xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 8e20ba2e)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77 
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 	HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260 	void __user *arg);
261 #endif
262 
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267 					    struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270 	int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274 
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278 	unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280 
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285 
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290 	struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293 	int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299 			       u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301 				    unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303 				bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305 					   unsigned char lunaddr[],
306 					   int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308 				     int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323 	struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325 	unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328 			       struct hpsa_scsi_dev_t *dev,
329 			       unsigned char *scsi3addr);
330 
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333 	unsigned long *priv = shost_priv(sdev->host);
334 	return (struct ctlr_info *) *priv;
335 }
336 
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339 	unsigned long *priv = shost_priv(sh);
340 	return (struct ctlr_info *) *priv;
341 }
342 
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345 	return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347 
348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350 			u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352 	struct scsi_sense_hdr sshdr;
353 	bool rc;
354 
355 	*sense_key = -1;
356 	*asc = -1;
357 	*ascq = -1;
358 
359 	if (sense_data_len < 1)
360 		return;
361 
362 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363 	if (rc) {
364 		*sense_key = sshdr.sense_key;
365 		*asc = sshdr.asc;
366 		*ascq = sshdr.ascq;
367 	}
368 }
369 
370 static int check_for_unit_attention(struct ctlr_info *h,
371 	struct CommandList *c)
372 {
373 	u8 sense_key, asc, ascq;
374 	int sense_len;
375 
376 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377 		sense_len = sizeof(c->err_info->SenseInfo);
378 	else
379 		sense_len = c->err_info->SenseLen;
380 
381 	decode_sense_data(c->err_info->SenseInfo, sense_len,
382 				&sense_key, &asc, &ascq);
383 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
384 		return 0;
385 
386 	switch (asc) {
387 	case STATE_CHANGED:
388 		dev_warn(&h->pdev->dev,
389 			"%s: a state change detected, command retried\n",
390 			h->devname);
391 		break;
392 	case LUN_FAILED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: LUN failure detected\n", h->devname);
395 		break;
396 	case REPORT_LUNS_CHANGED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: report LUN data changed\n", h->devname);
399 	/*
400 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401 	 * target (array) devices.
402 	 */
403 		break;
404 	case POWER_OR_RESET:
405 		dev_warn(&h->pdev->dev,
406 			"%s: a power on or device reset detected\n",
407 			h->devname);
408 		break;
409 	case UNIT_ATTENTION_CLEARED:
410 		dev_warn(&h->pdev->dev,
411 			"%s: unit attention cleared by another initiator\n",
412 			h->devname);
413 		break;
414 	default:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unknown unit attention detected\n",
417 			h->devname);
418 		break;
419 	}
420 	return 1;
421 }
422 
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428 		return 0;
429 	dev_warn(&h->pdev->dev, HPSA "device busy");
430 	return 1;
431 }
432 
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435 		struct device_attribute *attr, char *buf)
436 {
437 	int ld;
438 	struct ctlr_info *h;
439 	struct Scsi_Host *shost = class_to_shost(dev);
440 
441 	h = shost_to_hba(shost);
442 	ld = lockup_detected(h);
443 
444 	return sprintf(buf, "ld=%d\n", ld);
445 }
446 
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448 					 struct device_attribute *attr,
449 					 const char *buf, size_t count)
450 {
451 	int status, len;
452 	struct ctlr_info *h;
453 	struct Scsi_Host *shost = class_to_shost(dev);
454 	char tmpbuf[10];
455 
456 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457 		return -EACCES;
458 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459 	strncpy(tmpbuf, buf, len);
460 	tmpbuf[len] = '\0';
461 	if (sscanf(tmpbuf, "%d", &status) != 1)
462 		return -EINVAL;
463 	h = shost_to_hba(shost);
464 	h->acciopath_status = !!status;
465 	dev_warn(&h->pdev->dev,
466 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
467 		h->acciopath_status ? "enabled" : "disabled");
468 	return count;
469 }
470 
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472 					 struct device_attribute *attr,
473 					 const char *buf, size_t count)
474 {
475 	int debug_level, len;
476 	struct ctlr_info *h;
477 	struct Scsi_Host *shost = class_to_shost(dev);
478 	char tmpbuf[10];
479 
480 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481 		return -EACCES;
482 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483 	strncpy(tmpbuf, buf, len);
484 	tmpbuf[len] = '\0';
485 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486 		return -EINVAL;
487 	if (debug_level < 0)
488 		debug_level = 0;
489 	h = shost_to_hba(shost);
490 	h->raid_offload_debug = debug_level;
491 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492 		h->raid_offload_debug);
493 	return count;
494 }
495 
496 static ssize_t host_store_rescan(struct device *dev,
497 				 struct device_attribute *attr,
498 				 const char *buf, size_t count)
499 {
500 	struct ctlr_info *h;
501 	struct Scsi_Host *shost = class_to_shost(dev);
502 	h = shost_to_hba(shost);
503 	hpsa_scan_start(h->scsi_host);
504 	return count;
505 }
506 
507 static ssize_t host_show_firmware_revision(struct device *dev,
508 	     struct device_attribute *attr, char *buf)
509 {
510 	struct ctlr_info *h;
511 	struct Scsi_Host *shost = class_to_shost(dev);
512 	unsigned char *fwrev;
513 
514 	h = shost_to_hba(shost);
515 	if (!h->hba_inquiry_data)
516 		return 0;
517 	fwrev = &h->hba_inquiry_data[32];
518 	return snprintf(buf, 20, "%c%c%c%c\n",
519 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
520 }
521 
522 static ssize_t host_show_commands_outstanding(struct device *dev,
523 	     struct device_attribute *attr, char *buf)
524 {
525 	struct Scsi_Host *shost = class_to_shost(dev);
526 	struct ctlr_info *h = shost_to_hba(shost);
527 
528 	return snprintf(buf, 20, "%d\n",
529 			atomic_read(&h->commands_outstanding));
530 }
531 
532 static ssize_t host_show_transport_mode(struct device *dev,
533 	struct device_attribute *attr, char *buf)
534 {
535 	struct ctlr_info *h;
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 
538 	h = shost_to_hba(shost);
539 	return snprintf(buf, 20, "%s\n",
540 		h->transMethod & CFGTBL_Trans_Performant ?
541 			"performant" : "simple");
542 }
543 
544 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
545 	struct device_attribute *attr, char *buf)
546 {
547 	struct ctlr_info *h;
548 	struct Scsi_Host *shost = class_to_shost(dev);
549 
550 	h = shost_to_hba(shost);
551 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
552 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
553 }
554 
555 /* List of controllers which cannot be hard reset on kexec with reset_devices */
556 static u32 unresettable_controller[] = {
557 	0x324a103C, /* Smart Array P712m */
558 	0x324b103C, /* Smart Array P711m */
559 	0x3223103C, /* Smart Array P800 */
560 	0x3234103C, /* Smart Array P400 */
561 	0x3235103C, /* Smart Array P400i */
562 	0x3211103C, /* Smart Array E200i */
563 	0x3212103C, /* Smart Array E200 */
564 	0x3213103C, /* Smart Array E200i */
565 	0x3214103C, /* Smart Array E200i */
566 	0x3215103C, /* Smart Array E200i */
567 	0x3237103C, /* Smart Array E500 */
568 	0x323D103C, /* Smart Array P700m */
569 	0x40800E11, /* Smart Array 5i */
570 	0x409C0E11, /* Smart Array 6400 */
571 	0x409D0E11, /* Smart Array 6400 EM */
572 	0x40700E11, /* Smart Array 5300 */
573 	0x40820E11, /* Smart Array 532 */
574 	0x40830E11, /* Smart Array 5312 */
575 	0x409A0E11, /* Smart Array 641 */
576 	0x409B0E11, /* Smart Array 642 */
577 	0x40910E11, /* Smart Array 6i */
578 };
579 
580 /* List of controllers which cannot even be soft reset */
581 static u32 soft_unresettable_controller[] = {
582 	0x40800E11, /* Smart Array 5i */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 	/* Exclude 640x boards.  These are two pci devices in one slot
590 	 * which share a battery backed cache module.  One controls the
591 	 * cache, the other accesses the cache through the one that controls
592 	 * it.  If we reset the one controlling the cache, the other will
593 	 * likely not be happy.  Just forbid resetting this conjoined mess.
594 	 * The 640x isn't really supported by hpsa anyway.
595 	 */
596 	0x409C0E11, /* Smart Array 6400 */
597 	0x409D0E11, /* Smart Array 6400 EM */
598 };
599 
600 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
601 {
602 	int i;
603 
604 	for (i = 0; i < nelems; i++)
605 		if (a[i] == board_id)
606 			return 1;
607 	return 0;
608 }
609 
610 static int ctlr_is_hard_resettable(u32 board_id)
611 {
612 	return !board_id_in_array(unresettable_controller,
613 			ARRAY_SIZE(unresettable_controller), board_id);
614 }
615 
616 static int ctlr_is_soft_resettable(u32 board_id)
617 {
618 	return !board_id_in_array(soft_unresettable_controller,
619 			ARRAY_SIZE(soft_unresettable_controller), board_id);
620 }
621 
622 static int ctlr_is_resettable(u32 board_id)
623 {
624 	return ctlr_is_hard_resettable(board_id) ||
625 		ctlr_is_soft_resettable(board_id);
626 }
627 
628 static ssize_t host_show_resettable(struct device *dev,
629 	struct device_attribute *attr, char *buf)
630 {
631 	struct ctlr_info *h;
632 	struct Scsi_Host *shost = class_to_shost(dev);
633 
634 	h = shost_to_hba(shost);
635 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
636 }
637 
638 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
639 {
640 	return (scsi3addr[3] & 0xC0) == 0x40;
641 }
642 
643 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
644 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
645 };
646 #define HPSA_RAID_0	0
647 #define HPSA_RAID_4	1
648 #define HPSA_RAID_1	2	/* also used for RAID 10 */
649 #define HPSA_RAID_5	3	/* also used for RAID 50 */
650 #define HPSA_RAID_51	4
651 #define HPSA_RAID_6	5	/* also used for RAID 60 */
652 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
653 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
654 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
655 
656 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
657 {
658 	return !device->physical_device;
659 }
660 
661 static ssize_t raid_level_show(struct device *dev,
662 	     struct device_attribute *attr, char *buf)
663 {
664 	ssize_t l = 0;
665 	unsigned char rlevel;
666 	struct ctlr_info *h;
667 	struct scsi_device *sdev;
668 	struct hpsa_scsi_dev_t *hdev;
669 	unsigned long flags;
670 
671 	sdev = to_scsi_device(dev);
672 	h = sdev_to_hba(sdev);
673 	spin_lock_irqsave(&h->lock, flags);
674 	hdev = sdev->hostdata;
675 	if (!hdev) {
676 		spin_unlock_irqrestore(&h->lock, flags);
677 		return -ENODEV;
678 	}
679 
680 	/* Is this even a logical drive? */
681 	if (!is_logical_device(hdev)) {
682 		spin_unlock_irqrestore(&h->lock, flags);
683 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
684 		return l;
685 	}
686 
687 	rlevel = hdev->raid_level;
688 	spin_unlock_irqrestore(&h->lock, flags);
689 	if (rlevel > RAID_UNKNOWN)
690 		rlevel = RAID_UNKNOWN;
691 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
692 	return l;
693 }
694 
695 static ssize_t lunid_show(struct device *dev,
696 	     struct device_attribute *attr, char *buf)
697 {
698 	struct ctlr_info *h;
699 	struct scsi_device *sdev;
700 	struct hpsa_scsi_dev_t *hdev;
701 	unsigned long flags;
702 	unsigned char lunid[8];
703 
704 	sdev = to_scsi_device(dev);
705 	h = sdev_to_hba(sdev);
706 	spin_lock_irqsave(&h->lock, flags);
707 	hdev = sdev->hostdata;
708 	if (!hdev) {
709 		spin_unlock_irqrestore(&h->lock, flags);
710 		return -ENODEV;
711 	}
712 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
713 	spin_unlock_irqrestore(&h->lock, flags);
714 	return snprintf(buf, 20, "0x%8phN\n", lunid);
715 }
716 
717 static ssize_t unique_id_show(struct device *dev,
718 	     struct device_attribute *attr, char *buf)
719 {
720 	struct ctlr_info *h;
721 	struct scsi_device *sdev;
722 	struct hpsa_scsi_dev_t *hdev;
723 	unsigned long flags;
724 	unsigned char sn[16];
725 
726 	sdev = to_scsi_device(dev);
727 	h = sdev_to_hba(sdev);
728 	spin_lock_irqsave(&h->lock, flags);
729 	hdev = sdev->hostdata;
730 	if (!hdev) {
731 		spin_unlock_irqrestore(&h->lock, flags);
732 		return -ENODEV;
733 	}
734 	memcpy(sn, hdev->device_id, sizeof(sn));
735 	spin_unlock_irqrestore(&h->lock, flags);
736 	return snprintf(buf, 16 * 2 + 2,
737 			"%02X%02X%02X%02X%02X%02X%02X%02X"
738 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
739 			sn[0], sn[1], sn[2], sn[3],
740 			sn[4], sn[5], sn[6], sn[7],
741 			sn[8], sn[9], sn[10], sn[11],
742 			sn[12], sn[13], sn[14], sn[15]);
743 }
744 
745 static ssize_t sas_address_show(struct device *dev,
746 	      struct device_attribute *attr, char *buf)
747 {
748 	struct ctlr_info *h;
749 	struct scsi_device *sdev;
750 	struct hpsa_scsi_dev_t *hdev;
751 	unsigned long flags;
752 	u64 sas_address;
753 
754 	sdev = to_scsi_device(dev);
755 	h = sdev_to_hba(sdev);
756 	spin_lock_irqsave(&h->lock, flags);
757 	hdev = sdev->hostdata;
758 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
759 		spin_unlock_irqrestore(&h->lock, flags);
760 		return -ENODEV;
761 	}
762 	sas_address = hdev->sas_address;
763 	spin_unlock_irqrestore(&h->lock, flags);
764 
765 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
766 }
767 
768 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
769 	     struct device_attribute *attr, char *buf)
770 {
771 	struct ctlr_info *h;
772 	struct scsi_device *sdev;
773 	struct hpsa_scsi_dev_t *hdev;
774 	unsigned long flags;
775 	int offload_enabled;
776 
777 	sdev = to_scsi_device(dev);
778 	h = sdev_to_hba(sdev);
779 	spin_lock_irqsave(&h->lock, flags);
780 	hdev = sdev->hostdata;
781 	if (!hdev) {
782 		spin_unlock_irqrestore(&h->lock, flags);
783 		return -ENODEV;
784 	}
785 	offload_enabled = hdev->offload_enabled;
786 	spin_unlock_irqrestore(&h->lock, flags);
787 
788 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
789 		return snprintf(buf, 20, "%d\n", offload_enabled);
790 	else
791 		return snprintf(buf, 40, "%s\n",
792 				"Not applicable for a controller");
793 }
794 
795 #define MAX_PATHS 8
796 static ssize_t path_info_show(struct device *dev,
797 	     struct device_attribute *attr, char *buf)
798 {
799 	struct ctlr_info *h;
800 	struct scsi_device *sdev;
801 	struct hpsa_scsi_dev_t *hdev;
802 	unsigned long flags;
803 	int i;
804 	int output_len = 0;
805 	u8 box;
806 	u8 bay;
807 	u8 path_map_index = 0;
808 	char *active;
809 	unsigned char phys_connector[2];
810 
811 	sdev = to_scsi_device(dev);
812 	h = sdev_to_hba(sdev);
813 	spin_lock_irqsave(&h->devlock, flags);
814 	hdev = sdev->hostdata;
815 	if (!hdev) {
816 		spin_unlock_irqrestore(&h->devlock, flags);
817 		return -ENODEV;
818 	}
819 
820 	bay = hdev->bay;
821 	for (i = 0; i < MAX_PATHS; i++) {
822 		path_map_index = 1<<i;
823 		if (i == hdev->active_path_index)
824 			active = "Active";
825 		else if (hdev->path_map & path_map_index)
826 			active = "Inactive";
827 		else
828 			continue;
829 
830 		output_len += scnprintf(buf + output_len,
831 				PAGE_SIZE - output_len,
832 				"[%d:%d:%d:%d] %20.20s ",
833 				h->scsi_host->host_no,
834 				hdev->bus, hdev->target, hdev->lun,
835 				scsi_device_type(hdev->devtype));
836 
837 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
838 			output_len += scnprintf(buf + output_len,
839 						PAGE_SIZE - output_len,
840 						"%s\n", active);
841 			continue;
842 		}
843 
844 		box = hdev->box[i];
845 		memcpy(&phys_connector, &hdev->phys_connector[i],
846 			sizeof(phys_connector));
847 		if (phys_connector[0] < '0')
848 			phys_connector[0] = '0';
849 		if (phys_connector[1] < '0')
850 			phys_connector[1] = '0';
851 		output_len += scnprintf(buf + output_len,
852 				PAGE_SIZE - output_len,
853 				"PORT: %.2s ",
854 				phys_connector);
855 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
856 			hdev->expose_device) {
857 			if (box == 0 || box == 0xFF) {
858 				output_len += scnprintf(buf + output_len,
859 					PAGE_SIZE - output_len,
860 					"BAY: %hhu %s\n",
861 					bay, active);
862 			} else {
863 				output_len += scnprintf(buf + output_len,
864 					PAGE_SIZE - output_len,
865 					"BOX: %hhu BAY: %hhu %s\n",
866 					box, bay, active);
867 			}
868 		} else if (box != 0 && box != 0xFF) {
869 			output_len += scnprintf(buf + output_len,
870 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
871 				box, active);
872 		} else
873 			output_len += scnprintf(buf + output_len,
874 				PAGE_SIZE - output_len, "%s\n", active);
875 	}
876 
877 	spin_unlock_irqrestore(&h->devlock, flags);
878 	return output_len;
879 }
880 
881 static ssize_t host_show_ctlr_num(struct device *dev,
882 	struct device_attribute *attr, char *buf)
883 {
884 	struct ctlr_info *h;
885 	struct Scsi_Host *shost = class_to_shost(dev);
886 
887 	h = shost_to_hba(shost);
888 	return snprintf(buf, 20, "%d\n", h->ctlr);
889 }
890 
891 static ssize_t host_show_legacy_board(struct device *dev,
892 	struct device_attribute *attr, char *buf)
893 {
894 	struct ctlr_info *h;
895 	struct Scsi_Host *shost = class_to_shost(dev);
896 
897 	h = shost_to_hba(shost);
898 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
899 }
900 
901 static DEVICE_ATTR_RO(raid_level);
902 static DEVICE_ATTR_RO(lunid);
903 static DEVICE_ATTR_RO(unique_id);
904 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
905 static DEVICE_ATTR_RO(sas_address);
906 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
907 			host_show_hp_ssd_smart_path_enabled, NULL);
908 static DEVICE_ATTR_RO(path_info);
909 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
910 		host_show_hp_ssd_smart_path_status,
911 		host_store_hp_ssd_smart_path_status);
912 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
913 			host_store_raid_offload_debug);
914 static DEVICE_ATTR(firmware_revision, S_IRUGO,
915 	host_show_firmware_revision, NULL);
916 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
917 	host_show_commands_outstanding, NULL);
918 static DEVICE_ATTR(transport_mode, S_IRUGO,
919 	host_show_transport_mode, NULL);
920 static DEVICE_ATTR(resettable, S_IRUGO,
921 	host_show_resettable, NULL);
922 static DEVICE_ATTR(lockup_detected, S_IRUGO,
923 	host_show_lockup_detected, NULL);
924 static DEVICE_ATTR(ctlr_num, S_IRUGO,
925 	host_show_ctlr_num, NULL);
926 static DEVICE_ATTR(legacy_board, S_IRUGO,
927 	host_show_legacy_board, NULL);
928 
929 static struct device_attribute *hpsa_sdev_attrs[] = {
930 	&dev_attr_raid_level,
931 	&dev_attr_lunid,
932 	&dev_attr_unique_id,
933 	&dev_attr_hp_ssd_smart_path_enabled,
934 	&dev_attr_path_info,
935 	&dev_attr_sas_address,
936 	NULL,
937 };
938 
939 static struct device_attribute *hpsa_shost_attrs[] = {
940 	&dev_attr_rescan,
941 	&dev_attr_firmware_revision,
942 	&dev_attr_commands_outstanding,
943 	&dev_attr_transport_mode,
944 	&dev_attr_resettable,
945 	&dev_attr_hp_ssd_smart_path_status,
946 	&dev_attr_raid_offload_debug,
947 	&dev_attr_lockup_detected,
948 	&dev_attr_ctlr_num,
949 	&dev_attr_legacy_board,
950 	NULL,
951 };
952 
953 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
954 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
955 
956 static struct scsi_host_template hpsa_driver_template = {
957 	.module			= THIS_MODULE,
958 	.name			= HPSA,
959 	.proc_name		= HPSA,
960 	.queuecommand		= hpsa_scsi_queue_command,
961 	.scan_start		= hpsa_scan_start,
962 	.scan_finished		= hpsa_scan_finished,
963 	.change_queue_depth	= hpsa_change_queue_depth,
964 	.this_id		= -1,
965 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
966 	.ioctl			= hpsa_ioctl,
967 	.slave_alloc		= hpsa_slave_alloc,
968 	.slave_configure	= hpsa_slave_configure,
969 	.slave_destroy		= hpsa_slave_destroy,
970 #ifdef CONFIG_COMPAT
971 	.compat_ioctl		= hpsa_compat_ioctl,
972 #endif
973 	.sdev_attrs = hpsa_sdev_attrs,
974 	.shost_attrs = hpsa_shost_attrs,
975 	.max_sectors = 2048,
976 	.no_write_same = 1,
977 };
978 
979 static inline u32 next_command(struct ctlr_info *h, u8 q)
980 {
981 	u32 a;
982 	struct reply_queue_buffer *rq = &h->reply_queue[q];
983 
984 	if (h->transMethod & CFGTBL_Trans_io_accel1)
985 		return h->access.command_completed(h, q);
986 
987 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
988 		return h->access.command_completed(h, q);
989 
990 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
991 		a = rq->head[rq->current_entry];
992 		rq->current_entry++;
993 		atomic_dec(&h->commands_outstanding);
994 	} else {
995 		a = FIFO_EMPTY;
996 	}
997 	/* Check for wraparound */
998 	if (rq->current_entry == h->max_commands) {
999 		rq->current_entry = 0;
1000 		rq->wraparound ^= 1;
1001 	}
1002 	return a;
1003 }
1004 
1005 /*
1006  * There are some special bits in the bus address of the
1007  * command that we have to set for the controller to know
1008  * how to process the command:
1009  *
1010  * Normal performant mode:
1011  * bit 0: 1 means performant mode, 0 means simple mode.
1012  * bits 1-3 = block fetch table entry
1013  * bits 4-6 = command type (== 0)
1014  *
1015  * ioaccel1 mode:
1016  * bit 0 = "performant mode" bit.
1017  * bits 1-3 = block fetch table entry
1018  * bits 4-6 = command type (== 110)
1019  * (command type is needed because ioaccel1 mode
1020  * commands are submitted through the same register as normal
1021  * mode commands, so this is how the controller knows whether
1022  * the command is normal mode or ioaccel1 mode.)
1023  *
1024  * ioaccel2 mode:
1025  * bit 0 = "performant mode" bit.
1026  * bits 1-4 = block fetch table entry (note extra bit)
1027  * bits 4-6 = not needed, because ioaccel2 mode has
1028  * a separate special register for submitting commands.
1029  */
1030 
1031 /*
1032  * set_performant_mode: Modify the tag for cciss performant
1033  * set bit 0 for pull model, bits 3-1 for block fetch
1034  * register number
1035  */
1036 #define DEFAULT_REPLY_QUEUE (-1)
1037 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1038 					int reply_queue)
1039 {
1040 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1041 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1042 		if (unlikely(!h->msix_vectors))
1043 			return;
1044 		c->Header.ReplyQueue = reply_queue;
1045 	}
1046 }
1047 
1048 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1049 						struct CommandList *c,
1050 						int reply_queue)
1051 {
1052 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1053 
1054 	/*
1055 	 * Tell the controller to post the reply to the queue for this
1056 	 * processor.  This seems to give the best I/O throughput.
1057 	 */
1058 	cp->ReplyQueue = reply_queue;
1059 	/*
1060 	 * Set the bits in the address sent down to include:
1061 	 *  - performant mode bit (bit 0)
1062 	 *  - pull count (bits 1-3)
1063 	 *  - command type (bits 4-6)
1064 	 */
1065 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1066 					IOACCEL1_BUSADDR_CMDTYPE;
1067 }
1068 
1069 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1070 						struct CommandList *c,
1071 						int reply_queue)
1072 {
1073 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1074 		&h->ioaccel2_cmd_pool[c->cmdindex];
1075 
1076 	/* Tell the controller to post the reply to the queue for this
1077 	 * processor.  This seems to give the best I/O throughput.
1078 	 */
1079 	cp->reply_queue = reply_queue;
1080 	/* Set the bits in the address sent down to include:
1081 	 *  - performant mode bit not used in ioaccel mode 2
1082 	 *  - pull count (bits 0-3)
1083 	 *  - command type isn't needed for ioaccel2
1084 	 */
1085 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1086 }
1087 
1088 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1089 						struct CommandList *c,
1090 						int reply_queue)
1091 {
1092 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1093 
1094 	/*
1095 	 * Tell the controller to post the reply to the queue for this
1096 	 * processor.  This seems to give the best I/O throughput.
1097 	 */
1098 	cp->reply_queue = reply_queue;
1099 	/*
1100 	 * Set the bits in the address sent down to include:
1101 	 *  - performant mode bit not used in ioaccel mode 2
1102 	 *  - pull count (bits 0-3)
1103 	 *  - command type isn't needed for ioaccel2
1104 	 */
1105 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1106 }
1107 
1108 static int is_firmware_flash_cmd(u8 *cdb)
1109 {
1110 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1111 }
1112 
1113 /*
1114  * During firmware flash, the heartbeat register may not update as frequently
1115  * as it should.  So we dial down lockup detection during firmware flash. and
1116  * dial it back up when firmware flash completes.
1117  */
1118 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1119 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1120 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1121 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1122 		struct CommandList *c)
1123 {
1124 	if (!is_firmware_flash_cmd(c->Request.CDB))
1125 		return;
1126 	atomic_inc(&h->firmware_flash_in_progress);
1127 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1128 }
1129 
1130 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1131 		struct CommandList *c)
1132 {
1133 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1134 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1135 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1136 }
1137 
1138 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1139 	struct CommandList *c, int reply_queue)
1140 {
1141 	dial_down_lockup_detection_during_fw_flash(h, c);
1142 	atomic_inc(&h->commands_outstanding);
1143 	if (c->device)
1144 		atomic_inc(&c->device->commands_outstanding);
1145 
1146 	reply_queue = h->reply_map[raw_smp_processor_id()];
1147 	switch (c->cmd_type) {
1148 	case CMD_IOACCEL1:
1149 		set_ioaccel1_performant_mode(h, c, reply_queue);
1150 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1151 		break;
1152 	case CMD_IOACCEL2:
1153 		set_ioaccel2_performant_mode(h, c, reply_queue);
1154 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1155 		break;
1156 	case IOACCEL2_TMF:
1157 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1158 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1159 		break;
1160 	default:
1161 		set_performant_mode(h, c, reply_queue);
1162 		h->access.submit_command(h, c);
1163 	}
1164 }
1165 
1166 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1167 {
1168 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169 }
1170 
1171 static inline int is_hba_lunid(unsigned char scsi3addr[])
1172 {
1173 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174 }
1175 
1176 static inline int is_scsi_rev_5(struct ctlr_info *h)
1177 {
1178 	if (!h->hba_inquiry_data)
1179 		return 0;
1180 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181 		return 1;
1182 	return 0;
1183 }
1184 
1185 static int hpsa_find_target_lun(struct ctlr_info *h,
1186 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1187 {
1188 	/* finds an unused bus, target, lun for a new physical device
1189 	 * assumes h->devlock is held
1190 	 */
1191 	int i, found = 0;
1192 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193 
1194 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195 
1196 	for (i = 0; i < h->ndevices; i++) {
1197 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198 			__set_bit(h->dev[i]->target, lun_taken);
1199 	}
1200 
1201 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202 	if (i < HPSA_MAX_DEVICES) {
1203 		/* *bus = 1; */
1204 		*target = i;
1205 		*lun = 0;
1206 		found = 1;
1207 	}
1208 	return !found;
1209 }
1210 
1211 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212 	struct hpsa_scsi_dev_t *dev, char *description)
1213 {
1214 #define LABEL_SIZE 25
1215 	char label[LABEL_SIZE];
1216 
1217 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218 		return;
1219 
1220 	switch (dev->devtype) {
1221 	case TYPE_RAID:
1222 		snprintf(label, LABEL_SIZE, "controller");
1223 		break;
1224 	case TYPE_ENCLOSURE:
1225 		snprintf(label, LABEL_SIZE, "enclosure");
1226 		break;
1227 	case TYPE_DISK:
1228 	case TYPE_ZBC:
1229 		if (dev->external)
1230 			snprintf(label, LABEL_SIZE, "external");
1231 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232 			snprintf(label, LABEL_SIZE, "%s",
1233 				raid_label[PHYSICAL_DRIVE]);
1234 		else
1235 			snprintf(label, LABEL_SIZE, "RAID-%s",
1236 				dev->raid_level > RAID_UNKNOWN ? "?" :
1237 				raid_label[dev->raid_level]);
1238 		break;
1239 	case TYPE_ROM:
1240 		snprintf(label, LABEL_SIZE, "rom");
1241 		break;
1242 	case TYPE_TAPE:
1243 		snprintf(label, LABEL_SIZE, "tape");
1244 		break;
1245 	case TYPE_MEDIUM_CHANGER:
1246 		snprintf(label, LABEL_SIZE, "changer");
1247 		break;
1248 	default:
1249 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1250 		break;
1251 	}
1252 
1253 	dev_printk(level, &h->pdev->dev,
1254 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256 			description,
1257 			scsi_device_type(dev->devtype),
1258 			dev->vendor,
1259 			dev->model,
1260 			label,
1261 			dev->offload_config ? '+' : '-',
1262 			dev->offload_to_be_enabled ? '+' : '-',
1263 			dev->expose_device);
1264 }
1265 
1266 /* Add an entry into h->dev[] array. */
1267 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268 		struct hpsa_scsi_dev_t *device,
1269 		struct hpsa_scsi_dev_t *added[], int *nadded)
1270 {
1271 	/* assumes h->devlock is held */
1272 	int n = h->ndevices;
1273 	int i;
1274 	unsigned char addr1[8], addr2[8];
1275 	struct hpsa_scsi_dev_t *sd;
1276 
1277 	if (n >= HPSA_MAX_DEVICES) {
1278 		dev_err(&h->pdev->dev, "too many devices, some will be "
1279 			"inaccessible.\n");
1280 		return -1;
1281 	}
1282 
1283 	/* physical devices do not have lun or target assigned until now. */
1284 	if (device->lun != -1)
1285 		/* Logical device, lun is already assigned. */
1286 		goto lun_assigned;
1287 
1288 	/* If this device a non-zero lun of a multi-lun device
1289 	 * byte 4 of the 8-byte LUN addr will contain the logical
1290 	 * unit no, zero otherwise.
1291 	 */
1292 	if (device->scsi3addr[4] == 0) {
1293 		/* This is not a non-zero lun of a multi-lun device */
1294 		if (hpsa_find_target_lun(h, device->scsi3addr,
1295 			device->bus, &device->target, &device->lun) != 0)
1296 			return -1;
1297 		goto lun_assigned;
1298 	}
1299 
1300 	/* This is a non-zero lun of a multi-lun device.
1301 	 * Search through our list and find the device which
1302 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1303 	 * Assign the same bus and target for this new LUN.
1304 	 * Use the logical unit number from the firmware.
1305 	 */
1306 	memcpy(addr1, device->scsi3addr, 8);
1307 	addr1[4] = 0;
1308 	addr1[5] = 0;
1309 	for (i = 0; i < n; i++) {
1310 		sd = h->dev[i];
1311 		memcpy(addr2, sd->scsi3addr, 8);
1312 		addr2[4] = 0;
1313 		addr2[5] = 0;
1314 		/* differ only in byte 4 and 5? */
1315 		if (memcmp(addr1, addr2, 8) == 0) {
1316 			device->bus = sd->bus;
1317 			device->target = sd->target;
1318 			device->lun = device->scsi3addr[4];
1319 			break;
1320 		}
1321 	}
1322 	if (device->lun == -1) {
1323 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324 			" suspect firmware bug or unsupported hardware "
1325 			"configuration.\n");
1326 		return -1;
1327 	}
1328 
1329 lun_assigned:
1330 
1331 	h->dev[n] = device;
1332 	h->ndevices++;
1333 	added[*nadded] = device;
1334 	(*nadded)++;
1335 	hpsa_show_dev_msg(KERN_INFO, h, device,
1336 		device->expose_device ? "added" : "masked");
1337 	return 0;
1338 }
1339 
1340 /*
1341  * Called during a scan operation.
1342  *
1343  * Update an entry in h->dev[] array.
1344  */
1345 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1346 	int entry, struct hpsa_scsi_dev_t *new_entry)
1347 {
1348 	/* assumes h->devlock is held */
1349 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1350 
1351 	/* Raid level changed. */
1352 	h->dev[entry]->raid_level = new_entry->raid_level;
1353 
1354 	/*
1355 	 * ioacccel_handle may have changed for a dual domain disk
1356 	 */
1357 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1358 
1359 	/* Raid offload parameters changed.  Careful about the ordering. */
1360 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1361 		/*
1362 		 * if drive is newly offload_enabled, we want to copy the
1363 		 * raid map data first.  If previously offload_enabled and
1364 		 * offload_config were set, raid map data had better be
1365 		 * the same as it was before. If raid map data has changed
1366 		 * then it had better be the case that
1367 		 * h->dev[entry]->offload_enabled is currently 0.
1368 		 */
1369 		h->dev[entry]->raid_map = new_entry->raid_map;
1370 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371 	}
1372 	if (new_entry->offload_to_be_enabled) {
1373 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1375 	}
1376 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1377 	h->dev[entry]->offload_config = new_entry->offload_config;
1378 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1379 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1380 
1381 	/*
1382 	 * We can turn off ioaccel offload now, but need to delay turning
1383 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1384 	 * can't do that until all the devices are updated.
1385 	 */
1386 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1387 
1388 	/*
1389 	 * turn ioaccel off immediately if told to do so.
1390 	 */
1391 	if (!new_entry->offload_to_be_enabled)
1392 		h->dev[entry]->offload_enabled = 0;
1393 
1394 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1395 }
1396 
1397 /* Replace an entry from h->dev[] array. */
1398 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1399 	int entry, struct hpsa_scsi_dev_t *new_entry,
1400 	struct hpsa_scsi_dev_t *added[], int *nadded,
1401 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1402 {
1403 	/* assumes h->devlock is held */
1404 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1405 	removed[*nremoved] = h->dev[entry];
1406 	(*nremoved)++;
1407 
1408 	/*
1409 	 * New physical devices won't have target/lun assigned yet
1410 	 * so we need to preserve the values in the slot we are replacing.
1411 	 */
1412 	if (new_entry->target == -1) {
1413 		new_entry->target = h->dev[entry]->target;
1414 		new_entry->lun = h->dev[entry]->lun;
1415 	}
1416 
1417 	h->dev[entry] = new_entry;
1418 	added[*nadded] = new_entry;
1419 	(*nadded)++;
1420 
1421 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1422 }
1423 
1424 /* Remove an entry from h->dev[] array. */
1425 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1426 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1427 {
1428 	/* assumes h->devlock is held */
1429 	int i;
1430 	struct hpsa_scsi_dev_t *sd;
1431 
1432 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1433 
1434 	sd = h->dev[entry];
1435 	removed[*nremoved] = h->dev[entry];
1436 	(*nremoved)++;
1437 
1438 	for (i = entry; i < h->ndevices-1; i++)
1439 		h->dev[i] = h->dev[i+1];
1440 	h->ndevices--;
1441 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1442 }
1443 
1444 #define SCSI3ADDR_EQ(a, b) ( \
1445 	(a)[7] == (b)[7] && \
1446 	(a)[6] == (b)[6] && \
1447 	(a)[5] == (b)[5] && \
1448 	(a)[4] == (b)[4] && \
1449 	(a)[3] == (b)[3] && \
1450 	(a)[2] == (b)[2] && \
1451 	(a)[1] == (b)[1] && \
1452 	(a)[0] == (b)[0])
1453 
1454 static void fixup_botched_add(struct ctlr_info *h,
1455 	struct hpsa_scsi_dev_t *added)
1456 {
1457 	/* called when scsi_add_device fails in order to re-adjust
1458 	 * h->dev[] to match the mid layer's view.
1459 	 */
1460 	unsigned long flags;
1461 	int i, j;
1462 
1463 	spin_lock_irqsave(&h->lock, flags);
1464 	for (i = 0; i < h->ndevices; i++) {
1465 		if (h->dev[i] == added) {
1466 			for (j = i; j < h->ndevices-1; j++)
1467 				h->dev[j] = h->dev[j+1];
1468 			h->ndevices--;
1469 			break;
1470 		}
1471 	}
1472 	spin_unlock_irqrestore(&h->lock, flags);
1473 	kfree(added);
1474 }
1475 
1476 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1477 	struct hpsa_scsi_dev_t *dev2)
1478 {
1479 	/* we compare everything except lun and target as these
1480 	 * are not yet assigned.  Compare parts likely
1481 	 * to differ first
1482 	 */
1483 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1484 		sizeof(dev1->scsi3addr)) != 0)
1485 		return 0;
1486 	if (memcmp(dev1->device_id, dev2->device_id,
1487 		sizeof(dev1->device_id)) != 0)
1488 		return 0;
1489 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1492 		return 0;
1493 	if (dev1->devtype != dev2->devtype)
1494 		return 0;
1495 	if (dev1->bus != dev2->bus)
1496 		return 0;
1497 	return 1;
1498 }
1499 
1500 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1501 	struct hpsa_scsi_dev_t *dev2)
1502 {
1503 	/* Device attributes that can change, but don't mean
1504 	 * that the device is a different device, nor that the OS
1505 	 * needs to be told anything about the change.
1506 	 */
1507 	if (dev1->raid_level != dev2->raid_level)
1508 		return 1;
1509 	if (dev1->offload_config != dev2->offload_config)
1510 		return 1;
1511 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1512 		return 1;
1513 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1514 		if (dev1->queue_depth != dev2->queue_depth)
1515 			return 1;
1516 	/*
1517 	 * This can happen for dual domain devices. An active
1518 	 * path change causes the ioaccel handle to change
1519 	 *
1520 	 * for example note the handle differences between p0 and p1
1521 	 * Device                    WWN               ,WWN hash,Handle
1522 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1523 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1524 	 */
1525 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1526 		return 1;
1527 	return 0;
1528 }
1529 
1530 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1531  * and return needle location in *index.  If scsi3addr matches, but not
1532  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1533  * location in *index.
1534  * In the case of a minor device attribute change, such as RAID level, just
1535  * return DEVICE_UPDATED, along with the updated device's location in index.
1536  * If needle not found, return DEVICE_NOT_FOUND.
1537  */
1538 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1539 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1540 	int *index)
1541 {
1542 	int i;
1543 #define DEVICE_NOT_FOUND 0
1544 #define DEVICE_CHANGED 1
1545 #define DEVICE_SAME 2
1546 #define DEVICE_UPDATED 3
1547 	if (needle == NULL)
1548 		return DEVICE_NOT_FOUND;
1549 
1550 	for (i = 0; i < haystack_size; i++) {
1551 		if (haystack[i] == NULL) /* previously removed. */
1552 			continue;
1553 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1554 			*index = i;
1555 			if (device_is_the_same(needle, haystack[i])) {
1556 				if (device_updated(needle, haystack[i]))
1557 					return DEVICE_UPDATED;
1558 				return DEVICE_SAME;
1559 			} else {
1560 				/* Keep offline devices offline */
1561 				if (needle->volume_offline)
1562 					return DEVICE_NOT_FOUND;
1563 				return DEVICE_CHANGED;
1564 			}
1565 		}
1566 	}
1567 	*index = -1;
1568 	return DEVICE_NOT_FOUND;
1569 }
1570 
1571 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1572 					unsigned char scsi3addr[])
1573 {
1574 	struct offline_device_entry *device;
1575 	unsigned long flags;
1576 
1577 	/* Check to see if device is already on the list */
1578 	spin_lock_irqsave(&h->offline_device_lock, flags);
1579 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1580 		if (memcmp(device->scsi3addr, scsi3addr,
1581 			sizeof(device->scsi3addr)) == 0) {
1582 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1583 			return;
1584 		}
1585 	}
1586 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587 
1588 	/* Device is not on the list, add it. */
1589 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1590 	if (!device)
1591 		return;
1592 
1593 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1594 	spin_lock_irqsave(&h->offline_device_lock, flags);
1595 	list_add_tail(&device->offline_list, &h->offline_device_list);
1596 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 }
1598 
1599 /* Print a message explaining various offline volume states */
1600 static void hpsa_show_volume_status(struct ctlr_info *h,
1601 	struct hpsa_scsi_dev_t *sd)
1602 {
1603 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1604 		dev_info(&h->pdev->dev,
1605 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1606 			h->scsi_host->host_no,
1607 			sd->bus, sd->target, sd->lun);
1608 	switch (sd->volume_offline) {
1609 	case HPSA_LV_OK:
1610 		break;
1611 	case HPSA_LV_UNDERGOING_ERASE:
1612 		dev_info(&h->pdev->dev,
1613 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1614 			h->scsi_host->host_no,
1615 			sd->bus, sd->target, sd->lun);
1616 		break;
1617 	case HPSA_LV_NOT_AVAILABLE:
1618 		dev_info(&h->pdev->dev,
1619 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1620 			h->scsi_host->host_no,
1621 			sd->bus, sd->target, sd->lun);
1622 		break;
1623 	case HPSA_LV_UNDERGOING_RPI:
1624 		dev_info(&h->pdev->dev,
1625 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1626 			h->scsi_host->host_no,
1627 			sd->bus, sd->target, sd->lun);
1628 		break;
1629 	case HPSA_LV_PENDING_RPI:
1630 		dev_info(&h->pdev->dev,
1631 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1632 			h->scsi_host->host_no,
1633 			sd->bus, sd->target, sd->lun);
1634 		break;
1635 	case HPSA_LV_ENCRYPTED_NO_KEY:
1636 		dev_info(&h->pdev->dev,
1637 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1638 			h->scsi_host->host_no,
1639 			sd->bus, sd->target, sd->lun);
1640 		break;
1641 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1642 		dev_info(&h->pdev->dev,
1643 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1644 			h->scsi_host->host_no,
1645 			sd->bus, sd->target, sd->lun);
1646 		break;
1647 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1648 		dev_info(&h->pdev->dev,
1649 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1650 			h->scsi_host->host_no,
1651 			sd->bus, sd->target, sd->lun);
1652 		break;
1653 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1654 		dev_info(&h->pdev->dev,
1655 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1656 			h->scsi_host->host_no,
1657 			sd->bus, sd->target, sd->lun);
1658 		break;
1659 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1660 		dev_info(&h->pdev->dev,
1661 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1662 			h->scsi_host->host_no,
1663 			sd->bus, sd->target, sd->lun);
1664 		break;
1665 	case HPSA_LV_PENDING_ENCRYPTION:
1666 		dev_info(&h->pdev->dev,
1667 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1668 			h->scsi_host->host_no,
1669 			sd->bus, sd->target, sd->lun);
1670 		break;
1671 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1672 		dev_info(&h->pdev->dev,
1673 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1674 			h->scsi_host->host_no,
1675 			sd->bus, sd->target, sd->lun);
1676 		break;
1677 	}
1678 }
1679 
1680 /*
1681  * Figure the list of physical drive pointers for a logical drive with
1682  * raid offload configured.
1683  */
1684 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1685 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1686 				struct hpsa_scsi_dev_t *logical_drive)
1687 {
1688 	struct raid_map_data *map = &logical_drive->raid_map;
1689 	struct raid_map_disk_data *dd = &map->data[0];
1690 	int i, j;
1691 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1692 				le16_to_cpu(map->metadata_disks_per_row);
1693 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1694 				le16_to_cpu(map->layout_map_count) *
1695 				total_disks_per_row;
1696 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1697 				total_disks_per_row;
1698 	int qdepth;
1699 
1700 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1701 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1702 
1703 	logical_drive->nphysical_disks = nraid_map_entries;
1704 
1705 	qdepth = 0;
1706 	for (i = 0; i < nraid_map_entries; i++) {
1707 		logical_drive->phys_disk[i] = NULL;
1708 		if (!logical_drive->offload_config)
1709 			continue;
1710 		for (j = 0; j < ndevices; j++) {
1711 			if (dev[j] == NULL)
1712 				continue;
1713 			if (dev[j]->devtype != TYPE_DISK &&
1714 			    dev[j]->devtype != TYPE_ZBC)
1715 				continue;
1716 			if (is_logical_device(dev[j]))
1717 				continue;
1718 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1719 				continue;
1720 
1721 			logical_drive->phys_disk[i] = dev[j];
1722 			if (i < nphys_disk)
1723 				qdepth = min(h->nr_cmds, qdepth +
1724 				    logical_drive->phys_disk[i]->queue_depth);
1725 			break;
1726 		}
1727 
1728 		/*
1729 		 * This can happen if a physical drive is removed and
1730 		 * the logical drive is degraded.  In that case, the RAID
1731 		 * map data will refer to a physical disk which isn't actually
1732 		 * present.  And in that case offload_enabled should already
1733 		 * be 0, but we'll turn it off here just in case
1734 		 */
1735 		if (!logical_drive->phys_disk[i]) {
1736 			dev_warn(&h->pdev->dev,
1737 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1738 				__func__,
1739 				h->scsi_host->host_no, logical_drive->bus,
1740 				logical_drive->target, logical_drive->lun);
1741 			logical_drive->offload_enabled = 0;
1742 			logical_drive->offload_to_be_enabled = 0;
1743 			logical_drive->queue_depth = 8;
1744 		}
1745 	}
1746 	if (nraid_map_entries)
1747 		/*
1748 		 * This is correct for reads, too high for full stripe writes,
1749 		 * way too high for partial stripe writes
1750 		 */
1751 		logical_drive->queue_depth = qdepth;
1752 	else {
1753 		if (logical_drive->external)
1754 			logical_drive->queue_depth = EXTERNAL_QD;
1755 		else
1756 			logical_drive->queue_depth = h->nr_cmds;
1757 	}
1758 }
1759 
1760 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1761 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1762 {
1763 	int i;
1764 
1765 	for (i = 0; i < ndevices; i++) {
1766 		if (dev[i] == NULL)
1767 			continue;
1768 		if (dev[i]->devtype != TYPE_DISK &&
1769 		    dev[i]->devtype != TYPE_ZBC)
1770 			continue;
1771 		if (!is_logical_device(dev[i]))
1772 			continue;
1773 
1774 		/*
1775 		 * If offload is currently enabled, the RAID map and
1776 		 * phys_disk[] assignment *better* not be changing
1777 		 * because we would be changing ioaccel phsy_disk[] pointers
1778 		 * on a ioaccel volume processing I/O requests.
1779 		 *
1780 		 * If an ioaccel volume status changed, initially because it was
1781 		 * re-configured and thus underwent a transformation, or
1782 		 * a drive failed, we would have received a state change
1783 		 * request and ioaccel should have been turned off. When the
1784 		 * transformation completes, we get another state change
1785 		 * request to turn ioaccel back on. In this case, we need
1786 		 * to update the ioaccel information.
1787 		 *
1788 		 * Thus: If it is not currently enabled, but will be after
1789 		 * the scan completes, make sure the ioaccel pointers
1790 		 * are up to date.
1791 		 */
1792 
1793 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1794 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1795 	}
1796 }
1797 
1798 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1799 {
1800 	int rc = 0;
1801 
1802 	if (!h->scsi_host)
1803 		return 1;
1804 
1805 	if (is_logical_device(device)) /* RAID */
1806 		rc = scsi_add_device(h->scsi_host, device->bus,
1807 					device->target, device->lun);
1808 	else /* HBA */
1809 		rc = hpsa_add_sas_device(h->sas_host, device);
1810 
1811 	return rc;
1812 }
1813 
1814 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1815 						struct hpsa_scsi_dev_t *dev)
1816 {
1817 	int i;
1818 	int count = 0;
1819 
1820 	for (i = 0; i < h->nr_cmds; i++) {
1821 		struct CommandList *c = h->cmd_pool + i;
1822 		int refcount = atomic_inc_return(&c->refcount);
1823 
1824 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1825 				dev->scsi3addr)) {
1826 			unsigned long flags;
1827 
1828 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1829 			if (!hpsa_is_cmd_idle(c))
1830 				++count;
1831 			spin_unlock_irqrestore(&h->lock, flags);
1832 		}
1833 
1834 		cmd_free(h, c);
1835 	}
1836 
1837 	return count;
1838 }
1839 
1840 #define NUM_WAIT 20
1841 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1842 						struct hpsa_scsi_dev_t *device)
1843 {
1844 	int cmds = 0;
1845 	int waits = 0;
1846 	int num_wait = NUM_WAIT;
1847 
1848 	if (device->external)
1849 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > num_wait)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > num_wait) {
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1863 			__func__,
1864 			h->scsi_host->host_no,
1865 			device->bus, device->target, device->lun, cmds);
1866 	}
1867 }
1868 
1869 static void hpsa_remove_device(struct ctlr_info *h,
1870 			struct hpsa_scsi_dev_t *device)
1871 {
1872 	struct scsi_device *sdev = NULL;
1873 
1874 	if (!h->scsi_host)
1875 		return;
1876 
1877 	/*
1878 	 * Allow for commands to drain
1879 	 */
1880 	device->removed = 1;
1881 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1882 
1883 	if (is_logical_device(device)) { /* RAID */
1884 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1885 						device->target, device->lun);
1886 		if (sdev) {
1887 			scsi_remove_device(sdev);
1888 			scsi_device_put(sdev);
1889 		} else {
1890 			/*
1891 			 * We don't expect to get here.  Future commands
1892 			 * to this device will get a selection timeout as
1893 			 * if the device were gone.
1894 			 */
1895 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1896 					"didn't find device for removal.");
1897 		}
1898 	} else { /* HBA */
1899 
1900 		hpsa_remove_sas_device(device);
1901 	}
1902 }
1903 
1904 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1905 	struct hpsa_scsi_dev_t *sd[], int nsds)
1906 {
1907 	/* sd contains scsi3 addresses and devtypes, and inquiry
1908 	 * data.  This function takes what's in sd to be the current
1909 	 * reality and updates h->dev[] to reflect that reality.
1910 	 */
1911 	int i, entry, device_change, changes = 0;
1912 	struct hpsa_scsi_dev_t *csd;
1913 	unsigned long flags;
1914 	struct hpsa_scsi_dev_t **added, **removed;
1915 	int nadded, nremoved;
1916 
1917 	/*
1918 	 * A reset can cause a device status to change
1919 	 * re-schedule the scan to see what happened.
1920 	 */
1921 	spin_lock_irqsave(&h->reset_lock, flags);
1922 	if (h->reset_in_progress) {
1923 		h->drv_req_rescan = 1;
1924 		spin_unlock_irqrestore(&h->reset_lock, flags);
1925 		return;
1926 	}
1927 	spin_unlock_irqrestore(&h->reset_lock, flags);
1928 
1929 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1930 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1931 
1932 	if (!added || !removed) {
1933 		dev_warn(&h->pdev->dev, "out of memory in "
1934 			"adjust_hpsa_scsi_table\n");
1935 		goto free_and_out;
1936 	}
1937 
1938 	spin_lock_irqsave(&h->devlock, flags);
1939 
1940 	/* find any devices in h->dev[] that are not in
1941 	 * sd[] and remove them from h->dev[], and for any
1942 	 * devices which have changed, remove the old device
1943 	 * info and add the new device info.
1944 	 * If minor device attributes change, just update
1945 	 * the existing device structure.
1946 	 */
1947 	i = 0;
1948 	nremoved = 0;
1949 	nadded = 0;
1950 	while (i < h->ndevices) {
1951 		csd = h->dev[i];
1952 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1953 		if (device_change == DEVICE_NOT_FOUND) {
1954 			changes++;
1955 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1956 			continue; /* remove ^^^, hence i not incremented */
1957 		} else if (device_change == DEVICE_CHANGED) {
1958 			changes++;
1959 			hpsa_scsi_replace_entry(h, i, sd[entry],
1960 				added, &nadded, removed, &nremoved);
1961 			/* Set it to NULL to prevent it from being freed
1962 			 * at the bottom of hpsa_update_scsi_devices()
1963 			 */
1964 			sd[entry] = NULL;
1965 		} else if (device_change == DEVICE_UPDATED) {
1966 			hpsa_scsi_update_entry(h, i, sd[entry]);
1967 		}
1968 		i++;
1969 	}
1970 
1971 	/* Now, make sure every device listed in sd[] is also
1972 	 * listed in h->dev[], adding them if they aren't found
1973 	 */
1974 
1975 	for (i = 0; i < nsds; i++) {
1976 		if (!sd[i]) /* if already added above. */
1977 			continue;
1978 
1979 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1980 		 * as the SCSI mid-layer does not handle such devices well.
1981 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1982 		 * at 160Hz, and prevents the system from coming up.
1983 		 */
1984 		if (sd[i]->volume_offline) {
1985 			hpsa_show_volume_status(h, sd[i]);
1986 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1987 			continue;
1988 		}
1989 
1990 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1991 					h->ndevices, &entry);
1992 		if (device_change == DEVICE_NOT_FOUND) {
1993 			changes++;
1994 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1995 				break;
1996 			sd[i] = NULL; /* prevent from being freed later. */
1997 		} else if (device_change == DEVICE_CHANGED) {
1998 			/* should never happen... */
1999 			changes++;
2000 			dev_warn(&h->pdev->dev,
2001 				"device unexpectedly changed.\n");
2002 			/* but if it does happen, we just ignore that device */
2003 		}
2004 	}
2005 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2006 
2007 	/*
2008 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2009 	 * any logical drives that need it enabled.
2010 	 *
2011 	 * The raid map should be current by now.
2012 	 *
2013 	 * We are updating the device list used for I/O requests.
2014 	 */
2015 	for (i = 0; i < h->ndevices; i++) {
2016 		if (h->dev[i] == NULL)
2017 			continue;
2018 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2019 	}
2020 
2021 	spin_unlock_irqrestore(&h->devlock, flags);
2022 
2023 	/* Monitor devices which are in one of several NOT READY states to be
2024 	 * brought online later. This must be done without holding h->devlock,
2025 	 * so don't touch h->dev[]
2026 	 */
2027 	for (i = 0; i < nsds; i++) {
2028 		if (!sd[i]) /* if already added above. */
2029 			continue;
2030 		if (sd[i]->volume_offline)
2031 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2032 	}
2033 
2034 	/* Don't notify scsi mid layer of any changes the first time through
2035 	 * (or if there are no changes) scsi_scan_host will do it later the
2036 	 * first time through.
2037 	 */
2038 	if (!changes)
2039 		goto free_and_out;
2040 
2041 	/* Notify scsi mid layer of any removed devices */
2042 	for (i = 0; i < nremoved; i++) {
2043 		if (removed[i] == NULL)
2044 			continue;
2045 		if (removed[i]->expose_device)
2046 			hpsa_remove_device(h, removed[i]);
2047 		kfree(removed[i]);
2048 		removed[i] = NULL;
2049 	}
2050 
2051 	/* Notify scsi mid layer of any added devices */
2052 	for (i = 0; i < nadded; i++) {
2053 		int rc = 0;
2054 
2055 		if (added[i] == NULL)
2056 			continue;
2057 		if (!(added[i]->expose_device))
2058 			continue;
2059 		rc = hpsa_add_device(h, added[i]);
2060 		if (!rc)
2061 			continue;
2062 		dev_warn(&h->pdev->dev,
2063 			"addition failed %d, device not added.", rc);
2064 		/* now we have to remove it from h->dev,
2065 		 * since it didn't get added to scsi mid layer
2066 		 */
2067 		fixup_botched_add(h, added[i]);
2068 		h->drv_req_rescan = 1;
2069 	}
2070 
2071 free_and_out:
2072 	kfree(added);
2073 	kfree(removed);
2074 }
2075 
2076 /*
2077  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2078  * Assume's h->devlock is held.
2079  */
2080 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2081 	int bus, int target, int lun)
2082 {
2083 	int i;
2084 	struct hpsa_scsi_dev_t *sd;
2085 
2086 	for (i = 0; i < h->ndevices; i++) {
2087 		sd = h->dev[i];
2088 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2089 			return sd;
2090 	}
2091 	return NULL;
2092 }
2093 
2094 static int hpsa_slave_alloc(struct scsi_device *sdev)
2095 {
2096 	struct hpsa_scsi_dev_t *sd = NULL;
2097 	unsigned long flags;
2098 	struct ctlr_info *h;
2099 
2100 	h = sdev_to_hba(sdev);
2101 	spin_lock_irqsave(&h->devlock, flags);
2102 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2103 		struct scsi_target *starget;
2104 		struct sas_rphy *rphy;
2105 
2106 		starget = scsi_target(sdev);
2107 		rphy = target_to_rphy(starget);
2108 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2109 		if (sd) {
2110 			sd->target = sdev_id(sdev);
2111 			sd->lun = sdev->lun;
2112 		}
2113 	}
2114 	if (!sd)
2115 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2116 					sdev_id(sdev), sdev->lun);
2117 
2118 	if (sd && sd->expose_device) {
2119 		atomic_set(&sd->ioaccel_cmds_out, 0);
2120 		sdev->hostdata = sd;
2121 	} else
2122 		sdev->hostdata = NULL;
2123 	spin_unlock_irqrestore(&h->devlock, flags);
2124 	return 0;
2125 }
2126 
2127 /* configure scsi device based on internal per-device structure */
2128 static int hpsa_slave_configure(struct scsi_device *sdev)
2129 {
2130 	struct hpsa_scsi_dev_t *sd;
2131 	int queue_depth;
2132 
2133 	sd = sdev->hostdata;
2134 	sdev->no_uld_attach = !sd || !sd->expose_device;
2135 
2136 	if (sd) {
2137 		sd->was_removed = 0;
2138 		if (sd->external) {
2139 			queue_depth = EXTERNAL_QD;
2140 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2141 			blk_queue_rq_timeout(sdev->request_queue,
2142 						HPSA_EH_PTRAID_TIMEOUT);
2143 		} else {
2144 			queue_depth = sd->queue_depth != 0 ?
2145 					sd->queue_depth : sdev->host->can_queue;
2146 		}
2147 	} else
2148 		queue_depth = sdev->host->can_queue;
2149 
2150 	scsi_change_queue_depth(sdev, queue_depth);
2151 
2152 	return 0;
2153 }
2154 
2155 static void hpsa_slave_destroy(struct scsi_device *sdev)
2156 {
2157 	struct hpsa_scsi_dev_t *hdev = NULL;
2158 
2159 	hdev = sdev->hostdata;
2160 
2161 	if (hdev)
2162 		hdev->was_removed = 1;
2163 }
2164 
2165 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 	int i;
2168 
2169 	if (!h->ioaccel2_cmd_sg_list)
2170 		return;
2171 	for (i = 0; i < h->nr_cmds; i++) {
2172 		kfree(h->ioaccel2_cmd_sg_list[i]);
2173 		h->ioaccel2_cmd_sg_list[i] = NULL;
2174 	}
2175 	kfree(h->ioaccel2_cmd_sg_list);
2176 	h->ioaccel2_cmd_sg_list = NULL;
2177 }
2178 
2179 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2180 {
2181 	int i;
2182 
2183 	if (h->chainsize <= 0)
2184 		return 0;
2185 
2186 	h->ioaccel2_cmd_sg_list =
2187 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2188 					GFP_KERNEL);
2189 	if (!h->ioaccel2_cmd_sg_list)
2190 		return -ENOMEM;
2191 	for (i = 0; i < h->nr_cmds; i++) {
2192 		h->ioaccel2_cmd_sg_list[i] =
2193 			kmalloc_array(h->maxsgentries,
2194 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2195 				      GFP_KERNEL);
2196 		if (!h->ioaccel2_cmd_sg_list[i])
2197 			goto clean;
2198 	}
2199 	return 0;
2200 
2201 clean:
2202 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2203 	return -ENOMEM;
2204 }
2205 
2206 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208 	int i;
2209 
2210 	if (!h->cmd_sg_list)
2211 		return;
2212 	for (i = 0; i < h->nr_cmds; i++) {
2213 		kfree(h->cmd_sg_list[i]);
2214 		h->cmd_sg_list[i] = NULL;
2215 	}
2216 	kfree(h->cmd_sg_list);
2217 	h->cmd_sg_list = NULL;
2218 }
2219 
2220 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2221 {
2222 	int i;
2223 
2224 	if (h->chainsize <= 0)
2225 		return 0;
2226 
2227 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2228 				 GFP_KERNEL);
2229 	if (!h->cmd_sg_list)
2230 		return -ENOMEM;
2231 
2232 	for (i = 0; i < h->nr_cmds; i++) {
2233 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2234 						  sizeof(*h->cmd_sg_list[i]),
2235 						  GFP_KERNEL);
2236 		if (!h->cmd_sg_list[i])
2237 			goto clean;
2238 
2239 	}
2240 	return 0;
2241 
2242 clean:
2243 	hpsa_free_sg_chain_blocks(h);
2244 	return -ENOMEM;
2245 }
2246 
2247 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2248 	struct io_accel2_cmd *cp, struct CommandList *c)
2249 {
2250 	struct ioaccel2_sg_element *chain_block;
2251 	u64 temp64;
2252 	u32 chain_size;
2253 
2254 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2255 	chain_size = le32_to_cpu(cp->sg[0].length);
2256 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2257 				DMA_TO_DEVICE);
2258 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2259 		/* prevent subsequent unmapping */
2260 		cp->sg->address = 0;
2261 		return -1;
2262 	}
2263 	cp->sg->address = cpu_to_le64(temp64);
2264 	return 0;
2265 }
2266 
2267 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2268 	struct io_accel2_cmd *cp)
2269 {
2270 	struct ioaccel2_sg_element *chain_sg;
2271 	u64 temp64;
2272 	u32 chain_size;
2273 
2274 	chain_sg = cp->sg;
2275 	temp64 = le64_to_cpu(chain_sg->address);
2276 	chain_size = le32_to_cpu(cp->sg[0].length);
2277 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2278 }
2279 
2280 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2281 	struct CommandList *c)
2282 {
2283 	struct SGDescriptor *chain_sg, *chain_block;
2284 	u64 temp64;
2285 	u32 chain_len;
2286 
2287 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2288 	chain_block = h->cmd_sg_list[c->cmdindex];
2289 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2290 	chain_len = sizeof(*chain_sg) *
2291 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2292 	chain_sg->Len = cpu_to_le32(chain_len);
2293 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2294 				DMA_TO_DEVICE);
2295 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2296 		/* prevent subsequent unmapping */
2297 		chain_sg->Addr = cpu_to_le64(0);
2298 		return -1;
2299 	}
2300 	chain_sg->Addr = cpu_to_le64(temp64);
2301 	return 0;
2302 }
2303 
2304 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2305 	struct CommandList *c)
2306 {
2307 	struct SGDescriptor *chain_sg;
2308 
2309 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2310 		return;
2311 
2312 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2313 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2314 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2315 }
2316 
2317 
2318 /* Decode the various types of errors on ioaccel2 path.
2319  * Return 1 for any error that should generate a RAID path retry.
2320  * Return 0 for errors that don't require a RAID path retry.
2321  */
2322 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2323 					struct CommandList *c,
2324 					struct scsi_cmnd *cmd,
2325 					struct io_accel2_cmd *c2,
2326 					struct hpsa_scsi_dev_t *dev)
2327 {
2328 	int data_len;
2329 	int retry = 0;
2330 	u32 ioaccel2_resid = 0;
2331 
2332 	switch (c2->error_data.serv_response) {
2333 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2334 		switch (c2->error_data.status) {
2335 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2336 			if (cmd)
2337 				cmd->result = 0;
2338 			break;
2339 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2340 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2341 			if (c2->error_data.data_present !=
2342 					IOACCEL2_SENSE_DATA_PRESENT) {
2343 				memset(cmd->sense_buffer, 0,
2344 					SCSI_SENSE_BUFFERSIZE);
2345 				break;
2346 			}
2347 			/* copy the sense data */
2348 			data_len = c2->error_data.sense_data_len;
2349 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2350 				data_len = SCSI_SENSE_BUFFERSIZE;
2351 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2352 				data_len =
2353 					sizeof(c2->error_data.sense_data_buff);
2354 			memcpy(cmd->sense_buffer,
2355 				c2->error_data.sense_data_buff, data_len);
2356 			retry = 1;
2357 			break;
2358 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2359 			retry = 1;
2360 			break;
2361 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2362 			retry = 1;
2363 			break;
2364 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2368 			retry = 1;
2369 			break;
2370 		default:
2371 			retry = 1;
2372 			break;
2373 		}
2374 		break;
2375 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2376 		switch (c2->error_data.status) {
2377 		case IOACCEL2_STATUS_SR_IO_ERROR:
2378 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2379 		case IOACCEL2_STATUS_SR_OVERRUN:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_UNDERRUN:
2383 			cmd->result = (DID_OK << 16);		/* host byte */
2384 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2385 			ioaccel2_resid = get_unaligned_le32(
2386 						&c2->error_data.resid_cnt[0]);
2387 			scsi_set_resid(cmd, ioaccel2_resid);
2388 			break;
2389 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2390 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2391 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2392 			/*
2393 			 * Did an HBA disk disappear? We will eventually
2394 			 * get a state change event from the controller but
2395 			 * in the meantime, we need to tell the OS that the
2396 			 * HBA disk is no longer there and stop I/O
2397 			 * from going down. This allows the potential re-insert
2398 			 * of the disk to get the same device node.
2399 			 */
2400 			if (dev->physical_device && dev->expose_device) {
2401 				cmd->result = DID_NO_CONNECT << 16;
2402 				dev->removed = 1;
2403 				h->drv_req_rescan = 1;
2404 				dev_warn(&h->pdev->dev,
2405 					"%s: device is gone!\n", __func__);
2406 			} else
2407 				/*
2408 				 * Retry by sending down the RAID path.
2409 				 * We will get an event from ctlr to
2410 				 * trigger rescan regardless.
2411 				 */
2412 				retry = 1;
2413 			break;
2414 		default:
2415 			retry = 1;
2416 		}
2417 		break;
2418 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2419 		break;
2420 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2421 		break;
2422 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2423 		retry = 1;
2424 		break;
2425 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2426 		break;
2427 	default:
2428 		retry = 1;
2429 		break;
2430 	}
2431 
2432 	if (dev->in_reset)
2433 		retry = 0;
2434 
2435 	return retry;	/* retry on raid path? */
2436 }
2437 
2438 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2439 		struct CommandList *c)
2440 {
2441 	struct hpsa_scsi_dev_t *dev = c->device;
2442 
2443 	/*
2444 	 * Reset c->scsi_cmd here so that the reset handler will know
2445 	 * this command has completed.  Then, check to see if the handler is
2446 	 * waiting for this command, and, if so, wake it.
2447 	 */
2448 	c->scsi_cmd = SCSI_CMD_IDLE;
2449 	mb();	/* Declare command idle before checking for pending events. */
2450 	if (dev) {
2451 		atomic_dec(&dev->commands_outstanding);
2452 		if (dev->in_reset &&
2453 			atomic_read(&dev->commands_outstanding) <= 0)
2454 			wake_up_all(&h->event_sync_wait_queue);
2455 	}
2456 }
2457 
2458 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2459 				      struct CommandList *c)
2460 {
2461 	hpsa_cmd_resolve_events(h, c);
2462 	cmd_tagged_free(h, c);
2463 }
2464 
2465 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2466 		struct CommandList *c, struct scsi_cmnd *cmd)
2467 {
2468 	hpsa_cmd_resolve_and_free(h, c);
2469 	if (cmd && cmd->scsi_done)
2470 		cmd->scsi_done(cmd);
2471 }
2472 
2473 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2474 {
2475 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2476 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2477 }
2478 
2479 static void process_ioaccel2_completion(struct ctlr_info *h,
2480 		struct CommandList *c, struct scsi_cmnd *cmd,
2481 		struct hpsa_scsi_dev_t *dev)
2482 {
2483 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2484 
2485 	/* check for good status */
2486 	if (likely(c2->error_data.serv_response == 0 &&
2487 			c2->error_data.status == 0)) {
2488 		cmd->result = 0;
2489 		return hpsa_cmd_free_and_done(h, c, cmd);
2490 	}
2491 
2492 	/*
2493 	 * Any RAID offload error results in retry which will use
2494 	 * the normal I/O path so the controller can handle whatever is
2495 	 * wrong.
2496 	 */
2497 	if (is_logical_device(dev) &&
2498 		c2->error_data.serv_response ==
2499 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2500 		if (c2->error_data.status ==
2501 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2502 			dev->offload_enabled = 0;
2503 			dev->offload_to_be_enabled = 0;
2504 		}
2505 
2506 		if (dev->in_reset) {
2507 			cmd->result = DID_RESET << 16;
2508 			return hpsa_cmd_free_and_done(h, c, cmd);
2509 		}
2510 
2511 		return hpsa_retry_cmd(h, c);
2512 	}
2513 
2514 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2515 		return hpsa_retry_cmd(h, c);
2516 
2517 	return hpsa_cmd_free_and_done(h, c, cmd);
2518 }
2519 
2520 /* Returns 0 on success, < 0 otherwise. */
2521 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2522 					struct CommandList *cp)
2523 {
2524 	u8 tmf_status = cp->err_info->ScsiStatus;
2525 
2526 	switch (tmf_status) {
2527 	case CISS_TMF_COMPLETE:
2528 		/*
2529 		 * CISS_TMF_COMPLETE never happens, instead,
2530 		 * ei->CommandStatus == 0 for this case.
2531 		 */
2532 	case CISS_TMF_SUCCESS:
2533 		return 0;
2534 	case CISS_TMF_INVALID_FRAME:
2535 	case CISS_TMF_NOT_SUPPORTED:
2536 	case CISS_TMF_FAILED:
2537 	case CISS_TMF_WRONG_LUN:
2538 	case CISS_TMF_OVERLAPPED_TAG:
2539 		break;
2540 	default:
2541 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2542 				tmf_status);
2543 		break;
2544 	}
2545 	return -tmf_status;
2546 }
2547 
2548 static void complete_scsi_command(struct CommandList *cp)
2549 {
2550 	struct scsi_cmnd *cmd;
2551 	struct ctlr_info *h;
2552 	struct ErrorInfo *ei;
2553 	struct hpsa_scsi_dev_t *dev;
2554 	struct io_accel2_cmd *c2;
2555 
2556 	u8 sense_key;
2557 	u8 asc;      /* additional sense code */
2558 	u8 ascq;     /* additional sense code qualifier */
2559 	unsigned long sense_data_size;
2560 
2561 	ei = cp->err_info;
2562 	cmd = cp->scsi_cmd;
2563 	h = cp->h;
2564 
2565 	if (!cmd->device) {
2566 		cmd->result = DID_NO_CONNECT << 16;
2567 		return hpsa_cmd_free_and_done(h, cp, cmd);
2568 	}
2569 
2570 	dev = cmd->device->hostdata;
2571 	if (!dev) {
2572 		cmd->result = DID_NO_CONNECT << 16;
2573 		return hpsa_cmd_free_and_done(h, cp, cmd);
2574 	}
2575 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2576 
2577 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2578 	if ((cp->cmd_type == CMD_SCSI) &&
2579 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2580 		hpsa_unmap_sg_chain_block(h, cp);
2581 
2582 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2583 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2584 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2585 
2586 	cmd->result = (DID_OK << 16); 		/* host byte */
2587 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2588 
2589 	/* SCSI command has already been cleaned up in SML */
2590 	if (dev->was_removed) {
2591 		hpsa_cmd_resolve_and_free(h, cp);
2592 		return;
2593 	}
2594 
2595 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2596 		if (dev->physical_device && dev->expose_device &&
2597 			dev->removed) {
2598 			cmd->result = DID_NO_CONNECT << 16;
2599 			return hpsa_cmd_free_and_done(h, cp, cmd);
2600 		}
2601 		if (likely(cp->phys_disk != NULL))
2602 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2603 	}
2604 
2605 	/*
2606 	 * We check for lockup status here as it may be set for
2607 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2608 	 * fail_all_oustanding_cmds()
2609 	 */
2610 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2611 		/* DID_NO_CONNECT will prevent a retry */
2612 		cmd->result = DID_NO_CONNECT << 16;
2613 		return hpsa_cmd_free_and_done(h, cp, cmd);
2614 	}
2615 
2616 	if (cp->cmd_type == CMD_IOACCEL2)
2617 		return process_ioaccel2_completion(h, cp, cmd, dev);
2618 
2619 	scsi_set_resid(cmd, ei->ResidualCnt);
2620 	if (ei->CommandStatus == 0)
2621 		return hpsa_cmd_free_and_done(h, cp, cmd);
2622 
2623 	/* For I/O accelerator commands, copy over some fields to the normal
2624 	 * CISS header used below for error handling.
2625 	 */
2626 	if (cp->cmd_type == CMD_IOACCEL1) {
2627 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2628 		cp->Header.SGList = scsi_sg_count(cmd);
2629 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2630 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2631 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2632 		cp->Header.tag = c->tag;
2633 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2634 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2635 
2636 		/* Any RAID offload error results in retry which will use
2637 		 * the normal I/O path so the controller can handle whatever's
2638 		 * wrong.
2639 		 */
2640 		if (is_logical_device(dev)) {
2641 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2642 				dev->offload_enabled = 0;
2643 			return hpsa_retry_cmd(h, cp);
2644 		}
2645 	}
2646 
2647 	/* an error has occurred */
2648 	switch (ei->CommandStatus) {
2649 
2650 	case CMD_TARGET_STATUS:
2651 		cmd->result |= ei->ScsiStatus;
2652 		/* copy the sense data */
2653 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2654 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2655 		else
2656 			sense_data_size = sizeof(ei->SenseInfo);
2657 		if (ei->SenseLen < sense_data_size)
2658 			sense_data_size = ei->SenseLen;
2659 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2660 		if (ei->ScsiStatus)
2661 			decode_sense_data(ei->SenseInfo, sense_data_size,
2662 				&sense_key, &asc, &ascq);
2663 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2664 			switch (sense_key) {
2665 			case ABORTED_COMMAND:
2666 				cmd->result |= DID_SOFT_ERROR << 16;
2667 				break;
2668 			case UNIT_ATTENTION:
2669 				if (asc == 0x3F && ascq == 0x0E)
2670 					h->drv_req_rescan = 1;
2671 				break;
2672 			case ILLEGAL_REQUEST:
2673 				if (asc == 0x25 && ascq == 0x00) {
2674 					dev->removed = 1;
2675 					cmd->result = DID_NO_CONNECT << 16;
2676 				}
2677 				break;
2678 			}
2679 			break;
2680 		}
2681 		/* Problem was not a check condition
2682 		 * Pass it up to the upper layers...
2683 		 */
2684 		if (ei->ScsiStatus) {
2685 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2686 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2687 				"Returning result: 0x%x\n",
2688 				cp, ei->ScsiStatus,
2689 				sense_key, asc, ascq,
2690 				cmd->result);
2691 		} else {  /* scsi status is zero??? How??? */
2692 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2693 				"Returning no connection.\n", cp),
2694 
2695 			/* Ordinarily, this case should never happen,
2696 			 * but there is a bug in some released firmware
2697 			 * revisions that allows it to happen if, for
2698 			 * example, a 4100 backplane loses power and
2699 			 * the tape drive is in it.  We assume that
2700 			 * it's a fatal error of some kind because we
2701 			 * can't show that it wasn't. We will make it
2702 			 * look like selection timeout since that is
2703 			 * the most common reason for this to occur,
2704 			 * and it's severe enough.
2705 			 */
2706 
2707 			cmd->result = DID_NO_CONNECT << 16;
2708 		}
2709 		break;
2710 
2711 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2712 		break;
2713 	case CMD_DATA_OVERRUN:
2714 		dev_warn(&h->pdev->dev,
2715 			"CDB %16phN data overrun\n", cp->Request.CDB);
2716 		break;
2717 	case CMD_INVALID: {
2718 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2719 		print_cmd(cp); */
2720 		/* We get CMD_INVALID if you address a non-existent device
2721 		 * instead of a selection timeout (no response).  You will
2722 		 * see this if you yank out a drive, then try to access it.
2723 		 * This is kind of a shame because it means that any other
2724 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2725 		 * missing target. */
2726 		cmd->result = DID_NO_CONNECT << 16;
2727 	}
2728 		break;
2729 	case CMD_PROTOCOL_ERR:
2730 		cmd->result = DID_ERROR << 16;
2731 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2732 				cp->Request.CDB);
2733 		break;
2734 	case CMD_HARDWARE_ERR:
2735 		cmd->result = DID_ERROR << 16;
2736 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2737 			cp->Request.CDB);
2738 		break;
2739 	case CMD_CONNECTION_LOST:
2740 		cmd->result = DID_ERROR << 16;
2741 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2742 			cp->Request.CDB);
2743 		break;
2744 	case CMD_ABORTED:
2745 		cmd->result = DID_ABORT << 16;
2746 		break;
2747 	case CMD_ABORT_FAILED:
2748 		cmd->result = DID_ERROR << 16;
2749 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2750 			cp->Request.CDB);
2751 		break;
2752 	case CMD_UNSOLICITED_ABORT:
2753 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2754 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2755 			cp->Request.CDB);
2756 		break;
2757 	case CMD_TIMEOUT:
2758 		cmd->result = DID_TIME_OUT << 16;
2759 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2760 			cp->Request.CDB);
2761 		break;
2762 	case CMD_UNABORTABLE:
2763 		cmd->result = DID_ERROR << 16;
2764 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2765 		break;
2766 	case CMD_TMF_STATUS:
2767 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2768 			cmd->result = DID_ERROR << 16;
2769 		break;
2770 	case CMD_IOACCEL_DISABLED:
2771 		/* This only handles the direct pass-through case since RAID
2772 		 * offload is handled above.  Just attempt a retry.
2773 		 */
2774 		cmd->result = DID_SOFT_ERROR << 16;
2775 		dev_warn(&h->pdev->dev,
2776 				"cp %p had HP SSD Smart Path error\n", cp);
2777 		break;
2778 	default:
2779 		cmd->result = DID_ERROR << 16;
2780 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2781 				cp, ei->CommandStatus);
2782 	}
2783 
2784 	return hpsa_cmd_free_and_done(h, cp, cmd);
2785 }
2786 
2787 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2788 		int sg_used, enum dma_data_direction data_direction)
2789 {
2790 	int i;
2791 
2792 	for (i = 0; i < sg_used; i++)
2793 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2794 				le32_to_cpu(c->SG[i].Len),
2795 				data_direction);
2796 }
2797 
2798 static int hpsa_map_one(struct pci_dev *pdev,
2799 		struct CommandList *cp,
2800 		unsigned char *buf,
2801 		size_t buflen,
2802 		enum dma_data_direction data_direction)
2803 {
2804 	u64 addr64;
2805 
2806 	if (buflen == 0 || data_direction == DMA_NONE) {
2807 		cp->Header.SGList = 0;
2808 		cp->Header.SGTotal = cpu_to_le16(0);
2809 		return 0;
2810 	}
2811 
2812 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2813 	if (dma_mapping_error(&pdev->dev, addr64)) {
2814 		/* Prevent subsequent unmap of something never mapped */
2815 		cp->Header.SGList = 0;
2816 		cp->Header.SGTotal = cpu_to_le16(0);
2817 		return -1;
2818 	}
2819 	cp->SG[0].Addr = cpu_to_le64(addr64);
2820 	cp->SG[0].Len = cpu_to_le32(buflen);
2821 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2822 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2823 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2824 	return 0;
2825 }
2826 
2827 #define NO_TIMEOUT ((unsigned long) -1)
2828 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2829 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2830 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2831 {
2832 	DECLARE_COMPLETION_ONSTACK(wait);
2833 
2834 	c->waiting = &wait;
2835 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2836 	if (timeout_msecs == NO_TIMEOUT) {
2837 		/* TODO: get rid of this no-timeout thing */
2838 		wait_for_completion_io(&wait);
2839 		return IO_OK;
2840 	}
2841 	if (!wait_for_completion_io_timeout(&wait,
2842 					msecs_to_jiffies(timeout_msecs))) {
2843 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2844 		return -ETIMEDOUT;
2845 	}
2846 	return IO_OK;
2847 }
2848 
2849 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2850 				   int reply_queue, unsigned long timeout_msecs)
2851 {
2852 	if (unlikely(lockup_detected(h))) {
2853 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2854 		return IO_OK;
2855 	}
2856 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2857 }
2858 
2859 static u32 lockup_detected(struct ctlr_info *h)
2860 {
2861 	int cpu;
2862 	u32 rc, *lockup_detected;
2863 
2864 	cpu = get_cpu();
2865 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2866 	rc = *lockup_detected;
2867 	put_cpu();
2868 	return rc;
2869 }
2870 
2871 #define MAX_DRIVER_CMD_RETRIES 25
2872 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2873 		struct CommandList *c, enum dma_data_direction data_direction,
2874 		unsigned long timeout_msecs)
2875 {
2876 	int backoff_time = 10, retry_count = 0;
2877 	int rc;
2878 
2879 	do {
2880 		memset(c->err_info, 0, sizeof(*c->err_info));
2881 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2882 						  timeout_msecs);
2883 		if (rc)
2884 			break;
2885 		retry_count++;
2886 		if (retry_count > 3) {
2887 			msleep(backoff_time);
2888 			if (backoff_time < 1000)
2889 				backoff_time *= 2;
2890 		}
2891 	} while ((check_for_unit_attention(h, c) ||
2892 			check_for_busy(h, c)) &&
2893 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2894 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2895 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2896 		rc = -EIO;
2897 	return rc;
2898 }
2899 
2900 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2901 				struct CommandList *c)
2902 {
2903 	const u8 *cdb = c->Request.CDB;
2904 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2905 
2906 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2907 		 txt, lun, cdb);
2908 }
2909 
2910 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2911 			struct CommandList *cp)
2912 {
2913 	const struct ErrorInfo *ei = cp->err_info;
2914 	struct device *d = &cp->h->pdev->dev;
2915 	u8 sense_key, asc, ascq;
2916 	int sense_len;
2917 
2918 	switch (ei->CommandStatus) {
2919 	case CMD_TARGET_STATUS:
2920 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2921 			sense_len = sizeof(ei->SenseInfo);
2922 		else
2923 			sense_len = ei->SenseLen;
2924 		decode_sense_data(ei->SenseInfo, sense_len,
2925 					&sense_key, &asc, &ascq);
2926 		hpsa_print_cmd(h, "SCSI status", cp);
2927 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2928 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2929 				sense_key, asc, ascq);
2930 		else
2931 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2932 		if (ei->ScsiStatus == 0)
2933 			dev_warn(d, "SCSI status is abnormally zero.  "
2934 			"(probably indicates selection timeout "
2935 			"reported incorrectly due to a known "
2936 			"firmware bug, circa July, 2001.)\n");
2937 		break;
2938 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2939 		break;
2940 	case CMD_DATA_OVERRUN:
2941 		hpsa_print_cmd(h, "overrun condition", cp);
2942 		break;
2943 	case CMD_INVALID: {
2944 		/* controller unfortunately reports SCSI passthru's
2945 		 * to non-existent targets as invalid commands.
2946 		 */
2947 		hpsa_print_cmd(h, "invalid command", cp);
2948 		dev_warn(d, "probably means device no longer present\n");
2949 		}
2950 		break;
2951 	case CMD_PROTOCOL_ERR:
2952 		hpsa_print_cmd(h, "protocol error", cp);
2953 		break;
2954 	case CMD_HARDWARE_ERR:
2955 		hpsa_print_cmd(h, "hardware error", cp);
2956 		break;
2957 	case CMD_CONNECTION_LOST:
2958 		hpsa_print_cmd(h, "connection lost", cp);
2959 		break;
2960 	case CMD_ABORTED:
2961 		hpsa_print_cmd(h, "aborted", cp);
2962 		break;
2963 	case CMD_ABORT_FAILED:
2964 		hpsa_print_cmd(h, "abort failed", cp);
2965 		break;
2966 	case CMD_UNSOLICITED_ABORT:
2967 		hpsa_print_cmd(h, "unsolicited abort", cp);
2968 		break;
2969 	case CMD_TIMEOUT:
2970 		hpsa_print_cmd(h, "timed out", cp);
2971 		break;
2972 	case CMD_UNABORTABLE:
2973 		hpsa_print_cmd(h, "unabortable", cp);
2974 		break;
2975 	case CMD_CTLR_LOCKUP:
2976 		hpsa_print_cmd(h, "controller lockup detected", cp);
2977 		break;
2978 	default:
2979 		hpsa_print_cmd(h, "unknown status", cp);
2980 		dev_warn(d, "Unknown command status %x\n",
2981 				ei->CommandStatus);
2982 	}
2983 }
2984 
2985 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2986 					u8 page, u8 *buf, size_t bufsize)
2987 {
2988 	int rc = IO_OK;
2989 	struct CommandList *c;
2990 	struct ErrorInfo *ei;
2991 
2992 	c = cmd_alloc(h);
2993 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2994 			page, scsi3addr, TYPE_CMD)) {
2995 		rc = -1;
2996 		goto out;
2997 	}
2998 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2999 			NO_TIMEOUT);
3000 	if (rc)
3001 		goto out;
3002 	ei = c->err_info;
3003 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3004 		hpsa_scsi_interpret_error(h, c);
3005 		rc = -1;
3006 	}
3007 out:
3008 	cmd_free(h, c);
3009 	return rc;
3010 }
3011 
3012 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3013 						u8 *scsi3addr)
3014 {
3015 	u8 *buf;
3016 	u64 sa = 0;
3017 	int rc = 0;
3018 
3019 	buf = kzalloc(1024, GFP_KERNEL);
3020 	if (!buf)
3021 		return 0;
3022 
3023 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3024 					buf, 1024);
3025 
3026 	if (rc)
3027 		goto out;
3028 
3029 	sa = get_unaligned_be64(buf+12);
3030 
3031 out:
3032 	kfree(buf);
3033 	return sa;
3034 }
3035 
3036 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3037 			u16 page, unsigned char *buf,
3038 			unsigned char bufsize)
3039 {
3040 	int rc = IO_OK;
3041 	struct CommandList *c;
3042 	struct ErrorInfo *ei;
3043 
3044 	c = cmd_alloc(h);
3045 
3046 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3047 			page, scsi3addr, TYPE_CMD)) {
3048 		rc = -1;
3049 		goto out;
3050 	}
3051 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3052 			NO_TIMEOUT);
3053 	if (rc)
3054 		goto out;
3055 	ei = c->err_info;
3056 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3057 		hpsa_scsi_interpret_error(h, c);
3058 		rc = -1;
3059 	}
3060 out:
3061 	cmd_free(h, c);
3062 	return rc;
3063 }
3064 
3065 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3066 	u8 reset_type, int reply_queue)
3067 {
3068 	int rc = IO_OK;
3069 	struct CommandList *c;
3070 	struct ErrorInfo *ei;
3071 
3072 	c = cmd_alloc(h);
3073 	c->device = dev;
3074 
3075 	/* fill_cmd can't fail here, no data buffer to map. */
3076 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3077 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3078 	if (rc) {
3079 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3080 		goto out;
3081 	}
3082 	/* no unmap needed here because no data xfer. */
3083 
3084 	ei = c->err_info;
3085 	if (ei->CommandStatus != 0) {
3086 		hpsa_scsi_interpret_error(h, c);
3087 		rc = -1;
3088 	}
3089 out:
3090 	cmd_free(h, c);
3091 	return rc;
3092 }
3093 
3094 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3095 			       struct hpsa_scsi_dev_t *dev,
3096 			       unsigned char *scsi3addr)
3097 {
3098 	int i;
3099 	bool match = false;
3100 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3101 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3102 
3103 	if (hpsa_is_cmd_idle(c))
3104 		return false;
3105 
3106 	switch (c->cmd_type) {
3107 	case CMD_SCSI:
3108 	case CMD_IOCTL_PEND:
3109 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3110 				sizeof(c->Header.LUN.LunAddrBytes));
3111 		break;
3112 
3113 	case CMD_IOACCEL1:
3114 	case CMD_IOACCEL2:
3115 		if (c->phys_disk == dev) {
3116 			/* HBA mode match */
3117 			match = true;
3118 		} else {
3119 			/* Possible RAID mode -- check each phys dev. */
3120 			/* FIXME:  Do we need to take out a lock here?  If
3121 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3122 			 * instead. */
3123 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3124 				/* FIXME: an alternate test might be
3125 				 *
3126 				 * match = dev->phys_disk[i]->ioaccel_handle
3127 				 *              == c2->scsi_nexus;      */
3128 				match = dev->phys_disk[i] == c->phys_disk;
3129 			}
3130 		}
3131 		break;
3132 
3133 	case IOACCEL2_TMF:
3134 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3135 			match = dev->phys_disk[i]->ioaccel_handle ==
3136 					le32_to_cpu(ac->it_nexus);
3137 		}
3138 		break;
3139 
3140 	case 0:		/* The command is in the middle of being initialized. */
3141 		match = false;
3142 		break;
3143 
3144 	default:
3145 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3146 			c->cmd_type);
3147 		BUG();
3148 	}
3149 
3150 	return match;
3151 }
3152 
3153 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3154 	u8 reset_type, int reply_queue)
3155 {
3156 	int rc = 0;
3157 
3158 	/* We can really only handle one reset at a time */
3159 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3160 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3161 		return -EINTR;
3162 	}
3163 
3164 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3165 	if (!rc) {
3166 		/* incremented by sending the reset request */
3167 		atomic_dec(&dev->commands_outstanding);
3168 		wait_event(h->event_sync_wait_queue,
3169 			atomic_read(&dev->commands_outstanding) <= 0 ||
3170 			lockup_detected(h));
3171 	}
3172 
3173 	if (unlikely(lockup_detected(h))) {
3174 		dev_warn(&h->pdev->dev,
3175 			 "Controller lockup detected during reset wait\n");
3176 		rc = -ENODEV;
3177 	}
3178 
3179 	if (!rc)
3180 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3181 
3182 	mutex_unlock(&h->reset_mutex);
3183 	return rc;
3184 }
3185 
3186 static void hpsa_get_raid_level(struct ctlr_info *h,
3187 	unsigned char *scsi3addr, unsigned char *raid_level)
3188 {
3189 	int rc;
3190 	unsigned char *buf;
3191 
3192 	*raid_level = RAID_UNKNOWN;
3193 	buf = kzalloc(64, GFP_KERNEL);
3194 	if (!buf)
3195 		return;
3196 
3197 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3198 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3199 		goto exit;
3200 
3201 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203 
3204 	if (rc == 0)
3205 		*raid_level = buf[8];
3206 	if (*raid_level > RAID_UNKNOWN)
3207 		*raid_level = RAID_UNKNOWN;
3208 exit:
3209 	kfree(buf);
3210 	return;
3211 }
3212 
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216 				struct raid_map_data *map_buff)
3217 {
3218 	struct raid_map_disk_data *dd = &map_buff->data[0];
3219 	int map, row, col;
3220 	u16 map_cnt, row_cnt, disks_per_row;
3221 
3222 	if (rc != 0)
3223 		return;
3224 
3225 	/* Show details only if debugging has been activated. */
3226 	if (h->raid_offload_debug < 2)
3227 		return;
3228 
3229 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3230 				le32_to_cpu(map_buff->structure_size));
3231 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232 			le32_to_cpu(map_buff->volume_blk_size));
3233 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234 			le64_to_cpu(map_buff->volume_blk_cnt));
3235 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236 			map_buff->phys_blk_shift);
3237 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238 			map_buff->parity_rotation_shift);
3239 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3240 			le16_to_cpu(map_buff->strip_size));
3241 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242 			le64_to_cpu(map_buff->disk_starting_blk));
3243 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244 			le64_to_cpu(map_buff->disk_blk_cnt));
3245 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246 			le16_to_cpu(map_buff->data_disks_per_row));
3247 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248 			le16_to_cpu(map_buff->metadata_disks_per_row));
3249 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250 			le16_to_cpu(map_buff->row_cnt));
3251 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252 			le16_to_cpu(map_buff->layout_map_count));
3253 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254 			le16_to_cpu(map_buff->flags));
3255 	dev_info(&h->pdev->dev, "encryption = %s\n",
3256 			le16_to_cpu(map_buff->flags) &
3257 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3259 			le16_to_cpu(map_buff->dekindex));
3260 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261 	for (map = 0; map < map_cnt; map++) {
3262 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3263 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3264 		for (row = 0; row < row_cnt; row++) {
3265 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266 			disks_per_row =
3267 				le16_to_cpu(map_buff->data_disks_per_row);
3268 			for (col = 0; col < disks_per_row; col++, dd++)
3269 				dev_info(&h->pdev->dev,
3270 					"    D%02u: h=0x%04x xor=%u,%u\n",
3271 					col, dd->ioaccel_handle,
3272 					dd->xor_mult[0], dd->xor_mult[1]);
3273 			disks_per_row =
3274 				le16_to_cpu(map_buff->metadata_disks_per_row);
3275 			for (col = 0; col < disks_per_row; col++, dd++)
3276 				dev_info(&h->pdev->dev,
3277 					"    M%02u: h=0x%04x xor=%u,%u\n",
3278 					col, dd->ioaccel_handle,
3279 					dd->xor_mult[0], dd->xor_mult[1]);
3280 		}
3281 	}
3282 }
3283 #else
3284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285 			__attribute__((unused)) int rc,
3286 			__attribute__((unused)) struct raid_map_data *map_buff)
3287 {
3288 }
3289 #endif
3290 
3291 static int hpsa_get_raid_map(struct ctlr_info *h,
3292 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293 {
3294 	int rc = 0;
3295 	struct CommandList *c;
3296 	struct ErrorInfo *ei;
3297 
3298 	c = cmd_alloc(h);
3299 
3300 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301 			sizeof(this_device->raid_map), 0,
3302 			scsi3addr, TYPE_CMD)) {
3303 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304 		cmd_free(h, c);
3305 		return -1;
3306 	}
3307 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3308 			NO_TIMEOUT);
3309 	if (rc)
3310 		goto out;
3311 	ei = c->err_info;
3312 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313 		hpsa_scsi_interpret_error(h, c);
3314 		rc = -1;
3315 		goto out;
3316 	}
3317 	cmd_free(h, c);
3318 
3319 	/* @todo in the future, dynamically allocate RAID map memory */
3320 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3321 				sizeof(this_device->raid_map)) {
3322 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323 		rc = -1;
3324 	}
3325 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326 	return rc;
3327 out:
3328 	cmd_free(h, c);
3329 	return rc;
3330 }
3331 
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333 		unsigned char scsi3addr[], u16 bmic_device_index,
3334 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335 {
3336 	int rc = IO_OK;
3337 	struct CommandList *c;
3338 	struct ErrorInfo *ei;
3339 
3340 	c = cmd_alloc(h);
3341 
3342 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343 		0, RAID_CTLR_LUNID, TYPE_CMD);
3344 	if (rc)
3345 		goto out;
3346 
3347 	c->Request.CDB[2] = bmic_device_index & 0xff;
3348 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349 
3350 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3351 			NO_TIMEOUT);
3352 	if (rc)
3353 		goto out;
3354 	ei = c->err_info;
3355 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356 		hpsa_scsi_interpret_error(h, c);
3357 		rc = -1;
3358 	}
3359 out:
3360 	cmd_free(h, c);
3361 	return rc;
3362 }
3363 
3364 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365 	struct bmic_identify_controller *buf, size_t bufsize)
3366 {
3367 	int rc = IO_OK;
3368 	struct CommandList *c;
3369 	struct ErrorInfo *ei;
3370 
3371 	c = cmd_alloc(h);
3372 
3373 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374 		0, RAID_CTLR_LUNID, TYPE_CMD);
3375 	if (rc)
3376 		goto out;
3377 
3378 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3379 			NO_TIMEOUT);
3380 	if (rc)
3381 		goto out;
3382 	ei = c->err_info;
3383 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384 		hpsa_scsi_interpret_error(h, c);
3385 		rc = -1;
3386 	}
3387 out:
3388 	cmd_free(h, c);
3389 	return rc;
3390 }
3391 
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393 		unsigned char scsi3addr[], u16 bmic_device_index,
3394 		struct bmic_identify_physical_device *buf, size_t bufsize)
3395 {
3396 	int rc = IO_OK;
3397 	struct CommandList *c;
3398 	struct ErrorInfo *ei;
3399 
3400 	c = cmd_alloc(h);
3401 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402 		0, RAID_CTLR_LUNID, TYPE_CMD);
3403 	if (rc)
3404 		goto out;
3405 
3406 	c->Request.CDB[2] = bmic_device_index & 0xff;
3407 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408 
3409 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3410 						NO_TIMEOUT);
3411 	ei = c->err_info;
3412 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413 		hpsa_scsi_interpret_error(h, c);
3414 		rc = -1;
3415 	}
3416 out:
3417 	cmd_free(h, c);
3418 
3419 	return rc;
3420 }
3421 
3422 /*
3423  * get enclosure information
3424  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426  * Uses id_physical_device to determine the box_index.
3427  */
3428 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429 			unsigned char *scsi3addr,
3430 			struct ReportExtendedLUNdata *rlep, int rle_index,
3431 			struct hpsa_scsi_dev_t *encl_dev)
3432 {
3433 	int rc = -1;
3434 	struct CommandList *c = NULL;
3435 	struct ErrorInfo *ei = NULL;
3436 	struct bmic_sense_storage_box_params *bssbp = NULL;
3437 	struct bmic_identify_physical_device *id_phys = NULL;
3438 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439 	u16 bmic_device_index = 0;
3440 
3441 	encl_dev->eli =
3442 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3443 
3444 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3445 
3446 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447 		rc = IO_OK;
3448 		goto out;
3449 	}
3450 
3451 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452 		rc = IO_OK;
3453 		goto out;
3454 	}
3455 
3456 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457 	if (!bssbp)
3458 		goto out;
3459 
3460 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461 	if (!id_phys)
3462 		goto out;
3463 
3464 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465 						id_phys, sizeof(*id_phys));
3466 	if (rc) {
3467 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468 			__func__, encl_dev->external, bmic_device_index);
3469 		goto out;
3470 	}
3471 
3472 	c = cmd_alloc(h);
3473 
3474 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476 
3477 	if (rc)
3478 		goto out;
3479 
3480 	if (id_phys->phys_connector[1] == 'E')
3481 		c->Request.CDB[5] = id_phys->box_index;
3482 	else
3483 		c->Request.CDB[5] = 0;
3484 
3485 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3486 						NO_TIMEOUT);
3487 	if (rc)
3488 		goto out;
3489 
3490 	ei = c->err_info;
3491 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492 		rc = -1;
3493 		goto out;
3494 	}
3495 
3496 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499 
3500 	rc = IO_OK;
3501 out:
3502 	kfree(bssbp);
3503 	kfree(id_phys);
3504 
3505 	if (c)
3506 		cmd_free(h, c);
3507 
3508 	if (rc != IO_OK)
3509 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510 			"Error, could not get enclosure information");
3511 }
3512 
3513 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514 						unsigned char *scsi3addr)
3515 {
3516 	struct ReportExtendedLUNdata *physdev;
3517 	u32 nphysicals;
3518 	u64 sa = 0;
3519 	int i;
3520 
3521 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522 	if (!physdev)
3523 		return 0;
3524 
3525 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527 		kfree(physdev);
3528 		return 0;
3529 	}
3530 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531 
3532 	for (i = 0; i < nphysicals; i++)
3533 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535 			break;
3536 		}
3537 
3538 	kfree(physdev);
3539 
3540 	return sa;
3541 }
3542 
3543 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544 					struct hpsa_scsi_dev_t *dev)
3545 {
3546 	int rc;
3547 	u64 sa = 0;
3548 
3549 	if (is_hba_lunid(scsi3addr)) {
3550 		struct bmic_sense_subsystem_info *ssi;
3551 
3552 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553 		if (!ssi)
3554 			return;
3555 
3556 		rc = hpsa_bmic_sense_subsystem_information(h,
3557 					scsi3addr, 0, ssi, sizeof(*ssi));
3558 		if (rc == 0) {
3559 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560 			h->sas_address = sa;
3561 		}
3562 
3563 		kfree(ssi);
3564 	} else
3565 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566 
3567 	dev->sas_address = sa;
3568 }
3569 
3570 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571 	struct ReportExtendedLUNdata *physdev)
3572 {
3573 	u32 nphysicals;
3574 	int i;
3575 
3576 	if (h->discovery_polling)
3577 		return;
3578 
3579 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580 
3581 	for (i = 0; i < nphysicals; i++) {
3582 		if (physdev->LUN[i].device_type ==
3583 			BMIC_DEVICE_TYPE_CONTROLLER
3584 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3585 			dev_info(&h->pdev->dev,
3586 				"External controller present, activate discovery polling and disable rld caching\n");
3587 			hpsa_disable_rld_caching(h);
3588 			h->discovery_polling = 1;
3589 			break;
3590 		}
3591 	}
3592 }
3593 
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596 	unsigned char scsi3addr[], u8 page)
3597 {
3598 	int rc;
3599 	int i;
3600 	int pages;
3601 	unsigned char *buf, bufsize;
3602 
3603 	buf = kzalloc(256, GFP_KERNEL);
3604 	if (!buf)
3605 		return false;
3606 
3607 	/* Get the size of the page list first */
3608 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610 				buf, HPSA_VPD_HEADER_SZ);
3611 	if (rc != 0)
3612 		goto exit_unsupported;
3613 	pages = buf[3];
3614 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3616 	else
3617 		bufsize = 255;
3618 
3619 	/* Get the whole VPD page list */
3620 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622 				buf, bufsize);
3623 	if (rc != 0)
3624 		goto exit_unsupported;
3625 
3626 	pages = buf[3];
3627 	for (i = 1; i <= pages; i++)
3628 		if (buf[3 + i] == page)
3629 			goto exit_supported;
3630 exit_unsupported:
3631 	kfree(buf);
3632 	return false;
3633 exit_supported:
3634 	kfree(buf);
3635 	return true;
3636 }
3637 
3638 /*
3639  * Called during a scan operation.
3640  * Sets ioaccel status on the new device list, not the existing device list
3641  *
3642  * The device list used during I/O will be updated later in
3643  * adjust_hpsa_scsi_table.
3644  */
3645 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647 {
3648 	int rc;
3649 	unsigned char *buf;
3650 	u8 ioaccel_status;
3651 
3652 	this_device->offload_config = 0;
3653 	this_device->offload_enabled = 0;
3654 	this_device->offload_to_be_enabled = 0;
3655 
3656 	buf = kzalloc(64, GFP_KERNEL);
3657 	if (!buf)
3658 		return;
3659 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660 		goto out;
3661 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663 	if (rc != 0)
3664 		goto out;
3665 
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670 	this_device->offload_config =
3671 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672 	if (this_device->offload_config) {
3673 		this_device->offload_to_be_enabled =
3674 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676 			this_device->offload_to_be_enabled = 0;
3677 	}
3678 
3679 out:
3680 	kfree(buf);
3681 	return;
3682 }
3683 
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686 	unsigned char *device_id, int index, int buflen)
3687 {
3688 	int rc;
3689 	unsigned char *buf;
3690 
3691 	/* Does controller have VPD for device id? */
3692 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693 		return 1; /* not supported */
3694 
3695 	buf = kzalloc(64, GFP_KERNEL);
3696 	if (!buf)
3697 		return -ENOMEM;
3698 
3699 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701 	if (rc == 0) {
3702 		if (buflen > 16)
3703 			buflen = 16;
3704 		memcpy(device_id, &buf[8], buflen);
3705 	}
3706 
3707 	kfree(buf);
3708 
3709 	return rc; /*0 - got id,  otherwise, didn't */
3710 }
3711 
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713 		void *buf, int bufsize,
3714 		int extended_response)
3715 {
3716 	int rc = IO_OK;
3717 	struct CommandList *c;
3718 	unsigned char scsi3addr[8];
3719 	struct ErrorInfo *ei;
3720 
3721 	c = cmd_alloc(h);
3722 
3723 	/* address the controller */
3724 	memset(scsi3addr, 0, sizeof(scsi3addr));
3725 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727 		rc = -EAGAIN;
3728 		goto out;
3729 	}
3730 	if (extended_response)
3731 		c->Request.CDB[1] = extended_response;
3732 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3733 			NO_TIMEOUT);
3734 	if (rc)
3735 		goto out;
3736 	ei = c->err_info;
3737 	if (ei->CommandStatus != 0 &&
3738 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739 		hpsa_scsi_interpret_error(h, c);
3740 		rc = -EIO;
3741 	} else {
3742 		struct ReportLUNdata *rld = buf;
3743 
3744 		if (rld->extended_response_flag != extended_response) {
3745 			if (!h->legacy_board) {
3746 				dev_err(&h->pdev->dev,
3747 					"report luns requested format %u, got %u\n",
3748 					extended_response,
3749 					rld->extended_response_flag);
3750 				rc = -EINVAL;
3751 			} else
3752 				rc = -EOPNOTSUPP;
3753 		}
3754 	}
3755 out:
3756 	cmd_free(h, c);
3757 	return rc;
3758 }
3759 
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761 		struct ReportExtendedLUNdata *buf, int bufsize)
3762 {
3763 	int rc;
3764 	struct ReportLUNdata *lbuf;
3765 
3766 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767 				      HPSA_REPORT_PHYS_EXTENDED);
3768 	if (!rc || rc != -EOPNOTSUPP)
3769 		return rc;
3770 
3771 	/* REPORT PHYS EXTENDED is not supported */
3772 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773 	if (!lbuf)
3774 		return -ENOMEM;
3775 
3776 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777 	if (!rc) {
3778 		int i;
3779 		u32 nphys;
3780 
3781 		/* Copy ReportLUNdata header */
3782 		memcpy(buf, lbuf, 8);
3783 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784 		for (i = 0; i < nphys; i++)
3785 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786 	}
3787 	kfree(lbuf);
3788 	return rc;
3789 }
3790 
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792 		struct ReportLUNdata *buf, int bufsize)
3793 {
3794 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795 }
3796 
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798 	int bus, int target, int lun)
3799 {
3800 	device->bus = bus;
3801 	device->target = target;
3802 	device->lun = lun;
3803 }
3804 
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info *h,
3807 					unsigned char scsi3addr[])
3808 {
3809 	int rc;
3810 	int status;
3811 	int size;
3812 	unsigned char *buf;
3813 
3814 	buf = kzalloc(64, GFP_KERNEL);
3815 	if (!buf)
3816 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817 
3818 	/* Does controller have VPD for logical volume status? */
3819 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820 		goto exit_failed;
3821 
3822 	/* Get the size of the VPD return buffer */
3823 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824 					buf, HPSA_VPD_HEADER_SZ);
3825 	if (rc != 0)
3826 		goto exit_failed;
3827 	size = buf[3];
3828 
3829 	/* Now get the whole VPD buffer */
3830 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831 					buf, size + HPSA_VPD_HEADER_SZ);
3832 	if (rc != 0)
3833 		goto exit_failed;
3834 	status = buf[4]; /* status byte */
3835 
3836 	kfree(buf);
3837 	return status;
3838 exit_failed:
3839 	kfree(buf);
3840 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841 }
3842 
3843 /* Determine offline status of a volume.
3844  * Return either:
3845  *  0 (not offline)
3846  *  0xff (offline for unknown reasons)
3847  *  # (integer code indicating one of several NOT READY states
3848  *     describing why a volume is to be kept offline)
3849  */
3850 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851 					unsigned char scsi3addr[])
3852 {
3853 	struct CommandList *c;
3854 	unsigned char *sense;
3855 	u8 sense_key, asc, ascq;
3856 	int sense_len;
3857 	int rc, ldstat = 0;
3858 	u16 cmd_status;
3859 	u8 scsi_status;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863 
3864 	c = cmd_alloc(h);
3865 
3866 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868 					NO_TIMEOUT);
3869 	if (rc) {
3870 		cmd_free(h, c);
3871 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872 	}
3873 	sense = c->err_info->SenseInfo;
3874 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875 		sense_len = sizeof(c->err_info->SenseInfo);
3876 	else
3877 		sense_len = c->err_info->SenseLen;
3878 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879 	cmd_status = c->err_info->CommandStatus;
3880 	scsi_status = c->err_info->ScsiStatus;
3881 	cmd_free(h, c);
3882 
3883 	/* Determine the reason for not ready state */
3884 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3885 
3886 	/* Keep volume offline in certain cases: */
3887 	switch (ldstat) {
3888 	case HPSA_LV_FAILED:
3889 	case HPSA_LV_UNDERGOING_ERASE:
3890 	case HPSA_LV_NOT_AVAILABLE:
3891 	case HPSA_LV_UNDERGOING_RPI:
3892 	case HPSA_LV_PENDING_RPI:
3893 	case HPSA_LV_ENCRYPTED_NO_KEY:
3894 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3896 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898 		return ldstat;
3899 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900 		/* If VPD status page isn't available,
3901 		 * use ASC/ASCQ to determine state
3902 		 */
3903 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905 			return ldstat;
3906 		break;
3907 	default:
3908 		break;
3909 	}
3910 	return HPSA_LV_OK;
3911 }
3912 
3913 static int hpsa_update_device_info(struct ctlr_info *h,
3914 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915 	unsigned char *is_OBDR_device)
3916 {
3917 
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922 
3923 	unsigned char *inq_buff;
3924 	unsigned char *obdr_sig;
3925 	int rc = 0;
3926 
3927 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928 	if (!inq_buff) {
3929 		rc = -ENOMEM;
3930 		goto bail_out;
3931 	}
3932 
3933 	/* Do an inquiry to the device to see what it is. */
3934 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936 		dev_err(&h->pdev->dev,
3937 			"%s: inquiry failed, device will be skipped.\n",
3938 			__func__);
3939 		rc = HPSA_INQUIRY_FAILED;
3940 		goto bail_out;
3941 	}
3942 
3943 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945 
3946 	this_device->devtype = (inq_buff[0] & 0x1f);
3947 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3948 	memcpy(this_device->vendor, &inq_buff[8],
3949 		sizeof(this_device->vendor));
3950 	memcpy(this_device->model, &inq_buff[16],
3951 		sizeof(this_device->model));
3952 	this_device->rev = inq_buff[2];
3953 	memset(this_device->device_id, 0,
3954 		sizeof(this_device->device_id));
3955 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956 		sizeof(this_device->device_id)) < 0) {
3957 		dev_err(&h->pdev->dev,
3958 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3959 			h->ctlr, __func__,
3960 			h->scsi_host->host_no,
3961 			this_device->bus, this_device->target,
3962 			this_device->lun,
3963 			scsi_device_type(this_device->devtype),
3964 			this_device->model);
3965 		rc = HPSA_LV_FAILED;
3966 		goto bail_out;
3967 	}
3968 
3969 	if ((this_device->devtype == TYPE_DISK ||
3970 		this_device->devtype == TYPE_ZBC) &&
3971 		is_logical_dev_addr_mode(scsi3addr)) {
3972 		unsigned char volume_offline;
3973 
3974 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3975 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3976 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3977 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3978 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3979 		    h->legacy_board) {
3980 			/*
3981 			 * Legacy boards might not support volume status
3982 			 */
3983 			dev_info(&h->pdev->dev,
3984 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3985 				 this_device->target, this_device->lun);
3986 			volume_offline = 0;
3987 		}
3988 		this_device->volume_offline = volume_offline;
3989 		if (volume_offline == HPSA_LV_FAILED) {
3990 			rc = HPSA_LV_FAILED;
3991 			dev_err(&h->pdev->dev,
3992 				"%s: LV failed, device will be skipped.\n",
3993 				__func__);
3994 			goto bail_out;
3995 		}
3996 	} else {
3997 		this_device->raid_level = RAID_UNKNOWN;
3998 		this_device->offload_config = 0;
3999 		this_device->offload_enabled = 0;
4000 		this_device->offload_to_be_enabled = 0;
4001 		this_device->hba_ioaccel_enabled = 0;
4002 		this_device->volume_offline = 0;
4003 		this_device->queue_depth = h->nr_cmds;
4004 	}
4005 
4006 	if (this_device->external)
4007 		this_device->queue_depth = EXTERNAL_QD;
4008 
4009 	if (is_OBDR_device) {
4010 		/* See if this is a One-Button-Disaster-Recovery device
4011 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4012 		 */
4013 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4014 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4015 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4016 						OBDR_SIG_LEN) == 0);
4017 	}
4018 	kfree(inq_buff);
4019 	return 0;
4020 
4021 bail_out:
4022 	kfree(inq_buff);
4023 	return rc;
4024 }
4025 
4026 /*
4027  * Helper function to assign bus, target, lun mapping of devices.
4028  * Logical drive target and lun are assigned at this time, but
4029  * physical device lun and target assignment are deferred (assigned
4030  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4031 */
4032 static void figure_bus_target_lun(struct ctlr_info *h,
4033 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4034 {
4035 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4036 
4037 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4038 		/* physical device, target and lun filled in later */
4039 		if (is_hba_lunid(lunaddrbytes)) {
4040 			int bus = HPSA_HBA_BUS;
4041 
4042 			if (!device->rev)
4043 				bus = HPSA_LEGACY_HBA_BUS;
4044 			hpsa_set_bus_target_lun(device,
4045 					bus, 0, lunid & 0x3fff);
4046 		} else
4047 			/* defer target, lun assignment for physical devices */
4048 			hpsa_set_bus_target_lun(device,
4049 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4050 		return;
4051 	}
4052 	/* It's a logical device */
4053 	if (device->external) {
4054 		hpsa_set_bus_target_lun(device,
4055 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4056 			lunid & 0x00ff);
4057 		return;
4058 	}
4059 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4060 				0, lunid & 0x3fff);
4061 }
4062 
4063 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4064 	int i, int nphysicals, int nlocal_logicals)
4065 {
4066 	/* In report logicals, local logicals are listed first,
4067 	* then any externals.
4068 	*/
4069 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4070 
4071 	if (i == raid_ctlr_position)
4072 		return 0;
4073 
4074 	if (i < logicals_start)
4075 		return 0;
4076 
4077 	/* i is in logicals range, but still within local logicals */
4078 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4079 		return 0;
4080 
4081 	return 1; /* it's an external lun */
4082 }
4083 
4084 /*
4085  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4086  * logdev.  The number of luns in physdev and logdev are returned in
4087  * *nphysicals and *nlogicals, respectively.
4088  * Returns 0 on success, -1 otherwise.
4089  */
4090 static int hpsa_gather_lun_info(struct ctlr_info *h,
4091 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4092 	struct ReportLUNdata *logdev, u32 *nlogicals)
4093 {
4094 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4095 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4096 		return -1;
4097 	}
4098 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4099 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4100 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4101 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4102 		*nphysicals = HPSA_MAX_PHYS_LUN;
4103 	}
4104 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4105 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4106 		return -1;
4107 	}
4108 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4109 	/* Reject Logicals in excess of our max capability. */
4110 	if (*nlogicals > HPSA_MAX_LUN) {
4111 		dev_warn(&h->pdev->dev,
4112 			"maximum logical LUNs (%d) exceeded.  "
4113 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4114 			*nlogicals - HPSA_MAX_LUN);
4115 		*nlogicals = HPSA_MAX_LUN;
4116 	}
4117 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4118 		dev_warn(&h->pdev->dev,
4119 			"maximum logical + physical LUNs (%d) exceeded. "
4120 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4121 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4122 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4123 	}
4124 	return 0;
4125 }
4126 
4127 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4128 	int i, int nphysicals, int nlogicals,
4129 	struct ReportExtendedLUNdata *physdev_list,
4130 	struct ReportLUNdata *logdev_list)
4131 {
4132 	/* Helper function, figure out where the LUN ID info is coming from
4133 	 * given index i, lists of physical and logical devices, where in
4134 	 * the list the raid controller is supposed to appear (first or last)
4135 	 */
4136 
4137 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4138 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4139 
4140 	if (i == raid_ctlr_position)
4141 		return RAID_CTLR_LUNID;
4142 
4143 	if (i < logicals_start)
4144 		return &physdev_list->LUN[i -
4145 				(raid_ctlr_position == 0)].lunid[0];
4146 
4147 	if (i < last_device)
4148 		return &logdev_list->LUN[i - nphysicals -
4149 			(raid_ctlr_position == 0)][0];
4150 	BUG();
4151 	return NULL;
4152 }
4153 
4154 /* get physical drive ioaccel handle and queue depth */
4155 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4156 		struct hpsa_scsi_dev_t *dev,
4157 		struct ReportExtendedLUNdata *rlep, int rle_index,
4158 		struct bmic_identify_physical_device *id_phys)
4159 {
4160 	int rc;
4161 	struct ext_report_lun_entry *rle;
4162 
4163 	rle = &rlep->LUN[rle_index];
4164 
4165 	dev->ioaccel_handle = rle->ioaccel_handle;
4166 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4167 		dev->hba_ioaccel_enabled = 1;
4168 	memset(id_phys, 0, sizeof(*id_phys));
4169 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4170 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4171 			sizeof(*id_phys));
4172 	if (!rc)
4173 		/* Reserve space for FW operations */
4174 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4175 #define DRIVE_QUEUE_DEPTH 7
4176 		dev->queue_depth =
4177 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4178 				DRIVE_CMDS_RESERVED_FOR_FW;
4179 	else
4180 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4181 }
4182 
4183 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4184 	struct ReportExtendedLUNdata *rlep, int rle_index,
4185 	struct bmic_identify_physical_device *id_phys)
4186 {
4187 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4188 
4189 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4190 		this_device->hba_ioaccel_enabled = 1;
4191 
4192 	memcpy(&this_device->active_path_index,
4193 		&id_phys->active_path_number,
4194 		sizeof(this_device->active_path_index));
4195 	memcpy(&this_device->path_map,
4196 		&id_phys->redundant_path_present_map,
4197 		sizeof(this_device->path_map));
4198 	memcpy(&this_device->box,
4199 		&id_phys->alternate_paths_phys_box_on_port,
4200 		sizeof(this_device->box));
4201 	memcpy(&this_device->phys_connector,
4202 		&id_phys->alternate_paths_phys_connector,
4203 		sizeof(this_device->phys_connector));
4204 	memcpy(&this_device->bay,
4205 		&id_phys->phys_bay_in_box,
4206 		sizeof(this_device->bay));
4207 }
4208 
4209 /* get number of local logical disks. */
4210 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4211 	struct bmic_identify_controller *id_ctlr,
4212 	u32 *nlocals)
4213 {
4214 	int rc;
4215 
4216 	if (!id_ctlr) {
4217 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4218 			__func__);
4219 		return -ENOMEM;
4220 	}
4221 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4222 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4223 	if (!rc)
4224 		if (id_ctlr->configured_logical_drive_count < 255)
4225 			*nlocals = id_ctlr->configured_logical_drive_count;
4226 		else
4227 			*nlocals = le16_to_cpu(
4228 					id_ctlr->extended_logical_unit_count);
4229 	else
4230 		*nlocals = -1;
4231 	return rc;
4232 }
4233 
4234 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4235 {
4236 	struct bmic_identify_physical_device *id_phys;
4237 	bool is_spare = false;
4238 	int rc;
4239 
4240 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4241 	if (!id_phys)
4242 		return false;
4243 
4244 	rc = hpsa_bmic_id_physical_device(h,
4245 					lunaddrbytes,
4246 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4247 					id_phys, sizeof(*id_phys));
4248 	if (rc == 0)
4249 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4250 
4251 	kfree(id_phys);
4252 	return is_spare;
4253 }
4254 
4255 #define RPL_DEV_FLAG_NON_DISK                           0x1
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4258 
4259 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4260 
4261 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4262 				struct ext_report_lun_entry *rle)
4263 {
4264 	u8 device_flags;
4265 	u8 device_type;
4266 
4267 	if (!MASKED_DEVICE(lunaddrbytes))
4268 		return false;
4269 
4270 	device_flags = rle->device_flags;
4271 	device_type = rle->device_type;
4272 
4273 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4274 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4275 			return false;
4276 		return true;
4277 	}
4278 
4279 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4280 		return false;
4281 
4282 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4283 		return false;
4284 
4285 	/*
4286 	 * Spares may be spun down, we do not want to
4287 	 * do an Inquiry to a RAID set spare drive as
4288 	 * that would have them spun up, that is a
4289 	 * performance hit because I/O to the RAID device
4290 	 * stops while the spin up occurs which can take
4291 	 * over 50 seconds.
4292 	 */
4293 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4294 		return true;
4295 
4296 	return false;
4297 }
4298 
4299 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4300 {
4301 	/* the idea here is we could get notified
4302 	 * that some devices have changed, so we do a report
4303 	 * physical luns and report logical luns cmd, and adjust
4304 	 * our list of devices accordingly.
4305 	 *
4306 	 * The scsi3addr's of devices won't change so long as the
4307 	 * adapter is not reset.  That means we can rescan and
4308 	 * tell which devices we already know about, vs. new
4309 	 * devices, vs.  disappearing devices.
4310 	 */
4311 	struct ReportExtendedLUNdata *physdev_list = NULL;
4312 	struct ReportLUNdata *logdev_list = NULL;
4313 	struct bmic_identify_physical_device *id_phys = NULL;
4314 	struct bmic_identify_controller *id_ctlr = NULL;
4315 	u32 nphysicals = 0;
4316 	u32 nlogicals = 0;
4317 	u32 nlocal_logicals = 0;
4318 	u32 ndev_allocated = 0;
4319 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4320 	int ncurrent = 0;
4321 	int i, n_ext_target_devs, ndevs_to_allocate;
4322 	int raid_ctlr_position;
4323 	bool physical_device;
4324 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4325 
4326 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4327 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4328 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4329 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4330 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4331 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4332 
4333 	if (!currentsd || !physdev_list || !logdev_list ||
4334 		!tmpdevice || !id_phys || !id_ctlr) {
4335 		dev_err(&h->pdev->dev, "out of memory\n");
4336 		goto out;
4337 	}
4338 	memset(lunzerobits, 0, sizeof(lunzerobits));
4339 
4340 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4341 
4342 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4343 			logdev_list, &nlogicals)) {
4344 		h->drv_req_rescan = 1;
4345 		goto out;
4346 	}
4347 
4348 	/* Set number of local logicals (non PTRAID) */
4349 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4350 		dev_warn(&h->pdev->dev,
4351 			"%s: Can't determine number of local logical devices.\n",
4352 			__func__);
4353 	}
4354 
4355 	/* We might see up to the maximum number of logical and physical disks
4356 	 * plus external target devices, and a device for the local RAID
4357 	 * controller.
4358 	 */
4359 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4360 
4361 	hpsa_ext_ctrl_present(h, physdev_list);
4362 
4363 	/* Allocate the per device structures */
4364 	for (i = 0; i < ndevs_to_allocate; i++) {
4365 		if (i >= HPSA_MAX_DEVICES) {
4366 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4367 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4368 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4369 			break;
4370 		}
4371 
4372 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4373 		if (!currentsd[i]) {
4374 			h->drv_req_rescan = 1;
4375 			goto out;
4376 		}
4377 		ndev_allocated++;
4378 	}
4379 
4380 	if (is_scsi_rev_5(h))
4381 		raid_ctlr_position = 0;
4382 	else
4383 		raid_ctlr_position = nphysicals + nlogicals;
4384 
4385 	/* adjust our table of devices */
4386 	n_ext_target_devs = 0;
4387 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4388 		u8 *lunaddrbytes, is_OBDR = 0;
4389 		int rc = 0;
4390 		int phys_dev_index = i - (raid_ctlr_position == 0);
4391 		bool skip_device = false;
4392 
4393 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4394 
4395 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4396 
4397 		/* Figure out where the LUN ID info is coming from */
4398 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4399 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4400 
4401 		/* Determine if this is a lun from an external target array */
4402 		tmpdevice->external =
4403 			figure_external_status(h, raid_ctlr_position, i,
4404 						nphysicals, nlocal_logicals);
4405 
4406 		/*
4407 		 * Skip over some devices such as a spare.
4408 		 */
4409 		if (!tmpdevice->external && physical_device) {
4410 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4411 					&physdev_list->LUN[phys_dev_index]);
4412 			if (skip_device)
4413 				continue;
4414 		}
4415 
4416 		/* Get device type, vendor, model, device id, raid_map */
4417 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4418 							&is_OBDR);
4419 		if (rc == -ENOMEM) {
4420 			dev_warn(&h->pdev->dev,
4421 				"Out of memory, rescan deferred.\n");
4422 			h->drv_req_rescan = 1;
4423 			goto out;
4424 		}
4425 		if (rc) {
4426 			h->drv_req_rescan = 1;
4427 			continue;
4428 		}
4429 
4430 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4431 		this_device = currentsd[ncurrent];
4432 
4433 		*this_device = *tmpdevice;
4434 		this_device->physical_device = physical_device;
4435 
4436 		/*
4437 		 * Expose all devices except for physical devices that
4438 		 * are masked.
4439 		 */
4440 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4441 			this_device->expose_device = 0;
4442 		else
4443 			this_device->expose_device = 1;
4444 
4445 
4446 		/*
4447 		 * Get the SAS address for physical devices that are exposed.
4448 		 */
4449 		if (this_device->physical_device && this_device->expose_device)
4450 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4451 
4452 		switch (this_device->devtype) {
4453 		case TYPE_ROM:
4454 			/* We don't *really* support actual CD-ROM devices,
4455 			 * just "One Button Disaster Recovery" tape drive
4456 			 * which temporarily pretends to be a CD-ROM drive.
4457 			 * So we check that the device is really an OBDR tape
4458 			 * device by checking for "$DR-10" in bytes 43-48 of
4459 			 * the inquiry data.
4460 			 */
4461 			if (is_OBDR)
4462 				ncurrent++;
4463 			break;
4464 		case TYPE_DISK:
4465 		case TYPE_ZBC:
4466 			if (this_device->physical_device) {
4467 				/* The disk is in HBA mode. */
4468 				/* Never use RAID mapper in HBA mode. */
4469 				this_device->offload_enabled = 0;
4470 				hpsa_get_ioaccel_drive_info(h, this_device,
4471 					physdev_list, phys_dev_index, id_phys);
4472 				hpsa_get_path_info(this_device,
4473 					physdev_list, phys_dev_index, id_phys);
4474 			}
4475 			ncurrent++;
4476 			break;
4477 		case TYPE_TAPE:
4478 		case TYPE_MEDIUM_CHANGER:
4479 			ncurrent++;
4480 			break;
4481 		case TYPE_ENCLOSURE:
4482 			if (!this_device->external)
4483 				hpsa_get_enclosure_info(h, lunaddrbytes,
4484 						physdev_list, phys_dev_index,
4485 						this_device);
4486 			ncurrent++;
4487 			break;
4488 		case TYPE_RAID:
4489 			/* Only present the Smartarray HBA as a RAID controller.
4490 			 * If it's a RAID controller other than the HBA itself
4491 			 * (an external RAID controller, MSA500 or similar)
4492 			 * don't present it.
4493 			 */
4494 			if (!is_hba_lunid(lunaddrbytes))
4495 				break;
4496 			ncurrent++;
4497 			break;
4498 		default:
4499 			break;
4500 		}
4501 		if (ncurrent >= HPSA_MAX_DEVICES)
4502 			break;
4503 	}
4504 
4505 	if (h->sas_host == NULL) {
4506 		int rc = 0;
4507 
4508 		rc = hpsa_add_sas_host(h);
4509 		if (rc) {
4510 			dev_warn(&h->pdev->dev,
4511 				"Could not add sas host %d\n", rc);
4512 			goto out;
4513 		}
4514 	}
4515 
4516 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4517 out:
4518 	kfree(tmpdevice);
4519 	for (i = 0; i < ndev_allocated; i++)
4520 		kfree(currentsd[i]);
4521 	kfree(currentsd);
4522 	kfree(physdev_list);
4523 	kfree(logdev_list);
4524 	kfree(id_ctlr);
4525 	kfree(id_phys);
4526 }
4527 
4528 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4529 				   struct scatterlist *sg)
4530 {
4531 	u64 addr64 = (u64) sg_dma_address(sg);
4532 	unsigned int len = sg_dma_len(sg);
4533 
4534 	desc->Addr = cpu_to_le64(addr64);
4535 	desc->Len = cpu_to_le32(len);
4536 	desc->Ext = 0;
4537 }
4538 
4539 /*
4540  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4541  * dma mapping  and fills in the scatter gather entries of the
4542  * hpsa command, cp.
4543  */
4544 static int hpsa_scatter_gather(struct ctlr_info *h,
4545 		struct CommandList *cp,
4546 		struct scsi_cmnd *cmd)
4547 {
4548 	struct scatterlist *sg;
4549 	int use_sg, i, sg_limit, chained, last_sg;
4550 	struct SGDescriptor *curr_sg;
4551 
4552 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4553 
4554 	use_sg = scsi_dma_map(cmd);
4555 	if (use_sg < 0)
4556 		return use_sg;
4557 
4558 	if (!use_sg)
4559 		goto sglist_finished;
4560 
4561 	/*
4562 	 * If the number of entries is greater than the max for a single list,
4563 	 * then we have a chained list; we will set up all but one entry in the
4564 	 * first list (the last entry is saved for link information);
4565 	 * otherwise, we don't have a chained list and we'll set up at each of
4566 	 * the entries in the one list.
4567 	 */
4568 	curr_sg = cp->SG;
4569 	chained = use_sg > h->max_cmd_sg_entries;
4570 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4571 	last_sg = scsi_sg_count(cmd) - 1;
4572 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4573 		hpsa_set_sg_descriptor(curr_sg, sg);
4574 		curr_sg++;
4575 	}
4576 
4577 	if (chained) {
4578 		/*
4579 		 * Continue with the chained list.  Set curr_sg to the chained
4580 		 * list.  Modify the limit to the total count less the entries
4581 		 * we've already set up.  Resume the scan at the list entry
4582 		 * where the previous loop left off.
4583 		 */
4584 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4585 		sg_limit = use_sg - sg_limit;
4586 		for_each_sg(sg, sg, sg_limit, i) {
4587 			hpsa_set_sg_descriptor(curr_sg, sg);
4588 			curr_sg++;
4589 		}
4590 	}
4591 
4592 	/* Back the pointer up to the last entry and mark it as "last". */
4593 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4594 
4595 	if (use_sg + chained > h->maxSG)
4596 		h->maxSG = use_sg + chained;
4597 
4598 	if (chained) {
4599 		cp->Header.SGList = h->max_cmd_sg_entries;
4600 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4601 		if (hpsa_map_sg_chain_block(h, cp)) {
4602 			scsi_dma_unmap(cmd);
4603 			return -1;
4604 		}
4605 		return 0;
4606 	}
4607 
4608 sglist_finished:
4609 
4610 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4611 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4612 	return 0;
4613 }
4614 
4615 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4616 						u8 *cdb, int cdb_len,
4617 						const char *func)
4618 {
4619 	dev_warn(&h->pdev->dev,
4620 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4621 		 func, cdb_len, cdb);
4622 }
4623 
4624 #define IO_ACCEL_INELIGIBLE 1
4625 /* zero-length transfers trigger hardware errors. */
4626 static bool is_zero_length_transfer(u8 *cdb)
4627 {
4628 	u32 block_cnt;
4629 
4630 	/* Block zero-length transfer sizes on certain commands. */
4631 	switch (cdb[0]) {
4632 	case READ_10:
4633 	case WRITE_10:
4634 	case VERIFY:		/* 0x2F */
4635 	case WRITE_VERIFY:	/* 0x2E */
4636 		block_cnt = get_unaligned_be16(&cdb[7]);
4637 		break;
4638 	case READ_12:
4639 	case WRITE_12:
4640 	case VERIFY_12: /* 0xAF */
4641 	case WRITE_VERIFY_12:	/* 0xAE */
4642 		block_cnt = get_unaligned_be32(&cdb[6]);
4643 		break;
4644 	case READ_16:
4645 	case WRITE_16:
4646 	case VERIFY_16:		/* 0x8F */
4647 		block_cnt = get_unaligned_be32(&cdb[10]);
4648 		break;
4649 	default:
4650 		return false;
4651 	}
4652 
4653 	return block_cnt == 0;
4654 }
4655 
4656 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4657 {
4658 	int is_write = 0;
4659 	u32 block;
4660 	u32 block_cnt;
4661 
4662 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4663 	switch (cdb[0]) {
4664 	case WRITE_6:
4665 	case WRITE_12:
4666 		is_write = 1;
4667 		/* fall through */
4668 	case READ_6:
4669 	case READ_12:
4670 		if (*cdb_len == 6) {
4671 			block = (((cdb[1] & 0x1F) << 16) |
4672 				(cdb[2] << 8) |
4673 				cdb[3]);
4674 			block_cnt = cdb[4];
4675 			if (block_cnt == 0)
4676 				block_cnt = 256;
4677 		} else {
4678 			BUG_ON(*cdb_len != 12);
4679 			block = get_unaligned_be32(&cdb[2]);
4680 			block_cnt = get_unaligned_be32(&cdb[6]);
4681 		}
4682 		if (block_cnt > 0xffff)
4683 			return IO_ACCEL_INELIGIBLE;
4684 
4685 		cdb[0] = is_write ? WRITE_10 : READ_10;
4686 		cdb[1] = 0;
4687 		cdb[2] = (u8) (block >> 24);
4688 		cdb[3] = (u8) (block >> 16);
4689 		cdb[4] = (u8) (block >> 8);
4690 		cdb[5] = (u8) (block);
4691 		cdb[6] = 0;
4692 		cdb[7] = (u8) (block_cnt >> 8);
4693 		cdb[8] = (u8) (block_cnt);
4694 		cdb[9] = 0;
4695 		*cdb_len = 10;
4696 		break;
4697 	}
4698 	return 0;
4699 }
4700 
4701 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4702 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4703 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4704 {
4705 	struct scsi_cmnd *cmd = c->scsi_cmd;
4706 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4707 	unsigned int len;
4708 	unsigned int total_len = 0;
4709 	struct scatterlist *sg;
4710 	u64 addr64;
4711 	int use_sg, i;
4712 	struct SGDescriptor *curr_sg;
4713 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4714 
4715 	/* TODO: implement chaining support */
4716 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4717 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4718 		return IO_ACCEL_INELIGIBLE;
4719 	}
4720 
4721 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4722 
4723 	if (is_zero_length_transfer(cdb)) {
4724 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4725 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4726 		return IO_ACCEL_INELIGIBLE;
4727 	}
4728 
4729 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4730 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4731 		return IO_ACCEL_INELIGIBLE;
4732 	}
4733 
4734 	c->cmd_type = CMD_IOACCEL1;
4735 
4736 	/* Adjust the DMA address to point to the accelerated command buffer */
4737 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4738 				(c->cmdindex * sizeof(*cp));
4739 	BUG_ON(c->busaddr & 0x0000007F);
4740 
4741 	use_sg = scsi_dma_map(cmd);
4742 	if (use_sg < 0) {
4743 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4744 		return use_sg;
4745 	}
4746 
4747 	if (use_sg) {
4748 		curr_sg = cp->SG;
4749 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4750 			addr64 = (u64) sg_dma_address(sg);
4751 			len  = sg_dma_len(sg);
4752 			total_len += len;
4753 			curr_sg->Addr = cpu_to_le64(addr64);
4754 			curr_sg->Len = cpu_to_le32(len);
4755 			curr_sg->Ext = cpu_to_le32(0);
4756 			curr_sg++;
4757 		}
4758 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4759 
4760 		switch (cmd->sc_data_direction) {
4761 		case DMA_TO_DEVICE:
4762 			control |= IOACCEL1_CONTROL_DATA_OUT;
4763 			break;
4764 		case DMA_FROM_DEVICE:
4765 			control |= IOACCEL1_CONTROL_DATA_IN;
4766 			break;
4767 		case DMA_NONE:
4768 			control |= IOACCEL1_CONTROL_NODATAXFER;
4769 			break;
4770 		default:
4771 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4772 			cmd->sc_data_direction);
4773 			BUG();
4774 			break;
4775 		}
4776 	} else {
4777 		control |= IOACCEL1_CONTROL_NODATAXFER;
4778 	}
4779 
4780 	c->Header.SGList = use_sg;
4781 	/* Fill out the command structure to submit */
4782 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4783 	cp->transfer_len = cpu_to_le32(total_len);
4784 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4785 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4786 	cp->control = cpu_to_le32(control);
4787 	memcpy(cp->CDB, cdb, cdb_len);
4788 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4789 	/* Tag was already set at init time. */
4790 	enqueue_cmd_and_start_io(h, c);
4791 	return 0;
4792 }
4793 
4794 /*
4795  * Queue a command directly to a device behind the controller using the
4796  * I/O accelerator path.
4797  */
4798 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4799 	struct CommandList *c)
4800 {
4801 	struct scsi_cmnd *cmd = c->scsi_cmd;
4802 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4803 
4804 	if (!dev)
4805 		return -1;
4806 
4807 	c->phys_disk = dev;
4808 
4809 	if (dev->in_reset)
4810 		return -1;
4811 
4812 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4813 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4814 }
4815 
4816 /*
4817  * Set encryption parameters for the ioaccel2 request
4818  */
4819 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4820 	struct CommandList *c, struct io_accel2_cmd *cp)
4821 {
4822 	struct scsi_cmnd *cmd = c->scsi_cmd;
4823 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4824 	struct raid_map_data *map = &dev->raid_map;
4825 	u64 first_block;
4826 
4827 	/* Are we doing encryption on this device */
4828 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4829 		return;
4830 	/* Set the data encryption key index. */
4831 	cp->dekindex = map->dekindex;
4832 
4833 	/* Set the encryption enable flag, encoded into direction field. */
4834 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4835 
4836 	/* Set encryption tweak values based on logical block address
4837 	 * If block size is 512, tweak value is LBA.
4838 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4839 	 */
4840 	switch (cmd->cmnd[0]) {
4841 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4842 	case READ_6:
4843 	case WRITE_6:
4844 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4845 				(cmd->cmnd[2] << 8) |
4846 				cmd->cmnd[3]);
4847 		break;
4848 	case WRITE_10:
4849 	case READ_10:
4850 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4851 	case WRITE_12:
4852 	case READ_12:
4853 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4854 		break;
4855 	case WRITE_16:
4856 	case READ_16:
4857 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4858 		break;
4859 	default:
4860 		dev_err(&h->pdev->dev,
4861 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4862 			__func__, cmd->cmnd[0]);
4863 		BUG();
4864 		break;
4865 	}
4866 
4867 	if (le32_to_cpu(map->volume_blk_size) != 512)
4868 		first_block = first_block *
4869 				le32_to_cpu(map->volume_blk_size)/512;
4870 
4871 	cp->tweak_lower = cpu_to_le32(first_block);
4872 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4873 }
4874 
4875 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4876 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4877 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4878 {
4879 	struct scsi_cmnd *cmd = c->scsi_cmd;
4880 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4881 	struct ioaccel2_sg_element *curr_sg;
4882 	int use_sg, i;
4883 	struct scatterlist *sg;
4884 	u64 addr64;
4885 	u32 len;
4886 	u32 total_len = 0;
4887 
4888 	if (!cmd->device)
4889 		return -1;
4890 
4891 	if (!cmd->device->hostdata)
4892 		return -1;
4893 
4894 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4895 
4896 	if (is_zero_length_transfer(cdb)) {
4897 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4898 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4899 		return IO_ACCEL_INELIGIBLE;
4900 	}
4901 
4902 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4903 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4904 		return IO_ACCEL_INELIGIBLE;
4905 	}
4906 
4907 	c->cmd_type = CMD_IOACCEL2;
4908 	/* Adjust the DMA address to point to the accelerated command buffer */
4909 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4910 				(c->cmdindex * sizeof(*cp));
4911 	BUG_ON(c->busaddr & 0x0000007F);
4912 
4913 	memset(cp, 0, sizeof(*cp));
4914 	cp->IU_type = IOACCEL2_IU_TYPE;
4915 
4916 	use_sg = scsi_dma_map(cmd);
4917 	if (use_sg < 0) {
4918 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4919 		return use_sg;
4920 	}
4921 
4922 	if (use_sg) {
4923 		curr_sg = cp->sg;
4924 		if (use_sg > h->ioaccel_maxsg) {
4925 			addr64 = le64_to_cpu(
4926 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4927 			curr_sg->address = cpu_to_le64(addr64);
4928 			curr_sg->length = 0;
4929 			curr_sg->reserved[0] = 0;
4930 			curr_sg->reserved[1] = 0;
4931 			curr_sg->reserved[2] = 0;
4932 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4933 
4934 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4935 		}
4936 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4937 			addr64 = (u64) sg_dma_address(sg);
4938 			len  = sg_dma_len(sg);
4939 			total_len += len;
4940 			curr_sg->address = cpu_to_le64(addr64);
4941 			curr_sg->length = cpu_to_le32(len);
4942 			curr_sg->reserved[0] = 0;
4943 			curr_sg->reserved[1] = 0;
4944 			curr_sg->reserved[2] = 0;
4945 			curr_sg->chain_indicator = 0;
4946 			curr_sg++;
4947 		}
4948 
4949 		/*
4950 		 * Set the last s/g element bit
4951 		 */
4952 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4953 
4954 		switch (cmd->sc_data_direction) {
4955 		case DMA_TO_DEVICE:
4956 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4957 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4958 			break;
4959 		case DMA_FROM_DEVICE:
4960 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4961 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4962 			break;
4963 		case DMA_NONE:
4964 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4966 			break;
4967 		default:
4968 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4969 				cmd->sc_data_direction);
4970 			BUG();
4971 			break;
4972 		}
4973 	} else {
4974 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4976 	}
4977 
4978 	/* Set encryption parameters, if necessary */
4979 	set_encrypt_ioaccel2(h, c, cp);
4980 
4981 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4982 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4983 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4984 
4985 	cp->data_len = cpu_to_le32(total_len);
4986 	cp->err_ptr = cpu_to_le64(c->busaddr +
4987 			offsetof(struct io_accel2_cmd, error_data));
4988 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4989 
4990 	/* fill in sg elements */
4991 	if (use_sg > h->ioaccel_maxsg) {
4992 		cp->sg_count = 1;
4993 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4994 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4995 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4996 			scsi_dma_unmap(cmd);
4997 			return -1;
4998 		}
4999 	} else
5000 		cp->sg_count = (u8) use_sg;
5001 
5002 	if (phys_disk->in_reset) {
5003 		cmd->result = DID_RESET << 16;
5004 		return -1;
5005 	}
5006 
5007 	enqueue_cmd_and_start_io(h, c);
5008 	return 0;
5009 }
5010 
5011 /*
5012  * Queue a command to the correct I/O accelerator path.
5013  */
5014 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5015 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5016 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5017 {
5018 	if (!c->scsi_cmd->device)
5019 		return -1;
5020 
5021 	if (!c->scsi_cmd->device->hostdata)
5022 		return -1;
5023 
5024 	if (phys_disk->in_reset)
5025 		return -1;
5026 
5027 	/* Try to honor the device's queue depth */
5028 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5029 					phys_disk->queue_depth) {
5030 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5031 		return IO_ACCEL_INELIGIBLE;
5032 	}
5033 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5034 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5035 						cdb, cdb_len, scsi3addr,
5036 						phys_disk);
5037 	else
5038 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5039 						cdb, cdb_len, scsi3addr,
5040 						phys_disk);
5041 }
5042 
5043 static void raid_map_helper(struct raid_map_data *map,
5044 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5045 {
5046 	if (offload_to_mirror == 0)  {
5047 		/* use physical disk in the first mirrored group. */
5048 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5049 		return;
5050 	}
5051 	do {
5052 		/* determine mirror group that *map_index indicates */
5053 		*current_group = *map_index /
5054 			le16_to_cpu(map->data_disks_per_row);
5055 		if (offload_to_mirror == *current_group)
5056 			continue;
5057 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5058 			/* select map index from next group */
5059 			*map_index += le16_to_cpu(map->data_disks_per_row);
5060 			(*current_group)++;
5061 		} else {
5062 			/* select map index from first group */
5063 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5064 			*current_group = 0;
5065 		}
5066 	} while (offload_to_mirror != *current_group);
5067 }
5068 
5069 /*
5070  * Attempt to perform offload RAID mapping for a logical volume I/O.
5071  */
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5073 	struct CommandList *c)
5074 {
5075 	struct scsi_cmnd *cmd = c->scsi_cmd;
5076 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5077 	struct raid_map_data *map = &dev->raid_map;
5078 	struct raid_map_disk_data *dd = &map->data[0];
5079 	int is_write = 0;
5080 	u32 map_index;
5081 	u64 first_block, last_block;
5082 	u32 block_cnt;
5083 	u32 blocks_per_row;
5084 	u64 first_row, last_row;
5085 	u32 first_row_offset, last_row_offset;
5086 	u32 first_column, last_column;
5087 	u64 r0_first_row, r0_last_row;
5088 	u32 r5or6_blocks_per_row;
5089 	u64 r5or6_first_row, r5or6_last_row;
5090 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5091 	u32 r5or6_first_column, r5or6_last_column;
5092 	u32 total_disks_per_row;
5093 	u32 stripesize;
5094 	u32 first_group, last_group, current_group;
5095 	u32 map_row;
5096 	u32 disk_handle;
5097 	u64 disk_block;
5098 	u32 disk_block_cnt;
5099 	u8 cdb[16];
5100 	u8 cdb_len;
5101 	u16 strip_size;
5102 #if BITS_PER_LONG == 32
5103 	u64 tmpdiv;
5104 #endif
5105 	int offload_to_mirror;
5106 
5107 	if (!dev)
5108 		return -1;
5109 
5110 	if (dev->in_reset)
5111 		return -1;
5112 
5113 	/* check for valid opcode, get LBA and block count */
5114 	switch (cmd->cmnd[0]) {
5115 	case WRITE_6:
5116 		is_write = 1;
5117 		/* fall through */
5118 	case READ_6:
5119 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5120 				(cmd->cmnd[2] << 8) |
5121 				cmd->cmnd[3]);
5122 		block_cnt = cmd->cmnd[4];
5123 		if (block_cnt == 0)
5124 			block_cnt = 256;
5125 		break;
5126 	case WRITE_10:
5127 		is_write = 1;
5128 		/* fall through */
5129 	case READ_10:
5130 		first_block =
5131 			(((u64) cmd->cmnd[2]) << 24) |
5132 			(((u64) cmd->cmnd[3]) << 16) |
5133 			(((u64) cmd->cmnd[4]) << 8) |
5134 			cmd->cmnd[5];
5135 		block_cnt =
5136 			(((u32) cmd->cmnd[7]) << 8) |
5137 			cmd->cmnd[8];
5138 		break;
5139 	case WRITE_12:
5140 		is_write = 1;
5141 		/* fall through */
5142 	case READ_12:
5143 		first_block =
5144 			(((u64) cmd->cmnd[2]) << 24) |
5145 			(((u64) cmd->cmnd[3]) << 16) |
5146 			(((u64) cmd->cmnd[4]) << 8) |
5147 			cmd->cmnd[5];
5148 		block_cnt =
5149 			(((u32) cmd->cmnd[6]) << 24) |
5150 			(((u32) cmd->cmnd[7]) << 16) |
5151 			(((u32) cmd->cmnd[8]) << 8) |
5152 		cmd->cmnd[9];
5153 		break;
5154 	case WRITE_16:
5155 		is_write = 1;
5156 		/* fall through */
5157 	case READ_16:
5158 		first_block =
5159 			(((u64) cmd->cmnd[2]) << 56) |
5160 			(((u64) cmd->cmnd[3]) << 48) |
5161 			(((u64) cmd->cmnd[4]) << 40) |
5162 			(((u64) cmd->cmnd[5]) << 32) |
5163 			(((u64) cmd->cmnd[6]) << 24) |
5164 			(((u64) cmd->cmnd[7]) << 16) |
5165 			(((u64) cmd->cmnd[8]) << 8) |
5166 			cmd->cmnd[9];
5167 		block_cnt =
5168 			(((u32) cmd->cmnd[10]) << 24) |
5169 			(((u32) cmd->cmnd[11]) << 16) |
5170 			(((u32) cmd->cmnd[12]) << 8) |
5171 			cmd->cmnd[13];
5172 		break;
5173 	default:
5174 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5175 	}
5176 	last_block = first_block + block_cnt - 1;
5177 
5178 	/* check for write to non-RAID-0 */
5179 	if (is_write && dev->raid_level != 0)
5180 		return IO_ACCEL_INELIGIBLE;
5181 
5182 	/* check for invalid block or wraparound */
5183 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5184 		last_block < first_block)
5185 		return IO_ACCEL_INELIGIBLE;
5186 
5187 	/* calculate stripe information for the request */
5188 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5189 				le16_to_cpu(map->strip_size);
5190 	strip_size = le16_to_cpu(map->strip_size);
5191 #if BITS_PER_LONG == 32
5192 	tmpdiv = first_block;
5193 	(void) do_div(tmpdiv, blocks_per_row);
5194 	first_row = tmpdiv;
5195 	tmpdiv = last_block;
5196 	(void) do_div(tmpdiv, blocks_per_row);
5197 	last_row = tmpdiv;
5198 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5199 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5200 	tmpdiv = first_row_offset;
5201 	(void) do_div(tmpdiv, strip_size);
5202 	first_column = tmpdiv;
5203 	tmpdiv = last_row_offset;
5204 	(void) do_div(tmpdiv, strip_size);
5205 	last_column = tmpdiv;
5206 #else
5207 	first_row = first_block / blocks_per_row;
5208 	last_row = last_block / blocks_per_row;
5209 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5210 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5211 	first_column = first_row_offset / strip_size;
5212 	last_column = last_row_offset / strip_size;
5213 #endif
5214 
5215 	/* if this isn't a single row/column then give to the controller */
5216 	if ((first_row != last_row) || (first_column != last_column))
5217 		return IO_ACCEL_INELIGIBLE;
5218 
5219 	/* proceeding with driver mapping */
5220 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5221 				le16_to_cpu(map->metadata_disks_per_row);
5222 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5223 				le16_to_cpu(map->row_cnt);
5224 	map_index = (map_row * total_disks_per_row) + first_column;
5225 
5226 	switch (dev->raid_level) {
5227 	case HPSA_RAID_0:
5228 		break; /* nothing special to do */
5229 	case HPSA_RAID_1:
5230 		/* Handles load balance across RAID 1 members.
5231 		 * (2-drive R1 and R10 with even # of drives.)
5232 		 * Appropriate for SSDs, not optimal for HDDs
5233 		 */
5234 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5235 		if (dev->offload_to_mirror)
5236 			map_index += le16_to_cpu(map->data_disks_per_row);
5237 		dev->offload_to_mirror = !dev->offload_to_mirror;
5238 		break;
5239 	case HPSA_RAID_ADM:
5240 		/* Handles N-way mirrors  (R1-ADM)
5241 		 * and R10 with # of drives divisible by 3.)
5242 		 */
5243 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5244 
5245 		offload_to_mirror = dev->offload_to_mirror;
5246 		raid_map_helper(map, offload_to_mirror,
5247 				&map_index, &current_group);
5248 		/* set mirror group to use next time */
5249 		offload_to_mirror =
5250 			(offload_to_mirror >=
5251 			le16_to_cpu(map->layout_map_count) - 1)
5252 			? 0 : offload_to_mirror + 1;
5253 		dev->offload_to_mirror = offload_to_mirror;
5254 		/* Avoid direct use of dev->offload_to_mirror within this
5255 		 * function since multiple threads might simultaneously
5256 		 * increment it beyond the range of dev->layout_map_count -1.
5257 		 */
5258 		break;
5259 	case HPSA_RAID_5:
5260 	case HPSA_RAID_6:
5261 		if (le16_to_cpu(map->layout_map_count) <= 1)
5262 			break;
5263 
5264 		/* Verify first and last block are in same RAID group */
5265 		r5or6_blocks_per_row =
5266 			le16_to_cpu(map->strip_size) *
5267 			le16_to_cpu(map->data_disks_per_row);
5268 		BUG_ON(r5or6_blocks_per_row == 0);
5269 		stripesize = r5or6_blocks_per_row *
5270 			le16_to_cpu(map->layout_map_count);
5271 #if BITS_PER_LONG == 32
5272 		tmpdiv = first_block;
5273 		first_group = do_div(tmpdiv, stripesize);
5274 		tmpdiv = first_group;
5275 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5276 		first_group = tmpdiv;
5277 		tmpdiv = last_block;
5278 		last_group = do_div(tmpdiv, stripesize);
5279 		tmpdiv = last_group;
5280 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5281 		last_group = tmpdiv;
5282 #else
5283 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5284 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5285 #endif
5286 		if (first_group != last_group)
5287 			return IO_ACCEL_INELIGIBLE;
5288 
5289 		/* Verify request is in a single row of RAID 5/6 */
5290 #if BITS_PER_LONG == 32
5291 		tmpdiv = first_block;
5292 		(void) do_div(tmpdiv, stripesize);
5293 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5294 		tmpdiv = last_block;
5295 		(void) do_div(tmpdiv, stripesize);
5296 		r5or6_last_row = r0_last_row = tmpdiv;
5297 #else
5298 		first_row = r5or6_first_row = r0_first_row =
5299 						first_block / stripesize;
5300 		r5or6_last_row = r0_last_row = last_block / stripesize;
5301 #endif
5302 		if (r5or6_first_row != r5or6_last_row)
5303 			return IO_ACCEL_INELIGIBLE;
5304 
5305 
5306 		/* Verify request is in a single column */
5307 #if BITS_PER_LONG == 32
5308 		tmpdiv = first_block;
5309 		first_row_offset = do_div(tmpdiv, stripesize);
5310 		tmpdiv = first_row_offset;
5311 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5312 		r5or6_first_row_offset = first_row_offset;
5313 		tmpdiv = last_block;
5314 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5315 		tmpdiv = r5or6_last_row_offset;
5316 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5317 		tmpdiv = r5or6_first_row_offset;
5318 		(void) do_div(tmpdiv, map->strip_size);
5319 		first_column = r5or6_first_column = tmpdiv;
5320 		tmpdiv = r5or6_last_row_offset;
5321 		(void) do_div(tmpdiv, map->strip_size);
5322 		r5or6_last_column = tmpdiv;
5323 #else
5324 		first_row_offset = r5or6_first_row_offset =
5325 			(u32)((first_block % stripesize) %
5326 						r5or6_blocks_per_row);
5327 
5328 		r5or6_last_row_offset =
5329 			(u32)((last_block % stripesize) %
5330 						r5or6_blocks_per_row);
5331 
5332 		first_column = r5or6_first_column =
5333 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5334 		r5or6_last_column =
5335 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5336 #endif
5337 		if (r5or6_first_column != r5or6_last_column)
5338 			return IO_ACCEL_INELIGIBLE;
5339 
5340 		/* Request is eligible */
5341 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5342 			le16_to_cpu(map->row_cnt);
5343 
5344 		map_index = (first_group *
5345 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5346 			(map_row * total_disks_per_row) + first_column;
5347 		break;
5348 	default:
5349 		return IO_ACCEL_INELIGIBLE;
5350 	}
5351 
5352 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5353 		return IO_ACCEL_INELIGIBLE;
5354 
5355 	c->phys_disk = dev->phys_disk[map_index];
5356 	if (!c->phys_disk)
5357 		return IO_ACCEL_INELIGIBLE;
5358 
5359 	disk_handle = dd[map_index].ioaccel_handle;
5360 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5361 			first_row * le16_to_cpu(map->strip_size) +
5362 			(first_row_offset - first_column *
5363 			le16_to_cpu(map->strip_size));
5364 	disk_block_cnt = block_cnt;
5365 
5366 	/* handle differing logical/physical block sizes */
5367 	if (map->phys_blk_shift) {
5368 		disk_block <<= map->phys_blk_shift;
5369 		disk_block_cnt <<= map->phys_blk_shift;
5370 	}
5371 	BUG_ON(disk_block_cnt > 0xffff);
5372 
5373 	/* build the new CDB for the physical disk I/O */
5374 	if (disk_block > 0xffffffff) {
5375 		cdb[0] = is_write ? WRITE_16 : READ_16;
5376 		cdb[1] = 0;
5377 		cdb[2] = (u8) (disk_block >> 56);
5378 		cdb[3] = (u8) (disk_block >> 48);
5379 		cdb[4] = (u8) (disk_block >> 40);
5380 		cdb[5] = (u8) (disk_block >> 32);
5381 		cdb[6] = (u8) (disk_block >> 24);
5382 		cdb[7] = (u8) (disk_block >> 16);
5383 		cdb[8] = (u8) (disk_block >> 8);
5384 		cdb[9] = (u8) (disk_block);
5385 		cdb[10] = (u8) (disk_block_cnt >> 24);
5386 		cdb[11] = (u8) (disk_block_cnt >> 16);
5387 		cdb[12] = (u8) (disk_block_cnt >> 8);
5388 		cdb[13] = (u8) (disk_block_cnt);
5389 		cdb[14] = 0;
5390 		cdb[15] = 0;
5391 		cdb_len = 16;
5392 	} else {
5393 		cdb[0] = is_write ? WRITE_10 : READ_10;
5394 		cdb[1] = 0;
5395 		cdb[2] = (u8) (disk_block >> 24);
5396 		cdb[3] = (u8) (disk_block >> 16);
5397 		cdb[4] = (u8) (disk_block >> 8);
5398 		cdb[5] = (u8) (disk_block);
5399 		cdb[6] = 0;
5400 		cdb[7] = (u8) (disk_block_cnt >> 8);
5401 		cdb[8] = (u8) (disk_block_cnt);
5402 		cdb[9] = 0;
5403 		cdb_len = 10;
5404 	}
5405 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5406 						dev->scsi3addr,
5407 						dev->phys_disk[map_index]);
5408 }
5409 
5410 /*
5411  * Submit commands down the "normal" RAID stack path
5412  * All callers to hpsa_ciss_submit must check lockup_detected
5413  * beforehand, before (opt.) and after calling cmd_alloc
5414  */
5415 static int hpsa_ciss_submit(struct ctlr_info *h,
5416 	struct CommandList *c, struct scsi_cmnd *cmd,
5417 	struct hpsa_scsi_dev_t *dev)
5418 {
5419 	cmd->host_scribble = (unsigned char *) c;
5420 	c->cmd_type = CMD_SCSI;
5421 	c->scsi_cmd = cmd;
5422 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5423 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5424 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5425 
5426 	/* Fill in the request block... */
5427 
5428 	c->Request.Timeout = 0;
5429 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5430 	c->Request.CDBLen = cmd->cmd_len;
5431 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5432 	switch (cmd->sc_data_direction) {
5433 	case DMA_TO_DEVICE:
5434 		c->Request.type_attr_dir =
5435 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5436 		break;
5437 	case DMA_FROM_DEVICE:
5438 		c->Request.type_attr_dir =
5439 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5440 		break;
5441 	case DMA_NONE:
5442 		c->Request.type_attr_dir =
5443 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5444 		break;
5445 	case DMA_BIDIRECTIONAL:
5446 		/* This can happen if a buggy application does a scsi passthru
5447 		 * and sets both inlen and outlen to non-zero. ( see
5448 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5449 		 */
5450 
5451 		c->Request.type_attr_dir =
5452 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5453 		/* This is technically wrong, and hpsa controllers should
5454 		 * reject it with CMD_INVALID, which is the most correct
5455 		 * response, but non-fibre backends appear to let it
5456 		 * slide by, and give the same results as if this field
5457 		 * were set correctly.  Either way is acceptable for
5458 		 * our purposes here.
5459 		 */
5460 
5461 		break;
5462 
5463 	default:
5464 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5465 			cmd->sc_data_direction);
5466 		BUG();
5467 		break;
5468 	}
5469 
5470 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5471 		hpsa_cmd_resolve_and_free(h, c);
5472 		return SCSI_MLQUEUE_HOST_BUSY;
5473 	}
5474 
5475 	if (dev->in_reset) {
5476 		hpsa_cmd_resolve_and_free(h, c);
5477 		return SCSI_MLQUEUE_HOST_BUSY;
5478 	}
5479 
5480 	c->device = dev;
5481 
5482 	enqueue_cmd_and_start_io(h, c);
5483 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5484 	return 0;
5485 }
5486 
5487 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5488 				struct CommandList *c)
5489 {
5490 	dma_addr_t cmd_dma_handle, err_dma_handle;
5491 
5492 	/* Zero out all of commandlist except the last field, refcount */
5493 	memset(c, 0, offsetof(struct CommandList, refcount));
5494 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5495 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5496 	c->err_info = h->errinfo_pool + index;
5497 	memset(c->err_info, 0, sizeof(*c->err_info));
5498 	err_dma_handle = h->errinfo_pool_dhandle
5499 	    + index * sizeof(*c->err_info);
5500 	c->cmdindex = index;
5501 	c->busaddr = (u32) cmd_dma_handle;
5502 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5503 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5504 	c->h = h;
5505 	c->scsi_cmd = SCSI_CMD_IDLE;
5506 }
5507 
5508 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5509 {
5510 	int i;
5511 
5512 	for (i = 0; i < h->nr_cmds; i++) {
5513 		struct CommandList *c = h->cmd_pool + i;
5514 
5515 		hpsa_cmd_init(h, i, c);
5516 		atomic_set(&c->refcount, 0);
5517 	}
5518 }
5519 
5520 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5521 				struct CommandList *c)
5522 {
5523 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5524 
5525 	BUG_ON(c->cmdindex != index);
5526 
5527 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5528 	memset(c->err_info, 0, sizeof(*c->err_info));
5529 	c->busaddr = (u32) cmd_dma_handle;
5530 }
5531 
5532 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5533 		struct CommandList *c, struct scsi_cmnd *cmd)
5534 {
5535 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5536 	int rc = IO_ACCEL_INELIGIBLE;
5537 
5538 	if (!dev)
5539 		return SCSI_MLQUEUE_HOST_BUSY;
5540 
5541 	if (dev->in_reset)
5542 		return SCSI_MLQUEUE_HOST_BUSY;
5543 
5544 	if (hpsa_simple_mode)
5545 		return IO_ACCEL_INELIGIBLE;
5546 
5547 	cmd->host_scribble = (unsigned char *) c;
5548 
5549 	if (dev->offload_enabled) {
5550 		hpsa_cmd_init(h, c->cmdindex, c);
5551 		c->cmd_type = CMD_SCSI;
5552 		c->scsi_cmd = cmd;
5553 		c->device = dev;
5554 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5555 		if (rc < 0)     /* scsi_dma_map failed. */
5556 			rc = SCSI_MLQUEUE_HOST_BUSY;
5557 	} else if (dev->hba_ioaccel_enabled) {
5558 		hpsa_cmd_init(h, c->cmdindex, c);
5559 		c->cmd_type = CMD_SCSI;
5560 		c->scsi_cmd = cmd;
5561 		c->device = dev;
5562 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5563 		if (rc < 0)     /* scsi_dma_map failed. */
5564 			rc = SCSI_MLQUEUE_HOST_BUSY;
5565 	}
5566 	return rc;
5567 }
5568 
5569 static void hpsa_command_resubmit_worker(struct work_struct *work)
5570 {
5571 	struct scsi_cmnd *cmd;
5572 	struct hpsa_scsi_dev_t *dev;
5573 	struct CommandList *c = container_of(work, struct CommandList, work);
5574 
5575 	cmd = c->scsi_cmd;
5576 	dev = cmd->device->hostdata;
5577 	if (!dev) {
5578 		cmd->result = DID_NO_CONNECT << 16;
5579 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5580 	}
5581 
5582 	if (dev->in_reset) {
5583 		cmd->result = DID_RESET << 16;
5584 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5585 	}
5586 
5587 	if (c->cmd_type == CMD_IOACCEL2) {
5588 		struct ctlr_info *h = c->h;
5589 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5590 		int rc;
5591 
5592 		if (c2->error_data.serv_response ==
5593 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5594 			rc = hpsa_ioaccel_submit(h, c, cmd);
5595 			if (rc == 0)
5596 				return;
5597 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5598 				/*
5599 				 * If we get here, it means dma mapping failed.
5600 				 * Try again via scsi mid layer, which will
5601 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5602 				 */
5603 				cmd->result = DID_IMM_RETRY << 16;
5604 				return hpsa_cmd_free_and_done(h, c, cmd);
5605 			}
5606 			/* else, fall thru and resubmit down CISS path */
5607 		}
5608 	}
5609 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5610 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5611 		/*
5612 		 * If we get here, it means dma mapping failed. Try
5613 		 * again via scsi mid layer, which will then get
5614 		 * SCSI_MLQUEUE_HOST_BUSY.
5615 		 *
5616 		 * hpsa_ciss_submit will have already freed c
5617 		 * if it encountered a dma mapping failure.
5618 		 */
5619 		cmd->result = DID_IMM_RETRY << 16;
5620 		cmd->scsi_done(cmd);
5621 	}
5622 }
5623 
5624 /* Running in struct Scsi_Host->host_lock less mode */
5625 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5626 {
5627 	struct ctlr_info *h;
5628 	struct hpsa_scsi_dev_t *dev;
5629 	struct CommandList *c;
5630 	int rc = 0;
5631 
5632 	/* Get the ptr to our adapter structure out of cmd->host. */
5633 	h = sdev_to_hba(cmd->device);
5634 
5635 	BUG_ON(cmd->request->tag < 0);
5636 
5637 	dev = cmd->device->hostdata;
5638 	if (!dev) {
5639 		cmd->result = DID_NO_CONNECT << 16;
5640 		cmd->scsi_done(cmd);
5641 		return 0;
5642 	}
5643 
5644 	if (dev->removed) {
5645 		cmd->result = DID_NO_CONNECT << 16;
5646 		cmd->scsi_done(cmd);
5647 		return 0;
5648 	}
5649 
5650 	if (unlikely(lockup_detected(h))) {
5651 		cmd->result = DID_NO_CONNECT << 16;
5652 		cmd->scsi_done(cmd);
5653 		return 0;
5654 	}
5655 
5656 	if (dev->in_reset)
5657 		return SCSI_MLQUEUE_DEVICE_BUSY;
5658 
5659 	c = cmd_tagged_alloc(h, cmd);
5660 	if (c == NULL)
5661 		return SCSI_MLQUEUE_DEVICE_BUSY;
5662 
5663 	/*
5664 	 * This is necessary because the SML doesn't zero out this field during
5665 	 * error recovery.
5666 	 */
5667 	cmd->result = 0;
5668 
5669 	/*
5670 	 * Call alternate submit routine for I/O accelerated commands.
5671 	 * Retries always go down the normal I/O path.
5672 	 */
5673 	if (likely(cmd->retries == 0 &&
5674 			!blk_rq_is_passthrough(cmd->request) &&
5675 			h->acciopath_status)) {
5676 		rc = hpsa_ioaccel_submit(h, c, cmd);
5677 		if (rc == 0)
5678 			return 0;
5679 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5680 			hpsa_cmd_resolve_and_free(h, c);
5681 			return SCSI_MLQUEUE_HOST_BUSY;
5682 		}
5683 	}
5684 	return hpsa_ciss_submit(h, c, cmd, dev);
5685 }
5686 
5687 static void hpsa_scan_complete(struct ctlr_info *h)
5688 {
5689 	unsigned long flags;
5690 
5691 	spin_lock_irqsave(&h->scan_lock, flags);
5692 	h->scan_finished = 1;
5693 	wake_up(&h->scan_wait_queue);
5694 	spin_unlock_irqrestore(&h->scan_lock, flags);
5695 }
5696 
5697 static void hpsa_scan_start(struct Scsi_Host *sh)
5698 {
5699 	struct ctlr_info *h = shost_to_hba(sh);
5700 	unsigned long flags;
5701 
5702 	/*
5703 	 * Don't let rescans be initiated on a controller known to be locked
5704 	 * up.  If the controller locks up *during* a rescan, that thread is
5705 	 * probably hosed, but at least we can prevent new rescan threads from
5706 	 * piling up on a locked up controller.
5707 	 */
5708 	if (unlikely(lockup_detected(h)))
5709 		return hpsa_scan_complete(h);
5710 
5711 	/*
5712 	 * If a scan is already waiting to run, no need to add another
5713 	 */
5714 	spin_lock_irqsave(&h->scan_lock, flags);
5715 	if (h->scan_waiting) {
5716 		spin_unlock_irqrestore(&h->scan_lock, flags);
5717 		return;
5718 	}
5719 
5720 	spin_unlock_irqrestore(&h->scan_lock, flags);
5721 
5722 	/* wait until any scan already in progress is finished. */
5723 	while (1) {
5724 		spin_lock_irqsave(&h->scan_lock, flags);
5725 		if (h->scan_finished)
5726 			break;
5727 		h->scan_waiting = 1;
5728 		spin_unlock_irqrestore(&h->scan_lock, flags);
5729 		wait_event(h->scan_wait_queue, h->scan_finished);
5730 		/* Note: We don't need to worry about a race between this
5731 		 * thread and driver unload because the midlayer will
5732 		 * have incremented the reference count, so unload won't
5733 		 * happen if we're in here.
5734 		 */
5735 	}
5736 	h->scan_finished = 0; /* mark scan as in progress */
5737 	h->scan_waiting = 0;
5738 	spin_unlock_irqrestore(&h->scan_lock, flags);
5739 
5740 	if (unlikely(lockup_detected(h)))
5741 		return hpsa_scan_complete(h);
5742 
5743 	/*
5744 	 * Do the scan after a reset completion
5745 	 */
5746 	spin_lock_irqsave(&h->reset_lock, flags);
5747 	if (h->reset_in_progress) {
5748 		h->drv_req_rescan = 1;
5749 		spin_unlock_irqrestore(&h->reset_lock, flags);
5750 		hpsa_scan_complete(h);
5751 		return;
5752 	}
5753 	spin_unlock_irqrestore(&h->reset_lock, flags);
5754 
5755 	hpsa_update_scsi_devices(h);
5756 
5757 	hpsa_scan_complete(h);
5758 }
5759 
5760 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5761 {
5762 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5763 
5764 	if (!logical_drive)
5765 		return -ENODEV;
5766 
5767 	if (qdepth < 1)
5768 		qdepth = 1;
5769 	else if (qdepth > logical_drive->queue_depth)
5770 		qdepth = logical_drive->queue_depth;
5771 
5772 	return scsi_change_queue_depth(sdev, qdepth);
5773 }
5774 
5775 static int hpsa_scan_finished(struct Scsi_Host *sh,
5776 	unsigned long elapsed_time)
5777 {
5778 	struct ctlr_info *h = shost_to_hba(sh);
5779 	unsigned long flags;
5780 	int finished;
5781 
5782 	spin_lock_irqsave(&h->scan_lock, flags);
5783 	finished = h->scan_finished;
5784 	spin_unlock_irqrestore(&h->scan_lock, flags);
5785 	return finished;
5786 }
5787 
5788 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5789 {
5790 	struct Scsi_Host *sh;
5791 
5792 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5793 	if (sh == NULL) {
5794 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5795 		return -ENOMEM;
5796 	}
5797 
5798 	sh->io_port = 0;
5799 	sh->n_io_port = 0;
5800 	sh->this_id = -1;
5801 	sh->max_channel = 3;
5802 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5803 	sh->max_lun = HPSA_MAX_LUN;
5804 	sh->max_id = HPSA_MAX_LUN;
5805 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5806 	sh->cmd_per_lun = sh->can_queue;
5807 	sh->sg_tablesize = h->maxsgentries;
5808 	sh->transportt = hpsa_sas_transport_template;
5809 	sh->hostdata[0] = (unsigned long) h;
5810 	sh->irq = pci_irq_vector(h->pdev, 0);
5811 	sh->unique_id = sh->irq;
5812 
5813 	h->scsi_host = sh;
5814 	return 0;
5815 }
5816 
5817 static int hpsa_scsi_add_host(struct ctlr_info *h)
5818 {
5819 	int rv;
5820 
5821 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5822 	if (rv) {
5823 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5824 		return rv;
5825 	}
5826 	scsi_scan_host(h->scsi_host);
5827 	return 0;
5828 }
5829 
5830 /*
5831  * The block layer has already gone to the trouble of picking out a unique,
5832  * small-integer tag for this request.  We use an offset from that value as
5833  * an index to select our command block.  (The offset allows us to reserve the
5834  * low-numbered entries for our own uses.)
5835  */
5836 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5837 {
5838 	int idx = scmd->request->tag;
5839 
5840 	if (idx < 0)
5841 		return idx;
5842 
5843 	/* Offset to leave space for internal cmds. */
5844 	return idx += HPSA_NRESERVED_CMDS;
5845 }
5846 
5847 /*
5848  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5849  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5850  */
5851 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5852 				struct CommandList *c, unsigned char lunaddr[],
5853 				int reply_queue)
5854 {
5855 	int rc;
5856 
5857 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5858 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5859 			NULL, 0, 0, lunaddr, TYPE_CMD);
5860 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5861 	if (rc)
5862 		return rc;
5863 	/* no unmap needed here because no data xfer. */
5864 
5865 	/* Check if the unit is already ready. */
5866 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5867 		return 0;
5868 
5869 	/*
5870 	 * The first command sent after reset will receive "unit attention" to
5871 	 * indicate that the LUN has been reset...this is actually what we're
5872 	 * looking for (but, success is good too).
5873 	 */
5874 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5875 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5876 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5877 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5878 		return 0;
5879 
5880 	return 1;
5881 }
5882 
5883 /*
5884  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5885  * returns zero when the unit is ready, and non-zero when giving up.
5886  */
5887 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5888 				struct CommandList *c,
5889 				unsigned char lunaddr[], int reply_queue)
5890 {
5891 	int rc;
5892 	int count = 0;
5893 	int waittime = 1; /* seconds */
5894 
5895 	/* Send test unit ready until device ready, or give up. */
5896 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5897 
5898 		/*
5899 		 * Wait for a bit.  do this first, because if we send
5900 		 * the TUR right away, the reset will just abort it.
5901 		 */
5902 		msleep(1000 * waittime);
5903 
5904 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5905 		if (!rc)
5906 			break;
5907 
5908 		/* Increase wait time with each try, up to a point. */
5909 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5910 			waittime *= 2;
5911 
5912 		dev_warn(&h->pdev->dev,
5913 			 "waiting %d secs for device to become ready.\n",
5914 			 waittime);
5915 	}
5916 
5917 	return rc;
5918 }
5919 
5920 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5921 					   unsigned char lunaddr[],
5922 					   int reply_queue)
5923 {
5924 	int first_queue;
5925 	int last_queue;
5926 	int rq;
5927 	int rc = 0;
5928 	struct CommandList *c;
5929 
5930 	c = cmd_alloc(h);
5931 
5932 	/*
5933 	 * If no specific reply queue was requested, then send the TUR
5934 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5935 	 * the loop exactly once using only the specified queue.
5936 	 */
5937 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5938 		first_queue = 0;
5939 		last_queue = h->nreply_queues - 1;
5940 	} else {
5941 		first_queue = reply_queue;
5942 		last_queue = reply_queue;
5943 	}
5944 
5945 	for (rq = first_queue; rq <= last_queue; rq++) {
5946 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5947 		if (rc)
5948 			break;
5949 	}
5950 
5951 	if (rc)
5952 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5953 	else
5954 		dev_warn(&h->pdev->dev, "device is ready.\n");
5955 
5956 	cmd_free(h, c);
5957 	return rc;
5958 }
5959 
5960 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5961  * complaining.  Doing a host- or bus-reset can't do anything good here.
5962  */
5963 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5964 {
5965 	int rc = SUCCESS;
5966 	int i;
5967 	struct ctlr_info *h;
5968 	struct hpsa_scsi_dev_t *dev = NULL;
5969 	u8 reset_type;
5970 	char msg[48];
5971 	unsigned long flags;
5972 
5973 	/* find the controller to which the command to be aborted was sent */
5974 	h = sdev_to_hba(scsicmd->device);
5975 	if (h == NULL) /* paranoia */
5976 		return FAILED;
5977 
5978 	spin_lock_irqsave(&h->reset_lock, flags);
5979 	h->reset_in_progress = 1;
5980 	spin_unlock_irqrestore(&h->reset_lock, flags);
5981 
5982 	if (lockup_detected(h)) {
5983 		rc = FAILED;
5984 		goto return_reset_status;
5985 	}
5986 
5987 	dev = scsicmd->device->hostdata;
5988 	if (!dev) {
5989 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5990 		rc = FAILED;
5991 		goto return_reset_status;
5992 	}
5993 
5994 	if (dev->devtype == TYPE_ENCLOSURE) {
5995 		rc = SUCCESS;
5996 		goto return_reset_status;
5997 	}
5998 
5999 	/* if controller locked up, we can guarantee command won't complete */
6000 	if (lockup_detected(h)) {
6001 		snprintf(msg, sizeof(msg),
6002 			 "cmd %d RESET FAILED, lockup detected",
6003 			 hpsa_get_cmd_index(scsicmd));
6004 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6005 		rc = FAILED;
6006 		goto return_reset_status;
6007 	}
6008 
6009 	/* this reset request might be the result of a lockup; check */
6010 	if (detect_controller_lockup(h)) {
6011 		snprintf(msg, sizeof(msg),
6012 			 "cmd %d RESET FAILED, new lockup detected",
6013 			 hpsa_get_cmd_index(scsicmd));
6014 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6015 		rc = FAILED;
6016 		goto return_reset_status;
6017 	}
6018 
6019 	/* Do not attempt on controller */
6020 	if (is_hba_lunid(dev->scsi3addr)) {
6021 		rc = SUCCESS;
6022 		goto return_reset_status;
6023 	}
6024 
6025 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6026 		reset_type = HPSA_DEVICE_RESET_MSG;
6027 	else
6028 		reset_type = HPSA_PHYS_TARGET_RESET;
6029 
6030 	sprintf(msg, "resetting %s",
6031 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6032 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6033 
6034 	/*
6035 	 * wait to see if any commands will complete before sending reset
6036 	 */
6037 	dev->in_reset = true; /* block any new cmds from OS for this device */
6038 	for (i = 0; i < 10; i++) {
6039 		if (atomic_read(&dev->commands_outstanding) > 0)
6040 			msleep(1000);
6041 		else
6042 			break;
6043 	}
6044 
6045 	/* send a reset to the SCSI LUN which the command was sent to */
6046 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6047 	if (rc == 0)
6048 		rc = SUCCESS;
6049 	else
6050 		rc = FAILED;
6051 
6052 	sprintf(msg, "reset %s %s",
6053 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6054 		rc == SUCCESS ? "completed successfully" : "failed");
6055 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6056 
6057 return_reset_status:
6058 	spin_lock_irqsave(&h->reset_lock, flags);
6059 	h->reset_in_progress = 0;
6060 	if (dev)
6061 		dev->in_reset = false;
6062 	spin_unlock_irqrestore(&h->reset_lock, flags);
6063 	return rc;
6064 }
6065 
6066 /*
6067  * For operations with an associated SCSI command, a command block is allocated
6068  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6069  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6070  * the complement, although cmd_free() may be called instead.
6071  */
6072 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6073 					    struct scsi_cmnd *scmd)
6074 {
6075 	int idx = hpsa_get_cmd_index(scmd);
6076 	struct CommandList *c = h->cmd_pool + idx;
6077 
6078 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6079 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6080 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6081 		/* The index value comes from the block layer, so if it's out of
6082 		 * bounds, it's probably not our bug.
6083 		 */
6084 		BUG();
6085 	}
6086 
6087 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6088 		/*
6089 		 * We expect that the SCSI layer will hand us a unique tag
6090 		 * value.  Thus, there should never be a collision here between
6091 		 * two requests...because if the selected command isn't idle
6092 		 * then someone is going to be very disappointed.
6093 		 */
6094 		if (idx != h->last_collision_tag) { /* Print once per tag */
6095 			dev_warn(&h->pdev->dev,
6096 				"%s: tag collision (tag=%d)\n", __func__, idx);
6097 			if (scmd)
6098 				scsi_print_command(scmd);
6099 			h->last_collision_tag = idx;
6100 		}
6101 		return NULL;
6102 	}
6103 
6104 	atomic_inc(&c->refcount);
6105 
6106 	hpsa_cmd_partial_init(h, idx, c);
6107 	return c;
6108 }
6109 
6110 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6111 {
6112 	/*
6113 	 * Release our reference to the block.  We don't need to do anything
6114 	 * else to free it, because it is accessed by index.
6115 	 */
6116 	(void)atomic_dec(&c->refcount);
6117 }
6118 
6119 /*
6120  * For operations that cannot sleep, a command block is allocated at init,
6121  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6122  * which ones are free or in use.  Lock must be held when calling this.
6123  * cmd_free() is the complement.
6124  * This function never gives up and returns NULL.  If it hangs,
6125  * another thread must call cmd_free() to free some tags.
6126  */
6127 
6128 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6129 {
6130 	struct CommandList *c;
6131 	int refcount, i;
6132 	int offset = 0;
6133 
6134 	/*
6135 	 * There is some *extremely* small but non-zero chance that that
6136 	 * multiple threads could get in here, and one thread could
6137 	 * be scanning through the list of bits looking for a free
6138 	 * one, but the free ones are always behind him, and other
6139 	 * threads sneak in behind him and eat them before he can
6140 	 * get to them, so that while there is always a free one, a
6141 	 * very unlucky thread might be starved anyway, never able to
6142 	 * beat the other threads.  In reality, this happens so
6143 	 * infrequently as to be indistinguishable from never.
6144 	 *
6145 	 * Note that we start allocating commands before the SCSI host structure
6146 	 * is initialized.  Since the search starts at bit zero, this
6147 	 * all works, since we have at least one command structure available;
6148 	 * however, it means that the structures with the low indexes have to be
6149 	 * reserved for driver-initiated requests, while requests from the block
6150 	 * layer will use the higher indexes.
6151 	 */
6152 
6153 	for (;;) {
6154 		i = find_next_zero_bit(h->cmd_pool_bits,
6155 					HPSA_NRESERVED_CMDS,
6156 					offset);
6157 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6158 			offset = 0;
6159 			continue;
6160 		}
6161 		c = h->cmd_pool + i;
6162 		refcount = atomic_inc_return(&c->refcount);
6163 		if (unlikely(refcount > 1)) {
6164 			cmd_free(h, c); /* already in use */
6165 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6166 			continue;
6167 		}
6168 		set_bit(i & (BITS_PER_LONG - 1),
6169 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6170 		break; /* it's ours now. */
6171 	}
6172 	hpsa_cmd_partial_init(h, i, c);
6173 	c->device = NULL;
6174 	return c;
6175 }
6176 
6177 /*
6178  * This is the complementary operation to cmd_alloc().  Note, however, in some
6179  * corner cases it may also be used to free blocks allocated by
6180  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6181  * the clear-bit is harmless.
6182  */
6183 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6184 {
6185 	if (atomic_dec_and_test(&c->refcount)) {
6186 		int i;
6187 
6188 		i = c - h->cmd_pool;
6189 		clear_bit(i & (BITS_PER_LONG - 1),
6190 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6191 	}
6192 }
6193 
6194 #ifdef CONFIG_COMPAT
6195 
6196 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6197 	void __user *arg)
6198 {
6199 	IOCTL32_Command_struct __user *arg32 =
6200 	    (IOCTL32_Command_struct __user *) arg;
6201 	IOCTL_Command_struct arg64;
6202 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6203 	int err;
6204 	u32 cp;
6205 
6206 	memset(&arg64, 0, sizeof(arg64));
6207 	err = 0;
6208 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6209 			   sizeof(arg64.LUN_info));
6210 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6211 			   sizeof(arg64.Request));
6212 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6213 			   sizeof(arg64.error_info));
6214 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6215 	err |= get_user(cp, &arg32->buf);
6216 	arg64.buf = compat_ptr(cp);
6217 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6218 
6219 	if (err)
6220 		return -EFAULT;
6221 
6222 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6223 	if (err)
6224 		return err;
6225 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6226 			 sizeof(arg32->error_info));
6227 	if (err)
6228 		return -EFAULT;
6229 	return err;
6230 }
6231 
6232 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6233 	unsigned int cmd, void __user *arg)
6234 {
6235 	BIG_IOCTL32_Command_struct __user *arg32 =
6236 	    (BIG_IOCTL32_Command_struct __user *) arg;
6237 	BIG_IOCTL_Command_struct arg64;
6238 	BIG_IOCTL_Command_struct __user *p =
6239 	    compat_alloc_user_space(sizeof(arg64));
6240 	int err;
6241 	u32 cp;
6242 
6243 	memset(&arg64, 0, sizeof(arg64));
6244 	err = 0;
6245 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6246 			   sizeof(arg64.LUN_info));
6247 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6248 			   sizeof(arg64.Request));
6249 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6250 			   sizeof(arg64.error_info));
6251 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6252 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6253 	err |= get_user(cp, &arg32->buf);
6254 	arg64.buf = compat_ptr(cp);
6255 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6256 
6257 	if (err)
6258 		return -EFAULT;
6259 
6260 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6261 	if (err)
6262 		return err;
6263 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6264 			 sizeof(arg32->error_info));
6265 	if (err)
6266 		return -EFAULT;
6267 	return err;
6268 }
6269 
6270 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6271 			     void __user *arg)
6272 {
6273 	switch (cmd) {
6274 	case CCISS_GETPCIINFO:
6275 	case CCISS_GETINTINFO:
6276 	case CCISS_SETINTINFO:
6277 	case CCISS_GETNODENAME:
6278 	case CCISS_SETNODENAME:
6279 	case CCISS_GETHEARTBEAT:
6280 	case CCISS_GETBUSTYPES:
6281 	case CCISS_GETFIRMVER:
6282 	case CCISS_GETDRIVVER:
6283 	case CCISS_REVALIDVOLS:
6284 	case CCISS_DEREGDISK:
6285 	case CCISS_REGNEWDISK:
6286 	case CCISS_REGNEWD:
6287 	case CCISS_RESCANDISK:
6288 	case CCISS_GETLUNINFO:
6289 		return hpsa_ioctl(dev, cmd, arg);
6290 
6291 	case CCISS_PASSTHRU32:
6292 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6293 	case CCISS_BIG_PASSTHRU32:
6294 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6295 
6296 	default:
6297 		return -ENOIOCTLCMD;
6298 	}
6299 }
6300 #endif
6301 
6302 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6303 {
6304 	struct hpsa_pci_info pciinfo;
6305 
6306 	if (!argp)
6307 		return -EINVAL;
6308 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6309 	pciinfo.bus = h->pdev->bus->number;
6310 	pciinfo.dev_fn = h->pdev->devfn;
6311 	pciinfo.board_id = h->board_id;
6312 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6313 		return -EFAULT;
6314 	return 0;
6315 }
6316 
6317 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6318 {
6319 	DriverVer_type DriverVer;
6320 	unsigned char vmaj, vmin, vsubmin;
6321 	int rc;
6322 
6323 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6324 		&vmaj, &vmin, &vsubmin);
6325 	if (rc != 3) {
6326 		dev_info(&h->pdev->dev, "driver version string '%s' "
6327 			"unrecognized.", HPSA_DRIVER_VERSION);
6328 		vmaj = 0;
6329 		vmin = 0;
6330 		vsubmin = 0;
6331 	}
6332 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6333 	if (!argp)
6334 		return -EINVAL;
6335 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6336 		return -EFAULT;
6337 	return 0;
6338 }
6339 
6340 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6341 {
6342 	IOCTL_Command_struct iocommand;
6343 	struct CommandList *c;
6344 	char *buff = NULL;
6345 	u64 temp64;
6346 	int rc = 0;
6347 
6348 	if (!argp)
6349 		return -EINVAL;
6350 	if (!capable(CAP_SYS_RAWIO))
6351 		return -EPERM;
6352 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6353 		return -EFAULT;
6354 	if ((iocommand.buf_size < 1) &&
6355 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6356 		return -EINVAL;
6357 	}
6358 	if (iocommand.buf_size > 0) {
6359 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6360 		if (buff == NULL)
6361 			return -ENOMEM;
6362 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6363 			/* Copy the data into the buffer we created */
6364 			if (copy_from_user(buff, iocommand.buf,
6365 				iocommand.buf_size)) {
6366 				rc = -EFAULT;
6367 				goto out_kfree;
6368 			}
6369 		} else {
6370 			memset(buff, 0, iocommand.buf_size);
6371 		}
6372 	}
6373 	c = cmd_alloc(h);
6374 
6375 	/* Fill in the command type */
6376 	c->cmd_type = CMD_IOCTL_PEND;
6377 	c->scsi_cmd = SCSI_CMD_BUSY;
6378 	/* Fill in Command Header */
6379 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6380 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6381 		c->Header.SGList = 1;
6382 		c->Header.SGTotal = cpu_to_le16(1);
6383 	} else	{ /* no buffers to fill */
6384 		c->Header.SGList = 0;
6385 		c->Header.SGTotal = cpu_to_le16(0);
6386 	}
6387 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6388 
6389 	/* Fill in Request block */
6390 	memcpy(&c->Request, &iocommand.Request,
6391 		sizeof(c->Request));
6392 
6393 	/* Fill in the scatter gather information */
6394 	if (iocommand.buf_size > 0) {
6395 		temp64 = dma_map_single(&h->pdev->dev, buff,
6396 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6397 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6398 			c->SG[0].Addr = cpu_to_le64(0);
6399 			c->SG[0].Len = cpu_to_le32(0);
6400 			rc = -ENOMEM;
6401 			goto out;
6402 		}
6403 		c->SG[0].Addr = cpu_to_le64(temp64);
6404 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6405 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6406 	}
6407 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6408 					NO_TIMEOUT);
6409 	if (iocommand.buf_size > 0)
6410 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6411 	check_ioctl_unit_attention(h, c);
6412 	if (rc) {
6413 		rc = -EIO;
6414 		goto out;
6415 	}
6416 
6417 	/* Copy the error information out */
6418 	memcpy(&iocommand.error_info, c->err_info,
6419 		sizeof(iocommand.error_info));
6420 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6421 		rc = -EFAULT;
6422 		goto out;
6423 	}
6424 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6425 		iocommand.buf_size > 0) {
6426 		/* Copy the data out of the buffer we created */
6427 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6428 			rc = -EFAULT;
6429 			goto out;
6430 		}
6431 	}
6432 out:
6433 	cmd_free(h, c);
6434 out_kfree:
6435 	kfree(buff);
6436 	return rc;
6437 }
6438 
6439 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6440 {
6441 	BIG_IOCTL_Command_struct *ioc;
6442 	struct CommandList *c;
6443 	unsigned char **buff = NULL;
6444 	int *buff_size = NULL;
6445 	u64 temp64;
6446 	BYTE sg_used = 0;
6447 	int status = 0;
6448 	u32 left;
6449 	u32 sz;
6450 	BYTE __user *data_ptr;
6451 
6452 	if (!argp)
6453 		return -EINVAL;
6454 	if (!capable(CAP_SYS_RAWIO))
6455 		return -EPERM;
6456 	ioc = vmemdup_user(argp, sizeof(*ioc));
6457 	if (IS_ERR(ioc)) {
6458 		status = PTR_ERR(ioc);
6459 		goto cleanup1;
6460 	}
6461 	if ((ioc->buf_size < 1) &&
6462 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6463 		status = -EINVAL;
6464 		goto cleanup1;
6465 	}
6466 	/* Check kmalloc limits  using all SGs */
6467 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6468 		status = -EINVAL;
6469 		goto cleanup1;
6470 	}
6471 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6472 		status = -EINVAL;
6473 		goto cleanup1;
6474 	}
6475 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6476 	if (!buff) {
6477 		status = -ENOMEM;
6478 		goto cleanup1;
6479 	}
6480 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6481 	if (!buff_size) {
6482 		status = -ENOMEM;
6483 		goto cleanup1;
6484 	}
6485 	left = ioc->buf_size;
6486 	data_ptr = ioc->buf;
6487 	while (left) {
6488 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6489 		buff_size[sg_used] = sz;
6490 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6491 		if (buff[sg_used] == NULL) {
6492 			status = -ENOMEM;
6493 			goto cleanup1;
6494 		}
6495 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6496 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6497 				status = -EFAULT;
6498 				goto cleanup1;
6499 			}
6500 		} else
6501 			memset(buff[sg_used], 0, sz);
6502 		left -= sz;
6503 		data_ptr += sz;
6504 		sg_used++;
6505 	}
6506 	c = cmd_alloc(h);
6507 
6508 	c->cmd_type = CMD_IOCTL_PEND;
6509 	c->scsi_cmd = SCSI_CMD_BUSY;
6510 	c->Header.ReplyQueue = 0;
6511 	c->Header.SGList = (u8) sg_used;
6512 	c->Header.SGTotal = cpu_to_le16(sg_used);
6513 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6514 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6515 	if (ioc->buf_size > 0) {
6516 		int i;
6517 		for (i = 0; i < sg_used; i++) {
6518 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6519 				    buff_size[i], DMA_BIDIRECTIONAL);
6520 			if (dma_mapping_error(&h->pdev->dev,
6521 							(dma_addr_t) temp64)) {
6522 				c->SG[i].Addr = cpu_to_le64(0);
6523 				c->SG[i].Len = cpu_to_le32(0);
6524 				hpsa_pci_unmap(h->pdev, c, i,
6525 					DMA_BIDIRECTIONAL);
6526 				status = -ENOMEM;
6527 				goto cleanup0;
6528 			}
6529 			c->SG[i].Addr = cpu_to_le64(temp64);
6530 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6531 			c->SG[i].Ext = cpu_to_le32(0);
6532 		}
6533 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6534 	}
6535 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6536 						NO_TIMEOUT);
6537 	if (sg_used)
6538 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6539 	check_ioctl_unit_attention(h, c);
6540 	if (status) {
6541 		status = -EIO;
6542 		goto cleanup0;
6543 	}
6544 
6545 	/* Copy the error information out */
6546 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6547 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6548 		status = -EFAULT;
6549 		goto cleanup0;
6550 	}
6551 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6552 		int i;
6553 
6554 		/* Copy the data out of the buffer we created */
6555 		BYTE __user *ptr = ioc->buf;
6556 		for (i = 0; i < sg_used; i++) {
6557 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6558 				status = -EFAULT;
6559 				goto cleanup0;
6560 			}
6561 			ptr += buff_size[i];
6562 		}
6563 	}
6564 	status = 0;
6565 cleanup0:
6566 	cmd_free(h, c);
6567 cleanup1:
6568 	if (buff) {
6569 		int i;
6570 
6571 		for (i = 0; i < sg_used; i++)
6572 			kfree(buff[i]);
6573 		kfree(buff);
6574 	}
6575 	kfree(buff_size);
6576 	kvfree(ioc);
6577 	return status;
6578 }
6579 
6580 static void check_ioctl_unit_attention(struct ctlr_info *h,
6581 	struct CommandList *c)
6582 {
6583 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6584 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6585 		(void) check_for_unit_attention(h, c);
6586 }
6587 
6588 /*
6589  * ioctl
6590  */
6591 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6592 		      void __user *arg)
6593 {
6594 	struct ctlr_info *h;
6595 	void __user *argp = (void __user *)arg;
6596 	int rc;
6597 
6598 	h = sdev_to_hba(dev);
6599 
6600 	switch (cmd) {
6601 	case CCISS_DEREGDISK:
6602 	case CCISS_REGNEWDISK:
6603 	case CCISS_REGNEWD:
6604 		hpsa_scan_start(h->scsi_host);
6605 		return 0;
6606 	case CCISS_GETPCIINFO:
6607 		return hpsa_getpciinfo_ioctl(h, argp);
6608 	case CCISS_GETDRIVVER:
6609 		return hpsa_getdrivver_ioctl(h, argp);
6610 	case CCISS_PASSTHRU:
6611 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6612 			return -EAGAIN;
6613 		rc = hpsa_passthru_ioctl(h, argp);
6614 		atomic_inc(&h->passthru_cmds_avail);
6615 		return rc;
6616 	case CCISS_BIG_PASSTHRU:
6617 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6618 			return -EAGAIN;
6619 		rc = hpsa_big_passthru_ioctl(h, argp);
6620 		atomic_inc(&h->passthru_cmds_avail);
6621 		return rc;
6622 	default:
6623 		return -ENOTTY;
6624 	}
6625 }
6626 
6627 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6628 {
6629 	struct CommandList *c;
6630 
6631 	c = cmd_alloc(h);
6632 
6633 	/* fill_cmd can't fail here, no data buffer to map */
6634 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6635 		RAID_CTLR_LUNID, TYPE_MSG);
6636 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6637 	c->waiting = NULL;
6638 	enqueue_cmd_and_start_io(h, c);
6639 	/* Don't wait for completion, the reset won't complete.  Don't free
6640 	 * the command either.  This is the last command we will send before
6641 	 * re-initializing everything, so it doesn't matter and won't leak.
6642 	 */
6643 	return;
6644 }
6645 
6646 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6647 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6648 	int cmd_type)
6649 {
6650 	enum dma_data_direction dir = DMA_NONE;
6651 
6652 	c->cmd_type = CMD_IOCTL_PEND;
6653 	c->scsi_cmd = SCSI_CMD_BUSY;
6654 	c->Header.ReplyQueue = 0;
6655 	if (buff != NULL && size > 0) {
6656 		c->Header.SGList = 1;
6657 		c->Header.SGTotal = cpu_to_le16(1);
6658 	} else {
6659 		c->Header.SGList = 0;
6660 		c->Header.SGTotal = cpu_to_le16(0);
6661 	}
6662 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6663 
6664 	if (cmd_type == TYPE_CMD) {
6665 		switch (cmd) {
6666 		case HPSA_INQUIRY:
6667 			/* are we trying to read a vital product page */
6668 			if (page_code & VPD_PAGE) {
6669 				c->Request.CDB[1] = 0x01;
6670 				c->Request.CDB[2] = (page_code & 0xff);
6671 			}
6672 			c->Request.CDBLen = 6;
6673 			c->Request.type_attr_dir =
6674 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6675 			c->Request.Timeout = 0;
6676 			c->Request.CDB[0] = HPSA_INQUIRY;
6677 			c->Request.CDB[4] = size & 0xFF;
6678 			break;
6679 		case RECEIVE_DIAGNOSTIC:
6680 			c->Request.CDBLen = 6;
6681 			c->Request.type_attr_dir =
6682 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6683 			c->Request.Timeout = 0;
6684 			c->Request.CDB[0] = cmd;
6685 			c->Request.CDB[1] = 1;
6686 			c->Request.CDB[2] = 1;
6687 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6688 			c->Request.CDB[4] = size & 0xFF;
6689 			break;
6690 		case HPSA_REPORT_LOG:
6691 		case HPSA_REPORT_PHYS:
6692 			/* Talking to controller so It's a physical command
6693 			   mode = 00 target = 0.  Nothing to write.
6694 			 */
6695 			c->Request.CDBLen = 12;
6696 			c->Request.type_attr_dir =
6697 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698 			c->Request.Timeout = 0;
6699 			c->Request.CDB[0] = cmd;
6700 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6701 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6702 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6703 			c->Request.CDB[9] = size & 0xFF;
6704 			break;
6705 		case BMIC_SENSE_DIAG_OPTIONS:
6706 			c->Request.CDBLen = 16;
6707 			c->Request.type_attr_dir =
6708 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709 			c->Request.Timeout = 0;
6710 			/* Spec says this should be BMIC_WRITE */
6711 			c->Request.CDB[0] = BMIC_READ;
6712 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6713 			break;
6714 		case BMIC_SET_DIAG_OPTIONS:
6715 			c->Request.CDBLen = 16;
6716 			c->Request.type_attr_dir =
6717 					TYPE_ATTR_DIR(cmd_type,
6718 						ATTR_SIMPLE, XFER_WRITE);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = BMIC_WRITE;
6721 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6722 			break;
6723 		case HPSA_CACHE_FLUSH:
6724 			c->Request.CDBLen = 12;
6725 			c->Request.type_attr_dir =
6726 					TYPE_ATTR_DIR(cmd_type,
6727 						ATTR_SIMPLE, XFER_WRITE);
6728 			c->Request.Timeout = 0;
6729 			c->Request.CDB[0] = BMIC_WRITE;
6730 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6731 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6732 			c->Request.CDB[8] = size & 0xFF;
6733 			break;
6734 		case TEST_UNIT_READY:
6735 			c->Request.CDBLen = 6;
6736 			c->Request.type_attr_dir =
6737 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6738 			c->Request.Timeout = 0;
6739 			break;
6740 		case HPSA_GET_RAID_MAP:
6741 			c->Request.CDBLen = 12;
6742 			c->Request.type_attr_dir =
6743 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6744 			c->Request.Timeout = 0;
6745 			c->Request.CDB[0] = HPSA_CISS_READ;
6746 			c->Request.CDB[1] = cmd;
6747 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6748 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6749 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6750 			c->Request.CDB[9] = size & 0xFF;
6751 			break;
6752 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6753 			c->Request.CDBLen = 10;
6754 			c->Request.type_attr_dir =
6755 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6756 			c->Request.Timeout = 0;
6757 			c->Request.CDB[0] = BMIC_READ;
6758 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6759 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6760 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6761 			break;
6762 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6763 			c->Request.CDBLen = 10;
6764 			c->Request.type_attr_dir =
6765 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766 			c->Request.Timeout = 0;
6767 			c->Request.CDB[0] = BMIC_READ;
6768 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6769 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6770 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6771 			break;
6772 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6773 			c->Request.CDBLen = 10;
6774 			c->Request.type_attr_dir =
6775 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6776 			c->Request.Timeout = 0;
6777 			c->Request.CDB[0] = BMIC_READ;
6778 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6779 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6780 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6781 			break;
6782 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6783 			c->Request.CDBLen = 10;
6784 			c->Request.type_attr_dir =
6785 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6786 			c->Request.Timeout = 0;
6787 			c->Request.CDB[0] = BMIC_READ;
6788 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6789 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6790 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6791 			break;
6792 		case BMIC_IDENTIFY_CONTROLLER:
6793 			c->Request.CDBLen = 10;
6794 			c->Request.type_attr_dir =
6795 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796 			c->Request.Timeout = 0;
6797 			c->Request.CDB[0] = BMIC_READ;
6798 			c->Request.CDB[1] = 0;
6799 			c->Request.CDB[2] = 0;
6800 			c->Request.CDB[3] = 0;
6801 			c->Request.CDB[4] = 0;
6802 			c->Request.CDB[5] = 0;
6803 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6804 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6805 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6806 			c->Request.CDB[9] = 0;
6807 			break;
6808 		default:
6809 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6810 			BUG();
6811 		}
6812 	} else if (cmd_type == TYPE_MSG) {
6813 		switch (cmd) {
6814 
6815 		case  HPSA_PHYS_TARGET_RESET:
6816 			c->Request.CDBLen = 16;
6817 			c->Request.type_attr_dir =
6818 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6819 			c->Request.Timeout = 0; /* Don't time out */
6820 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6821 			c->Request.CDB[0] = HPSA_RESET;
6822 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6823 			/* Physical target reset needs no control bytes 4-7*/
6824 			c->Request.CDB[4] = 0x00;
6825 			c->Request.CDB[5] = 0x00;
6826 			c->Request.CDB[6] = 0x00;
6827 			c->Request.CDB[7] = 0x00;
6828 			break;
6829 		case  HPSA_DEVICE_RESET_MSG:
6830 			c->Request.CDBLen = 16;
6831 			c->Request.type_attr_dir =
6832 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6833 			c->Request.Timeout = 0; /* Don't time out */
6834 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6835 			c->Request.CDB[0] =  cmd;
6836 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6837 			/* If bytes 4-7 are zero, it means reset the */
6838 			/* LunID device */
6839 			c->Request.CDB[4] = 0x00;
6840 			c->Request.CDB[5] = 0x00;
6841 			c->Request.CDB[6] = 0x00;
6842 			c->Request.CDB[7] = 0x00;
6843 			break;
6844 		default:
6845 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6846 				cmd);
6847 			BUG();
6848 		}
6849 	} else {
6850 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6851 		BUG();
6852 	}
6853 
6854 	switch (GET_DIR(c->Request.type_attr_dir)) {
6855 	case XFER_READ:
6856 		dir = DMA_FROM_DEVICE;
6857 		break;
6858 	case XFER_WRITE:
6859 		dir = DMA_TO_DEVICE;
6860 		break;
6861 	case XFER_NONE:
6862 		dir = DMA_NONE;
6863 		break;
6864 	default:
6865 		dir = DMA_BIDIRECTIONAL;
6866 	}
6867 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6868 		return -1;
6869 	return 0;
6870 }
6871 
6872 /*
6873  * Map (physical) PCI mem into (virtual) kernel space
6874  */
6875 static void __iomem *remap_pci_mem(ulong base, ulong size)
6876 {
6877 	ulong page_base = ((ulong) base) & PAGE_MASK;
6878 	ulong page_offs = ((ulong) base) - page_base;
6879 	void __iomem *page_remapped = ioremap_nocache(page_base,
6880 		page_offs + size);
6881 
6882 	return page_remapped ? (page_remapped + page_offs) : NULL;
6883 }
6884 
6885 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6886 {
6887 	return h->access.command_completed(h, q);
6888 }
6889 
6890 static inline bool interrupt_pending(struct ctlr_info *h)
6891 {
6892 	return h->access.intr_pending(h);
6893 }
6894 
6895 static inline long interrupt_not_for_us(struct ctlr_info *h)
6896 {
6897 	return (h->access.intr_pending(h) == 0) ||
6898 		(h->interrupts_enabled == 0);
6899 }
6900 
6901 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6902 	u32 raw_tag)
6903 {
6904 	if (unlikely(tag_index >= h->nr_cmds)) {
6905 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6906 		return 1;
6907 	}
6908 	return 0;
6909 }
6910 
6911 static inline void finish_cmd(struct CommandList *c)
6912 {
6913 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6914 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6915 			|| c->cmd_type == CMD_IOACCEL2))
6916 		complete_scsi_command(c);
6917 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6918 		complete(c->waiting);
6919 }
6920 
6921 /* process completion of an indexed ("direct lookup") command */
6922 static inline void process_indexed_cmd(struct ctlr_info *h,
6923 	u32 raw_tag)
6924 {
6925 	u32 tag_index;
6926 	struct CommandList *c;
6927 
6928 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6929 	if (!bad_tag(h, tag_index, raw_tag)) {
6930 		c = h->cmd_pool + tag_index;
6931 		finish_cmd(c);
6932 	}
6933 }
6934 
6935 /* Some controllers, like p400, will give us one interrupt
6936  * after a soft reset, even if we turned interrupts off.
6937  * Only need to check for this in the hpsa_xxx_discard_completions
6938  * functions.
6939  */
6940 static int ignore_bogus_interrupt(struct ctlr_info *h)
6941 {
6942 	if (likely(!reset_devices))
6943 		return 0;
6944 
6945 	if (likely(h->interrupts_enabled))
6946 		return 0;
6947 
6948 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6949 		"(known firmware bug.)  Ignoring.\n");
6950 
6951 	return 1;
6952 }
6953 
6954 /*
6955  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6956  * Relies on (h-q[x] == x) being true for x such that
6957  * 0 <= x < MAX_REPLY_QUEUES.
6958  */
6959 static struct ctlr_info *queue_to_hba(u8 *queue)
6960 {
6961 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6962 }
6963 
6964 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6965 {
6966 	struct ctlr_info *h = queue_to_hba(queue);
6967 	u8 q = *(u8 *) queue;
6968 	u32 raw_tag;
6969 
6970 	if (ignore_bogus_interrupt(h))
6971 		return IRQ_NONE;
6972 
6973 	if (interrupt_not_for_us(h))
6974 		return IRQ_NONE;
6975 	h->last_intr_timestamp = get_jiffies_64();
6976 	while (interrupt_pending(h)) {
6977 		raw_tag = get_next_completion(h, q);
6978 		while (raw_tag != FIFO_EMPTY)
6979 			raw_tag = next_command(h, q);
6980 	}
6981 	return IRQ_HANDLED;
6982 }
6983 
6984 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6985 {
6986 	struct ctlr_info *h = queue_to_hba(queue);
6987 	u32 raw_tag;
6988 	u8 q = *(u8 *) queue;
6989 
6990 	if (ignore_bogus_interrupt(h))
6991 		return IRQ_NONE;
6992 
6993 	h->last_intr_timestamp = get_jiffies_64();
6994 	raw_tag = get_next_completion(h, q);
6995 	while (raw_tag != FIFO_EMPTY)
6996 		raw_tag = next_command(h, q);
6997 	return IRQ_HANDLED;
6998 }
6999 
7000 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7001 {
7002 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7003 	u32 raw_tag;
7004 	u8 q = *(u8 *) queue;
7005 
7006 	if (interrupt_not_for_us(h))
7007 		return IRQ_NONE;
7008 	h->last_intr_timestamp = get_jiffies_64();
7009 	while (interrupt_pending(h)) {
7010 		raw_tag = get_next_completion(h, q);
7011 		while (raw_tag != FIFO_EMPTY) {
7012 			process_indexed_cmd(h, raw_tag);
7013 			raw_tag = next_command(h, q);
7014 		}
7015 	}
7016 	return IRQ_HANDLED;
7017 }
7018 
7019 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7020 {
7021 	struct ctlr_info *h = queue_to_hba(queue);
7022 	u32 raw_tag;
7023 	u8 q = *(u8 *) queue;
7024 
7025 	h->last_intr_timestamp = get_jiffies_64();
7026 	raw_tag = get_next_completion(h, q);
7027 	while (raw_tag != FIFO_EMPTY) {
7028 		process_indexed_cmd(h, raw_tag);
7029 		raw_tag = next_command(h, q);
7030 	}
7031 	return IRQ_HANDLED;
7032 }
7033 
7034 /* Send a message CDB to the firmware. Careful, this only works
7035  * in simple mode, not performant mode due to the tag lookup.
7036  * We only ever use this immediately after a controller reset.
7037  */
7038 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7039 			unsigned char type)
7040 {
7041 	struct Command {
7042 		struct CommandListHeader CommandHeader;
7043 		struct RequestBlock Request;
7044 		struct ErrDescriptor ErrorDescriptor;
7045 	};
7046 	struct Command *cmd;
7047 	static const size_t cmd_sz = sizeof(*cmd) +
7048 					sizeof(cmd->ErrorDescriptor);
7049 	dma_addr_t paddr64;
7050 	__le32 paddr32;
7051 	u32 tag;
7052 	void __iomem *vaddr;
7053 	int i, err;
7054 
7055 	vaddr = pci_ioremap_bar(pdev, 0);
7056 	if (vaddr == NULL)
7057 		return -ENOMEM;
7058 
7059 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7060 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7061 	 * memory.
7062 	 */
7063 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7064 	if (err) {
7065 		iounmap(vaddr);
7066 		return err;
7067 	}
7068 
7069 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7070 	if (cmd == NULL) {
7071 		iounmap(vaddr);
7072 		return -ENOMEM;
7073 	}
7074 
7075 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7076 	 * although there's no guarantee, we assume that the address is at
7077 	 * least 4-byte aligned (most likely, it's page-aligned).
7078 	 */
7079 	paddr32 = cpu_to_le32(paddr64);
7080 
7081 	cmd->CommandHeader.ReplyQueue = 0;
7082 	cmd->CommandHeader.SGList = 0;
7083 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7084 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7085 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7086 
7087 	cmd->Request.CDBLen = 16;
7088 	cmd->Request.type_attr_dir =
7089 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7090 	cmd->Request.Timeout = 0; /* Don't time out */
7091 	cmd->Request.CDB[0] = opcode;
7092 	cmd->Request.CDB[1] = type;
7093 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7094 	cmd->ErrorDescriptor.Addr =
7095 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7096 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7097 
7098 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7099 
7100 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7101 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7102 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7103 			break;
7104 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7105 	}
7106 
7107 	iounmap(vaddr);
7108 
7109 	/* we leak the DMA buffer here ... no choice since the controller could
7110 	 *  still complete the command.
7111 	 */
7112 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7113 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7114 			opcode, type);
7115 		return -ETIMEDOUT;
7116 	}
7117 
7118 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7119 
7120 	if (tag & HPSA_ERROR_BIT) {
7121 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7122 			opcode, type);
7123 		return -EIO;
7124 	}
7125 
7126 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7127 		opcode, type);
7128 	return 0;
7129 }
7130 
7131 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7132 
7133 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7134 	void __iomem *vaddr, u32 use_doorbell)
7135 {
7136 
7137 	if (use_doorbell) {
7138 		/* For everything after the P600, the PCI power state method
7139 		 * of resetting the controller doesn't work, so we have this
7140 		 * other way using the doorbell register.
7141 		 */
7142 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7143 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7144 
7145 		/* PMC hardware guys tell us we need a 10 second delay after
7146 		 * doorbell reset and before any attempt to talk to the board
7147 		 * at all to ensure that this actually works and doesn't fall
7148 		 * over in some weird corner cases.
7149 		 */
7150 		msleep(10000);
7151 	} else { /* Try to do it the PCI power state way */
7152 
7153 		/* Quoting from the Open CISS Specification: "The Power
7154 		 * Management Control/Status Register (CSR) controls the power
7155 		 * state of the device.  The normal operating state is D0,
7156 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7157 		 * the controller, place the interface device in D3 then to D0,
7158 		 * this causes a secondary PCI reset which will reset the
7159 		 * controller." */
7160 
7161 		int rc = 0;
7162 
7163 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7164 
7165 		/* enter the D3hot power management state */
7166 		rc = pci_set_power_state(pdev, PCI_D3hot);
7167 		if (rc)
7168 			return rc;
7169 
7170 		msleep(500);
7171 
7172 		/* enter the D0 power management state */
7173 		rc = pci_set_power_state(pdev, PCI_D0);
7174 		if (rc)
7175 			return rc;
7176 
7177 		/*
7178 		 * The P600 requires a small delay when changing states.
7179 		 * Otherwise we may think the board did not reset and we bail.
7180 		 * This for kdump only and is particular to the P600.
7181 		 */
7182 		msleep(500);
7183 	}
7184 	return 0;
7185 }
7186 
7187 static void init_driver_version(char *driver_version, int len)
7188 {
7189 	memset(driver_version, 0, len);
7190 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7191 }
7192 
7193 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7194 {
7195 	char *driver_version;
7196 	int i, size = sizeof(cfgtable->driver_version);
7197 
7198 	driver_version = kmalloc(size, GFP_KERNEL);
7199 	if (!driver_version)
7200 		return -ENOMEM;
7201 
7202 	init_driver_version(driver_version, size);
7203 	for (i = 0; i < size; i++)
7204 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7205 	kfree(driver_version);
7206 	return 0;
7207 }
7208 
7209 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7210 					  unsigned char *driver_ver)
7211 {
7212 	int i;
7213 
7214 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7215 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7216 }
7217 
7218 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7219 {
7220 
7221 	char *driver_ver, *old_driver_ver;
7222 	int rc, size = sizeof(cfgtable->driver_version);
7223 
7224 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7225 	if (!old_driver_ver)
7226 		return -ENOMEM;
7227 	driver_ver = old_driver_ver + size;
7228 
7229 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7230 	 * should have been changed, otherwise we know the reset failed.
7231 	 */
7232 	init_driver_version(old_driver_ver, size);
7233 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7234 	rc = !memcmp(driver_ver, old_driver_ver, size);
7235 	kfree(old_driver_ver);
7236 	return rc;
7237 }
7238 /* This does a hard reset of the controller using PCI power management
7239  * states or the using the doorbell register.
7240  */
7241 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7242 {
7243 	u64 cfg_offset;
7244 	u32 cfg_base_addr;
7245 	u64 cfg_base_addr_index;
7246 	void __iomem *vaddr;
7247 	unsigned long paddr;
7248 	u32 misc_fw_support;
7249 	int rc;
7250 	struct CfgTable __iomem *cfgtable;
7251 	u32 use_doorbell;
7252 	u16 command_register;
7253 
7254 	/* For controllers as old as the P600, this is very nearly
7255 	 * the same thing as
7256 	 *
7257 	 * pci_save_state(pci_dev);
7258 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7259 	 * pci_set_power_state(pci_dev, PCI_D0);
7260 	 * pci_restore_state(pci_dev);
7261 	 *
7262 	 * For controllers newer than the P600, the pci power state
7263 	 * method of resetting doesn't work so we have another way
7264 	 * using the doorbell register.
7265 	 */
7266 
7267 	if (!ctlr_is_resettable(board_id)) {
7268 		dev_warn(&pdev->dev, "Controller not resettable\n");
7269 		return -ENODEV;
7270 	}
7271 
7272 	/* if controller is soft- but not hard resettable... */
7273 	if (!ctlr_is_hard_resettable(board_id))
7274 		return -ENOTSUPP; /* try soft reset later. */
7275 
7276 	/* Save the PCI command register */
7277 	pci_read_config_word(pdev, 4, &command_register);
7278 	pci_save_state(pdev);
7279 
7280 	/* find the first memory BAR, so we can find the cfg table */
7281 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7282 	if (rc)
7283 		return rc;
7284 	vaddr = remap_pci_mem(paddr, 0x250);
7285 	if (!vaddr)
7286 		return -ENOMEM;
7287 
7288 	/* find cfgtable in order to check if reset via doorbell is supported */
7289 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7290 					&cfg_base_addr_index, &cfg_offset);
7291 	if (rc)
7292 		goto unmap_vaddr;
7293 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7294 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7295 	if (!cfgtable) {
7296 		rc = -ENOMEM;
7297 		goto unmap_vaddr;
7298 	}
7299 	rc = write_driver_ver_to_cfgtable(cfgtable);
7300 	if (rc)
7301 		goto unmap_cfgtable;
7302 
7303 	/* If reset via doorbell register is supported, use that.
7304 	 * There are two such methods.  Favor the newest method.
7305 	 */
7306 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7307 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7308 	if (use_doorbell) {
7309 		use_doorbell = DOORBELL_CTLR_RESET2;
7310 	} else {
7311 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7312 		if (use_doorbell) {
7313 			dev_warn(&pdev->dev,
7314 				"Soft reset not supported. Firmware update is required.\n");
7315 			rc = -ENOTSUPP; /* try soft reset */
7316 			goto unmap_cfgtable;
7317 		}
7318 	}
7319 
7320 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7321 	if (rc)
7322 		goto unmap_cfgtable;
7323 
7324 	pci_restore_state(pdev);
7325 	pci_write_config_word(pdev, 4, command_register);
7326 
7327 	/* Some devices (notably the HP Smart Array 5i Controller)
7328 	   need a little pause here */
7329 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7330 
7331 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7332 	if (rc) {
7333 		dev_warn(&pdev->dev,
7334 			"Failed waiting for board to become ready after hard reset\n");
7335 		goto unmap_cfgtable;
7336 	}
7337 
7338 	rc = controller_reset_failed(vaddr);
7339 	if (rc < 0)
7340 		goto unmap_cfgtable;
7341 	if (rc) {
7342 		dev_warn(&pdev->dev, "Unable to successfully reset "
7343 			"controller. Will try soft reset.\n");
7344 		rc = -ENOTSUPP;
7345 	} else {
7346 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7347 	}
7348 
7349 unmap_cfgtable:
7350 	iounmap(cfgtable);
7351 
7352 unmap_vaddr:
7353 	iounmap(vaddr);
7354 	return rc;
7355 }
7356 
7357 /*
7358  *  We cannot read the structure directly, for portability we must use
7359  *   the io functions.
7360  *   This is for debug only.
7361  */
7362 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7363 {
7364 #ifdef HPSA_DEBUG
7365 	int i;
7366 	char temp_name[17];
7367 
7368 	dev_info(dev, "Controller Configuration information\n");
7369 	dev_info(dev, "------------------------------------\n");
7370 	for (i = 0; i < 4; i++)
7371 		temp_name[i] = readb(&(tb->Signature[i]));
7372 	temp_name[4] = '\0';
7373 	dev_info(dev, "   Signature = %s\n", temp_name);
7374 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7375 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7376 	       readl(&(tb->TransportSupport)));
7377 	dev_info(dev, "   Transport methods active = 0x%x\n",
7378 	       readl(&(tb->TransportActive)));
7379 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7380 	       readl(&(tb->HostWrite.TransportRequest)));
7381 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7382 	       readl(&(tb->HostWrite.CoalIntDelay)));
7383 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7384 	       readl(&(tb->HostWrite.CoalIntCount)));
7385 	dev_info(dev, "   Max outstanding commands = %d\n",
7386 	       readl(&(tb->CmdsOutMax)));
7387 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7388 	for (i = 0; i < 16; i++)
7389 		temp_name[i] = readb(&(tb->ServerName[i]));
7390 	temp_name[16] = '\0';
7391 	dev_info(dev, "   Server Name = %s\n", temp_name);
7392 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7393 		readl(&(tb->HeartBeat)));
7394 #endif				/* HPSA_DEBUG */
7395 }
7396 
7397 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7398 {
7399 	int i, offset, mem_type, bar_type;
7400 
7401 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7402 		return 0;
7403 	offset = 0;
7404 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7405 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7406 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7407 			offset += 4;
7408 		else {
7409 			mem_type = pci_resource_flags(pdev, i) &
7410 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7411 			switch (mem_type) {
7412 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7413 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7414 				offset += 4;	/* 32 bit */
7415 				break;
7416 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7417 				offset += 8;
7418 				break;
7419 			default:	/* reserved in PCI 2.2 */
7420 				dev_warn(&pdev->dev,
7421 				       "base address is invalid\n");
7422 				return -1;
7423 				break;
7424 			}
7425 		}
7426 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7427 			return i + 1;
7428 	}
7429 	return -1;
7430 }
7431 
7432 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7433 {
7434 	pci_free_irq_vectors(h->pdev);
7435 	h->msix_vectors = 0;
7436 }
7437 
7438 static void hpsa_setup_reply_map(struct ctlr_info *h)
7439 {
7440 	const struct cpumask *mask;
7441 	unsigned int queue, cpu;
7442 
7443 	for (queue = 0; queue < h->msix_vectors; queue++) {
7444 		mask = pci_irq_get_affinity(h->pdev, queue);
7445 		if (!mask)
7446 			goto fallback;
7447 
7448 		for_each_cpu(cpu, mask)
7449 			h->reply_map[cpu] = queue;
7450 	}
7451 	return;
7452 
7453 fallback:
7454 	for_each_possible_cpu(cpu)
7455 		h->reply_map[cpu] = 0;
7456 }
7457 
7458 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7459  * controllers that are capable. If not, we use legacy INTx mode.
7460  */
7461 static int hpsa_interrupt_mode(struct ctlr_info *h)
7462 {
7463 	unsigned int flags = PCI_IRQ_LEGACY;
7464 	int ret;
7465 
7466 	/* Some boards advertise MSI but don't really support it */
7467 	switch (h->board_id) {
7468 	case 0x40700E11:
7469 	case 0x40800E11:
7470 	case 0x40820E11:
7471 	case 0x40830E11:
7472 		break;
7473 	default:
7474 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7475 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7476 		if (ret > 0) {
7477 			h->msix_vectors = ret;
7478 			return 0;
7479 		}
7480 
7481 		flags |= PCI_IRQ_MSI;
7482 		break;
7483 	}
7484 
7485 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7486 	if (ret < 0)
7487 		return ret;
7488 	return 0;
7489 }
7490 
7491 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7492 				bool *legacy_board)
7493 {
7494 	int i;
7495 	u32 subsystem_vendor_id, subsystem_device_id;
7496 
7497 	subsystem_vendor_id = pdev->subsystem_vendor;
7498 	subsystem_device_id = pdev->subsystem_device;
7499 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7500 		    subsystem_vendor_id;
7501 
7502 	if (legacy_board)
7503 		*legacy_board = false;
7504 	for (i = 0; i < ARRAY_SIZE(products); i++)
7505 		if (*board_id == products[i].board_id) {
7506 			if (products[i].access != &SA5A_access &&
7507 			    products[i].access != &SA5B_access)
7508 				return i;
7509 			dev_warn(&pdev->dev,
7510 				 "legacy board ID: 0x%08x\n",
7511 				 *board_id);
7512 			if (legacy_board)
7513 			    *legacy_board = true;
7514 			return i;
7515 		}
7516 
7517 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7518 	if (legacy_board)
7519 		*legacy_board = true;
7520 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7521 }
7522 
7523 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7524 				    unsigned long *memory_bar)
7525 {
7526 	int i;
7527 
7528 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7529 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7530 			/* addressing mode bits already removed */
7531 			*memory_bar = pci_resource_start(pdev, i);
7532 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7533 				*memory_bar);
7534 			return 0;
7535 		}
7536 	dev_warn(&pdev->dev, "no memory BAR found\n");
7537 	return -ENODEV;
7538 }
7539 
7540 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7541 				     int wait_for_ready)
7542 {
7543 	int i, iterations;
7544 	u32 scratchpad;
7545 	if (wait_for_ready)
7546 		iterations = HPSA_BOARD_READY_ITERATIONS;
7547 	else
7548 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7549 
7550 	for (i = 0; i < iterations; i++) {
7551 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7552 		if (wait_for_ready) {
7553 			if (scratchpad == HPSA_FIRMWARE_READY)
7554 				return 0;
7555 		} else {
7556 			if (scratchpad != HPSA_FIRMWARE_READY)
7557 				return 0;
7558 		}
7559 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7560 	}
7561 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7562 	return -ENODEV;
7563 }
7564 
7565 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7566 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7567 			       u64 *cfg_offset)
7568 {
7569 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7570 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7571 	*cfg_base_addr &= (u32) 0x0000ffff;
7572 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7573 	if (*cfg_base_addr_index == -1) {
7574 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7575 		return -ENODEV;
7576 	}
7577 	return 0;
7578 }
7579 
7580 static void hpsa_free_cfgtables(struct ctlr_info *h)
7581 {
7582 	if (h->transtable) {
7583 		iounmap(h->transtable);
7584 		h->transtable = NULL;
7585 	}
7586 	if (h->cfgtable) {
7587 		iounmap(h->cfgtable);
7588 		h->cfgtable = NULL;
7589 	}
7590 }
7591 
7592 /* Find and map CISS config table and transfer table
7593 + * several items must be unmapped (freed) later
7594 + * */
7595 static int hpsa_find_cfgtables(struct ctlr_info *h)
7596 {
7597 	u64 cfg_offset;
7598 	u32 cfg_base_addr;
7599 	u64 cfg_base_addr_index;
7600 	u32 trans_offset;
7601 	int rc;
7602 
7603 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7604 		&cfg_base_addr_index, &cfg_offset);
7605 	if (rc)
7606 		return rc;
7607 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7608 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7609 	if (!h->cfgtable) {
7610 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7611 		return -ENOMEM;
7612 	}
7613 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7614 	if (rc)
7615 		return rc;
7616 	/* Find performant mode table. */
7617 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7618 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7619 				cfg_base_addr_index)+cfg_offset+trans_offset,
7620 				sizeof(*h->transtable));
7621 	if (!h->transtable) {
7622 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7623 		hpsa_free_cfgtables(h);
7624 		return -ENOMEM;
7625 	}
7626 	return 0;
7627 }
7628 
7629 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7630 {
7631 #define MIN_MAX_COMMANDS 16
7632 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7633 
7634 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7635 
7636 	/* Limit commands in memory limited kdump scenario. */
7637 	if (reset_devices && h->max_commands > 32)
7638 		h->max_commands = 32;
7639 
7640 	if (h->max_commands < MIN_MAX_COMMANDS) {
7641 		dev_warn(&h->pdev->dev,
7642 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7643 			h->max_commands,
7644 			MIN_MAX_COMMANDS);
7645 		h->max_commands = MIN_MAX_COMMANDS;
7646 	}
7647 }
7648 
7649 /* If the controller reports that the total max sg entries is greater than 512,
7650  * then we know that chained SG blocks work.  (Original smart arrays did not
7651  * support chained SG blocks and would return zero for max sg entries.)
7652  */
7653 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7654 {
7655 	return h->maxsgentries > 512;
7656 }
7657 
7658 /* Interrogate the hardware for some limits:
7659  * max commands, max SG elements without chaining, and with chaining,
7660  * SG chain block size, etc.
7661  */
7662 static void hpsa_find_board_params(struct ctlr_info *h)
7663 {
7664 	hpsa_get_max_perf_mode_cmds(h);
7665 	h->nr_cmds = h->max_commands;
7666 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7667 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7668 	if (hpsa_supports_chained_sg_blocks(h)) {
7669 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7670 		h->max_cmd_sg_entries = 32;
7671 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7672 		h->maxsgentries--; /* save one for chain pointer */
7673 	} else {
7674 		/*
7675 		 * Original smart arrays supported at most 31 s/g entries
7676 		 * embedded inline in the command (trying to use more
7677 		 * would lock up the controller)
7678 		 */
7679 		h->max_cmd_sg_entries = 31;
7680 		h->maxsgentries = 31; /* default to traditional values */
7681 		h->chainsize = 0;
7682 	}
7683 
7684 	/* Find out what task management functions are supported and cache */
7685 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7686 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7687 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7688 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7689 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7690 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7691 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7692 }
7693 
7694 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7695 {
7696 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7697 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7698 		return false;
7699 	}
7700 	return true;
7701 }
7702 
7703 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7704 {
7705 	u32 driver_support;
7706 
7707 	driver_support = readl(&(h->cfgtable->driver_support));
7708 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7709 #ifdef CONFIG_X86
7710 	driver_support |= ENABLE_SCSI_PREFETCH;
7711 #endif
7712 	driver_support |= ENABLE_UNIT_ATTN;
7713 	writel(driver_support, &(h->cfgtable->driver_support));
7714 }
7715 
7716 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7717  * in a prefetch beyond physical memory.
7718  */
7719 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7720 {
7721 	u32 dma_prefetch;
7722 
7723 	if (h->board_id != 0x3225103C)
7724 		return;
7725 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7726 	dma_prefetch |= 0x8000;
7727 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7728 }
7729 
7730 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7731 {
7732 	int i;
7733 	u32 doorbell_value;
7734 	unsigned long flags;
7735 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7736 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7737 		spin_lock_irqsave(&h->lock, flags);
7738 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7739 		spin_unlock_irqrestore(&h->lock, flags);
7740 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7741 			goto done;
7742 		/* delay and try again */
7743 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7744 	}
7745 	return -ENODEV;
7746 done:
7747 	return 0;
7748 }
7749 
7750 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7751 {
7752 	int i;
7753 	u32 doorbell_value;
7754 	unsigned long flags;
7755 
7756 	/* under certain very rare conditions, this can take awhile.
7757 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7758 	 * as we enter this code.)
7759 	 */
7760 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7761 		if (h->remove_in_progress)
7762 			goto done;
7763 		spin_lock_irqsave(&h->lock, flags);
7764 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7765 		spin_unlock_irqrestore(&h->lock, flags);
7766 		if (!(doorbell_value & CFGTBL_ChangeReq))
7767 			goto done;
7768 		/* delay and try again */
7769 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7770 	}
7771 	return -ENODEV;
7772 done:
7773 	return 0;
7774 }
7775 
7776 /* return -ENODEV or other reason on error, 0 on success */
7777 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7778 {
7779 	u32 trans_support;
7780 
7781 	trans_support = readl(&(h->cfgtable->TransportSupport));
7782 	if (!(trans_support & SIMPLE_MODE))
7783 		return -ENOTSUPP;
7784 
7785 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7786 
7787 	/* Update the field, and then ring the doorbell */
7788 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7789 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7790 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7791 	if (hpsa_wait_for_mode_change_ack(h))
7792 		goto error;
7793 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7794 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7795 		goto error;
7796 	h->transMethod = CFGTBL_Trans_Simple;
7797 	return 0;
7798 error:
7799 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7800 	return -ENODEV;
7801 }
7802 
7803 /* free items allocated or mapped by hpsa_pci_init */
7804 static void hpsa_free_pci_init(struct ctlr_info *h)
7805 {
7806 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7807 	iounmap(h->vaddr);			/* pci_init 3 */
7808 	h->vaddr = NULL;
7809 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7810 	/*
7811 	 * call pci_disable_device before pci_release_regions per
7812 	 * Documentation/driver-api/pci/pci.rst
7813 	 */
7814 	pci_disable_device(h->pdev);		/* pci_init 1 */
7815 	pci_release_regions(h->pdev);		/* pci_init 2 */
7816 }
7817 
7818 /* several items must be freed later */
7819 static int hpsa_pci_init(struct ctlr_info *h)
7820 {
7821 	int prod_index, err;
7822 	bool legacy_board;
7823 
7824 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7825 	if (prod_index < 0)
7826 		return prod_index;
7827 	h->product_name = products[prod_index].product_name;
7828 	h->access = *(products[prod_index].access);
7829 	h->legacy_board = legacy_board;
7830 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7831 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7832 
7833 	err = pci_enable_device(h->pdev);
7834 	if (err) {
7835 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7836 		pci_disable_device(h->pdev);
7837 		return err;
7838 	}
7839 
7840 	err = pci_request_regions(h->pdev, HPSA);
7841 	if (err) {
7842 		dev_err(&h->pdev->dev,
7843 			"failed to obtain PCI resources\n");
7844 		pci_disable_device(h->pdev);
7845 		return err;
7846 	}
7847 
7848 	pci_set_master(h->pdev);
7849 
7850 	err = hpsa_interrupt_mode(h);
7851 	if (err)
7852 		goto clean1;
7853 
7854 	/* setup mapping between CPU and reply queue */
7855 	hpsa_setup_reply_map(h);
7856 
7857 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7858 	if (err)
7859 		goto clean2;	/* intmode+region, pci */
7860 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7861 	if (!h->vaddr) {
7862 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7863 		err = -ENOMEM;
7864 		goto clean2;	/* intmode+region, pci */
7865 	}
7866 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7867 	if (err)
7868 		goto clean3;	/* vaddr, intmode+region, pci */
7869 	err = hpsa_find_cfgtables(h);
7870 	if (err)
7871 		goto clean3;	/* vaddr, intmode+region, pci */
7872 	hpsa_find_board_params(h);
7873 
7874 	if (!hpsa_CISS_signature_present(h)) {
7875 		err = -ENODEV;
7876 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7877 	}
7878 	hpsa_set_driver_support_bits(h);
7879 	hpsa_p600_dma_prefetch_quirk(h);
7880 	err = hpsa_enter_simple_mode(h);
7881 	if (err)
7882 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7883 	return 0;
7884 
7885 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7886 	hpsa_free_cfgtables(h);
7887 clean3:	/* vaddr, intmode+region, pci */
7888 	iounmap(h->vaddr);
7889 	h->vaddr = NULL;
7890 clean2:	/* intmode+region, pci */
7891 	hpsa_disable_interrupt_mode(h);
7892 clean1:
7893 	/*
7894 	 * call pci_disable_device before pci_release_regions per
7895 	 * Documentation/driver-api/pci/pci.rst
7896 	 */
7897 	pci_disable_device(h->pdev);
7898 	pci_release_regions(h->pdev);
7899 	return err;
7900 }
7901 
7902 static void hpsa_hba_inquiry(struct ctlr_info *h)
7903 {
7904 	int rc;
7905 
7906 #define HBA_INQUIRY_BYTE_COUNT 64
7907 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7908 	if (!h->hba_inquiry_data)
7909 		return;
7910 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7911 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7912 	if (rc != 0) {
7913 		kfree(h->hba_inquiry_data);
7914 		h->hba_inquiry_data = NULL;
7915 	}
7916 }
7917 
7918 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7919 {
7920 	int rc, i;
7921 	void __iomem *vaddr;
7922 
7923 	if (!reset_devices)
7924 		return 0;
7925 
7926 	/* kdump kernel is loading, we don't know in which state is
7927 	 * the pci interface. The dev->enable_cnt is equal zero
7928 	 * so we call enable+disable, wait a while and switch it on.
7929 	 */
7930 	rc = pci_enable_device(pdev);
7931 	if (rc) {
7932 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7933 		return -ENODEV;
7934 	}
7935 	pci_disable_device(pdev);
7936 	msleep(260);			/* a randomly chosen number */
7937 	rc = pci_enable_device(pdev);
7938 	if (rc) {
7939 		dev_warn(&pdev->dev, "failed to enable device.\n");
7940 		return -ENODEV;
7941 	}
7942 
7943 	pci_set_master(pdev);
7944 
7945 	vaddr = pci_ioremap_bar(pdev, 0);
7946 	if (vaddr == NULL) {
7947 		rc = -ENOMEM;
7948 		goto out_disable;
7949 	}
7950 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7951 	iounmap(vaddr);
7952 
7953 	/* Reset the controller with a PCI power-cycle or via doorbell */
7954 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7955 
7956 	/* -ENOTSUPP here means we cannot reset the controller
7957 	 * but it's already (and still) up and running in
7958 	 * "performant mode".  Or, it might be 640x, which can't reset
7959 	 * due to concerns about shared bbwc between 6402/6404 pair.
7960 	 */
7961 	if (rc)
7962 		goto out_disable;
7963 
7964 	/* Now try to get the controller to respond to a no-op */
7965 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7966 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7967 		if (hpsa_noop(pdev) == 0)
7968 			break;
7969 		else
7970 			dev_warn(&pdev->dev, "no-op failed%s\n",
7971 					(i < 11 ? "; re-trying" : ""));
7972 	}
7973 
7974 out_disable:
7975 
7976 	pci_disable_device(pdev);
7977 	return rc;
7978 }
7979 
7980 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7981 {
7982 	kfree(h->cmd_pool_bits);
7983 	h->cmd_pool_bits = NULL;
7984 	if (h->cmd_pool) {
7985 		dma_free_coherent(&h->pdev->dev,
7986 				h->nr_cmds * sizeof(struct CommandList),
7987 				h->cmd_pool,
7988 				h->cmd_pool_dhandle);
7989 		h->cmd_pool = NULL;
7990 		h->cmd_pool_dhandle = 0;
7991 	}
7992 	if (h->errinfo_pool) {
7993 		dma_free_coherent(&h->pdev->dev,
7994 				h->nr_cmds * sizeof(struct ErrorInfo),
7995 				h->errinfo_pool,
7996 				h->errinfo_pool_dhandle);
7997 		h->errinfo_pool = NULL;
7998 		h->errinfo_pool_dhandle = 0;
7999 	}
8000 }
8001 
8002 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8003 {
8004 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8005 				   sizeof(unsigned long),
8006 				   GFP_KERNEL);
8007 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8008 		    h->nr_cmds * sizeof(*h->cmd_pool),
8009 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8010 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8011 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8012 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8013 	if ((h->cmd_pool_bits == NULL)
8014 	    || (h->cmd_pool == NULL)
8015 	    || (h->errinfo_pool == NULL)) {
8016 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8017 		goto clean_up;
8018 	}
8019 	hpsa_preinitialize_commands(h);
8020 	return 0;
8021 clean_up:
8022 	hpsa_free_cmd_pool(h);
8023 	return -ENOMEM;
8024 }
8025 
8026 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8027 static void hpsa_free_irqs(struct ctlr_info *h)
8028 {
8029 	int i;
8030 	int irq_vector = 0;
8031 
8032 	if (hpsa_simple_mode)
8033 		irq_vector = h->intr_mode;
8034 
8035 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8036 		/* Single reply queue, only one irq to free */
8037 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8038 				&h->q[h->intr_mode]);
8039 		h->q[h->intr_mode] = 0;
8040 		return;
8041 	}
8042 
8043 	for (i = 0; i < h->msix_vectors; i++) {
8044 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8045 		h->q[i] = 0;
8046 	}
8047 	for (; i < MAX_REPLY_QUEUES; i++)
8048 		h->q[i] = 0;
8049 }
8050 
8051 /* returns 0 on success; cleans up and returns -Enn on error */
8052 static int hpsa_request_irqs(struct ctlr_info *h,
8053 	irqreturn_t (*msixhandler)(int, void *),
8054 	irqreturn_t (*intxhandler)(int, void *))
8055 {
8056 	int rc, i;
8057 	int irq_vector = 0;
8058 
8059 	if (hpsa_simple_mode)
8060 		irq_vector = h->intr_mode;
8061 
8062 	/*
8063 	 * initialize h->q[x] = x so that interrupt handlers know which
8064 	 * queue to process.
8065 	 */
8066 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8067 		h->q[i] = (u8) i;
8068 
8069 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8070 		/* If performant mode and MSI-X, use multiple reply queues */
8071 		for (i = 0; i < h->msix_vectors; i++) {
8072 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8073 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8074 					0, h->intrname[i],
8075 					&h->q[i]);
8076 			if (rc) {
8077 				int j;
8078 
8079 				dev_err(&h->pdev->dev,
8080 					"failed to get irq %d for %s\n",
8081 				       pci_irq_vector(h->pdev, i), h->devname);
8082 				for (j = 0; j < i; j++) {
8083 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8084 					h->q[j] = 0;
8085 				}
8086 				for (; j < MAX_REPLY_QUEUES; j++)
8087 					h->q[j] = 0;
8088 				return rc;
8089 			}
8090 		}
8091 	} else {
8092 		/* Use single reply pool */
8093 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8094 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8095 				h->msix_vectors ? "x" : "");
8096 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8097 				msixhandler, 0,
8098 				h->intrname[0],
8099 				&h->q[h->intr_mode]);
8100 		} else {
8101 			sprintf(h->intrname[h->intr_mode],
8102 				"%s-intx", h->devname);
8103 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8104 				intxhandler, IRQF_SHARED,
8105 				h->intrname[0],
8106 				&h->q[h->intr_mode]);
8107 		}
8108 	}
8109 	if (rc) {
8110 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8111 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8112 		hpsa_free_irqs(h);
8113 		return -ENODEV;
8114 	}
8115 	return 0;
8116 }
8117 
8118 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8119 {
8120 	int rc;
8121 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8122 
8123 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8124 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8125 	if (rc) {
8126 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8127 		return rc;
8128 	}
8129 
8130 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8131 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8132 	if (rc) {
8133 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8134 			"after soft reset.\n");
8135 		return rc;
8136 	}
8137 
8138 	return 0;
8139 }
8140 
8141 static void hpsa_free_reply_queues(struct ctlr_info *h)
8142 {
8143 	int i;
8144 
8145 	for (i = 0; i < h->nreply_queues; i++) {
8146 		if (!h->reply_queue[i].head)
8147 			continue;
8148 		dma_free_coherent(&h->pdev->dev,
8149 					h->reply_queue_size,
8150 					h->reply_queue[i].head,
8151 					h->reply_queue[i].busaddr);
8152 		h->reply_queue[i].head = NULL;
8153 		h->reply_queue[i].busaddr = 0;
8154 	}
8155 	h->reply_queue_size = 0;
8156 }
8157 
8158 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8159 {
8160 	hpsa_free_performant_mode(h);		/* init_one 7 */
8161 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8162 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8163 	hpsa_free_irqs(h);			/* init_one 4 */
8164 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8165 	h->scsi_host = NULL;			/* init_one 3 */
8166 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8167 	free_percpu(h->lockup_detected);	/* init_one 2 */
8168 	h->lockup_detected = NULL;		/* init_one 2 */
8169 	if (h->resubmit_wq) {
8170 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8171 		h->resubmit_wq = NULL;
8172 	}
8173 	if (h->rescan_ctlr_wq) {
8174 		destroy_workqueue(h->rescan_ctlr_wq);
8175 		h->rescan_ctlr_wq = NULL;
8176 	}
8177 	if (h->monitor_ctlr_wq) {
8178 		destroy_workqueue(h->monitor_ctlr_wq);
8179 		h->monitor_ctlr_wq = NULL;
8180 	}
8181 
8182 	kfree(h);				/* init_one 1 */
8183 }
8184 
8185 /* Called when controller lockup detected. */
8186 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8187 {
8188 	int i, refcount;
8189 	struct CommandList *c;
8190 	int failcount = 0;
8191 
8192 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8193 	for (i = 0; i < h->nr_cmds; i++) {
8194 		c = h->cmd_pool + i;
8195 		refcount = atomic_inc_return(&c->refcount);
8196 		if (refcount > 1) {
8197 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8198 			finish_cmd(c);
8199 			atomic_dec(&h->commands_outstanding);
8200 			failcount++;
8201 		}
8202 		cmd_free(h, c);
8203 	}
8204 	dev_warn(&h->pdev->dev,
8205 		"failed %d commands in fail_all\n", failcount);
8206 }
8207 
8208 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8209 {
8210 	int cpu;
8211 
8212 	for_each_online_cpu(cpu) {
8213 		u32 *lockup_detected;
8214 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8215 		*lockup_detected = value;
8216 	}
8217 	wmb(); /* be sure the per-cpu variables are out to memory */
8218 }
8219 
8220 static void controller_lockup_detected(struct ctlr_info *h)
8221 {
8222 	unsigned long flags;
8223 	u32 lockup_detected;
8224 
8225 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8226 	spin_lock_irqsave(&h->lock, flags);
8227 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8228 	if (!lockup_detected) {
8229 		/* no heartbeat, but controller gave us a zero. */
8230 		dev_warn(&h->pdev->dev,
8231 			"lockup detected after %d but scratchpad register is zero\n",
8232 			h->heartbeat_sample_interval / HZ);
8233 		lockup_detected = 0xffffffff;
8234 	}
8235 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8236 	spin_unlock_irqrestore(&h->lock, flags);
8237 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8238 			lockup_detected, h->heartbeat_sample_interval / HZ);
8239 	if (lockup_detected == 0xffff0000) {
8240 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8241 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8242 	}
8243 	pci_disable_device(h->pdev);
8244 	fail_all_outstanding_cmds(h);
8245 }
8246 
8247 static int detect_controller_lockup(struct ctlr_info *h)
8248 {
8249 	u64 now;
8250 	u32 heartbeat;
8251 	unsigned long flags;
8252 
8253 	now = get_jiffies_64();
8254 	/* If we've received an interrupt recently, we're ok. */
8255 	if (time_after64(h->last_intr_timestamp +
8256 				(h->heartbeat_sample_interval), now))
8257 		return false;
8258 
8259 	/*
8260 	 * If we've already checked the heartbeat recently, we're ok.
8261 	 * This could happen if someone sends us a signal. We
8262 	 * otherwise don't care about signals in this thread.
8263 	 */
8264 	if (time_after64(h->last_heartbeat_timestamp +
8265 				(h->heartbeat_sample_interval), now))
8266 		return false;
8267 
8268 	/* If heartbeat has not changed since we last looked, we're not ok. */
8269 	spin_lock_irqsave(&h->lock, flags);
8270 	heartbeat = readl(&h->cfgtable->HeartBeat);
8271 	spin_unlock_irqrestore(&h->lock, flags);
8272 	if (h->last_heartbeat == heartbeat) {
8273 		controller_lockup_detected(h);
8274 		return true;
8275 	}
8276 
8277 	/* We're ok. */
8278 	h->last_heartbeat = heartbeat;
8279 	h->last_heartbeat_timestamp = now;
8280 	return false;
8281 }
8282 
8283 /*
8284  * Set ioaccel status for all ioaccel volumes.
8285  *
8286  * Called from monitor controller worker (hpsa_event_monitor_worker)
8287  *
8288  * A Volume (or Volumes that comprise an Array set may be undergoing a
8289  * transformation, so we will be turning off ioaccel for all volumes that
8290  * make up the Array.
8291  */
8292 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8293 {
8294 	int rc;
8295 	int i;
8296 	u8 ioaccel_status;
8297 	unsigned char *buf;
8298 	struct hpsa_scsi_dev_t *device;
8299 
8300 	if (!h)
8301 		return;
8302 
8303 	buf = kmalloc(64, GFP_KERNEL);
8304 	if (!buf)
8305 		return;
8306 
8307 	/*
8308 	 * Run through current device list used during I/O requests.
8309 	 */
8310 	for (i = 0; i < h->ndevices; i++) {
8311 		device = h->dev[i];
8312 
8313 		if (!device)
8314 			continue;
8315 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8316 						HPSA_VPD_LV_IOACCEL_STATUS))
8317 			continue;
8318 
8319 		memset(buf, 0, 64);
8320 
8321 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8322 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8323 					buf, 64);
8324 		if (rc != 0)
8325 			continue;
8326 
8327 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8328 		device->offload_config =
8329 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8330 		if (device->offload_config)
8331 			device->offload_to_be_enabled =
8332 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8333 
8334 		/*
8335 		 * Immediately turn off ioaccel for any volume the
8336 		 * controller tells us to. Some of the reasons could be:
8337 		 *    transformation - change to the LVs of an Array.
8338 		 *    degraded volume - component failure
8339 		 *
8340 		 * If ioaccel is to be re-enabled, re-enable later during the
8341 		 * scan operation so the driver can get a fresh raidmap
8342 		 * before turning ioaccel back on.
8343 		 *
8344 		 */
8345 		if (!device->offload_to_be_enabled)
8346 			device->offload_enabled = 0;
8347 	}
8348 
8349 	kfree(buf);
8350 }
8351 
8352 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8353 {
8354 	char *event_type;
8355 
8356 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8357 		return;
8358 
8359 	/* Ask the controller to clear the events we're handling. */
8360 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8361 			| CFGTBL_Trans_io_accel2)) &&
8362 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8363 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8364 
8365 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8366 			event_type = "state change";
8367 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8368 			event_type = "configuration change";
8369 		/* Stop sending new RAID offload reqs via the IO accelerator */
8370 		scsi_block_requests(h->scsi_host);
8371 		hpsa_set_ioaccel_status(h);
8372 		hpsa_drain_accel_commands(h);
8373 		/* Set 'accelerator path config change' bit */
8374 		dev_warn(&h->pdev->dev,
8375 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8376 			h->events, event_type);
8377 		writel(h->events, &(h->cfgtable->clear_event_notify));
8378 		/* Set the "clear event notify field update" bit 6 */
8379 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8380 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8381 		hpsa_wait_for_clear_event_notify_ack(h);
8382 		scsi_unblock_requests(h->scsi_host);
8383 	} else {
8384 		/* Acknowledge controller notification events. */
8385 		writel(h->events, &(h->cfgtable->clear_event_notify));
8386 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8387 		hpsa_wait_for_clear_event_notify_ack(h);
8388 	}
8389 	return;
8390 }
8391 
8392 /* Check a register on the controller to see if there are configuration
8393  * changes (added/changed/removed logical drives, etc.) which mean that
8394  * we should rescan the controller for devices.
8395  * Also check flag for driver-initiated rescan.
8396  */
8397 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8398 {
8399 	if (h->drv_req_rescan) {
8400 		h->drv_req_rescan = 0;
8401 		return 1;
8402 	}
8403 
8404 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8405 		return 0;
8406 
8407 	h->events = readl(&(h->cfgtable->event_notify));
8408 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8409 }
8410 
8411 /*
8412  * Check if any of the offline devices have become ready
8413  */
8414 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8415 {
8416 	unsigned long flags;
8417 	struct offline_device_entry *d;
8418 	struct list_head *this, *tmp;
8419 
8420 	spin_lock_irqsave(&h->offline_device_lock, flags);
8421 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8422 		d = list_entry(this, struct offline_device_entry,
8423 				offline_list);
8424 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8425 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8426 			spin_lock_irqsave(&h->offline_device_lock, flags);
8427 			list_del(&d->offline_list);
8428 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8429 			return 1;
8430 		}
8431 		spin_lock_irqsave(&h->offline_device_lock, flags);
8432 	}
8433 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8434 	return 0;
8435 }
8436 
8437 static int hpsa_luns_changed(struct ctlr_info *h)
8438 {
8439 	int rc = 1; /* assume there are changes */
8440 	struct ReportLUNdata *logdev = NULL;
8441 
8442 	/* if we can't find out if lun data has changed,
8443 	 * assume that it has.
8444 	 */
8445 
8446 	if (!h->lastlogicals)
8447 		return rc;
8448 
8449 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8450 	if (!logdev)
8451 		return rc;
8452 
8453 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8454 		dev_warn(&h->pdev->dev,
8455 			"report luns failed, can't track lun changes.\n");
8456 		goto out;
8457 	}
8458 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8459 		dev_info(&h->pdev->dev,
8460 			"Lun changes detected.\n");
8461 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8462 		goto out;
8463 	} else
8464 		rc = 0; /* no changes detected. */
8465 out:
8466 	kfree(logdev);
8467 	return rc;
8468 }
8469 
8470 static void hpsa_perform_rescan(struct ctlr_info *h)
8471 {
8472 	struct Scsi_Host *sh = NULL;
8473 	unsigned long flags;
8474 
8475 	/*
8476 	 * Do the scan after the reset
8477 	 */
8478 	spin_lock_irqsave(&h->reset_lock, flags);
8479 	if (h->reset_in_progress) {
8480 		h->drv_req_rescan = 1;
8481 		spin_unlock_irqrestore(&h->reset_lock, flags);
8482 		return;
8483 	}
8484 	spin_unlock_irqrestore(&h->reset_lock, flags);
8485 
8486 	sh = scsi_host_get(h->scsi_host);
8487 	if (sh != NULL) {
8488 		hpsa_scan_start(sh);
8489 		scsi_host_put(sh);
8490 		h->drv_req_rescan = 0;
8491 	}
8492 }
8493 
8494 /*
8495  * watch for controller events
8496  */
8497 static void hpsa_event_monitor_worker(struct work_struct *work)
8498 {
8499 	struct ctlr_info *h = container_of(to_delayed_work(work),
8500 					struct ctlr_info, event_monitor_work);
8501 	unsigned long flags;
8502 
8503 	spin_lock_irqsave(&h->lock, flags);
8504 	if (h->remove_in_progress) {
8505 		spin_unlock_irqrestore(&h->lock, flags);
8506 		return;
8507 	}
8508 	spin_unlock_irqrestore(&h->lock, flags);
8509 
8510 	if (hpsa_ctlr_needs_rescan(h)) {
8511 		hpsa_ack_ctlr_events(h);
8512 		hpsa_perform_rescan(h);
8513 	}
8514 
8515 	spin_lock_irqsave(&h->lock, flags);
8516 	if (!h->remove_in_progress)
8517 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8518 				HPSA_EVENT_MONITOR_INTERVAL);
8519 	spin_unlock_irqrestore(&h->lock, flags);
8520 }
8521 
8522 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8523 {
8524 	unsigned long flags;
8525 	struct ctlr_info *h = container_of(to_delayed_work(work),
8526 					struct ctlr_info, rescan_ctlr_work);
8527 
8528 	spin_lock_irqsave(&h->lock, flags);
8529 	if (h->remove_in_progress) {
8530 		spin_unlock_irqrestore(&h->lock, flags);
8531 		return;
8532 	}
8533 	spin_unlock_irqrestore(&h->lock, flags);
8534 
8535 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8536 		hpsa_perform_rescan(h);
8537 	} else if (h->discovery_polling) {
8538 		if (hpsa_luns_changed(h)) {
8539 			dev_info(&h->pdev->dev,
8540 				"driver discovery polling rescan.\n");
8541 			hpsa_perform_rescan(h);
8542 		}
8543 	}
8544 	spin_lock_irqsave(&h->lock, flags);
8545 	if (!h->remove_in_progress)
8546 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8547 				h->heartbeat_sample_interval);
8548 	spin_unlock_irqrestore(&h->lock, flags);
8549 }
8550 
8551 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8552 {
8553 	unsigned long flags;
8554 	struct ctlr_info *h = container_of(to_delayed_work(work),
8555 					struct ctlr_info, monitor_ctlr_work);
8556 
8557 	detect_controller_lockup(h);
8558 	if (lockup_detected(h))
8559 		return;
8560 
8561 	spin_lock_irqsave(&h->lock, flags);
8562 	if (!h->remove_in_progress)
8563 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8564 				h->heartbeat_sample_interval);
8565 	spin_unlock_irqrestore(&h->lock, flags);
8566 }
8567 
8568 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8569 						char *name)
8570 {
8571 	struct workqueue_struct *wq = NULL;
8572 
8573 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8574 	if (!wq)
8575 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8576 
8577 	return wq;
8578 }
8579 
8580 static void hpda_free_ctlr_info(struct ctlr_info *h)
8581 {
8582 	kfree(h->reply_map);
8583 	kfree(h);
8584 }
8585 
8586 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8587 {
8588 	struct ctlr_info *h;
8589 
8590 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8591 	if (!h)
8592 		return NULL;
8593 
8594 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8595 	if (!h->reply_map) {
8596 		kfree(h);
8597 		return NULL;
8598 	}
8599 	return h;
8600 }
8601 
8602 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8603 {
8604 	int dac, rc;
8605 	struct ctlr_info *h;
8606 	int try_soft_reset = 0;
8607 	unsigned long flags;
8608 	u32 board_id;
8609 
8610 	if (number_of_controllers == 0)
8611 		printk(KERN_INFO DRIVER_NAME "\n");
8612 
8613 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8614 	if (rc < 0) {
8615 		dev_warn(&pdev->dev, "Board ID not found\n");
8616 		return rc;
8617 	}
8618 
8619 	rc = hpsa_init_reset_devices(pdev, board_id);
8620 	if (rc) {
8621 		if (rc != -ENOTSUPP)
8622 			return rc;
8623 		/* If the reset fails in a particular way (it has no way to do
8624 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8625 		 * a soft reset once we get the controller configured up to the
8626 		 * point that it can accept a command.
8627 		 */
8628 		try_soft_reset = 1;
8629 		rc = 0;
8630 	}
8631 
8632 reinit_after_soft_reset:
8633 
8634 	/* Command structures must be aligned on a 32-byte boundary because
8635 	 * the 5 lower bits of the address are used by the hardware. and by
8636 	 * the driver.  See comments in hpsa.h for more info.
8637 	 */
8638 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8639 	h = hpda_alloc_ctlr_info();
8640 	if (!h) {
8641 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8642 		return -ENOMEM;
8643 	}
8644 
8645 	h->pdev = pdev;
8646 
8647 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8648 	INIT_LIST_HEAD(&h->offline_device_list);
8649 	spin_lock_init(&h->lock);
8650 	spin_lock_init(&h->offline_device_lock);
8651 	spin_lock_init(&h->scan_lock);
8652 	spin_lock_init(&h->reset_lock);
8653 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8654 
8655 	/* Allocate and clear per-cpu variable lockup_detected */
8656 	h->lockup_detected = alloc_percpu(u32);
8657 	if (!h->lockup_detected) {
8658 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8659 		rc = -ENOMEM;
8660 		goto clean1;	/* aer/h */
8661 	}
8662 	set_lockup_detected_for_all_cpus(h, 0);
8663 
8664 	rc = hpsa_pci_init(h);
8665 	if (rc)
8666 		goto clean2;	/* lu, aer/h */
8667 
8668 	/* relies on h-> settings made by hpsa_pci_init, including
8669 	 * interrupt_mode h->intr */
8670 	rc = hpsa_scsi_host_alloc(h);
8671 	if (rc)
8672 		goto clean2_5;	/* pci, lu, aer/h */
8673 
8674 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8675 	h->ctlr = number_of_controllers;
8676 	number_of_controllers++;
8677 
8678 	/* configure PCI DMA stuff */
8679 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8680 	if (rc == 0) {
8681 		dac = 1;
8682 	} else {
8683 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8684 		if (rc == 0) {
8685 			dac = 0;
8686 		} else {
8687 			dev_err(&pdev->dev, "no suitable DMA available\n");
8688 			goto clean3;	/* shost, pci, lu, aer/h */
8689 		}
8690 	}
8691 
8692 	/* make sure the board interrupts are off */
8693 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8694 
8695 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8696 	if (rc)
8697 		goto clean3;	/* shost, pci, lu, aer/h */
8698 	rc = hpsa_alloc_cmd_pool(h);
8699 	if (rc)
8700 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8701 	rc = hpsa_alloc_sg_chain_blocks(h);
8702 	if (rc)
8703 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8704 	init_waitqueue_head(&h->scan_wait_queue);
8705 	init_waitqueue_head(&h->event_sync_wait_queue);
8706 	mutex_init(&h->reset_mutex);
8707 	h->scan_finished = 1; /* no scan currently in progress */
8708 	h->scan_waiting = 0;
8709 
8710 	pci_set_drvdata(pdev, h);
8711 	h->ndevices = 0;
8712 
8713 	spin_lock_init(&h->devlock);
8714 	rc = hpsa_put_ctlr_into_performant_mode(h);
8715 	if (rc)
8716 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8717 
8718 	/* create the resubmit workqueue */
8719 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8720 	if (!h->rescan_ctlr_wq) {
8721 		rc = -ENOMEM;
8722 		goto clean7;
8723 	}
8724 
8725 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8726 	if (!h->resubmit_wq) {
8727 		rc = -ENOMEM;
8728 		goto clean7;	/* aer/h */
8729 	}
8730 
8731 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8732 	if (!h->monitor_ctlr_wq) {
8733 		rc = -ENOMEM;
8734 		goto clean7;
8735 	}
8736 
8737 	/*
8738 	 * At this point, the controller is ready to take commands.
8739 	 * Now, if reset_devices and the hard reset didn't work, try
8740 	 * the soft reset and see if that works.
8741 	 */
8742 	if (try_soft_reset) {
8743 
8744 		/* This is kind of gross.  We may or may not get a completion
8745 		 * from the soft reset command, and if we do, then the value
8746 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8747 		 * after the reset throwing away any completions we get during
8748 		 * that time.  Unregister the interrupt handler and register
8749 		 * fake ones to scoop up any residual completions.
8750 		 */
8751 		spin_lock_irqsave(&h->lock, flags);
8752 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753 		spin_unlock_irqrestore(&h->lock, flags);
8754 		hpsa_free_irqs(h);
8755 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8756 					hpsa_intx_discard_completions);
8757 		if (rc) {
8758 			dev_warn(&h->pdev->dev,
8759 				"Failed to request_irq after soft reset.\n");
8760 			/*
8761 			 * cannot goto clean7 or free_irqs will be called
8762 			 * again. Instead, do its work
8763 			 */
8764 			hpsa_free_performant_mode(h);	/* clean7 */
8765 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8766 			hpsa_free_cmd_pool(h);		/* clean5 */
8767 			/*
8768 			 * skip hpsa_free_irqs(h) clean4 since that
8769 			 * was just called before request_irqs failed
8770 			 */
8771 			goto clean3;
8772 		}
8773 
8774 		rc = hpsa_kdump_soft_reset(h);
8775 		if (rc)
8776 			/* Neither hard nor soft reset worked, we're hosed. */
8777 			goto clean7;
8778 
8779 		dev_info(&h->pdev->dev, "Board READY.\n");
8780 		dev_info(&h->pdev->dev,
8781 			"Waiting for stale completions to drain.\n");
8782 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8783 		msleep(10000);
8784 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8785 
8786 		rc = controller_reset_failed(h->cfgtable);
8787 		if (rc)
8788 			dev_info(&h->pdev->dev,
8789 				"Soft reset appears to have failed.\n");
8790 
8791 		/* since the controller's reset, we have to go back and re-init
8792 		 * everything.  Easiest to just forget what we've done and do it
8793 		 * all over again.
8794 		 */
8795 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8796 		try_soft_reset = 0;
8797 		if (rc)
8798 			/* don't goto clean, we already unallocated */
8799 			return -ENODEV;
8800 
8801 		goto reinit_after_soft_reset;
8802 	}
8803 
8804 	/* Enable Accelerated IO path at driver layer */
8805 	h->acciopath_status = 1;
8806 	/* Disable discovery polling.*/
8807 	h->discovery_polling = 0;
8808 
8809 
8810 	/* Turn the interrupts on so we can service requests */
8811 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8812 
8813 	hpsa_hba_inquiry(h);
8814 
8815 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8816 	if (!h->lastlogicals)
8817 		dev_info(&h->pdev->dev,
8818 			"Can't track change to report lun data\n");
8819 
8820 	/* hook into SCSI subsystem */
8821 	rc = hpsa_scsi_add_host(h);
8822 	if (rc)
8823 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8824 
8825 	/* Monitor the controller for firmware lockups */
8826 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8827 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8828 	schedule_delayed_work(&h->monitor_ctlr_work,
8829 				h->heartbeat_sample_interval);
8830 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8831 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8832 				h->heartbeat_sample_interval);
8833 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8834 	schedule_delayed_work(&h->event_monitor_work,
8835 				HPSA_EVENT_MONITOR_INTERVAL);
8836 	return 0;
8837 
8838 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839 	hpsa_free_performant_mode(h);
8840 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8841 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8842 	hpsa_free_sg_chain_blocks(h);
8843 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8844 	hpsa_free_cmd_pool(h);
8845 clean4: /* irq, shost, pci, lu, aer/h */
8846 	hpsa_free_irqs(h);
8847 clean3: /* shost, pci, lu, aer/h */
8848 	scsi_host_put(h->scsi_host);
8849 	h->scsi_host = NULL;
8850 clean2_5: /* pci, lu, aer/h */
8851 	hpsa_free_pci_init(h);
8852 clean2: /* lu, aer/h */
8853 	if (h->lockup_detected) {
8854 		free_percpu(h->lockup_detected);
8855 		h->lockup_detected = NULL;
8856 	}
8857 clean1:	/* wq/aer/h */
8858 	if (h->resubmit_wq) {
8859 		destroy_workqueue(h->resubmit_wq);
8860 		h->resubmit_wq = NULL;
8861 	}
8862 	if (h->rescan_ctlr_wq) {
8863 		destroy_workqueue(h->rescan_ctlr_wq);
8864 		h->rescan_ctlr_wq = NULL;
8865 	}
8866 	if (h->monitor_ctlr_wq) {
8867 		destroy_workqueue(h->monitor_ctlr_wq);
8868 		h->monitor_ctlr_wq = NULL;
8869 	}
8870 	kfree(h);
8871 	return rc;
8872 }
8873 
8874 static void hpsa_flush_cache(struct ctlr_info *h)
8875 {
8876 	char *flush_buf;
8877 	struct CommandList *c;
8878 	int rc;
8879 
8880 	if (unlikely(lockup_detected(h)))
8881 		return;
8882 	flush_buf = kzalloc(4, GFP_KERNEL);
8883 	if (!flush_buf)
8884 		return;
8885 
8886 	c = cmd_alloc(h);
8887 
8888 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8889 		RAID_CTLR_LUNID, TYPE_CMD)) {
8890 		goto out;
8891 	}
8892 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8893 			DEFAULT_TIMEOUT);
8894 	if (rc)
8895 		goto out;
8896 	if (c->err_info->CommandStatus != 0)
8897 out:
8898 		dev_warn(&h->pdev->dev,
8899 			"error flushing cache on controller\n");
8900 	cmd_free(h, c);
8901 	kfree(flush_buf);
8902 }
8903 
8904 /* Make controller gather fresh report lun data each time we
8905  * send down a report luns request
8906  */
8907 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8908 {
8909 	u32 *options;
8910 	struct CommandList *c;
8911 	int rc;
8912 
8913 	/* Don't bother trying to set diag options if locked up */
8914 	if (unlikely(h->lockup_detected))
8915 		return;
8916 
8917 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8918 	if (!options)
8919 		return;
8920 
8921 	c = cmd_alloc(h);
8922 
8923 	/* first, get the current diag options settings */
8924 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8925 		RAID_CTLR_LUNID, TYPE_CMD))
8926 		goto errout;
8927 
8928 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8929 			NO_TIMEOUT);
8930 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8931 		goto errout;
8932 
8933 	/* Now, set the bit for disabling the RLD caching */
8934 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8935 
8936 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8937 		RAID_CTLR_LUNID, TYPE_CMD))
8938 		goto errout;
8939 
8940 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8941 			NO_TIMEOUT);
8942 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8943 		goto errout;
8944 
8945 	/* Now verify that it got set: */
8946 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8947 		RAID_CTLR_LUNID, TYPE_CMD))
8948 		goto errout;
8949 
8950 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8951 			NO_TIMEOUT);
8952 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8953 		goto errout;
8954 
8955 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8956 		goto out;
8957 
8958 errout:
8959 	dev_err(&h->pdev->dev,
8960 			"Error: failed to disable report lun data caching.\n");
8961 out:
8962 	cmd_free(h, c);
8963 	kfree(options);
8964 }
8965 
8966 static void __hpsa_shutdown(struct pci_dev *pdev)
8967 {
8968 	struct ctlr_info *h;
8969 
8970 	h = pci_get_drvdata(pdev);
8971 	/* Turn board interrupts off  and send the flush cache command
8972 	 * sendcmd will turn off interrupt, and send the flush...
8973 	 * To write all data in the battery backed cache to disks
8974 	 */
8975 	hpsa_flush_cache(h);
8976 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8977 	hpsa_free_irqs(h);			/* init_one 4 */
8978 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8979 }
8980 
8981 static void hpsa_shutdown(struct pci_dev *pdev)
8982 {
8983 	__hpsa_shutdown(pdev);
8984 	pci_disable_device(pdev);
8985 }
8986 
8987 static void hpsa_free_device_info(struct ctlr_info *h)
8988 {
8989 	int i;
8990 
8991 	for (i = 0; i < h->ndevices; i++) {
8992 		kfree(h->dev[i]);
8993 		h->dev[i] = NULL;
8994 	}
8995 }
8996 
8997 static void hpsa_remove_one(struct pci_dev *pdev)
8998 {
8999 	struct ctlr_info *h;
9000 	unsigned long flags;
9001 
9002 	if (pci_get_drvdata(pdev) == NULL) {
9003 		dev_err(&pdev->dev, "unable to remove device\n");
9004 		return;
9005 	}
9006 	h = pci_get_drvdata(pdev);
9007 
9008 	/* Get rid of any controller monitoring work items */
9009 	spin_lock_irqsave(&h->lock, flags);
9010 	h->remove_in_progress = 1;
9011 	spin_unlock_irqrestore(&h->lock, flags);
9012 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9013 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9014 	cancel_delayed_work_sync(&h->event_monitor_work);
9015 	destroy_workqueue(h->rescan_ctlr_wq);
9016 	destroy_workqueue(h->resubmit_wq);
9017 	destroy_workqueue(h->monitor_ctlr_wq);
9018 
9019 	hpsa_delete_sas_host(h);
9020 
9021 	/*
9022 	 * Call before disabling interrupts.
9023 	 * scsi_remove_host can trigger I/O operations especially
9024 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9025 	 * operations which cannot complete and will hang the system.
9026 	 */
9027 	if (h->scsi_host)
9028 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9029 	/* includes hpsa_free_irqs - init_one 4 */
9030 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9031 	__hpsa_shutdown(pdev);
9032 
9033 	hpsa_free_device_info(h);		/* scan */
9034 
9035 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9036 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9037 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9038 	hpsa_free_performant_mode(h);			/* init_one 7 */
9039 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9040 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9041 	kfree(h->lastlogicals);
9042 
9043 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9044 
9045 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9046 	h->scsi_host = NULL;				/* init_one 3 */
9047 
9048 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9049 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9050 
9051 	free_percpu(h->lockup_detected);		/* init_one 2 */
9052 	h->lockup_detected = NULL;			/* init_one 2 */
9053 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9054 
9055 	hpda_free_ctlr_info(h);				/* init_one 1 */
9056 }
9057 
9058 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9059 	__attribute__((unused)) pm_message_t state)
9060 {
9061 	return -ENOSYS;
9062 }
9063 
9064 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9065 {
9066 	return -ENOSYS;
9067 }
9068 
9069 static struct pci_driver hpsa_pci_driver = {
9070 	.name = HPSA,
9071 	.probe = hpsa_init_one,
9072 	.remove = hpsa_remove_one,
9073 	.id_table = hpsa_pci_device_id,	/* id_table */
9074 	.shutdown = hpsa_shutdown,
9075 	.suspend = hpsa_suspend,
9076 	.resume = hpsa_resume,
9077 };
9078 
9079 /* Fill in bucket_map[], given nsgs (the max number of
9080  * scatter gather elements supported) and bucket[],
9081  * which is an array of 8 integers.  The bucket[] array
9082  * contains 8 different DMA transfer sizes (in 16
9083  * byte increments) which the controller uses to fetch
9084  * commands.  This function fills in bucket_map[], which
9085  * maps a given number of scatter gather elements to one of
9086  * the 8 DMA transfer sizes.  The point of it is to allow the
9087  * controller to only do as much DMA as needed to fetch the
9088  * command, with the DMA transfer size encoded in the lower
9089  * bits of the command address.
9090  */
9091 static void  calc_bucket_map(int bucket[], int num_buckets,
9092 	int nsgs, int min_blocks, u32 *bucket_map)
9093 {
9094 	int i, j, b, size;
9095 
9096 	/* Note, bucket_map must have nsgs+1 entries. */
9097 	for (i = 0; i <= nsgs; i++) {
9098 		/* Compute size of a command with i SG entries */
9099 		size = i + min_blocks;
9100 		b = num_buckets; /* Assume the biggest bucket */
9101 		/* Find the bucket that is just big enough */
9102 		for (j = 0; j < num_buckets; j++) {
9103 			if (bucket[j] >= size) {
9104 				b = j;
9105 				break;
9106 			}
9107 		}
9108 		/* for a command with i SG entries, use bucket b. */
9109 		bucket_map[i] = b;
9110 	}
9111 }
9112 
9113 /*
9114  * return -ENODEV on err, 0 on success (or no action)
9115  * allocates numerous items that must be freed later
9116  */
9117 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9118 {
9119 	int i;
9120 	unsigned long register_value;
9121 	unsigned long transMethod = CFGTBL_Trans_Performant |
9122 			(trans_support & CFGTBL_Trans_use_short_tags) |
9123 				CFGTBL_Trans_enable_directed_msix |
9124 			(trans_support & (CFGTBL_Trans_io_accel1 |
9125 				CFGTBL_Trans_io_accel2));
9126 	struct access_method access = SA5_performant_access;
9127 
9128 	/* This is a bit complicated.  There are 8 registers on
9129 	 * the controller which we write to to tell it 8 different
9130 	 * sizes of commands which there may be.  It's a way of
9131 	 * reducing the DMA done to fetch each command.  Encoded into
9132 	 * each command's tag are 3 bits which communicate to the controller
9133 	 * which of the eight sizes that command fits within.  The size of
9134 	 * each command depends on how many scatter gather entries there are.
9135 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9136 	 * with the number of 16-byte blocks a command of that size requires.
9137 	 * The smallest command possible requires 5 such 16 byte blocks.
9138 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9139 	 * blocks.  Note, this only extends to the SG entries contained
9140 	 * within the command block, and does not extend to chained blocks
9141 	 * of SG elements.   bft[] contains the eight values we write to
9142 	 * the registers.  They are not evenly distributed, but have more
9143 	 * sizes for small commands, and fewer sizes for larger commands.
9144 	 */
9145 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9146 #define MIN_IOACCEL2_BFT_ENTRY 5
9147 #define HPSA_IOACCEL2_HEADER_SZ 4
9148 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9149 			13, 14, 15, 16, 17, 18, 19,
9150 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9151 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9152 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9153 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9154 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9155 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9156 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9157 	/*  5 = 1 s/g entry or 4k
9158 	 *  6 = 2 s/g entry or 8k
9159 	 *  8 = 4 s/g entry or 16k
9160 	 * 10 = 6 s/g entry or 24k
9161 	 */
9162 
9163 	/* If the controller supports either ioaccel method then
9164 	 * we can also use the RAID stack submit path that does not
9165 	 * perform the superfluous readl() after each command submission.
9166 	 */
9167 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9168 		access = SA5_performant_access_no_read;
9169 
9170 	/* Controller spec: zero out this buffer. */
9171 	for (i = 0; i < h->nreply_queues; i++)
9172 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9173 
9174 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9175 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9176 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9177 	for (i = 0; i < 8; i++)
9178 		writel(bft[i], &h->transtable->BlockFetch[i]);
9179 
9180 	/* size of controller ring buffer */
9181 	writel(h->max_commands, &h->transtable->RepQSize);
9182 	writel(h->nreply_queues, &h->transtable->RepQCount);
9183 	writel(0, &h->transtable->RepQCtrAddrLow32);
9184 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9185 
9186 	for (i = 0; i < h->nreply_queues; i++) {
9187 		writel(0, &h->transtable->RepQAddr[i].upper);
9188 		writel(h->reply_queue[i].busaddr,
9189 			&h->transtable->RepQAddr[i].lower);
9190 	}
9191 
9192 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9193 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9194 	/*
9195 	 * enable outbound interrupt coalescing in accelerator mode;
9196 	 */
9197 	if (trans_support & CFGTBL_Trans_io_accel1) {
9198 		access = SA5_ioaccel_mode1_access;
9199 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9200 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9201 	} else
9202 		if (trans_support & CFGTBL_Trans_io_accel2)
9203 			access = SA5_ioaccel_mode2_access;
9204 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9205 	if (hpsa_wait_for_mode_change_ack(h)) {
9206 		dev_err(&h->pdev->dev,
9207 			"performant mode problem - doorbell timeout\n");
9208 		return -ENODEV;
9209 	}
9210 	register_value = readl(&(h->cfgtable->TransportActive));
9211 	if (!(register_value & CFGTBL_Trans_Performant)) {
9212 		dev_err(&h->pdev->dev,
9213 			"performant mode problem - transport not active\n");
9214 		return -ENODEV;
9215 	}
9216 	/* Change the access methods to the performant access methods */
9217 	h->access = access;
9218 	h->transMethod = transMethod;
9219 
9220 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9221 		(trans_support & CFGTBL_Trans_io_accel2)))
9222 		return 0;
9223 
9224 	if (trans_support & CFGTBL_Trans_io_accel1) {
9225 		/* Set up I/O accelerator mode */
9226 		for (i = 0; i < h->nreply_queues; i++) {
9227 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9228 			h->reply_queue[i].current_entry =
9229 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9230 		}
9231 		bft[7] = h->ioaccel_maxsg + 8;
9232 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9233 				h->ioaccel1_blockFetchTable);
9234 
9235 		/* initialize all reply queue entries to unused */
9236 		for (i = 0; i < h->nreply_queues; i++)
9237 			memset(h->reply_queue[i].head,
9238 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9239 				h->reply_queue_size);
9240 
9241 		/* set all the constant fields in the accelerator command
9242 		 * frames once at init time to save CPU cycles later.
9243 		 */
9244 		for (i = 0; i < h->nr_cmds; i++) {
9245 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9246 
9247 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9248 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9249 					(i * sizeof(struct ErrorInfo)));
9250 			cp->err_info_len = sizeof(struct ErrorInfo);
9251 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9252 			cp->host_context_flags =
9253 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9254 			cp->timeout_sec = 0;
9255 			cp->ReplyQueue = 0;
9256 			cp->tag =
9257 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9258 			cp->host_addr =
9259 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9260 					(i * sizeof(struct io_accel1_cmd)));
9261 		}
9262 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9263 		u64 cfg_offset, cfg_base_addr_index;
9264 		u32 bft2_offset, cfg_base_addr;
9265 		int rc;
9266 
9267 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9268 			&cfg_base_addr_index, &cfg_offset);
9269 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9270 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9271 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9272 				4, h->ioaccel2_blockFetchTable);
9273 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9274 		BUILD_BUG_ON(offsetof(struct CfgTable,
9275 				io_accel_request_size_offset) != 0xb8);
9276 		h->ioaccel2_bft2_regs =
9277 			remap_pci_mem(pci_resource_start(h->pdev,
9278 					cfg_base_addr_index) +
9279 					cfg_offset + bft2_offset,
9280 					ARRAY_SIZE(bft2) *
9281 					sizeof(*h->ioaccel2_bft2_regs));
9282 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9283 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9284 	}
9285 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286 	if (hpsa_wait_for_mode_change_ack(h)) {
9287 		dev_err(&h->pdev->dev,
9288 			"performant mode problem - enabling ioaccel mode\n");
9289 		return -ENODEV;
9290 	}
9291 	return 0;
9292 }
9293 
9294 /* Free ioaccel1 mode command blocks and block fetch table */
9295 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9296 {
9297 	if (h->ioaccel_cmd_pool) {
9298 		pci_free_consistent(h->pdev,
9299 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9300 			h->ioaccel_cmd_pool,
9301 			h->ioaccel_cmd_pool_dhandle);
9302 		h->ioaccel_cmd_pool = NULL;
9303 		h->ioaccel_cmd_pool_dhandle = 0;
9304 	}
9305 	kfree(h->ioaccel1_blockFetchTable);
9306 	h->ioaccel1_blockFetchTable = NULL;
9307 }
9308 
9309 /* Allocate ioaccel1 mode command blocks and block fetch table */
9310 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9311 {
9312 	h->ioaccel_maxsg =
9313 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9314 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9315 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9316 
9317 	/* Command structures must be aligned on a 128-byte boundary
9318 	 * because the 7 lower bits of the address are used by the
9319 	 * hardware.
9320 	 */
9321 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9322 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9323 	h->ioaccel_cmd_pool =
9324 		dma_alloc_coherent(&h->pdev->dev,
9325 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9326 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9327 
9328 	h->ioaccel1_blockFetchTable =
9329 		kmalloc(((h->ioaccel_maxsg + 1) *
9330 				sizeof(u32)), GFP_KERNEL);
9331 
9332 	if ((h->ioaccel_cmd_pool == NULL) ||
9333 		(h->ioaccel1_blockFetchTable == NULL))
9334 		goto clean_up;
9335 
9336 	memset(h->ioaccel_cmd_pool, 0,
9337 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9338 	return 0;
9339 
9340 clean_up:
9341 	hpsa_free_ioaccel1_cmd_and_bft(h);
9342 	return -ENOMEM;
9343 }
9344 
9345 /* Free ioaccel2 mode command blocks and block fetch table */
9346 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9347 {
9348 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9349 
9350 	if (h->ioaccel2_cmd_pool) {
9351 		pci_free_consistent(h->pdev,
9352 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9353 			h->ioaccel2_cmd_pool,
9354 			h->ioaccel2_cmd_pool_dhandle);
9355 		h->ioaccel2_cmd_pool = NULL;
9356 		h->ioaccel2_cmd_pool_dhandle = 0;
9357 	}
9358 	kfree(h->ioaccel2_blockFetchTable);
9359 	h->ioaccel2_blockFetchTable = NULL;
9360 }
9361 
9362 /* Allocate ioaccel2 mode command blocks and block fetch table */
9363 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9364 {
9365 	int rc;
9366 
9367 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9368 
9369 	h->ioaccel_maxsg =
9370 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9371 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9372 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9373 
9374 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9375 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9376 	h->ioaccel2_cmd_pool =
9377 		dma_alloc_coherent(&h->pdev->dev,
9378 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9379 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9380 
9381 	h->ioaccel2_blockFetchTable =
9382 		kmalloc(((h->ioaccel_maxsg + 1) *
9383 				sizeof(u32)), GFP_KERNEL);
9384 
9385 	if ((h->ioaccel2_cmd_pool == NULL) ||
9386 		(h->ioaccel2_blockFetchTable == NULL)) {
9387 		rc = -ENOMEM;
9388 		goto clean_up;
9389 	}
9390 
9391 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9392 	if (rc)
9393 		goto clean_up;
9394 
9395 	memset(h->ioaccel2_cmd_pool, 0,
9396 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9397 	return 0;
9398 
9399 clean_up:
9400 	hpsa_free_ioaccel2_cmd_and_bft(h);
9401 	return rc;
9402 }
9403 
9404 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9405 static void hpsa_free_performant_mode(struct ctlr_info *h)
9406 {
9407 	kfree(h->blockFetchTable);
9408 	h->blockFetchTable = NULL;
9409 	hpsa_free_reply_queues(h);
9410 	hpsa_free_ioaccel1_cmd_and_bft(h);
9411 	hpsa_free_ioaccel2_cmd_and_bft(h);
9412 }
9413 
9414 /* return -ENODEV on error, 0 on success (or no action)
9415  * allocates numerous items that must be freed later
9416  */
9417 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9418 {
9419 	u32 trans_support;
9420 	unsigned long transMethod = CFGTBL_Trans_Performant |
9421 					CFGTBL_Trans_use_short_tags;
9422 	int i, rc;
9423 
9424 	if (hpsa_simple_mode)
9425 		return 0;
9426 
9427 	trans_support = readl(&(h->cfgtable->TransportSupport));
9428 	if (!(trans_support & PERFORMANT_MODE))
9429 		return 0;
9430 
9431 	/* Check for I/O accelerator mode support */
9432 	if (trans_support & CFGTBL_Trans_io_accel1) {
9433 		transMethod |= CFGTBL_Trans_io_accel1 |
9434 				CFGTBL_Trans_enable_directed_msix;
9435 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9436 		if (rc)
9437 			return rc;
9438 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9439 		transMethod |= CFGTBL_Trans_io_accel2 |
9440 				CFGTBL_Trans_enable_directed_msix;
9441 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9442 		if (rc)
9443 			return rc;
9444 	}
9445 
9446 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9447 	hpsa_get_max_perf_mode_cmds(h);
9448 	/* Performant mode ring buffer and supporting data structures */
9449 	h->reply_queue_size = h->max_commands * sizeof(u64);
9450 
9451 	for (i = 0; i < h->nreply_queues; i++) {
9452 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9453 						h->reply_queue_size,
9454 						&h->reply_queue[i].busaddr,
9455 						GFP_KERNEL);
9456 		if (!h->reply_queue[i].head) {
9457 			rc = -ENOMEM;
9458 			goto clean1;	/* rq, ioaccel */
9459 		}
9460 		h->reply_queue[i].size = h->max_commands;
9461 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9462 		h->reply_queue[i].current_entry = 0;
9463 	}
9464 
9465 	/* Need a block fetch table for performant mode */
9466 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9467 				sizeof(u32)), GFP_KERNEL);
9468 	if (!h->blockFetchTable) {
9469 		rc = -ENOMEM;
9470 		goto clean1;	/* rq, ioaccel */
9471 	}
9472 
9473 	rc = hpsa_enter_performant_mode(h, trans_support);
9474 	if (rc)
9475 		goto clean2;	/* bft, rq, ioaccel */
9476 	return 0;
9477 
9478 clean2:	/* bft, rq, ioaccel */
9479 	kfree(h->blockFetchTable);
9480 	h->blockFetchTable = NULL;
9481 clean1:	/* rq, ioaccel */
9482 	hpsa_free_reply_queues(h);
9483 	hpsa_free_ioaccel1_cmd_and_bft(h);
9484 	hpsa_free_ioaccel2_cmd_and_bft(h);
9485 	return rc;
9486 }
9487 
9488 static int is_accelerated_cmd(struct CommandList *c)
9489 {
9490 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9491 }
9492 
9493 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9494 {
9495 	struct CommandList *c = NULL;
9496 	int i, accel_cmds_out;
9497 	int refcount;
9498 
9499 	do { /* wait for all outstanding ioaccel commands to drain out */
9500 		accel_cmds_out = 0;
9501 		for (i = 0; i < h->nr_cmds; i++) {
9502 			c = h->cmd_pool + i;
9503 			refcount = atomic_inc_return(&c->refcount);
9504 			if (refcount > 1) /* Command is allocated */
9505 				accel_cmds_out += is_accelerated_cmd(c);
9506 			cmd_free(h, c);
9507 		}
9508 		if (accel_cmds_out <= 0)
9509 			break;
9510 		msleep(100);
9511 	} while (1);
9512 }
9513 
9514 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9515 				struct hpsa_sas_port *hpsa_sas_port)
9516 {
9517 	struct hpsa_sas_phy *hpsa_sas_phy;
9518 	struct sas_phy *phy;
9519 
9520 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9521 	if (!hpsa_sas_phy)
9522 		return NULL;
9523 
9524 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9525 		hpsa_sas_port->next_phy_index);
9526 	if (!phy) {
9527 		kfree(hpsa_sas_phy);
9528 		return NULL;
9529 	}
9530 
9531 	hpsa_sas_port->next_phy_index++;
9532 	hpsa_sas_phy->phy = phy;
9533 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9534 
9535 	return hpsa_sas_phy;
9536 }
9537 
9538 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9539 {
9540 	struct sas_phy *phy = hpsa_sas_phy->phy;
9541 
9542 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9543 	if (hpsa_sas_phy->added_to_port)
9544 		list_del(&hpsa_sas_phy->phy_list_entry);
9545 	sas_phy_delete(phy);
9546 	kfree(hpsa_sas_phy);
9547 }
9548 
9549 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9550 {
9551 	int rc;
9552 	struct hpsa_sas_port *hpsa_sas_port;
9553 	struct sas_phy *phy;
9554 	struct sas_identify *identify;
9555 
9556 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9557 	phy = hpsa_sas_phy->phy;
9558 
9559 	identify = &phy->identify;
9560 	memset(identify, 0, sizeof(*identify));
9561 	identify->sas_address = hpsa_sas_port->sas_address;
9562 	identify->device_type = SAS_END_DEVICE;
9563 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9564 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9565 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9566 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9567 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9568 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9569 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9570 
9571 	rc = sas_phy_add(hpsa_sas_phy->phy);
9572 	if (rc)
9573 		return rc;
9574 
9575 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9576 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9577 			&hpsa_sas_port->phy_list_head);
9578 	hpsa_sas_phy->added_to_port = true;
9579 
9580 	return 0;
9581 }
9582 
9583 static int
9584 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9585 				struct sas_rphy *rphy)
9586 {
9587 	struct sas_identify *identify;
9588 
9589 	identify = &rphy->identify;
9590 	identify->sas_address = hpsa_sas_port->sas_address;
9591 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9592 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9593 
9594 	return sas_rphy_add(rphy);
9595 }
9596 
9597 static struct hpsa_sas_port
9598 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9599 				u64 sas_address)
9600 {
9601 	int rc;
9602 	struct hpsa_sas_port *hpsa_sas_port;
9603 	struct sas_port *port;
9604 
9605 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9606 	if (!hpsa_sas_port)
9607 		return NULL;
9608 
9609 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9610 	hpsa_sas_port->parent_node = hpsa_sas_node;
9611 
9612 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9613 	if (!port)
9614 		goto free_hpsa_port;
9615 
9616 	rc = sas_port_add(port);
9617 	if (rc)
9618 		goto free_sas_port;
9619 
9620 	hpsa_sas_port->port = port;
9621 	hpsa_sas_port->sas_address = sas_address;
9622 	list_add_tail(&hpsa_sas_port->port_list_entry,
9623 			&hpsa_sas_node->port_list_head);
9624 
9625 	return hpsa_sas_port;
9626 
9627 free_sas_port:
9628 	sas_port_free(port);
9629 free_hpsa_port:
9630 	kfree(hpsa_sas_port);
9631 
9632 	return NULL;
9633 }
9634 
9635 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9636 {
9637 	struct hpsa_sas_phy *hpsa_sas_phy;
9638 	struct hpsa_sas_phy *next;
9639 
9640 	list_for_each_entry_safe(hpsa_sas_phy, next,
9641 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9642 		hpsa_free_sas_phy(hpsa_sas_phy);
9643 
9644 	sas_port_delete(hpsa_sas_port->port);
9645 	list_del(&hpsa_sas_port->port_list_entry);
9646 	kfree(hpsa_sas_port);
9647 }
9648 
9649 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9650 {
9651 	struct hpsa_sas_node *hpsa_sas_node;
9652 
9653 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9654 	if (hpsa_sas_node) {
9655 		hpsa_sas_node->parent_dev = parent_dev;
9656 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9657 	}
9658 
9659 	return hpsa_sas_node;
9660 }
9661 
9662 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9663 {
9664 	struct hpsa_sas_port *hpsa_sas_port;
9665 	struct hpsa_sas_port *next;
9666 
9667 	if (!hpsa_sas_node)
9668 		return;
9669 
9670 	list_for_each_entry_safe(hpsa_sas_port, next,
9671 			&hpsa_sas_node->port_list_head, port_list_entry)
9672 		hpsa_free_sas_port(hpsa_sas_port);
9673 
9674 	kfree(hpsa_sas_node);
9675 }
9676 
9677 static struct hpsa_scsi_dev_t
9678 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9679 					struct sas_rphy *rphy)
9680 {
9681 	int i;
9682 	struct hpsa_scsi_dev_t *device;
9683 
9684 	for (i = 0; i < h->ndevices; i++) {
9685 		device = h->dev[i];
9686 		if (!device->sas_port)
9687 			continue;
9688 		if (device->sas_port->rphy == rphy)
9689 			return device;
9690 	}
9691 
9692 	return NULL;
9693 }
9694 
9695 static int hpsa_add_sas_host(struct ctlr_info *h)
9696 {
9697 	int rc;
9698 	struct device *parent_dev;
9699 	struct hpsa_sas_node *hpsa_sas_node;
9700 	struct hpsa_sas_port *hpsa_sas_port;
9701 	struct hpsa_sas_phy *hpsa_sas_phy;
9702 
9703 	parent_dev = &h->scsi_host->shost_dev;
9704 
9705 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9706 	if (!hpsa_sas_node)
9707 		return -ENOMEM;
9708 
9709 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9710 	if (!hpsa_sas_port) {
9711 		rc = -ENODEV;
9712 		goto free_sas_node;
9713 	}
9714 
9715 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9716 	if (!hpsa_sas_phy) {
9717 		rc = -ENODEV;
9718 		goto free_sas_port;
9719 	}
9720 
9721 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9722 	if (rc)
9723 		goto free_sas_phy;
9724 
9725 	h->sas_host = hpsa_sas_node;
9726 
9727 	return 0;
9728 
9729 free_sas_phy:
9730 	hpsa_free_sas_phy(hpsa_sas_phy);
9731 free_sas_port:
9732 	hpsa_free_sas_port(hpsa_sas_port);
9733 free_sas_node:
9734 	hpsa_free_sas_node(hpsa_sas_node);
9735 
9736 	return rc;
9737 }
9738 
9739 static void hpsa_delete_sas_host(struct ctlr_info *h)
9740 {
9741 	hpsa_free_sas_node(h->sas_host);
9742 }
9743 
9744 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9745 				struct hpsa_scsi_dev_t *device)
9746 {
9747 	int rc;
9748 	struct hpsa_sas_port *hpsa_sas_port;
9749 	struct sas_rphy *rphy;
9750 
9751 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9752 	if (!hpsa_sas_port)
9753 		return -ENOMEM;
9754 
9755 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9756 	if (!rphy) {
9757 		rc = -ENODEV;
9758 		goto free_sas_port;
9759 	}
9760 
9761 	hpsa_sas_port->rphy = rphy;
9762 	device->sas_port = hpsa_sas_port;
9763 
9764 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9765 	if (rc)
9766 		goto free_sas_port;
9767 
9768 	return 0;
9769 
9770 free_sas_port:
9771 	hpsa_free_sas_port(hpsa_sas_port);
9772 	device->sas_port = NULL;
9773 
9774 	return rc;
9775 }
9776 
9777 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9778 {
9779 	if (device->sas_port) {
9780 		hpsa_free_sas_port(device->sas_port);
9781 		device->sas_port = NULL;
9782 	}
9783 }
9784 
9785 static int
9786 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9787 {
9788 	return 0;
9789 }
9790 
9791 static int
9792 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9793 {
9794 	struct Scsi_Host *shost = phy_to_shost(rphy);
9795 	struct ctlr_info *h;
9796 	struct hpsa_scsi_dev_t *sd;
9797 
9798 	if (!shost)
9799 		return -ENXIO;
9800 
9801 	h = shost_to_hba(shost);
9802 
9803 	if (!h)
9804 		return -ENXIO;
9805 
9806 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9807 	if (!sd)
9808 		return -ENXIO;
9809 
9810 	*identifier = sd->eli;
9811 
9812 	return 0;
9813 }
9814 
9815 static int
9816 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9817 {
9818 	return -ENXIO;
9819 }
9820 
9821 static int
9822 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9823 {
9824 	return 0;
9825 }
9826 
9827 static int
9828 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9829 {
9830 	return 0;
9831 }
9832 
9833 static int
9834 hpsa_sas_phy_setup(struct sas_phy *phy)
9835 {
9836 	return 0;
9837 }
9838 
9839 static void
9840 hpsa_sas_phy_release(struct sas_phy *phy)
9841 {
9842 }
9843 
9844 static int
9845 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9846 {
9847 	return -EINVAL;
9848 }
9849 
9850 static struct sas_function_template hpsa_sas_transport_functions = {
9851 	.get_linkerrors = hpsa_sas_get_linkerrors,
9852 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9853 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9854 	.phy_reset = hpsa_sas_phy_reset,
9855 	.phy_enable = hpsa_sas_phy_enable,
9856 	.phy_setup = hpsa_sas_phy_setup,
9857 	.phy_release = hpsa_sas_phy_release,
9858 	.set_phy_speed = hpsa_sas_phy_speed,
9859 };
9860 
9861 /*
9862  *  This is it.  Register the PCI driver information for the cards we control
9863  *  the OS will call our registered routines when it finds one of our cards.
9864  */
9865 static int __init hpsa_init(void)
9866 {
9867 	int rc;
9868 
9869 	hpsa_sas_transport_template =
9870 		sas_attach_transport(&hpsa_sas_transport_functions);
9871 	if (!hpsa_sas_transport_template)
9872 		return -ENODEV;
9873 
9874 	rc = pci_register_driver(&hpsa_pci_driver);
9875 
9876 	if (rc)
9877 		sas_release_transport(hpsa_sas_transport_template);
9878 
9879 	return rc;
9880 }
9881 
9882 static void __exit hpsa_cleanup(void)
9883 {
9884 	pci_unregister_driver(&hpsa_pci_driver);
9885 	sas_release_transport(hpsa_sas_transport_template);
9886 }
9887 
9888 static void __attribute__((unused)) verify_offsets(void)
9889 {
9890 #define VERIFY_OFFSET(member, offset) \
9891 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9892 
9893 	VERIFY_OFFSET(structure_size, 0);
9894 	VERIFY_OFFSET(volume_blk_size, 4);
9895 	VERIFY_OFFSET(volume_blk_cnt, 8);
9896 	VERIFY_OFFSET(phys_blk_shift, 16);
9897 	VERIFY_OFFSET(parity_rotation_shift, 17);
9898 	VERIFY_OFFSET(strip_size, 18);
9899 	VERIFY_OFFSET(disk_starting_blk, 20);
9900 	VERIFY_OFFSET(disk_blk_cnt, 28);
9901 	VERIFY_OFFSET(data_disks_per_row, 36);
9902 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9903 	VERIFY_OFFSET(row_cnt, 40);
9904 	VERIFY_OFFSET(layout_map_count, 42);
9905 	VERIFY_OFFSET(flags, 44);
9906 	VERIFY_OFFSET(dekindex, 46);
9907 	/* VERIFY_OFFSET(reserved, 48 */
9908 	VERIFY_OFFSET(data, 64);
9909 
9910 #undef VERIFY_OFFSET
9911 
9912 #define VERIFY_OFFSET(member, offset) \
9913 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9914 
9915 	VERIFY_OFFSET(IU_type, 0);
9916 	VERIFY_OFFSET(direction, 1);
9917 	VERIFY_OFFSET(reply_queue, 2);
9918 	/* VERIFY_OFFSET(reserved1, 3);  */
9919 	VERIFY_OFFSET(scsi_nexus, 4);
9920 	VERIFY_OFFSET(Tag, 8);
9921 	VERIFY_OFFSET(cdb, 16);
9922 	VERIFY_OFFSET(cciss_lun, 32);
9923 	VERIFY_OFFSET(data_len, 40);
9924 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9925 	VERIFY_OFFSET(sg_count, 45);
9926 	/* VERIFY_OFFSET(reserved3 */
9927 	VERIFY_OFFSET(err_ptr, 48);
9928 	VERIFY_OFFSET(err_len, 56);
9929 	/* VERIFY_OFFSET(reserved4  */
9930 	VERIFY_OFFSET(sg, 64);
9931 
9932 #undef VERIFY_OFFSET
9933 
9934 #define VERIFY_OFFSET(member, offset) \
9935 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9936 
9937 	VERIFY_OFFSET(dev_handle, 0x00);
9938 	VERIFY_OFFSET(reserved1, 0x02);
9939 	VERIFY_OFFSET(function, 0x03);
9940 	VERIFY_OFFSET(reserved2, 0x04);
9941 	VERIFY_OFFSET(err_info, 0x0C);
9942 	VERIFY_OFFSET(reserved3, 0x10);
9943 	VERIFY_OFFSET(err_info_len, 0x12);
9944 	VERIFY_OFFSET(reserved4, 0x13);
9945 	VERIFY_OFFSET(sgl_offset, 0x14);
9946 	VERIFY_OFFSET(reserved5, 0x15);
9947 	VERIFY_OFFSET(transfer_len, 0x1C);
9948 	VERIFY_OFFSET(reserved6, 0x20);
9949 	VERIFY_OFFSET(io_flags, 0x24);
9950 	VERIFY_OFFSET(reserved7, 0x26);
9951 	VERIFY_OFFSET(LUN, 0x34);
9952 	VERIFY_OFFSET(control, 0x3C);
9953 	VERIFY_OFFSET(CDB, 0x40);
9954 	VERIFY_OFFSET(reserved8, 0x50);
9955 	VERIFY_OFFSET(host_context_flags, 0x60);
9956 	VERIFY_OFFSET(timeout_sec, 0x62);
9957 	VERIFY_OFFSET(ReplyQueue, 0x64);
9958 	VERIFY_OFFSET(reserved9, 0x65);
9959 	VERIFY_OFFSET(tag, 0x68);
9960 	VERIFY_OFFSET(host_addr, 0x70);
9961 	VERIFY_OFFSET(CISS_LUN, 0x78);
9962 	VERIFY_OFFSET(SG, 0x78 + 8);
9963 #undef VERIFY_OFFSET
9964 }
9965 
9966 module_init(hpsa_init);
9967 module_exit(hpsa_cleanup);
9968