xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 9143a961)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static ssize_t raid_level_show(struct device *dev,
159 	struct device_attribute *attr, char *buf);
160 static ssize_t lunid_show(struct device *dev,
161 	struct device_attribute *attr, char *buf);
162 static ssize_t unique_id_show(struct device *dev,
163 	struct device_attribute *attr, char *buf);
164 static ssize_t host_show_firmware_revision(struct device *dev,
165 	     struct device_attribute *attr, char *buf);
166 static ssize_t host_show_commands_outstanding(struct device *dev,
167 	     struct device_attribute *attr, char *buf);
168 static ssize_t host_show_transport_mode(struct device *dev,
169 	struct device_attribute *attr, char *buf);
170 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
171 static ssize_t host_store_rescan(struct device *dev,
172 	 struct device_attribute *attr, const char *buf, size_t count);
173 static int check_for_unit_attention(struct ctlr_info *h,
174 	struct CommandList *c);
175 static void check_ioctl_unit_attention(struct ctlr_info *h,
176 	struct CommandList *c);
177 /* performant mode helper functions */
178 static void calc_bucket_map(int *bucket, int num_buckets,
179 	int nsgs, int *bucket_map);
180 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
181 static inline u32 next_command(struct ctlr_info *h);
182 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
183 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
184 	u64 *cfg_offset);
185 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
186 	unsigned long *memory_bar);
187 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
188 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
189 	void __iomem *vaddr, int wait_for_ready);
190 #define BOARD_NOT_READY 0
191 #define BOARD_READY 1
192 
193 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
194 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
195 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
196 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
197 static DEVICE_ATTR(firmware_revision, S_IRUGO,
198 	host_show_firmware_revision, NULL);
199 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
200 	host_show_commands_outstanding, NULL);
201 static DEVICE_ATTR(transport_mode, S_IRUGO,
202 	host_show_transport_mode, NULL);
203 
204 static struct device_attribute *hpsa_sdev_attrs[] = {
205 	&dev_attr_raid_level,
206 	&dev_attr_lunid,
207 	&dev_attr_unique_id,
208 	NULL,
209 };
210 
211 static struct device_attribute *hpsa_shost_attrs[] = {
212 	&dev_attr_rescan,
213 	&dev_attr_firmware_revision,
214 	&dev_attr_commands_outstanding,
215 	&dev_attr_transport_mode,
216 	NULL,
217 };
218 
219 static struct scsi_host_template hpsa_driver_template = {
220 	.module			= THIS_MODULE,
221 	.name			= "hpsa",
222 	.proc_name		= "hpsa",
223 	.queuecommand		= hpsa_scsi_queue_command,
224 	.scan_start		= hpsa_scan_start,
225 	.scan_finished		= hpsa_scan_finished,
226 	.change_queue_depth	= hpsa_change_queue_depth,
227 	.this_id		= -1,
228 	.use_clustering		= ENABLE_CLUSTERING,
229 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
230 	.ioctl			= hpsa_ioctl,
231 	.slave_alloc		= hpsa_slave_alloc,
232 	.slave_destroy		= hpsa_slave_destroy,
233 #ifdef CONFIG_COMPAT
234 	.compat_ioctl		= hpsa_compat_ioctl,
235 #endif
236 	.sdev_attrs = hpsa_sdev_attrs,
237 	.shost_attrs = hpsa_shost_attrs,
238 };
239 
240 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
241 {
242 	unsigned long *priv = shost_priv(sdev->host);
243 	return (struct ctlr_info *) *priv;
244 }
245 
246 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
247 {
248 	unsigned long *priv = shost_priv(sh);
249 	return (struct ctlr_info *) *priv;
250 }
251 
252 static int check_for_unit_attention(struct ctlr_info *h,
253 	struct CommandList *c)
254 {
255 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
256 		return 0;
257 
258 	switch (c->err_info->SenseInfo[12]) {
259 	case STATE_CHANGED:
260 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
261 			"detected, command retried\n", h->ctlr);
262 		break;
263 	case LUN_FAILED:
264 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
265 			"detected, action required\n", h->ctlr);
266 		break;
267 	case REPORT_LUNS_CHANGED:
268 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
269 			"changed, action required\n", h->ctlr);
270 	/*
271 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
272 	 */
273 		break;
274 	case POWER_OR_RESET:
275 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
276 			"or device reset detected\n", h->ctlr);
277 		break;
278 	case UNIT_ATTENTION_CLEARED:
279 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
280 		    "cleared by another initiator\n", h->ctlr);
281 		break;
282 	default:
283 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
284 			"unit attention detected\n", h->ctlr);
285 		break;
286 	}
287 	return 1;
288 }
289 
290 static ssize_t host_store_rescan(struct device *dev,
291 				 struct device_attribute *attr,
292 				 const char *buf, size_t count)
293 {
294 	struct ctlr_info *h;
295 	struct Scsi_Host *shost = class_to_shost(dev);
296 	h = shost_to_hba(shost);
297 	hpsa_scan_start(h->scsi_host);
298 	return count;
299 }
300 
301 static ssize_t host_show_firmware_revision(struct device *dev,
302 	     struct device_attribute *attr, char *buf)
303 {
304 	struct ctlr_info *h;
305 	struct Scsi_Host *shost = class_to_shost(dev);
306 	unsigned char *fwrev;
307 
308 	h = shost_to_hba(shost);
309 	if (!h->hba_inquiry_data)
310 		return 0;
311 	fwrev = &h->hba_inquiry_data[32];
312 	return snprintf(buf, 20, "%c%c%c%c\n",
313 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
314 }
315 
316 static ssize_t host_show_commands_outstanding(struct device *dev,
317 	     struct device_attribute *attr, char *buf)
318 {
319 	struct Scsi_Host *shost = class_to_shost(dev);
320 	struct ctlr_info *h = shost_to_hba(shost);
321 
322 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
323 }
324 
325 static ssize_t host_show_transport_mode(struct device *dev,
326 	struct device_attribute *attr, char *buf)
327 {
328 	struct ctlr_info *h;
329 	struct Scsi_Host *shost = class_to_shost(dev);
330 
331 	h = shost_to_hba(shost);
332 	return snprintf(buf, 20, "%s\n",
333 		h->transMethod & CFGTBL_Trans_Performant ?
334 			"performant" : "simple");
335 }
336 
337 /* Enqueuing and dequeuing functions for cmdlists. */
338 static inline void addQ(struct list_head *list, struct CommandList *c)
339 {
340 	list_add_tail(&c->list, list);
341 }
342 
343 static inline u32 next_command(struct ctlr_info *h)
344 {
345 	u32 a;
346 
347 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
348 		return h->access.command_completed(h);
349 
350 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
351 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
352 		(h->reply_pool_head)++;
353 		h->commands_outstanding--;
354 	} else {
355 		a = FIFO_EMPTY;
356 	}
357 	/* Check for wraparound */
358 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
359 		h->reply_pool_head = h->reply_pool;
360 		h->reply_pool_wraparound ^= 1;
361 	}
362 	return a;
363 }
364 
365 /* set_performant_mode: Modify the tag for cciss performant
366  * set bit 0 for pull model, bits 3-1 for block fetch
367  * register number
368  */
369 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
370 {
371 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
372 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
373 }
374 
375 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	unsigned long flags;
379 
380 	set_performant_mode(h, c);
381 	spin_lock_irqsave(&h->lock, flags);
382 	addQ(&h->reqQ, c);
383 	h->Qdepth++;
384 	start_io(h);
385 	spin_unlock_irqrestore(&h->lock, flags);
386 }
387 
388 static inline void removeQ(struct CommandList *c)
389 {
390 	if (WARN_ON(list_empty(&c->list)))
391 		return;
392 	list_del_init(&c->list);
393 }
394 
395 static inline int is_hba_lunid(unsigned char scsi3addr[])
396 {
397 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
398 }
399 
400 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
401 {
402 	return (scsi3addr[3] & 0xC0) == 0x40;
403 }
404 
405 static inline int is_scsi_rev_5(struct ctlr_info *h)
406 {
407 	if (!h->hba_inquiry_data)
408 		return 0;
409 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
410 		return 1;
411 	return 0;
412 }
413 
414 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
415 	"UNKNOWN"
416 };
417 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
418 
419 static ssize_t raid_level_show(struct device *dev,
420 	     struct device_attribute *attr, char *buf)
421 {
422 	ssize_t l = 0;
423 	unsigned char rlevel;
424 	struct ctlr_info *h;
425 	struct scsi_device *sdev;
426 	struct hpsa_scsi_dev_t *hdev;
427 	unsigned long flags;
428 
429 	sdev = to_scsi_device(dev);
430 	h = sdev_to_hba(sdev);
431 	spin_lock_irqsave(&h->lock, flags);
432 	hdev = sdev->hostdata;
433 	if (!hdev) {
434 		spin_unlock_irqrestore(&h->lock, flags);
435 		return -ENODEV;
436 	}
437 
438 	/* Is this even a logical drive? */
439 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
440 		spin_unlock_irqrestore(&h->lock, flags);
441 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
442 		return l;
443 	}
444 
445 	rlevel = hdev->raid_level;
446 	spin_unlock_irqrestore(&h->lock, flags);
447 	if (rlevel > RAID_UNKNOWN)
448 		rlevel = RAID_UNKNOWN;
449 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
450 	return l;
451 }
452 
453 static ssize_t lunid_show(struct device *dev,
454 	     struct device_attribute *attr, char *buf)
455 {
456 	struct ctlr_info *h;
457 	struct scsi_device *sdev;
458 	struct hpsa_scsi_dev_t *hdev;
459 	unsigned long flags;
460 	unsigned char lunid[8];
461 
462 	sdev = to_scsi_device(dev);
463 	h = sdev_to_hba(sdev);
464 	spin_lock_irqsave(&h->lock, flags);
465 	hdev = sdev->hostdata;
466 	if (!hdev) {
467 		spin_unlock_irqrestore(&h->lock, flags);
468 		return -ENODEV;
469 	}
470 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
471 	spin_unlock_irqrestore(&h->lock, flags);
472 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
473 		lunid[0], lunid[1], lunid[2], lunid[3],
474 		lunid[4], lunid[5], lunid[6], lunid[7]);
475 }
476 
477 static ssize_t unique_id_show(struct device *dev,
478 	     struct device_attribute *attr, char *buf)
479 {
480 	struct ctlr_info *h;
481 	struct scsi_device *sdev;
482 	struct hpsa_scsi_dev_t *hdev;
483 	unsigned long flags;
484 	unsigned char sn[16];
485 
486 	sdev = to_scsi_device(dev);
487 	h = sdev_to_hba(sdev);
488 	spin_lock_irqsave(&h->lock, flags);
489 	hdev = sdev->hostdata;
490 	if (!hdev) {
491 		spin_unlock_irqrestore(&h->lock, flags);
492 		return -ENODEV;
493 	}
494 	memcpy(sn, hdev->device_id, sizeof(sn));
495 	spin_unlock_irqrestore(&h->lock, flags);
496 	return snprintf(buf, 16 * 2 + 2,
497 			"%02X%02X%02X%02X%02X%02X%02X%02X"
498 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
499 			sn[0], sn[1], sn[2], sn[3],
500 			sn[4], sn[5], sn[6], sn[7],
501 			sn[8], sn[9], sn[10], sn[11],
502 			sn[12], sn[13], sn[14], sn[15]);
503 }
504 
505 static int hpsa_find_target_lun(struct ctlr_info *h,
506 	unsigned char scsi3addr[], int bus, int *target, int *lun)
507 {
508 	/* finds an unused bus, target, lun for a new physical device
509 	 * assumes h->devlock is held
510 	 */
511 	int i, found = 0;
512 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
513 
514 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
515 
516 	for (i = 0; i < h->ndevices; i++) {
517 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
518 			set_bit(h->dev[i]->target, lun_taken);
519 	}
520 
521 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
522 		if (!test_bit(i, lun_taken)) {
523 			/* *bus = 1; */
524 			*target = i;
525 			*lun = 0;
526 			found = 1;
527 			break;
528 		}
529 	}
530 	return !found;
531 }
532 
533 /* Add an entry into h->dev[] array. */
534 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
535 		struct hpsa_scsi_dev_t *device,
536 		struct hpsa_scsi_dev_t *added[], int *nadded)
537 {
538 	/* assumes h->devlock is held */
539 	int n = h->ndevices;
540 	int i;
541 	unsigned char addr1[8], addr2[8];
542 	struct hpsa_scsi_dev_t *sd;
543 
544 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
545 		dev_err(&h->pdev->dev, "too many devices, some will be "
546 			"inaccessible.\n");
547 		return -1;
548 	}
549 
550 	/* physical devices do not have lun or target assigned until now. */
551 	if (device->lun != -1)
552 		/* Logical device, lun is already assigned. */
553 		goto lun_assigned;
554 
555 	/* If this device a non-zero lun of a multi-lun device
556 	 * byte 4 of the 8-byte LUN addr will contain the logical
557 	 * unit no, zero otherise.
558 	 */
559 	if (device->scsi3addr[4] == 0) {
560 		/* This is not a non-zero lun of a multi-lun device */
561 		if (hpsa_find_target_lun(h, device->scsi3addr,
562 			device->bus, &device->target, &device->lun) != 0)
563 			return -1;
564 		goto lun_assigned;
565 	}
566 
567 	/* This is a non-zero lun of a multi-lun device.
568 	 * Search through our list and find the device which
569 	 * has the same 8 byte LUN address, excepting byte 4.
570 	 * Assign the same bus and target for this new LUN.
571 	 * Use the logical unit number from the firmware.
572 	 */
573 	memcpy(addr1, device->scsi3addr, 8);
574 	addr1[4] = 0;
575 	for (i = 0; i < n; i++) {
576 		sd = h->dev[i];
577 		memcpy(addr2, sd->scsi3addr, 8);
578 		addr2[4] = 0;
579 		/* differ only in byte 4? */
580 		if (memcmp(addr1, addr2, 8) == 0) {
581 			device->bus = sd->bus;
582 			device->target = sd->target;
583 			device->lun = device->scsi3addr[4];
584 			break;
585 		}
586 	}
587 	if (device->lun == -1) {
588 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
589 			" suspect firmware bug or unsupported hardware "
590 			"configuration.\n");
591 			return -1;
592 	}
593 
594 lun_assigned:
595 
596 	h->dev[n] = device;
597 	h->ndevices++;
598 	added[*nadded] = device;
599 	(*nadded)++;
600 
601 	/* initially, (before registering with scsi layer) we don't
602 	 * know our hostno and we don't want to print anything first
603 	 * time anyway (the scsi layer's inquiries will show that info)
604 	 */
605 	/* if (hostno != -1) */
606 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
607 			scsi_device_type(device->devtype), hostno,
608 			device->bus, device->target, device->lun);
609 	return 0;
610 }
611 
612 /* Replace an entry from h->dev[] array. */
613 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
614 	int entry, struct hpsa_scsi_dev_t *new_entry,
615 	struct hpsa_scsi_dev_t *added[], int *nadded,
616 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
617 {
618 	/* assumes h->devlock is held */
619 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
620 	removed[*nremoved] = h->dev[entry];
621 	(*nremoved)++;
622 	h->dev[entry] = new_entry;
623 	added[*nadded] = new_entry;
624 	(*nadded)++;
625 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
626 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
627 			new_entry->target, new_entry->lun);
628 }
629 
630 /* Remove an entry from h->dev[] array. */
631 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
632 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
633 {
634 	/* assumes h->devlock is held */
635 	int i;
636 	struct hpsa_scsi_dev_t *sd;
637 
638 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
639 
640 	sd = h->dev[entry];
641 	removed[*nremoved] = h->dev[entry];
642 	(*nremoved)++;
643 
644 	for (i = entry; i < h->ndevices-1; i++)
645 		h->dev[i] = h->dev[i+1];
646 	h->ndevices--;
647 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
648 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
649 		sd->lun);
650 }
651 
652 #define SCSI3ADDR_EQ(a, b) ( \
653 	(a)[7] == (b)[7] && \
654 	(a)[6] == (b)[6] && \
655 	(a)[5] == (b)[5] && \
656 	(a)[4] == (b)[4] && \
657 	(a)[3] == (b)[3] && \
658 	(a)[2] == (b)[2] && \
659 	(a)[1] == (b)[1] && \
660 	(a)[0] == (b)[0])
661 
662 static void fixup_botched_add(struct ctlr_info *h,
663 	struct hpsa_scsi_dev_t *added)
664 {
665 	/* called when scsi_add_device fails in order to re-adjust
666 	 * h->dev[] to match the mid layer's view.
667 	 */
668 	unsigned long flags;
669 	int i, j;
670 
671 	spin_lock_irqsave(&h->lock, flags);
672 	for (i = 0; i < h->ndevices; i++) {
673 		if (h->dev[i] == added) {
674 			for (j = i; j < h->ndevices-1; j++)
675 				h->dev[j] = h->dev[j+1];
676 			h->ndevices--;
677 			break;
678 		}
679 	}
680 	spin_unlock_irqrestore(&h->lock, flags);
681 	kfree(added);
682 }
683 
684 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
685 	struct hpsa_scsi_dev_t *dev2)
686 {
687 	/* we compare everything except lun and target as these
688 	 * are not yet assigned.  Compare parts likely
689 	 * to differ first
690 	 */
691 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
692 		sizeof(dev1->scsi3addr)) != 0)
693 		return 0;
694 	if (memcmp(dev1->device_id, dev2->device_id,
695 		sizeof(dev1->device_id)) != 0)
696 		return 0;
697 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
698 		return 0;
699 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
700 		return 0;
701 	if (dev1->devtype != dev2->devtype)
702 		return 0;
703 	if (dev1->bus != dev2->bus)
704 		return 0;
705 	return 1;
706 }
707 
708 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
709  * and return needle location in *index.  If scsi3addr matches, but not
710  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
711  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
712  */
713 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
714 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
715 	int *index)
716 {
717 	int i;
718 #define DEVICE_NOT_FOUND 0
719 #define DEVICE_CHANGED 1
720 #define DEVICE_SAME 2
721 	for (i = 0; i < haystack_size; i++) {
722 		if (haystack[i] == NULL) /* previously removed. */
723 			continue;
724 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
725 			*index = i;
726 			if (device_is_the_same(needle, haystack[i]))
727 				return DEVICE_SAME;
728 			else
729 				return DEVICE_CHANGED;
730 		}
731 	}
732 	*index = -1;
733 	return DEVICE_NOT_FOUND;
734 }
735 
736 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
737 	struct hpsa_scsi_dev_t *sd[], int nsds)
738 {
739 	/* sd contains scsi3 addresses and devtypes, and inquiry
740 	 * data.  This function takes what's in sd to be the current
741 	 * reality and updates h->dev[] to reflect that reality.
742 	 */
743 	int i, entry, device_change, changes = 0;
744 	struct hpsa_scsi_dev_t *csd;
745 	unsigned long flags;
746 	struct hpsa_scsi_dev_t **added, **removed;
747 	int nadded, nremoved;
748 	struct Scsi_Host *sh = NULL;
749 
750 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
751 		GFP_KERNEL);
752 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
753 		GFP_KERNEL);
754 
755 	if (!added || !removed) {
756 		dev_warn(&h->pdev->dev, "out of memory in "
757 			"adjust_hpsa_scsi_table\n");
758 		goto free_and_out;
759 	}
760 
761 	spin_lock_irqsave(&h->devlock, flags);
762 
763 	/* find any devices in h->dev[] that are not in
764 	 * sd[] and remove them from h->dev[], and for any
765 	 * devices which have changed, remove the old device
766 	 * info and add the new device info.
767 	 */
768 	i = 0;
769 	nremoved = 0;
770 	nadded = 0;
771 	while (i < h->ndevices) {
772 		csd = h->dev[i];
773 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
774 		if (device_change == DEVICE_NOT_FOUND) {
775 			changes++;
776 			hpsa_scsi_remove_entry(h, hostno, i,
777 				removed, &nremoved);
778 			continue; /* remove ^^^, hence i not incremented */
779 		} else if (device_change == DEVICE_CHANGED) {
780 			changes++;
781 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
782 				added, &nadded, removed, &nremoved);
783 			/* Set it to NULL to prevent it from being freed
784 			 * at the bottom of hpsa_update_scsi_devices()
785 			 */
786 			sd[entry] = NULL;
787 		}
788 		i++;
789 	}
790 
791 	/* Now, make sure every device listed in sd[] is also
792 	 * listed in h->dev[], adding them if they aren't found
793 	 */
794 
795 	for (i = 0; i < nsds; i++) {
796 		if (!sd[i]) /* if already added above. */
797 			continue;
798 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
799 					h->ndevices, &entry);
800 		if (device_change == DEVICE_NOT_FOUND) {
801 			changes++;
802 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
803 				added, &nadded) != 0)
804 				break;
805 			sd[i] = NULL; /* prevent from being freed later. */
806 		} else if (device_change == DEVICE_CHANGED) {
807 			/* should never happen... */
808 			changes++;
809 			dev_warn(&h->pdev->dev,
810 				"device unexpectedly changed.\n");
811 			/* but if it does happen, we just ignore that device */
812 		}
813 	}
814 	spin_unlock_irqrestore(&h->devlock, flags);
815 
816 	/* Don't notify scsi mid layer of any changes the first time through
817 	 * (or if there are no changes) scsi_scan_host will do it later the
818 	 * first time through.
819 	 */
820 	if (hostno == -1 || !changes)
821 		goto free_and_out;
822 
823 	sh = h->scsi_host;
824 	/* Notify scsi mid layer of any removed devices */
825 	for (i = 0; i < nremoved; i++) {
826 		struct scsi_device *sdev =
827 			scsi_device_lookup(sh, removed[i]->bus,
828 				removed[i]->target, removed[i]->lun);
829 		if (sdev != NULL) {
830 			scsi_remove_device(sdev);
831 			scsi_device_put(sdev);
832 		} else {
833 			/* We don't expect to get here.
834 			 * future cmds to this device will get selection
835 			 * timeout as if the device was gone.
836 			 */
837 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
838 				" for removal.", hostno, removed[i]->bus,
839 				removed[i]->target, removed[i]->lun);
840 		}
841 		kfree(removed[i]);
842 		removed[i] = NULL;
843 	}
844 
845 	/* Notify scsi mid layer of any added devices */
846 	for (i = 0; i < nadded; i++) {
847 		if (scsi_add_device(sh, added[i]->bus,
848 			added[i]->target, added[i]->lun) == 0)
849 			continue;
850 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
851 			"device not added.\n", hostno, added[i]->bus,
852 			added[i]->target, added[i]->lun);
853 		/* now we have to remove it from h->dev,
854 		 * since it didn't get added to scsi mid layer
855 		 */
856 		fixup_botched_add(h, added[i]);
857 	}
858 
859 free_and_out:
860 	kfree(added);
861 	kfree(removed);
862 }
863 
864 /*
865  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
866  * Assume's h->devlock is held.
867  */
868 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
869 	int bus, int target, int lun)
870 {
871 	int i;
872 	struct hpsa_scsi_dev_t *sd;
873 
874 	for (i = 0; i < h->ndevices; i++) {
875 		sd = h->dev[i];
876 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
877 			return sd;
878 	}
879 	return NULL;
880 }
881 
882 /* link sdev->hostdata to our per-device structure. */
883 static int hpsa_slave_alloc(struct scsi_device *sdev)
884 {
885 	struct hpsa_scsi_dev_t *sd;
886 	unsigned long flags;
887 	struct ctlr_info *h;
888 
889 	h = sdev_to_hba(sdev);
890 	spin_lock_irqsave(&h->devlock, flags);
891 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
892 		sdev_id(sdev), sdev->lun);
893 	if (sd != NULL)
894 		sdev->hostdata = sd;
895 	spin_unlock_irqrestore(&h->devlock, flags);
896 	return 0;
897 }
898 
899 static void hpsa_slave_destroy(struct scsi_device *sdev)
900 {
901 	/* nothing to do. */
902 }
903 
904 static void hpsa_scsi_setup(struct ctlr_info *h)
905 {
906 	h->ndevices = 0;
907 	h->scsi_host = NULL;
908 	spin_lock_init(&h->devlock);
909 }
910 
911 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
912 {
913 	int i;
914 
915 	if (!h->cmd_sg_list)
916 		return;
917 	for (i = 0; i < h->nr_cmds; i++) {
918 		kfree(h->cmd_sg_list[i]);
919 		h->cmd_sg_list[i] = NULL;
920 	}
921 	kfree(h->cmd_sg_list);
922 	h->cmd_sg_list = NULL;
923 }
924 
925 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
926 {
927 	int i;
928 
929 	if (h->chainsize <= 0)
930 		return 0;
931 
932 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
933 				GFP_KERNEL);
934 	if (!h->cmd_sg_list)
935 		return -ENOMEM;
936 	for (i = 0; i < h->nr_cmds; i++) {
937 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
938 						h->chainsize, GFP_KERNEL);
939 		if (!h->cmd_sg_list[i])
940 			goto clean;
941 	}
942 	return 0;
943 
944 clean:
945 	hpsa_free_sg_chain_blocks(h);
946 	return -ENOMEM;
947 }
948 
949 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
950 	struct CommandList *c)
951 {
952 	struct SGDescriptor *chain_sg, *chain_block;
953 	u64 temp64;
954 
955 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
956 	chain_block = h->cmd_sg_list[c->cmdindex];
957 	chain_sg->Ext = HPSA_SG_CHAIN;
958 	chain_sg->Len = sizeof(*chain_sg) *
959 		(c->Header.SGTotal - h->max_cmd_sg_entries);
960 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
961 				PCI_DMA_TODEVICE);
962 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
963 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
964 }
965 
966 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
967 	struct CommandList *c)
968 {
969 	struct SGDescriptor *chain_sg;
970 	union u64bit temp64;
971 
972 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
973 		return;
974 
975 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
976 	temp64.val32.lower = chain_sg->Addr.lower;
977 	temp64.val32.upper = chain_sg->Addr.upper;
978 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
979 }
980 
981 static void complete_scsi_command(struct CommandList *cp,
982 	int timeout, u32 tag)
983 {
984 	struct scsi_cmnd *cmd;
985 	struct ctlr_info *h;
986 	struct ErrorInfo *ei;
987 
988 	unsigned char sense_key;
989 	unsigned char asc;      /* additional sense code */
990 	unsigned char ascq;     /* additional sense code qualifier */
991 
992 	ei = cp->err_info;
993 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
994 	h = cp->h;
995 
996 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
997 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
998 		hpsa_unmap_sg_chain_block(h, cp);
999 
1000 	cmd->result = (DID_OK << 16); 		/* host byte */
1001 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1002 	cmd->result |= ei->ScsiStatus;
1003 
1004 	/* copy the sense data whether we need to or not. */
1005 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1006 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1007 			SCSI_SENSE_BUFFERSIZE :
1008 			ei->SenseLen);
1009 	scsi_set_resid(cmd, ei->ResidualCnt);
1010 
1011 	if (ei->CommandStatus == 0) {
1012 		cmd->scsi_done(cmd);
1013 		cmd_free(h, cp);
1014 		return;
1015 	}
1016 
1017 	/* an error has occurred */
1018 	switch (ei->CommandStatus) {
1019 
1020 	case CMD_TARGET_STATUS:
1021 		if (ei->ScsiStatus) {
1022 			/* Get sense key */
1023 			sense_key = 0xf & ei->SenseInfo[2];
1024 			/* Get additional sense code */
1025 			asc = ei->SenseInfo[12];
1026 			/* Get addition sense code qualifier */
1027 			ascq = ei->SenseInfo[13];
1028 		}
1029 
1030 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1031 			if (check_for_unit_attention(h, cp)) {
1032 				cmd->result = DID_SOFT_ERROR << 16;
1033 				break;
1034 			}
1035 			if (sense_key == ILLEGAL_REQUEST) {
1036 				/*
1037 				 * SCSI REPORT_LUNS is commonly unsupported on
1038 				 * Smart Array.  Suppress noisy complaint.
1039 				 */
1040 				if (cp->Request.CDB[0] == REPORT_LUNS)
1041 					break;
1042 
1043 				/* If ASC/ASCQ indicate Logical Unit
1044 				 * Not Supported condition,
1045 				 */
1046 				if ((asc == 0x25) && (ascq == 0x0)) {
1047 					dev_warn(&h->pdev->dev, "cp %p "
1048 						"has check condition\n", cp);
1049 					break;
1050 				}
1051 			}
1052 
1053 			if (sense_key == NOT_READY) {
1054 				/* If Sense is Not Ready, Logical Unit
1055 				 * Not ready, Manual Intervention
1056 				 * required
1057 				 */
1058 				if ((asc == 0x04) && (ascq == 0x03)) {
1059 					dev_warn(&h->pdev->dev, "cp %p "
1060 						"has check condition: unit "
1061 						"not ready, manual "
1062 						"intervention required\n", cp);
1063 					break;
1064 				}
1065 			}
1066 			if (sense_key == ABORTED_COMMAND) {
1067 				/* Aborted command is retryable */
1068 				dev_warn(&h->pdev->dev, "cp %p "
1069 					"has check condition: aborted command: "
1070 					"ASC: 0x%x, ASCQ: 0x%x\n",
1071 					cp, asc, ascq);
1072 				cmd->result = DID_SOFT_ERROR << 16;
1073 				break;
1074 			}
1075 			/* Must be some other type of check condition */
1076 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1077 					"unknown type: "
1078 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1079 					"Returning result: 0x%x, "
1080 					"cmd=[%02x %02x %02x %02x %02x "
1081 					"%02x %02x %02x %02x %02x %02x "
1082 					"%02x %02x %02x %02x %02x]\n",
1083 					cp, sense_key, asc, ascq,
1084 					cmd->result,
1085 					cmd->cmnd[0], cmd->cmnd[1],
1086 					cmd->cmnd[2], cmd->cmnd[3],
1087 					cmd->cmnd[4], cmd->cmnd[5],
1088 					cmd->cmnd[6], cmd->cmnd[7],
1089 					cmd->cmnd[8], cmd->cmnd[9],
1090 					cmd->cmnd[10], cmd->cmnd[11],
1091 					cmd->cmnd[12], cmd->cmnd[13],
1092 					cmd->cmnd[14], cmd->cmnd[15]);
1093 			break;
1094 		}
1095 
1096 
1097 		/* Problem was not a check condition
1098 		 * Pass it up to the upper layers...
1099 		 */
1100 		if (ei->ScsiStatus) {
1101 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1102 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1103 				"Returning result: 0x%x\n",
1104 				cp, ei->ScsiStatus,
1105 				sense_key, asc, ascq,
1106 				cmd->result);
1107 		} else {  /* scsi status is zero??? How??? */
1108 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1109 				"Returning no connection.\n", cp),
1110 
1111 			/* Ordinarily, this case should never happen,
1112 			 * but there is a bug in some released firmware
1113 			 * revisions that allows it to happen if, for
1114 			 * example, a 4100 backplane loses power and
1115 			 * the tape drive is in it.  We assume that
1116 			 * it's a fatal error of some kind because we
1117 			 * can't show that it wasn't. We will make it
1118 			 * look like selection timeout since that is
1119 			 * the most common reason for this to occur,
1120 			 * and it's severe enough.
1121 			 */
1122 
1123 			cmd->result = DID_NO_CONNECT << 16;
1124 		}
1125 		break;
1126 
1127 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1128 		break;
1129 	case CMD_DATA_OVERRUN:
1130 		dev_warn(&h->pdev->dev, "cp %p has"
1131 			" completed with data overrun "
1132 			"reported\n", cp);
1133 		break;
1134 	case CMD_INVALID: {
1135 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1136 		print_cmd(cp); */
1137 		/* We get CMD_INVALID if you address a non-existent device
1138 		 * instead of a selection timeout (no response).  You will
1139 		 * see this if you yank out a drive, then try to access it.
1140 		 * This is kind of a shame because it means that any other
1141 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1142 		 * missing target. */
1143 		cmd->result = DID_NO_CONNECT << 16;
1144 	}
1145 		break;
1146 	case CMD_PROTOCOL_ERR:
1147 		dev_warn(&h->pdev->dev, "cp %p has "
1148 			"protocol error \n", cp);
1149 		break;
1150 	case CMD_HARDWARE_ERR:
1151 		cmd->result = DID_ERROR << 16;
1152 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1153 		break;
1154 	case CMD_CONNECTION_LOST:
1155 		cmd->result = DID_ERROR << 16;
1156 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1157 		break;
1158 	case CMD_ABORTED:
1159 		cmd->result = DID_ABORT << 16;
1160 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1161 				cp, ei->ScsiStatus);
1162 		break;
1163 	case CMD_ABORT_FAILED:
1164 		cmd->result = DID_ERROR << 16;
1165 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1166 		break;
1167 	case CMD_UNSOLICITED_ABORT:
1168 		cmd->result = DID_RESET << 16;
1169 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1170 			"abort\n", cp);
1171 		break;
1172 	case CMD_TIMEOUT:
1173 		cmd->result = DID_TIME_OUT << 16;
1174 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1175 		break;
1176 	case CMD_UNABORTABLE:
1177 		cmd->result = DID_ERROR << 16;
1178 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1179 		break;
1180 	default:
1181 		cmd->result = DID_ERROR << 16;
1182 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1183 				cp, ei->CommandStatus);
1184 	}
1185 	cmd->scsi_done(cmd);
1186 	cmd_free(h, cp);
1187 }
1188 
1189 static int hpsa_scsi_detect(struct ctlr_info *h)
1190 {
1191 	struct Scsi_Host *sh;
1192 	int error;
1193 
1194 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1195 	if (sh == NULL)
1196 		goto fail;
1197 
1198 	sh->io_port = 0;
1199 	sh->n_io_port = 0;
1200 	sh->this_id = -1;
1201 	sh->max_channel = 3;
1202 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1203 	sh->max_lun = HPSA_MAX_LUN;
1204 	sh->max_id = HPSA_MAX_LUN;
1205 	sh->can_queue = h->nr_cmds;
1206 	sh->cmd_per_lun = h->nr_cmds;
1207 	sh->sg_tablesize = h->maxsgentries;
1208 	h->scsi_host = sh;
1209 	sh->hostdata[0] = (unsigned long) h;
1210 	sh->irq = h->intr[h->intr_mode];
1211 	sh->unique_id = sh->irq;
1212 	error = scsi_add_host(sh, &h->pdev->dev);
1213 	if (error)
1214 		goto fail_host_put;
1215 	scsi_scan_host(sh);
1216 	return 0;
1217 
1218  fail_host_put:
1219 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1220 		" failed for controller %d\n", h->ctlr);
1221 	scsi_host_put(sh);
1222 	return error;
1223  fail:
1224 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1225 		" failed for controller %d\n", h->ctlr);
1226 	return -ENOMEM;
1227 }
1228 
1229 static void hpsa_pci_unmap(struct pci_dev *pdev,
1230 	struct CommandList *c, int sg_used, int data_direction)
1231 {
1232 	int i;
1233 	union u64bit addr64;
1234 
1235 	for (i = 0; i < sg_used; i++) {
1236 		addr64.val32.lower = c->SG[i].Addr.lower;
1237 		addr64.val32.upper = c->SG[i].Addr.upper;
1238 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1239 			data_direction);
1240 	}
1241 }
1242 
1243 static void hpsa_map_one(struct pci_dev *pdev,
1244 		struct CommandList *cp,
1245 		unsigned char *buf,
1246 		size_t buflen,
1247 		int data_direction)
1248 {
1249 	u64 addr64;
1250 
1251 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1252 		cp->Header.SGList = 0;
1253 		cp->Header.SGTotal = 0;
1254 		return;
1255 	}
1256 
1257 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1258 	cp->SG[0].Addr.lower =
1259 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1260 	cp->SG[0].Addr.upper =
1261 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1262 	cp->SG[0].Len = buflen;
1263 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1264 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1265 }
1266 
1267 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1268 	struct CommandList *c)
1269 {
1270 	DECLARE_COMPLETION_ONSTACK(wait);
1271 
1272 	c->waiting = &wait;
1273 	enqueue_cmd_and_start_io(h, c);
1274 	wait_for_completion(&wait);
1275 }
1276 
1277 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1278 	struct CommandList *c, int data_direction)
1279 {
1280 	int retry_count = 0;
1281 
1282 	do {
1283 		memset(c->err_info, 0, sizeof(c->err_info));
1284 		hpsa_scsi_do_simple_cmd_core(h, c);
1285 		retry_count++;
1286 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1287 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1288 }
1289 
1290 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1291 {
1292 	struct ErrorInfo *ei;
1293 	struct device *d = &cp->h->pdev->dev;
1294 
1295 	ei = cp->err_info;
1296 	switch (ei->CommandStatus) {
1297 	case CMD_TARGET_STATUS:
1298 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1299 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1300 				ei->ScsiStatus);
1301 		if (ei->ScsiStatus == 0)
1302 			dev_warn(d, "SCSI status is abnormally zero.  "
1303 			"(probably indicates selection timeout "
1304 			"reported incorrectly due to a known "
1305 			"firmware bug, circa July, 2001.)\n");
1306 		break;
1307 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1308 			dev_info(d, "UNDERRUN\n");
1309 		break;
1310 	case CMD_DATA_OVERRUN:
1311 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1312 		break;
1313 	case CMD_INVALID: {
1314 		/* controller unfortunately reports SCSI passthru's
1315 		 * to non-existent targets as invalid commands.
1316 		 */
1317 		dev_warn(d, "cp %p is reported invalid (probably means "
1318 			"target device no longer present)\n", cp);
1319 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1320 		print_cmd(cp);  */
1321 		}
1322 		break;
1323 	case CMD_PROTOCOL_ERR:
1324 		dev_warn(d, "cp %p has protocol error \n", cp);
1325 		break;
1326 	case CMD_HARDWARE_ERR:
1327 		/* cmd->result = DID_ERROR << 16; */
1328 		dev_warn(d, "cp %p had hardware error\n", cp);
1329 		break;
1330 	case CMD_CONNECTION_LOST:
1331 		dev_warn(d, "cp %p had connection lost\n", cp);
1332 		break;
1333 	case CMD_ABORTED:
1334 		dev_warn(d, "cp %p was aborted\n", cp);
1335 		break;
1336 	case CMD_ABORT_FAILED:
1337 		dev_warn(d, "cp %p reports abort failed\n", cp);
1338 		break;
1339 	case CMD_UNSOLICITED_ABORT:
1340 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1341 		break;
1342 	case CMD_TIMEOUT:
1343 		dev_warn(d, "cp %p timed out\n", cp);
1344 		break;
1345 	case CMD_UNABORTABLE:
1346 		dev_warn(d, "Command unabortable\n");
1347 		break;
1348 	default:
1349 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1350 				ei->CommandStatus);
1351 	}
1352 }
1353 
1354 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1355 			unsigned char page, unsigned char *buf,
1356 			unsigned char bufsize)
1357 {
1358 	int rc = IO_OK;
1359 	struct CommandList *c;
1360 	struct ErrorInfo *ei;
1361 
1362 	c = cmd_special_alloc(h);
1363 
1364 	if (c == NULL) {			/* trouble... */
1365 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1366 		return -ENOMEM;
1367 	}
1368 
1369 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1370 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1371 	ei = c->err_info;
1372 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1373 		hpsa_scsi_interpret_error(c);
1374 		rc = -1;
1375 	}
1376 	cmd_special_free(h, c);
1377 	return rc;
1378 }
1379 
1380 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1381 {
1382 	int rc = IO_OK;
1383 	struct CommandList *c;
1384 	struct ErrorInfo *ei;
1385 
1386 	c = cmd_special_alloc(h);
1387 
1388 	if (c == NULL) {			/* trouble... */
1389 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1390 		return -ENOMEM;
1391 	}
1392 
1393 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1394 	hpsa_scsi_do_simple_cmd_core(h, c);
1395 	/* no unmap needed here because no data xfer. */
1396 
1397 	ei = c->err_info;
1398 	if (ei->CommandStatus != 0) {
1399 		hpsa_scsi_interpret_error(c);
1400 		rc = -1;
1401 	}
1402 	cmd_special_free(h, c);
1403 	return rc;
1404 }
1405 
1406 static void hpsa_get_raid_level(struct ctlr_info *h,
1407 	unsigned char *scsi3addr, unsigned char *raid_level)
1408 {
1409 	int rc;
1410 	unsigned char *buf;
1411 
1412 	*raid_level = RAID_UNKNOWN;
1413 	buf = kzalloc(64, GFP_KERNEL);
1414 	if (!buf)
1415 		return;
1416 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1417 	if (rc == 0)
1418 		*raid_level = buf[8];
1419 	if (*raid_level > RAID_UNKNOWN)
1420 		*raid_level = RAID_UNKNOWN;
1421 	kfree(buf);
1422 	return;
1423 }
1424 
1425 /* Get the device id from inquiry page 0x83 */
1426 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1427 	unsigned char *device_id, int buflen)
1428 {
1429 	int rc;
1430 	unsigned char *buf;
1431 
1432 	if (buflen > 16)
1433 		buflen = 16;
1434 	buf = kzalloc(64, GFP_KERNEL);
1435 	if (!buf)
1436 		return -1;
1437 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1438 	if (rc == 0)
1439 		memcpy(device_id, &buf[8], buflen);
1440 	kfree(buf);
1441 	return rc != 0;
1442 }
1443 
1444 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1445 		struct ReportLUNdata *buf, int bufsize,
1446 		int extended_response)
1447 {
1448 	int rc = IO_OK;
1449 	struct CommandList *c;
1450 	unsigned char scsi3addr[8];
1451 	struct ErrorInfo *ei;
1452 
1453 	c = cmd_special_alloc(h);
1454 	if (c == NULL) {			/* trouble... */
1455 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1456 		return -1;
1457 	}
1458 	/* address the controller */
1459 	memset(scsi3addr, 0, sizeof(scsi3addr));
1460 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1461 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1462 	if (extended_response)
1463 		c->Request.CDB[1] = extended_response;
1464 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1465 	ei = c->err_info;
1466 	if (ei->CommandStatus != 0 &&
1467 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1468 		hpsa_scsi_interpret_error(c);
1469 		rc = -1;
1470 	}
1471 	cmd_special_free(h, c);
1472 	return rc;
1473 }
1474 
1475 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1476 		struct ReportLUNdata *buf,
1477 		int bufsize, int extended_response)
1478 {
1479 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1480 }
1481 
1482 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1483 		struct ReportLUNdata *buf, int bufsize)
1484 {
1485 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1486 }
1487 
1488 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1489 	int bus, int target, int lun)
1490 {
1491 	device->bus = bus;
1492 	device->target = target;
1493 	device->lun = lun;
1494 }
1495 
1496 static int hpsa_update_device_info(struct ctlr_info *h,
1497 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1498 {
1499 #define OBDR_TAPE_INQ_SIZE 49
1500 	unsigned char *inq_buff;
1501 
1502 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1503 	if (!inq_buff)
1504 		goto bail_out;
1505 
1506 	/* Do an inquiry to the device to see what it is. */
1507 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1508 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1509 		/* Inquiry failed (msg printed already) */
1510 		dev_err(&h->pdev->dev,
1511 			"hpsa_update_device_info: inquiry failed\n");
1512 		goto bail_out;
1513 	}
1514 
1515 	this_device->devtype = (inq_buff[0] & 0x1f);
1516 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1517 	memcpy(this_device->vendor, &inq_buff[8],
1518 		sizeof(this_device->vendor));
1519 	memcpy(this_device->model, &inq_buff[16],
1520 		sizeof(this_device->model));
1521 	memset(this_device->device_id, 0,
1522 		sizeof(this_device->device_id));
1523 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1524 		sizeof(this_device->device_id));
1525 
1526 	if (this_device->devtype == TYPE_DISK &&
1527 		is_logical_dev_addr_mode(scsi3addr))
1528 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1529 	else
1530 		this_device->raid_level = RAID_UNKNOWN;
1531 
1532 	kfree(inq_buff);
1533 	return 0;
1534 
1535 bail_out:
1536 	kfree(inq_buff);
1537 	return 1;
1538 }
1539 
1540 static unsigned char *msa2xxx_model[] = {
1541 	"MSA2012",
1542 	"MSA2024",
1543 	"MSA2312",
1544 	"MSA2324",
1545 	NULL,
1546 };
1547 
1548 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1549 {
1550 	int i;
1551 
1552 	for (i = 0; msa2xxx_model[i]; i++)
1553 		if (strncmp(device->model, msa2xxx_model[i],
1554 			strlen(msa2xxx_model[i])) == 0)
1555 			return 1;
1556 	return 0;
1557 }
1558 
1559 /* Helper function to assign bus, target, lun mapping of devices.
1560  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1561  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1562  * Logical drive target and lun are assigned at this time, but
1563  * physical device lun and target assignment are deferred (assigned
1564  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1565  */
1566 static void figure_bus_target_lun(struct ctlr_info *h,
1567 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1568 	struct hpsa_scsi_dev_t *device)
1569 {
1570 	u32 lunid;
1571 
1572 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1573 		/* logical device */
1574 		if (unlikely(is_scsi_rev_5(h))) {
1575 			/* p1210m, logical drives lun assignments
1576 			 * match SCSI REPORT LUNS data.
1577 			 */
1578 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1579 			*bus = 0;
1580 			*target = 0;
1581 			*lun = (lunid & 0x3fff) + 1;
1582 		} else {
1583 			/* not p1210m... */
1584 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1585 			if (is_msa2xxx(h, device)) {
1586 				/* msa2xxx way, put logicals on bus 1
1587 				 * and match target/lun numbers box
1588 				 * reports.
1589 				 */
1590 				*bus = 1;
1591 				*target = (lunid >> 16) & 0x3fff;
1592 				*lun = lunid & 0x00ff;
1593 			} else {
1594 				/* Traditional smart array way. */
1595 				*bus = 0;
1596 				*lun = 0;
1597 				*target = lunid & 0x3fff;
1598 			}
1599 		}
1600 	} else {
1601 		/* physical device */
1602 		if (is_hba_lunid(lunaddrbytes))
1603 			if (unlikely(is_scsi_rev_5(h))) {
1604 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1605 				*target = 0;
1606 				*lun = 0;
1607 				return;
1608 			} else
1609 				*bus = 3; /* traditional smartarray */
1610 		else
1611 			*bus = 2; /* physical disk */
1612 		*target = -1;
1613 		*lun = -1; /* we will fill these in later. */
1614 	}
1615 }
1616 
1617 /*
1618  * If there is no lun 0 on a target, linux won't find any devices.
1619  * For the MSA2xxx boxes, we have to manually detect the enclosure
1620  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1621  * it for some reason.  *tmpdevice is the target we're adding,
1622  * this_device is a pointer into the current element of currentsd[]
1623  * that we're building up in update_scsi_devices(), below.
1624  * lunzerobits is a bitmap that tracks which targets already have a
1625  * lun 0 assigned.
1626  * Returns 1 if an enclosure was added, 0 if not.
1627  */
1628 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1629 	struct hpsa_scsi_dev_t *tmpdevice,
1630 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1631 	int bus, int target, int lun, unsigned long lunzerobits[],
1632 	int *nmsa2xxx_enclosures)
1633 {
1634 	unsigned char scsi3addr[8];
1635 
1636 	if (test_bit(target, lunzerobits))
1637 		return 0; /* There is already a lun 0 on this target. */
1638 
1639 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1640 		return 0; /* It's the logical targets that may lack lun 0. */
1641 
1642 	if (!is_msa2xxx(h, tmpdevice))
1643 		return 0; /* It's only the MSA2xxx that have this problem. */
1644 
1645 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1646 		return 0;
1647 
1648 	memset(scsi3addr, 0, 8);
1649 	scsi3addr[3] = target;
1650 	if (is_hba_lunid(scsi3addr))
1651 		return 0; /* Don't add the RAID controller here. */
1652 
1653 	if (is_scsi_rev_5(h))
1654 		return 0; /* p1210m doesn't need to do this. */
1655 
1656 #define MAX_MSA2XXX_ENCLOSURES 32
1657 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1658 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1659 			"enclosures exceeded.  Check your hardware "
1660 			"configuration.");
1661 		return 0;
1662 	}
1663 
1664 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1665 		return 0;
1666 	(*nmsa2xxx_enclosures)++;
1667 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1668 	set_bit(target, lunzerobits);
1669 	return 1;
1670 }
1671 
1672 /*
1673  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1674  * logdev.  The number of luns in physdev and logdev are returned in
1675  * *nphysicals and *nlogicals, respectively.
1676  * Returns 0 on success, -1 otherwise.
1677  */
1678 static int hpsa_gather_lun_info(struct ctlr_info *h,
1679 	int reportlunsize,
1680 	struct ReportLUNdata *physdev, u32 *nphysicals,
1681 	struct ReportLUNdata *logdev, u32 *nlogicals)
1682 {
1683 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1684 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1685 		return -1;
1686 	}
1687 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1688 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1689 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1690 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1691 			*nphysicals - HPSA_MAX_PHYS_LUN);
1692 		*nphysicals = HPSA_MAX_PHYS_LUN;
1693 	}
1694 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1695 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1696 		return -1;
1697 	}
1698 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1699 	/* Reject Logicals in excess of our max capability. */
1700 	if (*nlogicals > HPSA_MAX_LUN) {
1701 		dev_warn(&h->pdev->dev,
1702 			"maximum logical LUNs (%d) exceeded.  "
1703 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1704 			*nlogicals - HPSA_MAX_LUN);
1705 			*nlogicals = HPSA_MAX_LUN;
1706 	}
1707 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1708 		dev_warn(&h->pdev->dev,
1709 			"maximum logical + physical LUNs (%d) exceeded. "
1710 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1711 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1712 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1713 	}
1714 	return 0;
1715 }
1716 
1717 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1718 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1719 	struct ReportLUNdata *logdev_list)
1720 {
1721 	/* Helper function, figure out where the LUN ID info is coming from
1722 	 * given index i, lists of physical and logical devices, where in
1723 	 * the list the raid controller is supposed to appear (first or last)
1724 	 */
1725 
1726 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1727 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1728 
1729 	if (i == raid_ctlr_position)
1730 		return RAID_CTLR_LUNID;
1731 
1732 	if (i < logicals_start)
1733 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1734 
1735 	if (i < last_device)
1736 		return &logdev_list->LUN[i - nphysicals -
1737 			(raid_ctlr_position == 0)][0];
1738 	BUG();
1739 	return NULL;
1740 }
1741 
1742 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1743 {
1744 	/* the idea here is we could get notified
1745 	 * that some devices have changed, so we do a report
1746 	 * physical luns and report logical luns cmd, and adjust
1747 	 * our list of devices accordingly.
1748 	 *
1749 	 * The scsi3addr's of devices won't change so long as the
1750 	 * adapter is not reset.  That means we can rescan and
1751 	 * tell which devices we already know about, vs. new
1752 	 * devices, vs.  disappearing devices.
1753 	 */
1754 	struct ReportLUNdata *physdev_list = NULL;
1755 	struct ReportLUNdata *logdev_list = NULL;
1756 	unsigned char *inq_buff = NULL;
1757 	u32 nphysicals = 0;
1758 	u32 nlogicals = 0;
1759 	u32 ndev_allocated = 0;
1760 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1761 	int ncurrent = 0;
1762 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1763 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1764 	int bus, target, lun;
1765 	int raid_ctlr_position;
1766 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1767 
1768 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1769 		GFP_KERNEL);
1770 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1771 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1772 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1773 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1774 
1775 	if (!currentsd || !physdev_list || !logdev_list ||
1776 		!inq_buff || !tmpdevice) {
1777 		dev_err(&h->pdev->dev, "out of memory\n");
1778 		goto out;
1779 	}
1780 	memset(lunzerobits, 0, sizeof(lunzerobits));
1781 
1782 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1783 			logdev_list, &nlogicals))
1784 		goto out;
1785 
1786 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1787 	 * but each of them 4 times through different paths.  The plus 1
1788 	 * is for the RAID controller.
1789 	 */
1790 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1791 
1792 	/* Allocate the per device structures */
1793 	for (i = 0; i < ndevs_to_allocate; i++) {
1794 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1795 		if (!currentsd[i]) {
1796 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1797 				__FILE__, __LINE__);
1798 			goto out;
1799 		}
1800 		ndev_allocated++;
1801 	}
1802 
1803 	if (unlikely(is_scsi_rev_5(h)))
1804 		raid_ctlr_position = 0;
1805 	else
1806 		raid_ctlr_position = nphysicals + nlogicals;
1807 
1808 	/* adjust our table of devices */
1809 	nmsa2xxx_enclosures = 0;
1810 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1811 		u8 *lunaddrbytes;
1812 
1813 		/* Figure out where the LUN ID info is coming from */
1814 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1815 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1816 		/* skip masked physical devices. */
1817 		if (lunaddrbytes[3] & 0xC0 &&
1818 			i < nphysicals + (raid_ctlr_position == 0))
1819 			continue;
1820 
1821 		/* Get device type, vendor, model, device id */
1822 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1823 			continue; /* skip it if we can't talk to it. */
1824 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1825 			tmpdevice);
1826 		this_device = currentsd[ncurrent];
1827 
1828 		/*
1829 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1830 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1831 		 * is nonetheless an enclosure device there.  We have to
1832 		 * present that otherwise linux won't find anything if
1833 		 * there is no lun 0.
1834 		 */
1835 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1836 				lunaddrbytes, bus, target, lun, lunzerobits,
1837 				&nmsa2xxx_enclosures)) {
1838 			ncurrent++;
1839 			this_device = currentsd[ncurrent];
1840 		}
1841 
1842 		*this_device = *tmpdevice;
1843 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1844 
1845 		switch (this_device->devtype) {
1846 		case TYPE_ROM: {
1847 			/* We don't *really* support actual CD-ROM devices,
1848 			 * just "One Button Disaster Recovery" tape drive
1849 			 * which temporarily pretends to be a CD-ROM drive.
1850 			 * So we check that the device is really an OBDR tape
1851 			 * device by checking for "$DR-10" in bytes 43-48 of
1852 			 * the inquiry data.
1853 			 */
1854 				char obdr_sig[7];
1855 #define OBDR_TAPE_SIG "$DR-10"
1856 				strncpy(obdr_sig, &inq_buff[43], 6);
1857 				obdr_sig[6] = '\0';
1858 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1859 					/* Not OBDR device, ignore it. */
1860 					break;
1861 			}
1862 			ncurrent++;
1863 			break;
1864 		case TYPE_DISK:
1865 			if (i < nphysicals)
1866 				break;
1867 			ncurrent++;
1868 			break;
1869 		case TYPE_TAPE:
1870 		case TYPE_MEDIUM_CHANGER:
1871 			ncurrent++;
1872 			break;
1873 		case TYPE_RAID:
1874 			/* Only present the Smartarray HBA as a RAID controller.
1875 			 * If it's a RAID controller other than the HBA itself
1876 			 * (an external RAID controller, MSA500 or similar)
1877 			 * don't present it.
1878 			 */
1879 			if (!is_hba_lunid(lunaddrbytes))
1880 				break;
1881 			ncurrent++;
1882 			break;
1883 		default:
1884 			break;
1885 		}
1886 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1887 			break;
1888 	}
1889 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1890 out:
1891 	kfree(tmpdevice);
1892 	for (i = 0; i < ndev_allocated; i++)
1893 		kfree(currentsd[i]);
1894 	kfree(currentsd);
1895 	kfree(inq_buff);
1896 	kfree(physdev_list);
1897 	kfree(logdev_list);
1898 }
1899 
1900 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1901  * dma mapping  and fills in the scatter gather entries of the
1902  * hpsa command, cp.
1903  */
1904 static int hpsa_scatter_gather(struct ctlr_info *h,
1905 		struct CommandList *cp,
1906 		struct scsi_cmnd *cmd)
1907 {
1908 	unsigned int len;
1909 	struct scatterlist *sg;
1910 	u64 addr64;
1911 	int use_sg, i, sg_index, chained;
1912 	struct SGDescriptor *curr_sg;
1913 
1914 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1915 
1916 	use_sg = scsi_dma_map(cmd);
1917 	if (use_sg < 0)
1918 		return use_sg;
1919 
1920 	if (!use_sg)
1921 		goto sglist_finished;
1922 
1923 	curr_sg = cp->SG;
1924 	chained = 0;
1925 	sg_index = 0;
1926 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1927 		if (i == h->max_cmd_sg_entries - 1 &&
1928 			use_sg > h->max_cmd_sg_entries) {
1929 			chained = 1;
1930 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1931 			sg_index = 0;
1932 		}
1933 		addr64 = (u64) sg_dma_address(sg);
1934 		len  = sg_dma_len(sg);
1935 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1936 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1937 		curr_sg->Len = len;
1938 		curr_sg->Ext = 0;  /* we are not chaining */
1939 		curr_sg++;
1940 	}
1941 
1942 	if (use_sg + chained > h->maxSG)
1943 		h->maxSG = use_sg + chained;
1944 
1945 	if (chained) {
1946 		cp->Header.SGList = h->max_cmd_sg_entries;
1947 		cp->Header.SGTotal = (u16) (use_sg + 1);
1948 		hpsa_map_sg_chain_block(h, cp);
1949 		return 0;
1950 	}
1951 
1952 sglist_finished:
1953 
1954 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1955 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1956 	return 0;
1957 }
1958 
1959 
1960 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1961 	void (*done)(struct scsi_cmnd *))
1962 {
1963 	struct ctlr_info *h;
1964 	struct hpsa_scsi_dev_t *dev;
1965 	unsigned char scsi3addr[8];
1966 	struct CommandList *c;
1967 	unsigned long flags;
1968 
1969 	/* Get the ptr to our adapter structure out of cmd->host. */
1970 	h = sdev_to_hba(cmd->device);
1971 	dev = cmd->device->hostdata;
1972 	if (!dev) {
1973 		cmd->result = DID_NO_CONNECT << 16;
1974 		done(cmd);
1975 		return 0;
1976 	}
1977 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1978 
1979 	/* Need a lock as this is being allocated from the pool */
1980 	spin_lock_irqsave(&h->lock, flags);
1981 	c = cmd_alloc(h);
1982 	spin_unlock_irqrestore(&h->lock, flags);
1983 	if (c == NULL) {			/* trouble... */
1984 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1985 		return SCSI_MLQUEUE_HOST_BUSY;
1986 	}
1987 
1988 	/* Fill in the command list header */
1989 
1990 	cmd->scsi_done = done;    /* save this for use by completion code */
1991 
1992 	/* save c in case we have to abort it  */
1993 	cmd->host_scribble = (unsigned char *) c;
1994 
1995 	c->cmd_type = CMD_SCSI;
1996 	c->scsi_cmd = cmd;
1997 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1998 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1999 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2000 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2001 
2002 	/* Fill in the request block... */
2003 
2004 	c->Request.Timeout = 0;
2005 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2006 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2007 	c->Request.CDBLen = cmd->cmd_len;
2008 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2009 	c->Request.Type.Type = TYPE_CMD;
2010 	c->Request.Type.Attribute = ATTR_SIMPLE;
2011 	switch (cmd->sc_data_direction) {
2012 	case DMA_TO_DEVICE:
2013 		c->Request.Type.Direction = XFER_WRITE;
2014 		break;
2015 	case DMA_FROM_DEVICE:
2016 		c->Request.Type.Direction = XFER_READ;
2017 		break;
2018 	case DMA_NONE:
2019 		c->Request.Type.Direction = XFER_NONE;
2020 		break;
2021 	case DMA_BIDIRECTIONAL:
2022 		/* This can happen if a buggy application does a scsi passthru
2023 		 * and sets both inlen and outlen to non-zero. ( see
2024 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2025 		 */
2026 
2027 		c->Request.Type.Direction = XFER_RSVD;
2028 		/* This is technically wrong, and hpsa controllers should
2029 		 * reject it with CMD_INVALID, which is the most correct
2030 		 * response, but non-fibre backends appear to let it
2031 		 * slide by, and give the same results as if this field
2032 		 * were set correctly.  Either way is acceptable for
2033 		 * our purposes here.
2034 		 */
2035 
2036 		break;
2037 
2038 	default:
2039 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2040 			cmd->sc_data_direction);
2041 		BUG();
2042 		break;
2043 	}
2044 
2045 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2046 		cmd_free(h, c);
2047 		return SCSI_MLQUEUE_HOST_BUSY;
2048 	}
2049 	enqueue_cmd_and_start_io(h, c);
2050 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2051 	return 0;
2052 }
2053 
2054 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2055 
2056 static void hpsa_scan_start(struct Scsi_Host *sh)
2057 {
2058 	struct ctlr_info *h = shost_to_hba(sh);
2059 	unsigned long flags;
2060 
2061 	/* wait until any scan already in progress is finished. */
2062 	while (1) {
2063 		spin_lock_irqsave(&h->scan_lock, flags);
2064 		if (h->scan_finished)
2065 			break;
2066 		spin_unlock_irqrestore(&h->scan_lock, flags);
2067 		wait_event(h->scan_wait_queue, h->scan_finished);
2068 		/* Note: We don't need to worry about a race between this
2069 		 * thread and driver unload because the midlayer will
2070 		 * have incremented the reference count, so unload won't
2071 		 * happen if we're in here.
2072 		 */
2073 	}
2074 	h->scan_finished = 0; /* mark scan as in progress */
2075 	spin_unlock_irqrestore(&h->scan_lock, flags);
2076 
2077 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2078 
2079 	spin_lock_irqsave(&h->scan_lock, flags);
2080 	h->scan_finished = 1; /* mark scan as finished. */
2081 	wake_up_all(&h->scan_wait_queue);
2082 	spin_unlock_irqrestore(&h->scan_lock, flags);
2083 }
2084 
2085 static int hpsa_scan_finished(struct Scsi_Host *sh,
2086 	unsigned long elapsed_time)
2087 {
2088 	struct ctlr_info *h = shost_to_hba(sh);
2089 	unsigned long flags;
2090 	int finished;
2091 
2092 	spin_lock_irqsave(&h->scan_lock, flags);
2093 	finished = h->scan_finished;
2094 	spin_unlock_irqrestore(&h->scan_lock, flags);
2095 	return finished;
2096 }
2097 
2098 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2099 	int qdepth, int reason)
2100 {
2101 	struct ctlr_info *h = sdev_to_hba(sdev);
2102 
2103 	if (reason != SCSI_QDEPTH_DEFAULT)
2104 		return -ENOTSUPP;
2105 
2106 	if (qdepth < 1)
2107 		qdepth = 1;
2108 	else
2109 		if (qdepth > h->nr_cmds)
2110 			qdepth = h->nr_cmds;
2111 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2112 	return sdev->queue_depth;
2113 }
2114 
2115 static void hpsa_unregister_scsi(struct ctlr_info *h)
2116 {
2117 	/* we are being forcibly unloaded, and may not refuse. */
2118 	scsi_remove_host(h->scsi_host);
2119 	scsi_host_put(h->scsi_host);
2120 	h->scsi_host = NULL;
2121 }
2122 
2123 static int hpsa_register_scsi(struct ctlr_info *h)
2124 {
2125 	int rc;
2126 
2127 	rc = hpsa_scsi_detect(h);
2128 	if (rc != 0)
2129 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2130 			" hpsa_scsi_detect(), rc is %d\n", rc);
2131 	return rc;
2132 }
2133 
2134 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2135 	unsigned char lunaddr[])
2136 {
2137 	int rc = 0;
2138 	int count = 0;
2139 	int waittime = 1; /* seconds */
2140 	struct CommandList *c;
2141 
2142 	c = cmd_special_alloc(h);
2143 	if (!c) {
2144 		dev_warn(&h->pdev->dev, "out of memory in "
2145 			"wait_for_device_to_become_ready.\n");
2146 		return IO_ERROR;
2147 	}
2148 
2149 	/* Send test unit ready until device ready, or give up. */
2150 	while (count < HPSA_TUR_RETRY_LIMIT) {
2151 
2152 		/* Wait for a bit.  do this first, because if we send
2153 		 * the TUR right away, the reset will just abort it.
2154 		 */
2155 		msleep(1000 * waittime);
2156 		count++;
2157 
2158 		/* Increase wait time with each try, up to a point. */
2159 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2160 			waittime = waittime * 2;
2161 
2162 		/* Send the Test Unit Ready */
2163 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2164 		hpsa_scsi_do_simple_cmd_core(h, c);
2165 		/* no unmap needed here because no data xfer. */
2166 
2167 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2168 			break;
2169 
2170 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2171 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2172 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2173 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2174 			break;
2175 
2176 		dev_warn(&h->pdev->dev, "waiting %d secs "
2177 			"for device to become ready.\n", waittime);
2178 		rc = 1; /* device not ready. */
2179 	}
2180 
2181 	if (rc)
2182 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2183 	else
2184 		dev_warn(&h->pdev->dev, "device is ready.\n");
2185 
2186 	cmd_special_free(h, c);
2187 	return rc;
2188 }
2189 
2190 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2191  * complaining.  Doing a host- or bus-reset can't do anything good here.
2192  */
2193 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2194 {
2195 	int rc;
2196 	struct ctlr_info *h;
2197 	struct hpsa_scsi_dev_t *dev;
2198 
2199 	/* find the controller to which the command to be aborted was sent */
2200 	h = sdev_to_hba(scsicmd->device);
2201 	if (h == NULL) /* paranoia */
2202 		return FAILED;
2203 	dev = scsicmd->device->hostdata;
2204 	if (!dev) {
2205 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2206 			"device lookup failed.\n");
2207 		return FAILED;
2208 	}
2209 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2210 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2211 	/* send a reset to the SCSI LUN which the command was sent to */
2212 	rc = hpsa_send_reset(h, dev->scsi3addr);
2213 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2214 		return SUCCESS;
2215 
2216 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2217 	return FAILED;
2218 }
2219 
2220 /*
2221  * For operations that cannot sleep, a command block is allocated at init,
2222  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2223  * which ones are free or in use.  Lock must be held when calling this.
2224  * cmd_free() is the complement.
2225  */
2226 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2227 {
2228 	struct CommandList *c;
2229 	int i;
2230 	union u64bit temp64;
2231 	dma_addr_t cmd_dma_handle, err_dma_handle;
2232 
2233 	do {
2234 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2235 		if (i == h->nr_cmds)
2236 			return NULL;
2237 	} while (test_and_set_bit
2238 		 (i & (BITS_PER_LONG - 1),
2239 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2240 	c = h->cmd_pool + i;
2241 	memset(c, 0, sizeof(*c));
2242 	cmd_dma_handle = h->cmd_pool_dhandle
2243 	    + i * sizeof(*c);
2244 	c->err_info = h->errinfo_pool + i;
2245 	memset(c->err_info, 0, sizeof(*c->err_info));
2246 	err_dma_handle = h->errinfo_pool_dhandle
2247 	    + i * sizeof(*c->err_info);
2248 	h->nr_allocs++;
2249 
2250 	c->cmdindex = i;
2251 
2252 	INIT_LIST_HEAD(&c->list);
2253 	c->busaddr = (u32) cmd_dma_handle;
2254 	temp64.val = (u64) err_dma_handle;
2255 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2256 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2257 	c->ErrDesc.Len = sizeof(*c->err_info);
2258 
2259 	c->h = h;
2260 	return c;
2261 }
2262 
2263 /* For operations that can wait for kmalloc to possibly sleep,
2264  * this routine can be called. Lock need not be held to call
2265  * cmd_special_alloc. cmd_special_free() is the complement.
2266  */
2267 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2268 {
2269 	struct CommandList *c;
2270 	union u64bit temp64;
2271 	dma_addr_t cmd_dma_handle, err_dma_handle;
2272 
2273 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2274 	if (c == NULL)
2275 		return NULL;
2276 	memset(c, 0, sizeof(*c));
2277 
2278 	c->cmdindex = -1;
2279 
2280 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2281 		    &err_dma_handle);
2282 
2283 	if (c->err_info == NULL) {
2284 		pci_free_consistent(h->pdev,
2285 			sizeof(*c), c, cmd_dma_handle);
2286 		return NULL;
2287 	}
2288 	memset(c->err_info, 0, sizeof(*c->err_info));
2289 
2290 	INIT_LIST_HEAD(&c->list);
2291 	c->busaddr = (u32) cmd_dma_handle;
2292 	temp64.val = (u64) err_dma_handle;
2293 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2294 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2295 	c->ErrDesc.Len = sizeof(*c->err_info);
2296 
2297 	c->h = h;
2298 	return c;
2299 }
2300 
2301 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2302 {
2303 	int i;
2304 
2305 	i = c - h->cmd_pool;
2306 	clear_bit(i & (BITS_PER_LONG - 1),
2307 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2308 	h->nr_frees++;
2309 }
2310 
2311 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2312 {
2313 	union u64bit temp64;
2314 
2315 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2316 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2317 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2318 			    c->err_info, (dma_addr_t) temp64.val);
2319 	pci_free_consistent(h->pdev, sizeof(*c),
2320 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2321 }
2322 
2323 #ifdef CONFIG_COMPAT
2324 
2325 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2326 {
2327 	IOCTL32_Command_struct __user *arg32 =
2328 	    (IOCTL32_Command_struct __user *) arg;
2329 	IOCTL_Command_struct arg64;
2330 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2331 	int err;
2332 	u32 cp;
2333 
2334 	memset(&arg64, 0, sizeof(arg64));
2335 	err = 0;
2336 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2337 			   sizeof(arg64.LUN_info));
2338 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2339 			   sizeof(arg64.Request));
2340 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2341 			   sizeof(arg64.error_info));
2342 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2343 	err |= get_user(cp, &arg32->buf);
2344 	arg64.buf = compat_ptr(cp);
2345 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2346 
2347 	if (err)
2348 		return -EFAULT;
2349 
2350 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2351 	if (err)
2352 		return err;
2353 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2354 			 sizeof(arg32->error_info));
2355 	if (err)
2356 		return -EFAULT;
2357 	return err;
2358 }
2359 
2360 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2361 	int cmd, void *arg)
2362 {
2363 	BIG_IOCTL32_Command_struct __user *arg32 =
2364 	    (BIG_IOCTL32_Command_struct __user *) arg;
2365 	BIG_IOCTL_Command_struct arg64;
2366 	BIG_IOCTL_Command_struct __user *p =
2367 	    compat_alloc_user_space(sizeof(arg64));
2368 	int err;
2369 	u32 cp;
2370 
2371 	memset(&arg64, 0, sizeof(arg64));
2372 	err = 0;
2373 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2374 			   sizeof(arg64.LUN_info));
2375 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2376 			   sizeof(arg64.Request));
2377 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2378 			   sizeof(arg64.error_info));
2379 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2380 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2381 	err |= get_user(cp, &arg32->buf);
2382 	arg64.buf = compat_ptr(cp);
2383 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2384 
2385 	if (err)
2386 		return -EFAULT;
2387 
2388 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2389 	if (err)
2390 		return err;
2391 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2392 			 sizeof(arg32->error_info));
2393 	if (err)
2394 		return -EFAULT;
2395 	return err;
2396 }
2397 
2398 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2399 {
2400 	switch (cmd) {
2401 	case CCISS_GETPCIINFO:
2402 	case CCISS_GETINTINFO:
2403 	case CCISS_SETINTINFO:
2404 	case CCISS_GETNODENAME:
2405 	case CCISS_SETNODENAME:
2406 	case CCISS_GETHEARTBEAT:
2407 	case CCISS_GETBUSTYPES:
2408 	case CCISS_GETFIRMVER:
2409 	case CCISS_GETDRIVVER:
2410 	case CCISS_REVALIDVOLS:
2411 	case CCISS_DEREGDISK:
2412 	case CCISS_REGNEWDISK:
2413 	case CCISS_REGNEWD:
2414 	case CCISS_RESCANDISK:
2415 	case CCISS_GETLUNINFO:
2416 		return hpsa_ioctl(dev, cmd, arg);
2417 
2418 	case CCISS_PASSTHRU32:
2419 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2420 	case CCISS_BIG_PASSTHRU32:
2421 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2422 
2423 	default:
2424 		return -ENOIOCTLCMD;
2425 	}
2426 }
2427 #endif
2428 
2429 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2430 {
2431 	struct hpsa_pci_info pciinfo;
2432 
2433 	if (!argp)
2434 		return -EINVAL;
2435 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2436 	pciinfo.bus = h->pdev->bus->number;
2437 	pciinfo.dev_fn = h->pdev->devfn;
2438 	pciinfo.board_id = h->board_id;
2439 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2440 		return -EFAULT;
2441 	return 0;
2442 }
2443 
2444 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2445 {
2446 	DriverVer_type DriverVer;
2447 	unsigned char vmaj, vmin, vsubmin;
2448 	int rc;
2449 
2450 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2451 		&vmaj, &vmin, &vsubmin);
2452 	if (rc != 3) {
2453 		dev_info(&h->pdev->dev, "driver version string '%s' "
2454 			"unrecognized.", HPSA_DRIVER_VERSION);
2455 		vmaj = 0;
2456 		vmin = 0;
2457 		vsubmin = 0;
2458 	}
2459 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2460 	if (!argp)
2461 		return -EINVAL;
2462 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2463 		return -EFAULT;
2464 	return 0;
2465 }
2466 
2467 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2468 {
2469 	IOCTL_Command_struct iocommand;
2470 	struct CommandList *c;
2471 	char *buff = NULL;
2472 	union u64bit temp64;
2473 
2474 	if (!argp)
2475 		return -EINVAL;
2476 	if (!capable(CAP_SYS_RAWIO))
2477 		return -EPERM;
2478 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2479 		return -EFAULT;
2480 	if ((iocommand.buf_size < 1) &&
2481 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2482 		return -EINVAL;
2483 	}
2484 	if (iocommand.buf_size > 0) {
2485 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2486 		if (buff == NULL)
2487 			return -EFAULT;
2488 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2489 			/* Copy the data into the buffer we created */
2490 			if (copy_from_user(buff, iocommand.buf,
2491 				iocommand.buf_size)) {
2492 				kfree(buff);
2493 				return -EFAULT;
2494 			}
2495 		} else {
2496 			memset(buff, 0, iocommand.buf_size);
2497 		}
2498 	}
2499 	c = cmd_special_alloc(h);
2500 	if (c == NULL) {
2501 		kfree(buff);
2502 		return -ENOMEM;
2503 	}
2504 	/* Fill in the command type */
2505 	c->cmd_type = CMD_IOCTL_PEND;
2506 	/* Fill in Command Header */
2507 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2508 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2509 		c->Header.SGList = 1;
2510 		c->Header.SGTotal = 1;
2511 	} else	{ /* no buffers to fill */
2512 		c->Header.SGList = 0;
2513 		c->Header.SGTotal = 0;
2514 	}
2515 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2516 	/* use the kernel address the cmd block for tag */
2517 	c->Header.Tag.lower = c->busaddr;
2518 
2519 	/* Fill in Request block */
2520 	memcpy(&c->Request, &iocommand.Request,
2521 		sizeof(c->Request));
2522 
2523 	/* Fill in the scatter gather information */
2524 	if (iocommand.buf_size > 0) {
2525 		temp64.val = pci_map_single(h->pdev, buff,
2526 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2527 		c->SG[0].Addr.lower = temp64.val32.lower;
2528 		c->SG[0].Addr.upper = temp64.val32.upper;
2529 		c->SG[0].Len = iocommand.buf_size;
2530 		c->SG[0].Ext = 0; /* we are not chaining*/
2531 	}
2532 	hpsa_scsi_do_simple_cmd_core(h, c);
2533 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2534 	check_ioctl_unit_attention(h, c);
2535 
2536 	/* Copy the error information out */
2537 	memcpy(&iocommand.error_info, c->err_info,
2538 		sizeof(iocommand.error_info));
2539 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2540 		kfree(buff);
2541 		cmd_special_free(h, c);
2542 		return -EFAULT;
2543 	}
2544 	if (iocommand.Request.Type.Direction == XFER_READ &&
2545 		iocommand.buf_size > 0) {
2546 		/* Copy the data out of the buffer we created */
2547 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2548 			kfree(buff);
2549 			cmd_special_free(h, c);
2550 			return -EFAULT;
2551 		}
2552 	}
2553 	kfree(buff);
2554 	cmd_special_free(h, c);
2555 	return 0;
2556 }
2557 
2558 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2559 {
2560 	BIG_IOCTL_Command_struct *ioc;
2561 	struct CommandList *c;
2562 	unsigned char **buff = NULL;
2563 	int *buff_size = NULL;
2564 	union u64bit temp64;
2565 	BYTE sg_used = 0;
2566 	int status = 0;
2567 	int i;
2568 	u32 left;
2569 	u32 sz;
2570 	BYTE __user *data_ptr;
2571 
2572 	if (!argp)
2573 		return -EINVAL;
2574 	if (!capable(CAP_SYS_RAWIO))
2575 		return -EPERM;
2576 	ioc = (BIG_IOCTL_Command_struct *)
2577 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2578 	if (!ioc) {
2579 		status = -ENOMEM;
2580 		goto cleanup1;
2581 	}
2582 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2583 		status = -EFAULT;
2584 		goto cleanup1;
2585 	}
2586 	if ((ioc->buf_size < 1) &&
2587 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2588 		status = -EINVAL;
2589 		goto cleanup1;
2590 	}
2591 	/* Check kmalloc limits  using all SGs */
2592 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2593 		status = -EINVAL;
2594 		goto cleanup1;
2595 	}
2596 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2597 		status = -EINVAL;
2598 		goto cleanup1;
2599 	}
2600 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2601 	if (!buff) {
2602 		status = -ENOMEM;
2603 		goto cleanup1;
2604 	}
2605 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2606 	if (!buff_size) {
2607 		status = -ENOMEM;
2608 		goto cleanup1;
2609 	}
2610 	left = ioc->buf_size;
2611 	data_ptr = ioc->buf;
2612 	while (left) {
2613 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2614 		buff_size[sg_used] = sz;
2615 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2616 		if (buff[sg_used] == NULL) {
2617 			status = -ENOMEM;
2618 			goto cleanup1;
2619 		}
2620 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2621 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2622 				status = -ENOMEM;
2623 				goto cleanup1;
2624 			}
2625 		} else
2626 			memset(buff[sg_used], 0, sz);
2627 		left -= sz;
2628 		data_ptr += sz;
2629 		sg_used++;
2630 	}
2631 	c = cmd_special_alloc(h);
2632 	if (c == NULL) {
2633 		status = -ENOMEM;
2634 		goto cleanup1;
2635 	}
2636 	c->cmd_type = CMD_IOCTL_PEND;
2637 	c->Header.ReplyQueue = 0;
2638 	c->Header.SGList = c->Header.SGTotal = sg_used;
2639 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2640 	c->Header.Tag.lower = c->busaddr;
2641 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2642 	if (ioc->buf_size > 0) {
2643 		int i;
2644 		for (i = 0; i < sg_used; i++) {
2645 			temp64.val = pci_map_single(h->pdev, buff[i],
2646 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2647 			c->SG[i].Addr.lower = temp64.val32.lower;
2648 			c->SG[i].Addr.upper = temp64.val32.upper;
2649 			c->SG[i].Len = buff_size[i];
2650 			/* we are not chaining */
2651 			c->SG[i].Ext = 0;
2652 		}
2653 	}
2654 	hpsa_scsi_do_simple_cmd_core(h, c);
2655 	if (sg_used)
2656 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2657 	check_ioctl_unit_attention(h, c);
2658 	/* Copy the error information out */
2659 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2660 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2661 		cmd_special_free(h, c);
2662 		status = -EFAULT;
2663 		goto cleanup1;
2664 	}
2665 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2666 		/* Copy the data out of the buffer we created */
2667 		BYTE __user *ptr = ioc->buf;
2668 		for (i = 0; i < sg_used; i++) {
2669 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2670 				cmd_special_free(h, c);
2671 				status = -EFAULT;
2672 				goto cleanup1;
2673 			}
2674 			ptr += buff_size[i];
2675 		}
2676 	}
2677 	cmd_special_free(h, c);
2678 	status = 0;
2679 cleanup1:
2680 	if (buff) {
2681 		for (i = 0; i < sg_used; i++)
2682 			kfree(buff[i]);
2683 		kfree(buff);
2684 	}
2685 	kfree(buff_size);
2686 	kfree(ioc);
2687 	return status;
2688 }
2689 
2690 static void check_ioctl_unit_attention(struct ctlr_info *h,
2691 	struct CommandList *c)
2692 {
2693 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2694 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2695 		(void) check_for_unit_attention(h, c);
2696 }
2697 /*
2698  * ioctl
2699  */
2700 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2701 {
2702 	struct ctlr_info *h;
2703 	void __user *argp = (void __user *)arg;
2704 
2705 	h = sdev_to_hba(dev);
2706 
2707 	switch (cmd) {
2708 	case CCISS_DEREGDISK:
2709 	case CCISS_REGNEWDISK:
2710 	case CCISS_REGNEWD:
2711 		hpsa_scan_start(h->scsi_host);
2712 		return 0;
2713 	case CCISS_GETPCIINFO:
2714 		return hpsa_getpciinfo_ioctl(h, argp);
2715 	case CCISS_GETDRIVVER:
2716 		return hpsa_getdrivver_ioctl(h, argp);
2717 	case CCISS_PASSTHRU:
2718 		return hpsa_passthru_ioctl(h, argp);
2719 	case CCISS_BIG_PASSTHRU:
2720 		return hpsa_big_passthru_ioctl(h, argp);
2721 	default:
2722 		return -ENOTTY;
2723 	}
2724 }
2725 
2726 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2727 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2728 	int cmd_type)
2729 {
2730 	int pci_dir = XFER_NONE;
2731 
2732 	c->cmd_type = CMD_IOCTL_PEND;
2733 	c->Header.ReplyQueue = 0;
2734 	if (buff != NULL && size > 0) {
2735 		c->Header.SGList = 1;
2736 		c->Header.SGTotal = 1;
2737 	} else {
2738 		c->Header.SGList = 0;
2739 		c->Header.SGTotal = 0;
2740 	}
2741 	c->Header.Tag.lower = c->busaddr;
2742 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2743 
2744 	c->Request.Type.Type = cmd_type;
2745 	if (cmd_type == TYPE_CMD) {
2746 		switch (cmd) {
2747 		case HPSA_INQUIRY:
2748 			/* are we trying to read a vital product page */
2749 			if (page_code != 0) {
2750 				c->Request.CDB[1] = 0x01;
2751 				c->Request.CDB[2] = page_code;
2752 			}
2753 			c->Request.CDBLen = 6;
2754 			c->Request.Type.Attribute = ATTR_SIMPLE;
2755 			c->Request.Type.Direction = XFER_READ;
2756 			c->Request.Timeout = 0;
2757 			c->Request.CDB[0] = HPSA_INQUIRY;
2758 			c->Request.CDB[4] = size & 0xFF;
2759 			break;
2760 		case HPSA_REPORT_LOG:
2761 		case HPSA_REPORT_PHYS:
2762 			/* Talking to controller so It's a physical command
2763 			   mode = 00 target = 0.  Nothing to write.
2764 			 */
2765 			c->Request.CDBLen = 12;
2766 			c->Request.Type.Attribute = ATTR_SIMPLE;
2767 			c->Request.Type.Direction = XFER_READ;
2768 			c->Request.Timeout = 0;
2769 			c->Request.CDB[0] = cmd;
2770 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2771 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2772 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2773 			c->Request.CDB[9] = size & 0xFF;
2774 			break;
2775 		case HPSA_CACHE_FLUSH:
2776 			c->Request.CDBLen = 12;
2777 			c->Request.Type.Attribute = ATTR_SIMPLE;
2778 			c->Request.Type.Direction = XFER_WRITE;
2779 			c->Request.Timeout = 0;
2780 			c->Request.CDB[0] = BMIC_WRITE;
2781 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2782 			break;
2783 		case TEST_UNIT_READY:
2784 			c->Request.CDBLen = 6;
2785 			c->Request.Type.Attribute = ATTR_SIMPLE;
2786 			c->Request.Type.Direction = XFER_NONE;
2787 			c->Request.Timeout = 0;
2788 			break;
2789 		default:
2790 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2791 			BUG();
2792 			return;
2793 		}
2794 	} else if (cmd_type == TYPE_MSG) {
2795 		switch (cmd) {
2796 
2797 		case  HPSA_DEVICE_RESET_MSG:
2798 			c->Request.CDBLen = 16;
2799 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2800 			c->Request.Type.Attribute = ATTR_SIMPLE;
2801 			c->Request.Type.Direction = XFER_NONE;
2802 			c->Request.Timeout = 0; /* Don't time out */
2803 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2804 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2805 			/* If bytes 4-7 are zero, it means reset the */
2806 			/* LunID device */
2807 			c->Request.CDB[4] = 0x00;
2808 			c->Request.CDB[5] = 0x00;
2809 			c->Request.CDB[6] = 0x00;
2810 			c->Request.CDB[7] = 0x00;
2811 		break;
2812 
2813 		default:
2814 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2815 				cmd);
2816 			BUG();
2817 		}
2818 	} else {
2819 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2820 		BUG();
2821 	}
2822 
2823 	switch (c->Request.Type.Direction) {
2824 	case XFER_READ:
2825 		pci_dir = PCI_DMA_FROMDEVICE;
2826 		break;
2827 	case XFER_WRITE:
2828 		pci_dir = PCI_DMA_TODEVICE;
2829 		break;
2830 	case XFER_NONE:
2831 		pci_dir = PCI_DMA_NONE;
2832 		break;
2833 	default:
2834 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2835 	}
2836 
2837 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2838 
2839 	return;
2840 }
2841 
2842 /*
2843  * Map (physical) PCI mem into (virtual) kernel space
2844  */
2845 static void __iomem *remap_pci_mem(ulong base, ulong size)
2846 {
2847 	ulong page_base = ((ulong) base) & PAGE_MASK;
2848 	ulong page_offs = ((ulong) base) - page_base;
2849 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2850 
2851 	return page_remapped ? (page_remapped + page_offs) : NULL;
2852 }
2853 
2854 /* Takes cmds off the submission queue and sends them to the hardware,
2855  * then puts them on the queue of cmds waiting for completion.
2856  */
2857 static void start_io(struct ctlr_info *h)
2858 {
2859 	struct CommandList *c;
2860 
2861 	while (!list_empty(&h->reqQ)) {
2862 		c = list_entry(h->reqQ.next, struct CommandList, list);
2863 		/* can't do anything if fifo is full */
2864 		if ((h->access.fifo_full(h))) {
2865 			dev_warn(&h->pdev->dev, "fifo full\n");
2866 			break;
2867 		}
2868 
2869 		/* Get the first entry from the Request Q */
2870 		removeQ(c);
2871 		h->Qdepth--;
2872 
2873 		/* Tell the controller execute command */
2874 		h->access.submit_command(h, c);
2875 
2876 		/* Put job onto the completed Q */
2877 		addQ(&h->cmpQ, c);
2878 	}
2879 }
2880 
2881 static inline unsigned long get_next_completion(struct ctlr_info *h)
2882 {
2883 	return h->access.command_completed(h);
2884 }
2885 
2886 static inline bool interrupt_pending(struct ctlr_info *h)
2887 {
2888 	return h->access.intr_pending(h);
2889 }
2890 
2891 static inline long interrupt_not_for_us(struct ctlr_info *h)
2892 {
2893 	return (h->access.intr_pending(h) == 0) ||
2894 		(h->interrupts_enabled == 0);
2895 }
2896 
2897 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2898 	u32 raw_tag)
2899 {
2900 	if (unlikely(tag_index >= h->nr_cmds)) {
2901 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2902 		return 1;
2903 	}
2904 	return 0;
2905 }
2906 
2907 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2908 {
2909 	removeQ(c);
2910 	if (likely(c->cmd_type == CMD_SCSI))
2911 		complete_scsi_command(c, 0, raw_tag);
2912 	else if (c->cmd_type == CMD_IOCTL_PEND)
2913 		complete(c->waiting);
2914 }
2915 
2916 static inline u32 hpsa_tag_contains_index(u32 tag)
2917 {
2918 	return tag & DIRECT_LOOKUP_BIT;
2919 }
2920 
2921 static inline u32 hpsa_tag_to_index(u32 tag)
2922 {
2923 	return tag >> DIRECT_LOOKUP_SHIFT;
2924 }
2925 
2926 
2927 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2928 {
2929 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2930 #define HPSA_SIMPLE_ERROR_BITS 0x03
2931 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2932 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
2933 	return tag & ~HPSA_PERF_ERROR_BITS;
2934 }
2935 
2936 /* process completion of an indexed ("direct lookup") command */
2937 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2938 	u32 raw_tag)
2939 {
2940 	u32 tag_index;
2941 	struct CommandList *c;
2942 
2943 	tag_index = hpsa_tag_to_index(raw_tag);
2944 	if (bad_tag(h, tag_index, raw_tag))
2945 		return next_command(h);
2946 	c = h->cmd_pool + tag_index;
2947 	finish_cmd(c, raw_tag);
2948 	return next_command(h);
2949 }
2950 
2951 /* process completion of a non-indexed command */
2952 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2953 	u32 raw_tag)
2954 {
2955 	u32 tag;
2956 	struct CommandList *c = NULL;
2957 
2958 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
2959 	list_for_each_entry(c, &h->cmpQ, list) {
2960 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2961 			finish_cmd(c, raw_tag);
2962 			return next_command(h);
2963 		}
2964 	}
2965 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2966 	return next_command(h);
2967 }
2968 
2969 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2970 {
2971 	struct ctlr_info *h = dev_id;
2972 	unsigned long flags;
2973 	u32 raw_tag;
2974 
2975 	if (interrupt_not_for_us(h))
2976 		return IRQ_NONE;
2977 	spin_lock_irqsave(&h->lock, flags);
2978 	while (interrupt_pending(h)) {
2979 		raw_tag = get_next_completion(h);
2980 		while (raw_tag != FIFO_EMPTY) {
2981 			if (hpsa_tag_contains_index(raw_tag))
2982 				raw_tag = process_indexed_cmd(h, raw_tag);
2983 			else
2984 				raw_tag = process_nonindexed_cmd(h, raw_tag);
2985 		}
2986 	}
2987 	spin_unlock_irqrestore(&h->lock, flags);
2988 	return IRQ_HANDLED;
2989 }
2990 
2991 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2992 {
2993 	struct ctlr_info *h = dev_id;
2994 	unsigned long flags;
2995 	u32 raw_tag;
2996 
2997 	spin_lock_irqsave(&h->lock, flags);
2998 	raw_tag = get_next_completion(h);
2999 	while (raw_tag != FIFO_EMPTY) {
3000 		if (hpsa_tag_contains_index(raw_tag))
3001 			raw_tag = process_indexed_cmd(h, raw_tag);
3002 		else
3003 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3004 	}
3005 	spin_unlock_irqrestore(&h->lock, flags);
3006 	return IRQ_HANDLED;
3007 }
3008 
3009 /* Send a message CDB to the firmware. Careful, this only works
3010  * in simple mode, not performant mode due to the tag lookup.
3011  * We only ever use this immediately after a controller reset.
3012  */
3013 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3014 						unsigned char type)
3015 {
3016 	struct Command {
3017 		struct CommandListHeader CommandHeader;
3018 		struct RequestBlock Request;
3019 		struct ErrDescriptor ErrorDescriptor;
3020 	};
3021 	struct Command *cmd;
3022 	static const size_t cmd_sz = sizeof(*cmd) +
3023 					sizeof(cmd->ErrorDescriptor);
3024 	dma_addr_t paddr64;
3025 	uint32_t paddr32, tag;
3026 	void __iomem *vaddr;
3027 	int i, err;
3028 
3029 	vaddr = pci_ioremap_bar(pdev, 0);
3030 	if (vaddr == NULL)
3031 		return -ENOMEM;
3032 
3033 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3034 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3035 	 * memory.
3036 	 */
3037 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3038 	if (err) {
3039 		iounmap(vaddr);
3040 		return -ENOMEM;
3041 	}
3042 
3043 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3044 	if (cmd == NULL) {
3045 		iounmap(vaddr);
3046 		return -ENOMEM;
3047 	}
3048 
3049 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3050 	 * although there's no guarantee, we assume that the address is at
3051 	 * least 4-byte aligned (most likely, it's page-aligned).
3052 	 */
3053 	paddr32 = paddr64;
3054 
3055 	cmd->CommandHeader.ReplyQueue = 0;
3056 	cmd->CommandHeader.SGList = 0;
3057 	cmd->CommandHeader.SGTotal = 0;
3058 	cmd->CommandHeader.Tag.lower = paddr32;
3059 	cmd->CommandHeader.Tag.upper = 0;
3060 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3061 
3062 	cmd->Request.CDBLen = 16;
3063 	cmd->Request.Type.Type = TYPE_MSG;
3064 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3065 	cmd->Request.Type.Direction = XFER_NONE;
3066 	cmd->Request.Timeout = 0; /* Don't time out */
3067 	cmd->Request.CDB[0] = opcode;
3068 	cmd->Request.CDB[1] = type;
3069 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3070 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3071 	cmd->ErrorDescriptor.Addr.upper = 0;
3072 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3073 
3074 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3075 
3076 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3077 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3078 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3079 			break;
3080 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3081 	}
3082 
3083 	iounmap(vaddr);
3084 
3085 	/* we leak the DMA buffer here ... no choice since the controller could
3086 	 *  still complete the command.
3087 	 */
3088 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3089 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3090 			opcode, type);
3091 		return -ETIMEDOUT;
3092 	}
3093 
3094 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3095 
3096 	if (tag & HPSA_ERROR_BIT) {
3097 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3098 			opcode, type);
3099 		return -EIO;
3100 	}
3101 
3102 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3103 		opcode, type);
3104 	return 0;
3105 }
3106 
3107 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3108 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3109 
3110 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3111 	void * __iomem vaddr, bool use_doorbell)
3112 {
3113 	u16 pmcsr;
3114 	int pos;
3115 
3116 	if (use_doorbell) {
3117 		/* For everything after the P600, the PCI power state method
3118 		 * of resetting the controller doesn't work, so we have this
3119 		 * other way using the doorbell register.
3120 		 */
3121 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3122 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3123 		msleep(1000);
3124 	} else { /* Try to do it the PCI power state way */
3125 
3126 		/* Quoting from the Open CISS Specification: "The Power
3127 		 * Management Control/Status Register (CSR) controls the power
3128 		 * state of the device.  The normal operating state is D0,
3129 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3130 		 * the controller, place the interface device in D3 then to D0,
3131 		 * this causes a secondary PCI reset which will reset the
3132 		 * controller." */
3133 
3134 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3135 		if (pos == 0) {
3136 			dev_err(&pdev->dev,
3137 				"hpsa_reset_controller: "
3138 				"PCI PM not supported\n");
3139 			return -ENODEV;
3140 		}
3141 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3142 		/* enter the D3hot power management state */
3143 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3144 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3145 		pmcsr |= PCI_D3hot;
3146 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3147 
3148 		msleep(500);
3149 
3150 		/* enter the D0 power management state */
3151 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3152 		pmcsr |= PCI_D0;
3153 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3154 
3155 		msleep(500);
3156 	}
3157 	return 0;
3158 }
3159 
3160 /* This does a hard reset of the controller using PCI power management
3161  * states or the using the doorbell register.
3162  */
3163 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3164 {
3165 	u64 cfg_offset;
3166 	u32 cfg_base_addr;
3167 	u64 cfg_base_addr_index;
3168 	void __iomem *vaddr;
3169 	unsigned long paddr;
3170 	u32 misc_fw_support, active_transport;
3171 	int rc;
3172 	struct CfgTable __iomem *cfgtable;
3173 	bool use_doorbell;
3174 	u32 board_id;
3175 	u16 command_register;
3176 
3177 	/* For controllers as old as the P600, this is very nearly
3178 	 * the same thing as
3179 	 *
3180 	 * pci_save_state(pci_dev);
3181 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3182 	 * pci_set_power_state(pci_dev, PCI_D0);
3183 	 * pci_restore_state(pci_dev);
3184 	 *
3185 	 * For controllers newer than the P600, the pci power state
3186 	 * method of resetting doesn't work so we have another way
3187 	 * using the doorbell register.
3188 	 */
3189 
3190 	/* Exclude 640x boards.  These are two pci devices in one slot
3191 	 * which share a battery backed cache module.  One controls the
3192 	 * cache, the other accesses the cache through the one that controls
3193 	 * it.  If we reset the one controlling the cache, the other will
3194 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3195 	 * The 640x isn't really supported by hpsa anyway.
3196 	 */
3197 	rc = hpsa_lookup_board_id(pdev, &board_id);
3198 	if (rc < 0) {
3199 		dev_warn(&pdev->dev, "Not resetting device.\n");
3200 		return -ENODEV;
3201 	}
3202 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3203 		return -ENOTSUPP;
3204 
3205 	/* Save the PCI command register */
3206 	pci_read_config_word(pdev, 4, &command_register);
3207 	/* Turn the board off.  This is so that later pci_restore_state()
3208 	 * won't turn the board on before the rest of config space is ready.
3209 	 */
3210 	pci_disable_device(pdev);
3211 	pci_save_state(pdev);
3212 
3213 	/* find the first memory BAR, so we can find the cfg table */
3214 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3215 	if (rc)
3216 		return rc;
3217 	vaddr = remap_pci_mem(paddr, 0x250);
3218 	if (!vaddr)
3219 		return -ENOMEM;
3220 
3221 	/* find cfgtable in order to check if reset via doorbell is supported */
3222 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3223 					&cfg_base_addr_index, &cfg_offset);
3224 	if (rc)
3225 		goto unmap_vaddr;
3226 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3227 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3228 	if (!cfgtable) {
3229 		rc = -ENOMEM;
3230 		goto unmap_vaddr;
3231 	}
3232 
3233 	/* If reset via doorbell register is supported, use that. */
3234 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3235 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3236 
3237 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3238 	if (rc)
3239 		goto unmap_cfgtable;
3240 
3241 	pci_restore_state(pdev);
3242 	rc = pci_enable_device(pdev);
3243 	if (rc) {
3244 		dev_warn(&pdev->dev, "failed to enable device.\n");
3245 		goto unmap_cfgtable;
3246 	}
3247 	pci_write_config_word(pdev, 4, command_register);
3248 
3249 	/* Some devices (notably the HP Smart Array 5i Controller)
3250 	   need a little pause here */
3251 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3252 
3253 	/* Wait for board to become not ready, then ready. */
3254 	dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3255 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3256 	if (rc)
3257 		dev_warn(&pdev->dev,
3258 			"failed waiting for board to become not ready\n");
3259 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3260 	if (rc) {
3261 		dev_warn(&pdev->dev,
3262 			"failed waiting for board to become ready\n");
3263 		goto unmap_cfgtable;
3264 	}
3265 	dev_info(&pdev->dev, "board ready.\n");
3266 
3267 	/* Controller should be in simple mode at this point.  If it's not,
3268 	 * It means we're on one of those controllers which doesn't support
3269 	 * the doorbell reset method and on which the PCI power management reset
3270 	 * method doesn't work (P800, for example.)
3271 	 * In those cases, don't try to proceed, as it generally doesn't work.
3272 	 */
3273 	active_transport = readl(&cfgtable->TransportActive);
3274 	if (active_transport & PERFORMANT_MODE) {
3275 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3276 			" Ignoring controller.\n");
3277 		rc = -ENODEV;
3278 	}
3279 
3280 unmap_cfgtable:
3281 	iounmap(cfgtable);
3282 
3283 unmap_vaddr:
3284 	iounmap(vaddr);
3285 	return rc;
3286 }
3287 
3288 /*
3289  *  We cannot read the structure directly, for portability we must use
3290  *   the io functions.
3291  *   This is for debug only.
3292  */
3293 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3294 {
3295 #ifdef HPSA_DEBUG
3296 	int i;
3297 	char temp_name[17];
3298 
3299 	dev_info(dev, "Controller Configuration information\n");
3300 	dev_info(dev, "------------------------------------\n");
3301 	for (i = 0; i < 4; i++)
3302 		temp_name[i] = readb(&(tb->Signature[i]));
3303 	temp_name[4] = '\0';
3304 	dev_info(dev, "   Signature = %s\n", temp_name);
3305 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3306 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3307 	       readl(&(tb->TransportSupport)));
3308 	dev_info(dev, "   Transport methods active = 0x%x\n",
3309 	       readl(&(tb->TransportActive)));
3310 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3311 	       readl(&(tb->HostWrite.TransportRequest)));
3312 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3313 	       readl(&(tb->HostWrite.CoalIntDelay)));
3314 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3315 	       readl(&(tb->HostWrite.CoalIntCount)));
3316 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3317 	       readl(&(tb->CmdsOutMax)));
3318 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3319 	for (i = 0; i < 16; i++)
3320 		temp_name[i] = readb(&(tb->ServerName[i]));
3321 	temp_name[16] = '\0';
3322 	dev_info(dev, "   Server Name = %s\n", temp_name);
3323 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3324 		readl(&(tb->HeartBeat)));
3325 #endif				/* HPSA_DEBUG */
3326 }
3327 
3328 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3329 {
3330 	int i, offset, mem_type, bar_type;
3331 
3332 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3333 		return 0;
3334 	offset = 0;
3335 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3336 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3337 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3338 			offset += 4;
3339 		else {
3340 			mem_type = pci_resource_flags(pdev, i) &
3341 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3342 			switch (mem_type) {
3343 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3344 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3345 				offset += 4;	/* 32 bit */
3346 				break;
3347 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3348 				offset += 8;
3349 				break;
3350 			default:	/* reserved in PCI 2.2 */
3351 				dev_warn(&pdev->dev,
3352 				       "base address is invalid\n");
3353 				return -1;
3354 				break;
3355 			}
3356 		}
3357 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3358 			return i + 1;
3359 	}
3360 	return -1;
3361 }
3362 
3363 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3364  * controllers that are capable. If not, we use IO-APIC mode.
3365  */
3366 
3367 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3368 {
3369 #ifdef CONFIG_PCI_MSI
3370 	int err;
3371 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3372 	{0, 2}, {0, 3}
3373 	};
3374 
3375 	/* Some boards advertise MSI but don't really support it */
3376 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3377 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3378 		goto default_int_mode;
3379 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3380 		dev_info(&h->pdev->dev, "MSIX\n");
3381 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3382 		if (!err) {
3383 			h->intr[0] = hpsa_msix_entries[0].vector;
3384 			h->intr[1] = hpsa_msix_entries[1].vector;
3385 			h->intr[2] = hpsa_msix_entries[2].vector;
3386 			h->intr[3] = hpsa_msix_entries[3].vector;
3387 			h->msix_vector = 1;
3388 			return;
3389 		}
3390 		if (err > 0) {
3391 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3392 			       "available\n", err);
3393 			goto default_int_mode;
3394 		} else {
3395 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3396 			       err);
3397 			goto default_int_mode;
3398 		}
3399 	}
3400 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3401 		dev_info(&h->pdev->dev, "MSI\n");
3402 		if (!pci_enable_msi(h->pdev))
3403 			h->msi_vector = 1;
3404 		else
3405 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3406 	}
3407 default_int_mode:
3408 #endif				/* CONFIG_PCI_MSI */
3409 	/* if we get here we're going to use the default interrupt mode */
3410 	h->intr[h->intr_mode] = h->pdev->irq;
3411 }
3412 
3413 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3414 {
3415 	int i;
3416 	u32 subsystem_vendor_id, subsystem_device_id;
3417 
3418 	subsystem_vendor_id = pdev->subsystem_vendor;
3419 	subsystem_device_id = pdev->subsystem_device;
3420 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3421 		    subsystem_vendor_id;
3422 
3423 	for (i = 0; i < ARRAY_SIZE(products); i++)
3424 		if (*board_id == products[i].board_id)
3425 			return i;
3426 
3427 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3428 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3429 		!hpsa_allow_any) {
3430 		dev_warn(&pdev->dev, "unrecognized board ID: "
3431 			"0x%08x, ignoring.\n", *board_id);
3432 			return -ENODEV;
3433 	}
3434 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3435 }
3436 
3437 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3438 {
3439 	u16 command;
3440 
3441 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3442 	return ((command & PCI_COMMAND_MEMORY) == 0);
3443 }
3444 
3445 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3446 	unsigned long *memory_bar)
3447 {
3448 	int i;
3449 
3450 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3451 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3452 			/* addressing mode bits already removed */
3453 			*memory_bar = pci_resource_start(pdev, i);
3454 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3455 				*memory_bar);
3456 			return 0;
3457 		}
3458 	dev_warn(&pdev->dev, "no memory BAR found\n");
3459 	return -ENODEV;
3460 }
3461 
3462 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3463 	void __iomem *vaddr, int wait_for_ready)
3464 {
3465 	int i, iterations;
3466 	u32 scratchpad;
3467 	if (wait_for_ready)
3468 		iterations = HPSA_BOARD_READY_ITERATIONS;
3469 	else
3470 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3471 
3472 	for (i = 0; i < iterations; i++) {
3473 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3474 		if (wait_for_ready) {
3475 			if (scratchpad == HPSA_FIRMWARE_READY)
3476 				return 0;
3477 		} else {
3478 			if (scratchpad != HPSA_FIRMWARE_READY)
3479 				return 0;
3480 		}
3481 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3482 	}
3483 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3484 	return -ENODEV;
3485 }
3486 
3487 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3488 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3489 	u64 *cfg_offset)
3490 {
3491 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3492 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3493 	*cfg_base_addr &= (u32) 0x0000ffff;
3494 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3495 	if (*cfg_base_addr_index == -1) {
3496 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3497 		return -ENODEV;
3498 	}
3499 	return 0;
3500 }
3501 
3502 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3503 {
3504 	u64 cfg_offset;
3505 	u32 cfg_base_addr;
3506 	u64 cfg_base_addr_index;
3507 	u32 trans_offset;
3508 	int rc;
3509 
3510 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3511 		&cfg_base_addr_index, &cfg_offset);
3512 	if (rc)
3513 		return rc;
3514 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3515 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3516 	if (!h->cfgtable)
3517 		return -ENOMEM;
3518 	/* Find performant mode table. */
3519 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3520 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3521 				cfg_base_addr_index)+cfg_offset+trans_offset,
3522 				sizeof(*h->transtable));
3523 	if (!h->transtable)
3524 		return -ENOMEM;
3525 	return 0;
3526 }
3527 
3528 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3529 {
3530 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3531 
3532 	/* Limit commands in memory limited kdump scenario. */
3533 	if (reset_devices && h->max_commands > 32)
3534 		h->max_commands = 32;
3535 
3536 	if (h->max_commands < 16) {
3537 		dev_warn(&h->pdev->dev, "Controller reports "
3538 			"max supported commands of %d, an obvious lie. "
3539 			"Using 16.  Ensure that firmware is up to date.\n",
3540 			h->max_commands);
3541 		h->max_commands = 16;
3542 	}
3543 }
3544 
3545 /* Interrogate the hardware for some limits:
3546  * max commands, max SG elements without chaining, and with chaining,
3547  * SG chain block size, etc.
3548  */
3549 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3550 {
3551 	hpsa_get_max_perf_mode_cmds(h);
3552 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3553 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3554 	/*
3555 	 * Limit in-command s/g elements to 32 save dma'able memory.
3556 	 * Howvever spec says if 0, use 31
3557 	 */
3558 	h->max_cmd_sg_entries = 31;
3559 	if (h->maxsgentries > 512) {
3560 		h->max_cmd_sg_entries = 32;
3561 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3562 		h->maxsgentries--; /* save one for chain pointer */
3563 	} else {
3564 		h->maxsgentries = 31; /* default to traditional values */
3565 		h->chainsize = 0;
3566 	}
3567 }
3568 
3569 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3570 {
3571 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3572 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3573 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3574 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3575 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3576 		return false;
3577 	}
3578 	return true;
3579 }
3580 
3581 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3582 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3583 {
3584 #ifdef CONFIG_X86
3585 	u32 prefetch;
3586 
3587 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3588 	prefetch |= 0x100;
3589 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3590 #endif
3591 }
3592 
3593 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3594  * in a prefetch beyond physical memory.
3595  */
3596 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3597 {
3598 	u32 dma_prefetch;
3599 
3600 	if (h->board_id != 0x3225103C)
3601 		return;
3602 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3603 	dma_prefetch |= 0x8000;
3604 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3605 }
3606 
3607 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3608 {
3609 	int i;
3610 	u32 doorbell_value;
3611 	unsigned long flags;
3612 
3613 	/* under certain very rare conditions, this can take awhile.
3614 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3615 	 * as we enter this code.)
3616 	 */
3617 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3618 		spin_lock_irqsave(&h->lock, flags);
3619 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3620 		spin_unlock_irqrestore(&h->lock, flags);
3621 		if (!(doorbell_value & CFGTBL_ChangeReq))
3622 			break;
3623 		/* delay and try again */
3624 		usleep_range(10000, 20000);
3625 	}
3626 }
3627 
3628 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3629 {
3630 	u32 trans_support;
3631 
3632 	trans_support = readl(&(h->cfgtable->TransportSupport));
3633 	if (!(trans_support & SIMPLE_MODE))
3634 		return -ENOTSUPP;
3635 
3636 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3637 	/* Update the field, and then ring the doorbell */
3638 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3639 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3640 	hpsa_wait_for_mode_change_ack(h);
3641 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3642 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3643 		dev_warn(&h->pdev->dev,
3644 			"unable to get board into simple mode\n");
3645 		return -ENODEV;
3646 	}
3647 	h->transMethod = CFGTBL_Trans_Simple;
3648 	return 0;
3649 }
3650 
3651 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3652 {
3653 	int prod_index, err;
3654 
3655 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3656 	if (prod_index < 0)
3657 		return -ENODEV;
3658 	h->product_name = products[prod_index].product_name;
3659 	h->access = *(products[prod_index].access);
3660 
3661 	if (hpsa_board_disabled(h->pdev)) {
3662 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3663 		return -ENODEV;
3664 	}
3665 	err = pci_enable_device(h->pdev);
3666 	if (err) {
3667 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3668 		return err;
3669 	}
3670 
3671 	err = pci_request_regions(h->pdev, "hpsa");
3672 	if (err) {
3673 		dev_err(&h->pdev->dev,
3674 			"cannot obtain PCI resources, aborting\n");
3675 		return err;
3676 	}
3677 	hpsa_interrupt_mode(h);
3678 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3679 	if (err)
3680 		goto err_out_free_res;
3681 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3682 	if (!h->vaddr) {
3683 		err = -ENOMEM;
3684 		goto err_out_free_res;
3685 	}
3686 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3687 	if (err)
3688 		goto err_out_free_res;
3689 	err = hpsa_find_cfgtables(h);
3690 	if (err)
3691 		goto err_out_free_res;
3692 	hpsa_find_board_params(h);
3693 
3694 	if (!hpsa_CISS_signature_present(h)) {
3695 		err = -ENODEV;
3696 		goto err_out_free_res;
3697 	}
3698 	hpsa_enable_scsi_prefetch(h);
3699 	hpsa_p600_dma_prefetch_quirk(h);
3700 	err = hpsa_enter_simple_mode(h);
3701 	if (err)
3702 		goto err_out_free_res;
3703 	return 0;
3704 
3705 err_out_free_res:
3706 	if (h->transtable)
3707 		iounmap(h->transtable);
3708 	if (h->cfgtable)
3709 		iounmap(h->cfgtable);
3710 	if (h->vaddr)
3711 		iounmap(h->vaddr);
3712 	/*
3713 	 * Deliberately omit pci_disable_device(): it does something nasty to
3714 	 * Smart Array controllers that pci_enable_device does not undo
3715 	 */
3716 	pci_release_regions(h->pdev);
3717 	return err;
3718 }
3719 
3720 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3721 {
3722 	int rc;
3723 
3724 #define HBA_INQUIRY_BYTE_COUNT 64
3725 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3726 	if (!h->hba_inquiry_data)
3727 		return;
3728 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3729 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3730 	if (rc != 0) {
3731 		kfree(h->hba_inquiry_data);
3732 		h->hba_inquiry_data = NULL;
3733 	}
3734 }
3735 
3736 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3737 {
3738 	int rc, i;
3739 
3740 	if (!reset_devices)
3741 		return 0;
3742 
3743 	/* Reset the controller with a PCI power-cycle or via doorbell */
3744 	rc = hpsa_kdump_hard_reset_controller(pdev);
3745 
3746 	/* -ENOTSUPP here means we cannot reset the controller
3747 	 * but it's already (and still) up and running in
3748 	 * "performant mode".  Or, it might be 640x, which can't reset
3749 	 * due to concerns about shared bbwc between 6402/6404 pair.
3750 	 */
3751 	if (rc == -ENOTSUPP)
3752 		return 0; /* just try to do the kdump anyhow. */
3753 	if (rc)
3754 		return -ENODEV;
3755 
3756 	/* Now try to get the controller to respond to a no-op */
3757 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3758 		if (hpsa_noop(pdev) == 0)
3759 			break;
3760 		else
3761 			dev_warn(&pdev->dev, "no-op failed%s\n",
3762 					(i < 11 ? "; re-trying" : ""));
3763 	}
3764 	return 0;
3765 }
3766 
3767 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3768 				    const struct pci_device_id *ent)
3769 {
3770 	int dac, rc;
3771 	struct ctlr_info *h;
3772 
3773 	if (number_of_controllers == 0)
3774 		printk(KERN_INFO DRIVER_NAME "\n");
3775 
3776 	rc = hpsa_init_reset_devices(pdev);
3777 	if (rc)
3778 		return rc;
3779 
3780 	/* Command structures must be aligned on a 32-byte boundary because
3781 	 * the 5 lower bits of the address are used by the hardware. and by
3782 	 * the driver.  See comments in hpsa.h for more info.
3783 	 */
3784 #define COMMANDLIST_ALIGNMENT 32
3785 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3786 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3787 	if (!h)
3788 		return -ENOMEM;
3789 
3790 	h->pdev = pdev;
3791 	h->busy_initializing = 1;
3792 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3793 	INIT_LIST_HEAD(&h->cmpQ);
3794 	INIT_LIST_HEAD(&h->reqQ);
3795 	spin_lock_init(&h->lock);
3796 	spin_lock_init(&h->scan_lock);
3797 	rc = hpsa_pci_init(h);
3798 	if (rc != 0)
3799 		goto clean1;
3800 
3801 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3802 	h->ctlr = number_of_controllers;
3803 	number_of_controllers++;
3804 
3805 	/* configure PCI DMA stuff */
3806 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3807 	if (rc == 0) {
3808 		dac = 1;
3809 	} else {
3810 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3811 		if (rc == 0) {
3812 			dac = 0;
3813 		} else {
3814 			dev_err(&pdev->dev, "no suitable DMA available\n");
3815 			goto clean1;
3816 		}
3817 	}
3818 
3819 	/* make sure the board interrupts are off */
3820 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3821 
3822 	if (h->msix_vector || h->msi_vector)
3823 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3824 				IRQF_DISABLED, h->devname, h);
3825 	else
3826 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3827 				IRQF_DISABLED, h->devname, h);
3828 	if (rc) {
3829 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3830 		       h->intr[h->intr_mode], h->devname);
3831 		goto clean2;
3832 	}
3833 
3834 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3835 	       h->devname, pdev->device,
3836 	       h->intr[h->intr_mode], dac ? "" : " not");
3837 
3838 	h->cmd_pool_bits =
3839 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3840 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3841 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3842 		    h->nr_cmds * sizeof(*h->cmd_pool),
3843 		    &(h->cmd_pool_dhandle));
3844 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3845 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3846 		    &(h->errinfo_pool_dhandle));
3847 	if ((h->cmd_pool_bits == NULL)
3848 	    || (h->cmd_pool == NULL)
3849 	    || (h->errinfo_pool == NULL)) {
3850 		dev_err(&pdev->dev, "out of memory");
3851 		rc = -ENOMEM;
3852 		goto clean4;
3853 	}
3854 	if (hpsa_allocate_sg_chain_blocks(h))
3855 		goto clean4;
3856 	init_waitqueue_head(&h->scan_wait_queue);
3857 	h->scan_finished = 1; /* no scan currently in progress */
3858 
3859 	pci_set_drvdata(pdev, h);
3860 	memset(h->cmd_pool_bits, 0,
3861 	       ((h->nr_cmds + BITS_PER_LONG -
3862 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3863 
3864 	hpsa_scsi_setup(h);
3865 
3866 	/* Turn the interrupts on so we can service requests */
3867 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3868 
3869 	hpsa_put_ctlr_into_performant_mode(h);
3870 	hpsa_hba_inquiry(h);
3871 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3872 	h->busy_initializing = 0;
3873 	return 1;
3874 
3875 clean4:
3876 	hpsa_free_sg_chain_blocks(h);
3877 	kfree(h->cmd_pool_bits);
3878 	if (h->cmd_pool)
3879 		pci_free_consistent(h->pdev,
3880 			    h->nr_cmds * sizeof(struct CommandList),
3881 			    h->cmd_pool, h->cmd_pool_dhandle);
3882 	if (h->errinfo_pool)
3883 		pci_free_consistent(h->pdev,
3884 			    h->nr_cmds * sizeof(struct ErrorInfo),
3885 			    h->errinfo_pool,
3886 			    h->errinfo_pool_dhandle);
3887 	free_irq(h->intr[h->intr_mode], h);
3888 clean2:
3889 clean1:
3890 	h->busy_initializing = 0;
3891 	kfree(h);
3892 	return rc;
3893 }
3894 
3895 static void hpsa_flush_cache(struct ctlr_info *h)
3896 {
3897 	char *flush_buf;
3898 	struct CommandList *c;
3899 
3900 	flush_buf = kzalloc(4, GFP_KERNEL);
3901 	if (!flush_buf)
3902 		return;
3903 
3904 	c = cmd_special_alloc(h);
3905 	if (!c) {
3906 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3907 		goto out_of_memory;
3908 	}
3909 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3910 		RAID_CTLR_LUNID, TYPE_CMD);
3911 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3912 	if (c->err_info->CommandStatus != 0)
3913 		dev_warn(&h->pdev->dev,
3914 			"error flushing cache on controller\n");
3915 	cmd_special_free(h, c);
3916 out_of_memory:
3917 	kfree(flush_buf);
3918 }
3919 
3920 static void hpsa_shutdown(struct pci_dev *pdev)
3921 {
3922 	struct ctlr_info *h;
3923 
3924 	h = pci_get_drvdata(pdev);
3925 	/* Turn board interrupts off  and send the flush cache command
3926 	 * sendcmd will turn off interrupt, and send the flush...
3927 	 * To write all data in the battery backed cache to disks
3928 	 */
3929 	hpsa_flush_cache(h);
3930 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3931 	free_irq(h->intr[h->intr_mode], h);
3932 #ifdef CONFIG_PCI_MSI
3933 	if (h->msix_vector)
3934 		pci_disable_msix(h->pdev);
3935 	else if (h->msi_vector)
3936 		pci_disable_msi(h->pdev);
3937 #endif				/* CONFIG_PCI_MSI */
3938 }
3939 
3940 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3941 {
3942 	struct ctlr_info *h;
3943 
3944 	if (pci_get_drvdata(pdev) == NULL) {
3945 		dev_err(&pdev->dev, "unable to remove device \n");
3946 		return;
3947 	}
3948 	h = pci_get_drvdata(pdev);
3949 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3950 	hpsa_shutdown(pdev);
3951 	iounmap(h->vaddr);
3952 	iounmap(h->transtable);
3953 	iounmap(h->cfgtable);
3954 	hpsa_free_sg_chain_blocks(h);
3955 	pci_free_consistent(h->pdev,
3956 		h->nr_cmds * sizeof(struct CommandList),
3957 		h->cmd_pool, h->cmd_pool_dhandle);
3958 	pci_free_consistent(h->pdev,
3959 		h->nr_cmds * sizeof(struct ErrorInfo),
3960 		h->errinfo_pool, h->errinfo_pool_dhandle);
3961 	pci_free_consistent(h->pdev, h->reply_pool_size,
3962 		h->reply_pool, h->reply_pool_dhandle);
3963 	kfree(h->cmd_pool_bits);
3964 	kfree(h->blockFetchTable);
3965 	kfree(h->hba_inquiry_data);
3966 	/*
3967 	 * Deliberately omit pci_disable_device(): it does something nasty to
3968 	 * Smart Array controllers that pci_enable_device does not undo
3969 	 */
3970 	pci_release_regions(pdev);
3971 	pci_set_drvdata(pdev, NULL);
3972 	kfree(h);
3973 }
3974 
3975 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3976 	__attribute__((unused)) pm_message_t state)
3977 {
3978 	return -ENOSYS;
3979 }
3980 
3981 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3982 {
3983 	return -ENOSYS;
3984 }
3985 
3986 static struct pci_driver hpsa_pci_driver = {
3987 	.name = "hpsa",
3988 	.probe = hpsa_init_one,
3989 	.remove = __devexit_p(hpsa_remove_one),
3990 	.id_table = hpsa_pci_device_id,	/* id_table */
3991 	.shutdown = hpsa_shutdown,
3992 	.suspend = hpsa_suspend,
3993 	.resume = hpsa_resume,
3994 };
3995 
3996 /* Fill in bucket_map[], given nsgs (the max number of
3997  * scatter gather elements supported) and bucket[],
3998  * which is an array of 8 integers.  The bucket[] array
3999  * contains 8 different DMA transfer sizes (in 16
4000  * byte increments) which the controller uses to fetch
4001  * commands.  This function fills in bucket_map[], which
4002  * maps a given number of scatter gather elements to one of
4003  * the 8 DMA transfer sizes.  The point of it is to allow the
4004  * controller to only do as much DMA as needed to fetch the
4005  * command, with the DMA transfer size encoded in the lower
4006  * bits of the command address.
4007  */
4008 static void  calc_bucket_map(int bucket[], int num_buckets,
4009 	int nsgs, int *bucket_map)
4010 {
4011 	int i, j, b, size;
4012 
4013 	/* even a command with 0 SGs requires 4 blocks */
4014 #define MINIMUM_TRANSFER_BLOCKS 4
4015 #define NUM_BUCKETS 8
4016 	/* Note, bucket_map must have nsgs+1 entries. */
4017 	for (i = 0; i <= nsgs; i++) {
4018 		/* Compute size of a command with i SG entries */
4019 		size = i + MINIMUM_TRANSFER_BLOCKS;
4020 		b = num_buckets; /* Assume the biggest bucket */
4021 		/* Find the bucket that is just big enough */
4022 		for (j = 0; j < 8; j++) {
4023 			if (bucket[j] >= size) {
4024 				b = j;
4025 				break;
4026 			}
4027 		}
4028 		/* for a command with i SG entries, use bucket b. */
4029 		bucket_map[i] = b;
4030 	}
4031 }
4032 
4033 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4034 	u32 use_short_tags)
4035 {
4036 	int i;
4037 	unsigned long register_value;
4038 
4039 	/* This is a bit complicated.  There are 8 registers on
4040 	 * the controller which we write to to tell it 8 different
4041 	 * sizes of commands which there may be.  It's a way of
4042 	 * reducing the DMA done to fetch each command.  Encoded into
4043 	 * each command's tag are 3 bits which communicate to the controller
4044 	 * which of the eight sizes that command fits within.  The size of
4045 	 * each command depends on how many scatter gather entries there are.
4046 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4047 	 * with the number of 16-byte blocks a command of that size requires.
4048 	 * The smallest command possible requires 5 such 16 byte blocks.
4049 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4050 	 * blocks.  Note, this only extends to the SG entries contained
4051 	 * within the command block, and does not extend to chained blocks
4052 	 * of SG elements.   bft[] contains the eight values we write to
4053 	 * the registers.  They are not evenly distributed, but have more
4054 	 * sizes for small commands, and fewer sizes for larger commands.
4055 	 */
4056 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4057 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4058 	/*  5 = 1 s/g entry or 4k
4059 	 *  6 = 2 s/g entry or 8k
4060 	 *  8 = 4 s/g entry or 16k
4061 	 * 10 = 6 s/g entry or 24k
4062 	 */
4063 
4064 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4065 
4066 	/* Controller spec: zero out this buffer. */
4067 	memset(h->reply_pool, 0, h->reply_pool_size);
4068 	h->reply_pool_head = h->reply_pool;
4069 
4070 	bft[7] = h->max_sg_entries + 4;
4071 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4072 	for (i = 0; i < 8; i++)
4073 		writel(bft[i], &h->transtable->BlockFetch[i]);
4074 
4075 	/* size of controller ring buffer */
4076 	writel(h->max_commands, &h->transtable->RepQSize);
4077 	writel(1, &h->transtable->RepQCount);
4078 	writel(0, &h->transtable->RepQCtrAddrLow32);
4079 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4080 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4081 	writel(0, &h->transtable->RepQAddr0High32);
4082 	writel(CFGTBL_Trans_Performant | use_short_tags,
4083 		&(h->cfgtable->HostWrite.TransportRequest));
4084 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4085 	hpsa_wait_for_mode_change_ack(h);
4086 	register_value = readl(&(h->cfgtable->TransportActive));
4087 	if (!(register_value & CFGTBL_Trans_Performant)) {
4088 		dev_warn(&h->pdev->dev, "unable to get board into"
4089 					" performant mode\n");
4090 		return;
4091 	}
4092 	/* Change the access methods to the performant access methods */
4093 	h->access = SA5_performant_access;
4094 	h->transMethod = CFGTBL_Trans_Performant;
4095 }
4096 
4097 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4098 {
4099 	u32 trans_support;
4100 
4101 	if (hpsa_simple_mode)
4102 		return;
4103 
4104 	trans_support = readl(&(h->cfgtable->TransportSupport));
4105 	if (!(trans_support & PERFORMANT_MODE))
4106 		return;
4107 
4108 	hpsa_get_max_perf_mode_cmds(h);
4109 	h->max_sg_entries = 32;
4110 	/* Performant mode ring buffer and supporting data structures */
4111 	h->reply_pool_size = h->max_commands * sizeof(u64);
4112 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4113 				&(h->reply_pool_dhandle));
4114 
4115 	/* Need a block fetch table for performant mode */
4116 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4117 				sizeof(u32)), GFP_KERNEL);
4118 
4119 	if ((h->reply_pool == NULL)
4120 		|| (h->blockFetchTable == NULL))
4121 		goto clean_up;
4122 
4123 	hpsa_enter_performant_mode(h,
4124 		trans_support & CFGTBL_Trans_use_short_tags);
4125 
4126 	return;
4127 
4128 clean_up:
4129 	if (h->reply_pool)
4130 		pci_free_consistent(h->pdev, h->reply_pool_size,
4131 			h->reply_pool, h->reply_pool_dhandle);
4132 	kfree(h->blockFetchTable);
4133 }
4134 
4135 /*
4136  *  This is it.  Register the PCI driver information for the cards we control
4137  *  the OS will call our registered routines when it finds one of our cards.
4138  */
4139 static int __init hpsa_init(void)
4140 {
4141 	return pci_register_driver(&hpsa_pci_driver);
4142 }
4143 
4144 static void __exit hpsa_cleanup(void)
4145 {
4146 	pci_unregister_driver(&hpsa_pci_driver);
4147 }
4148 
4149 module_init(hpsa_init);
4150 module_exit(hpsa_cleanup);
4151