 0 on success (or no action)
9404  * allocates numerous items that must be freed later
9405  */
9406 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9407 {
9408 	u32 trans_support;
9409 	unsigned long transMethod = CFGTBL_Trans_Performant |
9410 					CFGTBL_Trans_use_short_tags;
9411 	int i, rc;
9412 
9413 	if (hpsa_simple_mode)
9414 		return 0;
9415 
9416 	trans_support = readl(&(h->cfgtable->TransportSupport));
9417 	if (!(trans_support & PERFORMANT_MODE))
9418 		return 0;
9419 
9420 	/* Check for I/O accelerator mode support */
9421 	if (trans_support & CFGTBL_Trans_io_accel1) {
9422 		transMethod |= CFGTBL_Trans_io_accel1 |
9423 				CFGTBL_Trans_enable_directed_msix;
9424 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9425 		if (rc)
9426 			return rc;
9427 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9428 		transMethod |= CFGTBL_Trans_io_accel2 |
9429 				CFGTBL_Trans_enable_directed_msix;
9430 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9431 		if (rc)
9432 			return rc;
9433 	}
9434 
9435 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9436 	hpsa_get_max_perf_mode_cmds(h);
9437 	/* Performant mode ring buffer and supporting data structures */
9438 	h->reply_queue_size = h->max_commands * sizeof(u64);
9439 
9440 	for (i = 0; i < h->nreply_queues; i++) {
9441 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9442 						h->reply_queue_size,
9443 						&h->reply_queue[i].busaddr,
9444 						GFP_KERNEL);
9445 		if (!h->reply_queue[i].head) {
9446 			rc = -ENOMEM;
9447 			goto clean1;	/* rq, ioaccel */
9448 		}
9449 		h->reply_queue[i].size = h->max_commands;
9450 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9451 		h->reply_queue[i].current_entry = 0;
9452 	}
9453 
9454 	/* Need a block fetch table for performant mode */
9455 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9456 				sizeof(u32)), GFP_KERNEL);
9457 	if (!h->blockFetchTable) {
9458 		rc = -ENOMEM;
9459 		goto clean1;	/* rq, ioaccel */
9460 	}
9461 
9462 	rc = hpsa_enter_performant_mode(h, trans_support);
9463 	if (rc)
9464 		goto clean2;	/* bft, rq, ioaccel */
9465 	return 0;
9466 
9467 clean2:	/* bft, rq, ioaccel */
9468 	kfree(h->blockFetchTable);
9469 	h->blockFetchTable = NULL;
9470 clean1:	/* rq, ioaccel */
9471 	hpsa_free_reply_queues(h);
9472 	hpsa_free_ioaccel1_cmd_and_bft(h);
9473 	hpsa_free_ioaccel2_cmd_and_bft(h);
9474 	return rc;
9475 }
9476 
9477 static int is_accelerated_cmd(struct CommandList *c)
9478 {
9479 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9480 }
9481 
9482 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9483 {
9484 	struct CommandList *c = NULL;
9485 	int i, accel_cmds_out;
9486 	int refcount;
9487 
9488 	do { /* wait for all outstanding ioaccel commands to drain out */
9489 		accel_cmds_out = 0;
9490 		for (i = 0; i < h->nr_cmds; i++) {
9491 			c = h->cmd_pool + i;
9492 			refcount = atomic_inc_return(&c->refcount);
9493 			if (refcount > 1) /* Command is allocated */
9494 				accel_cmds_out += is_accelerated_cmd(c);
9495 			cmd_free(h, c);
9496 		}
9497 		if (accel_cmds_out <= 0)
9498 			break;
9499 		msleep(100);
9500 	} while (1);
9501 }
9502 
9503 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9504 				struct hpsa_sas_port *hpsa_sas_port)
9505 {
9506 	struct hpsa_sas_phy *hpsa_sas_phy;
9507 	struct sas_phy *phy;
9508 
9509 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9510 	if (!hpsa_sas_phy)
9511 		return NULL;
9512 
9513 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9514 		hpsa_sas_port->next_phy_index);
9515 	if (!phy) {
9516 		kfree(hpsa_sas_phy);
9517 		return NULL;
9518 	}
9519 
9520 	hpsa_sas_port->next_phy_index++;
9521 	hpsa_sas_phy->phy = phy;
9522 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9523 
9524 	return hpsa_sas_phy;
9525 }
9526 
9527 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9528 {
9529 	struct sas_phy *phy = hpsa_sas_phy->phy;
9530 
9531 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9532 	if (hpsa_sas_phy->added_to_port)
9533 		list_del(&hpsa_sas_phy->phy_list_entry);
9534 	sas_phy_delete(phy);
9535 	kfree(hpsa_sas_phy);
9536 }
9537 
9538 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9539 {
9540 	int rc;
9541 	struct hpsa_sas_port *hpsa_sas_port;
9542 	struct sas_phy *phy;
9543 	struct sas_identify *identify;
9544 
9545 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9546 	phy = hpsa_sas_phy->phy;
9547 
9548 	identify = &phy->identify;
9549 	memset(identify, 0, sizeof(*identify));
9550 	identify->sas_address = hpsa_sas_port->sas_address;
9551 	identify->device_type = SAS_END_DEVICE;
9552 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9553 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9554 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9555 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9556 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9557 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9558 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9559 
9560 	rc = sas_phy_add(hpsa_sas_phy->phy);
9561 	if (rc)
9562 		return rc;
9563 
9564 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9565 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9566 			&hpsa_sas_port->phy_list_head);
9567 	hpsa_sas_phy->added_to_port = true;
9568 
9569 	return 0;
9570 }
9571 
9572 static int
9573 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9574 				struct sas_rphy *rphy)
9575 {
9576 	struct sas_identify *identify;
9577 
9578 	identify = &rphy->identify;
9579 	identify->sas_address = hpsa_sas_port->sas_address;
9580 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9581 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9582 
9583 	return sas_rphy_add(rphy);
9584 }
9585 
9586 static struct hpsa_sas_port
9587 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9588 				u64 sas_address)
9589 {
9590 	int rc;
9591 	struct hpsa_sas_port *hpsa_sas_port;
9592 	struct sas_port *port;
9593 
9594 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9595 	if (!hpsa_sas_port)
9596 		return NULL;
9597 
9598 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9599 	hpsa_sas_port->parent_node = hpsa_sas_node;
9600 
9601 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9602 	if (!port)
9603 		goto free_hpsa_port;
9604 
9605 	rc = sas_port_add(port);
9606 	if (rc)
9607 		goto free_sas_port;
9608 
9609 	hpsa_sas_port->port = port;
9610 	hpsa_sas_port->sas_address = sas_address;
9611 	list_add_tail(&hpsa_sas_port->port_list_entry,
9612 			&hpsa_sas_node->port_list_head);
9613 
9614 	return hpsa_sas_port;
9615 
9616 free_sas_port:
9617 	sas_port_free(port);
9618 free_hpsa_port:
9619 	kfree(hpsa_sas_port);
9620 
9621 	return NULL;
9622 }
9623 
9624 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9625 {
9626 	struct hpsa_sas_phy *hpsa_sas_phy;
9627 	struct hpsa_sas_phy *next;
9628 
9629 	list_for_each_entry_safe(hpsa_sas_phy, next,
9630 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9631 		hpsa_free_sas_phy(hpsa_sas_phy);
9632 
9633 	sas_port_delete(hpsa_sas_port->port);
9634 	list_del(&hpsa_sas_port->port_list_entry);
9635 	kfree(hpsa_sas_port);
9636 }
9637 
9638 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9639 {
9640 	struct hpsa_sas_node *hpsa_sas_node;
9641 
9642 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9643 	if (hpsa_sas_node) {
9644 		hpsa_sas_node->parent_dev = parent_dev;
9645 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9646 	}
9647 
9648 	return hpsa_sas_node;
9649 }
9650 
9651 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9652 {
9653 	struct hpsa_sas_port *hpsa_sas_port;
9654 	struct hpsa_sas_port *next;
9655 
9656 	if (!hpsa_sas_node)
9657 		return;
9658 
9659 	list_for_each_entry_safe(hpsa_sas_port, next,
9660 			&hpsa_sas_node->port_list_head, port_list_entry)
9661 		hpsa_free_sas_port(hpsa_sas_port);
9662 
9663 	kfree(hpsa_sas_node);
9664 }
9665 
9666 static struct hpsa_scsi_dev_t
9667 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9668 					struct sas_rphy *rphy)
9669 {
9670 	int i;
9671 	struct hpsa_scsi_dev_t *device;
9672 
9673 	for (i = 0; i < h->ndevices; i++) {
9674 		device = h->dev[i];
9675 		if (!device->sas_port)
9676 			continue;
9677 		if (device->sas_port->rphy == rphy)
9678 			return device;
9679 	}
9680 
9681 	return NULL;
9682 }
9683 
9684 static int hpsa_add_sas_host(struct ctlr_info *h)
9685 {
9686 	int rc;
9687 	struct device *parent_dev;
9688 	struct hpsa_sas_node *hpsa_sas_node;
9689 	struct hpsa_sas_port *hpsa_sas_port;
9690 	struct hpsa_sas_phy *hpsa_sas_phy;
9691 
9692 	parent_dev = &h->scsi_host->shost_dev;
9693 
9694 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9695 	if (!hpsa_sas_node)
9696 		return -ENOMEM;
9697 
9698 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9699 	if (!hpsa_sas_port) {
9700 		rc = -ENODEV;
9701 		goto free_sas_node;
9702 	}
9703 
9704 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9705 	if (!hpsa_sas_phy) {
9706 		rc = -ENODEV;
9707 		goto free_sas_port;
9708 	}
9709 
9710 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9711 	if (rc)
9712 		goto free_sas_phy;
9713 
9714 	h->sas_host = hpsa_sas_node;
9715 
9716 	return 0;
9717 
9718 free_sas_phy:
9719 	hpsa_free_sas_phy(hpsa_sas_phy);
9720 free_sas_port:
9721 	hpsa_free_sas_port(hpsa_sas_port);
9722 free_sas_node:
9723 	hpsa_free_sas_node(hpsa_sas_node);
9724 
9725 	return rc;
9726 }
9727 
9728 static void hpsa_delete_sas_host(struct ctlr_info *h)
9729 {
9730 	hpsa_free_sas_node(h->sas_host);
9731 }
9732 
9733 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9734 				struct hpsa_scsi_dev_t *device)
9735 {
9736 	int rc;
9737 	struct hpsa_sas_port *hpsa_sas_port;
9738 	struct sas_rphy *rphy;
9739 
9740 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9741 	if (!hpsa_sas_port)
9742 		return -ENOMEM;
9743 
9744 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9745 	if (!rphy) {
9746 		rc = -ENODEV;
9747 		goto free_sas_port;
9748 	}
9749 
9750 	hpsa_sas_port->rphy = rphy;
9751 	device->sas_port = hpsa_sas_port;
9752 
9753 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9754 	if (rc)
9755 		goto free_sas_port;
9756 
9757 	return 0;
9758 
9759 free_sas_port:
9760 	hpsa_free_sas_port(hpsa_sas_port);
9761 	device->sas_port = NULL;
9762 
9763 	return rc;
9764 }
9765 
9766 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9767 {
9768 	if (device->sas_port) {
9769 		hpsa_free_sas_port(device->sas_port);
9770 		device->sas_port = NULL;
9771 	}
9772 }
9773 
9774 static int
9775 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9776 {
9777 	return 0;
9778 }
9779 
9780 static int
9781 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9782 {
9783 	struct Scsi_Host *shost = phy_to_shost(rphy);
9784 	struct ctlr_info *h;
9785 	struct hpsa_scsi_dev_t *sd;
9786 
9787 	if (!shost)
9788 		return -ENXIO;
9789 
9790 	h = shost_to_hba(shost);
9791 
9792 	if (!h)
9793 		return -ENXIO;
9794 
9795 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9796 	if (!sd)
9797 		return -ENXIO;
9798 
9799 	*identifier = sd->eli;
9800 
9801 	return 0;
9802 }
9803 
9804 static int
9805 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9806 {
9807 	return -ENXIO;
9808 }
9809 
9810 static int
9811 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9812 {
9813 	return 0;
9814 }
9815 
9816 static int
9817 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9818 {
9819 	return 0;
9820 }
9821 
9822 static int
9823 hpsa_sas_phy_setup(struct sas_phy *phy)
9824 {
9825 	return 0;
9826 }
9827 
9828 static void
9829 hpsa_sas_phy_release(struct sas_phy *phy)
9830 {
9831 }
9832 
9833 static int
9834 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9835 {
9836 	return -EINVAL;
9837 }
9838 
9839 static struct sas_function_template hpsa_sas_transport_functions = {
9840 	.get_linkerrors = hpsa_sas_get_linkerrors,
9841 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9842 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9843 	.phy_reset = hpsa_sas_phy_reset,
9844 	.phy_enable = hpsa_sas_phy_enable,
9845 	.phy_setup = hpsa_sas_phy_setup,
9846 	.phy_release = hpsa_sas_phy_release,
9847 	.set_phy_speed = hpsa_sas_phy_speed,
9848 };
9849 
9850 /*
9851  *  This is it.  Register the PCI driver information for the cards we control
9852  *  the OS will call our registered routines when it finds one of our cards.
9853  */
9854 static int __init hpsa_init(void)
9855 {
9856 	int rc;
9857 
9858 	hpsa_sas_transport_template =
9859 		sas_attach_transport(&hpsa_sas_transport_functions);
9860 	if (!hpsa_sas_transport_template)
9861 		return -ENODEV;
9862 
9863 	rc = pci_register_driver(&hpsa_pci_driver);
9864 
9865 	if (rc)
9866 		sas_release_transport(hpsa_sas_transport_template);
9867 
9868 	return rc;
9869 }
9870 
9871 static void __exit hpsa_cleanup(void)
9872 {
9873 	pci_unregister_driver(&hpsa_pci_driver);
9874 	sas_release_transport(hpsa_sas_transport_template);
9875 }
9876 
9877 static void __attribute__((unused)) verify_offsets(void)
9878 {
9879 #define VERIFY_OFFSET(member, offset) \
9880 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9881 
9882 	VERIFY_OFFSET(structure_size, 0);
9883 	VERIFY_OFFSET(volume_blk_size, 4);
9884 	VERIFY_OFFSET(volume_blk_cnt, 8);
9885 	VERIFY_OFFSET(phys_blk_shift, 16);
9886 	VERIFY_OFFSET(parity_rotation_shift, 17);
9887 	VERIFY_OFFSET(strip_size, 18);
9888 	VERIFY_OFFSET(disk_starting_blk, 20);
9889 	VERIFY_OFFSET(disk_blk_cnt, 28);
9890 	VERIFY_OFFSET(data_disks_per_row, 36);
9891 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9892 	VERIFY_OFFSET(row_cnt, 40);
9893 	VERIFY_OFFSET(layout_map_count, 42);
9894 	VERIFY_OFFSET(flags, 44);
9895 	VERIFY_OFFSET(dekindex, 46);
9896 	/* VERIFY_OFFSET(reserved, 48 */
9897 	VERIFY_OFFSET(data, 64);
9898 
9899 #undef VERIFY_OFFSET
9900 
9901 #define VERIFY_OFFSET(member, offset) \
9902 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9903 
9904 	VERIFY_OFFSET(IU_type, 0);
9905 	VERIFY_OFFSET(direction, 1);
9906 	VERIFY_OFFSET(reply_queue, 2);
9907 	/* VERIFY_OFFSET(reserved1, 3);  */
9908 	VERIFY_OFFSET(scsi_nexus, 4);
9909 	VERIFY_OFFSET(Tag, 8);
9910 	VERIFY_OFFSET(cdb, 16);
9911 	VERIFY_OFFSET(cciss_lun, 32);
9912 	VERIFY_OFFSET(data_len, 40);
9913 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9914 	VERIFY_OFFSET(sg_count, 45);
9915 	/* VERIFY_OFFSET(reserved3 */
9916 	VERIFY_OFFSET(err_ptr, 48);
9917 	VERIFY_OFFSET(err_len, 56);
9918 	/* VERIFY_OFFSET(reserved4  */
9919 	VERIFY_OFFSET(sg, 64);
9920 
9921 #undef VERIFY_OFFSET
9922 
9923 #define VERIFY_OFFSET(member, offset) \
9924 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9925 
9926 	VERIFY_OFFSET(dev_handle, 0x00);
9927 	VERIFY_OFFSET(reserved1, 0x02);
9928 	VERIFY_OFFSET(function, 0x03);
9929 	VERIFY_OFFSET(reserved2, 0x04);
9930 	VERIFY_OFFSET(err_info, 0x0C);
9931 	VERIFY_OFFSET(reserved3, 0x10);
9932 	VERIFY_OFFSET(err_info_len, 0x12);
9933 	VERIFY_OFFSET(reserved4, 0x13);
9934 	VERIFY_OFFSET(sgl_offset, 0x14);
9935 	VERIFY_OFFSET(reserved5, 0x15);
9936 	VERIFY_OFFSET(transfer_len, 0x1C);
9937 	VERIFY_OFFSET(reserved6, 0x20);
9938 	VERIFY_OFFSET(io_flags, 0x24);
9939 	VERIFY_OFFSET(reserved7, 0x26);
9940 	VERIFY_OFFSET(LUN, 0x34);
9941 	VERIFY_OFFSET(control, 0x3C);
9942 	VERIFY_OFFSET(CDB, 0x40);
9943 	VERIFY_OFFSET(reserved8, 0x50);
9944 	VERIFY_OFFSET(host_context_flags, 0x60);
9945 	VERIFY_OFFSET(timeout_sec, 0x62);
9946 	VERIFY_OFFSET(ReplyQueue, 0x64);
9947 	VERIFY_OFFSET(reserved9, 0x65);
9948 	VERIFY_OFFSET(tag, 0x68);
9949 	VERIFY_OFFSET(host_addr, 0x70);
9950 	VERIFY_OFFSET(CISS_LUN, 0x78);
9951 	VERIFY_OFFSET(SG, 0x78 + 8);
9952 #undef VERIFY_OFFSET
9953 }
9954 
9955 module_init(hpsa_init);
9956 module_exit(hpsa_cleanup);
9957