xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 8571e645)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.14-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 				     int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 	struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 
298 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
299 {
300 	unsigned long *priv = shost_priv(sdev->host);
301 	return (struct ctlr_info *) *priv;
302 }
303 
304 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
305 {
306 	unsigned long *priv = shost_priv(sh);
307 	return (struct ctlr_info *) *priv;
308 }
309 
310 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
311 {
312 	return c->scsi_cmd == SCSI_CMD_IDLE;
313 }
314 
315 static inline bool hpsa_is_pending_event(struct CommandList *c)
316 {
317 	return c->abort_pending || c->reset_pending;
318 }
319 
320 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
321 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
322 			u8 *sense_key, u8 *asc, u8 *ascq)
323 {
324 	struct scsi_sense_hdr sshdr;
325 	bool rc;
326 
327 	*sense_key = -1;
328 	*asc = -1;
329 	*ascq = -1;
330 
331 	if (sense_data_len < 1)
332 		return;
333 
334 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
335 	if (rc) {
336 		*sense_key = sshdr.sense_key;
337 		*asc = sshdr.asc;
338 		*ascq = sshdr.ascq;
339 	}
340 }
341 
342 static int check_for_unit_attention(struct ctlr_info *h,
343 	struct CommandList *c)
344 {
345 	u8 sense_key, asc, ascq;
346 	int sense_len;
347 
348 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
349 		sense_len = sizeof(c->err_info->SenseInfo);
350 	else
351 		sense_len = c->err_info->SenseLen;
352 
353 	decode_sense_data(c->err_info->SenseInfo, sense_len,
354 				&sense_key, &asc, &ascq);
355 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
356 		return 0;
357 
358 	switch (asc) {
359 	case STATE_CHANGED:
360 		dev_warn(&h->pdev->dev,
361 			"%s: a state change detected, command retried\n",
362 			h->devname);
363 		break;
364 	case LUN_FAILED:
365 		dev_warn(&h->pdev->dev,
366 			"%s: LUN failure detected\n", h->devname);
367 		break;
368 	case REPORT_LUNS_CHANGED:
369 		dev_warn(&h->pdev->dev,
370 			"%s: report LUN data changed\n", h->devname);
371 	/*
372 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
373 	 * target (array) devices.
374 	 */
375 		break;
376 	case POWER_OR_RESET:
377 		dev_warn(&h->pdev->dev,
378 			"%s: a power on or device reset detected\n",
379 			h->devname);
380 		break;
381 	case UNIT_ATTENTION_CLEARED:
382 		dev_warn(&h->pdev->dev,
383 			"%s: unit attention cleared by another initiator\n",
384 			h->devname);
385 		break;
386 	default:
387 		dev_warn(&h->pdev->dev,
388 			"%s: unknown unit attention detected\n",
389 			h->devname);
390 		break;
391 	}
392 	return 1;
393 }
394 
395 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
396 {
397 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
398 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
399 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
400 		return 0;
401 	dev_warn(&h->pdev->dev, HPSA "device busy");
402 	return 1;
403 }
404 
405 static u32 lockup_detected(struct ctlr_info *h);
406 static ssize_t host_show_lockup_detected(struct device *dev,
407 		struct device_attribute *attr, char *buf)
408 {
409 	int ld;
410 	struct ctlr_info *h;
411 	struct Scsi_Host *shost = class_to_shost(dev);
412 
413 	h = shost_to_hba(shost);
414 	ld = lockup_detected(h);
415 
416 	return sprintf(buf, "ld=%d\n", ld);
417 }
418 
419 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
420 					 struct device_attribute *attr,
421 					 const char *buf, size_t count)
422 {
423 	int status, len;
424 	struct ctlr_info *h;
425 	struct Scsi_Host *shost = class_to_shost(dev);
426 	char tmpbuf[10];
427 
428 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
429 		return -EACCES;
430 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
431 	strncpy(tmpbuf, buf, len);
432 	tmpbuf[len] = '\0';
433 	if (sscanf(tmpbuf, "%d", &status) != 1)
434 		return -EINVAL;
435 	h = shost_to_hba(shost);
436 	h->acciopath_status = !!status;
437 	dev_warn(&h->pdev->dev,
438 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
439 		h->acciopath_status ? "enabled" : "disabled");
440 	return count;
441 }
442 
443 static ssize_t host_store_raid_offload_debug(struct device *dev,
444 					 struct device_attribute *attr,
445 					 const char *buf, size_t count)
446 {
447 	int debug_level, len;
448 	struct ctlr_info *h;
449 	struct Scsi_Host *shost = class_to_shost(dev);
450 	char tmpbuf[10];
451 
452 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
453 		return -EACCES;
454 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
455 	strncpy(tmpbuf, buf, len);
456 	tmpbuf[len] = '\0';
457 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
458 		return -EINVAL;
459 	if (debug_level < 0)
460 		debug_level = 0;
461 	h = shost_to_hba(shost);
462 	h->raid_offload_debug = debug_level;
463 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
464 		h->raid_offload_debug);
465 	return count;
466 }
467 
468 static ssize_t host_store_rescan(struct device *dev,
469 				 struct device_attribute *attr,
470 				 const char *buf, size_t count)
471 {
472 	struct ctlr_info *h;
473 	struct Scsi_Host *shost = class_to_shost(dev);
474 	h = shost_to_hba(shost);
475 	hpsa_scan_start(h->scsi_host);
476 	return count;
477 }
478 
479 static ssize_t host_show_firmware_revision(struct device *dev,
480 	     struct device_attribute *attr, char *buf)
481 {
482 	struct ctlr_info *h;
483 	struct Scsi_Host *shost = class_to_shost(dev);
484 	unsigned char *fwrev;
485 
486 	h = shost_to_hba(shost);
487 	if (!h->hba_inquiry_data)
488 		return 0;
489 	fwrev = &h->hba_inquiry_data[32];
490 	return snprintf(buf, 20, "%c%c%c%c\n",
491 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
492 }
493 
494 static ssize_t host_show_commands_outstanding(struct device *dev,
495 	     struct device_attribute *attr, char *buf)
496 {
497 	struct Scsi_Host *shost = class_to_shost(dev);
498 	struct ctlr_info *h = shost_to_hba(shost);
499 
500 	return snprintf(buf, 20, "%d\n",
501 			atomic_read(&h->commands_outstanding));
502 }
503 
504 static ssize_t host_show_transport_mode(struct device *dev,
505 	struct device_attribute *attr, char *buf)
506 {
507 	struct ctlr_info *h;
508 	struct Scsi_Host *shost = class_to_shost(dev);
509 
510 	h = shost_to_hba(shost);
511 	return snprintf(buf, 20, "%s\n",
512 		h->transMethod & CFGTBL_Trans_Performant ?
513 			"performant" : "simple");
514 }
515 
516 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
517 	struct device_attribute *attr, char *buf)
518 {
519 	struct ctlr_info *h;
520 	struct Scsi_Host *shost = class_to_shost(dev);
521 
522 	h = shost_to_hba(shost);
523 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
524 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
525 }
526 
527 /* List of controllers which cannot be hard reset on kexec with reset_devices */
528 static u32 unresettable_controller[] = {
529 	0x324a103C, /* Smart Array P712m */
530 	0x324b103C, /* Smart Array P711m */
531 	0x3223103C, /* Smart Array P800 */
532 	0x3234103C, /* Smart Array P400 */
533 	0x3235103C, /* Smart Array P400i */
534 	0x3211103C, /* Smart Array E200i */
535 	0x3212103C, /* Smart Array E200 */
536 	0x3213103C, /* Smart Array E200i */
537 	0x3214103C, /* Smart Array E200i */
538 	0x3215103C, /* Smart Array E200i */
539 	0x3237103C, /* Smart Array E500 */
540 	0x323D103C, /* Smart Array P700m */
541 	0x40800E11, /* Smart Array 5i */
542 	0x409C0E11, /* Smart Array 6400 */
543 	0x409D0E11, /* Smart Array 6400 EM */
544 	0x40700E11, /* Smart Array 5300 */
545 	0x40820E11, /* Smart Array 532 */
546 	0x40830E11, /* Smart Array 5312 */
547 	0x409A0E11, /* Smart Array 641 */
548 	0x409B0E11, /* Smart Array 642 */
549 	0x40910E11, /* Smart Array 6i */
550 };
551 
552 /* List of controllers which cannot even be soft reset */
553 static u32 soft_unresettable_controller[] = {
554 	0x40800E11, /* Smart Array 5i */
555 	0x40700E11, /* Smart Array 5300 */
556 	0x40820E11, /* Smart Array 532 */
557 	0x40830E11, /* Smart Array 5312 */
558 	0x409A0E11, /* Smart Array 641 */
559 	0x409B0E11, /* Smart Array 642 */
560 	0x40910E11, /* Smart Array 6i */
561 	/* Exclude 640x boards.  These are two pci devices in one slot
562 	 * which share a battery backed cache module.  One controls the
563 	 * cache, the other accesses the cache through the one that controls
564 	 * it.  If we reset the one controlling the cache, the other will
565 	 * likely not be happy.  Just forbid resetting this conjoined mess.
566 	 * The 640x isn't really supported by hpsa anyway.
567 	 */
568 	0x409C0E11, /* Smart Array 6400 */
569 	0x409D0E11, /* Smart Array 6400 EM */
570 };
571 
572 static u32 needs_abort_tags_swizzled[] = {
573 	0x323D103C, /* Smart Array P700m */
574 	0x324a103C, /* Smart Array P712m */
575 	0x324b103C, /* SmartArray P711m */
576 };
577 
578 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
579 {
580 	int i;
581 
582 	for (i = 0; i < nelems; i++)
583 		if (a[i] == board_id)
584 			return 1;
585 	return 0;
586 }
587 
588 static int ctlr_is_hard_resettable(u32 board_id)
589 {
590 	return !board_id_in_array(unresettable_controller,
591 			ARRAY_SIZE(unresettable_controller), board_id);
592 }
593 
594 static int ctlr_is_soft_resettable(u32 board_id)
595 {
596 	return !board_id_in_array(soft_unresettable_controller,
597 			ARRAY_SIZE(soft_unresettable_controller), board_id);
598 }
599 
600 static int ctlr_is_resettable(u32 board_id)
601 {
602 	return ctlr_is_hard_resettable(board_id) ||
603 		ctlr_is_soft_resettable(board_id);
604 }
605 
606 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
607 {
608 	return board_id_in_array(needs_abort_tags_swizzled,
609 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
610 }
611 
612 static ssize_t host_show_resettable(struct device *dev,
613 	struct device_attribute *attr, char *buf)
614 {
615 	struct ctlr_info *h;
616 	struct Scsi_Host *shost = class_to_shost(dev);
617 
618 	h = shost_to_hba(shost);
619 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
620 }
621 
622 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
623 {
624 	return (scsi3addr[3] & 0xC0) == 0x40;
625 }
626 
627 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
628 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 };
630 #define HPSA_RAID_0	0
631 #define HPSA_RAID_4	1
632 #define HPSA_RAID_1	2	/* also used for RAID 10 */
633 #define HPSA_RAID_5	3	/* also used for RAID 50 */
634 #define HPSA_RAID_51	4
635 #define HPSA_RAID_6	5	/* also used for RAID 60 */
636 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
637 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
638 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639 
640 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
641 {
642 	return !device->physical_device;
643 }
644 
645 static ssize_t raid_level_show(struct device *dev,
646 	     struct device_attribute *attr, char *buf)
647 {
648 	ssize_t l = 0;
649 	unsigned char rlevel;
650 	struct ctlr_info *h;
651 	struct scsi_device *sdev;
652 	struct hpsa_scsi_dev_t *hdev;
653 	unsigned long flags;
654 
655 	sdev = to_scsi_device(dev);
656 	h = sdev_to_hba(sdev);
657 	spin_lock_irqsave(&h->lock, flags);
658 	hdev = sdev->hostdata;
659 	if (!hdev) {
660 		spin_unlock_irqrestore(&h->lock, flags);
661 		return -ENODEV;
662 	}
663 
664 	/* Is this even a logical drive? */
665 	if (!is_logical_device(hdev)) {
666 		spin_unlock_irqrestore(&h->lock, flags);
667 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
668 		return l;
669 	}
670 
671 	rlevel = hdev->raid_level;
672 	spin_unlock_irqrestore(&h->lock, flags);
673 	if (rlevel > RAID_UNKNOWN)
674 		rlevel = RAID_UNKNOWN;
675 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
676 	return l;
677 }
678 
679 static ssize_t lunid_show(struct device *dev,
680 	     struct device_attribute *attr, char *buf)
681 {
682 	struct ctlr_info *h;
683 	struct scsi_device *sdev;
684 	struct hpsa_scsi_dev_t *hdev;
685 	unsigned long flags;
686 	unsigned char lunid[8];
687 
688 	sdev = to_scsi_device(dev);
689 	h = sdev_to_hba(sdev);
690 	spin_lock_irqsave(&h->lock, flags);
691 	hdev = sdev->hostdata;
692 	if (!hdev) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		return -ENODEV;
695 	}
696 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
697 	spin_unlock_irqrestore(&h->lock, flags);
698 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
699 		lunid[0], lunid[1], lunid[2], lunid[3],
700 		lunid[4], lunid[5], lunid[6], lunid[7]);
701 }
702 
703 static ssize_t unique_id_show(struct device *dev,
704 	     struct device_attribute *attr, char *buf)
705 {
706 	struct ctlr_info *h;
707 	struct scsi_device *sdev;
708 	struct hpsa_scsi_dev_t *hdev;
709 	unsigned long flags;
710 	unsigned char sn[16];
711 
712 	sdev = to_scsi_device(dev);
713 	h = sdev_to_hba(sdev);
714 	spin_lock_irqsave(&h->lock, flags);
715 	hdev = sdev->hostdata;
716 	if (!hdev) {
717 		spin_unlock_irqrestore(&h->lock, flags);
718 		return -ENODEV;
719 	}
720 	memcpy(sn, hdev->device_id, sizeof(sn));
721 	spin_unlock_irqrestore(&h->lock, flags);
722 	return snprintf(buf, 16 * 2 + 2,
723 			"%02X%02X%02X%02X%02X%02X%02X%02X"
724 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
725 			sn[0], sn[1], sn[2], sn[3],
726 			sn[4], sn[5], sn[6], sn[7],
727 			sn[8], sn[9], sn[10], sn[11],
728 			sn[12], sn[13], sn[14], sn[15]);
729 }
730 
731 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
732 	     struct device_attribute *attr, char *buf)
733 {
734 	struct ctlr_info *h;
735 	struct scsi_device *sdev;
736 	struct hpsa_scsi_dev_t *hdev;
737 	unsigned long flags;
738 	int offload_enabled;
739 
740 	sdev = to_scsi_device(dev);
741 	h = sdev_to_hba(sdev);
742 	spin_lock_irqsave(&h->lock, flags);
743 	hdev = sdev->hostdata;
744 	if (!hdev) {
745 		spin_unlock_irqrestore(&h->lock, flags);
746 		return -ENODEV;
747 	}
748 	offload_enabled = hdev->offload_enabled;
749 	spin_unlock_irqrestore(&h->lock, flags);
750 	return snprintf(buf, 20, "%d\n", offload_enabled);
751 }
752 
753 #define MAX_PATHS 8
754 static ssize_t path_info_show(struct device *dev,
755 	     struct device_attribute *attr, char *buf)
756 {
757 	struct ctlr_info *h;
758 	struct scsi_device *sdev;
759 	struct hpsa_scsi_dev_t *hdev;
760 	unsigned long flags;
761 	int i;
762 	int output_len = 0;
763 	u8 box;
764 	u8 bay;
765 	u8 path_map_index = 0;
766 	char *active;
767 	unsigned char phys_connector[2];
768 
769 	sdev = to_scsi_device(dev);
770 	h = sdev_to_hba(sdev);
771 	spin_lock_irqsave(&h->devlock, flags);
772 	hdev = sdev->hostdata;
773 	if (!hdev) {
774 		spin_unlock_irqrestore(&h->devlock, flags);
775 		return -ENODEV;
776 	}
777 
778 	bay = hdev->bay;
779 	for (i = 0; i < MAX_PATHS; i++) {
780 		path_map_index = 1<<i;
781 		if (i == hdev->active_path_index)
782 			active = "Active";
783 		else if (hdev->path_map & path_map_index)
784 			active = "Inactive";
785 		else
786 			continue;
787 
788 		output_len += scnprintf(buf + output_len,
789 				PAGE_SIZE - output_len,
790 				"[%d:%d:%d:%d] %20.20s ",
791 				h->scsi_host->host_no,
792 				hdev->bus, hdev->target, hdev->lun,
793 				scsi_device_type(hdev->devtype));
794 
795 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
796 			output_len += scnprintf(buf + output_len,
797 						PAGE_SIZE - output_len,
798 						"%s\n", active);
799 			continue;
800 		}
801 
802 		box = hdev->box[i];
803 		memcpy(&phys_connector, &hdev->phys_connector[i],
804 			sizeof(phys_connector));
805 		if (phys_connector[0] < '0')
806 			phys_connector[0] = '0';
807 		if (phys_connector[1] < '0')
808 			phys_connector[1] = '0';
809 		output_len += scnprintf(buf + output_len,
810 				PAGE_SIZE - output_len,
811 				"PORT: %.2s ",
812 				phys_connector);
813 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
814 			hdev->expose_device) {
815 			if (box == 0 || box == 0xFF) {
816 				output_len += scnprintf(buf + output_len,
817 					PAGE_SIZE - output_len,
818 					"BAY: %hhu %s\n",
819 					bay, active);
820 			} else {
821 				output_len += scnprintf(buf + output_len,
822 					PAGE_SIZE - output_len,
823 					"BOX: %hhu BAY: %hhu %s\n",
824 					box, bay, active);
825 			}
826 		} else if (box != 0 && box != 0xFF) {
827 			output_len += scnprintf(buf + output_len,
828 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
829 				box, active);
830 		} else
831 			output_len += scnprintf(buf + output_len,
832 				PAGE_SIZE - output_len, "%s\n", active);
833 	}
834 
835 	spin_unlock_irqrestore(&h->devlock, flags);
836 	return output_len;
837 }
838 
839 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
840 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
841 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
842 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
843 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
844 			host_show_hp_ssd_smart_path_enabled, NULL);
845 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
846 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
847 		host_show_hp_ssd_smart_path_status,
848 		host_store_hp_ssd_smart_path_status);
849 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
850 			host_store_raid_offload_debug);
851 static DEVICE_ATTR(firmware_revision, S_IRUGO,
852 	host_show_firmware_revision, NULL);
853 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
854 	host_show_commands_outstanding, NULL);
855 static DEVICE_ATTR(transport_mode, S_IRUGO,
856 	host_show_transport_mode, NULL);
857 static DEVICE_ATTR(resettable, S_IRUGO,
858 	host_show_resettable, NULL);
859 static DEVICE_ATTR(lockup_detected, S_IRUGO,
860 	host_show_lockup_detected, NULL);
861 
862 static struct device_attribute *hpsa_sdev_attrs[] = {
863 	&dev_attr_raid_level,
864 	&dev_attr_lunid,
865 	&dev_attr_unique_id,
866 	&dev_attr_hp_ssd_smart_path_enabled,
867 	&dev_attr_path_info,
868 	NULL,
869 };
870 
871 static struct device_attribute *hpsa_shost_attrs[] = {
872 	&dev_attr_rescan,
873 	&dev_attr_firmware_revision,
874 	&dev_attr_commands_outstanding,
875 	&dev_attr_transport_mode,
876 	&dev_attr_resettable,
877 	&dev_attr_hp_ssd_smart_path_status,
878 	&dev_attr_raid_offload_debug,
879 	&dev_attr_lockup_detected,
880 	NULL,
881 };
882 
883 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
884 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
885 
886 static struct scsi_host_template hpsa_driver_template = {
887 	.module			= THIS_MODULE,
888 	.name			= HPSA,
889 	.proc_name		= HPSA,
890 	.queuecommand		= hpsa_scsi_queue_command,
891 	.scan_start		= hpsa_scan_start,
892 	.scan_finished		= hpsa_scan_finished,
893 	.change_queue_depth	= hpsa_change_queue_depth,
894 	.this_id		= -1,
895 	.use_clustering		= ENABLE_CLUSTERING,
896 	.eh_abort_handler	= hpsa_eh_abort_handler,
897 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
898 	.ioctl			= hpsa_ioctl,
899 	.slave_alloc		= hpsa_slave_alloc,
900 	.slave_configure	= hpsa_slave_configure,
901 	.slave_destroy		= hpsa_slave_destroy,
902 #ifdef CONFIG_COMPAT
903 	.compat_ioctl		= hpsa_compat_ioctl,
904 #endif
905 	.sdev_attrs = hpsa_sdev_attrs,
906 	.shost_attrs = hpsa_shost_attrs,
907 	.max_sectors = 8192,
908 	.no_write_same = 1,
909 };
910 
911 static inline u32 next_command(struct ctlr_info *h, u8 q)
912 {
913 	u32 a;
914 	struct reply_queue_buffer *rq = &h->reply_queue[q];
915 
916 	if (h->transMethod & CFGTBL_Trans_io_accel1)
917 		return h->access.command_completed(h, q);
918 
919 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
920 		return h->access.command_completed(h, q);
921 
922 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
923 		a = rq->head[rq->current_entry];
924 		rq->current_entry++;
925 		atomic_dec(&h->commands_outstanding);
926 	} else {
927 		a = FIFO_EMPTY;
928 	}
929 	/* Check for wraparound */
930 	if (rq->current_entry == h->max_commands) {
931 		rq->current_entry = 0;
932 		rq->wraparound ^= 1;
933 	}
934 	return a;
935 }
936 
937 /*
938  * There are some special bits in the bus address of the
939  * command that we have to set for the controller to know
940  * how to process the command:
941  *
942  * Normal performant mode:
943  * bit 0: 1 means performant mode, 0 means simple mode.
944  * bits 1-3 = block fetch table entry
945  * bits 4-6 = command type (== 0)
946  *
947  * ioaccel1 mode:
948  * bit 0 = "performant mode" bit.
949  * bits 1-3 = block fetch table entry
950  * bits 4-6 = command type (== 110)
951  * (command type is needed because ioaccel1 mode
952  * commands are submitted through the same register as normal
953  * mode commands, so this is how the controller knows whether
954  * the command is normal mode or ioaccel1 mode.)
955  *
956  * ioaccel2 mode:
957  * bit 0 = "performant mode" bit.
958  * bits 1-4 = block fetch table entry (note extra bit)
959  * bits 4-6 = not needed, because ioaccel2 mode has
960  * a separate special register for submitting commands.
961  */
962 
963 /*
964  * set_performant_mode: Modify the tag for cciss performant
965  * set bit 0 for pull model, bits 3-1 for block fetch
966  * register number
967  */
968 #define DEFAULT_REPLY_QUEUE (-1)
969 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
970 					int reply_queue)
971 {
972 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
973 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
974 		if (unlikely(!h->msix_vector))
975 			return;
976 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
977 			c->Header.ReplyQueue =
978 				raw_smp_processor_id() % h->nreply_queues;
979 		else
980 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
981 	}
982 }
983 
984 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
985 						struct CommandList *c,
986 						int reply_queue)
987 {
988 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
989 
990 	/*
991 	 * Tell the controller to post the reply to the queue for this
992 	 * processor.  This seems to give the best I/O throughput.
993 	 */
994 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
995 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
996 	else
997 		cp->ReplyQueue = reply_queue % h->nreply_queues;
998 	/*
999 	 * Set the bits in the address sent down to include:
1000 	 *  - performant mode bit (bit 0)
1001 	 *  - pull count (bits 1-3)
1002 	 *  - command type (bits 4-6)
1003 	 */
1004 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1005 					IOACCEL1_BUSADDR_CMDTYPE;
1006 }
1007 
1008 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1009 						struct CommandList *c,
1010 						int reply_queue)
1011 {
1012 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1013 		&h->ioaccel2_cmd_pool[c->cmdindex];
1014 
1015 	/* Tell the controller to post the reply to the queue for this
1016 	 * processor.  This seems to give the best I/O throughput.
1017 	 */
1018 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1019 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1020 	else
1021 		cp->reply_queue = reply_queue % h->nreply_queues;
1022 	/* Set the bits in the address sent down to include:
1023 	 *  - performant mode bit not used in ioaccel mode 2
1024 	 *  - pull count (bits 0-3)
1025 	 *  - command type isn't needed for ioaccel2
1026 	 */
1027 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1028 }
1029 
1030 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1031 						struct CommandList *c,
1032 						int reply_queue)
1033 {
1034 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1035 
1036 	/*
1037 	 * Tell the controller to post the reply to the queue for this
1038 	 * processor.  This seems to give the best I/O throughput.
1039 	 */
1040 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1041 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1042 	else
1043 		cp->reply_queue = reply_queue % h->nreply_queues;
1044 	/*
1045 	 * Set the bits in the address sent down to include:
1046 	 *  - performant mode bit not used in ioaccel mode 2
1047 	 *  - pull count (bits 0-3)
1048 	 *  - command type isn't needed for ioaccel2
1049 	 */
1050 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1051 }
1052 
1053 static int is_firmware_flash_cmd(u8 *cdb)
1054 {
1055 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1056 }
1057 
1058 /*
1059  * During firmware flash, the heartbeat register may not update as frequently
1060  * as it should.  So we dial down lockup detection during firmware flash. and
1061  * dial it back up when firmware flash completes.
1062  */
1063 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1064 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1065 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1066 		struct CommandList *c)
1067 {
1068 	if (!is_firmware_flash_cmd(c->Request.CDB))
1069 		return;
1070 	atomic_inc(&h->firmware_flash_in_progress);
1071 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1072 }
1073 
1074 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1075 		struct CommandList *c)
1076 {
1077 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1078 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1079 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1080 }
1081 
1082 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1083 	struct CommandList *c, int reply_queue)
1084 {
1085 	dial_down_lockup_detection_during_fw_flash(h, c);
1086 	atomic_inc(&h->commands_outstanding);
1087 	switch (c->cmd_type) {
1088 	case CMD_IOACCEL1:
1089 		set_ioaccel1_performant_mode(h, c, reply_queue);
1090 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1091 		break;
1092 	case CMD_IOACCEL2:
1093 		set_ioaccel2_performant_mode(h, c, reply_queue);
1094 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1095 		break;
1096 	case IOACCEL2_TMF:
1097 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1098 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1099 		break;
1100 	default:
1101 		set_performant_mode(h, c, reply_queue);
1102 		h->access.submit_command(h, c);
1103 	}
1104 }
1105 
1106 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1107 {
1108 	if (unlikely(hpsa_is_pending_event(c)))
1109 		return finish_cmd(c);
1110 
1111 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1112 }
1113 
1114 static inline int is_hba_lunid(unsigned char scsi3addr[])
1115 {
1116 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1117 }
1118 
1119 static inline int is_scsi_rev_5(struct ctlr_info *h)
1120 {
1121 	if (!h->hba_inquiry_data)
1122 		return 0;
1123 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1124 		return 1;
1125 	return 0;
1126 }
1127 
1128 static int hpsa_find_target_lun(struct ctlr_info *h,
1129 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1130 {
1131 	/* finds an unused bus, target, lun for a new physical device
1132 	 * assumes h->devlock is held
1133 	 */
1134 	int i, found = 0;
1135 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1136 
1137 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1138 
1139 	for (i = 0; i < h->ndevices; i++) {
1140 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1141 			__set_bit(h->dev[i]->target, lun_taken);
1142 	}
1143 
1144 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1145 	if (i < HPSA_MAX_DEVICES) {
1146 		/* *bus = 1; */
1147 		*target = i;
1148 		*lun = 0;
1149 		found = 1;
1150 	}
1151 	return !found;
1152 }
1153 
1154 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1155 	struct hpsa_scsi_dev_t *dev, char *description)
1156 {
1157 #define LABEL_SIZE 25
1158 	char label[LABEL_SIZE];
1159 
1160 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1161 		return;
1162 
1163 	switch (dev->devtype) {
1164 	case TYPE_RAID:
1165 		snprintf(label, LABEL_SIZE, "controller");
1166 		break;
1167 	case TYPE_ENCLOSURE:
1168 		snprintf(label, LABEL_SIZE, "enclosure");
1169 		break;
1170 	case TYPE_DISK:
1171 	case TYPE_ZBC:
1172 		if (dev->external)
1173 			snprintf(label, LABEL_SIZE, "external");
1174 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1175 			snprintf(label, LABEL_SIZE, "%s",
1176 				raid_label[PHYSICAL_DRIVE]);
1177 		else
1178 			snprintf(label, LABEL_SIZE, "RAID-%s",
1179 				dev->raid_level > RAID_UNKNOWN ? "?" :
1180 				raid_label[dev->raid_level]);
1181 		break;
1182 	case TYPE_ROM:
1183 		snprintf(label, LABEL_SIZE, "rom");
1184 		break;
1185 	case TYPE_TAPE:
1186 		snprintf(label, LABEL_SIZE, "tape");
1187 		break;
1188 	case TYPE_MEDIUM_CHANGER:
1189 		snprintf(label, LABEL_SIZE, "changer");
1190 		break;
1191 	default:
1192 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1193 		break;
1194 	}
1195 
1196 	dev_printk(level, &h->pdev->dev,
1197 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1198 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1199 			description,
1200 			scsi_device_type(dev->devtype),
1201 			dev->vendor,
1202 			dev->model,
1203 			label,
1204 			dev->offload_config ? '+' : '-',
1205 			dev->offload_enabled ? '+' : '-',
1206 			dev->expose_device);
1207 }
1208 
1209 /* Add an entry into h->dev[] array. */
1210 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1211 		struct hpsa_scsi_dev_t *device,
1212 		struct hpsa_scsi_dev_t *added[], int *nadded)
1213 {
1214 	/* assumes h->devlock is held */
1215 	int n = h->ndevices;
1216 	int i;
1217 	unsigned char addr1[8], addr2[8];
1218 	struct hpsa_scsi_dev_t *sd;
1219 
1220 	if (n >= HPSA_MAX_DEVICES) {
1221 		dev_err(&h->pdev->dev, "too many devices, some will be "
1222 			"inaccessible.\n");
1223 		return -1;
1224 	}
1225 
1226 	/* physical devices do not have lun or target assigned until now. */
1227 	if (device->lun != -1)
1228 		/* Logical device, lun is already assigned. */
1229 		goto lun_assigned;
1230 
1231 	/* If this device a non-zero lun of a multi-lun device
1232 	 * byte 4 of the 8-byte LUN addr will contain the logical
1233 	 * unit no, zero otherwise.
1234 	 */
1235 	if (device->scsi3addr[4] == 0) {
1236 		/* This is not a non-zero lun of a multi-lun device */
1237 		if (hpsa_find_target_lun(h, device->scsi3addr,
1238 			device->bus, &device->target, &device->lun) != 0)
1239 			return -1;
1240 		goto lun_assigned;
1241 	}
1242 
1243 	/* This is a non-zero lun of a multi-lun device.
1244 	 * Search through our list and find the device which
1245 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1246 	 * Assign the same bus and target for this new LUN.
1247 	 * Use the logical unit number from the firmware.
1248 	 */
1249 	memcpy(addr1, device->scsi3addr, 8);
1250 	addr1[4] = 0;
1251 	addr1[5] = 0;
1252 	for (i = 0; i < n; i++) {
1253 		sd = h->dev[i];
1254 		memcpy(addr2, sd->scsi3addr, 8);
1255 		addr2[4] = 0;
1256 		addr2[5] = 0;
1257 		/* differ only in byte 4 and 5? */
1258 		if (memcmp(addr1, addr2, 8) == 0) {
1259 			device->bus = sd->bus;
1260 			device->target = sd->target;
1261 			device->lun = device->scsi3addr[4];
1262 			break;
1263 		}
1264 	}
1265 	if (device->lun == -1) {
1266 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1267 			" suspect firmware bug or unsupported hardware "
1268 			"configuration.\n");
1269 			return -1;
1270 	}
1271 
1272 lun_assigned:
1273 
1274 	h->dev[n] = device;
1275 	h->ndevices++;
1276 	added[*nadded] = device;
1277 	(*nadded)++;
1278 	hpsa_show_dev_msg(KERN_INFO, h, device,
1279 		device->expose_device ? "added" : "masked");
1280 	device->offload_to_be_enabled = device->offload_enabled;
1281 	device->offload_enabled = 0;
1282 	return 0;
1283 }
1284 
1285 /* Update an entry in h->dev[] array. */
1286 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1287 	int entry, struct hpsa_scsi_dev_t *new_entry)
1288 {
1289 	int offload_enabled;
1290 	/* assumes h->devlock is held */
1291 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1292 
1293 	/* Raid level changed. */
1294 	h->dev[entry]->raid_level = new_entry->raid_level;
1295 
1296 	/* Raid offload parameters changed.  Careful about the ordering. */
1297 	if (new_entry->offload_config && new_entry->offload_enabled) {
1298 		/*
1299 		 * if drive is newly offload_enabled, we want to copy the
1300 		 * raid map data first.  If previously offload_enabled and
1301 		 * offload_config were set, raid map data had better be
1302 		 * the same as it was before.  if raid map data is changed
1303 		 * then it had better be the case that
1304 		 * h->dev[entry]->offload_enabled is currently 0.
1305 		 */
1306 		h->dev[entry]->raid_map = new_entry->raid_map;
1307 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1308 	}
1309 	if (new_entry->hba_ioaccel_enabled) {
1310 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1311 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1312 	}
1313 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1314 	h->dev[entry]->offload_config = new_entry->offload_config;
1315 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1316 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1317 
1318 	/*
1319 	 * We can turn off ioaccel offload now, but need to delay turning
1320 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1321 	 * can't do that until all the devices are updated.
1322 	 */
1323 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1324 	if (!new_entry->offload_enabled)
1325 		h->dev[entry]->offload_enabled = 0;
1326 
1327 	offload_enabled = h->dev[entry]->offload_enabled;
1328 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1329 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1330 	h->dev[entry]->offload_enabled = offload_enabled;
1331 }
1332 
1333 /* Replace an entry from h->dev[] array. */
1334 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1335 	int entry, struct hpsa_scsi_dev_t *new_entry,
1336 	struct hpsa_scsi_dev_t *added[], int *nadded,
1337 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1338 {
1339 	/* assumes h->devlock is held */
1340 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1341 	removed[*nremoved] = h->dev[entry];
1342 	(*nremoved)++;
1343 
1344 	/*
1345 	 * New physical devices won't have target/lun assigned yet
1346 	 * so we need to preserve the values in the slot we are replacing.
1347 	 */
1348 	if (new_entry->target == -1) {
1349 		new_entry->target = h->dev[entry]->target;
1350 		new_entry->lun = h->dev[entry]->lun;
1351 	}
1352 
1353 	h->dev[entry] = new_entry;
1354 	added[*nadded] = new_entry;
1355 	(*nadded)++;
1356 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1357 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1358 	new_entry->offload_enabled = 0;
1359 }
1360 
1361 /* Remove an entry from h->dev[] array. */
1362 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1363 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1364 {
1365 	/* assumes h->devlock is held */
1366 	int i;
1367 	struct hpsa_scsi_dev_t *sd;
1368 
1369 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1370 
1371 	sd = h->dev[entry];
1372 	removed[*nremoved] = h->dev[entry];
1373 	(*nremoved)++;
1374 
1375 	for (i = entry; i < h->ndevices-1; i++)
1376 		h->dev[i] = h->dev[i+1];
1377 	h->ndevices--;
1378 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1379 }
1380 
1381 #define SCSI3ADDR_EQ(a, b) ( \
1382 	(a)[7] == (b)[7] && \
1383 	(a)[6] == (b)[6] && \
1384 	(a)[5] == (b)[5] && \
1385 	(a)[4] == (b)[4] && \
1386 	(a)[3] == (b)[3] && \
1387 	(a)[2] == (b)[2] && \
1388 	(a)[1] == (b)[1] && \
1389 	(a)[0] == (b)[0])
1390 
1391 static void fixup_botched_add(struct ctlr_info *h,
1392 	struct hpsa_scsi_dev_t *added)
1393 {
1394 	/* called when scsi_add_device fails in order to re-adjust
1395 	 * h->dev[] to match the mid layer's view.
1396 	 */
1397 	unsigned long flags;
1398 	int i, j;
1399 
1400 	spin_lock_irqsave(&h->lock, flags);
1401 	for (i = 0; i < h->ndevices; i++) {
1402 		if (h->dev[i] == added) {
1403 			for (j = i; j < h->ndevices-1; j++)
1404 				h->dev[j] = h->dev[j+1];
1405 			h->ndevices--;
1406 			break;
1407 		}
1408 	}
1409 	spin_unlock_irqrestore(&h->lock, flags);
1410 	kfree(added);
1411 }
1412 
1413 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1414 	struct hpsa_scsi_dev_t *dev2)
1415 {
1416 	/* we compare everything except lun and target as these
1417 	 * are not yet assigned.  Compare parts likely
1418 	 * to differ first
1419 	 */
1420 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1421 		sizeof(dev1->scsi3addr)) != 0)
1422 		return 0;
1423 	if (memcmp(dev1->device_id, dev2->device_id,
1424 		sizeof(dev1->device_id)) != 0)
1425 		return 0;
1426 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1427 		return 0;
1428 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1429 		return 0;
1430 	if (dev1->devtype != dev2->devtype)
1431 		return 0;
1432 	if (dev1->bus != dev2->bus)
1433 		return 0;
1434 	return 1;
1435 }
1436 
1437 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1438 	struct hpsa_scsi_dev_t *dev2)
1439 {
1440 	/* Device attributes that can change, but don't mean
1441 	 * that the device is a different device, nor that the OS
1442 	 * needs to be told anything about the change.
1443 	 */
1444 	if (dev1->raid_level != dev2->raid_level)
1445 		return 1;
1446 	if (dev1->offload_config != dev2->offload_config)
1447 		return 1;
1448 	if (dev1->offload_enabled != dev2->offload_enabled)
1449 		return 1;
1450 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1451 		if (dev1->queue_depth != dev2->queue_depth)
1452 			return 1;
1453 	return 0;
1454 }
1455 
1456 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1457  * and return needle location in *index.  If scsi3addr matches, but not
1458  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1459  * location in *index.
1460  * In the case of a minor device attribute change, such as RAID level, just
1461  * return DEVICE_UPDATED, along with the updated device's location in index.
1462  * If needle not found, return DEVICE_NOT_FOUND.
1463  */
1464 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1465 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1466 	int *index)
1467 {
1468 	int i;
1469 #define DEVICE_NOT_FOUND 0
1470 #define DEVICE_CHANGED 1
1471 #define DEVICE_SAME 2
1472 #define DEVICE_UPDATED 3
1473 	if (needle == NULL)
1474 		return DEVICE_NOT_FOUND;
1475 
1476 	for (i = 0; i < haystack_size; i++) {
1477 		if (haystack[i] == NULL) /* previously removed. */
1478 			continue;
1479 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1480 			*index = i;
1481 			if (device_is_the_same(needle, haystack[i])) {
1482 				if (device_updated(needle, haystack[i]))
1483 					return DEVICE_UPDATED;
1484 				return DEVICE_SAME;
1485 			} else {
1486 				/* Keep offline devices offline */
1487 				if (needle->volume_offline)
1488 					return DEVICE_NOT_FOUND;
1489 				return DEVICE_CHANGED;
1490 			}
1491 		}
1492 	}
1493 	*index = -1;
1494 	return DEVICE_NOT_FOUND;
1495 }
1496 
1497 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1498 					unsigned char scsi3addr[])
1499 {
1500 	struct offline_device_entry *device;
1501 	unsigned long flags;
1502 
1503 	/* Check to see if device is already on the list */
1504 	spin_lock_irqsave(&h->offline_device_lock, flags);
1505 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1506 		if (memcmp(device->scsi3addr, scsi3addr,
1507 			sizeof(device->scsi3addr)) == 0) {
1508 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1509 			return;
1510 		}
1511 	}
1512 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1513 
1514 	/* Device is not on the list, add it. */
1515 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1516 	if (!device) {
1517 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1518 		return;
1519 	}
1520 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1521 	spin_lock_irqsave(&h->offline_device_lock, flags);
1522 	list_add_tail(&device->offline_list, &h->offline_device_list);
1523 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1524 }
1525 
1526 /* Print a message explaining various offline volume states */
1527 static void hpsa_show_volume_status(struct ctlr_info *h,
1528 	struct hpsa_scsi_dev_t *sd)
1529 {
1530 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1531 		dev_info(&h->pdev->dev,
1532 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1533 			h->scsi_host->host_no,
1534 			sd->bus, sd->target, sd->lun);
1535 	switch (sd->volume_offline) {
1536 	case HPSA_LV_OK:
1537 		break;
1538 	case HPSA_LV_UNDERGOING_ERASE:
1539 		dev_info(&h->pdev->dev,
1540 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1541 			h->scsi_host->host_no,
1542 			sd->bus, sd->target, sd->lun);
1543 		break;
1544 	case HPSA_LV_NOT_AVAILABLE:
1545 		dev_info(&h->pdev->dev,
1546 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1547 			h->scsi_host->host_no,
1548 			sd->bus, sd->target, sd->lun);
1549 		break;
1550 	case HPSA_LV_UNDERGOING_RPI:
1551 		dev_info(&h->pdev->dev,
1552 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1553 			h->scsi_host->host_no,
1554 			sd->bus, sd->target, sd->lun);
1555 		break;
1556 	case HPSA_LV_PENDING_RPI:
1557 		dev_info(&h->pdev->dev,
1558 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1559 			h->scsi_host->host_no,
1560 			sd->bus, sd->target, sd->lun);
1561 		break;
1562 	case HPSA_LV_ENCRYPTED_NO_KEY:
1563 		dev_info(&h->pdev->dev,
1564 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1565 			h->scsi_host->host_no,
1566 			sd->bus, sd->target, sd->lun);
1567 		break;
1568 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1569 		dev_info(&h->pdev->dev,
1570 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1571 			h->scsi_host->host_no,
1572 			sd->bus, sd->target, sd->lun);
1573 		break;
1574 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1575 		dev_info(&h->pdev->dev,
1576 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1577 			h->scsi_host->host_no,
1578 			sd->bus, sd->target, sd->lun);
1579 		break;
1580 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1581 		dev_info(&h->pdev->dev,
1582 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1583 			h->scsi_host->host_no,
1584 			sd->bus, sd->target, sd->lun);
1585 		break;
1586 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1587 		dev_info(&h->pdev->dev,
1588 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1589 			h->scsi_host->host_no,
1590 			sd->bus, sd->target, sd->lun);
1591 		break;
1592 	case HPSA_LV_PENDING_ENCRYPTION:
1593 		dev_info(&h->pdev->dev,
1594 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1595 			h->scsi_host->host_no,
1596 			sd->bus, sd->target, sd->lun);
1597 		break;
1598 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1599 		dev_info(&h->pdev->dev,
1600 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1601 			h->scsi_host->host_no,
1602 			sd->bus, sd->target, sd->lun);
1603 		break;
1604 	}
1605 }
1606 
1607 /*
1608  * Figure the list of physical drive pointers for a logical drive with
1609  * raid offload configured.
1610  */
1611 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1612 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1613 				struct hpsa_scsi_dev_t *logical_drive)
1614 {
1615 	struct raid_map_data *map = &logical_drive->raid_map;
1616 	struct raid_map_disk_data *dd = &map->data[0];
1617 	int i, j;
1618 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1619 				le16_to_cpu(map->metadata_disks_per_row);
1620 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1621 				le16_to_cpu(map->layout_map_count) *
1622 				total_disks_per_row;
1623 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1624 				total_disks_per_row;
1625 	int qdepth;
1626 
1627 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1628 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1629 
1630 	logical_drive->nphysical_disks = nraid_map_entries;
1631 
1632 	qdepth = 0;
1633 	for (i = 0; i < nraid_map_entries; i++) {
1634 		logical_drive->phys_disk[i] = NULL;
1635 		if (!logical_drive->offload_config)
1636 			continue;
1637 		for (j = 0; j < ndevices; j++) {
1638 			if (dev[j] == NULL)
1639 				continue;
1640 			if (dev[j]->devtype != TYPE_DISK)
1641 				continue;
1642 			if (dev[j]->devtype != TYPE_ZBC)
1643 				continue;
1644 			if (is_logical_device(dev[j]))
1645 				continue;
1646 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1647 				continue;
1648 
1649 			logical_drive->phys_disk[i] = dev[j];
1650 			if (i < nphys_disk)
1651 				qdepth = min(h->nr_cmds, qdepth +
1652 				    logical_drive->phys_disk[i]->queue_depth);
1653 			break;
1654 		}
1655 
1656 		/*
1657 		 * This can happen if a physical drive is removed and
1658 		 * the logical drive is degraded.  In that case, the RAID
1659 		 * map data will refer to a physical disk which isn't actually
1660 		 * present.  And in that case offload_enabled should already
1661 		 * be 0, but we'll turn it off here just in case
1662 		 */
1663 		if (!logical_drive->phys_disk[i]) {
1664 			logical_drive->offload_enabled = 0;
1665 			logical_drive->offload_to_be_enabled = 0;
1666 			logical_drive->queue_depth = 8;
1667 		}
1668 	}
1669 	if (nraid_map_entries)
1670 		/*
1671 		 * This is correct for reads, too high for full stripe writes,
1672 		 * way too high for partial stripe writes
1673 		 */
1674 		logical_drive->queue_depth = qdepth;
1675 	else
1676 		logical_drive->queue_depth = h->nr_cmds;
1677 }
1678 
1679 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1680 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1681 {
1682 	int i;
1683 
1684 	for (i = 0; i < ndevices; i++) {
1685 		if (dev[i] == NULL)
1686 			continue;
1687 		if (dev[i]->devtype != TYPE_DISK)
1688 			continue;
1689 		if (dev[i]->devtype != TYPE_ZBC)
1690 			continue;
1691 		if (!is_logical_device(dev[i]))
1692 			continue;
1693 
1694 		/*
1695 		 * If offload is currently enabled, the RAID map and
1696 		 * phys_disk[] assignment *better* not be changing
1697 		 * and since it isn't changing, we do not need to
1698 		 * update it.
1699 		 */
1700 		if (dev[i]->offload_enabled)
1701 			continue;
1702 
1703 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1704 	}
1705 }
1706 
1707 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1708 {
1709 	int rc = 0;
1710 
1711 	if (!h->scsi_host)
1712 		return 1;
1713 
1714 	if (is_logical_device(device)) /* RAID */
1715 		rc = scsi_add_device(h->scsi_host, device->bus,
1716 					device->target, device->lun);
1717 	else /* HBA */
1718 		rc = hpsa_add_sas_device(h->sas_host, device);
1719 
1720 	return rc;
1721 }
1722 
1723 static void hpsa_remove_device(struct ctlr_info *h,
1724 			struct hpsa_scsi_dev_t *device)
1725 {
1726 	struct scsi_device *sdev = NULL;
1727 
1728 	if (!h->scsi_host)
1729 		return;
1730 
1731 	if (is_logical_device(device)) { /* RAID */
1732 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1733 						device->target, device->lun);
1734 		if (sdev) {
1735 			scsi_remove_device(sdev);
1736 			scsi_device_put(sdev);
1737 		} else {
1738 			/*
1739 			 * We don't expect to get here.  Future commands
1740 			 * to this device will get a selection timeout as
1741 			 * if the device were gone.
1742 			 */
1743 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1744 					"didn't find device for removal.");
1745 		}
1746 	} else /* HBA */
1747 		hpsa_remove_sas_device(device);
1748 }
1749 
1750 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1751 	struct hpsa_scsi_dev_t *sd[], int nsds)
1752 {
1753 	/* sd contains scsi3 addresses and devtypes, and inquiry
1754 	 * data.  This function takes what's in sd to be the current
1755 	 * reality and updates h->dev[] to reflect that reality.
1756 	 */
1757 	int i, entry, device_change, changes = 0;
1758 	struct hpsa_scsi_dev_t *csd;
1759 	unsigned long flags;
1760 	struct hpsa_scsi_dev_t **added, **removed;
1761 	int nadded, nremoved;
1762 
1763 	/*
1764 	 * A reset can cause a device status to change
1765 	 * re-schedule the scan to see what happened.
1766 	 */
1767 	if (h->reset_in_progress) {
1768 		h->drv_req_rescan = 1;
1769 		return;
1770 	}
1771 
1772 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1773 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1774 
1775 	if (!added || !removed) {
1776 		dev_warn(&h->pdev->dev, "out of memory in "
1777 			"adjust_hpsa_scsi_table\n");
1778 		goto free_and_out;
1779 	}
1780 
1781 	spin_lock_irqsave(&h->devlock, flags);
1782 
1783 	/* find any devices in h->dev[] that are not in
1784 	 * sd[] and remove them from h->dev[], and for any
1785 	 * devices which have changed, remove the old device
1786 	 * info and add the new device info.
1787 	 * If minor device attributes change, just update
1788 	 * the existing device structure.
1789 	 */
1790 	i = 0;
1791 	nremoved = 0;
1792 	nadded = 0;
1793 	while (i < h->ndevices) {
1794 		csd = h->dev[i];
1795 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1796 		if (device_change == DEVICE_NOT_FOUND) {
1797 			changes++;
1798 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1799 			continue; /* remove ^^^, hence i not incremented */
1800 		} else if (device_change == DEVICE_CHANGED) {
1801 			changes++;
1802 			hpsa_scsi_replace_entry(h, i, sd[entry],
1803 				added, &nadded, removed, &nremoved);
1804 			/* Set it to NULL to prevent it from being freed
1805 			 * at the bottom of hpsa_update_scsi_devices()
1806 			 */
1807 			sd[entry] = NULL;
1808 		} else if (device_change == DEVICE_UPDATED) {
1809 			hpsa_scsi_update_entry(h, i, sd[entry]);
1810 		}
1811 		i++;
1812 	}
1813 
1814 	/* Now, make sure every device listed in sd[] is also
1815 	 * listed in h->dev[], adding them if they aren't found
1816 	 */
1817 
1818 	for (i = 0; i < nsds; i++) {
1819 		if (!sd[i]) /* if already added above. */
1820 			continue;
1821 
1822 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1823 		 * as the SCSI mid-layer does not handle such devices well.
1824 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1825 		 * at 160Hz, and prevents the system from coming up.
1826 		 */
1827 		if (sd[i]->volume_offline) {
1828 			hpsa_show_volume_status(h, sd[i]);
1829 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1830 			continue;
1831 		}
1832 
1833 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1834 					h->ndevices, &entry);
1835 		if (device_change == DEVICE_NOT_FOUND) {
1836 			changes++;
1837 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1838 				break;
1839 			sd[i] = NULL; /* prevent from being freed later. */
1840 		} else if (device_change == DEVICE_CHANGED) {
1841 			/* should never happen... */
1842 			changes++;
1843 			dev_warn(&h->pdev->dev,
1844 				"device unexpectedly changed.\n");
1845 			/* but if it does happen, we just ignore that device */
1846 		}
1847 	}
1848 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1849 
1850 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1851 	 * any logical drives that need it enabled.
1852 	 */
1853 	for (i = 0; i < h->ndevices; i++) {
1854 		if (h->dev[i] == NULL)
1855 			continue;
1856 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1857 	}
1858 
1859 	spin_unlock_irqrestore(&h->devlock, flags);
1860 
1861 	/* Monitor devices which are in one of several NOT READY states to be
1862 	 * brought online later. This must be done without holding h->devlock,
1863 	 * so don't touch h->dev[]
1864 	 */
1865 	for (i = 0; i < nsds; i++) {
1866 		if (!sd[i]) /* if already added above. */
1867 			continue;
1868 		if (sd[i]->volume_offline)
1869 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1870 	}
1871 
1872 	/* Don't notify scsi mid layer of any changes the first time through
1873 	 * (or if there are no changes) scsi_scan_host will do it later the
1874 	 * first time through.
1875 	 */
1876 	if (!changes)
1877 		goto free_and_out;
1878 
1879 	/* Notify scsi mid layer of any removed devices */
1880 	for (i = 0; i < nremoved; i++) {
1881 		if (removed[i] == NULL)
1882 			continue;
1883 		if (removed[i]->expose_device)
1884 			hpsa_remove_device(h, removed[i]);
1885 		kfree(removed[i]);
1886 		removed[i] = NULL;
1887 	}
1888 
1889 	/* Notify scsi mid layer of any added devices */
1890 	for (i = 0; i < nadded; i++) {
1891 		int rc = 0;
1892 
1893 		if (added[i] == NULL)
1894 			continue;
1895 		if (!(added[i]->expose_device))
1896 			continue;
1897 		rc = hpsa_add_device(h, added[i]);
1898 		if (!rc)
1899 			continue;
1900 		dev_warn(&h->pdev->dev,
1901 			"addition failed %d, device not added.", rc);
1902 		/* now we have to remove it from h->dev,
1903 		 * since it didn't get added to scsi mid layer
1904 		 */
1905 		fixup_botched_add(h, added[i]);
1906 		h->drv_req_rescan = 1;
1907 	}
1908 
1909 free_and_out:
1910 	kfree(added);
1911 	kfree(removed);
1912 }
1913 
1914 /*
1915  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1916  * Assume's h->devlock is held.
1917  */
1918 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1919 	int bus, int target, int lun)
1920 {
1921 	int i;
1922 	struct hpsa_scsi_dev_t *sd;
1923 
1924 	for (i = 0; i < h->ndevices; i++) {
1925 		sd = h->dev[i];
1926 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1927 			return sd;
1928 	}
1929 	return NULL;
1930 }
1931 
1932 static int hpsa_slave_alloc(struct scsi_device *sdev)
1933 {
1934 	struct hpsa_scsi_dev_t *sd;
1935 	unsigned long flags;
1936 	struct ctlr_info *h;
1937 
1938 	h = sdev_to_hba(sdev);
1939 	spin_lock_irqsave(&h->devlock, flags);
1940 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1941 		struct scsi_target *starget;
1942 		struct sas_rphy *rphy;
1943 
1944 		starget = scsi_target(sdev);
1945 		rphy = target_to_rphy(starget);
1946 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
1947 		if (sd) {
1948 			sd->target = sdev_id(sdev);
1949 			sd->lun = sdev->lun;
1950 		}
1951 	} else
1952 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1953 					sdev_id(sdev), sdev->lun);
1954 
1955 	if (sd && sd->expose_device) {
1956 		atomic_set(&sd->ioaccel_cmds_out, 0);
1957 		sdev->hostdata = sd;
1958 	} else
1959 		sdev->hostdata = NULL;
1960 	spin_unlock_irqrestore(&h->devlock, flags);
1961 	return 0;
1962 }
1963 
1964 /* configure scsi device based on internal per-device structure */
1965 static int hpsa_slave_configure(struct scsi_device *sdev)
1966 {
1967 	struct hpsa_scsi_dev_t *sd;
1968 	int queue_depth;
1969 
1970 	sd = sdev->hostdata;
1971 	sdev->no_uld_attach = !sd || !sd->expose_device;
1972 
1973 	if (sd)
1974 		queue_depth = sd->queue_depth != 0 ?
1975 			sd->queue_depth : sdev->host->can_queue;
1976 	else
1977 		queue_depth = sdev->host->can_queue;
1978 
1979 	scsi_change_queue_depth(sdev, queue_depth);
1980 
1981 	return 0;
1982 }
1983 
1984 static void hpsa_slave_destroy(struct scsi_device *sdev)
1985 {
1986 	/* nothing to do. */
1987 }
1988 
1989 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1990 {
1991 	int i;
1992 
1993 	if (!h->ioaccel2_cmd_sg_list)
1994 		return;
1995 	for (i = 0; i < h->nr_cmds; i++) {
1996 		kfree(h->ioaccel2_cmd_sg_list[i]);
1997 		h->ioaccel2_cmd_sg_list[i] = NULL;
1998 	}
1999 	kfree(h->ioaccel2_cmd_sg_list);
2000 	h->ioaccel2_cmd_sg_list = NULL;
2001 }
2002 
2003 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2004 {
2005 	int i;
2006 
2007 	if (h->chainsize <= 0)
2008 		return 0;
2009 
2010 	h->ioaccel2_cmd_sg_list =
2011 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2012 					GFP_KERNEL);
2013 	if (!h->ioaccel2_cmd_sg_list)
2014 		return -ENOMEM;
2015 	for (i = 0; i < h->nr_cmds; i++) {
2016 		h->ioaccel2_cmd_sg_list[i] =
2017 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2018 					h->maxsgentries, GFP_KERNEL);
2019 		if (!h->ioaccel2_cmd_sg_list[i])
2020 			goto clean;
2021 	}
2022 	return 0;
2023 
2024 clean:
2025 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2026 	return -ENOMEM;
2027 }
2028 
2029 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2030 {
2031 	int i;
2032 
2033 	if (!h->cmd_sg_list)
2034 		return;
2035 	for (i = 0; i < h->nr_cmds; i++) {
2036 		kfree(h->cmd_sg_list[i]);
2037 		h->cmd_sg_list[i] = NULL;
2038 	}
2039 	kfree(h->cmd_sg_list);
2040 	h->cmd_sg_list = NULL;
2041 }
2042 
2043 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2044 {
2045 	int i;
2046 
2047 	if (h->chainsize <= 0)
2048 		return 0;
2049 
2050 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2051 				GFP_KERNEL);
2052 	if (!h->cmd_sg_list) {
2053 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2054 		return -ENOMEM;
2055 	}
2056 	for (i = 0; i < h->nr_cmds; i++) {
2057 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2058 						h->chainsize, GFP_KERNEL);
2059 		if (!h->cmd_sg_list[i]) {
2060 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2061 			goto clean;
2062 		}
2063 	}
2064 	return 0;
2065 
2066 clean:
2067 	hpsa_free_sg_chain_blocks(h);
2068 	return -ENOMEM;
2069 }
2070 
2071 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2072 	struct io_accel2_cmd *cp, struct CommandList *c)
2073 {
2074 	struct ioaccel2_sg_element *chain_block;
2075 	u64 temp64;
2076 	u32 chain_size;
2077 
2078 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2079 	chain_size = le32_to_cpu(cp->sg[0].length);
2080 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2081 				PCI_DMA_TODEVICE);
2082 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2083 		/* prevent subsequent unmapping */
2084 		cp->sg->address = 0;
2085 		return -1;
2086 	}
2087 	cp->sg->address = cpu_to_le64(temp64);
2088 	return 0;
2089 }
2090 
2091 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2092 	struct io_accel2_cmd *cp)
2093 {
2094 	struct ioaccel2_sg_element *chain_sg;
2095 	u64 temp64;
2096 	u32 chain_size;
2097 
2098 	chain_sg = cp->sg;
2099 	temp64 = le64_to_cpu(chain_sg->address);
2100 	chain_size = le32_to_cpu(cp->sg[0].length);
2101 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2102 }
2103 
2104 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2105 	struct CommandList *c)
2106 {
2107 	struct SGDescriptor *chain_sg, *chain_block;
2108 	u64 temp64;
2109 	u32 chain_len;
2110 
2111 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2112 	chain_block = h->cmd_sg_list[c->cmdindex];
2113 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2114 	chain_len = sizeof(*chain_sg) *
2115 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2116 	chain_sg->Len = cpu_to_le32(chain_len);
2117 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2118 				PCI_DMA_TODEVICE);
2119 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2120 		/* prevent subsequent unmapping */
2121 		chain_sg->Addr = cpu_to_le64(0);
2122 		return -1;
2123 	}
2124 	chain_sg->Addr = cpu_to_le64(temp64);
2125 	return 0;
2126 }
2127 
2128 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2129 	struct CommandList *c)
2130 {
2131 	struct SGDescriptor *chain_sg;
2132 
2133 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2134 		return;
2135 
2136 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2137 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2138 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2139 }
2140 
2141 
2142 /* Decode the various types of errors on ioaccel2 path.
2143  * Return 1 for any error that should generate a RAID path retry.
2144  * Return 0 for errors that don't require a RAID path retry.
2145  */
2146 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2147 					struct CommandList *c,
2148 					struct scsi_cmnd *cmd,
2149 					struct io_accel2_cmd *c2)
2150 {
2151 	int data_len;
2152 	int retry = 0;
2153 	u32 ioaccel2_resid = 0;
2154 
2155 	switch (c2->error_data.serv_response) {
2156 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2157 		switch (c2->error_data.status) {
2158 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2159 			break;
2160 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2161 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2162 			if (c2->error_data.data_present !=
2163 					IOACCEL2_SENSE_DATA_PRESENT) {
2164 				memset(cmd->sense_buffer, 0,
2165 					SCSI_SENSE_BUFFERSIZE);
2166 				break;
2167 			}
2168 			/* copy the sense data */
2169 			data_len = c2->error_data.sense_data_len;
2170 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2171 				data_len = SCSI_SENSE_BUFFERSIZE;
2172 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2173 				data_len =
2174 					sizeof(c2->error_data.sense_data_buff);
2175 			memcpy(cmd->sense_buffer,
2176 				c2->error_data.sense_data_buff, data_len);
2177 			retry = 1;
2178 			break;
2179 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2180 			retry = 1;
2181 			break;
2182 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2183 			retry = 1;
2184 			break;
2185 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2186 			retry = 1;
2187 			break;
2188 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2189 			retry = 1;
2190 			break;
2191 		default:
2192 			retry = 1;
2193 			break;
2194 		}
2195 		break;
2196 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2197 		switch (c2->error_data.status) {
2198 		case IOACCEL2_STATUS_SR_IO_ERROR:
2199 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2200 		case IOACCEL2_STATUS_SR_OVERRUN:
2201 			retry = 1;
2202 			break;
2203 		case IOACCEL2_STATUS_SR_UNDERRUN:
2204 			cmd->result = (DID_OK << 16);		/* host byte */
2205 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2206 			ioaccel2_resid = get_unaligned_le32(
2207 						&c2->error_data.resid_cnt[0]);
2208 			scsi_set_resid(cmd, ioaccel2_resid);
2209 			break;
2210 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2211 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2212 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2213 			/* We will get an event from ctlr to trigger rescan */
2214 			retry = 1;
2215 			break;
2216 		default:
2217 			retry = 1;
2218 		}
2219 		break;
2220 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2221 		break;
2222 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2223 		break;
2224 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2225 		retry = 1;
2226 		break;
2227 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2228 		break;
2229 	default:
2230 		retry = 1;
2231 		break;
2232 	}
2233 
2234 	return retry;	/* retry on raid path? */
2235 }
2236 
2237 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2238 		struct CommandList *c)
2239 {
2240 	bool do_wake = false;
2241 
2242 	/*
2243 	 * Prevent the following race in the abort handler:
2244 	 *
2245 	 * 1. LLD is requested to abort a SCSI command
2246 	 * 2. The SCSI command completes
2247 	 * 3. The struct CommandList associated with step 2 is made available
2248 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2249 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2250 	 *    finds struct CommandList and tries to aborts it
2251 	 * Now we have aborted the wrong command.
2252 	 *
2253 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2254 	 * this command has completed.  Then, check to see if the handler is
2255 	 * waiting for this command, and, if so, wake it.
2256 	 */
2257 	c->scsi_cmd = SCSI_CMD_IDLE;
2258 	mb();	/* Declare command idle before checking for pending events. */
2259 	if (c->abort_pending) {
2260 		do_wake = true;
2261 		c->abort_pending = false;
2262 	}
2263 	if (c->reset_pending) {
2264 		unsigned long flags;
2265 		struct hpsa_scsi_dev_t *dev;
2266 
2267 		/*
2268 		 * There appears to be a reset pending; lock the lock and
2269 		 * reconfirm.  If so, then decrement the count of outstanding
2270 		 * commands and wake the reset command if this is the last one.
2271 		 */
2272 		spin_lock_irqsave(&h->lock, flags);
2273 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2274 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2275 			do_wake = true;
2276 		c->reset_pending = NULL;
2277 		spin_unlock_irqrestore(&h->lock, flags);
2278 	}
2279 
2280 	if (do_wake)
2281 		wake_up_all(&h->event_sync_wait_queue);
2282 }
2283 
2284 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2285 				      struct CommandList *c)
2286 {
2287 	hpsa_cmd_resolve_events(h, c);
2288 	cmd_tagged_free(h, c);
2289 }
2290 
2291 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2292 		struct CommandList *c, struct scsi_cmnd *cmd)
2293 {
2294 	hpsa_cmd_resolve_and_free(h, c);
2295 	cmd->scsi_done(cmd);
2296 }
2297 
2298 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2299 {
2300 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2301 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2302 }
2303 
2304 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2305 {
2306 	cmd->result = DID_ABORT << 16;
2307 }
2308 
2309 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2310 				    struct scsi_cmnd *cmd)
2311 {
2312 	hpsa_set_scsi_cmd_aborted(cmd);
2313 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2314 			 c->Request.CDB, c->err_info->ScsiStatus);
2315 	hpsa_cmd_resolve_and_free(h, c);
2316 }
2317 
2318 static void process_ioaccel2_completion(struct ctlr_info *h,
2319 		struct CommandList *c, struct scsi_cmnd *cmd,
2320 		struct hpsa_scsi_dev_t *dev)
2321 {
2322 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2323 
2324 	/* check for good status */
2325 	if (likely(c2->error_data.serv_response == 0 &&
2326 			c2->error_data.status == 0))
2327 		return hpsa_cmd_free_and_done(h, c, cmd);
2328 
2329 	/*
2330 	 * Any RAID offload error results in retry which will use
2331 	 * the normal I/O path so the controller can handle whatever's
2332 	 * wrong.
2333 	 */
2334 	if (is_logical_device(dev) &&
2335 		c2->error_data.serv_response ==
2336 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2337 		if (c2->error_data.status ==
2338 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2339 			dev->offload_enabled = 0;
2340 
2341 		return hpsa_retry_cmd(h, c);
2342 	}
2343 
2344 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2345 		return hpsa_retry_cmd(h, c);
2346 
2347 	return hpsa_cmd_free_and_done(h, c, cmd);
2348 }
2349 
2350 /* Returns 0 on success, < 0 otherwise. */
2351 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2352 					struct CommandList *cp)
2353 {
2354 	u8 tmf_status = cp->err_info->ScsiStatus;
2355 
2356 	switch (tmf_status) {
2357 	case CISS_TMF_COMPLETE:
2358 		/*
2359 		 * CISS_TMF_COMPLETE never happens, instead,
2360 		 * ei->CommandStatus == 0 for this case.
2361 		 */
2362 	case CISS_TMF_SUCCESS:
2363 		return 0;
2364 	case CISS_TMF_INVALID_FRAME:
2365 	case CISS_TMF_NOT_SUPPORTED:
2366 	case CISS_TMF_FAILED:
2367 	case CISS_TMF_WRONG_LUN:
2368 	case CISS_TMF_OVERLAPPED_TAG:
2369 		break;
2370 	default:
2371 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2372 				tmf_status);
2373 		break;
2374 	}
2375 	return -tmf_status;
2376 }
2377 
2378 static void complete_scsi_command(struct CommandList *cp)
2379 {
2380 	struct scsi_cmnd *cmd;
2381 	struct ctlr_info *h;
2382 	struct ErrorInfo *ei;
2383 	struct hpsa_scsi_dev_t *dev;
2384 	struct io_accel2_cmd *c2;
2385 
2386 	u8 sense_key;
2387 	u8 asc;      /* additional sense code */
2388 	u8 ascq;     /* additional sense code qualifier */
2389 	unsigned long sense_data_size;
2390 
2391 	ei = cp->err_info;
2392 	cmd = cp->scsi_cmd;
2393 	h = cp->h;
2394 	dev = cmd->device->hostdata;
2395 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2396 
2397 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2398 	if ((cp->cmd_type == CMD_SCSI) &&
2399 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2400 		hpsa_unmap_sg_chain_block(h, cp);
2401 
2402 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2403 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2404 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2405 
2406 	cmd->result = (DID_OK << 16); 		/* host byte */
2407 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2408 
2409 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2410 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2411 
2412 	/*
2413 	 * We check for lockup status here as it may be set for
2414 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2415 	 * fail_all_oustanding_cmds()
2416 	 */
2417 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2418 		/* DID_NO_CONNECT will prevent a retry */
2419 		cmd->result = DID_NO_CONNECT << 16;
2420 		return hpsa_cmd_free_and_done(h, cp, cmd);
2421 	}
2422 
2423 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2424 		if (cp->reset_pending)
2425 			return hpsa_cmd_resolve_and_free(h, cp);
2426 		if (cp->abort_pending)
2427 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2428 	}
2429 
2430 	if (cp->cmd_type == CMD_IOACCEL2)
2431 		return process_ioaccel2_completion(h, cp, cmd, dev);
2432 
2433 	scsi_set_resid(cmd, ei->ResidualCnt);
2434 	if (ei->CommandStatus == 0)
2435 		return hpsa_cmd_free_and_done(h, cp, cmd);
2436 
2437 	/* For I/O accelerator commands, copy over some fields to the normal
2438 	 * CISS header used below for error handling.
2439 	 */
2440 	if (cp->cmd_type == CMD_IOACCEL1) {
2441 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2442 		cp->Header.SGList = scsi_sg_count(cmd);
2443 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2444 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2445 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2446 		cp->Header.tag = c->tag;
2447 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2448 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2449 
2450 		/* Any RAID offload error results in retry which will use
2451 		 * the normal I/O path so the controller can handle whatever's
2452 		 * wrong.
2453 		 */
2454 		if (is_logical_device(dev)) {
2455 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2456 				dev->offload_enabled = 0;
2457 			return hpsa_retry_cmd(h, cp);
2458 		}
2459 	}
2460 
2461 	/* an error has occurred */
2462 	switch (ei->CommandStatus) {
2463 
2464 	case CMD_TARGET_STATUS:
2465 		cmd->result |= ei->ScsiStatus;
2466 		/* copy the sense data */
2467 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2468 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2469 		else
2470 			sense_data_size = sizeof(ei->SenseInfo);
2471 		if (ei->SenseLen < sense_data_size)
2472 			sense_data_size = ei->SenseLen;
2473 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2474 		if (ei->ScsiStatus)
2475 			decode_sense_data(ei->SenseInfo, sense_data_size,
2476 				&sense_key, &asc, &ascq);
2477 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2478 			if (sense_key == ABORTED_COMMAND) {
2479 				cmd->result |= DID_SOFT_ERROR << 16;
2480 				break;
2481 			}
2482 			break;
2483 		}
2484 		/* Problem was not a check condition
2485 		 * Pass it up to the upper layers...
2486 		 */
2487 		if (ei->ScsiStatus) {
2488 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2489 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2490 				"Returning result: 0x%x\n",
2491 				cp, ei->ScsiStatus,
2492 				sense_key, asc, ascq,
2493 				cmd->result);
2494 		} else {  /* scsi status is zero??? How??? */
2495 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2496 				"Returning no connection.\n", cp),
2497 
2498 			/* Ordinarily, this case should never happen,
2499 			 * but there is a bug in some released firmware
2500 			 * revisions that allows it to happen if, for
2501 			 * example, a 4100 backplane loses power and
2502 			 * the tape drive is in it.  We assume that
2503 			 * it's a fatal error of some kind because we
2504 			 * can't show that it wasn't. We will make it
2505 			 * look like selection timeout since that is
2506 			 * the most common reason for this to occur,
2507 			 * and it's severe enough.
2508 			 */
2509 
2510 			cmd->result = DID_NO_CONNECT << 16;
2511 		}
2512 		break;
2513 
2514 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2515 		break;
2516 	case CMD_DATA_OVERRUN:
2517 		dev_warn(&h->pdev->dev,
2518 			"CDB %16phN data overrun\n", cp->Request.CDB);
2519 		break;
2520 	case CMD_INVALID: {
2521 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2522 		print_cmd(cp); */
2523 		/* We get CMD_INVALID if you address a non-existent device
2524 		 * instead of a selection timeout (no response).  You will
2525 		 * see this if you yank out a drive, then try to access it.
2526 		 * This is kind of a shame because it means that any other
2527 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2528 		 * missing target. */
2529 		cmd->result = DID_NO_CONNECT << 16;
2530 	}
2531 		break;
2532 	case CMD_PROTOCOL_ERR:
2533 		cmd->result = DID_ERROR << 16;
2534 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2535 				cp->Request.CDB);
2536 		break;
2537 	case CMD_HARDWARE_ERR:
2538 		cmd->result = DID_ERROR << 16;
2539 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2540 			cp->Request.CDB);
2541 		break;
2542 	case CMD_CONNECTION_LOST:
2543 		cmd->result = DID_ERROR << 16;
2544 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2545 			cp->Request.CDB);
2546 		break;
2547 	case CMD_ABORTED:
2548 		/* Return now to avoid calling scsi_done(). */
2549 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2550 	case CMD_ABORT_FAILED:
2551 		cmd->result = DID_ERROR << 16;
2552 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2553 			cp->Request.CDB);
2554 		break;
2555 	case CMD_UNSOLICITED_ABORT:
2556 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2557 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2558 			cp->Request.CDB);
2559 		break;
2560 	case CMD_TIMEOUT:
2561 		cmd->result = DID_TIME_OUT << 16;
2562 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2563 			cp->Request.CDB);
2564 		break;
2565 	case CMD_UNABORTABLE:
2566 		cmd->result = DID_ERROR << 16;
2567 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2568 		break;
2569 	case CMD_TMF_STATUS:
2570 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2571 			cmd->result = DID_ERROR << 16;
2572 		break;
2573 	case CMD_IOACCEL_DISABLED:
2574 		/* This only handles the direct pass-through case since RAID
2575 		 * offload is handled above.  Just attempt a retry.
2576 		 */
2577 		cmd->result = DID_SOFT_ERROR << 16;
2578 		dev_warn(&h->pdev->dev,
2579 				"cp %p had HP SSD Smart Path error\n", cp);
2580 		break;
2581 	default:
2582 		cmd->result = DID_ERROR << 16;
2583 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2584 				cp, ei->CommandStatus);
2585 	}
2586 
2587 	return hpsa_cmd_free_and_done(h, cp, cmd);
2588 }
2589 
2590 static void hpsa_pci_unmap(struct pci_dev *pdev,
2591 	struct CommandList *c, int sg_used, int data_direction)
2592 {
2593 	int i;
2594 
2595 	for (i = 0; i < sg_used; i++)
2596 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2597 				le32_to_cpu(c->SG[i].Len),
2598 				data_direction);
2599 }
2600 
2601 static int hpsa_map_one(struct pci_dev *pdev,
2602 		struct CommandList *cp,
2603 		unsigned char *buf,
2604 		size_t buflen,
2605 		int data_direction)
2606 {
2607 	u64 addr64;
2608 
2609 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2610 		cp->Header.SGList = 0;
2611 		cp->Header.SGTotal = cpu_to_le16(0);
2612 		return 0;
2613 	}
2614 
2615 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2616 	if (dma_mapping_error(&pdev->dev, addr64)) {
2617 		/* Prevent subsequent unmap of something never mapped */
2618 		cp->Header.SGList = 0;
2619 		cp->Header.SGTotal = cpu_to_le16(0);
2620 		return -1;
2621 	}
2622 	cp->SG[0].Addr = cpu_to_le64(addr64);
2623 	cp->SG[0].Len = cpu_to_le32(buflen);
2624 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2625 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2626 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2627 	return 0;
2628 }
2629 
2630 #define NO_TIMEOUT ((unsigned long) -1)
2631 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2632 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2633 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2634 {
2635 	DECLARE_COMPLETION_ONSTACK(wait);
2636 
2637 	c->waiting = &wait;
2638 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2639 	if (timeout_msecs == NO_TIMEOUT) {
2640 		/* TODO: get rid of this no-timeout thing */
2641 		wait_for_completion_io(&wait);
2642 		return IO_OK;
2643 	}
2644 	if (!wait_for_completion_io_timeout(&wait,
2645 					msecs_to_jiffies(timeout_msecs))) {
2646 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2647 		return -ETIMEDOUT;
2648 	}
2649 	return IO_OK;
2650 }
2651 
2652 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2653 				   int reply_queue, unsigned long timeout_msecs)
2654 {
2655 	if (unlikely(lockup_detected(h))) {
2656 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2657 		return IO_OK;
2658 	}
2659 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2660 }
2661 
2662 static u32 lockup_detected(struct ctlr_info *h)
2663 {
2664 	int cpu;
2665 	u32 rc, *lockup_detected;
2666 
2667 	cpu = get_cpu();
2668 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2669 	rc = *lockup_detected;
2670 	put_cpu();
2671 	return rc;
2672 }
2673 
2674 #define MAX_DRIVER_CMD_RETRIES 25
2675 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2676 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2677 {
2678 	int backoff_time = 10, retry_count = 0;
2679 	int rc;
2680 
2681 	do {
2682 		memset(c->err_info, 0, sizeof(*c->err_info));
2683 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2684 						  timeout_msecs);
2685 		if (rc)
2686 			break;
2687 		retry_count++;
2688 		if (retry_count > 3) {
2689 			msleep(backoff_time);
2690 			if (backoff_time < 1000)
2691 				backoff_time *= 2;
2692 		}
2693 	} while ((check_for_unit_attention(h, c) ||
2694 			check_for_busy(h, c)) &&
2695 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2696 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2697 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2698 		rc = -EIO;
2699 	return rc;
2700 }
2701 
2702 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2703 				struct CommandList *c)
2704 {
2705 	const u8 *cdb = c->Request.CDB;
2706 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2707 
2708 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2709 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2710 		txt, lun[0], lun[1], lun[2], lun[3],
2711 		lun[4], lun[5], lun[6], lun[7],
2712 		cdb[0], cdb[1], cdb[2], cdb[3],
2713 		cdb[4], cdb[5], cdb[6], cdb[7],
2714 		cdb[8], cdb[9], cdb[10], cdb[11],
2715 		cdb[12], cdb[13], cdb[14], cdb[15]);
2716 }
2717 
2718 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2719 			struct CommandList *cp)
2720 {
2721 	const struct ErrorInfo *ei = cp->err_info;
2722 	struct device *d = &cp->h->pdev->dev;
2723 	u8 sense_key, asc, ascq;
2724 	int sense_len;
2725 
2726 	switch (ei->CommandStatus) {
2727 	case CMD_TARGET_STATUS:
2728 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2729 			sense_len = sizeof(ei->SenseInfo);
2730 		else
2731 			sense_len = ei->SenseLen;
2732 		decode_sense_data(ei->SenseInfo, sense_len,
2733 					&sense_key, &asc, &ascq);
2734 		hpsa_print_cmd(h, "SCSI status", cp);
2735 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2736 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2737 				sense_key, asc, ascq);
2738 		else
2739 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2740 		if (ei->ScsiStatus == 0)
2741 			dev_warn(d, "SCSI status is abnormally zero.  "
2742 			"(probably indicates selection timeout "
2743 			"reported incorrectly due to a known "
2744 			"firmware bug, circa July, 2001.)\n");
2745 		break;
2746 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2747 		break;
2748 	case CMD_DATA_OVERRUN:
2749 		hpsa_print_cmd(h, "overrun condition", cp);
2750 		break;
2751 	case CMD_INVALID: {
2752 		/* controller unfortunately reports SCSI passthru's
2753 		 * to non-existent targets as invalid commands.
2754 		 */
2755 		hpsa_print_cmd(h, "invalid command", cp);
2756 		dev_warn(d, "probably means device no longer present\n");
2757 		}
2758 		break;
2759 	case CMD_PROTOCOL_ERR:
2760 		hpsa_print_cmd(h, "protocol error", cp);
2761 		break;
2762 	case CMD_HARDWARE_ERR:
2763 		hpsa_print_cmd(h, "hardware error", cp);
2764 		break;
2765 	case CMD_CONNECTION_LOST:
2766 		hpsa_print_cmd(h, "connection lost", cp);
2767 		break;
2768 	case CMD_ABORTED:
2769 		hpsa_print_cmd(h, "aborted", cp);
2770 		break;
2771 	case CMD_ABORT_FAILED:
2772 		hpsa_print_cmd(h, "abort failed", cp);
2773 		break;
2774 	case CMD_UNSOLICITED_ABORT:
2775 		hpsa_print_cmd(h, "unsolicited abort", cp);
2776 		break;
2777 	case CMD_TIMEOUT:
2778 		hpsa_print_cmd(h, "timed out", cp);
2779 		break;
2780 	case CMD_UNABORTABLE:
2781 		hpsa_print_cmd(h, "unabortable", cp);
2782 		break;
2783 	case CMD_CTLR_LOCKUP:
2784 		hpsa_print_cmd(h, "controller lockup detected", cp);
2785 		break;
2786 	default:
2787 		hpsa_print_cmd(h, "unknown status", cp);
2788 		dev_warn(d, "Unknown command status %x\n",
2789 				ei->CommandStatus);
2790 	}
2791 }
2792 
2793 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2794 			u16 page, unsigned char *buf,
2795 			unsigned char bufsize)
2796 {
2797 	int rc = IO_OK;
2798 	struct CommandList *c;
2799 	struct ErrorInfo *ei;
2800 
2801 	c = cmd_alloc(h);
2802 
2803 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2804 			page, scsi3addr, TYPE_CMD)) {
2805 		rc = -1;
2806 		goto out;
2807 	}
2808 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2809 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2810 	if (rc)
2811 		goto out;
2812 	ei = c->err_info;
2813 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2814 		hpsa_scsi_interpret_error(h, c);
2815 		rc = -1;
2816 	}
2817 out:
2818 	cmd_free(h, c);
2819 	return rc;
2820 }
2821 
2822 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2823 	u8 reset_type, int reply_queue)
2824 {
2825 	int rc = IO_OK;
2826 	struct CommandList *c;
2827 	struct ErrorInfo *ei;
2828 
2829 	c = cmd_alloc(h);
2830 
2831 
2832 	/* fill_cmd can't fail here, no data buffer to map. */
2833 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2834 			scsi3addr, TYPE_MSG);
2835 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2836 	if (rc) {
2837 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2838 		goto out;
2839 	}
2840 	/* no unmap needed here because no data xfer. */
2841 
2842 	ei = c->err_info;
2843 	if (ei->CommandStatus != 0) {
2844 		hpsa_scsi_interpret_error(h, c);
2845 		rc = -1;
2846 	}
2847 out:
2848 	cmd_free(h, c);
2849 	return rc;
2850 }
2851 
2852 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2853 			       struct hpsa_scsi_dev_t *dev,
2854 			       unsigned char *scsi3addr)
2855 {
2856 	int i;
2857 	bool match = false;
2858 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2859 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2860 
2861 	if (hpsa_is_cmd_idle(c))
2862 		return false;
2863 
2864 	switch (c->cmd_type) {
2865 	case CMD_SCSI:
2866 	case CMD_IOCTL_PEND:
2867 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2868 				sizeof(c->Header.LUN.LunAddrBytes));
2869 		break;
2870 
2871 	case CMD_IOACCEL1:
2872 	case CMD_IOACCEL2:
2873 		if (c->phys_disk == dev) {
2874 			/* HBA mode match */
2875 			match = true;
2876 		} else {
2877 			/* Possible RAID mode -- check each phys dev. */
2878 			/* FIXME:  Do we need to take out a lock here?  If
2879 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2880 			 * instead. */
2881 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2882 				/* FIXME: an alternate test might be
2883 				 *
2884 				 * match = dev->phys_disk[i]->ioaccel_handle
2885 				 *              == c2->scsi_nexus;      */
2886 				match = dev->phys_disk[i] == c->phys_disk;
2887 			}
2888 		}
2889 		break;
2890 
2891 	case IOACCEL2_TMF:
2892 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2893 			match = dev->phys_disk[i]->ioaccel_handle ==
2894 					le32_to_cpu(ac->it_nexus);
2895 		}
2896 		break;
2897 
2898 	case 0:		/* The command is in the middle of being initialized. */
2899 		match = false;
2900 		break;
2901 
2902 	default:
2903 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2904 			c->cmd_type);
2905 		BUG();
2906 	}
2907 
2908 	return match;
2909 }
2910 
2911 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2912 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2913 {
2914 	int i;
2915 	int rc = 0;
2916 
2917 	/* We can really only handle one reset at a time */
2918 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2919 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2920 		return -EINTR;
2921 	}
2922 
2923 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2924 
2925 	for (i = 0; i < h->nr_cmds; i++) {
2926 		struct CommandList *c = h->cmd_pool + i;
2927 		int refcount = atomic_inc_return(&c->refcount);
2928 
2929 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2930 			unsigned long flags;
2931 
2932 			/*
2933 			 * Mark the target command as having a reset pending,
2934 			 * then lock a lock so that the command cannot complete
2935 			 * while we're considering it.  If the command is not
2936 			 * idle then count it; otherwise revoke the event.
2937 			 */
2938 			c->reset_pending = dev;
2939 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2940 			if (!hpsa_is_cmd_idle(c))
2941 				atomic_inc(&dev->reset_cmds_out);
2942 			else
2943 				c->reset_pending = NULL;
2944 			spin_unlock_irqrestore(&h->lock, flags);
2945 		}
2946 
2947 		cmd_free(h, c);
2948 	}
2949 
2950 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2951 	if (!rc)
2952 		wait_event(h->event_sync_wait_queue,
2953 			atomic_read(&dev->reset_cmds_out) == 0 ||
2954 			lockup_detected(h));
2955 
2956 	if (unlikely(lockup_detected(h))) {
2957 		dev_warn(&h->pdev->dev,
2958 			 "Controller lockup detected during reset wait\n");
2959 		rc = -ENODEV;
2960 	}
2961 
2962 	if (unlikely(rc))
2963 		atomic_set(&dev->reset_cmds_out, 0);
2964 
2965 	mutex_unlock(&h->reset_mutex);
2966 	return rc;
2967 }
2968 
2969 static void hpsa_get_raid_level(struct ctlr_info *h,
2970 	unsigned char *scsi3addr, unsigned char *raid_level)
2971 {
2972 	int rc;
2973 	unsigned char *buf;
2974 
2975 	*raid_level = RAID_UNKNOWN;
2976 	buf = kzalloc(64, GFP_KERNEL);
2977 	if (!buf)
2978 		return;
2979 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2980 	if (rc == 0)
2981 		*raid_level = buf[8];
2982 	if (*raid_level > RAID_UNKNOWN)
2983 		*raid_level = RAID_UNKNOWN;
2984 	kfree(buf);
2985 	return;
2986 }
2987 
2988 #define HPSA_MAP_DEBUG
2989 #ifdef HPSA_MAP_DEBUG
2990 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2991 				struct raid_map_data *map_buff)
2992 {
2993 	struct raid_map_disk_data *dd = &map_buff->data[0];
2994 	int map, row, col;
2995 	u16 map_cnt, row_cnt, disks_per_row;
2996 
2997 	if (rc != 0)
2998 		return;
2999 
3000 	/* Show details only if debugging has been activated. */
3001 	if (h->raid_offload_debug < 2)
3002 		return;
3003 
3004 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3005 				le32_to_cpu(map_buff->structure_size));
3006 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3007 			le32_to_cpu(map_buff->volume_blk_size));
3008 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3009 			le64_to_cpu(map_buff->volume_blk_cnt));
3010 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3011 			map_buff->phys_blk_shift);
3012 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3013 			map_buff->parity_rotation_shift);
3014 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3015 			le16_to_cpu(map_buff->strip_size));
3016 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3017 			le64_to_cpu(map_buff->disk_starting_blk));
3018 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3019 			le64_to_cpu(map_buff->disk_blk_cnt));
3020 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3021 			le16_to_cpu(map_buff->data_disks_per_row));
3022 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3023 			le16_to_cpu(map_buff->metadata_disks_per_row));
3024 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3025 			le16_to_cpu(map_buff->row_cnt));
3026 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3027 			le16_to_cpu(map_buff->layout_map_count));
3028 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3029 			le16_to_cpu(map_buff->flags));
3030 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3031 			le16_to_cpu(map_buff->flags) &
3032 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3033 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3034 			le16_to_cpu(map_buff->dekindex));
3035 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3036 	for (map = 0; map < map_cnt; map++) {
3037 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3038 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3039 		for (row = 0; row < row_cnt; row++) {
3040 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3041 			disks_per_row =
3042 				le16_to_cpu(map_buff->data_disks_per_row);
3043 			for (col = 0; col < disks_per_row; col++, dd++)
3044 				dev_info(&h->pdev->dev,
3045 					"    D%02u: h=0x%04x xor=%u,%u\n",
3046 					col, dd->ioaccel_handle,
3047 					dd->xor_mult[0], dd->xor_mult[1]);
3048 			disks_per_row =
3049 				le16_to_cpu(map_buff->metadata_disks_per_row);
3050 			for (col = 0; col < disks_per_row; col++, dd++)
3051 				dev_info(&h->pdev->dev,
3052 					"    M%02u: h=0x%04x xor=%u,%u\n",
3053 					col, dd->ioaccel_handle,
3054 					dd->xor_mult[0], dd->xor_mult[1]);
3055 		}
3056 	}
3057 }
3058 #else
3059 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3060 			__attribute__((unused)) int rc,
3061 			__attribute__((unused)) struct raid_map_data *map_buff)
3062 {
3063 }
3064 #endif
3065 
3066 static int hpsa_get_raid_map(struct ctlr_info *h,
3067 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3068 {
3069 	int rc = 0;
3070 	struct CommandList *c;
3071 	struct ErrorInfo *ei;
3072 
3073 	c = cmd_alloc(h);
3074 
3075 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3076 			sizeof(this_device->raid_map), 0,
3077 			scsi3addr, TYPE_CMD)) {
3078 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3079 		cmd_free(h, c);
3080 		return -1;
3081 	}
3082 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3083 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3084 	if (rc)
3085 		goto out;
3086 	ei = c->err_info;
3087 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3088 		hpsa_scsi_interpret_error(h, c);
3089 		rc = -1;
3090 		goto out;
3091 	}
3092 	cmd_free(h, c);
3093 
3094 	/* @todo in the future, dynamically allocate RAID map memory */
3095 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3096 				sizeof(this_device->raid_map)) {
3097 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3098 		rc = -1;
3099 	}
3100 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3101 	return rc;
3102 out:
3103 	cmd_free(h, c);
3104 	return rc;
3105 }
3106 
3107 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3108 		unsigned char scsi3addr[], u16 bmic_device_index,
3109 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3110 {
3111 	int rc = IO_OK;
3112 	struct CommandList *c;
3113 	struct ErrorInfo *ei;
3114 
3115 	c = cmd_alloc(h);
3116 
3117 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3118 		0, RAID_CTLR_LUNID, TYPE_CMD);
3119 	if (rc)
3120 		goto out;
3121 
3122 	c->Request.CDB[2] = bmic_device_index & 0xff;
3123 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3124 
3125 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3126 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3127 	if (rc)
3128 		goto out;
3129 	ei = c->err_info;
3130 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3131 		hpsa_scsi_interpret_error(h, c);
3132 		rc = -1;
3133 	}
3134 out:
3135 	cmd_free(h, c);
3136 	return rc;
3137 }
3138 
3139 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3140 	struct bmic_identify_controller *buf, size_t bufsize)
3141 {
3142 	int rc = IO_OK;
3143 	struct CommandList *c;
3144 	struct ErrorInfo *ei;
3145 
3146 	c = cmd_alloc(h);
3147 
3148 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3149 		0, RAID_CTLR_LUNID, TYPE_CMD);
3150 	if (rc)
3151 		goto out;
3152 
3153 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3154 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3155 	if (rc)
3156 		goto out;
3157 	ei = c->err_info;
3158 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3159 		hpsa_scsi_interpret_error(h, c);
3160 		rc = -1;
3161 	}
3162 out:
3163 	cmd_free(h, c);
3164 	return rc;
3165 }
3166 
3167 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3168 		unsigned char scsi3addr[], u16 bmic_device_index,
3169 		struct bmic_identify_physical_device *buf, size_t bufsize)
3170 {
3171 	int rc = IO_OK;
3172 	struct CommandList *c;
3173 	struct ErrorInfo *ei;
3174 
3175 	c = cmd_alloc(h);
3176 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3177 		0, RAID_CTLR_LUNID, TYPE_CMD);
3178 	if (rc)
3179 		goto out;
3180 
3181 	c->Request.CDB[2] = bmic_device_index & 0xff;
3182 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3183 
3184 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3185 						NO_TIMEOUT);
3186 	ei = c->err_info;
3187 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188 		hpsa_scsi_interpret_error(h, c);
3189 		rc = -1;
3190 	}
3191 out:
3192 	cmd_free(h, c);
3193 
3194 	return rc;
3195 }
3196 
3197 /*
3198  * get enclosure information
3199  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3200  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3201  * Uses id_physical_device to determine the box_index.
3202  */
3203 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3204 			unsigned char *scsi3addr,
3205 			struct ReportExtendedLUNdata *rlep, int rle_index,
3206 			struct hpsa_scsi_dev_t *encl_dev)
3207 {
3208 	int rc = -1;
3209 	struct CommandList *c = NULL;
3210 	struct ErrorInfo *ei = NULL;
3211 	struct bmic_sense_storage_box_params *bssbp = NULL;
3212 	struct bmic_identify_physical_device *id_phys = NULL;
3213 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3214 	u16 bmic_device_index = 0;
3215 
3216 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3217 
3218 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3219 		rc = IO_OK;
3220 		goto out;
3221 	}
3222 
3223 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3224 	if (!bssbp)
3225 		goto out;
3226 
3227 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3228 	if (!id_phys)
3229 		goto out;
3230 
3231 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3232 						id_phys, sizeof(*id_phys));
3233 	if (rc) {
3234 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3235 			__func__, encl_dev->external, bmic_device_index);
3236 		goto out;
3237 	}
3238 
3239 	c = cmd_alloc(h);
3240 
3241 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3242 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3243 
3244 	if (rc)
3245 		goto out;
3246 
3247 	if (id_phys->phys_connector[1] == 'E')
3248 		c->Request.CDB[5] = id_phys->box_index;
3249 	else
3250 		c->Request.CDB[5] = 0;
3251 
3252 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3253 						NO_TIMEOUT);
3254 	if (rc)
3255 		goto out;
3256 
3257 	ei = c->err_info;
3258 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259 		rc = -1;
3260 		goto out;
3261 	}
3262 
3263 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3264 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3265 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3266 
3267 	rc = IO_OK;
3268 out:
3269 	kfree(bssbp);
3270 	kfree(id_phys);
3271 
3272 	if (c)
3273 		cmd_free(h, c);
3274 
3275 	if (rc != IO_OK)
3276 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3277 			"Error, could not get enclosure information\n");
3278 }
3279 
3280 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3281 						unsigned char *scsi3addr)
3282 {
3283 	struct ReportExtendedLUNdata *physdev;
3284 	u32 nphysicals;
3285 	u64 sa = 0;
3286 	int i;
3287 
3288 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3289 	if (!physdev)
3290 		return 0;
3291 
3292 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3293 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3294 		kfree(physdev);
3295 		return 0;
3296 	}
3297 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3298 
3299 	for (i = 0; i < nphysicals; i++)
3300 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3301 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3302 			break;
3303 		}
3304 
3305 	kfree(physdev);
3306 
3307 	return sa;
3308 }
3309 
3310 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3311 					struct hpsa_scsi_dev_t *dev)
3312 {
3313 	int rc;
3314 	u64 sa = 0;
3315 
3316 	if (is_hba_lunid(scsi3addr)) {
3317 		struct bmic_sense_subsystem_info *ssi;
3318 
3319 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3320 		if (ssi == NULL) {
3321 			dev_warn(&h->pdev->dev,
3322 				"%s: out of memory\n", __func__);
3323 			return;
3324 		}
3325 
3326 		rc = hpsa_bmic_sense_subsystem_information(h,
3327 					scsi3addr, 0, ssi, sizeof(*ssi));
3328 		if (rc == 0) {
3329 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3330 			h->sas_address = sa;
3331 		}
3332 
3333 		kfree(ssi);
3334 	} else
3335 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3336 
3337 	dev->sas_address = sa;
3338 }
3339 
3340 /* Get a device id from inquiry page 0x83 */
3341 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3342 	unsigned char scsi3addr[], u8 page)
3343 {
3344 	int rc;
3345 	int i;
3346 	int pages;
3347 	unsigned char *buf, bufsize;
3348 
3349 	buf = kzalloc(256, GFP_KERNEL);
3350 	if (!buf)
3351 		return 0;
3352 
3353 	/* Get the size of the page list first */
3354 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3355 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3356 				buf, HPSA_VPD_HEADER_SZ);
3357 	if (rc != 0)
3358 		goto exit_unsupported;
3359 	pages = buf[3];
3360 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3361 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3362 	else
3363 		bufsize = 255;
3364 
3365 	/* Get the whole VPD page list */
3366 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3367 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3368 				buf, bufsize);
3369 	if (rc != 0)
3370 		goto exit_unsupported;
3371 
3372 	pages = buf[3];
3373 	for (i = 1; i <= pages; i++)
3374 		if (buf[3 + i] == page)
3375 			goto exit_supported;
3376 exit_unsupported:
3377 	kfree(buf);
3378 	return 0;
3379 exit_supported:
3380 	kfree(buf);
3381 	return 1;
3382 }
3383 
3384 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3385 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3386 {
3387 	int rc;
3388 	unsigned char *buf;
3389 	u8 ioaccel_status;
3390 
3391 	this_device->offload_config = 0;
3392 	this_device->offload_enabled = 0;
3393 	this_device->offload_to_be_enabled = 0;
3394 
3395 	buf = kzalloc(64, GFP_KERNEL);
3396 	if (!buf)
3397 		return;
3398 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3399 		goto out;
3400 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3401 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3402 	if (rc != 0)
3403 		goto out;
3404 
3405 #define IOACCEL_STATUS_BYTE 4
3406 #define OFFLOAD_CONFIGURED_BIT 0x01
3407 #define OFFLOAD_ENABLED_BIT 0x02
3408 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3409 	this_device->offload_config =
3410 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3411 	if (this_device->offload_config) {
3412 		this_device->offload_enabled =
3413 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3414 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3415 			this_device->offload_enabled = 0;
3416 	}
3417 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3418 out:
3419 	kfree(buf);
3420 	return;
3421 }
3422 
3423 /* Get the device id from inquiry page 0x83 */
3424 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3425 	unsigned char *device_id, int index, int buflen)
3426 {
3427 	int rc;
3428 	unsigned char *buf;
3429 
3430 	if (buflen > 16)
3431 		buflen = 16;
3432 	buf = kzalloc(64, GFP_KERNEL);
3433 	if (!buf)
3434 		return -ENOMEM;
3435 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3436 	if (rc == 0)
3437 		memcpy(device_id, &buf[index], buflen);
3438 
3439 	kfree(buf);
3440 
3441 	return rc != 0;
3442 }
3443 
3444 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3445 		void *buf, int bufsize,
3446 		int extended_response)
3447 {
3448 	int rc = IO_OK;
3449 	struct CommandList *c;
3450 	unsigned char scsi3addr[8];
3451 	struct ErrorInfo *ei;
3452 
3453 	c = cmd_alloc(h);
3454 
3455 	/* address the controller */
3456 	memset(scsi3addr, 0, sizeof(scsi3addr));
3457 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3458 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3459 		rc = -1;
3460 		goto out;
3461 	}
3462 	if (extended_response)
3463 		c->Request.CDB[1] = extended_response;
3464 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3465 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3466 	if (rc)
3467 		goto out;
3468 	ei = c->err_info;
3469 	if (ei->CommandStatus != 0 &&
3470 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3471 		hpsa_scsi_interpret_error(h, c);
3472 		rc = -1;
3473 	} else {
3474 		struct ReportLUNdata *rld = buf;
3475 
3476 		if (rld->extended_response_flag != extended_response) {
3477 			dev_err(&h->pdev->dev,
3478 				"report luns requested format %u, got %u\n",
3479 				extended_response,
3480 				rld->extended_response_flag);
3481 			rc = -1;
3482 		}
3483 	}
3484 out:
3485 	cmd_free(h, c);
3486 	return rc;
3487 }
3488 
3489 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3490 		struct ReportExtendedLUNdata *buf, int bufsize)
3491 {
3492 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3493 						HPSA_REPORT_PHYS_EXTENDED);
3494 }
3495 
3496 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3497 		struct ReportLUNdata *buf, int bufsize)
3498 {
3499 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3500 }
3501 
3502 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3503 	int bus, int target, int lun)
3504 {
3505 	device->bus = bus;
3506 	device->target = target;
3507 	device->lun = lun;
3508 }
3509 
3510 /* Use VPD inquiry to get details of volume status */
3511 static int hpsa_get_volume_status(struct ctlr_info *h,
3512 					unsigned char scsi3addr[])
3513 {
3514 	int rc;
3515 	int status;
3516 	int size;
3517 	unsigned char *buf;
3518 
3519 	buf = kzalloc(64, GFP_KERNEL);
3520 	if (!buf)
3521 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3522 
3523 	/* Does controller have VPD for logical volume status? */
3524 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3525 		goto exit_failed;
3526 
3527 	/* Get the size of the VPD return buffer */
3528 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3529 					buf, HPSA_VPD_HEADER_SZ);
3530 	if (rc != 0)
3531 		goto exit_failed;
3532 	size = buf[3];
3533 
3534 	/* Now get the whole VPD buffer */
3535 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3536 					buf, size + HPSA_VPD_HEADER_SZ);
3537 	if (rc != 0)
3538 		goto exit_failed;
3539 	status = buf[4]; /* status byte */
3540 
3541 	kfree(buf);
3542 	return status;
3543 exit_failed:
3544 	kfree(buf);
3545 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3546 }
3547 
3548 /* Determine offline status of a volume.
3549  * Return either:
3550  *  0 (not offline)
3551  *  0xff (offline for unknown reasons)
3552  *  # (integer code indicating one of several NOT READY states
3553  *     describing why a volume is to be kept offline)
3554  */
3555 static int hpsa_volume_offline(struct ctlr_info *h,
3556 					unsigned char scsi3addr[])
3557 {
3558 	struct CommandList *c;
3559 	unsigned char *sense;
3560 	u8 sense_key, asc, ascq;
3561 	int sense_len;
3562 	int rc, ldstat = 0;
3563 	u16 cmd_status;
3564 	u8 scsi_status;
3565 #define ASC_LUN_NOT_READY 0x04
3566 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3567 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3568 
3569 	c = cmd_alloc(h);
3570 
3571 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3572 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3573 	if (rc) {
3574 		cmd_free(h, c);
3575 		return 0;
3576 	}
3577 	sense = c->err_info->SenseInfo;
3578 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3579 		sense_len = sizeof(c->err_info->SenseInfo);
3580 	else
3581 		sense_len = c->err_info->SenseLen;
3582 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3583 	cmd_status = c->err_info->CommandStatus;
3584 	scsi_status = c->err_info->ScsiStatus;
3585 	cmd_free(h, c);
3586 	/* Is the volume 'not ready'? */
3587 	if (cmd_status != CMD_TARGET_STATUS ||
3588 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3589 		sense_key != NOT_READY ||
3590 		asc != ASC_LUN_NOT_READY)  {
3591 		return 0;
3592 	}
3593 
3594 	/* Determine the reason for not ready state */
3595 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3596 
3597 	/* Keep volume offline in certain cases: */
3598 	switch (ldstat) {
3599 	case HPSA_LV_UNDERGOING_ERASE:
3600 	case HPSA_LV_NOT_AVAILABLE:
3601 	case HPSA_LV_UNDERGOING_RPI:
3602 	case HPSA_LV_PENDING_RPI:
3603 	case HPSA_LV_ENCRYPTED_NO_KEY:
3604 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3605 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3606 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3607 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3608 		return ldstat;
3609 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3610 		/* If VPD status page isn't available,
3611 		 * use ASC/ASCQ to determine state
3612 		 */
3613 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3614 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3615 			return ldstat;
3616 		break;
3617 	default:
3618 		break;
3619 	}
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Find out if a logical device supports aborts by simply trying one.
3625  * Smart Array may claim not to support aborts on logical drives, but
3626  * if a MSA2000 * is connected, the drives on that will be presented
3627  * by the Smart Array as logical drives, and aborts may be sent to
3628  * those devices successfully.  So the simplest way to find out is
3629  * to simply try an abort and see how the device responds.
3630  */
3631 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3632 					unsigned char *scsi3addr)
3633 {
3634 	struct CommandList *c;
3635 	struct ErrorInfo *ei;
3636 	int rc = 0;
3637 
3638 	u64 tag = (u64) -1; /* bogus tag */
3639 
3640 	/* Assume that physical devices support aborts */
3641 	if (!is_logical_dev_addr_mode(scsi3addr))
3642 		return 1;
3643 
3644 	c = cmd_alloc(h);
3645 
3646 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3647 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3648 	/* no unmap needed here because no data xfer. */
3649 	ei = c->err_info;
3650 	switch (ei->CommandStatus) {
3651 	case CMD_INVALID:
3652 		rc = 0;
3653 		break;
3654 	case CMD_UNABORTABLE:
3655 	case CMD_ABORT_FAILED:
3656 		rc = 1;
3657 		break;
3658 	case CMD_TMF_STATUS:
3659 		rc = hpsa_evaluate_tmf_status(h, c);
3660 		break;
3661 	default:
3662 		rc = 0;
3663 		break;
3664 	}
3665 	cmd_free(h, c);
3666 	return rc;
3667 }
3668 
3669 static int hpsa_update_device_info(struct ctlr_info *h,
3670 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3671 	unsigned char *is_OBDR_device)
3672 {
3673 
3674 #define OBDR_SIG_OFFSET 43
3675 #define OBDR_TAPE_SIG "$DR-10"
3676 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3677 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3678 
3679 	unsigned char *inq_buff;
3680 	unsigned char *obdr_sig;
3681 	int rc = 0;
3682 
3683 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3684 	if (!inq_buff) {
3685 		rc = -ENOMEM;
3686 		goto bail_out;
3687 	}
3688 
3689 	/* Do an inquiry to the device to see what it is. */
3690 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3691 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3692 		/* Inquiry failed (msg printed already) */
3693 		dev_err(&h->pdev->dev,
3694 			"hpsa_update_device_info: inquiry failed\n");
3695 		rc = -EIO;
3696 		goto bail_out;
3697 	}
3698 
3699 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3700 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3701 
3702 	this_device->devtype = (inq_buff[0] & 0x1f);
3703 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3704 	memcpy(this_device->vendor, &inq_buff[8],
3705 		sizeof(this_device->vendor));
3706 	memcpy(this_device->model, &inq_buff[16],
3707 		sizeof(this_device->model));
3708 	memset(this_device->device_id, 0,
3709 		sizeof(this_device->device_id));
3710 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3711 		sizeof(this_device->device_id));
3712 
3713 	if ((this_device->devtype == TYPE_DISK ||
3714 		this_device->devtype == TYPE_ZBC) &&
3715 		is_logical_dev_addr_mode(scsi3addr)) {
3716 		int volume_offline;
3717 
3718 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3719 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3720 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3721 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3722 		if (volume_offline < 0 || volume_offline > 0xff)
3723 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3724 		this_device->volume_offline = volume_offline & 0xff;
3725 	} else {
3726 		this_device->raid_level = RAID_UNKNOWN;
3727 		this_device->offload_config = 0;
3728 		this_device->offload_enabled = 0;
3729 		this_device->offload_to_be_enabled = 0;
3730 		this_device->hba_ioaccel_enabled = 0;
3731 		this_device->volume_offline = 0;
3732 		this_device->queue_depth = h->nr_cmds;
3733 	}
3734 
3735 	if (is_OBDR_device) {
3736 		/* See if this is a One-Button-Disaster-Recovery device
3737 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3738 		 */
3739 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3740 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3741 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3742 						OBDR_SIG_LEN) == 0);
3743 	}
3744 	kfree(inq_buff);
3745 	return 0;
3746 
3747 bail_out:
3748 	kfree(inq_buff);
3749 	return rc;
3750 }
3751 
3752 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3753 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3754 {
3755 	unsigned long flags;
3756 	int rc, entry;
3757 	/*
3758 	 * See if this device supports aborts.  If we already know
3759 	 * the device, we already know if it supports aborts, otherwise
3760 	 * we have to find out if it supports aborts by trying one.
3761 	 */
3762 	spin_lock_irqsave(&h->devlock, flags);
3763 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3764 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3765 		entry >= 0 && entry < h->ndevices) {
3766 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3767 		spin_unlock_irqrestore(&h->devlock, flags);
3768 	} else {
3769 		spin_unlock_irqrestore(&h->devlock, flags);
3770 		dev->supports_aborts =
3771 				hpsa_device_supports_aborts(h, scsi3addr);
3772 		if (dev->supports_aborts < 0)
3773 			dev->supports_aborts = 0;
3774 	}
3775 }
3776 
3777 /*
3778  * Helper function to assign bus, target, lun mapping of devices.
3779  * Logical drive target and lun are assigned at this time, but
3780  * physical device lun and target assignment are deferred (assigned
3781  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3782 */
3783 static void figure_bus_target_lun(struct ctlr_info *h,
3784 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3785 {
3786 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3787 
3788 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3789 		/* physical device, target and lun filled in later */
3790 		if (is_hba_lunid(lunaddrbytes))
3791 			hpsa_set_bus_target_lun(device,
3792 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3793 		else
3794 			/* defer target, lun assignment for physical devices */
3795 			hpsa_set_bus_target_lun(device,
3796 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3797 		return;
3798 	}
3799 	/* It's a logical device */
3800 	if (device->external) {
3801 		hpsa_set_bus_target_lun(device,
3802 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3803 			lunid & 0x00ff);
3804 		return;
3805 	}
3806 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3807 				0, lunid & 0x3fff);
3808 }
3809 
3810 
3811 /*
3812  * Get address of physical disk used for an ioaccel2 mode command:
3813  *	1. Extract ioaccel2 handle from the command.
3814  *	2. Find a matching ioaccel2 handle from list of physical disks.
3815  *	3. Return:
3816  *		1 and set scsi3addr to address of matching physical
3817  *		0 if no matching physical disk was found.
3818  */
3819 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3820 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3821 {
3822 	struct io_accel2_cmd *c2 =
3823 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3824 	unsigned long flags;
3825 	int i;
3826 
3827 	spin_lock_irqsave(&h->devlock, flags);
3828 	for (i = 0; i < h->ndevices; i++)
3829 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3830 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3831 				sizeof(h->dev[i]->scsi3addr));
3832 			spin_unlock_irqrestore(&h->devlock, flags);
3833 			return 1;
3834 		}
3835 	spin_unlock_irqrestore(&h->devlock, flags);
3836 	return 0;
3837 }
3838 
3839 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3840 	int i, int nphysicals, int nlocal_logicals)
3841 {
3842 	/* In report logicals, local logicals are listed first,
3843 	* then any externals.
3844 	*/
3845 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3846 
3847 	if (i == raid_ctlr_position)
3848 		return 0;
3849 
3850 	if (i < logicals_start)
3851 		return 0;
3852 
3853 	/* i is in logicals range, but still within local logicals */
3854 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3855 		return 0;
3856 
3857 	return 1; /* it's an external lun */
3858 }
3859 
3860 /*
3861  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3862  * logdev.  The number of luns in physdev and logdev are returned in
3863  * *nphysicals and *nlogicals, respectively.
3864  * Returns 0 on success, -1 otherwise.
3865  */
3866 static int hpsa_gather_lun_info(struct ctlr_info *h,
3867 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3868 	struct ReportLUNdata *logdev, u32 *nlogicals)
3869 {
3870 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3871 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3872 		return -1;
3873 	}
3874 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3875 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3876 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3877 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3878 		*nphysicals = HPSA_MAX_PHYS_LUN;
3879 	}
3880 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3881 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3882 		return -1;
3883 	}
3884 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3885 	/* Reject Logicals in excess of our max capability. */
3886 	if (*nlogicals > HPSA_MAX_LUN) {
3887 		dev_warn(&h->pdev->dev,
3888 			"maximum logical LUNs (%d) exceeded.  "
3889 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3890 			*nlogicals - HPSA_MAX_LUN);
3891 			*nlogicals = HPSA_MAX_LUN;
3892 	}
3893 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3894 		dev_warn(&h->pdev->dev,
3895 			"maximum logical + physical LUNs (%d) exceeded. "
3896 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3897 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3898 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3899 	}
3900 	return 0;
3901 }
3902 
3903 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3904 	int i, int nphysicals, int nlogicals,
3905 	struct ReportExtendedLUNdata *physdev_list,
3906 	struct ReportLUNdata *logdev_list)
3907 {
3908 	/* Helper function, figure out where the LUN ID info is coming from
3909 	 * given index i, lists of physical and logical devices, where in
3910 	 * the list the raid controller is supposed to appear (first or last)
3911 	 */
3912 
3913 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3914 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3915 
3916 	if (i == raid_ctlr_position)
3917 		return RAID_CTLR_LUNID;
3918 
3919 	if (i < logicals_start)
3920 		return &physdev_list->LUN[i -
3921 				(raid_ctlr_position == 0)].lunid[0];
3922 
3923 	if (i < last_device)
3924 		return &logdev_list->LUN[i - nphysicals -
3925 			(raid_ctlr_position == 0)][0];
3926 	BUG();
3927 	return NULL;
3928 }
3929 
3930 /* get physical drive ioaccel handle and queue depth */
3931 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3932 		struct hpsa_scsi_dev_t *dev,
3933 		struct ReportExtendedLUNdata *rlep, int rle_index,
3934 		struct bmic_identify_physical_device *id_phys)
3935 {
3936 	int rc;
3937 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3938 
3939 	dev->ioaccel_handle = rle->ioaccel_handle;
3940 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3941 		dev->hba_ioaccel_enabled = 1;
3942 	memset(id_phys, 0, sizeof(*id_phys));
3943 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3944 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3945 			sizeof(*id_phys));
3946 	if (!rc)
3947 		/* Reserve space for FW operations */
3948 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3949 #define DRIVE_QUEUE_DEPTH 7
3950 		dev->queue_depth =
3951 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3952 				DRIVE_CMDS_RESERVED_FOR_FW;
3953 	else
3954 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3955 }
3956 
3957 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3958 	struct ReportExtendedLUNdata *rlep, int rle_index,
3959 	struct bmic_identify_physical_device *id_phys)
3960 {
3961 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3962 
3963 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3964 		this_device->hba_ioaccel_enabled = 1;
3965 
3966 	memcpy(&this_device->active_path_index,
3967 		&id_phys->active_path_number,
3968 		sizeof(this_device->active_path_index));
3969 	memcpy(&this_device->path_map,
3970 		&id_phys->redundant_path_present_map,
3971 		sizeof(this_device->path_map));
3972 	memcpy(&this_device->box,
3973 		&id_phys->alternate_paths_phys_box_on_port,
3974 		sizeof(this_device->box));
3975 	memcpy(&this_device->phys_connector,
3976 		&id_phys->alternate_paths_phys_connector,
3977 		sizeof(this_device->phys_connector));
3978 	memcpy(&this_device->bay,
3979 		&id_phys->phys_bay_in_box,
3980 		sizeof(this_device->bay));
3981 }
3982 
3983 /* get number of local logical disks. */
3984 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3985 	struct bmic_identify_controller *id_ctlr,
3986 	u32 *nlocals)
3987 {
3988 	int rc;
3989 
3990 	if (!id_ctlr) {
3991 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3992 			__func__);
3993 		return -ENOMEM;
3994 	}
3995 	memset(id_ctlr, 0, sizeof(*id_ctlr));
3996 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3997 	if (!rc)
3998 		if (id_ctlr->configured_logical_drive_count < 256)
3999 			*nlocals = id_ctlr->configured_logical_drive_count;
4000 		else
4001 			*nlocals = le16_to_cpu(
4002 					id_ctlr->extended_logical_unit_count);
4003 	else
4004 		*nlocals = -1;
4005 	return rc;
4006 }
4007 
4008 
4009 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4010 {
4011 	/* the idea here is we could get notified
4012 	 * that some devices have changed, so we do a report
4013 	 * physical luns and report logical luns cmd, and adjust
4014 	 * our list of devices accordingly.
4015 	 *
4016 	 * The scsi3addr's of devices won't change so long as the
4017 	 * adapter is not reset.  That means we can rescan and
4018 	 * tell which devices we already know about, vs. new
4019 	 * devices, vs.  disappearing devices.
4020 	 */
4021 	struct ReportExtendedLUNdata *physdev_list = NULL;
4022 	struct ReportLUNdata *logdev_list = NULL;
4023 	struct bmic_identify_physical_device *id_phys = NULL;
4024 	struct bmic_identify_controller *id_ctlr = NULL;
4025 	u32 nphysicals = 0;
4026 	u32 nlogicals = 0;
4027 	u32 nlocal_logicals = 0;
4028 	u32 ndev_allocated = 0;
4029 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4030 	int ncurrent = 0;
4031 	int i, n_ext_target_devs, ndevs_to_allocate;
4032 	int raid_ctlr_position;
4033 	bool physical_device;
4034 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4035 
4036 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4037 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4038 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4039 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4040 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4041 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4042 
4043 	if (!currentsd || !physdev_list || !logdev_list ||
4044 		!tmpdevice || !id_phys || !id_ctlr) {
4045 		dev_err(&h->pdev->dev, "out of memory\n");
4046 		goto out;
4047 	}
4048 	memset(lunzerobits, 0, sizeof(lunzerobits));
4049 
4050 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4051 
4052 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4053 			logdev_list, &nlogicals)) {
4054 		h->drv_req_rescan = 1;
4055 		goto out;
4056 	}
4057 
4058 	/* Set number of local logicals (non PTRAID) */
4059 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4060 		dev_warn(&h->pdev->dev,
4061 			"%s: Can't determine number of local logical devices.\n",
4062 			__func__);
4063 	}
4064 
4065 	/* We might see up to the maximum number of logical and physical disks
4066 	 * plus external target devices, and a device for the local RAID
4067 	 * controller.
4068 	 */
4069 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4070 
4071 	/* Allocate the per device structures */
4072 	for (i = 0; i < ndevs_to_allocate; i++) {
4073 		if (i >= HPSA_MAX_DEVICES) {
4074 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4075 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4076 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4077 			break;
4078 		}
4079 
4080 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4081 		if (!currentsd[i]) {
4082 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4083 				__FILE__, __LINE__);
4084 			h->drv_req_rescan = 1;
4085 			goto out;
4086 		}
4087 		ndev_allocated++;
4088 	}
4089 
4090 	if (is_scsi_rev_5(h))
4091 		raid_ctlr_position = 0;
4092 	else
4093 		raid_ctlr_position = nphysicals + nlogicals;
4094 
4095 	/* adjust our table of devices */
4096 	n_ext_target_devs = 0;
4097 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4098 		u8 *lunaddrbytes, is_OBDR = 0;
4099 		int rc = 0;
4100 		int phys_dev_index = i - (raid_ctlr_position == 0);
4101 
4102 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4103 
4104 		/* Figure out where the LUN ID info is coming from */
4105 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4106 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4107 
4108 		/* skip masked non-disk devices */
4109 		if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4110 		   (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4111 		   (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4112 			continue;
4113 
4114 		/* Get device type, vendor, model, device id */
4115 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4116 							&is_OBDR);
4117 		if (rc == -ENOMEM) {
4118 			dev_warn(&h->pdev->dev,
4119 				"Out of memory, rescan deferred.\n");
4120 			h->drv_req_rescan = 1;
4121 			goto out;
4122 		}
4123 		if (rc) {
4124 			dev_warn(&h->pdev->dev,
4125 				"Inquiry failed, skipping device.\n");
4126 			continue;
4127 		}
4128 
4129 		/* Determine if this is a lun from an external target array */
4130 		tmpdevice->external =
4131 			figure_external_status(h, raid_ctlr_position, i,
4132 						nphysicals, nlocal_logicals);
4133 
4134 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4135 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4136 		this_device = currentsd[ncurrent];
4137 
4138 		/* Turn on discovery_polling if there are ext target devices.
4139 		 * Event-based change notification is unreliable for those.
4140 		 */
4141 		if (!h->discovery_polling) {
4142 			if (tmpdevice->external) {
4143 				h->discovery_polling = 1;
4144 				dev_info(&h->pdev->dev,
4145 					"External target, activate discovery polling.\n");
4146 			}
4147 		}
4148 
4149 
4150 		*this_device = *tmpdevice;
4151 		this_device->physical_device = physical_device;
4152 
4153 		/*
4154 		 * Expose all devices except for physical devices that
4155 		 * are masked.
4156 		 */
4157 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4158 			this_device->expose_device = 0;
4159 		else
4160 			this_device->expose_device = 1;
4161 
4162 
4163 		/*
4164 		 * Get the SAS address for physical devices that are exposed.
4165 		 */
4166 		if (this_device->physical_device && this_device->expose_device)
4167 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4168 
4169 		switch (this_device->devtype) {
4170 		case TYPE_ROM:
4171 			/* We don't *really* support actual CD-ROM devices,
4172 			 * just "One Button Disaster Recovery" tape drive
4173 			 * which temporarily pretends to be a CD-ROM drive.
4174 			 * So we check that the device is really an OBDR tape
4175 			 * device by checking for "$DR-10" in bytes 43-48 of
4176 			 * the inquiry data.
4177 			 */
4178 			if (is_OBDR)
4179 				ncurrent++;
4180 			break;
4181 		case TYPE_DISK:
4182 		case TYPE_ZBC:
4183 			if (this_device->physical_device) {
4184 				/* The disk is in HBA mode. */
4185 				/* Never use RAID mapper in HBA mode. */
4186 				this_device->offload_enabled = 0;
4187 				hpsa_get_ioaccel_drive_info(h, this_device,
4188 					physdev_list, phys_dev_index, id_phys);
4189 				hpsa_get_path_info(this_device,
4190 					physdev_list, phys_dev_index, id_phys);
4191 			}
4192 			ncurrent++;
4193 			break;
4194 		case TYPE_TAPE:
4195 		case TYPE_MEDIUM_CHANGER:
4196 			ncurrent++;
4197 			break;
4198 		case TYPE_ENCLOSURE:
4199 			if (!this_device->external)
4200 				hpsa_get_enclosure_info(h, lunaddrbytes,
4201 						physdev_list, phys_dev_index,
4202 						this_device);
4203 			ncurrent++;
4204 			break;
4205 		case TYPE_RAID:
4206 			/* Only present the Smartarray HBA as a RAID controller.
4207 			 * If it's a RAID controller other than the HBA itself
4208 			 * (an external RAID controller, MSA500 or similar)
4209 			 * don't present it.
4210 			 */
4211 			if (!is_hba_lunid(lunaddrbytes))
4212 				break;
4213 			ncurrent++;
4214 			break;
4215 		default:
4216 			break;
4217 		}
4218 		if (ncurrent >= HPSA_MAX_DEVICES)
4219 			break;
4220 	}
4221 
4222 	if (h->sas_host == NULL) {
4223 		int rc = 0;
4224 
4225 		rc = hpsa_add_sas_host(h);
4226 		if (rc) {
4227 			dev_warn(&h->pdev->dev,
4228 				"Could not add sas host %d\n", rc);
4229 			goto out;
4230 		}
4231 	}
4232 
4233 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235 	kfree(tmpdevice);
4236 	for (i = 0; i < ndev_allocated; i++)
4237 		kfree(currentsd[i]);
4238 	kfree(currentsd);
4239 	kfree(physdev_list);
4240 	kfree(logdev_list);
4241 	kfree(id_ctlr);
4242 	kfree(id_phys);
4243 }
4244 
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246 				   struct scatterlist *sg)
4247 {
4248 	u64 addr64 = (u64) sg_dma_address(sg);
4249 	unsigned int len = sg_dma_len(sg);
4250 
4251 	desc->Addr = cpu_to_le64(addr64);
4252 	desc->Len = cpu_to_le32(len);
4253 	desc->Ext = 0;
4254 }
4255 
4256 /*
4257  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258  * dma mapping  and fills in the scatter gather entries of the
4259  * hpsa command, cp.
4260  */
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262 		struct CommandList *cp,
4263 		struct scsi_cmnd *cmd)
4264 {
4265 	struct scatterlist *sg;
4266 	int use_sg, i, sg_limit, chained, last_sg;
4267 	struct SGDescriptor *curr_sg;
4268 
4269 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4270 
4271 	use_sg = scsi_dma_map(cmd);
4272 	if (use_sg < 0)
4273 		return use_sg;
4274 
4275 	if (!use_sg)
4276 		goto sglist_finished;
4277 
4278 	/*
4279 	 * If the number of entries is greater than the max for a single list,
4280 	 * then we have a chained list; we will set up all but one entry in the
4281 	 * first list (the last entry is saved for link information);
4282 	 * otherwise, we don't have a chained list and we'll set up at each of
4283 	 * the entries in the one list.
4284 	 */
4285 	curr_sg = cp->SG;
4286 	chained = use_sg > h->max_cmd_sg_entries;
4287 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288 	last_sg = scsi_sg_count(cmd) - 1;
4289 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290 		hpsa_set_sg_descriptor(curr_sg, sg);
4291 		curr_sg++;
4292 	}
4293 
4294 	if (chained) {
4295 		/*
4296 		 * Continue with the chained list.  Set curr_sg to the chained
4297 		 * list.  Modify the limit to the total count less the entries
4298 		 * we've already set up.  Resume the scan at the list entry
4299 		 * where the previous loop left off.
4300 		 */
4301 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4302 		sg_limit = use_sg - sg_limit;
4303 		for_each_sg(sg, sg, sg_limit, i) {
4304 			hpsa_set_sg_descriptor(curr_sg, sg);
4305 			curr_sg++;
4306 		}
4307 	}
4308 
4309 	/* Back the pointer up to the last entry and mark it as "last". */
4310 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4311 
4312 	if (use_sg + chained > h->maxSG)
4313 		h->maxSG = use_sg + chained;
4314 
4315 	if (chained) {
4316 		cp->Header.SGList = h->max_cmd_sg_entries;
4317 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318 		if (hpsa_map_sg_chain_block(h, cp)) {
4319 			scsi_dma_unmap(cmd);
4320 			return -1;
4321 		}
4322 		return 0;
4323 	}
4324 
4325 sglist_finished:
4326 
4327 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4328 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329 	return 0;
4330 }
4331 
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334 {
4335 	int is_write = 0;
4336 	u32 block;
4337 	u32 block_cnt;
4338 
4339 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340 	switch (cdb[0]) {
4341 	case WRITE_6:
4342 	case WRITE_12:
4343 		is_write = 1;
4344 	case READ_6:
4345 	case READ_12:
4346 		if (*cdb_len == 6) {
4347 			block = get_unaligned_be16(&cdb[2]);
4348 			block_cnt = cdb[4];
4349 			if (block_cnt == 0)
4350 				block_cnt = 256;
4351 		} else {
4352 			BUG_ON(*cdb_len != 12);
4353 			block = get_unaligned_be32(&cdb[2]);
4354 			block_cnt = get_unaligned_be32(&cdb[6]);
4355 		}
4356 		if (block_cnt > 0xffff)
4357 			return IO_ACCEL_INELIGIBLE;
4358 
4359 		cdb[0] = is_write ? WRITE_10 : READ_10;
4360 		cdb[1] = 0;
4361 		cdb[2] = (u8) (block >> 24);
4362 		cdb[3] = (u8) (block >> 16);
4363 		cdb[4] = (u8) (block >> 8);
4364 		cdb[5] = (u8) (block);
4365 		cdb[6] = 0;
4366 		cdb[7] = (u8) (block_cnt >> 8);
4367 		cdb[8] = (u8) (block_cnt);
4368 		cdb[9] = 0;
4369 		*cdb_len = 10;
4370 		break;
4371 	}
4372 	return 0;
4373 }
4374 
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379 	struct scsi_cmnd *cmd = c->scsi_cmd;
4380 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381 	unsigned int len;
4382 	unsigned int total_len = 0;
4383 	struct scatterlist *sg;
4384 	u64 addr64;
4385 	int use_sg, i;
4386 	struct SGDescriptor *curr_sg;
4387 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388 
4389 	/* TODO: implement chaining support */
4390 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4392 		return IO_ACCEL_INELIGIBLE;
4393 	}
4394 
4395 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396 
4397 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4399 		return IO_ACCEL_INELIGIBLE;
4400 	}
4401 
4402 	c->cmd_type = CMD_IOACCEL1;
4403 
4404 	/* Adjust the DMA address to point to the accelerated command buffer */
4405 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406 				(c->cmdindex * sizeof(*cp));
4407 	BUG_ON(c->busaddr & 0x0000007F);
4408 
4409 	use_sg = scsi_dma_map(cmd);
4410 	if (use_sg < 0) {
4411 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4412 		return use_sg;
4413 	}
4414 
4415 	if (use_sg) {
4416 		curr_sg = cp->SG;
4417 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4418 			addr64 = (u64) sg_dma_address(sg);
4419 			len  = sg_dma_len(sg);
4420 			total_len += len;
4421 			curr_sg->Addr = cpu_to_le64(addr64);
4422 			curr_sg->Len = cpu_to_le32(len);
4423 			curr_sg->Ext = cpu_to_le32(0);
4424 			curr_sg++;
4425 		}
4426 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4427 
4428 		switch (cmd->sc_data_direction) {
4429 		case DMA_TO_DEVICE:
4430 			control |= IOACCEL1_CONTROL_DATA_OUT;
4431 			break;
4432 		case DMA_FROM_DEVICE:
4433 			control |= IOACCEL1_CONTROL_DATA_IN;
4434 			break;
4435 		case DMA_NONE:
4436 			control |= IOACCEL1_CONTROL_NODATAXFER;
4437 			break;
4438 		default:
4439 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440 			cmd->sc_data_direction);
4441 			BUG();
4442 			break;
4443 		}
4444 	} else {
4445 		control |= IOACCEL1_CONTROL_NODATAXFER;
4446 	}
4447 
4448 	c->Header.SGList = use_sg;
4449 	/* Fill out the command structure to submit */
4450 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451 	cp->transfer_len = cpu_to_le32(total_len);
4452 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454 	cp->control = cpu_to_le32(control);
4455 	memcpy(cp->CDB, cdb, cdb_len);
4456 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4457 	/* Tag was already set at init time. */
4458 	enqueue_cmd_and_start_io(h, c);
4459 	return 0;
4460 }
4461 
4462 /*
4463  * Queue a command directly to a device behind the controller using the
4464  * I/O accelerator path.
4465  */
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467 	struct CommandList *c)
4468 {
4469 	struct scsi_cmnd *cmd = c->scsi_cmd;
4470 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471 
4472 	c->phys_disk = dev;
4473 
4474 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4476 }
4477 
4478 /*
4479  * Set encryption parameters for the ioaccel2 request
4480  */
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482 	struct CommandList *c, struct io_accel2_cmd *cp)
4483 {
4484 	struct scsi_cmnd *cmd = c->scsi_cmd;
4485 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486 	struct raid_map_data *map = &dev->raid_map;
4487 	u64 first_block;
4488 
4489 	/* Are we doing encryption on this device */
4490 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491 		return;
4492 	/* Set the data encryption key index. */
4493 	cp->dekindex = map->dekindex;
4494 
4495 	/* Set the encryption enable flag, encoded into direction field. */
4496 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497 
4498 	/* Set encryption tweak values based on logical block address
4499 	 * If block size is 512, tweak value is LBA.
4500 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4501 	 */
4502 	switch (cmd->cmnd[0]) {
4503 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504 	case WRITE_6:
4505 	case READ_6:
4506 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507 		break;
4508 	case WRITE_10:
4509 	case READ_10:
4510 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511 	case WRITE_12:
4512 	case READ_12:
4513 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514 		break;
4515 	case WRITE_16:
4516 	case READ_16:
4517 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518 		break;
4519 	default:
4520 		dev_err(&h->pdev->dev,
4521 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4522 			__func__, cmd->cmnd[0]);
4523 		BUG();
4524 		break;
4525 	}
4526 
4527 	if (le32_to_cpu(map->volume_blk_size) != 512)
4528 		first_block = first_block *
4529 				le32_to_cpu(map->volume_blk_size)/512;
4530 
4531 	cp->tweak_lower = cpu_to_le32(first_block);
4532 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4533 }
4534 
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4538 {
4539 	struct scsi_cmnd *cmd = c->scsi_cmd;
4540 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541 	struct ioaccel2_sg_element *curr_sg;
4542 	int use_sg, i;
4543 	struct scatterlist *sg;
4544 	u64 addr64;
4545 	u32 len;
4546 	u32 total_len = 0;
4547 
4548 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549 
4550 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4552 		return IO_ACCEL_INELIGIBLE;
4553 	}
4554 
4555 	c->cmd_type = CMD_IOACCEL2;
4556 	/* Adjust the DMA address to point to the accelerated command buffer */
4557 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558 				(c->cmdindex * sizeof(*cp));
4559 	BUG_ON(c->busaddr & 0x0000007F);
4560 
4561 	memset(cp, 0, sizeof(*cp));
4562 	cp->IU_type = IOACCEL2_IU_TYPE;
4563 
4564 	use_sg = scsi_dma_map(cmd);
4565 	if (use_sg < 0) {
4566 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4567 		return use_sg;
4568 	}
4569 
4570 	if (use_sg) {
4571 		curr_sg = cp->sg;
4572 		if (use_sg > h->ioaccel_maxsg) {
4573 			addr64 = le64_to_cpu(
4574 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575 			curr_sg->address = cpu_to_le64(addr64);
4576 			curr_sg->length = 0;
4577 			curr_sg->reserved[0] = 0;
4578 			curr_sg->reserved[1] = 0;
4579 			curr_sg->reserved[2] = 0;
4580 			curr_sg->chain_indicator = 0x80;
4581 
4582 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583 		}
4584 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4585 			addr64 = (u64) sg_dma_address(sg);
4586 			len  = sg_dma_len(sg);
4587 			total_len += len;
4588 			curr_sg->address = cpu_to_le64(addr64);
4589 			curr_sg->length = cpu_to_le32(len);
4590 			curr_sg->reserved[0] = 0;
4591 			curr_sg->reserved[1] = 0;
4592 			curr_sg->reserved[2] = 0;
4593 			curr_sg->chain_indicator = 0;
4594 			curr_sg++;
4595 		}
4596 
4597 		switch (cmd->sc_data_direction) {
4598 		case DMA_TO_DEVICE:
4599 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601 			break;
4602 		case DMA_FROM_DEVICE:
4603 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4605 			break;
4606 		case DMA_NONE:
4607 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4609 			break;
4610 		default:
4611 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612 				cmd->sc_data_direction);
4613 			BUG();
4614 			break;
4615 		}
4616 	} else {
4617 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4619 	}
4620 
4621 	/* Set encryption parameters, if necessary */
4622 	set_encrypt_ioaccel2(h, c, cp);
4623 
4624 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4627 
4628 	cp->data_len = cpu_to_le32(total_len);
4629 	cp->err_ptr = cpu_to_le64(c->busaddr +
4630 			offsetof(struct io_accel2_cmd, error_data));
4631 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4632 
4633 	/* fill in sg elements */
4634 	if (use_sg > h->ioaccel_maxsg) {
4635 		cp->sg_count = 1;
4636 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4639 			scsi_dma_unmap(cmd);
4640 			return -1;
4641 		}
4642 	} else
4643 		cp->sg_count = (u8) use_sg;
4644 
4645 	enqueue_cmd_and_start_io(h, c);
4646 	return 0;
4647 }
4648 
4649 /*
4650  * Queue a command to the correct I/O accelerator path.
4651  */
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4655 {
4656 	/* Try to honor the device's queue depth */
4657 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658 					phys_disk->queue_depth) {
4659 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4660 		return IO_ACCEL_INELIGIBLE;
4661 	}
4662 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4663 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664 						cdb, cdb_len, scsi3addr,
4665 						phys_disk);
4666 	else
4667 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668 						cdb, cdb_len, scsi3addr,
4669 						phys_disk);
4670 }
4671 
4672 static void raid_map_helper(struct raid_map_data *map,
4673 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4674 {
4675 	if (offload_to_mirror == 0)  {
4676 		/* use physical disk in the first mirrored group. */
4677 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4678 		return;
4679 	}
4680 	do {
4681 		/* determine mirror group that *map_index indicates */
4682 		*current_group = *map_index /
4683 			le16_to_cpu(map->data_disks_per_row);
4684 		if (offload_to_mirror == *current_group)
4685 			continue;
4686 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687 			/* select map index from next group */
4688 			*map_index += le16_to_cpu(map->data_disks_per_row);
4689 			(*current_group)++;
4690 		} else {
4691 			/* select map index from first group */
4692 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4693 			*current_group = 0;
4694 		}
4695 	} while (offload_to_mirror != *current_group);
4696 }
4697 
4698 /*
4699  * Attempt to perform offload RAID mapping for a logical volume I/O.
4700  */
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702 	struct CommandList *c)
4703 {
4704 	struct scsi_cmnd *cmd = c->scsi_cmd;
4705 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 	struct raid_map_data *map = &dev->raid_map;
4707 	struct raid_map_disk_data *dd = &map->data[0];
4708 	int is_write = 0;
4709 	u32 map_index;
4710 	u64 first_block, last_block;
4711 	u32 block_cnt;
4712 	u32 blocks_per_row;
4713 	u64 first_row, last_row;
4714 	u32 first_row_offset, last_row_offset;
4715 	u32 first_column, last_column;
4716 	u64 r0_first_row, r0_last_row;
4717 	u32 r5or6_blocks_per_row;
4718 	u64 r5or6_first_row, r5or6_last_row;
4719 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720 	u32 r5or6_first_column, r5or6_last_column;
4721 	u32 total_disks_per_row;
4722 	u32 stripesize;
4723 	u32 first_group, last_group, current_group;
4724 	u32 map_row;
4725 	u32 disk_handle;
4726 	u64 disk_block;
4727 	u32 disk_block_cnt;
4728 	u8 cdb[16];
4729 	u8 cdb_len;
4730 	u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732 	u64 tmpdiv;
4733 #endif
4734 	int offload_to_mirror;
4735 
4736 	/* check for valid opcode, get LBA and block count */
4737 	switch (cmd->cmnd[0]) {
4738 	case WRITE_6:
4739 		is_write = 1;
4740 	case READ_6:
4741 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742 		block_cnt = cmd->cmnd[4];
4743 		if (block_cnt == 0)
4744 			block_cnt = 256;
4745 		break;
4746 	case WRITE_10:
4747 		is_write = 1;
4748 	case READ_10:
4749 		first_block =
4750 			(((u64) cmd->cmnd[2]) << 24) |
4751 			(((u64) cmd->cmnd[3]) << 16) |
4752 			(((u64) cmd->cmnd[4]) << 8) |
4753 			cmd->cmnd[5];
4754 		block_cnt =
4755 			(((u32) cmd->cmnd[7]) << 8) |
4756 			cmd->cmnd[8];
4757 		break;
4758 	case WRITE_12:
4759 		is_write = 1;
4760 	case READ_12:
4761 		first_block =
4762 			(((u64) cmd->cmnd[2]) << 24) |
4763 			(((u64) cmd->cmnd[3]) << 16) |
4764 			(((u64) cmd->cmnd[4]) << 8) |
4765 			cmd->cmnd[5];
4766 		block_cnt =
4767 			(((u32) cmd->cmnd[6]) << 24) |
4768 			(((u32) cmd->cmnd[7]) << 16) |
4769 			(((u32) cmd->cmnd[8]) << 8) |
4770 		cmd->cmnd[9];
4771 		break;
4772 	case WRITE_16:
4773 		is_write = 1;
4774 	case READ_16:
4775 		first_block =
4776 			(((u64) cmd->cmnd[2]) << 56) |
4777 			(((u64) cmd->cmnd[3]) << 48) |
4778 			(((u64) cmd->cmnd[4]) << 40) |
4779 			(((u64) cmd->cmnd[5]) << 32) |
4780 			(((u64) cmd->cmnd[6]) << 24) |
4781 			(((u64) cmd->cmnd[7]) << 16) |
4782 			(((u64) cmd->cmnd[8]) << 8) |
4783 			cmd->cmnd[9];
4784 		block_cnt =
4785 			(((u32) cmd->cmnd[10]) << 24) |
4786 			(((u32) cmd->cmnd[11]) << 16) |
4787 			(((u32) cmd->cmnd[12]) << 8) |
4788 			cmd->cmnd[13];
4789 		break;
4790 	default:
4791 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792 	}
4793 	last_block = first_block + block_cnt - 1;
4794 
4795 	/* check for write to non-RAID-0 */
4796 	if (is_write && dev->raid_level != 0)
4797 		return IO_ACCEL_INELIGIBLE;
4798 
4799 	/* check for invalid block or wraparound */
4800 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801 		last_block < first_block)
4802 		return IO_ACCEL_INELIGIBLE;
4803 
4804 	/* calculate stripe information for the request */
4805 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806 				le16_to_cpu(map->strip_size);
4807 	strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809 	tmpdiv = first_block;
4810 	(void) do_div(tmpdiv, blocks_per_row);
4811 	first_row = tmpdiv;
4812 	tmpdiv = last_block;
4813 	(void) do_div(tmpdiv, blocks_per_row);
4814 	last_row = tmpdiv;
4815 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817 	tmpdiv = first_row_offset;
4818 	(void) do_div(tmpdiv, strip_size);
4819 	first_column = tmpdiv;
4820 	tmpdiv = last_row_offset;
4821 	(void) do_div(tmpdiv, strip_size);
4822 	last_column = tmpdiv;
4823 #else
4824 	first_row = first_block / blocks_per_row;
4825 	last_row = last_block / blocks_per_row;
4826 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828 	first_column = first_row_offset / strip_size;
4829 	last_column = last_row_offset / strip_size;
4830 #endif
4831 
4832 	/* if this isn't a single row/column then give to the controller */
4833 	if ((first_row != last_row) || (first_column != last_column))
4834 		return IO_ACCEL_INELIGIBLE;
4835 
4836 	/* proceeding with driver mapping */
4837 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838 				le16_to_cpu(map->metadata_disks_per_row);
4839 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840 				le16_to_cpu(map->row_cnt);
4841 	map_index = (map_row * total_disks_per_row) + first_column;
4842 
4843 	switch (dev->raid_level) {
4844 	case HPSA_RAID_0:
4845 		break; /* nothing special to do */
4846 	case HPSA_RAID_1:
4847 		/* Handles load balance across RAID 1 members.
4848 		 * (2-drive R1 and R10 with even # of drives.)
4849 		 * Appropriate for SSDs, not optimal for HDDs
4850 		 */
4851 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852 		if (dev->offload_to_mirror)
4853 			map_index += le16_to_cpu(map->data_disks_per_row);
4854 		dev->offload_to_mirror = !dev->offload_to_mirror;
4855 		break;
4856 	case HPSA_RAID_ADM:
4857 		/* Handles N-way mirrors  (R1-ADM)
4858 		 * and R10 with # of drives divisible by 3.)
4859 		 */
4860 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4861 
4862 		offload_to_mirror = dev->offload_to_mirror;
4863 		raid_map_helper(map, offload_to_mirror,
4864 				&map_index, &current_group);
4865 		/* set mirror group to use next time */
4866 		offload_to_mirror =
4867 			(offload_to_mirror >=
4868 			le16_to_cpu(map->layout_map_count) - 1)
4869 			? 0 : offload_to_mirror + 1;
4870 		dev->offload_to_mirror = offload_to_mirror;
4871 		/* Avoid direct use of dev->offload_to_mirror within this
4872 		 * function since multiple threads might simultaneously
4873 		 * increment it beyond the range of dev->layout_map_count -1.
4874 		 */
4875 		break;
4876 	case HPSA_RAID_5:
4877 	case HPSA_RAID_6:
4878 		if (le16_to_cpu(map->layout_map_count) <= 1)
4879 			break;
4880 
4881 		/* Verify first and last block are in same RAID group */
4882 		r5or6_blocks_per_row =
4883 			le16_to_cpu(map->strip_size) *
4884 			le16_to_cpu(map->data_disks_per_row);
4885 		BUG_ON(r5or6_blocks_per_row == 0);
4886 		stripesize = r5or6_blocks_per_row *
4887 			le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889 		tmpdiv = first_block;
4890 		first_group = do_div(tmpdiv, stripesize);
4891 		tmpdiv = first_group;
4892 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4893 		first_group = tmpdiv;
4894 		tmpdiv = last_block;
4895 		last_group = do_div(tmpdiv, stripesize);
4896 		tmpdiv = last_group;
4897 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4898 		last_group = tmpdiv;
4899 #else
4900 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903 		if (first_group != last_group)
4904 			return IO_ACCEL_INELIGIBLE;
4905 
4906 		/* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908 		tmpdiv = first_block;
4909 		(void) do_div(tmpdiv, stripesize);
4910 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911 		tmpdiv = last_block;
4912 		(void) do_div(tmpdiv, stripesize);
4913 		r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915 		first_row = r5or6_first_row = r0_first_row =
4916 						first_block / stripesize;
4917 		r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919 		if (r5or6_first_row != r5or6_last_row)
4920 			return IO_ACCEL_INELIGIBLE;
4921 
4922 
4923 		/* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925 		tmpdiv = first_block;
4926 		first_row_offset = do_div(tmpdiv, stripesize);
4927 		tmpdiv = first_row_offset;
4928 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929 		r5or6_first_row_offset = first_row_offset;
4930 		tmpdiv = last_block;
4931 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932 		tmpdiv = r5or6_last_row_offset;
4933 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934 		tmpdiv = r5or6_first_row_offset;
4935 		(void) do_div(tmpdiv, map->strip_size);
4936 		first_column = r5or6_first_column = tmpdiv;
4937 		tmpdiv = r5or6_last_row_offset;
4938 		(void) do_div(tmpdiv, map->strip_size);
4939 		r5or6_last_column = tmpdiv;
4940 #else
4941 		first_row_offset = r5or6_first_row_offset =
4942 			(u32)((first_block % stripesize) %
4943 						r5or6_blocks_per_row);
4944 
4945 		r5or6_last_row_offset =
4946 			(u32)((last_block % stripesize) %
4947 						r5or6_blocks_per_row);
4948 
4949 		first_column = r5or6_first_column =
4950 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951 		r5or6_last_column =
4952 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954 		if (r5or6_first_column != r5or6_last_column)
4955 			return IO_ACCEL_INELIGIBLE;
4956 
4957 		/* Request is eligible */
4958 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959 			le16_to_cpu(map->row_cnt);
4960 
4961 		map_index = (first_group *
4962 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963 			(map_row * total_disks_per_row) + first_column;
4964 		break;
4965 	default:
4966 		return IO_ACCEL_INELIGIBLE;
4967 	}
4968 
4969 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970 		return IO_ACCEL_INELIGIBLE;
4971 
4972 	c->phys_disk = dev->phys_disk[map_index];
4973 	if (!c->phys_disk)
4974 		return IO_ACCEL_INELIGIBLE;
4975 
4976 	disk_handle = dd[map_index].ioaccel_handle;
4977 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4978 			first_row * le16_to_cpu(map->strip_size) +
4979 			(first_row_offset - first_column *
4980 			le16_to_cpu(map->strip_size));
4981 	disk_block_cnt = block_cnt;
4982 
4983 	/* handle differing logical/physical block sizes */
4984 	if (map->phys_blk_shift) {
4985 		disk_block <<= map->phys_blk_shift;
4986 		disk_block_cnt <<= map->phys_blk_shift;
4987 	}
4988 	BUG_ON(disk_block_cnt > 0xffff);
4989 
4990 	/* build the new CDB for the physical disk I/O */
4991 	if (disk_block > 0xffffffff) {
4992 		cdb[0] = is_write ? WRITE_16 : READ_16;
4993 		cdb[1] = 0;
4994 		cdb[2] = (u8) (disk_block >> 56);
4995 		cdb[3] = (u8) (disk_block >> 48);
4996 		cdb[4] = (u8) (disk_block >> 40);
4997 		cdb[5] = (u8) (disk_block >> 32);
4998 		cdb[6] = (u8) (disk_block >> 24);
4999 		cdb[7] = (u8) (disk_block >> 16);
5000 		cdb[8] = (u8) (disk_block >> 8);
5001 		cdb[9] = (u8) (disk_block);
5002 		cdb[10] = (u8) (disk_block_cnt >> 24);
5003 		cdb[11] = (u8) (disk_block_cnt >> 16);
5004 		cdb[12] = (u8) (disk_block_cnt >> 8);
5005 		cdb[13] = (u8) (disk_block_cnt);
5006 		cdb[14] = 0;
5007 		cdb[15] = 0;
5008 		cdb_len = 16;
5009 	} else {
5010 		cdb[0] = is_write ? WRITE_10 : READ_10;
5011 		cdb[1] = 0;
5012 		cdb[2] = (u8) (disk_block >> 24);
5013 		cdb[3] = (u8) (disk_block >> 16);
5014 		cdb[4] = (u8) (disk_block >> 8);
5015 		cdb[5] = (u8) (disk_block);
5016 		cdb[6] = 0;
5017 		cdb[7] = (u8) (disk_block_cnt >> 8);
5018 		cdb[8] = (u8) (disk_block_cnt);
5019 		cdb[9] = 0;
5020 		cdb_len = 10;
5021 	}
5022 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5023 						dev->scsi3addr,
5024 						dev->phys_disk[map_index]);
5025 }
5026 
5027 /*
5028  * Submit commands down the "normal" RAID stack path
5029  * All callers to hpsa_ciss_submit must check lockup_detected
5030  * beforehand, before (opt.) and after calling cmd_alloc
5031  */
5032 static int hpsa_ciss_submit(struct ctlr_info *h,
5033 	struct CommandList *c, struct scsi_cmnd *cmd,
5034 	unsigned char scsi3addr[])
5035 {
5036 	cmd->host_scribble = (unsigned char *) c;
5037 	c->cmd_type = CMD_SCSI;
5038 	c->scsi_cmd = cmd;
5039 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5040 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5041 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5042 
5043 	/* Fill in the request block... */
5044 
5045 	c->Request.Timeout = 0;
5046 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5047 	c->Request.CDBLen = cmd->cmd_len;
5048 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5049 	switch (cmd->sc_data_direction) {
5050 	case DMA_TO_DEVICE:
5051 		c->Request.type_attr_dir =
5052 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5053 		break;
5054 	case DMA_FROM_DEVICE:
5055 		c->Request.type_attr_dir =
5056 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5057 		break;
5058 	case DMA_NONE:
5059 		c->Request.type_attr_dir =
5060 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5061 		break;
5062 	case DMA_BIDIRECTIONAL:
5063 		/* This can happen if a buggy application does a scsi passthru
5064 		 * and sets both inlen and outlen to non-zero. ( see
5065 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5066 		 */
5067 
5068 		c->Request.type_attr_dir =
5069 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5070 		/* This is technically wrong, and hpsa controllers should
5071 		 * reject it with CMD_INVALID, which is the most correct
5072 		 * response, but non-fibre backends appear to let it
5073 		 * slide by, and give the same results as if this field
5074 		 * were set correctly.  Either way is acceptable for
5075 		 * our purposes here.
5076 		 */
5077 
5078 		break;
5079 
5080 	default:
5081 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5082 			cmd->sc_data_direction);
5083 		BUG();
5084 		break;
5085 	}
5086 
5087 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5088 		hpsa_cmd_resolve_and_free(h, c);
5089 		return SCSI_MLQUEUE_HOST_BUSY;
5090 	}
5091 	enqueue_cmd_and_start_io(h, c);
5092 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5093 	return 0;
5094 }
5095 
5096 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5097 				struct CommandList *c)
5098 {
5099 	dma_addr_t cmd_dma_handle, err_dma_handle;
5100 
5101 	/* Zero out all of commandlist except the last field, refcount */
5102 	memset(c, 0, offsetof(struct CommandList, refcount));
5103 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5104 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5105 	c->err_info = h->errinfo_pool + index;
5106 	memset(c->err_info, 0, sizeof(*c->err_info));
5107 	err_dma_handle = h->errinfo_pool_dhandle
5108 	    + index * sizeof(*c->err_info);
5109 	c->cmdindex = index;
5110 	c->busaddr = (u32) cmd_dma_handle;
5111 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5112 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5113 	c->h = h;
5114 	c->scsi_cmd = SCSI_CMD_IDLE;
5115 }
5116 
5117 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5118 {
5119 	int i;
5120 
5121 	for (i = 0; i < h->nr_cmds; i++) {
5122 		struct CommandList *c = h->cmd_pool + i;
5123 
5124 		hpsa_cmd_init(h, i, c);
5125 		atomic_set(&c->refcount, 0);
5126 	}
5127 }
5128 
5129 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5130 				struct CommandList *c)
5131 {
5132 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5133 
5134 	BUG_ON(c->cmdindex != index);
5135 
5136 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5137 	memset(c->err_info, 0, sizeof(*c->err_info));
5138 	c->busaddr = (u32) cmd_dma_handle;
5139 }
5140 
5141 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5142 		struct CommandList *c, struct scsi_cmnd *cmd,
5143 		unsigned char *scsi3addr)
5144 {
5145 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5146 	int rc = IO_ACCEL_INELIGIBLE;
5147 
5148 	cmd->host_scribble = (unsigned char *) c;
5149 
5150 	if (dev->offload_enabled) {
5151 		hpsa_cmd_init(h, c->cmdindex, c);
5152 		c->cmd_type = CMD_SCSI;
5153 		c->scsi_cmd = cmd;
5154 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5155 		if (rc < 0)     /* scsi_dma_map failed. */
5156 			rc = SCSI_MLQUEUE_HOST_BUSY;
5157 	} else if (dev->hba_ioaccel_enabled) {
5158 		hpsa_cmd_init(h, c->cmdindex, c);
5159 		c->cmd_type = CMD_SCSI;
5160 		c->scsi_cmd = cmd;
5161 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5162 		if (rc < 0)     /* scsi_dma_map failed. */
5163 			rc = SCSI_MLQUEUE_HOST_BUSY;
5164 	}
5165 	return rc;
5166 }
5167 
5168 static void hpsa_command_resubmit_worker(struct work_struct *work)
5169 {
5170 	struct scsi_cmnd *cmd;
5171 	struct hpsa_scsi_dev_t *dev;
5172 	struct CommandList *c = container_of(work, struct CommandList, work);
5173 
5174 	cmd = c->scsi_cmd;
5175 	dev = cmd->device->hostdata;
5176 	if (!dev) {
5177 		cmd->result = DID_NO_CONNECT << 16;
5178 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5179 	}
5180 	if (c->reset_pending)
5181 		return hpsa_cmd_resolve_and_free(c->h, c);
5182 	if (c->abort_pending)
5183 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5184 	if (c->cmd_type == CMD_IOACCEL2) {
5185 		struct ctlr_info *h = c->h;
5186 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5187 		int rc;
5188 
5189 		if (c2->error_data.serv_response ==
5190 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5191 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5192 			if (rc == 0)
5193 				return;
5194 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5195 				/*
5196 				 * If we get here, it means dma mapping failed.
5197 				 * Try again via scsi mid layer, which will
5198 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5199 				 */
5200 				cmd->result = DID_IMM_RETRY << 16;
5201 				return hpsa_cmd_free_and_done(h, c, cmd);
5202 			}
5203 			/* else, fall thru and resubmit down CISS path */
5204 		}
5205 	}
5206 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5207 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5208 		/*
5209 		 * If we get here, it means dma mapping failed. Try
5210 		 * again via scsi mid layer, which will then get
5211 		 * SCSI_MLQUEUE_HOST_BUSY.
5212 		 *
5213 		 * hpsa_ciss_submit will have already freed c
5214 		 * if it encountered a dma mapping failure.
5215 		 */
5216 		cmd->result = DID_IMM_RETRY << 16;
5217 		cmd->scsi_done(cmd);
5218 	}
5219 }
5220 
5221 /* Running in struct Scsi_Host->host_lock less mode */
5222 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5223 {
5224 	struct ctlr_info *h;
5225 	struct hpsa_scsi_dev_t *dev;
5226 	unsigned char scsi3addr[8];
5227 	struct CommandList *c;
5228 	int rc = 0;
5229 
5230 	/* Get the ptr to our adapter structure out of cmd->host. */
5231 	h = sdev_to_hba(cmd->device);
5232 
5233 	BUG_ON(cmd->request->tag < 0);
5234 
5235 	dev = cmd->device->hostdata;
5236 	if (!dev) {
5237 		cmd->result = DID_NO_CONNECT << 16;
5238 		cmd->scsi_done(cmd);
5239 		return 0;
5240 	}
5241 
5242 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5243 
5244 	if (unlikely(lockup_detected(h))) {
5245 		cmd->result = DID_NO_CONNECT << 16;
5246 		cmd->scsi_done(cmd);
5247 		return 0;
5248 	}
5249 	c = cmd_tagged_alloc(h, cmd);
5250 
5251 	/*
5252 	 * Call alternate submit routine for I/O accelerated commands.
5253 	 * Retries always go down the normal I/O path.
5254 	 */
5255 	if (likely(cmd->retries == 0 &&
5256 		cmd->request->cmd_type == REQ_TYPE_FS &&
5257 		h->acciopath_status)) {
5258 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5259 		if (rc == 0)
5260 			return 0;
5261 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5262 			hpsa_cmd_resolve_and_free(h, c);
5263 			return SCSI_MLQUEUE_HOST_BUSY;
5264 		}
5265 	}
5266 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5267 }
5268 
5269 static void hpsa_scan_complete(struct ctlr_info *h)
5270 {
5271 	unsigned long flags;
5272 
5273 	spin_lock_irqsave(&h->scan_lock, flags);
5274 	h->scan_finished = 1;
5275 	wake_up_all(&h->scan_wait_queue);
5276 	spin_unlock_irqrestore(&h->scan_lock, flags);
5277 }
5278 
5279 static void hpsa_scan_start(struct Scsi_Host *sh)
5280 {
5281 	struct ctlr_info *h = shost_to_hba(sh);
5282 	unsigned long flags;
5283 
5284 	/*
5285 	 * Don't let rescans be initiated on a controller known to be locked
5286 	 * up.  If the controller locks up *during* a rescan, that thread is
5287 	 * probably hosed, but at least we can prevent new rescan threads from
5288 	 * piling up on a locked up controller.
5289 	 */
5290 	if (unlikely(lockup_detected(h)))
5291 		return hpsa_scan_complete(h);
5292 
5293 	/* wait until any scan already in progress is finished. */
5294 	while (1) {
5295 		spin_lock_irqsave(&h->scan_lock, flags);
5296 		if (h->scan_finished)
5297 			break;
5298 		spin_unlock_irqrestore(&h->scan_lock, flags);
5299 		wait_event(h->scan_wait_queue, h->scan_finished);
5300 		/* Note: We don't need to worry about a race between this
5301 		 * thread and driver unload because the midlayer will
5302 		 * have incremented the reference count, so unload won't
5303 		 * happen if we're in here.
5304 		 */
5305 	}
5306 	h->scan_finished = 0; /* mark scan as in progress */
5307 	spin_unlock_irqrestore(&h->scan_lock, flags);
5308 
5309 	if (unlikely(lockup_detected(h)))
5310 		return hpsa_scan_complete(h);
5311 
5312 	hpsa_update_scsi_devices(h);
5313 
5314 	hpsa_scan_complete(h);
5315 }
5316 
5317 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5318 {
5319 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5320 
5321 	if (!logical_drive)
5322 		return -ENODEV;
5323 
5324 	if (qdepth < 1)
5325 		qdepth = 1;
5326 	else if (qdepth > logical_drive->queue_depth)
5327 		qdepth = logical_drive->queue_depth;
5328 
5329 	return scsi_change_queue_depth(sdev, qdepth);
5330 }
5331 
5332 static int hpsa_scan_finished(struct Scsi_Host *sh,
5333 	unsigned long elapsed_time)
5334 {
5335 	struct ctlr_info *h = shost_to_hba(sh);
5336 	unsigned long flags;
5337 	int finished;
5338 
5339 	spin_lock_irqsave(&h->scan_lock, flags);
5340 	finished = h->scan_finished;
5341 	spin_unlock_irqrestore(&h->scan_lock, flags);
5342 	return finished;
5343 }
5344 
5345 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5346 {
5347 	struct Scsi_Host *sh;
5348 
5349 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5350 	if (sh == NULL) {
5351 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5352 		return -ENOMEM;
5353 	}
5354 
5355 	sh->io_port = 0;
5356 	sh->n_io_port = 0;
5357 	sh->this_id = -1;
5358 	sh->max_channel = 3;
5359 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5360 	sh->max_lun = HPSA_MAX_LUN;
5361 	sh->max_id = HPSA_MAX_LUN;
5362 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5363 	sh->cmd_per_lun = sh->can_queue;
5364 	sh->sg_tablesize = h->maxsgentries;
5365 	sh->transportt = hpsa_sas_transport_template;
5366 	sh->hostdata[0] = (unsigned long) h;
5367 	sh->irq = h->intr[h->intr_mode];
5368 	sh->unique_id = sh->irq;
5369 
5370 	h->scsi_host = sh;
5371 	return 0;
5372 }
5373 
5374 static int hpsa_scsi_add_host(struct ctlr_info *h)
5375 {
5376 	int rv;
5377 
5378 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5379 	if (rv) {
5380 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5381 		return rv;
5382 	}
5383 	scsi_scan_host(h->scsi_host);
5384 	return 0;
5385 }
5386 
5387 /*
5388  * The block layer has already gone to the trouble of picking out a unique,
5389  * small-integer tag for this request.  We use an offset from that value as
5390  * an index to select our command block.  (The offset allows us to reserve the
5391  * low-numbered entries for our own uses.)
5392  */
5393 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5394 {
5395 	int idx = scmd->request->tag;
5396 
5397 	if (idx < 0)
5398 		return idx;
5399 
5400 	/* Offset to leave space for internal cmds. */
5401 	return idx += HPSA_NRESERVED_CMDS;
5402 }
5403 
5404 /*
5405  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5406  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5407  */
5408 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5409 				struct CommandList *c, unsigned char lunaddr[],
5410 				int reply_queue)
5411 {
5412 	int rc;
5413 
5414 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5415 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5416 			NULL, 0, 0, lunaddr, TYPE_CMD);
5417 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5418 	if (rc)
5419 		return rc;
5420 	/* no unmap needed here because no data xfer. */
5421 
5422 	/* Check if the unit is already ready. */
5423 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5424 		return 0;
5425 
5426 	/*
5427 	 * The first command sent after reset will receive "unit attention" to
5428 	 * indicate that the LUN has been reset...this is actually what we're
5429 	 * looking for (but, success is good too).
5430 	 */
5431 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5432 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5433 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5434 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5435 		return 0;
5436 
5437 	return 1;
5438 }
5439 
5440 /*
5441  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5442  * returns zero when the unit is ready, and non-zero when giving up.
5443  */
5444 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5445 				struct CommandList *c,
5446 				unsigned char lunaddr[], int reply_queue)
5447 {
5448 	int rc;
5449 	int count = 0;
5450 	int waittime = 1; /* seconds */
5451 
5452 	/* Send test unit ready until device ready, or give up. */
5453 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5454 
5455 		/*
5456 		 * Wait for a bit.  do this first, because if we send
5457 		 * the TUR right away, the reset will just abort it.
5458 		 */
5459 		msleep(1000 * waittime);
5460 
5461 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5462 		if (!rc)
5463 			break;
5464 
5465 		/* Increase wait time with each try, up to a point. */
5466 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5467 			waittime *= 2;
5468 
5469 		dev_warn(&h->pdev->dev,
5470 			 "waiting %d secs for device to become ready.\n",
5471 			 waittime);
5472 	}
5473 
5474 	return rc;
5475 }
5476 
5477 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5478 					   unsigned char lunaddr[],
5479 					   int reply_queue)
5480 {
5481 	int first_queue;
5482 	int last_queue;
5483 	int rq;
5484 	int rc = 0;
5485 	struct CommandList *c;
5486 
5487 	c = cmd_alloc(h);
5488 
5489 	/*
5490 	 * If no specific reply queue was requested, then send the TUR
5491 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5492 	 * the loop exactly once using only the specified queue.
5493 	 */
5494 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5495 		first_queue = 0;
5496 		last_queue = h->nreply_queues - 1;
5497 	} else {
5498 		first_queue = reply_queue;
5499 		last_queue = reply_queue;
5500 	}
5501 
5502 	for (rq = first_queue; rq <= last_queue; rq++) {
5503 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5504 		if (rc)
5505 			break;
5506 	}
5507 
5508 	if (rc)
5509 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5510 	else
5511 		dev_warn(&h->pdev->dev, "device is ready.\n");
5512 
5513 	cmd_free(h, c);
5514 	return rc;
5515 }
5516 
5517 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5518  * complaining.  Doing a host- or bus-reset can't do anything good here.
5519  */
5520 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5521 {
5522 	int rc;
5523 	struct ctlr_info *h;
5524 	struct hpsa_scsi_dev_t *dev;
5525 	u8 reset_type;
5526 	char msg[48];
5527 
5528 	/* find the controller to which the command to be aborted was sent */
5529 	h = sdev_to_hba(scsicmd->device);
5530 	if (h == NULL) /* paranoia */
5531 		return FAILED;
5532 
5533 	if (lockup_detected(h))
5534 		return FAILED;
5535 
5536 	dev = scsicmd->device->hostdata;
5537 	if (!dev) {
5538 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5539 		return FAILED;
5540 	}
5541 
5542 	/* if controller locked up, we can guarantee command won't complete */
5543 	if (lockup_detected(h)) {
5544 		snprintf(msg, sizeof(msg),
5545 			 "cmd %d RESET FAILED, lockup detected",
5546 			 hpsa_get_cmd_index(scsicmd));
5547 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5548 		return FAILED;
5549 	}
5550 
5551 	/* this reset request might be the result of a lockup; check */
5552 	if (detect_controller_lockup(h)) {
5553 		snprintf(msg, sizeof(msg),
5554 			 "cmd %d RESET FAILED, new lockup detected",
5555 			 hpsa_get_cmd_index(scsicmd));
5556 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5557 		return FAILED;
5558 	}
5559 
5560 	/* Do not attempt on controller */
5561 	if (is_hba_lunid(dev->scsi3addr))
5562 		return SUCCESS;
5563 
5564 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5565 		reset_type = HPSA_DEVICE_RESET_MSG;
5566 	else
5567 		reset_type = HPSA_PHYS_TARGET_RESET;
5568 
5569 	sprintf(msg, "resetting %s",
5570 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5571 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5572 
5573 	h->reset_in_progress = 1;
5574 
5575 	/* send a reset to the SCSI LUN which the command was sent to */
5576 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5577 			   DEFAULT_REPLY_QUEUE);
5578 	sprintf(msg, "reset %s %s",
5579 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5580 		rc == 0 ? "completed successfully" : "failed");
5581 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5582 	h->reset_in_progress = 0;
5583 	return rc == 0 ? SUCCESS : FAILED;
5584 }
5585 
5586 static void swizzle_abort_tag(u8 *tag)
5587 {
5588 	u8 original_tag[8];
5589 
5590 	memcpy(original_tag, tag, 8);
5591 	tag[0] = original_tag[3];
5592 	tag[1] = original_tag[2];
5593 	tag[2] = original_tag[1];
5594 	tag[3] = original_tag[0];
5595 	tag[4] = original_tag[7];
5596 	tag[5] = original_tag[6];
5597 	tag[6] = original_tag[5];
5598 	tag[7] = original_tag[4];
5599 }
5600 
5601 static void hpsa_get_tag(struct ctlr_info *h,
5602 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5603 {
5604 	u64 tag;
5605 	if (c->cmd_type == CMD_IOACCEL1) {
5606 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5607 			&h->ioaccel_cmd_pool[c->cmdindex];
5608 		tag = le64_to_cpu(cm1->tag);
5609 		*tagupper = cpu_to_le32(tag >> 32);
5610 		*taglower = cpu_to_le32(tag);
5611 		return;
5612 	}
5613 	if (c->cmd_type == CMD_IOACCEL2) {
5614 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5615 			&h->ioaccel2_cmd_pool[c->cmdindex];
5616 		/* upper tag not used in ioaccel2 mode */
5617 		memset(tagupper, 0, sizeof(*tagupper));
5618 		*taglower = cm2->Tag;
5619 		return;
5620 	}
5621 	tag = le64_to_cpu(c->Header.tag);
5622 	*tagupper = cpu_to_le32(tag >> 32);
5623 	*taglower = cpu_to_le32(tag);
5624 }
5625 
5626 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5627 	struct CommandList *abort, int reply_queue)
5628 {
5629 	int rc = IO_OK;
5630 	struct CommandList *c;
5631 	struct ErrorInfo *ei;
5632 	__le32 tagupper, taglower;
5633 
5634 	c = cmd_alloc(h);
5635 
5636 	/* fill_cmd can't fail here, no buffer to map */
5637 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5638 		0, 0, scsi3addr, TYPE_MSG);
5639 	if (h->needs_abort_tags_swizzled)
5640 		swizzle_abort_tag(&c->Request.CDB[4]);
5641 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5642 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5643 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5644 		__func__, tagupper, taglower);
5645 	/* no unmap needed here because no data xfer. */
5646 
5647 	ei = c->err_info;
5648 	switch (ei->CommandStatus) {
5649 	case CMD_SUCCESS:
5650 		break;
5651 	case CMD_TMF_STATUS:
5652 		rc = hpsa_evaluate_tmf_status(h, c);
5653 		break;
5654 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5655 		rc = -1;
5656 		break;
5657 	default:
5658 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5659 			__func__, tagupper, taglower);
5660 		hpsa_scsi_interpret_error(h, c);
5661 		rc = -1;
5662 		break;
5663 	}
5664 	cmd_free(h, c);
5665 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5666 		__func__, tagupper, taglower);
5667 	return rc;
5668 }
5669 
5670 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5671 	struct CommandList *command_to_abort, int reply_queue)
5672 {
5673 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5674 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5675 	struct io_accel2_cmd *c2a =
5676 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5677 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5678 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5679 
5680 	/*
5681 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5682 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5683 	 * actually fits, and doesn't overrun the error info space.
5684 	 */
5685 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5686 			sizeof(struct io_accel2_cmd));
5687 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5688 			offsetof(struct hpsa_tmf_struct, error_len) +
5689 				sizeof(ac->error_len));
5690 
5691 	c->cmd_type = IOACCEL2_TMF;
5692 	c->scsi_cmd = SCSI_CMD_BUSY;
5693 
5694 	/* Adjust the DMA address to point to the accelerated command buffer */
5695 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5696 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5697 	BUG_ON(c->busaddr & 0x0000007F);
5698 
5699 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5700 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5701 	ac->reply_queue = reply_queue;
5702 	ac->tmf = IOACCEL2_TMF_ABORT;
5703 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5704 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5705 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5706 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5707 	ac->error_ptr = cpu_to_le64(c->busaddr +
5708 			offsetof(struct io_accel2_cmd, error_data));
5709 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5710 }
5711 
5712 /* ioaccel2 path firmware cannot handle abort task requests.
5713  * Change abort requests to physical target reset, and send to the
5714  * address of the physical disk used for the ioaccel 2 command.
5715  * Return 0 on success (IO_OK)
5716  *	 -1 on failure
5717  */
5718 
5719 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5720 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5721 {
5722 	int rc = IO_OK;
5723 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5724 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5725 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5726 	unsigned char *psa = &phys_scsi3addr[0];
5727 
5728 	/* Get a pointer to the hpsa logical device. */
5729 	scmd = abort->scsi_cmd;
5730 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5731 	if (dev == NULL) {
5732 		dev_warn(&h->pdev->dev,
5733 			"Cannot abort: no device pointer for command.\n");
5734 			return -1; /* not abortable */
5735 	}
5736 
5737 	if (h->raid_offload_debug > 0)
5738 		dev_info(&h->pdev->dev,
5739 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5740 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5741 			"Reset as abort",
5742 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5743 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5744 
5745 	if (!dev->offload_enabled) {
5746 		dev_warn(&h->pdev->dev,
5747 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5748 		return -1; /* not abortable */
5749 	}
5750 
5751 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5752 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5753 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5754 		return -1; /* not abortable */
5755 	}
5756 
5757 	/* send the reset */
5758 	if (h->raid_offload_debug > 0)
5759 		dev_info(&h->pdev->dev,
5760 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761 			psa[0], psa[1], psa[2], psa[3],
5762 			psa[4], psa[5], psa[6], psa[7]);
5763 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5764 	if (rc != 0) {
5765 		dev_warn(&h->pdev->dev,
5766 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5767 			psa[0], psa[1], psa[2], psa[3],
5768 			psa[4], psa[5], psa[6], psa[7]);
5769 		return rc; /* failed to reset */
5770 	}
5771 
5772 	/* wait for device to recover */
5773 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5774 		dev_warn(&h->pdev->dev,
5775 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5776 			psa[0], psa[1], psa[2], psa[3],
5777 			psa[4], psa[5], psa[6], psa[7]);
5778 		return -1;  /* failed to recover */
5779 	}
5780 
5781 	/* device recovered */
5782 	dev_info(&h->pdev->dev,
5783 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5784 		psa[0], psa[1], psa[2], psa[3],
5785 		psa[4], psa[5], psa[6], psa[7]);
5786 
5787 	return rc; /* success */
5788 }
5789 
5790 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5791 	struct CommandList *abort, int reply_queue)
5792 {
5793 	int rc = IO_OK;
5794 	struct CommandList *c;
5795 	__le32 taglower, tagupper;
5796 	struct hpsa_scsi_dev_t *dev;
5797 	struct io_accel2_cmd *c2;
5798 
5799 	dev = abort->scsi_cmd->device->hostdata;
5800 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5801 		return -1;
5802 
5803 	c = cmd_alloc(h);
5804 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5805 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5806 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5807 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5808 	dev_dbg(&h->pdev->dev,
5809 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5810 		__func__, tagupper, taglower);
5811 	/* no unmap needed here because no data xfer. */
5812 
5813 	dev_dbg(&h->pdev->dev,
5814 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5815 		__func__, tagupper, taglower, c2->error_data.serv_response);
5816 	switch (c2->error_data.serv_response) {
5817 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5818 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5819 		rc = 0;
5820 		break;
5821 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5822 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5823 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5824 		rc = -1;
5825 		break;
5826 	default:
5827 		dev_warn(&h->pdev->dev,
5828 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5829 			__func__, tagupper, taglower,
5830 			c2->error_data.serv_response);
5831 		rc = -1;
5832 	}
5833 	cmd_free(h, c);
5834 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5835 		tagupper, taglower);
5836 	return rc;
5837 }
5838 
5839 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5840 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5841 {
5842 	/*
5843 	 * ioccelerator mode 2 commands should be aborted via the
5844 	 * accelerated path, since RAID path is unaware of these commands,
5845 	 * but not all underlying firmware can handle abort TMF.
5846 	 * Change abort to physical device reset when abort TMF is unsupported.
5847 	 */
5848 	if (abort->cmd_type == CMD_IOACCEL2) {
5849 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5850 			dev->physical_device)
5851 			return hpsa_send_abort_ioaccel2(h, abort,
5852 						reply_queue);
5853 		else
5854 			return hpsa_send_reset_as_abort_ioaccel2(h,
5855 							dev->scsi3addr,
5856 							abort, reply_queue);
5857 	}
5858 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5859 }
5860 
5861 /* Find out which reply queue a command was meant to return on */
5862 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5863 					struct CommandList *c)
5864 {
5865 	if (c->cmd_type == CMD_IOACCEL2)
5866 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5867 	return c->Header.ReplyQueue;
5868 }
5869 
5870 /*
5871  * Limit concurrency of abort commands to prevent
5872  * over-subscription of commands
5873  */
5874 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5875 {
5876 #define ABORT_CMD_WAIT_MSECS 5000
5877 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5878 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5879 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5880 }
5881 
5882 /* Send an abort for the specified command.
5883  *	If the device and controller support it,
5884  *		send a task abort request.
5885  */
5886 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5887 {
5888 
5889 	int rc;
5890 	struct ctlr_info *h;
5891 	struct hpsa_scsi_dev_t *dev;
5892 	struct CommandList *abort; /* pointer to command to be aborted */
5893 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5894 	char msg[256];		/* For debug messaging. */
5895 	int ml = 0;
5896 	__le32 tagupper, taglower;
5897 	int refcount, reply_queue;
5898 
5899 	if (sc == NULL)
5900 		return FAILED;
5901 
5902 	if (sc->device == NULL)
5903 		return FAILED;
5904 
5905 	/* Find the controller of the command to be aborted */
5906 	h = sdev_to_hba(sc->device);
5907 	if (h == NULL)
5908 		return FAILED;
5909 
5910 	/* Find the device of the command to be aborted */
5911 	dev = sc->device->hostdata;
5912 	if (!dev) {
5913 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5914 				msg);
5915 		return FAILED;
5916 	}
5917 
5918 	/* If controller locked up, we can guarantee command won't complete */
5919 	if (lockup_detected(h)) {
5920 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5921 					"ABORT FAILED, lockup detected");
5922 		return FAILED;
5923 	}
5924 
5925 	/* This is a good time to check if controller lockup has occurred */
5926 	if (detect_controller_lockup(h)) {
5927 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5928 					"ABORT FAILED, new lockup detected");
5929 		return FAILED;
5930 	}
5931 
5932 	/* Check that controller supports some kind of task abort */
5933 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5934 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5935 		return FAILED;
5936 
5937 	memset(msg, 0, sizeof(msg));
5938 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5939 		h->scsi_host->host_no, sc->device->channel,
5940 		sc->device->id, sc->device->lun,
5941 		"Aborting command", sc);
5942 
5943 	/* Get SCSI command to be aborted */
5944 	abort = (struct CommandList *) sc->host_scribble;
5945 	if (abort == NULL) {
5946 		/* This can happen if the command already completed. */
5947 		return SUCCESS;
5948 	}
5949 	refcount = atomic_inc_return(&abort->refcount);
5950 	if (refcount == 1) { /* Command is done already. */
5951 		cmd_free(h, abort);
5952 		return SUCCESS;
5953 	}
5954 
5955 	/* Don't bother trying the abort if we know it won't work. */
5956 	if (abort->cmd_type != CMD_IOACCEL2 &&
5957 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5958 		cmd_free(h, abort);
5959 		return FAILED;
5960 	}
5961 
5962 	/*
5963 	 * Check that we're aborting the right command.
5964 	 * It's possible the CommandList already completed and got re-used.
5965 	 */
5966 	if (abort->scsi_cmd != sc) {
5967 		cmd_free(h, abort);
5968 		return SUCCESS;
5969 	}
5970 
5971 	abort->abort_pending = true;
5972 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5973 	reply_queue = hpsa_extract_reply_queue(h, abort);
5974 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5975 	as  = abort->scsi_cmd;
5976 	if (as != NULL)
5977 		ml += sprintf(msg+ml,
5978 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5979 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5980 			as->serial_number);
5981 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5982 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5983 
5984 	/*
5985 	 * Command is in flight, or possibly already completed
5986 	 * by the firmware (but not to the scsi mid layer) but we can't
5987 	 * distinguish which.  Send the abort down.
5988 	 */
5989 	if (wait_for_available_abort_cmd(h)) {
5990 		dev_warn(&h->pdev->dev,
5991 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5992 			msg);
5993 		cmd_free(h, abort);
5994 		return FAILED;
5995 	}
5996 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
5997 	atomic_inc(&h->abort_cmds_available);
5998 	wake_up_all(&h->abort_cmd_wait_queue);
5999 	if (rc != 0) {
6000 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6001 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6002 				"FAILED to abort command");
6003 		cmd_free(h, abort);
6004 		return FAILED;
6005 	}
6006 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6007 	wait_event(h->event_sync_wait_queue,
6008 		   abort->scsi_cmd != sc || lockup_detected(h));
6009 	cmd_free(h, abort);
6010 	return !lockup_detected(h) ? SUCCESS : FAILED;
6011 }
6012 
6013 /*
6014  * For operations with an associated SCSI command, a command block is allocated
6015  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6016  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6017  * the complement, although cmd_free() may be called instead.
6018  */
6019 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6020 					    struct scsi_cmnd *scmd)
6021 {
6022 	int idx = hpsa_get_cmd_index(scmd);
6023 	struct CommandList *c = h->cmd_pool + idx;
6024 
6025 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6026 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6027 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6028 		/* The index value comes from the block layer, so if it's out of
6029 		 * bounds, it's probably not our bug.
6030 		 */
6031 		BUG();
6032 	}
6033 
6034 	atomic_inc(&c->refcount);
6035 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6036 		/*
6037 		 * We expect that the SCSI layer will hand us a unique tag
6038 		 * value.  Thus, there should never be a collision here between
6039 		 * two requests...because if the selected command isn't idle
6040 		 * then someone is going to be very disappointed.
6041 		 */
6042 		dev_err(&h->pdev->dev,
6043 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6044 			idx);
6045 		if (c->scsi_cmd != NULL)
6046 			scsi_print_command(c->scsi_cmd);
6047 		scsi_print_command(scmd);
6048 	}
6049 
6050 	hpsa_cmd_partial_init(h, idx, c);
6051 	return c;
6052 }
6053 
6054 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6055 {
6056 	/*
6057 	 * Release our reference to the block.  We don't need to do anything
6058 	 * else to free it, because it is accessed by index.  (There's no point
6059 	 * in checking the result of the decrement, since we cannot guarantee
6060 	 * that there isn't a concurrent abort which is also accessing it.)
6061 	 */
6062 	(void)atomic_dec(&c->refcount);
6063 }
6064 
6065 /*
6066  * For operations that cannot sleep, a command block is allocated at init,
6067  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6068  * which ones are free or in use.  Lock must be held when calling this.
6069  * cmd_free() is the complement.
6070  * This function never gives up and returns NULL.  If it hangs,
6071  * another thread must call cmd_free() to free some tags.
6072  */
6073 
6074 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6075 {
6076 	struct CommandList *c;
6077 	int refcount, i;
6078 	int offset = 0;
6079 
6080 	/*
6081 	 * There is some *extremely* small but non-zero chance that that
6082 	 * multiple threads could get in here, and one thread could
6083 	 * be scanning through the list of bits looking for a free
6084 	 * one, but the free ones are always behind him, and other
6085 	 * threads sneak in behind him and eat them before he can
6086 	 * get to them, so that while there is always a free one, a
6087 	 * very unlucky thread might be starved anyway, never able to
6088 	 * beat the other threads.  In reality, this happens so
6089 	 * infrequently as to be indistinguishable from never.
6090 	 *
6091 	 * Note that we start allocating commands before the SCSI host structure
6092 	 * is initialized.  Since the search starts at bit zero, this
6093 	 * all works, since we have at least one command structure available;
6094 	 * however, it means that the structures with the low indexes have to be
6095 	 * reserved for driver-initiated requests, while requests from the block
6096 	 * layer will use the higher indexes.
6097 	 */
6098 
6099 	for (;;) {
6100 		i = find_next_zero_bit(h->cmd_pool_bits,
6101 					HPSA_NRESERVED_CMDS,
6102 					offset);
6103 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6104 			offset = 0;
6105 			continue;
6106 		}
6107 		c = h->cmd_pool + i;
6108 		refcount = atomic_inc_return(&c->refcount);
6109 		if (unlikely(refcount > 1)) {
6110 			cmd_free(h, c); /* already in use */
6111 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6112 			continue;
6113 		}
6114 		set_bit(i & (BITS_PER_LONG - 1),
6115 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6116 		break; /* it's ours now. */
6117 	}
6118 	hpsa_cmd_partial_init(h, i, c);
6119 	return c;
6120 }
6121 
6122 /*
6123  * This is the complementary operation to cmd_alloc().  Note, however, in some
6124  * corner cases it may also be used to free blocks allocated by
6125  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6126  * the clear-bit is harmless.
6127  */
6128 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6129 {
6130 	if (atomic_dec_and_test(&c->refcount)) {
6131 		int i;
6132 
6133 		i = c - h->cmd_pool;
6134 		clear_bit(i & (BITS_PER_LONG - 1),
6135 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6136 	}
6137 }
6138 
6139 #ifdef CONFIG_COMPAT
6140 
6141 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6142 	void __user *arg)
6143 {
6144 	IOCTL32_Command_struct __user *arg32 =
6145 	    (IOCTL32_Command_struct __user *) arg;
6146 	IOCTL_Command_struct arg64;
6147 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6148 	int err;
6149 	u32 cp;
6150 
6151 	memset(&arg64, 0, sizeof(arg64));
6152 	err = 0;
6153 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6154 			   sizeof(arg64.LUN_info));
6155 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6156 			   sizeof(arg64.Request));
6157 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6158 			   sizeof(arg64.error_info));
6159 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6160 	err |= get_user(cp, &arg32->buf);
6161 	arg64.buf = compat_ptr(cp);
6162 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6163 
6164 	if (err)
6165 		return -EFAULT;
6166 
6167 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6168 	if (err)
6169 		return err;
6170 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6171 			 sizeof(arg32->error_info));
6172 	if (err)
6173 		return -EFAULT;
6174 	return err;
6175 }
6176 
6177 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6178 	int cmd, void __user *arg)
6179 {
6180 	BIG_IOCTL32_Command_struct __user *arg32 =
6181 	    (BIG_IOCTL32_Command_struct __user *) arg;
6182 	BIG_IOCTL_Command_struct arg64;
6183 	BIG_IOCTL_Command_struct __user *p =
6184 	    compat_alloc_user_space(sizeof(arg64));
6185 	int err;
6186 	u32 cp;
6187 
6188 	memset(&arg64, 0, sizeof(arg64));
6189 	err = 0;
6190 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6191 			   sizeof(arg64.LUN_info));
6192 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6193 			   sizeof(arg64.Request));
6194 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6195 			   sizeof(arg64.error_info));
6196 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6197 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6198 	err |= get_user(cp, &arg32->buf);
6199 	arg64.buf = compat_ptr(cp);
6200 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6201 
6202 	if (err)
6203 		return -EFAULT;
6204 
6205 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6206 	if (err)
6207 		return err;
6208 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6209 			 sizeof(arg32->error_info));
6210 	if (err)
6211 		return -EFAULT;
6212 	return err;
6213 }
6214 
6215 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6216 {
6217 	switch (cmd) {
6218 	case CCISS_GETPCIINFO:
6219 	case CCISS_GETINTINFO:
6220 	case CCISS_SETINTINFO:
6221 	case CCISS_GETNODENAME:
6222 	case CCISS_SETNODENAME:
6223 	case CCISS_GETHEARTBEAT:
6224 	case CCISS_GETBUSTYPES:
6225 	case CCISS_GETFIRMVER:
6226 	case CCISS_GETDRIVVER:
6227 	case CCISS_REVALIDVOLS:
6228 	case CCISS_DEREGDISK:
6229 	case CCISS_REGNEWDISK:
6230 	case CCISS_REGNEWD:
6231 	case CCISS_RESCANDISK:
6232 	case CCISS_GETLUNINFO:
6233 		return hpsa_ioctl(dev, cmd, arg);
6234 
6235 	case CCISS_PASSTHRU32:
6236 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6237 	case CCISS_BIG_PASSTHRU32:
6238 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6239 
6240 	default:
6241 		return -ENOIOCTLCMD;
6242 	}
6243 }
6244 #endif
6245 
6246 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6247 {
6248 	struct hpsa_pci_info pciinfo;
6249 
6250 	if (!argp)
6251 		return -EINVAL;
6252 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6253 	pciinfo.bus = h->pdev->bus->number;
6254 	pciinfo.dev_fn = h->pdev->devfn;
6255 	pciinfo.board_id = h->board_id;
6256 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6257 		return -EFAULT;
6258 	return 0;
6259 }
6260 
6261 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6262 {
6263 	DriverVer_type DriverVer;
6264 	unsigned char vmaj, vmin, vsubmin;
6265 	int rc;
6266 
6267 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6268 		&vmaj, &vmin, &vsubmin);
6269 	if (rc != 3) {
6270 		dev_info(&h->pdev->dev, "driver version string '%s' "
6271 			"unrecognized.", HPSA_DRIVER_VERSION);
6272 		vmaj = 0;
6273 		vmin = 0;
6274 		vsubmin = 0;
6275 	}
6276 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6277 	if (!argp)
6278 		return -EINVAL;
6279 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6280 		return -EFAULT;
6281 	return 0;
6282 }
6283 
6284 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6285 {
6286 	IOCTL_Command_struct iocommand;
6287 	struct CommandList *c;
6288 	char *buff = NULL;
6289 	u64 temp64;
6290 	int rc = 0;
6291 
6292 	if (!argp)
6293 		return -EINVAL;
6294 	if (!capable(CAP_SYS_RAWIO))
6295 		return -EPERM;
6296 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6297 		return -EFAULT;
6298 	if ((iocommand.buf_size < 1) &&
6299 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6300 		return -EINVAL;
6301 	}
6302 	if (iocommand.buf_size > 0) {
6303 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6304 		if (buff == NULL)
6305 			return -ENOMEM;
6306 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6307 			/* Copy the data into the buffer we created */
6308 			if (copy_from_user(buff, iocommand.buf,
6309 				iocommand.buf_size)) {
6310 				rc = -EFAULT;
6311 				goto out_kfree;
6312 			}
6313 		} else {
6314 			memset(buff, 0, iocommand.buf_size);
6315 		}
6316 	}
6317 	c = cmd_alloc(h);
6318 
6319 	/* Fill in the command type */
6320 	c->cmd_type = CMD_IOCTL_PEND;
6321 	c->scsi_cmd = SCSI_CMD_BUSY;
6322 	/* Fill in Command Header */
6323 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6324 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6325 		c->Header.SGList = 1;
6326 		c->Header.SGTotal = cpu_to_le16(1);
6327 	} else	{ /* no buffers to fill */
6328 		c->Header.SGList = 0;
6329 		c->Header.SGTotal = cpu_to_le16(0);
6330 	}
6331 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6332 
6333 	/* Fill in Request block */
6334 	memcpy(&c->Request, &iocommand.Request,
6335 		sizeof(c->Request));
6336 
6337 	/* Fill in the scatter gather information */
6338 	if (iocommand.buf_size > 0) {
6339 		temp64 = pci_map_single(h->pdev, buff,
6340 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6341 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6342 			c->SG[0].Addr = cpu_to_le64(0);
6343 			c->SG[0].Len = cpu_to_le32(0);
6344 			rc = -ENOMEM;
6345 			goto out;
6346 		}
6347 		c->SG[0].Addr = cpu_to_le64(temp64);
6348 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6349 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6350 	}
6351 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6352 	if (iocommand.buf_size > 0)
6353 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6354 	check_ioctl_unit_attention(h, c);
6355 	if (rc) {
6356 		rc = -EIO;
6357 		goto out;
6358 	}
6359 
6360 	/* Copy the error information out */
6361 	memcpy(&iocommand.error_info, c->err_info,
6362 		sizeof(iocommand.error_info));
6363 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6364 		rc = -EFAULT;
6365 		goto out;
6366 	}
6367 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6368 		iocommand.buf_size > 0) {
6369 		/* Copy the data out of the buffer we created */
6370 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6371 			rc = -EFAULT;
6372 			goto out;
6373 		}
6374 	}
6375 out:
6376 	cmd_free(h, c);
6377 out_kfree:
6378 	kfree(buff);
6379 	return rc;
6380 }
6381 
6382 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6383 {
6384 	BIG_IOCTL_Command_struct *ioc;
6385 	struct CommandList *c;
6386 	unsigned char **buff = NULL;
6387 	int *buff_size = NULL;
6388 	u64 temp64;
6389 	BYTE sg_used = 0;
6390 	int status = 0;
6391 	u32 left;
6392 	u32 sz;
6393 	BYTE __user *data_ptr;
6394 
6395 	if (!argp)
6396 		return -EINVAL;
6397 	if (!capable(CAP_SYS_RAWIO))
6398 		return -EPERM;
6399 	ioc = (BIG_IOCTL_Command_struct *)
6400 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6401 	if (!ioc) {
6402 		status = -ENOMEM;
6403 		goto cleanup1;
6404 	}
6405 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6406 		status = -EFAULT;
6407 		goto cleanup1;
6408 	}
6409 	if ((ioc->buf_size < 1) &&
6410 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6411 		status = -EINVAL;
6412 		goto cleanup1;
6413 	}
6414 	/* Check kmalloc limits  using all SGs */
6415 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6416 		status = -EINVAL;
6417 		goto cleanup1;
6418 	}
6419 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6420 		status = -EINVAL;
6421 		goto cleanup1;
6422 	}
6423 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6424 	if (!buff) {
6425 		status = -ENOMEM;
6426 		goto cleanup1;
6427 	}
6428 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6429 	if (!buff_size) {
6430 		status = -ENOMEM;
6431 		goto cleanup1;
6432 	}
6433 	left = ioc->buf_size;
6434 	data_ptr = ioc->buf;
6435 	while (left) {
6436 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6437 		buff_size[sg_used] = sz;
6438 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6439 		if (buff[sg_used] == NULL) {
6440 			status = -ENOMEM;
6441 			goto cleanup1;
6442 		}
6443 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6444 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6445 				status = -EFAULT;
6446 				goto cleanup1;
6447 			}
6448 		} else
6449 			memset(buff[sg_used], 0, sz);
6450 		left -= sz;
6451 		data_ptr += sz;
6452 		sg_used++;
6453 	}
6454 	c = cmd_alloc(h);
6455 
6456 	c->cmd_type = CMD_IOCTL_PEND;
6457 	c->scsi_cmd = SCSI_CMD_BUSY;
6458 	c->Header.ReplyQueue = 0;
6459 	c->Header.SGList = (u8) sg_used;
6460 	c->Header.SGTotal = cpu_to_le16(sg_used);
6461 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6462 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6463 	if (ioc->buf_size > 0) {
6464 		int i;
6465 		for (i = 0; i < sg_used; i++) {
6466 			temp64 = pci_map_single(h->pdev, buff[i],
6467 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6468 			if (dma_mapping_error(&h->pdev->dev,
6469 							(dma_addr_t) temp64)) {
6470 				c->SG[i].Addr = cpu_to_le64(0);
6471 				c->SG[i].Len = cpu_to_le32(0);
6472 				hpsa_pci_unmap(h->pdev, c, i,
6473 					PCI_DMA_BIDIRECTIONAL);
6474 				status = -ENOMEM;
6475 				goto cleanup0;
6476 			}
6477 			c->SG[i].Addr = cpu_to_le64(temp64);
6478 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6479 			c->SG[i].Ext = cpu_to_le32(0);
6480 		}
6481 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6482 	}
6483 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6484 	if (sg_used)
6485 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6486 	check_ioctl_unit_attention(h, c);
6487 	if (status) {
6488 		status = -EIO;
6489 		goto cleanup0;
6490 	}
6491 
6492 	/* Copy the error information out */
6493 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6494 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6495 		status = -EFAULT;
6496 		goto cleanup0;
6497 	}
6498 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6499 		int i;
6500 
6501 		/* Copy the data out of the buffer we created */
6502 		BYTE __user *ptr = ioc->buf;
6503 		for (i = 0; i < sg_used; i++) {
6504 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6505 				status = -EFAULT;
6506 				goto cleanup0;
6507 			}
6508 			ptr += buff_size[i];
6509 		}
6510 	}
6511 	status = 0;
6512 cleanup0:
6513 	cmd_free(h, c);
6514 cleanup1:
6515 	if (buff) {
6516 		int i;
6517 
6518 		for (i = 0; i < sg_used; i++)
6519 			kfree(buff[i]);
6520 		kfree(buff);
6521 	}
6522 	kfree(buff_size);
6523 	kfree(ioc);
6524 	return status;
6525 }
6526 
6527 static void check_ioctl_unit_attention(struct ctlr_info *h,
6528 	struct CommandList *c)
6529 {
6530 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6531 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6532 		(void) check_for_unit_attention(h, c);
6533 }
6534 
6535 /*
6536  * ioctl
6537  */
6538 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6539 {
6540 	struct ctlr_info *h;
6541 	void __user *argp = (void __user *)arg;
6542 	int rc;
6543 
6544 	h = sdev_to_hba(dev);
6545 
6546 	switch (cmd) {
6547 	case CCISS_DEREGDISK:
6548 	case CCISS_REGNEWDISK:
6549 	case CCISS_REGNEWD:
6550 		hpsa_scan_start(h->scsi_host);
6551 		return 0;
6552 	case CCISS_GETPCIINFO:
6553 		return hpsa_getpciinfo_ioctl(h, argp);
6554 	case CCISS_GETDRIVVER:
6555 		return hpsa_getdrivver_ioctl(h, argp);
6556 	case CCISS_PASSTHRU:
6557 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558 			return -EAGAIN;
6559 		rc = hpsa_passthru_ioctl(h, argp);
6560 		atomic_inc(&h->passthru_cmds_avail);
6561 		return rc;
6562 	case CCISS_BIG_PASSTHRU:
6563 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6564 			return -EAGAIN;
6565 		rc = hpsa_big_passthru_ioctl(h, argp);
6566 		atomic_inc(&h->passthru_cmds_avail);
6567 		return rc;
6568 	default:
6569 		return -ENOTTY;
6570 	}
6571 }
6572 
6573 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6574 				u8 reset_type)
6575 {
6576 	struct CommandList *c;
6577 
6578 	c = cmd_alloc(h);
6579 
6580 	/* fill_cmd can't fail here, no data buffer to map */
6581 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6582 		RAID_CTLR_LUNID, TYPE_MSG);
6583 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6584 	c->waiting = NULL;
6585 	enqueue_cmd_and_start_io(h, c);
6586 	/* Don't wait for completion, the reset won't complete.  Don't free
6587 	 * the command either.  This is the last command we will send before
6588 	 * re-initializing everything, so it doesn't matter and won't leak.
6589 	 */
6590 	return;
6591 }
6592 
6593 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6594 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6595 	int cmd_type)
6596 {
6597 	int pci_dir = XFER_NONE;
6598 	u64 tag; /* for commands to be aborted */
6599 
6600 	c->cmd_type = CMD_IOCTL_PEND;
6601 	c->scsi_cmd = SCSI_CMD_BUSY;
6602 	c->Header.ReplyQueue = 0;
6603 	if (buff != NULL && size > 0) {
6604 		c->Header.SGList = 1;
6605 		c->Header.SGTotal = cpu_to_le16(1);
6606 	} else {
6607 		c->Header.SGList = 0;
6608 		c->Header.SGTotal = cpu_to_le16(0);
6609 	}
6610 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6611 
6612 	if (cmd_type == TYPE_CMD) {
6613 		switch (cmd) {
6614 		case HPSA_INQUIRY:
6615 			/* are we trying to read a vital product page */
6616 			if (page_code & VPD_PAGE) {
6617 				c->Request.CDB[1] = 0x01;
6618 				c->Request.CDB[2] = (page_code & 0xff);
6619 			}
6620 			c->Request.CDBLen = 6;
6621 			c->Request.type_attr_dir =
6622 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6623 			c->Request.Timeout = 0;
6624 			c->Request.CDB[0] = HPSA_INQUIRY;
6625 			c->Request.CDB[4] = size & 0xFF;
6626 			break;
6627 		case HPSA_REPORT_LOG:
6628 		case HPSA_REPORT_PHYS:
6629 			/* Talking to controller so It's a physical command
6630 			   mode = 00 target = 0.  Nothing to write.
6631 			 */
6632 			c->Request.CDBLen = 12;
6633 			c->Request.type_attr_dir =
6634 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6635 			c->Request.Timeout = 0;
6636 			c->Request.CDB[0] = cmd;
6637 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6638 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6639 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6640 			c->Request.CDB[9] = size & 0xFF;
6641 			break;
6642 		case BMIC_SENSE_DIAG_OPTIONS:
6643 			c->Request.CDBLen = 16;
6644 			c->Request.type_attr_dir =
6645 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6646 			c->Request.Timeout = 0;
6647 			/* Spec says this should be BMIC_WRITE */
6648 			c->Request.CDB[0] = BMIC_READ;
6649 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6650 			break;
6651 		case BMIC_SET_DIAG_OPTIONS:
6652 			c->Request.CDBLen = 16;
6653 			c->Request.type_attr_dir =
6654 					TYPE_ATTR_DIR(cmd_type,
6655 						ATTR_SIMPLE, XFER_WRITE);
6656 			c->Request.Timeout = 0;
6657 			c->Request.CDB[0] = BMIC_WRITE;
6658 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6659 			break;
6660 		case HPSA_CACHE_FLUSH:
6661 			c->Request.CDBLen = 12;
6662 			c->Request.type_attr_dir =
6663 					TYPE_ATTR_DIR(cmd_type,
6664 						ATTR_SIMPLE, XFER_WRITE);
6665 			c->Request.Timeout = 0;
6666 			c->Request.CDB[0] = BMIC_WRITE;
6667 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6668 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6669 			c->Request.CDB[8] = size & 0xFF;
6670 			break;
6671 		case TEST_UNIT_READY:
6672 			c->Request.CDBLen = 6;
6673 			c->Request.type_attr_dir =
6674 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6675 			c->Request.Timeout = 0;
6676 			break;
6677 		case HPSA_GET_RAID_MAP:
6678 			c->Request.CDBLen = 12;
6679 			c->Request.type_attr_dir =
6680 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6681 			c->Request.Timeout = 0;
6682 			c->Request.CDB[0] = HPSA_CISS_READ;
6683 			c->Request.CDB[1] = cmd;
6684 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6685 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6686 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6687 			c->Request.CDB[9] = size & 0xFF;
6688 			break;
6689 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6690 			c->Request.CDBLen = 10;
6691 			c->Request.type_attr_dir =
6692 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693 			c->Request.Timeout = 0;
6694 			c->Request.CDB[0] = BMIC_READ;
6695 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6696 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6697 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6698 			break;
6699 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6700 			c->Request.CDBLen = 10;
6701 			c->Request.type_attr_dir =
6702 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6703 			c->Request.Timeout = 0;
6704 			c->Request.CDB[0] = BMIC_READ;
6705 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6706 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6707 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6708 			break;
6709 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6710 			c->Request.CDBLen = 10;
6711 			c->Request.type_attr_dir =
6712 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6713 			c->Request.Timeout = 0;
6714 			c->Request.CDB[0] = BMIC_READ;
6715 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6716 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6717 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6718 			break;
6719 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6720 			c->Request.CDBLen = 10;
6721 			c->Request.type_attr_dir =
6722 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6723 			c->Request.Timeout = 0;
6724 			c->Request.CDB[0] = BMIC_READ;
6725 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6726 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6727 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6728 			break;
6729 		case BMIC_IDENTIFY_CONTROLLER:
6730 			c->Request.CDBLen = 10;
6731 			c->Request.type_attr_dir =
6732 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 			c->Request.Timeout = 0;
6734 			c->Request.CDB[0] = BMIC_READ;
6735 			c->Request.CDB[1] = 0;
6736 			c->Request.CDB[2] = 0;
6737 			c->Request.CDB[3] = 0;
6738 			c->Request.CDB[4] = 0;
6739 			c->Request.CDB[5] = 0;
6740 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6741 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6742 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6743 			c->Request.CDB[9] = 0;
6744 			break;
6745 		default:
6746 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6747 			BUG();
6748 			return -1;
6749 		}
6750 	} else if (cmd_type == TYPE_MSG) {
6751 		switch (cmd) {
6752 
6753 		case  HPSA_PHYS_TARGET_RESET:
6754 			c->Request.CDBLen = 16;
6755 			c->Request.type_attr_dir =
6756 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6757 			c->Request.Timeout = 0; /* Don't time out */
6758 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6759 			c->Request.CDB[0] = HPSA_RESET;
6760 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6761 			/* Physical target reset needs no control bytes 4-7*/
6762 			c->Request.CDB[4] = 0x00;
6763 			c->Request.CDB[5] = 0x00;
6764 			c->Request.CDB[6] = 0x00;
6765 			c->Request.CDB[7] = 0x00;
6766 			break;
6767 		case  HPSA_DEVICE_RESET_MSG:
6768 			c->Request.CDBLen = 16;
6769 			c->Request.type_attr_dir =
6770 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6771 			c->Request.Timeout = 0; /* Don't time out */
6772 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6773 			c->Request.CDB[0] =  cmd;
6774 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6775 			/* If bytes 4-7 are zero, it means reset the */
6776 			/* LunID device */
6777 			c->Request.CDB[4] = 0x00;
6778 			c->Request.CDB[5] = 0x00;
6779 			c->Request.CDB[6] = 0x00;
6780 			c->Request.CDB[7] = 0x00;
6781 			break;
6782 		case  HPSA_ABORT_MSG:
6783 			memcpy(&tag, buff, sizeof(tag));
6784 			dev_dbg(&h->pdev->dev,
6785 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6786 				tag, c->Header.tag);
6787 			c->Request.CDBLen = 16;
6788 			c->Request.type_attr_dir =
6789 					TYPE_ATTR_DIR(cmd_type,
6790 						ATTR_SIMPLE, XFER_WRITE);
6791 			c->Request.Timeout = 0; /* Don't time out */
6792 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6793 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6794 			c->Request.CDB[2] = 0x00; /* reserved */
6795 			c->Request.CDB[3] = 0x00; /* reserved */
6796 			/* Tag to abort goes in CDB[4]-CDB[11] */
6797 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6798 			c->Request.CDB[12] = 0x00; /* reserved */
6799 			c->Request.CDB[13] = 0x00; /* reserved */
6800 			c->Request.CDB[14] = 0x00; /* reserved */
6801 			c->Request.CDB[15] = 0x00; /* reserved */
6802 		break;
6803 		default:
6804 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6805 				cmd);
6806 			BUG();
6807 		}
6808 	} else {
6809 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6810 		BUG();
6811 	}
6812 
6813 	switch (GET_DIR(c->Request.type_attr_dir)) {
6814 	case XFER_READ:
6815 		pci_dir = PCI_DMA_FROMDEVICE;
6816 		break;
6817 	case XFER_WRITE:
6818 		pci_dir = PCI_DMA_TODEVICE;
6819 		break;
6820 	case XFER_NONE:
6821 		pci_dir = PCI_DMA_NONE;
6822 		break;
6823 	default:
6824 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6825 	}
6826 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6827 		return -1;
6828 	return 0;
6829 }
6830 
6831 /*
6832  * Map (physical) PCI mem into (virtual) kernel space
6833  */
6834 static void __iomem *remap_pci_mem(ulong base, ulong size)
6835 {
6836 	ulong page_base = ((ulong) base) & PAGE_MASK;
6837 	ulong page_offs = ((ulong) base) - page_base;
6838 	void __iomem *page_remapped = ioremap_nocache(page_base,
6839 		page_offs + size);
6840 
6841 	return page_remapped ? (page_remapped + page_offs) : NULL;
6842 }
6843 
6844 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6845 {
6846 	return h->access.command_completed(h, q);
6847 }
6848 
6849 static inline bool interrupt_pending(struct ctlr_info *h)
6850 {
6851 	return h->access.intr_pending(h);
6852 }
6853 
6854 static inline long interrupt_not_for_us(struct ctlr_info *h)
6855 {
6856 	return (h->access.intr_pending(h) == 0) ||
6857 		(h->interrupts_enabled == 0);
6858 }
6859 
6860 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6861 	u32 raw_tag)
6862 {
6863 	if (unlikely(tag_index >= h->nr_cmds)) {
6864 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6865 		return 1;
6866 	}
6867 	return 0;
6868 }
6869 
6870 static inline void finish_cmd(struct CommandList *c)
6871 {
6872 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6873 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6874 			|| c->cmd_type == CMD_IOACCEL2))
6875 		complete_scsi_command(c);
6876 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6877 		complete(c->waiting);
6878 }
6879 
6880 /* process completion of an indexed ("direct lookup") command */
6881 static inline void process_indexed_cmd(struct ctlr_info *h,
6882 	u32 raw_tag)
6883 {
6884 	u32 tag_index;
6885 	struct CommandList *c;
6886 
6887 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6888 	if (!bad_tag(h, tag_index, raw_tag)) {
6889 		c = h->cmd_pool + tag_index;
6890 		finish_cmd(c);
6891 	}
6892 }
6893 
6894 /* Some controllers, like p400, will give us one interrupt
6895  * after a soft reset, even if we turned interrupts off.
6896  * Only need to check for this in the hpsa_xxx_discard_completions
6897  * functions.
6898  */
6899 static int ignore_bogus_interrupt(struct ctlr_info *h)
6900 {
6901 	if (likely(!reset_devices))
6902 		return 0;
6903 
6904 	if (likely(h->interrupts_enabled))
6905 		return 0;
6906 
6907 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6908 		"(known firmware bug.)  Ignoring.\n");
6909 
6910 	return 1;
6911 }
6912 
6913 /*
6914  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6915  * Relies on (h-q[x] == x) being true for x such that
6916  * 0 <= x < MAX_REPLY_QUEUES.
6917  */
6918 static struct ctlr_info *queue_to_hba(u8 *queue)
6919 {
6920 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6921 }
6922 
6923 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6924 {
6925 	struct ctlr_info *h = queue_to_hba(queue);
6926 	u8 q = *(u8 *) queue;
6927 	u32 raw_tag;
6928 
6929 	if (ignore_bogus_interrupt(h))
6930 		return IRQ_NONE;
6931 
6932 	if (interrupt_not_for_us(h))
6933 		return IRQ_NONE;
6934 	h->last_intr_timestamp = get_jiffies_64();
6935 	while (interrupt_pending(h)) {
6936 		raw_tag = get_next_completion(h, q);
6937 		while (raw_tag != FIFO_EMPTY)
6938 			raw_tag = next_command(h, q);
6939 	}
6940 	return IRQ_HANDLED;
6941 }
6942 
6943 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6944 {
6945 	struct ctlr_info *h = queue_to_hba(queue);
6946 	u32 raw_tag;
6947 	u8 q = *(u8 *) queue;
6948 
6949 	if (ignore_bogus_interrupt(h))
6950 		return IRQ_NONE;
6951 
6952 	h->last_intr_timestamp = get_jiffies_64();
6953 	raw_tag = get_next_completion(h, q);
6954 	while (raw_tag != FIFO_EMPTY)
6955 		raw_tag = next_command(h, q);
6956 	return IRQ_HANDLED;
6957 }
6958 
6959 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6960 {
6961 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6962 	u32 raw_tag;
6963 	u8 q = *(u8 *) queue;
6964 
6965 	if (interrupt_not_for_us(h))
6966 		return IRQ_NONE;
6967 	h->last_intr_timestamp = get_jiffies_64();
6968 	while (interrupt_pending(h)) {
6969 		raw_tag = get_next_completion(h, q);
6970 		while (raw_tag != FIFO_EMPTY) {
6971 			process_indexed_cmd(h, raw_tag);
6972 			raw_tag = next_command(h, q);
6973 		}
6974 	}
6975 	return IRQ_HANDLED;
6976 }
6977 
6978 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6979 {
6980 	struct ctlr_info *h = queue_to_hba(queue);
6981 	u32 raw_tag;
6982 	u8 q = *(u8 *) queue;
6983 
6984 	h->last_intr_timestamp = get_jiffies_64();
6985 	raw_tag = get_next_completion(h, q);
6986 	while (raw_tag != FIFO_EMPTY) {
6987 		process_indexed_cmd(h, raw_tag);
6988 		raw_tag = next_command(h, q);
6989 	}
6990 	return IRQ_HANDLED;
6991 }
6992 
6993 /* Send a message CDB to the firmware. Careful, this only works
6994  * in simple mode, not performant mode due to the tag lookup.
6995  * We only ever use this immediately after a controller reset.
6996  */
6997 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6998 			unsigned char type)
6999 {
7000 	struct Command {
7001 		struct CommandListHeader CommandHeader;
7002 		struct RequestBlock Request;
7003 		struct ErrDescriptor ErrorDescriptor;
7004 	};
7005 	struct Command *cmd;
7006 	static const size_t cmd_sz = sizeof(*cmd) +
7007 					sizeof(cmd->ErrorDescriptor);
7008 	dma_addr_t paddr64;
7009 	__le32 paddr32;
7010 	u32 tag;
7011 	void __iomem *vaddr;
7012 	int i, err;
7013 
7014 	vaddr = pci_ioremap_bar(pdev, 0);
7015 	if (vaddr == NULL)
7016 		return -ENOMEM;
7017 
7018 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7019 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7020 	 * memory.
7021 	 */
7022 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7023 	if (err) {
7024 		iounmap(vaddr);
7025 		return err;
7026 	}
7027 
7028 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7029 	if (cmd == NULL) {
7030 		iounmap(vaddr);
7031 		return -ENOMEM;
7032 	}
7033 
7034 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7035 	 * although there's no guarantee, we assume that the address is at
7036 	 * least 4-byte aligned (most likely, it's page-aligned).
7037 	 */
7038 	paddr32 = cpu_to_le32(paddr64);
7039 
7040 	cmd->CommandHeader.ReplyQueue = 0;
7041 	cmd->CommandHeader.SGList = 0;
7042 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7043 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7044 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7045 
7046 	cmd->Request.CDBLen = 16;
7047 	cmd->Request.type_attr_dir =
7048 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7049 	cmd->Request.Timeout = 0; /* Don't time out */
7050 	cmd->Request.CDB[0] = opcode;
7051 	cmd->Request.CDB[1] = type;
7052 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7053 	cmd->ErrorDescriptor.Addr =
7054 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7055 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7056 
7057 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7058 
7059 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7060 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7061 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7062 			break;
7063 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7064 	}
7065 
7066 	iounmap(vaddr);
7067 
7068 	/* we leak the DMA buffer here ... no choice since the controller could
7069 	 *  still complete the command.
7070 	 */
7071 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7072 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7073 			opcode, type);
7074 		return -ETIMEDOUT;
7075 	}
7076 
7077 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7078 
7079 	if (tag & HPSA_ERROR_BIT) {
7080 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7081 			opcode, type);
7082 		return -EIO;
7083 	}
7084 
7085 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7086 		opcode, type);
7087 	return 0;
7088 }
7089 
7090 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7091 
7092 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7093 	void __iomem *vaddr, u32 use_doorbell)
7094 {
7095 
7096 	if (use_doorbell) {
7097 		/* For everything after the P600, the PCI power state method
7098 		 * of resetting the controller doesn't work, so we have this
7099 		 * other way using the doorbell register.
7100 		 */
7101 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7102 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7103 
7104 		/* PMC hardware guys tell us we need a 10 second delay after
7105 		 * doorbell reset and before any attempt to talk to the board
7106 		 * at all to ensure that this actually works and doesn't fall
7107 		 * over in some weird corner cases.
7108 		 */
7109 		msleep(10000);
7110 	} else { /* Try to do it the PCI power state way */
7111 
7112 		/* Quoting from the Open CISS Specification: "The Power
7113 		 * Management Control/Status Register (CSR) controls the power
7114 		 * state of the device.  The normal operating state is D0,
7115 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7116 		 * the controller, place the interface device in D3 then to D0,
7117 		 * this causes a secondary PCI reset which will reset the
7118 		 * controller." */
7119 
7120 		int rc = 0;
7121 
7122 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7123 
7124 		/* enter the D3hot power management state */
7125 		rc = pci_set_power_state(pdev, PCI_D3hot);
7126 		if (rc)
7127 			return rc;
7128 
7129 		msleep(500);
7130 
7131 		/* enter the D0 power management state */
7132 		rc = pci_set_power_state(pdev, PCI_D0);
7133 		if (rc)
7134 			return rc;
7135 
7136 		/*
7137 		 * The P600 requires a small delay when changing states.
7138 		 * Otherwise we may think the board did not reset and we bail.
7139 		 * This for kdump only and is particular to the P600.
7140 		 */
7141 		msleep(500);
7142 	}
7143 	return 0;
7144 }
7145 
7146 static void init_driver_version(char *driver_version, int len)
7147 {
7148 	memset(driver_version, 0, len);
7149 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7150 }
7151 
7152 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7153 {
7154 	char *driver_version;
7155 	int i, size = sizeof(cfgtable->driver_version);
7156 
7157 	driver_version = kmalloc(size, GFP_KERNEL);
7158 	if (!driver_version)
7159 		return -ENOMEM;
7160 
7161 	init_driver_version(driver_version, size);
7162 	for (i = 0; i < size; i++)
7163 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7164 	kfree(driver_version);
7165 	return 0;
7166 }
7167 
7168 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7169 					  unsigned char *driver_ver)
7170 {
7171 	int i;
7172 
7173 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7174 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7175 }
7176 
7177 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7178 {
7179 
7180 	char *driver_ver, *old_driver_ver;
7181 	int rc, size = sizeof(cfgtable->driver_version);
7182 
7183 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7184 	if (!old_driver_ver)
7185 		return -ENOMEM;
7186 	driver_ver = old_driver_ver + size;
7187 
7188 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7189 	 * should have been changed, otherwise we know the reset failed.
7190 	 */
7191 	init_driver_version(old_driver_ver, size);
7192 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7193 	rc = !memcmp(driver_ver, old_driver_ver, size);
7194 	kfree(old_driver_ver);
7195 	return rc;
7196 }
7197 /* This does a hard reset of the controller using PCI power management
7198  * states or the using the doorbell register.
7199  */
7200 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7201 {
7202 	u64 cfg_offset;
7203 	u32 cfg_base_addr;
7204 	u64 cfg_base_addr_index;
7205 	void __iomem *vaddr;
7206 	unsigned long paddr;
7207 	u32 misc_fw_support;
7208 	int rc;
7209 	struct CfgTable __iomem *cfgtable;
7210 	u32 use_doorbell;
7211 	u16 command_register;
7212 
7213 	/* For controllers as old as the P600, this is very nearly
7214 	 * the same thing as
7215 	 *
7216 	 * pci_save_state(pci_dev);
7217 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7218 	 * pci_set_power_state(pci_dev, PCI_D0);
7219 	 * pci_restore_state(pci_dev);
7220 	 *
7221 	 * For controllers newer than the P600, the pci power state
7222 	 * method of resetting doesn't work so we have another way
7223 	 * using the doorbell register.
7224 	 */
7225 
7226 	if (!ctlr_is_resettable(board_id)) {
7227 		dev_warn(&pdev->dev, "Controller not resettable\n");
7228 		return -ENODEV;
7229 	}
7230 
7231 	/* if controller is soft- but not hard resettable... */
7232 	if (!ctlr_is_hard_resettable(board_id))
7233 		return -ENOTSUPP; /* try soft reset later. */
7234 
7235 	/* Save the PCI command register */
7236 	pci_read_config_word(pdev, 4, &command_register);
7237 	pci_save_state(pdev);
7238 
7239 	/* find the first memory BAR, so we can find the cfg table */
7240 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7241 	if (rc)
7242 		return rc;
7243 	vaddr = remap_pci_mem(paddr, 0x250);
7244 	if (!vaddr)
7245 		return -ENOMEM;
7246 
7247 	/* find cfgtable in order to check if reset via doorbell is supported */
7248 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7249 					&cfg_base_addr_index, &cfg_offset);
7250 	if (rc)
7251 		goto unmap_vaddr;
7252 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7253 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7254 	if (!cfgtable) {
7255 		rc = -ENOMEM;
7256 		goto unmap_vaddr;
7257 	}
7258 	rc = write_driver_ver_to_cfgtable(cfgtable);
7259 	if (rc)
7260 		goto unmap_cfgtable;
7261 
7262 	/* If reset via doorbell register is supported, use that.
7263 	 * There are two such methods.  Favor the newest method.
7264 	 */
7265 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7266 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7267 	if (use_doorbell) {
7268 		use_doorbell = DOORBELL_CTLR_RESET2;
7269 	} else {
7270 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7271 		if (use_doorbell) {
7272 			dev_warn(&pdev->dev,
7273 				"Soft reset not supported. Firmware update is required.\n");
7274 			rc = -ENOTSUPP; /* try soft reset */
7275 			goto unmap_cfgtable;
7276 		}
7277 	}
7278 
7279 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7280 	if (rc)
7281 		goto unmap_cfgtable;
7282 
7283 	pci_restore_state(pdev);
7284 	pci_write_config_word(pdev, 4, command_register);
7285 
7286 	/* Some devices (notably the HP Smart Array 5i Controller)
7287 	   need a little pause here */
7288 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7289 
7290 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7291 	if (rc) {
7292 		dev_warn(&pdev->dev,
7293 			"Failed waiting for board to become ready after hard reset\n");
7294 		goto unmap_cfgtable;
7295 	}
7296 
7297 	rc = controller_reset_failed(vaddr);
7298 	if (rc < 0)
7299 		goto unmap_cfgtable;
7300 	if (rc) {
7301 		dev_warn(&pdev->dev, "Unable to successfully reset "
7302 			"controller. Will try soft reset.\n");
7303 		rc = -ENOTSUPP;
7304 	} else {
7305 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7306 	}
7307 
7308 unmap_cfgtable:
7309 	iounmap(cfgtable);
7310 
7311 unmap_vaddr:
7312 	iounmap(vaddr);
7313 	return rc;
7314 }
7315 
7316 /*
7317  *  We cannot read the structure directly, for portability we must use
7318  *   the io functions.
7319  *   This is for debug only.
7320  */
7321 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7322 {
7323 #ifdef HPSA_DEBUG
7324 	int i;
7325 	char temp_name[17];
7326 
7327 	dev_info(dev, "Controller Configuration information\n");
7328 	dev_info(dev, "------------------------------------\n");
7329 	for (i = 0; i < 4; i++)
7330 		temp_name[i] = readb(&(tb->Signature[i]));
7331 	temp_name[4] = '\0';
7332 	dev_info(dev, "   Signature = %s\n", temp_name);
7333 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7334 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7335 	       readl(&(tb->TransportSupport)));
7336 	dev_info(dev, "   Transport methods active = 0x%x\n",
7337 	       readl(&(tb->TransportActive)));
7338 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7339 	       readl(&(tb->HostWrite.TransportRequest)));
7340 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7341 	       readl(&(tb->HostWrite.CoalIntDelay)));
7342 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7343 	       readl(&(tb->HostWrite.CoalIntCount)));
7344 	dev_info(dev, "   Max outstanding commands = %d\n",
7345 	       readl(&(tb->CmdsOutMax)));
7346 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7347 	for (i = 0; i < 16; i++)
7348 		temp_name[i] = readb(&(tb->ServerName[i]));
7349 	temp_name[16] = '\0';
7350 	dev_info(dev, "   Server Name = %s\n", temp_name);
7351 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7352 		readl(&(tb->HeartBeat)));
7353 #endif				/* HPSA_DEBUG */
7354 }
7355 
7356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7357 {
7358 	int i, offset, mem_type, bar_type;
7359 
7360 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7361 		return 0;
7362 	offset = 0;
7363 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7364 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7365 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7366 			offset += 4;
7367 		else {
7368 			mem_type = pci_resource_flags(pdev, i) &
7369 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7370 			switch (mem_type) {
7371 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7372 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7373 				offset += 4;	/* 32 bit */
7374 				break;
7375 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7376 				offset += 8;
7377 				break;
7378 			default:	/* reserved in PCI 2.2 */
7379 				dev_warn(&pdev->dev,
7380 				       "base address is invalid\n");
7381 				return -1;
7382 				break;
7383 			}
7384 		}
7385 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7386 			return i + 1;
7387 	}
7388 	return -1;
7389 }
7390 
7391 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7392 {
7393 	if (h->msix_vector) {
7394 		if (h->pdev->msix_enabled)
7395 			pci_disable_msix(h->pdev);
7396 		h->msix_vector = 0;
7397 	} else if (h->msi_vector) {
7398 		if (h->pdev->msi_enabled)
7399 			pci_disable_msi(h->pdev);
7400 		h->msi_vector = 0;
7401 	}
7402 }
7403 
7404 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7405  * controllers that are capable. If not, we use legacy INTx mode.
7406  */
7407 static void hpsa_interrupt_mode(struct ctlr_info *h)
7408 {
7409 #ifdef CONFIG_PCI_MSI
7410 	int err, i;
7411 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7412 
7413 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7414 		hpsa_msix_entries[i].vector = 0;
7415 		hpsa_msix_entries[i].entry = i;
7416 	}
7417 
7418 	/* Some boards advertise MSI but don't really support it */
7419 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7420 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7421 		goto default_int_mode;
7422 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7423 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7424 		h->msix_vector = MAX_REPLY_QUEUES;
7425 		if (h->msix_vector > num_online_cpus())
7426 			h->msix_vector = num_online_cpus();
7427 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7428 					    1, h->msix_vector);
7429 		if (err < 0) {
7430 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7431 			h->msix_vector = 0;
7432 			goto single_msi_mode;
7433 		} else if (err < h->msix_vector) {
7434 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7435 			       "available\n", err);
7436 		}
7437 		h->msix_vector = err;
7438 		for (i = 0; i < h->msix_vector; i++)
7439 			h->intr[i] = hpsa_msix_entries[i].vector;
7440 		return;
7441 	}
7442 single_msi_mode:
7443 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7444 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7445 		if (!pci_enable_msi(h->pdev))
7446 			h->msi_vector = 1;
7447 		else
7448 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7449 	}
7450 default_int_mode:
7451 #endif				/* CONFIG_PCI_MSI */
7452 	/* if we get here we're going to use the default interrupt mode */
7453 	h->intr[h->intr_mode] = h->pdev->irq;
7454 }
7455 
7456 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7457 {
7458 	int i;
7459 	u32 subsystem_vendor_id, subsystem_device_id;
7460 
7461 	subsystem_vendor_id = pdev->subsystem_vendor;
7462 	subsystem_device_id = pdev->subsystem_device;
7463 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7464 		    subsystem_vendor_id;
7465 
7466 	for (i = 0; i < ARRAY_SIZE(products); i++)
7467 		if (*board_id == products[i].board_id)
7468 			return i;
7469 
7470 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7471 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7472 		!hpsa_allow_any) {
7473 		dev_warn(&pdev->dev, "unrecognized board ID: "
7474 			"0x%08x, ignoring.\n", *board_id);
7475 			return -ENODEV;
7476 	}
7477 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7478 }
7479 
7480 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7481 				    unsigned long *memory_bar)
7482 {
7483 	int i;
7484 
7485 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7486 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7487 			/* addressing mode bits already removed */
7488 			*memory_bar = pci_resource_start(pdev, i);
7489 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7490 				*memory_bar);
7491 			return 0;
7492 		}
7493 	dev_warn(&pdev->dev, "no memory BAR found\n");
7494 	return -ENODEV;
7495 }
7496 
7497 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7498 				     int wait_for_ready)
7499 {
7500 	int i, iterations;
7501 	u32 scratchpad;
7502 	if (wait_for_ready)
7503 		iterations = HPSA_BOARD_READY_ITERATIONS;
7504 	else
7505 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7506 
7507 	for (i = 0; i < iterations; i++) {
7508 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7509 		if (wait_for_ready) {
7510 			if (scratchpad == HPSA_FIRMWARE_READY)
7511 				return 0;
7512 		} else {
7513 			if (scratchpad != HPSA_FIRMWARE_READY)
7514 				return 0;
7515 		}
7516 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7517 	}
7518 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7519 	return -ENODEV;
7520 }
7521 
7522 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7523 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7524 			       u64 *cfg_offset)
7525 {
7526 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7527 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7528 	*cfg_base_addr &= (u32) 0x0000ffff;
7529 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7530 	if (*cfg_base_addr_index == -1) {
7531 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7532 		return -ENODEV;
7533 	}
7534 	return 0;
7535 }
7536 
7537 static void hpsa_free_cfgtables(struct ctlr_info *h)
7538 {
7539 	if (h->transtable) {
7540 		iounmap(h->transtable);
7541 		h->transtable = NULL;
7542 	}
7543 	if (h->cfgtable) {
7544 		iounmap(h->cfgtable);
7545 		h->cfgtable = NULL;
7546 	}
7547 }
7548 
7549 /* Find and map CISS config table and transfer table
7550 + * several items must be unmapped (freed) later
7551 + * */
7552 static int hpsa_find_cfgtables(struct ctlr_info *h)
7553 {
7554 	u64 cfg_offset;
7555 	u32 cfg_base_addr;
7556 	u64 cfg_base_addr_index;
7557 	u32 trans_offset;
7558 	int rc;
7559 
7560 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7561 		&cfg_base_addr_index, &cfg_offset);
7562 	if (rc)
7563 		return rc;
7564 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7565 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7566 	if (!h->cfgtable) {
7567 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7568 		return -ENOMEM;
7569 	}
7570 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7571 	if (rc)
7572 		return rc;
7573 	/* Find performant mode table. */
7574 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7575 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7576 				cfg_base_addr_index)+cfg_offset+trans_offset,
7577 				sizeof(*h->transtable));
7578 	if (!h->transtable) {
7579 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7580 		hpsa_free_cfgtables(h);
7581 		return -ENOMEM;
7582 	}
7583 	return 0;
7584 }
7585 
7586 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7587 {
7588 #define MIN_MAX_COMMANDS 16
7589 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7590 
7591 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7592 
7593 	/* Limit commands in memory limited kdump scenario. */
7594 	if (reset_devices && h->max_commands > 32)
7595 		h->max_commands = 32;
7596 
7597 	if (h->max_commands < MIN_MAX_COMMANDS) {
7598 		dev_warn(&h->pdev->dev,
7599 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7600 			h->max_commands,
7601 			MIN_MAX_COMMANDS);
7602 		h->max_commands = MIN_MAX_COMMANDS;
7603 	}
7604 }
7605 
7606 /* If the controller reports that the total max sg entries is greater than 512,
7607  * then we know that chained SG blocks work.  (Original smart arrays did not
7608  * support chained SG blocks and would return zero for max sg entries.)
7609  */
7610 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7611 {
7612 	return h->maxsgentries > 512;
7613 }
7614 
7615 /* Interrogate the hardware for some limits:
7616  * max commands, max SG elements without chaining, and with chaining,
7617  * SG chain block size, etc.
7618  */
7619 static void hpsa_find_board_params(struct ctlr_info *h)
7620 {
7621 	hpsa_get_max_perf_mode_cmds(h);
7622 	h->nr_cmds = h->max_commands;
7623 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7624 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7625 	if (hpsa_supports_chained_sg_blocks(h)) {
7626 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7627 		h->max_cmd_sg_entries = 32;
7628 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7629 		h->maxsgentries--; /* save one for chain pointer */
7630 	} else {
7631 		/*
7632 		 * Original smart arrays supported at most 31 s/g entries
7633 		 * embedded inline in the command (trying to use more
7634 		 * would lock up the controller)
7635 		 */
7636 		h->max_cmd_sg_entries = 31;
7637 		h->maxsgentries = 31; /* default to traditional values */
7638 		h->chainsize = 0;
7639 	}
7640 
7641 	/* Find out what task management functions are supported and cache */
7642 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7643 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7644 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7645 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7646 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7647 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7648 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7649 }
7650 
7651 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7652 {
7653 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7654 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7655 		return false;
7656 	}
7657 	return true;
7658 }
7659 
7660 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7661 {
7662 	u32 driver_support;
7663 
7664 	driver_support = readl(&(h->cfgtable->driver_support));
7665 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7666 #ifdef CONFIG_X86
7667 	driver_support |= ENABLE_SCSI_PREFETCH;
7668 #endif
7669 	driver_support |= ENABLE_UNIT_ATTN;
7670 	writel(driver_support, &(h->cfgtable->driver_support));
7671 }
7672 
7673 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7674  * in a prefetch beyond physical memory.
7675  */
7676 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7677 {
7678 	u32 dma_prefetch;
7679 
7680 	if (h->board_id != 0x3225103C)
7681 		return;
7682 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7683 	dma_prefetch |= 0x8000;
7684 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7685 }
7686 
7687 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7688 {
7689 	int i;
7690 	u32 doorbell_value;
7691 	unsigned long flags;
7692 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7693 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7694 		spin_lock_irqsave(&h->lock, flags);
7695 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7696 		spin_unlock_irqrestore(&h->lock, flags);
7697 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7698 			goto done;
7699 		/* delay and try again */
7700 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7701 	}
7702 	return -ENODEV;
7703 done:
7704 	return 0;
7705 }
7706 
7707 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7708 {
7709 	int i;
7710 	u32 doorbell_value;
7711 	unsigned long flags;
7712 
7713 	/* under certain very rare conditions, this can take awhile.
7714 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7715 	 * as we enter this code.)
7716 	 */
7717 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7718 		if (h->remove_in_progress)
7719 			goto done;
7720 		spin_lock_irqsave(&h->lock, flags);
7721 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7722 		spin_unlock_irqrestore(&h->lock, flags);
7723 		if (!(doorbell_value & CFGTBL_ChangeReq))
7724 			goto done;
7725 		/* delay and try again */
7726 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7727 	}
7728 	return -ENODEV;
7729 done:
7730 	return 0;
7731 }
7732 
7733 /* return -ENODEV or other reason on error, 0 on success */
7734 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7735 {
7736 	u32 trans_support;
7737 
7738 	trans_support = readl(&(h->cfgtable->TransportSupport));
7739 	if (!(trans_support & SIMPLE_MODE))
7740 		return -ENOTSUPP;
7741 
7742 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7743 
7744 	/* Update the field, and then ring the doorbell */
7745 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7746 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7747 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7748 	if (hpsa_wait_for_mode_change_ack(h))
7749 		goto error;
7750 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7751 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7752 		goto error;
7753 	h->transMethod = CFGTBL_Trans_Simple;
7754 	return 0;
7755 error:
7756 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7757 	return -ENODEV;
7758 }
7759 
7760 /* free items allocated or mapped by hpsa_pci_init */
7761 static void hpsa_free_pci_init(struct ctlr_info *h)
7762 {
7763 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7764 	iounmap(h->vaddr);			/* pci_init 3 */
7765 	h->vaddr = NULL;
7766 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7767 	/*
7768 	 * call pci_disable_device before pci_release_regions per
7769 	 * Documentation/PCI/pci.txt
7770 	 */
7771 	pci_disable_device(h->pdev);		/* pci_init 1 */
7772 	pci_release_regions(h->pdev);		/* pci_init 2 */
7773 }
7774 
7775 /* several items must be freed later */
7776 static int hpsa_pci_init(struct ctlr_info *h)
7777 {
7778 	int prod_index, err;
7779 
7780 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7781 	if (prod_index < 0)
7782 		return prod_index;
7783 	h->product_name = products[prod_index].product_name;
7784 	h->access = *(products[prod_index].access);
7785 
7786 	h->needs_abort_tags_swizzled =
7787 		ctlr_needs_abort_tags_swizzled(h->board_id);
7788 
7789 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7790 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7791 
7792 	err = pci_enable_device(h->pdev);
7793 	if (err) {
7794 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7795 		pci_disable_device(h->pdev);
7796 		return err;
7797 	}
7798 
7799 	err = pci_request_regions(h->pdev, HPSA);
7800 	if (err) {
7801 		dev_err(&h->pdev->dev,
7802 			"failed to obtain PCI resources\n");
7803 		pci_disable_device(h->pdev);
7804 		return err;
7805 	}
7806 
7807 	pci_set_master(h->pdev);
7808 
7809 	hpsa_interrupt_mode(h);
7810 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7811 	if (err)
7812 		goto clean2;	/* intmode+region, pci */
7813 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7814 	if (!h->vaddr) {
7815 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7816 		err = -ENOMEM;
7817 		goto clean2;	/* intmode+region, pci */
7818 	}
7819 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7820 	if (err)
7821 		goto clean3;	/* vaddr, intmode+region, pci */
7822 	err = hpsa_find_cfgtables(h);
7823 	if (err)
7824 		goto clean3;	/* vaddr, intmode+region, pci */
7825 	hpsa_find_board_params(h);
7826 
7827 	if (!hpsa_CISS_signature_present(h)) {
7828 		err = -ENODEV;
7829 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7830 	}
7831 	hpsa_set_driver_support_bits(h);
7832 	hpsa_p600_dma_prefetch_quirk(h);
7833 	err = hpsa_enter_simple_mode(h);
7834 	if (err)
7835 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7836 	return 0;
7837 
7838 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7839 	hpsa_free_cfgtables(h);
7840 clean3:	/* vaddr, intmode+region, pci */
7841 	iounmap(h->vaddr);
7842 	h->vaddr = NULL;
7843 clean2:	/* intmode+region, pci */
7844 	hpsa_disable_interrupt_mode(h);
7845 	/*
7846 	 * call pci_disable_device before pci_release_regions per
7847 	 * Documentation/PCI/pci.txt
7848 	 */
7849 	pci_disable_device(h->pdev);
7850 	pci_release_regions(h->pdev);
7851 	return err;
7852 }
7853 
7854 static void hpsa_hba_inquiry(struct ctlr_info *h)
7855 {
7856 	int rc;
7857 
7858 #define HBA_INQUIRY_BYTE_COUNT 64
7859 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7860 	if (!h->hba_inquiry_data)
7861 		return;
7862 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7863 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7864 	if (rc != 0) {
7865 		kfree(h->hba_inquiry_data);
7866 		h->hba_inquiry_data = NULL;
7867 	}
7868 }
7869 
7870 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7871 {
7872 	int rc, i;
7873 	void __iomem *vaddr;
7874 
7875 	if (!reset_devices)
7876 		return 0;
7877 
7878 	/* kdump kernel is loading, we don't know in which state is
7879 	 * the pci interface. The dev->enable_cnt is equal zero
7880 	 * so we call enable+disable, wait a while and switch it on.
7881 	 */
7882 	rc = pci_enable_device(pdev);
7883 	if (rc) {
7884 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7885 		return -ENODEV;
7886 	}
7887 	pci_disable_device(pdev);
7888 	msleep(260);			/* a randomly chosen number */
7889 	rc = pci_enable_device(pdev);
7890 	if (rc) {
7891 		dev_warn(&pdev->dev, "failed to enable device.\n");
7892 		return -ENODEV;
7893 	}
7894 
7895 	pci_set_master(pdev);
7896 
7897 	vaddr = pci_ioremap_bar(pdev, 0);
7898 	if (vaddr == NULL) {
7899 		rc = -ENOMEM;
7900 		goto out_disable;
7901 	}
7902 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7903 	iounmap(vaddr);
7904 
7905 	/* Reset the controller with a PCI power-cycle or via doorbell */
7906 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7907 
7908 	/* -ENOTSUPP here means we cannot reset the controller
7909 	 * but it's already (and still) up and running in
7910 	 * "performant mode".  Or, it might be 640x, which can't reset
7911 	 * due to concerns about shared bbwc between 6402/6404 pair.
7912 	 */
7913 	if (rc)
7914 		goto out_disable;
7915 
7916 	/* Now try to get the controller to respond to a no-op */
7917 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7918 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7919 		if (hpsa_noop(pdev) == 0)
7920 			break;
7921 		else
7922 			dev_warn(&pdev->dev, "no-op failed%s\n",
7923 					(i < 11 ? "; re-trying" : ""));
7924 	}
7925 
7926 out_disable:
7927 
7928 	pci_disable_device(pdev);
7929 	return rc;
7930 }
7931 
7932 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7933 {
7934 	kfree(h->cmd_pool_bits);
7935 	h->cmd_pool_bits = NULL;
7936 	if (h->cmd_pool) {
7937 		pci_free_consistent(h->pdev,
7938 				h->nr_cmds * sizeof(struct CommandList),
7939 				h->cmd_pool,
7940 				h->cmd_pool_dhandle);
7941 		h->cmd_pool = NULL;
7942 		h->cmd_pool_dhandle = 0;
7943 	}
7944 	if (h->errinfo_pool) {
7945 		pci_free_consistent(h->pdev,
7946 				h->nr_cmds * sizeof(struct ErrorInfo),
7947 				h->errinfo_pool,
7948 				h->errinfo_pool_dhandle);
7949 		h->errinfo_pool = NULL;
7950 		h->errinfo_pool_dhandle = 0;
7951 	}
7952 }
7953 
7954 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7955 {
7956 	h->cmd_pool_bits = kzalloc(
7957 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7958 		sizeof(unsigned long), GFP_KERNEL);
7959 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7960 		    h->nr_cmds * sizeof(*h->cmd_pool),
7961 		    &(h->cmd_pool_dhandle));
7962 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7963 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7964 		    &(h->errinfo_pool_dhandle));
7965 	if ((h->cmd_pool_bits == NULL)
7966 	    || (h->cmd_pool == NULL)
7967 	    || (h->errinfo_pool == NULL)) {
7968 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7969 		goto clean_up;
7970 	}
7971 	hpsa_preinitialize_commands(h);
7972 	return 0;
7973 clean_up:
7974 	hpsa_free_cmd_pool(h);
7975 	return -ENOMEM;
7976 }
7977 
7978 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7979 {
7980 	int i, cpu;
7981 
7982 	cpu = cpumask_first(cpu_online_mask);
7983 	for (i = 0; i < h->msix_vector; i++) {
7984 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7985 		cpu = cpumask_next(cpu, cpu_online_mask);
7986 	}
7987 }
7988 
7989 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7990 static void hpsa_free_irqs(struct ctlr_info *h)
7991 {
7992 	int i;
7993 
7994 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7995 		/* Single reply queue, only one irq to free */
7996 		i = h->intr_mode;
7997 		irq_set_affinity_hint(h->intr[i], NULL);
7998 		free_irq(h->intr[i], &h->q[i]);
7999 		h->q[i] = 0;
8000 		return;
8001 	}
8002 
8003 	for (i = 0; i < h->msix_vector; i++) {
8004 		irq_set_affinity_hint(h->intr[i], NULL);
8005 		free_irq(h->intr[i], &h->q[i]);
8006 		h->q[i] = 0;
8007 	}
8008 	for (; i < MAX_REPLY_QUEUES; i++)
8009 		h->q[i] = 0;
8010 }
8011 
8012 /* returns 0 on success; cleans up and returns -Enn on error */
8013 static int hpsa_request_irqs(struct ctlr_info *h,
8014 	irqreturn_t (*msixhandler)(int, void *),
8015 	irqreturn_t (*intxhandler)(int, void *))
8016 {
8017 	int rc, i;
8018 
8019 	/*
8020 	 * initialize h->q[x] = x so that interrupt handlers know which
8021 	 * queue to process.
8022 	 */
8023 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8024 		h->q[i] = (u8) i;
8025 
8026 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8027 		/* If performant mode and MSI-X, use multiple reply queues */
8028 		for (i = 0; i < h->msix_vector; i++) {
8029 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8030 			rc = request_irq(h->intr[i], msixhandler,
8031 					0, h->intrname[i],
8032 					&h->q[i]);
8033 			if (rc) {
8034 				int j;
8035 
8036 				dev_err(&h->pdev->dev,
8037 					"failed to get irq %d for %s\n",
8038 				       h->intr[i], h->devname);
8039 				for (j = 0; j < i; j++) {
8040 					free_irq(h->intr[j], &h->q[j]);
8041 					h->q[j] = 0;
8042 				}
8043 				for (; j < MAX_REPLY_QUEUES; j++)
8044 					h->q[j] = 0;
8045 				return rc;
8046 			}
8047 		}
8048 		hpsa_irq_affinity_hints(h);
8049 	} else {
8050 		/* Use single reply pool */
8051 		if (h->msix_vector > 0 || h->msi_vector) {
8052 			if (h->msix_vector)
8053 				sprintf(h->intrname[h->intr_mode],
8054 					"%s-msix", h->devname);
8055 			else
8056 				sprintf(h->intrname[h->intr_mode],
8057 					"%s-msi", h->devname);
8058 			rc = request_irq(h->intr[h->intr_mode],
8059 				msixhandler, 0,
8060 				h->intrname[h->intr_mode],
8061 				&h->q[h->intr_mode]);
8062 		} else {
8063 			sprintf(h->intrname[h->intr_mode],
8064 				"%s-intx", h->devname);
8065 			rc = request_irq(h->intr[h->intr_mode],
8066 				intxhandler, IRQF_SHARED,
8067 				h->intrname[h->intr_mode],
8068 				&h->q[h->intr_mode]);
8069 		}
8070 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8071 	}
8072 	if (rc) {
8073 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8074 		       h->intr[h->intr_mode], h->devname);
8075 		hpsa_free_irqs(h);
8076 		return -ENODEV;
8077 	}
8078 	return 0;
8079 }
8080 
8081 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8082 {
8083 	int rc;
8084 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8085 
8086 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8087 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8088 	if (rc) {
8089 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8090 		return rc;
8091 	}
8092 
8093 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8094 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8095 	if (rc) {
8096 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8097 			"after soft reset.\n");
8098 		return rc;
8099 	}
8100 
8101 	return 0;
8102 }
8103 
8104 static void hpsa_free_reply_queues(struct ctlr_info *h)
8105 {
8106 	int i;
8107 
8108 	for (i = 0; i < h->nreply_queues; i++) {
8109 		if (!h->reply_queue[i].head)
8110 			continue;
8111 		pci_free_consistent(h->pdev,
8112 					h->reply_queue_size,
8113 					h->reply_queue[i].head,
8114 					h->reply_queue[i].busaddr);
8115 		h->reply_queue[i].head = NULL;
8116 		h->reply_queue[i].busaddr = 0;
8117 	}
8118 	h->reply_queue_size = 0;
8119 }
8120 
8121 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8122 {
8123 	hpsa_free_performant_mode(h);		/* init_one 7 */
8124 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8125 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8126 	hpsa_free_irqs(h);			/* init_one 4 */
8127 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8128 	h->scsi_host = NULL;			/* init_one 3 */
8129 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8130 	free_percpu(h->lockup_detected);	/* init_one 2 */
8131 	h->lockup_detected = NULL;		/* init_one 2 */
8132 	if (h->resubmit_wq) {
8133 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8134 		h->resubmit_wq = NULL;
8135 	}
8136 	if (h->rescan_ctlr_wq) {
8137 		destroy_workqueue(h->rescan_ctlr_wq);
8138 		h->rescan_ctlr_wq = NULL;
8139 	}
8140 	kfree(h);				/* init_one 1 */
8141 }
8142 
8143 /* Called when controller lockup detected. */
8144 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8145 {
8146 	int i, refcount;
8147 	struct CommandList *c;
8148 	int failcount = 0;
8149 
8150 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8151 	for (i = 0; i < h->nr_cmds; i++) {
8152 		c = h->cmd_pool + i;
8153 		refcount = atomic_inc_return(&c->refcount);
8154 		if (refcount > 1) {
8155 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8156 			finish_cmd(c);
8157 			atomic_dec(&h->commands_outstanding);
8158 			failcount++;
8159 		}
8160 		cmd_free(h, c);
8161 	}
8162 	dev_warn(&h->pdev->dev,
8163 		"failed %d commands in fail_all\n", failcount);
8164 }
8165 
8166 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8167 {
8168 	int cpu;
8169 
8170 	for_each_online_cpu(cpu) {
8171 		u32 *lockup_detected;
8172 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8173 		*lockup_detected = value;
8174 	}
8175 	wmb(); /* be sure the per-cpu variables are out to memory */
8176 }
8177 
8178 static void controller_lockup_detected(struct ctlr_info *h)
8179 {
8180 	unsigned long flags;
8181 	u32 lockup_detected;
8182 
8183 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8184 	spin_lock_irqsave(&h->lock, flags);
8185 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8186 	if (!lockup_detected) {
8187 		/* no heartbeat, but controller gave us a zero. */
8188 		dev_warn(&h->pdev->dev,
8189 			"lockup detected after %d but scratchpad register is zero\n",
8190 			h->heartbeat_sample_interval / HZ);
8191 		lockup_detected = 0xffffffff;
8192 	}
8193 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8194 	spin_unlock_irqrestore(&h->lock, flags);
8195 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8196 			lockup_detected, h->heartbeat_sample_interval / HZ);
8197 	pci_disable_device(h->pdev);
8198 	fail_all_outstanding_cmds(h);
8199 }
8200 
8201 static int detect_controller_lockup(struct ctlr_info *h)
8202 {
8203 	u64 now;
8204 	u32 heartbeat;
8205 	unsigned long flags;
8206 
8207 	now = get_jiffies_64();
8208 	/* If we've received an interrupt recently, we're ok. */
8209 	if (time_after64(h->last_intr_timestamp +
8210 				(h->heartbeat_sample_interval), now))
8211 		return false;
8212 
8213 	/*
8214 	 * If we've already checked the heartbeat recently, we're ok.
8215 	 * This could happen if someone sends us a signal. We
8216 	 * otherwise don't care about signals in this thread.
8217 	 */
8218 	if (time_after64(h->last_heartbeat_timestamp +
8219 				(h->heartbeat_sample_interval), now))
8220 		return false;
8221 
8222 	/* If heartbeat has not changed since we last looked, we're not ok. */
8223 	spin_lock_irqsave(&h->lock, flags);
8224 	heartbeat = readl(&h->cfgtable->HeartBeat);
8225 	spin_unlock_irqrestore(&h->lock, flags);
8226 	if (h->last_heartbeat == heartbeat) {
8227 		controller_lockup_detected(h);
8228 		return true;
8229 	}
8230 
8231 	/* We're ok. */
8232 	h->last_heartbeat = heartbeat;
8233 	h->last_heartbeat_timestamp = now;
8234 	return false;
8235 }
8236 
8237 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8238 {
8239 	int i;
8240 	char *event_type;
8241 
8242 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8243 		return;
8244 
8245 	/* Ask the controller to clear the events we're handling. */
8246 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8247 			| CFGTBL_Trans_io_accel2)) &&
8248 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8249 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8250 
8251 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8252 			event_type = "state change";
8253 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8254 			event_type = "configuration change";
8255 		/* Stop sending new RAID offload reqs via the IO accelerator */
8256 		scsi_block_requests(h->scsi_host);
8257 		for (i = 0; i < h->ndevices; i++)
8258 			h->dev[i]->offload_enabled = 0;
8259 		hpsa_drain_accel_commands(h);
8260 		/* Set 'accelerator path config change' bit */
8261 		dev_warn(&h->pdev->dev,
8262 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8263 			h->events, event_type);
8264 		writel(h->events, &(h->cfgtable->clear_event_notify));
8265 		/* Set the "clear event notify field update" bit 6 */
8266 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8267 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8268 		hpsa_wait_for_clear_event_notify_ack(h);
8269 		scsi_unblock_requests(h->scsi_host);
8270 	} else {
8271 		/* Acknowledge controller notification events. */
8272 		writel(h->events, &(h->cfgtable->clear_event_notify));
8273 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8274 		hpsa_wait_for_clear_event_notify_ack(h);
8275 #if 0
8276 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8277 		hpsa_wait_for_mode_change_ack(h);
8278 #endif
8279 	}
8280 	return;
8281 }
8282 
8283 /* Check a register on the controller to see if there are configuration
8284  * changes (added/changed/removed logical drives, etc.) which mean that
8285  * we should rescan the controller for devices.
8286  * Also check flag for driver-initiated rescan.
8287  */
8288 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8289 {
8290 	if (h->drv_req_rescan) {
8291 		h->drv_req_rescan = 0;
8292 		return 1;
8293 	}
8294 
8295 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8296 		return 0;
8297 
8298 	h->events = readl(&(h->cfgtable->event_notify));
8299 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8300 }
8301 
8302 /*
8303  * Check if any of the offline devices have become ready
8304  */
8305 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8306 {
8307 	unsigned long flags;
8308 	struct offline_device_entry *d;
8309 	struct list_head *this, *tmp;
8310 
8311 	spin_lock_irqsave(&h->offline_device_lock, flags);
8312 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8313 		d = list_entry(this, struct offline_device_entry,
8314 				offline_list);
8315 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8317 			spin_lock_irqsave(&h->offline_device_lock, flags);
8318 			list_del(&d->offline_list);
8319 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8320 			return 1;
8321 		}
8322 		spin_lock_irqsave(&h->offline_device_lock, flags);
8323 	}
8324 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8325 	return 0;
8326 }
8327 
8328 static int hpsa_luns_changed(struct ctlr_info *h)
8329 {
8330 	int rc = 1; /* assume there are changes */
8331 	struct ReportLUNdata *logdev = NULL;
8332 
8333 	/* if we can't find out if lun data has changed,
8334 	 * assume that it has.
8335 	 */
8336 
8337 	if (!h->lastlogicals)
8338 		goto out;
8339 
8340 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8341 	if (!logdev) {
8342 		dev_warn(&h->pdev->dev,
8343 			"Out of memory, can't track lun changes.\n");
8344 		goto out;
8345 	}
8346 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8347 		dev_warn(&h->pdev->dev,
8348 			"report luns failed, can't track lun changes.\n");
8349 		goto out;
8350 	}
8351 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8352 		dev_info(&h->pdev->dev,
8353 			"Lun changes detected.\n");
8354 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8355 		goto out;
8356 	} else
8357 		rc = 0; /* no changes detected. */
8358 out:
8359 	kfree(logdev);
8360 	return rc;
8361 }
8362 
8363 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8364 {
8365 	unsigned long flags;
8366 	struct ctlr_info *h = container_of(to_delayed_work(work),
8367 					struct ctlr_info, rescan_ctlr_work);
8368 
8369 
8370 	if (h->remove_in_progress)
8371 		return;
8372 
8373 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8374 		scsi_host_get(h->scsi_host);
8375 		hpsa_ack_ctlr_events(h);
8376 		hpsa_scan_start(h->scsi_host);
8377 		scsi_host_put(h->scsi_host);
8378 	} else if (h->discovery_polling) {
8379 		hpsa_disable_rld_caching(h);
8380 		if (hpsa_luns_changed(h)) {
8381 			struct Scsi_Host *sh = NULL;
8382 
8383 			dev_info(&h->pdev->dev,
8384 				"driver discovery polling rescan.\n");
8385 			sh = scsi_host_get(h->scsi_host);
8386 			if (sh != NULL) {
8387 				hpsa_scan_start(sh);
8388 				scsi_host_put(sh);
8389 			}
8390 		}
8391 	}
8392 	spin_lock_irqsave(&h->lock, flags);
8393 	if (!h->remove_in_progress)
8394 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8395 				h->heartbeat_sample_interval);
8396 	spin_unlock_irqrestore(&h->lock, flags);
8397 }
8398 
8399 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8400 {
8401 	unsigned long flags;
8402 	struct ctlr_info *h = container_of(to_delayed_work(work),
8403 					struct ctlr_info, monitor_ctlr_work);
8404 
8405 	detect_controller_lockup(h);
8406 	if (lockup_detected(h))
8407 		return;
8408 
8409 	spin_lock_irqsave(&h->lock, flags);
8410 	if (!h->remove_in_progress)
8411 		schedule_delayed_work(&h->monitor_ctlr_work,
8412 				h->heartbeat_sample_interval);
8413 	spin_unlock_irqrestore(&h->lock, flags);
8414 }
8415 
8416 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8417 						char *name)
8418 {
8419 	struct workqueue_struct *wq = NULL;
8420 
8421 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8422 	if (!wq)
8423 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8424 
8425 	return wq;
8426 }
8427 
8428 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8429 {
8430 	int dac, rc;
8431 	struct ctlr_info *h;
8432 	int try_soft_reset = 0;
8433 	unsigned long flags;
8434 	u32 board_id;
8435 
8436 	if (number_of_controllers == 0)
8437 		printk(KERN_INFO DRIVER_NAME "\n");
8438 
8439 	rc = hpsa_lookup_board_id(pdev, &board_id);
8440 	if (rc < 0) {
8441 		dev_warn(&pdev->dev, "Board ID not found\n");
8442 		return rc;
8443 	}
8444 
8445 	rc = hpsa_init_reset_devices(pdev, board_id);
8446 	if (rc) {
8447 		if (rc != -ENOTSUPP)
8448 			return rc;
8449 		/* If the reset fails in a particular way (it has no way to do
8450 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8451 		 * a soft reset once we get the controller configured up to the
8452 		 * point that it can accept a command.
8453 		 */
8454 		try_soft_reset = 1;
8455 		rc = 0;
8456 	}
8457 
8458 reinit_after_soft_reset:
8459 
8460 	/* Command structures must be aligned on a 32-byte boundary because
8461 	 * the 5 lower bits of the address are used by the hardware. and by
8462 	 * the driver.  See comments in hpsa.h for more info.
8463 	 */
8464 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8465 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8466 	if (!h) {
8467 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8468 		return -ENOMEM;
8469 	}
8470 
8471 	h->pdev = pdev;
8472 
8473 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8474 	INIT_LIST_HEAD(&h->offline_device_list);
8475 	spin_lock_init(&h->lock);
8476 	spin_lock_init(&h->offline_device_lock);
8477 	spin_lock_init(&h->scan_lock);
8478 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8479 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8480 
8481 	/* Allocate and clear per-cpu variable lockup_detected */
8482 	h->lockup_detected = alloc_percpu(u32);
8483 	if (!h->lockup_detected) {
8484 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8485 		rc = -ENOMEM;
8486 		goto clean1;	/* aer/h */
8487 	}
8488 	set_lockup_detected_for_all_cpus(h, 0);
8489 
8490 	rc = hpsa_pci_init(h);
8491 	if (rc)
8492 		goto clean2;	/* lu, aer/h */
8493 
8494 	/* relies on h-> settings made by hpsa_pci_init, including
8495 	 * interrupt_mode h->intr */
8496 	rc = hpsa_scsi_host_alloc(h);
8497 	if (rc)
8498 		goto clean2_5;	/* pci, lu, aer/h */
8499 
8500 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8501 	h->ctlr = number_of_controllers;
8502 	number_of_controllers++;
8503 
8504 	/* configure PCI DMA stuff */
8505 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8506 	if (rc == 0) {
8507 		dac = 1;
8508 	} else {
8509 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8510 		if (rc == 0) {
8511 			dac = 0;
8512 		} else {
8513 			dev_err(&pdev->dev, "no suitable DMA available\n");
8514 			goto clean3;	/* shost, pci, lu, aer/h */
8515 		}
8516 	}
8517 
8518 	/* make sure the board interrupts are off */
8519 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520 
8521 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8522 	if (rc)
8523 		goto clean3;	/* shost, pci, lu, aer/h */
8524 	rc = hpsa_alloc_cmd_pool(h);
8525 	if (rc)
8526 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8527 	rc = hpsa_alloc_sg_chain_blocks(h);
8528 	if (rc)
8529 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8530 	init_waitqueue_head(&h->scan_wait_queue);
8531 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8532 	init_waitqueue_head(&h->event_sync_wait_queue);
8533 	mutex_init(&h->reset_mutex);
8534 	h->scan_finished = 1; /* no scan currently in progress */
8535 
8536 	pci_set_drvdata(pdev, h);
8537 	h->ndevices = 0;
8538 
8539 	spin_lock_init(&h->devlock);
8540 	rc = hpsa_put_ctlr_into_performant_mode(h);
8541 	if (rc)
8542 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8543 
8544 	/* hook into SCSI subsystem */
8545 	rc = hpsa_scsi_add_host(h);
8546 	if (rc)
8547 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8548 
8549 	/* create the resubmit workqueue */
8550 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551 	if (!h->rescan_ctlr_wq) {
8552 		rc = -ENOMEM;
8553 		goto clean7;
8554 	}
8555 
8556 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557 	if (!h->resubmit_wq) {
8558 		rc = -ENOMEM;
8559 		goto clean7;	/* aer/h */
8560 	}
8561 
8562 	/*
8563 	 * At this point, the controller is ready to take commands.
8564 	 * Now, if reset_devices and the hard reset didn't work, try
8565 	 * the soft reset and see if that works.
8566 	 */
8567 	if (try_soft_reset) {
8568 
8569 		/* This is kind of gross.  We may or may not get a completion
8570 		 * from the soft reset command, and if we do, then the value
8571 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8572 		 * after the reset throwing away any completions we get during
8573 		 * that time.  Unregister the interrupt handler and register
8574 		 * fake ones to scoop up any residual completions.
8575 		 */
8576 		spin_lock_irqsave(&h->lock, flags);
8577 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578 		spin_unlock_irqrestore(&h->lock, flags);
8579 		hpsa_free_irqs(h);
8580 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8581 					hpsa_intx_discard_completions);
8582 		if (rc) {
8583 			dev_warn(&h->pdev->dev,
8584 				"Failed to request_irq after soft reset.\n");
8585 			/*
8586 			 * cannot goto clean7 or free_irqs will be called
8587 			 * again. Instead, do its work
8588 			 */
8589 			hpsa_free_performant_mode(h);	/* clean7 */
8590 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8591 			hpsa_free_cmd_pool(h);		/* clean5 */
8592 			/*
8593 			 * skip hpsa_free_irqs(h) clean4 since that
8594 			 * was just called before request_irqs failed
8595 			 */
8596 			goto clean3;
8597 		}
8598 
8599 		rc = hpsa_kdump_soft_reset(h);
8600 		if (rc)
8601 			/* Neither hard nor soft reset worked, we're hosed. */
8602 			goto clean7;
8603 
8604 		dev_info(&h->pdev->dev, "Board READY.\n");
8605 		dev_info(&h->pdev->dev,
8606 			"Waiting for stale completions to drain.\n");
8607 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8608 		msleep(10000);
8609 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610 
8611 		rc = controller_reset_failed(h->cfgtable);
8612 		if (rc)
8613 			dev_info(&h->pdev->dev,
8614 				"Soft reset appears to have failed.\n");
8615 
8616 		/* since the controller's reset, we have to go back and re-init
8617 		 * everything.  Easiest to just forget what we've done and do it
8618 		 * all over again.
8619 		 */
8620 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8621 		try_soft_reset = 0;
8622 		if (rc)
8623 			/* don't goto clean, we already unallocated */
8624 			return -ENODEV;
8625 
8626 		goto reinit_after_soft_reset;
8627 	}
8628 
8629 	/* Enable Accelerated IO path at driver layer */
8630 	h->acciopath_status = 1;
8631 	/* Disable discovery polling.*/
8632 	h->discovery_polling = 0;
8633 
8634 
8635 	/* Turn the interrupts on so we can service requests */
8636 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8637 
8638 	hpsa_hba_inquiry(h);
8639 
8640 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641 	if (!h->lastlogicals)
8642 		dev_info(&h->pdev->dev,
8643 			"Can't track change to report lun data\n");
8644 
8645 	/* Monitor the controller for firmware lockups */
8646 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648 	schedule_delayed_work(&h->monitor_ctlr_work,
8649 				h->heartbeat_sample_interval);
8650 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652 				h->heartbeat_sample_interval);
8653 	return 0;
8654 
8655 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656 	hpsa_free_performant_mode(h);
8657 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659 	hpsa_free_sg_chain_blocks(h);
8660 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8661 	hpsa_free_cmd_pool(h);
8662 clean4: /* irq, shost, pci, lu, aer/h */
8663 	hpsa_free_irqs(h);
8664 clean3: /* shost, pci, lu, aer/h */
8665 	scsi_host_put(h->scsi_host);
8666 	h->scsi_host = NULL;
8667 clean2_5: /* pci, lu, aer/h */
8668 	hpsa_free_pci_init(h);
8669 clean2: /* lu, aer/h */
8670 	if (h->lockup_detected) {
8671 		free_percpu(h->lockup_detected);
8672 		h->lockup_detected = NULL;
8673 	}
8674 clean1:	/* wq/aer/h */
8675 	if (h->resubmit_wq) {
8676 		destroy_workqueue(h->resubmit_wq);
8677 		h->resubmit_wq = NULL;
8678 	}
8679 	if (h->rescan_ctlr_wq) {
8680 		destroy_workqueue(h->rescan_ctlr_wq);
8681 		h->rescan_ctlr_wq = NULL;
8682 	}
8683 	kfree(h);
8684 	return rc;
8685 }
8686 
8687 static void hpsa_flush_cache(struct ctlr_info *h)
8688 {
8689 	char *flush_buf;
8690 	struct CommandList *c;
8691 	int rc;
8692 
8693 	if (unlikely(lockup_detected(h)))
8694 		return;
8695 	flush_buf = kzalloc(4, GFP_KERNEL);
8696 	if (!flush_buf)
8697 		return;
8698 
8699 	c = cmd_alloc(h);
8700 
8701 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702 		RAID_CTLR_LUNID, TYPE_CMD)) {
8703 		goto out;
8704 	}
8705 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8707 	if (rc)
8708 		goto out;
8709 	if (c->err_info->CommandStatus != 0)
8710 out:
8711 		dev_warn(&h->pdev->dev,
8712 			"error flushing cache on controller\n");
8713 	cmd_free(h, c);
8714 	kfree(flush_buf);
8715 }
8716 
8717 /* Make controller gather fresh report lun data each time we
8718  * send down a report luns request
8719  */
8720 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8721 {
8722 	u32 *options;
8723 	struct CommandList *c;
8724 	int rc;
8725 
8726 	/* Don't bother trying to set diag options if locked up */
8727 	if (unlikely(h->lockup_detected))
8728 		return;
8729 
8730 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8731 	if (!options) {
8732 		dev_err(&h->pdev->dev,
8733 			"Error: failed to disable rld caching, during alloc.\n");
8734 		return;
8735 	}
8736 
8737 	c = cmd_alloc(h);
8738 
8739 	/* first, get the current diag options settings */
8740 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741 		RAID_CTLR_LUNID, TYPE_CMD))
8742 		goto errout;
8743 
8744 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747 		goto errout;
8748 
8749 	/* Now, set the bit for disabling the RLD caching */
8750 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8751 
8752 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753 		RAID_CTLR_LUNID, TYPE_CMD))
8754 		goto errout;
8755 
8756 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8758 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8759 		goto errout;
8760 
8761 	/* Now verify that it got set: */
8762 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763 		RAID_CTLR_LUNID, TYPE_CMD))
8764 		goto errout;
8765 
8766 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8769 		goto errout;
8770 
8771 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8772 		goto out;
8773 
8774 errout:
8775 	dev_err(&h->pdev->dev,
8776 			"Error: failed to disable report lun data caching.\n");
8777 out:
8778 	cmd_free(h, c);
8779 	kfree(options);
8780 }
8781 
8782 static void hpsa_shutdown(struct pci_dev *pdev)
8783 {
8784 	struct ctlr_info *h;
8785 
8786 	h = pci_get_drvdata(pdev);
8787 	/* Turn board interrupts off  and send the flush cache command
8788 	 * sendcmd will turn off interrupt, and send the flush...
8789 	 * To write all data in the battery backed cache to disks
8790 	 */
8791 	hpsa_flush_cache(h);
8792 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8793 	hpsa_free_irqs(h);			/* init_one 4 */
8794 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8795 }
8796 
8797 static void hpsa_free_device_info(struct ctlr_info *h)
8798 {
8799 	int i;
8800 
8801 	for (i = 0; i < h->ndevices; i++) {
8802 		kfree(h->dev[i]);
8803 		h->dev[i] = NULL;
8804 	}
8805 }
8806 
8807 static void hpsa_remove_one(struct pci_dev *pdev)
8808 {
8809 	struct ctlr_info *h;
8810 	unsigned long flags;
8811 
8812 	if (pci_get_drvdata(pdev) == NULL) {
8813 		dev_err(&pdev->dev, "unable to remove device\n");
8814 		return;
8815 	}
8816 	h = pci_get_drvdata(pdev);
8817 
8818 	/* Get rid of any controller monitoring work items */
8819 	spin_lock_irqsave(&h->lock, flags);
8820 	h->remove_in_progress = 1;
8821 	spin_unlock_irqrestore(&h->lock, flags);
8822 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824 	destroy_workqueue(h->rescan_ctlr_wq);
8825 	destroy_workqueue(h->resubmit_wq);
8826 
8827 	/*
8828 	 * Call before disabling interrupts.
8829 	 * scsi_remove_host can trigger I/O operations especially
8830 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8831 	 * operations which cannot complete and will hang the system.
8832 	 */
8833 	if (h->scsi_host)
8834 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8835 	/* includes hpsa_free_irqs - init_one 4 */
8836 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8837 	hpsa_shutdown(pdev);
8838 
8839 	hpsa_free_device_info(h);		/* scan */
8840 
8841 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8842 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8843 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8844 	hpsa_free_performant_mode(h);			/* init_one 7 */
8845 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8846 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8847 	kfree(h->lastlogicals);
8848 
8849 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8850 
8851 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8852 	h->scsi_host = NULL;				/* init_one 3 */
8853 
8854 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8855 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8856 
8857 	free_percpu(h->lockup_detected);		/* init_one 2 */
8858 	h->lockup_detected = NULL;			/* init_one 2 */
8859 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8860 
8861 	hpsa_delete_sas_host(h);
8862 
8863 	kfree(h);					/* init_one 1 */
8864 }
8865 
8866 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867 	__attribute__((unused)) pm_message_t state)
8868 {
8869 	return -ENOSYS;
8870 }
8871 
8872 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8873 {
8874 	return -ENOSYS;
8875 }
8876 
8877 static struct pci_driver hpsa_pci_driver = {
8878 	.name = HPSA,
8879 	.probe = hpsa_init_one,
8880 	.remove = hpsa_remove_one,
8881 	.id_table = hpsa_pci_device_id,	/* id_table */
8882 	.shutdown = hpsa_shutdown,
8883 	.suspend = hpsa_suspend,
8884 	.resume = hpsa_resume,
8885 };
8886 
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888  * scatter gather elements supported) and bucket[],
8889  * which is an array of 8 integers.  The bucket[] array
8890  * contains 8 different DMA transfer sizes (in 16
8891  * byte increments) which the controller uses to fetch
8892  * commands.  This function fills in bucket_map[], which
8893  * maps a given number of scatter gather elements to one of
8894  * the 8 DMA transfer sizes.  The point of it is to allow the
8895  * controller to only do as much DMA as needed to fetch the
8896  * command, with the DMA transfer size encoded in the lower
8897  * bits of the command address.
8898  */
8899 static void  calc_bucket_map(int bucket[], int num_buckets,
8900 	int nsgs, int min_blocks, u32 *bucket_map)
8901 {
8902 	int i, j, b, size;
8903 
8904 	/* Note, bucket_map must have nsgs+1 entries. */
8905 	for (i = 0; i <= nsgs; i++) {
8906 		/* Compute size of a command with i SG entries */
8907 		size = i + min_blocks;
8908 		b = num_buckets; /* Assume the biggest bucket */
8909 		/* Find the bucket that is just big enough */
8910 		for (j = 0; j < num_buckets; j++) {
8911 			if (bucket[j] >= size) {
8912 				b = j;
8913 				break;
8914 			}
8915 		}
8916 		/* for a command with i SG entries, use bucket b. */
8917 		bucket_map[i] = b;
8918 	}
8919 }
8920 
8921 /*
8922  * return -ENODEV on err, 0 on success (or no action)
8923  * allocates numerous items that must be freed later
8924  */
8925 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8926 {
8927 	int i;
8928 	unsigned long register_value;
8929 	unsigned long transMethod = CFGTBL_Trans_Performant |
8930 			(trans_support & CFGTBL_Trans_use_short_tags) |
8931 				CFGTBL_Trans_enable_directed_msix |
8932 			(trans_support & (CFGTBL_Trans_io_accel1 |
8933 				CFGTBL_Trans_io_accel2));
8934 	struct access_method access = SA5_performant_access;
8935 
8936 	/* This is a bit complicated.  There are 8 registers on
8937 	 * the controller which we write to to tell it 8 different
8938 	 * sizes of commands which there may be.  It's a way of
8939 	 * reducing the DMA done to fetch each command.  Encoded into
8940 	 * each command's tag are 3 bits which communicate to the controller
8941 	 * which of the eight sizes that command fits within.  The size of
8942 	 * each command depends on how many scatter gather entries there are.
8943 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8944 	 * with the number of 16-byte blocks a command of that size requires.
8945 	 * The smallest command possible requires 5 such 16 byte blocks.
8946 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947 	 * blocks.  Note, this only extends to the SG entries contained
8948 	 * within the command block, and does not extend to chained blocks
8949 	 * of SG elements.   bft[] contains the eight values we write to
8950 	 * the registers.  They are not evenly distributed, but have more
8951 	 * sizes for small commands, and fewer sizes for larger commands.
8952 	 */
8953 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957 			13, 14, 15, 16, 17, 18, 19,
8958 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8963 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8964 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8965 	/*  5 = 1 s/g entry or 4k
8966 	 *  6 = 2 s/g entry or 8k
8967 	 *  8 = 4 s/g entry or 16k
8968 	 * 10 = 6 s/g entry or 24k
8969 	 */
8970 
8971 	/* If the controller supports either ioaccel method then
8972 	 * we can also use the RAID stack submit path that does not
8973 	 * perform the superfluous readl() after each command submission.
8974 	 */
8975 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976 		access = SA5_performant_access_no_read;
8977 
8978 	/* Controller spec: zero out this buffer. */
8979 	for (i = 0; i < h->nreply_queues; i++)
8980 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8981 
8982 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8983 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8984 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8985 	for (i = 0; i < 8; i++)
8986 		writel(bft[i], &h->transtable->BlockFetch[i]);
8987 
8988 	/* size of controller ring buffer */
8989 	writel(h->max_commands, &h->transtable->RepQSize);
8990 	writel(h->nreply_queues, &h->transtable->RepQCount);
8991 	writel(0, &h->transtable->RepQCtrAddrLow32);
8992 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8993 
8994 	for (i = 0; i < h->nreply_queues; i++) {
8995 		writel(0, &h->transtable->RepQAddr[i].upper);
8996 		writel(h->reply_queue[i].busaddr,
8997 			&h->transtable->RepQAddr[i].lower);
8998 	}
8999 
9000 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9001 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9002 	/*
9003 	 * enable outbound interrupt coalescing in accelerator mode;
9004 	 */
9005 	if (trans_support & CFGTBL_Trans_io_accel1) {
9006 		access = SA5_ioaccel_mode1_access;
9007 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9009 	} else {
9010 		if (trans_support & CFGTBL_Trans_io_accel2) {
9011 			access = SA5_ioaccel_mode2_access;
9012 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9014 		}
9015 	}
9016 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9017 	if (hpsa_wait_for_mode_change_ack(h)) {
9018 		dev_err(&h->pdev->dev,
9019 			"performant mode problem - doorbell timeout\n");
9020 		return -ENODEV;
9021 	}
9022 	register_value = readl(&(h->cfgtable->TransportActive));
9023 	if (!(register_value & CFGTBL_Trans_Performant)) {
9024 		dev_err(&h->pdev->dev,
9025 			"performant mode problem - transport not active\n");
9026 		return -ENODEV;
9027 	}
9028 	/* Change the access methods to the performant access methods */
9029 	h->access = access;
9030 	h->transMethod = transMethod;
9031 
9032 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033 		(trans_support & CFGTBL_Trans_io_accel2)))
9034 		return 0;
9035 
9036 	if (trans_support & CFGTBL_Trans_io_accel1) {
9037 		/* Set up I/O accelerator mode */
9038 		for (i = 0; i < h->nreply_queues; i++) {
9039 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040 			h->reply_queue[i].current_entry =
9041 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9042 		}
9043 		bft[7] = h->ioaccel_maxsg + 8;
9044 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045 				h->ioaccel1_blockFetchTable);
9046 
9047 		/* initialize all reply queue entries to unused */
9048 		for (i = 0; i < h->nreply_queues; i++)
9049 			memset(h->reply_queue[i].head,
9050 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9051 				h->reply_queue_size);
9052 
9053 		/* set all the constant fields in the accelerator command
9054 		 * frames once at init time to save CPU cycles later.
9055 		 */
9056 		for (i = 0; i < h->nr_cmds; i++) {
9057 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9058 
9059 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061 					(i * sizeof(struct ErrorInfo)));
9062 			cp->err_info_len = sizeof(struct ErrorInfo);
9063 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9064 			cp->host_context_flags =
9065 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9066 			cp->timeout_sec = 0;
9067 			cp->ReplyQueue = 0;
9068 			cp->tag =
9069 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9070 			cp->host_addr =
9071 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9072 					(i * sizeof(struct io_accel1_cmd)));
9073 		}
9074 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9075 		u64 cfg_offset, cfg_base_addr_index;
9076 		u32 bft2_offset, cfg_base_addr;
9077 		int rc;
9078 
9079 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080 			&cfg_base_addr_index, &cfg_offset);
9081 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084 				4, h->ioaccel2_blockFetchTable);
9085 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086 		BUILD_BUG_ON(offsetof(struct CfgTable,
9087 				io_accel_request_size_offset) != 0xb8);
9088 		h->ioaccel2_bft2_regs =
9089 			remap_pci_mem(pci_resource_start(h->pdev,
9090 					cfg_base_addr_index) +
9091 					cfg_offset + bft2_offset,
9092 					ARRAY_SIZE(bft2) *
9093 					sizeof(*h->ioaccel2_bft2_regs));
9094 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9096 	}
9097 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9098 	if (hpsa_wait_for_mode_change_ack(h)) {
9099 		dev_err(&h->pdev->dev,
9100 			"performant mode problem - enabling ioaccel mode\n");
9101 		return -ENODEV;
9102 	}
9103 	return 0;
9104 }
9105 
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9108 {
9109 	if (h->ioaccel_cmd_pool) {
9110 		pci_free_consistent(h->pdev,
9111 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112 			h->ioaccel_cmd_pool,
9113 			h->ioaccel_cmd_pool_dhandle);
9114 		h->ioaccel_cmd_pool = NULL;
9115 		h->ioaccel_cmd_pool_dhandle = 0;
9116 	}
9117 	kfree(h->ioaccel1_blockFetchTable);
9118 	h->ioaccel1_blockFetchTable = NULL;
9119 }
9120 
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9123 {
9124 	h->ioaccel_maxsg =
9125 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9128 
9129 	/* Command structures must be aligned on a 128-byte boundary
9130 	 * because the 7 lower bits of the address are used by the
9131 	 * hardware.
9132 	 */
9133 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9135 	h->ioaccel_cmd_pool =
9136 		pci_alloc_consistent(h->pdev,
9137 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138 			&(h->ioaccel_cmd_pool_dhandle));
9139 
9140 	h->ioaccel1_blockFetchTable =
9141 		kmalloc(((h->ioaccel_maxsg + 1) *
9142 				sizeof(u32)), GFP_KERNEL);
9143 
9144 	if ((h->ioaccel_cmd_pool == NULL) ||
9145 		(h->ioaccel1_blockFetchTable == NULL))
9146 		goto clean_up;
9147 
9148 	memset(h->ioaccel_cmd_pool, 0,
9149 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150 	return 0;
9151 
9152 clean_up:
9153 	hpsa_free_ioaccel1_cmd_and_bft(h);
9154 	return -ENOMEM;
9155 }
9156 
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9159 {
9160 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9161 
9162 	if (h->ioaccel2_cmd_pool) {
9163 		pci_free_consistent(h->pdev,
9164 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165 			h->ioaccel2_cmd_pool,
9166 			h->ioaccel2_cmd_pool_dhandle);
9167 		h->ioaccel2_cmd_pool = NULL;
9168 		h->ioaccel2_cmd_pool_dhandle = 0;
9169 	}
9170 	kfree(h->ioaccel2_blockFetchTable);
9171 	h->ioaccel2_blockFetchTable = NULL;
9172 }
9173 
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9176 {
9177 	int rc;
9178 
9179 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9180 
9181 	h->ioaccel_maxsg =
9182 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9185 
9186 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9188 	h->ioaccel2_cmd_pool =
9189 		pci_alloc_consistent(h->pdev,
9190 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191 			&(h->ioaccel2_cmd_pool_dhandle));
9192 
9193 	h->ioaccel2_blockFetchTable =
9194 		kmalloc(((h->ioaccel_maxsg + 1) *
9195 				sizeof(u32)), GFP_KERNEL);
9196 
9197 	if ((h->ioaccel2_cmd_pool == NULL) ||
9198 		(h->ioaccel2_blockFetchTable == NULL)) {
9199 		rc = -ENOMEM;
9200 		goto clean_up;
9201 	}
9202 
9203 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204 	if (rc)
9205 		goto clean_up;
9206 
9207 	memset(h->ioaccel2_cmd_pool, 0,
9208 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209 	return 0;
9210 
9211 clean_up:
9212 	hpsa_free_ioaccel2_cmd_and_bft(h);
9213 	return rc;
9214 }
9215 
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info *h)
9218 {
9219 	kfree(h->blockFetchTable);
9220 	h->blockFetchTable = NULL;
9221 	hpsa_free_reply_queues(h);
9222 	hpsa_free_ioaccel1_cmd_and_bft(h);
9223 	hpsa_free_ioaccel2_cmd_and_bft(h);
9224 }
9225 
9226 /* return -ENODEV on error, 0 on success (or no action)
9227  * allocates numerous items that must be freed later
9228  */
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9230 {
9231 	u32 trans_support;
9232 	unsigned long transMethod = CFGTBL_Trans_Performant |
9233 					CFGTBL_Trans_use_short_tags;
9234 	int i, rc;
9235 
9236 	if (hpsa_simple_mode)
9237 		return 0;
9238 
9239 	trans_support = readl(&(h->cfgtable->TransportSupport));
9240 	if (!(trans_support & PERFORMANT_MODE))
9241 		return 0;
9242 
9243 	/* Check for I/O accelerator mode support */
9244 	if (trans_support & CFGTBL_Trans_io_accel1) {
9245 		transMethod |= CFGTBL_Trans_io_accel1 |
9246 				CFGTBL_Trans_enable_directed_msix;
9247 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248 		if (rc)
9249 			return rc;
9250 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9251 		transMethod |= CFGTBL_Trans_io_accel2 |
9252 				CFGTBL_Trans_enable_directed_msix;
9253 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254 		if (rc)
9255 			return rc;
9256 	}
9257 
9258 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9259 	hpsa_get_max_perf_mode_cmds(h);
9260 	/* Performant mode ring buffer and supporting data structures */
9261 	h->reply_queue_size = h->max_commands * sizeof(u64);
9262 
9263 	for (i = 0; i < h->nreply_queues; i++) {
9264 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265 						h->reply_queue_size,
9266 						&(h->reply_queue[i].busaddr));
9267 		if (!h->reply_queue[i].head) {
9268 			rc = -ENOMEM;
9269 			goto clean1;	/* rq, ioaccel */
9270 		}
9271 		h->reply_queue[i].size = h->max_commands;
9272 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9273 		h->reply_queue[i].current_entry = 0;
9274 	}
9275 
9276 	/* Need a block fetch table for performant mode */
9277 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9278 				sizeof(u32)), GFP_KERNEL);
9279 	if (!h->blockFetchTable) {
9280 		rc = -ENOMEM;
9281 		goto clean1;	/* rq, ioaccel */
9282 	}
9283 
9284 	rc = hpsa_enter_performant_mode(h, trans_support);
9285 	if (rc)
9286 		goto clean2;	/* bft, rq, ioaccel */
9287 	return 0;
9288 
9289 clean2:	/* bft, rq, ioaccel */
9290 	kfree(h->blockFetchTable);
9291 	h->blockFetchTable = NULL;
9292 clean1:	/* rq, ioaccel */
9293 	hpsa_free_reply_queues(h);
9294 	hpsa_free_ioaccel1_cmd_and_bft(h);
9295 	hpsa_free_ioaccel2_cmd_and_bft(h);
9296 	return rc;
9297 }
9298 
9299 static int is_accelerated_cmd(struct CommandList *c)
9300 {
9301 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9302 }
9303 
9304 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9305 {
9306 	struct CommandList *c = NULL;
9307 	int i, accel_cmds_out;
9308 	int refcount;
9309 
9310 	do { /* wait for all outstanding ioaccel commands to drain out */
9311 		accel_cmds_out = 0;
9312 		for (i = 0; i < h->nr_cmds; i++) {
9313 			c = h->cmd_pool + i;
9314 			refcount = atomic_inc_return(&c->refcount);
9315 			if (refcount > 1) /* Command is allocated */
9316 				accel_cmds_out += is_accelerated_cmd(c);
9317 			cmd_free(h, c);
9318 		}
9319 		if (accel_cmds_out <= 0)
9320 			break;
9321 		msleep(100);
9322 	} while (1);
9323 }
9324 
9325 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326 				struct hpsa_sas_port *hpsa_sas_port)
9327 {
9328 	struct hpsa_sas_phy *hpsa_sas_phy;
9329 	struct sas_phy *phy;
9330 
9331 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332 	if (!hpsa_sas_phy)
9333 		return NULL;
9334 
9335 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336 		hpsa_sas_port->next_phy_index);
9337 	if (!phy) {
9338 		kfree(hpsa_sas_phy);
9339 		return NULL;
9340 	}
9341 
9342 	hpsa_sas_port->next_phy_index++;
9343 	hpsa_sas_phy->phy = phy;
9344 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9345 
9346 	return hpsa_sas_phy;
9347 }
9348 
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9350 {
9351 	struct sas_phy *phy = hpsa_sas_phy->phy;
9352 
9353 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354 	sas_phy_free(phy);
9355 	if (hpsa_sas_phy->added_to_port)
9356 		list_del(&hpsa_sas_phy->phy_list_entry);
9357 	kfree(hpsa_sas_phy);
9358 }
9359 
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9361 {
9362 	int rc;
9363 	struct hpsa_sas_port *hpsa_sas_port;
9364 	struct sas_phy *phy;
9365 	struct sas_identify *identify;
9366 
9367 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9368 	phy = hpsa_sas_phy->phy;
9369 
9370 	identify = &phy->identify;
9371 	memset(identify, 0, sizeof(*identify));
9372 	identify->sas_address = hpsa_sas_port->sas_address;
9373 	identify->device_type = SAS_END_DEVICE;
9374 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9376 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9381 
9382 	rc = sas_phy_add(hpsa_sas_phy->phy);
9383 	if (rc)
9384 		return rc;
9385 
9386 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388 			&hpsa_sas_port->phy_list_head);
9389 	hpsa_sas_phy->added_to_port = true;
9390 
9391 	return 0;
9392 }
9393 
9394 static int
9395 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396 				struct sas_rphy *rphy)
9397 {
9398 	struct sas_identify *identify;
9399 
9400 	identify = &rphy->identify;
9401 	identify->sas_address = hpsa_sas_port->sas_address;
9402 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9404 
9405 	return sas_rphy_add(rphy);
9406 }
9407 
9408 static struct hpsa_sas_port
9409 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410 				u64 sas_address)
9411 {
9412 	int rc;
9413 	struct hpsa_sas_port *hpsa_sas_port;
9414 	struct sas_port *port;
9415 
9416 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417 	if (!hpsa_sas_port)
9418 		return NULL;
9419 
9420 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421 	hpsa_sas_port->parent_node = hpsa_sas_node;
9422 
9423 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424 	if (!port)
9425 		goto free_hpsa_port;
9426 
9427 	rc = sas_port_add(port);
9428 	if (rc)
9429 		goto free_sas_port;
9430 
9431 	hpsa_sas_port->port = port;
9432 	hpsa_sas_port->sas_address = sas_address;
9433 	list_add_tail(&hpsa_sas_port->port_list_entry,
9434 			&hpsa_sas_node->port_list_head);
9435 
9436 	return hpsa_sas_port;
9437 
9438 free_sas_port:
9439 	sas_port_free(port);
9440 free_hpsa_port:
9441 	kfree(hpsa_sas_port);
9442 
9443 	return NULL;
9444 }
9445 
9446 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448 	struct hpsa_sas_phy *hpsa_sas_phy;
9449 	struct hpsa_sas_phy *next;
9450 
9451 	list_for_each_entry_safe(hpsa_sas_phy, next,
9452 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9453 		hpsa_free_sas_phy(hpsa_sas_phy);
9454 
9455 	sas_port_delete(hpsa_sas_port->port);
9456 	list_del(&hpsa_sas_port->port_list_entry);
9457 	kfree(hpsa_sas_port);
9458 }
9459 
9460 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9461 {
9462 	struct hpsa_sas_node *hpsa_sas_node;
9463 
9464 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465 	if (hpsa_sas_node) {
9466 		hpsa_sas_node->parent_dev = parent_dev;
9467 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9468 	}
9469 
9470 	return hpsa_sas_node;
9471 }
9472 
9473 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9474 {
9475 	struct hpsa_sas_port *hpsa_sas_port;
9476 	struct hpsa_sas_port *next;
9477 
9478 	if (!hpsa_sas_node)
9479 		return;
9480 
9481 	list_for_each_entry_safe(hpsa_sas_port, next,
9482 			&hpsa_sas_node->port_list_head, port_list_entry)
9483 		hpsa_free_sas_port(hpsa_sas_port);
9484 
9485 	kfree(hpsa_sas_node);
9486 }
9487 
9488 static struct hpsa_scsi_dev_t
9489 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490 					struct sas_rphy *rphy)
9491 {
9492 	int i;
9493 	struct hpsa_scsi_dev_t *device;
9494 
9495 	for (i = 0; i < h->ndevices; i++) {
9496 		device = h->dev[i];
9497 		if (!device->sas_port)
9498 			continue;
9499 		if (device->sas_port->rphy == rphy)
9500 			return device;
9501 	}
9502 
9503 	return NULL;
9504 }
9505 
9506 static int hpsa_add_sas_host(struct ctlr_info *h)
9507 {
9508 	int rc;
9509 	struct device *parent_dev;
9510 	struct hpsa_sas_node *hpsa_sas_node;
9511 	struct hpsa_sas_port *hpsa_sas_port;
9512 	struct hpsa_sas_phy *hpsa_sas_phy;
9513 
9514 	parent_dev = &h->scsi_host->shost_gendev;
9515 
9516 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517 	if (!hpsa_sas_node)
9518 		return -ENOMEM;
9519 
9520 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521 	if (!hpsa_sas_port) {
9522 		rc = -ENODEV;
9523 		goto free_sas_node;
9524 	}
9525 
9526 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527 	if (!hpsa_sas_phy) {
9528 		rc = -ENODEV;
9529 		goto free_sas_port;
9530 	}
9531 
9532 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533 	if (rc)
9534 		goto free_sas_phy;
9535 
9536 	h->sas_host = hpsa_sas_node;
9537 
9538 	return 0;
9539 
9540 free_sas_phy:
9541 	hpsa_free_sas_phy(hpsa_sas_phy);
9542 free_sas_port:
9543 	hpsa_free_sas_port(hpsa_sas_port);
9544 free_sas_node:
9545 	hpsa_free_sas_node(hpsa_sas_node);
9546 
9547 	return rc;
9548 }
9549 
9550 static void hpsa_delete_sas_host(struct ctlr_info *h)
9551 {
9552 	hpsa_free_sas_node(h->sas_host);
9553 }
9554 
9555 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556 				struct hpsa_scsi_dev_t *device)
9557 {
9558 	int rc;
9559 	struct hpsa_sas_port *hpsa_sas_port;
9560 	struct sas_rphy *rphy;
9561 
9562 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563 	if (!hpsa_sas_port)
9564 		return -ENOMEM;
9565 
9566 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567 	if (!rphy) {
9568 		rc = -ENODEV;
9569 		goto free_sas_port;
9570 	}
9571 
9572 	hpsa_sas_port->rphy = rphy;
9573 	device->sas_port = hpsa_sas_port;
9574 
9575 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576 	if (rc)
9577 		goto free_sas_port;
9578 
9579 	return 0;
9580 
9581 free_sas_port:
9582 	hpsa_free_sas_port(hpsa_sas_port);
9583 	device->sas_port = NULL;
9584 
9585 	return rc;
9586 }
9587 
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9589 {
9590 	if (device->sas_port) {
9591 		hpsa_free_sas_port(device->sas_port);
9592 		device->sas_port = NULL;
9593 	}
9594 }
9595 
9596 static int
9597 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9598 {
9599 	return 0;
9600 }
9601 
9602 static int
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9604 {
9605 	return 0;
9606 }
9607 
9608 static int
9609 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9610 {
9611 	return -ENXIO;
9612 }
9613 
9614 static int
9615 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9616 {
9617 	return 0;
9618 }
9619 
9620 static int
9621 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9622 {
9623 	return 0;
9624 }
9625 
9626 static int
9627 hpsa_sas_phy_setup(struct sas_phy *phy)
9628 {
9629 	return 0;
9630 }
9631 
9632 static void
9633 hpsa_sas_phy_release(struct sas_phy *phy)
9634 {
9635 }
9636 
9637 static int
9638 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9639 {
9640 	return -EINVAL;
9641 }
9642 
9643 /* SMP = Serial Management Protocol */
9644 static int
9645 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646 struct request *req)
9647 {
9648 	return -EINVAL;
9649 }
9650 
9651 static struct sas_function_template hpsa_sas_transport_functions = {
9652 	.get_linkerrors = hpsa_sas_get_linkerrors,
9653 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9655 	.phy_reset = hpsa_sas_phy_reset,
9656 	.phy_enable = hpsa_sas_phy_enable,
9657 	.phy_setup = hpsa_sas_phy_setup,
9658 	.phy_release = hpsa_sas_phy_release,
9659 	.set_phy_speed = hpsa_sas_phy_speed,
9660 	.smp_handler = hpsa_sas_smp_handler,
9661 };
9662 
9663 /*
9664  *  This is it.  Register the PCI driver information for the cards we control
9665  *  the OS will call our registered routines when it finds one of our cards.
9666  */
9667 static int __init hpsa_init(void)
9668 {
9669 	int rc;
9670 
9671 	hpsa_sas_transport_template =
9672 		sas_attach_transport(&hpsa_sas_transport_functions);
9673 	if (!hpsa_sas_transport_template)
9674 		return -ENODEV;
9675 
9676 	rc = pci_register_driver(&hpsa_pci_driver);
9677 
9678 	if (rc)
9679 		sas_release_transport(hpsa_sas_transport_template);
9680 
9681 	return rc;
9682 }
9683 
9684 static void __exit hpsa_cleanup(void)
9685 {
9686 	pci_unregister_driver(&hpsa_pci_driver);
9687 	sas_release_transport(hpsa_sas_transport_template);
9688 }
9689 
9690 static void __attribute__((unused)) verify_offsets(void)
9691 {
9692 #define VERIFY_OFFSET(member, offset) \
9693 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9694 
9695 	VERIFY_OFFSET(structure_size, 0);
9696 	VERIFY_OFFSET(volume_blk_size, 4);
9697 	VERIFY_OFFSET(volume_blk_cnt, 8);
9698 	VERIFY_OFFSET(phys_blk_shift, 16);
9699 	VERIFY_OFFSET(parity_rotation_shift, 17);
9700 	VERIFY_OFFSET(strip_size, 18);
9701 	VERIFY_OFFSET(disk_starting_blk, 20);
9702 	VERIFY_OFFSET(disk_blk_cnt, 28);
9703 	VERIFY_OFFSET(data_disks_per_row, 36);
9704 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9705 	VERIFY_OFFSET(row_cnt, 40);
9706 	VERIFY_OFFSET(layout_map_count, 42);
9707 	VERIFY_OFFSET(flags, 44);
9708 	VERIFY_OFFSET(dekindex, 46);
9709 	/* VERIFY_OFFSET(reserved, 48 */
9710 	VERIFY_OFFSET(data, 64);
9711 
9712 #undef VERIFY_OFFSET
9713 
9714 #define VERIFY_OFFSET(member, offset) \
9715 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9716 
9717 	VERIFY_OFFSET(IU_type, 0);
9718 	VERIFY_OFFSET(direction, 1);
9719 	VERIFY_OFFSET(reply_queue, 2);
9720 	/* VERIFY_OFFSET(reserved1, 3);  */
9721 	VERIFY_OFFSET(scsi_nexus, 4);
9722 	VERIFY_OFFSET(Tag, 8);
9723 	VERIFY_OFFSET(cdb, 16);
9724 	VERIFY_OFFSET(cciss_lun, 32);
9725 	VERIFY_OFFSET(data_len, 40);
9726 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727 	VERIFY_OFFSET(sg_count, 45);
9728 	/* VERIFY_OFFSET(reserved3 */
9729 	VERIFY_OFFSET(err_ptr, 48);
9730 	VERIFY_OFFSET(err_len, 56);
9731 	/* VERIFY_OFFSET(reserved4  */
9732 	VERIFY_OFFSET(sg, 64);
9733 
9734 #undef VERIFY_OFFSET
9735 
9736 #define VERIFY_OFFSET(member, offset) \
9737 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9738 
9739 	VERIFY_OFFSET(dev_handle, 0x00);
9740 	VERIFY_OFFSET(reserved1, 0x02);
9741 	VERIFY_OFFSET(function, 0x03);
9742 	VERIFY_OFFSET(reserved2, 0x04);
9743 	VERIFY_OFFSET(err_info, 0x0C);
9744 	VERIFY_OFFSET(reserved3, 0x10);
9745 	VERIFY_OFFSET(err_info_len, 0x12);
9746 	VERIFY_OFFSET(reserved4, 0x13);
9747 	VERIFY_OFFSET(sgl_offset, 0x14);
9748 	VERIFY_OFFSET(reserved5, 0x15);
9749 	VERIFY_OFFSET(transfer_len, 0x1C);
9750 	VERIFY_OFFSET(reserved6, 0x20);
9751 	VERIFY_OFFSET(io_flags, 0x24);
9752 	VERIFY_OFFSET(reserved7, 0x26);
9753 	VERIFY_OFFSET(LUN, 0x34);
9754 	VERIFY_OFFSET(control, 0x3C);
9755 	VERIFY_OFFSET(CDB, 0x40);
9756 	VERIFY_OFFSET(reserved8, 0x50);
9757 	VERIFY_OFFSET(host_context_flags, 0x60);
9758 	VERIFY_OFFSET(timeout_sec, 0x62);
9759 	VERIFY_OFFSET(ReplyQueue, 0x64);
9760 	VERIFY_OFFSET(reserved9, 0x65);
9761 	VERIFY_OFFSET(tag, 0x68);
9762 	VERIFY_OFFSET(host_addr, 0x70);
9763 	VERIFY_OFFSET(CISS_LUN, 0x78);
9764 	VERIFY_OFFSET(SG, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9766 }
9767 
9768 module_init(hpsa_init);
9769 module_exit(hpsa_cleanup);
9770