xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 8a10bc9d)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include <linux/jiffies.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "3.4.0-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 #define HPSA "hpsa"
59 
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63 
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66 
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 	HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74 
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 	"Use 'simple mode' rather than 'performant mode'");
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
121 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
122 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
123 	{0,}
124 };
125 
126 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
127 
128 /*  board_id = Subsystem Device ID & Vendor ID
129  *  product = Marketing Name for the board
130  *  access = Address of the struct of function pointers
131  */
132 static struct board_type products[] = {
133 	{0x3241103C, "Smart Array P212", &SA5_access},
134 	{0x3243103C, "Smart Array P410", &SA5_access},
135 	{0x3245103C, "Smart Array P410i", &SA5_access},
136 	{0x3247103C, "Smart Array P411", &SA5_access},
137 	{0x3249103C, "Smart Array P812", &SA5_access},
138 	{0x324A103C, "Smart Array P712m", &SA5_access},
139 	{0x324B103C, "Smart Array P711m", &SA5_access},
140 	{0x3350103C, "Smart Array P222", &SA5_access},
141 	{0x3351103C, "Smart Array P420", &SA5_access},
142 	{0x3352103C, "Smart Array P421", &SA5_access},
143 	{0x3353103C, "Smart Array P822", &SA5_access},
144 	{0x3354103C, "Smart Array P420i", &SA5_access},
145 	{0x3355103C, "Smart Array P220i", &SA5_access},
146 	{0x3356103C, "Smart Array P721m", &SA5_access},
147 	{0x1921103C, "Smart Array P830i", &SA5_access},
148 	{0x1922103C, "Smart Array P430", &SA5_access},
149 	{0x1923103C, "Smart Array P431", &SA5_access},
150 	{0x1924103C, "Smart Array P830", &SA5_access},
151 	{0x1926103C, "Smart Array P731m", &SA5_access},
152 	{0x1928103C, "Smart Array P230i", &SA5_access},
153 	{0x1929103C, "Smart Array P530", &SA5_access},
154 	{0x21BD103C, "Smart Array", &SA5_access},
155 	{0x21BE103C, "Smart Array", &SA5_access},
156 	{0x21BF103C, "Smart Array", &SA5_access},
157 	{0x21C0103C, "Smart Array", &SA5_access},
158 	{0x21C1103C, "Smart Array", &SA5_access},
159 	{0x21C2103C, "Smart Array", &SA5_access},
160 	{0x21C3103C, "Smart Array", &SA5_access},
161 	{0x21C4103C, "Smart Array", &SA5_access},
162 	{0x21C5103C, "Smart Array", &SA5_access},
163 	{0x21C7103C, "Smart Array", &SA5_access},
164 	{0x21C8103C, "Smart Array", &SA5_access},
165 	{0x21C9103C, "Smart Array", &SA5_access},
166 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
167 };
168 
169 static int number_of_controllers;
170 
171 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
172 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
173 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
174 static void start_io(struct ctlr_info *h);
175 
176 #ifdef CONFIG_COMPAT
177 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
178 #endif
179 
180 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
181 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
182 static struct CommandList *cmd_alloc(struct ctlr_info *h);
183 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
184 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
185 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
186 	int cmd_type);
187 
188 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
189 static void hpsa_scan_start(struct Scsi_Host *);
190 static int hpsa_scan_finished(struct Scsi_Host *sh,
191 	unsigned long elapsed_time);
192 static int hpsa_change_queue_depth(struct scsi_device *sdev,
193 	int qdepth, int reason);
194 
195 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
196 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
197 static int hpsa_slave_alloc(struct scsi_device *sdev);
198 static void hpsa_slave_destroy(struct scsi_device *sdev);
199 
200 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
201 static int check_for_unit_attention(struct ctlr_info *h,
202 	struct CommandList *c);
203 static void check_ioctl_unit_attention(struct ctlr_info *h,
204 	struct CommandList *c);
205 /* performant mode helper functions */
206 static void calc_bucket_map(int *bucket, int num_buckets,
207 	int nsgs, int *bucket_map);
208 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
209 static inline u32 next_command(struct ctlr_info *h, u8 q);
210 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
211 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
212 			       u64 *cfg_offset);
213 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
214 				    unsigned long *memory_bar);
215 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
216 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
217 				     int wait_for_ready);
218 static inline void finish_cmd(struct CommandList *c);
219 #define BOARD_NOT_READY 0
220 #define BOARD_READY 1
221 
222 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
223 {
224 	unsigned long *priv = shost_priv(sdev->host);
225 	return (struct ctlr_info *) *priv;
226 }
227 
228 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
229 {
230 	unsigned long *priv = shost_priv(sh);
231 	return (struct ctlr_info *) *priv;
232 }
233 
234 static int check_for_unit_attention(struct ctlr_info *h,
235 	struct CommandList *c)
236 {
237 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
238 		return 0;
239 
240 	switch (c->err_info->SenseInfo[12]) {
241 	case STATE_CHANGED:
242 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
243 			"detected, command retried\n", h->ctlr);
244 		break;
245 	case LUN_FAILED:
246 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
247 			"detected, action required\n", h->ctlr);
248 		break;
249 	case REPORT_LUNS_CHANGED:
250 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
251 			"changed, action required\n", h->ctlr);
252 	/*
253 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
254 	 * target (array) devices.
255 	 */
256 		break;
257 	case POWER_OR_RESET:
258 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
259 			"or device reset detected\n", h->ctlr);
260 		break;
261 	case UNIT_ATTENTION_CLEARED:
262 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
263 		    "cleared by another initiator\n", h->ctlr);
264 		break;
265 	default:
266 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
267 			"unit attention detected\n", h->ctlr);
268 		break;
269 	}
270 	return 1;
271 }
272 
273 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
274 {
275 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
276 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
277 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
278 		return 0;
279 	dev_warn(&h->pdev->dev, HPSA "device busy");
280 	return 1;
281 }
282 
283 static ssize_t host_store_rescan(struct device *dev,
284 				 struct device_attribute *attr,
285 				 const char *buf, size_t count)
286 {
287 	struct ctlr_info *h;
288 	struct Scsi_Host *shost = class_to_shost(dev);
289 	h = shost_to_hba(shost);
290 	hpsa_scan_start(h->scsi_host);
291 	return count;
292 }
293 
294 static ssize_t host_show_firmware_revision(struct device *dev,
295 	     struct device_attribute *attr, char *buf)
296 {
297 	struct ctlr_info *h;
298 	struct Scsi_Host *shost = class_to_shost(dev);
299 	unsigned char *fwrev;
300 
301 	h = shost_to_hba(shost);
302 	if (!h->hba_inquiry_data)
303 		return 0;
304 	fwrev = &h->hba_inquiry_data[32];
305 	return snprintf(buf, 20, "%c%c%c%c\n",
306 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
307 }
308 
309 static ssize_t host_show_commands_outstanding(struct device *dev,
310 	     struct device_attribute *attr, char *buf)
311 {
312 	struct Scsi_Host *shost = class_to_shost(dev);
313 	struct ctlr_info *h = shost_to_hba(shost);
314 
315 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
316 }
317 
318 static ssize_t host_show_transport_mode(struct device *dev,
319 	struct device_attribute *attr, char *buf)
320 {
321 	struct ctlr_info *h;
322 	struct Scsi_Host *shost = class_to_shost(dev);
323 
324 	h = shost_to_hba(shost);
325 	return snprintf(buf, 20, "%s\n",
326 		h->transMethod & CFGTBL_Trans_Performant ?
327 			"performant" : "simple");
328 }
329 
330 /* List of controllers which cannot be hard reset on kexec with reset_devices */
331 static u32 unresettable_controller[] = {
332 	0x324a103C, /* Smart Array P712m */
333 	0x324b103C, /* SmartArray P711m */
334 	0x3223103C, /* Smart Array P800 */
335 	0x3234103C, /* Smart Array P400 */
336 	0x3235103C, /* Smart Array P400i */
337 	0x3211103C, /* Smart Array E200i */
338 	0x3212103C, /* Smart Array E200 */
339 	0x3213103C, /* Smart Array E200i */
340 	0x3214103C, /* Smart Array E200i */
341 	0x3215103C, /* Smart Array E200i */
342 	0x3237103C, /* Smart Array E500 */
343 	0x323D103C, /* Smart Array P700m */
344 	0x40800E11, /* Smart Array 5i */
345 	0x409C0E11, /* Smart Array 6400 */
346 	0x409D0E11, /* Smart Array 6400 EM */
347 	0x40700E11, /* Smart Array 5300 */
348 	0x40820E11, /* Smart Array 532 */
349 	0x40830E11, /* Smart Array 5312 */
350 	0x409A0E11, /* Smart Array 641 */
351 	0x409B0E11, /* Smart Array 642 */
352 	0x40910E11, /* Smart Array 6i */
353 };
354 
355 /* List of controllers which cannot even be soft reset */
356 static u32 soft_unresettable_controller[] = {
357 	0x40800E11, /* Smart Array 5i */
358 	0x40700E11, /* Smart Array 5300 */
359 	0x40820E11, /* Smart Array 532 */
360 	0x40830E11, /* Smart Array 5312 */
361 	0x409A0E11, /* Smart Array 641 */
362 	0x409B0E11, /* Smart Array 642 */
363 	0x40910E11, /* Smart Array 6i */
364 	/* Exclude 640x boards.  These are two pci devices in one slot
365 	 * which share a battery backed cache module.  One controls the
366 	 * cache, the other accesses the cache through the one that controls
367 	 * it.  If we reset the one controlling the cache, the other will
368 	 * likely not be happy.  Just forbid resetting this conjoined mess.
369 	 * The 640x isn't really supported by hpsa anyway.
370 	 */
371 	0x409C0E11, /* Smart Array 6400 */
372 	0x409D0E11, /* Smart Array 6400 EM */
373 };
374 
375 static int ctlr_is_hard_resettable(u32 board_id)
376 {
377 	int i;
378 
379 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
380 		if (unresettable_controller[i] == board_id)
381 			return 0;
382 	return 1;
383 }
384 
385 static int ctlr_is_soft_resettable(u32 board_id)
386 {
387 	int i;
388 
389 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
390 		if (soft_unresettable_controller[i] == board_id)
391 			return 0;
392 	return 1;
393 }
394 
395 static int ctlr_is_resettable(u32 board_id)
396 {
397 	return ctlr_is_hard_resettable(board_id) ||
398 		ctlr_is_soft_resettable(board_id);
399 }
400 
401 static ssize_t host_show_resettable(struct device *dev,
402 	struct device_attribute *attr, char *buf)
403 {
404 	struct ctlr_info *h;
405 	struct Scsi_Host *shost = class_to_shost(dev);
406 
407 	h = shost_to_hba(shost);
408 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
409 }
410 
411 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
412 {
413 	return (scsi3addr[3] & 0xC0) == 0x40;
414 }
415 
416 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
417 	"1(ADM)", "UNKNOWN"
418 };
419 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
420 
421 static ssize_t raid_level_show(struct device *dev,
422 	     struct device_attribute *attr, char *buf)
423 {
424 	ssize_t l = 0;
425 	unsigned char rlevel;
426 	struct ctlr_info *h;
427 	struct scsi_device *sdev;
428 	struct hpsa_scsi_dev_t *hdev;
429 	unsigned long flags;
430 
431 	sdev = to_scsi_device(dev);
432 	h = sdev_to_hba(sdev);
433 	spin_lock_irqsave(&h->lock, flags);
434 	hdev = sdev->hostdata;
435 	if (!hdev) {
436 		spin_unlock_irqrestore(&h->lock, flags);
437 		return -ENODEV;
438 	}
439 
440 	/* Is this even a logical drive? */
441 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
442 		spin_unlock_irqrestore(&h->lock, flags);
443 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
444 		return l;
445 	}
446 
447 	rlevel = hdev->raid_level;
448 	spin_unlock_irqrestore(&h->lock, flags);
449 	if (rlevel > RAID_UNKNOWN)
450 		rlevel = RAID_UNKNOWN;
451 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
452 	return l;
453 }
454 
455 static ssize_t lunid_show(struct device *dev,
456 	     struct device_attribute *attr, char *buf)
457 {
458 	struct ctlr_info *h;
459 	struct scsi_device *sdev;
460 	struct hpsa_scsi_dev_t *hdev;
461 	unsigned long flags;
462 	unsigned char lunid[8];
463 
464 	sdev = to_scsi_device(dev);
465 	h = sdev_to_hba(sdev);
466 	spin_lock_irqsave(&h->lock, flags);
467 	hdev = sdev->hostdata;
468 	if (!hdev) {
469 		spin_unlock_irqrestore(&h->lock, flags);
470 		return -ENODEV;
471 	}
472 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
473 	spin_unlock_irqrestore(&h->lock, flags);
474 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
475 		lunid[0], lunid[1], lunid[2], lunid[3],
476 		lunid[4], lunid[5], lunid[6], lunid[7]);
477 }
478 
479 static ssize_t unique_id_show(struct device *dev,
480 	     struct device_attribute *attr, char *buf)
481 {
482 	struct ctlr_info *h;
483 	struct scsi_device *sdev;
484 	struct hpsa_scsi_dev_t *hdev;
485 	unsigned long flags;
486 	unsigned char sn[16];
487 
488 	sdev = to_scsi_device(dev);
489 	h = sdev_to_hba(sdev);
490 	spin_lock_irqsave(&h->lock, flags);
491 	hdev = sdev->hostdata;
492 	if (!hdev) {
493 		spin_unlock_irqrestore(&h->lock, flags);
494 		return -ENODEV;
495 	}
496 	memcpy(sn, hdev->device_id, sizeof(sn));
497 	spin_unlock_irqrestore(&h->lock, flags);
498 	return snprintf(buf, 16 * 2 + 2,
499 			"%02X%02X%02X%02X%02X%02X%02X%02X"
500 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
501 			sn[0], sn[1], sn[2], sn[3],
502 			sn[4], sn[5], sn[6], sn[7],
503 			sn[8], sn[9], sn[10], sn[11],
504 			sn[12], sn[13], sn[14], sn[15]);
505 }
506 
507 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
508 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
509 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
510 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
511 static DEVICE_ATTR(firmware_revision, S_IRUGO,
512 	host_show_firmware_revision, NULL);
513 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
514 	host_show_commands_outstanding, NULL);
515 static DEVICE_ATTR(transport_mode, S_IRUGO,
516 	host_show_transport_mode, NULL);
517 static DEVICE_ATTR(resettable, S_IRUGO,
518 	host_show_resettable, NULL);
519 
520 static struct device_attribute *hpsa_sdev_attrs[] = {
521 	&dev_attr_raid_level,
522 	&dev_attr_lunid,
523 	&dev_attr_unique_id,
524 	NULL,
525 };
526 
527 static struct device_attribute *hpsa_shost_attrs[] = {
528 	&dev_attr_rescan,
529 	&dev_attr_firmware_revision,
530 	&dev_attr_commands_outstanding,
531 	&dev_attr_transport_mode,
532 	&dev_attr_resettable,
533 	NULL,
534 };
535 
536 static struct scsi_host_template hpsa_driver_template = {
537 	.module			= THIS_MODULE,
538 	.name			= HPSA,
539 	.proc_name		= HPSA,
540 	.queuecommand		= hpsa_scsi_queue_command,
541 	.scan_start		= hpsa_scan_start,
542 	.scan_finished		= hpsa_scan_finished,
543 	.change_queue_depth	= hpsa_change_queue_depth,
544 	.this_id		= -1,
545 	.use_clustering		= ENABLE_CLUSTERING,
546 	.eh_abort_handler	= hpsa_eh_abort_handler,
547 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
548 	.ioctl			= hpsa_ioctl,
549 	.slave_alloc		= hpsa_slave_alloc,
550 	.slave_destroy		= hpsa_slave_destroy,
551 #ifdef CONFIG_COMPAT
552 	.compat_ioctl		= hpsa_compat_ioctl,
553 #endif
554 	.sdev_attrs = hpsa_sdev_attrs,
555 	.shost_attrs = hpsa_shost_attrs,
556 	.max_sectors = 8192,
557 	.no_write_same = 1,
558 };
559 
560 
561 /* Enqueuing and dequeuing functions for cmdlists. */
562 static inline void addQ(struct list_head *list, struct CommandList *c)
563 {
564 	list_add_tail(&c->list, list);
565 }
566 
567 static inline u32 next_command(struct ctlr_info *h, u8 q)
568 {
569 	u32 a;
570 	struct reply_pool *rq = &h->reply_queue[q];
571 	unsigned long flags;
572 
573 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
574 		return h->access.command_completed(h, q);
575 
576 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
577 		a = rq->head[rq->current_entry];
578 		rq->current_entry++;
579 		spin_lock_irqsave(&h->lock, flags);
580 		h->commands_outstanding--;
581 		spin_unlock_irqrestore(&h->lock, flags);
582 	} else {
583 		a = FIFO_EMPTY;
584 	}
585 	/* Check for wraparound */
586 	if (rq->current_entry == h->max_commands) {
587 		rq->current_entry = 0;
588 		rq->wraparound ^= 1;
589 	}
590 	return a;
591 }
592 
593 /* set_performant_mode: Modify the tag for cciss performant
594  * set bit 0 for pull model, bits 3-1 for block fetch
595  * register number
596  */
597 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
598 {
599 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
600 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
601 		if (likely(h->msix_vector))
602 			c->Header.ReplyQueue =
603 				raw_smp_processor_id() % h->nreply_queues;
604 	}
605 }
606 
607 static int is_firmware_flash_cmd(u8 *cdb)
608 {
609 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
610 }
611 
612 /*
613  * During firmware flash, the heartbeat register may not update as frequently
614  * as it should.  So we dial down lockup detection during firmware flash. and
615  * dial it back up when firmware flash completes.
616  */
617 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
618 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
619 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
620 		struct CommandList *c)
621 {
622 	if (!is_firmware_flash_cmd(c->Request.CDB))
623 		return;
624 	atomic_inc(&h->firmware_flash_in_progress);
625 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
626 }
627 
628 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
629 		struct CommandList *c)
630 {
631 	if (is_firmware_flash_cmd(c->Request.CDB) &&
632 		atomic_dec_and_test(&h->firmware_flash_in_progress))
633 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
634 }
635 
636 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
637 	struct CommandList *c)
638 {
639 	unsigned long flags;
640 
641 	set_performant_mode(h, c);
642 	dial_down_lockup_detection_during_fw_flash(h, c);
643 	spin_lock_irqsave(&h->lock, flags);
644 	addQ(&h->reqQ, c);
645 	h->Qdepth++;
646 	spin_unlock_irqrestore(&h->lock, flags);
647 	start_io(h);
648 }
649 
650 static inline void removeQ(struct CommandList *c)
651 {
652 	if (WARN_ON(list_empty(&c->list)))
653 		return;
654 	list_del_init(&c->list);
655 }
656 
657 static inline int is_hba_lunid(unsigned char scsi3addr[])
658 {
659 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
660 }
661 
662 static inline int is_scsi_rev_5(struct ctlr_info *h)
663 {
664 	if (!h->hba_inquiry_data)
665 		return 0;
666 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
667 		return 1;
668 	return 0;
669 }
670 
671 static int hpsa_find_target_lun(struct ctlr_info *h,
672 	unsigned char scsi3addr[], int bus, int *target, int *lun)
673 {
674 	/* finds an unused bus, target, lun for a new physical device
675 	 * assumes h->devlock is held
676 	 */
677 	int i, found = 0;
678 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
679 
680 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
681 
682 	for (i = 0; i < h->ndevices; i++) {
683 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
684 			__set_bit(h->dev[i]->target, lun_taken);
685 	}
686 
687 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
688 	if (i < HPSA_MAX_DEVICES) {
689 		/* *bus = 1; */
690 		*target = i;
691 		*lun = 0;
692 		found = 1;
693 	}
694 	return !found;
695 }
696 
697 /* Add an entry into h->dev[] array. */
698 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
699 		struct hpsa_scsi_dev_t *device,
700 		struct hpsa_scsi_dev_t *added[], int *nadded)
701 {
702 	/* assumes h->devlock is held */
703 	int n = h->ndevices;
704 	int i;
705 	unsigned char addr1[8], addr2[8];
706 	struct hpsa_scsi_dev_t *sd;
707 
708 	if (n >= HPSA_MAX_DEVICES) {
709 		dev_err(&h->pdev->dev, "too many devices, some will be "
710 			"inaccessible.\n");
711 		return -1;
712 	}
713 
714 	/* physical devices do not have lun or target assigned until now. */
715 	if (device->lun != -1)
716 		/* Logical device, lun is already assigned. */
717 		goto lun_assigned;
718 
719 	/* If this device a non-zero lun of a multi-lun device
720 	 * byte 4 of the 8-byte LUN addr will contain the logical
721 	 * unit no, zero otherise.
722 	 */
723 	if (device->scsi3addr[4] == 0) {
724 		/* This is not a non-zero lun of a multi-lun device */
725 		if (hpsa_find_target_lun(h, device->scsi3addr,
726 			device->bus, &device->target, &device->lun) != 0)
727 			return -1;
728 		goto lun_assigned;
729 	}
730 
731 	/* This is a non-zero lun of a multi-lun device.
732 	 * Search through our list and find the device which
733 	 * has the same 8 byte LUN address, excepting byte 4.
734 	 * Assign the same bus and target for this new LUN.
735 	 * Use the logical unit number from the firmware.
736 	 */
737 	memcpy(addr1, device->scsi3addr, 8);
738 	addr1[4] = 0;
739 	for (i = 0; i < n; i++) {
740 		sd = h->dev[i];
741 		memcpy(addr2, sd->scsi3addr, 8);
742 		addr2[4] = 0;
743 		/* differ only in byte 4? */
744 		if (memcmp(addr1, addr2, 8) == 0) {
745 			device->bus = sd->bus;
746 			device->target = sd->target;
747 			device->lun = device->scsi3addr[4];
748 			break;
749 		}
750 	}
751 	if (device->lun == -1) {
752 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
753 			" suspect firmware bug or unsupported hardware "
754 			"configuration.\n");
755 			return -1;
756 	}
757 
758 lun_assigned:
759 
760 	h->dev[n] = device;
761 	h->ndevices++;
762 	added[*nadded] = device;
763 	(*nadded)++;
764 
765 	/* initially, (before registering with scsi layer) we don't
766 	 * know our hostno and we don't want to print anything first
767 	 * time anyway (the scsi layer's inquiries will show that info)
768 	 */
769 	/* if (hostno != -1) */
770 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
771 			scsi_device_type(device->devtype), hostno,
772 			device->bus, device->target, device->lun);
773 	return 0;
774 }
775 
776 /* Update an entry in h->dev[] array. */
777 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
778 	int entry, struct hpsa_scsi_dev_t *new_entry)
779 {
780 	/* assumes h->devlock is held */
781 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
782 
783 	/* Raid level changed. */
784 	h->dev[entry]->raid_level = new_entry->raid_level;
785 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
786 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
787 		new_entry->target, new_entry->lun);
788 }
789 
790 /* Replace an entry from h->dev[] array. */
791 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
792 	int entry, struct hpsa_scsi_dev_t *new_entry,
793 	struct hpsa_scsi_dev_t *added[], int *nadded,
794 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
795 {
796 	/* assumes h->devlock is held */
797 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
798 	removed[*nremoved] = h->dev[entry];
799 	(*nremoved)++;
800 
801 	/*
802 	 * New physical devices won't have target/lun assigned yet
803 	 * so we need to preserve the values in the slot we are replacing.
804 	 */
805 	if (new_entry->target == -1) {
806 		new_entry->target = h->dev[entry]->target;
807 		new_entry->lun = h->dev[entry]->lun;
808 	}
809 
810 	h->dev[entry] = new_entry;
811 	added[*nadded] = new_entry;
812 	(*nadded)++;
813 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
814 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
815 			new_entry->target, new_entry->lun);
816 }
817 
818 /* Remove an entry from h->dev[] array. */
819 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
820 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
821 {
822 	/* assumes h->devlock is held */
823 	int i;
824 	struct hpsa_scsi_dev_t *sd;
825 
826 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
827 
828 	sd = h->dev[entry];
829 	removed[*nremoved] = h->dev[entry];
830 	(*nremoved)++;
831 
832 	for (i = entry; i < h->ndevices-1; i++)
833 		h->dev[i] = h->dev[i+1];
834 	h->ndevices--;
835 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
836 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
837 		sd->lun);
838 }
839 
840 #define SCSI3ADDR_EQ(a, b) ( \
841 	(a)[7] == (b)[7] && \
842 	(a)[6] == (b)[6] && \
843 	(a)[5] == (b)[5] && \
844 	(a)[4] == (b)[4] && \
845 	(a)[3] == (b)[3] && \
846 	(a)[2] == (b)[2] && \
847 	(a)[1] == (b)[1] && \
848 	(a)[0] == (b)[0])
849 
850 static void fixup_botched_add(struct ctlr_info *h,
851 	struct hpsa_scsi_dev_t *added)
852 {
853 	/* called when scsi_add_device fails in order to re-adjust
854 	 * h->dev[] to match the mid layer's view.
855 	 */
856 	unsigned long flags;
857 	int i, j;
858 
859 	spin_lock_irqsave(&h->lock, flags);
860 	for (i = 0; i < h->ndevices; i++) {
861 		if (h->dev[i] == added) {
862 			for (j = i; j < h->ndevices-1; j++)
863 				h->dev[j] = h->dev[j+1];
864 			h->ndevices--;
865 			break;
866 		}
867 	}
868 	spin_unlock_irqrestore(&h->lock, flags);
869 	kfree(added);
870 }
871 
872 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
873 	struct hpsa_scsi_dev_t *dev2)
874 {
875 	/* we compare everything except lun and target as these
876 	 * are not yet assigned.  Compare parts likely
877 	 * to differ first
878 	 */
879 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
880 		sizeof(dev1->scsi3addr)) != 0)
881 		return 0;
882 	if (memcmp(dev1->device_id, dev2->device_id,
883 		sizeof(dev1->device_id)) != 0)
884 		return 0;
885 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
886 		return 0;
887 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
888 		return 0;
889 	if (dev1->devtype != dev2->devtype)
890 		return 0;
891 	if (dev1->bus != dev2->bus)
892 		return 0;
893 	return 1;
894 }
895 
896 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
897 	struct hpsa_scsi_dev_t *dev2)
898 {
899 	/* Device attributes that can change, but don't mean
900 	 * that the device is a different device, nor that the OS
901 	 * needs to be told anything about the change.
902 	 */
903 	if (dev1->raid_level != dev2->raid_level)
904 		return 1;
905 	return 0;
906 }
907 
908 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
909  * and return needle location in *index.  If scsi3addr matches, but not
910  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
911  * location in *index.
912  * In the case of a minor device attribute change, such as RAID level, just
913  * return DEVICE_UPDATED, along with the updated device's location in index.
914  * If needle not found, return DEVICE_NOT_FOUND.
915  */
916 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
917 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
918 	int *index)
919 {
920 	int i;
921 #define DEVICE_NOT_FOUND 0
922 #define DEVICE_CHANGED 1
923 #define DEVICE_SAME 2
924 #define DEVICE_UPDATED 3
925 	for (i = 0; i < haystack_size; i++) {
926 		if (haystack[i] == NULL) /* previously removed. */
927 			continue;
928 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
929 			*index = i;
930 			if (device_is_the_same(needle, haystack[i])) {
931 				if (device_updated(needle, haystack[i]))
932 					return DEVICE_UPDATED;
933 				return DEVICE_SAME;
934 			} else {
935 				return DEVICE_CHANGED;
936 			}
937 		}
938 	}
939 	*index = -1;
940 	return DEVICE_NOT_FOUND;
941 }
942 
943 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
944 	struct hpsa_scsi_dev_t *sd[], int nsds)
945 {
946 	/* sd contains scsi3 addresses and devtypes, and inquiry
947 	 * data.  This function takes what's in sd to be the current
948 	 * reality and updates h->dev[] to reflect that reality.
949 	 */
950 	int i, entry, device_change, changes = 0;
951 	struct hpsa_scsi_dev_t *csd;
952 	unsigned long flags;
953 	struct hpsa_scsi_dev_t **added, **removed;
954 	int nadded, nremoved;
955 	struct Scsi_Host *sh = NULL;
956 
957 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
958 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
959 
960 	if (!added || !removed) {
961 		dev_warn(&h->pdev->dev, "out of memory in "
962 			"adjust_hpsa_scsi_table\n");
963 		goto free_and_out;
964 	}
965 
966 	spin_lock_irqsave(&h->devlock, flags);
967 
968 	/* find any devices in h->dev[] that are not in
969 	 * sd[] and remove them from h->dev[], and for any
970 	 * devices which have changed, remove the old device
971 	 * info and add the new device info.
972 	 * If minor device attributes change, just update
973 	 * the existing device structure.
974 	 */
975 	i = 0;
976 	nremoved = 0;
977 	nadded = 0;
978 	while (i < h->ndevices) {
979 		csd = h->dev[i];
980 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
981 		if (device_change == DEVICE_NOT_FOUND) {
982 			changes++;
983 			hpsa_scsi_remove_entry(h, hostno, i,
984 				removed, &nremoved);
985 			continue; /* remove ^^^, hence i not incremented */
986 		} else if (device_change == DEVICE_CHANGED) {
987 			changes++;
988 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
989 				added, &nadded, removed, &nremoved);
990 			/* Set it to NULL to prevent it from being freed
991 			 * at the bottom of hpsa_update_scsi_devices()
992 			 */
993 			sd[entry] = NULL;
994 		} else if (device_change == DEVICE_UPDATED) {
995 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
996 		}
997 		i++;
998 	}
999 
1000 	/* Now, make sure every device listed in sd[] is also
1001 	 * listed in h->dev[], adding them if they aren't found
1002 	 */
1003 
1004 	for (i = 0; i < nsds; i++) {
1005 		if (!sd[i]) /* if already added above. */
1006 			continue;
1007 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1008 					h->ndevices, &entry);
1009 		if (device_change == DEVICE_NOT_FOUND) {
1010 			changes++;
1011 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1012 				added, &nadded) != 0)
1013 				break;
1014 			sd[i] = NULL; /* prevent from being freed later. */
1015 		} else if (device_change == DEVICE_CHANGED) {
1016 			/* should never happen... */
1017 			changes++;
1018 			dev_warn(&h->pdev->dev,
1019 				"device unexpectedly changed.\n");
1020 			/* but if it does happen, we just ignore that device */
1021 		}
1022 	}
1023 	spin_unlock_irqrestore(&h->devlock, flags);
1024 
1025 	/* Don't notify scsi mid layer of any changes the first time through
1026 	 * (or if there are no changes) scsi_scan_host will do it later the
1027 	 * first time through.
1028 	 */
1029 	if (hostno == -1 || !changes)
1030 		goto free_and_out;
1031 
1032 	sh = h->scsi_host;
1033 	/* Notify scsi mid layer of any removed devices */
1034 	for (i = 0; i < nremoved; i++) {
1035 		struct scsi_device *sdev =
1036 			scsi_device_lookup(sh, removed[i]->bus,
1037 				removed[i]->target, removed[i]->lun);
1038 		if (sdev != NULL) {
1039 			scsi_remove_device(sdev);
1040 			scsi_device_put(sdev);
1041 		} else {
1042 			/* We don't expect to get here.
1043 			 * future cmds to this device will get selection
1044 			 * timeout as if the device was gone.
1045 			 */
1046 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1047 				" for removal.", hostno, removed[i]->bus,
1048 				removed[i]->target, removed[i]->lun);
1049 		}
1050 		kfree(removed[i]);
1051 		removed[i] = NULL;
1052 	}
1053 
1054 	/* Notify scsi mid layer of any added devices */
1055 	for (i = 0; i < nadded; i++) {
1056 		if (scsi_add_device(sh, added[i]->bus,
1057 			added[i]->target, added[i]->lun) == 0)
1058 			continue;
1059 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1060 			"device not added.\n", hostno, added[i]->bus,
1061 			added[i]->target, added[i]->lun);
1062 		/* now we have to remove it from h->dev,
1063 		 * since it didn't get added to scsi mid layer
1064 		 */
1065 		fixup_botched_add(h, added[i]);
1066 	}
1067 
1068 free_and_out:
1069 	kfree(added);
1070 	kfree(removed);
1071 }
1072 
1073 /*
1074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1075  * Assume's h->devlock is held.
1076  */
1077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1078 	int bus, int target, int lun)
1079 {
1080 	int i;
1081 	struct hpsa_scsi_dev_t *sd;
1082 
1083 	for (i = 0; i < h->ndevices; i++) {
1084 		sd = h->dev[i];
1085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1086 			return sd;
1087 	}
1088 	return NULL;
1089 }
1090 
1091 /* link sdev->hostdata to our per-device structure. */
1092 static int hpsa_slave_alloc(struct scsi_device *sdev)
1093 {
1094 	struct hpsa_scsi_dev_t *sd;
1095 	unsigned long flags;
1096 	struct ctlr_info *h;
1097 
1098 	h = sdev_to_hba(sdev);
1099 	spin_lock_irqsave(&h->devlock, flags);
1100 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1101 		sdev_id(sdev), sdev->lun);
1102 	if (sd != NULL)
1103 		sdev->hostdata = sd;
1104 	spin_unlock_irqrestore(&h->devlock, flags);
1105 	return 0;
1106 }
1107 
1108 static void hpsa_slave_destroy(struct scsi_device *sdev)
1109 {
1110 	/* nothing to do. */
1111 }
1112 
1113 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1114 {
1115 	int i;
1116 
1117 	if (!h->cmd_sg_list)
1118 		return;
1119 	for (i = 0; i < h->nr_cmds; i++) {
1120 		kfree(h->cmd_sg_list[i]);
1121 		h->cmd_sg_list[i] = NULL;
1122 	}
1123 	kfree(h->cmd_sg_list);
1124 	h->cmd_sg_list = NULL;
1125 }
1126 
1127 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1128 {
1129 	int i;
1130 
1131 	if (h->chainsize <= 0)
1132 		return 0;
1133 
1134 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1135 				GFP_KERNEL);
1136 	if (!h->cmd_sg_list)
1137 		return -ENOMEM;
1138 	for (i = 0; i < h->nr_cmds; i++) {
1139 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1140 						h->chainsize, GFP_KERNEL);
1141 		if (!h->cmd_sg_list[i])
1142 			goto clean;
1143 	}
1144 	return 0;
1145 
1146 clean:
1147 	hpsa_free_sg_chain_blocks(h);
1148 	return -ENOMEM;
1149 }
1150 
1151 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1152 	struct CommandList *c)
1153 {
1154 	struct SGDescriptor *chain_sg, *chain_block;
1155 	u64 temp64;
1156 
1157 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1158 	chain_block = h->cmd_sg_list[c->cmdindex];
1159 	chain_sg->Ext = HPSA_SG_CHAIN;
1160 	chain_sg->Len = sizeof(*chain_sg) *
1161 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1162 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1163 				PCI_DMA_TODEVICE);
1164 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1165 		/* prevent subsequent unmapping */
1166 		chain_sg->Addr.lower = 0;
1167 		chain_sg->Addr.upper = 0;
1168 		return -1;
1169 	}
1170 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1171 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1172 	return 0;
1173 }
1174 
1175 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1176 	struct CommandList *c)
1177 {
1178 	struct SGDescriptor *chain_sg;
1179 	union u64bit temp64;
1180 
1181 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1182 		return;
1183 
1184 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1185 	temp64.val32.lower = chain_sg->Addr.lower;
1186 	temp64.val32.upper = chain_sg->Addr.upper;
1187 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1188 }
1189 
1190 static void complete_scsi_command(struct CommandList *cp)
1191 {
1192 	struct scsi_cmnd *cmd;
1193 	struct ctlr_info *h;
1194 	struct ErrorInfo *ei;
1195 
1196 	unsigned char sense_key;
1197 	unsigned char asc;      /* additional sense code */
1198 	unsigned char ascq;     /* additional sense code qualifier */
1199 	unsigned long sense_data_size;
1200 
1201 	ei = cp->err_info;
1202 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1203 	h = cp->h;
1204 
1205 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1206 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1207 		hpsa_unmap_sg_chain_block(h, cp);
1208 
1209 	cmd->result = (DID_OK << 16); 		/* host byte */
1210 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1211 	cmd->result |= ei->ScsiStatus;
1212 
1213 	/* copy the sense data whether we need to or not. */
1214 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1215 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1216 	else
1217 		sense_data_size = sizeof(ei->SenseInfo);
1218 	if (ei->SenseLen < sense_data_size)
1219 		sense_data_size = ei->SenseLen;
1220 
1221 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1222 	scsi_set_resid(cmd, ei->ResidualCnt);
1223 
1224 	if (ei->CommandStatus == 0) {
1225 		cmd_free(h, cp);
1226 		cmd->scsi_done(cmd);
1227 		return;
1228 	}
1229 
1230 	/* an error has occurred */
1231 	switch (ei->CommandStatus) {
1232 
1233 	case CMD_TARGET_STATUS:
1234 		if (ei->ScsiStatus) {
1235 			/* Get sense key */
1236 			sense_key = 0xf & ei->SenseInfo[2];
1237 			/* Get additional sense code */
1238 			asc = ei->SenseInfo[12];
1239 			/* Get addition sense code qualifier */
1240 			ascq = ei->SenseInfo[13];
1241 		}
1242 
1243 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1244 			if (check_for_unit_attention(h, cp))
1245 				break;
1246 			if (sense_key == ILLEGAL_REQUEST) {
1247 				/*
1248 				 * SCSI REPORT_LUNS is commonly unsupported on
1249 				 * Smart Array.  Suppress noisy complaint.
1250 				 */
1251 				if (cp->Request.CDB[0] == REPORT_LUNS)
1252 					break;
1253 
1254 				/* If ASC/ASCQ indicate Logical Unit
1255 				 * Not Supported condition,
1256 				 */
1257 				if ((asc == 0x25) && (ascq == 0x0)) {
1258 					dev_warn(&h->pdev->dev, "cp %p "
1259 						"has check condition\n", cp);
1260 					break;
1261 				}
1262 			}
1263 
1264 			if (sense_key == NOT_READY) {
1265 				/* If Sense is Not Ready, Logical Unit
1266 				 * Not ready, Manual Intervention
1267 				 * required
1268 				 */
1269 				if ((asc == 0x04) && (ascq == 0x03)) {
1270 					dev_warn(&h->pdev->dev, "cp %p "
1271 						"has check condition: unit "
1272 						"not ready, manual "
1273 						"intervention required\n", cp);
1274 					break;
1275 				}
1276 			}
1277 			if (sense_key == ABORTED_COMMAND) {
1278 				/* Aborted command is retryable */
1279 				dev_warn(&h->pdev->dev, "cp %p "
1280 					"has check condition: aborted command: "
1281 					"ASC: 0x%x, ASCQ: 0x%x\n",
1282 					cp, asc, ascq);
1283 				cmd->result |= DID_SOFT_ERROR << 16;
1284 				break;
1285 			}
1286 			/* Must be some other type of check condition */
1287 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1288 					"unknown type: "
1289 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1290 					"Returning result: 0x%x, "
1291 					"cmd=[%02x %02x %02x %02x %02x "
1292 					"%02x %02x %02x %02x %02x %02x "
1293 					"%02x %02x %02x %02x %02x]\n",
1294 					cp, sense_key, asc, ascq,
1295 					cmd->result,
1296 					cmd->cmnd[0], cmd->cmnd[1],
1297 					cmd->cmnd[2], cmd->cmnd[3],
1298 					cmd->cmnd[4], cmd->cmnd[5],
1299 					cmd->cmnd[6], cmd->cmnd[7],
1300 					cmd->cmnd[8], cmd->cmnd[9],
1301 					cmd->cmnd[10], cmd->cmnd[11],
1302 					cmd->cmnd[12], cmd->cmnd[13],
1303 					cmd->cmnd[14], cmd->cmnd[15]);
1304 			break;
1305 		}
1306 
1307 
1308 		/* Problem was not a check condition
1309 		 * Pass it up to the upper layers...
1310 		 */
1311 		if (ei->ScsiStatus) {
1312 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1313 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1314 				"Returning result: 0x%x\n",
1315 				cp, ei->ScsiStatus,
1316 				sense_key, asc, ascq,
1317 				cmd->result);
1318 		} else {  /* scsi status is zero??? How??? */
1319 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1320 				"Returning no connection.\n", cp),
1321 
1322 			/* Ordinarily, this case should never happen,
1323 			 * but there is a bug in some released firmware
1324 			 * revisions that allows it to happen if, for
1325 			 * example, a 4100 backplane loses power and
1326 			 * the tape drive is in it.  We assume that
1327 			 * it's a fatal error of some kind because we
1328 			 * can't show that it wasn't. We will make it
1329 			 * look like selection timeout since that is
1330 			 * the most common reason for this to occur,
1331 			 * and it's severe enough.
1332 			 */
1333 
1334 			cmd->result = DID_NO_CONNECT << 16;
1335 		}
1336 		break;
1337 
1338 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1339 		break;
1340 	case CMD_DATA_OVERRUN:
1341 		dev_warn(&h->pdev->dev, "cp %p has"
1342 			" completed with data overrun "
1343 			"reported\n", cp);
1344 		break;
1345 	case CMD_INVALID: {
1346 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1347 		print_cmd(cp); */
1348 		/* We get CMD_INVALID if you address a non-existent device
1349 		 * instead of a selection timeout (no response).  You will
1350 		 * see this if you yank out a drive, then try to access it.
1351 		 * This is kind of a shame because it means that any other
1352 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1353 		 * missing target. */
1354 		cmd->result = DID_NO_CONNECT << 16;
1355 	}
1356 		break;
1357 	case CMD_PROTOCOL_ERR:
1358 		cmd->result = DID_ERROR << 16;
1359 		dev_warn(&h->pdev->dev, "cp %p has "
1360 			"protocol error\n", cp);
1361 		break;
1362 	case CMD_HARDWARE_ERR:
1363 		cmd->result = DID_ERROR << 16;
1364 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1365 		break;
1366 	case CMD_CONNECTION_LOST:
1367 		cmd->result = DID_ERROR << 16;
1368 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1369 		break;
1370 	case CMD_ABORTED:
1371 		cmd->result = DID_ABORT << 16;
1372 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1373 				cp, ei->ScsiStatus);
1374 		break;
1375 	case CMD_ABORT_FAILED:
1376 		cmd->result = DID_ERROR << 16;
1377 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1378 		break;
1379 	case CMD_UNSOLICITED_ABORT:
1380 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1381 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1382 			"abort\n", cp);
1383 		break;
1384 	case CMD_TIMEOUT:
1385 		cmd->result = DID_TIME_OUT << 16;
1386 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1387 		break;
1388 	case CMD_UNABORTABLE:
1389 		cmd->result = DID_ERROR << 16;
1390 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1391 		break;
1392 	default:
1393 		cmd->result = DID_ERROR << 16;
1394 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1395 				cp, ei->CommandStatus);
1396 	}
1397 	cmd_free(h, cp);
1398 	cmd->scsi_done(cmd);
1399 }
1400 
1401 static void hpsa_pci_unmap(struct pci_dev *pdev,
1402 	struct CommandList *c, int sg_used, int data_direction)
1403 {
1404 	int i;
1405 	union u64bit addr64;
1406 
1407 	for (i = 0; i < sg_used; i++) {
1408 		addr64.val32.lower = c->SG[i].Addr.lower;
1409 		addr64.val32.upper = c->SG[i].Addr.upper;
1410 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1411 			data_direction);
1412 	}
1413 }
1414 
1415 static int hpsa_map_one(struct pci_dev *pdev,
1416 		struct CommandList *cp,
1417 		unsigned char *buf,
1418 		size_t buflen,
1419 		int data_direction)
1420 {
1421 	u64 addr64;
1422 
1423 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1424 		cp->Header.SGList = 0;
1425 		cp->Header.SGTotal = 0;
1426 		return 0;
1427 	}
1428 
1429 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1430 	if (dma_mapping_error(&pdev->dev, addr64)) {
1431 		/* Prevent subsequent unmap of something never mapped */
1432 		cp->Header.SGList = 0;
1433 		cp->Header.SGTotal = 0;
1434 		return -1;
1435 	}
1436 	cp->SG[0].Addr.lower =
1437 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1438 	cp->SG[0].Addr.upper =
1439 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1440 	cp->SG[0].Len = buflen;
1441 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1442 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1443 	return 0;
1444 }
1445 
1446 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1447 	struct CommandList *c)
1448 {
1449 	DECLARE_COMPLETION_ONSTACK(wait);
1450 
1451 	c->waiting = &wait;
1452 	enqueue_cmd_and_start_io(h, c);
1453 	wait_for_completion(&wait);
1454 }
1455 
1456 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1457 	struct CommandList *c)
1458 {
1459 	unsigned long flags;
1460 
1461 	/* If controller lockup detected, fake a hardware error. */
1462 	spin_lock_irqsave(&h->lock, flags);
1463 	if (unlikely(h->lockup_detected)) {
1464 		spin_unlock_irqrestore(&h->lock, flags);
1465 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1466 	} else {
1467 		spin_unlock_irqrestore(&h->lock, flags);
1468 		hpsa_scsi_do_simple_cmd_core(h, c);
1469 	}
1470 }
1471 
1472 #define MAX_DRIVER_CMD_RETRIES 25
1473 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1474 	struct CommandList *c, int data_direction)
1475 {
1476 	int backoff_time = 10, retry_count = 0;
1477 
1478 	do {
1479 		memset(c->err_info, 0, sizeof(*c->err_info));
1480 		hpsa_scsi_do_simple_cmd_core(h, c);
1481 		retry_count++;
1482 		if (retry_count > 3) {
1483 			msleep(backoff_time);
1484 			if (backoff_time < 1000)
1485 				backoff_time *= 2;
1486 		}
1487 	} while ((check_for_unit_attention(h, c) ||
1488 			check_for_busy(h, c)) &&
1489 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1490 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1491 }
1492 
1493 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1494 {
1495 	struct ErrorInfo *ei;
1496 	struct device *d = &cp->h->pdev->dev;
1497 
1498 	ei = cp->err_info;
1499 	switch (ei->CommandStatus) {
1500 	case CMD_TARGET_STATUS:
1501 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1502 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1503 				ei->ScsiStatus);
1504 		if (ei->ScsiStatus == 0)
1505 			dev_warn(d, "SCSI status is abnormally zero.  "
1506 			"(probably indicates selection timeout "
1507 			"reported incorrectly due to a known "
1508 			"firmware bug, circa July, 2001.)\n");
1509 		break;
1510 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1511 			dev_info(d, "UNDERRUN\n");
1512 		break;
1513 	case CMD_DATA_OVERRUN:
1514 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1515 		break;
1516 	case CMD_INVALID: {
1517 		/* controller unfortunately reports SCSI passthru's
1518 		 * to non-existent targets as invalid commands.
1519 		 */
1520 		dev_warn(d, "cp %p is reported invalid (probably means "
1521 			"target device no longer present)\n", cp);
1522 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1523 		print_cmd(cp);  */
1524 		}
1525 		break;
1526 	case CMD_PROTOCOL_ERR:
1527 		dev_warn(d, "cp %p has protocol error \n", cp);
1528 		break;
1529 	case CMD_HARDWARE_ERR:
1530 		/* cmd->result = DID_ERROR << 16; */
1531 		dev_warn(d, "cp %p had hardware error\n", cp);
1532 		break;
1533 	case CMD_CONNECTION_LOST:
1534 		dev_warn(d, "cp %p had connection lost\n", cp);
1535 		break;
1536 	case CMD_ABORTED:
1537 		dev_warn(d, "cp %p was aborted\n", cp);
1538 		break;
1539 	case CMD_ABORT_FAILED:
1540 		dev_warn(d, "cp %p reports abort failed\n", cp);
1541 		break;
1542 	case CMD_UNSOLICITED_ABORT:
1543 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1544 		break;
1545 	case CMD_TIMEOUT:
1546 		dev_warn(d, "cp %p timed out\n", cp);
1547 		break;
1548 	case CMD_UNABORTABLE:
1549 		dev_warn(d, "Command unabortable\n");
1550 		break;
1551 	default:
1552 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1553 				ei->CommandStatus);
1554 	}
1555 }
1556 
1557 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1558 			unsigned char page, unsigned char *buf,
1559 			unsigned char bufsize)
1560 {
1561 	int rc = IO_OK;
1562 	struct CommandList *c;
1563 	struct ErrorInfo *ei;
1564 
1565 	c = cmd_special_alloc(h);
1566 
1567 	if (c == NULL) {			/* trouble... */
1568 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1569 		return -ENOMEM;
1570 	}
1571 
1572 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1573 			page, scsi3addr, TYPE_CMD)) {
1574 		rc = -1;
1575 		goto out;
1576 	}
1577 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1578 	ei = c->err_info;
1579 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1580 		hpsa_scsi_interpret_error(c);
1581 		rc = -1;
1582 	}
1583 out:
1584 	cmd_special_free(h, c);
1585 	return rc;
1586 }
1587 
1588 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1589 {
1590 	int rc = IO_OK;
1591 	struct CommandList *c;
1592 	struct ErrorInfo *ei;
1593 
1594 	c = cmd_special_alloc(h);
1595 
1596 	if (c == NULL) {			/* trouble... */
1597 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1598 		return -ENOMEM;
1599 	}
1600 
1601 	/* fill_cmd can't fail here, no data buffer to map. */
1602 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1603 			NULL, 0, 0, scsi3addr, TYPE_MSG);
1604 	hpsa_scsi_do_simple_cmd_core(h, c);
1605 	/* no unmap needed here because no data xfer. */
1606 
1607 	ei = c->err_info;
1608 	if (ei->CommandStatus != 0) {
1609 		hpsa_scsi_interpret_error(c);
1610 		rc = -1;
1611 	}
1612 	cmd_special_free(h, c);
1613 	return rc;
1614 }
1615 
1616 static void hpsa_get_raid_level(struct ctlr_info *h,
1617 	unsigned char *scsi3addr, unsigned char *raid_level)
1618 {
1619 	int rc;
1620 	unsigned char *buf;
1621 
1622 	*raid_level = RAID_UNKNOWN;
1623 	buf = kzalloc(64, GFP_KERNEL);
1624 	if (!buf)
1625 		return;
1626 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1627 	if (rc == 0)
1628 		*raid_level = buf[8];
1629 	if (*raid_level > RAID_UNKNOWN)
1630 		*raid_level = RAID_UNKNOWN;
1631 	kfree(buf);
1632 	return;
1633 }
1634 
1635 /* Get the device id from inquiry page 0x83 */
1636 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1637 	unsigned char *device_id, int buflen)
1638 {
1639 	int rc;
1640 	unsigned char *buf;
1641 
1642 	if (buflen > 16)
1643 		buflen = 16;
1644 	buf = kzalloc(64, GFP_KERNEL);
1645 	if (!buf)
1646 		return -1;
1647 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1648 	if (rc == 0)
1649 		memcpy(device_id, &buf[8], buflen);
1650 	kfree(buf);
1651 	return rc != 0;
1652 }
1653 
1654 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1655 		struct ReportLUNdata *buf, int bufsize,
1656 		int extended_response)
1657 {
1658 	int rc = IO_OK;
1659 	struct CommandList *c;
1660 	unsigned char scsi3addr[8];
1661 	struct ErrorInfo *ei;
1662 
1663 	c = cmd_special_alloc(h);
1664 	if (c == NULL) {			/* trouble... */
1665 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1666 		return -1;
1667 	}
1668 	/* address the controller */
1669 	memset(scsi3addr, 0, sizeof(scsi3addr));
1670 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1671 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1672 		rc = -1;
1673 		goto out;
1674 	}
1675 	if (extended_response)
1676 		c->Request.CDB[1] = extended_response;
1677 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1678 	ei = c->err_info;
1679 	if (ei->CommandStatus != 0 &&
1680 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1681 		hpsa_scsi_interpret_error(c);
1682 		rc = -1;
1683 	}
1684 out:
1685 	cmd_special_free(h, c);
1686 	return rc;
1687 }
1688 
1689 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1690 		struct ReportLUNdata *buf,
1691 		int bufsize, int extended_response)
1692 {
1693 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1694 }
1695 
1696 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1697 		struct ReportLUNdata *buf, int bufsize)
1698 {
1699 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1700 }
1701 
1702 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1703 	int bus, int target, int lun)
1704 {
1705 	device->bus = bus;
1706 	device->target = target;
1707 	device->lun = lun;
1708 }
1709 
1710 static int hpsa_update_device_info(struct ctlr_info *h,
1711 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1712 	unsigned char *is_OBDR_device)
1713 {
1714 
1715 #define OBDR_SIG_OFFSET 43
1716 #define OBDR_TAPE_SIG "$DR-10"
1717 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1718 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1719 
1720 	unsigned char *inq_buff;
1721 	unsigned char *obdr_sig;
1722 
1723 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1724 	if (!inq_buff)
1725 		goto bail_out;
1726 
1727 	/* Do an inquiry to the device to see what it is. */
1728 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1729 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1730 		/* Inquiry failed (msg printed already) */
1731 		dev_err(&h->pdev->dev,
1732 			"hpsa_update_device_info: inquiry failed\n");
1733 		goto bail_out;
1734 	}
1735 
1736 	this_device->devtype = (inq_buff[0] & 0x1f);
1737 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1738 	memcpy(this_device->vendor, &inq_buff[8],
1739 		sizeof(this_device->vendor));
1740 	memcpy(this_device->model, &inq_buff[16],
1741 		sizeof(this_device->model));
1742 	memset(this_device->device_id, 0,
1743 		sizeof(this_device->device_id));
1744 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1745 		sizeof(this_device->device_id));
1746 
1747 	if (this_device->devtype == TYPE_DISK &&
1748 		is_logical_dev_addr_mode(scsi3addr))
1749 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1750 	else
1751 		this_device->raid_level = RAID_UNKNOWN;
1752 
1753 	if (is_OBDR_device) {
1754 		/* See if this is a One-Button-Disaster-Recovery device
1755 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1756 		 */
1757 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1758 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1759 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1760 						OBDR_SIG_LEN) == 0);
1761 	}
1762 
1763 	kfree(inq_buff);
1764 	return 0;
1765 
1766 bail_out:
1767 	kfree(inq_buff);
1768 	return 1;
1769 }
1770 
1771 static unsigned char *ext_target_model[] = {
1772 	"MSA2012",
1773 	"MSA2024",
1774 	"MSA2312",
1775 	"MSA2324",
1776 	"P2000 G3 SAS",
1777 	"MSA 2040 SAS",
1778 	NULL,
1779 };
1780 
1781 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1782 {
1783 	int i;
1784 
1785 	for (i = 0; ext_target_model[i]; i++)
1786 		if (strncmp(device->model, ext_target_model[i],
1787 			strlen(ext_target_model[i])) == 0)
1788 			return 1;
1789 	return 0;
1790 }
1791 
1792 /* Helper function to assign bus, target, lun mapping of devices.
1793  * Puts non-external target logical volumes on bus 0, external target logical
1794  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1795  * Logical drive target and lun are assigned at this time, but
1796  * physical device lun and target assignment are deferred (assigned
1797  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1798  */
1799 static void figure_bus_target_lun(struct ctlr_info *h,
1800 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1801 {
1802 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1803 
1804 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1805 		/* physical device, target and lun filled in later */
1806 		if (is_hba_lunid(lunaddrbytes))
1807 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1808 		else
1809 			/* defer target, lun assignment for physical devices */
1810 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1811 		return;
1812 	}
1813 	/* It's a logical device */
1814 	if (is_ext_target(h, device)) {
1815 		/* external target way, put logicals on bus 1
1816 		 * and match target/lun numbers box
1817 		 * reports, other smart array, bus 0, target 0, match lunid
1818 		 */
1819 		hpsa_set_bus_target_lun(device,
1820 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1821 		return;
1822 	}
1823 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1824 }
1825 
1826 /*
1827  * If there is no lun 0 on a target, linux won't find any devices.
1828  * For the external targets (arrays), we have to manually detect the enclosure
1829  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1830  * it for some reason.  *tmpdevice is the target we're adding,
1831  * this_device is a pointer into the current element of currentsd[]
1832  * that we're building up in update_scsi_devices(), below.
1833  * lunzerobits is a bitmap that tracks which targets already have a
1834  * lun 0 assigned.
1835  * Returns 1 if an enclosure was added, 0 if not.
1836  */
1837 static int add_ext_target_dev(struct ctlr_info *h,
1838 	struct hpsa_scsi_dev_t *tmpdevice,
1839 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1840 	unsigned long lunzerobits[], int *n_ext_target_devs)
1841 {
1842 	unsigned char scsi3addr[8];
1843 
1844 	if (test_bit(tmpdevice->target, lunzerobits))
1845 		return 0; /* There is already a lun 0 on this target. */
1846 
1847 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1848 		return 0; /* It's the logical targets that may lack lun 0. */
1849 
1850 	if (!is_ext_target(h, tmpdevice))
1851 		return 0; /* Only external target devices have this problem. */
1852 
1853 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1854 		return 0;
1855 
1856 	memset(scsi3addr, 0, 8);
1857 	scsi3addr[3] = tmpdevice->target;
1858 	if (is_hba_lunid(scsi3addr))
1859 		return 0; /* Don't add the RAID controller here. */
1860 
1861 	if (is_scsi_rev_5(h))
1862 		return 0; /* p1210m doesn't need to do this. */
1863 
1864 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1865 		dev_warn(&h->pdev->dev, "Maximum number of external "
1866 			"target devices exceeded.  Check your hardware "
1867 			"configuration.");
1868 		return 0;
1869 	}
1870 
1871 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1872 		return 0;
1873 	(*n_ext_target_devs)++;
1874 	hpsa_set_bus_target_lun(this_device,
1875 				tmpdevice->bus, tmpdevice->target, 0);
1876 	set_bit(tmpdevice->target, lunzerobits);
1877 	return 1;
1878 }
1879 
1880 /*
1881  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1882  * logdev.  The number of luns in physdev and logdev are returned in
1883  * *nphysicals and *nlogicals, respectively.
1884  * Returns 0 on success, -1 otherwise.
1885  */
1886 static int hpsa_gather_lun_info(struct ctlr_info *h,
1887 	int reportlunsize,
1888 	struct ReportLUNdata *physdev, u32 *nphysicals,
1889 	struct ReportLUNdata *logdev, u32 *nlogicals)
1890 {
1891 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1892 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1893 		return -1;
1894 	}
1895 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1896 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1897 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1898 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1899 			*nphysicals - HPSA_MAX_PHYS_LUN);
1900 		*nphysicals = HPSA_MAX_PHYS_LUN;
1901 	}
1902 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1903 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1904 		return -1;
1905 	}
1906 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1907 	/* Reject Logicals in excess of our max capability. */
1908 	if (*nlogicals > HPSA_MAX_LUN) {
1909 		dev_warn(&h->pdev->dev,
1910 			"maximum logical LUNs (%d) exceeded.  "
1911 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1912 			*nlogicals - HPSA_MAX_LUN);
1913 			*nlogicals = HPSA_MAX_LUN;
1914 	}
1915 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1916 		dev_warn(&h->pdev->dev,
1917 			"maximum logical + physical LUNs (%d) exceeded. "
1918 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1919 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1920 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1921 	}
1922 	return 0;
1923 }
1924 
1925 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1926 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1927 	struct ReportLUNdata *logdev_list)
1928 {
1929 	/* Helper function, figure out where the LUN ID info is coming from
1930 	 * given index i, lists of physical and logical devices, where in
1931 	 * the list the raid controller is supposed to appear (first or last)
1932 	 */
1933 
1934 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1935 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1936 
1937 	if (i == raid_ctlr_position)
1938 		return RAID_CTLR_LUNID;
1939 
1940 	if (i < logicals_start)
1941 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1942 
1943 	if (i < last_device)
1944 		return &logdev_list->LUN[i - nphysicals -
1945 			(raid_ctlr_position == 0)][0];
1946 	BUG();
1947 	return NULL;
1948 }
1949 
1950 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1951 {
1952 	/* the idea here is we could get notified
1953 	 * that some devices have changed, so we do a report
1954 	 * physical luns and report logical luns cmd, and adjust
1955 	 * our list of devices accordingly.
1956 	 *
1957 	 * The scsi3addr's of devices won't change so long as the
1958 	 * adapter is not reset.  That means we can rescan and
1959 	 * tell which devices we already know about, vs. new
1960 	 * devices, vs.  disappearing devices.
1961 	 */
1962 	struct ReportLUNdata *physdev_list = NULL;
1963 	struct ReportLUNdata *logdev_list = NULL;
1964 	u32 nphysicals = 0;
1965 	u32 nlogicals = 0;
1966 	u32 ndev_allocated = 0;
1967 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1968 	int ncurrent = 0;
1969 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1970 	int i, n_ext_target_devs, ndevs_to_allocate;
1971 	int raid_ctlr_position;
1972 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1973 
1974 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1975 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1976 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1977 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1978 
1979 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1980 		dev_err(&h->pdev->dev, "out of memory\n");
1981 		goto out;
1982 	}
1983 	memset(lunzerobits, 0, sizeof(lunzerobits));
1984 
1985 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1986 			logdev_list, &nlogicals))
1987 		goto out;
1988 
1989 	/* We might see up to the maximum number of logical and physical disks
1990 	 * plus external target devices, and a device for the local RAID
1991 	 * controller.
1992 	 */
1993 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1994 
1995 	/* Allocate the per device structures */
1996 	for (i = 0; i < ndevs_to_allocate; i++) {
1997 		if (i >= HPSA_MAX_DEVICES) {
1998 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1999 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
2000 				ndevs_to_allocate - HPSA_MAX_DEVICES);
2001 			break;
2002 		}
2003 
2004 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2005 		if (!currentsd[i]) {
2006 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2007 				__FILE__, __LINE__);
2008 			goto out;
2009 		}
2010 		ndev_allocated++;
2011 	}
2012 
2013 	if (unlikely(is_scsi_rev_5(h)))
2014 		raid_ctlr_position = 0;
2015 	else
2016 		raid_ctlr_position = nphysicals + nlogicals;
2017 
2018 	/* adjust our table of devices */
2019 	n_ext_target_devs = 0;
2020 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2021 		u8 *lunaddrbytes, is_OBDR = 0;
2022 
2023 		/* Figure out where the LUN ID info is coming from */
2024 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2025 			i, nphysicals, nlogicals, physdev_list, logdev_list);
2026 		/* skip masked physical devices. */
2027 		if (lunaddrbytes[3] & 0xC0 &&
2028 			i < nphysicals + (raid_ctlr_position == 0))
2029 			continue;
2030 
2031 		/* Get device type, vendor, model, device id */
2032 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2033 							&is_OBDR))
2034 			continue; /* skip it if we can't talk to it. */
2035 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2036 		this_device = currentsd[ncurrent];
2037 
2038 		/*
2039 		 * For external target devices, we have to insert a LUN 0 which
2040 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2041 		 * is nonetheless an enclosure device there.  We have to
2042 		 * present that otherwise linux won't find anything if
2043 		 * there is no lun 0.
2044 		 */
2045 		if (add_ext_target_dev(h, tmpdevice, this_device,
2046 				lunaddrbytes, lunzerobits,
2047 				&n_ext_target_devs)) {
2048 			ncurrent++;
2049 			this_device = currentsd[ncurrent];
2050 		}
2051 
2052 		*this_device = *tmpdevice;
2053 
2054 		switch (this_device->devtype) {
2055 		case TYPE_ROM:
2056 			/* We don't *really* support actual CD-ROM devices,
2057 			 * just "One Button Disaster Recovery" tape drive
2058 			 * which temporarily pretends to be a CD-ROM drive.
2059 			 * So we check that the device is really an OBDR tape
2060 			 * device by checking for "$DR-10" in bytes 43-48 of
2061 			 * the inquiry data.
2062 			 */
2063 			if (is_OBDR)
2064 				ncurrent++;
2065 			break;
2066 		case TYPE_DISK:
2067 			if (i < nphysicals)
2068 				break;
2069 			ncurrent++;
2070 			break;
2071 		case TYPE_TAPE:
2072 		case TYPE_MEDIUM_CHANGER:
2073 			ncurrent++;
2074 			break;
2075 		case TYPE_RAID:
2076 			/* Only present the Smartarray HBA as a RAID controller.
2077 			 * If it's a RAID controller other than the HBA itself
2078 			 * (an external RAID controller, MSA500 or similar)
2079 			 * don't present it.
2080 			 */
2081 			if (!is_hba_lunid(lunaddrbytes))
2082 				break;
2083 			ncurrent++;
2084 			break;
2085 		default:
2086 			break;
2087 		}
2088 		if (ncurrent >= HPSA_MAX_DEVICES)
2089 			break;
2090 	}
2091 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2092 out:
2093 	kfree(tmpdevice);
2094 	for (i = 0; i < ndev_allocated; i++)
2095 		kfree(currentsd[i]);
2096 	kfree(currentsd);
2097 	kfree(physdev_list);
2098 	kfree(logdev_list);
2099 }
2100 
2101 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2102  * dma mapping  and fills in the scatter gather entries of the
2103  * hpsa command, cp.
2104  */
2105 static int hpsa_scatter_gather(struct ctlr_info *h,
2106 		struct CommandList *cp,
2107 		struct scsi_cmnd *cmd)
2108 {
2109 	unsigned int len;
2110 	struct scatterlist *sg;
2111 	u64 addr64;
2112 	int use_sg, i, sg_index, chained;
2113 	struct SGDescriptor *curr_sg;
2114 
2115 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2116 
2117 	use_sg = scsi_dma_map(cmd);
2118 	if (use_sg < 0)
2119 		return use_sg;
2120 
2121 	if (!use_sg)
2122 		goto sglist_finished;
2123 
2124 	curr_sg = cp->SG;
2125 	chained = 0;
2126 	sg_index = 0;
2127 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2128 		if (i == h->max_cmd_sg_entries - 1 &&
2129 			use_sg > h->max_cmd_sg_entries) {
2130 			chained = 1;
2131 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2132 			sg_index = 0;
2133 		}
2134 		addr64 = (u64) sg_dma_address(sg);
2135 		len  = sg_dma_len(sg);
2136 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2137 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2138 		curr_sg->Len = len;
2139 		curr_sg->Ext = 0;  /* we are not chaining */
2140 		curr_sg++;
2141 	}
2142 
2143 	if (use_sg + chained > h->maxSG)
2144 		h->maxSG = use_sg + chained;
2145 
2146 	if (chained) {
2147 		cp->Header.SGList = h->max_cmd_sg_entries;
2148 		cp->Header.SGTotal = (u16) (use_sg + 1);
2149 		if (hpsa_map_sg_chain_block(h, cp)) {
2150 			scsi_dma_unmap(cmd);
2151 			return -1;
2152 		}
2153 		return 0;
2154 	}
2155 
2156 sglist_finished:
2157 
2158 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2159 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2160 	return 0;
2161 }
2162 
2163 
2164 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2165 	void (*done)(struct scsi_cmnd *))
2166 {
2167 	struct ctlr_info *h;
2168 	struct hpsa_scsi_dev_t *dev;
2169 	unsigned char scsi3addr[8];
2170 	struct CommandList *c;
2171 	unsigned long flags;
2172 
2173 	/* Get the ptr to our adapter structure out of cmd->host. */
2174 	h = sdev_to_hba(cmd->device);
2175 	dev = cmd->device->hostdata;
2176 	if (!dev) {
2177 		cmd->result = DID_NO_CONNECT << 16;
2178 		done(cmd);
2179 		return 0;
2180 	}
2181 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2182 
2183 	spin_lock_irqsave(&h->lock, flags);
2184 	if (unlikely(h->lockup_detected)) {
2185 		spin_unlock_irqrestore(&h->lock, flags);
2186 		cmd->result = DID_ERROR << 16;
2187 		done(cmd);
2188 		return 0;
2189 	}
2190 	spin_unlock_irqrestore(&h->lock, flags);
2191 	c = cmd_alloc(h);
2192 	if (c == NULL) {			/* trouble... */
2193 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2194 		return SCSI_MLQUEUE_HOST_BUSY;
2195 	}
2196 
2197 	/* Fill in the command list header */
2198 
2199 	cmd->scsi_done = done;    /* save this for use by completion code */
2200 
2201 	/* save c in case we have to abort it  */
2202 	cmd->host_scribble = (unsigned char *) c;
2203 
2204 	c->cmd_type = CMD_SCSI;
2205 	c->scsi_cmd = cmd;
2206 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2207 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2208 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2209 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2210 
2211 	/* Fill in the request block... */
2212 
2213 	c->Request.Timeout = 0;
2214 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2215 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2216 	c->Request.CDBLen = cmd->cmd_len;
2217 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2218 	c->Request.Type.Type = TYPE_CMD;
2219 	c->Request.Type.Attribute = ATTR_SIMPLE;
2220 	switch (cmd->sc_data_direction) {
2221 	case DMA_TO_DEVICE:
2222 		c->Request.Type.Direction = XFER_WRITE;
2223 		break;
2224 	case DMA_FROM_DEVICE:
2225 		c->Request.Type.Direction = XFER_READ;
2226 		break;
2227 	case DMA_NONE:
2228 		c->Request.Type.Direction = XFER_NONE;
2229 		break;
2230 	case DMA_BIDIRECTIONAL:
2231 		/* This can happen if a buggy application does a scsi passthru
2232 		 * and sets both inlen and outlen to non-zero. ( see
2233 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2234 		 */
2235 
2236 		c->Request.Type.Direction = XFER_RSVD;
2237 		/* This is technically wrong, and hpsa controllers should
2238 		 * reject it with CMD_INVALID, which is the most correct
2239 		 * response, but non-fibre backends appear to let it
2240 		 * slide by, and give the same results as if this field
2241 		 * were set correctly.  Either way is acceptable for
2242 		 * our purposes here.
2243 		 */
2244 
2245 		break;
2246 
2247 	default:
2248 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2249 			cmd->sc_data_direction);
2250 		BUG();
2251 		break;
2252 	}
2253 
2254 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2255 		cmd_free(h, c);
2256 		return SCSI_MLQUEUE_HOST_BUSY;
2257 	}
2258 	enqueue_cmd_and_start_io(h, c);
2259 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2260 	return 0;
2261 }
2262 
2263 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2264 
2265 static void hpsa_scan_start(struct Scsi_Host *sh)
2266 {
2267 	struct ctlr_info *h = shost_to_hba(sh);
2268 	unsigned long flags;
2269 
2270 	/* wait until any scan already in progress is finished. */
2271 	while (1) {
2272 		spin_lock_irqsave(&h->scan_lock, flags);
2273 		if (h->scan_finished)
2274 			break;
2275 		spin_unlock_irqrestore(&h->scan_lock, flags);
2276 		wait_event(h->scan_wait_queue, h->scan_finished);
2277 		/* Note: We don't need to worry about a race between this
2278 		 * thread and driver unload because the midlayer will
2279 		 * have incremented the reference count, so unload won't
2280 		 * happen if we're in here.
2281 		 */
2282 	}
2283 	h->scan_finished = 0; /* mark scan as in progress */
2284 	spin_unlock_irqrestore(&h->scan_lock, flags);
2285 
2286 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2287 
2288 	spin_lock_irqsave(&h->scan_lock, flags);
2289 	h->scan_finished = 1; /* mark scan as finished. */
2290 	wake_up_all(&h->scan_wait_queue);
2291 	spin_unlock_irqrestore(&h->scan_lock, flags);
2292 }
2293 
2294 static int hpsa_scan_finished(struct Scsi_Host *sh,
2295 	unsigned long elapsed_time)
2296 {
2297 	struct ctlr_info *h = shost_to_hba(sh);
2298 	unsigned long flags;
2299 	int finished;
2300 
2301 	spin_lock_irqsave(&h->scan_lock, flags);
2302 	finished = h->scan_finished;
2303 	spin_unlock_irqrestore(&h->scan_lock, flags);
2304 	return finished;
2305 }
2306 
2307 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2308 	int qdepth, int reason)
2309 {
2310 	struct ctlr_info *h = sdev_to_hba(sdev);
2311 
2312 	if (reason != SCSI_QDEPTH_DEFAULT)
2313 		return -ENOTSUPP;
2314 
2315 	if (qdepth < 1)
2316 		qdepth = 1;
2317 	else
2318 		if (qdepth > h->nr_cmds)
2319 			qdepth = h->nr_cmds;
2320 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2321 	return sdev->queue_depth;
2322 }
2323 
2324 static void hpsa_unregister_scsi(struct ctlr_info *h)
2325 {
2326 	/* we are being forcibly unloaded, and may not refuse. */
2327 	scsi_remove_host(h->scsi_host);
2328 	scsi_host_put(h->scsi_host);
2329 	h->scsi_host = NULL;
2330 }
2331 
2332 static int hpsa_register_scsi(struct ctlr_info *h)
2333 {
2334 	struct Scsi_Host *sh;
2335 	int error;
2336 
2337 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2338 	if (sh == NULL)
2339 		goto fail;
2340 
2341 	sh->io_port = 0;
2342 	sh->n_io_port = 0;
2343 	sh->this_id = -1;
2344 	sh->max_channel = 3;
2345 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2346 	sh->max_lun = HPSA_MAX_LUN;
2347 	sh->max_id = HPSA_MAX_LUN;
2348 	sh->can_queue = h->nr_cmds;
2349 	sh->cmd_per_lun = h->nr_cmds;
2350 	sh->sg_tablesize = h->maxsgentries;
2351 	h->scsi_host = sh;
2352 	sh->hostdata[0] = (unsigned long) h;
2353 	sh->irq = h->intr[h->intr_mode];
2354 	sh->unique_id = sh->irq;
2355 	error = scsi_add_host(sh, &h->pdev->dev);
2356 	if (error)
2357 		goto fail_host_put;
2358 	scsi_scan_host(sh);
2359 	return 0;
2360 
2361  fail_host_put:
2362 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2363 		" failed for controller %d\n", __func__, h->ctlr);
2364 	scsi_host_put(sh);
2365 	return error;
2366  fail:
2367 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2368 		" failed for controller %d\n", __func__, h->ctlr);
2369 	return -ENOMEM;
2370 }
2371 
2372 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2373 	unsigned char lunaddr[])
2374 {
2375 	int rc = 0;
2376 	int count = 0;
2377 	int waittime = 1; /* seconds */
2378 	struct CommandList *c;
2379 
2380 	c = cmd_special_alloc(h);
2381 	if (!c) {
2382 		dev_warn(&h->pdev->dev, "out of memory in "
2383 			"wait_for_device_to_become_ready.\n");
2384 		return IO_ERROR;
2385 	}
2386 
2387 	/* Send test unit ready until device ready, or give up. */
2388 	while (count < HPSA_TUR_RETRY_LIMIT) {
2389 
2390 		/* Wait for a bit.  do this first, because if we send
2391 		 * the TUR right away, the reset will just abort it.
2392 		 */
2393 		msleep(1000 * waittime);
2394 		count++;
2395 
2396 		/* Increase wait time with each try, up to a point. */
2397 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2398 			waittime = waittime * 2;
2399 
2400 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2401 		(void) fill_cmd(c, TEST_UNIT_READY, h,
2402 				NULL, 0, 0, lunaddr, TYPE_CMD);
2403 		hpsa_scsi_do_simple_cmd_core(h, c);
2404 		/* no unmap needed here because no data xfer. */
2405 
2406 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2407 			break;
2408 
2409 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2410 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2411 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2412 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2413 			break;
2414 
2415 		dev_warn(&h->pdev->dev, "waiting %d secs "
2416 			"for device to become ready.\n", waittime);
2417 		rc = 1; /* device not ready. */
2418 	}
2419 
2420 	if (rc)
2421 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2422 	else
2423 		dev_warn(&h->pdev->dev, "device is ready.\n");
2424 
2425 	cmd_special_free(h, c);
2426 	return rc;
2427 }
2428 
2429 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2430  * complaining.  Doing a host- or bus-reset can't do anything good here.
2431  */
2432 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2433 {
2434 	int rc;
2435 	struct ctlr_info *h;
2436 	struct hpsa_scsi_dev_t *dev;
2437 
2438 	/* find the controller to which the command to be aborted was sent */
2439 	h = sdev_to_hba(scsicmd->device);
2440 	if (h == NULL) /* paranoia */
2441 		return FAILED;
2442 	dev = scsicmd->device->hostdata;
2443 	if (!dev) {
2444 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2445 			"device lookup failed.\n");
2446 		return FAILED;
2447 	}
2448 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2449 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2450 	/* send a reset to the SCSI LUN which the command was sent to */
2451 	rc = hpsa_send_reset(h, dev->scsi3addr);
2452 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2453 		return SUCCESS;
2454 
2455 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2456 	return FAILED;
2457 }
2458 
2459 static void swizzle_abort_tag(u8 *tag)
2460 {
2461 	u8 original_tag[8];
2462 
2463 	memcpy(original_tag, tag, 8);
2464 	tag[0] = original_tag[3];
2465 	tag[1] = original_tag[2];
2466 	tag[2] = original_tag[1];
2467 	tag[3] = original_tag[0];
2468 	tag[4] = original_tag[7];
2469 	tag[5] = original_tag[6];
2470 	tag[6] = original_tag[5];
2471 	tag[7] = original_tag[4];
2472 }
2473 
2474 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2475 	struct CommandList *abort, int swizzle)
2476 {
2477 	int rc = IO_OK;
2478 	struct CommandList *c;
2479 	struct ErrorInfo *ei;
2480 
2481 	c = cmd_special_alloc(h);
2482 	if (c == NULL) {	/* trouble... */
2483 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2484 		return -ENOMEM;
2485 	}
2486 
2487 	/* fill_cmd can't fail here, no buffer to map */
2488 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2489 		0, 0, scsi3addr, TYPE_MSG);
2490 	if (swizzle)
2491 		swizzle_abort_tag(&c->Request.CDB[4]);
2492 	hpsa_scsi_do_simple_cmd_core(h, c);
2493 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2494 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2495 	/* no unmap needed here because no data xfer. */
2496 
2497 	ei = c->err_info;
2498 	switch (ei->CommandStatus) {
2499 	case CMD_SUCCESS:
2500 		break;
2501 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2502 		rc = -1;
2503 		break;
2504 	default:
2505 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2506 			__func__, abort->Header.Tag.upper,
2507 			abort->Header.Tag.lower);
2508 		hpsa_scsi_interpret_error(c);
2509 		rc = -1;
2510 		break;
2511 	}
2512 	cmd_special_free(h, c);
2513 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2514 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2515 	return rc;
2516 }
2517 
2518 /*
2519  * hpsa_find_cmd_in_queue
2520  *
2521  * Used to determine whether a command (find) is still present
2522  * in queue_head.   Optionally excludes the last element of queue_head.
2523  *
2524  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2525  * not yet been submitted, and so can be aborted by the driver without
2526  * sending an abort to the hardware.
2527  *
2528  * Returns pointer to command if found in queue, NULL otherwise.
2529  */
2530 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2531 			struct scsi_cmnd *find, struct list_head *queue_head)
2532 {
2533 	unsigned long flags;
2534 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2535 
2536 	if (!find)
2537 		return 0;
2538 	spin_lock_irqsave(&h->lock, flags);
2539 	list_for_each_entry(c, queue_head, list) {
2540 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2541 			continue;
2542 		if (c->scsi_cmd == find) {
2543 			spin_unlock_irqrestore(&h->lock, flags);
2544 			return c;
2545 		}
2546 	}
2547 	spin_unlock_irqrestore(&h->lock, flags);
2548 	return NULL;
2549 }
2550 
2551 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2552 					u8 *tag, struct list_head *queue_head)
2553 {
2554 	unsigned long flags;
2555 	struct CommandList *c;
2556 
2557 	spin_lock_irqsave(&h->lock, flags);
2558 	list_for_each_entry(c, queue_head, list) {
2559 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2560 			continue;
2561 		spin_unlock_irqrestore(&h->lock, flags);
2562 		return c;
2563 	}
2564 	spin_unlock_irqrestore(&h->lock, flags);
2565 	return NULL;
2566 }
2567 
2568 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2569  * tell which kind we're dealing with, so we send the abort both ways.  There
2570  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2571  * way we construct our tags but we check anyway in case the assumptions which
2572  * make this true someday become false.
2573  */
2574 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2575 	unsigned char *scsi3addr, struct CommandList *abort)
2576 {
2577 	u8 swizzled_tag[8];
2578 	struct CommandList *c;
2579 	int rc = 0, rc2 = 0;
2580 
2581 	/* we do not expect to find the swizzled tag in our queue, but
2582 	 * check anyway just to be sure the assumptions which make this
2583 	 * the case haven't become wrong.
2584 	 */
2585 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2586 	swizzle_abort_tag(swizzled_tag);
2587 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2588 	if (c != NULL) {
2589 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2590 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2591 	}
2592 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2593 
2594 	/* if the command is still in our queue, we can't conclude that it was
2595 	 * aborted (it might have just completed normally) but in any case
2596 	 * we don't need to try to abort it another way.
2597 	 */
2598 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2599 	if (c)
2600 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2601 	return rc && rc2;
2602 }
2603 
2604 /* Send an abort for the specified command.
2605  *	If the device and controller support it,
2606  *		send a task abort request.
2607  */
2608 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2609 {
2610 
2611 	int i, rc;
2612 	struct ctlr_info *h;
2613 	struct hpsa_scsi_dev_t *dev;
2614 	struct CommandList *abort; /* pointer to command to be aborted */
2615 	struct CommandList *found;
2616 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2617 	char msg[256];		/* For debug messaging. */
2618 	int ml = 0;
2619 
2620 	/* Find the controller of the command to be aborted */
2621 	h = sdev_to_hba(sc->device);
2622 	if (WARN(h == NULL,
2623 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2624 		return FAILED;
2625 
2626 	/* Check that controller supports some kind of task abort */
2627 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2628 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2629 		return FAILED;
2630 
2631 	memset(msg, 0, sizeof(msg));
2632 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2633 		h->scsi_host->host_no, sc->device->channel,
2634 		sc->device->id, sc->device->lun);
2635 
2636 	/* Find the device of the command to be aborted */
2637 	dev = sc->device->hostdata;
2638 	if (!dev) {
2639 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2640 				msg);
2641 		return FAILED;
2642 	}
2643 
2644 	/* Get SCSI command to be aborted */
2645 	abort = (struct CommandList *) sc->host_scribble;
2646 	if (abort == NULL) {
2647 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2648 				msg);
2649 		return FAILED;
2650 	}
2651 
2652 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2653 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2654 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2655 	if (as != NULL)
2656 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2657 			as->cmnd[0], as->serial_number);
2658 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2659 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2660 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2661 
2662 	/* Search reqQ to See if command is queued but not submitted,
2663 	 * if so, complete the command with aborted status and remove
2664 	 * it from the reqQ.
2665 	 */
2666 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2667 	if (found) {
2668 		found->err_info->CommandStatus = CMD_ABORTED;
2669 		finish_cmd(found);
2670 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2671 				msg);
2672 		return SUCCESS;
2673 	}
2674 
2675 	/* not in reqQ, if also not in cmpQ, must have already completed */
2676 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2677 	if (!found)  {
2678 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2679 				msg);
2680 		return SUCCESS;
2681 	}
2682 
2683 	/*
2684 	 * Command is in flight, or possibly already completed
2685 	 * by the firmware (but not to the scsi mid layer) but we can't
2686 	 * distinguish which.  Send the abort down.
2687 	 */
2688 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2689 	if (rc != 0) {
2690 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2691 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2692 			h->scsi_host->host_no,
2693 			dev->bus, dev->target, dev->lun);
2694 		return FAILED;
2695 	}
2696 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2697 
2698 	/* If the abort(s) above completed and actually aborted the
2699 	 * command, then the command to be aborted should already be
2700 	 * completed.  If not, wait around a bit more to see if they
2701 	 * manage to complete normally.
2702 	 */
2703 #define ABORT_COMPLETE_WAIT_SECS 30
2704 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2705 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2706 		if (!found)
2707 			return SUCCESS;
2708 		msleep(100);
2709 	}
2710 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2711 		msg, ABORT_COMPLETE_WAIT_SECS);
2712 	return FAILED;
2713 }
2714 
2715 
2716 /*
2717  * For operations that cannot sleep, a command block is allocated at init,
2718  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2719  * which ones are free or in use.  Lock must be held when calling this.
2720  * cmd_free() is the complement.
2721  */
2722 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2723 {
2724 	struct CommandList *c;
2725 	int i;
2726 	union u64bit temp64;
2727 	dma_addr_t cmd_dma_handle, err_dma_handle;
2728 	unsigned long flags;
2729 
2730 	spin_lock_irqsave(&h->lock, flags);
2731 	do {
2732 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2733 		if (i == h->nr_cmds) {
2734 			spin_unlock_irqrestore(&h->lock, flags);
2735 			return NULL;
2736 		}
2737 	} while (test_and_set_bit
2738 		 (i & (BITS_PER_LONG - 1),
2739 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2740 	spin_unlock_irqrestore(&h->lock, flags);
2741 
2742 	c = h->cmd_pool + i;
2743 	memset(c, 0, sizeof(*c));
2744 	cmd_dma_handle = h->cmd_pool_dhandle
2745 	    + i * sizeof(*c);
2746 	c->err_info = h->errinfo_pool + i;
2747 	memset(c->err_info, 0, sizeof(*c->err_info));
2748 	err_dma_handle = h->errinfo_pool_dhandle
2749 	    + i * sizeof(*c->err_info);
2750 
2751 	c->cmdindex = i;
2752 
2753 	INIT_LIST_HEAD(&c->list);
2754 	c->busaddr = (u32) cmd_dma_handle;
2755 	temp64.val = (u64) err_dma_handle;
2756 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2757 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2758 	c->ErrDesc.Len = sizeof(*c->err_info);
2759 
2760 	c->h = h;
2761 	return c;
2762 }
2763 
2764 /* For operations that can wait for kmalloc to possibly sleep,
2765  * this routine can be called. Lock need not be held to call
2766  * cmd_special_alloc. cmd_special_free() is the complement.
2767  */
2768 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2769 {
2770 	struct CommandList *c;
2771 	union u64bit temp64;
2772 	dma_addr_t cmd_dma_handle, err_dma_handle;
2773 
2774 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2775 	if (c == NULL)
2776 		return NULL;
2777 	memset(c, 0, sizeof(*c));
2778 
2779 	c->cmdindex = -1;
2780 
2781 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2782 		    &err_dma_handle);
2783 
2784 	if (c->err_info == NULL) {
2785 		pci_free_consistent(h->pdev,
2786 			sizeof(*c), c, cmd_dma_handle);
2787 		return NULL;
2788 	}
2789 	memset(c->err_info, 0, sizeof(*c->err_info));
2790 
2791 	INIT_LIST_HEAD(&c->list);
2792 	c->busaddr = (u32) cmd_dma_handle;
2793 	temp64.val = (u64) err_dma_handle;
2794 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2795 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2796 	c->ErrDesc.Len = sizeof(*c->err_info);
2797 
2798 	c->h = h;
2799 	return c;
2800 }
2801 
2802 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2803 {
2804 	int i;
2805 	unsigned long flags;
2806 
2807 	i = c - h->cmd_pool;
2808 	spin_lock_irqsave(&h->lock, flags);
2809 	clear_bit(i & (BITS_PER_LONG - 1),
2810 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2811 	spin_unlock_irqrestore(&h->lock, flags);
2812 }
2813 
2814 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2815 {
2816 	union u64bit temp64;
2817 
2818 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2819 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2820 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2821 			    c->err_info, (dma_addr_t) temp64.val);
2822 	pci_free_consistent(h->pdev, sizeof(*c),
2823 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2824 }
2825 
2826 #ifdef CONFIG_COMPAT
2827 
2828 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2829 {
2830 	IOCTL32_Command_struct __user *arg32 =
2831 	    (IOCTL32_Command_struct __user *) arg;
2832 	IOCTL_Command_struct arg64;
2833 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2834 	int err;
2835 	u32 cp;
2836 
2837 	memset(&arg64, 0, sizeof(arg64));
2838 	err = 0;
2839 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2840 			   sizeof(arg64.LUN_info));
2841 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2842 			   sizeof(arg64.Request));
2843 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2844 			   sizeof(arg64.error_info));
2845 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2846 	err |= get_user(cp, &arg32->buf);
2847 	arg64.buf = compat_ptr(cp);
2848 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2849 
2850 	if (err)
2851 		return -EFAULT;
2852 
2853 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2854 	if (err)
2855 		return err;
2856 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2857 			 sizeof(arg32->error_info));
2858 	if (err)
2859 		return -EFAULT;
2860 	return err;
2861 }
2862 
2863 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2864 	int cmd, void *arg)
2865 {
2866 	BIG_IOCTL32_Command_struct __user *arg32 =
2867 	    (BIG_IOCTL32_Command_struct __user *) arg;
2868 	BIG_IOCTL_Command_struct arg64;
2869 	BIG_IOCTL_Command_struct __user *p =
2870 	    compat_alloc_user_space(sizeof(arg64));
2871 	int err;
2872 	u32 cp;
2873 
2874 	memset(&arg64, 0, sizeof(arg64));
2875 	err = 0;
2876 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2877 			   sizeof(arg64.LUN_info));
2878 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2879 			   sizeof(arg64.Request));
2880 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2881 			   sizeof(arg64.error_info));
2882 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2883 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2884 	err |= get_user(cp, &arg32->buf);
2885 	arg64.buf = compat_ptr(cp);
2886 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2887 
2888 	if (err)
2889 		return -EFAULT;
2890 
2891 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2892 	if (err)
2893 		return err;
2894 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2895 			 sizeof(arg32->error_info));
2896 	if (err)
2897 		return -EFAULT;
2898 	return err;
2899 }
2900 
2901 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2902 {
2903 	switch (cmd) {
2904 	case CCISS_GETPCIINFO:
2905 	case CCISS_GETINTINFO:
2906 	case CCISS_SETINTINFO:
2907 	case CCISS_GETNODENAME:
2908 	case CCISS_SETNODENAME:
2909 	case CCISS_GETHEARTBEAT:
2910 	case CCISS_GETBUSTYPES:
2911 	case CCISS_GETFIRMVER:
2912 	case CCISS_GETDRIVVER:
2913 	case CCISS_REVALIDVOLS:
2914 	case CCISS_DEREGDISK:
2915 	case CCISS_REGNEWDISK:
2916 	case CCISS_REGNEWD:
2917 	case CCISS_RESCANDISK:
2918 	case CCISS_GETLUNINFO:
2919 		return hpsa_ioctl(dev, cmd, arg);
2920 
2921 	case CCISS_PASSTHRU32:
2922 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2923 	case CCISS_BIG_PASSTHRU32:
2924 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2925 
2926 	default:
2927 		return -ENOIOCTLCMD;
2928 	}
2929 }
2930 #endif
2931 
2932 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2933 {
2934 	struct hpsa_pci_info pciinfo;
2935 
2936 	if (!argp)
2937 		return -EINVAL;
2938 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2939 	pciinfo.bus = h->pdev->bus->number;
2940 	pciinfo.dev_fn = h->pdev->devfn;
2941 	pciinfo.board_id = h->board_id;
2942 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2943 		return -EFAULT;
2944 	return 0;
2945 }
2946 
2947 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2948 {
2949 	DriverVer_type DriverVer;
2950 	unsigned char vmaj, vmin, vsubmin;
2951 	int rc;
2952 
2953 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2954 		&vmaj, &vmin, &vsubmin);
2955 	if (rc != 3) {
2956 		dev_info(&h->pdev->dev, "driver version string '%s' "
2957 			"unrecognized.", HPSA_DRIVER_VERSION);
2958 		vmaj = 0;
2959 		vmin = 0;
2960 		vsubmin = 0;
2961 	}
2962 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2963 	if (!argp)
2964 		return -EINVAL;
2965 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2966 		return -EFAULT;
2967 	return 0;
2968 }
2969 
2970 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2971 {
2972 	IOCTL_Command_struct iocommand;
2973 	struct CommandList *c;
2974 	char *buff = NULL;
2975 	union u64bit temp64;
2976 	int rc = 0;
2977 
2978 	if (!argp)
2979 		return -EINVAL;
2980 	if (!capable(CAP_SYS_RAWIO))
2981 		return -EPERM;
2982 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2983 		return -EFAULT;
2984 	if ((iocommand.buf_size < 1) &&
2985 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2986 		return -EINVAL;
2987 	}
2988 	if (iocommand.buf_size > 0) {
2989 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2990 		if (buff == NULL)
2991 			return -EFAULT;
2992 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2993 			/* Copy the data into the buffer we created */
2994 			if (copy_from_user(buff, iocommand.buf,
2995 				iocommand.buf_size)) {
2996 				rc = -EFAULT;
2997 				goto out_kfree;
2998 			}
2999 		} else {
3000 			memset(buff, 0, iocommand.buf_size);
3001 		}
3002 	}
3003 	c = cmd_special_alloc(h);
3004 	if (c == NULL) {
3005 		rc = -ENOMEM;
3006 		goto out_kfree;
3007 	}
3008 	/* Fill in the command type */
3009 	c->cmd_type = CMD_IOCTL_PEND;
3010 	/* Fill in Command Header */
3011 	c->Header.ReplyQueue = 0; /* unused in simple mode */
3012 	if (iocommand.buf_size > 0) {	/* buffer to fill */
3013 		c->Header.SGList = 1;
3014 		c->Header.SGTotal = 1;
3015 	} else	{ /* no buffers to fill */
3016 		c->Header.SGList = 0;
3017 		c->Header.SGTotal = 0;
3018 	}
3019 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3020 	/* use the kernel address the cmd block for tag */
3021 	c->Header.Tag.lower = c->busaddr;
3022 
3023 	/* Fill in Request block */
3024 	memcpy(&c->Request, &iocommand.Request,
3025 		sizeof(c->Request));
3026 
3027 	/* Fill in the scatter gather information */
3028 	if (iocommand.buf_size > 0) {
3029 		temp64.val = pci_map_single(h->pdev, buff,
3030 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3031 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3032 			c->SG[0].Addr.lower = 0;
3033 			c->SG[0].Addr.upper = 0;
3034 			c->SG[0].Len = 0;
3035 			rc = -ENOMEM;
3036 			goto out;
3037 		}
3038 		c->SG[0].Addr.lower = temp64.val32.lower;
3039 		c->SG[0].Addr.upper = temp64.val32.upper;
3040 		c->SG[0].Len = iocommand.buf_size;
3041 		c->SG[0].Ext = 0; /* we are not chaining*/
3042 	}
3043 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3044 	if (iocommand.buf_size > 0)
3045 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3046 	check_ioctl_unit_attention(h, c);
3047 
3048 	/* Copy the error information out */
3049 	memcpy(&iocommand.error_info, c->err_info,
3050 		sizeof(iocommand.error_info));
3051 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3052 		rc = -EFAULT;
3053 		goto out;
3054 	}
3055 	if (iocommand.Request.Type.Direction == XFER_READ &&
3056 		iocommand.buf_size > 0) {
3057 		/* Copy the data out of the buffer we created */
3058 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3059 			rc = -EFAULT;
3060 			goto out;
3061 		}
3062 	}
3063 out:
3064 	cmd_special_free(h, c);
3065 out_kfree:
3066 	kfree(buff);
3067 	return rc;
3068 }
3069 
3070 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3071 {
3072 	BIG_IOCTL_Command_struct *ioc;
3073 	struct CommandList *c;
3074 	unsigned char **buff = NULL;
3075 	int *buff_size = NULL;
3076 	union u64bit temp64;
3077 	BYTE sg_used = 0;
3078 	int status = 0;
3079 	int i;
3080 	u32 left;
3081 	u32 sz;
3082 	BYTE __user *data_ptr;
3083 
3084 	if (!argp)
3085 		return -EINVAL;
3086 	if (!capable(CAP_SYS_RAWIO))
3087 		return -EPERM;
3088 	ioc = (BIG_IOCTL_Command_struct *)
3089 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3090 	if (!ioc) {
3091 		status = -ENOMEM;
3092 		goto cleanup1;
3093 	}
3094 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3095 		status = -EFAULT;
3096 		goto cleanup1;
3097 	}
3098 	if ((ioc->buf_size < 1) &&
3099 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3100 		status = -EINVAL;
3101 		goto cleanup1;
3102 	}
3103 	/* Check kmalloc limits  using all SGs */
3104 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3105 		status = -EINVAL;
3106 		goto cleanup1;
3107 	}
3108 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3109 		status = -EINVAL;
3110 		goto cleanup1;
3111 	}
3112 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3113 	if (!buff) {
3114 		status = -ENOMEM;
3115 		goto cleanup1;
3116 	}
3117 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3118 	if (!buff_size) {
3119 		status = -ENOMEM;
3120 		goto cleanup1;
3121 	}
3122 	left = ioc->buf_size;
3123 	data_ptr = ioc->buf;
3124 	while (left) {
3125 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3126 		buff_size[sg_used] = sz;
3127 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3128 		if (buff[sg_used] == NULL) {
3129 			status = -ENOMEM;
3130 			goto cleanup1;
3131 		}
3132 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3133 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3134 				status = -ENOMEM;
3135 				goto cleanup1;
3136 			}
3137 		} else
3138 			memset(buff[sg_used], 0, sz);
3139 		left -= sz;
3140 		data_ptr += sz;
3141 		sg_used++;
3142 	}
3143 	c = cmd_special_alloc(h);
3144 	if (c == NULL) {
3145 		status = -ENOMEM;
3146 		goto cleanup1;
3147 	}
3148 	c->cmd_type = CMD_IOCTL_PEND;
3149 	c->Header.ReplyQueue = 0;
3150 	c->Header.SGList = c->Header.SGTotal = sg_used;
3151 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3152 	c->Header.Tag.lower = c->busaddr;
3153 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3154 	if (ioc->buf_size > 0) {
3155 		int i;
3156 		for (i = 0; i < sg_used; i++) {
3157 			temp64.val = pci_map_single(h->pdev, buff[i],
3158 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3159 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3160 				c->SG[i].Addr.lower = 0;
3161 				c->SG[i].Addr.upper = 0;
3162 				c->SG[i].Len = 0;
3163 				hpsa_pci_unmap(h->pdev, c, i,
3164 					PCI_DMA_BIDIRECTIONAL);
3165 				status = -ENOMEM;
3166 				goto cleanup0;
3167 			}
3168 			c->SG[i].Addr.lower = temp64.val32.lower;
3169 			c->SG[i].Addr.upper = temp64.val32.upper;
3170 			c->SG[i].Len = buff_size[i];
3171 			/* we are not chaining */
3172 			c->SG[i].Ext = 0;
3173 		}
3174 	}
3175 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3176 	if (sg_used)
3177 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3178 	check_ioctl_unit_attention(h, c);
3179 	/* Copy the error information out */
3180 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3181 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3182 		status = -EFAULT;
3183 		goto cleanup0;
3184 	}
3185 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3186 		/* Copy the data out of the buffer we created */
3187 		BYTE __user *ptr = ioc->buf;
3188 		for (i = 0; i < sg_used; i++) {
3189 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3190 				status = -EFAULT;
3191 				goto cleanup0;
3192 			}
3193 			ptr += buff_size[i];
3194 		}
3195 	}
3196 	status = 0;
3197 cleanup0:
3198 	cmd_special_free(h, c);
3199 cleanup1:
3200 	if (buff) {
3201 		for (i = 0; i < sg_used; i++)
3202 			kfree(buff[i]);
3203 		kfree(buff);
3204 	}
3205 	kfree(buff_size);
3206 	kfree(ioc);
3207 	return status;
3208 }
3209 
3210 static void check_ioctl_unit_attention(struct ctlr_info *h,
3211 	struct CommandList *c)
3212 {
3213 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3214 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3215 		(void) check_for_unit_attention(h, c);
3216 }
3217 
3218 static int increment_passthru_count(struct ctlr_info *h)
3219 {
3220 	unsigned long flags;
3221 
3222 	spin_lock_irqsave(&h->passthru_count_lock, flags);
3223 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
3224 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3225 		return -1;
3226 	}
3227 	h->passthru_count++;
3228 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3229 	return 0;
3230 }
3231 
3232 static void decrement_passthru_count(struct ctlr_info *h)
3233 {
3234 	unsigned long flags;
3235 
3236 	spin_lock_irqsave(&h->passthru_count_lock, flags);
3237 	if (h->passthru_count <= 0) {
3238 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3239 		/* not expecting to get here. */
3240 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
3241 		return;
3242 	}
3243 	h->passthru_count--;
3244 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3245 }
3246 
3247 /*
3248  * ioctl
3249  */
3250 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3251 {
3252 	struct ctlr_info *h;
3253 	void __user *argp = (void __user *)arg;
3254 	int rc;
3255 
3256 	h = sdev_to_hba(dev);
3257 
3258 	switch (cmd) {
3259 	case CCISS_DEREGDISK:
3260 	case CCISS_REGNEWDISK:
3261 	case CCISS_REGNEWD:
3262 		hpsa_scan_start(h->scsi_host);
3263 		return 0;
3264 	case CCISS_GETPCIINFO:
3265 		return hpsa_getpciinfo_ioctl(h, argp);
3266 	case CCISS_GETDRIVVER:
3267 		return hpsa_getdrivver_ioctl(h, argp);
3268 	case CCISS_PASSTHRU:
3269 		if (increment_passthru_count(h))
3270 			return -EAGAIN;
3271 		rc = hpsa_passthru_ioctl(h, argp);
3272 		decrement_passthru_count(h);
3273 		return rc;
3274 	case CCISS_BIG_PASSTHRU:
3275 		if (increment_passthru_count(h))
3276 			return -EAGAIN;
3277 		rc = hpsa_big_passthru_ioctl(h, argp);
3278 		decrement_passthru_count(h);
3279 		return rc;
3280 	default:
3281 		return -ENOTTY;
3282 	}
3283 }
3284 
3285 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3286 				u8 reset_type)
3287 {
3288 	struct CommandList *c;
3289 
3290 	c = cmd_alloc(h);
3291 	if (!c)
3292 		return -ENOMEM;
3293 	/* fill_cmd can't fail here, no data buffer to map */
3294 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3295 		RAID_CTLR_LUNID, TYPE_MSG);
3296 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3297 	c->waiting = NULL;
3298 	enqueue_cmd_and_start_io(h, c);
3299 	/* Don't wait for completion, the reset won't complete.  Don't free
3300 	 * the command either.  This is the last command we will send before
3301 	 * re-initializing everything, so it doesn't matter and won't leak.
3302 	 */
3303 	return 0;
3304 }
3305 
3306 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3307 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3308 	int cmd_type)
3309 {
3310 	int pci_dir = XFER_NONE;
3311 	struct CommandList *a; /* for commands to be aborted */
3312 
3313 	c->cmd_type = CMD_IOCTL_PEND;
3314 	c->Header.ReplyQueue = 0;
3315 	if (buff != NULL && size > 0) {
3316 		c->Header.SGList = 1;
3317 		c->Header.SGTotal = 1;
3318 	} else {
3319 		c->Header.SGList = 0;
3320 		c->Header.SGTotal = 0;
3321 	}
3322 	c->Header.Tag.lower = c->busaddr;
3323 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3324 
3325 	c->Request.Type.Type = cmd_type;
3326 	if (cmd_type == TYPE_CMD) {
3327 		switch (cmd) {
3328 		case HPSA_INQUIRY:
3329 			/* are we trying to read a vital product page */
3330 			if (page_code != 0) {
3331 				c->Request.CDB[1] = 0x01;
3332 				c->Request.CDB[2] = page_code;
3333 			}
3334 			c->Request.CDBLen = 6;
3335 			c->Request.Type.Attribute = ATTR_SIMPLE;
3336 			c->Request.Type.Direction = XFER_READ;
3337 			c->Request.Timeout = 0;
3338 			c->Request.CDB[0] = HPSA_INQUIRY;
3339 			c->Request.CDB[4] = size & 0xFF;
3340 			break;
3341 		case HPSA_REPORT_LOG:
3342 		case HPSA_REPORT_PHYS:
3343 			/* Talking to controller so It's a physical command
3344 			   mode = 00 target = 0.  Nothing to write.
3345 			 */
3346 			c->Request.CDBLen = 12;
3347 			c->Request.Type.Attribute = ATTR_SIMPLE;
3348 			c->Request.Type.Direction = XFER_READ;
3349 			c->Request.Timeout = 0;
3350 			c->Request.CDB[0] = cmd;
3351 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3352 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3353 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3354 			c->Request.CDB[9] = size & 0xFF;
3355 			break;
3356 		case HPSA_CACHE_FLUSH:
3357 			c->Request.CDBLen = 12;
3358 			c->Request.Type.Attribute = ATTR_SIMPLE;
3359 			c->Request.Type.Direction = XFER_WRITE;
3360 			c->Request.Timeout = 0;
3361 			c->Request.CDB[0] = BMIC_WRITE;
3362 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3363 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3364 			c->Request.CDB[8] = size & 0xFF;
3365 			break;
3366 		case TEST_UNIT_READY:
3367 			c->Request.CDBLen = 6;
3368 			c->Request.Type.Attribute = ATTR_SIMPLE;
3369 			c->Request.Type.Direction = XFER_NONE;
3370 			c->Request.Timeout = 0;
3371 			break;
3372 		default:
3373 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3374 			BUG();
3375 			return -1;
3376 		}
3377 	} else if (cmd_type == TYPE_MSG) {
3378 		switch (cmd) {
3379 
3380 		case  HPSA_DEVICE_RESET_MSG:
3381 			c->Request.CDBLen = 16;
3382 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3383 			c->Request.Type.Attribute = ATTR_SIMPLE;
3384 			c->Request.Type.Direction = XFER_NONE;
3385 			c->Request.Timeout = 0; /* Don't time out */
3386 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3387 			c->Request.CDB[0] =  cmd;
3388 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3389 			/* If bytes 4-7 are zero, it means reset the */
3390 			/* LunID device */
3391 			c->Request.CDB[4] = 0x00;
3392 			c->Request.CDB[5] = 0x00;
3393 			c->Request.CDB[6] = 0x00;
3394 			c->Request.CDB[7] = 0x00;
3395 			break;
3396 		case  HPSA_ABORT_MSG:
3397 			a = buff;       /* point to command to be aborted */
3398 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3399 				a->Header.Tag.upper, a->Header.Tag.lower,
3400 				c->Header.Tag.upper, c->Header.Tag.lower);
3401 			c->Request.CDBLen = 16;
3402 			c->Request.Type.Type = TYPE_MSG;
3403 			c->Request.Type.Attribute = ATTR_SIMPLE;
3404 			c->Request.Type.Direction = XFER_WRITE;
3405 			c->Request.Timeout = 0; /* Don't time out */
3406 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3407 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3408 			c->Request.CDB[2] = 0x00; /* reserved */
3409 			c->Request.CDB[3] = 0x00; /* reserved */
3410 			/* Tag to abort goes in CDB[4]-CDB[11] */
3411 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3412 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3413 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3414 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3415 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3416 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3417 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3418 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3419 			c->Request.CDB[12] = 0x00; /* reserved */
3420 			c->Request.CDB[13] = 0x00; /* reserved */
3421 			c->Request.CDB[14] = 0x00; /* reserved */
3422 			c->Request.CDB[15] = 0x00; /* reserved */
3423 		break;
3424 		default:
3425 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3426 				cmd);
3427 			BUG();
3428 		}
3429 	} else {
3430 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3431 		BUG();
3432 	}
3433 
3434 	switch (c->Request.Type.Direction) {
3435 	case XFER_READ:
3436 		pci_dir = PCI_DMA_FROMDEVICE;
3437 		break;
3438 	case XFER_WRITE:
3439 		pci_dir = PCI_DMA_TODEVICE;
3440 		break;
3441 	case XFER_NONE:
3442 		pci_dir = PCI_DMA_NONE;
3443 		break;
3444 	default:
3445 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3446 	}
3447 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3448 		return -1;
3449 	return 0;
3450 }
3451 
3452 /*
3453  * Map (physical) PCI mem into (virtual) kernel space
3454  */
3455 static void __iomem *remap_pci_mem(ulong base, ulong size)
3456 {
3457 	ulong page_base = ((ulong) base) & PAGE_MASK;
3458 	ulong page_offs = ((ulong) base) - page_base;
3459 	void __iomem *page_remapped = ioremap_nocache(page_base,
3460 		page_offs + size);
3461 
3462 	return page_remapped ? (page_remapped + page_offs) : NULL;
3463 }
3464 
3465 /* Takes cmds off the submission queue and sends them to the hardware,
3466  * then puts them on the queue of cmds waiting for completion.
3467  */
3468 static void start_io(struct ctlr_info *h)
3469 {
3470 	struct CommandList *c;
3471 	unsigned long flags;
3472 
3473 	spin_lock_irqsave(&h->lock, flags);
3474 	while (!list_empty(&h->reqQ)) {
3475 		c = list_entry(h->reqQ.next, struct CommandList, list);
3476 		/* can't do anything if fifo is full */
3477 		if ((h->access.fifo_full(h))) {
3478 			h->fifo_recently_full = 1;
3479 			dev_warn(&h->pdev->dev, "fifo full\n");
3480 			break;
3481 		}
3482 		h->fifo_recently_full = 0;
3483 
3484 		/* Get the first entry from the Request Q */
3485 		removeQ(c);
3486 		h->Qdepth--;
3487 
3488 		/* Put job onto the completed Q */
3489 		addQ(&h->cmpQ, c);
3490 
3491 		/* Must increment commands_outstanding before unlocking
3492 		 * and submitting to avoid race checking for fifo full
3493 		 * condition.
3494 		 */
3495 		h->commands_outstanding++;
3496 		if (h->commands_outstanding > h->max_outstanding)
3497 			h->max_outstanding = h->commands_outstanding;
3498 
3499 		/* Tell the controller execute command */
3500 		spin_unlock_irqrestore(&h->lock, flags);
3501 		h->access.submit_command(h, c);
3502 		spin_lock_irqsave(&h->lock, flags);
3503 	}
3504 	spin_unlock_irqrestore(&h->lock, flags);
3505 }
3506 
3507 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3508 {
3509 	return h->access.command_completed(h, q);
3510 }
3511 
3512 static inline bool interrupt_pending(struct ctlr_info *h)
3513 {
3514 	return h->access.intr_pending(h);
3515 }
3516 
3517 static inline long interrupt_not_for_us(struct ctlr_info *h)
3518 {
3519 	return (h->access.intr_pending(h) == 0) ||
3520 		(h->interrupts_enabled == 0);
3521 }
3522 
3523 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3524 	u32 raw_tag)
3525 {
3526 	if (unlikely(tag_index >= h->nr_cmds)) {
3527 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3528 		return 1;
3529 	}
3530 	return 0;
3531 }
3532 
3533 static inline void finish_cmd(struct CommandList *c)
3534 {
3535 	unsigned long flags;
3536 	int io_may_be_stalled = 0;
3537 	struct ctlr_info *h = c->h;
3538 
3539 	spin_lock_irqsave(&h->lock, flags);
3540 	removeQ(c);
3541 
3542 	/*
3543 	 * Check for possibly stalled i/o.
3544 	 *
3545 	 * If a fifo_full condition is encountered, requests will back up
3546 	 * in h->reqQ.  This queue is only emptied out by start_io which is
3547 	 * only called when a new i/o request comes in.  If no i/o's are
3548 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
3549 	 * start_io from here if we detect such a danger.
3550 	 *
3551 	 * Normally, we shouldn't hit this case, but pounding on the
3552 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
3553 	 * commands_outstanding is low.  We want to avoid calling
3554 	 * start_io from in here as much as possible, and esp. don't
3555 	 * want to get in a cycle where we call start_io every time
3556 	 * through here.
3557 	 */
3558 	if (unlikely(h->fifo_recently_full) &&
3559 		h->commands_outstanding < 5)
3560 		io_may_be_stalled = 1;
3561 
3562 	spin_unlock_irqrestore(&h->lock, flags);
3563 
3564 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3565 	if (likely(c->cmd_type == CMD_SCSI))
3566 		complete_scsi_command(c);
3567 	else if (c->cmd_type == CMD_IOCTL_PEND)
3568 		complete(c->waiting);
3569 	if (unlikely(io_may_be_stalled))
3570 		start_io(h);
3571 }
3572 
3573 static inline u32 hpsa_tag_contains_index(u32 tag)
3574 {
3575 	return tag & DIRECT_LOOKUP_BIT;
3576 }
3577 
3578 static inline u32 hpsa_tag_to_index(u32 tag)
3579 {
3580 	return tag >> DIRECT_LOOKUP_SHIFT;
3581 }
3582 
3583 
3584 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3585 {
3586 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3587 #define HPSA_SIMPLE_ERROR_BITS 0x03
3588 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3589 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3590 	return tag & ~HPSA_PERF_ERROR_BITS;
3591 }
3592 
3593 /* process completion of an indexed ("direct lookup") command */
3594 static inline void process_indexed_cmd(struct ctlr_info *h,
3595 	u32 raw_tag)
3596 {
3597 	u32 tag_index;
3598 	struct CommandList *c;
3599 
3600 	tag_index = hpsa_tag_to_index(raw_tag);
3601 	if (!bad_tag(h, tag_index, raw_tag)) {
3602 		c = h->cmd_pool + tag_index;
3603 		finish_cmd(c);
3604 	}
3605 }
3606 
3607 /* process completion of a non-indexed command */
3608 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3609 	u32 raw_tag)
3610 {
3611 	u32 tag;
3612 	struct CommandList *c = NULL;
3613 	unsigned long flags;
3614 
3615 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3616 	spin_lock_irqsave(&h->lock, flags);
3617 	list_for_each_entry(c, &h->cmpQ, list) {
3618 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3619 			spin_unlock_irqrestore(&h->lock, flags);
3620 			finish_cmd(c);
3621 			return;
3622 		}
3623 	}
3624 	spin_unlock_irqrestore(&h->lock, flags);
3625 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3626 }
3627 
3628 /* Some controllers, like p400, will give us one interrupt
3629  * after a soft reset, even if we turned interrupts off.
3630  * Only need to check for this in the hpsa_xxx_discard_completions
3631  * functions.
3632  */
3633 static int ignore_bogus_interrupt(struct ctlr_info *h)
3634 {
3635 	if (likely(!reset_devices))
3636 		return 0;
3637 
3638 	if (likely(h->interrupts_enabled))
3639 		return 0;
3640 
3641 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3642 		"(known firmware bug.)  Ignoring.\n");
3643 
3644 	return 1;
3645 }
3646 
3647 /*
3648  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3649  * Relies on (h-q[x] == x) being true for x such that
3650  * 0 <= x < MAX_REPLY_QUEUES.
3651  */
3652 static struct ctlr_info *queue_to_hba(u8 *queue)
3653 {
3654 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3655 }
3656 
3657 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3658 {
3659 	struct ctlr_info *h = queue_to_hba(queue);
3660 	u8 q = *(u8 *) queue;
3661 	u32 raw_tag;
3662 
3663 	if (ignore_bogus_interrupt(h))
3664 		return IRQ_NONE;
3665 
3666 	if (interrupt_not_for_us(h))
3667 		return IRQ_NONE;
3668 	h->last_intr_timestamp = get_jiffies_64();
3669 	while (interrupt_pending(h)) {
3670 		raw_tag = get_next_completion(h, q);
3671 		while (raw_tag != FIFO_EMPTY)
3672 			raw_tag = next_command(h, q);
3673 	}
3674 	return IRQ_HANDLED;
3675 }
3676 
3677 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3678 {
3679 	struct ctlr_info *h = queue_to_hba(queue);
3680 	u32 raw_tag;
3681 	u8 q = *(u8 *) queue;
3682 
3683 	if (ignore_bogus_interrupt(h))
3684 		return IRQ_NONE;
3685 
3686 	h->last_intr_timestamp = get_jiffies_64();
3687 	raw_tag = get_next_completion(h, q);
3688 	while (raw_tag != FIFO_EMPTY)
3689 		raw_tag = next_command(h, q);
3690 	return IRQ_HANDLED;
3691 }
3692 
3693 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3694 {
3695 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3696 	u32 raw_tag;
3697 	u8 q = *(u8 *) queue;
3698 
3699 	if (interrupt_not_for_us(h))
3700 		return IRQ_NONE;
3701 	h->last_intr_timestamp = get_jiffies_64();
3702 	while (interrupt_pending(h)) {
3703 		raw_tag = get_next_completion(h, q);
3704 		while (raw_tag != FIFO_EMPTY) {
3705 			if (likely(hpsa_tag_contains_index(raw_tag)))
3706 				process_indexed_cmd(h, raw_tag);
3707 			else
3708 				process_nonindexed_cmd(h, raw_tag);
3709 			raw_tag = next_command(h, q);
3710 		}
3711 	}
3712 	return IRQ_HANDLED;
3713 }
3714 
3715 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3716 {
3717 	struct ctlr_info *h = queue_to_hba(queue);
3718 	u32 raw_tag;
3719 	u8 q = *(u8 *) queue;
3720 
3721 	h->last_intr_timestamp = get_jiffies_64();
3722 	raw_tag = get_next_completion(h, q);
3723 	while (raw_tag != FIFO_EMPTY) {
3724 		if (likely(hpsa_tag_contains_index(raw_tag)))
3725 			process_indexed_cmd(h, raw_tag);
3726 		else
3727 			process_nonindexed_cmd(h, raw_tag);
3728 		raw_tag = next_command(h, q);
3729 	}
3730 	return IRQ_HANDLED;
3731 }
3732 
3733 /* Send a message CDB to the firmware. Careful, this only works
3734  * in simple mode, not performant mode due to the tag lookup.
3735  * We only ever use this immediately after a controller reset.
3736  */
3737 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3738 			unsigned char type)
3739 {
3740 	struct Command {
3741 		struct CommandListHeader CommandHeader;
3742 		struct RequestBlock Request;
3743 		struct ErrDescriptor ErrorDescriptor;
3744 	};
3745 	struct Command *cmd;
3746 	static const size_t cmd_sz = sizeof(*cmd) +
3747 					sizeof(cmd->ErrorDescriptor);
3748 	dma_addr_t paddr64;
3749 	uint32_t paddr32, tag;
3750 	void __iomem *vaddr;
3751 	int i, err;
3752 
3753 	vaddr = pci_ioremap_bar(pdev, 0);
3754 	if (vaddr == NULL)
3755 		return -ENOMEM;
3756 
3757 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3758 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3759 	 * memory.
3760 	 */
3761 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3762 	if (err) {
3763 		iounmap(vaddr);
3764 		return -ENOMEM;
3765 	}
3766 
3767 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3768 	if (cmd == NULL) {
3769 		iounmap(vaddr);
3770 		return -ENOMEM;
3771 	}
3772 
3773 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3774 	 * although there's no guarantee, we assume that the address is at
3775 	 * least 4-byte aligned (most likely, it's page-aligned).
3776 	 */
3777 	paddr32 = paddr64;
3778 
3779 	cmd->CommandHeader.ReplyQueue = 0;
3780 	cmd->CommandHeader.SGList = 0;
3781 	cmd->CommandHeader.SGTotal = 0;
3782 	cmd->CommandHeader.Tag.lower = paddr32;
3783 	cmd->CommandHeader.Tag.upper = 0;
3784 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3785 
3786 	cmd->Request.CDBLen = 16;
3787 	cmd->Request.Type.Type = TYPE_MSG;
3788 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3789 	cmd->Request.Type.Direction = XFER_NONE;
3790 	cmd->Request.Timeout = 0; /* Don't time out */
3791 	cmd->Request.CDB[0] = opcode;
3792 	cmd->Request.CDB[1] = type;
3793 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3794 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3795 	cmd->ErrorDescriptor.Addr.upper = 0;
3796 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3797 
3798 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3799 
3800 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3801 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3802 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3803 			break;
3804 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3805 	}
3806 
3807 	iounmap(vaddr);
3808 
3809 	/* we leak the DMA buffer here ... no choice since the controller could
3810 	 *  still complete the command.
3811 	 */
3812 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3813 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3814 			opcode, type);
3815 		return -ETIMEDOUT;
3816 	}
3817 
3818 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3819 
3820 	if (tag & HPSA_ERROR_BIT) {
3821 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3822 			opcode, type);
3823 		return -EIO;
3824 	}
3825 
3826 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3827 		opcode, type);
3828 	return 0;
3829 }
3830 
3831 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3832 
3833 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3834 	void * __iomem vaddr, u32 use_doorbell)
3835 {
3836 	u16 pmcsr;
3837 	int pos;
3838 
3839 	if (use_doorbell) {
3840 		/* For everything after the P600, the PCI power state method
3841 		 * of resetting the controller doesn't work, so we have this
3842 		 * other way using the doorbell register.
3843 		 */
3844 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3845 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3846 
3847 		/* PMC hardware guys tell us we need a 5 second delay after
3848 		 * doorbell reset and before any attempt to talk to the board
3849 		 * at all to ensure that this actually works and doesn't fall
3850 		 * over in some weird corner cases.
3851 		 */
3852 		msleep(5000);
3853 	} else { /* Try to do it the PCI power state way */
3854 
3855 		/* Quoting from the Open CISS Specification: "The Power
3856 		 * Management Control/Status Register (CSR) controls the power
3857 		 * state of the device.  The normal operating state is D0,
3858 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3859 		 * the controller, place the interface device in D3 then to D0,
3860 		 * this causes a secondary PCI reset which will reset the
3861 		 * controller." */
3862 
3863 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3864 		if (pos == 0) {
3865 			dev_err(&pdev->dev,
3866 				"hpsa_reset_controller: "
3867 				"PCI PM not supported\n");
3868 			return -ENODEV;
3869 		}
3870 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3871 		/* enter the D3hot power management state */
3872 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3873 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3874 		pmcsr |= PCI_D3hot;
3875 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3876 
3877 		msleep(500);
3878 
3879 		/* enter the D0 power management state */
3880 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3881 		pmcsr |= PCI_D0;
3882 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3883 
3884 		/*
3885 		 * The P600 requires a small delay when changing states.
3886 		 * Otherwise we may think the board did not reset and we bail.
3887 		 * This for kdump only and is particular to the P600.
3888 		 */
3889 		msleep(500);
3890 	}
3891 	return 0;
3892 }
3893 
3894 static void init_driver_version(char *driver_version, int len)
3895 {
3896 	memset(driver_version, 0, len);
3897 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3898 }
3899 
3900 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3901 {
3902 	char *driver_version;
3903 	int i, size = sizeof(cfgtable->driver_version);
3904 
3905 	driver_version = kmalloc(size, GFP_KERNEL);
3906 	if (!driver_version)
3907 		return -ENOMEM;
3908 
3909 	init_driver_version(driver_version, size);
3910 	for (i = 0; i < size; i++)
3911 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3912 	kfree(driver_version);
3913 	return 0;
3914 }
3915 
3916 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3917 					  unsigned char *driver_ver)
3918 {
3919 	int i;
3920 
3921 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3922 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3923 }
3924 
3925 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3926 {
3927 
3928 	char *driver_ver, *old_driver_ver;
3929 	int rc, size = sizeof(cfgtable->driver_version);
3930 
3931 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3932 	if (!old_driver_ver)
3933 		return -ENOMEM;
3934 	driver_ver = old_driver_ver + size;
3935 
3936 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3937 	 * should have been changed, otherwise we know the reset failed.
3938 	 */
3939 	init_driver_version(old_driver_ver, size);
3940 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3941 	rc = !memcmp(driver_ver, old_driver_ver, size);
3942 	kfree(old_driver_ver);
3943 	return rc;
3944 }
3945 /* This does a hard reset of the controller using PCI power management
3946  * states or the using the doorbell register.
3947  */
3948 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3949 {
3950 	u64 cfg_offset;
3951 	u32 cfg_base_addr;
3952 	u64 cfg_base_addr_index;
3953 	void __iomem *vaddr;
3954 	unsigned long paddr;
3955 	u32 misc_fw_support;
3956 	int rc;
3957 	struct CfgTable __iomem *cfgtable;
3958 	u32 use_doorbell;
3959 	u32 board_id;
3960 	u16 command_register;
3961 
3962 	/* For controllers as old as the P600, this is very nearly
3963 	 * the same thing as
3964 	 *
3965 	 * pci_save_state(pci_dev);
3966 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3967 	 * pci_set_power_state(pci_dev, PCI_D0);
3968 	 * pci_restore_state(pci_dev);
3969 	 *
3970 	 * For controllers newer than the P600, the pci power state
3971 	 * method of resetting doesn't work so we have another way
3972 	 * using the doorbell register.
3973 	 */
3974 
3975 	rc = hpsa_lookup_board_id(pdev, &board_id);
3976 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3977 		dev_warn(&pdev->dev, "Not resetting device.\n");
3978 		return -ENODEV;
3979 	}
3980 
3981 	/* if controller is soft- but not hard resettable... */
3982 	if (!ctlr_is_hard_resettable(board_id))
3983 		return -ENOTSUPP; /* try soft reset later. */
3984 
3985 	/* Save the PCI command register */
3986 	pci_read_config_word(pdev, 4, &command_register);
3987 	/* Turn the board off.  This is so that later pci_restore_state()
3988 	 * won't turn the board on before the rest of config space is ready.
3989 	 */
3990 	pci_disable_device(pdev);
3991 	pci_save_state(pdev);
3992 
3993 	/* find the first memory BAR, so we can find the cfg table */
3994 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3995 	if (rc)
3996 		return rc;
3997 	vaddr = remap_pci_mem(paddr, 0x250);
3998 	if (!vaddr)
3999 		return -ENOMEM;
4000 
4001 	/* find cfgtable in order to check if reset via doorbell is supported */
4002 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4003 					&cfg_base_addr_index, &cfg_offset);
4004 	if (rc)
4005 		goto unmap_vaddr;
4006 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4007 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4008 	if (!cfgtable) {
4009 		rc = -ENOMEM;
4010 		goto unmap_vaddr;
4011 	}
4012 	rc = write_driver_ver_to_cfgtable(cfgtable);
4013 	if (rc)
4014 		goto unmap_vaddr;
4015 
4016 	/* If reset via doorbell register is supported, use that.
4017 	 * There are two such methods.  Favor the newest method.
4018 	 */
4019 	misc_fw_support = readl(&cfgtable->misc_fw_support);
4020 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4021 	if (use_doorbell) {
4022 		use_doorbell = DOORBELL_CTLR_RESET2;
4023 	} else {
4024 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4025 		if (use_doorbell) {
4026 			dev_warn(&pdev->dev, "Soft reset not supported. "
4027 				"Firmware update is required.\n");
4028 			rc = -ENOTSUPP; /* try soft reset */
4029 			goto unmap_cfgtable;
4030 		}
4031 	}
4032 
4033 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
4034 	if (rc)
4035 		goto unmap_cfgtable;
4036 
4037 	pci_restore_state(pdev);
4038 	rc = pci_enable_device(pdev);
4039 	if (rc) {
4040 		dev_warn(&pdev->dev, "failed to enable device.\n");
4041 		goto unmap_cfgtable;
4042 	}
4043 	pci_write_config_word(pdev, 4, command_register);
4044 
4045 	/* Some devices (notably the HP Smart Array 5i Controller)
4046 	   need a little pause here */
4047 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
4048 
4049 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
4050 	if (rc) {
4051 		dev_warn(&pdev->dev,
4052 			"failed waiting for board to become ready "
4053 			"after hard reset\n");
4054 		goto unmap_cfgtable;
4055 	}
4056 
4057 	rc = controller_reset_failed(vaddr);
4058 	if (rc < 0)
4059 		goto unmap_cfgtable;
4060 	if (rc) {
4061 		dev_warn(&pdev->dev, "Unable to successfully reset "
4062 			"controller. Will try soft reset.\n");
4063 		rc = -ENOTSUPP;
4064 	} else {
4065 		dev_info(&pdev->dev, "board ready after hard reset.\n");
4066 	}
4067 
4068 unmap_cfgtable:
4069 	iounmap(cfgtable);
4070 
4071 unmap_vaddr:
4072 	iounmap(vaddr);
4073 	return rc;
4074 }
4075 
4076 /*
4077  *  We cannot read the structure directly, for portability we must use
4078  *   the io functions.
4079  *   This is for debug only.
4080  */
4081 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4082 {
4083 #ifdef HPSA_DEBUG
4084 	int i;
4085 	char temp_name[17];
4086 
4087 	dev_info(dev, "Controller Configuration information\n");
4088 	dev_info(dev, "------------------------------------\n");
4089 	for (i = 0; i < 4; i++)
4090 		temp_name[i] = readb(&(tb->Signature[i]));
4091 	temp_name[4] = '\0';
4092 	dev_info(dev, "   Signature = %s\n", temp_name);
4093 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4094 	dev_info(dev, "   Transport methods supported = 0x%x\n",
4095 	       readl(&(tb->TransportSupport)));
4096 	dev_info(dev, "   Transport methods active = 0x%x\n",
4097 	       readl(&(tb->TransportActive)));
4098 	dev_info(dev, "   Requested transport Method = 0x%x\n",
4099 	       readl(&(tb->HostWrite.TransportRequest)));
4100 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4101 	       readl(&(tb->HostWrite.CoalIntDelay)));
4102 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4103 	       readl(&(tb->HostWrite.CoalIntCount)));
4104 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
4105 	       readl(&(tb->CmdsOutMax)));
4106 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4107 	for (i = 0; i < 16; i++)
4108 		temp_name[i] = readb(&(tb->ServerName[i]));
4109 	temp_name[16] = '\0';
4110 	dev_info(dev, "   Server Name = %s\n", temp_name);
4111 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4112 		readl(&(tb->HeartBeat)));
4113 #endif				/* HPSA_DEBUG */
4114 }
4115 
4116 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4117 {
4118 	int i, offset, mem_type, bar_type;
4119 
4120 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
4121 		return 0;
4122 	offset = 0;
4123 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4124 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4125 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4126 			offset += 4;
4127 		else {
4128 			mem_type = pci_resource_flags(pdev, i) &
4129 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4130 			switch (mem_type) {
4131 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
4132 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4133 				offset += 4;	/* 32 bit */
4134 				break;
4135 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
4136 				offset += 8;
4137 				break;
4138 			default:	/* reserved in PCI 2.2 */
4139 				dev_warn(&pdev->dev,
4140 				       "base address is invalid\n");
4141 				return -1;
4142 				break;
4143 			}
4144 		}
4145 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4146 			return i + 1;
4147 	}
4148 	return -1;
4149 }
4150 
4151 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4152  * controllers that are capable. If not, we use IO-APIC mode.
4153  */
4154 
4155 static void hpsa_interrupt_mode(struct ctlr_info *h)
4156 {
4157 #ifdef CONFIG_PCI_MSI
4158 	int err, i;
4159 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4160 
4161 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4162 		hpsa_msix_entries[i].vector = 0;
4163 		hpsa_msix_entries[i].entry = i;
4164 	}
4165 
4166 	/* Some boards advertise MSI but don't really support it */
4167 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4168 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4169 		goto default_int_mode;
4170 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4171 		dev_info(&h->pdev->dev, "MSIX\n");
4172 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4173 						MAX_REPLY_QUEUES);
4174 		if (!err) {
4175 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4176 				h->intr[i] = hpsa_msix_entries[i].vector;
4177 			h->msix_vector = 1;
4178 			return;
4179 		}
4180 		if (err > 0) {
4181 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4182 			       "available\n", err);
4183 			goto default_int_mode;
4184 		} else {
4185 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4186 			       err);
4187 			goto default_int_mode;
4188 		}
4189 	}
4190 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4191 		dev_info(&h->pdev->dev, "MSI\n");
4192 		if (!pci_enable_msi(h->pdev))
4193 			h->msi_vector = 1;
4194 		else
4195 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4196 	}
4197 default_int_mode:
4198 #endif				/* CONFIG_PCI_MSI */
4199 	/* if we get here we're going to use the default interrupt mode */
4200 	h->intr[h->intr_mode] = h->pdev->irq;
4201 }
4202 
4203 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4204 {
4205 	int i;
4206 	u32 subsystem_vendor_id, subsystem_device_id;
4207 
4208 	subsystem_vendor_id = pdev->subsystem_vendor;
4209 	subsystem_device_id = pdev->subsystem_device;
4210 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4211 		    subsystem_vendor_id;
4212 
4213 	for (i = 0; i < ARRAY_SIZE(products); i++)
4214 		if (*board_id == products[i].board_id)
4215 			return i;
4216 
4217 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4218 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4219 		!hpsa_allow_any) {
4220 		dev_warn(&pdev->dev, "unrecognized board ID: "
4221 			"0x%08x, ignoring.\n", *board_id);
4222 			return -ENODEV;
4223 	}
4224 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4225 }
4226 
4227 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4228 				    unsigned long *memory_bar)
4229 {
4230 	int i;
4231 
4232 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4233 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4234 			/* addressing mode bits already removed */
4235 			*memory_bar = pci_resource_start(pdev, i);
4236 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4237 				*memory_bar);
4238 			return 0;
4239 		}
4240 	dev_warn(&pdev->dev, "no memory BAR found\n");
4241 	return -ENODEV;
4242 }
4243 
4244 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4245 				     int wait_for_ready)
4246 {
4247 	int i, iterations;
4248 	u32 scratchpad;
4249 	if (wait_for_ready)
4250 		iterations = HPSA_BOARD_READY_ITERATIONS;
4251 	else
4252 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4253 
4254 	for (i = 0; i < iterations; i++) {
4255 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4256 		if (wait_for_ready) {
4257 			if (scratchpad == HPSA_FIRMWARE_READY)
4258 				return 0;
4259 		} else {
4260 			if (scratchpad != HPSA_FIRMWARE_READY)
4261 				return 0;
4262 		}
4263 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4264 	}
4265 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4266 	return -ENODEV;
4267 }
4268 
4269 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4270 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4271 			       u64 *cfg_offset)
4272 {
4273 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4274 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4275 	*cfg_base_addr &= (u32) 0x0000ffff;
4276 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4277 	if (*cfg_base_addr_index == -1) {
4278 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4279 		return -ENODEV;
4280 	}
4281 	return 0;
4282 }
4283 
4284 static int hpsa_find_cfgtables(struct ctlr_info *h)
4285 {
4286 	u64 cfg_offset;
4287 	u32 cfg_base_addr;
4288 	u64 cfg_base_addr_index;
4289 	u32 trans_offset;
4290 	int rc;
4291 
4292 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4293 		&cfg_base_addr_index, &cfg_offset);
4294 	if (rc)
4295 		return rc;
4296 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4297 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4298 	if (!h->cfgtable)
4299 		return -ENOMEM;
4300 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4301 	if (rc)
4302 		return rc;
4303 	/* Find performant mode table. */
4304 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4305 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4306 				cfg_base_addr_index)+cfg_offset+trans_offset,
4307 				sizeof(*h->transtable));
4308 	if (!h->transtable)
4309 		return -ENOMEM;
4310 	return 0;
4311 }
4312 
4313 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4314 {
4315 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4316 
4317 	/* Limit commands in memory limited kdump scenario. */
4318 	if (reset_devices && h->max_commands > 32)
4319 		h->max_commands = 32;
4320 
4321 	if (h->max_commands < 16) {
4322 		dev_warn(&h->pdev->dev, "Controller reports "
4323 			"max supported commands of %d, an obvious lie. "
4324 			"Using 16.  Ensure that firmware is up to date.\n",
4325 			h->max_commands);
4326 		h->max_commands = 16;
4327 	}
4328 }
4329 
4330 /* Interrogate the hardware for some limits:
4331  * max commands, max SG elements without chaining, and with chaining,
4332  * SG chain block size, etc.
4333  */
4334 static void hpsa_find_board_params(struct ctlr_info *h)
4335 {
4336 	hpsa_get_max_perf_mode_cmds(h);
4337 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4338 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4339 	/*
4340 	 * Limit in-command s/g elements to 32 save dma'able memory.
4341 	 * Howvever spec says if 0, use 31
4342 	 */
4343 	h->max_cmd_sg_entries = 31;
4344 	if (h->maxsgentries > 512) {
4345 		h->max_cmd_sg_entries = 32;
4346 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4347 		h->maxsgentries--; /* save one for chain pointer */
4348 	} else {
4349 		h->maxsgentries = 31; /* default to traditional values */
4350 		h->chainsize = 0;
4351 	}
4352 
4353 	/* Find out what task management functions are supported and cache */
4354 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4355 }
4356 
4357 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4358 {
4359 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4360 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4361 		return false;
4362 	}
4363 	return true;
4364 }
4365 
4366 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
4367 {
4368 	u32 driver_support;
4369 
4370 #ifdef CONFIG_X86
4371 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4372 	driver_support = readl(&(h->cfgtable->driver_support));
4373 	driver_support |= ENABLE_SCSI_PREFETCH;
4374 #endif
4375 	driver_support |= ENABLE_UNIT_ATTN;
4376 	writel(driver_support, &(h->cfgtable->driver_support));
4377 }
4378 
4379 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4380  * in a prefetch beyond physical memory.
4381  */
4382 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4383 {
4384 	u32 dma_prefetch;
4385 
4386 	if (h->board_id != 0x3225103C)
4387 		return;
4388 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4389 	dma_prefetch |= 0x8000;
4390 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4391 }
4392 
4393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4394 {
4395 	int i;
4396 	u32 doorbell_value;
4397 	unsigned long flags;
4398 
4399 	/* under certain very rare conditions, this can take awhile.
4400 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4401 	 * as we enter this code.)
4402 	 */
4403 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4404 		spin_lock_irqsave(&h->lock, flags);
4405 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4406 		spin_unlock_irqrestore(&h->lock, flags);
4407 		if (!(doorbell_value & CFGTBL_ChangeReq))
4408 			break;
4409 		/* delay and try again */
4410 		usleep_range(10000, 20000);
4411 	}
4412 }
4413 
4414 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4415 {
4416 	u32 trans_support;
4417 
4418 	trans_support = readl(&(h->cfgtable->TransportSupport));
4419 	if (!(trans_support & SIMPLE_MODE))
4420 		return -ENOTSUPP;
4421 
4422 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4423 	/* Update the field, and then ring the doorbell */
4424 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4425 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4426 	hpsa_wait_for_mode_change_ack(h);
4427 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4428 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4429 		dev_warn(&h->pdev->dev,
4430 			"unable to get board into simple mode\n");
4431 		return -ENODEV;
4432 	}
4433 	h->transMethod = CFGTBL_Trans_Simple;
4434 	return 0;
4435 }
4436 
4437 static int hpsa_pci_init(struct ctlr_info *h)
4438 {
4439 	int prod_index, err;
4440 
4441 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4442 	if (prod_index < 0)
4443 		return -ENODEV;
4444 	h->product_name = products[prod_index].product_name;
4445 	h->access = *(products[prod_index].access);
4446 
4447 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4448 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4449 
4450 	err = pci_enable_device(h->pdev);
4451 	if (err) {
4452 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4453 		return err;
4454 	}
4455 
4456 	/* Enable bus mastering (pci_disable_device may disable this) */
4457 	pci_set_master(h->pdev);
4458 
4459 	err = pci_request_regions(h->pdev, HPSA);
4460 	if (err) {
4461 		dev_err(&h->pdev->dev,
4462 			"cannot obtain PCI resources, aborting\n");
4463 		return err;
4464 	}
4465 	hpsa_interrupt_mode(h);
4466 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4467 	if (err)
4468 		goto err_out_free_res;
4469 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4470 	if (!h->vaddr) {
4471 		err = -ENOMEM;
4472 		goto err_out_free_res;
4473 	}
4474 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4475 	if (err)
4476 		goto err_out_free_res;
4477 	err = hpsa_find_cfgtables(h);
4478 	if (err)
4479 		goto err_out_free_res;
4480 	hpsa_find_board_params(h);
4481 
4482 	if (!hpsa_CISS_signature_present(h)) {
4483 		err = -ENODEV;
4484 		goto err_out_free_res;
4485 	}
4486 	hpsa_set_driver_support_bits(h);
4487 	hpsa_p600_dma_prefetch_quirk(h);
4488 	err = hpsa_enter_simple_mode(h);
4489 	if (err)
4490 		goto err_out_free_res;
4491 	return 0;
4492 
4493 err_out_free_res:
4494 	if (h->transtable)
4495 		iounmap(h->transtable);
4496 	if (h->cfgtable)
4497 		iounmap(h->cfgtable);
4498 	if (h->vaddr)
4499 		iounmap(h->vaddr);
4500 	pci_disable_device(h->pdev);
4501 	pci_release_regions(h->pdev);
4502 	return err;
4503 }
4504 
4505 static void hpsa_hba_inquiry(struct ctlr_info *h)
4506 {
4507 	int rc;
4508 
4509 #define HBA_INQUIRY_BYTE_COUNT 64
4510 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4511 	if (!h->hba_inquiry_data)
4512 		return;
4513 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4514 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4515 	if (rc != 0) {
4516 		kfree(h->hba_inquiry_data);
4517 		h->hba_inquiry_data = NULL;
4518 	}
4519 }
4520 
4521 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4522 {
4523 	int rc, i;
4524 
4525 	if (!reset_devices)
4526 		return 0;
4527 
4528 	/* Reset the controller with a PCI power-cycle or via doorbell */
4529 	rc = hpsa_kdump_hard_reset_controller(pdev);
4530 
4531 	/* -ENOTSUPP here means we cannot reset the controller
4532 	 * but it's already (and still) up and running in
4533 	 * "performant mode".  Or, it might be 640x, which can't reset
4534 	 * due to concerns about shared bbwc between 6402/6404 pair.
4535 	 */
4536 	if (rc == -ENOTSUPP)
4537 		return rc; /* just try to do the kdump anyhow. */
4538 	if (rc)
4539 		return -ENODEV;
4540 
4541 	/* Now try to get the controller to respond to a no-op */
4542 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4543 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4544 		if (hpsa_noop(pdev) == 0)
4545 			break;
4546 		else
4547 			dev_warn(&pdev->dev, "no-op failed%s\n",
4548 					(i < 11 ? "; re-trying" : ""));
4549 	}
4550 	return 0;
4551 }
4552 
4553 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4554 {
4555 	h->cmd_pool_bits = kzalloc(
4556 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4557 		sizeof(unsigned long), GFP_KERNEL);
4558 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4559 		    h->nr_cmds * sizeof(*h->cmd_pool),
4560 		    &(h->cmd_pool_dhandle));
4561 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4562 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4563 		    &(h->errinfo_pool_dhandle));
4564 	if ((h->cmd_pool_bits == NULL)
4565 	    || (h->cmd_pool == NULL)
4566 	    || (h->errinfo_pool == NULL)) {
4567 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4568 		return -ENOMEM;
4569 	}
4570 	return 0;
4571 }
4572 
4573 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4574 {
4575 	kfree(h->cmd_pool_bits);
4576 	if (h->cmd_pool)
4577 		pci_free_consistent(h->pdev,
4578 			    h->nr_cmds * sizeof(struct CommandList),
4579 			    h->cmd_pool, h->cmd_pool_dhandle);
4580 	if (h->errinfo_pool)
4581 		pci_free_consistent(h->pdev,
4582 			    h->nr_cmds * sizeof(struct ErrorInfo),
4583 			    h->errinfo_pool,
4584 			    h->errinfo_pool_dhandle);
4585 }
4586 
4587 static int hpsa_request_irq(struct ctlr_info *h,
4588 	irqreturn_t (*msixhandler)(int, void *),
4589 	irqreturn_t (*intxhandler)(int, void *))
4590 {
4591 	int rc, i;
4592 
4593 	/*
4594 	 * initialize h->q[x] = x so that interrupt handlers know which
4595 	 * queue to process.
4596 	 */
4597 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4598 		h->q[i] = (u8) i;
4599 
4600 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4601 		/* If performant mode and MSI-X, use multiple reply queues */
4602 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4603 			rc = request_irq(h->intr[i], msixhandler,
4604 					0, h->devname,
4605 					&h->q[i]);
4606 	} else {
4607 		/* Use single reply pool */
4608 		if (h->msix_vector || h->msi_vector) {
4609 			rc = request_irq(h->intr[h->intr_mode],
4610 				msixhandler, 0, h->devname,
4611 				&h->q[h->intr_mode]);
4612 		} else {
4613 			rc = request_irq(h->intr[h->intr_mode],
4614 				intxhandler, IRQF_SHARED, h->devname,
4615 				&h->q[h->intr_mode]);
4616 		}
4617 	}
4618 	if (rc) {
4619 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4620 		       h->intr[h->intr_mode], h->devname);
4621 		return -ENODEV;
4622 	}
4623 	return 0;
4624 }
4625 
4626 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4627 {
4628 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4629 		HPSA_RESET_TYPE_CONTROLLER)) {
4630 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4631 		return -EIO;
4632 	}
4633 
4634 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4635 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4636 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4637 		return -1;
4638 	}
4639 
4640 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4641 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4642 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4643 			"after soft reset.\n");
4644 		return -1;
4645 	}
4646 
4647 	return 0;
4648 }
4649 
4650 static void free_irqs(struct ctlr_info *h)
4651 {
4652 	int i;
4653 
4654 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4655 		/* Single reply queue, only one irq to free */
4656 		i = h->intr_mode;
4657 		free_irq(h->intr[i], &h->q[i]);
4658 		return;
4659 	}
4660 
4661 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4662 		free_irq(h->intr[i], &h->q[i]);
4663 }
4664 
4665 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4666 {
4667 	free_irqs(h);
4668 #ifdef CONFIG_PCI_MSI
4669 	if (h->msix_vector) {
4670 		if (h->pdev->msix_enabled)
4671 			pci_disable_msix(h->pdev);
4672 	} else if (h->msi_vector) {
4673 		if (h->pdev->msi_enabled)
4674 			pci_disable_msi(h->pdev);
4675 	}
4676 #endif /* CONFIG_PCI_MSI */
4677 }
4678 
4679 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4680 {
4681 	hpsa_free_irqs_and_disable_msix(h);
4682 	hpsa_free_sg_chain_blocks(h);
4683 	hpsa_free_cmd_pool(h);
4684 	kfree(h->blockFetchTable);
4685 	pci_free_consistent(h->pdev, h->reply_pool_size,
4686 		h->reply_pool, h->reply_pool_dhandle);
4687 	if (h->vaddr)
4688 		iounmap(h->vaddr);
4689 	if (h->transtable)
4690 		iounmap(h->transtable);
4691 	if (h->cfgtable)
4692 		iounmap(h->cfgtable);
4693 	pci_release_regions(h->pdev);
4694 	kfree(h);
4695 }
4696 
4697 /* Called when controller lockup detected. */
4698 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4699 {
4700 	struct CommandList *c = NULL;
4701 
4702 	assert_spin_locked(&h->lock);
4703 	/* Mark all outstanding commands as failed and complete them. */
4704 	while (!list_empty(list)) {
4705 		c = list_entry(list->next, struct CommandList, list);
4706 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4707 		finish_cmd(c);
4708 	}
4709 }
4710 
4711 static void controller_lockup_detected(struct ctlr_info *h)
4712 {
4713 	unsigned long flags;
4714 
4715 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4716 	spin_lock_irqsave(&h->lock, flags);
4717 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4718 	spin_unlock_irqrestore(&h->lock, flags);
4719 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4720 			h->lockup_detected);
4721 	pci_disable_device(h->pdev);
4722 	spin_lock_irqsave(&h->lock, flags);
4723 	fail_all_cmds_on_list(h, &h->cmpQ);
4724 	fail_all_cmds_on_list(h, &h->reqQ);
4725 	spin_unlock_irqrestore(&h->lock, flags);
4726 }
4727 
4728 static void detect_controller_lockup(struct ctlr_info *h)
4729 {
4730 	u64 now;
4731 	u32 heartbeat;
4732 	unsigned long flags;
4733 
4734 	now = get_jiffies_64();
4735 	/* If we've received an interrupt recently, we're ok. */
4736 	if (time_after64(h->last_intr_timestamp +
4737 				(h->heartbeat_sample_interval), now))
4738 		return;
4739 
4740 	/*
4741 	 * If we've already checked the heartbeat recently, we're ok.
4742 	 * This could happen if someone sends us a signal. We
4743 	 * otherwise don't care about signals in this thread.
4744 	 */
4745 	if (time_after64(h->last_heartbeat_timestamp +
4746 				(h->heartbeat_sample_interval), now))
4747 		return;
4748 
4749 	/* If heartbeat has not changed since we last looked, we're not ok. */
4750 	spin_lock_irqsave(&h->lock, flags);
4751 	heartbeat = readl(&h->cfgtable->HeartBeat);
4752 	spin_unlock_irqrestore(&h->lock, flags);
4753 	if (h->last_heartbeat == heartbeat) {
4754 		controller_lockup_detected(h);
4755 		return;
4756 	}
4757 
4758 	/* We're ok. */
4759 	h->last_heartbeat = heartbeat;
4760 	h->last_heartbeat_timestamp = now;
4761 }
4762 
4763 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
4764 {
4765 	unsigned long flags;
4766 	struct ctlr_info *h = container_of(to_delayed_work(work),
4767 					struct ctlr_info, monitor_ctlr_work);
4768 	detect_controller_lockup(h);
4769 	if (h->lockup_detected)
4770 		return;
4771 	spin_lock_irqsave(&h->lock, flags);
4772 	if (h->remove_in_progress) {
4773 		spin_unlock_irqrestore(&h->lock, flags);
4774 		return;
4775 	}
4776 	schedule_delayed_work(&h->monitor_ctlr_work,
4777 				h->heartbeat_sample_interval);
4778 	spin_unlock_irqrestore(&h->lock, flags);
4779 }
4780 
4781 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4782 {
4783 	int dac, rc;
4784 	struct ctlr_info *h;
4785 	int try_soft_reset = 0;
4786 	unsigned long flags;
4787 
4788 	if (number_of_controllers == 0)
4789 		printk(KERN_INFO DRIVER_NAME "\n");
4790 
4791 	rc = hpsa_init_reset_devices(pdev);
4792 	if (rc) {
4793 		if (rc != -ENOTSUPP)
4794 			return rc;
4795 		/* If the reset fails in a particular way (it has no way to do
4796 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4797 		 * a soft reset once we get the controller configured up to the
4798 		 * point that it can accept a command.
4799 		 */
4800 		try_soft_reset = 1;
4801 		rc = 0;
4802 	}
4803 
4804 reinit_after_soft_reset:
4805 
4806 	/* Command structures must be aligned on a 32-byte boundary because
4807 	 * the 5 lower bits of the address are used by the hardware. and by
4808 	 * the driver.  See comments in hpsa.h for more info.
4809 	 */
4810 #define COMMANDLIST_ALIGNMENT 32
4811 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4812 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4813 	if (!h)
4814 		return -ENOMEM;
4815 
4816 	h->pdev = pdev;
4817 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4818 	INIT_LIST_HEAD(&h->cmpQ);
4819 	INIT_LIST_HEAD(&h->reqQ);
4820 	spin_lock_init(&h->lock);
4821 	spin_lock_init(&h->scan_lock);
4822 	spin_lock_init(&h->passthru_count_lock);
4823 	rc = hpsa_pci_init(h);
4824 	if (rc != 0)
4825 		goto clean1;
4826 
4827 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4828 	h->ctlr = number_of_controllers;
4829 	number_of_controllers++;
4830 
4831 	/* configure PCI DMA stuff */
4832 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4833 	if (rc == 0) {
4834 		dac = 1;
4835 	} else {
4836 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4837 		if (rc == 0) {
4838 			dac = 0;
4839 		} else {
4840 			dev_err(&pdev->dev, "no suitable DMA available\n");
4841 			goto clean1;
4842 		}
4843 	}
4844 
4845 	/* make sure the board interrupts are off */
4846 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4847 
4848 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4849 		goto clean2;
4850 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4851 	       h->devname, pdev->device,
4852 	       h->intr[h->intr_mode], dac ? "" : " not");
4853 	if (hpsa_allocate_cmd_pool(h))
4854 		goto clean4;
4855 	if (hpsa_allocate_sg_chain_blocks(h))
4856 		goto clean4;
4857 	init_waitqueue_head(&h->scan_wait_queue);
4858 	h->scan_finished = 1; /* no scan currently in progress */
4859 
4860 	pci_set_drvdata(pdev, h);
4861 	h->ndevices = 0;
4862 	h->scsi_host = NULL;
4863 	spin_lock_init(&h->devlock);
4864 	hpsa_put_ctlr_into_performant_mode(h);
4865 
4866 	/* At this point, the controller is ready to take commands.
4867 	 * Now, if reset_devices and the hard reset didn't work, try
4868 	 * the soft reset and see if that works.
4869 	 */
4870 	if (try_soft_reset) {
4871 
4872 		/* This is kind of gross.  We may or may not get a completion
4873 		 * from the soft reset command, and if we do, then the value
4874 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4875 		 * after the reset throwing away any completions we get during
4876 		 * that time.  Unregister the interrupt handler and register
4877 		 * fake ones to scoop up any residual completions.
4878 		 */
4879 		spin_lock_irqsave(&h->lock, flags);
4880 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4881 		spin_unlock_irqrestore(&h->lock, flags);
4882 		free_irqs(h);
4883 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4884 					hpsa_intx_discard_completions);
4885 		if (rc) {
4886 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4887 				"soft reset.\n");
4888 			goto clean4;
4889 		}
4890 
4891 		rc = hpsa_kdump_soft_reset(h);
4892 		if (rc)
4893 			/* Neither hard nor soft reset worked, we're hosed. */
4894 			goto clean4;
4895 
4896 		dev_info(&h->pdev->dev, "Board READY.\n");
4897 		dev_info(&h->pdev->dev,
4898 			"Waiting for stale completions to drain.\n");
4899 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4900 		msleep(10000);
4901 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4902 
4903 		rc = controller_reset_failed(h->cfgtable);
4904 		if (rc)
4905 			dev_info(&h->pdev->dev,
4906 				"Soft reset appears to have failed.\n");
4907 
4908 		/* since the controller's reset, we have to go back and re-init
4909 		 * everything.  Easiest to just forget what we've done and do it
4910 		 * all over again.
4911 		 */
4912 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4913 		try_soft_reset = 0;
4914 		if (rc)
4915 			/* don't go to clean4, we already unallocated */
4916 			return -ENODEV;
4917 
4918 		goto reinit_after_soft_reset;
4919 	}
4920 
4921 	/* Turn the interrupts on so we can service requests */
4922 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4923 
4924 	hpsa_hba_inquiry(h);
4925 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4926 
4927 	/* Monitor the controller for firmware lockups */
4928 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4929 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
4930 	schedule_delayed_work(&h->monitor_ctlr_work,
4931 				h->heartbeat_sample_interval);
4932 	return 0;
4933 
4934 clean4:
4935 	hpsa_free_sg_chain_blocks(h);
4936 	hpsa_free_cmd_pool(h);
4937 	free_irqs(h);
4938 clean2:
4939 clean1:
4940 	kfree(h);
4941 	return rc;
4942 }
4943 
4944 static void hpsa_flush_cache(struct ctlr_info *h)
4945 {
4946 	char *flush_buf;
4947 	struct CommandList *c;
4948 	unsigned long flags;
4949 
4950 	/* Don't bother trying to flush the cache if locked up */
4951 	spin_lock_irqsave(&h->lock, flags);
4952 	if (unlikely(h->lockup_detected)) {
4953 		spin_unlock_irqrestore(&h->lock, flags);
4954 		return;
4955 	}
4956 	spin_unlock_irqrestore(&h->lock, flags);
4957 
4958 	flush_buf = kzalloc(4, GFP_KERNEL);
4959 	if (!flush_buf)
4960 		return;
4961 
4962 	c = cmd_special_alloc(h);
4963 	if (!c) {
4964 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4965 		goto out_of_memory;
4966 	}
4967 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4968 		RAID_CTLR_LUNID, TYPE_CMD)) {
4969 		goto out;
4970 	}
4971 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4972 	if (c->err_info->CommandStatus != 0)
4973 out:
4974 		dev_warn(&h->pdev->dev,
4975 			"error flushing cache on controller\n");
4976 	cmd_special_free(h, c);
4977 out_of_memory:
4978 	kfree(flush_buf);
4979 }
4980 
4981 static void hpsa_shutdown(struct pci_dev *pdev)
4982 {
4983 	struct ctlr_info *h;
4984 
4985 	h = pci_get_drvdata(pdev);
4986 	/* Turn board interrupts off  and send the flush cache command
4987 	 * sendcmd will turn off interrupt, and send the flush...
4988 	 * To write all data in the battery backed cache to disks
4989 	 */
4990 	hpsa_flush_cache(h);
4991 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4992 	hpsa_free_irqs_and_disable_msix(h);
4993 }
4994 
4995 static void hpsa_free_device_info(struct ctlr_info *h)
4996 {
4997 	int i;
4998 
4999 	for (i = 0; i < h->ndevices; i++)
5000 		kfree(h->dev[i]);
5001 }
5002 
5003 static void hpsa_remove_one(struct pci_dev *pdev)
5004 {
5005 	struct ctlr_info *h;
5006 	unsigned long flags;
5007 
5008 	if (pci_get_drvdata(pdev) == NULL) {
5009 		dev_err(&pdev->dev, "unable to remove device\n");
5010 		return;
5011 	}
5012 	h = pci_get_drvdata(pdev);
5013 
5014 	/* Get rid of any controller monitoring work items */
5015 	spin_lock_irqsave(&h->lock, flags);
5016 	h->remove_in_progress = 1;
5017 	cancel_delayed_work(&h->monitor_ctlr_work);
5018 	spin_unlock_irqrestore(&h->lock, flags);
5019 
5020 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
5021 	hpsa_shutdown(pdev);
5022 	iounmap(h->vaddr);
5023 	iounmap(h->transtable);
5024 	iounmap(h->cfgtable);
5025 	hpsa_free_device_info(h);
5026 	hpsa_free_sg_chain_blocks(h);
5027 	pci_free_consistent(h->pdev,
5028 		h->nr_cmds * sizeof(struct CommandList),
5029 		h->cmd_pool, h->cmd_pool_dhandle);
5030 	pci_free_consistent(h->pdev,
5031 		h->nr_cmds * sizeof(struct ErrorInfo),
5032 		h->errinfo_pool, h->errinfo_pool_dhandle);
5033 	pci_free_consistent(h->pdev, h->reply_pool_size,
5034 		h->reply_pool, h->reply_pool_dhandle);
5035 	kfree(h->cmd_pool_bits);
5036 	kfree(h->blockFetchTable);
5037 	kfree(h->hba_inquiry_data);
5038 	pci_disable_device(pdev);
5039 	pci_release_regions(pdev);
5040 	kfree(h);
5041 }
5042 
5043 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5044 	__attribute__((unused)) pm_message_t state)
5045 {
5046 	return -ENOSYS;
5047 }
5048 
5049 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5050 {
5051 	return -ENOSYS;
5052 }
5053 
5054 static struct pci_driver hpsa_pci_driver = {
5055 	.name = HPSA,
5056 	.probe = hpsa_init_one,
5057 	.remove = hpsa_remove_one,
5058 	.id_table = hpsa_pci_device_id,	/* id_table */
5059 	.shutdown = hpsa_shutdown,
5060 	.suspend = hpsa_suspend,
5061 	.resume = hpsa_resume,
5062 };
5063 
5064 /* Fill in bucket_map[], given nsgs (the max number of
5065  * scatter gather elements supported) and bucket[],
5066  * which is an array of 8 integers.  The bucket[] array
5067  * contains 8 different DMA transfer sizes (in 16
5068  * byte increments) which the controller uses to fetch
5069  * commands.  This function fills in bucket_map[], which
5070  * maps a given number of scatter gather elements to one of
5071  * the 8 DMA transfer sizes.  The point of it is to allow the
5072  * controller to only do as much DMA as needed to fetch the
5073  * command, with the DMA transfer size encoded in the lower
5074  * bits of the command address.
5075  */
5076 static void  calc_bucket_map(int bucket[], int num_buckets,
5077 	int nsgs, int *bucket_map)
5078 {
5079 	int i, j, b, size;
5080 
5081 	/* even a command with 0 SGs requires 4 blocks */
5082 #define MINIMUM_TRANSFER_BLOCKS 4
5083 #define NUM_BUCKETS 8
5084 	/* Note, bucket_map must have nsgs+1 entries. */
5085 	for (i = 0; i <= nsgs; i++) {
5086 		/* Compute size of a command with i SG entries */
5087 		size = i + MINIMUM_TRANSFER_BLOCKS;
5088 		b = num_buckets; /* Assume the biggest bucket */
5089 		/* Find the bucket that is just big enough */
5090 		for (j = 0; j < 8; j++) {
5091 			if (bucket[j] >= size) {
5092 				b = j;
5093 				break;
5094 			}
5095 		}
5096 		/* for a command with i SG entries, use bucket b. */
5097 		bucket_map[i] = b;
5098 	}
5099 }
5100 
5101 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5102 {
5103 	int i;
5104 	unsigned long register_value;
5105 
5106 	/* This is a bit complicated.  There are 8 registers on
5107 	 * the controller which we write to to tell it 8 different
5108 	 * sizes of commands which there may be.  It's a way of
5109 	 * reducing the DMA done to fetch each command.  Encoded into
5110 	 * each command's tag are 3 bits which communicate to the controller
5111 	 * which of the eight sizes that command fits within.  The size of
5112 	 * each command depends on how many scatter gather entries there are.
5113 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5114 	 * with the number of 16-byte blocks a command of that size requires.
5115 	 * The smallest command possible requires 5 such 16 byte blocks.
5116 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5117 	 * blocks.  Note, this only extends to the SG entries contained
5118 	 * within the command block, and does not extend to chained blocks
5119 	 * of SG elements.   bft[] contains the eight values we write to
5120 	 * the registers.  They are not evenly distributed, but have more
5121 	 * sizes for small commands, and fewer sizes for larger commands.
5122 	 */
5123 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5124 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5125 	/*  5 = 1 s/g entry or 4k
5126 	 *  6 = 2 s/g entry or 8k
5127 	 *  8 = 4 s/g entry or 16k
5128 	 * 10 = 6 s/g entry or 24k
5129 	 */
5130 
5131 	/* Controller spec: zero out this buffer. */
5132 	memset(h->reply_pool, 0, h->reply_pool_size);
5133 
5134 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5135 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5136 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5137 	for (i = 0; i < 8; i++)
5138 		writel(bft[i], &h->transtable->BlockFetch[i]);
5139 
5140 	/* size of controller ring buffer */
5141 	writel(h->max_commands, &h->transtable->RepQSize);
5142 	writel(h->nreply_queues, &h->transtable->RepQCount);
5143 	writel(0, &h->transtable->RepQCtrAddrLow32);
5144 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5145 
5146 	for (i = 0; i < h->nreply_queues; i++) {
5147 		writel(0, &h->transtable->RepQAddr[i].upper);
5148 		writel(h->reply_pool_dhandle +
5149 			(h->max_commands * sizeof(u64) * i),
5150 			&h->transtable->RepQAddr[i].lower);
5151 	}
5152 
5153 	writel(CFGTBL_Trans_Performant | use_short_tags |
5154 		CFGTBL_Trans_enable_directed_msix,
5155 		&(h->cfgtable->HostWrite.TransportRequest));
5156 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5157 	hpsa_wait_for_mode_change_ack(h);
5158 	register_value = readl(&(h->cfgtable->TransportActive));
5159 	if (!(register_value & CFGTBL_Trans_Performant)) {
5160 		dev_warn(&h->pdev->dev, "unable to get board into"
5161 					" performant mode\n");
5162 		return;
5163 	}
5164 	/* Change the access methods to the performant access methods */
5165 	h->access = SA5_performant_access;
5166 	h->transMethod = CFGTBL_Trans_Performant;
5167 }
5168 
5169 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5170 {
5171 	u32 trans_support;
5172 	int i;
5173 
5174 	if (hpsa_simple_mode)
5175 		return;
5176 
5177 	trans_support = readl(&(h->cfgtable->TransportSupport));
5178 	if (!(trans_support & PERFORMANT_MODE))
5179 		return;
5180 
5181 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5182 	hpsa_get_max_perf_mode_cmds(h);
5183 	/* Performant mode ring buffer and supporting data structures */
5184 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5185 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5186 				&(h->reply_pool_dhandle));
5187 
5188 	for (i = 0; i < h->nreply_queues; i++) {
5189 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5190 		h->reply_queue[i].size = h->max_commands;
5191 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5192 		h->reply_queue[i].current_entry = 0;
5193 	}
5194 
5195 	/* Need a block fetch table for performant mode */
5196 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5197 				sizeof(u32)), GFP_KERNEL);
5198 
5199 	if ((h->reply_pool == NULL)
5200 		|| (h->blockFetchTable == NULL))
5201 		goto clean_up;
5202 
5203 	hpsa_enter_performant_mode(h,
5204 		trans_support & CFGTBL_Trans_use_short_tags);
5205 
5206 	return;
5207 
5208 clean_up:
5209 	if (h->reply_pool)
5210 		pci_free_consistent(h->pdev, h->reply_pool_size,
5211 			h->reply_pool, h->reply_pool_dhandle);
5212 	kfree(h->blockFetchTable);
5213 }
5214 
5215 /*
5216  *  This is it.  Register the PCI driver information for the cards we control
5217  *  the OS will call our registered routines when it finds one of our cards.
5218  */
5219 static int __init hpsa_init(void)
5220 {
5221 	return pci_register_driver(&hpsa_pci_driver);
5222 }
5223 
5224 static void __exit hpsa_cleanup(void)
5225 {
5226 	pci_unregister_driver(&hpsa_pci_driver);
5227 }
5228 
5229 module_init(hpsa_init);
5230 module_exit(hpsa_cleanup);
5231