1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2016 Microsemi Corporation 4 * Copyright 2014-2015 PMC-Sierra, Inc. 5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; version 2 of the License. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more details. 15 * 16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com 17 * 18 */ 19 20 #include <linux/module.h> 21 #include <linux/interrupt.h> 22 #include <linux/types.h> 23 #include <linux/pci.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/fs.h> 29 #include <linux/timer.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/compat.h> 33 #include <linux/blktrace_api.h> 34 #include <linux/uaccess.h> 35 #include <linux/io.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/completion.h> 38 #include <linux/moduleparam.h> 39 #include <scsi/scsi.h> 40 #include <scsi/scsi_cmnd.h> 41 #include <scsi/scsi_device.h> 42 #include <scsi/scsi_host.h> 43 #include <scsi/scsi_tcq.h> 44 #include <scsi/scsi_eh.h> 45 #include <scsi/scsi_transport_sas.h> 46 #include <scsi/scsi_dbg.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/jiffies.h> 52 #include <linux/percpu-defs.h> 53 #include <linux/percpu.h> 54 #include <asm/unaligned.h> 55 #include <asm/div64.h> 56 #include "hpsa_cmd.h" 57 #include "hpsa.h" 58 59 /* 60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' 61 * with an optional trailing '-' followed by a byte value (0-255). 62 */ 63 #define HPSA_DRIVER_VERSION "3.4.20-125" 64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 65 #define HPSA "hpsa" 66 67 /* How long to wait for CISS doorbell communication */ 68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 72 #define MAX_IOCTL_CONFIG_WAIT 1000 73 74 /*define how many times we will try a command because of bus resets */ 75 #define MAX_CMD_RETRIES 3 76 77 /* Embedded module documentation macros - see modules.h */ 78 MODULE_AUTHOR("Hewlett-Packard Company"); 79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 80 HPSA_DRIVER_VERSION); 81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 82 MODULE_VERSION(HPSA_DRIVER_VERSION); 83 MODULE_LICENSE("GPL"); 84 MODULE_ALIAS("cciss"); 85 86 static int hpsa_simple_mode; 87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 88 MODULE_PARM_DESC(hpsa_simple_mode, 89 "Use 'simple mode' rather than 'performant mode'"); 90 91 /* define the PCI info for the cards we can control */ 92 static const struct pci_device_id hpsa_pci_device_id[] = { 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 150 {0,} 151 }; 152 153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 154 155 /* board_id = Subsystem Device ID & Vendor ID 156 * product = Marketing Name for the board 157 * access = Address of the struct of function pointers 158 */ 159 static struct board_type products[] = { 160 {0x40700E11, "Smart Array 5300", &SA5A_access}, 161 {0x40800E11, "Smart Array 5i", &SA5B_access}, 162 {0x40820E11, "Smart Array 532", &SA5B_access}, 163 {0x40830E11, "Smart Array 5312", &SA5B_access}, 164 {0x409A0E11, "Smart Array 641", &SA5A_access}, 165 {0x409B0E11, "Smart Array 642", &SA5A_access}, 166 {0x409C0E11, "Smart Array 6400", &SA5A_access}, 167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, 168 {0x40910E11, "Smart Array 6i", &SA5A_access}, 169 {0x3225103C, "Smart Array P600", &SA5A_access}, 170 {0x3223103C, "Smart Array P800", &SA5A_access}, 171 {0x3234103C, "Smart Array P400", &SA5A_access}, 172 {0x3235103C, "Smart Array P400i", &SA5A_access}, 173 {0x3211103C, "Smart Array E200i", &SA5A_access}, 174 {0x3212103C, "Smart Array E200", &SA5A_access}, 175 {0x3213103C, "Smart Array E200i", &SA5A_access}, 176 {0x3214103C, "Smart Array E200i", &SA5A_access}, 177 {0x3215103C, "Smart Array E200i", &SA5A_access}, 178 {0x3237103C, "Smart Array E500", &SA5A_access}, 179 {0x323D103C, "Smart Array P700m", &SA5A_access}, 180 {0x3241103C, "Smart Array P212", &SA5_access}, 181 {0x3243103C, "Smart Array P410", &SA5_access}, 182 {0x3245103C, "Smart Array P410i", &SA5_access}, 183 {0x3247103C, "Smart Array P411", &SA5_access}, 184 {0x3249103C, "Smart Array P812", &SA5_access}, 185 {0x324A103C, "Smart Array P712m", &SA5_access}, 186 {0x324B103C, "Smart Array P711m", &SA5_access}, 187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 188 {0x3350103C, "Smart Array P222", &SA5_access}, 189 {0x3351103C, "Smart Array P420", &SA5_access}, 190 {0x3352103C, "Smart Array P421", &SA5_access}, 191 {0x3353103C, "Smart Array P822", &SA5_access}, 192 {0x3354103C, "Smart Array P420i", &SA5_access}, 193 {0x3355103C, "Smart Array P220i", &SA5_access}, 194 {0x3356103C, "Smart Array P721m", &SA5_access}, 195 {0x1920103C, "Smart Array P430i", &SA5_access}, 196 {0x1921103C, "Smart Array P830i", &SA5_access}, 197 {0x1922103C, "Smart Array P430", &SA5_access}, 198 {0x1923103C, "Smart Array P431", &SA5_access}, 199 {0x1924103C, "Smart Array P830", &SA5_access}, 200 {0x1925103C, "Smart Array P831", &SA5_access}, 201 {0x1926103C, "Smart Array P731m", &SA5_access}, 202 {0x1928103C, "Smart Array P230i", &SA5_access}, 203 {0x1929103C, "Smart Array P530", &SA5_access}, 204 {0x21BD103C, "Smart Array P244br", &SA5_access}, 205 {0x21BE103C, "Smart Array P741m", &SA5_access}, 206 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 207 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 208 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 209 {0x21C2103C, "Smart Array P440", &SA5_access}, 210 {0x21C3103C, "Smart Array P441", &SA5_access}, 211 {0x21C4103C, "Smart Array", &SA5_access}, 212 {0x21C5103C, "Smart Array P841", &SA5_access}, 213 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 214 {0x21C7103C, "Smart HBA H240", &SA5_access}, 215 {0x21C8103C, "Smart HBA H241", &SA5_access}, 216 {0x21C9103C, "Smart Array", &SA5_access}, 217 {0x21CA103C, "Smart Array P246br", &SA5_access}, 218 {0x21CB103C, "Smart Array P840", &SA5_access}, 219 {0x21CC103C, "Smart Array", &SA5_access}, 220 {0x21CD103C, "Smart Array", &SA5_access}, 221 {0x21CE103C, "Smart HBA", &SA5_access}, 222 {0x05809005, "SmartHBA-SA", &SA5_access}, 223 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 225 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 226 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 233 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 234 }; 235 236 static struct scsi_transport_template *hpsa_sas_transport_template; 237 static int hpsa_add_sas_host(struct ctlr_info *h); 238 static void hpsa_delete_sas_host(struct ctlr_info *h); 239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 240 struct hpsa_scsi_dev_t *device); 241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); 242 static struct hpsa_scsi_dev_t 243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 244 struct sas_rphy *rphy); 245 246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 247 static const struct scsi_cmnd hpsa_cmd_busy; 248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 249 static const struct scsi_cmnd hpsa_cmd_idle; 250 static int number_of_controllers; 251 252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); 255 256 #ifdef CONFIG_COMPAT 257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, 258 void __user *arg); 259 #endif 260 261 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 262 static struct CommandList *cmd_alloc(struct ctlr_info *h); 263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 265 struct scsi_cmnd *scmd); 266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 268 int cmd_type); 269 static void hpsa_free_cmd_pool(struct ctlr_info *h); 270 #define VPD_PAGE (1 << 8) 271 #define HPSA_SIMPLE_ERROR_BITS 0x03 272 273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 274 static void hpsa_scan_start(struct Scsi_Host *); 275 static int hpsa_scan_finished(struct Scsi_Host *sh, 276 unsigned long elapsed_time); 277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 278 279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 280 static int hpsa_slave_alloc(struct scsi_device *sdev); 281 static int hpsa_slave_configure(struct scsi_device *sdev); 282 static void hpsa_slave_destroy(struct scsi_device *sdev); 283 284 static void hpsa_update_scsi_devices(struct ctlr_info *h); 285 static int check_for_unit_attention(struct ctlr_info *h, 286 struct CommandList *c); 287 static void check_ioctl_unit_attention(struct ctlr_info *h, 288 struct CommandList *c); 289 /* performant mode helper functions */ 290 static void calc_bucket_map(int *bucket, int num_buckets, 291 int nsgs, int min_blocks, u32 *bucket_map); 292 static void hpsa_free_performant_mode(struct ctlr_info *h); 293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 294 static inline u32 next_command(struct ctlr_info *h, u8 q); 295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 296 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 297 u64 *cfg_offset); 298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 299 unsigned long *memory_bar); 300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 301 bool *legacy_board); 302 static int wait_for_device_to_become_ready(struct ctlr_info *h, 303 unsigned char lunaddr[], 304 int reply_queue); 305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 306 int wait_for_ready); 307 static inline void finish_cmd(struct CommandList *c); 308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 309 #define BOARD_NOT_READY 0 310 #define BOARD_READY 1 311 static void hpsa_drain_accel_commands(struct ctlr_info *h); 312 static void hpsa_flush_cache(struct ctlr_info *h); 313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 314 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 315 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 316 static void hpsa_command_resubmit_worker(struct work_struct *work); 317 static u32 lockup_detected(struct ctlr_info *h); 318 static int detect_controller_lockup(struct ctlr_info *h); 319 static void hpsa_disable_rld_caching(struct ctlr_info *h); 320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 321 struct ReportExtendedLUNdata *buf, int bufsize); 322 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 323 unsigned char scsi3addr[], u8 page); 324 static int hpsa_luns_changed(struct ctlr_info *h); 325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 326 struct hpsa_scsi_dev_t *dev, 327 unsigned char *scsi3addr); 328 329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 330 { 331 unsigned long *priv = shost_priv(sdev->host); 332 return (struct ctlr_info *) *priv; 333 } 334 335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 336 { 337 unsigned long *priv = shost_priv(sh); 338 return (struct ctlr_info *) *priv; 339 } 340 341 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 342 { 343 return c->scsi_cmd == SCSI_CMD_IDLE; 344 } 345 346 static inline bool hpsa_is_pending_event(struct CommandList *c) 347 { 348 return c->reset_pending; 349 } 350 351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 352 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 353 u8 *sense_key, u8 *asc, u8 *ascq) 354 { 355 struct scsi_sense_hdr sshdr; 356 bool rc; 357 358 *sense_key = -1; 359 *asc = -1; 360 *ascq = -1; 361 362 if (sense_data_len < 1) 363 return; 364 365 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 366 if (rc) { 367 *sense_key = sshdr.sense_key; 368 *asc = sshdr.asc; 369 *ascq = sshdr.ascq; 370 } 371 } 372 373 static int check_for_unit_attention(struct ctlr_info *h, 374 struct CommandList *c) 375 { 376 u8 sense_key, asc, ascq; 377 int sense_len; 378 379 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 380 sense_len = sizeof(c->err_info->SenseInfo); 381 else 382 sense_len = c->err_info->SenseLen; 383 384 decode_sense_data(c->err_info->SenseInfo, sense_len, 385 &sense_key, &asc, &ascq); 386 if (sense_key != UNIT_ATTENTION || asc == 0xff) 387 return 0; 388 389 switch (asc) { 390 case STATE_CHANGED: 391 dev_warn(&h->pdev->dev, 392 "%s: a state change detected, command retried\n", 393 h->devname); 394 break; 395 case LUN_FAILED: 396 dev_warn(&h->pdev->dev, 397 "%s: LUN failure detected\n", h->devname); 398 break; 399 case REPORT_LUNS_CHANGED: 400 dev_warn(&h->pdev->dev, 401 "%s: report LUN data changed\n", h->devname); 402 /* 403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 404 * target (array) devices. 405 */ 406 break; 407 case POWER_OR_RESET: 408 dev_warn(&h->pdev->dev, 409 "%s: a power on or device reset detected\n", 410 h->devname); 411 break; 412 case UNIT_ATTENTION_CLEARED: 413 dev_warn(&h->pdev->dev, 414 "%s: unit attention cleared by another initiator\n", 415 h->devname); 416 break; 417 default: 418 dev_warn(&h->pdev->dev, 419 "%s: unknown unit attention detected\n", 420 h->devname); 421 break; 422 } 423 return 1; 424 } 425 426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 427 { 428 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 429 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 430 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 431 return 0; 432 dev_warn(&h->pdev->dev, HPSA "device busy"); 433 return 1; 434 } 435 436 static u32 lockup_detected(struct ctlr_info *h); 437 static ssize_t host_show_lockup_detected(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 int ld; 441 struct ctlr_info *h; 442 struct Scsi_Host *shost = class_to_shost(dev); 443 444 h = shost_to_hba(shost); 445 ld = lockup_detected(h); 446 447 return sprintf(buf, "ld=%d\n", ld); 448 } 449 450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 451 struct device_attribute *attr, 452 const char *buf, size_t count) 453 { 454 int status, len; 455 struct ctlr_info *h; 456 struct Scsi_Host *shost = class_to_shost(dev); 457 char tmpbuf[10]; 458 459 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 460 return -EACCES; 461 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 462 strncpy(tmpbuf, buf, len); 463 tmpbuf[len] = '\0'; 464 if (sscanf(tmpbuf, "%d", &status) != 1) 465 return -EINVAL; 466 h = shost_to_hba(shost); 467 h->acciopath_status = !!status; 468 dev_warn(&h->pdev->dev, 469 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 470 h->acciopath_status ? "enabled" : "disabled"); 471 return count; 472 } 473 474 static ssize_t host_store_raid_offload_debug(struct device *dev, 475 struct device_attribute *attr, 476 const char *buf, size_t count) 477 { 478 int debug_level, len; 479 struct ctlr_info *h; 480 struct Scsi_Host *shost = class_to_shost(dev); 481 char tmpbuf[10]; 482 483 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 484 return -EACCES; 485 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 486 strncpy(tmpbuf, buf, len); 487 tmpbuf[len] = '\0'; 488 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 489 return -EINVAL; 490 if (debug_level < 0) 491 debug_level = 0; 492 h = shost_to_hba(shost); 493 h->raid_offload_debug = debug_level; 494 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 495 h->raid_offload_debug); 496 return count; 497 } 498 499 static ssize_t host_store_rescan(struct device *dev, 500 struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct ctlr_info *h; 504 struct Scsi_Host *shost = class_to_shost(dev); 505 h = shost_to_hba(shost); 506 hpsa_scan_start(h->scsi_host); 507 return count; 508 } 509 510 static ssize_t host_show_firmware_revision(struct device *dev, 511 struct device_attribute *attr, char *buf) 512 { 513 struct ctlr_info *h; 514 struct Scsi_Host *shost = class_to_shost(dev); 515 unsigned char *fwrev; 516 517 h = shost_to_hba(shost); 518 if (!h->hba_inquiry_data) 519 return 0; 520 fwrev = &h->hba_inquiry_data[32]; 521 return snprintf(buf, 20, "%c%c%c%c\n", 522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 523 } 524 525 static ssize_t host_show_commands_outstanding(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct Scsi_Host *shost = class_to_shost(dev); 529 struct ctlr_info *h = shost_to_hba(shost); 530 531 return snprintf(buf, 20, "%d\n", 532 atomic_read(&h->commands_outstanding)); 533 } 534 535 static ssize_t host_show_transport_mode(struct device *dev, 536 struct device_attribute *attr, char *buf) 537 { 538 struct ctlr_info *h; 539 struct Scsi_Host *shost = class_to_shost(dev); 540 541 h = shost_to_hba(shost); 542 return snprintf(buf, 20, "%s\n", 543 h->transMethod & CFGTBL_Trans_Performant ? 544 "performant" : "simple"); 545 } 546 547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct ctlr_info *h; 551 struct Scsi_Host *shost = class_to_shost(dev); 552 553 h = shost_to_hba(shost); 554 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 555 (h->acciopath_status == 1) ? "enabled" : "disabled"); 556 } 557 558 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 559 static u32 unresettable_controller[] = { 560 0x324a103C, /* Smart Array P712m */ 561 0x324b103C, /* Smart Array P711m */ 562 0x3223103C, /* Smart Array P800 */ 563 0x3234103C, /* Smart Array P400 */ 564 0x3235103C, /* Smart Array P400i */ 565 0x3211103C, /* Smart Array E200i */ 566 0x3212103C, /* Smart Array E200 */ 567 0x3213103C, /* Smart Array E200i */ 568 0x3214103C, /* Smart Array E200i */ 569 0x3215103C, /* Smart Array E200i */ 570 0x3237103C, /* Smart Array E500 */ 571 0x323D103C, /* Smart Array P700m */ 572 0x40800E11, /* Smart Array 5i */ 573 0x409C0E11, /* Smart Array 6400 */ 574 0x409D0E11, /* Smart Array 6400 EM */ 575 0x40700E11, /* Smart Array 5300 */ 576 0x40820E11, /* Smart Array 532 */ 577 0x40830E11, /* Smart Array 5312 */ 578 0x409A0E11, /* Smart Array 641 */ 579 0x409B0E11, /* Smart Array 642 */ 580 0x40910E11, /* Smart Array 6i */ 581 }; 582 583 /* List of controllers which cannot even be soft reset */ 584 static u32 soft_unresettable_controller[] = { 585 0x40800E11, /* Smart Array 5i */ 586 0x40700E11, /* Smart Array 5300 */ 587 0x40820E11, /* Smart Array 532 */ 588 0x40830E11, /* Smart Array 5312 */ 589 0x409A0E11, /* Smart Array 641 */ 590 0x409B0E11, /* Smart Array 642 */ 591 0x40910E11, /* Smart Array 6i */ 592 /* Exclude 640x boards. These are two pci devices in one slot 593 * which share a battery backed cache module. One controls the 594 * cache, the other accesses the cache through the one that controls 595 * it. If we reset the one controlling the cache, the other will 596 * likely not be happy. Just forbid resetting this conjoined mess. 597 * The 640x isn't really supported by hpsa anyway. 598 */ 599 0x409C0E11, /* Smart Array 6400 */ 600 0x409D0E11, /* Smart Array 6400 EM */ 601 }; 602 603 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 604 { 605 int i; 606 607 for (i = 0; i < nelems; i++) 608 if (a[i] == board_id) 609 return 1; 610 return 0; 611 } 612 613 static int ctlr_is_hard_resettable(u32 board_id) 614 { 615 return !board_id_in_array(unresettable_controller, 616 ARRAY_SIZE(unresettable_controller), board_id); 617 } 618 619 static int ctlr_is_soft_resettable(u32 board_id) 620 { 621 return !board_id_in_array(soft_unresettable_controller, 622 ARRAY_SIZE(soft_unresettable_controller), board_id); 623 } 624 625 static int ctlr_is_resettable(u32 board_id) 626 { 627 return ctlr_is_hard_resettable(board_id) || 628 ctlr_is_soft_resettable(board_id); 629 } 630 631 static ssize_t host_show_resettable(struct device *dev, 632 struct device_attribute *attr, char *buf) 633 { 634 struct ctlr_info *h; 635 struct Scsi_Host *shost = class_to_shost(dev); 636 637 h = shost_to_hba(shost); 638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 639 } 640 641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 642 { 643 return (scsi3addr[3] & 0xC0) == 0x40; 644 } 645 646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 647 "1(+0)ADM", "UNKNOWN", "PHYS DRV" 648 }; 649 #define HPSA_RAID_0 0 650 #define HPSA_RAID_4 1 651 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 652 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 653 #define HPSA_RAID_51 4 654 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) 657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) 658 659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) 660 { 661 return !device->physical_device; 662 } 663 664 static ssize_t raid_level_show(struct device *dev, 665 struct device_attribute *attr, char *buf) 666 { 667 ssize_t l = 0; 668 unsigned char rlevel; 669 struct ctlr_info *h; 670 struct scsi_device *sdev; 671 struct hpsa_scsi_dev_t *hdev; 672 unsigned long flags; 673 674 sdev = to_scsi_device(dev); 675 h = sdev_to_hba(sdev); 676 spin_lock_irqsave(&h->lock, flags); 677 hdev = sdev->hostdata; 678 if (!hdev) { 679 spin_unlock_irqrestore(&h->lock, flags); 680 return -ENODEV; 681 } 682 683 /* Is this even a logical drive? */ 684 if (!is_logical_device(hdev)) { 685 spin_unlock_irqrestore(&h->lock, flags); 686 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 687 return l; 688 } 689 690 rlevel = hdev->raid_level; 691 spin_unlock_irqrestore(&h->lock, flags); 692 if (rlevel > RAID_UNKNOWN) 693 rlevel = RAID_UNKNOWN; 694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 695 return l; 696 } 697 698 static ssize_t lunid_show(struct device *dev, 699 struct device_attribute *attr, char *buf) 700 { 701 struct ctlr_info *h; 702 struct scsi_device *sdev; 703 struct hpsa_scsi_dev_t *hdev; 704 unsigned long flags; 705 unsigned char lunid[8]; 706 707 sdev = to_scsi_device(dev); 708 h = sdev_to_hba(sdev); 709 spin_lock_irqsave(&h->lock, flags); 710 hdev = sdev->hostdata; 711 if (!hdev) { 712 spin_unlock_irqrestore(&h->lock, flags); 713 return -ENODEV; 714 } 715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 716 spin_unlock_irqrestore(&h->lock, flags); 717 return snprintf(buf, 20, "0x%8phN\n", lunid); 718 } 719 720 static ssize_t unique_id_show(struct device *dev, 721 struct device_attribute *attr, char *buf) 722 { 723 struct ctlr_info *h; 724 struct scsi_device *sdev; 725 struct hpsa_scsi_dev_t *hdev; 726 unsigned long flags; 727 unsigned char sn[16]; 728 729 sdev = to_scsi_device(dev); 730 h = sdev_to_hba(sdev); 731 spin_lock_irqsave(&h->lock, flags); 732 hdev = sdev->hostdata; 733 if (!hdev) { 734 spin_unlock_irqrestore(&h->lock, flags); 735 return -ENODEV; 736 } 737 memcpy(sn, hdev->device_id, sizeof(sn)); 738 spin_unlock_irqrestore(&h->lock, flags); 739 return snprintf(buf, 16 * 2 + 2, 740 "%02X%02X%02X%02X%02X%02X%02X%02X" 741 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 742 sn[0], sn[1], sn[2], sn[3], 743 sn[4], sn[5], sn[6], sn[7], 744 sn[8], sn[9], sn[10], sn[11], 745 sn[12], sn[13], sn[14], sn[15]); 746 } 747 748 static ssize_t sas_address_show(struct device *dev, 749 struct device_attribute *attr, char *buf) 750 { 751 struct ctlr_info *h; 752 struct scsi_device *sdev; 753 struct hpsa_scsi_dev_t *hdev; 754 unsigned long flags; 755 u64 sas_address; 756 757 sdev = to_scsi_device(dev); 758 h = sdev_to_hba(sdev); 759 spin_lock_irqsave(&h->lock, flags); 760 hdev = sdev->hostdata; 761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { 762 spin_unlock_irqrestore(&h->lock, flags); 763 return -ENODEV; 764 } 765 sas_address = hdev->sas_address; 766 spin_unlock_irqrestore(&h->lock, flags); 767 768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); 769 } 770 771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 772 struct device_attribute *attr, char *buf) 773 { 774 struct ctlr_info *h; 775 struct scsi_device *sdev; 776 struct hpsa_scsi_dev_t *hdev; 777 unsigned long flags; 778 int offload_enabled; 779 780 sdev = to_scsi_device(dev); 781 h = sdev_to_hba(sdev); 782 spin_lock_irqsave(&h->lock, flags); 783 hdev = sdev->hostdata; 784 if (!hdev) { 785 spin_unlock_irqrestore(&h->lock, flags); 786 return -ENODEV; 787 } 788 offload_enabled = hdev->offload_enabled; 789 spin_unlock_irqrestore(&h->lock, flags); 790 791 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) 792 return snprintf(buf, 20, "%d\n", offload_enabled); 793 else 794 return snprintf(buf, 40, "%s\n", 795 "Not applicable for a controller"); 796 } 797 798 #define MAX_PATHS 8 799 static ssize_t path_info_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct ctlr_info *h; 803 struct scsi_device *sdev; 804 struct hpsa_scsi_dev_t *hdev; 805 unsigned long flags; 806 int i; 807 int output_len = 0; 808 u8 box; 809 u8 bay; 810 u8 path_map_index = 0; 811 char *active; 812 unsigned char phys_connector[2]; 813 814 sdev = to_scsi_device(dev); 815 h = sdev_to_hba(sdev); 816 spin_lock_irqsave(&h->devlock, flags); 817 hdev = sdev->hostdata; 818 if (!hdev) { 819 spin_unlock_irqrestore(&h->devlock, flags); 820 return -ENODEV; 821 } 822 823 bay = hdev->bay; 824 for (i = 0; i < MAX_PATHS; i++) { 825 path_map_index = 1<<i; 826 if (i == hdev->active_path_index) 827 active = "Active"; 828 else if (hdev->path_map & path_map_index) 829 active = "Inactive"; 830 else 831 continue; 832 833 output_len += scnprintf(buf + output_len, 834 PAGE_SIZE - output_len, 835 "[%d:%d:%d:%d] %20.20s ", 836 h->scsi_host->host_no, 837 hdev->bus, hdev->target, hdev->lun, 838 scsi_device_type(hdev->devtype)); 839 840 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { 841 output_len += scnprintf(buf + output_len, 842 PAGE_SIZE - output_len, 843 "%s\n", active); 844 continue; 845 } 846 847 box = hdev->box[i]; 848 memcpy(&phys_connector, &hdev->phys_connector[i], 849 sizeof(phys_connector)); 850 if (phys_connector[0] < '0') 851 phys_connector[0] = '0'; 852 if (phys_connector[1] < '0') 853 phys_connector[1] = '0'; 854 output_len += scnprintf(buf + output_len, 855 PAGE_SIZE - output_len, 856 "PORT: %.2s ", 857 phys_connector); 858 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && 859 hdev->expose_device) { 860 if (box == 0 || box == 0xFF) { 861 output_len += scnprintf(buf + output_len, 862 PAGE_SIZE - output_len, 863 "BAY: %hhu %s\n", 864 bay, active); 865 } else { 866 output_len += scnprintf(buf + output_len, 867 PAGE_SIZE - output_len, 868 "BOX: %hhu BAY: %hhu %s\n", 869 box, bay, active); 870 } 871 } else if (box != 0 && box != 0xFF) { 872 output_len += scnprintf(buf + output_len, 873 PAGE_SIZE - output_len, "BOX: %hhu %s\n", 874 box, active); 875 } else 876 output_len += scnprintf(buf + output_len, 877 PAGE_SIZE - output_len, "%s\n", active); 878 } 879 880 spin_unlock_irqrestore(&h->devlock, flags); 881 return output_len; 882 } 883 884 static ssize_t host_show_ctlr_num(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct ctlr_info *h; 888 struct Scsi_Host *shost = class_to_shost(dev); 889 890 h = shost_to_hba(shost); 891 return snprintf(buf, 20, "%d\n", h->ctlr); 892 } 893 894 static ssize_t host_show_legacy_board(struct device *dev, 895 struct device_attribute *attr, char *buf) 896 { 897 struct ctlr_info *h; 898 struct Scsi_Host *shost = class_to_shost(dev); 899 900 h = shost_to_hba(shost); 901 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); 902 } 903 904 static DEVICE_ATTR_RO(raid_level); 905 static DEVICE_ATTR_RO(lunid); 906 static DEVICE_ATTR_RO(unique_id); 907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 908 static DEVICE_ATTR_RO(sas_address); 909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 910 host_show_hp_ssd_smart_path_enabled, NULL); 911 static DEVICE_ATTR_RO(path_info); 912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 913 host_show_hp_ssd_smart_path_status, 914 host_store_hp_ssd_smart_path_status); 915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 916 host_store_raid_offload_debug); 917 static DEVICE_ATTR(firmware_revision, S_IRUGO, 918 host_show_firmware_revision, NULL); 919 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 920 host_show_commands_outstanding, NULL); 921 static DEVICE_ATTR(transport_mode, S_IRUGO, 922 host_show_transport_mode, NULL); 923 static DEVICE_ATTR(resettable, S_IRUGO, 924 host_show_resettable, NULL); 925 static DEVICE_ATTR(lockup_detected, S_IRUGO, 926 host_show_lockup_detected, NULL); 927 static DEVICE_ATTR(ctlr_num, S_IRUGO, 928 host_show_ctlr_num, NULL); 929 static DEVICE_ATTR(legacy_board, S_IRUGO, 930 host_show_legacy_board, NULL); 931 932 static struct device_attribute *hpsa_sdev_attrs[] = { 933 &dev_attr_raid_level, 934 &dev_attr_lunid, 935 &dev_attr_unique_id, 936 &dev_attr_hp_ssd_smart_path_enabled, 937 &dev_attr_path_info, 938 &dev_attr_sas_address, 939 NULL, 940 }; 941 942 static struct device_attribute *hpsa_shost_attrs[] = { 943 &dev_attr_rescan, 944 &dev_attr_firmware_revision, 945 &dev_attr_commands_outstanding, 946 &dev_attr_transport_mode, 947 &dev_attr_resettable, 948 &dev_attr_hp_ssd_smart_path_status, 949 &dev_attr_raid_offload_debug, 950 &dev_attr_lockup_detected, 951 &dev_attr_ctlr_num, 952 &dev_attr_legacy_board, 953 NULL, 954 }; 955 956 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ 957 HPSA_MAX_CONCURRENT_PASSTHRUS) 958 959 static struct scsi_host_template hpsa_driver_template = { 960 .module = THIS_MODULE, 961 .name = HPSA, 962 .proc_name = HPSA, 963 .queuecommand = hpsa_scsi_queue_command, 964 .scan_start = hpsa_scan_start, 965 .scan_finished = hpsa_scan_finished, 966 .change_queue_depth = hpsa_change_queue_depth, 967 .this_id = -1, 968 .use_clustering = ENABLE_CLUSTERING, 969 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 970 .ioctl = hpsa_ioctl, 971 .slave_alloc = hpsa_slave_alloc, 972 .slave_configure = hpsa_slave_configure, 973 .slave_destroy = hpsa_slave_destroy, 974 #ifdef CONFIG_COMPAT 975 .compat_ioctl = hpsa_compat_ioctl, 976 #endif 977 .sdev_attrs = hpsa_sdev_attrs, 978 .shost_attrs = hpsa_shost_attrs, 979 .max_sectors = 1024, 980 .no_write_same = 1, 981 }; 982 983 static inline u32 next_command(struct ctlr_info *h, u8 q) 984 { 985 u32 a; 986 struct reply_queue_buffer *rq = &h->reply_queue[q]; 987 988 if (h->transMethod & CFGTBL_Trans_io_accel1) 989 return h->access.command_completed(h, q); 990 991 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 992 return h->access.command_completed(h, q); 993 994 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 995 a = rq->head[rq->current_entry]; 996 rq->current_entry++; 997 atomic_dec(&h->commands_outstanding); 998 } else { 999 a = FIFO_EMPTY; 1000 } 1001 /* Check for wraparound */ 1002 if (rq->current_entry == h->max_commands) { 1003 rq->current_entry = 0; 1004 rq->wraparound ^= 1; 1005 } 1006 return a; 1007 } 1008 1009 /* 1010 * There are some special bits in the bus address of the 1011 * command that we have to set for the controller to know 1012 * how to process the command: 1013 * 1014 * Normal performant mode: 1015 * bit 0: 1 means performant mode, 0 means simple mode. 1016 * bits 1-3 = block fetch table entry 1017 * bits 4-6 = command type (== 0) 1018 * 1019 * ioaccel1 mode: 1020 * bit 0 = "performant mode" bit. 1021 * bits 1-3 = block fetch table entry 1022 * bits 4-6 = command type (== 110) 1023 * (command type is needed because ioaccel1 mode 1024 * commands are submitted through the same register as normal 1025 * mode commands, so this is how the controller knows whether 1026 * the command is normal mode or ioaccel1 mode.) 1027 * 1028 * ioaccel2 mode: 1029 * bit 0 = "performant mode" bit. 1030 * bits 1-4 = block fetch table entry (note extra bit) 1031 * bits 4-6 = not needed, because ioaccel2 mode has 1032 * a separate special register for submitting commands. 1033 */ 1034 1035 /* 1036 * set_performant_mode: Modify the tag for cciss performant 1037 * set bit 0 for pull model, bits 3-1 for block fetch 1038 * register number 1039 */ 1040 #define DEFAULT_REPLY_QUEUE (-1) 1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 1042 int reply_queue) 1043 { 1044 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 1045 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 1046 if (unlikely(!h->msix_vectors)) 1047 return; 1048 c->Header.ReplyQueue = reply_queue; 1049 } 1050 } 1051 1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 1053 struct CommandList *c, 1054 int reply_queue) 1055 { 1056 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 1057 1058 /* 1059 * Tell the controller to post the reply to the queue for this 1060 * processor. This seems to give the best I/O throughput. 1061 */ 1062 cp->ReplyQueue = reply_queue; 1063 /* 1064 * Set the bits in the address sent down to include: 1065 * - performant mode bit (bit 0) 1066 * - pull count (bits 1-3) 1067 * - command type (bits 4-6) 1068 */ 1069 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 1070 IOACCEL1_BUSADDR_CMDTYPE; 1071 } 1072 1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 1074 struct CommandList *c, 1075 int reply_queue) 1076 { 1077 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 1078 &h->ioaccel2_cmd_pool[c->cmdindex]; 1079 1080 /* Tell the controller to post the reply to the queue for this 1081 * processor. This seems to give the best I/O throughput. 1082 */ 1083 cp->reply_queue = reply_queue; 1084 /* Set the bits in the address sent down to include: 1085 * - performant mode bit not used in ioaccel mode 2 1086 * - pull count (bits 0-3) 1087 * - command type isn't needed for ioaccel2 1088 */ 1089 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1090 } 1091 1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1093 struct CommandList *c, 1094 int reply_queue) 1095 { 1096 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1097 1098 /* 1099 * Tell the controller to post the reply to the queue for this 1100 * processor. This seems to give the best I/O throughput. 1101 */ 1102 cp->reply_queue = reply_queue; 1103 /* 1104 * Set the bits in the address sent down to include: 1105 * - performant mode bit not used in ioaccel mode 2 1106 * - pull count (bits 0-3) 1107 * - command type isn't needed for ioaccel2 1108 */ 1109 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1110 } 1111 1112 static int is_firmware_flash_cmd(u8 *cdb) 1113 { 1114 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1115 } 1116 1117 /* 1118 * During firmware flash, the heartbeat register may not update as frequently 1119 * as it should. So we dial down lockup detection during firmware flash. and 1120 * dial it back up when firmware flash completes. 1121 */ 1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) 1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1126 struct CommandList *c) 1127 { 1128 if (!is_firmware_flash_cmd(c->Request.CDB)) 1129 return; 1130 atomic_inc(&h->firmware_flash_in_progress); 1131 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1132 } 1133 1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1135 struct CommandList *c) 1136 { 1137 if (is_firmware_flash_cmd(c->Request.CDB) && 1138 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1139 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1140 } 1141 1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1143 struct CommandList *c, int reply_queue) 1144 { 1145 dial_down_lockup_detection_during_fw_flash(h, c); 1146 atomic_inc(&h->commands_outstanding); 1147 1148 reply_queue = h->reply_map[raw_smp_processor_id()]; 1149 switch (c->cmd_type) { 1150 case CMD_IOACCEL1: 1151 set_ioaccel1_performant_mode(h, c, reply_queue); 1152 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1153 break; 1154 case CMD_IOACCEL2: 1155 set_ioaccel2_performant_mode(h, c, reply_queue); 1156 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1157 break; 1158 case IOACCEL2_TMF: 1159 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1160 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1161 break; 1162 default: 1163 set_performant_mode(h, c, reply_queue); 1164 h->access.submit_command(h, c); 1165 } 1166 } 1167 1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1169 { 1170 if (unlikely(hpsa_is_pending_event(c))) 1171 return finish_cmd(c); 1172 1173 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1174 } 1175 1176 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1177 { 1178 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1179 } 1180 1181 static inline int is_scsi_rev_5(struct ctlr_info *h) 1182 { 1183 if (!h->hba_inquiry_data) 1184 return 0; 1185 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1186 return 1; 1187 return 0; 1188 } 1189 1190 static int hpsa_find_target_lun(struct ctlr_info *h, 1191 unsigned char scsi3addr[], int bus, int *target, int *lun) 1192 { 1193 /* finds an unused bus, target, lun for a new physical device 1194 * assumes h->devlock is held 1195 */ 1196 int i, found = 0; 1197 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1198 1199 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1200 1201 for (i = 0; i < h->ndevices; i++) { 1202 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1203 __set_bit(h->dev[i]->target, lun_taken); 1204 } 1205 1206 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1207 if (i < HPSA_MAX_DEVICES) { 1208 /* *bus = 1; */ 1209 *target = i; 1210 *lun = 0; 1211 found = 1; 1212 } 1213 return !found; 1214 } 1215 1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1217 struct hpsa_scsi_dev_t *dev, char *description) 1218 { 1219 #define LABEL_SIZE 25 1220 char label[LABEL_SIZE]; 1221 1222 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) 1223 return; 1224 1225 switch (dev->devtype) { 1226 case TYPE_RAID: 1227 snprintf(label, LABEL_SIZE, "controller"); 1228 break; 1229 case TYPE_ENCLOSURE: 1230 snprintf(label, LABEL_SIZE, "enclosure"); 1231 break; 1232 case TYPE_DISK: 1233 case TYPE_ZBC: 1234 if (dev->external) 1235 snprintf(label, LABEL_SIZE, "external"); 1236 else if (!is_logical_dev_addr_mode(dev->scsi3addr)) 1237 snprintf(label, LABEL_SIZE, "%s", 1238 raid_label[PHYSICAL_DRIVE]); 1239 else 1240 snprintf(label, LABEL_SIZE, "RAID-%s", 1241 dev->raid_level > RAID_UNKNOWN ? "?" : 1242 raid_label[dev->raid_level]); 1243 break; 1244 case TYPE_ROM: 1245 snprintf(label, LABEL_SIZE, "rom"); 1246 break; 1247 case TYPE_TAPE: 1248 snprintf(label, LABEL_SIZE, "tape"); 1249 break; 1250 case TYPE_MEDIUM_CHANGER: 1251 snprintf(label, LABEL_SIZE, "changer"); 1252 break; 1253 default: 1254 snprintf(label, LABEL_SIZE, "UNKNOWN"); 1255 break; 1256 } 1257 1258 dev_printk(level, &h->pdev->dev, 1259 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", 1260 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1261 description, 1262 scsi_device_type(dev->devtype), 1263 dev->vendor, 1264 dev->model, 1265 label, 1266 dev->offload_config ? '+' : '-', 1267 dev->offload_to_be_enabled ? '+' : '-', 1268 dev->expose_device); 1269 } 1270 1271 /* Add an entry into h->dev[] array. */ 1272 static int hpsa_scsi_add_entry(struct ctlr_info *h, 1273 struct hpsa_scsi_dev_t *device, 1274 struct hpsa_scsi_dev_t *added[], int *nadded) 1275 { 1276 /* assumes h->devlock is held */ 1277 int n = h->ndevices; 1278 int i; 1279 unsigned char addr1[8], addr2[8]; 1280 struct hpsa_scsi_dev_t *sd; 1281 1282 if (n >= HPSA_MAX_DEVICES) { 1283 dev_err(&h->pdev->dev, "too many devices, some will be " 1284 "inaccessible.\n"); 1285 return -1; 1286 } 1287 1288 /* physical devices do not have lun or target assigned until now. */ 1289 if (device->lun != -1) 1290 /* Logical device, lun is already assigned. */ 1291 goto lun_assigned; 1292 1293 /* If this device a non-zero lun of a multi-lun device 1294 * byte 4 of the 8-byte LUN addr will contain the logical 1295 * unit no, zero otherwise. 1296 */ 1297 if (device->scsi3addr[4] == 0) { 1298 /* This is not a non-zero lun of a multi-lun device */ 1299 if (hpsa_find_target_lun(h, device->scsi3addr, 1300 device->bus, &device->target, &device->lun) != 0) 1301 return -1; 1302 goto lun_assigned; 1303 } 1304 1305 /* This is a non-zero lun of a multi-lun device. 1306 * Search through our list and find the device which 1307 * has the same 8 byte LUN address, excepting byte 4 and 5. 1308 * Assign the same bus and target for this new LUN. 1309 * Use the logical unit number from the firmware. 1310 */ 1311 memcpy(addr1, device->scsi3addr, 8); 1312 addr1[4] = 0; 1313 addr1[5] = 0; 1314 for (i = 0; i < n; i++) { 1315 sd = h->dev[i]; 1316 memcpy(addr2, sd->scsi3addr, 8); 1317 addr2[4] = 0; 1318 addr2[5] = 0; 1319 /* differ only in byte 4 and 5? */ 1320 if (memcmp(addr1, addr2, 8) == 0) { 1321 device->bus = sd->bus; 1322 device->target = sd->target; 1323 device->lun = device->scsi3addr[4]; 1324 break; 1325 } 1326 } 1327 if (device->lun == -1) { 1328 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1329 " suspect firmware bug or unsupported hardware " 1330 "configuration.\n"); 1331 return -1; 1332 } 1333 1334 lun_assigned: 1335 1336 h->dev[n] = device; 1337 h->ndevices++; 1338 added[*nadded] = device; 1339 (*nadded)++; 1340 hpsa_show_dev_msg(KERN_INFO, h, device, 1341 device->expose_device ? "added" : "masked"); 1342 return 0; 1343 } 1344 1345 /* 1346 * Called during a scan operation. 1347 * 1348 * Update an entry in h->dev[] array. 1349 */ 1350 static void hpsa_scsi_update_entry(struct ctlr_info *h, 1351 int entry, struct hpsa_scsi_dev_t *new_entry) 1352 { 1353 /* assumes h->devlock is held */ 1354 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1355 1356 /* Raid level changed. */ 1357 h->dev[entry]->raid_level = new_entry->raid_level; 1358 1359 /* 1360 * ioacccel_handle may have changed for a dual domain disk 1361 */ 1362 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1363 1364 /* Raid offload parameters changed. Careful about the ordering. */ 1365 if (new_entry->offload_config && new_entry->offload_to_be_enabled) { 1366 /* 1367 * if drive is newly offload_enabled, we want to copy the 1368 * raid map data first. If previously offload_enabled and 1369 * offload_config were set, raid map data had better be 1370 * the same as it was before. If raid map data has changed 1371 * then it had better be the case that 1372 * h->dev[entry]->offload_enabled is currently 0. 1373 */ 1374 h->dev[entry]->raid_map = new_entry->raid_map; 1375 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1376 } 1377 if (new_entry->offload_to_be_enabled) { 1378 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1380 } 1381 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1382 h->dev[entry]->offload_config = new_entry->offload_config; 1383 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1384 h->dev[entry]->queue_depth = new_entry->queue_depth; 1385 1386 /* 1387 * We can turn off ioaccel offload now, but need to delay turning 1388 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we 1389 * can't do that until all the devices are updated. 1390 */ 1391 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; 1392 1393 /* 1394 * turn ioaccel off immediately if told to do so. 1395 */ 1396 if (!new_entry->offload_to_be_enabled) 1397 h->dev[entry]->offload_enabled = 0; 1398 1399 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1400 } 1401 1402 /* Replace an entry from h->dev[] array. */ 1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h, 1404 int entry, struct hpsa_scsi_dev_t *new_entry, 1405 struct hpsa_scsi_dev_t *added[], int *nadded, 1406 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1407 { 1408 /* assumes h->devlock is held */ 1409 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1410 removed[*nremoved] = h->dev[entry]; 1411 (*nremoved)++; 1412 1413 /* 1414 * New physical devices won't have target/lun assigned yet 1415 * so we need to preserve the values in the slot we are replacing. 1416 */ 1417 if (new_entry->target == -1) { 1418 new_entry->target = h->dev[entry]->target; 1419 new_entry->lun = h->dev[entry]->lun; 1420 } 1421 1422 h->dev[entry] = new_entry; 1423 added[*nadded] = new_entry; 1424 (*nadded)++; 1425 1426 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1427 } 1428 1429 /* Remove an entry from h->dev[] array. */ 1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, 1431 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1432 { 1433 /* assumes h->devlock is held */ 1434 int i; 1435 struct hpsa_scsi_dev_t *sd; 1436 1437 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1438 1439 sd = h->dev[entry]; 1440 removed[*nremoved] = h->dev[entry]; 1441 (*nremoved)++; 1442 1443 for (i = entry; i < h->ndevices-1; i++) 1444 h->dev[i] = h->dev[i+1]; 1445 h->ndevices--; 1446 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1447 } 1448 1449 #define SCSI3ADDR_EQ(a, b) ( \ 1450 (a)[7] == (b)[7] && \ 1451 (a)[6] == (b)[6] && \ 1452 (a)[5] == (b)[5] && \ 1453 (a)[4] == (b)[4] && \ 1454 (a)[3] == (b)[3] && \ 1455 (a)[2] == (b)[2] && \ 1456 (a)[1] == (b)[1] && \ 1457 (a)[0] == (b)[0]) 1458 1459 static void fixup_botched_add(struct ctlr_info *h, 1460 struct hpsa_scsi_dev_t *added) 1461 { 1462 /* called when scsi_add_device fails in order to re-adjust 1463 * h->dev[] to match the mid layer's view. 1464 */ 1465 unsigned long flags; 1466 int i, j; 1467 1468 spin_lock_irqsave(&h->lock, flags); 1469 for (i = 0; i < h->ndevices; i++) { 1470 if (h->dev[i] == added) { 1471 for (j = i; j < h->ndevices-1; j++) 1472 h->dev[j] = h->dev[j+1]; 1473 h->ndevices--; 1474 break; 1475 } 1476 } 1477 spin_unlock_irqrestore(&h->lock, flags); 1478 kfree(added); 1479 } 1480 1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1482 struct hpsa_scsi_dev_t *dev2) 1483 { 1484 /* we compare everything except lun and target as these 1485 * are not yet assigned. Compare parts likely 1486 * to differ first 1487 */ 1488 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1489 sizeof(dev1->scsi3addr)) != 0) 1490 return 0; 1491 if (memcmp(dev1->device_id, dev2->device_id, 1492 sizeof(dev1->device_id)) != 0) 1493 return 0; 1494 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1495 return 0; 1496 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1497 return 0; 1498 if (dev1->devtype != dev2->devtype) 1499 return 0; 1500 if (dev1->bus != dev2->bus) 1501 return 0; 1502 return 1; 1503 } 1504 1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1506 struct hpsa_scsi_dev_t *dev2) 1507 { 1508 /* Device attributes that can change, but don't mean 1509 * that the device is a different device, nor that the OS 1510 * needs to be told anything about the change. 1511 */ 1512 if (dev1->raid_level != dev2->raid_level) 1513 return 1; 1514 if (dev1->offload_config != dev2->offload_config) 1515 return 1; 1516 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) 1517 return 1; 1518 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1519 if (dev1->queue_depth != dev2->queue_depth) 1520 return 1; 1521 /* 1522 * This can happen for dual domain devices. An active 1523 * path change causes the ioaccel handle to change 1524 * 1525 * for example note the handle differences between p0 and p1 1526 * Device WWN ,WWN hash,Handle 1527 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 1528 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 1529 */ 1530 if (dev1->ioaccel_handle != dev2->ioaccel_handle) 1531 return 1; 1532 return 0; 1533 } 1534 1535 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1536 * and return needle location in *index. If scsi3addr matches, but not 1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1538 * location in *index. 1539 * In the case of a minor device attribute change, such as RAID level, just 1540 * return DEVICE_UPDATED, along with the updated device's location in index. 1541 * If needle not found, return DEVICE_NOT_FOUND. 1542 */ 1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1544 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1545 int *index) 1546 { 1547 int i; 1548 #define DEVICE_NOT_FOUND 0 1549 #define DEVICE_CHANGED 1 1550 #define DEVICE_SAME 2 1551 #define DEVICE_UPDATED 3 1552 if (needle == NULL) 1553 return DEVICE_NOT_FOUND; 1554 1555 for (i = 0; i < haystack_size; i++) { 1556 if (haystack[i] == NULL) /* previously removed. */ 1557 continue; 1558 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1559 *index = i; 1560 if (device_is_the_same(needle, haystack[i])) { 1561 if (device_updated(needle, haystack[i])) 1562 return DEVICE_UPDATED; 1563 return DEVICE_SAME; 1564 } else { 1565 /* Keep offline devices offline */ 1566 if (needle->volume_offline) 1567 return DEVICE_NOT_FOUND; 1568 return DEVICE_CHANGED; 1569 } 1570 } 1571 } 1572 *index = -1; 1573 return DEVICE_NOT_FOUND; 1574 } 1575 1576 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1577 unsigned char scsi3addr[]) 1578 { 1579 struct offline_device_entry *device; 1580 unsigned long flags; 1581 1582 /* Check to see if device is already on the list */ 1583 spin_lock_irqsave(&h->offline_device_lock, flags); 1584 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1585 if (memcmp(device->scsi3addr, scsi3addr, 1586 sizeof(device->scsi3addr)) == 0) { 1587 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1588 return; 1589 } 1590 } 1591 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1592 1593 /* Device is not on the list, add it. */ 1594 device = kmalloc(sizeof(*device), GFP_KERNEL); 1595 if (!device) 1596 return; 1597 1598 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1599 spin_lock_irqsave(&h->offline_device_lock, flags); 1600 list_add_tail(&device->offline_list, &h->offline_device_list); 1601 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1602 } 1603 1604 /* Print a message explaining various offline volume states */ 1605 static void hpsa_show_volume_status(struct ctlr_info *h, 1606 struct hpsa_scsi_dev_t *sd) 1607 { 1608 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1609 dev_info(&h->pdev->dev, 1610 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1611 h->scsi_host->host_no, 1612 sd->bus, sd->target, sd->lun); 1613 switch (sd->volume_offline) { 1614 case HPSA_LV_OK: 1615 break; 1616 case HPSA_LV_UNDERGOING_ERASE: 1617 dev_info(&h->pdev->dev, 1618 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1619 h->scsi_host->host_no, 1620 sd->bus, sd->target, sd->lun); 1621 break; 1622 case HPSA_LV_NOT_AVAILABLE: 1623 dev_info(&h->pdev->dev, 1624 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1625 h->scsi_host->host_no, 1626 sd->bus, sd->target, sd->lun); 1627 break; 1628 case HPSA_LV_UNDERGOING_RPI: 1629 dev_info(&h->pdev->dev, 1630 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1631 h->scsi_host->host_no, 1632 sd->bus, sd->target, sd->lun); 1633 break; 1634 case HPSA_LV_PENDING_RPI: 1635 dev_info(&h->pdev->dev, 1636 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1637 h->scsi_host->host_no, 1638 sd->bus, sd->target, sd->lun); 1639 break; 1640 case HPSA_LV_ENCRYPTED_NO_KEY: 1641 dev_info(&h->pdev->dev, 1642 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1643 h->scsi_host->host_no, 1644 sd->bus, sd->target, sd->lun); 1645 break; 1646 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1647 dev_info(&h->pdev->dev, 1648 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1649 h->scsi_host->host_no, 1650 sd->bus, sd->target, sd->lun); 1651 break; 1652 case HPSA_LV_UNDERGOING_ENCRYPTION: 1653 dev_info(&h->pdev->dev, 1654 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1655 h->scsi_host->host_no, 1656 sd->bus, sd->target, sd->lun); 1657 break; 1658 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1659 dev_info(&h->pdev->dev, 1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1661 h->scsi_host->host_no, 1662 sd->bus, sd->target, sd->lun); 1663 break; 1664 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1665 dev_info(&h->pdev->dev, 1666 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1667 h->scsi_host->host_no, 1668 sd->bus, sd->target, sd->lun); 1669 break; 1670 case HPSA_LV_PENDING_ENCRYPTION: 1671 dev_info(&h->pdev->dev, 1672 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1673 h->scsi_host->host_no, 1674 sd->bus, sd->target, sd->lun); 1675 break; 1676 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1677 dev_info(&h->pdev->dev, 1678 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1679 h->scsi_host->host_no, 1680 sd->bus, sd->target, sd->lun); 1681 break; 1682 } 1683 } 1684 1685 /* 1686 * Figure the list of physical drive pointers for a logical drive with 1687 * raid offload configured. 1688 */ 1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1690 struct hpsa_scsi_dev_t *dev[], int ndevices, 1691 struct hpsa_scsi_dev_t *logical_drive) 1692 { 1693 struct raid_map_data *map = &logical_drive->raid_map; 1694 struct raid_map_disk_data *dd = &map->data[0]; 1695 int i, j; 1696 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1697 le16_to_cpu(map->metadata_disks_per_row); 1698 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1699 le16_to_cpu(map->layout_map_count) * 1700 total_disks_per_row; 1701 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1702 total_disks_per_row; 1703 int qdepth; 1704 1705 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1706 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1707 1708 logical_drive->nphysical_disks = nraid_map_entries; 1709 1710 qdepth = 0; 1711 for (i = 0; i < nraid_map_entries; i++) { 1712 logical_drive->phys_disk[i] = NULL; 1713 if (!logical_drive->offload_config) 1714 continue; 1715 for (j = 0; j < ndevices; j++) { 1716 if (dev[j] == NULL) 1717 continue; 1718 if (dev[j]->devtype != TYPE_DISK && 1719 dev[j]->devtype != TYPE_ZBC) 1720 continue; 1721 if (is_logical_device(dev[j])) 1722 continue; 1723 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1724 continue; 1725 1726 logical_drive->phys_disk[i] = dev[j]; 1727 if (i < nphys_disk) 1728 qdepth = min(h->nr_cmds, qdepth + 1729 logical_drive->phys_disk[i]->queue_depth); 1730 break; 1731 } 1732 1733 /* 1734 * This can happen if a physical drive is removed and 1735 * the logical drive is degraded. In that case, the RAID 1736 * map data will refer to a physical disk which isn't actually 1737 * present. And in that case offload_enabled should already 1738 * be 0, but we'll turn it off here just in case 1739 */ 1740 if (!logical_drive->phys_disk[i]) { 1741 dev_warn(&h->pdev->dev, 1742 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", 1743 __func__, 1744 h->scsi_host->host_no, logical_drive->bus, 1745 logical_drive->target, logical_drive->lun); 1746 logical_drive->offload_enabled = 0; 1747 logical_drive->offload_to_be_enabled = 0; 1748 logical_drive->queue_depth = 8; 1749 } 1750 } 1751 if (nraid_map_entries) 1752 /* 1753 * This is correct for reads, too high for full stripe writes, 1754 * way too high for partial stripe writes 1755 */ 1756 logical_drive->queue_depth = qdepth; 1757 else { 1758 if (logical_drive->external) 1759 logical_drive->queue_depth = EXTERNAL_QD; 1760 else 1761 logical_drive->queue_depth = h->nr_cmds; 1762 } 1763 } 1764 1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1766 struct hpsa_scsi_dev_t *dev[], int ndevices) 1767 { 1768 int i; 1769 1770 for (i = 0; i < ndevices; i++) { 1771 if (dev[i] == NULL) 1772 continue; 1773 if (dev[i]->devtype != TYPE_DISK && 1774 dev[i]->devtype != TYPE_ZBC) 1775 continue; 1776 if (!is_logical_device(dev[i])) 1777 continue; 1778 1779 /* 1780 * If offload is currently enabled, the RAID map and 1781 * phys_disk[] assignment *better* not be changing 1782 * because we would be changing ioaccel phsy_disk[] pointers 1783 * on a ioaccel volume processing I/O requests. 1784 * 1785 * If an ioaccel volume status changed, initially because it was 1786 * re-configured and thus underwent a transformation, or 1787 * a drive failed, we would have received a state change 1788 * request and ioaccel should have been turned off. When the 1789 * transformation completes, we get another state change 1790 * request to turn ioaccel back on. In this case, we need 1791 * to update the ioaccel information. 1792 * 1793 * Thus: If it is not currently enabled, but will be after 1794 * the scan completes, make sure the ioaccel pointers 1795 * are up to date. 1796 */ 1797 1798 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) 1799 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1800 } 1801 } 1802 1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1804 { 1805 int rc = 0; 1806 1807 if (!h->scsi_host) 1808 return 1; 1809 1810 if (is_logical_device(device)) /* RAID */ 1811 rc = scsi_add_device(h->scsi_host, device->bus, 1812 device->target, device->lun); 1813 else /* HBA */ 1814 rc = hpsa_add_sas_device(h->sas_host, device); 1815 1816 return rc; 1817 } 1818 1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, 1820 struct hpsa_scsi_dev_t *dev) 1821 { 1822 int i; 1823 int count = 0; 1824 1825 for (i = 0; i < h->nr_cmds; i++) { 1826 struct CommandList *c = h->cmd_pool + i; 1827 int refcount = atomic_inc_return(&c->refcount); 1828 1829 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, 1830 dev->scsi3addr)) { 1831 unsigned long flags; 1832 1833 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 1834 if (!hpsa_is_cmd_idle(c)) 1835 ++count; 1836 spin_unlock_irqrestore(&h->lock, flags); 1837 } 1838 1839 cmd_free(h, c); 1840 } 1841 1842 return count; 1843 } 1844 1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, 1846 struct hpsa_scsi_dev_t *device) 1847 { 1848 int cmds = 0; 1849 int waits = 0; 1850 1851 while (1) { 1852 cmds = hpsa_find_outstanding_commands_for_dev(h, device); 1853 if (cmds == 0) 1854 break; 1855 if (++waits > 20) 1856 break; 1857 msleep(1000); 1858 } 1859 1860 if (waits > 20) 1861 dev_warn(&h->pdev->dev, 1862 "%s: removing device with %d outstanding commands!\n", 1863 __func__, cmds); 1864 } 1865 1866 static void hpsa_remove_device(struct ctlr_info *h, 1867 struct hpsa_scsi_dev_t *device) 1868 { 1869 struct scsi_device *sdev = NULL; 1870 1871 if (!h->scsi_host) 1872 return; 1873 1874 /* 1875 * Allow for commands to drain 1876 */ 1877 device->removed = 1; 1878 hpsa_wait_for_outstanding_commands_for_dev(h, device); 1879 1880 if (is_logical_device(device)) { /* RAID */ 1881 sdev = scsi_device_lookup(h->scsi_host, device->bus, 1882 device->target, device->lun); 1883 if (sdev) { 1884 scsi_remove_device(sdev); 1885 scsi_device_put(sdev); 1886 } else { 1887 /* 1888 * We don't expect to get here. Future commands 1889 * to this device will get a selection timeout as 1890 * if the device were gone. 1891 */ 1892 hpsa_show_dev_msg(KERN_WARNING, h, device, 1893 "didn't find device for removal."); 1894 } 1895 } else { /* HBA */ 1896 1897 hpsa_remove_sas_device(device); 1898 } 1899 } 1900 1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h, 1902 struct hpsa_scsi_dev_t *sd[], int nsds) 1903 { 1904 /* sd contains scsi3 addresses and devtypes, and inquiry 1905 * data. This function takes what's in sd to be the current 1906 * reality and updates h->dev[] to reflect that reality. 1907 */ 1908 int i, entry, device_change, changes = 0; 1909 struct hpsa_scsi_dev_t *csd; 1910 unsigned long flags; 1911 struct hpsa_scsi_dev_t **added, **removed; 1912 int nadded, nremoved; 1913 1914 /* 1915 * A reset can cause a device status to change 1916 * re-schedule the scan to see what happened. 1917 */ 1918 spin_lock_irqsave(&h->reset_lock, flags); 1919 if (h->reset_in_progress) { 1920 h->drv_req_rescan = 1; 1921 spin_unlock_irqrestore(&h->reset_lock, flags); 1922 return; 1923 } 1924 spin_unlock_irqrestore(&h->reset_lock, flags); 1925 1926 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); 1927 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); 1928 1929 if (!added || !removed) { 1930 dev_warn(&h->pdev->dev, "out of memory in " 1931 "adjust_hpsa_scsi_table\n"); 1932 goto free_and_out; 1933 } 1934 1935 spin_lock_irqsave(&h->devlock, flags); 1936 1937 /* find any devices in h->dev[] that are not in 1938 * sd[] and remove them from h->dev[], and for any 1939 * devices which have changed, remove the old device 1940 * info and add the new device info. 1941 * If minor device attributes change, just update 1942 * the existing device structure. 1943 */ 1944 i = 0; 1945 nremoved = 0; 1946 nadded = 0; 1947 while (i < h->ndevices) { 1948 csd = h->dev[i]; 1949 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1950 if (device_change == DEVICE_NOT_FOUND) { 1951 changes++; 1952 hpsa_scsi_remove_entry(h, i, removed, &nremoved); 1953 continue; /* remove ^^^, hence i not incremented */ 1954 } else if (device_change == DEVICE_CHANGED) { 1955 changes++; 1956 hpsa_scsi_replace_entry(h, i, sd[entry], 1957 added, &nadded, removed, &nremoved); 1958 /* Set it to NULL to prevent it from being freed 1959 * at the bottom of hpsa_update_scsi_devices() 1960 */ 1961 sd[entry] = NULL; 1962 } else if (device_change == DEVICE_UPDATED) { 1963 hpsa_scsi_update_entry(h, i, sd[entry]); 1964 } 1965 i++; 1966 } 1967 1968 /* Now, make sure every device listed in sd[] is also 1969 * listed in h->dev[], adding them if they aren't found 1970 */ 1971 1972 for (i = 0; i < nsds; i++) { 1973 if (!sd[i]) /* if already added above. */ 1974 continue; 1975 1976 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1977 * as the SCSI mid-layer does not handle such devices well. 1978 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1979 * at 160Hz, and prevents the system from coming up. 1980 */ 1981 if (sd[i]->volume_offline) { 1982 hpsa_show_volume_status(h, sd[i]); 1983 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 1984 continue; 1985 } 1986 1987 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 1988 h->ndevices, &entry); 1989 if (device_change == DEVICE_NOT_FOUND) { 1990 changes++; 1991 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) 1992 break; 1993 sd[i] = NULL; /* prevent from being freed later. */ 1994 } else if (device_change == DEVICE_CHANGED) { 1995 /* should never happen... */ 1996 changes++; 1997 dev_warn(&h->pdev->dev, 1998 "device unexpectedly changed.\n"); 1999 /* but if it does happen, we just ignore that device */ 2000 } 2001 } 2002 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 2003 2004 /* 2005 * Now that h->dev[]->phys_disk[] is coherent, we can enable 2006 * any logical drives that need it enabled. 2007 * 2008 * The raid map should be current by now. 2009 * 2010 * We are updating the device list used for I/O requests. 2011 */ 2012 for (i = 0; i < h->ndevices; i++) { 2013 if (h->dev[i] == NULL) 2014 continue; 2015 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 2016 } 2017 2018 spin_unlock_irqrestore(&h->devlock, flags); 2019 2020 /* Monitor devices which are in one of several NOT READY states to be 2021 * brought online later. This must be done without holding h->devlock, 2022 * so don't touch h->dev[] 2023 */ 2024 for (i = 0; i < nsds; i++) { 2025 if (!sd[i]) /* if already added above. */ 2026 continue; 2027 if (sd[i]->volume_offline) 2028 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 2029 } 2030 2031 /* Don't notify scsi mid layer of any changes the first time through 2032 * (or if there are no changes) scsi_scan_host will do it later the 2033 * first time through. 2034 */ 2035 if (!changes) 2036 goto free_and_out; 2037 2038 /* Notify scsi mid layer of any removed devices */ 2039 for (i = 0; i < nremoved; i++) { 2040 if (removed[i] == NULL) 2041 continue; 2042 if (removed[i]->expose_device) 2043 hpsa_remove_device(h, removed[i]); 2044 kfree(removed[i]); 2045 removed[i] = NULL; 2046 } 2047 2048 /* Notify scsi mid layer of any added devices */ 2049 for (i = 0; i < nadded; i++) { 2050 int rc = 0; 2051 2052 if (added[i] == NULL) 2053 continue; 2054 if (!(added[i]->expose_device)) 2055 continue; 2056 rc = hpsa_add_device(h, added[i]); 2057 if (!rc) 2058 continue; 2059 dev_warn(&h->pdev->dev, 2060 "addition failed %d, device not added.", rc); 2061 /* now we have to remove it from h->dev, 2062 * since it didn't get added to scsi mid layer 2063 */ 2064 fixup_botched_add(h, added[i]); 2065 h->drv_req_rescan = 1; 2066 } 2067 2068 free_and_out: 2069 kfree(added); 2070 kfree(removed); 2071 } 2072 2073 /* 2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 2075 * Assume's h->devlock is held. 2076 */ 2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 2078 int bus, int target, int lun) 2079 { 2080 int i; 2081 struct hpsa_scsi_dev_t *sd; 2082 2083 for (i = 0; i < h->ndevices; i++) { 2084 sd = h->dev[i]; 2085 if (sd->bus == bus && sd->target == target && sd->lun == lun) 2086 return sd; 2087 } 2088 return NULL; 2089 } 2090 2091 static int hpsa_slave_alloc(struct scsi_device *sdev) 2092 { 2093 struct hpsa_scsi_dev_t *sd = NULL; 2094 unsigned long flags; 2095 struct ctlr_info *h; 2096 2097 h = sdev_to_hba(sdev); 2098 spin_lock_irqsave(&h->devlock, flags); 2099 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { 2100 struct scsi_target *starget; 2101 struct sas_rphy *rphy; 2102 2103 starget = scsi_target(sdev); 2104 rphy = target_to_rphy(starget); 2105 sd = hpsa_find_device_by_sas_rphy(h, rphy); 2106 if (sd) { 2107 sd->target = sdev_id(sdev); 2108 sd->lun = sdev->lun; 2109 } 2110 } 2111 if (!sd) 2112 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 2113 sdev_id(sdev), sdev->lun); 2114 2115 if (sd && sd->expose_device) { 2116 atomic_set(&sd->ioaccel_cmds_out, 0); 2117 sdev->hostdata = sd; 2118 } else 2119 sdev->hostdata = NULL; 2120 spin_unlock_irqrestore(&h->devlock, flags); 2121 return 0; 2122 } 2123 2124 /* configure scsi device based on internal per-device structure */ 2125 static int hpsa_slave_configure(struct scsi_device *sdev) 2126 { 2127 struct hpsa_scsi_dev_t *sd; 2128 int queue_depth; 2129 2130 sd = sdev->hostdata; 2131 sdev->no_uld_attach = !sd || !sd->expose_device; 2132 2133 if (sd) { 2134 if (sd->external) 2135 queue_depth = EXTERNAL_QD; 2136 else 2137 queue_depth = sd->queue_depth != 0 ? 2138 sd->queue_depth : sdev->host->can_queue; 2139 } else 2140 queue_depth = sdev->host->can_queue; 2141 2142 scsi_change_queue_depth(sdev, queue_depth); 2143 2144 return 0; 2145 } 2146 2147 static void hpsa_slave_destroy(struct scsi_device *sdev) 2148 { 2149 /* nothing to do. */ 2150 } 2151 2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2153 { 2154 int i; 2155 2156 if (!h->ioaccel2_cmd_sg_list) 2157 return; 2158 for (i = 0; i < h->nr_cmds; i++) { 2159 kfree(h->ioaccel2_cmd_sg_list[i]); 2160 h->ioaccel2_cmd_sg_list[i] = NULL; 2161 } 2162 kfree(h->ioaccel2_cmd_sg_list); 2163 h->ioaccel2_cmd_sg_list = NULL; 2164 } 2165 2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 2167 { 2168 int i; 2169 2170 if (h->chainsize <= 0) 2171 return 0; 2172 2173 h->ioaccel2_cmd_sg_list = 2174 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), 2175 GFP_KERNEL); 2176 if (!h->ioaccel2_cmd_sg_list) 2177 return -ENOMEM; 2178 for (i = 0; i < h->nr_cmds; i++) { 2179 h->ioaccel2_cmd_sg_list[i] = 2180 kmalloc_array(h->maxsgentries, 2181 sizeof(*h->ioaccel2_cmd_sg_list[i]), 2182 GFP_KERNEL); 2183 if (!h->ioaccel2_cmd_sg_list[i]) 2184 goto clean; 2185 } 2186 return 0; 2187 2188 clean: 2189 hpsa_free_ioaccel2_sg_chain_blocks(h); 2190 return -ENOMEM; 2191 } 2192 2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 2194 { 2195 int i; 2196 2197 if (!h->cmd_sg_list) 2198 return; 2199 for (i = 0; i < h->nr_cmds; i++) { 2200 kfree(h->cmd_sg_list[i]); 2201 h->cmd_sg_list[i] = NULL; 2202 } 2203 kfree(h->cmd_sg_list); 2204 h->cmd_sg_list = NULL; 2205 } 2206 2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 2208 { 2209 int i; 2210 2211 if (h->chainsize <= 0) 2212 return 0; 2213 2214 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), 2215 GFP_KERNEL); 2216 if (!h->cmd_sg_list) 2217 return -ENOMEM; 2218 2219 for (i = 0; i < h->nr_cmds; i++) { 2220 h->cmd_sg_list[i] = kmalloc_array(h->chainsize, 2221 sizeof(*h->cmd_sg_list[i]), 2222 GFP_KERNEL); 2223 if (!h->cmd_sg_list[i]) 2224 goto clean; 2225 2226 } 2227 return 0; 2228 2229 clean: 2230 hpsa_free_sg_chain_blocks(h); 2231 return -ENOMEM; 2232 } 2233 2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 2235 struct io_accel2_cmd *cp, struct CommandList *c) 2236 { 2237 struct ioaccel2_sg_element *chain_block; 2238 u64 temp64; 2239 u32 chain_size; 2240 2241 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 2242 chain_size = le32_to_cpu(cp->sg[0].length); 2243 temp64 = pci_map_single(h->pdev, chain_block, chain_size, 2244 PCI_DMA_TODEVICE); 2245 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2246 /* prevent subsequent unmapping */ 2247 cp->sg->address = 0; 2248 return -1; 2249 } 2250 cp->sg->address = cpu_to_le64(temp64); 2251 return 0; 2252 } 2253 2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 2255 struct io_accel2_cmd *cp) 2256 { 2257 struct ioaccel2_sg_element *chain_sg; 2258 u64 temp64; 2259 u32 chain_size; 2260 2261 chain_sg = cp->sg; 2262 temp64 = le64_to_cpu(chain_sg->address); 2263 chain_size = le32_to_cpu(cp->sg[0].length); 2264 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); 2265 } 2266 2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 2268 struct CommandList *c) 2269 { 2270 struct SGDescriptor *chain_sg, *chain_block; 2271 u64 temp64; 2272 u32 chain_len; 2273 2274 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2275 chain_block = h->cmd_sg_list[c->cmdindex]; 2276 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 2277 chain_len = sizeof(*chain_sg) * 2278 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 2279 chain_sg->Len = cpu_to_le32(chain_len); 2280 temp64 = pci_map_single(h->pdev, chain_block, chain_len, 2281 PCI_DMA_TODEVICE); 2282 if (dma_mapping_error(&h->pdev->dev, temp64)) { 2283 /* prevent subsequent unmapping */ 2284 chain_sg->Addr = cpu_to_le64(0); 2285 return -1; 2286 } 2287 chain_sg->Addr = cpu_to_le64(temp64); 2288 return 0; 2289 } 2290 2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2292 struct CommandList *c) 2293 { 2294 struct SGDescriptor *chain_sg; 2295 2296 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2297 return; 2298 2299 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2300 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), 2301 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); 2302 } 2303 2304 2305 /* Decode the various types of errors on ioaccel2 path. 2306 * Return 1 for any error that should generate a RAID path retry. 2307 * Return 0 for errors that don't require a RAID path retry. 2308 */ 2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2310 struct CommandList *c, 2311 struct scsi_cmnd *cmd, 2312 struct io_accel2_cmd *c2, 2313 struct hpsa_scsi_dev_t *dev) 2314 { 2315 int data_len; 2316 int retry = 0; 2317 u32 ioaccel2_resid = 0; 2318 2319 switch (c2->error_data.serv_response) { 2320 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2321 switch (c2->error_data.status) { 2322 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2323 break; 2324 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2325 cmd->result |= SAM_STAT_CHECK_CONDITION; 2326 if (c2->error_data.data_present != 2327 IOACCEL2_SENSE_DATA_PRESENT) { 2328 memset(cmd->sense_buffer, 0, 2329 SCSI_SENSE_BUFFERSIZE); 2330 break; 2331 } 2332 /* copy the sense data */ 2333 data_len = c2->error_data.sense_data_len; 2334 if (data_len > SCSI_SENSE_BUFFERSIZE) 2335 data_len = SCSI_SENSE_BUFFERSIZE; 2336 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2337 data_len = 2338 sizeof(c2->error_data.sense_data_buff); 2339 memcpy(cmd->sense_buffer, 2340 c2->error_data.sense_data_buff, data_len); 2341 retry = 1; 2342 break; 2343 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2344 retry = 1; 2345 break; 2346 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2347 retry = 1; 2348 break; 2349 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2350 retry = 1; 2351 break; 2352 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2353 retry = 1; 2354 break; 2355 default: 2356 retry = 1; 2357 break; 2358 } 2359 break; 2360 case IOACCEL2_SERV_RESPONSE_FAILURE: 2361 switch (c2->error_data.status) { 2362 case IOACCEL2_STATUS_SR_IO_ERROR: 2363 case IOACCEL2_STATUS_SR_IO_ABORTED: 2364 case IOACCEL2_STATUS_SR_OVERRUN: 2365 retry = 1; 2366 break; 2367 case IOACCEL2_STATUS_SR_UNDERRUN: 2368 cmd->result = (DID_OK << 16); /* host byte */ 2369 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2370 ioaccel2_resid = get_unaligned_le32( 2371 &c2->error_data.resid_cnt[0]); 2372 scsi_set_resid(cmd, ioaccel2_resid); 2373 break; 2374 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2375 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2376 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2377 /* 2378 * Did an HBA disk disappear? We will eventually 2379 * get a state change event from the controller but 2380 * in the meantime, we need to tell the OS that the 2381 * HBA disk is no longer there and stop I/O 2382 * from going down. This allows the potential re-insert 2383 * of the disk to get the same device node. 2384 */ 2385 if (dev->physical_device && dev->expose_device) { 2386 cmd->result = DID_NO_CONNECT << 16; 2387 dev->removed = 1; 2388 h->drv_req_rescan = 1; 2389 dev_warn(&h->pdev->dev, 2390 "%s: device is gone!\n", __func__); 2391 } else 2392 /* 2393 * Retry by sending down the RAID path. 2394 * We will get an event from ctlr to 2395 * trigger rescan regardless. 2396 */ 2397 retry = 1; 2398 break; 2399 default: 2400 retry = 1; 2401 } 2402 break; 2403 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2404 break; 2405 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2406 break; 2407 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2408 retry = 1; 2409 break; 2410 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2411 break; 2412 default: 2413 retry = 1; 2414 break; 2415 } 2416 2417 return retry; /* retry on raid path? */ 2418 } 2419 2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2421 struct CommandList *c) 2422 { 2423 bool do_wake = false; 2424 2425 /* 2426 * Reset c->scsi_cmd here so that the reset handler will know 2427 * this command has completed. Then, check to see if the handler is 2428 * waiting for this command, and, if so, wake it. 2429 */ 2430 c->scsi_cmd = SCSI_CMD_IDLE; 2431 mb(); /* Declare command idle before checking for pending events. */ 2432 if (c->reset_pending) { 2433 unsigned long flags; 2434 struct hpsa_scsi_dev_t *dev; 2435 2436 /* 2437 * There appears to be a reset pending; lock the lock and 2438 * reconfirm. If so, then decrement the count of outstanding 2439 * commands and wake the reset command if this is the last one. 2440 */ 2441 spin_lock_irqsave(&h->lock, flags); 2442 dev = c->reset_pending; /* Re-fetch under the lock. */ 2443 if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) 2444 do_wake = true; 2445 c->reset_pending = NULL; 2446 spin_unlock_irqrestore(&h->lock, flags); 2447 } 2448 2449 if (do_wake) 2450 wake_up_all(&h->event_sync_wait_queue); 2451 } 2452 2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2454 struct CommandList *c) 2455 { 2456 hpsa_cmd_resolve_events(h, c); 2457 cmd_tagged_free(h, c); 2458 } 2459 2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2461 struct CommandList *c, struct scsi_cmnd *cmd) 2462 { 2463 hpsa_cmd_resolve_and_free(h, c); 2464 if (cmd && cmd->scsi_done) 2465 cmd->scsi_done(cmd); 2466 } 2467 2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2469 { 2470 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2471 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2472 } 2473 2474 static void process_ioaccel2_completion(struct ctlr_info *h, 2475 struct CommandList *c, struct scsi_cmnd *cmd, 2476 struct hpsa_scsi_dev_t *dev) 2477 { 2478 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2479 2480 /* check for good status */ 2481 if (likely(c2->error_data.serv_response == 0 && 2482 c2->error_data.status == 0)) 2483 return hpsa_cmd_free_and_done(h, c, cmd); 2484 2485 /* 2486 * Any RAID offload error results in retry which will use 2487 * the normal I/O path so the controller can handle whatever is 2488 * wrong. 2489 */ 2490 if (is_logical_device(dev) && 2491 c2->error_data.serv_response == 2492 IOACCEL2_SERV_RESPONSE_FAILURE) { 2493 if (c2->error_data.status == 2494 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { 2495 dev->offload_enabled = 0; 2496 dev->offload_to_be_enabled = 0; 2497 } 2498 2499 return hpsa_retry_cmd(h, c); 2500 } 2501 2502 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) 2503 return hpsa_retry_cmd(h, c); 2504 2505 return hpsa_cmd_free_and_done(h, c, cmd); 2506 } 2507 2508 /* Returns 0 on success, < 0 otherwise. */ 2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2510 struct CommandList *cp) 2511 { 2512 u8 tmf_status = cp->err_info->ScsiStatus; 2513 2514 switch (tmf_status) { 2515 case CISS_TMF_COMPLETE: 2516 /* 2517 * CISS_TMF_COMPLETE never happens, instead, 2518 * ei->CommandStatus == 0 for this case. 2519 */ 2520 case CISS_TMF_SUCCESS: 2521 return 0; 2522 case CISS_TMF_INVALID_FRAME: 2523 case CISS_TMF_NOT_SUPPORTED: 2524 case CISS_TMF_FAILED: 2525 case CISS_TMF_WRONG_LUN: 2526 case CISS_TMF_OVERLAPPED_TAG: 2527 break; 2528 default: 2529 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2530 tmf_status); 2531 break; 2532 } 2533 return -tmf_status; 2534 } 2535 2536 static void complete_scsi_command(struct CommandList *cp) 2537 { 2538 struct scsi_cmnd *cmd; 2539 struct ctlr_info *h; 2540 struct ErrorInfo *ei; 2541 struct hpsa_scsi_dev_t *dev; 2542 struct io_accel2_cmd *c2; 2543 2544 u8 sense_key; 2545 u8 asc; /* additional sense code */ 2546 u8 ascq; /* additional sense code qualifier */ 2547 unsigned long sense_data_size; 2548 2549 ei = cp->err_info; 2550 cmd = cp->scsi_cmd; 2551 h = cp->h; 2552 2553 if (!cmd->device) { 2554 cmd->result = DID_NO_CONNECT << 16; 2555 return hpsa_cmd_free_and_done(h, cp, cmd); 2556 } 2557 2558 dev = cmd->device->hostdata; 2559 if (!dev) { 2560 cmd->result = DID_NO_CONNECT << 16; 2561 return hpsa_cmd_free_and_done(h, cp, cmd); 2562 } 2563 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2564 2565 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2566 if ((cp->cmd_type == CMD_SCSI) && 2567 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2568 hpsa_unmap_sg_chain_block(h, cp); 2569 2570 if ((cp->cmd_type == CMD_IOACCEL2) && 2571 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2572 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2573 2574 cmd->result = (DID_OK << 16); /* host byte */ 2575 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2576 2577 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { 2578 if (dev->physical_device && dev->expose_device && 2579 dev->removed) { 2580 cmd->result = DID_NO_CONNECT << 16; 2581 return hpsa_cmd_free_and_done(h, cp, cmd); 2582 } 2583 if (likely(cp->phys_disk != NULL)) 2584 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2585 } 2586 2587 /* 2588 * We check for lockup status here as it may be set for 2589 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2590 * fail_all_oustanding_cmds() 2591 */ 2592 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2593 /* DID_NO_CONNECT will prevent a retry */ 2594 cmd->result = DID_NO_CONNECT << 16; 2595 return hpsa_cmd_free_and_done(h, cp, cmd); 2596 } 2597 2598 if ((unlikely(hpsa_is_pending_event(cp)))) 2599 if (cp->reset_pending) 2600 return hpsa_cmd_free_and_done(h, cp, cmd); 2601 2602 if (cp->cmd_type == CMD_IOACCEL2) 2603 return process_ioaccel2_completion(h, cp, cmd, dev); 2604 2605 scsi_set_resid(cmd, ei->ResidualCnt); 2606 if (ei->CommandStatus == 0) 2607 return hpsa_cmd_free_and_done(h, cp, cmd); 2608 2609 /* For I/O accelerator commands, copy over some fields to the normal 2610 * CISS header used below for error handling. 2611 */ 2612 if (cp->cmd_type == CMD_IOACCEL1) { 2613 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2614 cp->Header.SGList = scsi_sg_count(cmd); 2615 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2616 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2617 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2618 cp->Header.tag = c->tag; 2619 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2620 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2621 2622 /* Any RAID offload error results in retry which will use 2623 * the normal I/O path so the controller can handle whatever's 2624 * wrong. 2625 */ 2626 if (is_logical_device(dev)) { 2627 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2628 dev->offload_enabled = 0; 2629 return hpsa_retry_cmd(h, cp); 2630 } 2631 } 2632 2633 /* an error has occurred */ 2634 switch (ei->CommandStatus) { 2635 2636 case CMD_TARGET_STATUS: 2637 cmd->result |= ei->ScsiStatus; 2638 /* copy the sense data */ 2639 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 2640 sense_data_size = SCSI_SENSE_BUFFERSIZE; 2641 else 2642 sense_data_size = sizeof(ei->SenseInfo); 2643 if (ei->SenseLen < sense_data_size) 2644 sense_data_size = ei->SenseLen; 2645 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2646 if (ei->ScsiStatus) 2647 decode_sense_data(ei->SenseInfo, sense_data_size, 2648 &sense_key, &asc, &ascq); 2649 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2650 if (sense_key == ABORTED_COMMAND) { 2651 cmd->result |= DID_SOFT_ERROR << 16; 2652 break; 2653 } 2654 break; 2655 } 2656 /* Problem was not a check condition 2657 * Pass it up to the upper layers... 2658 */ 2659 if (ei->ScsiStatus) { 2660 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2661 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2662 "Returning result: 0x%x\n", 2663 cp, ei->ScsiStatus, 2664 sense_key, asc, ascq, 2665 cmd->result); 2666 } else { /* scsi status is zero??? How??? */ 2667 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2668 "Returning no connection.\n", cp), 2669 2670 /* Ordinarily, this case should never happen, 2671 * but there is a bug in some released firmware 2672 * revisions that allows it to happen if, for 2673 * example, a 4100 backplane loses power and 2674 * the tape drive is in it. We assume that 2675 * it's a fatal error of some kind because we 2676 * can't show that it wasn't. We will make it 2677 * look like selection timeout since that is 2678 * the most common reason for this to occur, 2679 * and it's severe enough. 2680 */ 2681 2682 cmd->result = DID_NO_CONNECT << 16; 2683 } 2684 break; 2685 2686 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2687 break; 2688 case CMD_DATA_OVERRUN: 2689 dev_warn(&h->pdev->dev, 2690 "CDB %16phN data overrun\n", cp->Request.CDB); 2691 break; 2692 case CMD_INVALID: { 2693 /* print_bytes(cp, sizeof(*cp), 1, 0); 2694 print_cmd(cp); */ 2695 /* We get CMD_INVALID if you address a non-existent device 2696 * instead of a selection timeout (no response). You will 2697 * see this if you yank out a drive, then try to access it. 2698 * This is kind of a shame because it means that any other 2699 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2700 * missing target. */ 2701 cmd->result = DID_NO_CONNECT << 16; 2702 } 2703 break; 2704 case CMD_PROTOCOL_ERR: 2705 cmd->result = DID_ERROR << 16; 2706 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2707 cp->Request.CDB); 2708 break; 2709 case CMD_HARDWARE_ERR: 2710 cmd->result = DID_ERROR << 16; 2711 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2712 cp->Request.CDB); 2713 break; 2714 case CMD_CONNECTION_LOST: 2715 cmd->result = DID_ERROR << 16; 2716 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2717 cp->Request.CDB); 2718 break; 2719 case CMD_ABORTED: 2720 cmd->result = DID_ABORT << 16; 2721 break; 2722 case CMD_ABORT_FAILED: 2723 cmd->result = DID_ERROR << 16; 2724 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2725 cp->Request.CDB); 2726 break; 2727 case CMD_UNSOLICITED_ABORT: 2728 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2729 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2730 cp->Request.CDB); 2731 break; 2732 case CMD_TIMEOUT: 2733 cmd->result = DID_TIME_OUT << 16; 2734 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2735 cp->Request.CDB); 2736 break; 2737 case CMD_UNABORTABLE: 2738 cmd->result = DID_ERROR << 16; 2739 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2740 break; 2741 case CMD_TMF_STATUS: 2742 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2743 cmd->result = DID_ERROR << 16; 2744 break; 2745 case CMD_IOACCEL_DISABLED: 2746 /* This only handles the direct pass-through case since RAID 2747 * offload is handled above. Just attempt a retry. 2748 */ 2749 cmd->result = DID_SOFT_ERROR << 16; 2750 dev_warn(&h->pdev->dev, 2751 "cp %p had HP SSD Smart Path error\n", cp); 2752 break; 2753 default: 2754 cmd->result = DID_ERROR << 16; 2755 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2756 cp, ei->CommandStatus); 2757 } 2758 2759 return hpsa_cmd_free_and_done(h, cp, cmd); 2760 } 2761 2762 static void hpsa_pci_unmap(struct pci_dev *pdev, 2763 struct CommandList *c, int sg_used, int data_direction) 2764 { 2765 int i; 2766 2767 for (i = 0; i < sg_used; i++) 2768 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), 2769 le32_to_cpu(c->SG[i].Len), 2770 data_direction); 2771 } 2772 2773 static int hpsa_map_one(struct pci_dev *pdev, 2774 struct CommandList *cp, 2775 unsigned char *buf, 2776 size_t buflen, 2777 int data_direction) 2778 { 2779 u64 addr64; 2780 2781 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 2782 cp->Header.SGList = 0; 2783 cp->Header.SGTotal = cpu_to_le16(0); 2784 return 0; 2785 } 2786 2787 addr64 = pci_map_single(pdev, buf, buflen, data_direction); 2788 if (dma_mapping_error(&pdev->dev, addr64)) { 2789 /* Prevent subsequent unmap of something never mapped */ 2790 cp->Header.SGList = 0; 2791 cp->Header.SGTotal = cpu_to_le16(0); 2792 return -1; 2793 } 2794 cp->SG[0].Addr = cpu_to_le64(addr64); 2795 cp->SG[0].Len = cpu_to_le32(buflen); 2796 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2797 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2798 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2799 return 0; 2800 } 2801 2802 #define NO_TIMEOUT ((unsigned long) -1) 2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2805 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2806 { 2807 DECLARE_COMPLETION_ONSTACK(wait); 2808 2809 c->waiting = &wait; 2810 __enqueue_cmd_and_start_io(h, c, reply_queue); 2811 if (timeout_msecs == NO_TIMEOUT) { 2812 /* TODO: get rid of this no-timeout thing */ 2813 wait_for_completion_io(&wait); 2814 return IO_OK; 2815 } 2816 if (!wait_for_completion_io_timeout(&wait, 2817 msecs_to_jiffies(timeout_msecs))) { 2818 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2819 return -ETIMEDOUT; 2820 } 2821 return IO_OK; 2822 } 2823 2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2825 int reply_queue, unsigned long timeout_msecs) 2826 { 2827 if (unlikely(lockup_detected(h))) { 2828 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2829 return IO_OK; 2830 } 2831 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2832 } 2833 2834 static u32 lockup_detected(struct ctlr_info *h) 2835 { 2836 int cpu; 2837 u32 rc, *lockup_detected; 2838 2839 cpu = get_cpu(); 2840 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2841 rc = *lockup_detected; 2842 put_cpu(); 2843 return rc; 2844 } 2845 2846 #define MAX_DRIVER_CMD_RETRIES 25 2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2848 struct CommandList *c, int data_direction, unsigned long timeout_msecs) 2849 { 2850 int backoff_time = 10, retry_count = 0; 2851 int rc; 2852 2853 do { 2854 memset(c->err_info, 0, sizeof(*c->err_info)); 2855 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2856 timeout_msecs); 2857 if (rc) 2858 break; 2859 retry_count++; 2860 if (retry_count > 3) { 2861 msleep(backoff_time); 2862 if (backoff_time < 1000) 2863 backoff_time *= 2; 2864 } 2865 } while ((check_for_unit_attention(h, c) || 2866 check_for_busy(h, c)) && 2867 retry_count <= MAX_DRIVER_CMD_RETRIES); 2868 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2869 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2870 rc = -EIO; 2871 return rc; 2872 } 2873 2874 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2875 struct CommandList *c) 2876 { 2877 const u8 *cdb = c->Request.CDB; 2878 const u8 *lun = c->Header.LUN.LunAddrBytes; 2879 2880 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", 2881 txt, lun, cdb); 2882 } 2883 2884 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2885 struct CommandList *cp) 2886 { 2887 const struct ErrorInfo *ei = cp->err_info; 2888 struct device *d = &cp->h->pdev->dev; 2889 u8 sense_key, asc, ascq; 2890 int sense_len; 2891 2892 switch (ei->CommandStatus) { 2893 case CMD_TARGET_STATUS: 2894 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2895 sense_len = sizeof(ei->SenseInfo); 2896 else 2897 sense_len = ei->SenseLen; 2898 decode_sense_data(ei->SenseInfo, sense_len, 2899 &sense_key, &asc, &ascq); 2900 hpsa_print_cmd(h, "SCSI status", cp); 2901 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2902 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2903 sense_key, asc, ascq); 2904 else 2905 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2906 if (ei->ScsiStatus == 0) 2907 dev_warn(d, "SCSI status is abnormally zero. " 2908 "(probably indicates selection timeout " 2909 "reported incorrectly due to a known " 2910 "firmware bug, circa July, 2001.)\n"); 2911 break; 2912 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2913 break; 2914 case CMD_DATA_OVERRUN: 2915 hpsa_print_cmd(h, "overrun condition", cp); 2916 break; 2917 case CMD_INVALID: { 2918 /* controller unfortunately reports SCSI passthru's 2919 * to non-existent targets as invalid commands. 2920 */ 2921 hpsa_print_cmd(h, "invalid command", cp); 2922 dev_warn(d, "probably means device no longer present\n"); 2923 } 2924 break; 2925 case CMD_PROTOCOL_ERR: 2926 hpsa_print_cmd(h, "protocol error", cp); 2927 break; 2928 case CMD_HARDWARE_ERR: 2929 hpsa_print_cmd(h, "hardware error", cp); 2930 break; 2931 case CMD_CONNECTION_LOST: 2932 hpsa_print_cmd(h, "connection lost", cp); 2933 break; 2934 case CMD_ABORTED: 2935 hpsa_print_cmd(h, "aborted", cp); 2936 break; 2937 case CMD_ABORT_FAILED: 2938 hpsa_print_cmd(h, "abort failed", cp); 2939 break; 2940 case CMD_UNSOLICITED_ABORT: 2941 hpsa_print_cmd(h, "unsolicited abort", cp); 2942 break; 2943 case CMD_TIMEOUT: 2944 hpsa_print_cmd(h, "timed out", cp); 2945 break; 2946 case CMD_UNABORTABLE: 2947 hpsa_print_cmd(h, "unabortable", cp); 2948 break; 2949 case CMD_CTLR_LOCKUP: 2950 hpsa_print_cmd(h, "controller lockup detected", cp); 2951 break; 2952 default: 2953 hpsa_print_cmd(h, "unknown status", cp); 2954 dev_warn(d, "Unknown command status %x\n", 2955 ei->CommandStatus); 2956 } 2957 } 2958 2959 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, 2960 u8 page, u8 *buf, size_t bufsize) 2961 { 2962 int rc = IO_OK; 2963 struct CommandList *c; 2964 struct ErrorInfo *ei; 2965 2966 c = cmd_alloc(h); 2967 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, 2968 page, scsi3addr, TYPE_CMD)) { 2969 rc = -1; 2970 goto out; 2971 } 2972 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2973 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 2974 if (rc) 2975 goto out; 2976 ei = c->err_info; 2977 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2978 hpsa_scsi_interpret_error(h, c); 2979 rc = -1; 2980 } 2981 out: 2982 cmd_free(h, c); 2983 return rc; 2984 } 2985 2986 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, 2987 u8 *scsi3addr) 2988 { 2989 u8 *buf; 2990 u64 sa = 0; 2991 int rc = 0; 2992 2993 buf = kzalloc(1024, GFP_KERNEL); 2994 if (!buf) 2995 return 0; 2996 2997 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, 2998 buf, 1024); 2999 3000 if (rc) 3001 goto out; 3002 3003 sa = get_unaligned_be64(buf+12); 3004 3005 out: 3006 kfree(buf); 3007 return sa; 3008 } 3009 3010 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 3011 u16 page, unsigned char *buf, 3012 unsigned char bufsize) 3013 { 3014 int rc = IO_OK; 3015 struct CommandList *c; 3016 struct ErrorInfo *ei; 3017 3018 c = cmd_alloc(h); 3019 3020 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 3021 page, scsi3addr, TYPE_CMD)) { 3022 rc = -1; 3023 goto out; 3024 } 3025 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3026 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3027 if (rc) 3028 goto out; 3029 ei = c->err_info; 3030 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3031 hpsa_scsi_interpret_error(h, c); 3032 rc = -1; 3033 } 3034 out: 3035 cmd_free(h, c); 3036 return rc; 3037 } 3038 3039 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, 3040 u8 reset_type, int reply_queue) 3041 { 3042 int rc = IO_OK; 3043 struct CommandList *c; 3044 struct ErrorInfo *ei; 3045 3046 c = cmd_alloc(h); 3047 3048 3049 /* fill_cmd can't fail here, no data buffer to map. */ 3050 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, 3051 scsi3addr, TYPE_MSG); 3052 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 3053 if (rc) { 3054 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 3055 goto out; 3056 } 3057 /* no unmap needed here because no data xfer. */ 3058 3059 ei = c->err_info; 3060 if (ei->CommandStatus != 0) { 3061 hpsa_scsi_interpret_error(h, c); 3062 rc = -1; 3063 } 3064 out: 3065 cmd_free(h, c); 3066 return rc; 3067 } 3068 3069 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 3070 struct hpsa_scsi_dev_t *dev, 3071 unsigned char *scsi3addr) 3072 { 3073 int i; 3074 bool match = false; 3075 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 3076 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 3077 3078 if (hpsa_is_cmd_idle(c)) 3079 return false; 3080 3081 switch (c->cmd_type) { 3082 case CMD_SCSI: 3083 case CMD_IOCTL_PEND: 3084 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 3085 sizeof(c->Header.LUN.LunAddrBytes)); 3086 break; 3087 3088 case CMD_IOACCEL1: 3089 case CMD_IOACCEL2: 3090 if (c->phys_disk == dev) { 3091 /* HBA mode match */ 3092 match = true; 3093 } else { 3094 /* Possible RAID mode -- check each phys dev. */ 3095 /* FIXME: Do we need to take out a lock here? If 3096 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 3097 * instead. */ 3098 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3099 /* FIXME: an alternate test might be 3100 * 3101 * match = dev->phys_disk[i]->ioaccel_handle 3102 * == c2->scsi_nexus; */ 3103 match = dev->phys_disk[i] == c->phys_disk; 3104 } 3105 } 3106 break; 3107 3108 case IOACCEL2_TMF: 3109 for (i = 0; i < dev->nphysical_disks && !match; i++) { 3110 match = dev->phys_disk[i]->ioaccel_handle == 3111 le32_to_cpu(ac->it_nexus); 3112 } 3113 break; 3114 3115 case 0: /* The command is in the middle of being initialized. */ 3116 match = false; 3117 break; 3118 3119 default: 3120 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 3121 c->cmd_type); 3122 BUG(); 3123 } 3124 3125 return match; 3126 } 3127 3128 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 3129 unsigned char *scsi3addr, u8 reset_type, int reply_queue) 3130 { 3131 int i; 3132 int rc = 0; 3133 3134 /* We can really only handle one reset at a time */ 3135 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 3136 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 3137 return -EINTR; 3138 } 3139 3140 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); 3141 3142 for (i = 0; i < h->nr_cmds; i++) { 3143 struct CommandList *c = h->cmd_pool + i; 3144 int refcount = atomic_inc_return(&c->refcount); 3145 3146 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { 3147 unsigned long flags; 3148 3149 /* 3150 * Mark the target command as having a reset pending, 3151 * then lock a lock so that the command cannot complete 3152 * while we're considering it. If the command is not 3153 * idle then count it; otherwise revoke the event. 3154 */ 3155 c->reset_pending = dev; 3156 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 3157 if (!hpsa_is_cmd_idle(c)) 3158 atomic_inc(&dev->reset_cmds_out); 3159 else 3160 c->reset_pending = NULL; 3161 spin_unlock_irqrestore(&h->lock, flags); 3162 } 3163 3164 cmd_free(h, c); 3165 } 3166 3167 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); 3168 if (!rc) 3169 wait_event(h->event_sync_wait_queue, 3170 atomic_read(&dev->reset_cmds_out) == 0 || 3171 lockup_detected(h)); 3172 3173 if (unlikely(lockup_detected(h))) { 3174 dev_warn(&h->pdev->dev, 3175 "Controller lockup detected during reset wait\n"); 3176 rc = -ENODEV; 3177 } 3178 3179 if (unlikely(rc)) 3180 atomic_set(&dev->reset_cmds_out, 0); 3181 else 3182 rc = wait_for_device_to_become_ready(h, scsi3addr, 0); 3183 3184 mutex_unlock(&h->reset_mutex); 3185 return rc; 3186 } 3187 3188 static void hpsa_get_raid_level(struct ctlr_info *h, 3189 unsigned char *scsi3addr, unsigned char *raid_level) 3190 { 3191 int rc; 3192 unsigned char *buf; 3193 3194 *raid_level = RAID_UNKNOWN; 3195 buf = kzalloc(64, GFP_KERNEL); 3196 if (!buf) 3197 return; 3198 3199 if (!hpsa_vpd_page_supported(h, scsi3addr, 3200 HPSA_VPD_LV_DEVICE_GEOMETRY)) 3201 goto exit; 3202 3203 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3204 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); 3205 3206 if (rc == 0) 3207 *raid_level = buf[8]; 3208 if (*raid_level > RAID_UNKNOWN) 3209 *raid_level = RAID_UNKNOWN; 3210 exit: 3211 kfree(buf); 3212 return; 3213 } 3214 3215 #define HPSA_MAP_DEBUG 3216 #ifdef HPSA_MAP_DEBUG 3217 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 3218 struct raid_map_data *map_buff) 3219 { 3220 struct raid_map_disk_data *dd = &map_buff->data[0]; 3221 int map, row, col; 3222 u16 map_cnt, row_cnt, disks_per_row; 3223 3224 if (rc != 0) 3225 return; 3226 3227 /* Show details only if debugging has been activated. */ 3228 if (h->raid_offload_debug < 2) 3229 return; 3230 3231 dev_info(&h->pdev->dev, "structure_size = %u\n", 3232 le32_to_cpu(map_buff->structure_size)); 3233 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 3234 le32_to_cpu(map_buff->volume_blk_size)); 3235 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 3236 le64_to_cpu(map_buff->volume_blk_cnt)); 3237 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 3238 map_buff->phys_blk_shift); 3239 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 3240 map_buff->parity_rotation_shift); 3241 dev_info(&h->pdev->dev, "strip_size = %u\n", 3242 le16_to_cpu(map_buff->strip_size)); 3243 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 3244 le64_to_cpu(map_buff->disk_starting_blk)); 3245 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 3246 le64_to_cpu(map_buff->disk_blk_cnt)); 3247 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 3248 le16_to_cpu(map_buff->data_disks_per_row)); 3249 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 3250 le16_to_cpu(map_buff->metadata_disks_per_row)); 3251 dev_info(&h->pdev->dev, "row_cnt = %u\n", 3252 le16_to_cpu(map_buff->row_cnt)); 3253 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 3254 le16_to_cpu(map_buff->layout_map_count)); 3255 dev_info(&h->pdev->dev, "flags = 0x%x\n", 3256 le16_to_cpu(map_buff->flags)); 3257 dev_info(&h->pdev->dev, "encryption = %s\n", 3258 le16_to_cpu(map_buff->flags) & 3259 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 3260 dev_info(&h->pdev->dev, "dekindex = %u\n", 3261 le16_to_cpu(map_buff->dekindex)); 3262 map_cnt = le16_to_cpu(map_buff->layout_map_count); 3263 for (map = 0; map < map_cnt; map++) { 3264 dev_info(&h->pdev->dev, "Map%u:\n", map); 3265 row_cnt = le16_to_cpu(map_buff->row_cnt); 3266 for (row = 0; row < row_cnt; row++) { 3267 dev_info(&h->pdev->dev, " Row%u:\n", row); 3268 disks_per_row = 3269 le16_to_cpu(map_buff->data_disks_per_row); 3270 for (col = 0; col < disks_per_row; col++, dd++) 3271 dev_info(&h->pdev->dev, 3272 " D%02u: h=0x%04x xor=%u,%u\n", 3273 col, dd->ioaccel_handle, 3274 dd->xor_mult[0], dd->xor_mult[1]); 3275 disks_per_row = 3276 le16_to_cpu(map_buff->metadata_disks_per_row); 3277 for (col = 0; col < disks_per_row; col++, dd++) 3278 dev_info(&h->pdev->dev, 3279 " M%02u: h=0x%04x xor=%u,%u\n", 3280 col, dd->ioaccel_handle, 3281 dd->xor_mult[0], dd->xor_mult[1]); 3282 } 3283 } 3284 } 3285 #else 3286 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 3287 __attribute__((unused)) int rc, 3288 __attribute__((unused)) struct raid_map_data *map_buff) 3289 { 3290 } 3291 #endif 3292 3293 static int hpsa_get_raid_map(struct ctlr_info *h, 3294 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3295 { 3296 int rc = 0; 3297 struct CommandList *c; 3298 struct ErrorInfo *ei; 3299 3300 c = cmd_alloc(h); 3301 3302 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 3303 sizeof(this_device->raid_map), 0, 3304 scsi3addr, TYPE_CMD)) { 3305 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 3306 cmd_free(h, c); 3307 return -1; 3308 } 3309 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3310 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3311 if (rc) 3312 goto out; 3313 ei = c->err_info; 3314 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3315 hpsa_scsi_interpret_error(h, c); 3316 rc = -1; 3317 goto out; 3318 } 3319 cmd_free(h, c); 3320 3321 /* @todo in the future, dynamically allocate RAID map memory */ 3322 if (le32_to_cpu(this_device->raid_map.structure_size) > 3323 sizeof(this_device->raid_map)) { 3324 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 3325 rc = -1; 3326 } 3327 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 3328 return rc; 3329 out: 3330 cmd_free(h, c); 3331 return rc; 3332 } 3333 3334 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, 3335 unsigned char scsi3addr[], u16 bmic_device_index, 3336 struct bmic_sense_subsystem_info *buf, size_t bufsize) 3337 { 3338 int rc = IO_OK; 3339 struct CommandList *c; 3340 struct ErrorInfo *ei; 3341 3342 c = cmd_alloc(h); 3343 3344 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, 3345 0, RAID_CTLR_LUNID, TYPE_CMD); 3346 if (rc) 3347 goto out; 3348 3349 c->Request.CDB[2] = bmic_device_index & 0xff; 3350 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3351 3352 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3353 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3354 if (rc) 3355 goto out; 3356 ei = c->err_info; 3357 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3358 hpsa_scsi_interpret_error(h, c); 3359 rc = -1; 3360 } 3361 out: 3362 cmd_free(h, c); 3363 return rc; 3364 } 3365 3366 static int hpsa_bmic_id_controller(struct ctlr_info *h, 3367 struct bmic_identify_controller *buf, size_t bufsize) 3368 { 3369 int rc = IO_OK; 3370 struct CommandList *c; 3371 struct ErrorInfo *ei; 3372 3373 c = cmd_alloc(h); 3374 3375 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, 3376 0, RAID_CTLR_LUNID, TYPE_CMD); 3377 if (rc) 3378 goto out; 3379 3380 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3381 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3382 if (rc) 3383 goto out; 3384 ei = c->err_info; 3385 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3386 hpsa_scsi_interpret_error(h, c); 3387 rc = -1; 3388 } 3389 out: 3390 cmd_free(h, c); 3391 return rc; 3392 } 3393 3394 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 3395 unsigned char scsi3addr[], u16 bmic_device_index, 3396 struct bmic_identify_physical_device *buf, size_t bufsize) 3397 { 3398 int rc = IO_OK; 3399 struct CommandList *c; 3400 struct ErrorInfo *ei; 3401 3402 c = cmd_alloc(h); 3403 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 3404 0, RAID_CTLR_LUNID, TYPE_CMD); 3405 if (rc) 3406 goto out; 3407 3408 c->Request.CDB[2] = bmic_device_index & 0xff; 3409 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3410 3411 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, 3412 NO_TIMEOUT); 3413 ei = c->err_info; 3414 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3415 hpsa_scsi_interpret_error(h, c); 3416 rc = -1; 3417 } 3418 out: 3419 cmd_free(h, c); 3420 3421 return rc; 3422 } 3423 3424 /* 3425 * get enclosure information 3426 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number 3427 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure 3428 * Uses id_physical_device to determine the box_index. 3429 */ 3430 static void hpsa_get_enclosure_info(struct ctlr_info *h, 3431 unsigned char *scsi3addr, 3432 struct ReportExtendedLUNdata *rlep, int rle_index, 3433 struct hpsa_scsi_dev_t *encl_dev) 3434 { 3435 int rc = -1; 3436 struct CommandList *c = NULL; 3437 struct ErrorInfo *ei = NULL; 3438 struct bmic_sense_storage_box_params *bssbp = NULL; 3439 struct bmic_identify_physical_device *id_phys = NULL; 3440 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; 3441 u16 bmic_device_index = 0; 3442 3443 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); 3444 3445 encl_dev->sas_address = 3446 hpsa_get_enclosure_logical_identifier(h, scsi3addr); 3447 3448 if (encl_dev->target == -1 || encl_dev->lun == -1) { 3449 rc = IO_OK; 3450 goto out; 3451 } 3452 3453 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { 3454 rc = IO_OK; 3455 goto out; 3456 } 3457 3458 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); 3459 if (!bssbp) 3460 goto out; 3461 3462 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3463 if (!id_phys) 3464 goto out; 3465 3466 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, 3467 id_phys, sizeof(*id_phys)); 3468 if (rc) { 3469 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", 3470 __func__, encl_dev->external, bmic_device_index); 3471 goto out; 3472 } 3473 3474 c = cmd_alloc(h); 3475 3476 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, 3477 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); 3478 3479 if (rc) 3480 goto out; 3481 3482 if (id_phys->phys_connector[1] == 'E') 3483 c->Request.CDB[5] = id_phys->box_index; 3484 else 3485 c->Request.CDB[5] = 0; 3486 3487 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, 3488 NO_TIMEOUT); 3489 if (rc) 3490 goto out; 3491 3492 ei = c->err_info; 3493 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3494 rc = -1; 3495 goto out; 3496 } 3497 3498 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; 3499 memcpy(&encl_dev->phys_connector[id_phys->active_path_number], 3500 bssbp->phys_connector, sizeof(bssbp->phys_connector)); 3501 3502 rc = IO_OK; 3503 out: 3504 kfree(bssbp); 3505 kfree(id_phys); 3506 3507 if (c) 3508 cmd_free(h, c); 3509 3510 if (rc != IO_OK) 3511 hpsa_show_dev_msg(KERN_INFO, h, encl_dev, 3512 "Error, could not get enclosure information"); 3513 } 3514 3515 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, 3516 unsigned char *scsi3addr) 3517 { 3518 struct ReportExtendedLUNdata *physdev; 3519 u32 nphysicals; 3520 u64 sa = 0; 3521 int i; 3522 3523 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); 3524 if (!physdev) 3525 return 0; 3526 3527 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3528 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3529 kfree(physdev); 3530 return 0; 3531 } 3532 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; 3533 3534 for (i = 0; i < nphysicals; i++) 3535 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { 3536 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); 3537 break; 3538 } 3539 3540 kfree(physdev); 3541 3542 return sa; 3543 } 3544 3545 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, 3546 struct hpsa_scsi_dev_t *dev) 3547 { 3548 int rc; 3549 u64 sa = 0; 3550 3551 if (is_hba_lunid(scsi3addr)) { 3552 struct bmic_sense_subsystem_info *ssi; 3553 3554 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); 3555 if (!ssi) 3556 return; 3557 3558 rc = hpsa_bmic_sense_subsystem_information(h, 3559 scsi3addr, 0, ssi, sizeof(*ssi)); 3560 if (rc == 0) { 3561 sa = get_unaligned_be64(ssi->primary_world_wide_id); 3562 h->sas_address = sa; 3563 } 3564 3565 kfree(ssi); 3566 } else 3567 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); 3568 3569 dev->sas_address = sa; 3570 } 3571 3572 static void hpsa_ext_ctrl_present(struct ctlr_info *h, 3573 struct ReportExtendedLUNdata *physdev) 3574 { 3575 u32 nphysicals; 3576 int i; 3577 3578 if (h->discovery_polling) 3579 return; 3580 3581 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; 3582 3583 for (i = 0; i < nphysicals; i++) { 3584 if (physdev->LUN[i].device_type == 3585 BMIC_DEVICE_TYPE_CONTROLLER 3586 && !is_hba_lunid(physdev->LUN[i].lunid)) { 3587 dev_info(&h->pdev->dev, 3588 "External controller present, activate discovery polling and disable rld caching\n"); 3589 hpsa_disable_rld_caching(h); 3590 h->discovery_polling = 1; 3591 break; 3592 } 3593 } 3594 } 3595 3596 /* Get a device id from inquiry page 0x83 */ 3597 static bool hpsa_vpd_page_supported(struct ctlr_info *h, 3598 unsigned char scsi3addr[], u8 page) 3599 { 3600 int rc; 3601 int i; 3602 int pages; 3603 unsigned char *buf, bufsize; 3604 3605 buf = kzalloc(256, GFP_KERNEL); 3606 if (!buf) 3607 return false; 3608 3609 /* Get the size of the page list first */ 3610 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3611 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3612 buf, HPSA_VPD_HEADER_SZ); 3613 if (rc != 0) 3614 goto exit_unsupported; 3615 pages = buf[3]; 3616 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 3617 bufsize = pages + HPSA_VPD_HEADER_SZ; 3618 else 3619 bufsize = 255; 3620 3621 /* Get the whole VPD page list */ 3622 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3623 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3624 buf, bufsize); 3625 if (rc != 0) 3626 goto exit_unsupported; 3627 3628 pages = buf[3]; 3629 for (i = 1; i <= pages; i++) 3630 if (buf[3 + i] == page) 3631 goto exit_supported; 3632 exit_unsupported: 3633 kfree(buf); 3634 return false; 3635 exit_supported: 3636 kfree(buf); 3637 return true; 3638 } 3639 3640 /* 3641 * Called during a scan operation. 3642 * Sets ioaccel status on the new device list, not the existing device list 3643 * 3644 * The device list used during I/O will be updated later in 3645 * adjust_hpsa_scsi_table. 3646 */ 3647 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3648 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3649 { 3650 int rc; 3651 unsigned char *buf; 3652 u8 ioaccel_status; 3653 3654 this_device->offload_config = 0; 3655 this_device->offload_enabled = 0; 3656 this_device->offload_to_be_enabled = 0; 3657 3658 buf = kzalloc(64, GFP_KERNEL); 3659 if (!buf) 3660 return; 3661 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3662 goto out; 3663 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3664 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3665 if (rc != 0) 3666 goto out; 3667 3668 #define IOACCEL_STATUS_BYTE 4 3669 #define OFFLOAD_CONFIGURED_BIT 0x01 3670 #define OFFLOAD_ENABLED_BIT 0x02 3671 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3672 this_device->offload_config = 3673 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3674 if (this_device->offload_config) { 3675 this_device->offload_to_be_enabled = 3676 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3677 if (hpsa_get_raid_map(h, scsi3addr, this_device)) 3678 this_device->offload_to_be_enabled = 0; 3679 } 3680 3681 out: 3682 kfree(buf); 3683 return; 3684 } 3685 3686 /* Get the device id from inquiry page 0x83 */ 3687 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3688 unsigned char *device_id, int index, int buflen) 3689 { 3690 int rc; 3691 unsigned char *buf; 3692 3693 /* Does controller have VPD for device id? */ 3694 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) 3695 return 1; /* not supported */ 3696 3697 buf = kzalloc(64, GFP_KERNEL); 3698 if (!buf) 3699 return -ENOMEM; 3700 3701 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 3702 HPSA_VPD_LV_DEVICE_ID, buf, 64); 3703 if (rc == 0) { 3704 if (buflen > 16) 3705 buflen = 16; 3706 memcpy(device_id, &buf[8], buflen); 3707 } 3708 3709 kfree(buf); 3710 3711 return rc; /*0 - got id, otherwise, didn't */ 3712 } 3713 3714 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3715 void *buf, int bufsize, 3716 int extended_response) 3717 { 3718 int rc = IO_OK; 3719 struct CommandList *c; 3720 unsigned char scsi3addr[8]; 3721 struct ErrorInfo *ei; 3722 3723 c = cmd_alloc(h); 3724 3725 /* address the controller */ 3726 memset(scsi3addr, 0, sizeof(scsi3addr)); 3727 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3728 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3729 rc = -EAGAIN; 3730 goto out; 3731 } 3732 if (extended_response) 3733 c->Request.CDB[1] = extended_response; 3734 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3735 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3736 if (rc) 3737 goto out; 3738 ei = c->err_info; 3739 if (ei->CommandStatus != 0 && 3740 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3741 hpsa_scsi_interpret_error(h, c); 3742 rc = -EIO; 3743 } else { 3744 struct ReportLUNdata *rld = buf; 3745 3746 if (rld->extended_response_flag != extended_response) { 3747 if (!h->legacy_board) { 3748 dev_err(&h->pdev->dev, 3749 "report luns requested format %u, got %u\n", 3750 extended_response, 3751 rld->extended_response_flag); 3752 rc = -EINVAL; 3753 } else 3754 rc = -EOPNOTSUPP; 3755 } 3756 } 3757 out: 3758 cmd_free(h, c); 3759 return rc; 3760 } 3761 3762 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3763 struct ReportExtendedLUNdata *buf, int bufsize) 3764 { 3765 int rc; 3766 struct ReportLUNdata *lbuf; 3767 3768 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3769 HPSA_REPORT_PHYS_EXTENDED); 3770 if (!rc || rc != -EOPNOTSUPP) 3771 return rc; 3772 3773 /* REPORT PHYS EXTENDED is not supported */ 3774 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); 3775 if (!lbuf) 3776 return -ENOMEM; 3777 3778 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); 3779 if (!rc) { 3780 int i; 3781 u32 nphys; 3782 3783 /* Copy ReportLUNdata header */ 3784 memcpy(buf, lbuf, 8); 3785 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; 3786 for (i = 0; i < nphys; i++) 3787 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); 3788 } 3789 kfree(lbuf); 3790 return rc; 3791 } 3792 3793 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3794 struct ReportLUNdata *buf, int bufsize) 3795 { 3796 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3797 } 3798 3799 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3800 int bus, int target, int lun) 3801 { 3802 device->bus = bus; 3803 device->target = target; 3804 device->lun = lun; 3805 } 3806 3807 /* Use VPD inquiry to get details of volume status */ 3808 static int hpsa_get_volume_status(struct ctlr_info *h, 3809 unsigned char scsi3addr[]) 3810 { 3811 int rc; 3812 int status; 3813 int size; 3814 unsigned char *buf; 3815 3816 buf = kzalloc(64, GFP_KERNEL); 3817 if (!buf) 3818 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3819 3820 /* Does controller have VPD for logical volume status? */ 3821 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3822 goto exit_failed; 3823 3824 /* Get the size of the VPD return buffer */ 3825 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3826 buf, HPSA_VPD_HEADER_SZ); 3827 if (rc != 0) 3828 goto exit_failed; 3829 size = buf[3]; 3830 3831 /* Now get the whole VPD buffer */ 3832 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3833 buf, size + HPSA_VPD_HEADER_SZ); 3834 if (rc != 0) 3835 goto exit_failed; 3836 status = buf[4]; /* status byte */ 3837 3838 kfree(buf); 3839 return status; 3840 exit_failed: 3841 kfree(buf); 3842 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3843 } 3844 3845 /* Determine offline status of a volume. 3846 * Return either: 3847 * 0 (not offline) 3848 * 0xff (offline for unknown reasons) 3849 * # (integer code indicating one of several NOT READY states 3850 * describing why a volume is to be kept offline) 3851 */ 3852 static unsigned char hpsa_volume_offline(struct ctlr_info *h, 3853 unsigned char scsi3addr[]) 3854 { 3855 struct CommandList *c; 3856 unsigned char *sense; 3857 u8 sense_key, asc, ascq; 3858 int sense_len; 3859 int rc, ldstat = 0; 3860 u16 cmd_status; 3861 u8 scsi_status; 3862 #define ASC_LUN_NOT_READY 0x04 3863 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3864 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3865 3866 c = cmd_alloc(h); 3867 3868 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3869 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 3870 NO_TIMEOUT); 3871 if (rc) { 3872 cmd_free(h, c); 3873 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3874 } 3875 sense = c->err_info->SenseInfo; 3876 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3877 sense_len = sizeof(c->err_info->SenseInfo); 3878 else 3879 sense_len = c->err_info->SenseLen; 3880 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3881 cmd_status = c->err_info->CommandStatus; 3882 scsi_status = c->err_info->ScsiStatus; 3883 cmd_free(h, c); 3884 3885 /* Determine the reason for not ready state */ 3886 ldstat = hpsa_get_volume_status(h, scsi3addr); 3887 3888 /* Keep volume offline in certain cases: */ 3889 switch (ldstat) { 3890 case HPSA_LV_FAILED: 3891 case HPSA_LV_UNDERGOING_ERASE: 3892 case HPSA_LV_NOT_AVAILABLE: 3893 case HPSA_LV_UNDERGOING_RPI: 3894 case HPSA_LV_PENDING_RPI: 3895 case HPSA_LV_ENCRYPTED_NO_KEY: 3896 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3897 case HPSA_LV_UNDERGOING_ENCRYPTION: 3898 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3899 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3900 return ldstat; 3901 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3902 /* If VPD status page isn't available, 3903 * use ASC/ASCQ to determine state 3904 */ 3905 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3906 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3907 return ldstat; 3908 break; 3909 default: 3910 break; 3911 } 3912 return HPSA_LV_OK; 3913 } 3914 3915 static int hpsa_update_device_info(struct ctlr_info *h, 3916 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3917 unsigned char *is_OBDR_device) 3918 { 3919 3920 #define OBDR_SIG_OFFSET 43 3921 #define OBDR_TAPE_SIG "$DR-10" 3922 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3923 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3924 3925 unsigned char *inq_buff; 3926 unsigned char *obdr_sig; 3927 int rc = 0; 3928 3929 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3930 if (!inq_buff) { 3931 rc = -ENOMEM; 3932 goto bail_out; 3933 } 3934 3935 /* Do an inquiry to the device to see what it is. */ 3936 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3937 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3938 dev_err(&h->pdev->dev, 3939 "%s: inquiry failed, device will be skipped.\n", 3940 __func__); 3941 rc = HPSA_INQUIRY_FAILED; 3942 goto bail_out; 3943 } 3944 3945 scsi_sanitize_inquiry_string(&inq_buff[8], 8); 3946 scsi_sanitize_inquiry_string(&inq_buff[16], 16); 3947 3948 this_device->devtype = (inq_buff[0] & 0x1f); 3949 memcpy(this_device->scsi3addr, scsi3addr, 8); 3950 memcpy(this_device->vendor, &inq_buff[8], 3951 sizeof(this_device->vendor)); 3952 memcpy(this_device->model, &inq_buff[16], 3953 sizeof(this_device->model)); 3954 this_device->rev = inq_buff[2]; 3955 memset(this_device->device_id, 0, 3956 sizeof(this_device->device_id)); 3957 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, 3958 sizeof(this_device->device_id)) < 0) 3959 dev_err(&h->pdev->dev, 3960 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n", 3961 h->ctlr, __func__, 3962 h->scsi_host->host_no, 3963 this_device->target, this_device->lun, 3964 scsi_device_type(this_device->devtype), 3965 this_device->model); 3966 3967 if ((this_device->devtype == TYPE_DISK || 3968 this_device->devtype == TYPE_ZBC) && 3969 is_logical_dev_addr_mode(scsi3addr)) { 3970 unsigned char volume_offline; 3971 3972 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 3973 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 3974 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 3975 volume_offline = hpsa_volume_offline(h, scsi3addr); 3976 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && 3977 h->legacy_board) { 3978 /* 3979 * Legacy boards might not support volume status 3980 */ 3981 dev_info(&h->pdev->dev, 3982 "C0:T%d:L%d Volume status not available, assuming online.\n", 3983 this_device->target, this_device->lun); 3984 volume_offline = 0; 3985 } 3986 this_device->volume_offline = volume_offline; 3987 if (volume_offline == HPSA_LV_FAILED) { 3988 rc = HPSA_LV_FAILED; 3989 dev_err(&h->pdev->dev, 3990 "%s: LV failed, device will be skipped.\n", 3991 __func__); 3992 goto bail_out; 3993 } 3994 } else { 3995 this_device->raid_level = RAID_UNKNOWN; 3996 this_device->offload_config = 0; 3997 this_device->offload_enabled = 0; 3998 this_device->offload_to_be_enabled = 0; 3999 this_device->hba_ioaccel_enabled = 0; 4000 this_device->volume_offline = 0; 4001 this_device->queue_depth = h->nr_cmds; 4002 } 4003 4004 if (this_device->external) 4005 this_device->queue_depth = EXTERNAL_QD; 4006 4007 if (is_OBDR_device) { 4008 /* See if this is a One-Button-Disaster-Recovery device 4009 * by looking for "$DR-10" at offset 43 in inquiry data. 4010 */ 4011 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 4012 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 4013 strncmp(obdr_sig, OBDR_TAPE_SIG, 4014 OBDR_SIG_LEN) == 0); 4015 } 4016 kfree(inq_buff); 4017 return 0; 4018 4019 bail_out: 4020 kfree(inq_buff); 4021 return rc; 4022 } 4023 4024 /* 4025 * Helper function to assign bus, target, lun mapping of devices. 4026 * Logical drive target and lun are assigned at this time, but 4027 * physical device lun and target assignment are deferred (assigned 4028 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 4029 */ 4030 static void figure_bus_target_lun(struct ctlr_info *h, 4031 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 4032 { 4033 u32 lunid = get_unaligned_le32(lunaddrbytes); 4034 4035 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 4036 /* physical device, target and lun filled in later */ 4037 if (is_hba_lunid(lunaddrbytes)) { 4038 int bus = HPSA_HBA_BUS; 4039 4040 if (!device->rev) 4041 bus = HPSA_LEGACY_HBA_BUS; 4042 hpsa_set_bus_target_lun(device, 4043 bus, 0, lunid & 0x3fff); 4044 } else 4045 /* defer target, lun assignment for physical devices */ 4046 hpsa_set_bus_target_lun(device, 4047 HPSA_PHYSICAL_DEVICE_BUS, -1, -1); 4048 return; 4049 } 4050 /* It's a logical device */ 4051 if (device->external) { 4052 hpsa_set_bus_target_lun(device, 4053 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, 4054 lunid & 0x00ff); 4055 return; 4056 } 4057 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, 4058 0, lunid & 0x3fff); 4059 } 4060 4061 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, 4062 int i, int nphysicals, int nlocal_logicals) 4063 { 4064 /* In report logicals, local logicals are listed first, 4065 * then any externals. 4066 */ 4067 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4068 4069 if (i == raid_ctlr_position) 4070 return 0; 4071 4072 if (i < logicals_start) 4073 return 0; 4074 4075 /* i is in logicals range, but still within local logicals */ 4076 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) 4077 return 0; 4078 4079 return 1; /* it's an external lun */ 4080 } 4081 4082 /* 4083 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 4084 * logdev. The number of luns in physdev and logdev are returned in 4085 * *nphysicals and *nlogicals, respectively. 4086 * Returns 0 on success, -1 otherwise. 4087 */ 4088 static int hpsa_gather_lun_info(struct ctlr_info *h, 4089 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 4090 struct ReportLUNdata *logdev, u32 *nlogicals) 4091 { 4092 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 4093 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 4094 return -1; 4095 } 4096 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 4097 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 4098 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 4099 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 4100 *nphysicals = HPSA_MAX_PHYS_LUN; 4101 } 4102 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 4103 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 4104 return -1; 4105 } 4106 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 4107 /* Reject Logicals in excess of our max capability. */ 4108 if (*nlogicals > HPSA_MAX_LUN) { 4109 dev_warn(&h->pdev->dev, 4110 "maximum logical LUNs (%d) exceeded. " 4111 "%d LUNs ignored.\n", HPSA_MAX_LUN, 4112 *nlogicals - HPSA_MAX_LUN); 4113 *nlogicals = HPSA_MAX_LUN; 4114 } 4115 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 4116 dev_warn(&h->pdev->dev, 4117 "maximum logical + physical LUNs (%d) exceeded. " 4118 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 4119 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 4120 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 4121 } 4122 return 0; 4123 } 4124 4125 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 4126 int i, int nphysicals, int nlogicals, 4127 struct ReportExtendedLUNdata *physdev_list, 4128 struct ReportLUNdata *logdev_list) 4129 { 4130 /* Helper function, figure out where the LUN ID info is coming from 4131 * given index i, lists of physical and logical devices, where in 4132 * the list the raid controller is supposed to appear (first or last) 4133 */ 4134 4135 int logicals_start = nphysicals + (raid_ctlr_position == 0); 4136 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 4137 4138 if (i == raid_ctlr_position) 4139 return RAID_CTLR_LUNID; 4140 4141 if (i < logicals_start) 4142 return &physdev_list->LUN[i - 4143 (raid_ctlr_position == 0)].lunid[0]; 4144 4145 if (i < last_device) 4146 return &logdev_list->LUN[i - nphysicals - 4147 (raid_ctlr_position == 0)][0]; 4148 BUG(); 4149 return NULL; 4150 } 4151 4152 /* get physical drive ioaccel handle and queue depth */ 4153 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 4154 struct hpsa_scsi_dev_t *dev, 4155 struct ReportExtendedLUNdata *rlep, int rle_index, 4156 struct bmic_identify_physical_device *id_phys) 4157 { 4158 int rc; 4159 struct ext_report_lun_entry *rle; 4160 4161 rle = &rlep->LUN[rle_index]; 4162 4163 dev->ioaccel_handle = rle->ioaccel_handle; 4164 if ((rle->device_flags & 0x08) && dev->ioaccel_handle) 4165 dev->hba_ioaccel_enabled = 1; 4166 memset(id_phys, 0, sizeof(*id_phys)); 4167 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], 4168 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, 4169 sizeof(*id_phys)); 4170 if (!rc) 4171 /* Reserve space for FW operations */ 4172 #define DRIVE_CMDS_RESERVED_FOR_FW 2 4173 #define DRIVE_QUEUE_DEPTH 7 4174 dev->queue_depth = 4175 le16_to_cpu(id_phys->current_queue_depth_limit) - 4176 DRIVE_CMDS_RESERVED_FOR_FW; 4177 else 4178 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 4179 } 4180 4181 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 4182 struct ReportExtendedLUNdata *rlep, int rle_index, 4183 struct bmic_identify_physical_device *id_phys) 4184 { 4185 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; 4186 4187 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) 4188 this_device->hba_ioaccel_enabled = 1; 4189 4190 memcpy(&this_device->active_path_index, 4191 &id_phys->active_path_number, 4192 sizeof(this_device->active_path_index)); 4193 memcpy(&this_device->path_map, 4194 &id_phys->redundant_path_present_map, 4195 sizeof(this_device->path_map)); 4196 memcpy(&this_device->box, 4197 &id_phys->alternate_paths_phys_box_on_port, 4198 sizeof(this_device->box)); 4199 memcpy(&this_device->phys_connector, 4200 &id_phys->alternate_paths_phys_connector, 4201 sizeof(this_device->phys_connector)); 4202 memcpy(&this_device->bay, 4203 &id_phys->phys_bay_in_box, 4204 sizeof(this_device->bay)); 4205 } 4206 4207 /* get number of local logical disks. */ 4208 static int hpsa_set_local_logical_count(struct ctlr_info *h, 4209 struct bmic_identify_controller *id_ctlr, 4210 u32 *nlocals) 4211 { 4212 int rc; 4213 4214 if (!id_ctlr) { 4215 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", 4216 __func__); 4217 return -ENOMEM; 4218 } 4219 memset(id_ctlr, 0, sizeof(*id_ctlr)); 4220 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); 4221 if (!rc) 4222 if (id_ctlr->configured_logical_drive_count < 255) 4223 *nlocals = id_ctlr->configured_logical_drive_count; 4224 else 4225 *nlocals = le16_to_cpu( 4226 id_ctlr->extended_logical_unit_count); 4227 else 4228 *nlocals = -1; 4229 return rc; 4230 } 4231 4232 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) 4233 { 4234 struct bmic_identify_physical_device *id_phys; 4235 bool is_spare = false; 4236 int rc; 4237 4238 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4239 if (!id_phys) 4240 return false; 4241 4242 rc = hpsa_bmic_id_physical_device(h, 4243 lunaddrbytes, 4244 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), 4245 id_phys, sizeof(*id_phys)); 4246 if (rc == 0) 4247 is_spare = (id_phys->more_flags >> 6) & 0x01; 4248 4249 kfree(id_phys); 4250 return is_spare; 4251 } 4252 4253 #define RPL_DEV_FLAG_NON_DISK 0x1 4254 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 4255 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 4256 4257 #define BMIC_DEVICE_TYPE_ENCLOSURE 6 4258 4259 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, 4260 struct ext_report_lun_entry *rle) 4261 { 4262 u8 device_flags; 4263 u8 device_type; 4264 4265 if (!MASKED_DEVICE(lunaddrbytes)) 4266 return false; 4267 4268 device_flags = rle->device_flags; 4269 device_type = rle->device_type; 4270 4271 if (device_flags & RPL_DEV_FLAG_NON_DISK) { 4272 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) 4273 return false; 4274 return true; 4275 } 4276 4277 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) 4278 return false; 4279 4280 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) 4281 return false; 4282 4283 /* 4284 * Spares may be spun down, we do not want to 4285 * do an Inquiry to a RAID set spare drive as 4286 * that would have them spun up, that is a 4287 * performance hit because I/O to the RAID device 4288 * stops while the spin up occurs which can take 4289 * over 50 seconds. 4290 */ 4291 if (hpsa_is_disk_spare(h, lunaddrbytes)) 4292 return true; 4293 4294 return false; 4295 } 4296 4297 static void hpsa_update_scsi_devices(struct ctlr_info *h) 4298 { 4299 /* the idea here is we could get notified 4300 * that some devices have changed, so we do a report 4301 * physical luns and report logical luns cmd, and adjust 4302 * our list of devices accordingly. 4303 * 4304 * The scsi3addr's of devices won't change so long as the 4305 * adapter is not reset. That means we can rescan and 4306 * tell which devices we already know about, vs. new 4307 * devices, vs. disappearing devices. 4308 */ 4309 struct ReportExtendedLUNdata *physdev_list = NULL; 4310 struct ReportLUNdata *logdev_list = NULL; 4311 struct bmic_identify_physical_device *id_phys = NULL; 4312 struct bmic_identify_controller *id_ctlr = NULL; 4313 u32 nphysicals = 0; 4314 u32 nlogicals = 0; 4315 u32 nlocal_logicals = 0; 4316 u32 ndev_allocated = 0; 4317 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 4318 int ncurrent = 0; 4319 int i, n_ext_target_devs, ndevs_to_allocate; 4320 int raid_ctlr_position; 4321 bool physical_device; 4322 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 4323 4324 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); 4325 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 4326 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 4327 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 4328 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 4329 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); 4330 4331 if (!currentsd || !physdev_list || !logdev_list || 4332 !tmpdevice || !id_phys || !id_ctlr) { 4333 dev_err(&h->pdev->dev, "out of memory\n"); 4334 goto out; 4335 } 4336 memset(lunzerobits, 0, sizeof(lunzerobits)); 4337 4338 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ 4339 4340 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 4341 logdev_list, &nlogicals)) { 4342 h->drv_req_rescan = 1; 4343 goto out; 4344 } 4345 4346 /* Set number of local logicals (non PTRAID) */ 4347 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { 4348 dev_warn(&h->pdev->dev, 4349 "%s: Can't determine number of local logical devices.\n", 4350 __func__); 4351 } 4352 4353 /* We might see up to the maximum number of logical and physical disks 4354 * plus external target devices, and a device for the local RAID 4355 * controller. 4356 */ 4357 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 4358 4359 hpsa_ext_ctrl_present(h, physdev_list); 4360 4361 /* Allocate the per device structures */ 4362 for (i = 0; i < ndevs_to_allocate; i++) { 4363 if (i >= HPSA_MAX_DEVICES) { 4364 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 4365 " %d devices ignored.\n", HPSA_MAX_DEVICES, 4366 ndevs_to_allocate - HPSA_MAX_DEVICES); 4367 break; 4368 } 4369 4370 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 4371 if (!currentsd[i]) { 4372 h->drv_req_rescan = 1; 4373 goto out; 4374 } 4375 ndev_allocated++; 4376 } 4377 4378 if (is_scsi_rev_5(h)) 4379 raid_ctlr_position = 0; 4380 else 4381 raid_ctlr_position = nphysicals + nlogicals; 4382 4383 /* adjust our table of devices */ 4384 n_ext_target_devs = 0; 4385 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 4386 u8 *lunaddrbytes, is_OBDR = 0; 4387 int rc = 0; 4388 int phys_dev_index = i - (raid_ctlr_position == 0); 4389 bool skip_device = false; 4390 4391 memset(tmpdevice, 0, sizeof(*tmpdevice)); 4392 4393 physical_device = i < nphysicals + (raid_ctlr_position == 0); 4394 4395 /* Figure out where the LUN ID info is coming from */ 4396 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 4397 i, nphysicals, nlogicals, physdev_list, logdev_list); 4398 4399 /* Determine if this is a lun from an external target array */ 4400 tmpdevice->external = 4401 figure_external_status(h, raid_ctlr_position, i, 4402 nphysicals, nlocal_logicals); 4403 4404 /* 4405 * Skip over some devices such as a spare. 4406 */ 4407 if (!tmpdevice->external && physical_device) { 4408 skip_device = hpsa_skip_device(h, lunaddrbytes, 4409 &physdev_list->LUN[phys_dev_index]); 4410 if (skip_device) 4411 continue; 4412 } 4413 4414 /* Get device type, vendor, model, device id, raid_map */ 4415 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 4416 &is_OBDR); 4417 if (rc == -ENOMEM) { 4418 dev_warn(&h->pdev->dev, 4419 "Out of memory, rescan deferred.\n"); 4420 h->drv_req_rescan = 1; 4421 goto out; 4422 } 4423 if (rc) { 4424 h->drv_req_rescan = 1; 4425 continue; 4426 } 4427 4428 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 4429 this_device = currentsd[ncurrent]; 4430 4431 *this_device = *tmpdevice; 4432 this_device->physical_device = physical_device; 4433 4434 /* 4435 * Expose all devices except for physical devices that 4436 * are masked. 4437 */ 4438 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) 4439 this_device->expose_device = 0; 4440 else 4441 this_device->expose_device = 1; 4442 4443 4444 /* 4445 * Get the SAS address for physical devices that are exposed. 4446 */ 4447 if (this_device->physical_device && this_device->expose_device) 4448 hpsa_get_sas_address(h, lunaddrbytes, this_device); 4449 4450 switch (this_device->devtype) { 4451 case TYPE_ROM: 4452 /* We don't *really* support actual CD-ROM devices, 4453 * just "One Button Disaster Recovery" tape drive 4454 * which temporarily pretends to be a CD-ROM drive. 4455 * So we check that the device is really an OBDR tape 4456 * device by checking for "$DR-10" in bytes 43-48 of 4457 * the inquiry data. 4458 */ 4459 if (is_OBDR) 4460 ncurrent++; 4461 break; 4462 case TYPE_DISK: 4463 case TYPE_ZBC: 4464 if (this_device->physical_device) { 4465 /* The disk is in HBA mode. */ 4466 /* Never use RAID mapper in HBA mode. */ 4467 this_device->offload_enabled = 0; 4468 hpsa_get_ioaccel_drive_info(h, this_device, 4469 physdev_list, phys_dev_index, id_phys); 4470 hpsa_get_path_info(this_device, 4471 physdev_list, phys_dev_index, id_phys); 4472 } 4473 ncurrent++; 4474 break; 4475 case TYPE_TAPE: 4476 case TYPE_MEDIUM_CHANGER: 4477 ncurrent++; 4478 break; 4479 case TYPE_ENCLOSURE: 4480 if (!this_device->external) 4481 hpsa_get_enclosure_info(h, lunaddrbytes, 4482 physdev_list, phys_dev_index, 4483 this_device); 4484 ncurrent++; 4485 break; 4486 case TYPE_RAID: 4487 /* Only present the Smartarray HBA as a RAID controller. 4488 * If it's a RAID controller other than the HBA itself 4489 * (an external RAID controller, MSA500 or similar) 4490 * don't present it. 4491 */ 4492 if (!is_hba_lunid(lunaddrbytes)) 4493 break; 4494 ncurrent++; 4495 break; 4496 default: 4497 break; 4498 } 4499 if (ncurrent >= HPSA_MAX_DEVICES) 4500 break; 4501 } 4502 4503 if (h->sas_host == NULL) { 4504 int rc = 0; 4505 4506 rc = hpsa_add_sas_host(h); 4507 if (rc) { 4508 dev_warn(&h->pdev->dev, 4509 "Could not add sas host %d\n", rc); 4510 goto out; 4511 } 4512 } 4513 4514 adjust_hpsa_scsi_table(h, currentsd, ncurrent); 4515 out: 4516 kfree(tmpdevice); 4517 for (i = 0; i < ndev_allocated; i++) 4518 kfree(currentsd[i]); 4519 kfree(currentsd); 4520 kfree(physdev_list); 4521 kfree(logdev_list); 4522 kfree(id_ctlr); 4523 kfree(id_phys); 4524 } 4525 4526 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 4527 struct scatterlist *sg) 4528 { 4529 u64 addr64 = (u64) sg_dma_address(sg); 4530 unsigned int len = sg_dma_len(sg); 4531 4532 desc->Addr = cpu_to_le64(addr64); 4533 desc->Len = cpu_to_le32(len); 4534 desc->Ext = 0; 4535 } 4536 4537 /* 4538 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 4539 * dma mapping and fills in the scatter gather entries of the 4540 * hpsa command, cp. 4541 */ 4542 static int hpsa_scatter_gather(struct ctlr_info *h, 4543 struct CommandList *cp, 4544 struct scsi_cmnd *cmd) 4545 { 4546 struct scatterlist *sg; 4547 int use_sg, i, sg_limit, chained, last_sg; 4548 struct SGDescriptor *curr_sg; 4549 4550 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4551 4552 use_sg = scsi_dma_map(cmd); 4553 if (use_sg < 0) 4554 return use_sg; 4555 4556 if (!use_sg) 4557 goto sglist_finished; 4558 4559 /* 4560 * If the number of entries is greater than the max for a single list, 4561 * then we have a chained list; we will set up all but one entry in the 4562 * first list (the last entry is saved for link information); 4563 * otherwise, we don't have a chained list and we'll set up at each of 4564 * the entries in the one list. 4565 */ 4566 curr_sg = cp->SG; 4567 chained = use_sg > h->max_cmd_sg_entries; 4568 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 4569 last_sg = scsi_sg_count(cmd) - 1; 4570 scsi_for_each_sg(cmd, sg, sg_limit, i) { 4571 hpsa_set_sg_descriptor(curr_sg, sg); 4572 curr_sg++; 4573 } 4574 4575 if (chained) { 4576 /* 4577 * Continue with the chained list. Set curr_sg to the chained 4578 * list. Modify the limit to the total count less the entries 4579 * we've already set up. Resume the scan at the list entry 4580 * where the previous loop left off. 4581 */ 4582 curr_sg = h->cmd_sg_list[cp->cmdindex]; 4583 sg_limit = use_sg - sg_limit; 4584 for_each_sg(sg, sg, sg_limit, i) { 4585 hpsa_set_sg_descriptor(curr_sg, sg); 4586 curr_sg++; 4587 } 4588 } 4589 4590 /* Back the pointer up to the last entry and mark it as "last". */ 4591 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 4592 4593 if (use_sg + chained > h->maxSG) 4594 h->maxSG = use_sg + chained; 4595 4596 if (chained) { 4597 cp->Header.SGList = h->max_cmd_sg_entries; 4598 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 4599 if (hpsa_map_sg_chain_block(h, cp)) { 4600 scsi_dma_unmap(cmd); 4601 return -1; 4602 } 4603 return 0; 4604 } 4605 4606 sglist_finished: 4607 4608 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 4609 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 4610 return 0; 4611 } 4612 4613 static inline void warn_zero_length_transfer(struct ctlr_info *h, 4614 u8 *cdb, int cdb_len, 4615 const char *func) 4616 { 4617 dev_warn(&h->pdev->dev, 4618 "%s: Blocking zero-length request: CDB:%*phN\n", 4619 func, cdb_len, cdb); 4620 } 4621 4622 #define IO_ACCEL_INELIGIBLE 1 4623 /* zero-length transfers trigger hardware errors. */ 4624 static bool is_zero_length_transfer(u8 *cdb) 4625 { 4626 u32 block_cnt; 4627 4628 /* Block zero-length transfer sizes on certain commands. */ 4629 switch (cdb[0]) { 4630 case READ_10: 4631 case WRITE_10: 4632 case VERIFY: /* 0x2F */ 4633 case WRITE_VERIFY: /* 0x2E */ 4634 block_cnt = get_unaligned_be16(&cdb[7]); 4635 break; 4636 case READ_12: 4637 case WRITE_12: 4638 case VERIFY_12: /* 0xAF */ 4639 case WRITE_VERIFY_12: /* 0xAE */ 4640 block_cnt = get_unaligned_be32(&cdb[6]); 4641 break; 4642 case READ_16: 4643 case WRITE_16: 4644 case VERIFY_16: /* 0x8F */ 4645 block_cnt = get_unaligned_be32(&cdb[10]); 4646 break; 4647 default: 4648 return false; 4649 } 4650 4651 return block_cnt == 0; 4652 } 4653 4654 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 4655 { 4656 int is_write = 0; 4657 u32 block; 4658 u32 block_cnt; 4659 4660 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 4661 switch (cdb[0]) { 4662 case WRITE_6: 4663 case WRITE_12: 4664 is_write = 1; 4665 case READ_6: 4666 case READ_12: 4667 if (*cdb_len == 6) { 4668 block = (((cdb[1] & 0x1F) << 16) | 4669 (cdb[2] << 8) | 4670 cdb[3]); 4671 block_cnt = cdb[4]; 4672 if (block_cnt == 0) 4673 block_cnt = 256; 4674 } else { 4675 BUG_ON(*cdb_len != 12); 4676 block = get_unaligned_be32(&cdb[2]); 4677 block_cnt = get_unaligned_be32(&cdb[6]); 4678 } 4679 if (block_cnt > 0xffff) 4680 return IO_ACCEL_INELIGIBLE; 4681 4682 cdb[0] = is_write ? WRITE_10 : READ_10; 4683 cdb[1] = 0; 4684 cdb[2] = (u8) (block >> 24); 4685 cdb[3] = (u8) (block >> 16); 4686 cdb[4] = (u8) (block >> 8); 4687 cdb[5] = (u8) (block); 4688 cdb[6] = 0; 4689 cdb[7] = (u8) (block_cnt >> 8); 4690 cdb[8] = (u8) (block_cnt); 4691 cdb[9] = 0; 4692 *cdb_len = 10; 4693 break; 4694 } 4695 return 0; 4696 } 4697 4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4699 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4700 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4701 { 4702 struct scsi_cmnd *cmd = c->scsi_cmd; 4703 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4704 unsigned int len; 4705 unsigned int total_len = 0; 4706 struct scatterlist *sg; 4707 u64 addr64; 4708 int use_sg, i; 4709 struct SGDescriptor *curr_sg; 4710 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4711 4712 /* TODO: implement chaining support */ 4713 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4714 atomic_dec(&phys_disk->ioaccel_cmds_out); 4715 return IO_ACCEL_INELIGIBLE; 4716 } 4717 4718 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4719 4720 if (is_zero_length_transfer(cdb)) { 4721 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4722 atomic_dec(&phys_disk->ioaccel_cmds_out); 4723 return IO_ACCEL_INELIGIBLE; 4724 } 4725 4726 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4727 atomic_dec(&phys_disk->ioaccel_cmds_out); 4728 return IO_ACCEL_INELIGIBLE; 4729 } 4730 4731 c->cmd_type = CMD_IOACCEL1; 4732 4733 /* Adjust the DMA address to point to the accelerated command buffer */ 4734 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4735 (c->cmdindex * sizeof(*cp)); 4736 BUG_ON(c->busaddr & 0x0000007F); 4737 4738 use_sg = scsi_dma_map(cmd); 4739 if (use_sg < 0) { 4740 atomic_dec(&phys_disk->ioaccel_cmds_out); 4741 return use_sg; 4742 } 4743 4744 if (use_sg) { 4745 curr_sg = cp->SG; 4746 scsi_for_each_sg(cmd, sg, use_sg, i) { 4747 addr64 = (u64) sg_dma_address(sg); 4748 len = sg_dma_len(sg); 4749 total_len += len; 4750 curr_sg->Addr = cpu_to_le64(addr64); 4751 curr_sg->Len = cpu_to_le32(len); 4752 curr_sg->Ext = cpu_to_le32(0); 4753 curr_sg++; 4754 } 4755 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4756 4757 switch (cmd->sc_data_direction) { 4758 case DMA_TO_DEVICE: 4759 control |= IOACCEL1_CONTROL_DATA_OUT; 4760 break; 4761 case DMA_FROM_DEVICE: 4762 control |= IOACCEL1_CONTROL_DATA_IN; 4763 break; 4764 case DMA_NONE: 4765 control |= IOACCEL1_CONTROL_NODATAXFER; 4766 break; 4767 default: 4768 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4769 cmd->sc_data_direction); 4770 BUG(); 4771 break; 4772 } 4773 } else { 4774 control |= IOACCEL1_CONTROL_NODATAXFER; 4775 } 4776 4777 c->Header.SGList = use_sg; 4778 /* Fill out the command structure to submit */ 4779 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4780 cp->transfer_len = cpu_to_le32(total_len); 4781 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4782 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4783 cp->control = cpu_to_le32(control); 4784 memcpy(cp->CDB, cdb, cdb_len); 4785 memcpy(cp->CISS_LUN, scsi3addr, 8); 4786 /* Tag was already set at init time. */ 4787 enqueue_cmd_and_start_io(h, c); 4788 return 0; 4789 } 4790 4791 /* 4792 * Queue a command directly to a device behind the controller using the 4793 * I/O accelerator path. 4794 */ 4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4796 struct CommandList *c) 4797 { 4798 struct scsi_cmnd *cmd = c->scsi_cmd; 4799 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4800 4801 if (!dev) 4802 return -1; 4803 4804 c->phys_disk = dev; 4805 4806 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4807 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4808 } 4809 4810 /* 4811 * Set encryption parameters for the ioaccel2 request 4812 */ 4813 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4814 struct CommandList *c, struct io_accel2_cmd *cp) 4815 { 4816 struct scsi_cmnd *cmd = c->scsi_cmd; 4817 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4818 struct raid_map_data *map = &dev->raid_map; 4819 u64 first_block; 4820 4821 /* Are we doing encryption on this device */ 4822 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4823 return; 4824 /* Set the data encryption key index. */ 4825 cp->dekindex = map->dekindex; 4826 4827 /* Set the encryption enable flag, encoded into direction field. */ 4828 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4829 4830 /* Set encryption tweak values based on logical block address 4831 * If block size is 512, tweak value is LBA. 4832 * For other block sizes, tweak is (LBA * block size)/ 512) 4833 */ 4834 switch (cmd->cmnd[0]) { 4835 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4836 case READ_6: 4837 case WRITE_6: 4838 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 4839 (cmd->cmnd[2] << 8) | 4840 cmd->cmnd[3]); 4841 break; 4842 case WRITE_10: 4843 case READ_10: 4844 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4845 case WRITE_12: 4846 case READ_12: 4847 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4848 break; 4849 case WRITE_16: 4850 case READ_16: 4851 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4852 break; 4853 default: 4854 dev_err(&h->pdev->dev, 4855 "ERROR: %s: size (0x%x) not supported for encryption\n", 4856 __func__, cmd->cmnd[0]); 4857 BUG(); 4858 break; 4859 } 4860 4861 if (le32_to_cpu(map->volume_blk_size) != 512) 4862 first_block = first_block * 4863 le32_to_cpu(map->volume_blk_size)/512; 4864 4865 cp->tweak_lower = cpu_to_le32(first_block); 4866 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4867 } 4868 4869 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4870 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4871 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4872 { 4873 struct scsi_cmnd *cmd = c->scsi_cmd; 4874 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4875 struct ioaccel2_sg_element *curr_sg; 4876 int use_sg, i; 4877 struct scatterlist *sg; 4878 u64 addr64; 4879 u32 len; 4880 u32 total_len = 0; 4881 4882 if (!cmd->device) 4883 return -1; 4884 4885 if (!cmd->device->hostdata) 4886 return -1; 4887 4888 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4889 4890 if (is_zero_length_transfer(cdb)) { 4891 warn_zero_length_transfer(h, cdb, cdb_len, __func__); 4892 atomic_dec(&phys_disk->ioaccel_cmds_out); 4893 return IO_ACCEL_INELIGIBLE; 4894 } 4895 4896 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4897 atomic_dec(&phys_disk->ioaccel_cmds_out); 4898 return IO_ACCEL_INELIGIBLE; 4899 } 4900 4901 c->cmd_type = CMD_IOACCEL2; 4902 /* Adjust the DMA address to point to the accelerated command buffer */ 4903 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4904 (c->cmdindex * sizeof(*cp)); 4905 BUG_ON(c->busaddr & 0x0000007F); 4906 4907 memset(cp, 0, sizeof(*cp)); 4908 cp->IU_type = IOACCEL2_IU_TYPE; 4909 4910 use_sg = scsi_dma_map(cmd); 4911 if (use_sg < 0) { 4912 atomic_dec(&phys_disk->ioaccel_cmds_out); 4913 return use_sg; 4914 } 4915 4916 if (use_sg) { 4917 curr_sg = cp->sg; 4918 if (use_sg > h->ioaccel_maxsg) { 4919 addr64 = le64_to_cpu( 4920 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4921 curr_sg->address = cpu_to_le64(addr64); 4922 curr_sg->length = 0; 4923 curr_sg->reserved[0] = 0; 4924 curr_sg->reserved[1] = 0; 4925 curr_sg->reserved[2] = 0; 4926 curr_sg->chain_indicator = 0x80; 4927 4928 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4929 } 4930 scsi_for_each_sg(cmd, sg, use_sg, i) { 4931 addr64 = (u64) sg_dma_address(sg); 4932 len = sg_dma_len(sg); 4933 total_len += len; 4934 curr_sg->address = cpu_to_le64(addr64); 4935 curr_sg->length = cpu_to_le32(len); 4936 curr_sg->reserved[0] = 0; 4937 curr_sg->reserved[1] = 0; 4938 curr_sg->reserved[2] = 0; 4939 curr_sg->chain_indicator = 0; 4940 curr_sg++; 4941 } 4942 4943 switch (cmd->sc_data_direction) { 4944 case DMA_TO_DEVICE: 4945 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4946 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4947 break; 4948 case DMA_FROM_DEVICE: 4949 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4950 cp->direction |= IOACCEL2_DIR_DATA_IN; 4951 break; 4952 case DMA_NONE: 4953 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4954 cp->direction |= IOACCEL2_DIR_NO_DATA; 4955 break; 4956 default: 4957 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4958 cmd->sc_data_direction); 4959 BUG(); 4960 break; 4961 } 4962 } else { 4963 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4964 cp->direction |= IOACCEL2_DIR_NO_DATA; 4965 } 4966 4967 /* Set encryption parameters, if necessary */ 4968 set_encrypt_ioaccel2(h, c, cp); 4969 4970 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 4971 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 4972 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 4973 4974 cp->data_len = cpu_to_le32(total_len); 4975 cp->err_ptr = cpu_to_le64(c->busaddr + 4976 offsetof(struct io_accel2_cmd, error_data)); 4977 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 4978 4979 /* fill in sg elements */ 4980 if (use_sg > h->ioaccel_maxsg) { 4981 cp->sg_count = 1; 4982 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); 4983 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 4984 atomic_dec(&phys_disk->ioaccel_cmds_out); 4985 scsi_dma_unmap(cmd); 4986 return -1; 4987 } 4988 } else 4989 cp->sg_count = (u8) use_sg; 4990 4991 enqueue_cmd_and_start_io(h, c); 4992 return 0; 4993 } 4994 4995 /* 4996 * Queue a command to the correct I/O accelerator path. 4997 */ 4998 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 4999 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 5000 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 5001 { 5002 if (!c->scsi_cmd->device) 5003 return -1; 5004 5005 if (!c->scsi_cmd->device->hostdata) 5006 return -1; 5007 5008 /* Try to honor the device's queue depth */ 5009 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 5010 phys_disk->queue_depth) { 5011 atomic_dec(&phys_disk->ioaccel_cmds_out); 5012 return IO_ACCEL_INELIGIBLE; 5013 } 5014 if (h->transMethod & CFGTBL_Trans_io_accel1) 5015 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 5016 cdb, cdb_len, scsi3addr, 5017 phys_disk); 5018 else 5019 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 5020 cdb, cdb_len, scsi3addr, 5021 phys_disk); 5022 } 5023 5024 static void raid_map_helper(struct raid_map_data *map, 5025 int offload_to_mirror, u32 *map_index, u32 *current_group) 5026 { 5027 if (offload_to_mirror == 0) { 5028 /* use physical disk in the first mirrored group. */ 5029 *map_index %= le16_to_cpu(map->data_disks_per_row); 5030 return; 5031 } 5032 do { 5033 /* determine mirror group that *map_index indicates */ 5034 *current_group = *map_index / 5035 le16_to_cpu(map->data_disks_per_row); 5036 if (offload_to_mirror == *current_group) 5037 continue; 5038 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 5039 /* select map index from next group */ 5040 *map_index += le16_to_cpu(map->data_disks_per_row); 5041 (*current_group)++; 5042 } else { 5043 /* select map index from first group */ 5044 *map_index %= le16_to_cpu(map->data_disks_per_row); 5045 *current_group = 0; 5046 } 5047 } while (offload_to_mirror != *current_group); 5048 } 5049 5050 /* 5051 * Attempt to perform offload RAID mapping for a logical volume I/O. 5052 */ 5053 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 5054 struct CommandList *c) 5055 { 5056 struct scsi_cmnd *cmd = c->scsi_cmd; 5057 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5058 struct raid_map_data *map = &dev->raid_map; 5059 struct raid_map_disk_data *dd = &map->data[0]; 5060 int is_write = 0; 5061 u32 map_index; 5062 u64 first_block, last_block; 5063 u32 block_cnt; 5064 u32 blocks_per_row; 5065 u64 first_row, last_row; 5066 u32 first_row_offset, last_row_offset; 5067 u32 first_column, last_column; 5068 u64 r0_first_row, r0_last_row; 5069 u32 r5or6_blocks_per_row; 5070 u64 r5or6_first_row, r5or6_last_row; 5071 u32 r5or6_first_row_offset, r5or6_last_row_offset; 5072 u32 r5or6_first_column, r5or6_last_column; 5073 u32 total_disks_per_row; 5074 u32 stripesize; 5075 u32 first_group, last_group, current_group; 5076 u32 map_row; 5077 u32 disk_handle; 5078 u64 disk_block; 5079 u32 disk_block_cnt; 5080 u8 cdb[16]; 5081 u8 cdb_len; 5082 u16 strip_size; 5083 #if BITS_PER_LONG == 32 5084 u64 tmpdiv; 5085 #endif 5086 int offload_to_mirror; 5087 5088 if (!dev) 5089 return -1; 5090 5091 /* check for valid opcode, get LBA and block count */ 5092 switch (cmd->cmnd[0]) { 5093 case WRITE_6: 5094 is_write = 1; 5095 case READ_6: 5096 first_block = (((cmd->cmnd[1] & 0x1F) << 16) | 5097 (cmd->cmnd[2] << 8) | 5098 cmd->cmnd[3]); 5099 block_cnt = cmd->cmnd[4]; 5100 if (block_cnt == 0) 5101 block_cnt = 256; 5102 break; 5103 case WRITE_10: 5104 is_write = 1; 5105 case READ_10: 5106 first_block = 5107 (((u64) cmd->cmnd[2]) << 24) | 5108 (((u64) cmd->cmnd[3]) << 16) | 5109 (((u64) cmd->cmnd[4]) << 8) | 5110 cmd->cmnd[5]; 5111 block_cnt = 5112 (((u32) cmd->cmnd[7]) << 8) | 5113 cmd->cmnd[8]; 5114 break; 5115 case WRITE_12: 5116 is_write = 1; 5117 case READ_12: 5118 first_block = 5119 (((u64) cmd->cmnd[2]) << 24) | 5120 (((u64) cmd->cmnd[3]) << 16) | 5121 (((u64) cmd->cmnd[4]) << 8) | 5122 cmd->cmnd[5]; 5123 block_cnt = 5124 (((u32) cmd->cmnd[6]) << 24) | 5125 (((u32) cmd->cmnd[7]) << 16) | 5126 (((u32) cmd->cmnd[8]) << 8) | 5127 cmd->cmnd[9]; 5128 break; 5129 case WRITE_16: 5130 is_write = 1; 5131 case READ_16: 5132 first_block = 5133 (((u64) cmd->cmnd[2]) << 56) | 5134 (((u64) cmd->cmnd[3]) << 48) | 5135 (((u64) cmd->cmnd[4]) << 40) | 5136 (((u64) cmd->cmnd[5]) << 32) | 5137 (((u64) cmd->cmnd[6]) << 24) | 5138 (((u64) cmd->cmnd[7]) << 16) | 5139 (((u64) cmd->cmnd[8]) << 8) | 5140 cmd->cmnd[9]; 5141 block_cnt = 5142 (((u32) cmd->cmnd[10]) << 24) | 5143 (((u32) cmd->cmnd[11]) << 16) | 5144 (((u32) cmd->cmnd[12]) << 8) | 5145 cmd->cmnd[13]; 5146 break; 5147 default: 5148 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 5149 } 5150 last_block = first_block + block_cnt - 1; 5151 5152 /* check for write to non-RAID-0 */ 5153 if (is_write && dev->raid_level != 0) 5154 return IO_ACCEL_INELIGIBLE; 5155 5156 /* check for invalid block or wraparound */ 5157 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 5158 last_block < first_block) 5159 return IO_ACCEL_INELIGIBLE; 5160 5161 /* calculate stripe information for the request */ 5162 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 5163 le16_to_cpu(map->strip_size); 5164 strip_size = le16_to_cpu(map->strip_size); 5165 #if BITS_PER_LONG == 32 5166 tmpdiv = first_block; 5167 (void) do_div(tmpdiv, blocks_per_row); 5168 first_row = tmpdiv; 5169 tmpdiv = last_block; 5170 (void) do_div(tmpdiv, blocks_per_row); 5171 last_row = tmpdiv; 5172 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5173 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5174 tmpdiv = first_row_offset; 5175 (void) do_div(tmpdiv, strip_size); 5176 first_column = tmpdiv; 5177 tmpdiv = last_row_offset; 5178 (void) do_div(tmpdiv, strip_size); 5179 last_column = tmpdiv; 5180 #else 5181 first_row = first_block / blocks_per_row; 5182 last_row = last_block / blocks_per_row; 5183 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 5184 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 5185 first_column = first_row_offset / strip_size; 5186 last_column = last_row_offset / strip_size; 5187 #endif 5188 5189 /* if this isn't a single row/column then give to the controller */ 5190 if ((first_row != last_row) || (first_column != last_column)) 5191 return IO_ACCEL_INELIGIBLE; 5192 5193 /* proceeding with driver mapping */ 5194 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 5195 le16_to_cpu(map->metadata_disks_per_row); 5196 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5197 le16_to_cpu(map->row_cnt); 5198 map_index = (map_row * total_disks_per_row) + first_column; 5199 5200 switch (dev->raid_level) { 5201 case HPSA_RAID_0: 5202 break; /* nothing special to do */ 5203 case HPSA_RAID_1: 5204 /* Handles load balance across RAID 1 members. 5205 * (2-drive R1 and R10 with even # of drives.) 5206 * Appropriate for SSDs, not optimal for HDDs 5207 */ 5208 BUG_ON(le16_to_cpu(map->layout_map_count) != 2); 5209 if (dev->offload_to_mirror) 5210 map_index += le16_to_cpu(map->data_disks_per_row); 5211 dev->offload_to_mirror = !dev->offload_to_mirror; 5212 break; 5213 case HPSA_RAID_ADM: 5214 /* Handles N-way mirrors (R1-ADM) 5215 * and R10 with # of drives divisible by 3.) 5216 */ 5217 BUG_ON(le16_to_cpu(map->layout_map_count) != 3); 5218 5219 offload_to_mirror = dev->offload_to_mirror; 5220 raid_map_helper(map, offload_to_mirror, 5221 &map_index, ¤t_group); 5222 /* set mirror group to use next time */ 5223 offload_to_mirror = 5224 (offload_to_mirror >= 5225 le16_to_cpu(map->layout_map_count) - 1) 5226 ? 0 : offload_to_mirror + 1; 5227 dev->offload_to_mirror = offload_to_mirror; 5228 /* Avoid direct use of dev->offload_to_mirror within this 5229 * function since multiple threads might simultaneously 5230 * increment it beyond the range of dev->layout_map_count -1. 5231 */ 5232 break; 5233 case HPSA_RAID_5: 5234 case HPSA_RAID_6: 5235 if (le16_to_cpu(map->layout_map_count) <= 1) 5236 break; 5237 5238 /* Verify first and last block are in same RAID group */ 5239 r5or6_blocks_per_row = 5240 le16_to_cpu(map->strip_size) * 5241 le16_to_cpu(map->data_disks_per_row); 5242 BUG_ON(r5or6_blocks_per_row == 0); 5243 stripesize = r5or6_blocks_per_row * 5244 le16_to_cpu(map->layout_map_count); 5245 #if BITS_PER_LONG == 32 5246 tmpdiv = first_block; 5247 first_group = do_div(tmpdiv, stripesize); 5248 tmpdiv = first_group; 5249 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5250 first_group = tmpdiv; 5251 tmpdiv = last_block; 5252 last_group = do_div(tmpdiv, stripesize); 5253 tmpdiv = last_group; 5254 (void) do_div(tmpdiv, r5or6_blocks_per_row); 5255 last_group = tmpdiv; 5256 #else 5257 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 5258 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 5259 #endif 5260 if (first_group != last_group) 5261 return IO_ACCEL_INELIGIBLE; 5262 5263 /* Verify request is in a single row of RAID 5/6 */ 5264 #if BITS_PER_LONG == 32 5265 tmpdiv = first_block; 5266 (void) do_div(tmpdiv, stripesize); 5267 first_row = r5or6_first_row = r0_first_row = tmpdiv; 5268 tmpdiv = last_block; 5269 (void) do_div(tmpdiv, stripesize); 5270 r5or6_last_row = r0_last_row = tmpdiv; 5271 #else 5272 first_row = r5or6_first_row = r0_first_row = 5273 first_block / stripesize; 5274 r5or6_last_row = r0_last_row = last_block / stripesize; 5275 #endif 5276 if (r5or6_first_row != r5or6_last_row) 5277 return IO_ACCEL_INELIGIBLE; 5278 5279 5280 /* Verify request is in a single column */ 5281 #if BITS_PER_LONG == 32 5282 tmpdiv = first_block; 5283 first_row_offset = do_div(tmpdiv, stripesize); 5284 tmpdiv = first_row_offset; 5285 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 5286 r5or6_first_row_offset = first_row_offset; 5287 tmpdiv = last_block; 5288 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 5289 tmpdiv = r5or6_last_row_offset; 5290 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 5291 tmpdiv = r5or6_first_row_offset; 5292 (void) do_div(tmpdiv, map->strip_size); 5293 first_column = r5or6_first_column = tmpdiv; 5294 tmpdiv = r5or6_last_row_offset; 5295 (void) do_div(tmpdiv, map->strip_size); 5296 r5or6_last_column = tmpdiv; 5297 #else 5298 first_row_offset = r5or6_first_row_offset = 5299 (u32)((first_block % stripesize) % 5300 r5or6_blocks_per_row); 5301 5302 r5or6_last_row_offset = 5303 (u32)((last_block % stripesize) % 5304 r5or6_blocks_per_row); 5305 5306 first_column = r5or6_first_column = 5307 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 5308 r5or6_last_column = 5309 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 5310 #endif 5311 if (r5or6_first_column != r5or6_last_column) 5312 return IO_ACCEL_INELIGIBLE; 5313 5314 /* Request is eligible */ 5315 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 5316 le16_to_cpu(map->row_cnt); 5317 5318 map_index = (first_group * 5319 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 5320 (map_row * total_disks_per_row) + first_column; 5321 break; 5322 default: 5323 return IO_ACCEL_INELIGIBLE; 5324 } 5325 5326 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 5327 return IO_ACCEL_INELIGIBLE; 5328 5329 c->phys_disk = dev->phys_disk[map_index]; 5330 if (!c->phys_disk) 5331 return IO_ACCEL_INELIGIBLE; 5332 5333 disk_handle = dd[map_index].ioaccel_handle; 5334 disk_block = le64_to_cpu(map->disk_starting_blk) + 5335 first_row * le16_to_cpu(map->strip_size) + 5336 (first_row_offset - first_column * 5337 le16_to_cpu(map->strip_size)); 5338 disk_block_cnt = block_cnt; 5339 5340 /* handle differing logical/physical block sizes */ 5341 if (map->phys_blk_shift) { 5342 disk_block <<= map->phys_blk_shift; 5343 disk_block_cnt <<= map->phys_blk_shift; 5344 } 5345 BUG_ON(disk_block_cnt > 0xffff); 5346 5347 /* build the new CDB for the physical disk I/O */ 5348 if (disk_block > 0xffffffff) { 5349 cdb[0] = is_write ? WRITE_16 : READ_16; 5350 cdb[1] = 0; 5351 cdb[2] = (u8) (disk_block >> 56); 5352 cdb[3] = (u8) (disk_block >> 48); 5353 cdb[4] = (u8) (disk_block >> 40); 5354 cdb[5] = (u8) (disk_block >> 32); 5355 cdb[6] = (u8) (disk_block >> 24); 5356 cdb[7] = (u8) (disk_block >> 16); 5357 cdb[8] = (u8) (disk_block >> 8); 5358 cdb[9] = (u8) (disk_block); 5359 cdb[10] = (u8) (disk_block_cnt >> 24); 5360 cdb[11] = (u8) (disk_block_cnt >> 16); 5361 cdb[12] = (u8) (disk_block_cnt >> 8); 5362 cdb[13] = (u8) (disk_block_cnt); 5363 cdb[14] = 0; 5364 cdb[15] = 0; 5365 cdb_len = 16; 5366 } else { 5367 cdb[0] = is_write ? WRITE_10 : READ_10; 5368 cdb[1] = 0; 5369 cdb[2] = (u8) (disk_block >> 24); 5370 cdb[3] = (u8) (disk_block >> 16); 5371 cdb[4] = (u8) (disk_block >> 8); 5372 cdb[5] = (u8) (disk_block); 5373 cdb[6] = 0; 5374 cdb[7] = (u8) (disk_block_cnt >> 8); 5375 cdb[8] = (u8) (disk_block_cnt); 5376 cdb[9] = 0; 5377 cdb_len = 10; 5378 } 5379 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 5380 dev->scsi3addr, 5381 dev->phys_disk[map_index]); 5382 } 5383 5384 /* 5385 * Submit commands down the "normal" RAID stack path 5386 * All callers to hpsa_ciss_submit must check lockup_detected 5387 * beforehand, before (opt.) and after calling cmd_alloc 5388 */ 5389 static int hpsa_ciss_submit(struct ctlr_info *h, 5390 struct CommandList *c, struct scsi_cmnd *cmd, 5391 unsigned char scsi3addr[]) 5392 { 5393 cmd->host_scribble = (unsigned char *) c; 5394 c->cmd_type = CMD_SCSI; 5395 c->scsi_cmd = cmd; 5396 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5397 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 5398 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 5399 5400 /* Fill in the request block... */ 5401 5402 c->Request.Timeout = 0; 5403 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 5404 c->Request.CDBLen = cmd->cmd_len; 5405 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 5406 switch (cmd->sc_data_direction) { 5407 case DMA_TO_DEVICE: 5408 c->Request.type_attr_dir = 5409 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 5410 break; 5411 case DMA_FROM_DEVICE: 5412 c->Request.type_attr_dir = 5413 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 5414 break; 5415 case DMA_NONE: 5416 c->Request.type_attr_dir = 5417 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 5418 break; 5419 case DMA_BIDIRECTIONAL: 5420 /* This can happen if a buggy application does a scsi passthru 5421 * and sets both inlen and outlen to non-zero. ( see 5422 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 5423 */ 5424 5425 c->Request.type_attr_dir = 5426 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 5427 /* This is technically wrong, and hpsa controllers should 5428 * reject it with CMD_INVALID, which is the most correct 5429 * response, but non-fibre backends appear to let it 5430 * slide by, and give the same results as if this field 5431 * were set correctly. Either way is acceptable for 5432 * our purposes here. 5433 */ 5434 5435 break; 5436 5437 default: 5438 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 5439 cmd->sc_data_direction); 5440 BUG(); 5441 break; 5442 } 5443 5444 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 5445 hpsa_cmd_resolve_and_free(h, c); 5446 return SCSI_MLQUEUE_HOST_BUSY; 5447 } 5448 enqueue_cmd_and_start_io(h, c); 5449 /* the cmd'll come back via intr handler in complete_scsi_command() */ 5450 return 0; 5451 } 5452 5453 static void hpsa_cmd_init(struct ctlr_info *h, int index, 5454 struct CommandList *c) 5455 { 5456 dma_addr_t cmd_dma_handle, err_dma_handle; 5457 5458 /* Zero out all of commandlist except the last field, refcount */ 5459 memset(c, 0, offsetof(struct CommandList, refcount)); 5460 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 5461 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5462 c->err_info = h->errinfo_pool + index; 5463 memset(c->err_info, 0, sizeof(*c->err_info)); 5464 err_dma_handle = h->errinfo_pool_dhandle 5465 + index * sizeof(*c->err_info); 5466 c->cmdindex = index; 5467 c->busaddr = (u32) cmd_dma_handle; 5468 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 5469 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 5470 c->h = h; 5471 c->scsi_cmd = SCSI_CMD_IDLE; 5472 } 5473 5474 static void hpsa_preinitialize_commands(struct ctlr_info *h) 5475 { 5476 int i; 5477 5478 for (i = 0; i < h->nr_cmds; i++) { 5479 struct CommandList *c = h->cmd_pool + i; 5480 5481 hpsa_cmd_init(h, i, c); 5482 atomic_set(&c->refcount, 0); 5483 } 5484 } 5485 5486 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 5487 struct CommandList *c) 5488 { 5489 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 5490 5491 BUG_ON(c->cmdindex != index); 5492 5493 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 5494 memset(c->err_info, 0, sizeof(*c->err_info)); 5495 c->busaddr = (u32) cmd_dma_handle; 5496 } 5497 5498 static int hpsa_ioaccel_submit(struct ctlr_info *h, 5499 struct CommandList *c, struct scsi_cmnd *cmd, 5500 unsigned char *scsi3addr) 5501 { 5502 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 5503 int rc = IO_ACCEL_INELIGIBLE; 5504 5505 if (!dev) 5506 return SCSI_MLQUEUE_HOST_BUSY; 5507 5508 cmd->host_scribble = (unsigned char *) c; 5509 5510 if (dev->offload_enabled) { 5511 hpsa_cmd_init(h, c->cmdindex, c); 5512 c->cmd_type = CMD_SCSI; 5513 c->scsi_cmd = cmd; 5514 rc = hpsa_scsi_ioaccel_raid_map(h, c); 5515 if (rc < 0) /* scsi_dma_map failed. */ 5516 rc = SCSI_MLQUEUE_HOST_BUSY; 5517 } else if (dev->hba_ioaccel_enabled) { 5518 hpsa_cmd_init(h, c->cmdindex, c); 5519 c->cmd_type = CMD_SCSI; 5520 c->scsi_cmd = cmd; 5521 rc = hpsa_scsi_ioaccel_direct_map(h, c); 5522 if (rc < 0) /* scsi_dma_map failed. */ 5523 rc = SCSI_MLQUEUE_HOST_BUSY; 5524 } 5525 return rc; 5526 } 5527 5528 static void hpsa_command_resubmit_worker(struct work_struct *work) 5529 { 5530 struct scsi_cmnd *cmd; 5531 struct hpsa_scsi_dev_t *dev; 5532 struct CommandList *c = container_of(work, struct CommandList, work); 5533 5534 cmd = c->scsi_cmd; 5535 dev = cmd->device->hostdata; 5536 if (!dev) { 5537 cmd->result = DID_NO_CONNECT << 16; 5538 return hpsa_cmd_free_and_done(c->h, c, cmd); 5539 } 5540 if (c->reset_pending) 5541 return hpsa_cmd_free_and_done(c->h, c, cmd); 5542 if (c->cmd_type == CMD_IOACCEL2) { 5543 struct ctlr_info *h = c->h; 5544 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5545 int rc; 5546 5547 if (c2->error_data.serv_response == 5548 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 5549 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); 5550 if (rc == 0) 5551 return; 5552 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5553 /* 5554 * If we get here, it means dma mapping failed. 5555 * Try again via scsi mid layer, which will 5556 * then get SCSI_MLQUEUE_HOST_BUSY. 5557 */ 5558 cmd->result = DID_IMM_RETRY << 16; 5559 return hpsa_cmd_free_and_done(h, c, cmd); 5560 } 5561 /* else, fall thru and resubmit down CISS path */ 5562 } 5563 } 5564 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 5565 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { 5566 /* 5567 * If we get here, it means dma mapping failed. Try 5568 * again via scsi mid layer, which will then get 5569 * SCSI_MLQUEUE_HOST_BUSY. 5570 * 5571 * hpsa_ciss_submit will have already freed c 5572 * if it encountered a dma mapping failure. 5573 */ 5574 cmd->result = DID_IMM_RETRY << 16; 5575 cmd->scsi_done(cmd); 5576 } 5577 } 5578 5579 /* Running in struct Scsi_Host->host_lock less mode */ 5580 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 5581 { 5582 struct ctlr_info *h; 5583 struct hpsa_scsi_dev_t *dev; 5584 unsigned char scsi3addr[8]; 5585 struct CommandList *c; 5586 int rc = 0; 5587 5588 /* Get the ptr to our adapter structure out of cmd->host. */ 5589 h = sdev_to_hba(cmd->device); 5590 5591 BUG_ON(cmd->request->tag < 0); 5592 5593 dev = cmd->device->hostdata; 5594 if (!dev) { 5595 cmd->result = DID_NO_CONNECT << 16; 5596 cmd->scsi_done(cmd); 5597 return 0; 5598 } 5599 5600 if (dev->removed) { 5601 cmd->result = DID_NO_CONNECT << 16; 5602 cmd->scsi_done(cmd); 5603 return 0; 5604 } 5605 5606 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 5607 5608 if (unlikely(lockup_detected(h))) { 5609 cmd->result = DID_NO_CONNECT << 16; 5610 cmd->scsi_done(cmd); 5611 return 0; 5612 } 5613 c = cmd_tagged_alloc(h, cmd); 5614 5615 /* 5616 * Call alternate submit routine for I/O accelerated commands. 5617 * Retries always go down the normal I/O path. 5618 */ 5619 if (likely(cmd->retries == 0 && 5620 !blk_rq_is_passthrough(cmd->request) && 5621 h->acciopath_status)) { 5622 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); 5623 if (rc == 0) 5624 return 0; 5625 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 5626 hpsa_cmd_resolve_and_free(h, c); 5627 return SCSI_MLQUEUE_HOST_BUSY; 5628 } 5629 } 5630 return hpsa_ciss_submit(h, c, cmd, scsi3addr); 5631 } 5632 5633 static void hpsa_scan_complete(struct ctlr_info *h) 5634 { 5635 unsigned long flags; 5636 5637 spin_lock_irqsave(&h->scan_lock, flags); 5638 h->scan_finished = 1; 5639 wake_up(&h->scan_wait_queue); 5640 spin_unlock_irqrestore(&h->scan_lock, flags); 5641 } 5642 5643 static void hpsa_scan_start(struct Scsi_Host *sh) 5644 { 5645 struct ctlr_info *h = shost_to_hba(sh); 5646 unsigned long flags; 5647 5648 /* 5649 * Don't let rescans be initiated on a controller known to be locked 5650 * up. If the controller locks up *during* a rescan, that thread is 5651 * probably hosed, but at least we can prevent new rescan threads from 5652 * piling up on a locked up controller. 5653 */ 5654 if (unlikely(lockup_detected(h))) 5655 return hpsa_scan_complete(h); 5656 5657 /* 5658 * If a scan is already waiting to run, no need to add another 5659 */ 5660 spin_lock_irqsave(&h->scan_lock, flags); 5661 if (h->scan_waiting) { 5662 spin_unlock_irqrestore(&h->scan_lock, flags); 5663 return; 5664 } 5665 5666 spin_unlock_irqrestore(&h->scan_lock, flags); 5667 5668 /* wait until any scan already in progress is finished. */ 5669 while (1) { 5670 spin_lock_irqsave(&h->scan_lock, flags); 5671 if (h->scan_finished) 5672 break; 5673 h->scan_waiting = 1; 5674 spin_unlock_irqrestore(&h->scan_lock, flags); 5675 wait_event(h->scan_wait_queue, h->scan_finished); 5676 /* Note: We don't need to worry about a race between this 5677 * thread and driver unload because the midlayer will 5678 * have incremented the reference count, so unload won't 5679 * happen if we're in here. 5680 */ 5681 } 5682 h->scan_finished = 0; /* mark scan as in progress */ 5683 h->scan_waiting = 0; 5684 spin_unlock_irqrestore(&h->scan_lock, flags); 5685 5686 if (unlikely(lockup_detected(h))) 5687 return hpsa_scan_complete(h); 5688 5689 /* 5690 * Do the scan after a reset completion 5691 */ 5692 spin_lock_irqsave(&h->reset_lock, flags); 5693 if (h->reset_in_progress) { 5694 h->drv_req_rescan = 1; 5695 spin_unlock_irqrestore(&h->reset_lock, flags); 5696 hpsa_scan_complete(h); 5697 return; 5698 } 5699 spin_unlock_irqrestore(&h->reset_lock, flags); 5700 5701 hpsa_update_scsi_devices(h); 5702 5703 hpsa_scan_complete(h); 5704 } 5705 5706 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 5707 { 5708 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 5709 5710 if (!logical_drive) 5711 return -ENODEV; 5712 5713 if (qdepth < 1) 5714 qdepth = 1; 5715 else if (qdepth > logical_drive->queue_depth) 5716 qdepth = logical_drive->queue_depth; 5717 5718 return scsi_change_queue_depth(sdev, qdepth); 5719 } 5720 5721 static int hpsa_scan_finished(struct Scsi_Host *sh, 5722 unsigned long elapsed_time) 5723 { 5724 struct ctlr_info *h = shost_to_hba(sh); 5725 unsigned long flags; 5726 int finished; 5727 5728 spin_lock_irqsave(&h->scan_lock, flags); 5729 finished = h->scan_finished; 5730 spin_unlock_irqrestore(&h->scan_lock, flags); 5731 return finished; 5732 } 5733 5734 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 5735 { 5736 struct Scsi_Host *sh; 5737 5738 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 5739 if (sh == NULL) { 5740 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 5741 return -ENOMEM; 5742 } 5743 5744 sh->io_port = 0; 5745 sh->n_io_port = 0; 5746 sh->this_id = -1; 5747 sh->max_channel = 3; 5748 sh->max_cmd_len = MAX_COMMAND_SIZE; 5749 sh->max_lun = HPSA_MAX_LUN; 5750 sh->max_id = HPSA_MAX_LUN; 5751 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5752 sh->cmd_per_lun = sh->can_queue; 5753 sh->sg_tablesize = h->maxsgentries; 5754 sh->transportt = hpsa_sas_transport_template; 5755 sh->hostdata[0] = (unsigned long) h; 5756 sh->irq = pci_irq_vector(h->pdev, 0); 5757 sh->unique_id = sh->irq; 5758 5759 h->scsi_host = sh; 5760 return 0; 5761 } 5762 5763 static int hpsa_scsi_add_host(struct ctlr_info *h) 5764 { 5765 int rv; 5766 5767 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5768 if (rv) { 5769 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5770 return rv; 5771 } 5772 scsi_scan_host(h->scsi_host); 5773 return 0; 5774 } 5775 5776 /* 5777 * The block layer has already gone to the trouble of picking out a unique, 5778 * small-integer tag for this request. We use an offset from that value as 5779 * an index to select our command block. (The offset allows us to reserve the 5780 * low-numbered entries for our own uses.) 5781 */ 5782 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5783 { 5784 int idx = scmd->request->tag; 5785 5786 if (idx < 0) 5787 return idx; 5788 5789 /* Offset to leave space for internal cmds. */ 5790 return idx += HPSA_NRESERVED_CMDS; 5791 } 5792 5793 /* 5794 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5795 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5796 */ 5797 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5798 struct CommandList *c, unsigned char lunaddr[], 5799 int reply_queue) 5800 { 5801 int rc; 5802 5803 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5804 (void) fill_cmd(c, TEST_UNIT_READY, h, 5805 NULL, 0, 0, lunaddr, TYPE_CMD); 5806 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); 5807 if (rc) 5808 return rc; 5809 /* no unmap needed here because no data xfer. */ 5810 5811 /* Check if the unit is already ready. */ 5812 if (c->err_info->CommandStatus == CMD_SUCCESS) 5813 return 0; 5814 5815 /* 5816 * The first command sent after reset will receive "unit attention" to 5817 * indicate that the LUN has been reset...this is actually what we're 5818 * looking for (but, success is good too). 5819 */ 5820 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5821 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5822 (c->err_info->SenseInfo[2] == NO_SENSE || 5823 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5824 return 0; 5825 5826 return 1; 5827 } 5828 5829 /* 5830 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5831 * returns zero when the unit is ready, and non-zero when giving up. 5832 */ 5833 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5834 struct CommandList *c, 5835 unsigned char lunaddr[], int reply_queue) 5836 { 5837 int rc; 5838 int count = 0; 5839 int waittime = 1; /* seconds */ 5840 5841 /* Send test unit ready until device ready, or give up. */ 5842 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5843 5844 /* 5845 * Wait for a bit. do this first, because if we send 5846 * the TUR right away, the reset will just abort it. 5847 */ 5848 msleep(1000 * waittime); 5849 5850 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5851 if (!rc) 5852 break; 5853 5854 /* Increase wait time with each try, up to a point. */ 5855 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5856 waittime *= 2; 5857 5858 dev_warn(&h->pdev->dev, 5859 "waiting %d secs for device to become ready.\n", 5860 waittime); 5861 } 5862 5863 return rc; 5864 } 5865 5866 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5867 unsigned char lunaddr[], 5868 int reply_queue) 5869 { 5870 int first_queue; 5871 int last_queue; 5872 int rq; 5873 int rc = 0; 5874 struct CommandList *c; 5875 5876 c = cmd_alloc(h); 5877 5878 /* 5879 * If no specific reply queue was requested, then send the TUR 5880 * repeatedly, requesting a reply on each reply queue; otherwise execute 5881 * the loop exactly once using only the specified queue. 5882 */ 5883 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5884 first_queue = 0; 5885 last_queue = h->nreply_queues - 1; 5886 } else { 5887 first_queue = reply_queue; 5888 last_queue = reply_queue; 5889 } 5890 5891 for (rq = first_queue; rq <= last_queue; rq++) { 5892 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 5893 if (rc) 5894 break; 5895 } 5896 5897 if (rc) 5898 dev_warn(&h->pdev->dev, "giving up on device.\n"); 5899 else 5900 dev_warn(&h->pdev->dev, "device is ready.\n"); 5901 5902 cmd_free(h, c); 5903 return rc; 5904 } 5905 5906 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 5907 * complaining. Doing a host- or bus-reset can't do anything good here. 5908 */ 5909 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 5910 { 5911 int rc = SUCCESS; 5912 struct ctlr_info *h; 5913 struct hpsa_scsi_dev_t *dev; 5914 u8 reset_type; 5915 char msg[48]; 5916 unsigned long flags; 5917 5918 /* find the controller to which the command to be aborted was sent */ 5919 h = sdev_to_hba(scsicmd->device); 5920 if (h == NULL) /* paranoia */ 5921 return FAILED; 5922 5923 spin_lock_irqsave(&h->reset_lock, flags); 5924 h->reset_in_progress = 1; 5925 spin_unlock_irqrestore(&h->reset_lock, flags); 5926 5927 if (lockup_detected(h)) { 5928 rc = FAILED; 5929 goto return_reset_status; 5930 } 5931 5932 dev = scsicmd->device->hostdata; 5933 if (!dev) { 5934 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 5935 rc = FAILED; 5936 goto return_reset_status; 5937 } 5938 5939 if (dev->devtype == TYPE_ENCLOSURE) { 5940 rc = SUCCESS; 5941 goto return_reset_status; 5942 } 5943 5944 /* if controller locked up, we can guarantee command won't complete */ 5945 if (lockup_detected(h)) { 5946 snprintf(msg, sizeof(msg), 5947 "cmd %d RESET FAILED, lockup detected", 5948 hpsa_get_cmd_index(scsicmd)); 5949 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5950 rc = FAILED; 5951 goto return_reset_status; 5952 } 5953 5954 /* this reset request might be the result of a lockup; check */ 5955 if (detect_controller_lockup(h)) { 5956 snprintf(msg, sizeof(msg), 5957 "cmd %d RESET FAILED, new lockup detected", 5958 hpsa_get_cmd_index(scsicmd)); 5959 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5960 rc = FAILED; 5961 goto return_reset_status; 5962 } 5963 5964 /* Do not attempt on controller */ 5965 if (is_hba_lunid(dev->scsi3addr)) { 5966 rc = SUCCESS; 5967 goto return_reset_status; 5968 } 5969 5970 if (is_logical_dev_addr_mode(dev->scsi3addr)) 5971 reset_type = HPSA_DEVICE_RESET_MSG; 5972 else 5973 reset_type = HPSA_PHYS_TARGET_RESET; 5974 5975 sprintf(msg, "resetting %s", 5976 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); 5977 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5978 5979 /* send a reset to the SCSI LUN which the command was sent to */ 5980 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, 5981 DEFAULT_REPLY_QUEUE); 5982 if (rc == 0) 5983 rc = SUCCESS; 5984 else 5985 rc = FAILED; 5986 5987 sprintf(msg, "reset %s %s", 5988 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", 5989 rc == SUCCESS ? "completed successfully" : "failed"); 5990 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5991 5992 return_reset_status: 5993 spin_lock_irqsave(&h->reset_lock, flags); 5994 h->reset_in_progress = 0; 5995 spin_unlock_irqrestore(&h->reset_lock, flags); 5996 return rc; 5997 } 5998 5999 /* 6000 * For operations with an associated SCSI command, a command block is allocated 6001 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 6002 * block request tag as an index into a table of entries. cmd_tagged_free() is 6003 * the complement, although cmd_free() may be called instead. 6004 */ 6005 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 6006 struct scsi_cmnd *scmd) 6007 { 6008 int idx = hpsa_get_cmd_index(scmd); 6009 struct CommandList *c = h->cmd_pool + idx; 6010 6011 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 6012 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 6013 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 6014 /* The index value comes from the block layer, so if it's out of 6015 * bounds, it's probably not our bug. 6016 */ 6017 BUG(); 6018 } 6019 6020 atomic_inc(&c->refcount); 6021 if (unlikely(!hpsa_is_cmd_idle(c))) { 6022 /* 6023 * We expect that the SCSI layer will hand us a unique tag 6024 * value. Thus, there should never be a collision here between 6025 * two requests...because if the selected command isn't idle 6026 * then someone is going to be very disappointed. 6027 */ 6028 dev_err(&h->pdev->dev, 6029 "tag collision (tag=%d) in cmd_tagged_alloc().\n", 6030 idx); 6031 if (c->scsi_cmd != NULL) 6032 scsi_print_command(c->scsi_cmd); 6033 scsi_print_command(scmd); 6034 } 6035 6036 hpsa_cmd_partial_init(h, idx, c); 6037 return c; 6038 } 6039 6040 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 6041 { 6042 /* 6043 * Release our reference to the block. We don't need to do anything 6044 * else to free it, because it is accessed by index. 6045 */ 6046 (void)atomic_dec(&c->refcount); 6047 } 6048 6049 /* 6050 * For operations that cannot sleep, a command block is allocated at init, 6051 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 6052 * which ones are free or in use. Lock must be held when calling this. 6053 * cmd_free() is the complement. 6054 * This function never gives up and returns NULL. If it hangs, 6055 * another thread must call cmd_free() to free some tags. 6056 */ 6057 6058 static struct CommandList *cmd_alloc(struct ctlr_info *h) 6059 { 6060 struct CommandList *c; 6061 int refcount, i; 6062 int offset = 0; 6063 6064 /* 6065 * There is some *extremely* small but non-zero chance that that 6066 * multiple threads could get in here, and one thread could 6067 * be scanning through the list of bits looking for a free 6068 * one, but the free ones are always behind him, and other 6069 * threads sneak in behind him and eat them before he can 6070 * get to them, so that while there is always a free one, a 6071 * very unlucky thread might be starved anyway, never able to 6072 * beat the other threads. In reality, this happens so 6073 * infrequently as to be indistinguishable from never. 6074 * 6075 * Note that we start allocating commands before the SCSI host structure 6076 * is initialized. Since the search starts at bit zero, this 6077 * all works, since we have at least one command structure available; 6078 * however, it means that the structures with the low indexes have to be 6079 * reserved for driver-initiated requests, while requests from the block 6080 * layer will use the higher indexes. 6081 */ 6082 6083 for (;;) { 6084 i = find_next_zero_bit(h->cmd_pool_bits, 6085 HPSA_NRESERVED_CMDS, 6086 offset); 6087 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 6088 offset = 0; 6089 continue; 6090 } 6091 c = h->cmd_pool + i; 6092 refcount = atomic_inc_return(&c->refcount); 6093 if (unlikely(refcount > 1)) { 6094 cmd_free(h, c); /* already in use */ 6095 offset = (i + 1) % HPSA_NRESERVED_CMDS; 6096 continue; 6097 } 6098 set_bit(i & (BITS_PER_LONG - 1), 6099 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6100 break; /* it's ours now. */ 6101 } 6102 hpsa_cmd_partial_init(h, i, c); 6103 return c; 6104 } 6105 6106 /* 6107 * This is the complementary operation to cmd_alloc(). Note, however, in some 6108 * corner cases it may also be used to free blocks allocated by 6109 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 6110 * the clear-bit is harmless. 6111 */ 6112 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 6113 { 6114 if (atomic_dec_and_test(&c->refcount)) { 6115 int i; 6116 6117 i = c - h->cmd_pool; 6118 clear_bit(i & (BITS_PER_LONG - 1), 6119 h->cmd_pool_bits + (i / BITS_PER_LONG)); 6120 } 6121 } 6122 6123 #ifdef CONFIG_COMPAT 6124 6125 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, 6126 void __user *arg) 6127 { 6128 IOCTL32_Command_struct __user *arg32 = 6129 (IOCTL32_Command_struct __user *) arg; 6130 IOCTL_Command_struct arg64; 6131 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 6132 int err; 6133 u32 cp; 6134 6135 memset(&arg64, 0, sizeof(arg64)); 6136 err = 0; 6137 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 6138 sizeof(arg64.LUN_info)); 6139 err |= copy_from_user(&arg64.Request, &arg32->Request, 6140 sizeof(arg64.Request)); 6141 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 6142 sizeof(arg64.error_info)); 6143 err |= get_user(arg64.buf_size, &arg32->buf_size); 6144 err |= get_user(cp, &arg32->buf); 6145 arg64.buf = compat_ptr(cp); 6146 err |= copy_to_user(p, &arg64, sizeof(arg64)); 6147 6148 if (err) 6149 return -EFAULT; 6150 6151 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); 6152 if (err) 6153 return err; 6154 err |= copy_in_user(&arg32->error_info, &p->error_info, 6155 sizeof(arg32->error_info)); 6156 if (err) 6157 return -EFAULT; 6158 return err; 6159 } 6160 6161 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 6162 int cmd, void __user *arg) 6163 { 6164 BIG_IOCTL32_Command_struct __user *arg32 = 6165 (BIG_IOCTL32_Command_struct __user *) arg; 6166 BIG_IOCTL_Command_struct arg64; 6167 BIG_IOCTL_Command_struct __user *p = 6168 compat_alloc_user_space(sizeof(arg64)); 6169 int err; 6170 u32 cp; 6171 6172 memset(&arg64, 0, sizeof(arg64)); 6173 err = 0; 6174 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 6175 sizeof(arg64.LUN_info)); 6176 err |= copy_from_user(&arg64.Request, &arg32->Request, 6177 sizeof(arg64.Request)); 6178 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 6179 sizeof(arg64.error_info)); 6180 err |= get_user(arg64.buf_size, &arg32->buf_size); 6181 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 6182 err |= get_user(cp, &arg32->buf); 6183 arg64.buf = compat_ptr(cp); 6184 err |= copy_to_user(p, &arg64, sizeof(arg64)); 6185 6186 if (err) 6187 return -EFAULT; 6188 6189 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); 6190 if (err) 6191 return err; 6192 err |= copy_in_user(&arg32->error_info, &p->error_info, 6193 sizeof(arg32->error_info)); 6194 if (err) 6195 return -EFAULT; 6196 return err; 6197 } 6198 6199 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 6200 { 6201 switch (cmd) { 6202 case CCISS_GETPCIINFO: 6203 case CCISS_GETINTINFO: 6204 case CCISS_SETINTINFO: 6205 case CCISS_GETNODENAME: 6206 case CCISS_SETNODENAME: 6207 case CCISS_GETHEARTBEAT: 6208 case CCISS_GETBUSTYPES: 6209 case CCISS_GETFIRMVER: 6210 case CCISS_GETDRIVVER: 6211 case CCISS_REVALIDVOLS: 6212 case CCISS_DEREGDISK: 6213 case CCISS_REGNEWDISK: 6214 case CCISS_REGNEWD: 6215 case CCISS_RESCANDISK: 6216 case CCISS_GETLUNINFO: 6217 return hpsa_ioctl(dev, cmd, arg); 6218 6219 case CCISS_PASSTHRU32: 6220 return hpsa_ioctl32_passthru(dev, cmd, arg); 6221 case CCISS_BIG_PASSTHRU32: 6222 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 6223 6224 default: 6225 return -ENOIOCTLCMD; 6226 } 6227 } 6228 #endif 6229 6230 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 6231 { 6232 struct hpsa_pci_info pciinfo; 6233 6234 if (!argp) 6235 return -EINVAL; 6236 pciinfo.domain = pci_domain_nr(h->pdev->bus); 6237 pciinfo.bus = h->pdev->bus->number; 6238 pciinfo.dev_fn = h->pdev->devfn; 6239 pciinfo.board_id = h->board_id; 6240 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 6241 return -EFAULT; 6242 return 0; 6243 } 6244 6245 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 6246 { 6247 DriverVer_type DriverVer; 6248 unsigned char vmaj, vmin, vsubmin; 6249 int rc; 6250 6251 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 6252 &vmaj, &vmin, &vsubmin); 6253 if (rc != 3) { 6254 dev_info(&h->pdev->dev, "driver version string '%s' " 6255 "unrecognized.", HPSA_DRIVER_VERSION); 6256 vmaj = 0; 6257 vmin = 0; 6258 vsubmin = 0; 6259 } 6260 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 6261 if (!argp) 6262 return -EINVAL; 6263 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 6264 return -EFAULT; 6265 return 0; 6266 } 6267 6268 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 6269 { 6270 IOCTL_Command_struct iocommand; 6271 struct CommandList *c; 6272 char *buff = NULL; 6273 u64 temp64; 6274 int rc = 0; 6275 6276 if (!argp) 6277 return -EINVAL; 6278 if (!capable(CAP_SYS_RAWIO)) 6279 return -EPERM; 6280 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 6281 return -EFAULT; 6282 if ((iocommand.buf_size < 1) && 6283 (iocommand.Request.Type.Direction != XFER_NONE)) { 6284 return -EINVAL; 6285 } 6286 if (iocommand.buf_size > 0) { 6287 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 6288 if (buff == NULL) 6289 return -ENOMEM; 6290 if (iocommand.Request.Type.Direction & XFER_WRITE) { 6291 /* Copy the data into the buffer we created */ 6292 if (copy_from_user(buff, iocommand.buf, 6293 iocommand.buf_size)) { 6294 rc = -EFAULT; 6295 goto out_kfree; 6296 } 6297 } else { 6298 memset(buff, 0, iocommand.buf_size); 6299 } 6300 } 6301 c = cmd_alloc(h); 6302 6303 /* Fill in the command type */ 6304 c->cmd_type = CMD_IOCTL_PEND; 6305 c->scsi_cmd = SCSI_CMD_BUSY; 6306 /* Fill in Command Header */ 6307 c->Header.ReplyQueue = 0; /* unused in simple mode */ 6308 if (iocommand.buf_size > 0) { /* buffer to fill */ 6309 c->Header.SGList = 1; 6310 c->Header.SGTotal = cpu_to_le16(1); 6311 } else { /* no buffers to fill */ 6312 c->Header.SGList = 0; 6313 c->Header.SGTotal = cpu_to_le16(0); 6314 } 6315 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 6316 6317 /* Fill in Request block */ 6318 memcpy(&c->Request, &iocommand.Request, 6319 sizeof(c->Request)); 6320 6321 /* Fill in the scatter gather information */ 6322 if (iocommand.buf_size > 0) { 6323 temp64 = pci_map_single(h->pdev, buff, 6324 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 6325 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 6326 c->SG[0].Addr = cpu_to_le64(0); 6327 c->SG[0].Len = cpu_to_le32(0); 6328 rc = -ENOMEM; 6329 goto out; 6330 } 6331 c->SG[0].Addr = cpu_to_le64(temp64); 6332 c->SG[0].Len = cpu_to_le32(iocommand.buf_size); 6333 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 6334 } 6335 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6336 NO_TIMEOUT); 6337 if (iocommand.buf_size > 0) 6338 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 6339 check_ioctl_unit_attention(h, c); 6340 if (rc) { 6341 rc = -EIO; 6342 goto out; 6343 } 6344 6345 /* Copy the error information out */ 6346 memcpy(&iocommand.error_info, c->err_info, 6347 sizeof(iocommand.error_info)); 6348 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 6349 rc = -EFAULT; 6350 goto out; 6351 } 6352 if ((iocommand.Request.Type.Direction & XFER_READ) && 6353 iocommand.buf_size > 0) { 6354 /* Copy the data out of the buffer we created */ 6355 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 6356 rc = -EFAULT; 6357 goto out; 6358 } 6359 } 6360 out: 6361 cmd_free(h, c); 6362 out_kfree: 6363 kfree(buff); 6364 return rc; 6365 } 6366 6367 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 6368 { 6369 BIG_IOCTL_Command_struct *ioc; 6370 struct CommandList *c; 6371 unsigned char **buff = NULL; 6372 int *buff_size = NULL; 6373 u64 temp64; 6374 BYTE sg_used = 0; 6375 int status = 0; 6376 u32 left; 6377 u32 sz; 6378 BYTE __user *data_ptr; 6379 6380 if (!argp) 6381 return -EINVAL; 6382 if (!capable(CAP_SYS_RAWIO)) 6383 return -EPERM; 6384 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); 6385 if (!ioc) { 6386 status = -ENOMEM; 6387 goto cleanup1; 6388 } 6389 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 6390 status = -EFAULT; 6391 goto cleanup1; 6392 } 6393 if ((ioc->buf_size < 1) && 6394 (ioc->Request.Type.Direction != XFER_NONE)) { 6395 status = -EINVAL; 6396 goto cleanup1; 6397 } 6398 /* Check kmalloc limits using all SGs */ 6399 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 6400 status = -EINVAL; 6401 goto cleanup1; 6402 } 6403 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 6404 status = -EINVAL; 6405 goto cleanup1; 6406 } 6407 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); 6408 if (!buff) { 6409 status = -ENOMEM; 6410 goto cleanup1; 6411 } 6412 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); 6413 if (!buff_size) { 6414 status = -ENOMEM; 6415 goto cleanup1; 6416 } 6417 left = ioc->buf_size; 6418 data_ptr = ioc->buf; 6419 while (left) { 6420 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6421 buff_size[sg_used] = sz; 6422 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 6423 if (buff[sg_used] == NULL) { 6424 status = -ENOMEM; 6425 goto cleanup1; 6426 } 6427 if (ioc->Request.Type.Direction & XFER_WRITE) { 6428 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 6429 status = -EFAULT; 6430 goto cleanup1; 6431 } 6432 } else 6433 memset(buff[sg_used], 0, sz); 6434 left -= sz; 6435 data_ptr += sz; 6436 sg_used++; 6437 } 6438 c = cmd_alloc(h); 6439 6440 c->cmd_type = CMD_IOCTL_PEND; 6441 c->scsi_cmd = SCSI_CMD_BUSY; 6442 c->Header.ReplyQueue = 0; 6443 c->Header.SGList = (u8) sg_used; 6444 c->Header.SGTotal = cpu_to_le16(sg_used); 6445 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6446 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6447 if (ioc->buf_size > 0) { 6448 int i; 6449 for (i = 0; i < sg_used; i++) { 6450 temp64 = pci_map_single(h->pdev, buff[i], 6451 buff_size[i], PCI_DMA_BIDIRECTIONAL); 6452 if (dma_mapping_error(&h->pdev->dev, 6453 (dma_addr_t) temp64)) { 6454 c->SG[i].Addr = cpu_to_le64(0); 6455 c->SG[i].Len = cpu_to_le32(0); 6456 hpsa_pci_unmap(h->pdev, c, i, 6457 PCI_DMA_BIDIRECTIONAL); 6458 status = -ENOMEM; 6459 goto cleanup0; 6460 } 6461 c->SG[i].Addr = cpu_to_le64(temp64); 6462 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6463 c->SG[i].Ext = cpu_to_le32(0); 6464 } 6465 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6466 } 6467 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 6468 NO_TIMEOUT); 6469 if (sg_used) 6470 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 6471 check_ioctl_unit_attention(h, c); 6472 if (status) { 6473 status = -EIO; 6474 goto cleanup0; 6475 } 6476 6477 /* Copy the error information out */ 6478 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6479 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 6480 status = -EFAULT; 6481 goto cleanup0; 6482 } 6483 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6484 int i; 6485 6486 /* Copy the data out of the buffer we created */ 6487 BYTE __user *ptr = ioc->buf; 6488 for (i = 0; i < sg_used; i++) { 6489 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6490 status = -EFAULT; 6491 goto cleanup0; 6492 } 6493 ptr += buff_size[i]; 6494 } 6495 } 6496 status = 0; 6497 cleanup0: 6498 cmd_free(h, c); 6499 cleanup1: 6500 if (buff) { 6501 int i; 6502 6503 for (i = 0; i < sg_used; i++) 6504 kfree(buff[i]); 6505 kfree(buff); 6506 } 6507 kfree(buff_size); 6508 kfree(ioc); 6509 return status; 6510 } 6511 6512 static void check_ioctl_unit_attention(struct ctlr_info *h, 6513 struct CommandList *c) 6514 { 6515 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6516 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6517 (void) check_for_unit_attention(h, c); 6518 } 6519 6520 /* 6521 * ioctl 6522 */ 6523 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 6524 { 6525 struct ctlr_info *h; 6526 void __user *argp = (void __user *)arg; 6527 int rc; 6528 6529 h = sdev_to_hba(dev); 6530 6531 switch (cmd) { 6532 case CCISS_DEREGDISK: 6533 case CCISS_REGNEWDISK: 6534 case CCISS_REGNEWD: 6535 hpsa_scan_start(h->scsi_host); 6536 return 0; 6537 case CCISS_GETPCIINFO: 6538 return hpsa_getpciinfo_ioctl(h, argp); 6539 case CCISS_GETDRIVVER: 6540 return hpsa_getdrivver_ioctl(h, argp); 6541 case CCISS_PASSTHRU: 6542 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6543 return -EAGAIN; 6544 rc = hpsa_passthru_ioctl(h, argp); 6545 atomic_inc(&h->passthru_cmds_avail); 6546 return rc; 6547 case CCISS_BIG_PASSTHRU: 6548 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6549 return -EAGAIN; 6550 rc = hpsa_big_passthru_ioctl(h, argp); 6551 atomic_inc(&h->passthru_cmds_avail); 6552 return rc; 6553 default: 6554 return -ENOTTY; 6555 } 6556 } 6557 6558 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, 6559 u8 reset_type) 6560 { 6561 struct CommandList *c; 6562 6563 c = cmd_alloc(h); 6564 6565 /* fill_cmd can't fail here, no data buffer to map */ 6566 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6567 RAID_CTLR_LUNID, TYPE_MSG); 6568 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6569 c->waiting = NULL; 6570 enqueue_cmd_and_start_io(h, c); 6571 /* Don't wait for completion, the reset won't complete. Don't free 6572 * the command either. This is the last command we will send before 6573 * re-initializing everything, so it doesn't matter and won't leak. 6574 */ 6575 return; 6576 } 6577 6578 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6579 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6580 int cmd_type) 6581 { 6582 int pci_dir = XFER_NONE; 6583 6584 c->cmd_type = CMD_IOCTL_PEND; 6585 c->scsi_cmd = SCSI_CMD_BUSY; 6586 c->Header.ReplyQueue = 0; 6587 if (buff != NULL && size > 0) { 6588 c->Header.SGList = 1; 6589 c->Header.SGTotal = cpu_to_le16(1); 6590 } else { 6591 c->Header.SGList = 0; 6592 c->Header.SGTotal = cpu_to_le16(0); 6593 } 6594 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6595 6596 if (cmd_type == TYPE_CMD) { 6597 switch (cmd) { 6598 case HPSA_INQUIRY: 6599 /* are we trying to read a vital product page */ 6600 if (page_code & VPD_PAGE) { 6601 c->Request.CDB[1] = 0x01; 6602 c->Request.CDB[2] = (page_code & 0xff); 6603 } 6604 c->Request.CDBLen = 6; 6605 c->Request.type_attr_dir = 6606 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6607 c->Request.Timeout = 0; 6608 c->Request.CDB[0] = HPSA_INQUIRY; 6609 c->Request.CDB[4] = size & 0xFF; 6610 break; 6611 case RECEIVE_DIAGNOSTIC: 6612 c->Request.CDBLen = 6; 6613 c->Request.type_attr_dir = 6614 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6615 c->Request.Timeout = 0; 6616 c->Request.CDB[0] = cmd; 6617 c->Request.CDB[1] = 1; 6618 c->Request.CDB[2] = 1; 6619 c->Request.CDB[3] = (size >> 8) & 0xFF; 6620 c->Request.CDB[4] = size & 0xFF; 6621 break; 6622 case HPSA_REPORT_LOG: 6623 case HPSA_REPORT_PHYS: 6624 /* Talking to controller so It's a physical command 6625 mode = 00 target = 0. Nothing to write. 6626 */ 6627 c->Request.CDBLen = 12; 6628 c->Request.type_attr_dir = 6629 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6630 c->Request.Timeout = 0; 6631 c->Request.CDB[0] = cmd; 6632 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6633 c->Request.CDB[7] = (size >> 16) & 0xFF; 6634 c->Request.CDB[8] = (size >> 8) & 0xFF; 6635 c->Request.CDB[9] = size & 0xFF; 6636 break; 6637 case BMIC_SENSE_DIAG_OPTIONS: 6638 c->Request.CDBLen = 16; 6639 c->Request.type_attr_dir = 6640 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6641 c->Request.Timeout = 0; 6642 /* Spec says this should be BMIC_WRITE */ 6643 c->Request.CDB[0] = BMIC_READ; 6644 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; 6645 break; 6646 case BMIC_SET_DIAG_OPTIONS: 6647 c->Request.CDBLen = 16; 6648 c->Request.type_attr_dir = 6649 TYPE_ATTR_DIR(cmd_type, 6650 ATTR_SIMPLE, XFER_WRITE); 6651 c->Request.Timeout = 0; 6652 c->Request.CDB[0] = BMIC_WRITE; 6653 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; 6654 break; 6655 case HPSA_CACHE_FLUSH: 6656 c->Request.CDBLen = 12; 6657 c->Request.type_attr_dir = 6658 TYPE_ATTR_DIR(cmd_type, 6659 ATTR_SIMPLE, XFER_WRITE); 6660 c->Request.Timeout = 0; 6661 c->Request.CDB[0] = BMIC_WRITE; 6662 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6663 c->Request.CDB[7] = (size >> 8) & 0xFF; 6664 c->Request.CDB[8] = size & 0xFF; 6665 break; 6666 case TEST_UNIT_READY: 6667 c->Request.CDBLen = 6; 6668 c->Request.type_attr_dir = 6669 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6670 c->Request.Timeout = 0; 6671 break; 6672 case HPSA_GET_RAID_MAP: 6673 c->Request.CDBLen = 12; 6674 c->Request.type_attr_dir = 6675 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6676 c->Request.Timeout = 0; 6677 c->Request.CDB[0] = HPSA_CISS_READ; 6678 c->Request.CDB[1] = cmd; 6679 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6680 c->Request.CDB[7] = (size >> 16) & 0xFF; 6681 c->Request.CDB[8] = (size >> 8) & 0xFF; 6682 c->Request.CDB[9] = size & 0xFF; 6683 break; 6684 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6685 c->Request.CDBLen = 10; 6686 c->Request.type_attr_dir = 6687 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6688 c->Request.Timeout = 0; 6689 c->Request.CDB[0] = BMIC_READ; 6690 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6691 c->Request.CDB[7] = (size >> 16) & 0xFF; 6692 c->Request.CDB[8] = (size >> 8) & 0xFF; 6693 break; 6694 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6695 c->Request.CDBLen = 10; 6696 c->Request.type_attr_dir = 6697 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6698 c->Request.Timeout = 0; 6699 c->Request.CDB[0] = BMIC_READ; 6700 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6701 c->Request.CDB[7] = (size >> 16) & 0xFF; 6702 c->Request.CDB[8] = (size >> 8) & 0XFF; 6703 break; 6704 case BMIC_SENSE_SUBSYSTEM_INFORMATION: 6705 c->Request.CDBLen = 10; 6706 c->Request.type_attr_dir = 6707 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6708 c->Request.Timeout = 0; 6709 c->Request.CDB[0] = BMIC_READ; 6710 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; 6711 c->Request.CDB[7] = (size >> 16) & 0xFF; 6712 c->Request.CDB[8] = (size >> 8) & 0XFF; 6713 break; 6714 case BMIC_SENSE_STORAGE_BOX_PARAMS: 6715 c->Request.CDBLen = 10; 6716 c->Request.type_attr_dir = 6717 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6718 c->Request.Timeout = 0; 6719 c->Request.CDB[0] = BMIC_READ; 6720 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; 6721 c->Request.CDB[7] = (size >> 16) & 0xFF; 6722 c->Request.CDB[8] = (size >> 8) & 0XFF; 6723 break; 6724 case BMIC_IDENTIFY_CONTROLLER: 6725 c->Request.CDBLen = 10; 6726 c->Request.type_attr_dir = 6727 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6728 c->Request.Timeout = 0; 6729 c->Request.CDB[0] = BMIC_READ; 6730 c->Request.CDB[1] = 0; 6731 c->Request.CDB[2] = 0; 6732 c->Request.CDB[3] = 0; 6733 c->Request.CDB[4] = 0; 6734 c->Request.CDB[5] = 0; 6735 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; 6736 c->Request.CDB[7] = (size >> 16) & 0xFF; 6737 c->Request.CDB[8] = (size >> 8) & 0XFF; 6738 c->Request.CDB[9] = 0; 6739 break; 6740 default: 6741 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 6742 BUG(); 6743 } 6744 } else if (cmd_type == TYPE_MSG) { 6745 switch (cmd) { 6746 6747 case HPSA_PHYS_TARGET_RESET: 6748 c->Request.CDBLen = 16; 6749 c->Request.type_attr_dir = 6750 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6751 c->Request.Timeout = 0; /* Don't time out */ 6752 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6753 c->Request.CDB[0] = HPSA_RESET; 6754 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; 6755 /* Physical target reset needs no control bytes 4-7*/ 6756 c->Request.CDB[4] = 0x00; 6757 c->Request.CDB[5] = 0x00; 6758 c->Request.CDB[6] = 0x00; 6759 c->Request.CDB[7] = 0x00; 6760 break; 6761 case HPSA_DEVICE_RESET_MSG: 6762 c->Request.CDBLen = 16; 6763 c->Request.type_attr_dir = 6764 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6765 c->Request.Timeout = 0; /* Don't time out */ 6766 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6767 c->Request.CDB[0] = cmd; 6768 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 6769 /* If bytes 4-7 are zero, it means reset the */ 6770 /* LunID device */ 6771 c->Request.CDB[4] = 0x00; 6772 c->Request.CDB[5] = 0x00; 6773 c->Request.CDB[6] = 0x00; 6774 c->Request.CDB[7] = 0x00; 6775 break; 6776 default: 6777 dev_warn(&h->pdev->dev, "unknown message type %d\n", 6778 cmd); 6779 BUG(); 6780 } 6781 } else { 6782 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 6783 BUG(); 6784 } 6785 6786 switch (GET_DIR(c->Request.type_attr_dir)) { 6787 case XFER_READ: 6788 pci_dir = PCI_DMA_FROMDEVICE; 6789 break; 6790 case XFER_WRITE: 6791 pci_dir = PCI_DMA_TODEVICE; 6792 break; 6793 case XFER_NONE: 6794 pci_dir = PCI_DMA_NONE; 6795 break; 6796 default: 6797 pci_dir = PCI_DMA_BIDIRECTIONAL; 6798 } 6799 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) 6800 return -1; 6801 return 0; 6802 } 6803 6804 /* 6805 * Map (physical) PCI mem into (virtual) kernel space 6806 */ 6807 static void __iomem *remap_pci_mem(ulong base, ulong size) 6808 { 6809 ulong page_base = ((ulong) base) & PAGE_MASK; 6810 ulong page_offs = ((ulong) base) - page_base; 6811 void __iomem *page_remapped = ioremap_nocache(page_base, 6812 page_offs + size); 6813 6814 return page_remapped ? (page_remapped + page_offs) : NULL; 6815 } 6816 6817 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 6818 { 6819 return h->access.command_completed(h, q); 6820 } 6821 6822 static inline bool interrupt_pending(struct ctlr_info *h) 6823 { 6824 return h->access.intr_pending(h); 6825 } 6826 6827 static inline long interrupt_not_for_us(struct ctlr_info *h) 6828 { 6829 return (h->access.intr_pending(h) == 0) || 6830 (h->interrupts_enabled == 0); 6831 } 6832 6833 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 6834 u32 raw_tag) 6835 { 6836 if (unlikely(tag_index >= h->nr_cmds)) { 6837 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 6838 return 1; 6839 } 6840 return 0; 6841 } 6842 6843 static inline void finish_cmd(struct CommandList *c) 6844 { 6845 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 6846 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 6847 || c->cmd_type == CMD_IOACCEL2)) 6848 complete_scsi_command(c); 6849 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 6850 complete(c->waiting); 6851 } 6852 6853 /* process completion of an indexed ("direct lookup") command */ 6854 static inline void process_indexed_cmd(struct ctlr_info *h, 6855 u32 raw_tag) 6856 { 6857 u32 tag_index; 6858 struct CommandList *c; 6859 6860 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 6861 if (!bad_tag(h, tag_index, raw_tag)) { 6862 c = h->cmd_pool + tag_index; 6863 finish_cmd(c); 6864 } 6865 } 6866 6867 /* Some controllers, like p400, will give us one interrupt 6868 * after a soft reset, even if we turned interrupts off. 6869 * Only need to check for this in the hpsa_xxx_discard_completions 6870 * functions. 6871 */ 6872 static int ignore_bogus_interrupt(struct ctlr_info *h) 6873 { 6874 if (likely(!reset_devices)) 6875 return 0; 6876 6877 if (likely(h->interrupts_enabled)) 6878 return 0; 6879 6880 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 6881 "(known firmware bug.) Ignoring.\n"); 6882 6883 return 1; 6884 } 6885 6886 /* 6887 * Convert &h->q[x] (passed to interrupt handlers) back to h. 6888 * Relies on (h-q[x] == x) being true for x such that 6889 * 0 <= x < MAX_REPLY_QUEUES. 6890 */ 6891 static struct ctlr_info *queue_to_hba(u8 *queue) 6892 { 6893 return container_of((queue - *queue), struct ctlr_info, q[0]); 6894 } 6895 6896 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 6897 { 6898 struct ctlr_info *h = queue_to_hba(queue); 6899 u8 q = *(u8 *) queue; 6900 u32 raw_tag; 6901 6902 if (ignore_bogus_interrupt(h)) 6903 return IRQ_NONE; 6904 6905 if (interrupt_not_for_us(h)) 6906 return IRQ_NONE; 6907 h->last_intr_timestamp = get_jiffies_64(); 6908 while (interrupt_pending(h)) { 6909 raw_tag = get_next_completion(h, q); 6910 while (raw_tag != FIFO_EMPTY) 6911 raw_tag = next_command(h, q); 6912 } 6913 return IRQ_HANDLED; 6914 } 6915 6916 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 6917 { 6918 struct ctlr_info *h = queue_to_hba(queue); 6919 u32 raw_tag; 6920 u8 q = *(u8 *) queue; 6921 6922 if (ignore_bogus_interrupt(h)) 6923 return IRQ_NONE; 6924 6925 h->last_intr_timestamp = get_jiffies_64(); 6926 raw_tag = get_next_completion(h, q); 6927 while (raw_tag != FIFO_EMPTY) 6928 raw_tag = next_command(h, q); 6929 return IRQ_HANDLED; 6930 } 6931 6932 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 6933 { 6934 struct ctlr_info *h = queue_to_hba((u8 *) queue); 6935 u32 raw_tag; 6936 u8 q = *(u8 *) queue; 6937 6938 if (interrupt_not_for_us(h)) 6939 return IRQ_NONE; 6940 h->last_intr_timestamp = get_jiffies_64(); 6941 while (interrupt_pending(h)) { 6942 raw_tag = get_next_completion(h, q); 6943 while (raw_tag != FIFO_EMPTY) { 6944 process_indexed_cmd(h, raw_tag); 6945 raw_tag = next_command(h, q); 6946 } 6947 } 6948 return IRQ_HANDLED; 6949 } 6950 6951 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 6952 { 6953 struct ctlr_info *h = queue_to_hba(queue); 6954 u32 raw_tag; 6955 u8 q = *(u8 *) queue; 6956 6957 h->last_intr_timestamp = get_jiffies_64(); 6958 raw_tag = get_next_completion(h, q); 6959 while (raw_tag != FIFO_EMPTY) { 6960 process_indexed_cmd(h, raw_tag); 6961 raw_tag = next_command(h, q); 6962 } 6963 return IRQ_HANDLED; 6964 } 6965 6966 /* Send a message CDB to the firmware. Careful, this only works 6967 * in simple mode, not performant mode due to the tag lookup. 6968 * We only ever use this immediately after a controller reset. 6969 */ 6970 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 6971 unsigned char type) 6972 { 6973 struct Command { 6974 struct CommandListHeader CommandHeader; 6975 struct RequestBlock Request; 6976 struct ErrDescriptor ErrorDescriptor; 6977 }; 6978 struct Command *cmd; 6979 static const size_t cmd_sz = sizeof(*cmd) + 6980 sizeof(cmd->ErrorDescriptor); 6981 dma_addr_t paddr64; 6982 __le32 paddr32; 6983 u32 tag; 6984 void __iomem *vaddr; 6985 int i, err; 6986 6987 vaddr = pci_ioremap_bar(pdev, 0); 6988 if (vaddr == NULL) 6989 return -ENOMEM; 6990 6991 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 6992 * CCISS commands, so they must be allocated from the lower 4GiB of 6993 * memory. 6994 */ 6995 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 6996 if (err) { 6997 iounmap(vaddr); 6998 return err; 6999 } 7000 7001 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 7002 if (cmd == NULL) { 7003 iounmap(vaddr); 7004 return -ENOMEM; 7005 } 7006 7007 /* This must fit, because of the 32-bit consistent DMA mask. Also, 7008 * although there's no guarantee, we assume that the address is at 7009 * least 4-byte aligned (most likely, it's page-aligned). 7010 */ 7011 paddr32 = cpu_to_le32(paddr64); 7012 7013 cmd->CommandHeader.ReplyQueue = 0; 7014 cmd->CommandHeader.SGList = 0; 7015 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 7016 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 7017 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 7018 7019 cmd->Request.CDBLen = 16; 7020 cmd->Request.type_attr_dir = 7021 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 7022 cmd->Request.Timeout = 0; /* Don't time out */ 7023 cmd->Request.CDB[0] = opcode; 7024 cmd->Request.CDB[1] = type; 7025 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 7026 cmd->ErrorDescriptor.Addr = 7027 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 7028 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 7029 7030 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 7031 7032 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 7033 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 7034 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 7035 break; 7036 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 7037 } 7038 7039 iounmap(vaddr); 7040 7041 /* we leak the DMA buffer here ... no choice since the controller could 7042 * still complete the command. 7043 */ 7044 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 7045 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 7046 opcode, type); 7047 return -ETIMEDOUT; 7048 } 7049 7050 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 7051 7052 if (tag & HPSA_ERROR_BIT) { 7053 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 7054 opcode, type); 7055 return -EIO; 7056 } 7057 7058 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 7059 opcode, type); 7060 return 0; 7061 } 7062 7063 #define hpsa_noop(p) hpsa_message(p, 3, 0) 7064 7065 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 7066 void __iomem *vaddr, u32 use_doorbell) 7067 { 7068 7069 if (use_doorbell) { 7070 /* For everything after the P600, the PCI power state method 7071 * of resetting the controller doesn't work, so we have this 7072 * other way using the doorbell register. 7073 */ 7074 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 7075 writel(use_doorbell, vaddr + SA5_DOORBELL); 7076 7077 /* PMC hardware guys tell us we need a 10 second delay after 7078 * doorbell reset and before any attempt to talk to the board 7079 * at all to ensure that this actually works and doesn't fall 7080 * over in some weird corner cases. 7081 */ 7082 msleep(10000); 7083 } else { /* Try to do it the PCI power state way */ 7084 7085 /* Quoting from the Open CISS Specification: "The Power 7086 * Management Control/Status Register (CSR) controls the power 7087 * state of the device. The normal operating state is D0, 7088 * CSR=00h. The software off state is D3, CSR=03h. To reset 7089 * the controller, place the interface device in D3 then to D0, 7090 * this causes a secondary PCI reset which will reset the 7091 * controller." */ 7092 7093 int rc = 0; 7094 7095 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 7096 7097 /* enter the D3hot power management state */ 7098 rc = pci_set_power_state(pdev, PCI_D3hot); 7099 if (rc) 7100 return rc; 7101 7102 msleep(500); 7103 7104 /* enter the D0 power management state */ 7105 rc = pci_set_power_state(pdev, PCI_D0); 7106 if (rc) 7107 return rc; 7108 7109 /* 7110 * The P600 requires a small delay when changing states. 7111 * Otherwise we may think the board did not reset and we bail. 7112 * This for kdump only and is particular to the P600. 7113 */ 7114 msleep(500); 7115 } 7116 return 0; 7117 } 7118 7119 static void init_driver_version(char *driver_version, int len) 7120 { 7121 memset(driver_version, 0, len); 7122 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 7123 } 7124 7125 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 7126 { 7127 char *driver_version; 7128 int i, size = sizeof(cfgtable->driver_version); 7129 7130 driver_version = kmalloc(size, GFP_KERNEL); 7131 if (!driver_version) 7132 return -ENOMEM; 7133 7134 init_driver_version(driver_version, size); 7135 for (i = 0; i < size; i++) 7136 writeb(driver_version[i], &cfgtable->driver_version[i]); 7137 kfree(driver_version); 7138 return 0; 7139 } 7140 7141 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 7142 unsigned char *driver_ver) 7143 { 7144 int i; 7145 7146 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 7147 driver_ver[i] = readb(&cfgtable->driver_version[i]); 7148 } 7149 7150 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 7151 { 7152 7153 char *driver_ver, *old_driver_ver; 7154 int rc, size = sizeof(cfgtable->driver_version); 7155 7156 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); 7157 if (!old_driver_ver) 7158 return -ENOMEM; 7159 driver_ver = old_driver_ver + size; 7160 7161 /* After a reset, the 32 bytes of "driver version" in the cfgtable 7162 * should have been changed, otherwise we know the reset failed. 7163 */ 7164 init_driver_version(old_driver_ver, size); 7165 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 7166 rc = !memcmp(driver_ver, old_driver_ver, size); 7167 kfree(old_driver_ver); 7168 return rc; 7169 } 7170 /* This does a hard reset of the controller using PCI power management 7171 * states or the using the doorbell register. 7172 */ 7173 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 7174 { 7175 u64 cfg_offset; 7176 u32 cfg_base_addr; 7177 u64 cfg_base_addr_index; 7178 void __iomem *vaddr; 7179 unsigned long paddr; 7180 u32 misc_fw_support; 7181 int rc; 7182 struct CfgTable __iomem *cfgtable; 7183 u32 use_doorbell; 7184 u16 command_register; 7185 7186 /* For controllers as old as the P600, this is very nearly 7187 * the same thing as 7188 * 7189 * pci_save_state(pci_dev); 7190 * pci_set_power_state(pci_dev, PCI_D3hot); 7191 * pci_set_power_state(pci_dev, PCI_D0); 7192 * pci_restore_state(pci_dev); 7193 * 7194 * For controllers newer than the P600, the pci power state 7195 * method of resetting doesn't work so we have another way 7196 * using the doorbell register. 7197 */ 7198 7199 if (!ctlr_is_resettable(board_id)) { 7200 dev_warn(&pdev->dev, "Controller not resettable\n"); 7201 return -ENODEV; 7202 } 7203 7204 /* if controller is soft- but not hard resettable... */ 7205 if (!ctlr_is_hard_resettable(board_id)) 7206 return -ENOTSUPP; /* try soft reset later. */ 7207 7208 /* Save the PCI command register */ 7209 pci_read_config_word(pdev, 4, &command_register); 7210 pci_save_state(pdev); 7211 7212 /* find the first memory BAR, so we can find the cfg table */ 7213 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 7214 if (rc) 7215 return rc; 7216 vaddr = remap_pci_mem(paddr, 0x250); 7217 if (!vaddr) 7218 return -ENOMEM; 7219 7220 /* find cfgtable in order to check if reset via doorbell is supported */ 7221 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 7222 &cfg_base_addr_index, &cfg_offset); 7223 if (rc) 7224 goto unmap_vaddr; 7225 cfgtable = remap_pci_mem(pci_resource_start(pdev, 7226 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 7227 if (!cfgtable) { 7228 rc = -ENOMEM; 7229 goto unmap_vaddr; 7230 } 7231 rc = write_driver_ver_to_cfgtable(cfgtable); 7232 if (rc) 7233 goto unmap_cfgtable; 7234 7235 /* If reset via doorbell register is supported, use that. 7236 * There are two such methods. Favor the newest method. 7237 */ 7238 misc_fw_support = readl(&cfgtable->misc_fw_support); 7239 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 7240 if (use_doorbell) { 7241 use_doorbell = DOORBELL_CTLR_RESET2; 7242 } else { 7243 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 7244 if (use_doorbell) { 7245 dev_warn(&pdev->dev, 7246 "Soft reset not supported. Firmware update is required.\n"); 7247 rc = -ENOTSUPP; /* try soft reset */ 7248 goto unmap_cfgtable; 7249 } 7250 } 7251 7252 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 7253 if (rc) 7254 goto unmap_cfgtable; 7255 7256 pci_restore_state(pdev); 7257 pci_write_config_word(pdev, 4, command_register); 7258 7259 /* Some devices (notably the HP Smart Array 5i Controller) 7260 need a little pause here */ 7261 msleep(HPSA_POST_RESET_PAUSE_MSECS); 7262 7263 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 7264 if (rc) { 7265 dev_warn(&pdev->dev, 7266 "Failed waiting for board to become ready after hard reset\n"); 7267 goto unmap_cfgtable; 7268 } 7269 7270 rc = controller_reset_failed(vaddr); 7271 if (rc < 0) 7272 goto unmap_cfgtable; 7273 if (rc) { 7274 dev_warn(&pdev->dev, "Unable to successfully reset " 7275 "controller. Will try soft reset.\n"); 7276 rc = -ENOTSUPP; 7277 } else { 7278 dev_info(&pdev->dev, "board ready after hard reset.\n"); 7279 } 7280 7281 unmap_cfgtable: 7282 iounmap(cfgtable); 7283 7284 unmap_vaddr: 7285 iounmap(vaddr); 7286 return rc; 7287 } 7288 7289 /* 7290 * We cannot read the structure directly, for portability we must use 7291 * the io functions. 7292 * This is for debug only. 7293 */ 7294 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 7295 { 7296 #ifdef HPSA_DEBUG 7297 int i; 7298 char temp_name[17]; 7299 7300 dev_info(dev, "Controller Configuration information\n"); 7301 dev_info(dev, "------------------------------------\n"); 7302 for (i = 0; i < 4; i++) 7303 temp_name[i] = readb(&(tb->Signature[i])); 7304 temp_name[4] = '\0'; 7305 dev_info(dev, " Signature = %s\n", temp_name); 7306 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 7307 dev_info(dev, " Transport methods supported = 0x%x\n", 7308 readl(&(tb->TransportSupport))); 7309 dev_info(dev, " Transport methods active = 0x%x\n", 7310 readl(&(tb->TransportActive))); 7311 dev_info(dev, " Requested transport Method = 0x%x\n", 7312 readl(&(tb->HostWrite.TransportRequest))); 7313 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 7314 readl(&(tb->HostWrite.CoalIntDelay))); 7315 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 7316 readl(&(tb->HostWrite.CoalIntCount))); 7317 dev_info(dev, " Max outstanding commands = %d\n", 7318 readl(&(tb->CmdsOutMax))); 7319 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 7320 for (i = 0; i < 16; i++) 7321 temp_name[i] = readb(&(tb->ServerName[i])); 7322 temp_name[16] = '\0'; 7323 dev_info(dev, " Server Name = %s\n", temp_name); 7324 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 7325 readl(&(tb->HeartBeat))); 7326 #endif /* HPSA_DEBUG */ 7327 } 7328 7329 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 7330 { 7331 int i, offset, mem_type, bar_type; 7332 7333 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 7334 return 0; 7335 offset = 0; 7336 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 7337 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 7338 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 7339 offset += 4; 7340 else { 7341 mem_type = pci_resource_flags(pdev, i) & 7342 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 7343 switch (mem_type) { 7344 case PCI_BASE_ADDRESS_MEM_TYPE_32: 7345 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 7346 offset += 4; /* 32 bit */ 7347 break; 7348 case PCI_BASE_ADDRESS_MEM_TYPE_64: 7349 offset += 8; 7350 break; 7351 default: /* reserved in PCI 2.2 */ 7352 dev_warn(&pdev->dev, 7353 "base address is invalid\n"); 7354 return -1; 7355 break; 7356 } 7357 } 7358 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 7359 return i + 1; 7360 } 7361 return -1; 7362 } 7363 7364 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 7365 { 7366 pci_free_irq_vectors(h->pdev); 7367 h->msix_vectors = 0; 7368 } 7369 7370 static void hpsa_setup_reply_map(struct ctlr_info *h) 7371 { 7372 const struct cpumask *mask; 7373 unsigned int queue, cpu; 7374 7375 for (queue = 0; queue < h->msix_vectors; queue++) { 7376 mask = pci_irq_get_affinity(h->pdev, queue); 7377 if (!mask) 7378 goto fallback; 7379 7380 for_each_cpu(cpu, mask) 7381 h->reply_map[cpu] = queue; 7382 } 7383 return; 7384 7385 fallback: 7386 for_each_possible_cpu(cpu) 7387 h->reply_map[cpu] = 0; 7388 } 7389 7390 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 7391 * controllers that are capable. If not, we use legacy INTx mode. 7392 */ 7393 static int hpsa_interrupt_mode(struct ctlr_info *h) 7394 { 7395 unsigned int flags = PCI_IRQ_LEGACY; 7396 int ret; 7397 7398 /* Some boards advertise MSI but don't really support it */ 7399 switch (h->board_id) { 7400 case 0x40700E11: 7401 case 0x40800E11: 7402 case 0x40820E11: 7403 case 0x40830E11: 7404 break; 7405 default: 7406 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, 7407 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); 7408 if (ret > 0) { 7409 h->msix_vectors = ret; 7410 return 0; 7411 } 7412 7413 flags |= PCI_IRQ_MSI; 7414 break; 7415 } 7416 7417 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); 7418 if (ret < 0) 7419 return ret; 7420 return 0; 7421 } 7422 7423 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, 7424 bool *legacy_board) 7425 { 7426 int i; 7427 u32 subsystem_vendor_id, subsystem_device_id; 7428 7429 subsystem_vendor_id = pdev->subsystem_vendor; 7430 subsystem_device_id = pdev->subsystem_device; 7431 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7432 subsystem_vendor_id; 7433 7434 if (legacy_board) 7435 *legacy_board = false; 7436 for (i = 0; i < ARRAY_SIZE(products); i++) 7437 if (*board_id == products[i].board_id) { 7438 if (products[i].access != &SA5A_access && 7439 products[i].access != &SA5B_access) 7440 return i; 7441 dev_warn(&pdev->dev, 7442 "legacy board ID: 0x%08x\n", 7443 *board_id); 7444 if (legacy_board) 7445 *legacy_board = true; 7446 return i; 7447 } 7448 7449 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); 7450 if (legacy_board) 7451 *legacy_board = true; 7452 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7453 } 7454 7455 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7456 unsigned long *memory_bar) 7457 { 7458 int i; 7459 7460 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7461 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7462 /* addressing mode bits already removed */ 7463 *memory_bar = pci_resource_start(pdev, i); 7464 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7465 *memory_bar); 7466 return 0; 7467 } 7468 dev_warn(&pdev->dev, "no memory BAR found\n"); 7469 return -ENODEV; 7470 } 7471 7472 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7473 int wait_for_ready) 7474 { 7475 int i, iterations; 7476 u32 scratchpad; 7477 if (wait_for_ready) 7478 iterations = HPSA_BOARD_READY_ITERATIONS; 7479 else 7480 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7481 7482 for (i = 0; i < iterations; i++) { 7483 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7484 if (wait_for_ready) { 7485 if (scratchpad == HPSA_FIRMWARE_READY) 7486 return 0; 7487 } else { 7488 if (scratchpad != HPSA_FIRMWARE_READY) 7489 return 0; 7490 } 7491 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7492 } 7493 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7494 return -ENODEV; 7495 } 7496 7497 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7498 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7499 u64 *cfg_offset) 7500 { 7501 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7502 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7503 *cfg_base_addr &= (u32) 0x0000ffff; 7504 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7505 if (*cfg_base_addr_index == -1) { 7506 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7507 return -ENODEV; 7508 } 7509 return 0; 7510 } 7511 7512 static void hpsa_free_cfgtables(struct ctlr_info *h) 7513 { 7514 if (h->transtable) { 7515 iounmap(h->transtable); 7516 h->transtable = NULL; 7517 } 7518 if (h->cfgtable) { 7519 iounmap(h->cfgtable); 7520 h->cfgtable = NULL; 7521 } 7522 } 7523 7524 /* Find and map CISS config table and transfer table 7525 + * several items must be unmapped (freed) later 7526 + * */ 7527 static int hpsa_find_cfgtables(struct ctlr_info *h) 7528 { 7529 u64 cfg_offset; 7530 u32 cfg_base_addr; 7531 u64 cfg_base_addr_index; 7532 u32 trans_offset; 7533 int rc; 7534 7535 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7536 &cfg_base_addr_index, &cfg_offset); 7537 if (rc) 7538 return rc; 7539 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7540 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7541 if (!h->cfgtable) { 7542 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7543 return -ENOMEM; 7544 } 7545 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7546 if (rc) 7547 return rc; 7548 /* Find performant mode table. */ 7549 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7550 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7551 cfg_base_addr_index)+cfg_offset+trans_offset, 7552 sizeof(*h->transtable)); 7553 if (!h->transtable) { 7554 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7555 hpsa_free_cfgtables(h); 7556 return -ENOMEM; 7557 } 7558 return 0; 7559 } 7560 7561 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7562 { 7563 #define MIN_MAX_COMMANDS 16 7564 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7565 7566 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7567 7568 /* Limit commands in memory limited kdump scenario. */ 7569 if (reset_devices && h->max_commands > 32) 7570 h->max_commands = 32; 7571 7572 if (h->max_commands < MIN_MAX_COMMANDS) { 7573 dev_warn(&h->pdev->dev, 7574 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7575 h->max_commands, 7576 MIN_MAX_COMMANDS); 7577 h->max_commands = MIN_MAX_COMMANDS; 7578 } 7579 } 7580 7581 /* If the controller reports that the total max sg entries is greater than 512, 7582 * then we know that chained SG blocks work. (Original smart arrays did not 7583 * support chained SG blocks and would return zero for max sg entries.) 7584 */ 7585 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7586 { 7587 return h->maxsgentries > 512; 7588 } 7589 7590 /* Interrogate the hardware for some limits: 7591 * max commands, max SG elements without chaining, and with chaining, 7592 * SG chain block size, etc. 7593 */ 7594 static void hpsa_find_board_params(struct ctlr_info *h) 7595 { 7596 hpsa_get_max_perf_mode_cmds(h); 7597 h->nr_cmds = h->max_commands; 7598 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7599 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7600 if (hpsa_supports_chained_sg_blocks(h)) { 7601 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7602 h->max_cmd_sg_entries = 32; 7603 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7604 h->maxsgentries--; /* save one for chain pointer */ 7605 } else { 7606 /* 7607 * Original smart arrays supported at most 31 s/g entries 7608 * embedded inline in the command (trying to use more 7609 * would lock up the controller) 7610 */ 7611 h->max_cmd_sg_entries = 31; 7612 h->maxsgentries = 31; /* default to traditional values */ 7613 h->chainsize = 0; 7614 } 7615 7616 /* Find out what task management functions are supported and cache */ 7617 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7618 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7619 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7620 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7621 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7622 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7623 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7624 } 7625 7626 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7627 { 7628 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7629 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7630 return false; 7631 } 7632 return true; 7633 } 7634 7635 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7636 { 7637 u32 driver_support; 7638 7639 driver_support = readl(&(h->cfgtable->driver_support)); 7640 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7641 #ifdef CONFIG_X86 7642 driver_support |= ENABLE_SCSI_PREFETCH; 7643 #endif 7644 driver_support |= ENABLE_UNIT_ATTN; 7645 writel(driver_support, &(h->cfgtable->driver_support)); 7646 } 7647 7648 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7649 * in a prefetch beyond physical memory. 7650 */ 7651 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7652 { 7653 u32 dma_prefetch; 7654 7655 if (h->board_id != 0x3225103C) 7656 return; 7657 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7658 dma_prefetch |= 0x8000; 7659 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7660 } 7661 7662 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7663 { 7664 int i; 7665 u32 doorbell_value; 7666 unsigned long flags; 7667 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7668 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7669 spin_lock_irqsave(&h->lock, flags); 7670 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7671 spin_unlock_irqrestore(&h->lock, flags); 7672 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7673 goto done; 7674 /* delay and try again */ 7675 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7676 } 7677 return -ENODEV; 7678 done: 7679 return 0; 7680 } 7681 7682 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7683 { 7684 int i; 7685 u32 doorbell_value; 7686 unsigned long flags; 7687 7688 /* under certain very rare conditions, this can take awhile. 7689 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7690 * as we enter this code.) 7691 */ 7692 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7693 if (h->remove_in_progress) 7694 goto done; 7695 spin_lock_irqsave(&h->lock, flags); 7696 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7697 spin_unlock_irqrestore(&h->lock, flags); 7698 if (!(doorbell_value & CFGTBL_ChangeReq)) 7699 goto done; 7700 /* delay and try again */ 7701 msleep(MODE_CHANGE_WAIT_INTERVAL); 7702 } 7703 return -ENODEV; 7704 done: 7705 return 0; 7706 } 7707 7708 /* return -ENODEV or other reason on error, 0 on success */ 7709 static int hpsa_enter_simple_mode(struct ctlr_info *h) 7710 { 7711 u32 trans_support; 7712 7713 trans_support = readl(&(h->cfgtable->TransportSupport)); 7714 if (!(trans_support & SIMPLE_MODE)) 7715 return -ENOTSUPP; 7716 7717 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 7718 7719 /* Update the field, and then ring the doorbell */ 7720 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 7721 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7722 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7723 if (hpsa_wait_for_mode_change_ack(h)) 7724 goto error; 7725 print_cfg_table(&h->pdev->dev, h->cfgtable); 7726 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 7727 goto error; 7728 h->transMethod = CFGTBL_Trans_Simple; 7729 return 0; 7730 error: 7731 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 7732 return -ENODEV; 7733 } 7734 7735 /* free items allocated or mapped by hpsa_pci_init */ 7736 static void hpsa_free_pci_init(struct ctlr_info *h) 7737 { 7738 hpsa_free_cfgtables(h); /* pci_init 4 */ 7739 iounmap(h->vaddr); /* pci_init 3 */ 7740 h->vaddr = NULL; 7741 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 7742 /* 7743 * call pci_disable_device before pci_release_regions per 7744 * Documentation/PCI/pci.txt 7745 */ 7746 pci_disable_device(h->pdev); /* pci_init 1 */ 7747 pci_release_regions(h->pdev); /* pci_init 2 */ 7748 } 7749 7750 /* several items must be freed later */ 7751 static int hpsa_pci_init(struct ctlr_info *h) 7752 { 7753 int prod_index, err; 7754 bool legacy_board; 7755 7756 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); 7757 if (prod_index < 0) 7758 return prod_index; 7759 h->product_name = products[prod_index].product_name; 7760 h->access = *(products[prod_index].access); 7761 h->legacy_board = legacy_board; 7762 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 7763 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 7764 7765 err = pci_enable_device(h->pdev); 7766 if (err) { 7767 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 7768 pci_disable_device(h->pdev); 7769 return err; 7770 } 7771 7772 err = pci_request_regions(h->pdev, HPSA); 7773 if (err) { 7774 dev_err(&h->pdev->dev, 7775 "failed to obtain PCI resources\n"); 7776 pci_disable_device(h->pdev); 7777 return err; 7778 } 7779 7780 pci_set_master(h->pdev); 7781 7782 err = hpsa_interrupt_mode(h); 7783 if (err) 7784 goto clean1; 7785 7786 /* setup mapping between CPU and reply queue */ 7787 hpsa_setup_reply_map(h); 7788 7789 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 7790 if (err) 7791 goto clean2; /* intmode+region, pci */ 7792 h->vaddr = remap_pci_mem(h->paddr, 0x250); 7793 if (!h->vaddr) { 7794 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 7795 err = -ENOMEM; 7796 goto clean2; /* intmode+region, pci */ 7797 } 7798 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7799 if (err) 7800 goto clean3; /* vaddr, intmode+region, pci */ 7801 err = hpsa_find_cfgtables(h); 7802 if (err) 7803 goto clean3; /* vaddr, intmode+region, pci */ 7804 hpsa_find_board_params(h); 7805 7806 if (!hpsa_CISS_signature_present(h)) { 7807 err = -ENODEV; 7808 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7809 } 7810 hpsa_set_driver_support_bits(h); 7811 hpsa_p600_dma_prefetch_quirk(h); 7812 err = hpsa_enter_simple_mode(h); 7813 if (err) 7814 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7815 return 0; 7816 7817 clean4: /* cfgtables, vaddr, intmode+region, pci */ 7818 hpsa_free_cfgtables(h); 7819 clean3: /* vaddr, intmode+region, pci */ 7820 iounmap(h->vaddr); 7821 h->vaddr = NULL; 7822 clean2: /* intmode+region, pci */ 7823 hpsa_disable_interrupt_mode(h); 7824 clean1: 7825 /* 7826 * call pci_disable_device before pci_release_regions per 7827 * Documentation/PCI/pci.txt 7828 */ 7829 pci_disable_device(h->pdev); 7830 pci_release_regions(h->pdev); 7831 return err; 7832 } 7833 7834 static void hpsa_hba_inquiry(struct ctlr_info *h) 7835 { 7836 int rc; 7837 7838 #define HBA_INQUIRY_BYTE_COUNT 64 7839 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 7840 if (!h->hba_inquiry_data) 7841 return; 7842 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 7843 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 7844 if (rc != 0) { 7845 kfree(h->hba_inquiry_data); 7846 h->hba_inquiry_data = NULL; 7847 } 7848 } 7849 7850 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 7851 { 7852 int rc, i; 7853 void __iomem *vaddr; 7854 7855 if (!reset_devices) 7856 return 0; 7857 7858 /* kdump kernel is loading, we don't know in which state is 7859 * the pci interface. The dev->enable_cnt is equal zero 7860 * so we call enable+disable, wait a while and switch it on. 7861 */ 7862 rc = pci_enable_device(pdev); 7863 if (rc) { 7864 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 7865 return -ENODEV; 7866 } 7867 pci_disable_device(pdev); 7868 msleep(260); /* a randomly chosen number */ 7869 rc = pci_enable_device(pdev); 7870 if (rc) { 7871 dev_warn(&pdev->dev, "failed to enable device.\n"); 7872 return -ENODEV; 7873 } 7874 7875 pci_set_master(pdev); 7876 7877 vaddr = pci_ioremap_bar(pdev, 0); 7878 if (vaddr == NULL) { 7879 rc = -ENOMEM; 7880 goto out_disable; 7881 } 7882 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 7883 iounmap(vaddr); 7884 7885 /* Reset the controller with a PCI power-cycle or via doorbell */ 7886 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 7887 7888 /* -ENOTSUPP here means we cannot reset the controller 7889 * but it's already (and still) up and running in 7890 * "performant mode". Or, it might be 640x, which can't reset 7891 * due to concerns about shared bbwc between 6402/6404 pair. 7892 */ 7893 if (rc) 7894 goto out_disable; 7895 7896 /* Now try to get the controller to respond to a no-op */ 7897 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 7898 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 7899 if (hpsa_noop(pdev) == 0) 7900 break; 7901 else 7902 dev_warn(&pdev->dev, "no-op failed%s\n", 7903 (i < 11 ? "; re-trying" : "")); 7904 } 7905 7906 out_disable: 7907 7908 pci_disable_device(pdev); 7909 return rc; 7910 } 7911 7912 static void hpsa_free_cmd_pool(struct ctlr_info *h) 7913 { 7914 kfree(h->cmd_pool_bits); 7915 h->cmd_pool_bits = NULL; 7916 if (h->cmd_pool) { 7917 pci_free_consistent(h->pdev, 7918 h->nr_cmds * sizeof(struct CommandList), 7919 h->cmd_pool, 7920 h->cmd_pool_dhandle); 7921 h->cmd_pool = NULL; 7922 h->cmd_pool_dhandle = 0; 7923 } 7924 if (h->errinfo_pool) { 7925 pci_free_consistent(h->pdev, 7926 h->nr_cmds * sizeof(struct ErrorInfo), 7927 h->errinfo_pool, 7928 h->errinfo_pool_dhandle); 7929 h->errinfo_pool = NULL; 7930 h->errinfo_pool_dhandle = 0; 7931 } 7932 } 7933 7934 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 7935 { 7936 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG), 7937 sizeof(unsigned long), 7938 GFP_KERNEL); 7939 h->cmd_pool = pci_alloc_consistent(h->pdev, 7940 h->nr_cmds * sizeof(*h->cmd_pool), 7941 &(h->cmd_pool_dhandle)); 7942 h->errinfo_pool = pci_alloc_consistent(h->pdev, 7943 h->nr_cmds * sizeof(*h->errinfo_pool), 7944 &(h->errinfo_pool_dhandle)); 7945 if ((h->cmd_pool_bits == NULL) 7946 || (h->cmd_pool == NULL) 7947 || (h->errinfo_pool == NULL)) { 7948 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 7949 goto clean_up; 7950 } 7951 hpsa_preinitialize_commands(h); 7952 return 0; 7953 clean_up: 7954 hpsa_free_cmd_pool(h); 7955 return -ENOMEM; 7956 } 7957 7958 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 7959 static void hpsa_free_irqs(struct ctlr_info *h) 7960 { 7961 int i; 7962 7963 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { 7964 /* Single reply queue, only one irq to free */ 7965 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]); 7966 h->q[h->intr_mode] = 0; 7967 return; 7968 } 7969 7970 for (i = 0; i < h->msix_vectors; i++) { 7971 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); 7972 h->q[i] = 0; 7973 } 7974 for (; i < MAX_REPLY_QUEUES; i++) 7975 h->q[i] = 0; 7976 } 7977 7978 /* returns 0 on success; cleans up and returns -Enn on error */ 7979 static int hpsa_request_irqs(struct ctlr_info *h, 7980 irqreturn_t (*msixhandler)(int, void *), 7981 irqreturn_t (*intxhandler)(int, void *)) 7982 { 7983 int rc, i; 7984 7985 /* 7986 * initialize h->q[x] = x so that interrupt handlers know which 7987 * queue to process. 7988 */ 7989 for (i = 0; i < MAX_REPLY_QUEUES; i++) 7990 h->q[i] = (u8) i; 7991 7992 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { 7993 /* If performant mode and MSI-X, use multiple reply queues */ 7994 for (i = 0; i < h->msix_vectors; i++) { 7995 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 7996 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, 7997 0, h->intrname[i], 7998 &h->q[i]); 7999 if (rc) { 8000 int j; 8001 8002 dev_err(&h->pdev->dev, 8003 "failed to get irq %d for %s\n", 8004 pci_irq_vector(h->pdev, i), h->devname); 8005 for (j = 0; j < i; j++) { 8006 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); 8007 h->q[j] = 0; 8008 } 8009 for (; j < MAX_REPLY_QUEUES; j++) 8010 h->q[j] = 0; 8011 return rc; 8012 } 8013 } 8014 } else { 8015 /* Use single reply pool */ 8016 if (h->msix_vectors > 0 || h->pdev->msi_enabled) { 8017 sprintf(h->intrname[0], "%s-msi%s", h->devname, 8018 h->msix_vectors ? "x" : ""); 8019 rc = request_irq(pci_irq_vector(h->pdev, 0), 8020 msixhandler, 0, 8021 h->intrname[0], 8022 &h->q[h->intr_mode]); 8023 } else { 8024 sprintf(h->intrname[h->intr_mode], 8025 "%s-intx", h->devname); 8026 rc = request_irq(pci_irq_vector(h->pdev, 0), 8027 intxhandler, IRQF_SHARED, 8028 h->intrname[0], 8029 &h->q[h->intr_mode]); 8030 } 8031 } 8032 if (rc) { 8033 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 8034 pci_irq_vector(h->pdev, 0), h->devname); 8035 hpsa_free_irqs(h); 8036 return -ENODEV; 8037 } 8038 return 0; 8039 } 8040 8041 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 8042 { 8043 int rc; 8044 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); 8045 8046 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 8047 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 8048 if (rc) { 8049 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 8050 return rc; 8051 } 8052 8053 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 8054 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 8055 if (rc) { 8056 dev_warn(&h->pdev->dev, "Board failed to become ready " 8057 "after soft reset.\n"); 8058 return rc; 8059 } 8060 8061 return 0; 8062 } 8063 8064 static void hpsa_free_reply_queues(struct ctlr_info *h) 8065 { 8066 int i; 8067 8068 for (i = 0; i < h->nreply_queues; i++) { 8069 if (!h->reply_queue[i].head) 8070 continue; 8071 pci_free_consistent(h->pdev, 8072 h->reply_queue_size, 8073 h->reply_queue[i].head, 8074 h->reply_queue[i].busaddr); 8075 h->reply_queue[i].head = NULL; 8076 h->reply_queue[i].busaddr = 0; 8077 } 8078 h->reply_queue_size = 0; 8079 } 8080 8081 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 8082 { 8083 hpsa_free_performant_mode(h); /* init_one 7 */ 8084 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8085 hpsa_free_cmd_pool(h); /* init_one 5 */ 8086 hpsa_free_irqs(h); /* init_one 4 */ 8087 scsi_host_put(h->scsi_host); /* init_one 3 */ 8088 h->scsi_host = NULL; /* init_one 3 */ 8089 hpsa_free_pci_init(h); /* init_one 2_5 */ 8090 free_percpu(h->lockup_detected); /* init_one 2 */ 8091 h->lockup_detected = NULL; /* init_one 2 */ 8092 if (h->resubmit_wq) { 8093 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 8094 h->resubmit_wq = NULL; 8095 } 8096 if (h->rescan_ctlr_wq) { 8097 destroy_workqueue(h->rescan_ctlr_wq); 8098 h->rescan_ctlr_wq = NULL; 8099 } 8100 kfree(h); /* init_one 1 */ 8101 } 8102 8103 /* Called when controller lockup detected. */ 8104 static void fail_all_outstanding_cmds(struct ctlr_info *h) 8105 { 8106 int i, refcount; 8107 struct CommandList *c; 8108 int failcount = 0; 8109 8110 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 8111 for (i = 0; i < h->nr_cmds; i++) { 8112 c = h->cmd_pool + i; 8113 refcount = atomic_inc_return(&c->refcount); 8114 if (refcount > 1) { 8115 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 8116 finish_cmd(c); 8117 atomic_dec(&h->commands_outstanding); 8118 failcount++; 8119 } 8120 cmd_free(h, c); 8121 } 8122 dev_warn(&h->pdev->dev, 8123 "failed %d commands in fail_all\n", failcount); 8124 } 8125 8126 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 8127 { 8128 int cpu; 8129 8130 for_each_online_cpu(cpu) { 8131 u32 *lockup_detected; 8132 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 8133 *lockup_detected = value; 8134 } 8135 wmb(); /* be sure the per-cpu variables are out to memory */ 8136 } 8137 8138 static void controller_lockup_detected(struct ctlr_info *h) 8139 { 8140 unsigned long flags; 8141 u32 lockup_detected; 8142 8143 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8144 spin_lock_irqsave(&h->lock, flags); 8145 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 8146 if (!lockup_detected) { 8147 /* no heartbeat, but controller gave us a zero. */ 8148 dev_warn(&h->pdev->dev, 8149 "lockup detected after %d but scratchpad register is zero\n", 8150 h->heartbeat_sample_interval / HZ); 8151 lockup_detected = 0xffffffff; 8152 } 8153 set_lockup_detected_for_all_cpus(h, lockup_detected); 8154 spin_unlock_irqrestore(&h->lock, flags); 8155 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 8156 lockup_detected, h->heartbeat_sample_interval / HZ); 8157 if (lockup_detected == 0xffff0000) { 8158 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); 8159 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); 8160 } 8161 pci_disable_device(h->pdev); 8162 fail_all_outstanding_cmds(h); 8163 } 8164 8165 static int detect_controller_lockup(struct ctlr_info *h) 8166 { 8167 u64 now; 8168 u32 heartbeat; 8169 unsigned long flags; 8170 8171 now = get_jiffies_64(); 8172 /* If we've received an interrupt recently, we're ok. */ 8173 if (time_after64(h->last_intr_timestamp + 8174 (h->heartbeat_sample_interval), now)) 8175 return false; 8176 8177 /* 8178 * If we've already checked the heartbeat recently, we're ok. 8179 * This could happen if someone sends us a signal. We 8180 * otherwise don't care about signals in this thread. 8181 */ 8182 if (time_after64(h->last_heartbeat_timestamp + 8183 (h->heartbeat_sample_interval), now)) 8184 return false; 8185 8186 /* If heartbeat has not changed since we last looked, we're not ok. */ 8187 spin_lock_irqsave(&h->lock, flags); 8188 heartbeat = readl(&h->cfgtable->HeartBeat); 8189 spin_unlock_irqrestore(&h->lock, flags); 8190 if (h->last_heartbeat == heartbeat) { 8191 controller_lockup_detected(h); 8192 return true; 8193 } 8194 8195 /* We're ok. */ 8196 h->last_heartbeat = heartbeat; 8197 h->last_heartbeat_timestamp = now; 8198 return false; 8199 } 8200 8201 /* 8202 * Set ioaccel status for all ioaccel volumes. 8203 * 8204 * Called from monitor controller worker (hpsa_event_monitor_worker) 8205 * 8206 * A Volume (or Volumes that comprise an Array set may be undergoing a 8207 * transformation, so we will be turning off ioaccel for all volumes that 8208 * make up the Array. 8209 */ 8210 static void hpsa_set_ioaccel_status(struct ctlr_info *h) 8211 { 8212 int rc; 8213 int i; 8214 u8 ioaccel_status; 8215 unsigned char *buf; 8216 struct hpsa_scsi_dev_t *device; 8217 8218 if (!h) 8219 return; 8220 8221 buf = kmalloc(64, GFP_KERNEL); 8222 if (!buf) 8223 return; 8224 8225 /* 8226 * Run through current device list used during I/O requests. 8227 */ 8228 for (i = 0; i < h->ndevices; i++) { 8229 device = h->dev[i]; 8230 8231 if (!device) 8232 continue; 8233 if (!hpsa_vpd_page_supported(h, device->scsi3addr, 8234 HPSA_VPD_LV_IOACCEL_STATUS)) 8235 continue; 8236 8237 memset(buf, 0, 64); 8238 8239 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, 8240 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, 8241 buf, 64); 8242 if (rc != 0) 8243 continue; 8244 8245 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 8246 device->offload_config = 8247 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 8248 if (device->offload_config) 8249 device->offload_to_be_enabled = 8250 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 8251 8252 /* 8253 * Immediately turn off ioaccel for any volume the 8254 * controller tells us to. Some of the reasons could be: 8255 * transformation - change to the LVs of an Array. 8256 * degraded volume - component failure 8257 * 8258 * If ioaccel is to be re-enabled, re-enable later during the 8259 * scan operation so the driver can get a fresh raidmap 8260 * before turning ioaccel back on. 8261 * 8262 */ 8263 if (!device->offload_to_be_enabled) 8264 device->offload_enabled = 0; 8265 } 8266 8267 kfree(buf); 8268 } 8269 8270 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 8271 { 8272 char *event_type; 8273 8274 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8275 return; 8276 8277 /* Ask the controller to clear the events we're handling. */ 8278 if ((h->transMethod & (CFGTBL_Trans_io_accel1 8279 | CFGTBL_Trans_io_accel2)) && 8280 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 8281 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 8282 8283 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 8284 event_type = "state change"; 8285 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 8286 event_type = "configuration change"; 8287 /* Stop sending new RAID offload reqs via the IO accelerator */ 8288 scsi_block_requests(h->scsi_host); 8289 hpsa_set_ioaccel_status(h); 8290 hpsa_drain_accel_commands(h); 8291 /* Set 'accelerator path config change' bit */ 8292 dev_warn(&h->pdev->dev, 8293 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 8294 h->events, event_type); 8295 writel(h->events, &(h->cfgtable->clear_event_notify)); 8296 /* Set the "clear event notify field update" bit 6 */ 8297 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8298 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 8299 hpsa_wait_for_clear_event_notify_ack(h); 8300 scsi_unblock_requests(h->scsi_host); 8301 } else { 8302 /* Acknowledge controller notification events. */ 8303 writel(h->events, &(h->cfgtable->clear_event_notify)); 8304 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 8305 hpsa_wait_for_clear_event_notify_ack(h); 8306 } 8307 return; 8308 } 8309 8310 /* Check a register on the controller to see if there are configuration 8311 * changes (added/changed/removed logical drives, etc.) which mean that 8312 * we should rescan the controller for devices. 8313 * Also check flag for driver-initiated rescan. 8314 */ 8315 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 8316 { 8317 if (h->drv_req_rescan) { 8318 h->drv_req_rescan = 0; 8319 return 1; 8320 } 8321 8322 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 8323 return 0; 8324 8325 h->events = readl(&(h->cfgtable->event_notify)); 8326 return h->events & RESCAN_REQUIRED_EVENT_BITS; 8327 } 8328 8329 /* 8330 * Check if any of the offline devices have become ready 8331 */ 8332 static int hpsa_offline_devices_ready(struct ctlr_info *h) 8333 { 8334 unsigned long flags; 8335 struct offline_device_entry *d; 8336 struct list_head *this, *tmp; 8337 8338 spin_lock_irqsave(&h->offline_device_lock, flags); 8339 list_for_each_safe(this, tmp, &h->offline_device_list) { 8340 d = list_entry(this, struct offline_device_entry, 8341 offline_list); 8342 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8343 if (!hpsa_volume_offline(h, d->scsi3addr)) { 8344 spin_lock_irqsave(&h->offline_device_lock, flags); 8345 list_del(&d->offline_list); 8346 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8347 return 1; 8348 } 8349 spin_lock_irqsave(&h->offline_device_lock, flags); 8350 } 8351 spin_unlock_irqrestore(&h->offline_device_lock, flags); 8352 return 0; 8353 } 8354 8355 static int hpsa_luns_changed(struct ctlr_info *h) 8356 { 8357 int rc = 1; /* assume there are changes */ 8358 struct ReportLUNdata *logdev = NULL; 8359 8360 /* if we can't find out if lun data has changed, 8361 * assume that it has. 8362 */ 8363 8364 if (!h->lastlogicals) 8365 return rc; 8366 8367 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); 8368 if (!logdev) 8369 return rc; 8370 8371 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { 8372 dev_warn(&h->pdev->dev, 8373 "report luns failed, can't track lun changes.\n"); 8374 goto out; 8375 } 8376 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { 8377 dev_info(&h->pdev->dev, 8378 "Lun changes detected.\n"); 8379 memcpy(h->lastlogicals, logdev, sizeof(*logdev)); 8380 goto out; 8381 } else 8382 rc = 0; /* no changes detected. */ 8383 out: 8384 kfree(logdev); 8385 return rc; 8386 } 8387 8388 static void hpsa_perform_rescan(struct ctlr_info *h) 8389 { 8390 struct Scsi_Host *sh = NULL; 8391 unsigned long flags; 8392 8393 /* 8394 * Do the scan after the reset 8395 */ 8396 spin_lock_irqsave(&h->reset_lock, flags); 8397 if (h->reset_in_progress) { 8398 h->drv_req_rescan = 1; 8399 spin_unlock_irqrestore(&h->reset_lock, flags); 8400 return; 8401 } 8402 spin_unlock_irqrestore(&h->reset_lock, flags); 8403 8404 sh = scsi_host_get(h->scsi_host); 8405 if (sh != NULL) { 8406 hpsa_scan_start(sh); 8407 scsi_host_put(sh); 8408 h->drv_req_rescan = 0; 8409 } 8410 } 8411 8412 /* 8413 * watch for controller events 8414 */ 8415 static void hpsa_event_monitor_worker(struct work_struct *work) 8416 { 8417 struct ctlr_info *h = container_of(to_delayed_work(work), 8418 struct ctlr_info, event_monitor_work); 8419 unsigned long flags; 8420 8421 spin_lock_irqsave(&h->lock, flags); 8422 if (h->remove_in_progress) { 8423 spin_unlock_irqrestore(&h->lock, flags); 8424 return; 8425 } 8426 spin_unlock_irqrestore(&h->lock, flags); 8427 8428 if (hpsa_ctlr_needs_rescan(h)) { 8429 hpsa_ack_ctlr_events(h); 8430 hpsa_perform_rescan(h); 8431 } 8432 8433 spin_lock_irqsave(&h->lock, flags); 8434 if (!h->remove_in_progress) 8435 schedule_delayed_work(&h->event_monitor_work, 8436 HPSA_EVENT_MONITOR_INTERVAL); 8437 spin_unlock_irqrestore(&h->lock, flags); 8438 } 8439 8440 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 8441 { 8442 unsigned long flags; 8443 struct ctlr_info *h = container_of(to_delayed_work(work), 8444 struct ctlr_info, rescan_ctlr_work); 8445 8446 spin_lock_irqsave(&h->lock, flags); 8447 if (h->remove_in_progress) { 8448 spin_unlock_irqrestore(&h->lock, flags); 8449 return; 8450 } 8451 spin_unlock_irqrestore(&h->lock, flags); 8452 8453 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { 8454 hpsa_perform_rescan(h); 8455 } else if (h->discovery_polling) { 8456 if (hpsa_luns_changed(h)) { 8457 dev_info(&h->pdev->dev, 8458 "driver discovery polling rescan.\n"); 8459 hpsa_perform_rescan(h); 8460 } 8461 } 8462 spin_lock_irqsave(&h->lock, flags); 8463 if (!h->remove_in_progress) 8464 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8465 h->heartbeat_sample_interval); 8466 spin_unlock_irqrestore(&h->lock, flags); 8467 } 8468 8469 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 8470 { 8471 unsigned long flags; 8472 struct ctlr_info *h = container_of(to_delayed_work(work), 8473 struct ctlr_info, monitor_ctlr_work); 8474 8475 detect_controller_lockup(h); 8476 if (lockup_detected(h)) 8477 return; 8478 8479 spin_lock_irqsave(&h->lock, flags); 8480 if (!h->remove_in_progress) 8481 schedule_delayed_work(&h->monitor_ctlr_work, 8482 h->heartbeat_sample_interval); 8483 spin_unlock_irqrestore(&h->lock, flags); 8484 } 8485 8486 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 8487 char *name) 8488 { 8489 struct workqueue_struct *wq = NULL; 8490 8491 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 8492 if (!wq) 8493 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 8494 8495 return wq; 8496 } 8497 8498 static void hpda_free_ctlr_info(struct ctlr_info *h) 8499 { 8500 kfree(h->reply_map); 8501 kfree(h); 8502 } 8503 8504 static struct ctlr_info *hpda_alloc_ctlr_info(void) 8505 { 8506 struct ctlr_info *h; 8507 8508 h = kzalloc(sizeof(*h), GFP_KERNEL); 8509 if (!h) 8510 return NULL; 8511 8512 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); 8513 if (!h->reply_map) { 8514 kfree(h); 8515 return NULL; 8516 } 8517 return h; 8518 } 8519 8520 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 8521 { 8522 int dac, rc; 8523 struct ctlr_info *h; 8524 int try_soft_reset = 0; 8525 unsigned long flags; 8526 u32 board_id; 8527 8528 if (number_of_controllers == 0) 8529 printk(KERN_INFO DRIVER_NAME "\n"); 8530 8531 rc = hpsa_lookup_board_id(pdev, &board_id, NULL); 8532 if (rc < 0) { 8533 dev_warn(&pdev->dev, "Board ID not found\n"); 8534 return rc; 8535 } 8536 8537 rc = hpsa_init_reset_devices(pdev, board_id); 8538 if (rc) { 8539 if (rc != -ENOTSUPP) 8540 return rc; 8541 /* If the reset fails in a particular way (it has no way to do 8542 * a proper hard reset, so returns -ENOTSUPP) we can try to do 8543 * a soft reset once we get the controller configured up to the 8544 * point that it can accept a command. 8545 */ 8546 try_soft_reset = 1; 8547 rc = 0; 8548 } 8549 8550 reinit_after_soft_reset: 8551 8552 /* Command structures must be aligned on a 32-byte boundary because 8553 * the 5 lower bits of the address are used by the hardware. and by 8554 * the driver. See comments in hpsa.h for more info. 8555 */ 8556 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 8557 h = hpda_alloc_ctlr_info(); 8558 if (!h) { 8559 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 8560 return -ENOMEM; 8561 } 8562 8563 h->pdev = pdev; 8564 8565 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 8566 INIT_LIST_HEAD(&h->offline_device_list); 8567 spin_lock_init(&h->lock); 8568 spin_lock_init(&h->offline_device_lock); 8569 spin_lock_init(&h->scan_lock); 8570 spin_lock_init(&h->reset_lock); 8571 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 8572 8573 /* Allocate and clear per-cpu variable lockup_detected */ 8574 h->lockup_detected = alloc_percpu(u32); 8575 if (!h->lockup_detected) { 8576 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8577 rc = -ENOMEM; 8578 goto clean1; /* aer/h */ 8579 } 8580 set_lockup_detected_for_all_cpus(h, 0); 8581 8582 rc = hpsa_pci_init(h); 8583 if (rc) 8584 goto clean2; /* lu, aer/h */ 8585 8586 /* relies on h-> settings made by hpsa_pci_init, including 8587 * interrupt_mode h->intr */ 8588 rc = hpsa_scsi_host_alloc(h); 8589 if (rc) 8590 goto clean2_5; /* pci, lu, aer/h */ 8591 8592 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8593 h->ctlr = number_of_controllers; 8594 number_of_controllers++; 8595 8596 /* configure PCI DMA stuff */ 8597 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 8598 if (rc == 0) { 8599 dac = 1; 8600 } else { 8601 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 8602 if (rc == 0) { 8603 dac = 0; 8604 } else { 8605 dev_err(&pdev->dev, "no suitable DMA available\n"); 8606 goto clean3; /* shost, pci, lu, aer/h */ 8607 } 8608 } 8609 8610 /* make sure the board interrupts are off */ 8611 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8612 8613 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8614 if (rc) 8615 goto clean3; /* shost, pci, lu, aer/h */ 8616 rc = hpsa_alloc_cmd_pool(h); 8617 if (rc) 8618 goto clean4; /* irq, shost, pci, lu, aer/h */ 8619 rc = hpsa_alloc_sg_chain_blocks(h); 8620 if (rc) 8621 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8622 init_waitqueue_head(&h->scan_wait_queue); 8623 init_waitqueue_head(&h->event_sync_wait_queue); 8624 mutex_init(&h->reset_mutex); 8625 h->scan_finished = 1; /* no scan currently in progress */ 8626 h->scan_waiting = 0; 8627 8628 pci_set_drvdata(pdev, h); 8629 h->ndevices = 0; 8630 8631 spin_lock_init(&h->devlock); 8632 rc = hpsa_put_ctlr_into_performant_mode(h); 8633 if (rc) 8634 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8635 8636 /* create the resubmit workqueue */ 8637 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8638 if (!h->rescan_ctlr_wq) { 8639 rc = -ENOMEM; 8640 goto clean7; 8641 } 8642 8643 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8644 if (!h->resubmit_wq) { 8645 rc = -ENOMEM; 8646 goto clean7; /* aer/h */ 8647 } 8648 8649 /* 8650 * At this point, the controller is ready to take commands. 8651 * Now, if reset_devices and the hard reset didn't work, try 8652 * the soft reset and see if that works. 8653 */ 8654 if (try_soft_reset) { 8655 8656 /* This is kind of gross. We may or may not get a completion 8657 * from the soft reset command, and if we do, then the value 8658 * from the fifo may or may not be valid. So, we wait 10 secs 8659 * after the reset throwing away any completions we get during 8660 * that time. Unregister the interrupt handler and register 8661 * fake ones to scoop up any residual completions. 8662 */ 8663 spin_lock_irqsave(&h->lock, flags); 8664 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8665 spin_unlock_irqrestore(&h->lock, flags); 8666 hpsa_free_irqs(h); 8667 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8668 hpsa_intx_discard_completions); 8669 if (rc) { 8670 dev_warn(&h->pdev->dev, 8671 "Failed to request_irq after soft reset.\n"); 8672 /* 8673 * cannot goto clean7 or free_irqs will be called 8674 * again. Instead, do its work 8675 */ 8676 hpsa_free_performant_mode(h); /* clean7 */ 8677 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8678 hpsa_free_cmd_pool(h); /* clean5 */ 8679 /* 8680 * skip hpsa_free_irqs(h) clean4 since that 8681 * was just called before request_irqs failed 8682 */ 8683 goto clean3; 8684 } 8685 8686 rc = hpsa_kdump_soft_reset(h); 8687 if (rc) 8688 /* Neither hard nor soft reset worked, we're hosed. */ 8689 goto clean7; 8690 8691 dev_info(&h->pdev->dev, "Board READY.\n"); 8692 dev_info(&h->pdev->dev, 8693 "Waiting for stale completions to drain.\n"); 8694 h->access.set_intr_mask(h, HPSA_INTR_ON); 8695 msleep(10000); 8696 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8697 8698 rc = controller_reset_failed(h->cfgtable); 8699 if (rc) 8700 dev_info(&h->pdev->dev, 8701 "Soft reset appears to have failed.\n"); 8702 8703 /* since the controller's reset, we have to go back and re-init 8704 * everything. Easiest to just forget what we've done and do it 8705 * all over again. 8706 */ 8707 hpsa_undo_allocations_after_kdump_soft_reset(h); 8708 try_soft_reset = 0; 8709 if (rc) 8710 /* don't goto clean, we already unallocated */ 8711 return -ENODEV; 8712 8713 goto reinit_after_soft_reset; 8714 } 8715 8716 /* Enable Accelerated IO path at driver layer */ 8717 h->acciopath_status = 1; 8718 /* Disable discovery polling.*/ 8719 h->discovery_polling = 0; 8720 8721 8722 /* Turn the interrupts on so we can service requests */ 8723 h->access.set_intr_mask(h, HPSA_INTR_ON); 8724 8725 hpsa_hba_inquiry(h); 8726 8727 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); 8728 if (!h->lastlogicals) 8729 dev_info(&h->pdev->dev, 8730 "Can't track change to report lun data\n"); 8731 8732 /* hook into SCSI subsystem */ 8733 rc = hpsa_scsi_add_host(h); 8734 if (rc) 8735 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8736 8737 /* Monitor the controller for firmware lockups */ 8738 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8739 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8740 schedule_delayed_work(&h->monitor_ctlr_work, 8741 h->heartbeat_sample_interval); 8742 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8743 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8744 h->heartbeat_sample_interval); 8745 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); 8746 schedule_delayed_work(&h->event_monitor_work, 8747 HPSA_EVENT_MONITOR_INTERVAL); 8748 return 0; 8749 8750 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8751 hpsa_free_performant_mode(h); 8752 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8753 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8754 hpsa_free_sg_chain_blocks(h); 8755 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8756 hpsa_free_cmd_pool(h); 8757 clean4: /* irq, shost, pci, lu, aer/h */ 8758 hpsa_free_irqs(h); 8759 clean3: /* shost, pci, lu, aer/h */ 8760 scsi_host_put(h->scsi_host); 8761 h->scsi_host = NULL; 8762 clean2_5: /* pci, lu, aer/h */ 8763 hpsa_free_pci_init(h); 8764 clean2: /* lu, aer/h */ 8765 if (h->lockup_detected) { 8766 free_percpu(h->lockup_detected); 8767 h->lockup_detected = NULL; 8768 } 8769 clean1: /* wq/aer/h */ 8770 if (h->resubmit_wq) { 8771 destroy_workqueue(h->resubmit_wq); 8772 h->resubmit_wq = NULL; 8773 } 8774 if (h->rescan_ctlr_wq) { 8775 destroy_workqueue(h->rescan_ctlr_wq); 8776 h->rescan_ctlr_wq = NULL; 8777 } 8778 kfree(h); 8779 return rc; 8780 } 8781 8782 static void hpsa_flush_cache(struct ctlr_info *h) 8783 { 8784 char *flush_buf; 8785 struct CommandList *c; 8786 int rc; 8787 8788 if (unlikely(lockup_detected(h))) 8789 return; 8790 flush_buf = kzalloc(4, GFP_KERNEL); 8791 if (!flush_buf) 8792 return; 8793 8794 c = cmd_alloc(h); 8795 8796 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8797 RAID_CTLR_LUNID, TYPE_CMD)) { 8798 goto out; 8799 } 8800 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8801 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); 8802 if (rc) 8803 goto out; 8804 if (c->err_info->CommandStatus != 0) 8805 out: 8806 dev_warn(&h->pdev->dev, 8807 "error flushing cache on controller\n"); 8808 cmd_free(h, c); 8809 kfree(flush_buf); 8810 } 8811 8812 /* Make controller gather fresh report lun data each time we 8813 * send down a report luns request 8814 */ 8815 static void hpsa_disable_rld_caching(struct ctlr_info *h) 8816 { 8817 u32 *options; 8818 struct CommandList *c; 8819 int rc; 8820 8821 /* Don't bother trying to set diag options if locked up */ 8822 if (unlikely(h->lockup_detected)) 8823 return; 8824 8825 options = kzalloc(sizeof(*options), GFP_KERNEL); 8826 if (!options) 8827 return; 8828 8829 c = cmd_alloc(h); 8830 8831 /* first, get the current diag options settings */ 8832 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8833 RAID_CTLR_LUNID, TYPE_CMD)) 8834 goto errout; 8835 8836 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8837 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 8838 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8839 goto errout; 8840 8841 /* Now, set the bit for disabling the RLD caching */ 8842 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; 8843 8844 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, 8845 RAID_CTLR_LUNID, TYPE_CMD)) 8846 goto errout; 8847 8848 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8849 PCI_DMA_TODEVICE, NO_TIMEOUT); 8850 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8851 goto errout; 8852 8853 /* Now verify that it got set: */ 8854 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, 8855 RAID_CTLR_LUNID, TYPE_CMD)) 8856 goto errout; 8857 8858 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8859 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 8860 if ((rc != 0) || (c->err_info->CommandStatus != 0)) 8861 goto errout; 8862 8863 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) 8864 goto out; 8865 8866 errout: 8867 dev_err(&h->pdev->dev, 8868 "Error: failed to disable report lun data caching.\n"); 8869 out: 8870 cmd_free(h, c); 8871 kfree(options); 8872 } 8873 8874 static void __hpsa_shutdown(struct pci_dev *pdev) 8875 { 8876 struct ctlr_info *h; 8877 8878 h = pci_get_drvdata(pdev); 8879 /* Turn board interrupts off and send the flush cache command 8880 * sendcmd will turn off interrupt, and send the flush... 8881 * To write all data in the battery backed cache to disks 8882 */ 8883 hpsa_flush_cache(h); 8884 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8885 hpsa_free_irqs(h); /* init_one 4 */ 8886 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 8887 } 8888 8889 static void hpsa_shutdown(struct pci_dev *pdev) 8890 { 8891 __hpsa_shutdown(pdev); 8892 pci_disable_device(pdev); 8893 } 8894 8895 static void hpsa_free_device_info(struct ctlr_info *h) 8896 { 8897 int i; 8898 8899 for (i = 0; i < h->ndevices; i++) { 8900 kfree(h->dev[i]); 8901 h->dev[i] = NULL; 8902 } 8903 } 8904 8905 static void hpsa_remove_one(struct pci_dev *pdev) 8906 { 8907 struct ctlr_info *h; 8908 unsigned long flags; 8909 8910 if (pci_get_drvdata(pdev) == NULL) { 8911 dev_err(&pdev->dev, "unable to remove device\n"); 8912 return; 8913 } 8914 h = pci_get_drvdata(pdev); 8915 8916 /* Get rid of any controller monitoring work items */ 8917 spin_lock_irqsave(&h->lock, flags); 8918 h->remove_in_progress = 1; 8919 spin_unlock_irqrestore(&h->lock, flags); 8920 cancel_delayed_work_sync(&h->monitor_ctlr_work); 8921 cancel_delayed_work_sync(&h->rescan_ctlr_work); 8922 cancel_delayed_work_sync(&h->event_monitor_work); 8923 destroy_workqueue(h->rescan_ctlr_wq); 8924 destroy_workqueue(h->resubmit_wq); 8925 8926 hpsa_delete_sas_host(h); 8927 8928 /* 8929 * Call before disabling interrupts. 8930 * scsi_remove_host can trigger I/O operations especially 8931 * when multipath is enabled. There can be SYNCHRONIZE CACHE 8932 * operations which cannot complete and will hang the system. 8933 */ 8934 if (h->scsi_host) 8935 scsi_remove_host(h->scsi_host); /* init_one 8 */ 8936 /* includes hpsa_free_irqs - init_one 4 */ 8937 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 8938 __hpsa_shutdown(pdev); 8939 8940 hpsa_free_device_info(h); /* scan */ 8941 8942 kfree(h->hba_inquiry_data); /* init_one 10 */ 8943 h->hba_inquiry_data = NULL; /* init_one 10 */ 8944 hpsa_free_ioaccel2_sg_chain_blocks(h); 8945 hpsa_free_performant_mode(h); /* init_one 7 */ 8946 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8947 hpsa_free_cmd_pool(h); /* init_one 5 */ 8948 kfree(h->lastlogicals); 8949 8950 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 8951 8952 scsi_host_put(h->scsi_host); /* init_one 3 */ 8953 h->scsi_host = NULL; /* init_one 3 */ 8954 8955 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 8956 hpsa_free_pci_init(h); /* init_one 2.5 */ 8957 8958 free_percpu(h->lockup_detected); /* init_one 2 */ 8959 h->lockup_detected = NULL; /* init_one 2 */ 8960 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ 8961 8962 hpda_free_ctlr_info(h); /* init_one 1 */ 8963 } 8964 8965 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 8966 __attribute__((unused)) pm_message_t state) 8967 { 8968 return -ENOSYS; 8969 } 8970 8971 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 8972 { 8973 return -ENOSYS; 8974 } 8975 8976 static struct pci_driver hpsa_pci_driver = { 8977 .name = HPSA, 8978 .probe = hpsa_init_one, 8979 .remove = hpsa_remove_one, 8980 .id_table = hpsa_pci_device_id, /* id_table */ 8981 .shutdown = hpsa_shutdown, 8982 .suspend = hpsa_suspend, 8983 .resume = hpsa_resume, 8984 }; 8985 8986 /* Fill in bucket_map[], given nsgs (the max number of 8987 * scatter gather elements supported) and bucket[], 8988 * which is an array of 8 integers. The bucket[] array 8989 * contains 8 different DMA transfer sizes (in 16 8990 * byte increments) which the controller uses to fetch 8991 * commands. This function fills in bucket_map[], which 8992 * maps a given number of scatter gather elements to one of 8993 * the 8 DMA transfer sizes. The point of it is to allow the 8994 * controller to only do as much DMA as needed to fetch the 8995 * command, with the DMA transfer size encoded in the lower 8996 * bits of the command address. 8997 */ 8998 static void calc_bucket_map(int bucket[], int num_buckets, 8999 int nsgs, int min_blocks, u32 *bucket_map) 9000 { 9001 int i, j, b, size; 9002 9003 /* Note, bucket_map must have nsgs+1 entries. */ 9004 for (i = 0; i <= nsgs; i++) { 9005 /* Compute size of a command with i SG entries */ 9006 size = i + min_blocks; 9007 b = num_buckets; /* Assume the biggest bucket */ 9008 /* Find the bucket that is just big enough */ 9009 for (j = 0; j < num_buckets; j++) { 9010 if (bucket[j] >= size) { 9011 b = j; 9012 break; 9013 } 9014 } 9015 /* for a command with i SG entries, use bucket b. */ 9016 bucket_map[i] = b; 9017 } 9018 } 9019 9020 /* 9021 * return -ENODEV on err, 0 on success (or no action) 9022 * allocates numerous items that must be freed later 9023 */ 9024 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 9025 { 9026 int i; 9027 unsigned long register_value; 9028 unsigned long transMethod = CFGTBL_Trans_Performant | 9029 (trans_support & CFGTBL_Trans_use_short_tags) | 9030 CFGTBL_Trans_enable_directed_msix | 9031 (trans_support & (CFGTBL_Trans_io_accel1 | 9032 CFGTBL_Trans_io_accel2)); 9033 struct access_method access = SA5_performant_access; 9034 9035 /* This is a bit complicated. There are 8 registers on 9036 * the controller which we write to to tell it 8 different 9037 * sizes of commands which there may be. It's a way of 9038 * reducing the DMA done to fetch each command. Encoded into 9039 * each command's tag are 3 bits which communicate to the controller 9040 * which of the eight sizes that command fits within. The size of 9041 * each command depends on how many scatter gather entries there are. 9042 * Each SG entry requires 16 bytes. The eight registers are programmed 9043 * with the number of 16-byte blocks a command of that size requires. 9044 * The smallest command possible requires 5 such 16 byte blocks. 9045 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 9046 * blocks. Note, this only extends to the SG entries contained 9047 * within the command block, and does not extend to chained blocks 9048 * of SG elements. bft[] contains the eight values we write to 9049 * the registers. They are not evenly distributed, but have more 9050 * sizes for small commands, and fewer sizes for larger commands. 9051 */ 9052 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 9053 #define MIN_IOACCEL2_BFT_ENTRY 5 9054 #define HPSA_IOACCEL2_HEADER_SZ 4 9055 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 9056 13, 14, 15, 16, 17, 18, 19, 9057 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 9058 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 9059 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 9060 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 9061 16 * MIN_IOACCEL2_BFT_ENTRY); 9062 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 9063 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 9064 /* 5 = 1 s/g entry or 4k 9065 * 6 = 2 s/g entry or 8k 9066 * 8 = 4 s/g entry or 16k 9067 * 10 = 6 s/g entry or 24k 9068 */ 9069 9070 /* If the controller supports either ioaccel method then 9071 * we can also use the RAID stack submit path that does not 9072 * perform the superfluous readl() after each command submission. 9073 */ 9074 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 9075 access = SA5_performant_access_no_read; 9076 9077 /* Controller spec: zero out this buffer. */ 9078 for (i = 0; i < h->nreply_queues; i++) 9079 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 9080 9081 bft[7] = SG_ENTRIES_IN_CMD + 4; 9082 calc_bucket_map(bft, ARRAY_SIZE(bft), 9083 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 9084 for (i = 0; i < 8; i++) 9085 writel(bft[i], &h->transtable->BlockFetch[i]); 9086 9087 /* size of controller ring buffer */ 9088 writel(h->max_commands, &h->transtable->RepQSize); 9089 writel(h->nreply_queues, &h->transtable->RepQCount); 9090 writel(0, &h->transtable->RepQCtrAddrLow32); 9091 writel(0, &h->transtable->RepQCtrAddrHigh32); 9092 9093 for (i = 0; i < h->nreply_queues; i++) { 9094 writel(0, &h->transtable->RepQAddr[i].upper); 9095 writel(h->reply_queue[i].busaddr, 9096 &h->transtable->RepQAddr[i].lower); 9097 } 9098 9099 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 9100 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 9101 /* 9102 * enable outbound interrupt coalescing in accelerator mode; 9103 */ 9104 if (trans_support & CFGTBL_Trans_io_accel1) { 9105 access = SA5_ioaccel_mode1_access; 9106 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 9107 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 9108 } else 9109 if (trans_support & CFGTBL_Trans_io_accel2) 9110 access = SA5_ioaccel_mode2_access; 9111 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9112 if (hpsa_wait_for_mode_change_ack(h)) { 9113 dev_err(&h->pdev->dev, 9114 "performant mode problem - doorbell timeout\n"); 9115 return -ENODEV; 9116 } 9117 register_value = readl(&(h->cfgtable->TransportActive)); 9118 if (!(register_value & CFGTBL_Trans_Performant)) { 9119 dev_err(&h->pdev->dev, 9120 "performant mode problem - transport not active\n"); 9121 return -ENODEV; 9122 } 9123 /* Change the access methods to the performant access methods */ 9124 h->access = access; 9125 h->transMethod = transMethod; 9126 9127 if (!((trans_support & CFGTBL_Trans_io_accel1) || 9128 (trans_support & CFGTBL_Trans_io_accel2))) 9129 return 0; 9130 9131 if (trans_support & CFGTBL_Trans_io_accel1) { 9132 /* Set up I/O accelerator mode */ 9133 for (i = 0; i < h->nreply_queues; i++) { 9134 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 9135 h->reply_queue[i].current_entry = 9136 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 9137 } 9138 bft[7] = h->ioaccel_maxsg + 8; 9139 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 9140 h->ioaccel1_blockFetchTable); 9141 9142 /* initialize all reply queue entries to unused */ 9143 for (i = 0; i < h->nreply_queues; i++) 9144 memset(h->reply_queue[i].head, 9145 (u8) IOACCEL_MODE1_REPLY_UNUSED, 9146 h->reply_queue_size); 9147 9148 /* set all the constant fields in the accelerator command 9149 * frames once at init time to save CPU cycles later. 9150 */ 9151 for (i = 0; i < h->nr_cmds; i++) { 9152 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 9153 9154 cp->function = IOACCEL1_FUNCTION_SCSIIO; 9155 cp->err_info = (u32) (h->errinfo_pool_dhandle + 9156 (i * sizeof(struct ErrorInfo))); 9157 cp->err_info_len = sizeof(struct ErrorInfo); 9158 cp->sgl_offset = IOACCEL1_SGLOFFSET; 9159 cp->host_context_flags = 9160 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 9161 cp->timeout_sec = 0; 9162 cp->ReplyQueue = 0; 9163 cp->tag = 9164 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 9165 cp->host_addr = 9166 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 9167 (i * sizeof(struct io_accel1_cmd))); 9168 } 9169 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9170 u64 cfg_offset, cfg_base_addr_index; 9171 u32 bft2_offset, cfg_base_addr; 9172 int rc; 9173 9174 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 9175 &cfg_base_addr_index, &cfg_offset); 9176 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 9177 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 9178 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 9179 4, h->ioaccel2_blockFetchTable); 9180 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 9181 BUILD_BUG_ON(offsetof(struct CfgTable, 9182 io_accel_request_size_offset) != 0xb8); 9183 h->ioaccel2_bft2_regs = 9184 remap_pci_mem(pci_resource_start(h->pdev, 9185 cfg_base_addr_index) + 9186 cfg_offset + bft2_offset, 9187 ARRAY_SIZE(bft2) * 9188 sizeof(*h->ioaccel2_bft2_regs)); 9189 for (i = 0; i < ARRAY_SIZE(bft2); i++) 9190 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 9191 } 9192 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 9193 if (hpsa_wait_for_mode_change_ack(h)) { 9194 dev_err(&h->pdev->dev, 9195 "performant mode problem - enabling ioaccel mode\n"); 9196 return -ENODEV; 9197 } 9198 return 0; 9199 } 9200 9201 /* Free ioaccel1 mode command blocks and block fetch table */ 9202 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9203 { 9204 if (h->ioaccel_cmd_pool) { 9205 pci_free_consistent(h->pdev, 9206 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9207 h->ioaccel_cmd_pool, 9208 h->ioaccel_cmd_pool_dhandle); 9209 h->ioaccel_cmd_pool = NULL; 9210 h->ioaccel_cmd_pool_dhandle = 0; 9211 } 9212 kfree(h->ioaccel1_blockFetchTable); 9213 h->ioaccel1_blockFetchTable = NULL; 9214 } 9215 9216 /* Allocate ioaccel1 mode command blocks and block fetch table */ 9217 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 9218 { 9219 h->ioaccel_maxsg = 9220 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9221 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 9222 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 9223 9224 /* Command structures must be aligned on a 128-byte boundary 9225 * because the 7 lower bits of the address are used by the 9226 * hardware. 9227 */ 9228 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 9229 IOACCEL1_COMMANDLIST_ALIGNMENT); 9230 h->ioaccel_cmd_pool = 9231 pci_alloc_consistent(h->pdev, 9232 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 9233 &(h->ioaccel_cmd_pool_dhandle)); 9234 9235 h->ioaccel1_blockFetchTable = 9236 kmalloc(((h->ioaccel_maxsg + 1) * 9237 sizeof(u32)), GFP_KERNEL); 9238 9239 if ((h->ioaccel_cmd_pool == NULL) || 9240 (h->ioaccel1_blockFetchTable == NULL)) 9241 goto clean_up; 9242 9243 memset(h->ioaccel_cmd_pool, 0, 9244 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 9245 return 0; 9246 9247 clean_up: 9248 hpsa_free_ioaccel1_cmd_and_bft(h); 9249 return -ENOMEM; 9250 } 9251 9252 /* Free ioaccel2 mode command blocks and block fetch table */ 9253 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9254 { 9255 hpsa_free_ioaccel2_sg_chain_blocks(h); 9256 9257 if (h->ioaccel2_cmd_pool) { 9258 pci_free_consistent(h->pdev, 9259 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9260 h->ioaccel2_cmd_pool, 9261 h->ioaccel2_cmd_pool_dhandle); 9262 h->ioaccel2_cmd_pool = NULL; 9263 h->ioaccel2_cmd_pool_dhandle = 0; 9264 } 9265 kfree(h->ioaccel2_blockFetchTable); 9266 h->ioaccel2_blockFetchTable = NULL; 9267 } 9268 9269 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9270 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 9271 { 9272 int rc; 9273 9274 /* Allocate ioaccel2 mode command blocks and block fetch table */ 9275 9276 h->ioaccel_maxsg = 9277 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 9278 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 9279 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 9280 9281 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 9282 IOACCEL2_COMMANDLIST_ALIGNMENT); 9283 h->ioaccel2_cmd_pool = 9284 pci_alloc_consistent(h->pdev, 9285 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 9286 &(h->ioaccel2_cmd_pool_dhandle)); 9287 9288 h->ioaccel2_blockFetchTable = 9289 kmalloc(((h->ioaccel_maxsg + 1) * 9290 sizeof(u32)), GFP_KERNEL); 9291 9292 if ((h->ioaccel2_cmd_pool == NULL) || 9293 (h->ioaccel2_blockFetchTable == NULL)) { 9294 rc = -ENOMEM; 9295 goto clean_up; 9296 } 9297 9298 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 9299 if (rc) 9300 goto clean_up; 9301 9302 memset(h->ioaccel2_cmd_pool, 0, 9303 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 9304 return 0; 9305 9306 clean_up: 9307 hpsa_free_ioaccel2_cmd_and_bft(h); 9308 return rc; 9309 } 9310 9311 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 9312 static void hpsa_free_performant_mode(struct ctlr_info *h) 9313 { 9314 kfree(h->blockFetchTable); 9315 h->blockFetchTable = NULL; 9316 hpsa_free_reply_queues(h); 9317 hpsa_free_ioaccel1_cmd_and_bft(h); 9318 hpsa_free_ioaccel2_cmd_and_bft(h); 9319 } 9320 9321 /* return -ENODEV on error, 0 on success (or no action) 9322 * allocates numerous items that must be freed later 9323 */ 9324 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 9325 { 9326 u32 trans_support; 9327 unsigned long transMethod = CFGTBL_Trans_Performant | 9328 CFGTBL_Trans_use_short_tags; 9329 int i, rc; 9330 9331 if (hpsa_simple_mode) 9332 return 0; 9333 9334 trans_support = readl(&(h->cfgtable->TransportSupport)); 9335 if (!(trans_support & PERFORMANT_MODE)) 9336 return 0; 9337 9338 /* Check for I/O accelerator mode support */ 9339 if (trans_support & CFGTBL_Trans_io_accel1) { 9340 transMethod |= CFGTBL_Trans_io_accel1 | 9341 CFGTBL_Trans_enable_directed_msix; 9342 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 9343 if (rc) 9344 return rc; 9345 } else if (trans_support & CFGTBL_Trans_io_accel2) { 9346 transMethod |= CFGTBL_Trans_io_accel2 | 9347 CFGTBL_Trans_enable_directed_msix; 9348 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 9349 if (rc) 9350 return rc; 9351 } 9352 9353 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; 9354 hpsa_get_max_perf_mode_cmds(h); 9355 /* Performant mode ring buffer and supporting data structures */ 9356 h->reply_queue_size = h->max_commands * sizeof(u64); 9357 9358 for (i = 0; i < h->nreply_queues; i++) { 9359 h->reply_queue[i].head = pci_alloc_consistent(h->pdev, 9360 h->reply_queue_size, 9361 &(h->reply_queue[i].busaddr)); 9362 if (!h->reply_queue[i].head) { 9363 rc = -ENOMEM; 9364 goto clean1; /* rq, ioaccel */ 9365 } 9366 h->reply_queue[i].size = h->max_commands; 9367 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 9368 h->reply_queue[i].current_entry = 0; 9369 } 9370 9371 /* Need a block fetch table for performant mode */ 9372 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 9373 sizeof(u32)), GFP_KERNEL); 9374 if (!h->blockFetchTable) { 9375 rc = -ENOMEM; 9376 goto clean1; /* rq, ioaccel */ 9377 } 9378 9379 rc = hpsa_enter_performant_mode(h, trans_support); 9380 if (rc) 9381 goto clean2; /* bft, rq, ioaccel */ 9382 return 0; 9383 9384 clean2: /* bft, rq, ioaccel */ 9385 kfree(h->blockFetchTable); 9386 h->blockFetchTable = NULL; 9387 clean1: /* rq, ioaccel */ 9388 hpsa_free_reply_queues(h); 9389 hpsa_free_ioaccel1_cmd_and_bft(h); 9390 hpsa_free_ioaccel2_cmd_and_bft(h); 9391 return rc; 9392 } 9393 9394 static int is_accelerated_cmd(struct CommandList *c) 9395 { 9396 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 9397 } 9398 9399 static void hpsa_drain_accel_commands(struct ctlr_info *h) 9400 { 9401 struct CommandList *c = NULL; 9402 int i, accel_cmds_out; 9403 int refcount; 9404 9405 do { /* wait for all outstanding ioaccel commands to drain out */ 9406 accel_cmds_out = 0; 9407 for (i = 0; i < h->nr_cmds; i++) { 9408 c = h->cmd_pool + i; 9409 refcount = atomic_inc_return(&c->refcount); 9410 if (refcount > 1) /* Command is allocated */ 9411 accel_cmds_out += is_accelerated_cmd(c); 9412 cmd_free(h, c); 9413 } 9414 if (accel_cmds_out <= 0) 9415 break; 9416 msleep(100); 9417 } while (1); 9418 } 9419 9420 static struct hpsa_sas_phy *hpsa_alloc_sas_phy( 9421 struct hpsa_sas_port *hpsa_sas_port) 9422 { 9423 struct hpsa_sas_phy *hpsa_sas_phy; 9424 struct sas_phy *phy; 9425 9426 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); 9427 if (!hpsa_sas_phy) 9428 return NULL; 9429 9430 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, 9431 hpsa_sas_port->next_phy_index); 9432 if (!phy) { 9433 kfree(hpsa_sas_phy); 9434 return NULL; 9435 } 9436 9437 hpsa_sas_port->next_phy_index++; 9438 hpsa_sas_phy->phy = phy; 9439 hpsa_sas_phy->parent_port = hpsa_sas_port; 9440 9441 return hpsa_sas_phy; 9442 } 9443 9444 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9445 { 9446 struct sas_phy *phy = hpsa_sas_phy->phy; 9447 9448 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); 9449 if (hpsa_sas_phy->added_to_port) 9450 list_del(&hpsa_sas_phy->phy_list_entry); 9451 sas_phy_delete(phy); 9452 kfree(hpsa_sas_phy); 9453 } 9454 9455 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) 9456 { 9457 int rc; 9458 struct hpsa_sas_port *hpsa_sas_port; 9459 struct sas_phy *phy; 9460 struct sas_identify *identify; 9461 9462 hpsa_sas_port = hpsa_sas_phy->parent_port; 9463 phy = hpsa_sas_phy->phy; 9464 9465 identify = &phy->identify; 9466 memset(identify, 0, sizeof(*identify)); 9467 identify->sas_address = hpsa_sas_port->sas_address; 9468 identify->device_type = SAS_END_DEVICE; 9469 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9470 identify->target_port_protocols = SAS_PROTOCOL_STP; 9471 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9472 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; 9473 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; 9474 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; 9475 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; 9476 9477 rc = sas_phy_add(hpsa_sas_phy->phy); 9478 if (rc) 9479 return rc; 9480 9481 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); 9482 list_add_tail(&hpsa_sas_phy->phy_list_entry, 9483 &hpsa_sas_port->phy_list_head); 9484 hpsa_sas_phy->added_to_port = true; 9485 9486 return 0; 9487 } 9488 9489 static int 9490 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, 9491 struct sas_rphy *rphy) 9492 { 9493 struct sas_identify *identify; 9494 9495 identify = &rphy->identify; 9496 identify->sas_address = hpsa_sas_port->sas_address; 9497 identify->initiator_port_protocols = SAS_PROTOCOL_STP; 9498 identify->target_port_protocols = SAS_PROTOCOL_STP; 9499 9500 return sas_rphy_add(rphy); 9501 } 9502 9503 static struct hpsa_sas_port 9504 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, 9505 u64 sas_address) 9506 { 9507 int rc; 9508 struct hpsa_sas_port *hpsa_sas_port; 9509 struct sas_port *port; 9510 9511 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); 9512 if (!hpsa_sas_port) 9513 return NULL; 9514 9515 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); 9516 hpsa_sas_port->parent_node = hpsa_sas_node; 9517 9518 port = sas_port_alloc_num(hpsa_sas_node->parent_dev); 9519 if (!port) 9520 goto free_hpsa_port; 9521 9522 rc = sas_port_add(port); 9523 if (rc) 9524 goto free_sas_port; 9525 9526 hpsa_sas_port->port = port; 9527 hpsa_sas_port->sas_address = sas_address; 9528 list_add_tail(&hpsa_sas_port->port_list_entry, 9529 &hpsa_sas_node->port_list_head); 9530 9531 return hpsa_sas_port; 9532 9533 free_sas_port: 9534 sas_port_free(port); 9535 free_hpsa_port: 9536 kfree(hpsa_sas_port); 9537 9538 return NULL; 9539 } 9540 9541 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) 9542 { 9543 struct hpsa_sas_phy *hpsa_sas_phy; 9544 struct hpsa_sas_phy *next; 9545 9546 list_for_each_entry_safe(hpsa_sas_phy, next, 9547 &hpsa_sas_port->phy_list_head, phy_list_entry) 9548 hpsa_free_sas_phy(hpsa_sas_phy); 9549 9550 sas_port_delete(hpsa_sas_port->port); 9551 list_del(&hpsa_sas_port->port_list_entry); 9552 kfree(hpsa_sas_port); 9553 } 9554 9555 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) 9556 { 9557 struct hpsa_sas_node *hpsa_sas_node; 9558 9559 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); 9560 if (hpsa_sas_node) { 9561 hpsa_sas_node->parent_dev = parent_dev; 9562 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); 9563 } 9564 9565 return hpsa_sas_node; 9566 } 9567 9568 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) 9569 { 9570 struct hpsa_sas_port *hpsa_sas_port; 9571 struct hpsa_sas_port *next; 9572 9573 if (!hpsa_sas_node) 9574 return; 9575 9576 list_for_each_entry_safe(hpsa_sas_port, next, 9577 &hpsa_sas_node->port_list_head, port_list_entry) 9578 hpsa_free_sas_port(hpsa_sas_port); 9579 9580 kfree(hpsa_sas_node); 9581 } 9582 9583 static struct hpsa_scsi_dev_t 9584 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, 9585 struct sas_rphy *rphy) 9586 { 9587 int i; 9588 struct hpsa_scsi_dev_t *device; 9589 9590 for (i = 0; i < h->ndevices; i++) { 9591 device = h->dev[i]; 9592 if (!device->sas_port) 9593 continue; 9594 if (device->sas_port->rphy == rphy) 9595 return device; 9596 } 9597 9598 return NULL; 9599 } 9600 9601 static int hpsa_add_sas_host(struct ctlr_info *h) 9602 { 9603 int rc; 9604 struct device *parent_dev; 9605 struct hpsa_sas_node *hpsa_sas_node; 9606 struct hpsa_sas_port *hpsa_sas_port; 9607 struct hpsa_sas_phy *hpsa_sas_phy; 9608 9609 parent_dev = &h->scsi_host->shost_dev; 9610 9611 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); 9612 if (!hpsa_sas_node) 9613 return -ENOMEM; 9614 9615 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); 9616 if (!hpsa_sas_port) { 9617 rc = -ENODEV; 9618 goto free_sas_node; 9619 } 9620 9621 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); 9622 if (!hpsa_sas_phy) { 9623 rc = -ENODEV; 9624 goto free_sas_port; 9625 } 9626 9627 rc = hpsa_sas_port_add_phy(hpsa_sas_phy); 9628 if (rc) 9629 goto free_sas_phy; 9630 9631 h->sas_host = hpsa_sas_node; 9632 9633 return 0; 9634 9635 free_sas_phy: 9636 hpsa_free_sas_phy(hpsa_sas_phy); 9637 free_sas_port: 9638 hpsa_free_sas_port(hpsa_sas_port); 9639 free_sas_node: 9640 hpsa_free_sas_node(hpsa_sas_node); 9641 9642 return rc; 9643 } 9644 9645 static void hpsa_delete_sas_host(struct ctlr_info *h) 9646 { 9647 hpsa_free_sas_node(h->sas_host); 9648 } 9649 9650 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, 9651 struct hpsa_scsi_dev_t *device) 9652 { 9653 int rc; 9654 struct hpsa_sas_port *hpsa_sas_port; 9655 struct sas_rphy *rphy; 9656 9657 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); 9658 if (!hpsa_sas_port) 9659 return -ENOMEM; 9660 9661 rphy = sas_end_device_alloc(hpsa_sas_port->port); 9662 if (!rphy) { 9663 rc = -ENODEV; 9664 goto free_sas_port; 9665 } 9666 9667 hpsa_sas_port->rphy = rphy; 9668 device->sas_port = hpsa_sas_port; 9669 9670 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); 9671 if (rc) 9672 goto free_sas_port; 9673 9674 return 0; 9675 9676 free_sas_port: 9677 hpsa_free_sas_port(hpsa_sas_port); 9678 device->sas_port = NULL; 9679 9680 return rc; 9681 } 9682 9683 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) 9684 { 9685 if (device->sas_port) { 9686 hpsa_free_sas_port(device->sas_port); 9687 device->sas_port = NULL; 9688 } 9689 } 9690 9691 static int 9692 hpsa_sas_get_linkerrors(struct sas_phy *phy) 9693 { 9694 return 0; 9695 } 9696 9697 static int 9698 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) 9699 { 9700 *identifier = rphy->identify.sas_address; 9701 return 0; 9702 } 9703 9704 static int 9705 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) 9706 { 9707 return -ENXIO; 9708 } 9709 9710 static int 9711 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) 9712 { 9713 return 0; 9714 } 9715 9716 static int 9717 hpsa_sas_phy_enable(struct sas_phy *phy, int enable) 9718 { 9719 return 0; 9720 } 9721 9722 static int 9723 hpsa_sas_phy_setup(struct sas_phy *phy) 9724 { 9725 return 0; 9726 } 9727 9728 static void 9729 hpsa_sas_phy_release(struct sas_phy *phy) 9730 { 9731 } 9732 9733 static int 9734 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) 9735 { 9736 return -EINVAL; 9737 } 9738 9739 static struct sas_function_template hpsa_sas_transport_functions = { 9740 .get_linkerrors = hpsa_sas_get_linkerrors, 9741 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, 9742 .get_bay_identifier = hpsa_sas_get_bay_identifier, 9743 .phy_reset = hpsa_sas_phy_reset, 9744 .phy_enable = hpsa_sas_phy_enable, 9745 .phy_setup = hpsa_sas_phy_setup, 9746 .phy_release = hpsa_sas_phy_release, 9747 .set_phy_speed = hpsa_sas_phy_speed, 9748 }; 9749 9750 /* 9751 * This is it. Register the PCI driver information for the cards we control 9752 * the OS will call our registered routines when it finds one of our cards. 9753 */ 9754 static int __init hpsa_init(void) 9755 { 9756 int rc; 9757 9758 hpsa_sas_transport_template = 9759 sas_attach_transport(&hpsa_sas_transport_functions); 9760 if (!hpsa_sas_transport_template) 9761 return -ENODEV; 9762 9763 rc = pci_register_driver(&hpsa_pci_driver); 9764 9765 if (rc) 9766 sas_release_transport(hpsa_sas_transport_template); 9767 9768 return rc; 9769 } 9770 9771 static void __exit hpsa_cleanup(void) 9772 { 9773 pci_unregister_driver(&hpsa_pci_driver); 9774 sas_release_transport(hpsa_sas_transport_template); 9775 } 9776 9777 static void __attribute__((unused)) verify_offsets(void) 9778 { 9779 #define VERIFY_OFFSET(member, offset) \ 9780 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 9781 9782 VERIFY_OFFSET(structure_size, 0); 9783 VERIFY_OFFSET(volume_blk_size, 4); 9784 VERIFY_OFFSET(volume_blk_cnt, 8); 9785 VERIFY_OFFSET(phys_blk_shift, 16); 9786 VERIFY_OFFSET(parity_rotation_shift, 17); 9787 VERIFY_OFFSET(strip_size, 18); 9788 VERIFY_OFFSET(disk_starting_blk, 20); 9789 VERIFY_OFFSET(disk_blk_cnt, 28); 9790 VERIFY_OFFSET(data_disks_per_row, 36); 9791 VERIFY_OFFSET(metadata_disks_per_row, 38); 9792 VERIFY_OFFSET(row_cnt, 40); 9793 VERIFY_OFFSET(layout_map_count, 42); 9794 VERIFY_OFFSET(flags, 44); 9795 VERIFY_OFFSET(dekindex, 46); 9796 /* VERIFY_OFFSET(reserved, 48 */ 9797 VERIFY_OFFSET(data, 64); 9798 9799 #undef VERIFY_OFFSET 9800 9801 #define VERIFY_OFFSET(member, offset) \ 9802 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 9803 9804 VERIFY_OFFSET(IU_type, 0); 9805 VERIFY_OFFSET(direction, 1); 9806 VERIFY_OFFSET(reply_queue, 2); 9807 /* VERIFY_OFFSET(reserved1, 3); */ 9808 VERIFY_OFFSET(scsi_nexus, 4); 9809 VERIFY_OFFSET(Tag, 8); 9810 VERIFY_OFFSET(cdb, 16); 9811 VERIFY_OFFSET(cciss_lun, 32); 9812 VERIFY_OFFSET(data_len, 40); 9813 VERIFY_OFFSET(cmd_priority_task_attr, 44); 9814 VERIFY_OFFSET(sg_count, 45); 9815 /* VERIFY_OFFSET(reserved3 */ 9816 VERIFY_OFFSET(err_ptr, 48); 9817 VERIFY_OFFSET(err_len, 56); 9818 /* VERIFY_OFFSET(reserved4 */ 9819 VERIFY_OFFSET(sg, 64); 9820 9821 #undef VERIFY_OFFSET 9822 9823 #define VERIFY_OFFSET(member, offset) \ 9824 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 9825 9826 VERIFY_OFFSET(dev_handle, 0x00); 9827 VERIFY_OFFSET(reserved1, 0x02); 9828 VERIFY_OFFSET(function, 0x03); 9829 VERIFY_OFFSET(reserved2, 0x04); 9830 VERIFY_OFFSET(err_info, 0x0C); 9831 VERIFY_OFFSET(reserved3, 0x10); 9832 VERIFY_OFFSET(err_info_len, 0x12); 9833 VERIFY_OFFSET(reserved4, 0x13); 9834 VERIFY_OFFSET(sgl_offset, 0x14); 9835 VERIFY_OFFSET(reserved5, 0x15); 9836 VERIFY_OFFSET(transfer_len, 0x1C); 9837 VERIFY_OFFSET(reserved6, 0x20); 9838 VERIFY_OFFSET(io_flags, 0x24); 9839 VERIFY_OFFSET(reserved7, 0x26); 9840 VERIFY_OFFSET(LUN, 0x34); 9841 VERIFY_OFFSET(control, 0x3C); 9842 VERIFY_OFFSET(CDB, 0x40); 9843 VERIFY_OFFSET(reserved8, 0x50); 9844 VERIFY_OFFSET(host_context_flags, 0x60); 9845 VERIFY_OFFSET(timeout_sec, 0x62); 9846 VERIFY_OFFSET(ReplyQueue, 0x64); 9847 VERIFY_OFFSET(reserved9, 0x65); 9848 VERIFY_OFFSET(tag, 0x68); 9849 VERIFY_OFFSET(host_addr, 0x70); 9850 VERIFY_OFFSET(CISS_LUN, 0x78); 9851 VERIFY_OFFSET(SG, 0x78 + 8); 9852 #undef VERIFY_OFFSET 9853 } 9854 9855 module_init(hpsa_init); 9856 module_exit(hpsa_cleanup); 9857