xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 9a41338e)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296 	int i;
297 
298 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299 		if (unresettable_controller[i] == h->board_id)
300 			return 0;
301 	return 1;
302 }
303 
304 static ssize_t host_show_resettable(struct device *dev,
305 	struct device_attribute *attr, char *buf)
306 {
307 	struct ctlr_info *h;
308 	struct Scsi_Host *shost = class_to_shost(dev);
309 
310 	h = shost_to_hba(shost);
311 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313 
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316 	return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318 
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320 	"UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323 
324 static ssize_t raid_level_show(struct device *dev,
325 	     struct device_attribute *attr, char *buf)
326 {
327 	ssize_t l = 0;
328 	unsigned char rlevel;
329 	struct ctlr_info *h;
330 	struct scsi_device *sdev;
331 	struct hpsa_scsi_dev_t *hdev;
332 	unsigned long flags;
333 
334 	sdev = to_scsi_device(dev);
335 	h = sdev_to_hba(sdev);
336 	spin_lock_irqsave(&h->lock, flags);
337 	hdev = sdev->hostdata;
338 	if (!hdev) {
339 		spin_unlock_irqrestore(&h->lock, flags);
340 		return -ENODEV;
341 	}
342 
343 	/* Is this even a logical drive? */
344 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345 		spin_unlock_irqrestore(&h->lock, flags);
346 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
347 		return l;
348 	}
349 
350 	rlevel = hdev->raid_level;
351 	spin_unlock_irqrestore(&h->lock, flags);
352 	if (rlevel > RAID_UNKNOWN)
353 		rlevel = RAID_UNKNOWN;
354 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355 	return l;
356 }
357 
358 static ssize_t lunid_show(struct device *dev,
359 	     struct device_attribute *attr, char *buf)
360 {
361 	struct ctlr_info *h;
362 	struct scsi_device *sdev;
363 	struct hpsa_scsi_dev_t *hdev;
364 	unsigned long flags;
365 	unsigned char lunid[8];
366 
367 	sdev = to_scsi_device(dev);
368 	h = sdev_to_hba(sdev);
369 	spin_lock_irqsave(&h->lock, flags);
370 	hdev = sdev->hostdata;
371 	if (!hdev) {
372 		spin_unlock_irqrestore(&h->lock, flags);
373 		return -ENODEV;
374 	}
375 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376 	spin_unlock_irqrestore(&h->lock, flags);
377 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378 		lunid[0], lunid[1], lunid[2], lunid[3],
379 		lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381 
382 static ssize_t unique_id_show(struct device *dev,
383 	     struct device_attribute *attr, char *buf)
384 {
385 	struct ctlr_info *h;
386 	struct scsi_device *sdev;
387 	struct hpsa_scsi_dev_t *hdev;
388 	unsigned long flags;
389 	unsigned char sn[16];
390 
391 	sdev = to_scsi_device(dev);
392 	h = sdev_to_hba(sdev);
393 	spin_lock_irqsave(&h->lock, flags);
394 	hdev = sdev->hostdata;
395 	if (!hdev) {
396 		spin_unlock_irqrestore(&h->lock, flags);
397 		return -ENODEV;
398 	}
399 	memcpy(sn, hdev->device_id, sizeof(sn));
400 	spin_unlock_irqrestore(&h->lock, flags);
401 	return snprintf(buf, 16 * 2 + 2,
402 			"%02X%02X%02X%02X%02X%02X%02X%02X"
403 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
404 			sn[0], sn[1], sn[2], sn[3],
405 			sn[4], sn[5], sn[6], sn[7],
406 			sn[8], sn[9], sn[10], sn[11],
407 			sn[12], sn[13], sn[14], sn[15]);
408 }
409 
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415 	host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417 	host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419 	host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421 	host_show_resettable, NULL);
422 
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424 	&dev_attr_raid_level,
425 	&dev_attr_lunid,
426 	&dev_attr_unique_id,
427 	NULL,
428 };
429 
430 static struct device_attribute *hpsa_shost_attrs[] = {
431 	&dev_attr_rescan,
432 	&dev_attr_firmware_revision,
433 	&dev_attr_commands_outstanding,
434 	&dev_attr_transport_mode,
435 	&dev_attr_resettable,
436 	NULL,
437 };
438 
439 static struct scsi_host_template hpsa_driver_template = {
440 	.module			= THIS_MODULE,
441 	.name			= "hpsa",
442 	.proc_name		= "hpsa",
443 	.queuecommand		= hpsa_scsi_queue_command,
444 	.scan_start		= hpsa_scan_start,
445 	.scan_finished		= hpsa_scan_finished,
446 	.change_queue_depth	= hpsa_change_queue_depth,
447 	.this_id		= -1,
448 	.use_clustering		= ENABLE_CLUSTERING,
449 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
450 	.ioctl			= hpsa_ioctl,
451 	.slave_alloc		= hpsa_slave_alloc,
452 	.slave_destroy		= hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454 	.compat_ioctl		= hpsa_compat_ioctl,
455 #endif
456 	.sdev_attrs = hpsa_sdev_attrs,
457 	.shost_attrs = hpsa_shost_attrs,
458 };
459 
460 
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464 	list_add_tail(&c->list, list);
465 }
466 
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469 	u32 a;
470 
471 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472 		return h->access.command_completed(h);
473 
474 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476 		(h->reply_pool_head)++;
477 		h->commands_outstanding--;
478 	} else {
479 		a = FIFO_EMPTY;
480 	}
481 	/* Check for wraparound */
482 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483 		h->reply_pool_head = h->reply_pool;
484 		h->reply_pool_wraparound ^= 1;
485 	}
486 	return a;
487 }
488 
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
496 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498 
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500 	struct CommandList *c)
501 {
502 	unsigned long flags;
503 
504 	set_performant_mode(h, c);
505 	spin_lock_irqsave(&h->lock, flags);
506 	addQ(&h->reqQ, c);
507 	h->Qdepth++;
508 	start_io(h);
509 	spin_unlock_irqrestore(&h->lock, flags);
510 }
511 
512 static inline void removeQ(struct CommandList *c)
513 {
514 	if (WARN_ON(list_empty(&c->list)))
515 		return;
516 	list_del_init(&c->list);
517 }
518 
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523 
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
529 		return 1;
530 	return 0;
531 }
532 
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534 	unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536 	/* finds an unused bus, target, lun for a new physical device
537 	 * assumes h->devlock is held
538 	 */
539 	int i, found = 0;
540 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541 
542 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543 
544 	for (i = 0; i < h->ndevices; i++) {
545 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546 			set_bit(h->dev[i]->target, lun_taken);
547 	}
548 
549 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550 		if (!test_bit(i, lun_taken)) {
551 			/* *bus = 1; */
552 			*target = i;
553 			*lun = 0;
554 			found = 1;
555 			break;
556 		}
557 	}
558 	return !found;
559 }
560 
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563 		struct hpsa_scsi_dev_t *device,
564 		struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566 	/* assumes h->devlock is held */
567 	int n = h->ndevices;
568 	int i;
569 	unsigned char addr1[8], addr2[8];
570 	struct hpsa_scsi_dev_t *sd;
571 
572 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573 		dev_err(&h->pdev->dev, "too many devices, some will be "
574 			"inaccessible.\n");
575 		return -1;
576 	}
577 
578 	/* physical devices do not have lun or target assigned until now. */
579 	if (device->lun != -1)
580 		/* Logical device, lun is already assigned. */
581 		goto lun_assigned;
582 
583 	/* If this device a non-zero lun of a multi-lun device
584 	 * byte 4 of the 8-byte LUN addr will contain the logical
585 	 * unit no, zero otherise.
586 	 */
587 	if (device->scsi3addr[4] == 0) {
588 		/* This is not a non-zero lun of a multi-lun device */
589 		if (hpsa_find_target_lun(h, device->scsi3addr,
590 			device->bus, &device->target, &device->lun) != 0)
591 			return -1;
592 		goto lun_assigned;
593 	}
594 
595 	/* This is a non-zero lun of a multi-lun device.
596 	 * Search through our list and find the device which
597 	 * has the same 8 byte LUN address, excepting byte 4.
598 	 * Assign the same bus and target for this new LUN.
599 	 * Use the logical unit number from the firmware.
600 	 */
601 	memcpy(addr1, device->scsi3addr, 8);
602 	addr1[4] = 0;
603 	for (i = 0; i < n; i++) {
604 		sd = h->dev[i];
605 		memcpy(addr2, sd->scsi3addr, 8);
606 		addr2[4] = 0;
607 		/* differ only in byte 4? */
608 		if (memcmp(addr1, addr2, 8) == 0) {
609 			device->bus = sd->bus;
610 			device->target = sd->target;
611 			device->lun = device->scsi3addr[4];
612 			break;
613 		}
614 	}
615 	if (device->lun == -1) {
616 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617 			" suspect firmware bug or unsupported hardware "
618 			"configuration.\n");
619 			return -1;
620 	}
621 
622 lun_assigned:
623 
624 	h->dev[n] = device;
625 	h->ndevices++;
626 	added[*nadded] = device;
627 	(*nadded)++;
628 
629 	/* initially, (before registering with scsi layer) we don't
630 	 * know our hostno and we don't want to print anything first
631 	 * time anyway (the scsi layer's inquiries will show that info)
632 	 */
633 	/* if (hostno != -1) */
634 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635 			scsi_device_type(device->devtype), hostno,
636 			device->bus, device->target, device->lun);
637 	return 0;
638 }
639 
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642 	int entry, struct hpsa_scsi_dev_t *new_entry,
643 	struct hpsa_scsi_dev_t *added[], int *nadded,
644 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646 	/* assumes h->devlock is held */
647 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648 	removed[*nremoved] = h->dev[entry];
649 	(*nremoved)++;
650 	h->dev[entry] = new_entry;
651 	added[*nadded] = new_entry;
652 	(*nadded)++;
653 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655 			new_entry->target, new_entry->lun);
656 }
657 
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662 	/* assumes h->devlock is held */
663 	int i;
664 	struct hpsa_scsi_dev_t *sd;
665 
666 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667 
668 	sd = h->dev[entry];
669 	removed[*nremoved] = h->dev[entry];
670 	(*nremoved)++;
671 
672 	for (i = entry; i < h->ndevices-1; i++)
673 		h->dev[i] = h->dev[i+1];
674 	h->ndevices--;
675 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677 		sd->lun);
678 }
679 
680 #define SCSI3ADDR_EQ(a, b) ( \
681 	(a)[7] == (b)[7] && \
682 	(a)[6] == (b)[6] && \
683 	(a)[5] == (b)[5] && \
684 	(a)[4] == (b)[4] && \
685 	(a)[3] == (b)[3] && \
686 	(a)[2] == (b)[2] && \
687 	(a)[1] == (b)[1] && \
688 	(a)[0] == (b)[0])
689 
690 static void fixup_botched_add(struct ctlr_info *h,
691 	struct hpsa_scsi_dev_t *added)
692 {
693 	/* called when scsi_add_device fails in order to re-adjust
694 	 * h->dev[] to match the mid layer's view.
695 	 */
696 	unsigned long flags;
697 	int i, j;
698 
699 	spin_lock_irqsave(&h->lock, flags);
700 	for (i = 0; i < h->ndevices; i++) {
701 		if (h->dev[i] == added) {
702 			for (j = i; j < h->ndevices-1; j++)
703 				h->dev[j] = h->dev[j+1];
704 			h->ndevices--;
705 			break;
706 		}
707 	}
708 	spin_unlock_irqrestore(&h->lock, flags);
709 	kfree(added);
710 }
711 
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713 	struct hpsa_scsi_dev_t *dev2)
714 {
715 	/* we compare everything except lun and target as these
716 	 * are not yet assigned.  Compare parts likely
717 	 * to differ first
718 	 */
719 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720 		sizeof(dev1->scsi3addr)) != 0)
721 		return 0;
722 	if (memcmp(dev1->device_id, dev2->device_id,
723 		sizeof(dev1->device_id)) != 0)
724 		return 0;
725 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726 		return 0;
727 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728 		return 0;
729 	if (dev1->devtype != dev2->devtype)
730 		return 0;
731 	if (dev1->bus != dev2->bus)
732 		return 0;
733 	return 1;
734 }
735 
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743 	int *index)
744 {
745 	int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749 	for (i = 0; i < haystack_size; i++) {
750 		if (haystack[i] == NULL) /* previously removed. */
751 			continue;
752 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753 			*index = i;
754 			if (device_is_the_same(needle, haystack[i]))
755 				return DEVICE_SAME;
756 			else
757 				return DEVICE_CHANGED;
758 		}
759 	}
760 	*index = -1;
761 	return DEVICE_NOT_FOUND;
762 }
763 
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765 	struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767 	/* sd contains scsi3 addresses and devtypes, and inquiry
768 	 * data.  This function takes what's in sd to be the current
769 	 * reality and updates h->dev[] to reflect that reality.
770 	 */
771 	int i, entry, device_change, changes = 0;
772 	struct hpsa_scsi_dev_t *csd;
773 	unsigned long flags;
774 	struct hpsa_scsi_dev_t **added, **removed;
775 	int nadded, nremoved;
776 	struct Scsi_Host *sh = NULL;
777 
778 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779 		GFP_KERNEL);
780 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781 		GFP_KERNEL);
782 
783 	if (!added || !removed) {
784 		dev_warn(&h->pdev->dev, "out of memory in "
785 			"adjust_hpsa_scsi_table\n");
786 		goto free_and_out;
787 	}
788 
789 	spin_lock_irqsave(&h->devlock, flags);
790 
791 	/* find any devices in h->dev[] that are not in
792 	 * sd[] and remove them from h->dev[], and for any
793 	 * devices which have changed, remove the old device
794 	 * info and add the new device info.
795 	 */
796 	i = 0;
797 	nremoved = 0;
798 	nadded = 0;
799 	while (i < h->ndevices) {
800 		csd = h->dev[i];
801 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802 		if (device_change == DEVICE_NOT_FOUND) {
803 			changes++;
804 			hpsa_scsi_remove_entry(h, hostno, i,
805 				removed, &nremoved);
806 			continue; /* remove ^^^, hence i not incremented */
807 		} else if (device_change == DEVICE_CHANGED) {
808 			changes++;
809 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810 				added, &nadded, removed, &nremoved);
811 			/* Set it to NULL to prevent it from being freed
812 			 * at the bottom of hpsa_update_scsi_devices()
813 			 */
814 			sd[entry] = NULL;
815 		}
816 		i++;
817 	}
818 
819 	/* Now, make sure every device listed in sd[] is also
820 	 * listed in h->dev[], adding them if they aren't found
821 	 */
822 
823 	for (i = 0; i < nsds; i++) {
824 		if (!sd[i]) /* if already added above. */
825 			continue;
826 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827 					h->ndevices, &entry);
828 		if (device_change == DEVICE_NOT_FOUND) {
829 			changes++;
830 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
831 				added, &nadded) != 0)
832 				break;
833 			sd[i] = NULL; /* prevent from being freed later. */
834 		} else if (device_change == DEVICE_CHANGED) {
835 			/* should never happen... */
836 			changes++;
837 			dev_warn(&h->pdev->dev,
838 				"device unexpectedly changed.\n");
839 			/* but if it does happen, we just ignore that device */
840 		}
841 	}
842 	spin_unlock_irqrestore(&h->devlock, flags);
843 
844 	/* Don't notify scsi mid layer of any changes the first time through
845 	 * (or if there are no changes) scsi_scan_host will do it later the
846 	 * first time through.
847 	 */
848 	if (hostno == -1 || !changes)
849 		goto free_and_out;
850 
851 	sh = h->scsi_host;
852 	/* Notify scsi mid layer of any removed devices */
853 	for (i = 0; i < nremoved; i++) {
854 		struct scsi_device *sdev =
855 			scsi_device_lookup(sh, removed[i]->bus,
856 				removed[i]->target, removed[i]->lun);
857 		if (sdev != NULL) {
858 			scsi_remove_device(sdev);
859 			scsi_device_put(sdev);
860 		} else {
861 			/* We don't expect to get here.
862 			 * future cmds to this device will get selection
863 			 * timeout as if the device was gone.
864 			 */
865 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866 				" for removal.", hostno, removed[i]->bus,
867 				removed[i]->target, removed[i]->lun);
868 		}
869 		kfree(removed[i]);
870 		removed[i] = NULL;
871 	}
872 
873 	/* Notify scsi mid layer of any added devices */
874 	for (i = 0; i < nadded; i++) {
875 		if (scsi_add_device(sh, added[i]->bus,
876 			added[i]->target, added[i]->lun) == 0)
877 			continue;
878 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879 			"device not added.\n", hostno, added[i]->bus,
880 			added[i]->target, added[i]->lun);
881 		/* now we have to remove it from h->dev,
882 		 * since it didn't get added to scsi mid layer
883 		 */
884 		fixup_botched_add(h, added[i]);
885 	}
886 
887 free_and_out:
888 	kfree(added);
889 	kfree(removed);
890 }
891 
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897 	int bus, int target, int lun)
898 {
899 	int i;
900 	struct hpsa_scsi_dev_t *sd;
901 
902 	for (i = 0; i < h->ndevices; i++) {
903 		sd = h->dev[i];
904 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
905 			return sd;
906 	}
907 	return NULL;
908 }
909 
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913 	struct hpsa_scsi_dev_t *sd;
914 	unsigned long flags;
915 	struct ctlr_info *h;
916 
917 	h = sdev_to_hba(sdev);
918 	spin_lock_irqsave(&h->devlock, flags);
919 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920 		sdev_id(sdev), sdev->lun);
921 	if (sd != NULL)
922 		sdev->hostdata = sd;
923 	spin_unlock_irqrestore(&h->devlock, flags);
924 	return 0;
925 }
926 
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929 	/* nothing to do. */
930 }
931 
932 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
933 {
934 	int i;
935 
936 	if (!h->cmd_sg_list)
937 		return;
938 	for (i = 0; i < h->nr_cmds; i++) {
939 		kfree(h->cmd_sg_list[i]);
940 		h->cmd_sg_list[i] = NULL;
941 	}
942 	kfree(h->cmd_sg_list);
943 	h->cmd_sg_list = NULL;
944 }
945 
946 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
947 {
948 	int i;
949 
950 	if (h->chainsize <= 0)
951 		return 0;
952 
953 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
954 				GFP_KERNEL);
955 	if (!h->cmd_sg_list)
956 		return -ENOMEM;
957 	for (i = 0; i < h->nr_cmds; i++) {
958 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
959 						h->chainsize, GFP_KERNEL);
960 		if (!h->cmd_sg_list[i])
961 			goto clean;
962 	}
963 	return 0;
964 
965 clean:
966 	hpsa_free_sg_chain_blocks(h);
967 	return -ENOMEM;
968 }
969 
970 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
971 	struct CommandList *c)
972 {
973 	struct SGDescriptor *chain_sg, *chain_block;
974 	u64 temp64;
975 
976 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
977 	chain_block = h->cmd_sg_list[c->cmdindex];
978 	chain_sg->Ext = HPSA_SG_CHAIN;
979 	chain_sg->Len = sizeof(*chain_sg) *
980 		(c->Header.SGTotal - h->max_cmd_sg_entries);
981 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
982 				PCI_DMA_TODEVICE);
983 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
984 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
985 }
986 
987 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
988 	struct CommandList *c)
989 {
990 	struct SGDescriptor *chain_sg;
991 	union u64bit temp64;
992 
993 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
994 		return;
995 
996 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
997 	temp64.val32.lower = chain_sg->Addr.lower;
998 	temp64.val32.upper = chain_sg->Addr.upper;
999 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1000 }
1001 
1002 static void complete_scsi_command(struct CommandList *cp)
1003 {
1004 	struct scsi_cmnd *cmd;
1005 	struct ctlr_info *h;
1006 	struct ErrorInfo *ei;
1007 
1008 	unsigned char sense_key;
1009 	unsigned char asc;      /* additional sense code */
1010 	unsigned char ascq;     /* additional sense code qualifier */
1011 
1012 	ei = cp->err_info;
1013 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1014 	h = cp->h;
1015 
1016 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1017 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1018 		hpsa_unmap_sg_chain_block(h, cp);
1019 
1020 	cmd->result = (DID_OK << 16); 		/* host byte */
1021 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1022 	cmd->result |= ei->ScsiStatus;
1023 
1024 	/* copy the sense data whether we need to or not. */
1025 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1026 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1027 			SCSI_SENSE_BUFFERSIZE :
1028 			ei->SenseLen);
1029 	scsi_set_resid(cmd, ei->ResidualCnt);
1030 
1031 	if (ei->CommandStatus == 0) {
1032 		cmd->scsi_done(cmd);
1033 		cmd_free(h, cp);
1034 		return;
1035 	}
1036 
1037 	/* an error has occurred */
1038 	switch (ei->CommandStatus) {
1039 
1040 	case CMD_TARGET_STATUS:
1041 		if (ei->ScsiStatus) {
1042 			/* Get sense key */
1043 			sense_key = 0xf & ei->SenseInfo[2];
1044 			/* Get additional sense code */
1045 			asc = ei->SenseInfo[12];
1046 			/* Get addition sense code qualifier */
1047 			ascq = ei->SenseInfo[13];
1048 		}
1049 
1050 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1051 			if (check_for_unit_attention(h, cp)) {
1052 				cmd->result = DID_SOFT_ERROR << 16;
1053 				break;
1054 			}
1055 			if (sense_key == ILLEGAL_REQUEST) {
1056 				/*
1057 				 * SCSI REPORT_LUNS is commonly unsupported on
1058 				 * Smart Array.  Suppress noisy complaint.
1059 				 */
1060 				if (cp->Request.CDB[0] == REPORT_LUNS)
1061 					break;
1062 
1063 				/* If ASC/ASCQ indicate Logical Unit
1064 				 * Not Supported condition,
1065 				 */
1066 				if ((asc == 0x25) && (ascq == 0x0)) {
1067 					dev_warn(&h->pdev->dev, "cp %p "
1068 						"has check condition\n", cp);
1069 					break;
1070 				}
1071 			}
1072 
1073 			if (sense_key == NOT_READY) {
1074 				/* If Sense is Not Ready, Logical Unit
1075 				 * Not ready, Manual Intervention
1076 				 * required
1077 				 */
1078 				if ((asc == 0x04) && (ascq == 0x03)) {
1079 					dev_warn(&h->pdev->dev, "cp %p "
1080 						"has check condition: unit "
1081 						"not ready, manual "
1082 						"intervention required\n", cp);
1083 					break;
1084 				}
1085 			}
1086 			if (sense_key == ABORTED_COMMAND) {
1087 				/* Aborted command is retryable */
1088 				dev_warn(&h->pdev->dev, "cp %p "
1089 					"has check condition: aborted command: "
1090 					"ASC: 0x%x, ASCQ: 0x%x\n",
1091 					cp, asc, ascq);
1092 				cmd->result = DID_SOFT_ERROR << 16;
1093 				break;
1094 			}
1095 			/* Must be some other type of check condition */
1096 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1097 					"unknown type: "
1098 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1099 					"Returning result: 0x%x, "
1100 					"cmd=[%02x %02x %02x %02x %02x "
1101 					"%02x %02x %02x %02x %02x %02x "
1102 					"%02x %02x %02x %02x %02x]\n",
1103 					cp, sense_key, asc, ascq,
1104 					cmd->result,
1105 					cmd->cmnd[0], cmd->cmnd[1],
1106 					cmd->cmnd[2], cmd->cmnd[3],
1107 					cmd->cmnd[4], cmd->cmnd[5],
1108 					cmd->cmnd[6], cmd->cmnd[7],
1109 					cmd->cmnd[8], cmd->cmnd[9],
1110 					cmd->cmnd[10], cmd->cmnd[11],
1111 					cmd->cmnd[12], cmd->cmnd[13],
1112 					cmd->cmnd[14], cmd->cmnd[15]);
1113 			break;
1114 		}
1115 
1116 
1117 		/* Problem was not a check condition
1118 		 * Pass it up to the upper layers...
1119 		 */
1120 		if (ei->ScsiStatus) {
1121 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1122 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1123 				"Returning result: 0x%x\n",
1124 				cp, ei->ScsiStatus,
1125 				sense_key, asc, ascq,
1126 				cmd->result);
1127 		} else {  /* scsi status is zero??? How??? */
1128 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1129 				"Returning no connection.\n", cp),
1130 
1131 			/* Ordinarily, this case should never happen,
1132 			 * but there is a bug in some released firmware
1133 			 * revisions that allows it to happen if, for
1134 			 * example, a 4100 backplane loses power and
1135 			 * the tape drive is in it.  We assume that
1136 			 * it's a fatal error of some kind because we
1137 			 * can't show that it wasn't. We will make it
1138 			 * look like selection timeout since that is
1139 			 * the most common reason for this to occur,
1140 			 * and it's severe enough.
1141 			 */
1142 
1143 			cmd->result = DID_NO_CONNECT << 16;
1144 		}
1145 		break;
1146 
1147 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1148 		break;
1149 	case CMD_DATA_OVERRUN:
1150 		dev_warn(&h->pdev->dev, "cp %p has"
1151 			" completed with data overrun "
1152 			"reported\n", cp);
1153 		break;
1154 	case CMD_INVALID: {
1155 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1156 		print_cmd(cp); */
1157 		/* We get CMD_INVALID if you address a non-existent device
1158 		 * instead of a selection timeout (no response).  You will
1159 		 * see this if you yank out a drive, then try to access it.
1160 		 * This is kind of a shame because it means that any other
1161 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1162 		 * missing target. */
1163 		cmd->result = DID_NO_CONNECT << 16;
1164 	}
1165 		break;
1166 	case CMD_PROTOCOL_ERR:
1167 		dev_warn(&h->pdev->dev, "cp %p has "
1168 			"protocol error \n", cp);
1169 		break;
1170 	case CMD_HARDWARE_ERR:
1171 		cmd->result = DID_ERROR << 16;
1172 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1173 		break;
1174 	case CMD_CONNECTION_LOST:
1175 		cmd->result = DID_ERROR << 16;
1176 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1177 		break;
1178 	case CMD_ABORTED:
1179 		cmd->result = DID_ABORT << 16;
1180 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1181 				cp, ei->ScsiStatus);
1182 		break;
1183 	case CMD_ABORT_FAILED:
1184 		cmd->result = DID_ERROR << 16;
1185 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1186 		break;
1187 	case CMD_UNSOLICITED_ABORT:
1188 		cmd->result = DID_RESET << 16;
1189 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1190 			"abort\n", cp);
1191 		break;
1192 	case CMD_TIMEOUT:
1193 		cmd->result = DID_TIME_OUT << 16;
1194 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1195 		break;
1196 	case CMD_UNABORTABLE:
1197 		cmd->result = DID_ERROR << 16;
1198 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1199 		break;
1200 	default:
1201 		cmd->result = DID_ERROR << 16;
1202 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1203 				cp, ei->CommandStatus);
1204 	}
1205 	cmd->scsi_done(cmd);
1206 	cmd_free(h, cp);
1207 }
1208 
1209 static int hpsa_scsi_detect(struct ctlr_info *h)
1210 {
1211 	struct Scsi_Host *sh;
1212 	int error;
1213 
1214 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1215 	if (sh == NULL)
1216 		goto fail;
1217 
1218 	sh->io_port = 0;
1219 	sh->n_io_port = 0;
1220 	sh->this_id = -1;
1221 	sh->max_channel = 3;
1222 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1223 	sh->max_lun = HPSA_MAX_LUN;
1224 	sh->max_id = HPSA_MAX_LUN;
1225 	sh->can_queue = h->nr_cmds;
1226 	sh->cmd_per_lun = h->nr_cmds;
1227 	sh->sg_tablesize = h->maxsgentries;
1228 	h->scsi_host = sh;
1229 	sh->hostdata[0] = (unsigned long) h;
1230 	sh->irq = h->intr[h->intr_mode];
1231 	sh->unique_id = sh->irq;
1232 	error = scsi_add_host(sh, &h->pdev->dev);
1233 	if (error)
1234 		goto fail_host_put;
1235 	scsi_scan_host(sh);
1236 	return 0;
1237 
1238  fail_host_put:
1239 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1240 		" failed for controller %d\n", h->ctlr);
1241 	scsi_host_put(sh);
1242 	return error;
1243  fail:
1244 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1245 		" failed for controller %d\n", h->ctlr);
1246 	return -ENOMEM;
1247 }
1248 
1249 static void hpsa_pci_unmap(struct pci_dev *pdev,
1250 	struct CommandList *c, int sg_used, int data_direction)
1251 {
1252 	int i;
1253 	union u64bit addr64;
1254 
1255 	for (i = 0; i < sg_used; i++) {
1256 		addr64.val32.lower = c->SG[i].Addr.lower;
1257 		addr64.val32.upper = c->SG[i].Addr.upper;
1258 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1259 			data_direction);
1260 	}
1261 }
1262 
1263 static void hpsa_map_one(struct pci_dev *pdev,
1264 		struct CommandList *cp,
1265 		unsigned char *buf,
1266 		size_t buflen,
1267 		int data_direction)
1268 {
1269 	u64 addr64;
1270 
1271 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1272 		cp->Header.SGList = 0;
1273 		cp->Header.SGTotal = 0;
1274 		return;
1275 	}
1276 
1277 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1278 	cp->SG[0].Addr.lower =
1279 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1280 	cp->SG[0].Addr.upper =
1281 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1282 	cp->SG[0].Len = buflen;
1283 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1284 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1285 }
1286 
1287 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1288 	struct CommandList *c)
1289 {
1290 	DECLARE_COMPLETION_ONSTACK(wait);
1291 
1292 	c->waiting = &wait;
1293 	enqueue_cmd_and_start_io(h, c);
1294 	wait_for_completion(&wait);
1295 }
1296 
1297 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1298 	struct CommandList *c, int data_direction)
1299 {
1300 	int retry_count = 0;
1301 
1302 	do {
1303 		memset(c->err_info, 0, sizeof(c->err_info));
1304 		hpsa_scsi_do_simple_cmd_core(h, c);
1305 		retry_count++;
1306 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1307 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1308 }
1309 
1310 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1311 {
1312 	struct ErrorInfo *ei;
1313 	struct device *d = &cp->h->pdev->dev;
1314 
1315 	ei = cp->err_info;
1316 	switch (ei->CommandStatus) {
1317 	case CMD_TARGET_STATUS:
1318 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1319 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1320 				ei->ScsiStatus);
1321 		if (ei->ScsiStatus == 0)
1322 			dev_warn(d, "SCSI status is abnormally zero.  "
1323 			"(probably indicates selection timeout "
1324 			"reported incorrectly due to a known "
1325 			"firmware bug, circa July, 2001.)\n");
1326 		break;
1327 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1328 			dev_info(d, "UNDERRUN\n");
1329 		break;
1330 	case CMD_DATA_OVERRUN:
1331 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1332 		break;
1333 	case CMD_INVALID: {
1334 		/* controller unfortunately reports SCSI passthru's
1335 		 * to non-existent targets as invalid commands.
1336 		 */
1337 		dev_warn(d, "cp %p is reported invalid (probably means "
1338 			"target device no longer present)\n", cp);
1339 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1340 		print_cmd(cp);  */
1341 		}
1342 		break;
1343 	case CMD_PROTOCOL_ERR:
1344 		dev_warn(d, "cp %p has protocol error \n", cp);
1345 		break;
1346 	case CMD_HARDWARE_ERR:
1347 		/* cmd->result = DID_ERROR << 16; */
1348 		dev_warn(d, "cp %p had hardware error\n", cp);
1349 		break;
1350 	case CMD_CONNECTION_LOST:
1351 		dev_warn(d, "cp %p had connection lost\n", cp);
1352 		break;
1353 	case CMD_ABORTED:
1354 		dev_warn(d, "cp %p was aborted\n", cp);
1355 		break;
1356 	case CMD_ABORT_FAILED:
1357 		dev_warn(d, "cp %p reports abort failed\n", cp);
1358 		break;
1359 	case CMD_UNSOLICITED_ABORT:
1360 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1361 		break;
1362 	case CMD_TIMEOUT:
1363 		dev_warn(d, "cp %p timed out\n", cp);
1364 		break;
1365 	case CMD_UNABORTABLE:
1366 		dev_warn(d, "Command unabortable\n");
1367 		break;
1368 	default:
1369 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1370 				ei->CommandStatus);
1371 	}
1372 }
1373 
1374 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1375 			unsigned char page, unsigned char *buf,
1376 			unsigned char bufsize)
1377 {
1378 	int rc = IO_OK;
1379 	struct CommandList *c;
1380 	struct ErrorInfo *ei;
1381 
1382 	c = cmd_special_alloc(h);
1383 
1384 	if (c == NULL) {			/* trouble... */
1385 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1386 		return -ENOMEM;
1387 	}
1388 
1389 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1390 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1391 	ei = c->err_info;
1392 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1393 		hpsa_scsi_interpret_error(c);
1394 		rc = -1;
1395 	}
1396 	cmd_special_free(h, c);
1397 	return rc;
1398 }
1399 
1400 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1401 {
1402 	int rc = IO_OK;
1403 	struct CommandList *c;
1404 	struct ErrorInfo *ei;
1405 
1406 	c = cmd_special_alloc(h);
1407 
1408 	if (c == NULL) {			/* trouble... */
1409 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1410 		return -ENOMEM;
1411 	}
1412 
1413 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1414 	hpsa_scsi_do_simple_cmd_core(h, c);
1415 	/* no unmap needed here because no data xfer. */
1416 
1417 	ei = c->err_info;
1418 	if (ei->CommandStatus != 0) {
1419 		hpsa_scsi_interpret_error(c);
1420 		rc = -1;
1421 	}
1422 	cmd_special_free(h, c);
1423 	return rc;
1424 }
1425 
1426 static void hpsa_get_raid_level(struct ctlr_info *h,
1427 	unsigned char *scsi3addr, unsigned char *raid_level)
1428 {
1429 	int rc;
1430 	unsigned char *buf;
1431 
1432 	*raid_level = RAID_UNKNOWN;
1433 	buf = kzalloc(64, GFP_KERNEL);
1434 	if (!buf)
1435 		return;
1436 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1437 	if (rc == 0)
1438 		*raid_level = buf[8];
1439 	if (*raid_level > RAID_UNKNOWN)
1440 		*raid_level = RAID_UNKNOWN;
1441 	kfree(buf);
1442 	return;
1443 }
1444 
1445 /* Get the device id from inquiry page 0x83 */
1446 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1447 	unsigned char *device_id, int buflen)
1448 {
1449 	int rc;
1450 	unsigned char *buf;
1451 
1452 	if (buflen > 16)
1453 		buflen = 16;
1454 	buf = kzalloc(64, GFP_KERNEL);
1455 	if (!buf)
1456 		return -1;
1457 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1458 	if (rc == 0)
1459 		memcpy(device_id, &buf[8], buflen);
1460 	kfree(buf);
1461 	return rc != 0;
1462 }
1463 
1464 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1465 		struct ReportLUNdata *buf, int bufsize,
1466 		int extended_response)
1467 {
1468 	int rc = IO_OK;
1469 	struct CommandList *c;
1470 	unsigned char scsi3addr[8];
1471 	struct ErrorInfo *ei;
1472 
1473 	c = cmd_special_alloc(h);
1474 	if (c == NULL) {			/* trouble... */
1475 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1476 		return -1;
1477 	}
1478 	/* address the controller */
1479 	memset(scsi3addr, 0, sizeof(scsi3addr));
1480 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1481 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1482 	if (extended_response)
1483 		c->Request.CDB[1] = extended_response;
1484 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1485 	ei = c->err_info;
1486 	if (ei->CommandStatus != 0 &&
1487 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1488 		hpsa_scsi_interpret_error(c);
1489 		rc = -1;
1490 	}
1491 	cmd_special_free(h, c);
1492 	return rc;
1493 }
1494 
1495 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1496 		struct ReportLUNdata *buf,
1497 		int bufsize, int extended_response)
1498 {
1499 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1500 }
1501 
1502 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1503 		struct ReportLUNdata *buf, int bufsize)
1504 {
1505 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1506 }
1507 
1508 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1509 	int bus, int target, int lun)
1510 {
1511 	device->bus = bus;
1512 	device->target = target;
1513 	device->lun = lun;
1514 }
1515 
1516 static int hpsa_update_device_info(struct ctlr_info *h,
1517 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1518 {
1519 #define OBDR_TAPE_INQ_SIZE 49
1520 	unsigned char *inq_buff;
1521 
1522 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1523 	if (!inq_buff)
1524 		goto bail_out;
1525 
1526 	/* Do an inquiry to the device to see what it is. */
1527 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1528 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1529 		/* Inquiry failed (msg printed already) */
1530 		dev_err(&h->pdev->dev,
1531 			"hpsa_update_device_info: inquiry failed\n");
1532 		goto bail_out;
1533 	}
1534 
1535 	this_device->devtype = (inq_buff[0] & 0x1f);
1536 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1537 	memcpy(this_device->vendor, &inq_buff[8],
1538 		sizeof(this_device->vendor));
1539 	memcpy(this_device->model, &inq_buff[16],
1540 		sizeof(this_device->model));
1541 	memset(this_device->device_id, 0,
1542 		sizeof(this_device->device_id));
1543 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1544 		sizeof(this_device->device_id));
1545 
1546 	if (this_device->devtype == TYPE_DISK &&
1547 		is_logical_dev_addr_mode(scsi3addr))
1548 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1549 	else
1550 		this_device->raid_level = RAID_UNKNOWN;
1551 
1552 	kfree(inq_buff);
1553 	return 0;
1554 
1555 bail_out:
1556 	kfree(inq_buff);
1557 	return 1;
1558 }
1559 
1560 static unsigned char *msa2xxx_model[] = {
1561 	"MSA2012",
1562 	"MSA2024",
1563 	"MSA2312",
1564 	"MSA2324",
1565 	NULL,
1566 };
1567 
1568 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1569 {
1570 	int i;
1571 
1572 	for (i = 0; msa2xxx_model[i]; i++)
1573 		if (strncmp(device->model, msa2xxx_model[i],
1574 			strlen(msa2xxx_model[i])) == 0)
1575 			return 1;
1576 	return 0;
1577 }
1578 
1579 /* Helper function to assign bus, target, lun mapping of devices.
1580  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1581  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1582  * Logical drive target and lun are assigned at this time, but
1583  * physical device lun and target assignment are deferred (assigned
1584  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1585  */
1586 static void figure_bus_target_lun(struct ctlr_info *h,
1587 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1588 	struct hpsa_scsi_dev_t *device)
1589 {
1590 	u32 lunid;
1591 
1592 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1593 		/* logical device */
1594 		if (unlikely(is_scsi_rev_5(h))) {
1595 			/* p1210m, logical drives lun assignments
1596 			 * match SCSI REPORT LUNS data.
1597 			 */
1598 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1599 			*bus = 0;
1600 			*target = 0;
1601 			*lun = (lunid & 0x3fff) + 1;
1602 		} else {
1603 			/* not p1210m... */
1604 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1605 			if (is_msa2xxx(h, device)) {
1606 				/* msa2xxx way, put logicals on bus 1
1607 				 * and match target/lun numbers box
1608 				 * reports.
1609 				 */
1610 				*bus = 1;
1611 				*target = (lunid >> 16) & 0x3fff;
1612 				*lun = lunid & 0x00ff;
1613 			} else {
1614 				/* Traditional smart array way. */
1615 				*bus = 0;
1616 				*lun = 0;
1617 				*target = lunid & 0x3fff;
1618 			}
1619 		}
1620 	} else {
1621 		/* physical device */
1622 		if (is_hba_lunid(lunaddrbytes))
1623 			if (unlikely(is_scsi_rev_5(h))) {
1624 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1625 				*target = 0;
1626 				*lun = 0;
1627 				return;
1628 			} else
1629 				*bus = 3; /* traditional smartarray */
1630 		else
1631 			*bus = 2; /* physical disk */
1632 		*target = -1;
1633 		*lun = -1; /* we will fill these in later. */
1634 	}
1635 }
1636 
1637 /*
1638  * If there is no lun 0 on a target, linux won't find any devices.
1639  * For the MSA2xxx boxes, we have to manually detect the enclosure
1640  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1641  * it for some reason.  *tmpdevice is the target we're adding,
1642  * this_device is a pointer into the current element of currentsd[]
1643  * that we're building up in update_scsi_devices(), below.
1644  * lunzerobits is a bitmap that tracks which targets already have a
1645  * lun 0 assigned.
1646  * Returns 1 if an enclosure was added, 0 if not.
1647  */
1648 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1649 	struct hpsa_scsi_dev_t *tmpdevice,
1650 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1651 	int bus, int target, int lun, unsigned long lunzerobits[],
1652 	int *nmsa2xxx_enclosures)
1653 {
1654 	unsigned char scsi3addr[8];
1655 
1656 	if (test_bit(target, lunzerobits))
1657 		return 0; /* There is already a lun 0 on this target. */
1658 
1659 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1660 		return 0; /* It's the logical targets that may lack lun 0. */
1661 
1662 	if (!is_msa2xxx(h, tmpdevice))
1663 		return 0; /* It's only the MSA2xxx that have this problem. */
1664 
1665 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1666 		return 0;
1667 
1668 	memset(scsi3addr, 0, 8);
1669 	scsi3addr[3] = target;
1670 	if (is_hba_lunid(scsi3addr))
1671 		return 0; /* Don't add the RAID controller here. */
1672 
1673 	if (is_scsi_rev_5(h))
1674 		return 0; /* p1210m doesn't need to do this. */
1675 
1676 #define MAX_MSA2XXX_ENCLOSURES 32
1677 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1678 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1679 			"enclosures exceeded.  Check your hardware "
1680 			"configuration.");
1681 		return 0;
1682 	}
1683 
1684 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1685 		return 0;
1686 	(*nmsa2xxx_enclosures)++;
1687 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1688 	set_bit(target, lunzerobits);
1689 	return 1;
1690 }
1691 
1692 /*
1693  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1694  * logdev.  The number of luns in physdev and logdev are returned in
1695  * *nphysicals and *nlogicals, respectively.
1696  * Returns 0 on success, -1 otherwise.
1697  */
1698 static int hpsa_gather_lun_info(struct ctlr_info *h,
1699 	int reportlunsize,
1700 	struct ReportLUNdata *physdev, u32 *nphysicals,
1701 	struct ReportLUNdata *logdev, u32 *nlogicals)
1702 {
1703 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1704 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1705 		return -1;
1706 	}
1707 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1708 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1709 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1710 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1711 			*nphysicals - HPSA_MAX_PHYS_LUN);
1712 		*nphysicals = HPSA_MAX_PHYS_LUN;
1713 	}
1714 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1715 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1716 		return -1;
1717 	}
1718 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1719 	/* Reject Logicals in excess of our max capability. */
1720 	if (*nlogicals > HPSA_MAX_LUN) {
1721 		dev_warn(&h->pdev->dev,
1722 			"maximum logical LUNs (%d) exceeded.  "
1723 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1724 			*nlogicals - HPSA_MAX_LUN);
1725 			*nlogicals = HPSA_MAX_LUN;
1726 	}
1727 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1728 		dev_warn(&h->pdev->dev,
1729 			"maximum logical + physical LUNs (%d) exceeded. "
1730 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1731 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1732 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1733 	}
1734 	return 0;
1735 }
1736 
1737 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1738 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1739 	struct ReportLUNdata *logdev_list)
1740 {
1741 	/* Helper function, figure out where the LUN ID info is coming from
1742 	 * given index i, lists of physical and logical devices, where in
1743 	 * the list the raid controller is supposed to appear (first or last)
1744 	 */
1745 
1746 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1747 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1748 
1749 	if (i == raid_ctlr_position)
1750 		return RAID_CTLR_LUNID;
1751 
1752 	if (i < logicals_start)
1753 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1754 
1755 	if (i < last_device)
1756 		return &logdev_list->LUN[i - nphysicals -
1757 			(raid_ctlr_position == 0)][0];
1758 	BUG();
1759 	return NULL;
1760 }
1761 
1762 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1763 {
1764 	/* the idea here is we could get notified
1765 	 * that some devices have changed, so we do a report
1766 	 * physical luns and report logical luns cmd, and adjust
1767 	 * our list of devices accordingly.
1768 	 *
1769 	 * The scsi3addr's of devices won't change so long as the
1770 	 * adapter is not reset.  That means we can rescan and
1771 	 * tell which devices we already know about, vs. new
1772 	 * devices, vs.  disappearing devices.
1773 	 */
1774 	struct ReportLUNdata *physdev_list = NULL;
1775 	struct ReportLUNdata *logdev_list = NULL;
1776 	unsigned char *inq_buff = NULL;
1777 	u32 nphysicals = 0;
1778 	u32 nlogicals = 0;
1779 	u32 ndev_allocated = 0;
1780 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1781 	int ncurrent = 0;
1782 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1783 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1784 	int bus, target, lun;
1785 	int raid_ctlr_position;
1786 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1787 
1788 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1789 		GFP_KERNEL);
1790 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1791 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1792 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1793 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1794 
1795 	if (!currentsd || !physdev_list || !logdev_list ||
1796 		!inq_buff || !tmpdevice) {
1797 		dev_err(&h->pdev->dev, "out of memory\n");
1798 		goto out;
1799 	}
1800 	memset(lunzerobits, 0, sizeof(lunzerobits));
1801 
1802 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1803 			logdev_list, &nlogicals))
1804 		goto out;
1805 
1806 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1807 	 * but each of them 4 times through different paths.  The plus 1
1808 	 * is for the RAID controller.
1809 	 */
1810 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1811 
1812 	/* Allocate the per device structures */
1813 	for (i = 0; i < ndevs_to_allocate; i++) {
1814 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1815 		if (!currentsd[i]) {
1816 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1817 				__FILE__, __LINE__);
1818 			goto out;
1819 		}
1820 		ndev_allocated++;
1821 	}
1822 
1823 	if (unlikely(is_scsi_rev_5(h)))
1824 		raid_ctlr_position = 0;
1825 	else
1826 		raid_ctlr_position = nphysicals + nlogicals;
1827 
1828 	/* adjust our table of devices */
1829 	nmsa2xxx_enclosures = 0;
1830 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1831 		u8 *lunaddrbytes;
1832 
1833 		/* Figure out where the LUN ID info is coming from */
1834 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1835 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1836 		/* skip masked physical devices. */
1837 		if (lunaddrbytes[3] & 0xC0 &&
1838 			i < nphysicals + (raid_ctlr_position == 0))
1839 			continue;
1840 
1841 		/* Get device type, vendor, model, device id */
1842 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1843 			continue; /* skip it if we can't talk to it. */
1844 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1845 			tmpdevice);
1846 		this_device = currentsd[ncurrent];
1847 
1848 		/*
1849 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1850 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1851 		 * is nonetheless an enclosure device there.  We have to
1852 		 * present that otherwise linux won't find anything if
1853 		 * there is no lun 0.
1854 		 */
1855 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1856 				lunaddrbytes, bus, target, lun, lunzerobits,
1857 				&nmsa2xxx_enclosures)) {
1858 			ncurrent++;
1859 			this_device = currentsd[ncurrent];
1860 		}
1861 
1862 		*this_device = *tmpdevice;
1863 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1864 
1865 		switch (this_device->devtype) {
1866 		case TYPE_ROM: {
1867 			/* We don't *really* support actual CD-ROM devices,
1868 			 * just "One Button Disaster Recovery" tape drive
1869 			 * which temporarily pretends to be a CD-ROM drive.
1870 			 * So we check that the device is really an OBDR tape
1871 			 * device by checking for "$DR-10" in bytes 43-48 of
1872 			 * the inquiry data.
1873 			 */
1874 				char obdr_sig[7];
1875 #define OBDR_TAPE_SIG "$DR-10"
1876 				strncpy(obdr_sig, &inq_buff[43], 6);
1877 				obdr_sig[6] = '\0';
1878 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1879 					/* Not OBDR device, ignore it. */
1880 					break;
1881 			}
1882 			ncurrent++;
1883 			break;
1884 		case TYPE_DISK:
1885 			if (i < nphysicals)
1886 				break;
1887 			ncurrent++;
1888 			break;
1889 		case TYPE_TAPE:
1890 		case TYPE_MEDIUM_CHANGER:
1891 			ncurrent++;
1892 			break;
1893 		case TYPE_RAID:
1894 			/* Only present the Smartarray HBA as a RAID controller.
1895 			 * If it's a RAID controller other than the HBA itself
1896 			 * (an external RAID controller, MSA500 or similar)
1897 			 * don't present it.
1898 			 */
1899 			if (!is_hba_lunid(lunaddrbytes))
1900 				break;
1901 			ncurrent++;
1902 			break;
1903 		default:
1904 			break;
1905 		}
1906 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1907 			break;
1908 	}
1909 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1910 out:
1911 	kfree(tmpdevice);
1912 	for (i = 0; i < ndev_allocated; i++)
1913 		kfree(currentsd[i]);
1914 	kfree(currentsd);
1915 	kfree(inq_buff);
1916 	kfree(physdev_list);
1917 	kfree(logdev_list);
1918 }
1919 
1920 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1921  * dma mapping  and fills in the scatter gather entries of the
1922  * hpsa command, cp.
1923  */
1924 static int hpsa_scatter_gather(struct ctlr_info *h,
1925 		struct CommandList *cp,
1926 		struct scsi_cmnd *cmd)
1927 {
1928 	unsigned int len;
1929 	struct scatterlist *sg;
1930 	u64 addr64;
1931 	int use_sg, i, sg_index, chained;
1932 	struct SGDescriptor *curr_sg;
1933 
1934 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1935 
1936 	use_sg = scsi_dma_map(cmd);
1937 	if (use_sg < 0)
1938 		return use_sg;
1939 
1940 	if (!use_sg)
1941 		goto sglist_finished;
1942 
1943 	curr_sg = cp->SG;
1944 	chained = 0;
1945 	sg_index = 0;
1946 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1947 		if (i == h->max_cmd_sg_entries - 1 &&
1948 			use_sg > h->max_cmd_sg_entries) {
1949 			chained = 1;
1950 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1951 			sg_index = 0;
1952 		}
1953 		addr64 = (u64) sg_dma_address(sg);
1954 		len  = sg_dma_len(sg);
1955 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1956 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1957 		curr_sg->Len = len;
1958 		curr_sg->Ext = 0;  /* we are not chaining */
1959 		curr_sg++;
1960 	}
1961 
1962 	if (use_sg + chained > h->maxSG)
1963 		h->maxSG = use_sg + chained;
1964 
1965 	if (chained) {
1966 		cp->Header.SGList = h->max_cmd_sg_entries;
1967 		cp->Header.SGTotal = (u16) (use_sg + 1);
1968 		hpsa_map_sg_chain_block(h, cp);
1969 		return 0;
1970 	}
1971 
1972 sglist_finished:
1973 
1974 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1975 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1976 	return 0;
1977 }
1978 
1979 
1980 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1981 	void (*done)(struct scsi_cmnd *))
1982 {
1983 	struct ctlr_info *h;
1984 	struct hpsa_scsi_dev_t *dev;
1985 	unsigned char scsi3addr[8];
1986 	struct CommandList *c;
1987 	unsigned long flags;
1988 
1989 	/* Get the ptr to our adapter structure out of cmd->host. */
1990 	h = sdev_to_hba(cmd->device);
1991 	dev = cmd->device->hostdata;
1992 	if (!dev) {
1993 		cmd->result = DID_NO_CONNECT << 16;
1994 		done(cmd);
1995 		return 0;
1996 	}
1997 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1998 
1999 	/* Need a lock as this is being allocated from the pool */
2000 	spin_lock_irqsave(&h->lock, flags);
2001 	c = cmd_alloc(h);
2002 	spin_unlock_irqrestore(&h->lock, flags);
2003 	if (c == NULL) {			/* trouble... */
2004 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2005 		return SCSI_MLQUEUE_HOST_BUSY;
2006 	}
2007 
2008 	/* Fill in the command list header */
2009 
2010 	cmd->scsi_done = done;    /* save this for use by completion code */
2011 
2012 	/* save c in case we have to abort it  */
2013 	cmd->host_scribble = (unsigned char *) c;
2014 
2015 	c->cmd_type = CMD_SCSI;
2016 	c->scsi_cmd = cmd;
2017 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2018 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2019 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2020 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2021 
2022 	/* Fill in the request block... */
2023 
2024 	c->Request.Timeout = 0;
2025 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2026 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2027 	c->Request.CDBLen = cmd->cmd_len;
2028 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2029 	c->Request.Type.Type = TYPE_CMD;
2030 	c->Request.Type.Attribute = ATTR_SIMPLE;
2031 	switch (cmd->sc_data_direction) {
2032 	case DMA_TO_DEVICE:
2033 		c->Request.Type.Direction = XFER_WRITE;
2034 		break;
2035 	case DMA_FROM_DEVICE:
2036 		c->Request.Type.Direction = XFER_READ;
2037 		break;
2038 	case DMA_NONE:
2039 		c->Request.Type.Direction = XFER_NONE;
2040 		break;
2041 	case DMA_BIDIRECTIONAL:
2042 		/* This can happen if a buggy application does a scsi passthru
2043 		 * and sets both inlen and outlen to non-zero. ( see
2044 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2045 		 */
2046 
2047 		c->Request.Type.Direction = XFER_RSVD;
2048 		/* This is technically wrong, and hpsa controllers should
2049 		 * reject it with CMD_INVALID, which is the most correct
2050 		 * response, but non-fibre backends appear to let it
2051 		 * slide by, and give the same results as if this field
2052 		 * were set correctly.  Either way is acceptable for
2053 		 * our purposes here.
2054 		 */
2055 
2056 		break;
2057 
2058 	default:
2059 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2060 			cmd->sc_data_direction);
2061 		BUG();
2062 		break;
2063 	}
2064 
2065 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2066 		cmd_free(h, c);
2067 		return SCSI_MLQUEUE_HOST_BUSY;
2068 	}
2069 	enqueue_cmd_and_start_io(h, c);
2070 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2071 	return 0;
2072 }
2073 
2074 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2075 
2076 static void hpsa_scan_start(struct Scsi_Host *sh)
2077 {
2078 	struct ctlr_info *h = shost_to_hba(sh);
2079 	unsigned long flags;
2080 
2081 	/* wait until any scan already in progress is finished. */
2082 	while (1) {
2083 		spin_lock_irqsave(&h->scan_lock, flags);
2084 		if (h->scan_finished)
2085 			break;
2086 		spin_unlock_irqrestore(&h->scan_lock, flags);
2087 		wait_event(h->scan_wait_queue, h->scan_finished);
2088 		/* Note: We don't need to worry about a race between this
2089 		 * thread and driver unload because the midlayer will
2090 		 * have incremented the reference count, so unload won't
2091 		 * happen if we're in here.
2092 		 */
2093 	}
2094 	h->scan_finished = 0; /* mark scan as in progress */
2095 	spin_unlock_irqrestore(&h->scan_lock, flags);
2096 
2097 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2098 
2099 	spin_lock_irqsave(&h->scan_lock, flags);
2100 	h->scan_finished = 1; /* mark scan as finished. */
2101 	wake_up_all(&h->scan_wait_queue);
2102 	spin_unlock_irqrestore(&h->scan_lock, flags);
2103 }
2104 
2105 static int hpsa_scan_finished(struct Scsi_Host *sh,
2106 	unsigned long elapsed_time)
2107 {
2108 	struct ctlr_info *h = shost_to_hba(sh);
2109 	unsigned long flags;
2110 	int finished;
2111 
2112 	spin_lock_irqsave(&h->scan_lock, flags);
2113 	finished = h->scan_finished;
2114 	spin_unlock_irqrestore(&h->scan_lock, flags);
2115 	return finished;
2116 }
2117 
2118 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2119 	int qdepth, int reason)
2120 {
2121 	struct ctlr_info *h = sdev_to_hba(sdev);
2122 
2123 	if (reason != SCSI_QDEPTH_DEFAULT)
2124 		return -ENOTSUPP;
2125 
2126 	if (qdepth < 1)
2127 		qdepth = 1;
2128 	else
2129 		if (qdepth > h->nr_cmds)
2130 			qdepth = h->nr_cmds;
2131 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2132 	return sdev->queue_depth;
2133 }
2134 
2135 static void hpsa_unregister_scsi(struct ctlr_info *h)
2136 {
2137 	/* we are being forcibly unloaded, and may not refuse. */
2138 	scsi_remove_host(h->scsi_host);
2139 	scsi_host_put(h->scsi_host);
2140 	h->scsi_host = NULL;
2141 }
2142 
2143 static int hpsa_register_scsi(struct ctlr_info *h)
2144 {
2145 	int rc;
2146 
2147 	rc = hpsa_scsi_detect(h);
2148 	if (rc != 0)
2149 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2150 			" hpsa_scsi_detect(), rc is %d\n", rc);
2151 	return rc;
2152 }
2153 
2154 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2155 	unsigned char lunaddr[])
2156 {
2157 	int rc = 0;
2158 	int count = 0;
2159 	int waittime = 1; /* seconds */
2160 	struct CommandList *c;
2161 
2162 	c = cmd_special_alloc(h);
2163 	if (!c) {
2164 		dev_warn(&h->pdev->dev, "out of memory in "
2165 			"wait_for_device_to_become_ready.\n");
2166 		return IO_ERROR;
2167 	}
2168 
2169 	/* Send test unit ready until device ready, or give up. */
2170 	while (count < HPSA_TUR_RETRY_LIMIT) {
2171 
2172 		/* Wait for a bit.  do this first, because if we send
2173 		 * the TUR right away, the reset will just abort it.
2174 		 */
2175 		msleep(1000 * waittime);
2176 		count++;
2177 
2178 		/* Increase wait time with each try, up to a point. */
2179 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2180 			waittime = waittime * 2;
2181 
2182 		/* Send the Test Unit Ready */
2183 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2184 		hpsa_scsi_do_simple_cmd_core(h, c);
2185 		/* no unmap needed here because no data xfer. */
2186 
2187 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2188 			break;
2189 
2190 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2191 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2192 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2193 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2194 			break;
2195 
2196 		dev_warn(&h->pdev->dev, "waiting %d secs "
2197 			"for device to become ready.\n", waittime);
2198 		rc = 1; /* device not ready. */
2199 	}
2200 
2201 	if (rc)
2202 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2203 	else
2204 		dev_warn(&h->pdev->dev, "device is ready.\n");
2205 
2206 	cmd_special_free(h, c);
2207 	return rc;
2208 }
2209 
2210 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2211  * complaining.  Doing a host- or bus-reset can't do anything good here.
2212  */
2213 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2214 {
2215 	int rc;
2216 	struct ctlr_info *h;
2217 	struct hpsa_scsi_dev_t *dev;
2218 
2219 	/* find the controller to which the command to be aborted was sent */
2220 	h = sdev_to_hba(scsicmd->device);
2221 	if (h == NULL) /* paranoia */
2222 		return FAILED;
2223 	dev = scsicmd->device->hostdata;
2224 	if (!dev) {
2225 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2226 			"device lookup failed.\n");
2227 		return FAILED;
2228 	}
2229 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2230 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2231 	/* send a reset to the SCSI LUN which the command was sent to */
2232 	rc = hpsa_send_reset(h, dev->scsi3addr);
2233 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2234 		return SUCCESS;
2235 
2236 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2237 	return FAILED;
2238 }
2239 
2240 /*
2241  * For operations that cannot sleep, a command block is allocated at init,
2242  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2243  * which ones are free or in use.  Lock must be held when calling this.
2244  * cmd_free() is the complement.
2245  */
2246 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2247 {
2248 	struct CommandList *c;
2249 	int i;
2250 	union u64bit temp64;
2251 	dma_addr_t cmd_dma_handle, err_dma_handle;
2252 
2253 	do {
2254 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2255 		if (i == h->nr_cmds)
2256 			return NULL;
2257 	} while (test_and_set_bit
2258 		 (i & (BITS_PER_LONG - 1),
2259 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2260 	c = h->cmd_pool + i;
2261 	memset(c, 0, sizeof(*c));
2262 	cmd_dma_handle = h->cmd_pool_dhandle
2263 	    + i * sizeof(*c);
2264 	c->err_info = h->errinfo_pool + i;
2265 	memset(c->err_info, 0, sizeof(*c->err_info));
2266 	err_dma_handle = h->errinfo_pool_dhandle
2267 	    + i * sizeof(*c->err_info);
2268 	h->nr_allocs++;
2269 
2270 	c->cmdindex = i;
2271 
2272 	INIT_LIST_HEAD(&c->list);
2273 	c->busaddr = (u32) cmd_dma_handle;
2274 	temp64.val = (u64) err_dma_handle;
2275 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2276 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2277 	c->ErrDesc.Len = sizeof(*c->err_info);
2278 
2279 	c->h = h;
2280 	return c;
2281 }
2282 
2283 /* For operations that can wait for kmalloc to possibly sleep,
2284  * this routine can be called. Lock need not be held to call
2285  * cmd_special_alloc. cmd_special_free() is the complement.
2286  */
2287 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2288 {
2289 	struct CommandList *c;
2290 	union u64bit temp64;
2291 	dma_addr_t cmd_dma_handle, err_dma_handle;
2292 
2293 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2294 	if (c == NULL)
2295 		return NULL;
2296 	memset(c, 0, sizeof(*c));
2297 
2298 	c->cmdindex = -1;
2299 
2300 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2301 		    &err_dma_handle);
2302 
2303 	if (c->err_info == NULL) {
2304 		pci_free_consistent(h->pdev,
2305 			sizeof(*c), c, cmd_dma_handle);
2306 		return NULL;
2307 	}
2308 	memset(c->err_info, 0, sizeof(*c->err_info));
2309 
2310 	INIT_LIST_HEAD(&c->list);
2311 	c->busaddr = (u32) cmd_dma_handle;
2312 	temp64.val = (u64) err_dma_handle;
2313 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2314 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2315 	c->ErrDesc.Len = sizeof(*c->err_info);
2316 
2317 	c->h = h;
2318 	return c;
2319 }
2320 
2321 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2322 {
2323 	int i;
2324 
2325 	i = c - h->cmd_pool;
2326 	clear_bit(i & (BITS_PER_LONG - 1),
2327 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2328 	h->nr_frees++;
2329 }
2330 
2331 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2332 {
2333 	union u64bit temp64;
2334 
2335 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2336 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2337 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2338 			    c->err_info, (dma_addr_t) temp64.val);
2339 	pci_free_consistent(h->pdev, sizeof(*c),
2340 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2341 }
2342 
2343 #ifdef CONFIG_COMPAT
2344 
2345 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2346 {
2347 	IOCTL32_Command_struct __user *arg32 =
2348 	    (IOCTL32_Command_struct __user *) arg;
2349 	IOCTL_Command_struct arg64;
2350 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2351 	int err;
2352 	u32 cp;
2353 
2354 	memset(&arg64, 0, sizeof(arg64));
2355 	err = 0;
2356 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2357 			   sizeof(arg64.LUN_info));
2358 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2359 			   sizeof(arg64.Request));
2360 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2361 			   sizeof(arg64.error_info));
2362 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2363 	err |= get_user(cp, &arg32->buf);
2364 	arg64.buf = compat_ptr(cp);
2365 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2366 
2367 	if (err)
2368 		return -EFAULT;
2369 
2370 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2371 	if (err)
2372 		return err;
2373 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2374 			 sizeof(arg32->error_info));
2375 	if (err)
2376 		return -EFAULT;
2377 	return err;
2378 }
2379 
2380 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2381 	int cmd, void *arg)
2382 {
2383 	BIG_IOCTL32_Command_struct __user *arg32 =
2384 	    (BIG_IOCTL32_Command_struct __user *) arg;
2385 	BIG_IOCTL_Command_struct arg64;
2386 	BIG_IOCTL_Command_struct __user *p =
2387 	    compat_alloc_user_space(sizeof(arg64));
2388 	int err;
2389 	u32 cp;
2390 
2391 	memset(&arg64, 0, sizeof(arg64));
2392 	err = 0;
2393 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2394 			   sizeof(arg64.LUN_info));
2395 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2396 			   sizeof(arg64.Request));
2397 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2398 			   sizeof(arg64.error_info));
2399 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2400 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2401 	err |= get_user(cp, &arg32->buf);
2402 	arg64.buf = compat_ptr(cp);
2403 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2404 
2405 	if (err)
2406 		return -EFAULT;
2407 
2408 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2409 	if (err)
2410 		return err;
2411 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2412 			 sizeof(arg32->error_info));
2413 	if (err)
2414 		return -EFAULT;
2415 	return err;
2416 }
2417 
2418 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2419 {
2420 	switch (cmd) {
2421 	case CCISS_GETPCIINFO:
2422 	case CCISS_GETINTINFO:
2423 	case CCISS_SETINTINFO:
2424 	case CCISS_GETNODENAME:
2425 	case CCISS_SETNODENAME:
2426 	case CCISS_GETHEARTBEAT:
2427 	case CCISS_GETBUSTYPES:
2428 	case CCISS_GETFIRMVER:
2429 	case CCISS_GETDRIVVER:
2430 	case CCISS_REVALIDVOLS:
2431 	case CCISS_DEREGDISK:
2432 	case CCISS_REGNEWDISK:
2433 	case CCISS_REGNEWD:
2434 	case CCISS_RESCANDISK:
2435 	case CCISS_GETLUNINFO:
2436 		return hpsa_ioctl(dev, cmd, arg);
2437 
2438 	case CCISS_PASSTHRU32:
2439 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2440 	case CCISS_BIG_PASSTHRU32:
2441 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2442 
2443 	default:
2444 		return -ENOIOCTLCMD;
2445 	}
2446 }
2447 #endif
2448 
2449 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2450 {
2451 	struct hpsa_pci_info pciinfo;
2452 
2453 	if (!argp)
2454 		return -EINVAL;
2455 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2456 	pciinfo.bus = h->pdev->bus->number;
2457 	pciinfo.dev_fn = h->pdev->devfn;
2458 	pciinfo.board_id = h->board_id;
2459 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2460 		return -EFAULT;
2461 	return 0;
2462 }
2463 
2464 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2465 {
2466 	DriverVer_type DriverVer;
2467 	unsigned char vmaj, vmin, vsubmin;
2468 	int rc;
2469 
2470 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2471 		&vmaj, &vmin, &vsubmin);
2472 	if (rc != 3) {
2473 		dev_info(&h->pdev->dev, "driver version string '%s' "
2474 			"unrecognized.", HPSA_DRIVER_VERSION);
2475 		vmaj = 0;
2476 		vmin = 0;
2477 		vsubmin = 0;
2478 	}
2479 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2480 	if (!argp)
2481 		return -EINVAL;
2482 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2483 		return -EFAULT;
2484 	return 0;
2485 }
2486 
2487 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2488 {
2489 	IOCTL_Command_struct iocommand;
2490 	struct CommandList *c;
2491 	char *buff = NULL;
2492 	union u64bit temp64;
2493 
2494 	if (!argp)
2495 		return -EINVAL;
2496 	if (!capable(CAP_SYS_RAWIO))
2497 		return -EPERM;
2498 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2499 		return -EFAULT;
2500 	if ((iocommand.buf_size < 1) &&
2501 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2502 		return -EINVAL;
2503 	}
2504 	if (iocommand.buf_size > 0) {
2505 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2506 		if (buff == NULL)
2507 			return -EFAULT;
2508 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2509 			/* Copy the data into the buffer we created */
2510 			if (copy_from_user(buff, iocommand.buf,
2511 				iocommand.buf_size)) {
2512 				kfree(buff);
2513 				return -EFAULT;
2514 			}
2515 		} else {
2516 			memset(buff, 0, iocommand.buf_size);
2517 		}
2518 	}
2519 	c = cmd_special_alloc(h);
2520 	if (c == NULL) {
2521 		kfree(buff);
2522 		return -ENOMEM;
2523 	}
2524 	/* Fill in the command type */
2525 	c->cmd_type = CMD_IOCTL_PEND;
2526 	/* Fill in Command Header */
2527 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2528 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2529 		c->Header.SGList = 1;
2530 		c->Header.SGTotal = 1;
2531 	} else	{ /* no buffers to fill */
2532 		c->Header.SGList = 0;
2533 		c->Header.SGTotal = 0;
2534 	}
2535 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2536 	/* use the kernel address the cmd block for tag */
2537 	c->Header.Tag.lower = c->busaddr;
2538 
2539 	/* Fill in Request block */
2540 	memcpy(&c->Request, &iocommand.Request,
2541 		sizeof(c->Request));
2542 
2543 	/* Fill in the scatter gather information */
2544 	if (iocommand.buf_size > 0) {
2545 		temp64.val = pci_map_single(h->pdev, buff,
2546 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2547 		c->SG[0].Addr.lower = temp64.val32.lower;
2548 		c->SG[0].Addr.upper = temp64.val32.upper;
2549 		c->SG[0].Len = iocommand.buf_size;
2550 		c->SG[0].Ext = 0; /* we are not chaining*/
2551 	}
2552 	hpsa_scsi_do_simple_cmd_core(h, c);
2553 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2554 	check_ioctl_unit_attention(h, c);
2555 
2556 	/* Copy the error information out */
2557 	memcpy(&iocommand.error_info, c->err_info,
2558 		sizeof(iocommand.error_info));
2559 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2560 		kfree(buff);
2561 		cmd_special_free(h, c);
2562 		return -EFAULT;
2563 	}
2564 	if (iocommand.Request.Type.Direction == XFER_READ &&
2565 		iocommand.buf_size > 0) {
2566 		/* Copy the data out of the buffer we created */
2567 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2568 			kfree(buff);
2569 			cmd_special_free(h, c);
2570 			return -EFAULT;
2571 		}
2572 	}
2573 	kfree(buff);
2574 	cmd_special_free(h, c);
2575 	return 0;
2576 }
2577 
2578 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2579 {
2580 	BIG_IOCTL_Command_struct *ioc;
2581 	struct CommandList *c;
2582 	unsigned char **buff = NULL;
2583 	int *buff_size = NULL;
2584 	union u64bit temp64;
2585 	BYTE sg_used = 0;
2586 	int status = 0;
2587 	int i;
2588 	u32 left;
2589 	u32 sz;
2590 	BYTE __user *data_ptr;
2591 
2592 	if (!argp)
2593 		return -EINVAL;
2594 	if (!capable(CAP_SYS_RAWIO))
2595 		return -EPERM;
2596 	ioc = (BIG_IOCTL_Command_struct *)
2597 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2598 	if (!ioc) {
2599 		status = -ENOMEM;
2600 		goto cleanup1;
2601 	}
2602 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2603 		status = -EFAULT;
2604 		goto cleanup1;
2605 	}
2606 	if ((ioc->buf_size < 1) &&
2607 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2608 		status = -EINVAL;
2609 		goto cleanup1;
2610 	}
2611 	/* Check kmalloc limits  using all SGs */
2612 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2613 		status = -EINVAL;
2614 		goto cleanup1;
2615 	}
2616 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2617 		status = -EINVAL;
2618 		goto cleanup1;
2619 	}
2620 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2621 	if (!buff) {
2622 		status = -ENOMEM;
2623 		goto cleanup1;
2624 	}
2625 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2626 	if (!buff_size) {
2627 		status = -ENOMEM;
2628 		goto cleanup1;
2629 	}
2630 	left = ioc->buf_size;
2631 	data_ptr = ioc->buf;
2632 	while (left) {
2633 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2634 		buff_size[sg_used] = sz;
2635 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2636 		if (buff[sg_used] == NULL) {
2637 			status = -ENOMEM;
2638 			goto cleanup1;
2639 		}
2640 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2641 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2642 				status = -ENOMEM;
2643 				goto cleanup1;
2644 			}
2645 		} else
2646 			memset(buff[sg_used], 0, sz);
2647 		left -= sz;
2648 		data_ptr += sz;
2649 		sg_used++;
2650 	}
2651 	c = cmd_special_alloc(h);
2652 	if (c == NULL) {
2653 		status = -ENOMEM;
2654 		goto cleanup1;
2655 	}
2656 	c->cmd_type = CMD_IOCTL_PEND;
2657 	c->Header.ReplyQueue = 0;
2658 	c->Header.SGList = c->Header.SGTotal = sg_used;
2659 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2660 	c->Header.Tag.lower = c->busaddr;
2661 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2662 	if (ioc->buf_size > 0) {
2663 		int i;
2664 		for (i = 0; i < sg_used; i++) {
2665 			temp64.val = pci_map_single(h->pdev, buff[i],
2666 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2667 			c->SG[i].Addr.lower = temp64.val32.lower;
2668 			c->SG[i].Addr.upper = temp64.val32.upper;
2669 			c->SG[i].Len = buff_size[i];
2670 			/* we are not chaining */
2671 			c->SG[i].Ext = 0;
2672 		}
2673 	}
2674 	hpsa_scsi_do_simple_cmd_core(h, c);
2675 	if (sg_used)
2676 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2677 	check_ioctl_unit_attention(h, c);
2678 	/* Copy the error information out */
2679 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2680 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2681 		cmd_special_free(h, c);
2682 		status = -EFAULT;
2683 		goto cleanup1;
2684 	}
2685 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2686 		/* Copy the data out of the buffer we created */
2687 		BYTE __user *ptr = ioc->buf;
2688 		for (i = 0; i < sg_used; i++) {
2689 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2690 				cmd_special_free(h, c);
2691 				status = -EFAULT;
2692 				goto cleanup1;
2693 			}
2694 			ptr += buff_size[i];
2695 		}
2696 	}
2697 	cmd_special_free(h, c);
2698 	status = 0;
2699 cleanup1:
2700 	if (buff) {
2701 		for (i = 0; i < sg_used; i++)
2702 			kfree(buff[i]);
2703 		kfree(buff);
2704 	}
2705 	kfree(buff_size);
2706 	kfree(ioc);
2707 	return status;
2708 }
2709 
2710 static void check_ioctl_unit_attention(struct ctlr_info *h,
2711 	struct CommandList *c)
2712 {
2713 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2714 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2715 		(void) check_for_unit_attention(h, c);
2716 }
2717 /*
2718  * ioctl
2719  */
2720 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2721 {
2722 	struct ctlr_info *h;
2723 	void __user *argp = (void __user *)arg;
2724 
2725 	h = sdev_to_hba(dev);
2726 
2727 	switch (cmd) {
2728 	case CCISS_DEREGDISK:
2729 	case CCISS_REGNEWDISK:
2730 	case CCISS_REGNEWD:
2731 		hpsa_scan_start(h->scsi_host);
2732 		return 0;
2733 	case CCISS_GETPCIINFO:
2734 		return hpsa_getpciinfo_ioctl(h, argp);
2735 	case CCISS_GETDRIVVER:
2736 		return hpsa_getdrivver_ioctl(h, argp);
2737 	case CCISS_PASSTHRU:
2738 		return hpsa_passthru_ioctl(h, argp);
2739 	case CCISS_BIG_PASSTHRU:
2740 		return hpsa_big_passthru_ioctl(h, argp);
2741 	default:
2742 		return -ENOTTY;
2743 	}
2744 }
2745 
2746 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2747 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2748 	int cmd_type)
2749 {
2750 	int pci_dir = XFER_NONE;
2751 
2752 	c->cmd_type = CMD_IOCTL_PEND;
2753 	c->Header.ReplyQueue = 0;
2754 	if (buff != NULL && size > 0) {
2755 		c->Header.SGList = 1;
2756 		c->Header.SGTotal = 1;
2757 	} else {
2758 		c->Header.SGList = 0;
2759 		c->Header.SGTotal = 0;
2760 	}
2761 	c->Header.Tag.lower = c->busaddr;
2762 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2763 
2764 	c->Request.Type.Type = cmd_type;
2765 	if (cmd_type == TYPE_CMD) {
2766 		switch (cmd) {
2767 		case HPSA_INQUIRY:
2768 			/* are we trying to read a vital product page */
2769 			if (page_code != 0) {
2770 				c->Request.CDB[1] = 0x01;
2771 				c->Request.CDB[2] = page_code;
2772 			}
2773 			c->Request.CDBLen = 6;
2774 			c->Request.Type.Attribute = ATTR_SIMPLE;
2775 			c->Request.Type.Direction = XFER_READ;
2776 			c->Request.Timeout = 0;
2777 			c->Request.CDB[0] = HPSA_INQUIRY;
2778 			c->Request.CDB[4] = size & 0xFF;
2779 			break;
2780 		case HPSA_REPORT_LOG:
2781 		case HPSA_REPORT_PHYS:
2782 			/* Talking to controller so It's a physical command
2783 			   mode = 00 target = 0.  Nothing to write.
2784 			 */
2785 			c->Request.CDBLen = 12;
2786 			c->Request.Type.Attribute = ATTR_SIMPLE;
2787 			c->Request.Type.Direction = XFER_READ;
2788 			c->Request.Timeout = 0;
2789 			c->Request.CDB[0] = cmd;
2790 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2791 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2792 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2793 			c->Request.CDB[9] = size & 0xFF;
2794 			break;
2795 		case HPSA_CACHE_FLUSH:
2796 			c->Request.CDBLen = 12;
2797 			c->Request.Type.Attribute = ATTR_SIMPLE;
2798 			c->Request.Type.Direction = XFER_WRITE;
2799 			c->Request.Timeout = 0;
2800 			c->Request.CDB[0] = BMIC_WRITE;
2801 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2802 			break;
2803 		case TEST_UNIT_READY:
2804 			c->Request.CDBLen = 6;
2805 			c->Request.Type.Attribute = ATTR_SIMPLE;
2806 			c->Request.Type.Direction = XFER_NONE;
2807 			c->Request.Timeout = 0;
2808 			break;
2809 		default:
2810 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2811 			BUG();
2812 			return;
2813 		}
2814 	} else if (cmd_type == TYPE_MSG) {
2815 		switch (cmd) {
2816 
2817 		case  HPSA_DEVICE_RESET_MSG:
2818 			c->Request.CDBLen = 16;
2819 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2820 			c->Request.Type.Attribute = ATTR_SIMPLE;
2821 			c->Request.Type.Direction = XFER_NONE;
2822 			c->Request.Timeout = 0; /* Don't time out */
2823 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2824 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2825 			/* If bytes 4-7 are zero, it means reset the */
2826 			/* LunID device */
2827 			c->Request.CDB[4] = 0x00;
2828 			c->Request.CDB[5] = 0x00;
2829 			c->Request.CDB[6] = 0x00;
2830 			c->Request.CDB[7] = 0x00;
2831 		break;
2832 
2833 		default:
2834 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2835 				cmd);
2836 			BUG();
2837 		}
2838 	} else {
2839 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2840 		BUG();
2841 	}
2842 
2843 	switch (c->Request.Type.Direction) {
2844 	case XFER_READ:
2845 		pci_dir = PCI_DMA_FROMDEVICE;
2846 		break;
2847 	case XFER_WRITE:
2848 		pci_dir = PCI_DMA_TODEVICE;
2849 		break;
2850 	case XFER_NONE:
2851 		pci_dir = PCI_DMA_NONE;
2852 		break;
2853 	default:
2854 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2855 	}
2856 
2857 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2858 
2859 	return;
2860 }
2861 
2862 /*
2863  * Map (physical) PCI mem into (virtual) kernel space
2864  */
2865 static void __iomem *remap_pci_mem(ulong base, ulong size)
2866 {
2867 	ulong page_base = ((ulong) base) & PAGE_MASK;
2868 	ulong page_offs = ((ulong) base) - page_base;
2869 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2870 
2871 	return page_remapped ? (page_remapped + page_offs) : NULL;
2872 }
2873 
2874 /* Takes cmds off the submission queue and sends them to the hardware,
2875  * then puts them on the queue of cmds waiting for completion.
2876  */
2877 static void start_io(struct ctlr_info *h)
2878 {
2879 	struct CommandList *c;
2880 
2881 	while (!list_empty(&h->reqQ)) {
2882 		c = list_entry(h->reqQ.next, struct CommandList, list);
2883 		/* can't do anything if fifo is full */
2884 		if ((h->access.fifo_full(h))) {
2885 			dev_warn(&h->pdev->dev, "fifo full\n");
2886 			break;
2887 		}
2888 
2889 		/* Get the first entry from the Request Q */
2890 		removeQ(c);
2891 		h->Qdepth--;
2892 
2893 		/* Tell the controller execute command */
2894 		h->access.submit_command(h, c);
2895 
2896 		/* Put job onto the completed Q */
2897 		addQ(&h->cmpQ, c);
2898 	}
2899 }
2900 
2901 static inline unsigned long get_next_completion(struct ctlr_info *h)
2902 {
2903 	return h->access.command_completed(h);
2904 }
2905 
2906 static inline bool interrupt_pending(struct ctlr_info *h)
2907 {
2908 	return h->access.intr_pending(h);
2909 }
2910 
2911 static inline long interrupt_not_for_us(struct ctlr_info *h)
2912 {
2913 	return (h->access.intr_pending(h) == 0) ||
2914 		(h->interrupts_enabled == 0);
2915 }
2916 
2917 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2918 	u32 raw_tag)
2919 {
2920 	if (unlikely(tag_index >= h->nr_cmds)) {
2921 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2922 		return 1;
2923 	}
2924 	return 0;
2925 }
2926 
2927 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2928 {
2929 	removeQ(c);
2930 	if (likely(c->cmd_type == CMD_SCSI))
2931 		complete_scsi_command(c);
2932 	else if (c->cmd_type == CMD_IOCTL_PEND)
2933 		complete(c->waiting);
2934 }
2935 
2936 static inline u32 hpsa_tag_contains_index(u32 tag)
2937 {
2938 	return tag & DIRECT_LOOKUP_BIT;
2939 }
2940 
2941 static inline u32 hpsa_tag_to_index(u32 tag)
2942 {
2943 	return tag >> DIRECT_LOOKUP_SHIFT;
2944 }
2945 
2946 
2947 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2948 {
2949 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2950 #define HPSA_SIMPLE_ERROR_BITS 0x03
2951 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2952 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
2953 	return tag & ~HPSA_PERF_ERROR_BITS;
2954 }
2955 
2956 /* process completion of an indexed ("direct lookup") command */
2957 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2958 	u32 raw_tag)
2959 {
2960 	u32 tag_index;
2961 	struct CommandList *c;
2962 
2963 	tag_index = hpsa_tag_to_index(raw_tag);
2964 	if (bad_tag(h, tag_index, raw_tag))
2965 		return next_command(h);
2966 	c = h->cmd_pool + tag_index;
2967 	finish_cmd(c, raw_tag);
2968 	return next_command(h);
2969 }
2970 
2971 /* process completion of a non-indexed command */
2972 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2973 	u32 raw_tag)
2974 {
2975 	u32 tag;
2976 	struct CommandList *c = NULL;
2977 
2978 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
2979 	list_for_each_entry(c, &h->cmpQ, list) {
2980 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2981 			finish_cmd(c, raw_tag);
2982 			return next_command(h);
2983 		}
2984 	}
2985 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2986 	return next_command(h);
2987 }
2988 
2989 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2990 {
2991 	struct ctlr_info *h = dev_id;
2992 	unsigned long flags;
2993 	u32 raw_tag;
2994 
2995 	if (interrupt_not_for_us(h))
2996 		return IRQ_NONE;
2997 	spin_lock_irqsave(&h->lock, flags);
2998 	while (interrupt_pending(h)) {
2999 		raw_tag = get_next_completion(h);
3000 		while (raw_tag != FIFO_EMPTY) {
3001 			if (hpsa_tag_contains_index(raw_tag))
3002 				raw_tag = process_indexed_cmd(h, raw_tag);
3003 			else
3004 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3005 		}
3006 	}
3007 	spin_unlock_irqrestore(&h->lock, flags);
3008 	return IRQ_HANDLED;
3009 }
3010 
3011 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3012 {
3013 	struct ctlr_info *h = dev_id;
3014 	unsigned long flags;
3015 	u32 raw_tag;
3016 
3017 	spin_lock_irqsave(&h->lock, flags);
3018 	raw_tag = get_next_completion(h);
3019 	while (raw_tag != FIFO_EMPTY) {
3020 		if (hpsa_tag_contains_index(raw_tag))
3021 			raw_tag = process_indexed_cmd(h, raw_tag);
3022 		else
3023 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3024 	}
3025 	spin_unlock_irqrestore(&h->lock, flags);
3026 	return IRQ_HANDLED;
3027 }
3028 
3029 /* Send a message CDB to the firmware. Careful, this only works
3030  * in simple mode, not performant mode due to the tag lookup.
3031  * We only ever use this immediately after a controller reset.
3032  */
3033 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3034 						unsigned char type)
3035 {
3036 	struct Command {
3037 		struct CommandListHeader CommandHeader;
3038 		struct RequestBlock Request;
3039 		struct ErrDescriptor ErrorDescriptor;
3040 	};
3041 	struct Command *cmd;
3042 	static const size_t cmd_sz = sizeof(*cmd) +
3043 					sizeof(cmd->ErrorDescriptor);
3044 	dma_addr_t paddr64;
3045 	uint32_t paddr32, tag;
3046 	void __iomem *vaddr;
3047 	int i, err;
3048 
3049 	vaddr = pci_ioremap_bar(pdev, 0);
3050 	if (vaddr == NULL)
3051 		return -ENOMEM;
3052 
3053 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3054 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3055 	 * memory.
3056 	 */
3057 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3058 	if (err) {
3059 		iounmap(vaddr);
3060 		return -ENOMEM;
3061 	}
3062 
3063 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3064 	if (cmd == NULL) {
3065 		iounmap(vaddr);
3066 		return -ENOMEM;
3067 	}
3068 
3069 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3070 	 * although there's no guarantee, we assume that the address is at
3071 	 * least 4-byte aligned (most likely, it's page-aligned).
3072 	 */
3073 	paddr32 = paddr64;
3074 
3075 	cmd->CommandHeader.ReplyQueue = 0;
3076 	cmd->CommandHeader.SGList = 0;
3077 	cmd->CommandHeader.SGTotal = 0;
3078 	cmd->CommandHeader.Tag.lower = paddr32;
3079 	cmd->CommandHeader.Tag.upper = 0;
3080 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3081 
3082 	cmd->Request.CDBLen = 16;
3083 	cmd->Request.Type.Type = TYPE_MSG;
3084 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3085 	cmd->Request.Type.Direction = XFER_NONE;
3086 	cmd->Request.Timeout = 0; /* Don't time out */
3087 	cmd->Request.CDB[0] = opcode;
3088 	cmd->Request.CDB[1] = type;
3089 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3090 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3091 	cmd->ErrorDescriptor.Addr.upper = 0;
3092 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3093 
3094 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3095 
3096 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3097 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3098 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3099 			break;
3100 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3101 	}
3102 
3103 	iounmap(vaddr);
3104 
3105 	/* we leak the DMA buffer here ... no choice since the controller could
3106 	 *  still complete the command.
3107 	 */
3108 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3109 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3110 			opcode, type);
3111 		return -ETIMEDOUT;
3112 	}
3113 
3114 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3115 
3116 	if (tag & HPSA_ERROR_BIT) {
3117 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3118 			opcode, type);
3119 		return -EIO;
3120 	}
3121 
3122 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3123 		opcode, type);
3124 	return 0;
3125 }
3126 
3127 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3128 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3129 
3130 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3131 	void * __iomem vaddr, bool use_doorbell)
3132 {
3133 	u16 pmcsr;
3134 	int pos;
3135 
3136 	if (use_doorbell) {
3137 		/* For everything after the P600, the PCI power state method
3138 		 * of resetting the controller doesn't work, so we have this
3139 		 * other way using the doorbell register.
3140 		 */
3141 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3142 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3143 		msleep(1000);
3144 	} else { /* Try to do it the PCI power state way */
3145 
3146 		/* Quoting from the Open CISS Specification: "The Power
3147 		 * Management Control/Status Register (CSR) controls the power
3148 		 * state of the device.  The normal operating state is D0,
3149 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3150 		 * the controller, place the interface device in D3 then to D0,
3151 		 * this causes a secondary PCI reset which will reset the
3152 		 * controller." */
3153 
3154 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3155 		if (pos == 0) {
3156 			dev_err(&pdev->dev,
3157 				"hpsa_reset_controller: "
3158 				"PCI PM not supported\n");
3159 			return -ENODEV;
3160 		}
3161 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3162 		/* enter the D3hot power management state */
3163 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3164 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3165 		pmcsr |= PCI_D3hot;
3166 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3167 
3168 		msleep(500);
3169 
3170 		/* enter the D0 power management state */
3171 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3172 		pmcsr |= PCI_D0;
3173 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3174 
3175 		msleep(500);
3176 	}
3177 	return 0;
3178 }
3179 
3180 static __devinit void init_driver_version(char *driver_version, int len)
3181 {
3182 	memset(driver_version, 0, len);
3183 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3184 }
3185 
3186 static __devinit int write_driver_ver_to_cfgtable(
3187 	struct CfgTable __iomem *cfgtable)
3188 {
3189 	char *driver_version;
3190 	int i, size = sizeof(cfgtable->driver_version);
3191 
3192 	driver_version = kmalloc(size, GFP_KERNEL);
3193 	if (!driver_version)
3194 		return -ENOMEM;
3195 
3196 	init_driver_version(driver_version, size);
3197 	for (i = 0; i < size; i++)
3198 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3199 	kfree(driver_version);
3200 	return 0;
3201 }
3202 
3203 static __devinit void read_driver_ver_from_cfgtable(
3204 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3205 {
3206 	int i;
3207 
3208 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3209 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3210 }
3211 
3212 static __devinit int controller_reset_failed(
3213 	struct CfgTable __iomem *cfgtable)
3214 {
3215 
3216 	char *driver_ver, *old_driver_ver;
3217 	int rc, size = sizeof(cfgtable->driver_version);
3218 
3219 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3220 	if (!old_driver_ver)
3221 		return -ENOMEM;
3222 	driver_ver = old_driver_ver + size;
3223 
3224 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3225 	 * should have been changed, otherwise we know the reset failed.
3226 	 */
3227 	init_driver_version(old_driver_ver, size);
3228 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3229 	rc = !memcmp(driver_ver, old_driver_ver, size);
3230 	kfree(old_driver_ver);
3231 	return rc;
3232 }
3233 /* This does a hard reset of the controller using PCI power management
3234  * states or the using the doorbell register.
3235  */
3236 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3237 {
3238 	u64 cfg_offset;
3239 	u32 cfg_base_addr;
3240 	u64 cfg_base_addr_index;
3241 	void __iomem *vaddr;
3242 	unsigned long paddr;
3243 	u32 misc_fw_support;
3244 	int rc;
3245 	struct CfgTable __iomem *cfgtable;
3246 	bool use_doorbell;
3247 	u32 board_id;
3248 	u16 command_register;
3249 
3250 	/* For controllers as old as the P600, this is very nearly
3251 	 * the same thing as
3252 	 *
3253 	 * pci_save_state(pci_dev);
3254 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3255 	 * pci_set_power_state(pci_dev, PCI_D0);
3256 	 * pci_restore_state(pci_dev);
3257 	 *
3258 	 * For controllers newer than the P600, the pci power state
3259 	 * method of resetting doesn't work so we have another way
3260 	 * using the doorbell register.
3261 	 */
3262 
3263 	/* Exclude 640x boards.  These are two pci devices in one slot
3264 	 * which share a battery backed cache module.  One controls the
3265 	 * cache, the other accesses the cache through the one that controls
3266 	 * it.  If we reset the one controlling the cache, the other will
3267 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3268 	 * The 640x isn't really supported by hpsa anyway.
3269 	 */
3270 	rc = hpsa_lookup_board_id(pdev, &board_id);
3271 	if (rc < 0) {
3272 		dev_warn(&pdev->dev, "Not resetting device.\n");
3273 		return -ENODEV;
3274 	}
3275 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3276 		return -ENOTSUPP;
3277 
3278 	/* Save the PCI command register */
3279 	pci_read_config_word(pdev, 4, &command_register);
3280 	/* Turn the board off.  This is so that later pci_restore_state()
3281 	 * won't turn the board on before the rest of config space is ready.
3282 	 */
3283 	pci_disable_device(pdev);
3284 	pci_save_state(pdev);
3285 
3286 	/* find the first memory BAR, so we can find the cfg table */
3287 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3288 	if (rc)
3289 		return rc;
3290 	vaddr = remap_pci_mem(paddr, 0x250);
3291 	if (!vaddr)
3292 		return -ENOMEM;
3293 
3294 	/* find cfgtable in order to check if reset via doorbell is supported */
3295 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3296 					&cfg_base_addr_index, &cfg_offset);
3297 	if (rc)
3298 		goto unmap_vaddr;
3299 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3300 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3301 	if (!cfgtable) {
3302 		rc = -ENOMEM;
3303 		goto unmap_vaddr;
3304 	}
3305 	rc = write_driver_ver_to_cfgtable(cfgtable);
3306 	if (rc)
3307 		goto unmap_vaddr;
3308 
3309 	/* If reset via doorbell register is supported, use that. */
3310 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3311 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3312 
3313 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3314 	if (rc)
3315 		goto unmap_cfgtable;
3316 
3317 	pci_restore_state(pdev);
3318 	rc = pci_enable_device(pdev);
3319 	if (rc) {
3320 		dev_warn(&pdev->dev, "failed to enable device.\n");
3321 		goto unmap_cfgtable;
3322 	}
3323 	pci_write_config_word(pdev, 4, command_register);
3324 
3325 	/* Some devices (notably the HP Smart Array 5i Controller)
3326 	   need a little pause here */
3327 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3328 
3329 	/* Wait for board to become not ready, then ready. */
3330 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3331 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3332 	if (rc)
3333 		dev_warn(&pdev->dev,
3334 			"failed waiting for board to reset\n");
3335 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3336 	if (rc) {
3337 		dev_warn(&pdev->dev,
3338 			"failed waiting for board to become ready\n");
3339 		goto unmap_cfgtable;
3340 	}
3341 
3342 	rc = controller_reset_failed(vaddr);
3343 	if (rc < 0)
3344 		goto unmap_cfgtable;
3345 	if (rc) {
3346 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3347 			" Ignoring controller.\n");
3348 		rc = -ENODEV;
3349 	} else {
3350 		dev_info(&pdev->dev, "board ready.\n");
3351 	}
3352 
3353 unmap_cfgtable:
3354 	iounmap(cfgtable);
3355 
3356 unmap_vaddr:
3357 	iounmap(vaddr);
3358 	return rc;
3359 }
3360 
3361 /*
3362  *  We cannot read the structure directly, for portability we must use
3363  *   the io functions.
3364  *   This is for debug only.
3365  */
3366 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3367 {
3368 #ifdef HPSA_DEBUG
3369 	int i;
3370 	char temp_name[17];
3371 
3372 	dev_info(dev, "Controller Configuration information\n");
3373 	dev_info(dev, "------------------------------------\n");
3374 	for (i = 0; i < 4; i++)
3375 		temp_name[i] = readb(&(tb->Signature[i]));
3376 	temp_name[4] = '\0';
3377 	dev_info(dev, "   Signature = %s\n", temp_name);
3378 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3379 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3380 	       readl(&(tb->TransportSupport)));
3381 	dev_info(dev, "   Transport methods active = 0x%x\n",
3382 	       readl(&(tb->TransportActive)));
3383 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3384 	       readl(&(tb->HostWrite.TransportRequest)));
3385 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3386 	       readl(&(tb->HostWrite.CoalIntDelay)));
3387 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3388 	       readl(&(tb->HostWrite.CoalIntCount)));
3389 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3390 	       readl(&(tb->CmdsOutMax)));
3391 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3392 	for (i = 0; i < 16; i++)
3393 		temp_name[i] = readb(&(tb->ServerName[i]));
3394 	temp_name[16] = '\0';
3395 	dev_info(dev, "   Server Name = %s\n", temp_name);
3396 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3397 		readl(&(tb->HeartBeat)));
3398 #endif				/* HPSA_DEBUG */
3399 }
3400 
3401 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3402 {
3403 	int i, offset, mem_type, bar_type;
3404 
3405 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3406 		return 0;
3407 	offset = 0;
3408 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3409 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3410 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3411 			offset += 4;
3412 		else {
3413 			mem_type = pci_resource_flags(pdev, i) &
3414 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3415 			switch (mem_type) {
3416 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3417 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3418 				offset += 4;	/* 32 bit */
3419 				break;
3420 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3421 				offset += 8;
3422 				break;
3423 			default:	/* reserved in PCI 2.2 */
3424 				dev_warn(&pdev->dev,
3425 				       "base address is invalid\n");
3426 				return -1;
3427 				break;
3428 			}
3429 		}
3430 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3431 			return i + 1;
3432 	}
3433 	return -1;
3434 }
3435 
3436 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3437  * controllers that are capable. If not, we use IO-APIC mode.
3438  */
3439 
3440 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3441 {
3442 #ifdef CONFIG_PCI_MSI
3443 	int err;
3444 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3445 	{0, 2}, {0, 3}
3446 	};
3447 
3448 	/* Some boards advertise MSI but don't really support it */
3449 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3450 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3451 		goto default_int_mode;
3452 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3453 		dev_info(&h->pdev->dev, "MSIX\n");
3454 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3455 		if (!err) {
3456 			h->intr[0] = hpsa_msix_entries[0].vector;
3457 			h->intr[1] = hpsa_msix_entries[1].vector;
3458 			h->intr[2] = hpsa_msix_entries[2].vector;
3459 			h->intr[3] = hpsa_msix_entries[3].vector;
3460 			h->msix_vector = 1;
3461 			return;
3462 		}
3463 		if (err > 0) {
3464 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3465 			       "available\n", err);
3466 			goto default_int_mode;
3467 		} else {
3468 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3469 			       err);
3470 			goto default_int_mode;
3471 		}
3472 	}
3473 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3474 		dev_info(&h->pdev->dev, "MSI\n");
3475 		if (!pci_enable_msi(h->pdev))
3476 			h->msi_vector = 1;
3477 		else
3478 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3479 	}
3480 default_int_mode:
3481 #endif				/* CONFIG_PCI_MSI */
3482 	/* if we get here we're going to use the default interrupt mode */
3483 	h->intr[h->intr_mode] = h->pdev->irq;
3484 }
3485 
3486 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3487 {
3488 	int i;
3489 	u32 subsystem_vendor_id, subsystem_device_id;
3490 
3491 	subsystem_vendor_id = pdev->subsystem_vendor;
3492 	subsystem_device_id = pdev->subsystem_device;
3493 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3494 		    subsystem_vendor_id;
3495 
3496 	for (i = 0; i < ARRAY_SIZE(products); i++)
3497 		if (*board_id == products[i].board_id)
3498 			return i;
3499 
3500 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3501 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3502 		!hpsa_allow_any) {
3503 		dev_warn(&pdev->dev, "unrecognized board ID: "
3504 			"0x%08x, ignoring.\n", *board_id);
3505 			return -ENODEV;
3506 	}
3507 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3508 }
3509 
3510 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3511 {
3512 	u16 command;
3513 
3514 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3515 	return ((command & PCI_COMMAND_MEMORY) == 0);
3516 }
3517 
3518 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3519 	unsigned long *memory_bar)
3520 {
3521 	int i;
3522 
3523 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3524 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3525 			/* addressing mode bits already removed */
3526 			*memory_bar = pci_resource_start(pdev, i);
3527 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3528 				*memory_bar);
3529 			return 0;
3530 		}
3531 	dev_warn(&pdev->dev, "no memory BAR found\n");
3532 	return -ENODEV;
3533 }
3534 
3535 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3536 	void __iomem *vaddr, int wait_for_ready)
3537 {
3538 	int i, iterations;
3539 	u32 scratchpad;
3540 	if (wait_for_ready)
3541 		iterations = HPSA_BOARD_READY_ITERATIONS;
3542 	else
3543 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3544 
3545 	for (i = 0; i < iterations; i++) {
3546 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3547 		if (wait_for_ready) {
3548 			if (scratchpad == HPSA_FIRMWARE_READY)
3549 				return 0;
3550 		} else {
3551 			if (scratchpad != HPSA_FIRMWARE_READY)
3552 				return 0;
3553 		}
3554 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3555 	}
3556 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3557 	return -ENODEV;
3558 }
3559 
3560 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3561 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3562 	u64 *cfg_offset)
3563 {
3564 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3565 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3566 	*cfg_base_addr &= (u32) 0x0000ffff;
3567 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3568 	if (*cfg_base_addr_index == -1) {
3569 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3570 		return -ENODEV;
3571 	}
3572 	return 0;
3573 }
3574 
3575 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3576 {
3577 	u64 cfg_offset;
3578 	u32 cfg_base_addr;
3579 	u64 cfg_base_addr_index;
3580 	u32 trans_offset;
3581 	int rc;
3582 
3583 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3584 		&cfg_base_addr_index, &cfg_offset);
3585 	if (rc)
3586 		return rc;
3587 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3588 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3589 	if (!h->cfgtable)
3590 		return -ENOMEM;
3591 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3592 	if (rc)
3593 		return rc;
3594 	/* Find performant mode table. */
3595 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3596 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3597 				cfg_base_addr_index)+cfg_offset+trans_offset,
3598 				sizeof(*h->transtable));
3599 	if (!h->transtable)
3600 		return -ENOMEM;
3601 	return 0;
3602 }
3603 
3604 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3605 {
3606 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3607 
3608 	/* Limit commands in memory limited kdump scenario. */
3609 	if (reset_devices && h->max_commands > 32)
3610 		h->max_commands = 32;
3611 
3612 	if (h->max_commands < 16) {
3613 		dev_warn(&h->pdev->dev, "Controller reports "
3614 			"max supported commands of %d, an obvious lie. "
3615 			"Using 16.  Ensure that firmware is up to date.\n",
3616 			h->max_commands);
3617 		h->max_commands = 16;
3618 	}
3619 }
3620 
3621 /* Interrogate the hardware for some limits:
3622  * max commands, max SG elements without chaining, and with chaining,
3623  * SG chain block size, etc.
3624  */
3625 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3626 {
3627 	hpsa_get_max_perf_mode_cmds(h);
3628 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3629 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3630 	/*
3631 	 * Limit in-command s/g elements to 32 save dma'able memory.
3632 	 * Howvever spec says if 0, use 31
3633 	 */
3634 	h->max_cmd_sg_entries = 31;
3635 	if (h->maxsgentries > 512) {
3636 		h->max_cmd_sg_entries = 32;
3637 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3638 		h->maxsgentries--; /* save one for chain pointer */
3639 	} else {
3640 		h->maxsgentries = 31; /* default to traditional values */
3641 		h->chainsize = 0;
3642 	}
3643 }
3644 
3645 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3646 {
3647 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3648 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3649 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3650 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3651 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3652 		return false;
3653 	}
3654 	return true;
3655 }
3656 
3657 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3658 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3659 {
3660 #ifdef CONFIG_X86
3661 	u32 prefetch;
3662 
3663 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3664 	prefetch |= 0x100;
3665 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3666 #endif
3667 }
3668 
3669 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3670  * in a prefetch beyond physical memory.
3671  */
3672 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3673 {
3674 	u32 dma_prefetch;
3675 
3676 	if (h->board_id != 0x3225103C)
3677 		return;
3678 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3679 	dma_prefetch |= 0x8000;
3680 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3681 }
3682 
3683 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3684 {
3685 	int i;
3686 	u32 doorbell_value;
3687 	unsigned long flags;
3688 
3689 	/* under certain very rare conditions, this can take awhile.
3690 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3691 	 * as we enter this code.)
3692 	 */
3693 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3694 		spin_lock_irqsave(&h->lock, flags);
3695 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3696 		spin_unlock_irqrestore(&h->lock, flags);
3697 		if (!(doorbell_value & CFGTBL_ChangeReq))
3698 			break;
3699 		/* delay and try again */
3700 		usleep_range(10000, 20000);
3701 	}
3702 }
3703 
3704 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3705 {
3706 	u32 trans_support;
3707 
3708 	trans_support = readl(&(h->cfgtable->TransportSupport));
3709 	if (!(trans_support & SIMPLE_MODE))
3710 		return -ENOTSUPP;
3711 
3712 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3713 	/* Update the field, and then ring the doorbell */
3714 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3715 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3716 	hpsa_wait_for_mode_change_ack(h);
3717 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3718 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3719 		dev_warn(&h->pdev->dev,
3720 			"unable to get board into simple mode\n");
3721 		return -ENODEV;
3722 	}
3723 	h->transMethod = CFGTBL_Trans_Simple;
3724 	return 0;
3725 }
3726 
3727 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3728 {
3729 	int prod_index, err;
3730 
3731 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3732 	if (prod_index < 0)
3733 		return -ENODEV;
3734 	h->product_name = products[prod_index].product_name;
3735 	h->access = *(products[prod_index].access);
3736 
3737 	if (hpsa_board_disabled(h->pdev)) {
3738 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3739 		return -ENODEV;
3740 	}
3741 	err = pci_enable_device(h->pdev);
3742 	if (err) {
3743 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3744 		return err;
3745 	}
3746 
3747 	err = pci_request_regions(h->pdev, "hpsa");
3748 	if (err) {
3749 		dev_err(&h->pdev->dev,
3750 			"cannot obtain PCI resources, aborting\n");
3751 		return err;
3752 	}
3753 	hpsa_interrupt_mode(h);
3754 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3755 	if (err)
3756 		goto err_out_free_res;
3757 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3758 	if (!h->vaddr) {
3759 		err = -ENOMEM;
3760 		goto err_out_free_res;
3761 	}
3762 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3763 	if (err)
3764 		goto err_out_free_res;
3765 	err = hpsa_find_cfgtables(h);
3766 	if (err)
3767 		goto err_out_free_res;
3768 	hpsa_find_board_params(h);
3769 
3770 	if (!hpsa_CISS_signature_present(h)) {
3771 		err = -ENODEV;
3772 		goto err_out_free_res;
3773 	}
3774 	hpsa_enable_scsi_prefetch(h);
3775 	hpsa_p600_dma_prefetch_quirk(h);
3776 	err = hpsa_enter_simple_mode(h);
3777 	if (err)
3778 		goto err_out_free_res;
3779 	return 0;
3780 
3781 err_out_free_res:
3782 	if (h->transtable)
3783 		iounmap(h->transtable);
3784 	if (h->cfgtable)
3785 		iounmap(h->cfgtable);
3786 	if (h->vaddr)
3787 		iounmap(h->vaddr);
3788 	/*
3789 	 * Deliberately omit pci_disable_device(): it does something nasty to
3790 	 * Smart Array controllers that pci_enable_device does not undo
3791 	 */
3792 	pci_release_regions(h->pdev);
3793 	return err;
3794 }
3795 
3796 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3797 {
3798 	int rc;
3799 
3800 #define HBA_INQUIRY_BYTE_COUNT 64
3801 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3802 	if (!h->hba_inquiry_data)
3803 		return;
3804 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3805 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3806 	if (rc != 0) {
3807 		kfree(h->hba_inquiry_data);
3808 		h->hba_inquiry_data = NULL;
3809 	}
3810 }
3811 
3812 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3813 {
3814 	int rc, i;
3815 
3816 	if (!reset_devices)
3817 		return 0;
3818 
3819 	/* Reset the controller with a PCI power-cycle or via doorbell */
3820 	rc = hpsa_kdump_hard_reset_controller(pdev);
3821 
3822 	/* -ENOTSUPP here means we cannot reset the controller
3823 	 * but it's already (and still) up and running in
3824 	 * "performant mode".  Or, it might be 640x, which can't reset
3825 	 * due to concerns about shared bbwc between 6402/6404 pair.
3826 	 */
3827 	if (rc == -ENOTSUPP)
3828 		return 0; /* just try to do the kdump anyhow. */
3829 	if (rc)
3830 		return -ENODEV;
3831 
3832 	/* Now try to get the controller to respond to a no-op */
3833 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3834 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3835 		if (hpsa_noop(pdev) == 0)
3836 			break;
3837 		else
3838 			dev_warn(&pdev->dev, "no-op failed%s\n",
3839 					(i < 11 ? "; re-trying" : ""));
3840 	}
3841 	return 0;
3842 }
3843 
3844 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3845 {
3846 	h->cmd_pool_bits = kzalloc(
3847 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3848 		sizeof(unsigned long), GFP_KERNEL);
3849 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3850 		    h->nr_cmds * sizeof(*h->cmd_pool),
3851 		    &(h->cmd_pool_dhandle));
3852 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3853 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3854 		    &(h->errinfo_pool_dhandle));
3855 	if ((h->cmd_pool_bits == NULL)
3856 	    || (h->cmd_pool == NULL)
3857 	    || (h->errinfo_pool == NULL)) {
3858 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3859 		return -ENOMEM;
3860 	}
3861 	return 0;
3862 }
3863 
3864 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3865 {
3866 	kfree(h->cmd_pool_bits);
3867 	if (h->cmd_pool)
3868 		pci_free_consistent(h->pdev,
3869 			    h->nr_cmds * sizeof(struct CommandList),
3870 			    h->cmd_pool, h->cmd_pool_dhandle);
3871 	if (h->errinfo_pool)
3872 		pci_free_consistent(h->pdev,
3873 			    h->nr_cmds * sizeof(struct ErrorInfo),
3874 			    h->errinfo_pool,
3875 			    h->errinfo_pool_dhandle);
3876 }
3877 
3878 static int hpsa_request_irq(struct ctlr_info *h,
3879 	irqreturn_t (*msixhandler)(int, void *),
3880 	irqreturn_t (*intxhandler)(int, void *))
3881 {
3882 	int rc;
3883 
3884 	if (h->msix_vector || h->msi_vector)
3885 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
3886 				IRQF_DISABLED, h->devname, h);
3887 	else
3888 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
3889 				IRQF_DISABLED, h->devname, h);
3890 	if (rc) {
3891 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
3892 		       h->intr[h->intr_mode], h->devname);
3893 		return -ENODEV;
3894 	}
3895 	return 0;
3896 }
3897 
3898 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3899 				    const struct pci_device_id *ent)
3900 {
3901 	int dac, rc;
3902 	struct ctlr_info *h;
3903 
3904 	if (number_of_controllers == 0)
3905 		printk(KERN_INFO DRIVER_NAME "\n");
3906 
3907 	rc = hpsa_init_reset_devices(pdev);
3908 	if (rc)
3909 		return rc;
3910 
3911 	/* Command structures must be aligned on a 32-byte boundary because
3912 	 * the 5 lower bits of the address are used by the hardware. and by
3913 	 * the driver.  See comments in hpsa.h for more info.
3914 	 */
3915 #define COMMANDLIST_ALIGNMENT 32
3916 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3917 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3918 	if (!h)
3919 		return -ENOMEM;
3920 
3921 	h->pdev = pdev;
3922 	h->busy_initializing = 1;
3923 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3924 	INIT_LIST_HEAD(&h->cmpQ);
3925 	INIT_LIST_HEAD(&h->reqQ);
3926 	spin_lock_init(&h->lock);
3927 	spin_lock_init(&h->scan_lock);
3928 	rc = hpsa_pci_init(h);
3929 	if (rc != 0)
3930 		goto clean1;
3931 
3932 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3933 	h->ctlr = number_of_controllers;
3934 	number_of_controllers++;
3935 
3936 	/* configure PCI DMA stuff */
3937 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3938 	if (rc == 0) {
3939 		dac = 1;
3940 	} else {
3941 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3942 		if (rc == 0) {
3943 			dac = 0;
3944 		} else {
3945 			dev_err(&pdev->dev, "no suitable DMA available\n");
3946 			goto clean1;
3947 		}
3948 	}
3949 
3950 	/* make sure the board interrupts are off */
3951 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3952 
3953 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
3954 		goto clean2;
3955 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3956 	       h->devname, pdev->device,
3957 	       h->intr[h->intr_mode], dac ? "" : " not");
3958 	if (hpsa_allocate_cmd_pool(h))
3959 		goto clean4;
3960 	if (hpsa_allocate_sg_chain_blocks(h))
3961 		goto clean4;
3962 	init_waitqueue_head(&h->scan_wait_queue);
3963 	h->scan_finished = 1; /* no scan currently in progress */
3964 
3965 	pci_set_drvdata(pdev, h);
3966 	h->ndevices = 0;
3967 	h->scsi_host = NULL;
3968 	spin_lock_init(&h->devlock);
3969 
3970 	/* Turn the interrupts on so we can service requests */
3971 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3972 
3973 	hpsa_put_ctlr_into_performant_mode(h);
3974 	hpsa_hba_inquiry(h);
3975 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3976 	h->busy_initializing = 0;
3977 	return 1;
3978 
3979 clean4:
3980 	hpsa_free_sg_chain_blocks(h);
3981 	hpsa_free_cmd_pool(h);
3982 	free_irq(h->intr[h->intr_mode], h);
3983 clean2:
3984 clean1:
3985 	h->busy_initializing = 0;
3986 	kfree(h);
3987 	return rc;
3988 }
3989 
3990 static void hpsa_flush_cache(struct ctlr_info *h)
3991 {
3992 	char *flush_buf;
3993 	struct CommandList *c;
3994 
3995 	flush_buf = kzalloc(4, GFP_KERNEL);
3996 	if (!flush_buf)
3997 		return;
3998 
3999 	c = cmd_special_alloc(h);
4000 	if (!c) {
4001 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4002 		goto out_of_memory;
4003 	}
4004 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4005 		RAID_CTLR_LUNID, TYPE_CMD);
4006 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4007 	if (c->err_info->CommandStatus != 0)
4008 		dev_warn(&h->pdev->dev,
4009 			"error flushing cache on controller\n");
4010 	cmd_special_free(h, c);
4011 out_of_memory:
4012 	kfree(flush_buf);
4013 }
4014 
4015 static void hpsa_shutdown(struct pci_dev *pdev)
4016 {
4017 	struct ctlr_info *h;
4018 
4019 	h = pci_get_drvdata(pdev);
4020 	/* Turn board interrupts off  and send the flush cache command
4021 	 * sendcmd will turn off interrupt, and send the flush...
4022 	 * To write all data in the battery backed cache to disks
4023 	 */
4024 	hpsa_flush_cache(h);
4025 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4026 	free_irq(h->intr[h->intr_mode], h);
4027 #ifdef CONFIG_PCI_MSI
4028 	if (h->msix_vector)
4029 		pci_disable_msix(h->pdev);
4030 	else if (h->msi_vector)
4031 		pci_disable_msi(h->pdev);
4032 #endif				/* CONFIG_PCI_MSI */
4033 }
4034 
4035 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4036 {
4037 	struct ctlr_info *h;
4038 
4039 	if (pci_get_drvdata(pdev) == NULL) {
4040 		dev_err(&pdev->dev, "unable to remove device \n");
4041 		return;
4042 	}
4043 	h = pci_get_drvdata(pdev);
4044 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4045 	hpsa_shutdown(pdev);
4046 	iounmap(h->vaddr);
4047 	iounmap(h->transtable);
4048 	iounmap(h->cfgtable);
4049 	hpsa_free_sg_chain_blocks(h);
4050 	pci_free_consistent(h->pdev,
4051 		h->nr_cmds * sizeof(struct CommandList),
4052 		h->cmd_pool, h->cmd_pool_dhandle);
4053 	pci_free_consistent(h->pdev,
4054 		h->nr_cmds * sizeof(struct ErrorInfo),
4055 		h->errinfo_pool, h->errinfo_pool_dhandle);
4056 	pci_free_consistent(h->pdev, h->reply_pool_size,
4057 		h->reply_pool, h->reply_pool_dhandle);
4058 	kfree(h->cmd_pool_bits);
4059 	kfree(h->blockFetchTable);
4060 	kfree(h->hba_inquiry_data);
4061 	/*
4062 	 * Deliberately omit pci_disable_device(): it does something nasty to
4063 	 * Smart Array controllers that pci_enable_device does not undo
4064 	 */
4065 	pci_release_regions(pdev);
4066 	pci_set_drvdata(pdev, NULL);
4067 	kfree(h);
4068 }
4069 
4070 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4071 	__attribute__((unused)) pm_message_t state)
4072 {
4073 	return -ENOSYS;
4074 }
4075 
4076 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4077 {
4078 	return -ENOSYS;
4079 }
4080 
4081 static struct pci_driver hpsa_pci_driver = {
4082 	.name = "hpsa",
4083 	.probe = hpsa_init_one,
4084 	.remove = __devexit_p(hpsa_remove_one),
4085 	.id_table = hpsa_pci_device_id,	/* id_table */
4086 	.shutdown = hpsa_shutdown,
4087 	.suspend = hpsa_suspend,
4088 	.resume = hpsa_resume,
4089 };
4090 
4091 /* Fill in bucket_map[], given nsgs (the max number of
4092  * scatter gather elements supported) and bucket[],
4093  * which is an array of 8 integers.  The bucket[] array
4094  * contains 8 different DMA transfer sizes (in 16
4095  * byte increments) which the controller uses to fetch
4096  * commands.  This function fills in bucket_map[], which
4097  * maps a given number of scatter gather elements to one of
4098  * the 8 DMA transfer sizes.  The point of it is to allow the
4099  * controller to only do as much DMA as needed to fetch the
4100  * command, with the DMA transfer size encoded in the lower
4101  * bits of the command address.
4102  */
4103 static void  calc_bucket_map(int bucket[], int num_buckets,
4104 	int nsgs, int *bucket_map)
4105 {
4106 	int i, j, b, size;
4107 
4108 	/* even a command with 0 SGs requires 4 blocks */
4109 #define MINIMUM_TRANSFER_BLOCKS 4
4110 #define NUM_BUCKETS 8
4111 	/* Note, bucket_map must have nsgs+1 entries. */
4112 	for (i = 0; i <= nsgs; i++) {
4113 		/* Compute size of a command with i SG entries */
4114 		size = i + MINIMUM_TRANSFER_BLOCKS;
4115 		b = num_buckets; /* Assume the biggest bucket */
4116 		/* Find the bucket that is just big enough */
4117 		for (j = 0; j < 8; j++) {
4118 			if (bucket[j] >= size) {
4119 				b = j;
4120 				break;
4121 			}
4122 		}
4123 		/* for a command with i SG entries, use bucket b. */
4124 		bucket_map[i] = b;
4125 	}
4126 }
4127 
4128 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4129 	u32 use_short_tags)
4130 {
4131 	int i;
4132 	unsigned long register_value;
4133 
4134 	/* This is a bit complicated.  There are 8 registers on
4135 	 * the controller which we write to to tell it 8 different
4136 	 * sizes of commands which there may be.  It's a way of
4137 	 * reducing the DMA done to fetch each command.  Encoded into
4138 	 * each command's tag are 3 bits which communicate to the controller
4139 	 * which of the eight sizes that command fits within.  The size of
4140 	 * each command depends on how many scatter gather entries there are.
4141 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4142 	 * with the number of 16-byte blocks a command of that size requires.
4143 	 * The smallest command possible requires 5 such 16 byte blocks.
4144 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4145 	 * blocks.  Note, this only extends to the SG entries contained
4146 	 * within the command block, and does not extend to chained blocks
4147 	 * of SG elements.   bft[] contains the eight values we write to
4148 	 * the registers.  They are not evenly distributed, but have more
4149 	 * sizes for small commands, and fewer sizes for larger commands.
4150 	 */
4151 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4152 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4153 	/*  5 = 1 s/g entry or 4k
4154 	 *  6 = 2 s/g entry or 8k
4155 	 *  8 = 4 s/g entry or 16k
4156 	 * 10 = 6 s/g entry or 24k
4157 	 */
4158 
4159 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4160 
4161 	/* Controller spec: zero out this buffer. */
4162 	memset(h->reply_pool, 0, h->reply_pool_size);
4163 	h->reply_pool_head = h->reply_pool;
4164 
4165 	bft[7] = h->max_sg_entries + 4;
4166 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4167 	for (i = 0; i < 8; i++)
4168 		writel(bft[i], &h->transtable->BlockFetch[i]);
4169 
4170 	/* size of controller ring buffer */
4171 	writel(h->max_commands, &h->transtable->RepQSize);
4172 	writel(1, &h->transtable->RepQCount);
4173 	writel(0, &h->transtable->RepQCtrAddrLow32);
4174 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4175 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4176 	writel(0, &h->transtable->RepQAddr0High32);
4177 	writel(CFGTBL_Trans_Performant | use_short_tags,
4178 		&(h->cfgtable->HostWrite.TransportRequest));
4179 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4180 	hpsa_wait_for_mode_change_ack(h);
4181 	register_value = readl(&(h->cfgtable->TransportActive));
4182 	if (!(register_value & CFGTBL_Trans_Performant)) {
4183 		dev_warn(&h->pdev->dev, "unable to get board into"
4184 					" performant mode\n");
4185 		return;
4186 	}
4187 	/* Change the access methods to the performant access methods */
4188 	h->access = SA5_performant_access;
4189 	h->transMethod = CFGTBL_Trans_Performant;
4190 }
4191 
4192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4193 {
4194 	u32 trans_support;
4195 
4196 	if (hpsa_simple_mode)
4197 		return;
4198 
4199 	trans_support = readl(&(h->cfgtable->TransportSupport));
4200 	if (!(trans_support & PERFORMANT_MODE))
4201 		return;
4202 
4203 	hpsa_get_max_perf_mode_cmds(h);
4204 	h->max_sg_entries = 32;
4205 	/* Performant mode ring buffer and supporting data structures */
4206 	h->reply_pool_size = h->max_commands * sizeof(u64);
4207 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4208 				&(h->reply_pool_dhandle));
4209 
4210 	/* Need a block fetch table for performant mode */
4211 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4212 				sizeof(u32)), GFP_KERNEL);
4213 
4214 	if ((h->reply_pool == NULL)
4215 		|| (h->blockFetchTable == NULL))
4216 		goto clean_up;
4217 
4218 	hpsa_enter_performant_mode(h,
4219 		trans_support & CFGTBL_Trans_use_short_tags);
4220 
4221 	return;
4222 
4223 clean_up:
4224 	if (h->reply_pool)
4225 		pci_free_consistent(h->pdev, h->reply_pool_size,
4226 			h->reply_pool, h->reply_pool_dhandle);
4227 	kfree(h->blockFetchTable);
4228 }
4229 
4230 /*
4231  *  This is it.  Register the PCI driver information for the cards we control
4232  *  the OS will call our registered routines when it finds one of our cards.
4233  */
4234 static int __init hpsa_init(void)
4235 {
4236 	return pci_register_driver(&hpsa_pci_driver);
4237 }
4238 
4239 static void __exit hpsa_cleanup(void)
4240 {
4241 	pci_unregister_driver(&hpsa_pci_driver);
4242 }
4243 
4244 module_init(hpsa_init);
4245 module_exit(hpsa_cleanup);
4246