1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/compat.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/uaccess.h> 37 #include <linux/io.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/completion.h> 40 #include <linux/moduleparam.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_device.h> 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_tcq.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "2.0.2-1" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 static int hpsa_simple_mode; 78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 79 MODULE_PARM_DESC(hpsa_simple_mode, 80 "Use 'simple mode' rather than 'performant mode'"); 81 82 /* define the PCI info for the cards we can control */ 83 static const struct pci_device_id hpsa_pci_device_id[] = { 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 101 {0,} 102 }; 103 104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 105 106 /* board_id = Subsystem Device ID & Vendor ID 107 * product = Marketing Name for the board 108 * access = Address of the struct of function pointers 109 */ 110 static struct board_type products[] = { 111 {0x3241103C, "Smart Array P212", &SA5_access}, 112 {0x3243103C, "Smart Array P410", &SA5_access}, 113 {0x3245103C, "Smart Array P410i", &SA5_access}, 114 {0x3247103C, "Smart Array P411", &SA5_access}, 115 {0x3249103C, "Smart Array P812", &SA5_access}, 116 {0x324a103C, "Smart Array P712m", &SA5_access}, 117 {0x324b103C, "Smart Array P711m", &SA5_access}, 118 {0x3350103C, "Smart Array", &SA5_access}, 119 {0x3351103C, "Smart Array", &SA5_access}, 120 {0x3352103C, "Smart Array", &SA5_access}, 121 {0x3353103C, "Smart Array", &SA5_access}, 122 {0x3354103C, "Smart Array", &SA5_access}, 123 {0x3355103C, "Smart Array", &SA5_access}, 124 {0x3356103C, "Smart Array", &SA5_access}, 125 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 126 }; 127 128 static int number_of_controllers; 129 130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 133 static void start_io(struct ctlr_info *h); 134 135 #ifdef CONFIG_COMPAT 136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 137 #endif 138 139 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 141 static struct CommandList *cmd_alloc(struct ctlr_info *h); 142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 145 int cmd_type); 146 147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 148 static void hpsa_scan_start(struct Scsi_Host *); 149 static int hpsa_scan_finished(struct Scsi_Host *sh, 150 unsigned long elapsed_time); 151 static int hpsa_change_queue_depth(struct scsi_device *sdev, 152 int qdepth, int reason); 153 154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 155 static int hpsa_slave_alloc(struct scsi_device *sdev); 156 static void hpsa_slave_destroy(struct scsi_device *sdev); 157 158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 159 static int check_for_unit_attention(struct ctlr_info *h, 160 struct CommandList *c); 161 static void check_ioctl_unit_attention(struct ctlr_info *h, 162 struct CommandList *c); 163 /* performant mode helper functions */ 164 static void calc_bucket_map(int *bucket, int num_buckets, 165 int nsgs, int *bucket_map); 166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 167 static inline u32 next_command(struct ctlr_info *h); 168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 170 u64 *cfg_offset); 171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 172 unsigned long *memory_bar); 173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 175 void __iomem *vaddr, int wait_for_ready); 176 #define BOARD_NOT_READY 0 177 #define BOARD_READY 1 178 179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 180 { 181 unsigned long *priv = shost_priv(sdev->host); 182 return (struct ctlr_info *) *priv; 183 } 184 185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 186 { 187 unsigned long *priv = shost_priv(sh); 188 return (struct ctlr_info *) *priv; 189 } 190 191 static int check_for_unit_attention(struct ctlr_info *h, 192 struct CommandList *c) 193 { 194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 195 return 0; 196 197 switch (c->err_info->SenseInfo[12]) { 198 case STATE_CHANGED: 199 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 200 "detected, command retried\n", h->ctlr); 201 break; 202 case LUN_FAILED: 203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 204 "detected, action required\n", h->ctlr); 205 break; 206 case REPORT_LUNS_CHANGED: 207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 208 "changed, action required\n", h->ctlr); 209 /* 210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 211 */ 212 break; 213 case POWER_OR_RESET: 214 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 215 "or device reset detected\n", h->ctlr); 216 break; 217 case UNIT_ATTENTION_CLEARED: 218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 219 "cleared by another initiator\n", h->ctlr); 220 break; 221 default: 222 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 223 "unit attention detected\n", h->ctlr); 224 break; 225 } 226 return 1; 227 } 228 229 static ssize_t host_store_rescan(struct device *dev, 230 struct device_attribute *attr, 231 const char *buf, size_t count) 232 { 233 struct ctlr_info *h; 234 struct Scsi_Host *shost = class_to_shost(dev); 235 h = shost_to_hba(shost); 236 hpsa_scan_start(h->scsi_host); 237 return count; 238 } 239 240 static ssize_t host_show_firmware_revision(struct device *dev, 241 struct device_attribute *attr, char *buf) 242 { 243 struct ctlr_info *h; 244 struct Scsi_Host *shost = class_to_shost(dev); 245 unsigned char *fwrev; 246 247 h = shost_to_hba(shost); 248 if (!h->hba_inquiry_data) 249 return 0; 250 fwrev = &h->hba_inquiry_data[32]; 251 return snprintf(buf, 20, "%c%c%c%c\n", 252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 253 } 254 255 static ssize_t host_show_commands_outstanding(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct Scsi_Host *shost = class_to_shost(dev); 259 struct ctlr_info *h = shost_to_hba(shost); 260 261 return snprintf(buf, 20, "%d\n", h->commands_outstanding); 262 } 263 264 static ssize_t host_show_transport_mode(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct ctlr_info *h; 268 struct Scsi_Host *shost = class_to_shost(dev); 269 270 h = shost_to_hba(shost); 271 return snprintf(buf, 20, "%s\n", 272 h->transMethod & CFGTBL_Trans_Performant ? 273 "performant" : "simple"); 274 } 275 276 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 277 static u32 unresettable_controller[] = { 278 0x324a103C, /* Smart Array P712m */ 279 0x324b103C, /* SmartArray P711m */ 280 0x3223103C, /* Smart Array P800 */ 281 0x3234103C, /* Smart Array P400 */ 282 0x3235103C, /* Smart Array P400i */ 283 0x3211103C, /* Smart Array E200i */ 284 0x3212103C, /* Smart Array E200 */ 285 0x3213103C, /* Smart Array E200i */ 286 0x3214103C, /* Smart Array E200i */ 287 0x3215103C, /* Smart Array E200i */ 288 0x3237103C, /* Smart Array E500 */ 289 0x323D103C, /* Smart Array P700m */ 290 0x409C0E11, /* Smart Array 6400 */ 291 0x409D0E11, /* Smart Array 6400 EM */ 292 }; 293 294 /* List of controllers which cannot even be soft reset */ 295 static u32 soft_unresettable_controller[] = { 296 /* Exclude 640x boards. These are two pci devices in one slot 297 * which share a battery backed cache module. One controls the 298 * cache, the other accesses the cache through the one that controls 299 * it. If we reset the one controlling the cache, the other will 300 * likely not be happy. Just forbid resetting this conjoined mess. 301 * The 640x isn't really supported by hpsa anyway. 302 */ 303 0x409C0E11, /* Smart Array 6400 */ 304 0x409D0E11, /* Smart Array 6400 EM */ 305 }; 306 307 static int ctlr_is_hard_resettable(u32 board_id) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) 312 if (unresettable_controller[i] == board_id) 313 return 0; 314 return 1; 315 } 316 317 static int ctlr_is_soft_resettable(u32 board_id) 318 { 319 int i; 320 321 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) 322 if (soft_unresettable_controller[i] == board_id) 323 return 0; 324 return 1; 325 } 326 327 static int ctlr_is_resettable(u32 board_id) 328 { 329 return ctlr_is_hard_resettable(board_id) || 330 ctlr_is_soft_resettable(board_id); 331 } 332 333 static ssize_t host_show_resettable(struct device *dev, 334 struct device_attribute *attr, char *buf) 335 { 336 struct ctlr_info *h; 337 struct Scsi_Host *shost = class_to_shost(dev); 338 339 h = shost_to_hba(shost); 340 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 341 } 342 343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 344 { 345 return (scsi3addr[3] & 0xC0) == 0x40; 346 } 347 348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 349 "UNKNOWN" 350 }; 351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 352 353 static ssize_t raid_level_show(struct device *dev, 354 struct device_attribute *attr, char *buf) 355 { 356 ssize_t l = 0; 357 unsigned char rlevel; 358 struct ctlr_info *h; 359 struct scsi_device *sdev; 360 struct hpsa_scsi_dev_t *hdev; 361 unsigned long flags; 362 363 sdev = to_scsi_device(dev); 364 h = sdev_to_hba(sdev); 365 spin_lock_irqsave(&h->lock, flags); 366 hdev = sdev->hostdata; 367 if (!hdev) { 368 spin_unlock_irqrestore(&h->lock, flags); 369 return -ENODEV; 370 } 371 372 /* Is this even a logical drive? */ 373 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 374 spin_unlock_irqrestore(&h->lock, flags); 375 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 376 return l; 377 } 378 379 rlevel = hdev->raid_level; 380 spin_unlock_irqrestore(&h->lock, flags); 381 if (rlevel > RAID_UNKNOWN) 382 rlevel = RAID_UNKNOWN; 383 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 384 return l; 385 } 386 387 static ssize_t lunid_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 struct ctlr_info *h; 391 struct scsi_device *sdev; 392 struct hpsa_scsi_dev_t *hdev; 393 unsigned long flags; 394 unsigned char lunid[8]; 395 396 sdev = to_scsi_device(dev); 397 h = sdev_to_hba(sdev); 398 spin_lock_irqsave(&h->lock, flags); 399 hdev = sdev->hostdata; 400 if (!hdev) { 401 spin_unlock_irqrestore(&h->lock, flags); 402 return -ENODEV; 403 } 404 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 405 spin_unlock_irqrestore(&h->lock, flags); 406 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 407 lunid[0], lunid[1], lunid[2], lunid[3], 408 lunid[4], lunid[5], lunid[6], lunid[7]); 409 } 410 411 static ssize_t unique_id_show(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 struct ctlr_info *h; 415 struct scsi_device *sdev; 416 struct hpsa_scsi_dev_t *hdev; 417 unsigned long flags; 418 unsigned char sn[16]; 419 420 sdev = to_scsi_device(dev); 421 h = sdev_to_hba(sdev); 422 spin_lock_irqsave(&h->lock, flags); 423 hdev = sdev->hostdata; 424 if (!hdev) { 425 spin_unlock_irqrestore(&h->lock, flags); 426 return -ENODEV; 427 } 428 memcpy(sn, hdev->device_id, sizeof(sn)); 429 spin_unlock_irqrestore(&h->lock, flags); 430 return snprintf(buf, 16 * 2 + 2, 431 "%02X%02X%02X%02X%02X%02X%02X%02X" 432 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 433 sn[0], sn[1], sn[2], sn[3], 434 sn[4], sn[5], sn[6], sn[7], 435 sn[8], sn[9], sn[10], sn[11], 436 sn[12], sn[13], sn[14], sn[15]); 437 } 438 439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 443 static DEVICE_ATTR(firmware_revision, S_IRUGO, 444 host_show_firmware_revision, NULL); 445 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 446 host_show_commands_outstanding, NULL); 447 static DEVICE_ATTR(transport_mode, S_IRUGO, 448 host_show_transport_mode, NULL); 449 static DEVICE_ATTR(resettable, S_IRUGO, 450 host_show_resettable, NULL); 451 452 static struct device_attribute *hpsa_sdev_attrs[] = { 453 &dev_attr_raid_level, 454 &dev_attr_lunid, 455 &dev_attr_unique_id, 456 NULL, 457 }; 458 459 static struct device_attribute *hpsa_shost_attrs[] = { 460 &dev_attr_rescan, 461 &dev_attr_firmware_revision, 462 &dev_attr_commands_outstanding, 463 &dev_attr_transport_mode, 464 &dev_attr_resettable, 465 NULL, 466 }; 467 468 static struct scsi_host_template hpsa_driver_template = { 469 .module = THIS_MODULE, 470 .name = "hpsa", 471 .proc_name = "hpsa", 472 .queuecommand = hpsa_scsi_queue_command, 473 .scan_start = hpsa_scan_start, 474 .scan_finished = hpsa_scan_finished, 475 .change_queue_depth = hpsa_change_queue_depth, 476 .this_id = -1, 477 .use_clustering = ENABLE_CLUSTERING, 478 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 479 .ioctl = hpsa_ioctl, 480 .slave_alloc = hpsa_slave_alloc, 481 .slave_destroy = hpsa_slave_destroy, 482 #ifdef CONFIG_COMPAT 483 .compat_ioctl = hpsa_compat_ioctl, 484 #endif 485 .sdev_attrs = hpsa_sdev_attrs, 486 .shost_attrs = hpsa_shost_attrs, 487 }; 488 489 490 /* Enqueuing and dequeuing functions for cmdlists. */ 491 static inline void addQ(struct list_head *list, struct CommandList *c) 492 { 493 list_add_tail(&c->list, list); 494 } 495 496 static inline u32 next_command(struct ctlr_info *h) 497 { 498 u32 a; 499 500 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 501 return h->access.command_completed(h); 502 503 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 504 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 505 (h->reply_pool_head)++; 506 h->commands_outstanding--; 507 } else { 508 a = FIFO_EMPTY; 509 } 510 /* Check for wraparound */ 511 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 512 h->reply_pool_head = h->reply_pool; 513 h->reply_pool_wraparound ^= 1; 514 } 515 return a; 516 } 517 518 /* set_performant_mode: Modify the tag for cciss performant 519 * set bit 0 for pull model, bits 3-1 for block fetch 520 * register number 521 */ 522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 523 { 524 if (likely(h->transMethod & CFGTBL_Trans_Performant)) 525 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 526 } 527 528 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 529 struct CommandList *c) 530 { 531 unsigned long flags; 532 533 set_performant_mode(h, c); 534 spin_lock_irqsave(&h->lock, flags); 535 addQ(&h->reqQ, c); 536 h->Qdepth++; 537 start_io(h); 538 spin_unlock_irqrestore(&h->lock, flags); 539 } 540 541 static inline void removeQ(struct CommandList *c) 542 { 543 if (WARN_ON(list_empty(&c->list))) 544 return; 545 list_del_init(&c->list); 546 } 547 548 static inline int is_hba_lunid(unsigned char scsi3addr[]) 549 { 550 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 551 } 552 553 static inline int is_scsi_rev_5(struct ctlr_info *h) 554 { 555 if (!h->hba_inquiry_data) 556 return 0; 557 if ((h->hba_inquiry_data[2] & 0x07) == 5) 558 return 1; 559 return 0; 560 } 561 562 static int hpsa_find_target_lun(struct ctlr_info *h, 563 unsigned char scsi3addr[], int bus, int *target, int *lun) 564 { 565 /* finds an unused bus, target, lun for a new physical device 566 * assumes h->devlock is held 567 */ 568 int i, found = 0; 569 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 570 571 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 572 573 for (i = 0; i < h->ndevices; i++) { 574 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 575 set_bit(h->dev[i]->target, lun_taken); 576 } 577 578 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 579 if (!test_bit(i, lun_taken)) { 580 /* *bus = 1; */ 581 *target = i; 582 *lun = 0; 583 found = 1; 584 break; 585 } 586 } 587 return !found; 588 } 589 590 /* Add an entry into h->dev[] array. */ 591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 592 struct hpsa_scsi_dev_t *device, 593 struct hpsa_scsi_dev_t *added[], int *nadded) 594 { 595 /* assumes h->devlock is held */ 596 int n = h->ndevices; 597 int i; 598 unsigned char addr1[8], addr2[8]; 599 struct hpsa_scsi_dev_t *sd; 600 601 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 602 dev_err(&h->pdev->dev, "too many devices, some will be " 603 "inaccessible.\n"); 604 return -1; 605 } 606 607 /* physical devices do not have lun or target assigned until now. */ 608 if (device->lun != -1) 609 /* Logical device, lun is already assigned. */ 610 goto lun_assigned; 611 612 /* If this device a non-zero lun of a multi-lun device 613 * byte 4 of the 8-byte LUN addr will contain the logical 614 * unit no, zero otherise. 615 */ 616 if (device->scsi3addr[4] == 0) { 617 /* This is not a non-zero lun of a multi-lun device */ 618 if (hpsa_find_target_lun(h, device->scsi3addr, 619 device->bus, &device->target, &device->lun) != 0) 620 return -1; 621 goto lun_assigned; 622 } 623 624 /* This is a non-zero lun of a multi-lun device. 625 * Search through our list and find the device which 626 * has the same 8 byte LUN address, excepting byte 4. 627 * Assign the same bus and target for this new LUN. 628 * Use the logical unit number from the firmware. 629 */ 630 memcpy(addr1, device->scsi3addr, 8); 631 addr1[4] = 0; 632 for (i = 0; i < n; i++) { 633 sd = h->dev[i]; 634 memcpy(addr2, sd->scsi3addr, 8); 635 addr2[4] = 0; 636 /* differ only in byte 4? */ 637 if (memcmp(addr1, addr2, 8) == 0) { 638 device->bus = sd->bus; 639 device->target = sd->target; 640 device->lun = device->scsi3addr[4]; 641 break; 642 } 643 } 644 if (device->lun == -1) { 645 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 646 " suspect firmware bug or unsupported hardware " 647 "configuration.\n"); 648 return -1; 649 } 650 651 lun_assigned: 652 653 h->dev[n] = device; 654 h->ndevices++; 655 added[*nadded] = device; 656 (*nadded)++; 657 658 /* initially, (before registering with scsi layer) we don't 659 * know our hostno and we don't want to print anything first 660 * time anyway (the scsi layer's inquiries will show that info) 661 */ 662 /* if (hostno != -1) */ 663 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 664 scsi_device_type(device->devtype), hostno, 665 device->bus, device->target, device->lun); 666 return 0; 667 } 668 669 /* Replace an entry from h->dev[] array. */ 670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 671 int entry, struct hpsa_scsi_dev_t *new_entry, 672 struct hpsa_scsi_dev_t *added[], int *nadded, 673 struct hpsa_scsi_dev_t *removed[], int *nremoved) 674 { 675 /* assumes h->devlock is held */ 676 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 677 removed[*nremoved] = h->dev[entry]; 678 (*nremoved)++; 679 h->dev[entry] = new_entry; 680 added[*nadded] = new_entry; 681 (*nadded)++; 682 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 683 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 684 new_entry->target, new_entry->lun); 685 } 686 687 /* Remove an entry from h->dev[] array. */ 688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 689 struct hpsa_scsi_dev_t *removed[], int *nremoved) 690 { 691 /* assumes h->devlock is held */ 692 int i; 693 struct hpsa_scsi_dev_t *sd; 694 695 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 696 697 sd = h->dev[entry]; 698 removed[*nremoved] = h->dev[entry]; 699 (*nremoved)++; 700 701 for (i = entry; i < h->ndevices-1; i++) 702 h->dev[i] = h->dev[i+1]; 703 h->ndevices--; 704 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 705 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 706 sd->lun); 707 } 708 709 #define SCSI3ADDR_EQ(a, b) ( \ 710 (a)[7] == (b)[7] && \ 711 (a)[6] == (b)[6] && \ 712 (a)[5] == (b)[5] && \ 713 (a)[4] == (b)[4] && \ 714 (a)[3] == (b)[3] && \ 715 (a)[2] == (b)[2] && \ 716 (a)[1] == (b)[1] && \ 717 (a)[0] == (b)[0]) 718 719 static void fixup_botched_add(struct ctlr_info *h, 720 struct hpsa_scsi_dev_t *added) 721 { 722 /* called when scsi_add_device fails in order to re-adjust 723 * h->dev[] to match the mid layer's view. 724 */ 725 unsigned long flags; 726 int i, j; 727 728 spin_lock_irqsave(&h->lock, flags); 729 for (i = 0; i < h->ndevices; i++) { 730 if (h->dev[i] == added) { 731 for (j = i; j < h->ndevices-1; j++) 732 h->dev[j] = h->dev[j+1]; 733 h->ndevices--; 734 break; 735 } 736 } 737 spin_unlock_irqrestore(&h->lock, flags); 738 kfree(added); 739 } 740 741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 742 struct hpsa_scsi_dev_t *dev2) 743 { 744 /* we compare everything except lun and target as these 745 * are not yet assigned. Compare parts likely 746 * to differ first 747 */ 748 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 749 sizeof(dev1->scsi3addr)) != 0) 750 return 0; 751 if (memcmp(dev1->device_id, dev2->device_id, 752 sizeof(dev1->device_id)) != 0) 753 return 0; 754 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 755 return 0; 756 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 757 return 0; 758 if (dev1->devtype != dev2->devtype) 759 return 0; 760 if (dev1->bus != dev2->bus) 761 return 0; 762 return 1; 763 } 764 765 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 766 * and return needle location in *index. If scsi3addr matches, but not 767 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 768 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 769 */ 770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 771 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 772 int *index) 773 { 774 int i; 775 #define DEVICE_NOT_FOUND 0 776 #define DEVICE_CHANGED 1 777 #define DEVICE_SAME 2 778 for (i = 0; i < haystack_size; i++) { 779 if (haystack[i] == NULL) /* previously removed. */ 780 continue; 781 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 782 *index = i; 783 if (device_is_the_same(needle, haystack[i])) 784 return DEVICE_SAME; 785 else 786 return DEVICE_CHANGED; 787 } 788 } 789 *index = -1; 790 return DEVICE_NOT_FOUND; 791 } 792 793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 794 struct hpsa_scsi_dev_t *sd[], int nsds) 795 { 796 /* sd contains scsi3 addresses and devtypes, and inquiry 797 * data. This function takes what's in sd to be the current 798 * reality and updates h->dev[] to reflect that reality. 799 */ 800 int i, entry, device_change, changes = 0; 801 struct hpsa_scsi_dev_t *csd; 802 unsigned long flags; 803 struct hpsa_scsi_dev_t **added, **removed; 804 int nadded, nremoved; 805 struct Scsi_Host *sh = NULL; 806 807 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 808 GFP_KERNEL); 809 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 810 GFP_KERNEL); 811 812 if (!added || !removed) { 813 dev_warn(&h->pdev->dev, "out of memory in " 814 "adjust_hpsa_scsi_table\n"); 815 goto free_and_out; 816 } 817 818 spin_lock_irqsave(&h->devlock, flags); 819 820 /* find any devices in h->dev[] that are not in 821 * sd[] and remove them from h->dev[], and for any 822 * devices which have changed, remove the old device 823 * info and add the new device info. 824 */ 825 i = 0; 826 nremoved = 0; 827 nadded = 0; 828 while (i < h->ndevices) { 829 csd = h->dev[i]; 830 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 831 if (device_change == DEVICE_NOT_FOUND) { 832 changes++; 833 hpsa_scsi_remove_entry(h, hostno, i, 834 removed, &nremoved); 835 continue; /* remove ^^^, hence i not incremented */ 836 } else if (device_change == DEVICE_CHANGED) { 837 changes++; 838 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 839 added, &nadded, removed, &nremoved); 840 /* Set it to NULL to prevent it from being freed 841 * at the bottom of hpsa_update_scsi_devices() 842 */ 843 sd[entry] = NULL; 844 } 845 i++; 846 } 847 848 /* Now, make sure every device listed in sd[] is also 849 * listed in h->dev[], adding them if they aren't found 850 */ 851 852 for (i = 0; i < nsds; i++) { 853 if (!sd[i]) /* if already added above. */ 854 continue; 855 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 856 h->ndevices, &entry); 857 if (device_change == DEVICE_NOT_FOUND) { 858 changes++; 859 if (hpsa_scsi_add_entry(h, hostno, sd[i], 860 added, &nadded) != 0) 861 break; 862 sd[i] = NULL; /* prevent from being freed later. */ 863 } else if (device_change == DEVICE_CHANGED) { 864 /* should never happen... */ 865 changes++; 866 dev_warn(&h->pdev->dev, 867 "device unexpectedly changed.\n"); 868 /* but if it does happen, we just ignore that device */ 869 } 870 } 871 spin_unlock_irqrestore(&h->devlock, flags); 872 873 /* Don't notify scsi mid layer of any changes the first time through 874 * (or if there are no changes) scsi_scan_host will do it later the 875 * first time through. 876 */ 877 if (hostno == -1 || !changes) 878 goto free_and_out; 879 880 sh = h->scsi_host; 881 /* Notify scsi mid layer of any removed devices */ 882 for (i = 0; i < nremoved; i++) { 883 struct scsi_device *sdev = 884 scsi_device_lookup(sh, removed[i]->bus, 885 removed[i]->target, removed[i]->lun); 886 if (sdev != NULL) { 887 scsi_remove_device(sdev); 888 scsi_device_put(sdev); 889 } else { 890 /* We don't expect to get here. 891 * future cmds to this device will get selection 892 * timeout as if the device was gone. 893 */ 894 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 895 " for removal.", hostno, removed[i]->bus, 896 removed[i]->target, removed[i]->lun); 897 } 898 kfree(removed[i]); 899 removed[i] = NULL; 900 } 901 902 /* Notify scsi mid layer of any added devices */ 903 for (i = 0; i < nadded; i++) { 904 if (scsi_add_device(sh, added[i]->bus, 905 added[i]->target, added[i]->lun) == 0) 906 continue; 907 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 908 "device not added.\n", hostno, added[i]->bus, 909 added[i]->target, added[i]->lun); 910 /* now we have to remove it from h->dev, 911 * since it didn't get added to scsi mid layer 912 */ 913 fixup_botched_add(h, added[i]); 914 } 915 916 free_and_out: 917 kfree(added); 918 kfree(removed); 919 } 920 921 /* 922 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 923 * Assume's h->devlock is held. 924 */ 925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 926 int bus, int target, int lun) 927 { 928 int i; 929 struct hpsa_scsi_dev_t *sd; 930 931 for (i = 0; i < h->ndevices; i++) { 932 sd = h->dev[i]; 933 if (sd->bus == bus && sd->target == target && sd->lun == lun) 934 return sd; 935 } 936 return NULL; 937 } 938 939 /* link sdev->hostdata to our per-device structure. */ 940 static int hpsa_slave_alloc(struct scsi_device *sdev) 941 { 942 struct hpsa_scsi_dev_t *sd; 943 unsigned long flags; 944 struct ctlr_info *h; 945 946 h = sdev_to_hba(sdev); 947 spin_lock_irqsave(&h->devlock, flags); 948 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 949 sdev_id(sdev), sdev->lun); 950 if (sd != NULL) 951 sdev->hostdata = sd; 952 spin_unlock_irqrestore(&h->devlock, flags); 953 return 0; 954 } 955 956 static void hpsa_slave_destroy(struct scsi_device *sdev) 957 { 958 /* nothing to do. */ 959 } 960 961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 962 { 963 int i; 964 965 if (!h->cmd_sg_list) 966 return; 967 for (i = 0; i < h->nr_cmds; i++) { 968 kfree(h->cmd_sg_list[i]); 969 h->cmd_sg_list[i] = NULL; 970 } 971 kfree(h->cmd_sg_list); 972 h->cmd_sg_list = NULL; 973 } 974 975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 976 { 977 int i; 978 979 if (h->chainsize <= 0) 980 return 0; 981 982 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 983 GFP_KERNEL); 984 if (!h->cmd_sg_list) 985 return -ENOMEM; 986 for (i = 0; i < h->nr_cmds; i++) { 987 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 988 h->chainsize, GFP_KERNEL); 989 if (!h->cmd_sg_list[i]) 990 goto clean; 991 } 992 return 0; 993 994 clean: 995 hpsa_free_sg_chain_blocks(h); 996 return -ENOMEM; 997 } 998 999 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 1000 struct CommandList *c) 1001 { 1002 struct SGDescriptor *chain_sg, *chain_block; 1003 u64 temp64; 1004 1005 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1006 chain_block = h->cmd_sg_list[c->cmdindex]; 1007 chain_sg->Ext = HPSA_SG_CHAIN; 1008 chain_sg->Len = sizeof(*chain_sg) * 1009 (c->Header.SGTotal - h->max_cmd_sg_entries); 1010 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 1011 PCI_DMA_TODEVICE); 1012 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 1013 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 1014 } 1015 1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 1017 struct CommandList *c) 1018 { 1019 struct SGDescriptor *chain_sg; 1020 union u64bit temp64; 1021 1022 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 1023 return; 1024 1025 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1026 temp64.val32.lower = chain_sg->Addr.lower; 1027 temp64.val32.upper = chain_sg->Addr.upper; 1028 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 1029 } 1030 1031 static void complete_scsi_command(struct CommandList *cp) 1032 { 1033 struct scsi_cmnd *cmd; 1034 struct ctlr_info *h; 1035 struct ErrorInfo *ei; 1036 1037 unsigned char sense_key; 1038 unsigned char asc; /* additional sense code */ 1039 unsigned char ascq; /* additional sense code qualifier */ 1040 unsigned long sense_data_size; 1041 1042 ei = cp->err_info; 1043 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 1044 h = cp->h; 1045 1046 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1047 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 1048 hpsa_unmap_sg_chain_block(h, cp); 1049 1050 cmd->result = (DID_OK << 16); /* host byte */ 1051 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1052 cmd->result |= ei->ScsiStatus; 1053 1054 /* copy the sense data whether we need to or not. */ 1055 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 1056 sense_data_size = SCSI_SENSE_BUFFERSIZE; 1057 else 1058 sense_data_size = sizeof(ei->SenseInfo); 1059 if (ei->SenseLen < sense_data_size) 1060 sense_data_size = ei->SenseLen; 1061 1062 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 1063 scsi_set_resid(cmd, ei->ResidualCnt); 1064 1065 if (ei->CommandStatus == 0) { 1066 cmd->scsi_done(cmd); 1067 cmd_free(h, cp); 1068 return; 1069 } 1070 1071 /* an error has occurred */ 1072 switch (ei->CommandStatus) { 1073 1074 case CMD_TARGET_STATUS: 1075 if (ei->ScsiStatus) { 1076 /* Get sense key */ 1077 sense_key = 0xf & ei->SenseInfo[2]; 1078 /* Get additional sense code */ 1079 asc = ei->SenseInfo[12]; 1080 /* Get addition sense code qualifier */ 1081 ascq = ei->SenseInfo[13]; 1082 } 1083 1084 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1085 if (check_for_unit_attention(h, cp)) { 1086 cmd->result = DID_SOFT_ERROR << 16; 1087 break; 1088 } 1089 if (sense_key == ILLEGAL_REQUEST) { 1090 /* 1091 * SCSI REPORT_LUNS is commonly unsupported on 1092 * Smart Array. Suppress noisy complaint. 1093 */ 1094 if (cp->Request.CDB[0] == REPORT_LUNS) 1095 break; 1096 1097 /* If ASC/ASCQ indicate Logical Unit 1098 * Not Supported condition, 1099 */ 1100 if ((asc == 0x25) && (ascq == 0x0)) { 1101 dev_warn(&h->pdev->dev, "cp %p " 1102 "has check condition\n", cp); 1103 break; 1104 } 1105 } 1106 1107 if (sense_key == NOT_READY) { 1108 /* If Sense is Not Ready, Logical Unit 1109 * Not ready, Manual Intervention 1110 * required 1111 */ 1112 if ((asc == 0x04) && (ascq == 0x03)) { 1113 dev_warn(&h->pdev->dev, "cp %p " 1114 "has check condition: unit " 1115 "not ready, manual " 1116 "intervention required\n", cp); 1117 break; 1118 } 1119 } 1120 if (sense_key == ABORTED_COMMAND) { 1121 /* Aborted command is retryable */ 1122 dev_warn(&h->pdev->dev, "cp %p " 1123 "has check condition: aborted command: " 1124 "ASC: 0x%x, ASCQ: 0x%x\n", 1125 cp, asc, ascq); 1126 cmd->result = DID_SOFT_ERROR << 16; 1127 break; 1128 } 1129 /* Must be some other type of check condition */ 1130 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1131 "unknown type: " 1132 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1133 "Returning result: 0x%x, " 1134 "cmd=[%02x %02x %02x %02x %02x " 1135 "%02x %02x %02x %02x %02x %02x " 1136 "%02x %02x %02x %02x %02x]\n", 1137 cp, sense_key, asc, ascq, 1138 cmd->result, 1139 cmd->cmnd[0], cmd->cmnd[1], 1140 cmd->cmnd[2], cmd->cmnd[3], 1141 cmd->cmnd[4], cmd->cmnd[5], 1142 cmd->cmnd[6], cmd->cmnd[7], 1143 cmd->cmnd[8], cmd->cmnd[9], 1144 cmd->cmnd[10], cmd->cmnd[11], 1145 cmd->cmnd[12], cmd->cmnd[13], 1146 cmd->cmnd[14], cmd->cmnd[15]); 1147 break; 1148 } 1149 1150 1151 /* Problem was not a check condition 1152 * Pass it up to the upper layers... 1153 */ 1154 if (ei->ScsiStatus) { 1155 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1156 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1157 "Returning result: 0x%x\n", 1158 cp, ei->ScsiStatus, 1159 sense_key, asc, ascq, 1160 cmd->result); 1161 } else { /* scsi status is zero??? How??? */ 1162 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1163 "Returning no connection.\n", cp), 1164 1165 /* Ordinarily, this case should never happen, 1166 * but there is a bug in some released firmware 1167 * revisions that allows it to happen if, for 1168 * example, a 4100 backplane loses power and 1169 * the tape drive is in it. We assume that 1170 * it's a fatal error of some kind because we 1171 * can't show that it wasn't. We will make it 1172 * look like selection timeout since that is 1173 * the most common reason for this to occur, 1174 * and it's severe enough. 1175 */ 1176 1177 cmd->result = DID_NO_CONNECT << 16; 1178 } 1179 break; 1180 1181 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1182 break; 1183 case CMD_DATA_OVERRUN: 1184 dev_warn(&h->pdev->dev, "cp %p has" 1185 " completed with data overrun " 1186 "reported\n", cp); 1187 break; 1188 case CMD_INVALID: { 1189 /* print_bytes(cp, sizeof(*cp), 1, 0); 1190 print_cmd(cp); */ 1191 /* We get CMD_INVALID if you address a non-existent device 1192 * instead of a selection timeout (no response). You will 1193 * see this if you yank out a drive, then try to access it. 1194 * This is kind of a shame because it means that any other 1195 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1196 * missing target. */ 1197 cmd->result = DID_NO_CONNECT << 16; 1198 } 1199 break; 1200 case CMD_PROTOCOL_ERR: 1201 dev_warn(&h->pdev->dev, "cp %p has " 1202 "protocol error \n", cp); 1203 break; 1204 case CMD_HARDWARE_ERR: 1205 cmd->result = DID_ERROR << 16; 1206 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1207 break; 1208 case CMD_CONNECTION_LOST: 1209 cmd->result = DID_ERROR << 16; 1210 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1211 break; 1212 case CMD_ABORTED: 1213 cmd->result = DID_ABORT << 16; 1214 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1215 cp, ei->ScsiStatus); 1216 break; 1217 case CMD_ABORT_FAILED: 1218 cmd->result = DID_ERROR << 16; 1219 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1220 break; 1221 case CMD_UNSOLICITED_ABORT: 1222 cmd->result = DID_RESET << 16; 1223 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1224 "abort\n", cp); 1225 break; 1226 case CMD_TIMEOUT: 1227 cmd->result = DID_TIME_OUT << 16; 1228 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1229 break; 1230 case CMD_UNABORTABLE: 1231 cmd->result = DID_ERROR << 16; 1232 dev_warn(&h->pdev->dev, "Command unabortable\n"); 1233 break; 1234 default: 1235 cmd->result = DID_ERROR << 16; 1236 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1237 cp, ei->CommandStatus); 1238 } 1239 cmd->scsi_done(cmd); 1240 cmd_free(h, cp); 1241 } 1242 1243 static int hpsa_scsi_detect(struct ctlr_info *h) 1244 { 1245 struct Scsi_Host *sh; 1246 int error; 1247 1248 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1249 if (sh == NULL) 1250 goto fail; 1251 1252 sh->io_port = 0; 1253 sh->n_io_port = 0; 1254 sh->this_id = -1; 1255 sh->max_channel = 3; 1256 sh->max_cmd_len = MAX_COMMAND_SIZE; 1257 sh->max_lun = HPSA_MAX_LUN; 1258 sh->max_id = HPSA_MAX_LUN; 1259 sh->can_queue = h->nr_cmds; 1260 sh->cmd_per_lun = h->nr_cmds; 1261 sh->sg_tablesize = h->maxsgentries; 1262 h->scsi_host = sh; 1263 sh->hostdata[0] = (unsigned long) h; 1264 sh->irq = h->intr[h->intr_mode]; 1265 sh->unique_id = sh->irq; 1266 error = scsi_add_host(sh, &h->pdev->dev); 1267 if (error) 1268 goto fail_host_put; 1269 scsi_scan_host(sh); 1270 return 0; 1271 1272 fail_host_put: 1273 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1274 " failed for controller %d\n", h->ctlr); 1275 scsi_host_put(sh); 1276 return error; 1277 fail: 1278 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1279 " failed for controller %d\n", h->ctlr); 1280 return -ENOMEM; 1281 } 1282 1283 static void hpsa_pci_unmap(struct pci_dev *pdev, 1284 struct CommandList *c, int sg_used, int data_direction) 1285 { 1286 int i; 1287 union u64bit addr64; 1288 1289 for (i = 0; i < sg_used; i++) { 1290 addr64.val32.lower = c->SG[i].Addr.lower; 1291 addr64.val32.upper = c->SG[i].Addr.upper; 1292 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1293 data_direction); 1294 } 1295 } 1296 1297 static void hpsa_map_one(struct pci_dev *pdev, 1298 struct CommandList *cp, 1299 unsigned char *buf, 1300 size_t buflen, 1301 int data_direction) 1302 { 1303 u64 addr64; 1304 1305 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1306 cp->Header.SGList = 0; 1307 cp->Header.SGTotal = 0; 1308 return; 1309 } 1310 1311 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1312 cp->SG[0].Addr.lower = 1313 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1314 cp->SG[0].Addr.upper = 1315 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1316 cp->SG[0].Len = buflen; 1317 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1318 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1319 } 1320 1321 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1322 struct CommandList *c) 1323 { 1324 DECLARE_COMPLETION_ONSTACK(wait); 1325 1326 c->waiting = &wait; 1327 enqueue_cmd_and_start_io(h, c); 1328 wait_for_completion(&wait); 1329 } 1330 1331 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1332 struct CommandList *c, int data_direction) 1333 { 1334 int retry_count = 0; 1335 1336 do { 1337 memset(c->err_info, 0, sizeof(*c->err_info)); 1338 hpsa_scsi_do_simple_cmd_core(h, c); 1339 retry_count++; 1340 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1341 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1342 } 1343 1344 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1345 { 1346 struct ErrorInfo *ei; 1347 struct device *d = &cp->h->pdev->dev; 1348 1349 ei = cp->err_info; 1350 switch (ei->CommandStatus) { 1351 case CMD_TARGET_STATUS: 1352 dev_warn(d, "cmd %p has completed with errors\n", cp); 1353 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1354 ei->ScsiStatus); 1355 if (ei->ScsiStatus == 0) 1356 dev_warn(d, "SCSI status is abnormally zero. " 1357 "(probably indicates selection timeout " 1358 "reported incorrectly due to a known " 1359 "firmware bug, circa July, 2001.)\n"); 1360 break; 1361 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1362 dev_info(d, "UNDERRUN\n"); 1363 break; 1364 case CMD_DATA_OVERRUN: 1365 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1366 break; 1367 case CMD_INVALID: { 1368 /* controller unfortunately reports SCSI passthru's 1369 * to non-existent targets as invalid commands. 1370 */ 1371 dev_warn(d, "cp %p is reported invalid (probably means " 1372 "target device no longer present)\n", cp); 1373 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1374 print_cmd(cp); */ 1375 } 1376 break; 1377 case CMD_PROTOCOL_ERR: 1378 dev_warn(d, "cp %p has protocol error \n", cp); 1379 break; 1380 case CMD_HARDWARE_ERR: 1381 /* cmd->result = DID_ERROR << 16; */ 1382 dev_warn(d, "cp %p had hardware error\n", cp); 1383 break; 1384 case CMD_CONNECTION_LOST: 1385 dev_warn(d, "cp %p had connection lost\n", cp); 1386 break; 1387 case CMD_ABORTED: 1388 dev_warn(d, "cp %p was aborted\n", cp); 1389 break; 1390 case CMD_ABORT_FAILED: 1391 dev_warn(d, "cp %p reports abort failed\n", cp); 1392 break; 1393 case CMD_UNSOLICITED_ABORT: 1394 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1395 break; 1396 case CMD_TIMEOUT: 1397 dev_warn(d, "cp %p timed out\n", cp); 1398 break; 1399 case CMD_UNABORTABLE: 1400 dev_warn(d, "Command unabortable\n"); 1401 break; 1402 default: 1403 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1404 ei->CommandStatus); 1405 } 1406 } 1407 1408 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1409 unsigned char page, unsigned char *buf, 1410 unsigned char bufsize) 1411 { 1412 int rc = IO_OK; 1413 struct CommandList *c; 1414 struct ErrorInfo *ei; 1415 1416 c = cmd_special_alloc(h); 1417 1418 if (c == NULL) { /* trouble... */ 1419 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1420 return -ENOMEM; 1421 } 1422 1423 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1424 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1425 ei = c->err_info; 1426 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1427 hpsa_scsi_interpret_error(c); 1428 rc = -1; 1429 } 1430 cmd_special_free(h, c); 1431 return rc; 1432 } 1433 1434 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1435 { 1436 int rc = IO_OK; 1437 struct CommandList *c; 1438 struct ErrorInfo *ei; 1439 1440 c = cmd_special_alloc(h); 1441 1442 if (c == NULL) { /* trouble... */ 1443 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1444 return -ENOMEM; 1445 } 1446 1447 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1448 hpsa_scsi_do_simple_cmd_core(h, c); 1449 /* no unmap needed here because no data xfer. */ 1450 1451 ei = c->err_info; 1452 if (ei->CommandStatus != 0) { 1453 hpsa_scsi_interpret_error(c); 1454 rc = -1; 1455 } 1456 cmd_special_free(h, c); 1457 return rc; 1458 } 1459 1460 static void hpsa_get_raid_level(struct ctlr_info *h, 1461 unsigned char *scsi3addr, unsigned char *raid_level) 1462 { 1463 int rc; 1464 unsigned char *buf; 1465 1466 *raid_level = RAID_UNKNOWN; 1467 buf = kzalloc(64, GFP_KERNEL); 1468 if (!buf) 1469 return; 1470 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1471 if (rc == 0) 1472 *raid_level = buf[8]; 1473 if (*raid_level > RAID_UNKNOWN) 1474 *raid_level = RAID_UNKNOWN; 1475 kfree(buf); 1476 return; 1477 } 1478 1479 /* Get the device id from inquiry page 0x83 */ 1480 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1481 unsigned char *device_id, int buflen) 1482 { 1483 int rc; 1484 unsigned char *buf; 1485 1486 if (buflen > 16) 1487 buflen = 16; 1488 buf = kzalloc(64, GFP_KERNEL); 1489 if (!buf) 1490 return -1; 1491 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1492 if (rc == 0) 1493 memcpy(device_id, &buf[8], buflen); 1494 kfree(buf); 1495 return rc != 0; 1496 } 1497 1498 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1499 struct ReportLUNdata *buf, int bufsize, 1500 int extended_response) 1501 { 1502 int rc = IO_OK; 1503 struct CommandList *c; 1504 unsigned char scsi3addr[8]; 1505 struct ErrorInfo *ei; 1506 1507 c = cmd_special_alloc(h); 1508 if (c == NULL) { /* trouble... */ 1509 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1510 return -1; 1511 } 1512 /* address the controller */ 1513 memset(scsi3addr, 0, sizeof(scsi3addr)); 1514 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1515 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1516 if (extended_response) 1517 c->Request.CDB[1] = extended_response; 1518 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1519 ei = c->err_info; 1520 if (ei->CommandStatus != 0 && 1521 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1522 hpsa_scsi_interpret_error(c); 1523 rc = -1; 1524 } 1525 cmd_special_free(h, c); 1526 return rc; 1527 } 1528 1529 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1530 struct ReportLUNdata *buf, 1531 int bufsize, int extended_response) 1532 { 1533 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1534 } 1535 1536 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1537 struct ReportLUNdata *buf, int bufsize) 1538 { 1539 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1540 } 1541 1542 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1543 int bus, int target, int lun) 1544 { 1545 device->bus = bus; 1546 device->target = target; 1547 device->lun = lun; 1548 } 1549 1550 static int hpsa_update_device_info(struct ctlr_info *h, 1551 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1552 { 1553 #define OBDR_TAPE_INQ_SIZE 49 1554 unsigned char *inq_buff; 1555 1556 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1557 if (!inq_buff) 1558 goto bail_out; 1559 1560 /* Do an inquiry to the device to see what it is. */ 1561 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1562 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1563 /* Inquiry failed (msg printed already) */ 1564 dev_err(&h->pdev->dev, 1565 "hpsa_update_device_info: inquiry failed\n"); 1566 goto bail_out; 1567 } 1568 1569 this_device->devtype = (inq_buff[0] & 0x1f); 1570 memcpy(this_device->scsi3addr, scsi3addr, 8); 1571 memcpy(this_device->vendor, &inq_buff[8], 1572 sizeof(this_device->vendor)); 1573 memcpy(this_device->model, &inq_buff[16], 1574 sizeof(this_device->model)); 1575 memset(this_device->device_id, 0, 1576 sizeof(this_device->device_id)); 1577 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1578 sizeof(this_device->device_id)); 1579 1580 if (this_device->devtype == TYPE_DISK && 1581 is_logical_dev_addr_mode(scsi3addr)) 1582 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1583 else 1584 this_device->raid_level = RAID_UNKNOWN; 1585 1586 kfree(inq_buff); 1587 return 0; 1588 1589 bail_out: 1590 kfree(inq_buff); 1591 return 1; 1592 } 1593 1594 static unsigned char *msa2xxx_model[] = { 1595 "MSA2012", 1596 "MSA2024", 1597 "MSA2312", 1598 "MSA2324", 1599 "P2000 G3 SAS", 1600 NULL, 1601 }; 1602 1603 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1604 { 1605 int i; 1606 1607 for (i = 0; msa2xxx_model[i]; i++) 1608 if (strncmp(device->model, msa2xxx_model[i], 1609 strlen(msa2xxx_model[i])) == 0) 1610 return 1; 1611 return 0; 1612 } 1613 1614 /* Helper function to assign bus, target, lun mapping of devices. 1615 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1616 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1617 * Logical drive target and lun are assigned at this time, but 1618 * physical device lun and target assignment are deferred (assigned 1619 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1620 */ 1621 static void figure_bus_target_lun(struct ctlr_info *h, 1622 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1623 struct hpsa_scsi_dev_t *device) 1624 { 1625 u32 lunid; 1626 1627 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1628 /* logical device */ 1629 if (unlikely(is_scsi_rev_5(h))) { 1630 /* p1210m, logical drives lun assignments 1631 * match SCSI REPORT LUNS data. 1632 */ 1633 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1634 *bus = 0; 1635 *target = 0; 1636 *lun = (lunid & 0x3fff) + 1; 1637 } else { 1638 /* not p1210m... */ 1639 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1640 if (is_msa2xxx(h, device)) { 1641 /* msa2xxx way, put logicals on bus 1 1642 * and match target/lun numbers box 1643 * reports. 1644 */ 1645 *bus = 1; 1646 *target = (lunid >> 16) & 0x3fff; 1647 *lun = lunid & 0x00ff; 1648 } else { 1649 /* Traditional smart array way. */ 1650 *bus = 0; 1651 *lun = 0; 1652 *target = lunid & 0x3fff; 1653 } 1654 } 1655 } else { 1656 /* physical device */ 1657 if (is_hba_lunid(lunaddrbytes)) 1658 if (unlikely(is_scsi_rev_5(h))) { 1659 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1660 *target = 0; 1661 *lun = 0; 1662 return; 1663 } else 1664 *bus = 3; /* traditional smartarray */ 1665 else 1666 *bus = 2; /* physical disk */ 1667 *target = -1; 1668 *lun = -1; /* we will fill these in later. */ 1669 } 1670 } 1671 1672 /* 1673 * If there is no lun 0 on a target, linux won't find any devices. 1674 * For the MSA2xxx boxes, we have to manually detect the enclosure 1675 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1676 * it for some reason. *tmpdevice is the target we're adding, 1677 * this_device is a pointer into the current element of currentsd[] 1678 * that we're building up in update_scsi_devices(), below. 1679 * lunzerobits is a bitmap that tracks which targets already have a 1680 * lun 0 assigned. 1681 * Returns 1 if an enclosure was added, 0 if not. 1682 */ 1683 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1684 struct hpsa_scsi_dev_t *tmpdevice, 1685 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1686 int bus, int target, int lun, unsigned long lunzerobits[], 1687 int *nmsa2xxx_enclosures) 1688 { 1689 unsigned char scsi3addr[8]; 1690 1691 if (test_bit(target, lunzerobits)) 1692 return 0; /* There is already a lun 0 on this target. */ 1693 1694 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1695 return 0; /* It's the logical targets that may lack lun 0. */ 1696 1697 if (!is_msa2xxx(h, tmpdevice)) 1698 return 0; /* It's only the MSA2xxx that have this problem. */ 1699 1700 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1701 return 0; 1702 1703 memset(scsi3addr, 0, 8); 1704 scsi3addr[3] = target; 1705 if (is_hba_lunid(scsi3addr)) 1706 return 0; /* Don't add the RAID controller here. */ 1707 1708 if (is_scsi_rev_5(h)) 1709 return 0; /* p1210m doesn't need to do this. */ 1710 1711 #define MAX_MSA2XXX_ENCLOSURES 32 1712 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1713 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1714 "enclosures exceeded. Check your hardware " 1715 "configuration."); 1716 return 0; 1717 } 1718 1719 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1720 return 0; 1721 (*nmsa2xxx_enclosures)++; 1722 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1723 set_bit(target, lunzerobits); 1724 return 1; 1725 } 1726 1727 /* 1728 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1729 * logdev. The number of luns in physdev and logdev are returned in 1730 * *nphysicals and *nlogicals, respectively. 1731 * Returns 0 on success, -1 otherwise. 1732 */ 1733 static int hpsa_gather_lun_info(struct ctlr_info *h, 1734 int reportlunsize, 1735 struct ReportLUNdata *physdev, u32 *nphysicals, 1736 struct ReportLUNdata *logdev, u32 *nlogicals) 1737 { 1738 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1739 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1740 return -1; 1741 } 1742 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1743 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1744 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1745 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1746 *nphysicals - HPSA_MAX_PHYS_LUN); 1747 *nphysicals = HPSA_MAX_PHYS_LUN; 1748 } 1749 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1750 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1751 return -1; 1752 } 1753 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1754 /* Reject Logicals in excess of our max capability. */ 1755 if (*nlogicals > HPSA_MAX_LUN) { 1756 dev_warn(&h->pdev->dev, 1757 "maximum logical LUNs (%d) exceeded. " 1758 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1759 *nlogicals - HPSA_MAX_LUN); 1760 *nlogicals = HPSA_MAX_LUN; 1761 } 1762 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1763 dev_warn(&h->pdev->dev, 1764 "maximum logical + physical LUNs (%d) exceeded. " 1765 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1766 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1767 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1768 } 1769 return 0; 1770 } 1771 1772 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1773 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1774 struct ReportLUNdata *logdev_list) 1775 { 1776 /* Helper function, figure out where the LUN ID info is coming from 1777 * given index i, lists of physical and logical devices, where in 1778 * the list the raid controller is supposed to appear (first or last) 1779 */ 1780 1781 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1782 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1783 1784 if (i == raid_ctlr_position) 1785 return RAID_CTLR_LUNID; 1786 1787 if (i < logicals_start) 1788 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1789 1790 if (i < last_device) 1791 return &logdev_list->LUN[i - nphysicals - 1792 (raid_ctlr_position == 0)][0]; 1793 BUG(); 1794 return NULL; 1795 } 1796 1797 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1798 { 1799 /* the idea here is we could get notified 1800 * that some devices have changed, so we do a report 1801 * physical luns and report logical luns cmd, and adjust 1802 * our list of devices accordingly. 1803 * 1804 * The scsi3addr's of devices won't change so long as the 1805 * adapter is not reset. That means we can rescan and 1806 * tell which devices we already know about, vs. new 1807 * devices, vs. disappearing devices. 1808 */ 1809 struct ReportLUNdata *physdev_list = NULL; 1810 struct ReportLUNdata *logdev_list = NULL; 1811 unsigned char *inq_buff = NULL; 1812 u32 nphysicals = 0; 1813 u32 nlogicals = 0; 1814 u32 ndev_allocated = 0; 1815 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1816 int ncurrent = 0; 1817 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1818 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1819 int bus, target, lun; 1820 int raid_ctlr_position; 1821 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1822 1823 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1824 GFP_KERNEL); 1825 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1826 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1827 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1828 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1829 1830 if (!currentsd || !physdev_list || !logdev_list || 1831 !inq_buff || !tmpdevice) { 1832 dev_err(&h->pdev->dev, "out of memory\n"); 1833 goto out; 1834 } 1835 memset(lunzerobits, 0, sizeof(lunzerobits)); 1836 1837 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1838 logdev_list, &nlogicals)) 1839 goto out; 1840 1841 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1842 * but each of them 4 times through different paths. The plus 1 1843 * is for the RAID controller. 1844 */ 1845 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1846 1847 /* Allocate the per device structures */ 1848 for (i = 0; i < ndevs_to_allocate; i++) { 1849 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1850 if (!currentsd[i]) { 1851 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1852 __FILE__, __LINE__); 1853 goto out; 1854 } 1855 ndev_allocated++; 1856 } 1857 1858 if (unlikely(is_scsi_rev_5(h))) 1859 raid_ctlr_position = 0; 1860 else 1861 raid_ctlr_position = nphysicals + nlogicals; 1862 1863 /* adjust our table of devices */ 1864 nmsa2xxx_enclosures = 0; 1865 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1866 u8 *lunaddrbytes; 1867 1868 /* Figure out where the LUN ID info is coming from */ 1869 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1870 i, nphysicals, nlogicals, physdev_list, logdev_list); 1871 /* skip masked physical devices. */ 1872 if (lunaddrbytes[3] & 0xC0 && 1873 i < nphysicals + (raid_ctlr_position == 0)) 1874 continue; 1875 1876 /* Get device type, vendor, model, device id */ 1877 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1878 continue; /* skip it if we can't talk to it. */ 1879 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1880 tmpdevice); 1881 this_device = currentsd[ncurrent]; 1882 1883 /* 1884 * For the msa2xxx boxes, we have to insert a LUN 0 which 1885 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1886 * is nonetheless an enclosure device there. We have to 1887 * present that otherwise linux won't find anything if 1888 * there is no lun 0. 1889 */ 1890 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1891 lunaddrbytes, bus, target, lun, lunzerobits, 1892 &nmsa2xxx_enclosures)) { 1893 ncurrent++; 1894 this_device = currentsd[ncurrent]; 1895 } 1896 1897 *this_device = *tmpdevice; 1898 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1899 1900 switch (this_device->devtype) { 1901 case TYPE_ROM: { 1902 /* We don't *really* support actual CD-ROM devices, 1903 * just "One Button Disaster Recovery" tape drive 1904 * which temporarily pretends to be a CD-ROM drive. 1905 * So we check that the device is really an OBDR tape 1906 * device by checking for "$DR-10" in bytes 43-48 of 1907 * the inquiry data. 1908 */ 1909 char obdr_sig[7]; 1910 #define OBDR_TAPE_SIG "$DR-10" 1911 strncpy(obdr_sig, &inq_buff[43], 6); 1912 obdr_sig[6] = '\0'; 1913 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1914 /* Not OBDR device, ignore it. */ 1915 break; 1916 } 1917 ncurrent++; 1918 break; 1919 case TYPE_DISK: 1920 if (i < nphysicals) 1921 break; 1922 ncurrent++; 1923 break; 1924 case TYPE_TAPE: 1925 case TYPE_MEDIUM_CHANGER: 1926 ncurrent++; 1927 break; 1928 case TYPE_RAID: 1929 /* Only present the Smartarray HBA as a RAID controller. 1930 * If it's a RAID controller other than the HBA itself 1931 * (an external RAID controller, MSA500 or similar) 1932 * don't present it. 1933 */ 1934 if (!is_hba_lunid(lunaddrbytes)) 1935 break; 1936 ncurrent++; 1937 break; 1938 default: 1939 break; 1940 } 1941 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1942 break; 1943 } 1944 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1945 out: 1946 kfree(tmpdevice); 1947 for (i = 0; i < ndev_allocated; i++) 1948 kfree(currentsd[i]); 1949 kfree(currentsd); 1950 kfree(inq_buff); 1951 kfree(physdev_list); 1952 kfree(logdev_list); 1953 } 1954 1955 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1956 * dma mapping and fills in the scatter gather entries of the 1957 * hpsa command, cp. 1958 */ 1959 static int hpsa_scatter_gather(struct ctlr_info *h, 1960 struct CommandList *cp, 1961 struct scsi_cmnd *cmd) 1962 { 1963 unsigned int len; 1964 struct scatterlist *sg; 1965 u64 addr64; 1966 int use_sg, i, sg_index, chained; 1967 struct SGDescriptor *curr_sg; 1968 1969 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 1970 1971 use_sg = scsi_dma_map(cmd); 1972 if (use_sg < 0) 1973 return use_sg; 1974 1975 if (!use_sg) 1976 goto sglist_finished; 1977 1978 curr_sg = cp->SG; 1979 chained = 0; 1980 sg_index = 0; 1981 scsi_for_each_sg(cmd, sg, use_sg, i) { 1982 if (i == h->max_cmd_sg_entries - 1 && 1983 use_sg > h->max_cmd_sg_entries) { 1984 chained = 1; 1985 curr_sg = h->cmd_sg_list[cp->cmdindex]; 1986 sg_index = 0; 1987 } 1988 addr64 = (u64) sg_dma_address(sg); 1989 len = sg_dma_len(sg); 1990 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 1991 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 1992 curr_sg->Len = len; 1993 curr_sg->Ext = 0; /* we are not chaining */ 1994 curr_sg++; 1995 } 1996 1997 if (use_sg + chained > h->maxSG) 1998 h->maxSG = use_sg + chained; 1999 2000 if (chained) { 2001 cp->Header.SGList = h->max_cmd_sg_entries; 2002 cp->Header.SGTotal = (u16) (use_sg + 1); 2003 hpsa_map_sg_chain_block(h, cp); 2004 return 0; 2005 } 2006 2007 sglist_finished: 2008 2009 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 2010 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 2011 return 0; 2012 } 2013 2014 2015 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 2016 void (*done)(struct scsi_cmnd *)) 2017 { 2018 struct ctlr_info *h; 2019 struct hpsa_scsi_dev_t *dev; 2020 unsigned char scsi3addr[8]; 2021 struct CommandList *c; 2022 unsigned long flags; 2023 2024 /* Get the ptr to our adapter structure out of cmd->host. */ 2025 h = sdev_to_hba(cmd->device); 2026 dev = cmd->device->hostdata; 2027 if (!dev) { 2028 cmd->result = DID_NO_CONNECT << 16; 2029 done(cmd); 2030 return 0; 2031 } 2032 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 2033 2034 /* Need a lock as this is being allocated from the pool */ 2035 spin_lock_irqsave(&h->lock, flags); 2036 c = cmd_alloc(h); 2037 spin_unlock_irqrestore(&h->lock, flags); 2038 if (c == NULL) { /* trouble... */ 2039 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2040 return SCSI_MLQUEUE_HOST_BUSY; 2041 } 2042 2043 /* Fill in the command list header */ 2044 2045 cmd->scsi_done = done; /* save this for use by completion code */ 2046 2047 /* save c in case we have to abort it */ 2048 cmd->host_scribble = (unsigned char *) c; 2049 2050 c->cmd_type = CMD_SCSI; 2051 c->scsi_cmd = cmd; 2052 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2053 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 2054 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 2055 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 2056 2057 /* Fill in the request block... */ 2058 2059 c->Request.Timeout = 0; 2060 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 2061 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 2062 c->Request.CDBLen = cmd->cmd_len; 2063 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 2064 c->Request.Type.Type = TYPE_CMD; 2065 c->Request.Type.Attribute = ATTR_SIMPLE; 2066 switch (cmd->sc_data_direction) { 2067 case DMA_TO_DEVICE: 2068 c->Request.Type.Direction = XFER_WRITE; 2069 break; 2070 case DMA_FROM_DEVICE: 2071 c->Request.Type.Direction = XFER_READ; 2072 break; 2073 case DMA_NONE: 2074 c->Request.Type.Direction = XFER_NONE; 2075 break; 2076 case DMA_BIDIRECTIONAL: 2077 /* This can happen if a buggy application does a scsi passthru 2078 * and sets both inlen and outlen to non-zero. ( see 2079 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 2080 */ 2081 2082 c->Request.Type.Direction = XFER_RSVD; 2083 /* This is technically wrong, and hpsa controllers should 2084 * reject it with CMD_INVALID, which is the most correct 2085 * response, but non-fibre backends appear to let it 2086 * slide by, and give the same results as if this field 2087 * were set correctly. Either way is acceptable for 2088 * our purposes here. 2089 */ 2090 2091 break; 2092 2093 default: 2094 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 2095 cmd->sc_data_direction); 2096 BUG(); 2097 break; 2098 } 2099 2100 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 2101 cmd_free(h, c); 2102 return SCSI_MLQUEUE_HOST_BUSY; 2103 } 2104 enqueue_cmd_and_start_io(h, c); 2105 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2106 return 0; 2107 } 2108 2109 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2110 2111 static void hpsa_scan_start(struct Scsi_Host *sh) 2112 { 2113 struct ctlr_info *h = shost_to_hba(sh); 2114 unsigned long flags; 2115 2116 /* wait until any scan already in progress is finished. */ 2117 while (1) { 2118 spin_lock_irqsave(&h->scan_lock, flags); 2119 if (h->scan_finished) 2120 break; 2121 spin_unlock_irqrestore(&h->scan_lock, flags); 2122 wait_event(h->scan_wait_queue, h->scan_finished); 2123 /* Note: We don't need to worry about a race between this 2124 * thread and driver unload because the midlayer will 2125 * have incremented the reference count, so unload won't 2126 * happen if we're in here. 2127 */ 2128 } 2129 h->scan_finished = 0; /* mark scan as in progress */ 2130 spin_unlock_irqrestore(&h->scan_lock, flags); 2131 2132 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2133 2134 spin_lock_irqsave(&h->scan_lock, flags); 2135 h->scan_finished = 1; /* mark scan as finished. */ 2136 wake_up_all(&h->scan_wait_queue); 2137 spin_unlock_irqrestore(&h->scan_lock, flags); 2138 } 2139 2140 static int hpsa_scan_finished(struct Scsi_Host *sh, 2141 unsigned long elapsed_time) 2142 { 2143 struct ctlr_info *h = shost_to_hba(sh); 2144 unsigned long flags; 2145 int finished; 2146 2147 spin_lock_irqsave(&h->scan_lock, flags); 2148 finished = h->scan_finished; 2149 spin_unlock_irqrestore(&h->scan_lock, flags); 2150 return finished; 2151 } 2152 2153 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2154 int qdepth, int reason) 2155 { 2156 struct ctlr_info *h = sdev_to_hba(sdev); 2157 2158 if (reason != SCSI_QDEPTH_DEFAULT) 2159 return -ENOTSUPP; 2160 2161 if (qdepth < 1) 2162 qdepth = 1; 2163 else 2164 if (qdepth > h->nr_cmds) 2165 qdepth = h->nr_cmds; 2166 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2167 return sdev->queue_depth; 2168 } 2169 2170 static void hpsa_unregister_scsi(struct ctlr_info *h) 2171 { 2172 /* we are being forcibly unloaded, and may not refuse. */ 2173 scsi_remove_host(h->scsi_host); 2174 scsi_host_put(h->scsi_host); 2175 h->scsi_host = NULL; 2176 } 2177 2178 static int hpsa_register_scsi(struct ctlr_info *h) 2179 { 2180 int rc; 2181 2182 rc = hpsa_scsi_detect(h); 2183 if (rc != 0) 2184 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2185 " hpsa_scsi_detect(), rc is %d\n", rc); 2186 return rc; 2187 } 2188 2189 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2190 unsigned char lunaddr[]) 2191 { 2192 int rc = 0; 2193 int count = 0; 2194 int waittime = 1; /* seconds */ 2195 struct CommandList *c; 2196 2197 c = cmd_special_alloc(h); 2198 if (!c) { 2199 dev_warn(&h->pdev->dev, "out of memory in " 2200 "wait_for_device_to_become_ready.\n"); 2201 return IO_ERROR; 2202 } 2203 2204 /* Send test unit ready until device ready, or give up. */ 2205 while (count < HPSA_TUR_RETRY_LIMIT) { 2206 2207 /* Wait for a bit. do this first, because if we send 2208 * the TUR right away, the reset will just abort it. 2209 */ 2210 msleep(1000 * waittime); 2211 count++; 2212 2213 /* Increase wait time with each try, up to a point. */ 2214 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2215 waittime = waittime * 2; 2216 2217 /* Send the Test Unit Ready */ 2218 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2219 hpsa_scsi_do_simple_cmd_core(h, c); 2220 /* no unmap needed here because no data xfer. */ 2221 2222 if (c->err_info->CommandStatus == CMD_SUCCESS) 2223 break; 2224 2225 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2226 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2227 (c->err_info->SenseInfo[2] == NO_SENSE || 2228 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2229 break; 2230 2231 dev_warn(&h->pdev->dev, "waiting %d secs " 2232 "for device to become ready.\n", waittime); 2233 rc = 1; /* device not ready. */ 2234 } 2235 2236 if (rc) 2237 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2238 else 2239 dev_warn(&h->pdev->dev, "device is ready.\n"); 2240 2241 cmd_special_free(h, c); 2242 return rc; 2243 } 2244 2245 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2246 * complaining. Doing a host- or bus-reset can't do anything good here. 2247 */ 2248 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2249 { 2250 int rc; 2251 struct ctlr_info *h; 2252 struct hpsa_scsi_dev_t *dev; 2253 2254 /* find the controller to which the command to be aborted was sent */ 2255 h = sdev_to_hba(scsicmd->device); 2256 if (h == NULL) /* paranoia */ 2257 return FAILED; 2258 dev = scsicmd->device->hostdata; 2259 if (!dev) { 2260 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2261 "device lookup failed.\n"); 2262 return FAILED; 2263 } 2264 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2265 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2266 /* send a reset to the SCSI LUN which the command was sent to */ 2267 rc = hpsa_send_reset(h, dev->scsi3addr); 2268 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2269 return SUCCESS; 2270 2271 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2272 return FAILED; 2273 } 2274 2275 /* 2276 * For operations that cannot sleep, a command block is allocated at init, 2277 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2278 * which ones are free or in use. Lock must be held when calling this. 2279 * cmd_free() is the complement. 2280 */ 2281 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2282 { 2283 struct CommandList *c; 2284 int i; 2285 union u64bit temp64; 2286 dma_addr_t cmd_dma_handle, err_dma_handle; 2287 2288 do { 2289 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2290 if (i == h->nr_cmds) 2291 return NULL; 2292 } while (test_and_set_bit 2293 (i & (BITS_PER_LONG - 1), 2294 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2295 c = h->cmd_pool + i; 2296 memset(c, 0, sizeof(*c)); 2297 cmd_dma_handle = h->cmd_pool_dhandle 2298 + i * sizeof(*c); 2299 c->err_info = h->errinfo_pool + i; 2300 memset(c->err_info, 0, sizeof(*c->err_info)); 2301 err_dma_handle = h->errinfo_pool_dhandle 2302 + i * sizeof(*c->err_info); 2303 h->nr_allocs++; 2304 2305 c->cmdindex = i; 2306 2307 INIT_LIST_HEAD(&c->list); 2308 c->busaddr = (u32) cmd_dma_handle; 2309 temp64.val = (u64) err_dma_handle; 2310 c->ErrDesc.Addr.lower = temp64.val32.lower; 2311 c->ErrDesc.Addr.upper = temp64.val32.upper; 2312 c->ErrDesc.Len = sizeof(*c->err_info); 2313 2314 c->h = h; 2315 return c; 2316 } 2317 2318 /* For operations that can wait for kmalloc to possibly sleep, 2319 * this routine can be called. Lock need not be held to call 2320 * cmd_special_alloc. cmd_special_free() is the complement. 2321 */ 2322 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2323 { 2324 struct CommandList *c; 2325 union u64bit temp64; 2326 dma_addr_t cmd_dma_handle, err_dma_handle; 2327 2328 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2329 if (c == NULL) 2330 return NULL; 2331 memset(c, 0, sizeof(*c)); 2332 2333 c->cmdindex = -1; 2334 2335 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2336 &err_dma_handle); 2337 2338 if (c->err_info == NULL) { 2339 pci_free_consistent(h->pdev, 2340 sizeof(*c), c, cmd_dma_handle); 2341 return NULL; 2342 } 2343 memset(c->err_info, 0, sizeof(*c->err_info)); 2344 2345 INIT_LIST_HEAD(&c->list); 2346 c->busaddr = (u32) cmd_dma_handle; 2347 temp64.val = (u64) err_dma_handle; 2348 c->ErrDesc.Addr.lower = temp64.val32.lower; 2349 c->ErrDesc.Addr.upper = temp64.val32.upper; 2350 c->ErrDesc.Len = sizeof(*c->err_info); 2351 2352 c->h = h; 2353 return c; 2354 } 2355 2356 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2357 { 2358 int i; 2359 2360 i = c - h->cmd_pool; 2361 clear_bit(i & (BITS_PER_LONG - 1), 2362 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2363 h->nr_frees++; 2364 } 2365 2366 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2367 { 2368 union u64bit temp64; 2369 2370 temp64.val32.lower = c->ErrDesc.Addr.lower; 2371 temp64.val32.upper = c->ErrDesc.Addr.upper; 2372 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2373 c->err_info, (dma_addr_t) temp64.val); 2374 pci_free_consistent(h->pdev, sizeof(*c), 2375 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); 2376 } 2377 2378 #ifdef CONFIG_COMPAT 2379 2380 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2381 { 2382 IOCTL32_Command_struct __user *arg32 = 2383 (IOCTL32_Command_struct __user *) arg; 2384 IOCTL_Command_struct arg64; 2385 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2386 int err; 2387 u32 cp; 2388 2389 memset(&arg64, 0, sizeof(arg64)); 2390 err = 0; 2391 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2392 sizeof(arg64.LUN_info)); 2393 err |= copy_from_user(&arg64.Request, &arg32->Request, 2394 sizeof(arg64.Request)); 2395 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2396 sizeof(arg64.error_info)); 2397 err |= get_user(arg64.buf_size, &arg32->buf_size); 2398 err |= get_user(cp, &arg32->buf); 2399 arg64.buf = compat_ptr(cp); 2400 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2401 2402 if (err) 2403 return -EFAULT; 2404 2405 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2406 if (err) 2407 return err; 2408 err |= copy_in_user(&arg32->error_info, &p->error_info, 2409 sizeof(arg32->error_info)); 2410 if (err) 2411 return -EFAULT; 2412 return err; 2413 } 2414 2415 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2416 int cmd, void *arg) 2417 { 2418 BIG_IOCTL32_Command_struct __user *arg32 = 2419 (BIG_IOCTL32_Command_struct __user *) arg; 2420 BIG_IOCTL_Command_struct arg64; 2421 BIG_IOCTL_Command_struct __user *p = 2422 compat_alloc_user_space(sizeof(arg64)); 2423 int err; 2424 u32 cp; 2425 2426 memset(&arg64, 0, sizeof(arg64)); 2427 err = 0; 2428 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2429 sizeof(arg64.LUN_info)); 2430 err |= copy_from_user(&arg64.Request, &arg32->Request, 2431 sizeof(arg64.Request)); 2432 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2433 sizeof(arg64.error_info)); 2434 err |= get_user(arg64.buf_size, &arg32->buf_size); 2435 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2436 err |= get_user(cp, &arg32->buf); 2437 arg64.buf = compat_ptr(cp); 2438 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2439 2440 if (err) 2441 return -EFAULT; 2442 2443 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2444 if (err) 2445 return err; 2446 err |= copy_in_user(&arg32->error_info, &p->error_info, 2447 sizeof(arg32->error_info)); 2448 if (err) 2449 return -EFAULT; 2450 return err; 2451 } 2452 2453 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2454 { 2455 switch (cmd) { 2456 case CCISS_GETPCIINFO: 2457 case CCISS_GETINTINFO: 2458 case CCISS_SETINTINFO: 2459 case CCISS_GETNODENAME: 2460 case CCISS_SETNODENAME: 2461 case CCISS_GETHEARTBEAT: 2462 case CCISS_GETBUSTYPES: 2463 case CCISS_GETFIRMVER: 2464 case CCISS_GETDRIVVER: 2465 case CCISS_REVALIDVOLS: 2466 case CCISS_DEREGDISK: 2467 case CCISS_REGNEWDISK: 2468 case CCISS_REGNEWD: 2469 case CCISS_RESCANDISK: 2470 case CCISS_GETLUNINFO: 2471 return hpsa_ioctl(dev, cmd, arg); 2472 2473 case CCISS_PASSTHRU32: 2474 return hpsa_ioctl32_passthru(dev, cmd, arg); 2475 case CCISS_BIG_PASSTHRU32: 2476 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2477 2478 default: 2479 return -ENOIOCTLCMD; 2480 } 2481 } 2482 #endif 2483 2484 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2485 { 2486 struct hpsa_pci_info pciinfo; 2487 2488 if (!argp) 2489 return -EINVAL; 2490 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2491 pciinfo.bus = h->pdev->bus->number; 2492 pciinfo.dev_fn = h->pdev->devfn; 2493 pciinfo.board_id = h->board_id; 2494 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2495 return -EFAULT; 2496 return 0; 2497 } 2498 2499 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2500 { 2501 DriverVer_type DriverVer; 2502 unsigned char vmaj, vmin, vsubmin; 2503 int rc; 2504 2505 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2506 &vmaj, &vmin, &vsubmin); 2507 if (rc != 3) { 2508 dev_info(&h->pdev->dev, "driver version string '%s' " 2509 "unrecognized.", HPSA_DRIVER_VERSION); 2510 vmaj = 0; 2511 vmin = 0; 2512 vsubmin = 0; 2513 } 2514 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2515 if (!argp) 2516 return -EINVAL; 2517 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2518 return -EFAULT; 2519 return 0; 2520 } 2521 2522 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2523 { 2524 IOCTL_Command_struct iocommand; 2525 struct CommandList *c; 2526 char *buff = NULL; 2527 union u64bit temp64; 2528 2529 if (!argp) 2530 return -EINVAL; 2531 if (!capable(CAP_SYS_RAWIO)) 2532 return -EPERM; 2533 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2534 return -EFAULT; 2535 if ((iocommand.buf_size < 1) && 2536 (iocommand.Request.Type.Direction != XFER_NONE)) { 2537 return -EINVAL; 2538 } 2539 if (iocommand.buf_size > 0) { 2540 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2541 if (buff == NULL) 2542 return -EFAULT; 2543 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2544 /* Copy the data into the buffer we created */ 2545 if (copy_from_user(buff, iocommand.buf, 2546 iocommand.buf_size)) { 2547 kfree(buff); 2548 return -EFAULT; 2549 } 2550 } else { 2551 memset(buff, 0, iocommand.buf_size); 2552 } 2553 } 2554 c = cmd_special_alloc(h); 2555 if (c == NULL) { 2556 kfree(buff); 2557 return -ENOMEM; 2558 } 2559 /* Fill in the command type */ 2560 c->cmd_type = CMD_IOCTL_PEND; 2561 /* Fill in Command Header */ 2562 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2563 if (iocommand.buf_size > 0) { /* buffer to fill */ 2564 c->Header.SGList = 1; 2565 c->Header.SGTotal = 1; 2566 } else { /* no buffers to fill */ 2567 c->Header.SGList = 0; 2568 c->Header.SGTotal = 0; 2569 } 2570 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2571 /* use the kernel address the cmd block for tag */ 2572 c->Header.Tag.lower = c->busaddr; 2573 2574 /* Fill in Request block */ 2575 memcpy(&c->Request, &iocommand.Request, 2576 sizeof(c->Request)); 2577 2578 /* Fill in the scatter gather information */ 2579 if (iocommand.buf_size > 0) { 2580 temp64.val = pci_map_single(h->pdev, buff, 2581 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2582 c->SG[0].Addr.lower = temp64.val32.lower; 2583 c->SG[0].Addr.upper = temp64.val32.upper; 2584 c->SG[0].Len = iocommand.buf_size; 2585 c->SG[0].Ext = 0; /* we are not chaining*/ 2586 } 2587 hpsa_scsi_do_simple_cmd_core(h, c); 2588 if (iocommand.buf_size > 0) 2589 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2590 check_ioctl_unit_attention(h, c); 2591 2592 /* Copy the error information out */ 2593 memcpy(&iocommand.error_info, c->err_info, 2594 sizeof(iocommand.error_info)); 2595 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2596 kfree(buff); 2597 cmd_special_free(h, c); 2598 return -EFAULT; 2599 } 2600 if (iocommand.Request.Type.Direction == XFER_READ && 2601 iocommand.buf_size > 0) { 2602 /* Copy the data out of the buffer we created */ 2603 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2604 kfree(buff); 2605 cmd_special_free(h, c); 2606 return -EFAULT; 2607 } 2608 } 2609 kfree(buff); 2610 cmd_special_free(h, c); 2611 return 0; 2612 } 2613 2614 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2615 { 2616 BIG_IOCTL_Command_struct *ioc; 2617 struct CommandList *c; 2618 unsigned char **buff = NULL; 2619 int *buff_size = NULL; 2620 union u64bit temp64; 2621 BYTE sg_used = 0; 2622 int status = 0; 2623 int i; 2624 u32 left; 2625 u32 sz; 2626 BYTE __user *data_ptr; 2627 2628 if (!argp) 2629 return -EINVAL; 2630 if (!capable(CAP_SYS_RAWIO)) 2631 return -EPERM; 2632 ioc = (BIG_IOCTL_Command_struct *) 2633 kmalloc(sizeof(*ioc), GFP_KERNEL); 2634 if (!ioc) { 2635 status = -ENOMEM; 2636 goto cleanup1; 2637 } 2638 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2639 status = -EFAULT; 2640 goto cleanup1; 2641 } 2642 if ((ioc->buf_size < 1) && 2643 (ioc->Request.Type.Direction != XFER_NONE)) { 2644 status = -EINVAL; 2645 goto cleanup1; 2646 } 2647 /* Check kmalloc limits using all SGs */ 2648 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2649 status = -EINVAL; 2650 goto cleanup1; 2651 } 2652 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2653 status = -EINVAL; 2654 goto cleanup1; 2655 } 2656 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2657 if (!buff) { 2658 status = -ENOMEM; 2659 goto cleanup1; 2660 } 2661 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2662 if (!buff_size) { 2663 status = -ENOMEM; 2664 goto cleanup1; 2665 } 2666 left = ioc->buf_size; 2667 data_ptr = ioc->buf; 2668 while (left) { 2669 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2670 buff_size[sg_used] = sz; 2671 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2672 if (buff[sg_used] == NULL) { 2673 status = -ENOMEM; 2674 goto cleanup1; 2675 } 2676 if (ioc->Request.Type.Direction == XFER_WRITE) { 2677 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2678 status = -ENOMEM; 2679 goto cleanup1; 2680 } 2681 } else 2682 memset(buff[sg_used], 0, sz); 2683 left -= sz; 2684 data_ptr += sz; 2685 sg_used++; 2686 } 2687 c = cmd_special_alloc(h); 2688 if (c == NULL) { 2689 status = -ENOMEM; 2690 goto cleanup1; 2691 } 2692 c->cmd_type = CMD_IOCTL_PEND; 2693 c->Header.ReplyQueue = 0; 2694 c->Header.SGList = c->Header.SGTotal = sg_used; 2695 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2696 c->Header.Tag.lower = c->busaddr; 2697 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2698 if (ioc->buf_size > 0) { 2699 int i; 2700 for (i = 0; i < sg_used; i++) { 2701 temp64.val = pci_map_single(h->pdev, buff[i], 2702 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2703 c->SG[i].Addr.lower = temp64.val32.lower; 2704 c->SG[i].Addr.upper = temp64.val32.upper; 2705 c->SG[i].Len = buff_size[i]; 2706 /* we are not chaining */ 2707 c->SG[i].Ext = 0; 2708 } 2709 } 2710 hpsa_scsi_do_simple_cmd_core(h, c); 2711 if (sg_used) 2712 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2713 check_ioctl_unit_attention(h, c); 2714 /* Copy the error information out */ 2715 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2716 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2717 cmd_special_free(h, c); 2718 status = -EFAULT; 2719 goto cleanup1; 2720 } 2721 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { 2722 /* Copy the data out of the buffer we created */ 2723 BYTE __user *ptr = ioc->buf; 2724 for (i = 0; i < sg_used; i++) { 2725 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2726 cmd_special_free(h, c); 2727 status = -EFAULT; 2728 goto cleanup1; 2729 } 2730 ptr += buff_size[i]; 2731 } 2732 } 2733 cmd_special_free(h, c); 2734 status = 0; 2735 cleanup1: 2736 if (buff) { 2737 for (i = 0; i < sg_used; i++) 2738 kfree(buff[i]); 2739 kfree(buff); 2740 } 2741 kfree(buff_size); 2742 kfree(ioc); 2743 return status; 2744 } 2745 2746 static void check_ioctl_unit_attention(struct ctlr_info *h, 2747 struct CommandList *c) 2748 { 2749 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2750 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2751 (void) check_for_unit_attention(h, c); 2752 } 2753 /* 2754 * ioctl 2755 */ 2756 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2757 { 2758 struct ctlr_info *h; 2759 void __user *argp = (void __user *)arg; 2760 2761 h = sdev_to_hba(dev); 2762 2763 switch (cmd) { 2764 case CCISS_DEREGDISK: 2765 case CCISS_REGNEWDISK: 2766 case CCISS_REGNEWD: 2767 hpsa_scan_start(h->scsi_host); 2768 return 0; 2769 case CCISS_GETPCIINFO: 2770 return hpsa_getpciinfo_ioctl(h, argp); 2771 case CCISS_GETDRIVVER: 2772 return hpsa_getdrivver_ioctl(h, argp); 2773 case CCISS_PASSTHRU: 2774 return hpsa_passthru_ioctl(h, argp); 2775 case CCISS_BIG_PASSTHRU: 2776 return hpsa_big_passthru_ioctl(h, argp); 2777 default: 2778 return -ENOTTY; 2779 } 2780 } 2781 2782 static int __devinit hpsa_send_host_reset(struct ctlr_info *h, 2783 unsigned char *scsi3addr, u8 reset_type) 2784 { 2785 struct CommandList *c; 2786 2787 c = cmd_alloc(h); 2788 if (!c) 2789 return -ENOMEM; 2790 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 2791 RAID_CTLR_LUNID, TYPE_MSG); 2792 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 2793 c->waiting = NULL; 2794 enqueue_cmd_and_start_io(h, c); 2795 /* Don't wait for completion, the reset won't complete. Don't free 2796 * the command either. This is the last command we will send before 2797 * re-initializing everything, so it doesn't matter and won't leak. 2798 */ 2799 return 0; 2800 } 2801 2802 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2803 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2804 int cmd_type) 2805 { 2806 int pci_dir = XFER_NONE; 2807 2808 c->cmd_type = CMD_IOCTL_PEND; 2809 c->Header.ReplyQueue = 0; 2810 if (buff != NULL && size > 0) { 2811 c->Header.SGList = 1; 2812 c->Header.SGTotal = 1; 2813 } else { 2814 c->Header.SGList = 0; 2815 c->Header.SGTotal = 0; 2816 } 2817 c->Header.Tag.lower = c->busaddr; 2818 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2819 2820 c->Request.Type.Type = cmd_type; 2821 if (cmd_type == TYPE_CMD) { 2822 switch (cmd) { 2823 case HPSA_INQUIRY: 2824 /* are we trying to read a vital product page */ 2825 if (page_code != 0) { 2826 c->Request.CDB[1] = 0x01; 2827 c->Request.CDB[2] = page_code; 2828 } 2829 c->Request.CDBLen = 6; 2830 c->Request.Type.Attribute = ATTR_SIMPLE; 2831 c->Request.Type.Direction = XFER_READ; 2832 c->Request.Timeout = 0; 2833 c->Request.CDB[0] = HPSA_INQUIRY; 2834 c->Request.CDB[4] = size & 0xFF; 2835 break; 2836 case HPSA_REPORT_LOG: 2837 case HPSA_REPORT_PHYS: 2838 /* Talking to controller so It's a physical command 2839 mode = 00 target = 0. Nothing to write. 2840 */ 2841 c->Request.CDBLen = 12; 2842 c->Request.Type.Attribute = ATTR_SIMPLE; 2843 c->Request.Type.Direction = XFER_READ; 2844 c->Request.Timeout = 0; 2845 c->Request.CDB[0] = cmd; 2846 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2847 c->Request.CDB[7] = (size >> 16) & 0xFF; 2848 c->Request.CDB[8] = (size >> 8) & 0xFF; 2849 c->Request.CDB[9] = size & 0xFF; 2850 break; 2851 case HPSA_CACHE_FLUSH: 2852 c->Request.CDBLen = 12; 2853 c->Request.Type.Attribute = ATTR_SIMPLE; 2854 c->Request.Type.Direction = XFER_WRITE; 2855 c->Request.Timeout = 0; 2856 c->Request.CDB[0] = BMIC_WRITE; 2857 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2858 break; 2859 case TEST_UNIT_READY: 2860 c->Request.CDBLen = 6; 2861 c->Request.Type.Attribute = ATTR_SIMPLE; 2862 c->Request.Type.Direction = XFER_NONE; 2863 c->Request.Timeout = 0; 2864 break; 2865 default: 2866 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2867 BUG(); 2868 return; 2869 } 2870 } else if (cmd_type == TYPE_MSG) { 2871 switch (cmd) { 2872 2873 case HPSA_DEVICE_RESET_MSG: 2874 c->Request.CDBLen = 16; 2875 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2876 c->Request.Type.Attribute = ATTR_SIMPLE; 2877 c->Request.Type.Direction = XFER_NONE; 2878 c->Request.Timeout = 0; /* Don't time out */ 2879 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 2880 c->Request.CDB[0] = cmd; 2881 c->Request.CDB[1] = 0x03; /* Reset target above */ 2882 /* If bytes 4-7 are zero, it means reset the */ 2883 /* LunID device */ 2884 c->Request.CDB[4] = 0x00; 2885 c->Request.CDB[5] = 0x00; 2886 c->Request.CDB[6] = 0x00; 2887 c->Request.CDB[7] = 0x00; 2888 break; 2889 2890 default: 2891 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2892 cmd); 2893 BUG(); 2894 } 2895 } else { 2896 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2897 BUG(); 2898 } 2899 2900 switch (c->Request.Type.Direction) { 2901 case XFER_READ: 2902 pci_dir = PCI_DMA_FROMDEVICE; 2903 break; 2904 case XFER_WRITE: 2905 pci_dir = PCI_DMA_TODEVICE; 2906 break; 2907 case XFER_NONE: 2908 pci_dir = PCI_DMA_NONE; 2909 break; 2910 default: 2911 pci_dir = PCI_DMA_BIDIRECTIONAL; 2912 } 2913 2914 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2915 2916 return; 2917 } 2918 2919 /* 2920 * Map (physical) PCI mem into (virtual) kernel space 2921 */ 2922 static void __iomem *remap_pci_mem(ulong base, ulong size) 2923 { 2924 ulong page_base = ((ulong) base) & PAGE_MASK; 2925 ulong page_offs = ((ulong) base) - page_base; 2926 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2927 2928 return page_remapped ? (page_remapped + page_offs) : NULL; 2929 } 2930 2931 /* Takes cmds off the submission queue and sends them to the hardware, 2932 * then puts them on the queue of cmds waiting for completion. 2933 */ 2934 static void start_io(struct ctlr_info *h) 2935 { 2936 struct CommandList *c; 2937 2938 while (!list_empty(&h->reqQ)) { 2939 c = list_entry(h->reqQ.next, struct CommandList, list); 2940 /* can't do anything if fifo is full */ 2941 if ((h->access.fifo_full(h))) { 2942 dev_warn(&h->pdev->dev, "fifo full\n"); 2943 break; 2944 } 2945 2946 /* Get the first entry from the Request Q */ 2947 removeQ(c); 2948 h->Qdepth--; 2949 2950 /* Tell the controller execute command */ 2951 h->access.submit_command(h, c); 2952 2953 /* Put job onto the completed Q */ 2954 addQ(&h->cmpQ, c); 2955 } 2956 } 2957 2958 static inline unsigned long get_next_completion(struct ctlr_info *h) 2959 { 2960 return h->access.command_completed(h); 2961 } 2962 2963 static inline bool interrupt_pending(struct ctlr_info *h) 2964 { 2965 return h->access.intr_pending(h); 2966 } 2967 2968 static inline long interrupt_not_for_us(struct ctlr_info *h) 2969 { 2970 return (h->access.intr_pending(h) == 0) || 2971 (h->interrupts_enabled == 0); 2972 } 2973 2974 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2975 u32 raw_tag) 2976 { 2977 if (unlikely(tag_index >= h->nr_cmds)) { 2978 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2979 return 1; 2980 } 2981 return 0; 2982 } 2983 2984 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2985 { 2986 removeQ(c); 2987 if (likely(c->cmd_type == CMD_SCSI)) 2988 complete_scsi_command(c); 2989 else if (c->cmd_type == CMD_IOCTL_PEND) 2990 complete(c->waiting); 2991 } 2992 2993 static inline u32 hpsa_tag_contains_index(u32 tag) 2994 { 2995 return tag & DIRECT_LOOKUP_BIT; 2996 } 2997 2998 static inline u32 hpsa_tag_to_index(u32 tag) 2999 { 3000 return tag >> DIRECT_LOOKUP_SHIFT; 3001 } 3002 3003 3004 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 3005 { 3006 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 3007 #define HPSA_SIMPLE_ERROR_BITS 0x03 3008 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 3009 return tag & ~HPSA_SIMPLE_ERROR_BITS; 3010 return tag & ~HPSA_PERF_ERROR_BITS; 3011 } 3012 3013 /* process completion of an indexed ("direct lookup") command */ 3014 static inline u32 process_indexed_cmd(struct ctlr_info *h, 3015 u32 raw_tag) 3016 { 3017 u32 tag_index; 3018 struct CommandList *c; 3019 3020 tag_index = hpsa_tag_to_index(raw_tag); 3021 if (bad_tag(h, tag_index, raw_tag)) 3022 return next_command(h); 3023 c = h->cmd_pool + tag_index; 3024 finish_cmd(c, raw_tag); 3025 return next_command(h); 3026 } 3027 3028 /* process completion of a non-indexed command */ 3029 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 3030 u32 raw_tag) 3031 { 3032 u32 tag; 3033 struct CommandList *c = NULL; 3034 3035 tag = hpsa_tag_discard_error_bits(h, raw_tag); 3036 list_for_each_entry(c, &h->cmpQ, list) { 3037 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 3038 finish_cmd(c, raw_tag); 3039 return next_command(h); 3040 } 3041 } 3042 bad_tag(h, h->nr_cmds + 1, raw_tag); 3043 return next_command(h); 3044 } 3045 3046 /* Some controllers, like p400, will give us one interrupt 3047 * after a soft reset, even if we turned interrupts off. 3048 * Only need to check for this in the hpsa_xxx_discard_completions 3049 * functions. 3050 */ 3051 static int ignore_bogus_interrupt(struct ctlr_info *h) 3052 { 3053 if (likely(!reset_devices)) 3054 return 0; 3055 3056 if (likely(h->interrupts_enabled)) 3057 return 0; 3058 3059 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 3060 "(known firmware bug.) Ignoring.\n"); 3061 3062 return 1; 3063 } 3064 3065 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id) 3066 { 3067 struct ctlr_info *h = dev_id; 3068 unsigned long flags; 3069 u32 raw_tag; 3070 3071 if (ignore_bogus_interrupt(h)) 3072 return IRQ_NONE; 3073 3074 if (interrupt_not_for_us(h)) 3075 return IRQ_NONE; 3076 spin_lock_irqsave(&h->lock, flags); 3077 while (interrupt_pending(h)) { 3078 raw_tag = get_next_completion(h); 3079 while (raw_tag != FIFO_EMPTY) 3080 raw_tag = next_command(h); 3081 } 3082 spin_unlock_irqrestore(&h->lock, flags); 3083 return IRQ_HANDLED; 3084 } 3085 3086 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id) 3087 { 3088 struct ctlr_info *h = dev_id; 3089 unsigned long flags; 3090 u32 raw_tag; 3091 3092 if (ignore_bogus_interrupt(h)) 3093 return IRQ_NONE; 3094 3095 spin_lock_irqsave(&h->lock, flags); 3096 raw_tag = get_next_completion(h); 3097 while (raw_tag != FIFO_EMPTY) 3098 raw_tag = next_command(h); 3099 spin_unlock_irqrestore(&h->lock, flags); 3100 return IRQ_HANDLED; 3101 } 3102 3103 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id) 3104 { 3105 struct ctlr_info *h = dev_id; 3106 unsigned long flags; 3107 u32 raw_tag; 3108 3109 if (interrupt_not_for_us(h)) 3110 return IRQ_NONE; 3111 spin_lock_irqsave(&h->lock, flags); 3112 while (interrupt_pending(h)) { 3113 raw_tag = get_next_completion(h); 3114 while (raw_tag != FIFO_EMPTY) { 3115 if (hpsa_tag_contains_index(raw_tag)) 3116 raw_tag = process_indexed_cmd(h, raw_tag); 3117 else 3118 raw_tag = process_nonindexed_cmd(h, raw_tag); 3119 } 3120 } 3121 spin_unlock_irqrestore(&h->lock, flags); 3122 return IRQ_HANDLED; 3123 } 3124 3125 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id) 3126 { 3127 struct ctlr_info *h = dev_id; 3128 unsigned long flags; 3129 u32 raw_tag; 3130 3131 spin_lock_irqsave(&h->lock, flags); 3132 raw_tag = get_next_completion(h); 3133 while (raw_tag != FIFO_EMPTY) { 3134 if (hpsa_tag_contains_index(raw_tag)) 3135 raw_tag = process_indexed_cmd(h, raw_tag); 3136 else 3137 raw_tag = process_nonindexed_cmd(h, raw_tag); 3138 } 3139 spin_unlock_irqrestore(&h->lock, flags); 3140 return IRQ_HANDLED; 3141 } 3142 3143 /* Send a message CDB to the firmware. Careful, this only works 3144 * in simple mode, not performant mode due to the tag lookup. 3145 * We only ever use this immediately after a controller reset. 3146 */ 3147 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 3148 unsigned char type) 3149 { 3150 struct Command { 3151 struct CommandListHeader CommandHeader; 3152 struct RequestBlock Request; 3153 struct ErrDescriptor ErrorDescriptor; 3154 }; 3155 struct Command *cmd; 3156 static const size_t cmd_sz = sizeof(*cmd) + 3157 sizeof(cmd->ErrorDescriptor); 3158 dma_addr_t paddr64; 3159 uint32_t paddr32, tag; 3160 void __iomem *vaddr; 3161 int i, err; 3162 3163 vaddr = pci_ioremap_bar(pdev, 0); 3164 if (vaddr == NULL) 3165 return -ENOMEM; 3166 3167 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 3168 * CCISS commands, so they must be allocated from the lower 4GiB of 3169 * memory. 3170 */ 3171 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3172 if (err) { 3173 iounmap(vaddr); 3174 return -ENOMEM; 3175 } 3176 3177 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 3178 if (cmd == NULL) { 3179 iounmap(vaddr); 3180 return -ENOMEM; 3181 } 3182 3183 /* This must fit, because of the 32-bit consistent DMA mask. Also, 3184 * although there's no guarantee, we assume that the address is at 3185 * least 4-byte aligned (most likely, it's page-aligned). 3186 */ 3187 paddr32 = paddr64; 3188 3189 cmd->CommandHeader.ReplyQueue = 0; 3190 cmd->CommandHeader.SGList = 0; 3191 cmd->CommandHeader.SGTotal = 0; 3192 cmd->CommandHeader.Tag.lower = paddr32; 3193 cmd->CommandHeader.Tag.upper = 0; 3194 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3195 3196 cmd->Request.CDBLen = 16; 3197 cmd->Request.Type.Type = TYPE_MSG; 3198 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3199 cmd->Request.Type.Direction = XFER_NONE; 3200 cmd->Request.Timeout = 0; /* Don't time out */ 3201 cmd->Request.CDB[0] = opcode; 3202 cmd->Request.CDB[1] = type; 3203 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3204 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3205 cmd->ErrorDescriptor.Addr.upper = 0; 3206 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3207 3208 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3209 3210 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3211 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3212 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) 3213 break; 3214 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3215 } 3216 3217 iounmap(vaddr); 3218 3219 /* we leak the DMA buffer here ... no choice since the controller could 3220 * still complete the command. 3221 */ 3222 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3223 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3224 opcode, type); 3225 return -ETIMEDOUT; 3226 } 3227 3228 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3229 3230 if (tag & HPSA_ERROR_BIT) { 3231 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3232 opcode, type); 3233 return -EIO; 3234 } 3235 3236 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3237 opcode, type); 3238 return 0; 3239 } 3240 3241 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3242 3243 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3244 void * __iomem vaddr, u32 use_doorbell) 3245 { 3246 u16 pmcsr; 3247 int pos; 3248 3249 if (use_doorbell) { 3250 /* For everything after the P600, the PCI power state method 3251 * of resetting the controller doesn't work, so we have this 3252 * other way using the doorbell register. 3253 */ 3254 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3255 writel(use_doorbell, vaddr + SA5_DOORBELL); 3256 } else { /* Try to do it the PCI power state way */ 3257 3258 /* Quoting from the Open CISS Specification: "The Power 3259 * Management Control/Status Register (CSR) controls the power 3260 * state of the device. The normal operating state is D0, 3261 * CSR=00h. The software off state is D3, CSR=03h. To reset 3262 * the controller, place the interface device in D3 then to D0, 3263 * this causes a secondary PCI reset which will reset the 3264 * controller." */ 3265 3266 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3267 if (pos == 0) { 3268 dev_err(&pdev->dev, 3269 "hpsa_reset_controller: " 3270 "PCI PM not supported\n"); 3271 return -ENODEV; 3272 } 3273 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3274 /* enter the D3hot power management state */ 3275 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3276 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3277 pmcsr |= PCI_D3hot; 3278 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3279 3280 msleep(500); 3281 3282 /* enter the D0 power management state */ 3283 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3284 pmcsr |= PCI_D0; 3285 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3286 } 3287 return 0; 3288 } 3289 3290 static __devinit void init_driver_version(char *driver_version, int len) 3291 { 3292 memset(driver_version, 0, len); 3293 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1); 3294 } 3295 3296 static __devinit int write_driver_ver_to_cfgtable( 3297 struct CfgTable __iomem *cfgtable) 3298 { 3299 char *driver_version; 3300 int i, size = sizeof(cfgtable->driver_version); 3301 3302 driver_version = kmalloc(size, GFP_KERNEL); 3303 if (!driver_version) 3304 return -ENOMEM; 3305 3306 init_driver_version(driver_version, size); 3307 for (i = 0; i < size; i++) 3308 writeb(driver_version[i], &cfgtable->driver_version[i]); 3309 kfree(driver_version); 3310 return 0; 3311 } 3312 3313 static __devinit void read_driver_ver_from_cfgtable( 3314 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) 3315 { 3316 int i; 3317 3318 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 3319 driver_ver[i] = readb(&cfgtable->driver_version[i]); 3320 } 3321 3322 static __devinit int controller_reset_failed( 3323 struct CfgTable __iomem *cfgtable) 3324 { 3325 3326 char *driver_ver, *old_driver_ver; 3327 int rc, size = sizeof(cfgtable->driver_version); 3328 3329 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 3330 if (!old_driver_ver) 3331 return -ENOMEM; 3332 driver_ver = old_driver_ver + size; 3333 3334 /* After a reset, the 32 bytes of "driver version" in the cfgtable 3335 * should have been changed, otherwise we know the reset failed. 3336 */ 3337 init_driver_version(old_driver_ver, size); 3338 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 3339 rc = !memcmp(driver_ver, old_driver_ver, size); 3340 kfree(old_driver_ver); 3341 return rc; 3342 } 3343 /* This does a hard reset of the controller using PCI power management 3344 * states or the using the doorbell register. 3345 */ 3346 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3347 { 3348 u64 cfg_offset; 3349 u32 cfg_base_addr; 3350 u64 cfg_base_addr_index; 3351 void __iomem *vaddr; 3352 unsigned long paddr; 3353 u32 misc_fw_support; 3354 int rc; 3355 struct CfgTable __iomem *cfgtable; 3356 u32 use_doorbell; 3357 u32 board_id; 3358 u16 command_register; 3359 3360 /* For controllers as old as the P600, this is very nearly 3361 * the same thing as 3362 * 3363 * pci_save_state(pci_dev); 3364 * pci_set_power_state(pci_dev, PCI_D3hot); 3365 * pci_set_power_state(pci_dev, PCI_D0); 3366 * pci_restore_state(pci_dev); 3367 * 3368 * For controllers newer than the P600, the pci power state 3369 * method of resetting doesn't work so we have another way 3370 * using the doorbell register. 3371 */ 3372 3373 rc = hpsa_lookup_board_id(pdev, &board_id); 3374 if (rc < 0 || !ctlr_is_resettable(board_id)) { 3375 dev_warn(&pdev->dev, "Not resetting device.\n"); 3376 return -ENODEV; 3377 } 3378 3379 /* if controller is soft- but not hard resettable... */ 3380 if (!ctlr_is_hard_resettable(board_id)) 3381 return -ENOTSUPP; /* try soft reset later. */ 3382 3383 /* Save the PCI command register */ 3384 pci_read_config_word(pdev, 4, &command_register); 3385 /* Turn the board off. This is so that later pci_restore_state() 3386 * won't turn the board on before the rest of config space is ready. 3387 */ 3388 pci_disable_device(pdev); 3389 pci_save_state(pdev); 3390 3391 /* find the first memory BAR, so we can find the cfg table */ 3392 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3393 if (rc) 3394 return rc; 3395 vaddr = remap_pci_mem(paddr, 0x250); 3396 if (!vaddr) 3397 return -ENOMEM; 3398 3399 /* find cfgtable in order to check if reset via doorbell is supported */ 3400 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3401 &cfg_base_addr_index, &cfg_offset); 3402 if (rc) 3403 goto unmap_vaddr; 3404 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3405 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3406 if (!cfgtable) { 3407 rc = -ENOMEM; 3408 goto unmap_vaddr; 3409 } 3410 rc = write_driver_ver_to_cfgtable(cfgtable); 3411 if (rc) 3412 goto unmap_vaddr; 3413 3414 /* If reset via doorbell register is supported, use that. 3415 * There are two such methods. Favor the newest method. 3416 */ 3417 misc_fw_support = readl(&cfgtable->misc_fw_support); 3418 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 3419 if (use_doorbell) { 3420 use_doorbell = DOORBELL_CTLR_RESET2; 3421 } else { 3422 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3423 if (use_doorbell) { 3424 dev_warn(&pdev->dev, "Controller claims that " 3425 "'Bit 2 doorbell reset' is " 3426 "supported, but not 'bit 5 doorbell reset'. " 3427 "Firmware update is recommended.\n"); 3428 rc = -ENOTSUPP; /* try soft reset */ 3429 goto unmap_cfgtable; 3430 } 3431 } 3432 3433 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3434 if (rc) 3435 goto unmap_cfgtable; 3436 3437 pci_restore_state(pdev); 3438 rc = pci_enable_device(pdev); 3439 if (rc) { 3440 dev_warn(&pdev->dev, "failed to enable device.\n"); 3441 goto unmap_cfgtable; 3442 } 3443 pci_write_config_word(pdev, 4, command_register); 3444 3445 /* Some devices (notably the HP Smart Array 5i Controller) 3446 need a little pause here */ 3447 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3448 3449 /* Wait for board to become not ready, then ready. */ 3450 dev_info(&pdev->dev, "Waiting for board to reset.\n"); 3451 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); 3452 if (rc) { 3453 dev_warn(&pdev->dev, 3454 "failed waiting for board to reset." 3455 " Will try soft reset.\n"); 3456 rc = -ENOTSUPP; /* Not expected, but try soft reset later */ 3457 goto unmap_cfgtable; 3458 } 3459 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 3460 if (rc) { 3461 dev_warn(&pdev->dev, 3462 "failed waiting for board to become ready " 3463 "after hard reset\n"); 3464 goto unmap_cfgtable; 3465 } 3466 3467 rc = controller_reset_failed(vaddr); 3468 if (rc < 0) 3469 goto unmap_cfgtable; 3470 if (rc) { 3471 dev_warn(&pdev->dev, "Unable to successfully reset " 3472 "controller. Will try soft reset.\n"); 3473 rc = -ENOTSUPP; 3474 } else { 3475 dev_info(&pdev->dev, "board ready after hard reset.\n"); 3476 } 3477 3478 unmap_cfgtable: 3479 iounmap(cfgtable); 3480 3481 unmap_vaddr: 3482 iounmap(vaddr); 3483 return rc; 3484 } 3485 3486 /* 3487 * We cannot read the structure directly, for portability we must use 3488 * the io functions. 3489 * This is for debug only. 3490 */ 3491 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3492 { 3493 #ifdef HPSA_DEBUG 3494 int i; 3495 char temp_name[17]; 3496 3497 dev_info(dev, "Controller Configuration information\n"); 3498 dev_info(dev, "------------------------------------\n"); 3499 for (i = 0; i < 4; i++) 3500 temp_name[i] = readb(&(tb->Signature[i])); 3501 temp_name[4] = '\0'; 3502 dev_info(dev, " Signature = %s\n", temp_name); 3503 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3504 dev_info(dev, " Transport methods supported = 0x%x\n", 3505 readl(&(tb->TransportSupport))); 3506 dev_info(dev, " Transport methods active = 0x%x\n", 3507 readl(&(tb->TransportActive))); 3508 dev_info(dev, " Requested transport Method = 0x%x\n", 3509 readl(&(tb->HostWrite.TransportRequest))); 3510 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3511 readl(&(tb->HostWrite.CoalIntDelay))); 3512 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3513 readl(&(tb->HostWrite.CoalIntCount))); 3514 dev_info(dev, " Max outstanding commands = 0x%d\n", 3515 readl(&(tb->CmdsOutMax))); 3516 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3517 for (i = 0; i < 16; i++) 3518 temp_name[i] = readb(&(tb->ServerName[i])); 3519 temp_name[16] = '\0'; 3520 dev_info(dev, " Server Name = %s\n", temp_name); 3521 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3522 readl(&(tb->HeartBeat))); 3523 #endif /* HPSA_DEBUG */ 3524 } 3525 3526 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3527 { 3528 int i, offset, mem_type, bar_type; 3529 3530 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3531 return 0; 3532 offset = 0; 3533 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3534 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3535 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3536 offset += 4; 3537 else { 3538 mem_type = pci_resource_flags(pdev, i) & 3539 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3540 switch (mem_type) { 3541 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3542 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3543 offset += 4; /* 32 bit */ 3544 break; 3545 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3546 offset += 8; 3547 break; 3548 default: /* reserved in PCI 2.2 */ 3549 dev_warn(&pdev->dev, 3550 "base address is invalid\n"); 3551 return -1; 3552 break; 3553 } 3554 } 3555 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3556 return i + 1; 3557 } 3558 return -1; 3559 } 3560 3561 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3562 * controllers that are capable. If not, we use IO-APIC mode. 3563 */ 3564 3565 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3566 { 3567 #ifdef CONFIG_PCI_MSI 3568 int err; 3569 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3570 {0, 2}, {0, 3} 3571 }; 3572 3573 /* Some boards advertise MSI but don't really support it */ 3574 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3575 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3576 goto default_int_mode; 3577 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3578 dev_info(&h->pdev->dev, "MSIX\n"); 3579 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3580 if (!err) { 3581 h->intr[0] = hpsa_msix_entries[0].vector; 3582 h->intr[1] = hpsa_msix_entries[1].vector; 3583 h->intr[2] = hpsa_msix_entries[2].vector; 3584 h->intr[3] = hpsa_msix_entries[3].vector; 3585 h->msix_vector = 1; 3586 return; 3587 } 3588 if (err > 0) { 3589 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3590 "available\n", err); 3591 goto default_int_mode; 3592 } else { 3593 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3594 err); 3595 goto default_int_mode; 3596 } 3597 } 3598 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3599 dev_info(&h->pdev->dev, "MSI\n"); 3600 if (!pci_enable_msi(h->pdev)) 3601 h->msi_vector = 1; 3602 else 3603 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3604 } 3605 default_int_mode: 3606 #endif /* CONFIG_PCI_MSI */ 3607 /* if we get here we're going to use the default interrupt mode */ 3608 h->intr[h->intr_mode] = h->pdev->irq; 3609 } 3610 3611 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3612 { 3613 int i; 3614 u32 subsystem_vendor_id, subsystem_device_id; 3615 3616 subsystem_vendor_id = pdev->subsystem_vendor; 3617 subsystem_device_id = pdev->subsystem_device; 3618 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3619 subsystem_vendor_id; 3620 3621 for (i = 0; i < ARRAY_SIZE(products); i++) 3622 if (*board_id == products[i].board_id) 3623 return i; 3624 3625 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 3626 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 3627 !hpsa_allow_any) { 3628 dev_warn(&pdev->dev, "unrecognized board ID: " 3629 "0x%08x, ignoring.\n", *board_id); 3630 return -ENODEV; 3631 } 3632 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 3633 } 3634 3635 static inline bool hpsa_board_disabled(struct pci_dev *pdev) 3636 { 3637 u16 command; 3638 3639 (void) pci_read_config_word(pdev, PCI_COMMAND, &command); 3640 return ((command & PCI_COMMAND_MEMORY) == 0); 3641 } 3642 3643 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 3644 unsigned long *memory_bar) 3645 { 3646 int i; 3647 3648 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 3649 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3650 /* addressing mode bits already removed */ 3651 *memory_bar = pci_resource_start(pdev, i); 3652 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 3653 *memory_bar); 3654 return 0; 3655 } 3656 dev_warn(&pdev->dev, "no memory BAR found\n"); 3657 return -ENODEV; 3658 } 3659 3660 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 3661 void __iomem *vaddr, int wait_for_ready) 3662 { 3663 int i, iterations; 3664 u32 scratchpad; 3665 if (wait_for_ready) 3666 iterations = HPSA_BOARD_READY_ITERATIONS; 3667 else 3668 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 3669 3670 for (i = 0; i < iterations; i++) { 3671 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 3672 if (wait_for_ready) { 3673 if (scratchpad == HPSA_FIRMWARE_READY) 3674 return 0; 3675 } else { 3676 if (scratchpad != HPSA_FIRMWARE_READY) 3677 return 0; 3678 } 3679 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3680 } 3681 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 3682 return -ENODEV; 3683 } 3684 3685 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 3686 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 3687 u64 *cfg_offset) 3688 { 3689 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 3690 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 3691 *cfg_base_addr &= (u32) 0x0000ffff; 3692 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 3693 if (*cfg_base_addr_index == -1) { 3694 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3695 return -ENODEV; 3696 } 3697 return 0; 3698 } 3699 3700 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 3701 { 3702 u64 cfg_offset; 3703 u32 cfg_base_addr; 3704 u64 cfg_base_addr_index; 3705 u32 trans_offset; 3706 int rc; 3707 3708 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 3709 &cfg_base_addr_index, &cfg_offset); 3710 if (rc) 3711 return rc; 3712 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 3713 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 3714 if (!h->cfgtable) 3715 return -ENOMEM; 3716 rc = write_driver_ver_to_cfgtable(h->cfgtable); 3717 if (rc) 3718 return rc; 3719 /* Find performant mode table. */ 3720 trans_offset = readl(&h->cfgtable->TransMethodOffset); 3721 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 3722 cfg_base_addr_index)+cfg_offset+trans_offset, 3723 sizeof(*h->transtable)); 3724 if (!h->transtable) 3725 return -ENOMEM; 3726 return 0; 3727 } 3728 3729 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 3730 { 3731 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3732 3733 /* Limit commands in memory limited kdump scenario. */ 3734 if (reset_devices && h->max_commands > 32) 3735 h->max_commands = 32; 3736 3737 if (h->max_commands < 16) { 3738 dev_warn(&h->pdev->dev, "Controller reports " 3739 "max supported commands of %d, an obvious lie. " 3740 "Using 16. Ensure that firmware is up to date.\n", 3741 h->max_commands); 3742 h->max_commands = 16; 3743 } 3744 } 3745 3746 /* Interrogate the hardware for some limits: 3747 * max commands, max SG elements without chaining, and with chaining, 3748 * SG chain block size, etc. 3749 */ 3750 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 3751 { 3752 hpsa_get_max_perf_mode_cmds(h); 3753 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 3754 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 3755 /* 3756 * Limit in-command s/g elements to 32 save dma'able memory. 3757 * Howvever spec says if 0, use 31 3758 */ 3759 h->max_cmd_sg_entries = 31; 3760 if (h->maxsgentries > 512) { 3761 h->max_cmd_sg_entries = 32; 3762 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 3763 h->maxsgentries--; /* save one for chain pointer */ 3764 } else { 3765 h->maxsgentries = 31; /* default to traditional values */ 3766 h->chainsize = 0; 3767 } 3768 } 3769 3770 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 3771 { 3772 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3773 (readb(&h->cfgtable->Signature[1]) != 'I') || 3774 (readb(&h->cfgtable->Signature[2]) != 'S') || 3775 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3776 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 3777 return false; 3778 } 3779 return true; 3780 } 3781 3782 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3783 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 3784 { 3785 #ifdef CONFIG_X86 3786 u32 prefetch; 3787 3788 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3789 prefetch |= 0x100; 3790 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3791 #endif 3792 } 3793 3794 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 3795 * in a prefetch beyond physical memory. 3796 */ 3797 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 3798 { 3799 u32 dma_prefetch; 3800 3801 if (h->board_id != 0x3225103C) 3802 return; 3803 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3804 dma_prefetch |= 0x8000; 3805 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3806 } 3807 3808 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 3809 { 3810 int i; 3811 u32 doorbell_value; 3812 unsigned long flags; 3813 3814 /* under certain very rare conditions, this can take awhile. 3815 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3816 * as we enter this code.) 3817 */ 3818 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3819 spin_lock_irqsave(&h->lock, flags); 3820 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 3821 spin_unlock_irqrestore(&h->lock, flags); 3822 if (!(doorbell_value & CFGTBL_ChangeReq)) 3823 break; 3824 /* delay and try again */ 3825 usleep_range(10000, 20000); 3826 } 3827 } 3828 3829 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 3830 { 3831 u32 trans_support; 3832 3833 trans_support = readl(&(h->cfgtable->TransportSupport)); 3834 if (!(trans_support & SIMPLE_MODE)) 3835 return -ENOTSUPP; 3836 3837 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3838 /* Update the field, and then ring the doorbell */ 3839 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3840 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3841 hpsa_wait_for_mode_change_ack(h); 3842 print_cfg_table(&h->pdev->dev, h->cfgtable); 3843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3844 dev_warn(&h->pdev->dev, 3845 "unable to get board into simple mode\n"); 3846 return -ENODEV; 3847 } 3848 h->transMethod = CFGTBL_Trans_Simple; 3849 return 0; 3850 } 3851 3852 static int __devinit hpsa_pci_init(struct ctlr_info *h) 3853 { 3854 int prod_index, err; 3855 3856 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 3857 if (prod_index < 0) 3858 return -ENODEV; 3859 h->product_name = products[prod_index].product_name; 3860 h->access = *(products[prod_index].access); 3861 3862 if (hpsa_board_disabled(h->pdev)) { 3863 dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); 3864 return -ENODEV; 3865 } 3866 err = pci_enable_device(h->pdev); 3867 if (err) { 3868 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 3869 return err; 3870 } 3871 3872 err = pci_request_regions(h->pdev, "hpsa"); 3873 if (err) { 3874 dev_err(&h->pdev->dev, 3875 "cannot obtain PCI resources, aborting\n"); 3876 return err; 3877 } 3878 hpsa_interrupt_mode(h); 3879 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 3880 if (err) 3881 goto err_out_free_res; 3882 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3883 if (!h->vaddr) { 3884 err = -ENOMEM; 3885 goto err_out_free_res; 3886 } 3887 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 3888 if (err) 3889 goto err_out_free_res; 3890 err = hpsa_find_cfgtables(h); 3891 if (err) 3892 goto err_out_free_res; 3893 hpsa_find_board_params(h); 3894 3895 if (!hpsa_CISS_signature_present(h)) { 3896 err = -ENODEV; 3897 goto err_out_free_res; 3898 } 3899 hpsa_enable_scsi_prefetch(h); 3900 hpsa_p600_dma_prefetch_quirk(h); 3901 err = hpsa_enter_simple_mode(h); 3902 if (err) 3903 goto err_out_free_res; 3904 return 0; 3905 3906 err_out_free_res: 3907 if (h->transtable) 3908 iounmap(h->transtable); 3909 if (h->cfgtable) 3910 iounmap(h->cfgtable); 3911 if (h->vaddr) 3912 iounmap(h->vaddr); 3913 /* 3914 * Deliberately omit pci_disable_device(): it does something nasty to 3915 * Smart Array controllers that pci_enable_device does not undo 3916 */ 3917 pci_release_regions(h->pdev); 3918 return err; 3919 } 3920 3921 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3922 { 3923 int rc; 3924 3925 #define HBA_INQUIRY_BYTE_COUNT 64 3926 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3927 if (!h->hba_inquiry_data) 3928 return; 3929 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3930 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3931 if (rc != 0) { 3932 kfree(h->hba_inquiry_data); 3933 h->hba_inquiry_data = NULL; 3934 } 3935 } 3936 3937 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 3938 { 3939 int rc, i; 3940 3941 if (!reset_devices) 3942 return 0; 3943 3944 /* Reset the controller with a PCI power-cycle or via doorbell */ 3945 rc = hpsa_kdump_hard_reset_controller(pdev); 3946 3947 /* -ENOTSUPP here means we cannot reset the controller 3948 * but it's already (and still) up and running in 3949 * "performant mode". Or, it might be 640x, which can't reset 3950 * due to concerns about shared bbwc between 6402/6404 pair. 3951 */ 3952 if (rc == -ENOTSUPP) 3953 return rc; /* just try to do the kdump anyhow. */ 3954 if (rc) 3955 return -ENODEV; 3956 3957 /* Now try to get the controller to respond to a no-op */ 3958 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); 3959 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3960 if (hpsa_noop(pdev) == 0) 3961 break; 3962 else 3963 dev_warn(&pdev->dev, "no-op failed%s\n", 3964 (i < 11 ? "; re-trying" : "")); 3965 } 3966 return 0; 3967 } 3968 3969 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h) 3970 { 3971 h->cmd_pool_bits = kzalloc( 3972 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 3973 sizeof(unsigned long), GFP_KERNEL); 3974 h->cmd_pool = pci_alloc_consistent(h->pdev, 3975 h->nr_cmds * sizeof(*h->cmd_pool), 3976 &(h->cmd_pool_dhandle)); 3977 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3978 h->nr_cmds * sizeof(*h->errinfo_pool), 3979 &(h->errinfo_pool_dhandle)); 3980 if ((h->cmd_pool_bits == NULL) 3981 || (h->cmd_pool == NULL) 3982 || (h->errinfo_pool == NULL)) { 3983 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 3984 return -ENOMEM; 3985 } 3986 return 0; 3987 } 3988 3989 static void hpsa_free_cmd_pool(struct ctlr_info *h) 3990 { 3991 kfree(h->cmd_pool_bits); 3992 if (h->cmd_pool) 3993 pci_free_consistent(h->pdev, 3994 h->nr_cmds * sizeof(struct CommandList), 3995 h->cmd_pool, h->cmd_pool_dhandle); 3996 if (h->errinfo_pool) 3997 pci_free_consistent(h->pdev, 3998 h->nr_cmds * sizeof(struct ErrorInfo), 3999 h->errinfo_pool, 4000 h->errinfo_pool_dhandle); 4001 } 4002 4003 static int hpsa_request_irq(struct ctlr_info *h, 4004 irqreturn_t (*msixhandler)(int, void *), 4005 irqreturn_t (*intxhandler)(int, void *)) 4006 { 4007 int rc; 4008 4009 if (h->msix_vector || h->msi_vector) 4010 rc = request_irq(h->intr[h->intr_mode], msixhandler, 4011 IRQF_DISABLED, h->devname, h); 4012 else 4013 rc = request_irq(h->intr[h->intr_mode], intxhandler, 4014 IRQF_DISABLED, h->devname, h); 4015 if (rc) { 4016 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", 4017 h->intr[h->intr_mode], h->devname); 4018 return -ENODEV; 4019 } 4020 return 0; 4021 } 4022 4023 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h) 4024 { 4025 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, 4026 HPSA_RESET_TYPE_CONTROLLER)) { 4027 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); 4028 return -EIO; 4029 } 4030 4031 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 4032 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { 4033 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 4034 return -1; 4035 } 4036 4037 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 4038 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { 4039 dev_warn(&h->pdev->dev, "Board failed to become ready " 4040 "after soft reset.\n"); 4041 return -1; 4042 } 4043 4044 return 0; 4045 } 4046 4047 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 4048 { 4049 free_irq(h->intr[h->intr_mode], h); 4050 #ifdef CONFIG_PCI_MSI 4051 if (h->msix_vector) 4052 pci_disable_msix(h->pdev); 4053 else if (h->msi_vector) 4054 pci_disable_msi(h->pdev); 4055 #endif /* CONFIG_PCI_MSI */ 4056 hpsa_free_sg_chain_blocks(h); 4057 hpsa_free_cmd_pool(h); 4058 kfree(h->blockFetchTable); 4059 pci_free_consistent(h->pdev, h->reply_pool_size, 4060 h->reply_pool, h->reply_pool_dhandle); 4061 if (h->vaddr) 4062 iounmap(h->vaddr); 4063 if (h->transtable) 4064 iounmap(h->transtable); 4065 if (h->cfgtable) 4066 iounmap(h->cfgtable); 4067 pci_release_regions(h->pdev); 4068 kfree(h); 4069 } 4070 4071 static int __devinit hpsa_init_one(struct pci_dev *pdev, 4072 const struct pci_device_id *ent) 4073 { 4074 int dac, rc; 4075 struct ctlr_info *h; 4076 int try_soft_reset = 0; 4077 unsigned long flags; 4078 4079 if (number_of_controllers == 0) 4080 printk(KERN_INFO DRIVER_NAME "\n"); 4081 4082 rc = hpsa_init_reset_devices(pdev); 4083 if (rc) { 4084 if (rc != -ENOTSUPP) 4085 return rc; 4086 /* If the reset fails in a particular way (it has no way to do 4087 * a proper hard reset, so returns -ENOTSUPP) we can try to do 4088 * a soft reset once we get the controller configured up to the 4089 * point that it can accept a command. 4090 */ 4091 try_soft_reset = 1; 4092 rc = 0; 4093 } 4094 4095 reinit_after_soft_reset: 4096 4097 /* Command structures must be aligned on a 32-byte boundary because 4098 * the 5 lower bits of the address are used by the hardware. and by 4099 * the driver. See comments in hpsa.h for more info. 4100 */ 4101 #define COMMANDLIST_ALIGNMENT 32 4102 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 4103 h = kzalloc(sizeof(*h), GFP_KERNEL); 4104 if (!h) 4105 return -ENOMEM; 4106 4107 h->pdev = pdev; 4108 h->busy_initializing = 1; 4109 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 4110 INIT_LIST_HEAD(&h->cmpQ); 4111 INIT_LIST_HEAD(&h->reqQ); 4112 spin_lock_init(&h->lock); 4113 spin_lock_init(&h->scan_lock); 4114 rc = hpsa_pci_init(h); 4115 if (rc != 0) 4116 goto clean1; 4117 4118 sprintf(h->devname, "hpsa%d", number_of_controllers); 4119 h->ctlr = number_of_controllers; 4120 number_of_controllers++; 4121 4122 /* configure PCI DMA stuff */ 4123 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 4124 if (rc == 0) { 4125 dac = 1; 4126 } else { 4127 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4128 if (rc == 0) { 4129 dac = 0; 4130 } else { 4131 dev_err(&pdev->dev, "no suitable DMA available\n"); 4132 goto clean1; 4133 } 4134 } 4135 4136 /* make sure the board interrupts are off */ 4137 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4138 4139 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) 4140 goto clean2; 4141 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 4142 h->devname, pdev->device, 4143 h->intr[h->intr_mode], dac ? "" : " not"); 4144 if (hpsa_allocate_cmd_pool(h)) 4145 goto clean4; 4146 if (hpsa_allocate_sg_chain_blocks(h)) 4147 goto clean4; 4148 init_waitqueue_head(&h->scan_wait_queue); 4149 h->scan_finished = 1; /* no scan currently in progress */ 4150 4151 pci_set_drvdata(pdev, h); 4152 h->ndevices = 0; 4153 h->scsi_host = NULL; 4154 spin_lock_init(&h->devlock); 4155 hpsa_put_ctlr_into_performant_mode(h); 4156 4157 /* At this point, the controller is ready to take commands. 4158 * Now, if reset_devices and the hard reset didn't work, try 4159 * the soft reset and see if that works. 4160 */ 4161 if (try_soft_reset) { 4162 4163 /* This is kind of gross. We may or may not get a completion 4164 * from the soft reset command, and if we do, then the value 4165 * from the fifo may or may not be valid. So, we wait 10 secs 4166 * after the reset throwing away any completions we get during 4167 * that time. Unregister the interrupt handler and register 4168 * fake ones to scoop up any residual completions. 4169 */ 4170 spin_lock_irqsave(&h->lock, flags); 4171 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4172 spin_unlock_irqrestore(&h->lock, flags); 4173 free_irq(h->intr[h->intr_mode], h); 4174 rc = hpsa_request_irq(h, hpsa_msix_discard_completions, 4175 hpsa_intx_discard_completions); 4176 if (rc) { 4177 dev_warn(&h->pdev->dev, "Failed to request_irq after " 4178 "soft reset.\n"); 4179 goto clean4; 4180 } 4181 4182 rc = hpsa_kdump_soft_reset(h); 4183 if (rc) 4184 /* Neither hard nor soft reset worked, we're hosed. */ 4185 goto clean4; 4186 4187 dev_info(&h->pdev->dev, "Board READY.\n"); 4188 dev_info(&h->pdev->dev, 4189 "Waiting for stale completions to drain.\n"); 4190 h->access.set_intr_mask(h, HPSA_INTR_ON); 4191 msleep(10000); 4192 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4193 4194 rc = controller_reset_failed(h->cfgtable); 4195 if (rc) 4196 dev_info(&h->pdev->dev, 4197 "Soft reset appears to have failed.\n"); 4198 4199 /* since the controller's reset, we have to go back and re-init 4200 * everything. Easiest to just forget what we've done and do it 4201 * all over again. 4202 */ 4203 hpsa_undo_allocations_after_kdump_soft_reset(h); 4204 try_soft_reset = 0; 4205 if (rc) 4206 /* don't go to clean4, we already unallocated */ 4207 return -ENODEV; 4208 4209 goto reinit_after_soft_reset; 4210 } 4211 4212 /* Turn the interrupts on so we can service requests */ 4213 h->access.set_intr_mask(h, HPSA_INTR_ON); 4214 4215 hpsa_hba_inquiry(h); 4216 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 4217 h->busy_initializing = 0; 4218 return 1; 4219 4220 clean4: 4221 hpsa_free_sg_chain_blocks(h); 4222 hpsa_free_cmd_pool(h); 4223 free_irq(h->intr[h->intr_mode], h); 4224 clean2: 4225 clean1: 4226 h->busy_initializing = 0; 4227 kfree(h); 4228 return rc; 4229 } 4230 4231 static void hpsa_flush_cache(struct ctlr_info *h) 4232 { 4233 char *flush_buf; 4234 struct CommandList *c; 4235 4236 flush_buf = kzalloc(4, GFP_KERNEL); 4237 if (!flush_buf) 4238 return; 4239 4240 c = cmd_special_alloc(h); 4241 if (!c) { 4242 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 4243 goto out_of_memory; 4244 } 4245 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 4246 RAID_CTLR_LUNID, TYPE_CMD); 4247 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 4248 if (c->err_info->CommandStatus != 0) 4249 dev_warn(&h->pdev->dev, 4250 "error flushing cache on controller\n"); 4251 cmd_special_free(h, c); 4252 out_of_memory: 4253 kfree(flush_buf); 4254 } 4255 4256 static void hpsa_shutdown(struct pci_dev *pdev) 4257 { 4258 struct ctlr_info *h; 4259 4260 h = pci_get_drvdata(pdev); 4261 /* Turn board interrupts off and send the flush cache command 4262 * sendcmd will turn off interrupt, and send the flush... 4263 * To write all data in the battery backed cache to disks 4264 */ 4265 hpsa_flush_cache(h); 4266 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4267 free_irq(h->intr[h->intr_mode], h); 4268 #ifdef CONFIG_PCI_MSI 4269 if (h->msix_vector) 4270 pci_disable_msix(h->pdev); 4271 else if (h->msi_vector) 4272 pci_disable_msi(h->pdev); 4273 #endif /* CONFIG_PCI_MSI */ 4274 } 4275 4276 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 4277 { 4278 struct ctlr_info *h; 4279 4280 if (pci_get_drvdata(pdev) == NULL) { 4281 dev_err(&pdev->dev, "unable to remove device \n"); 4282 return; 4283 } 4284 h = pci_get_drvdata(pdev); 4285 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 4286 hpsa_shutdown(pdev); 4287 iounmap(h->vaddr); 4288 iounmap(h->transtable); 4289 iounmap(h->cfgtable); 4290 hpsa_free_sg_chain_blocks(h); 4291 pci_free_consistent(h->pdev, 4292 h->nr_cmds * sizeof(struct CommandList), 4293 h->cmd_pool, h->cmd_pool_dhandle); 4294 pci_free_consistent(h->pdev, 4295 h->nr_cmds * sizeof(struct ErrorInfo), 4296 h->errinfo_pool, h->errinfo_pool_dhandle); 4297 pci_free_consistent(h->pdev, h->reply_pool_size, 4298 h->reply_pool, h->reply_pool_dhandle); 4299 kfree(h->cmd_pool_bits); 4300 kfree(h->blockFetchTable); 4301 kfree(h->hba_inquiry_data); 4302 /* 4303 * Deliberately omit pci_disable_device(): it does something nasty to 4304 * Smart Array controllers that pci_enable_device does not undo 4305 */ 4306 pci_release_regions(pdev); 4307 pci_set_drvdata(pdev, NULL); 4308 kfree(h); 4309 } 4310 4311 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 4312 __attribute__((unused)) pm_message_t state) 4313 { 4314 return -ENOSYS; 4315 } 4316 4317 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 4318 { 4319 return -ENOSYS; 4320 } 4321 4322 static struct pci_driver hpsa_pci_driver = { 4323 .name = "hpsa", 4324 .probe = hpsa_init_one, 4325 .remove = __devexit_p(hpsa_remove_one), 4326 .id_table = hpsa_pci_device_id, /* id_table */ 4327 .shutdown = hpsa_shutdown, 4328 .suspend = hpsa_suspend, 4329 .resume = hpsa_resume, 4330 }; 4331 4332 /* Fill in bucket_map[], given nsgs (the max number of 4333 * scatter gather elements supported) and bucket[], 4334 * which is an array of 8 integers. The bucket[] array 4335 * contains 8 different DMA transfer sizes (in 16 4336 * byte increments) which the controller uses to fetch 4337 * commands. This function fills in bucket_map[], which 4338 * maps a given number of scatter gather elements to one of 4339 * the 8 DMA transfer sizes. The point of it is to allow the 4340 * controller to only do as much DMA as needed to fetch the 4341 * command, with the DMA transfer size encoded in the lower 4342 * bits of the command address. 4343 */ 4344 static void calc_bucket_map(int bucket[], int num_buckets, 4345 int nsgs, int *bucket_map) 4346 { 4347 int i, j, b, size; 4348 4349 /* even a command with 0 SGs requires 4 blocks */ 4350 #define MINIMUM_TRANSFER_BLOCKS 4 4351 #define NUM_BUCKETS 8 4352 /* Note, bucket_map must have nsgs+1 entries. */ 4353 for (i = 0; i <= nsgs; i++) { 4354 /* Compute size of a command with i SG entries */ 4355 size = i + MINIMUM_TRANSFER_BLOCKS; 4356 b = num_buckets; /* Assume the biggest bucket */ 4357 /* Find the bucket that is just big enough */ 4358 for (j = 0; j < 8; j++) { 4359 if (bucket[j] >= size) { 4360 b = j; 4361 break; 4362 } 4363 } 4364 /* for a command with i SG entries, use bucket b. */ 4365 bucket_map[i] = b; 4366 } 4367 } 4368 4369 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h, 4370 u32 use_short_tags) 4371 { 4372 int i; 4373 unsigned long register_value; 4374 4375 /* This is a bit complicated. There are 8 registers on 4376 * the controller which we write to to tell it 8 different 4377 * sizes of commands which there may be. It's a way of 4378 * reducing the DMA done to fetch each command. Encoded into 4379 * each command's tag are 3 bits which communicate to the controller 4380 * which of the eight sizes that command fits within. The size of 4381 * each command depends on how many scatter gather entries there are. 4382 * Each SG entry requires 16 bytes. The eight registers are programmed 4383 * with the number of 16-byte blocks a command of that size requires. 4384 * The smallest command possible requires 5 such 16 byte blocks. 4385 * the largest command possible requires MAXSGENTRIES + 4 16-byte 4386 * blocks. Note, this only extends to the SG entries contained 4387 * within the command block, and does not extend to chained blocks 4388 * of SG elements. bft[] contains the eight values we write to 4389 * the registers. They are not evenly distributed, but have more 4390 * sizes for small commands, and fewer sizes for larger commands. 4391 */ 4392 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; 4393 BUILD_BUG_ON(28 > MAXSGENTRIES + 4); 4394 /* 5 = 1 s/g entry or 4k 4395 * 6 = 2 s/g entry or 8k 4396 * 8 = 4 s/g entry or 16k 4397 * 10 = 6 s/g entry or 24k 4398 */ 4399 4400 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 4401 4402 /* Controller spec: zero out this buffer. */ 4403 memset(h->reply_pool, 0, h->reply_pool_size); 4404 h->reply_pool_head = h->reply_pool; 4405 4406 bft[7] = h->max_sg_entries + 4; 4407 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 4408 for (i = 0; i < 8; i++) 4409 writel(bft[i], &h->transtable->BlockFetch[i]); 4410 4411 /* size of controller ring buffer */ 4412 writel(h->max_commands, &h->transtable->RepQSize); 4413 writel(1, &h->transtable->RepQCount); 4414 writel(0, &h->transtable->RepQCtrAddrLow32); 4415 writel(0, &h->transtable->RepQCtrAddrHigh32); 4416 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 4417 writel(0, &h->transtable->RepQAddr0High32); 4418 writel(CFGTBL_Trans_Performant | use_short_tags, 4419 &(h->cfgtable->HostWrite.TransportRequest)); 4420 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4421 hpsa_wait_for_mode_change_ack(h); 4422 register_value = readl(&(h->cfgtable->TransportActive)); 4423 if (!(register_value & CFGTBL_Trans_Performant)) { 4424 dev_warn(&h->pdev->dev, "unable to get board into" 4425 " performant mode\n"); 4426 return; 4427 } 4428 /* Change the access methods to the performant access methods */ 4429 h->access = SA5_performant_access; 4430 h->transMethod = CFGTBL_Trans_Performant; 4431 } 4432 4433 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 4434 { 4435 u32 trans_support; 4436 4437 if (hpsa_simple_mode) 4438 return; 4439 4440 trans_support = readl(&(h->cfgtable->TransportSupport)); 4441 if (!(trans_support & PERFORMANT_MODE)) 4442 return; 4443 4444 hpsa_get_max_perf_mode_cmds(h); 4445 h->max_sg_entries = 32; 4446 /* Performant mode ring buffer and supporting data structures */ 4447 h->reply_pool_size = h->max_commands * sizeof(u64); 4448 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 4449 &(h->reply_pool_dhandle)); 4450 4451 /* Need a block fetch table for performant mode */ 4452 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 4453 sizeof(u32)), GFP_KERNEL); 4454 4455 if ((h->reply_pool == NULL) 4456 || (h->blockFetchTable == NULL)) 4457 goto clean_up; 4458 4459 hpsa_enter_performant_mode(h, 4460 trans_support & CFGTBL_Trans_use_short_tags); 4461 4462 return; 4463 4464 clean_up: 4465 if (h->reply_pool) 4466 pci_free_consistent(h->pdev, h->reply_pool_size, 4467 h->reply_pool, h->reply_pool_dhandle); 4468 kfree(h->blockFetchTable); 4469 } 4470 4471 /* 4472 * This is it. Register the PCI driver information for the cards we control 4473 * the OS will call our registered routines when it finds one of our cards. 4474 */ 4475 static int __init hpsa_init(void) 4476 { 4477 return pci_register_driver(&hpsa_pci_driver); 4478 } 4479 4480 static void __exit hpsa_cleanup(void) 4481 { 4482 pci_unregister_driver(&hpsa_pci_driver); 4483 } 4484 4485 module_init(hpsa_init); 4486 module_exit(hpsa_cleanup); 4487