xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.use_clustering		= ENABLE_CLUSTERING,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 1024,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 			return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc_array(h->maxsgentries,
2181 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 				      GFP_KERNEL);
2183 		if (!h->ioaccel2_cmd_sg_list[i])
2184 			goto clean;
2185 	}
2186 	return 0;
2187 
2188 clean:
2189 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (!h->cmd_sg_list)
2198 		return;
2199 	for (i = 0; i < h->nr_cmds; i++) {
2200 		kfree(h->cmd_sg_list[i]);
2201 		h->cmd_sg_list[i] = NULL;
2202 	}
2203 	kfree(h->cmd_sg_list);
2204 	h->cmd_sg_list = NULL;
2205 }
2206 
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (h->chainsize <= 0)
2212 		return 0;
2213 
2214 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 				 GFP_KERNEL);
2216 	if (!h->cmd_sg_list)
2217 		return -ENOMEM;
2218 
2219 	for (i = 0; i < h->nr_cmds; i++) {
2220 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 						  sizeof(*h->cmd_sg_list[i]),
2222 						  GFP_KERNEL);
2223 		if (!h->cmd_sg_list[i])
2224 			goto clean;
2225 
2226 	}
2227 	return 0;
2228 
2229 clean:
2230 	hpsa_free_sg_chain_blocks(h);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 	struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 	struct ioaccel2_sg_element *chain_block;
2238 	u64 temp64;
2239 	u32 chain_size;
2240 
2241 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 	chain_size = le32_to_cpu(cp->sg[0].length);
2243 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2244 				PCI_DMA_TODEVICE);
2245 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 		/* prevent subsequent unmapping */
2247 		cp->sg->address = 0;
2248 		return -1;
2249 	}
2250 	cp->sg->address = cpu_to_le64(temp64);
2251 	return 0;
2252 }
2253 
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 	struct io_accel2_cmd *cp)
2256 {
2257 	struct ioaccel2_sg_element *chain_sg;
2258 	u64 temp64;
2259 	u32 chain_size;
2260 
2261 	chain_sg = cp->sg;
2262 	temp64 = le64_to_cpu(chain_sg->address);
2263 	chain_size = le32_to_cpu(cp->sg[0].length);
2264 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2265 }
2266 
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 	struct CommandList *c)
2269 {
2270 	struct SGDescriptor *chain_sg, *chain_block;
2271 	u64 temp64;
2272 	u32 chain_len;
2273 
2274 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 	chain_block = h->cmd_sg_list[c->cmdindex];
2276 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 	chain_len = sizeof(*chain_sg) *
2278 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 	chain_sg->Len = cpu_to_le32(chain_len);
2280 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2281 				PCI_DMA_TODEVICE);
2282 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 		/* prevent subsequent unmapping */
2284 		chain_sg->Addr = cpu_to_le64(0);
2285 		return -1;
2286 	}
2287 	chain_sg->Addr = cpu_to_le64(temp64);
2288 	return 0;
2289 }
2290 
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 	struct CommandList *c)
2293 {
2294 	struct SGDescriptor *chain_sg;
2295 
2296 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 		return;
2298 
2299 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2301 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2302 }
2303 
2304 
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 					struct CommandList *c,
2311 					struct scsi_cmnd *cmd,
2312 					struct io_accel2_cmd *c2,
2313 					struct hpsa_scsi_dev_t *dev)
2314 {
2315 	int data_len;
2316 	int retry = 0;
2317 	u32 ioaccel2_resid = 0;
2318 
2319 	switch (c2->error_data.serv_response) {
2320 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 		switch (c2->error_data.status) {
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 			break;
2324 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 			if (c2->error_data.data_present !=
2327 					IOACCEL2_SENSE_DATA_PRESENT) {
2328 				memset(cmd->sense_buffer, 0,
2329 					SCSI_SENSE_BUFFERSIZE);
2330 				break;
2331 			}
2332 			/* copy the sense data */
2333 			data_len = c2->error_data.sense_data_len;
2334 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 				data_len = SCSI_SENSE_BUFFERSIZE;
2336 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 				data_len =
2338 					sizeof(c2->error_data.sense_data_buff);
2339 			memcpy(cmd->sense_buffer,
2340 				c2->error_data.sense_data_buff, data_len);
2341 			retry = 1;
2342 			break;
2343 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 			retry = 1;
2345 			break;
2346 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 			retry = 1;
2348 			break;
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 			retry = 1;
2354 			break;
2355 		default:
2356 			retry = 1;
2357 			break;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 		switch (c2->error_data.status) {
2362 		case IOACCEL2_STATUS_SR_IO_ERROR:
2363 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 		case IOACCEL2_STATUS_SR_OVERRUN:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_UNDERRUN:
2368 			cmd->result = (DID_OK << 16);		/* host byte */
2369 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2370 			ioaccel2_resid = get_unaligned_le32(
2371 						&c2->error_data.resid_cnt[0]);
2372 			scsi_set_resid(cmd, ioaccel2_resid);
2373 			break;
2374 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 			/*
2378 			 * Did an HBA disk disappear? We will eventually
2379 			 * get a state change event from the controller but
2380 			 * in the meantime, we need to tell the OS that the
2381 			 * HBA disk is no longer there and stop I/O
2382 			 * from going down. This allows the potential re-insert
2383 			 * of the disk to get the same device node.
2384 			 */
2385 			if (dev->physical_device && dev->expose_device) {
2386 				cmd->result = DID_NO_CONNECT << 16;
2387 				dev->removed = 1;
2388 				h->drv_req_rescan = 1;
2389 				dev_warn(&h->pdev->dev,
2390 					"%s: device is gone!\n", __func__);
2391 			} else
2392 				/*
2393 				 * Retry by sending down the RAID path.
2394 				 * We will get an event from ctlr to
2395 				 * trigger rescan regardless.
2396 				 */
2397 				retry = 1;
2398 			break;
2399 		default:
2400 			retry = 1;
2401 		}
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 		break;
2407 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 		retry = 1;
2409 		break;
2410 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 		break;
2412 	default:
2413 		retry = 1;
2414 		break;
2415 	}
2416 
2417 	return retry;	/* retry on raid path? */
2418 }
2419 
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 		struct CommandList *c)
2422 {
2423 	bool do_wake = false;
2424 
2425 	/*
2426 	 * Reset c->scsi_cmd here so that the reset handler will know
2427 	 * this command has completed.  Then, check to see if the handler is
2428 	 * waiting for this command, and, if so, wake it.
2429 	 */
2430 	c->scsi_cmd = SCSI_CMD_IDLE;
2431 	mb();	/* Declare command idle before checking for pending events. */
2432 	if (c->reset_pending) {
2433 		unsigned long flags;
2434 		struct hpsa_scsi_dev_t *dev;
2435 
2436 		/*
2437 		 * There appears to be a reset pending; lock the lock and
2438 		 * reconfirm.  If so, then decrement the count of outstanding
2439 		 * commands and wake the reset command if this is the last one.
2440 		 */
2441 		spin_lock_irqsave(&h->lock, flags);
2442 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2443 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 			do_wake = true;
2445 		c->reset_pending = NULL;
2446 		spin_unlock_irqrestore(&h->lock, flags);
2447 	}
2448 
2449 	if (do_wake)
2450 		wake_up_all(&h->event_sync_wait_queue);
2451 }
2452 
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 				      struct CommandList *c)
2455 {
2456 	hpsa_cmd_resolve_events(h, c);
2457 	cmd_tagged_free(h, c);
2458 }
2459 
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 		struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 	hpsa_cmd_resolve_and_free(h, c);
2464 	if (cmd && cmd->scsi_done)
2465 		cmd->scsi_done(cmd);
2466 }
2467 
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473 
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd,
2476 		struct hpsa_scsi_dev_t *dev)
2477 {
2478 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479 
2480 	/* check for good status */
2481 	if (likely(c2->error_data.serv_response == 0 &&
2482 			c2->error_data.status == 0))
2483 		return hpsa_cmd_free_and_done(h, c, cmd);
2484 
2485 	/*
2486 	 * Any RAID offload error results in retry which will use
2487 	 * the normal I/O path so the controller can handle whatever is
2488 	 * wrong.
2489 	 */
2490 	if (is_logical_device(dev) &&
2491 		c2->error_data.serv_response ==
2492 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 		if (c2->error_data.status ==
2494 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 			dev->offload_enabled = 0;
2496 			dev->offload_to_be_enabled = 0;
2497 		}
2498 
2499 		return hpsa_retry_cmd(h, c);
2500 	}
2501 
2502 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 		return hpsa_retry_cmd(h, c);
2504 
2505 	return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507 
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 					struct CommandList *cp)
2511 {
2512 	u8 tmf_status = cp->err_info->ScsiStatus;
2513 
2514 	switch (tmf_status) {
2515 	case CISS_TMF_COMPLETE:
2516 		/*
2517 		 * CISS_TMF_COMPLETE never happens, instead,
2518 		 * ei->CommandStatus == 0 for this case.
2519 		 */
2520 	case CISS_TMF_SUCCESS:
2521 		return 0;
2522 	case CISS_TMF_INVALID_FRAME:
2523 	case CISS_TMF_NOT_SUPPORTED:
2524 	case CISS_TMF_FAILED:
2525 	case CISS_TMF_WRONG_LUN:
2526 	case CISS_TMF_OVERLAPPED_TAG:
2527 		break;
2528 	default:
2529 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 				tmf_status);
2531 		break;
2532 	}
2533 	return -tmf_status;
2534 }
2535 
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 	struct scsi_cmnd *cmd;
2539 	struct ctlr_info *h;
2540 	struct ErrorInfo *ei;
2541 	struct hpsa_scsi_dev_t *dev;
2542 	struct io_accel2_cmd *c2;
2543 
2544 	u8 sense_key;
2545 	u8 asc;      /* additional sense code */
2546 	u8 ascq;     /* additional sense code qualifier */
2547 	unsigned long sense_data_size;
2548 
2549 	ei = cp->err_info;
2550 	cmd = cp->scsi_cmd;
2551 	h = cp->h;
2552 
2553 	if (!cmd->device) {
2554 		cmd->result = DID_NO_CONNECT << 16;
2555 		return hpsa_cmd_free_and_done(h, cp, cmd);
2556 	}
2557 
2558 	dev = cmd->device->hostdata;
2559 	if (!dev) {
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564 
2565 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 	if ((cp->cmd_type == CMD_SCSI) &&
2567 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 		hpsa_unmap_sg_chain_block(h, cp);
2569 
2570 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573 
2574 	cmd->result = (DID_OK << 16); 		/* host byte */
2575 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2576 
2577 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 		if (dev->physical_device && dev->expose_device &&
2579 			dev->removed) {
2580 			cmd->result = DID_NO_CONNECT << 16;
2581 			return hpsa_cmd_free_and_done(h, cp, cmd);
2582 		}
2583 		if (likely(cp->phys_disk != NULL))
2584 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 	}
2586 
2587 	/*
2588 	 * We check for lockup status here as it may be set for
2589 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 	 * fail_all_oustanding_cmds()
2591 	 */
2592 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 		/* DID_NO_CONNECT will prevent a retry */
2594 		cmd->result = DID_NO_CONNECT << 16;
2595 		return hpsa_cmd_free_and_done(h, cp, cmd);
2596 	}
2597 
2598 	if ((unlikely(hpsa_is_pending_event(cp))))
2599 		if (cp->reset_pending)
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 
2602 	if (cp->cmd_type == CMD_IOACCEL2)
2603 		return process_ioaccel2_completion(h, cp, cmd, dev);
2604 
2605 	scsi_set_resid(cmd, ei->ResidualCnt);
2606 	if (ei->CommandStatus == 0)
2607 		return hpsa_cmd_free_and_done(h, cp, cmd);
2608 
2609 	/* For I/O accelerator commands, copy over some fields to the normal
2610 	 * CISS header used below for error handling.
2611 	 */
2612 	if (cp->cmd_type == CMD_IOACCEL1) {
2613 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 		cp->Header.SGList = scsi_sg_count(cmd);
2615 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 		cp->Header.tag = c->tag;
2619 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621 
2622 		/* Any RAID offload error results in retry which will use
2623 		 * the normal I/O path so the controller can handle whatever's
2624 		 * wrong.
2625 		 */
2626 		if (is_logical_device(dev)) {
2627 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 				dev->offload_enabled = 0;
2629 			return hpsa_retry_cmd(h, cp);
2630 		}
2631 	}
2632 
2633 	/* an error has occurred */
2634 	switch (ei->CommandStatus) {
2635 
2636 	case CMD_TARGET_STATUS:
2637 		cmd->result |= ei->ScsiStatus;
2638 		/* copy the sense data */
2639 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 		else
2642 			sense_data_size = sizeof(ei->SenseInfo);
2643 		if (ei->SenseLen < sense_data_size)
2644 			sense_data_size = ei->SenseLen;
2645 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 		if (ei->ScsiStatus)
2647 			decode_sense_data(ei->SenseInfo, sense_data_size,
2648 				&sense_key, &asc, &ascq);
2649 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 			if (sense_key == ABORTED_COMMAND) {
2651 				cmd->result |= DID_SOFT_ERROR << 16;
2652 				break;
2653 			}
2654 			break;
2655 		}
2656 		/* Problem was not a check condition
2657 		 * Pass it up to the upper layers...
2658 		 */
2659 		if (ei->ScsiStatus) {
2660 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662 				"Returning result: 0x%x\n",
2663 				cp, ei->ScsiStatus,
2664 				sense_key, asc, ascq,
2665 				cmd->result);
2666 		} else {  /* scsi status is zero??? How??? */
2667 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668 				"Returning no connection.\n", cp),
2669 
2670 			/* Ordinarily, this case should never happen,
2671 			 * but there is a bug in some released firmware
2672 			 * revisions that allows it to happen if, for
2673 			 * example, a 4100 backplane loses power and
2674 			 * the tape drive is in it.  We assume that
2675 			 * it's a fatal error of some kind because we
2676 			 * can't show that it wasn't. We will make it
2677 			 * look like selection timeout since that is
2678 			 * the most common reason for this to occur,
2679 			 * and it's severe enough.
2680 			 */
2681 
2682 			cmd->result = DID_NO_CONNECT << 16;
2683 		}
2684 		break;
2685 
2686 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687 		break;
2688 	case CMD_DATA_OVERRUN:
2689 		dev_warn(&h->pdev->dev,
2690 			"CDB %16phN data overrun\n", cp->Request.CDB);
2691 		break;
2692 	case CMD_INVALID: {
2693 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2694 		print_cmd(cp); */
2695 		/* We get CMD_INVALID if you address a non-existent device
2696 		 * instead of a selection timeout (no response).  You will
2697 		 * see this if you yank out a drive, then try to access it.
2698 		 * This is kind of a shame because it means that any other
2699 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700 		 * missing target. */
2701 		cmd->result = DID_NO_CONNECT << 16;
2702 	}
2703 		break;
2704 	case CMD_PROTOCOL_ERR:
2705 		cmd->result = DID_ERROR << 16;
2706 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707 				cp->Request.CDB);
2708 		break;
2709 	case CMD_HARDWARE_ERR:
2710 		cmd->result = DID_ERROR << 16;
2711 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712 			cp->Request.CDB);
2713 		break;
2714 	case CMD_CONNECTION_LOST:
2715 		cmd->result = DID_ERROR << 16;
2716 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717 			cp->Request.CDB);
2718 		break;
2719 	case CMD_ABORTED:
2720 		cmd->result = DID_ABORT << 16;
2721 		break;
2722 	case CMD_ABORT_FAILED:
2723 		cmd->result = DID_ERROR << 16;
2724 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725 			cp->Request.CDB);
2726 		break;
2727 	case CMD_UNSOLICITED_ABORT:
2728 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730 			cp->Request.CDB);
2731 		break;
2732 	case CMD_TIMEOUT:
2733 		cmd->result = DID_TIME_OUT << 16;
2734 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735 			cp->Request.CDB);
2736 		break;
2737 	case CMD_UNABORTABLE:
2738 		cmd->result = DID_ERROR << 16;
2739 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2740 		break;
2741 	case CMD_TMF_STATUS:
2742 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743 			cmd->result = DID_ERROR << 16;
2744 		break;
2745 	case CMD_IOACCEL_DISABLED:
2746 		/* This only handles the direct pass-through case since RAID
2747 		 * offload is handled above.  Just attempt a retry.
2748 		 */
2749 		cmd->result = DID_SOFT_ERROR << 16;
2750 		dev_warn(&h->pdev->dev,
2751 				"cp %p had HP SSD Smart Path error\n", cp);
2752 		break;
2753 	default:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756 				cp, ei->CommandStatus);
2757 	}
2758 
2759 	return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761 
2762 static void hpsa_pci_unmap(struct pci_dev *pdev,
2763 	struct CommandList *c, int sg_used, int data_direction)
2764 {
2765 	int i;
2766 
2767 	for (i = 0; i < sg_used; i++)
2768 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2769 				le32_to_cpu(c->SG[i].Len),
2770 				data_direction);
2771 }
2772 
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774 		struct CommandList *cp,
2775 		unsigned char *buf,
2776 		size_t buflen,
2777 		int data_direction)
2778 {
2779 	u64 addr64;
2780 
2781 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2782 		cp->Header.SGList = 0;
2783 		cp->Header.SGTotal = cpu_to_le16(0);
2784 		return 0;
2785 	}
2786 
2787 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2788 	if (dma_mapping_error(&pdev->dev, addr64)) {
2789 		/* Prevent subsequent unmap of something never mapped */
2790 		cp->Header.SGList = 0;
2791 		cp->Header.SGTotal = cpu_to_le16(0);
2792 		return -1;
2793 	}
2794 	cp->SG[0].Addr = cpu_to_le64(addr64);
2795 	cp->SG[0].Len = cpu_to_le32(buflen);
2796 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799 	return 0;
2800 }
2801 
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807 	DECLARE_COMPLETION_ONSTACK(wait);
2808 
2809 	c->waiting = &wait;
2810 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2811 	if (timeout_msecs == NO_TIMEOUT) {
2812 		/* TODO: get rid of this no-timeout thing */
2813 		wait_for_completion_io(&wait);
2814 		return IO_OK;
2815 	}
2816 	if (!wait_for_completion_io_timeout(&wait,
2817 					msecs_to_jiffies(timeout_msecs))) {
2818 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2819 		return -ETIMEDOUT;
2820 	}
2821 	return IO_OK;
2822 }
2823 
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825 				   int reply_queue, unsigned long timeout_msecs)
2826 {
2827 	if (unlikely(lockup_detected(h))) {
2828 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829 		return IO_OK;
2830 	}
2831 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833 
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836 	int cpu;
2837 	u32 rc, *lockup_detected;
2838 
2839 	cpu = get_cpu();
2840 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841 	rc = *lockup_detected;
2842 	put_cpu();
2843 	return rc;
2844 }
2845 
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2849 {
2850 	int backoff_time = 10, retry_count = 0;
2851 	int rc;
2852 
2853 	do {
2854 		memset(c->err_info, 0, sizeof(*c->err_info));
2855 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2856 						  timeout_msecs);
2857 		if (rc)
2858 			break;
2859 		retry_count++;
2860 		if (retry_count > 3) {
2861 			msleep(backoff_time);
2862 			if (backoff_time < 1000)
2863 				backoff_time *= 2;
2864 		}
2865 	} while ((check_for_unit_attention(h, c) ||
2866 			check_for_busy(h, c)) &&
2867 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2868 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2869 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2870 		rc = -EIO;
2871 	return rc;
2872 }
2873 
2874 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2875 				struct CommandList *c)
2876 {
2877 	const u8 *cdb = c->Request.CDB;
2878 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2879 
2880 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2881 		 txt, lun, cdb);
2882 }
2883 
2884 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2885 			struct CommandList *cp)
2886 {
2887 	const struct ErrorInfo *ei = cp->err_info;
2888 	struct device *d = &cp->h->pdev->dev;
2889 	u8 sense_key, asc, ascq;
2890 	int sense_len;
2891 
2892 	switch (ei->CommandStatus) {
2893 	case CMD_TARGET_STATUS:
2894 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2895 			sense_len = sizeof(ei->SenseInfo);
2896 		else
2897 			sense_len = ei->SenseLen;
2898 		decode_sense_data(ei->SenseInfo, sense_len,
2899 					&sense_key, &asc, &ascq);
2900 		hpsa_print_cmd(h, "SCSI status", cp);
2901 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2902 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2903 				sense_key, asc, ascq);
2904 		else
2905 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2906 		if (ei->ScsiStatus == 0)
2907 			dev_warn(d, "SCSI status is abnormally zero.  "
2908 			"(probably indicates selection timeout "
2909 			"reported incorrectly due to a known "
2910 			"firmware bug, circa July, 2001.)\n");
2911 		break;
2912 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2913 		break;
2914 	case CMD_DATA_OVERRUN:
2915 		hpsa_print_cmd(h, "overrun condition", cp);
2916 		break;
2917 	case CMD_INVALID: {
2918 		/* controller unfortunately reports SCSI passthru's
2919 		 * to non-existent targets as invalid commands.
2920 		 */
2921 		hpsa_print_cmd(h, "invalid command", cp);
2922 		dev_warn(d, "probably means device no longer present\n");
2923 		}
2924 		break;
2925 	case CMD_PROTOCOL_ERR:
2926 		hpsa_print_cmd(h, "protocol error", cp);
2927 		break;
2928 	case CMD_HARDWARE_ERR:
2929 		hpsa_print_cmd(h, "hardware error", cp);
2930 		break;
2931 	case CMD_CONNECTION_LOST:
2932 		hpsa_print_cmd(h, "connection lost", cp);
2933 		break;
2934 	case CMD_ABORTED:
2935 		hpsa_print_cmd(h, "aborted", cp);
2936 		break;
2937 	case CMD_ABORT_FAILED:
2938 		hpsa_print_cmd(h, "abort failed", cp);
2939 		break;
2940 	case CMD_UNSOLICITED_ABORT:
2941 		hpsa_print_cmd(h, "unsolicited abort", cp);
2942 		break;
2943 	case CMD_TIMEOUT:
2944 		hpsa_print_cmd(h, "timed out", cp);
2945 		break;
2946 	case CMD_UNABORTABLE:
2947 		hpsa_print_cmd(h, "unabortable", cp);
2948 		break;
2949 	case CMD_CTLR_LOCKUP:
2950 		hpsa_print_cmd(h, "controller lockup detected", cp);
2951 		break;
2952 	default:
2953 		hpsa_print_cmd(h, "unknown status", cp);
2954 		dev_warn(d, "Unknown command status %x\n",
2955 				ei->CommandStatus);
2956 	}
2957 }
2958 
2959 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2960 					u8 page, u8 *buf, size_t bufsize)
2961 {
2962 	int rc = IO_OK;
2963 	struct CommandList *c;
2964 	struct ErrorInfo *ei;
2965 
2966 	c = cmd_alloc(h);
2967 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2968 			page, scsi3addr, TYPE_CMD)) {
2969 		rc = -1;
2970 		goto out;
2971 	}
2972 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2973 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2974 	if (rc)
2975 		goto out;
2976 	ei = c->err_info;
2977 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2978 		hpsa_scsi_interpret_error(h, c);
2979 		rc = -1;
2980 	}
2981 out:
2982 	cmd_free(h, c);
2983 	return rc;
2984 }
2985 
2986 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2987 						u8 *scsi3addr)
2988 {
2989 	u8 *buf;
2990 	u64 sa = 0;
2991 	int rc = 0;
2992 
2993 	buf = kzalloc(1024, GFP_KERNEL);
2994 	if (!buf)
2995 		return 0;
2996 
2997 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2998 					buf, 1024);
2999 
3000 	if (rc)
3001 		goto out;
3002 
3003 	sa = get_unaligned_be64(buf+12);
3004 
3005 out:
3006 	kfree(buf);
3007 	return sa;
3008 }
3009 
3010 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3011 			u16 page, unsigned char *buf,
3012 			unsigned char bufsize)
3013 {
3014 	int rc = IO_OK;
3015 	struct CommandList *c;
3016 	struct ErrorInfo *ei;
3017 
3018 	c = cmd_alloc(h);
3019 
3020 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3021 			page, scsi3addr, TYPE_CMD)) {
3022 		rc = -1;
3023 		goto out;
3024 	}
3025 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3026 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3027 	if (rc)
3028 		goto out;
3029 	ei = c->err_info;
3030 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3031 		hpsa_scsi_interpret_error(h, c);
3032 		rc = -1;
3033 	}
3034 out:
3035 	cmd_free(h, c);
3036 	return rc;
3037 }
3038 
3039 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3040 	u8 reset_type, int reply_queue)
3041 {
3042 	int rc = IO_OK;
3043 	struct CommandList *c;
3044 	struct ErrorInfo *ei;
3045 
3046 	c = cmd_alloc(h);
3047 
3048 
3049 	/* fill_cmd can't fail here, no data buffer to map. */
3050 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3051 			scsi3addr, TYPE_MSG);
3052 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3053 	if (rc) {
3054 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3055 		goto out;
3056 	}
3057 	/* no unmap needed here because no data xfer. */
3058 
3059 	ei = c->err_info;
3060 	if (ei->CommandStatus != 0) {
3061 		hpsa_scsi_interpret_error(h, c);
3062 		rc = -1;
3063 	}
3064 out:
3065 	cmd_free(h, c);
3066 	return rc;
3067 }
3068 
3069 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3070 			       struct hpsa_scsi_dev_t *dev,
3071 			       unsigned char *scsi3addr)
3072 {
3073 	int i;
3074 	bool match = false;
3075 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3076 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3077 
3078 	if (hpsa_is_cmd_idle(c))
3079 		return false;
3080 
3081 	switch (c->cmd_type) {
3082 	case CMD_SCSI:
3083 	case CMD_IOCTL_PEND:
3084 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3085 				sizeof(c->Header.LUN.LunAddrBytes));
3086 		break;
3087 
3088 	case CMD_IOACCEL1:
3089 	case CMD_IOACCEL2:
3090 		if (c->phys_disk == dev) {
3091 			/* HBA mode match */
3092 			match = true;
3093 		} else {
3094 			/* Possible RAID mode -- check each phys dev. */
3095 			/* FIXME:  Do we need to take out a lock here?  If
3096 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3097 			 * instead. */
3098 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3099 				/* FIXME: an alternate test might be
3100 				 *
3101 				 * match = dev->phys_disk[i]->ioaccel_handle
3102 				 *              == c2->scsi_nexus;      */
3103 				match = dev->phys_disk[i] == c->phys_disk;
3104 			}
3105 		}
3106 		break;
3107 
3108 	case IOACCEL2_TMF:
3109 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3110 			match = dev->phys_disk[i]->ioaccel_handle ==
3111 					le32_to_cpu(ac->it_nexus);
3112 		}
3113 		break;
3114 
3115 	case 0:		/* The command is in the middle of being initialized. */
3116 		match = false;
3117 		break;
3118 
3119 	default:
3120 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3121 			c->cmd_type);
3122 		BUG();
3123 	}
3124 
3125 	return match;
3126 }
3127 
3128 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3129 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3130 {
3131 	int i;
3132 	int rc = 0;
3133 
3134 	/* We can really only handle one reset at a time */
3135 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3136 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3137 		return -EINTR;
3138 	}
3139 
3140 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3141 
3142 	for (i = 0; i < h->nr_cmds; i++) {
3143 		struct CommandList *c = h->cmd_pool + i;
3144 		int refcount = atomic_inc_return(&c->refcount);
3145 
3146 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3147 			unsigned long flags;
3148 
3149 			/*
3150 			 * Mark the target command as having a reset pending,
3151 			 * then lock a lock so that the command cannot complete
3152 			 * while we're considering it.  If the command is not
3153 			 * idle then count it; otherwise revoke the event.
3154 			 */
3155 			c->reset_pending = dev;
3156 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3157 			if (!hpsa_is_cmd_idle(c))
3158 				atomic_inc(&dev->reset_cmds_out);
3159 			else
3160 				c->reset_pending = NULL;
3161 			spin_unlock_irqrestore(&h->lock, flags);
3162 		}
3163 
3164 		cmd_free(h, c);
3165 	}
3166 
3167 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3168 	if (!rc)
3169 		wait_event(h->event_sync_wait_queue,
3170 			atomic_read(&dev->reset_cmds_out) == 0 ||
3171 			lockup_detected(h));
3172 
3173 	if (unlikely(lockup_detected(h))) {
3174 		dev_warn(&h->pdev->dev,
3175 			 "Controller lockup detected during reset wait\n");
3176 		rc = -ENODEV;
3177 	}
3178 
3179 	if (unlikely(rc))
3180 		atomic_set(&dev->reset_cmds_out, 0);
3181 	else
3182 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3183 
3184 	mutex_unlock(&h->reset_mutex);
3185 	return rc;
3186 }
3187 
3188 static void hpsa_get_raid_level(struct ctlr_info *h,
3189 	unsigned char *scsi3addr, unsigned char *raid_level)
3190 {
3191 	int rc;
3192 	unsigned char *buf;
3193 
3194 	*raid_level = RAID_UNKNOWN;
3195 	buf = kzalloc(64, GFP_KERNEL);
3196 	if (!buf)
3197 		return;
3198 
3199 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3200 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3201 		goto exit;
3202 
3203 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3204 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3205 
3206 	if (rc == 0)
3207 		*raid_level = buf[8];
3208 	if (*raid_level > RAID_UNKNOWN)
3209 		*raid_level = RAID_UNKNOWN;
3210 exit:
3211 	kfree(buf);
3212 	return;
3213 }
3214 
3215 #define HPSA_MAP_DEBUG
3216 #ifdef HPSA_MAP_DEBUG
3217 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3218 				struct raid_map_data *map_buff)
3219 {
3220 	struct raid_map_disk_data *dd = &map_buff->data[0];
3221 	int map, row, col;
3222 	u16 map_cnt, row_cnt, disks_per_row;
3223 
3224 	if (rc != 0)
3225 		return;
3226 
3227 	/* Show details only if debugging has been activated. */
3228 	if (h->raid_offload_debug < 2)
3229 		return;
3230 
3231 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3232 				le32_to_cpu(map_buff->structure_size));
3233 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3234 			le32_to_cpu(map_buff->volume_blk_size));
3235 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3236 			le64_to_cpu(map_buff->volume_blk_cnt));
3237 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3238 			map_buff->phys_blk_shift);
3239 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3240 			map_buff->parity_rotation_shift);
3241 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3242 			le16_to_cpu(map_buff->strip_size));
3243 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3244 			le64_to_cpu(map_buff->disk_starting_blk));
3245 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3246 			le64_to_cpu(map_buff->disk_blk_cnt));
3247 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3248 			le16_to_cpu(map_buff->data_disks_per_row));
3249 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3250 			le16_to_cpu(map_buff->metadata_disks_per_row));
3251 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3252 			le16_to_cpu(map_buff->row_cnt));
3253 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3254 			le16_to_cpu(map_buff->layout_map_count));
3255 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3256 			le16_to_cpu(map_buff->flags));
3257 	dev_info(&h->pdev->dev, "encryption = %s\n",
3258 			le16_to_cpu(map_buff->flags) &
3259 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3260 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3261 			le16_to_cpu(map_buff->dekindex));
3262 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3263 	for (map = 0; map < map_cnt; map++) {
3264 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3265 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3266 		for (row = 0; row < row_cnt; row++) {
3267 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3268 			disks_per_row =
3269 				le16_to_cpu(map_buff->data_disks_per_row);
3270 			for (col = 0; col < disks_per_row; col++, dd++)
3271 				dev_info(&h->pdev->dev,
3272 					"    D%02u: h=0x%04x xor=%u,%u\n",
3273 					col, dd->ioaccel_handle,
3274 					dd->xor_mult[0], dd->xor_mult[1]);
3275 			disks_per_row =
3276 				le16_to_cpu(map_buff->metadata_disks_per_row);
3277 			for (col = 0; col < disks_per_row; col++, dd++)
3278 				dev_info(&h->pdev->dev,
3279 					"    M%02u: h=0x%04x xor=%u,%u\n",
3280 					col, dd->ioaccel_handle,
3281 					dd->xor_mult[0], dd->xor_mult[1]);
3282 		}
3283 	}
3284 }
3285 #else
3286 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3287 			__attribute__((unused)) int rc,
3288 			__attribute__((unused)) struct raid_map_data *map_buff)
3289 {
3290 }
3291 #endif
3292 
3293 static int hpsa_get_raid_map(struct ctlr_info *h,
3294 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3295 {
3296 	int rc = 0;
3297 	struct CommandList *c;
3298 	struct ErrorInfo *ei;
3299 
3300 	c = cmd_alloc(h);
3301 
3302 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3303 			sizeof(this_device->raid_map), 0,
3304 			scsi3addr, TYPE_CMD)) {
3305 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3306 		cmd_free(h, c);
3307 		return -1;
3308 	}
3309 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3310 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3311 	if (rc)
3312 		goto out;
3313 	ei = c->err_info;
3314 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3315 		hpsa_scsi_interpret_error(h, c);
3316 		rc = -1;
3317 		goto out;
3318 	}
3319 	cmd_free(h, c);
3320 
3321 	/* @todo in the future, dynamically allocate RAID map memory */
3322 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3323 				sizeof(this_device->raid_map)) {
3324 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3325 		rc = -1;
3326 	}
3327 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3328 	return rc;
3329 out:
3330 	cmd_free(h, c);
3331 	return rc;
3332 }
3333 
3334 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3335 		unsigned char scsi3addr[], u16 bmic_device_index,
3336 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3337 {
3338 	int rc = IO_OK;
3339 	struct CommandList *c;
3340 	struct ErrorInfo *ei;
3341 
3342 	c = cmd_alloc(h);
3343 
3344 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3345 		0, RAID_CTLR_LUNID, TYPE_CMD);
3346 	if (rc)
3347 		goto out;
3348 
3349 	c->Request.CDB[2] = bmic_device_index & 0xff;
3350 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3351 
3352 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3353 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3354 	if (rc)
3355 		goto out;
3356 	ei = c->err_info;
3357 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3358 		hpsa_scsi_interpret_error(h, c);
3359 		rc = -1;
3360 	}
3361 out:
3362 	cmd_free(h, c);
3363 	return rc;
3364 }
3365 
3366 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3367 	struct bmic_identify_controller *buf, size_t bufsize)
3368 {
3369 	int rc = IO_OK;
3370 	struct CommandList *c;
3371 	struct ErrorInfo *ei;
3372 
3373 	c = cmd_alloc(h);
3374 
3375 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3376 		0, RAID_CTLR_LUNID, TYPE_CMD);
3377 	if (rc)
3378 		goto out;
3379 
3380 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3381 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3382 	if (rc)
3383 		goto out;
3384 	ei = c->err_info;
3385 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3386 		hpsa_scsi_interpret_error(h, c);
3387 		rc = -1;
3388 	}
3389 out:
3390 	cmd_free(h, c);
3391 	return rc;
3392 }
3393 
3394 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3395 		unsigned char scsi3addr[], u16 bmic_device_index,
3396 		struct bmic_identify_physical_device *buf, size_t bufsize)
3397 {
3398 	int rc = IO_OK;
3399 	struct CommandList *c;
3400 	struct ErrorInfo *ei;
3401 
3402 	c = cmd_alloc(h);
3403 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3404 		0, RAID_CTLR_LUNID, TYPE_CMD);
3405 	if (rc)
3406 		goto out;
3407 
3408 	c->Request.CDB[2] = bmic_device_index & 0xff;
3409 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3410 
3411 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3412 						NO_TIMEOUT);
3413 	ei = c->err_info;
3414 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3415 		hpsa_scsi_interpret_error(h, c);
3416 		rc = -1;
3417 	}
3418 out:
3419 	cmd_free(h, c);
3420 
3421 	return rc;
3422 }
3423 
3424 /*
3425  * get enclosure information
3426  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3427  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3428  * Uses id_physical_device to determine the box_index.
3429  */
3430 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3431 			unsigned char *scsi3addr,
3432 			struct ReportExtendedLUNdata *rlep, int rle_index,
3433 			struct hpsa_scsi_dev_t *encl_dev)
3434 {
3435 	int rc = -1;
3436 	struct CommandList *c = NULL;
3437 	struct ErrorInfo *ei = NULL;
3438 	struct bmic_sense_storage_box_params *bssbp = NULL;
3439 	struct bmic_identify_physical_device *id_phys = NULL;
3440 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3441 	u16 bmic_device_index = 0;
3442 
3443 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3444 
3445 	encl_dev->sas_address =
3446 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3447 
3448 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3449 		rc = IO_OK;
3450 		goto out;
3451 	}
3452 
3453 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3454 		rc = IO_OK;
3455 		goto out;
3456 	}
3457 
3458 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3459 	if (!bssbp)
3460 		goto out;
3461 
3462 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3463 	if (!id_phys)
3464 		goto out;
3465 
3466 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3467 						id_phys, sizeof(*id_phys));
3468 	if (rc) {
3469 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3470 			__func__, encl_dev->external, bmic_device_index);
3471 		goto out;
3472 	}
3473 
3474 	c = cmd_alloc(h);
3475 
3476 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3477 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3478 
3479 	if (rc)
3480 		goto out;
3481 
3482 	if (id_phys->phys_connector[1] == 'E')
3483 		c->Request.CDB[5] = id_phys->box_index;
3484 	else
3485 		c->Request.CDB[5] = 0;
3486 
3487 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3488 						NO_TIMEOUT);
3489 	if (rc)
3490 		goto out;
3491 
3492 	ei = c->err_info;
3493 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3494 		rc = -1;
3495 		goto out;
3496 	}
3497 
3498 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3499 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3500 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3501 
3502 	rc = IO_OK;
3503 out:
3504 	kfree(bssbp);
3505 	kfree(id_phys);
3506 
3507 	if (c)
3508 		cmd_free(h, c);
3509 
3510 	if (rc != IO_OK)
3511 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3512 			"Error, could not get enclosure information");
3513 }
3514 
3515 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3516 						unsigned char *scsi3addr)
3517 {
3518 	struct ReportExtendedLUNdata *physdev;
3519 	u32 nphysicals;
3520 	u64 sa = 0;
3521 	int i;
3522 
3523 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3524 	if (!physdev)
3525 		return 0;
3526 
3527 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3528 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3529 		kfree(physdev);
3530 		return 0;
3531 	}
3532 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3533 
3534 	for (i = 0; i < nphysicals; i++)
3535 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3536 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3537 			break;
3538 		}
3539 
3540 	kfree(physdev);
3541 
3542 	return sa;
3543 }
3544 
3545 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3546 					struct hpsa_scsi_dev_t *dev)
3547 {
3548 	int rc;
3549 	u64 sa = 0;
3550 
3551 	if (is_hba_lunid(scsi3addr)) {
3552 		struct bmic_sense_subsystem_info *ssi;
3553 
3554 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3555 		if (!ssi)
3556 			return;
3557 
3558 		rc = hpsa_bmic_sense_subsystem_information(h,
3559 					scsi3addr, 0, ssi, sizeof(*ssi));
3560 		if (rc == 0) {
3561 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3562 			h->sas_address = sa;
3563 		}
3564 
3565 		kfree(ssi);
3566 	} else
3567 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3568 
3569 	dev->sas_address = sa;
3570 }
3571 
3572 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3573 	struct ReportExtendedLUNdata *physdev)
3574 {
3575 	u32 nphysicals;
3576 	int i;
3577 
3578 	if (h->discovery_polling)
3579 		return;
3580 
3581 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3582 
3583 	for (i = 0; i < nphysicals; i++) {
3584 		if (physdev->LUN[i].device_type ==
3585 			BMIC_DEVICE_TYPE_CONTROLLER
3586 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3587 			dev_info(&h->pdev->dev,
3588 				"External controller present, activate discovery polling and disable rld caching\n");
3589 			hpsa_disable_rld_caching(h);
3590 			h->discovery_polling = 1;
3591 			break;
3592 		}
3593 	}
3594 }
3595 
3596 /* Get a device id from inquiry page 0x83 */
3597 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3598 	unsigned char scsi3addr[], u8 page)
3599 {
3600 	int rc;
3601 	int i;
3602 	int pages;
3603 	unsigned char *buf, bufsize;
3604 
3605 	buf = kzalloc(256, GFP_KERNEL);
3606 	if (!buf)
3607 		return false;
3608 
3609 	/* Get the size of the page list first */
3610 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3611 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3612 				buf, HPSA_VPD_HEADER_SZ);
3613 	if (rc != 0)
3614 		goto exit_unsupported;
3615 	pages = buf[3];
3616 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3617 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3618 	else
3619 		bufsize = 255;
3620 
3621 	/* Get the whole VPD page list */
3622 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624 				buf, bufsize);
3625 	if (rc != 0)
3626 		goto exit_unsupported;
3627 
3628 	pages = buf[3];
3629 	for (i = 1; i <= pages; i++)
3630 		if (buf[3 + i] == page)
3631 			goto exit_supported;
3632 exit_unsupported:
3633 	kfree(buf);
3634 	return false;
3635 exit_supported:
3636 	kfree(buf);
3637 	return true;
3638 }
3639 
3640 /*
3641  * Called during a scan operation.
3642  * Sets ioaccel status on the new device list, not the existing device list
3643  *
3644  * The device list used during I/O will be updated later in
3645  * adjust_hpsa_scsi_table.
3646  */
3647 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3648 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3649 {
3650 	int rc;
3651 	unsigned char *buf;
3652 	u8 ioaccel_status;
3653 
3654 	this_device->offload_config = 0;
3655 	this_device->offload_enabled = 0;
3656 	this_device->offload_to_be_enabled = 0;
3657 
3658 	buf = kzalloc(64, GFP_KERNEL);
3659 	if (!buf)
3660 		return;
3661 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3662 		goto out;
3663 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3664 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3665 	if (rc != 0)
3666 		goto out;
3667 
3668 #define IOACCEL_STATUS_BYTE 4
3669 #define OFFLOAD_CONFIGURED_BIT 0x01
3670 #define OFFLOAD_ENABLED_BIT 0x02
3671 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3672 	this_device->offload_config =
3673 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3674 	if (this_device->offload_config) {
3675 		this_device->offload_to_be_enabled =
3676 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3677 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3678 			this_device->offload_to_be_enabled = 0;
3679 	}
3680 
3681 out:
3682 	kfree(buf);
3683 	return;
3684 }
3685 
3686 /* Get the device id from inquiry page 0x83 */
3687 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3688 	unsigned char *device_id, int index, int buflen)
3689 {
3690 	int rc;
3691 	unsigned char *buf;
3692 
3693 	/* Does controller have VPD for device id? */
3694 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3695 		return 1; /* not supported */
3696 
3697 	buf = kzalloc(64, GFP_KERNEL);
3698 	if (!buf)
3699 		return -ENOMEM;
3700 
3701 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3702 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3703 	if (rc == 0) {
3704 		if (buflen > 16)
3705 			buflen = 16;
3706 		memcpy(device_id, &buf[8], buflen);
3707 	}
3708 
3709 	kfree(buf);
3710 
3711 	return rc; /*0 - got id,  otherwise, didn't */
3712 }
3713 
3714 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3715 		void *buf, int bufsize,
3716 		int extended_response)
3717 {
3718 	int rc = IO_OK;
3719 	struct CommandList *c;
3720 	unsigned char scsi3addr[8];
3721 	struct ErrorInfo *ei;
3722 
3723 	c = cmd_alloc(h);
3724 
3725 	/* address the controller */
3726 	memset(scsi3addr, 0, sizeof(scsi3addr));
3727 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3728 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3729 		rc = -EAGAIN;
3730 		goto out;
3731 	}
3732 	if (extended_response)
3733 		c->Request.CDB[1] = extended_response;
3734 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3735 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3736 	if (rc)
3737 		goto out;
3738 	ei = c->err_info;
3739 	if (ei->CommandStatus != 0 &&
3740 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3741 		hpsa_scsi_interpret_error(h, c);
3742 		rc = -EIO;
3743 	} else {
3744 		struct ReportLUNdata *rld = buf;
3745 
3746 		if (rld->extended_response_flag != extended_response) {
3747 			if (!h->legacy_board) {
3748 				dev_err(&h->pdev->dev,
3749 					"report luns requested format %u, got %u\n",
3750 					extended_response,
3751 					rld->extended_response_flag);
3752 				rc = -EINVAL;
3753 			} else
3754 				rc = -EOPNOTSUPP;
3755 		}
3756 	}
3757 out:
3758 	cmd_free(h, c);
3759 	return rc;
3760 }
3761 
3762 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3763 		struct ReportExtendedLUNdata *buf, int bufsize)
3764 {
3765 	int rc;
3766 	struct ReportLUNdata *lbuf;
3767 
3768 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3769 				      HPSA_REPORT_PHYS_EXTENDED);
3770 	if (!rc || rc != -EOPNOTSUPP)
3771 		return rc;
3772 
3773 	/* REPORT PHYS EXTENDED is not supported */
3774 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3775 	if (!lbuf)
3776 		return -ENOMEM;
3777 
3778 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3779 	if (!rc) {
3780 		int i;
3781 		u32 nphys;
3782 
3783 		/* Copy ReportLUNdata header */
3784 		memcpy(buf, lbuf, 8);
3785 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3786 		for (i = 0; i < nphys; i++)
3787 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3788 	}
3789 	kfree(lbuf);
3790 	return rc;
3791 }
3792 
3793 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3794 		struct ReportLUNdata *buf, int bufsize)
3795 {
3796 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3797 }
3798 
3799 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3800 	int bus, int target, int lun)
3801 {
3802 	device->bus = bus;
3803 	device->target = target;
3804 	device->lun = lun;
3805 }
3806 
3807 /* Use VPD inquiry to get details of volume status */
3808 static int hpsa_get_volume_status(struct ctlr_info *h,
3809 					unsigned char scsi3addr[])
3810 {
3811 	int rc;
3812 	int status;
3813 	int size;
3814 	unsigned char *buf;
3815 
3816 	buf = kzalloc(64, GFP_KERNEL);
3817 	if (!buf)
3818 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3819 
3820 	/* Does controller have VPD for logical volume status? */
3821 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3822 		goto exit_failed;
3823 
3824 	/* Get the size of the VPD return buffer */
3825 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3826 					buf, HPSA_VPD_HEADER_SZ);
3827 	if (rc != 0)
3828 		goto exit_failed;
3829 	size = buf[3];
3830 
3831 	/* Now get the whole VPD buffer */
3832 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3833 					buf, size + HPSA_VPD_HEADER_SZ);
3834 	if (rc != 0)
3835 		goto exit_failed;
3836 	status = buf[4]; /* status byte */
3837 
3838 	kfree(buf);
3839 	return status;
3840 exit_failed:
3841 	kfree(buf);
3842 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 }
3844 
3845 /* Determine offline status of a volume.
3846  * Return either:
3847  *  0 (not offline)
3848  *  0xff (offline for unknown reasons)
3849  *  # (integer code indicating one of several NOT READY states
3850  *     describing why a volume is to be kept offline)
3851  */
3852 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3853 					unsigned char scsi3addr[])
3854 {
3855 	struct CommandList *c;
3856 	unsigned char *sense;
3857 	u8 sense_key, asc, ascq;
3858 	int sense_len;
3859 	int rc, ldstat = 0;
3860 	u16 cmd_status;
3861 	u8 scsi_status;
3862 #define ASC_LUN_NOT_READY 0x04
3863 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3864 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3865 
3866 	c = cmd_alloc(h);
3867 
3868 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3869 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3870 					NO_TIMEOUT);
3871 	if (rc) {
3872 		cmd_free(h, c);
3873 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3874 	}
3875 	sense = c->err_info->SenseInfo;
3876 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3877 		sense_len = sizeof(c->err_info->SenseInfo);
3878 	else
3879 		sense_len = c->err_info->SenseLen;
3880 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3881 	cmd_status = c->err_info->CommandStatus;
3882 	scsi_status = c->err_info->ScsiStatus;
3883 	cmd_free(h, c);
3884 
3885 	/* Determine the reason for not ready state */
3886 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3887 
3888 	/* Keep volume offline in certain cases: */
3889 	switch (ldstat) {
3890 	case HPSA_LV_FAILED:
3891 	case HPSA_LV_UNDERGOING_ERASE:
3892 	case HPSA_LV_NOT_AVAILABLE:
3893 	case HPSA_LV_UNDERGOING_RPI:
3894 	case HPSA_LV_PENDING_RPI:
3895 	case HPSA_LV_ENCRYPTED_NO_KEY:
3896 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3897 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3898 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3899 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3900 		return ldstat;
3901 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3902 		/* If VPD status page isn't available,
3903 		 * use ASC/ASCQ to determine state
3904 		 */
3905 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3906 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3907 			return ldstat;
3908 		break;
3909 	default:
3910 		break;
3911 	}
3912 	return HPSA_LV_OK;
3913 }
3914 
3915 static int hpsa_update_device_info(struct ctlr_info *h,
3916 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3917 	unsigned char *is_OBDR_device)
3918 {
3919 
3920 #define OBDR_SIG_OFFSET 43
3921 #define OBDR_TAPE_SIG "$DR-10"
3922 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3923 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3924 
3925 	unsigned char *inq_buff;
3926 	unsigned char *obdr_sig;
3927 	int rc = 0;
3928 
3929 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3930 	if (!inq_buff) {
3931 		rc = -ENOMEM;
3932 		goto bail_out;
3933 	}
3934 
3935 	/* Do an inquiry to the device to see what it is. */
3936 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3937 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3938 		dev_err(&h->pdev->dev,
3939 			"%s: inquiry failed, device will be skipped.\n",
3940 			__func__);
3941 		rc = HPSA_INQUIRY_FAILED;
3942 		goto bail_out;
3943 	}
3944 
3945 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3946 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3947 
3948 	this_device->devtype = (inq_buff[0] & 0x1f);
3949 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3950 	memcpy(this_device->vendor, &inq_buff[8],
3951 		sizeof(this_device->vendor));
3952 	memcpy(this_device->model, &inq_buff[16],
3953 		sizeof(this_device->model));
3954 	this_device->rev = inq_buff[2];
3955 	memset(this_device->device_id, 0,
3956 		sizeof(this_device->device_id));
3957 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3958 		sizeof(this_device->device_id)) < 0)
3959 		dev_err(&h->pdev->dev,
3960 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3961 			h->ctlr, __func__,
3962 			h->scsi_host->host_no,
3963 			this_device->target, this_device->lun,
3964 			scsi_device_type(this_device->devtype),
3965 			this_device->model);
3966 
3967 	if ((this_device->devtype == TYPE_DISK ||
3968 		this_device->devtype == TYPE_ZBC) &&
3969 		is_logical_dev_addr_mode(scsi3addr)) {
3970 		unsigned char volume_offline;
3971 
3972 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3973 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3974 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3975 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3976 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3977 		    h->legacy_board) {
3978 			/*
3979 			 * Legacy boards might not support volume status
3980 			 */
3981 			dev_info(&h->pdev->dev,
3982 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3983 				 this_device->target, this_device->lun);
3984 			volume_offline = 0;
3985 		}
3986 		this_device->volume_offline = volume_offline;
3987 		if (volume_offline == HPSA_LV_FAILED) {
3988 			rc = HPSA_LV_FAILED;
3989 			dev_err(&h->pdev->dev,
3990 				"%s: LV failed, device will be skipped.\n",
3991 				__func__);
3992 			goto bail_out;
3993 		}
3994 	} else {
3995 		this_device->raid_level = RAID_UNKNOWN;
3996 		this_device->offload_config = 0;
3997 		this_device->offload_enabled = 0;
3998 		this_device->offload_to_be_enabled = 0;
3999 		this_device->hba_ioaccel_enabled = 0;
4000 		this_device->volume_offline = 0;
4001 		this_device->queue_depth = h->nr_cmds;
4002 	}
4003 
4004 	if (this_device->external)
4005 		this_device->queue_depth = EXTERNAL_QD;
4006 
4007 	if (is_OBDR_device) {
4008 		/* See if this is a One-Button-Disaster-Recovery device
4009 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4010 		 */
4011 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4012 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4013 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4014 						OBDR_SIG_LEN) == 0);
4015 	}
4016 	kfree(inq_buff);
4017 	return 0;
4018 
4019 bail_out:
4020 	kfree(inq_buff);
4021 	return rc;
4022 }
4023 
4024 /*
4025  * Helper function to assign bus, target, lun mapping of devices.
4026  * Logical drive target and lun are assigned at this time, but
4027  * physical device lun and target assignment are deferred (assigned
4028  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4029 */
4030 static void figure_bus_target_lun(struct ctlr_info *h,
4031 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4032 {
4033 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4034 
4035 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4036 		/* physical device, target and lun filled in later */
4037 		if (is_hba_lunid(lunaddrbytes)) {
4038 			int bus = HPSA_HBA_BUS;
4039 
4040 			if (!device->rev)
4041 				bus = HPSA_LEGACY_HBA_BUS;
4042 			hpsa_set_bus_target_lun(device,
4043 					bus, 0, lunid & 0x3fff);
4044 		} else
4045 			/* defer target, lun assignment for physical devices */
4046 			hpsa_set_bus_target_lun(device,
4047 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4048 		return;
4049 	}
4050 	/* It's a logical device */
4051 	if (device->external) {
4052 		hpsa_set_bus_target_lun(device,
4053 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4054 			lunid & 0x00ff);
4055 		return;
4056 	}
4057 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4058 				0, lunid & 0x3fff);
4059 }
4060 
4061 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4062 	int i, int nphysicals, int nlocal_logicals)
4063 {
4064 	/* In report logicals, local logicals are listed first,
4065 	* then any externals.
4066 	*/
4067 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4068 
4069 	if (i == raid_ctlr_position)
4070 		return 0;
4071 
4072 	if (i < logicals_start)
4073 		return 0;
4074 
4075 	/* i is in logicals range, but still within local logicals */
4076 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4077 		return 0;
4078 
4079 	return 1; /* it's an external lun */
4080 }
4081 
4082 /*
4083  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4084  * logdev.  The number of luns in physdev and logdev are returned in
4085  * *nphysicals and *nlogicals, respectively.
4086  * Returns 0 on success, -1 otherwise.
4087  */
4088 static int hpsa_gather_lun_info(struct ctlr_info *h,
4089 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4090 	struct ReportLUNdata *logdev, u32 *nlogicals)
4091 {
4092 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4093 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4094 		return -1;
4095 	}
4096 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4097 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4098 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4099 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4100 		*nphysicals = HPSA_MAX_PHYS_LUN;
4101 	}
4102 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4103 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4104 		return -1;
4105 	}
4106 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4107 	/* Reject Logicals in excess of our max capability. */
4108 	if (*nlogicals > HPSA_MAX_LUN) {
4109 		dev_warn(&h->pdev->dev,
4110 			"maximum logical LUNs (%d) exceeded.  "
4111 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4112 			*nlogicals - HPSA_MAX_LUN);
4113 			*nlogicals = HPSA_MAX_LUN;
4114 	}
4115 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4116 		dev_warn(&h->pdev->dev,
4117 			"maximum logical + physical LUNs (%d) exceeded. "
4118 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4119 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4120 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4121 	}
4122 	return 0;
4123 }
4124 
4125 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4126 	int i, int nphysicals, int nlogicals,
4127 	struct ReportExtendedLUNdata *physdev_list,
4128 	struct ReportLUNdata *logdev_list)
4129 {
4130 	/* Helper function, figure out where the LUN ID info is coming from
4131 	 * given index i, lists of physical and logical devices, where in
4132 	 * the list the raid controller is supposed to appear (first or last)
4133 	 */
4134 
4135 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4136 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4137 
4138 	if (i == raid_ctlr_position)
4139 		return RAID_CTLR_LUNID;
4140 
4141 	if (i < logicals_start)
4142 		return &physdev_list->LUN[i -
4143 				(raid_ctlr_position == 0)].lunid[0];
4144 
4145 	if (i < last_device)
4146 		return &logdev_list->LUN[i - nphysicals -
4147 			(raid_ctlr_position == 0)][0];
4148 	BUG();
4149 	return NULL;
4150 }
4151 
4152 /* get physical drive ioaccel handle and queue depth */
4153 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4154 		struct hpsa_scsi_dev_t *dev,
4155 		struct ReportExtendedLUNdata *rlep, int rle_index,
4156 		struct bmic_identify_physical_device *id_phys)
4157 {
4158 	int rc;
4159 	struct ext_report_lun_entry *rle;
4160 
4161 	rle = &rlep->LUN[rle_index];
4162 
4163 	dev->ioaccel_handle = rle->ioaccel_handle;
4164 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4165 		dev->hba_ioaccel_enabled = 1;
4166 	memset(id_phys, 0, sizeof(*id_phys));
4167 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4168 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4169 			sizeof(*id_phys));
4170 	if (!rc)
4171 		/* Reserve space for FW operations */
4172 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4173 #define DRIVE_QUEUE_DEPTH 7
4174 		dev->queue_depth =
4175 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4176 				DRIVE_CMDS_RESERVED_FOR_FW;
4177 	else
4178 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4179 }
4180 
4181 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4182 	struct ReportExtendedLUNdata *rlep, int rle_index,
4183 	struct bmic_identify_physical_device *id_phys)
4184 {
4185 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4186 
4187 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4188 		this_device->hba_ioaccel_enabled = 1;
4189 
4190 	memcpy(&this_device->active_path_index,
4191 		&id_phys->active_path_number,
4192 		sizeof(this_device->active_path_index));
4193 	memcpy(&this_device->path_map,
4194 		&id_phys->redundant_path_present_map,
4195 		sizeof(this_device->path_map));
4196 	memcpy(&this_device->box,
4197 		&id_phys->alternate_paths_phys_box_on_port,
4198 		sizeof(this_device->box));
4199 	memcpy(&this_device->phys_connector,
4200 		&id_phys->alternate_paths_phys_connector,
4201 		sizeof(this_device->phys_connector));
4202 	memcpy(&this_device->bay,
4203 		&id_phys->phys_bay_in_box,
4204 		sizeof(this_device->bay));
4205 }
4206 
4207 /* get number of local logical disks. */
4208 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4209 	struct bmic_identify_controller *id_ctlr,
4210 	u32 *nlocals)
4211 {
4212 	int rc;
4213 
4214 	if (!id_ctlr) {
4215 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4216 			__func__);
4217 		return -ENOMEM;
4218 	}
4219 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4220 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4221 	if (!rc)
4222 		if (id_ctlr->configured_logical_drive_count < 255)
4223 			*nlocals = id_ctlr->configured_logical_drive_count;
4224 		else
4225 			*nlocals = le16_to_cpu(
4226 					id_ctlr->extended_logical_unit_count);
4227 	else
4228 		*nlocals = -1;
4229 	return rc;
4230 }
4231 
4232 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4233 {
4234 	struct bmic_identify_physical_device *id_phys;
4235 	bool is_spare = false;
4236 	int rc;
4237 
4238 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4239 	if (!id_phys)
4240 		return false;
4241 
4242 	rc = hpsa_bmic_id_physical_device(h,
4243 					lunaddrbytes,
4244 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4245 					id_phys, sizeof(*id_phys));
4246 	if (rc == 0)
4247 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4248 
4249 	kfree(id_phys);
4250 	return is_spare;
4251 }
4252 
4253 #define RPL_DEV_FLAG_NON_DISK                           0x1
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4256 
4257 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4258 
4259 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4260 				struct ext_report_lun_entry *rle)
4261 {
4262 	u8 device_flags;
4263 	u8 device_type;
4264 
4265 	if (!MASKED_DEVICE(lunaddrbytes))
4266 		return false;
4267 
4268 	device_flags = rle->device_flags;
4269 	device_type = rle->device_type;
4270 
4271 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4272 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4273 			return false;
4274 		return true;
4275 	}
4276 
4277 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4278 		return false;
4279 
4280 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4281 		return false;
4282 
4283 	/*
4284 	 * Spares may be spun down, we do not want to
4285 	 * do an Inquiry to a RAID set spare drive as
4286 	 * that would have them spun up, that is a
4287 	 * performance hit because I/O to the RAID device
4288 	 * stops while the spin up occurs which can take
4289 	 * over 50 seconds.
4290 	 */
4291 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4292 		return true;
4293 
4294 	return false;
4295 }
4296 
4297 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4298 {
4299 	/* the idea here is we could get notified
4300 	 * that some devices have changed, so we do a report
4301 	 * physical luns and report logical luns cmd, and adjust
4302 	 * our list of devices accordingly.
4303 	 *
4304 	 * The scsi3addr's of devices won't change so long as the
4305 	 * adapter is not reset.  That means we can rescan and
4306 	 * tell which devices we already know about, vs. new
4307 	 * devices, vs.  disappearing devices.
4308 	 */
4309 	struct ReportExtendedLUNdata *physdev_list = NULL;
4310 	struct ReportLUNdata *logdev_list = NULL;
4311 	struct bmic_identify_physical_device *id_phys = NULL;
4312 	struct bmic_identify_controller *id_ctlr = NULL;
4313 	u32 nphysicals = 0;
4314 	u32 nlogicals = 0;
4315 	u32 nlocal_logicals = 0;
4316 	u32 ndev_allocated = 0;
4317 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4318 	int ncurrent = 0;
4319 	int i, n_ext_target_devs, ndevs_to_allocate;
4320 	int raid_ctlr_position;
4321 	bool physical_device;
4322 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4323 
4324 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4325 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4326 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4327 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4328 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4329 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4330 
4331 	if (!currentsd || !physdev_list || !logdev_list ||
4332 		!tmpdevice || !id_phys || !id_ctlr) {
4333 		dev_err(&h->pdev->dev, "out of memory\n");
4334 		goto out;
4335 	}
4336 	memset(lunzerobits, 0, sizeof(lunzerobits));
4337 
4338 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4339 
4340 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4341 			logdev_list, &nlogicals)) {
4342 		h->drv_req_rescan = 1;
4343 		goto out;
4344 	}
4345 
4346 	/* Set number of local logicals (non PTRAID) */
4347 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4348 		dev_warn(&h->pdev->dev,
4349 			"%s: Can't determine number of local logical devices.\n",
4350 			__func__);
4351 	}
4352 
4353 	/* We might see up to the maximum number of logical and physical disks
4354 	 * plus external target devices, and a device for the local RAID
4355 	 * controller.
4356 	 */
4357 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4358 
4359 	hpsa_ext_ctrl_present(h, physdev_list);
4360 
4361 	/* Allocate the per device structures */
4362 	for (i = 0; i < ndevs_to_allocate; i++) {
4363 		if (i >= HPSA_MAX_DEVICES) {
4364 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4365 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4366 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4367 			break;
4368 		}
4369 
4370 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4371 		if (!currentsd[i]) {
4372 			h->drv_req_rescan = 1;
4373 			goto out;
4374 		}
4375 		ndev_allocated++;
4376 	}
4377 
4378 	if (is_scsi_rev_5(h))
4379 		raid_ctlr_position = 0;
4380 	else
4381 		raid_ctlr_position = nphysicals + nlogicals;
4382 
4383 	/* adjust our table of devices */
4384 	n_ext_target_devs = 0;
4385 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4386 		u8 *lunaddrbytes, is_OBDR = 0;
4387 		int rc = 0;
4388 		int phys_dev_index = i - (raid_ctlr_position == 0);
4389 		bool skip_device = false;
4390 
4391 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4392 
4393 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4394 
4395 		/* Figure out where the LUN ID info is coming from */
4396 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4397 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4398 
4399 		/* Determine if this is a lun from an external target array */
4400 		tmpdevice->external =
4401 			figure_external_status(h, raid_ctlr_position, i,
4402 						nphysicals, nlocal_logicals);
4403 
4404 		/*
4405 		 * Skip over some devices such as a spare.
4406 		 */
4407 		if (!tmpdevice->external && physical_device) {
4408 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4409 					&physdev_list->LUN[phys_dev_index]);
4410 			if (skip_device)
4411 				continue;
4412 		}
4413 
4414 		/* Get device type, vendor, model, device id, raid_map */
4415 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4416 							&is_OBDR);
4417 		if (rc == -ENOMEM) {
4418 			dev_warn(&h->pdev->dev,
4419 				"Out of memory, rescan deferred.\n");
4420 			h->drv_req_rescan = 1;
4421 			goto out;
4422 		}
4423 		if (rc) {
4424 			h->drv_req_rescan = 1;
4425 			continue;
4426 		}
4427 
4428 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4429 		this_device = currentsd[ncurrent];
4430 
4431 		*this_device = *tmpdevice;
4432 		this_device->physical_device = physical_device;
4433 
4434 		/*
4435 		 * Expose all devices except for physical devices that
4436 		 * are masked.
4437 		 */
4438 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4439 			this_device->expose_device = 0;
4440 		else
4441 			this_device->expose_device = 1;
4442 
4443 
4444 		/*
4445 		 * Get the SAS address for physical devices that are exposed.
4446 		 */
4447 		if (this_device->physical_device && this_device->expose_device)
4448 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4449 
4450 		switch (this_device->devtype) {
4451 		case TYPE_ROM:
4452 			/* We don't *really* support actual CD-ROM devices,
4453 			 * just "One Button Disaster Recovery" tape drive
4454 			 * which temporarily pretends to be a CD-ROM drive.
4455 			 * So we check that the device is really an OBDR tape
4456 			 * device by checking for "$DR-10" in bytes 43-48 of
4457 			 * the inquiry data.
4458 			 */
4459 			if (is_OBDR)
4460 				ncurrent++;
4461 			break;
4462 		case TYPE_DISK:
4463 		case TYPE_ZBC:
4464 			if (this_device->physical_device) {
4465 				/* The disk is in HBA mode. */
4466 				/* Never use RAID mapper in HBA mode. */
4467 				this_device->offload_enabled = 0;
4468 				hpsa_get_ioaccel_drive_info(h, this_device,
4469 					physdev_list, phys_dev_index, id_phys);
4470 				hpsa_get_path_info(this_device,
4471 					physdev_list, phys_dev_index, id_phys);
4472 			}
4473 			ncurrent++;
4474 			break;
4475 		case TYPE_TAPE:
4476 		case TYPE_MEDIUM_CHANGER:
4477 			ncurrent++;
4478 			break;
4479 		case TYPE_ENCLOSURE:
4480 			if (!this_device->external)
4481 				hpsa_get_enclosure_info(h, lunaddrbytes,
4482 						physdev_list, phys_dev_index,
4483 						this_device);
4484 			ncurrent++;
4485 			break;
4486 		case TYPE_RAID:
4487 			/* Only present the Smartarray HBA as a RAID controller.
4488 			 * If it's a RAID controller other than the HBA itself
4489 			 * (an external RAID controller, MSA500 or similar)
4490 			 * don't present it.
4491 			 */
4492 			if (!is_hba_lunid(lunaddrbytes))
4493 				break;
4494 			ncurrent++;
4495 			break;
4496 		default:
4497 			break;
4498 		}
4499 		if (ncurrent >= HPSA_MAX_DEVICES)
4500 			break;
4501 	}
4502 
4503 	if (h->sas_host == NULL) {
4504 		int rc = 0;
4505 
4506 		rc = hpsa_add_sas_host(h);
4507 		if (rc) {
4508 			dev_warn(&h->pdev->dev,
4509 				"Could not add sas host %d\n", rc);
4510 			goto out;
4511 		}
4512 	}
4513 
4514 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4515 out:
4516 	kfree(tmpdevice);
4517 	for (i = 0; i < ndev_allocated; i++)
4518 		kfree(currentsd[i]);
4519 	kfree(currentsd);
4520 	kfree(physdev_list);
4521 	kfree(logdev_list);
4522 	kfree(id_ctlr);
4523 	kfree(id_phys);
4524 }
4525 
4526 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4527 				   struct scatterlist *sg)
4528 {
4529 	u64 addr64 = (u64) sg_dma_address(sg);
4530 	unsigned int len = sg_dma_len(sg);
4531 
4532 	desc->Addr = cpu_to_le64(addr64);
4533 	desc->Len = cpu_to_le32(len);
4534 	desc->Ext = 0;
4535 }
4536 
4537 /*
4538  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4539  * dma mapping  and fills in the scatter gather entries of the
4540  * hpsa command, cp.
4541  */
4542 static int hpsa_scatter_gather(struct ctlr_info *h,
4543 		struct CommandList *cp,
4544 		struct scsi_cmnd *cmd)
4545 {
4546 	struct scatterlist *sg;
4547 	int use_sg, i, sg_limit, chained, last_sg;
4548 	struct SGDescriptor *curr_sg;
4549 
4550 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4551 
4552 	use_sg = scsi_dma_map(cmd);
4553 	if (use_sg < 0)
4554 		return use_sg;
4555 
4556 	if (!use_sg)
4557 		goto sglist_finished;
4558 
4559 	/*
4560 	 * If the number of entries is greater than the max for a single list,
4561 	 * then we have a chained list; we will set up all but one entry in the
4562 	 * first list (the last entry is saved for link information);
4563 	 * otherwise, we don't have a chained list and we'll set up at each of
4564 	 * the entries in the one list.
4565 	 */
4566 	curr_sg = cp->SG;
4567 	chained = use_sg > h->max_cmd_sg_entries;
4568 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4569 	last_sg = scsi_sg_count(cmd) - 1;
4570 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4571 		hpsa_set_sg_descriptor(curr_sg, sg);
4572 		curr_sg++;
4573 	}
4574 
4575 	if (chained) {
4576 		/*
4577 		 * Continue with the chained list.  Set curr_sg to the chained
4578 		 * list.  Modify the limit to the total count less the entries
4579 		 * we've already set up.  Resume the scan at the list entry
4580 		 * where the previous loop left off.
4581 		 */
4582 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4583 		sg_limit = use_sg - sg_limit;
4584 		for_each_sg(sg, sg, sg_limit, i) {
4585 			hpsa_set_sg_descriptor(curr_sg, sg);
4586 			curr_sg++;
4587 		}
4588 	}
4589 
4590 	/* Back the pointer up to the last entry and mark it as "last". */
4591 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4592 
4593 	if (use_sg + chained > h->maxSG)
4594 		h->maxSG = use_sg + chained;
4595 
4596 	if (chained) {
4597 		cp->Header.SGList = h->max_cmd_sg_entries;
4598 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4599 		if (hpsa_map_sg_chain_block(h, cp)) {
4600 			scsi_dma_unmap(cmd);
4601 			return -1;
4602 		}
4603 		return 0;
4604 	}
4605 
4606 sglist_finished:
4607 
4608 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4609 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4610 	return 0;
4611 }
4612 
4613 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4614 						u8 *cdb, int cdb_len,
4615 						const char *func)
4616 {
4617 	dev_warn(&h->pdev->dev,
4618 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4619 		 func, cdb_len, cdb);
4620 }
4621 
4622 #define IO_ACCEL_INELIGIBLE 1
4623 /* zero-length transfers trigger hardware errors. */
4624 static bool is_zero_length_transfer(u8 *cdb)
4625 {
4626 	u32 block_cnt;
4627 
4628 	/* Block zero-length transfer sizes on certain commands. */
4629 	switch (cdb[0]) {
4630 	case READ_10:
4631 	case WRITE_10:
4632 	case VERIFY:		/* 0x2F */
4633 	case WRITE_VERIFY:	/* 0x2E */
4634 		block_cnt = get_unaligned_be16(&cdb[7]);
4635 		break;
4636 	case READ_12:
4637 	case WRITE_12:
4638 	case VERIFY_12: /* 0xAF */
4639 	case WRITE_VERIFY_12:	/* 0xAE */
4640 		block_cnt = get_unaligned_be32(&cdb[6]);
4641 		break;
4642 	case READ_16:
4643 	case WRITE_16:
4644 	case VERIFY_16:		/* 0x8F */
4645 		block_cnt = get_unaligned_be32(&cdb[10]);
4646 		break;
4647 	default:
4648 		return false;
4649 	}
4650 
4651 	return block_cnt == 0;
4652 }
4653 
4654 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4655 {
4656 	int is_write = 0;
4657 	u32 block;
4658 	u32 block_cnt;
4659 
4660 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4661 	switch (cdb[0]) {
4662 	case WRITE_6:
4663 	case WRITE_12:
4664 		is_write = 1;
4665 	case READ_6:
4666 	case READ_12:
4667 		if (*cdb_len == 6) {
4668 			block = (((cdb[1] & 0x1F) << 16) |
4669 				(cdb[2] << 8) |
4670 				cdb[3]);
4671 			block_cnt = cdb[4];
4672 			if (block_cnt == 0)
4673 				block_cnt = 256;
4674 		} else {
4675 			BUG_ON(*cdb_len != 12);
4676 			block = get_unaligned_be32(&cdb[2]);
4677 			block_cnt = get_unaligned_be32(&cdb[6]);
4678 		}
4679 		if (block_cnt > 0xffff)
4680 			return IO_ACCEL_INELIGIBLE;
4681 
4682 		cdb[0] = is_write ? WRITE_10 : READ_10;
4683 		cdb[1] = 0;
4684 		cdb[2] = (u8) (block >> 24);
4685 		cdb[3] = (u8) (block >> 16);
4686 		cdb[4] = (u8) (block >> 8);
4687 		cdb[5] = (u8) (block);
4688 		cdb[6] = 0;
4689 		cdb[7] = (u8) (block_cnt >> 8);
4690 		cdb[8] = (u8) (block_cnt);
4691 		cdb[9] = 0;
4692 		*cdb_len = 10;
4693 		break;
4694 	}
4695 	return 0;
4696 }
4697 
4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4699 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4700 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4701 {
4702 	struct scsi_cmnd *cmd = c->scsi_cmd;
4703 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4704 	unsigned int len;
4705 	unsigned int total_len = 0;
4706 	struct scatterlist *sg;
4707 	u64 addr64;
4708 	int use_sg, i;
4709 	struct SGDescriptor *curr_sg;
4710 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4711 
4712 	/* TODO: implement chaining support */
4713 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4714 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4715 		return IO_ACCEL_INELIGIBLE;
4716 	}
4717 
4718 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4719 
4720 	if (is_zero_length_transfer(cdb)) {
4721 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4722 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4723 		return IO_ACCEL_INELIGIBLE;
4724 	}
4725 
4726 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4727 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4728 		return IO_ACCEL_INELIGIBLE;
4729 	}
4730 
4731 	c->cmd_type = CMD_IOACCEL1;
4732 
4733 	/* Adjust the DMA address to point to the accelerated command buffer */
4734 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4735 				(c->cmdindex * sizeof(*cp));
4736 	BUG_ON(c->busaddr & 0x0000007F);
4737 
4738 	use_sg = scsi_dma_map(cmd);
4739 	if (use_sg < 0) {
4740 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4741 		return use_sg;
4742 	}
4743 
4744 	if (use_sg) {
4745 		curr_sg = cp->SG;
4746 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4747 			addr64 = (u64) sg_dma_address(sg);
4748 			len  = sg_dma_len(sg);
4749 			total_len += len;
4750 			curr_sg->Addr = cpu_to_le64(addr64);
4751 			curr_sg->Len = cpu_to_le32(len);
4752 			curr_sg->Ext = cpu_to_le32(0);
4753 			curr_sg++;
4754 		}
4755 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4756 
4757 		switch (cmd->sc_data_direction) {
4758 		case DMA_TO_DEVICE:
4759 			control |= IOACCEL1_CONTROL_DATA_OUT;
4760 			break;
4761 		case DMA_FROM_DEVICE:
4762 			control |= IOACCEL1_CONTROL_DATA_IN;
4763 			break;
4764 		case DMA_NONE:
4765 			control |= IOACCEL1_CONTROL_NODATAXFER;
4766 			break;
4767 		default:
4768 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4769 			cmd->sc_data_direction);
4770 			BUG();
4771 			break;
4772 		}
4773 	} else {
4774 		control |= IOACCEL1_CONTROL_NODATAXFER;
4775 	}
4776 
4777 	c->Header.SGList = use_sg;
4778 	/* Fill out the command structure to submit */
4779 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4780 	cp->transfer_len = cpu_to_le32(total_len);
4781 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4782 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4783 	cp->control = cpu_to_le32(control);
4784 	memcpy(cp->CDB, cdb, cdb_len);
4785 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4786 	/* Tag was already set at init time. */
4787 	enqueue_cmd_and_start_io(h, c);
4788 	return 0;
4789 }
4790 
4791 /*
4792  * Queue a command directly to a device behind the controller using the
4793  * I/O accelerator path.
4794  */
4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4796 	struct CommandList *c)
4797 {
4798 	struct scsi_cmnd *cmd = c->scsi_cmd;
4799 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4800 
4801 	if (!dev)
4802 		return -1;
4803 
4804 	c->phys_disk = dev;
4805 
4806 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4807 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4808 }
4809 
4810 /*
4811  * Set encryption parameters for the ioaccel2 request
4812  */
4813 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4814 	struct CommandList *c, struct io_accel2_cmd *cp)
4815 {
4816 	struct scsi_cmnd *cmd = c->scsi_cmd;
4817 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4818 	struct raid_map_data *map = &dev->raid_map;
4819 	u64 first_block;
4820 
4821 	/* Are we doing encryption on this device */
4822 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4823 		return;
4824 	/* Set the data encryption key index. */
4825 	cp->dekindex = map->dekindex;
4826 
4827 	/* Set the encryption enable flag, encoded into direction field. */
4828 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4829 
4830 	/* Set encryption tweak values based on logical block address
4831 	 * If block size is 512, tweak value is LBA.
4832 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4833 	 */
4834 	switch (cmd->cmnd[0]) {
4835 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4836 	case READ_6:
4837 	case WRITE_6:
4838 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4839 				(cmd->cmnd[2] << 8) |
4840 				cmd->cmnd[3]);
4841 		break;
4842 	case WRITE_10:
4843 	case READ_10:
4844 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4845 	case WRITE_12:
4846 	case READ_12:
4847 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4848 		break;
4849 	case WRITE_16:
4850 	case READ_16:
4851 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4852 		break;
4853 	default:
4854 		dev_err(&h->pdev->dev,
4855 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4856 			__func__, cmd->cmnd[0]);
4857 		BUG();
4858 		break;
4859 	}
4860 
4861 	if (le32_to_cpu(map->volume_blk_size) != 512)
4862 		first_block = first_block *
4863 				le32_to_cpu(map->volume_blk_size)/512;
4864 
4865 	cp->tweak_lower = cpu_to_le32(first_block);
4866 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4867 }
4868 
4869 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4870 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4871 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4872 {
4873 	struct scsi_cmnd *cmd = c->scsi_cmd;
4874 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4875 	struct ioaccel2_sg_element *curr_sg;
4876 	int use_sg, i;
4877 	struct scatterlist *sg;
4878 	u64 addr64;
4879 	u32 len;
4880 	u32 total_len = 0;
4881 
4882 	if (!cmd->device)
4883 		return -1;
4884 
4885 	if (!cmd->device->hostdata)
4886 		return -1;
4887 
4888 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4889 
4890 	if (is_zero_length_transfer(cdb)) {
4891 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4892 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4893 		return IO_ACCEL_INELIGIBLE;
4894 	}
4895 
4896 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4897 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4898 		return IO_ACCEL_INELIGIBLE;
4899 	}
4900 
4901 	c->cmd_type = CMD_IOACCEL2;
4902 	/* Adjust the DMA address to point to the accelerated command buffer */
4903 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4904 				(c->cmdindex * sizeof(*cp));
4905 	BUG_ON(c->busaddr & 0x0000007F);
4906 
4907 	memset(cp, 0, sizeof(*cp));
4908 	cp->IU_type = IOACCEL2_IU_TYPE;
4909 
4910 	use_sg = scsi_dma_map(cmd);
4911 	if (use_sg < 0) {
4912 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4913 		return use_sg;
4914 	}
4915 
4916 	if (use_sg) {
4917 		curr_sg = cp->sg;
4918 		if (use_sg > h->ioaccel_maxsg) {
4919 			addr64 = le64_to_cpu(
4920 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4921 			curr_sg->address = cpu_to_le64(addr64);
4922 			curr_sg->length = 0;
4923 			curr_sg->reserved[0] = 0;
4924 			curr_sg->reserved[1] = 0;
4925 			curr_sg->reserved[2] = 0;
4926 			curr_sg->chain_indicator = 0x80;
4927 
4928 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4929 		}
4930 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4931 			addr64 = (u64) sg_dma_address(sg);
4932 			len  = sg_dma_len(sg);
4933 			total_len += len;
4934 			curr_sg->address = cpu_to_le64(addr64);
4935 			curr_sg->length = cpu_to_le32(len);
4936 			curr_sg->reserved[0] = 0;
4937 			curr_sg->reserved[1] = 0;
4938 			curr_sg->reserved[2] = 0;
4939 			curr_sg->chain_indicator = 0;
4940 			curr_sg++;
4941 		}
4942 
4943 		switch (cmd->sc_data_direction) {
4944 		case DMA_TO_DEVICE:
4945 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4946 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4947 			break;
4948 		case DMA_FROM_DEVICE:
4949 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4950 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4951 			break;
4952 		case DMA_NONE:
4953 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4954 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4955 			break;
4956 		default:
4957 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4958 				cmd->sc_data_direction);
4959 			BUG();
4960 			break;
4961 		}
4962 	} else {
4963 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4964 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4965 	}
4966 
4967 	/* Set encryption parameters, if necessary */
4968 	set_encrypt_ioaccel2(h, c, cp);
4969 
4970 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4971 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4972 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4973 
4974 	cp->data_len = cpu_to_le32(total_len);
4975 	cp->err_ptr = cpu_to_le64(c->busaddr +
4976 			offsetof(struct io_accel2_cmd, error_data));
4977 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4978 
4979 	/* fill in sg elements */
4980 	if (use_sg > h->ioaccel_maxsg) {
4981 		cp->sg_count = 1;
4982 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4983 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4984 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4985 			scsi_dma_unmap(cmd);
4986 			return -1;
4987 		}
4988 	} else
4989 		cp->sg_count = (u8) use_sg;
4990 
4991 	enqueue_cmd_and_start_io(h, c);
4992 	return 0;
4993 }
4994 
4995 /*
4996  * Queue a command to the correct I/O accelerator path.
4997  */
4998 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4999 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5000 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5001 {
5002 	if (!c->scsi_cmd->device)
5003 		return -1;
5004 
5005 	if (!c->scsi_cmd->device->hostdata)
5006 		return -1;
5007 
5008 	/* Try to honor the device's queue depth */
5009 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5010 					phys_disk->queue_depth) {
5011 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5012 		return IO_ACCEL_INELIGIBLE;
5013 	}
5014 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5015 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5016 						cdb, cdb_len, scsi3addr,
5017 						phys_disk);
5018 	else
5019 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5020 						cdb, cdb_len, scsi3addr,
5021 						phys_disk);
5022 }
5023 
5024 static void raid_map_helper(struct raid_map_data *map,
5025 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5026 {
5027 	if (offload_to_mirror == 0)  {
5028 		/* use physical disk in the first mirrored group. */
5029 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5030 		return;
5031 	}
5032 	do {
5033 		/* determine mirror group that *map_index indicates */
5034 		*current_group = *map_index /
5035 			le16_to_cpu(map->data_disks_per_row);
5036 		if (offload_to_mirror == *current_group)
5037 			continue;
5038 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5039 			/* select map index from next group */
5040 			*map_index += le16_to_cpu(map->data_disks_per_row);
5041 			(*current_group)++;
5042 		} else {
5043 			/* select map index from first group */
5044 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5045 			*current_group = 0;
5046 		}
5047 	} while (offload_to_mirror != *current_group);
5048 }
5049 
5050 /*
5051  * Attempt to perform offload RAID mapping for a logical volume I/O.
5052  */
5053 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5054 	struct CommandList *c)
5055 {
5056 	struct scsi_cmnd *cmd = c->scsi_cmd;
5057 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5058 	struct raid_map_data *map = &dev->raid_map;
5059 	struct raid_map_disk_data *dd = &map->data[0];
5060 	int is_write = 0;
5061 	u32 map_index;
5062 	u64 first_block, last_block;
5063 	u32 block_cnt;
5064 	u32 blocks_per_row;
5065 	u64 first_row, last_row;
5066 	u32 first_row_offset, last_row_offset;
5067 	u32 first_column, last_column;
5068 	u64 r0_first_row, r0_last_row;
5069 	u32 r5or6_blocks_per_row;
5070 	u64 r5or6_first_row, r5or6_last_row;
5071 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5072 	u32 r5or6_first_column, r5or6_last_column;
5073 	u32 total_disks_per_row;
5074 	u32 stripesize;
5075 	u32 first_group, last_group, current_group;
5076 	u32 map_row;
5077 	u32 disk_handle;
5078 	u64 disk_block;
5079 	u32 disk_block_cnt;
5080 	u8 cdb[16];
5081 	u8 cdb_len;
5082 	u16 strip_size;
5083 #if BITS_PER_LONG == 32
5084 	u64 tmpdiv;
5085 #endif
5086 	int offload_to_mirror;
5087 
5088 	if (!dev)
5089 		return -1;
5090 
5091 	/* check for valid opcode, get LBA and block count */
5092 	switch (cmd->cmnd[0]) {
5093 	case WRITE_6:
5094 		is_write = 1;
5095 	case READ_6:
5096 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5097 				(cmd->cmnd[2] << 8) |
5098 				cmd->cmnd[3]);
5099 		block_cnt = cmd->cmnd[4];
5100 		if (block_cnt == 0)
5101 			block_cnt = 256;
5102 		break;
5103 	case WRITE_10:
5104 		is_write = 1;
5105 	case READ_10:
5106 		first_block =
5107 			(((u64) cmd->cmnd[2]) << 24) |
5108 			(((u64) cmd->cmnd[3]) << 16) |
5109 			(((u64) cmd->cmnd[4]) << 8) |
5110 			cmd->cmnd[5];
5111 		block_cnt =
5112 			(((u32) cmd->cmnd[7]) << 8) |
5113 			cmd->cmnd[8];
5114 		break;
5115 	case WRITE_12:
5116 		is_write = 1;
5117 	case READ_12:
5118 		first_block =
5119 			(((u64) cmd->cmnd[2]) << 24) |
5120 			(((u64) cmd->cmnd[3]) << 16) |
5121 			(((u64) cmd->cmnd[4]) << 8) |
5122 			cmd->cmnd[5];
5123 		block_cnt =
5124 			(((u32) cmd->cmnd[6]) << 24) |
5125 			(((u32) cmd->cmnd[7]) << 16) |
5126 			(((u32) cmd->cmnd[8]) << 8) |
5127 		cmd->cmnd[9];
5128 		break;
5129 	case WRITE_16:
5130 		is_write = 1;
5131 	case READ_16:
5132 		first_block =
5133 			(((u64) cmd->cmnd[2]) << 56) |
5134 			(((u64) cmd->cmnd[3]) << 48) |
5135 			(((u64) cmd->cmnd[4]) << 40) |
5136 			(((u64) cmd->cmnd[5]) << 32) |
5137 			(((u64) cmd->cmnd[6]) << 24) |
5138 			(((u64) cmd->cmnd[7]) << 16) |
5139 			(((u64) cmd->cmnd[8]) << 8) |
5140 			cmd->cmnd[9];
5141 		block_cnt =
5142 			(((u32) cmd->cmnd[10]) << 24) |
5143 			(((u32) cmd->cmnd[11]) << 16) |
5144 			(((u32) cmd->cmnd[12]) << 8) |
5145 			cmd->cmnd[13];
5146 		break;
5147 	default:
5148 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5149 	}
5150 	last_block = first_block + block_cnt - 1;
5151 
5152 	/* check for write to non-RAID-0 */
5153 	if (is_write && dev->raid_level != 0)
5154 		return IO_ACCEL_INELIGIBLE;
5155 
5156 	/* check for invalid block or wraparound */
5157 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5158 		last_block < first_block)
5159 		return IO_ACCEL_INELIGIBLE;
5160 
5161 	/* calculate stripe information for the request */
5162 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5163 				le16_to_cpu(map->strip_size);
5164 	strip_size = le16_to_cpu(map->strip_size);
5165 #if BITS_PER_LONG == 32
5166 	tmpdiv = first_block;
5167 	(void) do_div(tmpdiv, blocks_per_row);
5168 	first_row = tmpdiv;
5169 	tmpdiv = last_block;
5170 	(void) do_div(tmpdiv, blocks_per_row);
5171 	last_row = tmpdiv;
5172 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5173 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5174 	tmpdiv = first_row_offset;
5175 	(void) do_div(tmpdiv, strip_size);
5176 	first_column = tmpdiv;
5177 	tmpdiv = last_row_offset;
5178 	(void) do_div(tmpdiv, strip_size);
5179 	last_column = tmpdiv;
5180 #else
5181 	first_row = first_block / blocks_per_row;
5182 	last_row = last_block / blocks_per_row;
5183 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5184 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5185 	first_column = first_row_offset / strip_size;
5186 	last_column = last_row_offset / strip_size;
5187 #endif
5188 
5189 	/* if this isn't a single row/column then give to the controller */
5190 	if ((first_row != last_row) || (first_column != last_column))
5191 		return IO_ACCEL_INELIGIBLE;
5192 
5193 	/* proceeding with driver mapping */
5194 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5195 				le16_to_cpu(map->metadata_disks_per_row);
5196 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5197 				le16_to_cpu(map->row_cnt);
5198 	map_index = (map_row * total_disks_per_row) + first_column;
5199 
5200 	switch (dev->raid_level) {
5201 	case HPSA_RAID_0:
5202 		break; /* nothing special to do */
5203 	case HPSA_RAID_1:
5204 		/* Handles load balance across RAID 1 members.
5205 		 * (2-drive R1 and R10 with even # of drives.)
5206 		 * Appropriate for SSDs, not optimal for HDDs
5207 		 */
5208 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5209 		if (dev->offload_to_mirror)
5210 			map_index += le16_to_cpu(map->data_disks_per_row);
5211 		dev->offload_to_mirror = !dev->offload_to_mirror;
5212 		break;
5213 	case HPSA_RAID_ADM:
5214 		/* Handles N-way mirrors  (R1-ADM)
5215 		 * and R10 with # of drives divisible by 3.)
5216 		 */
5217 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5218 
5219 		offload_to_mirror = dev->offload_to_mirror;
5220 		raid_map_helper(map, offload_to_mirror,
5221 				&map_index, &current_group);
5222 		/* set mirror group to use next time */
5223 		offload_to_mirror =
5224 			(offload_to_mirror >=
5225 			le16_to_cpu(map->layout_map_count) - 1)
5226 			? 0 : offload_to_mirror + 1;
5227 		dev->offload_to_mirror = offload_to_mirror;
5228 		/* Avoid direct use of dev->offload_to_mirror within this
5229 		 * function since multiple threads might simultaneously
5230 		 * increment it beyond the range of dev->layout_map_count -1.
5231 		 */
5232 		break;
5233 	case HPSA_RAID_5:
5234 	case HPSA_RAID_6:
5235 		if (le16_to_cpu(map->layout_map_count) <= 1)
5236 			break;
5237 
5238 		/* Verify first and last block are in same RAID group */
5239 		r5or6_blocks_per_row =
5240 			le16_to_cpu(map->strip_size) *
5241 			le16_to_cpu(map->data_disks_per_row);
5242 		BUG_ON(r5or6_blocks_per_row == 0);
5243 		stripesize = r5or6_blocks_per_row *
5244 			le16_to_cpu(map->layout_map_count);
5245 #if BITS_PER_LONG == 32
5246 		tmpdiv = first_block;
5247 		first_group = do_div(tmpdiv, stripesize);
5248 		tmpdiv = first_group;
5249 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5250 		first_group = tmpdiv;
5251 		tmpdiv = last_block;
5252 		last_group = do_div(tmpdiv, stripesize);
5253 		tmpdiv = last_group;
5254 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5255 		last_group = tmpdiv;
5256 #else
5257 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5258 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5259 #endif
5260 		if (first_group != last_group)
5261 			return IO_ACCEL_INELIGIBLE;
5262 
5263 		/* Verify request is in a single row of RAID 5/6 */
5264 #if BITS_PER_LONG == 32
5265 		tmpdiv = first_block;
5266 		(void) do_div(tmpdiv, stripesize);
5267 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5268 		tmpdiv = last_block;
5269 		(void) do_div(tmpdiv, stripesize);
5270 		r5or6_last_row = r0_last_row = tmpdiv;
5271 #else
5272 		first_row = r5or6_first_row = r0_first_row =
5273 						first_block / stripesize;
5274 		r5or6_last_row = r0_last_row = last_block / stripesize;
5275 #endif
5276 		if (r5or6_first_row != r5or6_last_row)
5277 			return IO_ACCEL_INELIGIBLE;
5278 
5279 
5280 		/* Verify request is in a single column */
5281 #if BITS_PER_LONG == 32
5282 		tmpdiv = first_block;
5283 		first_row_offset = do_div(tmpdiv, stripesize);
5284 		tmpdiv = first_row_offset;
5285 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5286 		r5or6_first_row_offset = first_row_offset;
5287 		tmpdiv = last_block;
5288 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5289 		tmpdiv = r5or6_last_row_offset;
5290 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5291 		tmpdiv = r5or6_first_row_offset;
5292 		(void) do_div(tmpdiv, map->strip_size);
5293 		first_column = r5or6_first_column = tmpdiv;
5294 		tmpdiv = r5or6_last_row_offset;
5295 		(void) do_div(tmpdiv, map->strip_size);
5296 		r5or6_last_column = tmpdiv;
5297 #else
5298 		first_row_offset = r5or6_first_row_offset =
5299 			(u32)((first_block % stripesize) %
5300 						r5or6_blocks_per_row);
5301 
5302 		r5or6_last_row_offset =
5303 			(u32)((last_block % stripesize) %
5304 						r5or6_blocks_per_row);
5305 
5306 		first_column = r5or6_first_column =
5307 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5308 		r5or6_last_column =
5309 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5310 #endif
5311 		if (r5or6_first_column != r5or6_last_column)
5312 			return IO_ACCEL_INELIGIBLE;
5313 
5314 		/* Request is eligible */
5315 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5316 			le16_to_cpu(map->row_cnt);
5317 
5318 		map_index = (first_group *
5319 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5320 			(map_row * total_disks_per_row) + first_column;
5321 		break;
5322 	default:
5323 		return IO_ACCEL_INELIGIBLE;
5324 	}
5325 
5326 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5327 		return IO_ACCEL_INELIGIBLE;
5328 
5329 	c->phys_disk = dev->phys_disk[map_index];
5330 	if (!c->phys_disk)
5331 		return IO_ACCEL_INELIGIBLE;
5332 
5333 	disk_handle = dd[map_index].ioaccel_handle;
5334 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5335 			first_row * le16_to_cpu(map->strip_size) +
5336 			(first_row_offset - first_column *
5337 			le16_to_cpu(map->strip_size));
5338 	disk_block_cnt = block_cnt;
5339 
5340 	/* handle differing logical/physical block sizes */
5341 	if (map->phys_blk_shift) {
5342 		disk_block <<= map->phys_blk_shift;
5343 		disk_block_cnt <<= map->phys_blk_shift;
5344 	}
5345 	BUG_ON(disk_block_cnt > 0xffff);
5346 
5347 	/* build the new CDB for the physical disk I/O */
5348 	if (disk_block > 0xffffffff) {
5349 		cdb[0] = is_write ? WRITE_16 : READ_16;
5350 		cdb[1] = 0;
5351 		cdb[2] = (u8) (disk_block >> 56);
5352 		cdb[3] = (u8) (disk_block >> 48);
5353 		cdb[4] = (u8) (disk_block >> 40);
5354 		cdb[5] = (u8) (disk_block >> 32);
5355 		cdb[6] = (u8) (disk_block >> 24);
5356 		cdb[7] = (u8) (disk_block >> 16);
5357 		cdb[8] = (u8) (disk_block >> 8);
5358 		cdb[9] = (u8) (disk_block);
5359 		cdb[10] = (u8) (disk_block_cnt >> 24);
5360 		cdb[11] = (u8) (disk_block_cnt >> 16);
5361 		cdb[12] = (u8) (disk_block_cnt >> 8);
5362 		cdb[13] = (u8) (disk_block_cnt);
5363 		cdb[14] = 0;
5364 		cdb[15] = 0;
5365 		cdb_len = 16;
5366 	} else {
5367 		cdb[0] = is_write ? WRITE_10 : READ_10;
5368 		cdb[1] = 0;
5369 		cdb[2] = (u8) (disk_block >> 24);
5370 		cdb[3] = (u8) (disk_block >> 16);
5371 		cdb[4] = (u8) (disk_block >> 8);
5372 		cdb[5] = (u8) (disk_block);
5373 		cdb[6] = 0;
5374 		cdb[7] = (u8) (disk_block_cnt >> 8);
5375 		cdb[8] = (u8) (disk_block_cnt);
5376 		cdb[9] = 0;
5377 		cdb_len = 10;
5378 	}
5379 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5380 						dev->scsi3addr,
5381 						dev->phys_disk[map_index]);
5382 }
5383 
5384 /*
5385  * Submit commands down the "normal" RAID stack path
5386  * All callers to hpsa_ciss_submit must check lockup_detected
5387  * beforehand, before (opt.) and after calling cmd_alloc
5388  */
5389 static int hpsa_ciss_submit(struct ctlr_info *h,
5390 	struct CommandList *c, struct scsi_cmnd *cmd,
5391 	unsigned char scsi3addr[])
5392 {
5393 	cmd->host_scribble = (unsigned char *) c;
5394 	c->cmd_type = CMD_SCSI;
5395 	c->scsi_cmd = cmd;
5396 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5397 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5398 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5399 
5400 	/* Fill in the request block... */
5401 
5402 	c->Request.Timeout = 0;
5403 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5404 	c->Request.CDBLen = cmd->cmd_len;
5405 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5406 	switch (cmd->sc_data_direction) {
5407 	case DMA_TO_DEVICE:
5408 		c->Request.type_attr_dir =
5409 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5410 		break;
5411 	case DMA_FROM_DEVICE:
5412 		c->Request.type_attr_dir =
5413 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5414 		break;
5415 	case DMA_NONE:
5416 		c->Request.type_attr_dir =
5417 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5418 		break;
5419 	case DMA_BIDIRECTIONAL:
5420 		/* This can happen if a buggy application does a scsi passthru
5421 		 * and sets both inlen and outlen to non-zero. ( see
5422 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5423 		 */
5424 
5425 		c->Request.type_attr_dir =
5426 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5427 		/* This is technically wrong, and hpsa controllers should
5428 		 * reject it with CMD_INVALID, which is the most correct
5429 		 * response, but non-fibre backends appear to let it
5430 		 * slide by, and give the same results as if this field
5431 		 * were set correctly.  Either way is acceptable for
5432 		 * our purposes here.
5433 		 */
5434 
5435 		break;
5436 
5437 	default:
5438 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5439 			cmd->sc_data_direction);
5440 		BUG();
5441 		break;
5442 	}
5443 
5444 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5445 		hpsa_cmd_resolve_and_free(h, c);
5446 		return SCSI_MLQUEUE_HOST_BUSY;
5447 	}
5448 	enqueue_cmd_and_start_io(h, c);
5449 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5450 	return 0;
5451 }
5452 
5453 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5454 				struct CommandList *c)
5455 {
5456 	dma_addr_t cmd_dma_handle, err_dma_handle;
5457 
5458 	/* Zero out all of commandlist except the last field, refcount */
5459 	memset(c, 0, offsetof(struct CommandList, refcount));
5460 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5461 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5462 	c->err_info = h->errinfo_pool + index;
5463 	memset(c->err_info, 0, sizeof(*c->err_info));
5464 	err_dma_handle = h->errinfo_pool_dhandle
5465 	    + index * sizeof(*c->err_info);
5466 	c->cmdindex = index;
5467 	c->busaddr = (u32) cmd_dma_handle;
5468 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5469 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5470 	c->h = h;
5471 	c->scsi_cmd = SCSI_CMD_IDLE;
5472 }
5473 
5474 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5475 {
5476 	int i;
5477 
5478 	for (i = 0; i < h->nr_cmds; i++) {
5479 		struct CommandList *c = h->cmd_pool + i;
5480 
5481 		hpsa_cmd_init(h, i, c);
5482 		atomic_set(&c->refcount, 0);
5483 	}
5484 }
5485 
5486 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5487 				struct CommandList *c)
5488 {
5489 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5490 
5491 	BUG_ON(c->cmdindex != index);
5492 
5493 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5494 	memset(c->err_info, 0, sizeof(*c->err_info));
5495 	c->busaddr = (u32) cmd_dma_handle;
5496 }
5497 
5498 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5499 		struct CommandList *c, struct scsi_cmnd *cmd,
5500 		unsigned char *scsi3addr)
5501 {
5502 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5503 	int rc = IO_ACCEL_INELIGIBLE;
5504 
5505 	if (!dev)
5506 		return SCSI_MLQUEUE_HOST_BUSY;
5507 
5508 	cmd->host_scribble = (unsigned char *) c;
5509 
5510 	if (dev->offload_enabled) {
5511 		hpsa_cmd_init(h, c->cmdindex, c);
5512 		c->cmd_type = CMD_SCSI;
5513 		c->scsi_cmd = cmd;
5514 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5515 		if (rc < 0)     /* scsi_dma_map failed. */
5516 			rc = SCSI_MLQUEUE_HOST_BUSY;
5517 	} else if (dev->hba_ioaccel_enabled) {
5518 		hpsa_cmd_init(h, c->cmdindex, c);
5519 		c->cmd_type = CMD_SCSI;
5520 		c->scsi_cmd = cmd;
5521 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5522 		if (rc < 0)     /* scsi_dma_map failed. */
5523 			rc = SCSI_MLQUEUE_HOST_BUSY;
5524 	}
5525 	return rc;
5526 }
5527 
5528 static void hpsa_command_resubmit_worker(struct work_struct *work)
5529 {
5530 	struct scsi_cmnd *cmd;
5531 	struct hpsa_scsi_dev_t *dev;
5532 	struct CommandList *c = container_of(work, struct CommandList, work);
5533 
5534 	cmd = c->scsi_cmd;
5535 	dev = cmd->device->hostdata;
5536 	if (!dev) {
5537 		cmd->result = DID_NO_CONNECT << 16;
5538 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5539 	}
5540 	if (c->reset_pending)
5541 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5542 	if (c->cmd_type == CMD_IOACCEL2) {
5543 		struct ctlr_info *h = c->h;
5544 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5545 		int rc;
5546 
5547 		if (c2->error_data.serv_response ==
5548 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5549 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5550 			if (rc == 0)
5551 				return;
5552 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5553 				/*
5554 				 * If we get here, it means dma mapping failed.
5555 				 * Try again via scsi mid layer, which will
5556 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5557 				 */
5558 				cmd->result = DID_IMM_RETRY << 16;
5559 				return hpsa_cmd_free_and_done(h, c, cmd);
5560 			}
5561 			/* else, fall thru and resubmit down CISS path */
5562 		}
5563 	}
5564 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5565 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5566 		/*
5567 		 * If we get here, it means dma mapping failed. Try
5568 		 * again via scsi mid layer, which will then get
5569 		 * SCSI_MLQUEUE_HOST_BUSY.
5570 		 *
5571 		 * hpsa_ciss_submit will have already freed c
5572 		 * if it encountered a dma mapping failure.
5573 		 */
5574 		cmd->result = DID_IMM_RETRY << 16;
5575 		cmd->scsi_done(cmd);
5576 	}
5577 }
5578 
5579 /* Running in struct Scsi_Host->host_lock less mode */
5580 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5581 {
5582 	struct ctlr_info *h;
5583 	struct hpsa_scsi_dev_t *dev;
5584 	unsigned char scsi3addr[8];
5585 	struct CommandList *c;
5586 	int rc = 0;
5587 
5588 	/* Get the ptr to our adapter structure out of cmd->host. */
5589 	h = sdev_to_hba(cmd->device);
5590 
5591 	BUG_ON(cmd->request->tag < 0);
5592 
5593 	dev = cmd->device->hostdata;
5594 	if (!dev) {
5595 		cmd->result = DID_NO_CONNECT << 16;
5596 		cmd->scsi_done(cmd);
5597 		return 0;
5598 	}
5599 
5600 	if (dev->removed) {
5601 		cmd->result = DID_NO_CONNECT << 16;
5602 		cmd->scsi_done(cmd);
5603 		return 0;
5604 	}
5605 
5606 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5607 
5608 	if (unlikely(lockup_detected(h))) {
5609 		cmd->result = DID_NO_CONNECT << 16;
5610 		cmd->scsi_done(cmd);
5611 		return 0;
5612 	}
5613 	c = cmd_tagged_alloc(h, cmd);
5614 
5615 	/*
5616 	 * Call alternate submit routine for I/O accelerated commands.
5617 	 * Retries always go down the normal I/O path.
5618 	 */
5619 	if (likely(cmd->retries == 0 &&
5620 			!blk_rq_is_passthrough(cmd->request) &&
5621 			h->acciopath_status)) {
5622 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5623 		if (rc == 0)
5624 			return 0;
5625 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5626 			hpsa_cmd_resolve_and_free(h, c);
5627 			return SCSI_MLQUEUE_HOST_BUSY;
5628 		}
5629 	}
5630 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5631 }
5632 
5633 static void hpsa_scan_complete(struct ctlr_info *h)
5634 {
5635 	unsigned long flags;
5636 
5637 	spin_lock_irqsave(&h->scan_lock, flags);
5638 	h->scan_finished = 1;
5639 	wake_up(&h->scan_wait_queue);
5640 	spin_unlock_irqrestore(&h->scan_lock, flags);
5641 }
5642 
5643 static void hpsa_scan_start(struct Scsi_Host *sh)
5644 {
5645 	struct ctlr_info *h = shost_to_hba(sh);
5646 	unsigned long flags;
5647 
5648 	/*
5649 	 * Don't let rescans be initiated on a controller known to be locked
5650 	 * up.  If the controller locks up *during* a rescan, that thread is
5651 	 * probably hosed, but at least we can prevent new rescan threads from
5652 	 * piling up on a locked up controller.
5653 	 */
5654 	if (unlikely(lockup_detected(h)))
5655 		return hpsa_scan_complete(h);
5656 
5657 	/*
5658 	 * If a scan is already waiting to run, no need to add another
5659 	 */
5660 	spin_lock_irqsave(&h->scan_lock, flags);
5661 	if (h->scan_waiting) {
5662 		spin_unlock_irqrestore(&h->scan_lock, flags);
5663 		return;
5664 	}
5665 
5666 	spin_unlock_irqrestore(&h->scan_lock, flags);
5667 
5668 	/* wait until any scan already in progress is finished. */
5669 	while (1) {
5670 		spin_lock_irqsave(&h->scan_lock, flags);
5671 		if (h->scan_finished)
5672 			break;
5673 		h->scan_waiting = 1;
5674 		spin_unlock_irqrestore(&h->scan_lock, flags);
5675 		wait_event(h->scan_wait_queue, h->scan_finished);
5676 		/* Note: We don't need to worry about a race between this
5677 		 * thread and driver unload because the midlayer will
5678 		 * have incremented the reference count, so unload won't
5679 		 * happen if we're in here.
5680 		 */
5681 	}
5682 	h->scan_finished = 0; /* mark scan as in progress */
5683 	h->scan_waiting = 0;
5684 	spin_unlock_irqrestore(&h->scan_lock, flags);
5685 
5686 	if (unlikely(lockup_detected(h)))
5687 		return hpsa_scan_complete(h);
5688 
5689 	/*
5690 	 * Do the scan after a reset completion
5691 	 */
5692 	spin_lock_irqsave(&h->reset_lock, flags);
5693 	if (h->reset_in_progress) {
5694 		h->drv_req_rescan = 1;
5695 		spin_unlock_irqrestore(&h->reset_lock, flags);
5696 		hpsa_scan_complete(h);
5697 		return;
5698 	}
5699 	spin_unlock_irqrestore(&h->reset_lock, flags);
5700 
5701 	hpsa_update_scsi_devices(h);
5702 
5703 	hpsa_scan_complete(h);
5704 }
5705 
5706 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5707 {
5708 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5709 
5710 	if (!logical_drive)
5711 		return -ENODEV;
5712 
5713 	if (qdepth < 1)
5714 		qdepth = 1;
5715 	else if (qdepth > logical_drive->queue_depth)
5716 		qdepth = logical_drive->queue_depth;
5717 
5718 	return scsi_change_queue_depth(sdev, qdepth);
5719 }
5720 
5721 static int hpsa_scan_finished(struct Scsi_Host *sh,
5722 	unsigned long elapsed_time)
5723 {
5724 	struct ctlr_info *h = shost_to_hba(sh);
5725 	unsigned long flags;
5726 	int finished;
5727 
5728 	spin_lock_irqsave(&h->scan_lock, flags);
5729 	finished = h->scan_finished;
5730 	spin_unlock_irqrestore(&h->scan_lock, flags);
5731 	return finished;
5732 }
5733 
5734 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5735 {
5736 	struct Scsi_Host *sh;
5737 
5738 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5739 	if (sh == NULL) {
5740 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5741 		return -ENOMEM;
5742 	}
5743 
5744 	sh->io_port = 0;
5745 	sh->n_io_port = 0;
5746 	sh->this_id = -1;
5747 	sh->max_channel = 3;
5748 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5749 	sh->max_lun = HPSA_MAX_LUN;
5750 	sh->max_id = HPSA_MAX_LUN;
5751 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5752 	sh->cmd_per_lun = sh->can_queue;
5753 	sh->sg_tablesize = h->maxsgentries;
5754 	sh->transportt = hpsa_sas_transport_template;
5755 	sh->hostdata[0] = (unsigned long) h;
5756 	sh->irq = pci_irq_vector(h->pdev, 0);
5757 	sh->unique_id = sh->irq;
5758 
5759 	h->scsi_host = sh;
5760 	return 0;
5761 }
5762 
5763 static int hpsa_scsi_add_host(struct ctlr_info *h)
5764 {
5765 	int rv;
5766 
5767 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5768 	if (rv) {
5769 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5770 		return rv;
5771 	}
5772 	scsi_scan_host(h->scsi_host);
5773 	return 0;
5774 }
5775 
5776 /*
5777  * The block layer has already gone to the trouble of picking out a unique,
5778  * small-integer tag for this request.  We use an offset from that value as
5779  * an index to select our command block.  (The offset allows us to reserve the
5780  * low-numbered entries for our own uses.)
5781  */
5782 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5783 {
5784 	int idx = scmd->request->tag;
5785 
5786 	if (idx < 0)
5787 		return idx;
5788 
5789 	/* Offset to leave space for internal cmds. */
5790 	return idx += HPSA_NRESERVED_CMDS;
5791 }
5792 
5793 /*
5794  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5795  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5796  */
5797 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5798 				struct CommandList *c, unsigned char lunaddr[],
5799 				int reply_queue)
5800 {
5801 	int rc;
5802 
5803 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5804 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5805 			NULL, 0, 0, lunaddr, TYPE_CMD);
5806 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5807 	if (rc)
5808 		return rc;
5809 	/* no unmap needed here because no data xfer. */
5810 
5811 	/* Check if the unit is already ready. */
5812 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5813 		return 0;
5814 
5815 	/*
5816 	 * The first command sent after reset will receive "unit attention" to
5817 	 * indicate that the LUN has been reset...this is actually what we're
5818 	 * looking for (but, success is good too).
5819 	 */
5820 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5821 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5822 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5823 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5824 		return 0;
5825 
5826 	return 1;
5827 }
5828 
5829 /*
5830  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5831  * returns zero when the unit is ready, and non-zero when giving up.
5832  */
5833 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5834 				struct CommandList *c,
5835 				unsigned char lunaddr[], int reply_queue)
5836 {
5837 	int rc;
5838 	int count = 0;
5839 	int waittime = 1; /* seconds */
5840 
5841 	/* Send test unit ready until device ready, or give up. */
5842 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5843 
5844 		/*
5845 		 * Wait for a bit.  do this first, because if we send
5846 		 * the TUR right away, the reset will just abort it.
5847 		 */
5848 		msleep(1000 * waittime);
5849 
5850 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5851 		if (!rc)
5852 			break;
5853 
5854 		/* Increase wait time with each try, up to a point. */
5855 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5856 			waittime *= 2;
5857 
5858 		dev_warn(&h->pdev->dev,
5859 			 "waiting %d secs for device to become ready.\n",
5860 			 waittime);
5861 	}
5862 
5863 	return rc;
5864 }
5865 
5866 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5867 					   unsigned char lunaddr[],
5868 					   int reply_queue)
5869 {
5870 	int first_queue;
5871 	int last_queue;
5872 	int rq;
5873 	int rc = 0;
5874 	struct CommandList *c;
5875 
5876 	c = cmd_alloc(h);
5877 
5878 	/*
5879 	 * If no specific reply queue was requested, then send the TUR
5880 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5881 	 * the loop exactly once using only the specified queue.
5882 	 */
5883 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5884 		first_queue = 0;
5885 		last_queue = h->nreply_queues - 1;
5886 	} else {
5887 		first_queue = reply_queue;
5888 		last_queue = reply_queue;
5889 	}
5890 
5891 	for (rq = first_queue; rq <= last_queue; rq++) {
5892 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5893 		if (rc)
5894 			break;
5895 	}
5896 
5897 	if (rc)
5898 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5899 	else
5900 		dev_warn(&h->pdev->dev, "device is ready.\n");
5901 
5902 	cmd_free(h, c);
5903 	return rc;
5904 }
5905 
5906 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5907  * complaining.  Doing a host- or bus-reset can't do anything good here.
5908  */
5909 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5910 {
5911 	int rc = SUCCESS;
5912 	struct ctlr_info *h;
5913 	struct hpsa_scsi_dev_t *dev;
5914 	u8 reset_type;
5915 	char msg[48];
5916 	unsigned long flags;
5917 
5918 	/* find the controller to which the command to be aborted was sent */
5919 	h = sdev_to_hba(scsicmd->device);
5920 	if (h == NULL) /* paranoia */
5921 		return FAILED;
5922 
5923 	spin_lock_irqsave(&h->reset_lock, flags);
5924 	h->reset_in_progress = 1;
5925 	spin_unlock_irqrestore(&h->reset_lock, flags);
5926 
5927 	if (lockup_detected(h)) {
5928 		rc = FAILED;
5929 		goto return_reset_status;
5930 	}
5931 
5932 	dev = scsicmd->device->hostdata;
5933 	if (!dev) {
5934 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5935 		rc = FAILED;
5936 		goto return_reset_status;
5937 	}
5938 
5939 	if (dev->devtype == TYPE_ENCLOSURE) {
5940 		rc = SUCCESS;
5941 		goto return_reset_status;
5942 	}
5943 
5944 	/* if controller locked up, we can guarantee command won't complete */
5945 	if (lockup_detected(h)) {
5946 		snprintf(msg, sizeof(msg),
5947 			 "cmd %d RESET FAILED, lockup detected",
5948 			 hpsa_get_cmd_index(scsicmd));
5949 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5950 		rc = FAILED;
5951 		goto return_reset_status;
5952 	}
5953 
5954 	/* this reset request might be the result of a lockup; check */
5955 	if (detect_controller_lockup(h)) {
5956 		snprintf(msg, sizeof(msg),
5957 			 "cmd %d RESET FAILED, new lockup detected",
5958 			 hpsa_get_cmd_index(scsicmd));
5959 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5960 		rc = FAILED;
5961 		goto return_reset_status;
5962 	}
5963 
5964 	/* Do not attempt on controller */
5965 	if (is_hba_lunid(dev->scsi3addr)) {
5966 		rc = SUCCESS;
5967 		goto return_reset_status;
5968 	}
5969 
5970 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5971 		reset_type = HPSA_DEVICE_RESET_MSG;
5972 	else
5973 		reset_type = HPSA_PHYS_TARGET_RESET;
5974 
5975 	sprintf(msg, "resetting %s",
5976 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5977 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5978 
5979 	/* send a reset to the SCSI LUN which the command was sent to */
5980 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5981 			   DEFAULT_REPLY_QUEUE);
5982 	if (rc == 0)
5983 		rc = SUCCESS;
5984 	else
5985 		rc = FAILED;
5986 
5987 	sprintf(msg, "reset %s %s",
5988 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5989 		rc == SUCCESS ? "completed successfully" : "failed");
5990 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5991 
5992 return_reset_status:
5993 	spin_lock_irqsave(&h->reset_lock, flags);
5994 	h->reset_in_progress = 0;
5995 	spin_unlock_irqrestore(&h->reset_lock, flags);
5996 	return rc;
5997 }
5998 
5999 /*
6000  * For operations with an associated SCSI command, a command block is allocated
6001  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6002  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6003  * the complement, although cmd_free() may be called instead.
6004  */
6005 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6006 					    struct scsi_cmnd *scmd)
6007 {
6008 	int idx = hpsa_get_cmd_index(scmd);
6009 	struct CommandList *c = h->cmd_pool + idx;
6010 
6011 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6012 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6013 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6014 		/* The index value comes from the block layer, so if it's out of
6015 		 * bounds, it's probably not our bug.
6016 		 */
6017 		BUG();
6018 	}
6019 
6020 	atomic_inc(&c->refcount);
6021 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6022 		/*
6023 		 * We expect that the SCSI layer will hand us a unique tag
6024 		 * value.  Thus, there should never be a collision here between
6025 		 * two requests...because if the selected command isn't idle
6026 		 * then someone is going to be very disappointed.
6027 		 */
6028 		dev_err(&h->pdev->dev,
6029 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6030 			idx);
6031 		if (c->scsi_cmd != NULL)
6032 			scsi_print_command(c->scsi_cmd);
6033 		scsi_print_command(scmd);
6034 	}
6035 
6036 	hpsa_cmd_partial_init(h, idx, c);
6037 	return c;
6038 }
6039 
6040 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6041 {
6042 	/*
6043 	 * Release our reference to the block.  We don't need to do anything
6044 	 * else to free it, because it is accessed by index.
6045 	 */
6046 	(void)atomic_dec(&c->refcount);
6047 }
6048 
6049 /*
6050  * For operations that cannot sleep, a command block is allocated at init,
6051  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6052  * which ones are free or in use.  Lock must be held when calling this.
6053  * cmd_free() is the complement.
6054  * This function never gives up and returns NULL.  If it hangs,
6055  * another thread must call cmd_free() to free some tags.
6056  */
6057 
6058 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6059 {
6060 	struct CommandList *c;
6061 	int refcount, i;
6062 	int offset = 0;
6063 
6064 	/*
6065 	 * There is some *extremely* small but non-zero chance that that
6066 	 * multiple threads could get in here, and one thread could
6067 	 * be scanning through the list of bits looking for a free
6068 	 * one, but the free ones are always behind him, and other
6069 	 * threads sneak in behind him and eat them before he can
6070 	 * get to them, so that while there is always a free one, a
6071 	 * very unlucky thread might be starved anyway, never able to
6072 	 * beat the other threads.  In reality, this happens so
6073 	 * infrequently as to be indistinguishable from never.
6074 	 *
6075 	 * Note that we start allocating commands before the SCSI host structure
6076 	 * is initialized.  Since the search starts at bit zero, this
6077 	 * all works, since we have at least one command structure available;
6078 	 * however, it means that the structures with the low indexes have to be
6079 	 * reserved for driver-initiated requests, while requests from the block
6080 	 * layer will use the higher indexes.
6081 	 */
6082 
6083 	for (;;) {
6084 		i = find_next_zero_bit(h->cmd_pool_bits,
6085 					HPSA_NRESERVED_CMDS,
6086 					offset);
6087 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6088 			offset = 0;
6089 			continue;
6090 		}
6091 		c = h->cmd_pool + i;
6092 		refcount = atomic_inc_return(&c->refcount);
6093 		if (unlikely(refcount > 1)) {
6094 			cmd_free(h, c); /* already in use */
6095 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6096 			continue;
6097 		}
6098 		set_bit(i & (BITS_PER_LONG - 1),
6099 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6100 		break; /* it's ours now. */
6101 	}
6102 	hpsa_cmd_partial_init(h, i, c);
6103 	return c;
6104 }
6105 
6106 /*
6107  * This is the complementary operation to cmd_alloc().  Note, however, in some
6108  * corner cases it may also be used to free blocks allocated by
6109  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6110  * the clear-bit is harmless.
6111  */
6112 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6113 {
6114 	if (atomic_dec_and_test(&c->refcount)) {
6115 		int i;
6116 
6117 		i = c - h->cmd_pool;
6118 		clear_bit(i & (BITS_PER_LONG - 1),
6119 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6120 	}
6121 }
6122 
6123 #ifdef CONFIG_COMPAT
6124 
6125 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6126 	void __user *arg)
6127 {
6128 	IOCTL32_Command_struct __user *arg32 =
6129 	    (IOCTL32_Command_struct __user *) arg;
6130 	IOCTL_Command_struct arg64;
6131 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6132 	int err;
6133 	u32 cp;
6134 
6135 	memset(&arg64, 0, sizeof(arg64));
6136 	err = 0;
6137 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6138 			   sizeof(arg64.LUN_info));
6139 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6140 			   sizeof(arg64.Request));
6141 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6142 			   sizeof(arg64.error_info));
6143 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6144 	err |= get_user(cp, &arg32->buf);
6145 	arg64.buf = compat_ptr(cp);
6146 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6147 
6148 	if (err)
6149 		return -EFAULT;
6150 
6151 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6152 	if (err)
6153 		return err;
6154 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6155 			 sizeof(arg32->error_info));
6156 	if (err)
6157 		return -EFAULT;
6158 	return err;
6159 }
6160 
6161 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6162 	int cmd, void __user *arg)
6163 {
6164 	BIG_IOCTL32_Command_struct __user *arg32 =
6165 	    (BIG_IOCTL32_Command_struct __user *) arg;
6166 	BIG_IOCTL_Command_struct arg64;
6167 	BIG_IOCTL_Command_struct __user *p =
6168 	    compat_alloc_user_space(sizeof(arg64));
6169 	int err;
6170 	u32 cp;
6171 
6172 	memset(&arg64, 0, sizeof(arg64));
6173 	err = 0;
6174 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6175 			   sizeof(arg64.LUN_info));
6176 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6177 			   sizeof(arg64.Request));
6178 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6179 			   sizeof(arg64.error_info));
6180 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6181 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6182 	err |= get_user(cp, &arg32->buf);
6183 	arg64.buf = compat_ptr(cp);
6184 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6185 
6186 	if (err)
6187 		return -EFAULT;
6188 
6189 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6190 	if (err)
6191 		return err;
6192 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6193 			 sizeof(arg32->error_info));
6194 	if (err)
6195 		return -EFAULT;
6196 	return err;
6197 }
6198 
6199 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6200 {
6201 	switch (cmd) {
6202 	case CCISS_GETPCIINFO:
6203 	case CCISS_GETINTINFO:
6204 	case CCISS_SETINTINFO:
6205 	case CCISS_GETNODENAME:
6206 	case CCISS_SETNODENAME:
6207 	case CCISS_GETHEARTBEAT:
6208 	case CCISS_GETBUSTYPES:
6209 	case CCISS_GETFIRMVER:
6210 	case CCISS_GETDRIVVER:
6211 	case CCISS_REVALIDVOLS:
6212 	case CCISS_DEREGDISK:
6213 	case CCISS_REGNEWDISK:
6214 	case CCISS_REGNEWD:
6215 	case CCISS_RESCANDISK:
6216 	case CCISS_GETLUNINFO:
6217 		return hpsa_ioctl(dev, cmd, arg);
6218 
6219 	case CCISS_PASSTHRU32:
6220 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6221 	case CCISS_BIG_PASSTHRU32:
6222 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6223 
6224 	default:
6225 		return -ENOIOCTLCMD;
6226 	}
6227 }
6228 #endif
6229 
6230 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6231 {
6232 	struct hpsa_pci_info pciinfo;
6233 
6234 	if (!argp)
6235 		return -EINVAL;
6236 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6237 	pciinfo.bus = h->pdev->bus->number;
6238 	pciinfo.dev_fn = h->pdev->devfn;
6239 	pciinfo.board_id = h->board_id;
6240 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6241 		return -EFAULT;
6242 	return 0;
6243 }
6244 
6245 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6246 {
6247 	DriverVer_type DriverVer;
6248 	unsigned char vmaj, vmin, vsubmin;
6249 	int rc;
6250 
6251 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6252 		&vmaj, &vmin, &vsubmin);
6253 	if (rc != 3) {
6254 		dev_info(&h->pdev->dev, "driver version string '%s' "
6255 			"unrecognized.", HPSA_DRIVER_VERSION);
6256 		vmaj = 0;
6257 		vmin = 0;
6258 		vsubmin = 0;
6259 	}
6260 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6261 	if (!argp)
6262 		return -EINVAL;
6263 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6264 		return -EFAULT;
6265 	return 0;
6266 }
6267 
6268 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6269 {
6270 	IOCTL_Command_struct iocommand;
6271 	struct CommandList *c;
6272 	char *buff = NULL;
6273 	u64 temp64;
6274 	int rc = 0;
6275 
6276 	if (!argp)
6277 		return -EINVAL;
6278 	if (!capable(CAP_SYS_RAWIO))
6279 		return -EPERM;
6280 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6281 		return -EFAULT;
6282 	if ((iocommand.buf_size < 1) &&
6283 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6284 		return -EINVAL;
6285 	}
6286 	if (iocommand.buf_size > 0) {
6287 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6288 		if (buff == NULL)
6289 			return -ENOMEM;
6290 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6291 			/* Copy the data into the buffer we created */
6292 			if (copy_from_user(buff, iocommand.buf,
6293 				iocommand.buf_size)) {
6294 				rc = -EFAULT;
6295 				goto out_kfree;
6296 			}
6297 		} else {
6298 			memset(buff, 0, iocommand.buf_size);
6299 		}
6300 	}
6301 	c = cmd_alloc(h);
6302 
6303 	/* Fill in the command type */
6304 	c->cmd_type = CMD_IOCTL_PEND;
6305 	c->scsi_cmd = SCSI_CMD_BUSY;
6306 	/* Fill in Command Header */
6307 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6308 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6309 		c->Header.SGList = 1;
6310 		c->Header.SGTotal = cpu_to_le16(1);
6311 	} else	{ /* no buffers to fill */
6312 		c->Header.SGList = 0;
6313 		c->Header.SGTotal = cpu_to_le16(0);
6314 	}
6315 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6316 
6317 	/* Fill in Request block */
6318 	memcpy(&c->Request, &iocommand.Request,
6319 		sizeof(c->Request));
6320 
6321 	/* Fill in the scatter gather information */
6322 	if (iocommand.buf_size > 0) {
6323 		temp64 = pci_map_single(h->pdev, buff,
6324 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6325 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6326 			c->SG[0].Addr = cpu_to_le64(0);
6327 			c->SG[0].Len = cpu_to_le32(0);
6328 			rc = -ENOMEM;
6329 			goto out;
6330 		}
6331 		c->SG[0].Addr = cpu_to_le64(temp64);
6332 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6333 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6334 	}
6335 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6336 					NO_TIMEOUT);
6337 	if (iocommand.buf_size > 0)
6338 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6339 	check_ioctl_unit_attention(h, c);
6340 	if (rc) {
6341 		rc = -EIO;
6342 		goto out;
6343 	}
6344 
6345 	/* Copy the error information out */
6346 	memcpy(&iocommand.error_info, c->err_info,
6347 		sizeof(iocommand.error_info));
6348 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6349 		rc = -EFAULT;
6350 		goto out;
6351 	}
6352 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6353 		iocommand.buf_size > 0) {
6354 		/* Copy the data out of the buffer we created */
6355 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6356 			rc = -EFAULT;
6357 			goto out;
6358 		}
6359 	}
6360 out:
6361 	cmd_free(h, c);
6362 out_kfree:
6363 	kfree(buff);
6364 	return rc;
6365 }
6366 
6367 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6368 {
6369 	BIG_IOCTL_Command_struct *ioc;
6370 	struct CommandList *c;
6371 	unsigned char **buff = NULL;
6372 	int *buff_size = NULL;
6373 	u64 temp64;
6374 	BYTE sg_used = 0;
6375 	int status = 0;
6376 	u32 left;
6377 	u32 sz;
6378 	BYTE __user *data_ptr;
6379 
6380 	if (!argp)
6381 		return -EINVAL;
6382 	if (!capable(CAP_SYS_RAWIO))
6383 		return -EPERM;
6384 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6385 	if (!ioc) {
6386 		status = -ENOMEM;
6387 		goto cleanup1;
6388 	}
6389 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6390 		status = -EFAULT;
6391 		goto cleanup1;
6392 	}
6393 	if ((ioc->buf_size < 1) &&
6394 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6395 		status = -EINVAL;
6396 		goto cleanup1;
6397 	}
6398 	/* Check kmalloc limits  using all SGs */
6399 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6400 		status = -EINVAL;
6401 		goto cleanup1;
6402 	}
6403 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6404 		status = -EINVAL;
6405 		goto cleanup1;
6406 	}
6407 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6408 	if (!buff) {
6409 		status = -ENOMEM;
6410 		goto cleanup1;
6411 	}
6412 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6413 	if (!buff_size) {
6414 		status = -ENOMEM;
6415 		goto cleanup1;
6416 	}
6417 	left = ioc->buf_size;
6418 	data_ptr = ioc->buf;
6419 	while (left) {
6420 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6421 		buff_size[sg_used] = sz;
6422 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6423 		if (buff[sg_used] == NULL) {
6424 			status = -ENOMEM;
6425 			goto cleanup1;
6426 		}
6427 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6428 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6429 				status = -EFAULT;
6430 				goto cleanup1;
6431 			}
6432 		} else
6433 			memset(buff[sg_used], 0, sz);
6434 		left -= sz;
6435 		data_ptr += sz;
6436 		sg_used++;
6437 	}
6438 	c = cmd_alloc(h);
6439 
6440 	c->cmd_type = CMD_IOCTL_PEND;
6441 	c->scsi_cmd = SCSI_CMD_BUSY;
6442 	c->Header.ReplyQueue = 0;
6443 	c->Header.SGList = (u8) sg_used;
6444 	c->Header.SGTotal = cpu_to_le16(sg_used);
6445 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6446 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6447 	if (ioc->buf_size > 0) {
6448 		int i;
6449 		for (i = 0; i < sg_used; i++) {
6450 			temp64 = pci_map_single(h->pdev, buff[i],
6451 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6452 			if (dma_mapping_error(&h->pdev->dev,
6453 							(dma_addr_t) temp64)) {
6454 				c->SG[i].Addr = cpu_to_le64(0);
6455 				c->SG[i].Len = cpu_to_le32(0);
6456 				hpsa_pci_unmap(h->pdev, c, i,
6457 					PCI_DMA_BIDIRECTIONAL);
6458 				status = -ENOMEM;
6459 				goto cleanup0;
6460 			}
6461 			c->SG[i].Addr = cpu_to_le64(temp64);
6462 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6463 			c->SG[i].Ext = cpu_to_le32(0);
6464 		}
6465 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6466 	}
6467 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6468 						NO_TIMEOUT);
6469 	if (sg_used)
6470 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6471 	check_ioctl_unit_attention(h, c);
6472 	if (status) {
6473 		status = -EIO;
6474 		goto cleanup0;
6475 	}
6476 
6477 	/* Copy the error information out */
6478 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6479 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6480 		status = -EFAULT;
6481 		goto cleanup0;
6482 	}
6483 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6484 		int i;
6485 
6486 		/* Copy the data out of the buffer we created */
6487 		BYTE __user *ptr = ioc->buf;
6488 		for (i = 0; i < sg_used; i++) {
6489 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6490 				status = -EFAULT;
6491 				goto cleanup0;
6492 			}
6493 			ptr += buff_size[i];
6494 		}
6495 	}
6496 	status = 0;
6497 cleanup0:
6498 	cmd_free(h, c);
6499 cleanup1:
6500 	if (buff) {
6501 		int i;
6502 
6503 		for (i = 0; i < sg_used; i++)
6504 			kfree(buff[i]);
6505 		kfree(buff);
6506 	}
6507 	kfree(buff_size);
6508 	kfree(ioc);
6509 	return status;
6510 }
6511 
6512 static void check_ioctl_unit_attention(struct ctlr_info *h,
6513 	struct CommandList *c)
6514 {
6515 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6516 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6517 		(void) check_for_unit_attention(h, c);
6518 }
6519 
6520 /*
6521  * ioctl
6522  */
6523 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6524 {
6525 	struct ctlr_info *h;
6526 	void __user *argp = (void __user *)arg;
6527 	int rc;
6528 
6529 	h = sdev_to_hba(dev);
6530 
6531 	switch (cmd) {
6532 	case CCISS_DEREGDISK:
6533 	case CCISS_REGNEWDISK:
6534 	case CCISS_REGNEWD:
6535 		hpsa_scan_start(h->scsi_host);
6536 		return 0;
6537 	case CCISS_GETPCIINFO:
6538 		return hpsa_getpciinfo_ioctl(h, argp);
6539 	case CCISS_GETDRIVVER:
6540 		return hpsa_getdrivver_ioctl(h, argp);
6541 	case CCISS_PASSTHRU:
6542 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6543 			return -EAGAIN;
6544 		rc = hpsa_passthru_ioctl(h, argp);
6545 		atomic_inc(&h->passthru_cmds_avail);
6546 		return rc;
6547 	case CCISS_BIG_PASSTHRU:
6548 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6549 			return -EAGAIN;
6550 		rc = hpsa_big_passthru_ioctl(h, argp);
6551 		atomic_inc(&h->passthru_cmds_avail);
6552 		return rc;
6553 	default:
6554 		return -ENOTTY;
6555 	}
6556 }
6557 
6558 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6559 				u8 reset_type)
6560 {
6561 	struct CommandList *c;
6562 
6563 	c = cmd_alloc(h);
6564 
6565 	/* fill_cmd can't fail here, no data buffer to map */
6566 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6567 		RAID_CTLR_LUNID, TYPE_MSG);
6568 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6569 	c->waiting = NULL;
6570 	enqueue_cmd_and_start_io(h, c);
6571 	/* Don't wait for completion, the reset won't complete.  Don't free
6572 	 * the command either.  This is the last command we will send before
6573 	 * re-initializing everything, so it doesn't matter and won't leak.
6574 	 */
6575 	return;
6576 }
6577 
6578 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6579 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6580 	int cmd_type)
6581 {
6582 	int pci_dir = XFER_NONE;
6583 
6584 	c->cmd_type = CMD_IOCTL_PEND;
6585 	c->scsi_cmd = SCSI_CMD_BUSY;
6586 	c->Header.ReplyQueue = 0;
6587 	if (buff != NULL && size > 0) {
6588 		c->Header.SGList = 1;
6589 		c->Header.SGTotal = cpu_to_le16(1);
6590 	} else {
6591 		c->Header.SGList = 0;
6592 		c->Header.SGTotal = cpu_to_le16(0);
6593 	}
6594 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6595 
6596 	if (cmd_type == TYPE_CMD) {
6597 		switch (cmd) {
6598 		case HPSA_INQUIRY:
6599 			/* are we trying to read a vital product page */
6600 			if (page_code & VPD_PAGE) {
6601 				c->Request.CDB[1] = 0x01;
6602 				c->Request.CDB[2] = (page_code & 0xff);
6603 			}
6604 			c->Request.CDBLen = 6;
6605 			c->Request.type_attr_dir =
6606 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6607 			c->Request.Timeout = 0;
6608 			c->Request.CDB[0] = HPSA_INQUIRY;
6609 			c->Request.CDB[4] = size & 0xFF;
6610 			break;
6611 		case RECEIVE_DIAGNOSTIC:
6612 			c->Request.CDBLen = 6;
6613 			c->Request.type_attr_dir =
6614 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6615 			c->Request.Timeout = 0;
6616 			c->Request.CDB[0] = cmd;
6617 			c->Request.CDB[1] = 1;
6618 			c->Request.CDB[2] = 1;
6619 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6620 			c->Request.CDB[4] = size & 0xFF;
6621 			break;
6622 		case HPSA_REPORT_LOG:
6623 		case HPSA_REPORT_PHYS:
6624 			/* Talking to controller so It's a physical command
6625 			   mode = 00 target = 0.  Nothing to write.
6626 			 */
6627 			c->Request.CDBLen = 12;
6628 			c->Request.type_attr_dir =
6629 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6630 			c->Request.Timeout = 0;
6631 			c->Request.CDB[0] = cmd;
6632 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6633 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6634 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6635 			c->Request.CDB[9] = size & 0xFF;
6636 			break;
6637 		case BMIC_SENSE_DIAG_OPTIONS:
6638 			c->Request.CDBLen = 16;
6639 			c->Request.type_attr_dir =
6640 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6641 			c->Request.Timeout = 0;
6642 			/* Spec says this should be BMIC_WRITE */
6643 			c->Request.CDB[0] = BMIC_READ;
6644 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6645 			break;
6646 		case BMIC_SET_DIAG_OPTIONS:
6647 			c->Request.CDBLen = 16;
6648 			c->Request.type_attr_dir =
6649 					TYPE_ATTR_DIR(cmd_type,
6650 						ATTR_SIMPLE, XFER_WRITE);
6651 			c->Request.Timeout = 0;
6652 			c->Request.CDB[0] = BMIC_WRITE;
6653 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6654 			break;
6655 		case HPSA_CACHE_FLUSH:
6656 			c->Request.CDBLen = 12;
6657 			c->Request.type_attr_dir =
6658 					TYPE_ATTR_DIR(cmd_type,
6659 						ATTR_SIMPLE, XFER_WRITE);
6660 			c->Request.Timeout = 0;
6661 			c->Request.CDB[0] = BMIC_WRITE;
6662 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6663 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6664 			c->Request.CDB[8] = size & 0xFF;
6665 			break;
6666 		case TEST_UNIT_READY:
6667 			c->Request.CDBLen = 6;
6668 			c->Request.type_attr_dir =
6669 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6670 			c->Request.Timeout = 0;
6671 			break;
6672 		case HPSA_GET_RAID_MAP:
6673 			c->Request.CDBLen = 12;
6674 			c->Request.type_attr_dir =
6675 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6676 			c->Request.Timeout = 0;
6677 			c->Request.CDB[0] = HPSA_CISS_READ;
6678 			c->Request.CDB[1] = cmd;
6679 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6680 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6681 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6682 			c->Request.CDB[9] = size & 0xFF;
6683 			break;
6684 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6685 			c->Request.CDBLen = 10;
6686 			c->Request.type_attr_dir =
6687 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6688 			c->Request.Timeout = 0;
6689 			c->Request.CDB[0] = BMIC_READ;
6690 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6691 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6692 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6693 			break;
6694 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6695 			c->Request.CDBLen = 10;
6696 			c->Request.type_attr_dir =
6697 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698 			c->Request.Timeout = 0;
6699 			c->Request.CDB[0] = BMIC_READ;
6700 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6701 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6702 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6703 			break;
6704 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6705 			c->Request.CDBLen = 10;
6706 			c->Request.type_attr_dir =
6707 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6708 			c->Request.Timeout = 0;
6709 			c->Request.CDB[0] = BMIC_READ;
6710 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6711 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6712 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6713 			break;
6714 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6715 			c->Request.CDBLen = 10;
6716 			c->Request.type_attr_dir =
6717 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6718 			c->Request.Timeout = 0;
6719 			c->Request.CDB[0] = BMIC_READ;
6720 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6721 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6722 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6723 			break;
6724 		case BMIC_IDENTIFY_CONTROLLER:
6725 			c->Request.CDBLen = 10;
6726 			c->Request.type_attr_dir =
6727 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6728 			c->Request.Timeout = 0;
6729 			c->Request.CDB[0] = BMIC_READ;
6730 			c->Request.CDB[1] = 0;
6731 			c->Request.CDB[2] = 0;
6732 			c->Request.CDB[3] = 0;
6733 			c->Request.CDB[4] = 0;
6734 			c->Request.CDB[5] = 0;
6735 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6736 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6737 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6738 			c->Request.CDB[9] = 0;
6739 			break;
6740 		default:
6741 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6742 			BUG();
6743 		}
6744 	} else if (cmd_type == TYPE_MSG) {
6745 		switch (cmd) {
6746 
6747 		case  HPSA_PHYS_TARGET_RESET:
6748 			c->Request.CDBLen = 16;
6749 			c->Request.type_attr_dir =
6750 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6751 			c->Request.Timeout = 0; /* Don't time out */
6752 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6753 			c->Request.CDB[0] = HPSA_RESET;
6754 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6755 			/* Physical target reset needs no control bytes 4-7*/
6756 			c->Request.CDB[4] = 0x00;
6757 			c->Request.CDB[5] = 0x00;
6758 			c->Request.CDB[6] = 0x00;
6759 			c->Request.CDB[7] = 0x00;
6760 			break;
6761 		case  HPSA_DEVICE_RESET_MSG:
6762 			c->Request.CDBLen = 16;
6763 			c->Request.type_attr_dir =
6764 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6765 			c->Request.Timeout = 0; /* Don't time out */
6766 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6767 			c->Request.CDB[0] =  cmd;
6768 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6769 			/* If bytes 4-7 are zero, it means reset the */
6770 			/* LunID device */
6771 			c->Request.CDB[4] = 0x00;
6772 			c->Request.CDB[5] = 0x00;
6773 			c->Request.CDB[6] = 0x00;
6774 			c->Request.CDB[7] = 0x00;
6775 			break;
6776 		default:
6777 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6778 				cmd);
6779 			BUG();
6780 		}
6781 	} else {
6782 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6783 		BUG();
6784 	}
6785 
6786 	switch (GET_DIR(c->Request.type_attr_dir)) {
6787 	case XFER_READ:
6788 		pci_dir = PCI_DMA_FROMDEVICE;
6789 		break;
6790 	case XFER_WRITE:
6791 		pci_dir = PCI_DMA_TODEVICE;
6792 		break;
6793 	case XFER_NONE:
6794 		pci_dir = PCI_DMA_NONE;
6795 		break;
6796 	default:
6797 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6798 	}
6799 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6800 		return -1;
6801 	return 0;
6802 }
6803 
6804 /*
6805  * Map (physical) PCI mem into (virtual) kernel space
6806  */
6807 static void __iomem *remap_pci_mem(ulong base, ulong size)
6808 {
6809 	ulong page_base = ((ulong) base) & PAGE_MASK;
6810 	ulong page_offs = ((ulong) base) - page_base;
6811 	void __iomem *page_remapped = ioremap_nocache(page_base,
6812 		page_offs + size);
6813 
6814 	return page_remapped ? (page_remapped + page_offs) : NULL;
6815 }
6816 
6817 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6818 {
6819 	return h->access.command_completed(h, q);
6820 }
6821 
6822 static inline bool interrupt_pending(struct ctlr_info *h)
6823 {
6824 	return h->access.intr_pending(h);
6825 }
6826 
6827 static inline long interrupt_not_for_us(struct ctlr_info *h)
6828 {
6829 	return (h->access.intr_pending(h) == 0) ||
6830 		(h->interrupts_enabled == 0);
6831 }
6832 
6833 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6834 	u32 raw_tag)
6835 {
6836 	if (unlikely(tag_index >= h->nr_cmds)) {
6837 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6838 		return 1;
6839 	}
6840 	return 0;
6841 }
6842 
6843 static inline void finish_cmd(struct CommandList *c)
6844 {
6845 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6846 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6847 			|| c->cmd_type == CMD_IOACCEL2))
6848 		complete_scsi_command(c);
6849 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6850 		complete(c->waiting);
6851 }
6852 
6853 /* process completion of an indexed ("direct lookup") command */
6854 static inline void process_indexed_cmd(struct ctlr_info *h,
6855 	u32 raw_tag)
6856 {
6857 	u32 tag_index;
6858 	struct CommandList *c;
6859 
6860 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6861 	if (!bad_tag(h, tag_index, raw_tag)) {
6862 		c = h->cmd_pool + tag_index;
6863 		finish_cmd(c);
6864 	}
6865 }
6866 
6867 /* Some controllers, like p400, will give us one interrupt
6868  * after a soft reset, even if we turned interrupts off.
6869  * Only need to check for this in the hpsa_xxx_discard_completions
6870  * functions.
6871  */
6872 static int ignore_bogus_interrupt(struct ctlr_info *h)
6873 {
6874 	if (likely(!reset_devices))
6875 		return 0;
6876 
6877 	if (likely(h->interrupts_enabled))
6878 		return 0;
6879 
6880 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6881 		"(known firmware bug.)  Ignoring.\n");
6882 
6883 	return 1;
6884 }
6885 
6886 /*
6887  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6888  * Relies on (h-q[x] == x) being true for x such that
6889  * 0 <= x < MAX_REPLY_QUEUES.
6890  */
6891 static struct ctlr_info *queue_to_hba(u8 *queue)
6892 {
6893 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6894 }
6895 
6896 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6897 {
6898 	struct ctlr_info *h = queue_to_hba(queue);
6899 	u8 q = *(u8 *) queue;
6900 	u32 raw_tag;
6901 
6902 	if (ignore_bogus_interrupt(h))
6903 		return IRQ_NONE;
6904 
6905 	if (interrupt_not_for_us(h))
6906 		return IRQ_NONE;
6907 	h->last_intr_timestamp = get_jiffies_64();
6908 	while (interrupt_pending(h)) {
6909 		raw_tag = get_next_completion(h, q);
6910 		while (raw_tag != FIFO_EMPTY)
6911 			raw_tag = next_command(h, q);
6912 	}
6913 	return IRQ_HANDLED;
6914 }
6915 
6916 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6917 {
6918 	struct ctlr_info *h = queue_to_hba(queue);
6919 	u32 raw_tag;
6920 	u8 q = *(u8 *) queue;
6921 
6922 	if (ignore_bogus_interrupt(h))
6923 		return IRQ_NONE;
6924 
6925 	h->last_intr_timestamp = get_jiffies_64();
6926 	raw_tag = get_next_completion(h, q);
6927 	while (raw_tag != FIFO_EMPTY)
6928 		raw_tag = next_command(h, q);
6929 	return IRQ_HANDLED;
6930 }
6931 
6932 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6933 {
6934 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6935 	u32 raw_tag;
6936 	u8 q = *(u8 *) queue;
6937 
6938 	if (interrupt_not_for_us(h))
6939 		return IRQ_NONE;
6940 	h->last_intr_timestamp = get_jiffies_64();
6941 	while (interrupt_pending(h)) {
6942 		raw_tag = get_next_completion(h, q);
6943 		while (raw_tag != FIFO_EMPTY) {
6944 			process_indexed_cmd(h, raw_tag);
6945 			raw_tag = next_command(h, q);
6946 		}
6947 	}
6948 	return IRQ_HANDLED;
6949 }
6950 
6951 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6952 {
6953 	struct ctlr_info *h = queue_to_hba(queue);
6954 	u32 raw_tag;
6955 	u8 q = *(u8 *) queue;
6956 
6957 	h->last_intr_timestamp = get_jiffies_64();
6958 	raw_tag = get_next_completion(h, q);
6959 	while (raw_tag != FIFO_EMPTY) {
6960 		process_indexed_cmd(h, raw_tag);
6961 		raw_tag = next_command(h, q);
6962 	}
6963 	return IRQ_HANDLED;
6964 }
6965 
6966 /* Send a message CDB to the firmware. Careful, this only works
6967  * in simple mode, not performant mode due to the tag lookup.
6968  * We only ever use this immediately after a controller reset.
6969  */
6970 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6971 			unsigned char type)
6972 {
6973 	struct Command {
6974 		struct CommandListHeader CommandHeader;
6975 		struct RequestBlock Request;
6976 		struct ErrDescriptor ErrorDescriptor;
6977 	};
6978 	struct Command *cmd;
6979 	static const size_t cmd_sz = sizeof(*cmd) +
6980 					sizeof(cmd->ErrorDescriptor);
6981 	dma_addr_t paddr64;
6982 	__le32 paddr32;
6983 	u32 tag;
6984 	void __iomem *vaddr;
6985 	int i, err;
6986 
6987 	vaddr = pci_ioremap_bar(pdev, 0);
6988 	if (vaddr == NULL)
6989 		return -ENOMEM;
6990 
6991 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6992 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6993 	 * memory.
6994 	 */
6995 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6996 	if (err) {
6997 		iounmap(vaddr);
6998 		return err;
6999 	}
7000 
7001 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7002 	if (cmd == NULL) {
7003 		iounmap(vaddr);
7004 		return -ENOMEM;
7005 	}
7006 
7007 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7008 	 * although there's no guarantee, we assume that the address is at
7009 	 * least 4-byte aligned (most likely, it's page-aligned).
7010 	 */
7011 	paddr32 = cpu_to_le32(paddr64);
7012 
7013 	cmd->CommandHeader.ReplyQueue = 0;
7014 	cmd->CommandHeader.SGList = 0;
7015 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7016 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7017 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7018 
7019 	cmd->Request.CDBLen = 16;
7020 	cmd->Request.type_attr_dir =
7021 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7022 	cmd->Request.Timeout = 0; /* Don't time out */
7023 	cmd->Request.CDB[0] = opcode;
7024 	cmd->Request.CDB[1] = type;
7025 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7026 	cmd->ErrorDescriptor.Addr =
7027 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7028 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7029 
7030 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7031 
7032 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7033 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7034 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7035 			break;
7036 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7037 	}
7038 
7039 	iounmap(vaddr);
7040 
7041 	/* we leak the DMA buffer here ... no choice since the controller could
7042 	 *  still complete the command.
7043 	 */
7044 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7045 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7046 			opcode, type);
7047 		return -ETIMEDOUT;
7048 	}
7049 
7050 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7051 
7052 	if (tag & HPSA_ERROR_BIT) {
7053 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7054 			opcode, type);
7055 		return -EIO;
7056 	}
7057 
7058 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7059 		opcode, type);
7060 	return 0;
7061 }
7062 
7063 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7064 
7065 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7066 	void __iomem *vaddr, u32 use_doorbell)
7067 {
7068 
7069 	if (use_doorbell) {
7070 		/* For everything after the P600, the PCI power state method
7071 		 * of resetting the controller doesn't work, so we have this
7072 		 * other way using the doorbell register.
7073 		 */
7074 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7075 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7076 
7077 		/* PMC hardware guys tell us we need a 10 second delay after
7078 		 * doorbell reset and before any attempt to talk to the board
7079 		 * at all to ensure that this actually works and doesn't fall
7080 		 * over in some weird corner cases.
7081 		 */
7082 		msleep(10000);
7083 	} else { /* Try to do it the PCI power state way */
7084 
7085 		/* Quoting from the Open CISS Specification: "The Power
7086 		 * Management Control/Status Register (CSR) controls the power
7087 		 * state of the device.  The normal operating state is D0,
7088 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7089 		 * the controller, place the interface device in D3 then to D0,
7090 		 * this causes a secondary PCI reset which will reset the
7091 		 * controller." */
7092 
7093 		int rc = 0;
7094 
7095 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7096 
7097 		/* enter the D3hot power management state */
7098 		rc = pci_set_power_state(pdev, PCI_D3hot);
7099 		if (rc)
7100 			return rc;
7101 
7102 		msleep(500);
7103 
7104 		/* enter the D0 power management state */
7105 		rc = pci_set_power_state(pdev, PCI_D0);
7106 		if (rc)
7107 			return rc;
7108 
7109 		/*
7110 		 * The P600 requires a small delay when changing states.
7111 		 * Otherwise we may think the board did not reset and we bail.
7112 		 * This for kdump only and is particular to the P600.
7113 		 */
7114 		msleep(500);
7115 	}
7116 	return 0;
7117 }
7118 
7119 static void init_driver_version(char *driver_version, int len)
7120 {
7121 	memset(driver_version, 0, len);
7122 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7123 }
7124 
7125 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7126 {
7127 	char *driver_version;
7128 	int i, size = sizeof(cfgtable->driver_version);
7129 
7130 	driver_version = kmalloc(size, GFP_KERNEL);
7131 	if (!driver_version)
7132 		return -ENOMEM;
7133 
7134 	init_driver_version(driver_version, size);
7135 	for (i = 0; i < size; i++)
7136 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7137 	kfree(driver_version);
7138 	return 0;
7139 }
7140 
7141 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7142 					  unsigned char *driver_ver)
7143 {
7144 	int i;
7145 
7146 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7147 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7148 }
7149 
7150 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7151 {
7152 
7153 	char *driver_ver, *old_driver_ver;
7154 	int rc, size = sizeof(cfgtable->driver_version);
7155 
7156 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7157 	if (!old_driver_ver)
7158 		return -ENOMEM;
7159 	driver_ver = old_driver_ver + size;
7160 
7161 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7162 	 * should have been changed, otherwise we know the reset failed.
7163 	 */
7164 	init_driver_version(old_driver_ver, size);
7165 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7166 	rc = !memcmp(driver_ver, old_driver_ver, size);
7167 	kfree(old_driver_ver);
7168 	return rc;
7169 }
7170 /* This does a hard reset of the controller using PCI power management
7171  * states or the using the doorbell register.
7172  */
7173 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7174 {
7175 	u64 cfg_offset;
7176 	u32 cfg_base_addr;
7177 	u64 cfg_base_addr_index;
7178 	void __iomem *vaddr;
7179 	unsigned long paddr;
7180 	u32 misc_fw_support;
7181 	int rc;
7182 	struct CfgTable __iomem *cfgtable;
7183 	u32 use_doorbell;
7184 	u16 command_register;
7185 
7186 	/* For controllers as old as the P600, this is very nearly
7187 	 * the same thing as
7188 	 *
7189 	 * pci_save_state(pci_dev);
7190 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7191 	 * pci_set_power_state(pci_dev, PCI_D0);
7192 	 * pci_restore_state(pci_dev);
7193 	 *
7194 	 * For controllers newer than the P600, the pci power state
7195 	 * method of resetting doesn't work so we have another way
7196 	 * using the doorbell register.
7197 	 */
7198 
7199 	if (!ctlr_is_resettable(board_id)) {
7200 		dev_warn(&pdev->dev, "Controller not resettable\n");
7201 		return -ENODEV;
7202 	}
7203 
7204 	/* if controller is soft- but not hard resettable... */
7205 	if (!ctlr_is_hard_resettable(board_id))
7206 		return -ENOTSUPP; /* try soft reset later. */
7207 
7208 	/* Save the PCI command register */
7209 	pci_read_config_word(pdev, 4, &command_register);
7210 	pci_save_state(pdev);
7211 
7212 	/* find the first memory BAR, so we can find the cfg table */
7213 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7214 	if (rc)
7215 		return rc;
7216 	vaddr = remap_pci_mem(paddr, 0x250);
7217 	if (!vaddr)
7218 		return -ENOMEM;
7219 
7220 	/* find cfgtable in order to check if reset via doorbell is supported */
7221 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7222 					&cfg_base_addr_index, &cfg_offset);
7223 	if (rc)
7224 		goto unmap_vaddr;
7225 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7226 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7227 	if (!cfgtable) {
7228 		rc = -ENOMEM;
7229 		goto unmap_vaddr;
7230 	}
7231 	rc = write_driver_ver_to_cfgtable(cfgtable);
7232 	if (rc)
7233 		goto unmap_cfgtable;
7234 
7235 	/* If reset via doorbell register is supported, use that.
7236 	 * There are two such methods.  Favor the newest method.
7237 	 */
7238 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7239 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7240 	if (use_doorbell) {
7241 		use_doorbell = DOORBELL_CTLR_RESET2;
7242 	} else {
7243 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7244 		if (use_doorbell) {
7245 			dev_warn(&pdev->dev,
7246 				"Soft reset not supported. Firmware update is required.\n");
7247 			rc = -ENOTSUPP; /* try soft reset */
7248 			goto unmap_cfgtable;
7249 		}
7250 	}
7251 
7252 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7253 	if (rc)
7254 		goto unmap_cfgtable;
7255 
7256 	pci_restore_state(pdev);
7257 	pci_write_config_word(pdev, 4, command_register);
7258 
7259 	/* Some devices (notably the HP Smart Array 5i Controller)
7260 	   need a little pause here */
7261 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7262 
7263 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7264 	if (rc) {
7265 		dev_warn(&pdev->dev,
7266 			"Failed waiting for board to become ready after hard reset\n");
7267 		goto unmap_cfgtable;
7268 	}
7269 
7270 	rc = controller_reset_failed(vaddr);
7271 	if (rc < 0)
7272 		goto unmap_cfgtable;
7273 	if (rc) {
7274 		dev_warn(&pdev->dev, "Unable to successfully reset "
7275 			"controller. Will try soft reset.\n");
7276 		rc = -ENOTSUPP;
7277 	} else {
7278 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7279 	}
7280 
7281 unmap_cfgtable:
7282 	iounmap(cfgtable);
7283 
7284 unmap_vaddr:
7285 	iounmap(vaddr);
7286 	return rc;
7287 }
7288 
7289 /*
7290  *  We cannot read the structure directly, for portability we must use
7291  *   the io functions.
7292  *   This is for debug only.
7293  */
7294 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7295 {
7296 #ifdef HPSA_DEBUG
7297 	int i;
7298 	char temp_name[17];
7299 
7300 	dev_info(dev, "Controller Configuration information\n");
7301 	dev_info(dev, "------------------------------------\n");
7302 	for (i = 0; i < 4; i++)
7303 		temp_name[i] = readb(&(tb->Signature[i]));
7304 	temp_name[4] = '\0';
7305 	dev_info(dev, "   Signature = %s\n", temp_name);
7306 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7307 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7308 	       readl(&(tb->TransportSupport)));
7309 	dev_info(dev, "   Transport methods active = 0x%x\n",
7310 	       readl(&(tb->TransportActive)));
7311 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7312 	       readl(&(tb->HostWrite.TransportRequest)));
7313 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7314 	       readl(&(tb->HostWrite.CoalIntDelay)));
7315 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7316 	       readl(&(tb->HostWrite.CoalIntCount)));
7317 	dev_info(dev, "   Max outstanding commands = %d\n",
7318 	       readl(&(tb->CmdsOutMax)));
7319 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7320 	for (i = 0; i < 16; i++)
7321 		temp_name[i] = readb(&(tb->ServerName[i]));
7322 	temp_name[16] = '\0';
7323 	dev_info(dev, "   Server Name = %s\n", temp_name);
7324 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7325 		readl(&(tb->HeartBeat)));
7326 #endif				/* HPSA_DEBUG */
7327 }
7328 
7329 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7330 {
7331 	int i, offset, mem_type, bar_type;
7332 
7333 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7334 		return 0;
7335 	offset = 0;
7336 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7337 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7338 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7339 			offset += 4;
7340 		else {
7341 			mem_type = pci_resource_flags(pdev, i) &
7342 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7343 			switch (mem_type) {
7344 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7345 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7346 				offset += 4;	/* 32 bit */
7347 				break;
7348 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7349 				offset += 8;
7350 				break;
7351 			default:	/* reserved in PCI 2.2 */
7352 				dev_warn(&pdev->dev,
7353 				       "base address is invalid\n");
7354 				return -1;
7355 				break;
7356 			}
7357 		}
7358 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7359 			return i + 1;
7360 	}
7361 	return -1;
7362 }
7363 
7364 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7365 {
7366 	pci_free_irq_vectors(h->pdev);
7367 	h->msix_vectors = 0;
7368 }
7369 
7370 static void hpsa_setup_reply_map(struct ctlr_info *h)
7371 {
7372 	const struct cpumask *mask;
7373 	unsigned int queue, cpu;
7374 
7375 	for (queue = 0; queue < h->msix_vectors; queue++) {
7376 		mask = pci_irq_get_affinity(h->pdev, queue);
7377 		if (!mask)
7378 			goto fallback;
7379 
7380 		for_each_cpu(cpu, mask)
7381 			h->reply_map[cpu] = queue;
7382 	}
7383 	return;
7384 
7385 fallback:
7386 	for_each_possible_cpu(cpu)
7387 		h->reply_map[cpu] = 0;
7388 }
7389 
7390 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7391  * controllers that are capable. If not, we use legacy INTx mode.
7392  */
7393 static int hpsa_interrupt_mode(struct ctlr_info *h)
7394 {
7395 	unsigned int flags = PCI_IRQ_LEGACY;
7396 	int ret;
7397 
7398 	/* Some boards advertise MSI but don't really support it */
7399 	switch (h->board_id) {
7400 	case 0x40700E11:
7401 	case 0x40800E11:
7402 	case 0x40820E11:
7403 	case 0x40830E11:
7404 		break;
7405 	default:
7406 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7407 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7408 		if (ret > 0) {
7409 			h->msix_vectors = ret;
7410 			return 0;
7411 		}
7412 
7413 		flags |= PCI_IRQ_MSI;
7414 		break;
7415 	}
7416 
7417 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7418 	if (ret < 0)
7419 		return ret;
7420 	return 0;
7421 }
7422 
7423 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7424 				bool *legacy_board)
7425 {
7426 	int i;
7427 	u32 subsystem_vendor_id, subsystem_device_id;
7428 
7429 	subsystem_vendor_id = pdev->subsystem_vendor;
7430 	subsystem_device_id = pdev->subsystem_device;
7431 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7432 		    subsystem_vendor_id;
7433 
7434 	if (legacy_board)
7435 		*legacy_board = false;
7436 	for (i = 0; i < ARRAY_SIZE(products); i++)
7437 		if (*board_id == products[i].board_id) {
7438 			if (products[i].access != &SA5A_access &&
7439 			    products[i].access != &SA5B_access)
7440 				return i;
7441 			dev_warn(&pdev->dev,
7442 				 "legacy board ID: 0x%08x\n",
7443 				 *board_id);
7444 			if (legacy_board)
7445 			    *legacy_board = true;
7446 			return i;
7447 		}
7448 
7449 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7450 	if (legacy_board)
7451 		*legacy_board = true;
7452 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7453 }
7454 
7455 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7456 				    unsigned long *memory_bar)
7457 {
7458 	int i;
7459 
7460 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7461 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7462 			/* addressing mode bits already removed */
7463 			*memory_bar = pci_resource_start(pdev, i);
7464 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7465 				*memory_bar);
7466 			return 0;
7467 		}
7468 	dev_warn(&pdev->dev, "no memory BAR found\n");
7469 	return -ENODEV;
7470 }
7471 
7472 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7473 				     int wait_for_ready)
7474 {
7475 	int i, iterations;
7476 	u32 scratchpad;
7477 	if (wait_for_ready)
7478 		iterations = HPSA_BOARD_READY_ITERATIONS;
7479 	else
7480 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7481 
7482 	for (i = 0; i < iterations; i++) {
7483 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7484 		if (wait_for_ready) {
7485 			if (scratchpad == HPSA_FIRMWARE_READY)
7486 				return 0;
7487 		} else {
7488 			if (scratchpad != HPSA_FIRMWARE_READY)
7489 				return 0;
7490 		}
7491 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7492 	}
7493 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7494 	return -ENODEV;
7495 }
7496 
7497 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7498 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7499 			       u64 *cfg_offset)
7500 {
7501 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7502 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7503 	*cfg_base_addr &= (u32) 0x0000ffff;
7504 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7505 	if (*cfg_base_addr_index == -1) {
7506 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7507 		return -ENODEV;
7508 	}
7509 	return 0;
7510 }
7511 
7512 static void hpsa_free_cfgtables(struct ctlr_info *h)
7513 {
7514 	if (h->transtable) {
7515 		iounmap(h->transtable);
7516 		h->transtable = NULL;
7517 	}
7518 	if (h->cfgtable) {
7519 		iounmap(h->cfgtable);
7520 		h->cfgtable = NULL;
7521 	}
7522 }
7523 
7524 /* Find and map CISS config table and transfer table
7525 + * several items must be unmapped (freed) later
7526 + * */
7527 static int hpsa_find_cfgtables(struct ctlr_info *h)
7528 {
7529 	u64 cfg_offset;
7530 	u32 cfg_base_addr;
7531 	u64 cfg_base_addr_index;
7532 	u32 trans_offset;
7533 	int rc;
7534 
7535 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7536 		&cfg_base_addr_index, &cfg_offset);
7537 	if (rc)
7538 		return rc;
7539 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7540 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7541 	if (!h->cfgtable) {
7542 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7543 		return -ENOMEM;
7544 	}
7545 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7546 	if (rc)
7547 		return rc;
7548 	/* Find performant mode table. */
7549 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7550 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7551 				cfg_base_addr_index)+cfg_offset+trans_offset,
7552 				sizeof(*h->transtable));
7553 	if (!h->transtable) {
7554 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7555 		hpsa_free_cfgtables(h);
7556 		return -ENOMEM;
7557 	}
7558 	return 0;
7559 }
7560 
7561 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7562 {
7563 #define MIN_MAX_COMMANDS 16
7564 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7565 
7566 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7567 
7568 	/* Limit commands in memory limited kdump scenario. */
7569 	if (reset_devices && h->max_commands > 32)
7570 		h->max_commands = 32;
7571 
7572 	if (h->max_commands < MIN_MAX_COMMANDS) {
7573 		dev_warn(&h->pdev->dev,
7574 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7575 			h->max_commands,
7576 			MIN_MAX_COMMANDS);
7577 		h->max_commands = MIN_MAX_COMMANDS;
7578 	}
7579 }
7580 
7581 /* If the controller reports that the total max sg entries is greater than 512,
7582  * then we know that chained SG blocks work.  (Original smart arrays did not
7583  * support chained SG blocks and would return zero for max sg entries.)
7584  */
7585 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7586 {
7587 	return h->maxsgentries > 512;
7588 }
7589 
7590 /* Interrogate the hardware for some limits:
7591  * max commands, max SG elements without chaining, and with chaining,
7592  * SG chain block size, etc.
7593  */
7594 static void hpsa_find_board_params(struct ctlr_info *h)
7595 {
7596 	hpsa_get_max_perf_mode_cmds(h);
7597 	h->nr_cmds = h->max_commands;
7598 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7599 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7600 	if (hpsa_supports_chained_sg_blocks(h)) {
7601 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7602 		h->max_cmd_sg_entries = 32;
7603 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7604 		h->maxsgentries--; /* save one for chain pointer */
7605 	} else {
7606 		/*
7607 		 * Original smart arrays supported at most 31 s/g entries
7608 		 * embedded inline in the command (trying to use more
7609 		 * would lock up the controller)
7610 		 */
7611 		h->max_cmd_sg_entries = 31;
7612 		h->maxsgentries = 31; /* default to traditional values */
7613 		h->chainsize = 0;
7614 	}
7615 
7616 	/* Find out what task management functions are supported and cache */
7617 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7618 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7619 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7620 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7621 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7622 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7623 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7624 }
7625 
7626 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7627 {
7628 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7629 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7630 		return false;
7631 	}
7632 	return true;
7633 }
7634 
7635 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7636 {
7637 	u32 driver_support;
7638 
7639 	driver_support = readl(&(h->cfgtable->driver_support));
7640 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7641 #ifdef CONFIG_X86
7642 	driver_support |= ENABLE_SCSI_PREFETCH;
7643 #endif
7644 	driver_support |= ENABLE_UNIT_ATTN;
7645 	writel(driver_support, &(h->cfgtable->driver_support));
7646 }
7647 
7648 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7649  * in a prefetch beyond physical memory.
7650  */
7651 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7652 {
7653 	u32 dma_prefetch;
7654 
7655 	if (h->board_id != 0x3225103C)
7656 		return;
7657 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7658 	dma_prefetch |= 0x8000;
7659 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7660 }
7661 
7662 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7663 {
7664 	int i;
7665 	u32 doorbell_value;
7666 	unsigned long flags;
7667 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7668 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7669 		spin_lock_irqsave(&h->lock, flags);
7670 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7671 		spin_unlock_irqrestore(&h->lock, flags);
7672 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7673 			goto done;
7674 		/* delay and try again */
7675 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7676 	}
7677 	return -ENODEV;
7678 done:
7679 	return 0;
7680 }
7681 
7682 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7683 {
7684 	int i;
7685 	u32 doorbell_value;
7686 	unsigned long flags;
7687 
7688 	/* under certain very rare conditions, this can take awhile.
7689 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7690 	 * as we enter this code.)
7691 	 */
7692 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7693 		if (h->remove_in_progress)
7694 			goto done;
7695 		spin_lock_irqsave(&h->lock, flags);
7696 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7697 		spin_unlock_irqrestore(&h->lock, flags);
7698 		if (!(doorbell_value & CFGTBL_ChangeReq))
7699 			goto done;
7700 		/* delay and try again */
7701 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7702 	}
7703 	return -ENODEV;
7704 done:
7705 	return 0;
7706 }
7707 
7708 /* return -ENODEV or other reason on error, 0 on success */
7709 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7710 {
7711 	u32 trans_support;
7712 
7713 	trans_support = readl(&(h->cfgtable->TransportSupport));
7714 	if (!(trans_support & SIMPLE_MODE))
7715 		return -ENOTSUPP;
7716 
7717 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7718 
7719 	/* Update the field, and then ring the doorbell */
7720 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7721 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7722 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7723 	if (hpsa_wait_for_mode_change_ack(h))
7724 		goto error;
7725 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7726 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7727 		goto error;
7728 	h->transMethod = CFGTBL_Trans_Simple;
7729 	return 0;
7730 error:
7731 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7732 	return -ENODEV;
7733 }
7734 
7735 /* free items allocated or mapped by hpsa_pci_init */
7736 static void hpsa_free_pci_init(struct ctlr_info *h)
7737 {
7738 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7739 	iounmap(h->vaddr);			/* pci_init 3 */
7740 	h->vaddr = NULL;
7741 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7742 	/*
7743 	 * call pci_disable_device before pci_release_regions per
7744 	 * Documentation/PCI/pci.txt
7745 	 */
7746 	pci_disable_device(h->pdev);		/* pci_init 1 */
7747 	pci_release_regions(h->pdev);		/* pci_init 2 */
7748 }
7749 
7750 /* several items must be freed later */
7751 static int hpsa_pci_init(struct ctlr_info *h)
7752 {
7753 	int prod_index, err;
7754 	bool legacy_board;
7755 
7756 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7757 	if (prod_index < 0)
7758 		return prod_index;
7759 	h->product_name = products[prod_index].product_name;
7760 	h->access = *(products[prod_index].access);
7761 	h->legacy_board = legacy_board;
7762 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7763 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7764 
7765 	err = pci_enable_device(h->pdev);
7766 	if (err) {
7767 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7768 		pci_disable_device(h->pdev);
7769 		return err;
7770 	}
7771 
7772 	err = pci_request_regions(h->pdev, HPSA);
7773 	if (err) {
7774 		dev_err(&h->pdev->dev,
7775 			"failed to obtain PCI resources\n");
7776 		pci_disable_device(h->pdev);
7777 		return err;
7778 	}
7779 
7780 	pci_set_master(h->pdev);
7781 
7782 	err = hpsa_interrupt_mode(h);
7783 	if (err)
7784 		goto clean1;
7785 
7786 	/* setup mapping between CPU and reply queue */
7787 	hpsa_setup_reply_map(h);
7788 
7789 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7790 	if (err)
7791 		goto clean2;	/* intmode+region, pci */
7792 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7793 	if (!h->vaddr) {
7794 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7795 		err = -ENOMEM;
7796 		goto clean2;	/* intmode+region, pci */
7797 	}
7798 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7799 	if (err)
7800 		goto clean3;	/* vaddr, intmode+region, pci */
7801 	err = hpsa_find_cfgtables(h);
7802 	if (err)
7803 		goto clean3;	/* vaddr, intmode+region, pci */
7804 	hpsa_find_board_params(h);
7805 
7806 	if (!hpsa_CISS_signature_present(h)) {
7807 		err = -ENODEV;
7808 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7809 	}
7810 	hpsa_set_driver_support_bits(h);
7811 	hpsa_p600_dma_prefetch_quirk(h);
7812 	err = hpsa_enter_simple_mode(h);
7813 	if (err)
7814 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7815 	return 0;
7816 
7817 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7818 	hpsa_free_cfgtables(h);
7819 clean3:	/* vaddr, intmode+region, pci */
7820 	iounmap(h->vaddr);
7821 	h->vaddr = NULL;
7822 clean2:	/* intmode+region, pci */
7823 	hpsa_disable_interrupt_mode(h);
7824 clean1:
7825 	/*
7826 	 * call pci_disable_device before pci_release_regions per
7827 	 * Documentation/PCI/pci.txt
7828 	 */
7829 	pci_disable_device(h->pdev);
7830 	pci_release_regions(h->pdev);
7831 	return err;
7832 }
7833 
7834 static void hpsa_hba_inquiry(struct ctlr_info *h)
7835 {
7836 	int rc;
7837 
7838 #define HBA_INQUIRY_BYTE_COUNT 64
7839 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7840 	if (!h->hba_inquiry_data)
7841 		return;
7842 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7843 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7844 	if (rc != 0) {
7845 		kfree(h->hba_inquiry_data);
7846 		h->hba_inquiry_data = NULL;
7847 	}
7848 }
7849 
7850 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7851 {
7852 	int rc, i;
7853 	void __iomem *vaddr;
7854 
7855 	if (!reset_devices)
7856 		return 0;
7857 
7858 	/* kdump kernel is loading, we don't know in which state is
7859 	 * the pci interface. The dev->enable_cnt is equal zero
7860 	 * so we call enable+disable, wait a while and switch it on.
7861 	 */
7862 	rc = pci_enable_device(pdev);
7863 	if (rc) {
7864 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7865 		return -ENODEV;
7866 	}
7867 	pci_disable_device(pdev);
7868 	msleep(260);			/* a randomly chosen number */
7869 	rc = pci_enable_device(pdev);
7870 	if (rc) {
7871 		dev_warn(&pdev->dev, "failed to enable device.\n");
7872 		return -ENODEV;
7873 	}
7874 
7875 	pci_set_master(pdev);
7876 
7877 	vaddr = pci_ioremap_bar(pdev, 0);
7878 	if (vaddr == NULL) {
7879 		rc = -ENOMEM;
7880 		goto out_disable;
7881 	}
7882 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7883 	iounmap(vaddr);
7884 
7885 	/* Reset the controller with a PCI power-cycle or via doorbell */
7886 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7887 
7888 	/* -ENOTSUPP here means we cannot reset the controller
7889 	 * but it's already (and still) up and running in
7890 	 * "performant mode".  Or, it might be 640x, which can't reset
7891 	 * due to concerns about shared bbwc between 6402/6404 pair.
7892 	 */
7893 	if (rc)
7894 		goto out_disable;
7895 
7896 	/* Now try to get the controller to respond to a no-op */
7897 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7898 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7899 		if (hpsa_noop(pdev) == 0)
7900 			break;
7901 		else
7902 			dev_warn(&pdev->dev, "no-op failed%s\n",
7903 					(i < 11 ? "; re-trying" : ""));
7904 	}
7905 
7906 out_disable:
7907 
7908 	pci_disable_device(pdev);
7909 	return rc;
7910 }
7911 
7912 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7913 {
7914 	kfree(h->cmd_pool_bits);
7915 	h->cmd_pool_bits = NULL;
7916 	if (h->cmd_pool) {
7917 		pci_free_consistent(h->pdev,
7918 				h->nr_cmds * sizeof(struct CommandList),
7919 				h->cmd_pool,
7920 				h->cmd_pool_dhandle);
7921 		h->cmd_pool = NULL;
7922 		h->cmd_pool_dhandle = 0;
7923 	}
7924 	if (h->errinfo_pool) {
7925 		pci_free_consistent(h->pdev,
7926 				h->nr_cmds * sizeof(struct ErrorInfo),
7927 				h->errinfo_pool,
7928 				h->errinfo_pool_dhandle);
7929 		h->errinfo_pool = NULL;
7930 		h->errinfo_pool_dhandle = 0;
7931 	}
7932 }
7933 
7934 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7935 {
7936 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7937 				   sizeof(unsigned long),
7938 				   GFP_KERNEL);
7939 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7940 		    h->nr_cmds * sizeof(*h->cmd_pool),
7941 		    &(h->cmd_pool_dhandle));
7942 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7943 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7944 		    &(h->errinfo_pool_dhandle));
7945 	if ((h->cmd_pool_bits == NULL)
7946 	    || (h->cmd_pool == NULL)
7947 	    || (h->errinfo_pool == NULL)) {
7948 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7949 		goto clean_up;
7950 	}
7951 	hpsa_preinitialize_commands(h);
7952 	return 0;
7953 clean_up:
7954 	hpsa_free_cmd_pool(h);
7955 	return -ENOMEM;
7956 }
7957 
7958 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7959 static void hpsa_free_irqs(struct ctlr_info *h)
7960 {
7961 	int i;
7962 
7963 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7964 		/* Single reply queue, only one irq to free */
7965 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7966 		h->q[h->intr_mode] = 0;
7967 		return;
7968 	}
7969 
7970 	for (i = 0; i < h->msix_vectors; i++) {
7971 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7972 		h->q[i] = 0;
7973 	}
7974 	for (; i < MAX_REPLY_QUEUES; i++)
7975 		h->q[i] = 0;
7976 }
7977 
7978 /* returns 0 on success; cleans up and returns -Enn on error */
7979 static int hpsa_request_irqs(struct ctlr_info *h,
7980 	irqreturn_t (*msixhandler)(int, void *),
7981 	irqreturn_t (*intxhandler)(int, void *))
7982 {
7983 	int rc, i;
7984 
7985 	/*
7986 	 * initialize h->q[x] = x so that interrupt handlers know which
7987 	 * queue to process.
7988 	 */
7989 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7990 		h->q[i] = (u8) i;
7991 
7992 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7993 		/* If performant mode and MSI-X, use multiple reply queues */
7994 		for (i = 0; i < h->msix_vectors; i++) {
7995 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7996 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7997 					0, h->intrname[i],
7998 					&h->q[i]);
7999 			if (rc) {
8000 				int j;
8001 
8002 				dev_err(&h->pdev->dev,
8003 					"failed to get irq %d for %s\n",
8004 				       pci_irq_vector(h->pdev, i), h->devname);
8005 				for (j = 0; j < i; j++) {
8006 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8007 					h->q[j] = 0;
8008 				}
8009 				for (; j < MAX_REPLY_QUEUES; j++)
8010 					h->q[j] = 0;
8011 				return rc;
8012 			}
8013 		}
8014 	} else {
8015 		/* Use single reply pool */
8016 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8017 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8018 				h->msix_vectors ? "x" : "");
8019 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8020 				msixhandler, 0,
8021 				h->intrname[0],
8022 				&h->q[h->intr_mode]);
8023 		} else {
8024 			sprintf(h->intrname[h->intr_mode],
8025 				"%s-intx", h->devname);
8026 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8027 				intxhandler, IRQF_SHARED,
8028 				h->intrname[0],
8029 				&h->q[h->intr_mode]);
8030 		}
8031 	}
8032 	if (rc) {
8033 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8034 		       pci_irq_vector(h->pdev, 0), h->devname);
8035 		hpsa_free_irqs(h);
8036 		return -ENODEV;
8037 	}
8038 	return 0;
8039 }
8040 
8041 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8042 {
8043 	int rc;
8044 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8045 
8046 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8047 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8048 	if (rc) {
8049 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8050 		return rc;
8051 	}
8052 
8053 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8054 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8055 	if (rc) {
8056 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8057 			"after soft reset.\n");
8058 		return rc;
8059 	}
8060 
8061 	return 0;
8062 }
8063 
8064 static void hpsa_free_reply_queues(struct ctlr_info *h)
8065 {
8066 	int i;
8067 
8068 	for (i = 0; i < h->nreply_queues; i++) {
8069 		if (!h->reply_queue[i].head)
8070 			continue;
8071 		pci_free_consistent(h->pdev,
8072 					h->reply_queue_size,
8073 					h->reply_queue[i].head,
8074 					h->reply_queue[i].busaddr);
8075 		h->reply_queue[i].head = NULL;
8076 		h->reply_queue[i].busaddr = 0;
8077 	}
8078 	h->reply_queue_size = 0;
8079 }
8080 
8081 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8082 {
8083 	hpsa_free_performant_mode(h);		/* init_one 7 */
8084 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8085 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8086 	hpsa_free_irqs(h);			/* init_one 4 */
8087 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8088 	h->scsi_host = NULL;			/* init_one 3 */
8089 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8090 	free_percpu(h->lockup_detected);	/* init_one 2 */
8091 	h->lockup_detected = NULL;		/* init_one 2 */
8092 	if (h->resubmit_wq) {
8093 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8094 		h->resubmit_wq = NULL;
8095 	}
8096 	if (h->rescan_ctlr_wq) {
8097 		destroy_workqueue(h->rescan_ctlr_wq);
8098 		h->rescan_ctlr_wq = NULL;
8099 	}
8100 	kfree(h);				/* init_one 1 */
8101 }
8102 
8103 /* Called when controller lockup detected. */
8104 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8105 {
8106 	int i, refcount;
8107 	struct CommandList *c;
8108 	int failcount = 0;
8109 
8110 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8111 	for (i = 0; i < h->nr_cmds; i++) {
8112 		c = h->cmd_pool + i;
8113 		refcount = atomic_inc_return(&c->refcount);
8114 		if (refcount > 1) {
8115 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8116 			finish_cmd(c);
8117 			atomic_dec(&h->commands_outstanding);
8118 			failcount++;
8119 		}
8120 		cmd_free(h, c);
8121 	}
8122 	dev_warn(&h->pdev->dev,
8123 		"failed %d commands in fail_all\n", failcount);
8124 }
8125 
8126 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8127 {
8128 	int cpu;
8129 
8130 	for_each_online_cpu(cpu) {
8131 		u32 *lockup_detected;
8132 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8133 		*lockup_detected = value;
8134 	}
8135 	wmb(); /* be sure the per-cpu variables are out to memory */
8136 }
8137 
8138 static void controller_lockup_detected(struct ctlr_info *h)
8139 {
8140 	unsigned long flags;
8141 	u32 lockup_detected;
8142 
8143 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8144 	spin_lock_irqsave(&h->lock, flags);
8145 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8146 	if (!lockup_detected) {
8147 		/* no heartbeat, but controller gave us a zero. */
8148 		dev_warn(&h->pdev->dev,
8149 			"lockup detected after %d but scratchpad register is zero\n",
8150 			h->heartbeat_sample_interval / HZ);
8151 		lockup_detected = 0xffffffff;
8152 	}
8153 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8154 	spin_unlock_irqrestore(&h->lock, flags);
8155 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8156 			lockup_detected, h->heartbeat_sample_interval / HZ);
8157 	if (lockup_detected == 0xffff0000) {
8158 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8159 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8160 	}
8161 	pci_disable_device(h->pdev);
8162 	fail_all_outstanding_cmds(h);
8163 }
8164 
8165 static int detect_controller_lockup(struct ctlr_info *h)
8166 {
8167 	u64 now;
8168 	u32 heartbeat;
8169 	unsigned long flags;
8170 
8171 	now = get_jiffies_64();
8172 	/* If we've received an interrupt recently, we're ok. */
8173 	if (time_after64(h->last_intr_timestamp +
8174 				(h->heartbeat_sample_interval), now))
8175 		return false;
8176 
8177 	/*
8178 	 * If we've already checked the heartbeat recently, we're ok.
8179 	 * This could happen if someone sends us a signal. We
8180 	 * otherwise don't care about signals in this thread.
8181 	 */
8182 	if (time_after64(h->last_heartbeat_timestamp +
8183 				(h->heartbeat_sample_interval), now))
8184 		return false;
8185 
8186 	/* If heartbeat has not changed since we last looked, we're not ok. */
8187 	spin_lock_irqsave(&h->lock, flags);
8188 	heartbeat = readl(&h->cfgtable->HeartBeat);
8189 	spin_unlock_irqrestore(&h->lock, flags);
8190 	if (h->last_heartbeat == heartbeat) {
8191 		controller_lockup_detected(h);
8192 		return true;
8193 	}
8194 
8195 	/* We're ok. */
8196 	h->last_heartbeat = heartbeat;
8197 	h->last_heartbeat_timestamp = now;
8198 	return false;
8199 }
8200 
8201 /*
8202  * Set ioaccel status for all ioaccel volumes.
8203  *
8204  * Called from monitor controller worker (hpsa_event_monitor_worker)
8205  *
8206  * A Volume (or Volumes that comprise an Array set may be undergoing a
8207  * transformation, so we will be turning off ioaccel for all volumes that
8208  * make up the Array.
8209  */
8210 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8211 {
8212 	int rc;
8213 	int i;
8214 	u8 ioaccel_status;
8215 	unsigned char *buf;
8216 	struct hpsa_scsi_dev_t *device;
8217 
8218 	if (!h)
8219 		return;
8220 
8221 	buf = kmalloc(64, GFP_KERNEL);
8222 	if (!buf)
8223 		return;
8224 
8225 	/*
8226 	 * Run through current device list used during I/O requests.
8227 	 */
8228 	for (i = 0; i < h->ndevices; i++) {
8229 		device = h->dev[i];
8230 
8231 		if (!device)
8232 			continue;
8233 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8234 						HPSA_VPD_LV_IOACCEL_STATUS))
8235 			continue;
8236 
8237 		memset(buf, 0, 64);
8238 
8239 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8240 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8241 					buf, 64);
8242 		if (rc != 0)
8243 			continue;
8244 
8245 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8246 		device->offload_config =
8247 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8248 		if (device->offload_config)
8249 			device->offload_to_be_enabled =
8250 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8251 
8252 		/*
8253 		 * Immediately turn off ioaccel for any volume the
8254 		 * controller tells us to. Some of the reasons could be:
8255 		 *    transformation - change to the LVs of an Array.
8256 		 *    degraded volume - component failure
8257 		 *
8258 		 * If ioaccel is to be re-enabled, re-enable later during the
8259 		 * scan operation so the driver can get a fresh raidmap
8260 		 * before turning ioaccel back on.
8261 		 *
8262 		 */
8263 		if (!device->offload_to_be_enabled)
8264 			device->offload_enabled = 0;
8265 	}
8266 
8267 	kfree(buf);
8268 }
8269 
8270 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8271 {
8272 	char *event_type;
8273 
8274 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8275 		return;
8276 
8277 	/* Ask the controller to clear the events we're handling. */
8278 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8279 			| CFGTBL_Trans_io_accel2)) &&
8280 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8281 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8282 
8283 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8284 			event_type = "state change";
8285 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8286 			event_type = "configuration change";
8287 		/* Stop sending new RAID offload reqs via the IO accelerator */
8288 		scsi_block_requests(h->scsi_host);
8289 		hpsa_set_ioaccel_status(h);
8290 		hpsa_drain_accel_commands(h);
8291 		/* Set 'accelerator path config change' bit */
8292 		dev_warn(&h->pdev->dev,
8293 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8294 			h->events, event_type);
8295 		writel(h->events, &(h->cfgtable->clear_event_notify));
8296 		/* Set the "clear event notify field update" bit 6 */
8297 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8298 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8299 		hpsa_wait_for_clear_event_notify_ack(h);
8300 		scsi_unblock_requests(h->scsi_host);
8301 	} else {
8302 		/* Acknowledge controller notification events. */
8303 		writel(h->events, &(h->cfgtable->clear_event_notify));
8304 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8305 		hpsa_wait_for_clear_event_notify_ack(h);
8306 	}
8307 	return;
8308 }
8309 
8310 /* Check a register on the controller to see if there are configuration
8311  * changes (added/changed/removed logical drives, etc.) which mean that
8312  * we should rescan the controller for devices.
8313  * Also check flag for driver-initiated rescan.
8314  */
8315 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8316 {
8317 	if (h->drv_req_rescan) {
8318 		h->drv_req_rescan = 0;
8319 		return 1;
8320 	}
8321 
8322 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8323 		return 0;
8324 
8325 	h->events = readl(&(h->cfgtable->event_notify));
8326 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8327 }
8328 
8329 /*
8330  * Check if any of the offline devices have become ready
8331  */
8332 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8333 {
8334 	unsigned long flags;
8335 	struct offline_device_entry *d;
8336 	struct list_head *this, *tmp;
8337 
8338 	spin_lock_irqsave(&h->offline_device_lock, flags);
8339 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8340 		d = list_entry(this, struct offline_device_entry,
8341 				offline_list);
8342 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8343 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8344 			spin_lock_irqsave(&h->offline_device_lock, flags);
8345 			list_del(&d->offline_list);
8346 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347 			return 1;
8348 		}
8349 		spin_lock_irqsave(&h->offline_device_lock, flags);
8350 	}
8351 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8352 	return 0;
8353 }
8354 
8355 static int hpsa_luns_changed(struct ctlr_info *h)
8356 {
8357 	int rc = 1; /* assume there are changes */
8358 	struct ReportLUNdata *logdev = NULL;
8359 
8360 	/* if we can't find out if lun data has changed,
8361 	 * assume that it has.
8362 	 */
8363 
8364 	if (!h->lastlogicals)
8365 		return rc;
8366 
8367 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8368 	if (!logdev)
8369 		return rc;
8370 
8371 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8372 		dev_warn(&h->pdev->dev,
8373 			"report luns failed, can't track lun changes.\n");
8374 		goto out;
8375 	}
8376 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8377 		dev_info(&h->pdev->dev,
8378 			"Lun changes detected.\n");
8379 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8380 		goto out;
8381 	} else
8382 		rc = 0; /* no changes detected. */
8383 out:
8384 	kfree(logdev);
8385 	return rc;
8386 }
8387 
8388 static void hpsa_perform_rescan(struct ctlr_info *h)
8389 {
8390 	struct Scsi_Host *sh = NULL;
8391 	unsigned long flags;
8392 
8393 	/*
8394 	 * Do the scan after the reset
8395 	 */
8396 	spin_lock_irqsave(&h->reset_lock, flags);
8397 	if (h->reset_in_progress) {
8398 		h->drv_req_rescan = 1;
8399 		spin_unlock_irqrestore(&h->reset_lock, flags);
8400 		return;
8401 	}
8402 	spin_unlock_irqrestore(&h->reset_lock, flags);
8403 
8404 	sh = scsi_host_get(h->scsi_host);
8405 	if (sh != NULL) {
8406 		hpsa_scan_start(sh);
8407 		scsi_host_put(sh);
8408 		h->drv_req_rescan = 0;
8409 	}
8410 }
8411 
8412 /*
8413  * watch for controller events
8414  */
8415 static void hpsa_event_monitor_worker(struct work_struct *work)
8416 {
8417 	struct ctlr_info *h = container_of(to_delayed_work(work),
8418 					struct ctlr_info, event_monitor_work);
8419 	unsigned long flags;
8420 
8421 	spin_lock_irqsave(&h->lock, flags);
8422 	if (h->remove_in_progress) {
8423 		spin_unlock_irqrestore(&h->lock, flags);
8424 		return;
8425 	}
8426 	spin_unlock_irqrestore(&h->lock, flags);
8427 
8428 	if (hpsa_ctlr_needs_rescan(h)) {
8429 		hpsa_ack_ctlr_events(h);
8430 		hpsa_perform_rescan(h);
8431 	}
8432 
8433 	spin_lock_irqsave(&h->lock, flags);
8434 	if (!h->remove_in_progress)
8435 		schedule_delayed_work(&h->event_monitor_work,
8436 					HPSA_EVENT_MONITOR_INTERVAL);
8437 	spin_unlock_irqrestore(&h->lock, flags);
8438 }
8439 
8440 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8441 {
8442 	unsigned long flags;
8443 	struct ctlr_info *h = container_of(to_delayed_work(work),
8444 					struct ctlr_info, rescan_ctlr_work);
8445 
8446 	spin_lock_irqsave(&h->lock, flags);
8447 	if (h->remove_in_progress) {
8448 		spin_unlock_irqrestore(&h->lock, flags);
8449 		return;
8450 	}
8451 	spin_unlock_irqrestore(&h->lock, flags);
8452 
8453 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8454 		hpsa_perform_rescan(h);
8455 	} else if (h->discovery_polling) {
8456 		if (hpsa_luns_changed(h)) {
8457 			dev_info(&h->pdev->dev,
8458 				"driver discovery polling rescan.\n");
8459 			hpsa_perform_rescan(h);
8460 		}
8461 	}
8462 	spin_lock_irqsave(&h->lock, flags);
8463 	if (!h->remove_in_progress)
8464 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8465 				h->heartbeat_sample_interval);
8466 	spin_unlock_irqrestore(&h->lock, flags);
8467 }
8468 
8469 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8470 {
8471 	unsigned long flags;
8472 	struct ctlr_info *h = container_of(to_delayed_work(work),
8473 					struct ctlr_info, monitor_ctlr_work);
8474 
8475 	detect_controller_lockup(h);
8476 	if (lockup_detected(h))
8477 		return;
8478 
8479 	spin_lock_irqsave(&h->lock, flags);
8480 	if (!h->remove_in_progress)
8481 		schedule_delayed_work(&h->monitor_ctlr_work,
8482 				h->heartbeat_sample_interval);
8483 	spin_unlock_irqrestore(&h->lock, flags);
8484 }
8485 
8486 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8487 						char *name)
8488 {
8489 	struct workqueue_struct *wq = NULL;
8490 
8491 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8492 	if (!wq)
8493 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8494 
8495 	return wq;
8496 }
8497 
8498 static void hpda_free_ctlr_info(struct ctlr_info *h)
8499 {
8500 	kfree(h->reply_map);
8501 	kfree(h);
8502 }
8503 
8504 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8505 {
8506 	struct ctlr_info *h;
8507 
8508 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8509 	if (!h)
8510 		return NULL;
8511 
8512 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8513 	if (!h->reply_map) {
8514 		kfree(h);
8515 		return NULL;
8516 	}
8517 	return h;
8518 }
8519 
8520 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8521 {
8522 	int dac, rc;
8523 	struct ctlr_info *h;
8524 	int try_soft_reset = 0;
8525 	unsigned long flags;
8526 	u32 board_id;
8527 
8528 	if (number_of_controllers == 0)
8529 		printk(KERN_INFO DRIVER_NAME "\n");
8530 
8531 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8532 	if (rc < 0) {
8533 		dev_warn(&pdev->dev, "Board ID not found\n");
8534 		return rc;
8535 	}
8536 
8537 	rc = hpsa_init_reset_devices(pdev, board_id);
8538 	if (rc) {
8539 		if (rc != -ENOTSUPP)
8540 			return rc;
8541 		/* If the reset fails in a particular way (it has no way to do
8542 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8543 		 * a soft reset once we get the controller configured up to the
8544 		 * point that it can accept a command.
8545 		 */
8546 		try_soft_reset = 1;
8547 		rc = 0;
8548 	}
8549 
8550 reinit_after_soft_reset:
8551 
8552 	/* Command structures must be aligned on a 32-byte boundary because
8553 	 * the 5 lower bits of the address are used by the hardware. and by
8554 	 * the driver.  See comments in hpsa.h for more info.
8555 	 */
8556 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8557 	h = hpda_alloc_ctlr_info();
8558 	if (!h) {
8559 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8560 		return -ENOMEM;
8561 	}
8562 
8563 	h->pdev = pdev;
8564 
8565 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8566 	INIT_LIST_HEAD(&h->offline_device_list);
8567 	spin_lock_init(&h->lock);
8568 	spin_lock_init(&h->offline_device_lock);
8569 	spin_lock_init(&h->scan_lock);
8570 	spin_lock_init(&h->reset_lock);
8571 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8572 
8573 	/* Allocate and clear per-cpu variable lockup_detected */
8574 	h->lockup_detected = alloc_percpu(u32);
8575 	if (!h->lockup_detected) {
8576 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8577 		rc = -ENOMEM;
8578 		goto clean1;	/* aer/h */
8579 	}
8580 	set_lockup_detected_for_all_cpus(h, 0);
8581 
8582 	rc = hpsa_pci_init(h);
8583 	if (rc)
8584 		goto clean2;	/* lu, aer/h */
8585 
8586 	/* relies on h-> settings made by hpsa_pci_init, including
8587 	 * interrupt_mode h->intr */
8588 	rc = hpsa_scsi_host_alloc(h);
8589 	if (rc)
8590 		goto clean2_5;	/* pci, lu, aer/h */
8591 
8592 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8593 	h->ctlr = number_of_controllers;
8594 	number_of_controllers++;
8595 
8596 	/* configure PCI DMA stuff */
8597 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8598 	if (rc == 0) {
8599 		dac = 1;
8600 	} else {
8601 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8602 		if (rc == 0) {
8603 			dac = 0;
8604 		} else {
8605 			dev_err(&pdev->dev, "no suitable DMA available\n");
8606 			goto clean3;	/* shost, pci, lu, aer/h */
8607 		}
8608 	}
8609 
8610 	/* make sure the board interrupts are off */
8611 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8612 
8613 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8614 	if (rc)
8615 		goto clean3;	/* shost, pci, lu, aer/h */
8616 	rc = hpsa_alloc_cmd_pool(h);
8617 	if (rc)
8618 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8619 	rc = hpsa_alloc_sg_chain_blocks(h);
8620 	if (rc)
8621 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8622 	init_waitqueue_head(&h->scan_wait_queue);
8623 	init_waitqueue_head(&h->event_sync_wait_queue);
8624 	mutex_init(&h->reset_mutex);
8625 	h->scan_finished = 1; /* no scan currently in progress */
8626 	h->scan_waiting = 0;
8627 
8628 	pci_set_drvdata(pdev, h);
8629 	h->ndevices = 0;
8630 
8631 	spin_lock_init(&h->devlock);
8632 	rc = hpsa_put_ctlr_into_performant_mode(h);
8633 	if (rc)
8634 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8635 
8636 	/* create the resubmit workqueue */
8637 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8638 	if (!h->rescan_ctlr_wq) {
8639 		rc = -ENOMEM;
8640 		goto clean7;
8641 	}
8642 
8643 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8644 	if (!h->resubmit_wq) {
8645 		rc = -ENOMEM;
8646 		goto clean7;	/* aer/h */
8647 	}
8648 
8649 	/*
8650 	 * At this point, the controller is ready to take commands.
8651 	 * Now, if reset_devices and the hard reset didn't work, try
8652 	 * the soft reset and see if that works.
8653 	 */
8654 	if (try_soft_reset) {
8655 
8656 		/* This is kind of gross.  We may or may not get a completion
8657 		 * from the soft reset command, and if we do, then the value
8658 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8659 		 * after the reset throwing away any completions we get during
8660 		 * that time.  Unregister the interrupt handler and register
8661 		 * fake ones to scoop up any residual completions.
8662 		 */
8663 		spin_lock_irqsave(&h->lock, flags);
8664 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8665 		spin_unlock_irqrestore(&h->lock, flags);
8666 		hpsa_free_irqs(h);
8667 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8668 					hpsa_intx_discard_completions);
8669 		if (rc) {
8670 			dev_warn(&h->pdev->dev,
8671 				"Failed to request_irq after soft reset.\n");
8672 			/*
8673 			 * cannot goto clean7 or free_irqs will be called
8674 			 * again. Instead, do its work
8675 			 */
8676 			hpsa_free_performant_mode(h);	/* clean7 */
8677 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8678 			hpsa_free_cmd_pool(h);		/* clean5 */
8679 			/*
8680 			 * skip hpsa_free_irqs(h) clean4 since that
8681 			 * was just called before request_irqs failed
8682 			 */
8683 			goto clean3;
8684 		}
8685 
8686 		rc = hpsa_kdump_soft_reset(h);
8687 		if (rc)
8688 			/* Neither hard nor soft reset worked, we're hosed. */
8689 			goto clean7;
8690 
8691 		dev_info(&h->pdev->dev, "Board READY.\n");
8692 		dev_info(&h->pdev->dev,
8693 			"Waiting for stale completions to drain.\n");
8694 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8695 		msleep(10000);
8696 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8697 
8698 		rc = controller_reset_failed(h->cfgtable);
8699 		if (rc)
8700 			dev_info(&h->pdev->dev,
8701 				"Soft reset appears to have failed.\n");
8702 
8703 		/* since the controller's reset, we have to go back and re-init
8704 		 * everything.  Easiest to just forget what we've done and do it
8705 		 * all over again.
8706 		 */
8707 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8708 		try_soft_reset = 0;
8709 		if (rc)
8710 			/* don't goto clean, we already unallocated */
8711 			return -ENODEV;
8712 
8713 		goto reinit_after_soft_reset;
8714 	}
8715 
8716 	/* Enable Accelerated IO path at driver layer */
8717 	h->acciopath_status = 1;
8718 	/* Disable discovery polling.*/
8719 	h->discovery_polling = 0;
8720 
8721 
8722 	/* Turn the interrupts on so we can service requests */
8723 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8724 
8725 	hpsa_hba_inquiry(h);
8726 
8727 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8728 	if (!h->lastlogicals)
8729 		dev_info(&h->pdev->dev,
8730 			"Can't track change to report lun data\n");
8731 
8732 	/* hook into SCSI subsystem */
8733 	rc = hpsa_scsi_add_host(h);
8734 	if (rc)
8735 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8736 
8737 	/* Monitor the controller for firmware lockups */
8738 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8739 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8740 	schedule_delayed_work(&h->monitor_ctlr_work,
8741 				h->heartbeat_sample_interval);
8742 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8743 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8744 				h->heartbeat_sample_interval);
8745 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8746 	schedule_delayed_work(&h->event_monitor_work,
8747 				HPSA_EVENT_MONITOR_INTERVAL);
8748 	return 0;
8749 
8750 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8751 	hpsa_free_performant_mode(h);
8752 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8754 	hpsa_free_sg_chain_blocks(h);
8755 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8756 	hpsa_free_cmd_pool(h);
8757 clean4: /* irq, shost, pci, lu, aer/h */
8758 	hpsa_free_irqs(h);
8759 clean3: /* shost, pci, lu, aer/h */
8760 	scsi_host_put(h->scsi_host);
8761 	h->scsi_host = NULL;
8762 clean2_5: /* pci, lu, aer/h */
8763 	hpsa_free_pci_init(h);
8764 clean2: /* lu, aer/h */
8765 	if (h->lockup_detected) {
8766 		free_percpu(h->lockup_detected);
8767 		h->lockup_detected = NULL;
8768 	}
8769 clean1:	/* wq/aer/h */
8770 	if (h->resubmit_wq) {
8771 		destroy_workqueue(h->resubmit_wq);
8772 		h->resubmit_wq = NULL;
8773 	}
8774 	if (h->rescan_ctlr_wq) {
8775 		destroy_workqueue(h->rescan_ctlr_wq);
8776 		h->rescan_ctlr_wq = NULL;
8777 	}
8778 	kfree(h);
8779 	return rc;
8780 }
8781 
8782 static void hpsa_flush_cache(struct ctlr_info *h)
8783 {
8784 	char *flush_buf;
8785 	struct CommandList *c;
8786 	int rc;
8787 
8788 	if (unlikely(lockup_detected(h)))
8789 		return;
8790 	flush_buf = kzalloc(4, GFP_KERNEL);
8791 	if (!flush_buf)
8792 		return;
8793 
8794 	c = cmd_alloc(h);
8795 
8796 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8797 		RAID_CTLR_LUNID, TYPE_CMD)) {
8798 		goto out;
8799 	}
8800 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8801 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8802 	if (rc)
8803 		goto out;
8804 	if (c->err_info->CommandStatus != 0)
8805 out:
8806 		dev_warn(&h->pdev->dev,
8807 			"error flushing cache on controller\n");
8808 	cmd_free(h, c);
8809 	kfree(flush_buf);
8810 }
8811 
8812 /* Make controller gather fresh report lun data each time we
8813  * send down a report luns request
8814  */
8815 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8816 {
8817 	u32 *options;
8818 	struct CommandList *c;
8819 	int rc;
8820 
8821 	/* Don't bother trying to set diag options if locked up */
8822 	if (unlikely(h->lockup_detected))
8823 		return;
8824 
8825 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8826 	if (!options)
8827 		return;
8828 
8829 	c = cmd_alloc(h);
8830 
8831 	/* first, get the current diag options settings */
8832 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8833 		RAID_CTLR_LUNID, TYPE_CMD))
8834 		goto errout;
8835 
8836 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8837 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8838 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8839 		goto errout;
8840 
8841 	/* Now, set the bit for disabling the RLD caching */
8842 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8843 
8844 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8845 		RAID_CTLR_LUNID, TYPE_CMD))
8846 		goto errout;
8847 
8848 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8849 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8850 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8851 		goto errout;
8852 
8853 	/* Now verify that it got set: */
8854 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8855 		RAID_CTLR_LUNID, TYPE_CMD))
8856 		goto errout;
8857 
8858 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8859 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8860 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8861 		goto errout;
8862 
8863 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8864 		goto out;
8865 
8866 errout:
8867 	dev_err(&h->pdev->dev,
8868 			"Error: failed to disable report lun data caching.\n");
8869 out:
8870 	cmd_free(h, c);
8871 	kfree(options);
8872 }
8873 
8874 static void __hpsa_shutdown(struct pci_dev *pdev)
8875 {
8876 	struct ctlr_info *h;
8877 
8878 	h = pci_get_drvdata(pdev);
8879 	/* Turn board interrupts off  and send the flush cache command
8880 	 * sendcmd will turn off interrupt, and send the flush...
8881 	 * To write all data in the battery backed cache to disks
8882 	 */
8883 	hpsa_flush_cache(h);
8884 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8885 	hpsa_free_irqs(h);			/* init_one 4 */
8886 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8887 }
8888 
8889 static void hpsa_shutdown(struct pci_dev *pdev)
8890 {
8891 	__hpsa_shutdown(pdev);
8892 	pci_disable_device(pdev);
8893 }
8894 
8895 static void hpsa_free_device_info(struct ctlr_info *h)
8896 {
8897 	int i;
8898 
8899 	for (i = 0; i < h->ndevices; i++) {
8900 		kfree(h->dev[i]);
8901 		h->dev[i] = NULL;
8902 	}
8903 }
8904 
8905 static void hpsa_remove_one(struct pci_dev *pdev)
8906 {
8907 	struct ctlr_info *h;
8908 	unsigned long flags;
8909 
8910 	if (pci_get_drvdata(pdev) == NULL) {
8911 		dev_err(&pdev->dev, "unable to remove device\n");
8912 		return;
8913 	}
8914 	h = pci_get_drvdata(pdev);
8915 
8916 	/* Get rid of any controller monitoring work items */
8917 	spin_lock_irqsave(&h->lock, flags);
8918 	h->remove_in_progress = 1;
8919 	spin_unlock_irqrestore(&h->lock, flags);
8920 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8921 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8922 	cancel_delayed_work_sync(&h->event_monitor_work);
8923 	destroy_workqueue(h->rescan_ctlr_wq);
8924 	destroy_workqueue(h->resubmit_wq);
8925 
8926 	hpsa_delete_sas_host(h);
8927 
8928 	/*
8929 	 * Call before disabling interrupts.
8930 	 * scsi_remove_host can trigger I/O operations especially
8931 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8932 	 * operations which cannot complete and will hang the system.
8933 	 */
8934 	if (h->scsi_host)
8935 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8936 	/* includes hpsa_free_irqs - init_one 4 */
8937 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8938 	__hpsa_shutdown(pdev);
8939 
8940 	hpsa_free_device_info(h);		/* scan */
8941 
8942 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8943 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8944 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8945 	hpsa_free_performant_mode(h);			/* init_one 7 */
8946 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8947 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8948 	kfree(h->lastlogicals);
8949 
8950 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8951 
8952 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8953 	h->scsi_host = NULL;				/* init_one 3 */
8954 
8955 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8956 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8957 
8958 	free_percpu(h->lockup_detected);		/* init_one 2 */
8959 	h->lockup_detected = NULL;			/* init_one 2 */
8960 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8961 
8962 	hpda_free_ctlr_info(h);				/* init_one 1 */
8963 }
8964 
8965 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8966 	__attribute__((unused)) pm_message_t state)
8967 {
8968 	return -ENOSYS;
8969 }
8970 
8971 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8972 {
8973 	return -ENOSYS;
8974 }
8975 
8976 static struct pci_driver hpsa_pci_driver = {
8977 	.name = HPSA,
8978 	.probe = hpsa_init_one,
8979 	.remove = hpsa_remove_one,
8980 	.id_table = hpsa_pci_device_id,	/* id_table */
8981 	.shutdown = hpsa_shutdown,
8982 	.suspend = hpsa_suspend,
8983 	.resume = hpsa_resume,
8984 };
8985 
8986 /* Fill in bucket_map[], given nsgs (the max number of
8987  * scatter gather elements supported) and bucket[],
8988  * which is an array of 8 integers.  The bucket[] array
8989  * contains 8 different DMA transfer sizes (in 16
8990  * byte increments) which the controller uses to fetch
8991  * commands.  This function fills in bucket_map[], which
8992  * maps a given number of scatter gather elements to one of
8993  * the 8 DMA transfer sizes.  The point of it is to allow the
8994  * controller to only do as much DMA as needed to fetch the
8995  * command, with the DMA transfer size encoded in the lower
8996  * bits of the command address.
8997  */
8998 static void  calc_bucket_map(int bucket[], int num_buckets,
8999 	int nsgs, int min_blocks, u32 *bucket_map)
9000 {
9001 	int i, j, b, size;
9002 
9003 	/* Note, bucket_map must have nsgs+1 entries. */
9004 	for (i = 0; i <= nsgs; i++) {
9005 		/* Compute size of a command with i SG entries */
9006 		size = i + min_blocks;
9007 		b = num_buckets; /* Assume the biggest bucket */
9008 		/* Find the bucket that is just big enough */
9009 		for (j = 0; j < num_buckets; j++) {
9010 			if (bucket[j] >= size) {
9011 				b = j;
9012 				break;
9013 			}
9014 		}
9015 		/* for a command with i SG entries, use bucket b. */
9016 		bucket_map[i] = b;
9017 	}
9018 }
9019 
9020 /*
9021  * return -ENODEV on err, 0 on success (or no action)
9022  * allocates numerous items that must be freed later
9023  */
9024 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9025 {
9026 	int i;
9027 	unsigned long register_value;
9028 	unsigned long transMethod = CFGTBL_Trans_Performant |
9029 			(trans_support & CFGTBL_Trans_use_short_tags) |
9030 				CFGTBL_Trans_enable_directed_msix |
9031 			(trans_support & (CFGTBL_Trans_io_accel1 |
9032 				CFGTBL_Trans_io_accel2));
9033 	struct access_method access = SA5_performant_access;
9034 
9035 	/* This is a bit complicated.  There are 8 registers on
9036 	 * the controller which we write to to tell it 8 different
9037 	 * sizes of commands which there may be.  It's a way of
9038 	 * reducing the DMA done to fetch each command.  Encoded into
9039 	 * each command's tag are 3 bits which communicate to the controller
9040 	 * which of the eight sizes that command fits within.  The size of
9041 	 * each command depends on how many scatter gather entries there are.
9042 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9043 	 * with the number of 16-byte blocks a command of that size requires.
9044 	 * The smallest command possible requires 5 such 16 byte blocks.
9045 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9046 	 * blocks.  Note, this only extends to the SG entries contained
9047 	 * within the command block, and does not extend to chained blocks
9048 	 * of SG elements.   bft[] contains the eight values we write to
9049 	 * the registers.  They are not evenly distributed, but have more
9050 	 * sizes for small commands, and fewer sizes for larger commands.
9051 	 */
9052 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9053 #define MIN_IOACCEL2_BFT_ENTRY 5
9054 #define HPSA_IOACCEL2_HEADER_SZ 4
9055 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9056 			13, 14, 15, 16, 17, 18, 19,
9057 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9058 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9059 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9060 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9061 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9062 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9063 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9064 	/*  5 = 1 s/g entry or 4k
9065 	 *  6 = 2 s/g entry or 8k
9066 	 *  8 = 4 s/g entry or 16k
9067 	 * 10 = 6 s/g entry or 24k
9068 	 */
9069 
9070 	/* If the controller supports either ioaccel method then
9071 	 * we can also use the RAID stack submit path that does not
9072 	 * perform the superfluous readl() after each command submission.
9073 	 */
9074 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9075 		access = SA5_performant_access_no_read;
9076 
9077 	/* Controller spec: zero out this buffer. */
9078 	for (i = 0; i < h->nreply_queues; i++)
9079 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9080 
9081 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9082 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9083 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9084 	for (i = 0; i < 8; i++)
9085 		writel(bft[i], &h->transtable->BlockFetch[i]);
9086 
9087 	/* size of controller ring buffer */
9088 	writel(h->max_commands, &h->transtable->RepQSize);
9089 	writel(h->nreply_queues, &h->transtable->RepQCount);
9090 	writel(0, &h->transtable->RepQCtrAddrLow32);
9091 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9092 
9093 	for (i = 0; i < h->nreply_queues; i++) {
9094 		writel(0, &h->transtable->RepQAddr[i].upper);
9095 		writel(h->reply_queue[i].busaddr,
9096 			&h->transtable->RepQAddr[i].lower);
9097 	}
9098 
9099 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9100 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9101 	/*
9102 	 * enable outbound interrupt coalescing in accelerator mode;
9103 	 */
9104 	if (trans_support & CFGTBL_Trans_io_accel1) {
9105 		access = SA5_ioaccel_mode1_access;
9106 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9107 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9108 	} else
9109 		if (trans_support & CFGTBL_Trans_io_accel2)
9110 			access = SA5_ioaccel_mode2_access;
9111 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9112 	if (hpsa_wait_for_mode_change_ack(h)) {
9113 		dev_err(&h->pdev->dev,
9114 			"performant mode problem - doorbell timeout\n");
9115 		return -ENODEV;
9116 	}
9117 	register_value = readl(&(h->cfgtable->TransportActive));
9118 	if (!(register_value & CFGTBL_Trans_Performant)) {
9119 		dev_err(&h->pdev->dev,
9120 			"performant mode problem - transport not active\n");
9121 		return -ENODEV;
9122 	}
9123 	/* Change the access methods to the performant access methods */
9124 	h->access = access;
9125 	h->transMethod = transMethod;
9126 
9127 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9128 		(trans_support & CFGTBL_Trans_io_accel2)))
9129 		return 0;
9130 
9131 	if (trans_support & CFGTBL_Trans_io_accel1) {
9132 		/* Set up I/O accelerator mode */
9133 		for (i = 0; i < h->nreply_queues; i++) {
9134 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9135 			h->reply_queue[i].current_entry =
9136 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9137 		}
9138 		bft[7] = h->ioaccel_maxsg + 8;
9139 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9140 				h->ioaccel1_blockFetchTable);
9141 
9142 		/* initialize all reply queue entries to unused */
9143 		for (i = 0; i < h->nreply_queues; i++)
9144 			memset(h->reply_queue[i].head,
9145 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9146 				h->reply_queue_size);
9147 
9148 		/* set all the constant fields in the accelerator command
9149 		 * frames once at init time to save CPU cycles later.
9150 		 */
9151 		for (i = 0; i < h->nr_cmds; i++) {
9152 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9153 
9154 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9155 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9156 					(i * sizeof(struct ErrorInfo)));
9157 			cp->err_info_len = sizeof(struct ErrorInfo);
9158 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9159 			cp->host_context_flags =
9160 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9161 			cp->timeout_sec = 0;
9162 			cp->ReplyQueue = 0;
9163 			cp->tag =
9164 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9165 			cp->host_addr =
9166 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9167 					(i * sizeof(struct io_accel1_cmd)));
9168 		}
9169 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9170 		u64 cfg_offset, cfg_base_addr_index;
9171 		u32 bft2_offset, cfg_base_addr;
9172 		int rc;
9173 
9174 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9175 			&cfg_base_addr_index, &cfg_offset);
9176 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9177 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9178 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9179 				4, h->ioaccel2_blockFetchTable);
9180 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9181 		BUILD_BUG_ON(offsetof(struct CfgTable,
9182 				io_accel_request_size_offset) != 0xb8);
9183 		h->ioaccel2_bft2_regs =
9184 			remap_pci_mem(pci_resource_start(h->pdev,
9185 					cfg_base_addr_index) +
9186 					cfg_offset + bft2_offset,
9187 					ARRAY_SIZE(bft2) *
9188 					sizeof(*h->ioaccel2_bft2_regs));
9189 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9190 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9191 	}
9192 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9193 	if (hpsa_wait_for_mode_change_ack(h)) {
9194 		dev_err(&h->pdev->dev,
9195 			"performant mode problem - enabling ioaccel mode\n");
9196 		return -ENODEV;
9197 	}
9198 	return 0;
9199 }
9200 
9201 /* Free ioaccel1 mode command blocks and block fetch table */
9202 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9203 {
9204 	if (h->ioaccel_cmd_pool) {
9205 		pci_free_consistent(h->pdev,
9206 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9207 			h->ioaccel_cmd_pool,
9208 			h->ioaccel_cmd_pool_dhandle);
9209 		h->ioaccel_cmd_pool = NULL;
9210 		h->ioaccel_cmd_pool_dhandle = 0;
9211 	}
9212 	kfree(h->ioaccel1_blockFetchTable);
9213 	h->ioaccel1_blockFetchTable = NULL;
9214 }
9215 
9216 /* Allocate ioaccel1 mode command blocks and block fetch table */
9217 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9218 {
9219 	h->ioaccel_maxsg =
9220 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9221 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9222 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9223 
9224 	/* Command structures must be aligned on a 128-byte boundary
9225 	 * because the 7 lower bits of the address are used by the
9226 	 * hardware.
9227 	 */
9228 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9229 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9230 	h->ioaccel_cmd_pool =
9231 		pci_alloc_consistent(h->pdev,
9232 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9233 			&(h->ioaccel_cmd_pool_dhandle));
9234 
9235 	h->ioaccel1_blockFetchTable =
9236 		kmalloc(((h->ioaccel_maxsg + 1) *
9237 				sizeof(u32)), GFP_KERNEL);
9238 
9239 	if ((h->ioaccel_cmd_pool == NULL) ||
9240 		(h->ioaccel1_blockFetchTable == NULL))
9241 		goto clean_up;
9242 
9243 	memset(h->ioaccel_cmd_pool, 0,
9244 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9245 	return 0;
9246 
9247 clean_up:
9248 	hpsa_free_ioaccel1_cmd_and_bft(h);
9249 	return -ENOMEM;
9250 }
9251 
9252 /* Free ioaccel2 mode command blocks and block fetch table */
9253 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9254 {
9255 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9256 
9257 	if (h->ioaccel2_cmd_pool) {
9258 		pci_free_consistent(h->pdev,
9259 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9260 			h->ioaccel2_cmd_pool,
9261 			h->ioaccel2_cmd_pool_dhandle);
9262 		h->ioaccel2_cmd_pool = NULL;
9263 		h->ioaccel2_cmd_pool_dhandle = 0;
9264 	}
9265 	kfree(h->ioaccel2_blockFetchTable);
9266 	h->ioaccel2_blockFetchTable = NULL;
9267 }
9268 
9269 /* Allocate ioaccel2 mode command blocks and block fetch table */
9270 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9271 {
9272 	int rc;
9273 
9274 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9275 
9276 	h->ioaccel_maxsg =
9277 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9278 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9279 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9280 
9281 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9282 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9283 	h->ioaccel2_cmd_pool =
9284 		pci_alloc_consistent(h->pdev,
9285 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9286 			&(h->ioaccel2_cmd_pool_dhandle));
9287 
9288 	h->ioaccel2_blockFetchTable =
9289 		kmalloc(((h->ioaccel_maxsg + 1) *
9290 				sizeof(u32)), GFP_KERNEL);
9291 
9292 	if ((h->ioaccel2_cmd_pool == NULL) ||
9293 		(h->ioaccel2_blockFetchTable == NULL)) {
9294 		rc = -ENOMEM;
9295 		goto clean_up;
9296 	}
9297 
9298 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9299 	if (rc)
9300 		goto clean_up;
9301 
9302 	memset(h->ioaccel2_cmd_pool, 0,
9303 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9304 	return 0;
9305 
9306 clean_up:
9307 	hpsa_free_ioaccel2_cmd_and_bft(h);
9308 	return rc;
9309 }
9310 
9311 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9312 static void hpsa_free_performant_mode(struct ctlr_info *h)
9313 {
9314 	kfree(h->blockFetchTable);
9315 	h->blockFetchTable = NULL;
9316 	hpsa_free_reply_queues(h);
9317 	hpsa_free_ioaccel1_cmd_and_bft(h);
9318 	hpsa_free_ioaccel2_cmd_and_bft(h);
9319 }
9320 
9321 /* return -ENODEV on error, 0 on success (or no action)
9322  * allocates numerous items that must be freed later
9323  */
9324 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9325 {
9326 	u32 trans_support;
9327 	unsigned long transMethod = CFGTBL_Trans_Performant |
9328 					CFGTBL_Trans_use_short_tags;
9329 	int i, rc;
9330 
9331 	if (hpsa_simple_mode)
9332 		return 0;
9333 
9334 	trans_support = readl(&(h->cfgtable->TransportSupport));
9335 	if (!(trans_support & PERFORMANT_MODE))
9336 		return 0;
9337 
9338 	/* Check for I/O accelerator mode support */
9339 	if (trans_support & CFGTBL_Trans_io_accel1) {
9340 		transMethod |= CFGTBL_Trans_io_accel1 |
9341 				CFGTBL_Trans_enable_directed_msix;
9342 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9343 		if (rc)
9344 			return rc;
9345 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9346 		transMethod |= CFGTBL_Trans_io_accel2 |
9347 				CFGTBL_Trans_enable_directed_msix;
9348 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9349 		if (rc)
9350 			return rc;
9351 	}
9352 
9353 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9354 	hpsa_get_max_perf_mode_cmds(h);
9355 	/* Performant mode ring buffer and supporting data structures */
9356 	h->reply_queue_size = h->max_commands * sizeof(u64);
9357 
9358 	for (i = 0; i < h->nreply_queues; i++) {
9359 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9360 						h->reply_queue_size,
9361 						&(h->reply_queue[i].busaddr));
9362 		if (!h->reply_queue[i].head) {
9363 			rc = -ENOMEM;
9364 			goto clean1;	/* rq, ioaccel */
9365 		}
9366 		h->reply_queue[i].size = h->max_commands;
9367 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9368 		h->reply_queue[i].current_entry = 0;
9369 	}
9370 
9371 	/* Need a block fetch table for performant mode */
9372 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9373 				sizeof(u32)), GFP_KERNEL);
9374 	if (!h->blockFetchTable) {
9375 		rc = -ENOMEM;
9376 		goto clean1;	/* rq, ioaccel */
9377 	}
9378 
9379 	rc = hpsa_enter_performant_mode(h, trans_support);
9380 	if (rc)
9381 		goto clean2;	/* bft, rq, ioaccel */
9382 	return 0;
9383 
9384 clean2:	/* bft, rq, ioaccel */
9385 	kfree(h->blockFetchTable);
9386 	h->blockFetchTable = NULL;
9387 clean1:	/* rq, ioaccel */
9388 	hpsa_free_reply_queues(h);
9389 	hpsa_free_ioaccel1_cmd_and_bft(h);
9390 	hpsa_free_ioaccel2_cmd_and_bft(h);
9391 	return rc;
9392 }
9393 
9394 static int is_accelerated_cmd(struct CommandList *c)
9395 {
9396 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9397 }
9398 
9399 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9400 {
9401 	struct CommandList *c = NULL;
9402 	int i, accel_cmds_out;
9403 	int refcount;
9404 
9405 	do { /* wait for all outstanding ioaccel commands to drain out */
9406 		accel_cmds_out = 0;
9407 		for (i = 0; i < h->nr_cmds; i++) {
9408 			c = h->cmd_pool + i;
9409 			refcount = atomic_inc_return(&c->refcount);
9410 			if (refcount > 1) /* Command is allocated */
9411 				accel_cmds_out += is_accelerated_cmd(c);
9412 			cmd_free(h, c);
9413 		}
9414 		if (accel_cmds_out <= 0)
9415 			break;
9416 		msleep(100);
9417 	} while (1);
9418 }
9419 
9420 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9421 				struct hpsa_sas_port *hpsa_sas_port)
9422 {
9423 	struct hpsa_sas_phy *hpsa_sas_phy;
9424 	struct sas_phy *phy;
9425 
9426 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9427 	if (!hpsa_sas_phy)
9428 		return NULL;
9429 
9430 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9431 		hpsa_sas_port->next_phy_index);
9432 	if (!phy) {
9433 		kfree(hpsa_sas_phy);
9434 		return NULL;
9435 	}
9436 
9437 	hpsa_sas_port->next_phy_index++;
9438 	hpsa_sas_phy->phy = phy;
9439 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9440 
9441 	return hpsa_sas_phy;
9442 }
9443 
9444 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9445 {
9446 	struct sas_phy *phy = hpsa_sas_phy->phy;
9447 
9448 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9449 	if (hpsa_sas_phy->added_to_port)
9450 		list_del(&hpsa_sas_phy->phy_list_entry);
9451 	sas_phy_delete(phy);
9452 	kfree(hpsa_sas_phy);
9453 }
9454 
9455 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9456 {
9457 	int rc;
9458 	struct hpsa_sas_port *hpsa_sas_port;
9459 	struct sas_phy *phy;
9460 	struct sas_identify *identify;
9461 
9462 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9463 	phy = hpsa_sas_phy->phy;
9464 
9465 	identify = &phy->identify;
9466 	memset(identify, 0, sizeof(*identify));
9467 	identify->sas_address = hpsa_sas_port->sas_address;
9468 	identify->device_type = SAS_END_DEVICE;
9469 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9470 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9471 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9472 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9473 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9474 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9475 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9476 
9477 	rc = sas_phy_add(hpsa_sas_phy->phy);
9478 	if (rc)
9479 		return rc;
9480 
9481 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9482 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9483 			&hpsa_sas_port->phy_list_head);
9484 	hpsa_sas_phy->added_to_port = true;
9485 
9486 	return 0;
9487 }
9488 
9489 static int
9490 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9491 				struct sas_rphy *rphy)
9492 {
9493 	struct sas_identify *identify;
9494 
9495 	identify = &rphy->identify;
9496 	identify->sas_address = hpsa_sas_port->sas_address;
9497 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9498 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9499 
9500 	return sas_rphy_add(rphy);
9501 }
9502 
9503 static struct hpsa_sas_port
9504 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9505 				u64 sas_address)
9506 {
9507 	int rc;
9508 	struct hpsa_sas_port *hpsa_sas_port;
9509 	struct sas_port *port;
9510 
9511 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9512 	if (!hpsa_sas_port)
9513 		return NULL;
9514 
9515 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9516 	hpsa_sas_port->parent_node = hpsa_sas_node;
9517 
9518 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9519 	if (!port)
9520 		goto free_hpsa_port;
9521 
9522 	rc = sas_port_add(port);
9523 	if (rc)
9524 		goto free_sas_port;
9525 
9526 	hpsa_sas_port->port = port;
9527 	hpsa_sas_port->sas_address = sas_address;
9528 	list_add_tail(&hpsa_sas_port->port_list_entry,
9529 			&hpsa_sas_node->port_list_head);
9530 
9531 	return hpsa_sas_port;
9532 
9533 free_sas_port:
9534 	sas_port_free(port);
9535 free_hpsa_port:
9536 	kfree(hpsa_sas_port);
9537 
9538 	return NULL;
9539 }
9540 
9541 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9542 {
9543 	struct hpsa_sas_phy *hpsa_sas_phy;
9544 	struct hpsa_sas_phy *next;
9545 
9546 	list_for_each_entry_safe(hpsa_sas_phy, next,
9547 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9548 		hpsa_free_sas_phy(hpsa_sas_phy);
9549 
9550 	sas_port_delete(hpsa_sas_port->port);
9551 	list_del(&hpsa_sas_port->port_list_entry);
9552 	kfree(hpsa_sas_port);
9553 }
9554 
9555 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9556 {
9557 	struct hpsa_sas_node *hpsa_sas_node;
9558 
9559 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9560 	if (hpsa_sas_node) {
9561 		hpsa_sas_node->parent_dev = parent_dev;
9562 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9563 	}
9564 
9565 	return hpsa_sas_node;
9566 }
9567 
9568 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9569 {
9570 	struct hpsa_sas_port *hpsa_sas_port;
9571 	struct hpsa_sas_port *next;
9572 
9573 	if (!hpsa_sas_node)
9574 		return;
9575 
9576 	list_for_each_entry_safe(hpsa_sas_port, next,
9577 			&hpsa_sas_node->port_list_head, port_list_entry)
9578 		hpsa_free_sas_port(hpsa_sas_port);
9579 
9580 	kfree(hpsa_sas_node);
9581 }
9582 
9583 static struct hpsa_scsi_dev_t
9584 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9585 					struct sas_rphy *rphy)
9586 {
9587 	int i;
9588 	struct hpsa_scsi_dev_t *device;
9589 
9590 	for (i = 0; i < h->ndevices; i++) {
9591 		device = h->dev[i];
9592 		if (!device->sas_port)
9593 			continue;
9594 		if (device->sas_port->rphy == rphy)
9595 			return device;
9596 	}
9597 
9598 	return NULL;
9599 }
9600 
9601 static int hpsa_add_sas_host(struct ctlr_info *h)
9602 {
9603 	int rc;
9604 	struct device *parent_dev;
9605 	struct hpsa_sas_node *hpsa_sas_node;
9606 	struct hpsa_sas_port *hpsa_sas_port;
9607 	struct hpsa_sas_phy *hpsa_sas_phy;
9608 
9609 	parent_dev = &h->scsi_host->shost_dev;
9610 
9611 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9612 	if (!hpsa_sas_node)
9613 		return -ENOMEM;
9614 
9615 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9616 	if (!hpsa_sas_port) {
9617 		rc = -ENODEV;
9618 		goto free_sas_node;
9619 	}
9620 
9621 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9622 	if (!hpsa_sas_phy) {
9623 		rc = -ENODEV;
9624 		goto free_sas_port;
9625 	}
9626 
9627 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9628 	if (rc)
9629 		goto free_sas_phy;
9630 
9631 	h->sas_host = hpsa_sas_node;
9632 
9633 	return 0;
9634 
9635 free_sas_phy:
9636 	hpsa_free_sas_phy(hpsa_sas_phy);
9637 free_sas_port:
9638 	hpsa_free_sas_port(hpsa_sas_port);
9639 free_sas_node:
9640 	hpsa_free_sas_node(hpsa_sas_node);
9641 
9642 	return rc;
9643 }
9644 
9645 static void hpsa_delete_sas_host(struct ctlr_info *h)
9646 {
9647 	hpsa_free_sas_node(h->sas_host);
9648 }
9649 
9650 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9651 				struct hpsa_scsi_dev_t *device)
9652 {
9653 	int rc;
9654 	struct hpsa_sas_port *hpsa_sas_port;
9655 	struct sas_rphy *rphy;
9656 
9657 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9658 	if (!hpsa_sas_port)
9659 		return -ENOMEM;
9660 
9661 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9662 	if (!rphy) {
9663 		rc = -ENODEV;
9664 		goto free_sas_port;
9665 	}
9666 
9667 	hpsa_sas_port->rphy = rphy;
9668 	device->sas_port = hpsa_sas_port;
9669 
9670 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9671 	if (rc)
9672 		goto free_sas_port;
9673 
9674 	return 0;
9675 
9676 free_sas_port:
9677 	hpsa_free_sas_port(hpsa_sas_port);
9678 	device->sas_port = NULL;
9679 
9680 	return rc;
9681 }
9682 
9683 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9684 {
9685 	if (device->sas_port) {
9686 		hpsa_free_sas_port(device->sas_port);
9687 		device->sas_port = NULL;
9688 	}
9689 }
9690 
9691 static int
9692 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9693 {
9694 	return 0;
9695 }
9696 
9697 static int
9698 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9699 {
9700 	*identifier = rphy->identify.sas_address;
9701 	return 0;
9702 }
9703 
9704 static int
9705 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9706 {
9707 	return -ENXIO;
9708 }
9709 
9710 static int
9711 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9712 {
9713 	return 0;
9714 }
9715 
9716 static int
9717 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9718 {
9719 	return 0;
9720 }
9721 
9722 static int
9723 hpsa_sas_phy_setup(struct sas_phy *phy)
9724 {
9725 	return 0;
9726 }
9727 
9728 static void
9729 hpsa_sas_phy_release(struct sas_phy *phy)
9730 {
9731 }
9732 
9733 static int
9734 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9735 {
9736 	return -EINVAL;
9737 }
9738 
9739 static struct sas_function_template hpsa_sas_transport_functions = {
9740 	.get_linkerrors = hpsa_sas_get_linkerrors,
9741 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9742 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9743 	.phy_reset = hpsa_sas_phy_reset,
9744 	.phy_enable = hpsa_sas_phy_enable,
9745 	.phy_setup = hpsa_sas_phy_setup,
9746 	.phy_release = hpsa_sas_phy_release,
9747 	.set_phy_speed = hpsa_sas_phy_speed,
9748 };
9749 
9750 /*
9751  *  This is it.  Register the PCI driver information for the cards we control
9752  *  the OS will call our registered routines when it finds one of our cards.
9753  */
9754 static int __init hpsa_init(void)
9755 {
9756 	int rc;
9757 
9758 	hpsa_sas_transport_template =
9759 		sas_attach_transport(&hpsa_sas_transport_functions);
9760 	if (!hpsa_sas_transport_template)
9761 		return -ENODEV;
9762 
9763 	rc = pci_register_driver(&hpsa_pci_driver);
9764 
9765 	if (rc)
9766 		sas_release_transport(hpsa_sas_transport_template);
9767 
9768 	return rc;
9769 }
9770 
9771 static void __exit hpsa_cleanup(void)
9772 {
9773 	pci_unregister_driver(&hpsa_pci_driver);
9774 	sas_release_transport(hpsa_sas_transport_template);
9775 }
9776 
9777 static void __attribute__((unused)) verify_offsets(void)
9778 {
9779 #define VERIFY_OFFSET(member, offset) \
9780 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9781 
9782 	VERIFY_OFFSET(structure_size, 0);
9783 	VERIFY_OFFSET(volume_blk_size, 4);
9784 	VERIFY_OFFSET(volume_blk_cnt, 8);
9785 	VERIFY_OFFSET(phys_blk_shift, 16);
9786 	VERIFY_OFFSET(parity_rotation_shift, 17);
9787 	VERIFY_OFFSET(strip_size, 18);
9788 	VERIFY_OFFSET(disk_starting_blk, 20);
9789 	VERIFY_OFFSET(disk_blk_cnt, 28);
9790 	VERIFY_OFFSET(data_disks_per_row, 36);
9791 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9792 	VERIFY_OFFSET(row_cnt, 40);
9793 	VERIFY_OFFSET(layout_map_count, 42);
9794 	VERIFY_OFFSET(flags, 44);
9795 	VERIFY_OFFSET(dekindex, 46);
9796 	/* VERIFY_OFFSET(reserved, 48 */
9797 	VERIFY_OFFSET(data, 64);
9798 
9799 #undef VERIFY_OFFSET
9800 
9801 #define VERIFY_OFFSET(member, offset) \
9802 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9803 
9804 	VERIFY_OFFSET(IU_type, 0);
9805 	VERIFY_OFFSET(direction, 1);
9806 	VERIFY_OFFSET(reply_queue, 2);
9807 	/* VERIFY_OFFSET(reserved1, 3);  */
9808 	VERIFY_OFFSET(scsi_nexus, 4);
9809 	VERIFY_OFFSET(Tag, 8);
9810 	VERIFY_OFFSET(cdb, 16);
9811 	VERIFY_OFFSET(cciss_lun, 32);
9812 	VERIFY_OFFSET(data_len, 40);
9813 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9814 	VERIFY_OFFSET(sg_count, 45);
9815 	/* VERIFY_OFFSET(reserved3 */
9816 	VERIFY_OFFSET(err_ptr, 48);
9817 	VERIFY_OFFSET(err_len, 56);
9818 	/* VERIFY_OFFSET(reserved4  */
9819 	VERIFY_OFFSET(sg, 64);
9820 
9821 #undef VERIFY_OFFSET
9822 
9823 #define VERIFY_OFFSET(member, offset) \
9824 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9825 
9826 	VERIFY_OFFSET(dev_handle, 0x00);
9827 	VERIFY_OFFSET(reserved1, 0x02);
9828 	VERIFY_OFFSET(function, 0x03);
9829 	VERIFY_OFFSET(reserved2, 0x04);
9830 	VERIFY_OFFSET(err_info, 0x0C);
9831 	VERIFY_OFFSET(reserved3, 0x10);
9832 	VERIFY_OFFSET(err_info_len, 0x12);
9833 	VERIFY_OFFSET(reserved4, 0x13);
9834 	VERIFY_OFFSET(sgl_offset, 0x14);
9835 	VERIFY_OFFSET(reserved5, 0x15);
9836 	VERIFY_OFFSET(transfer_len, 0x1C);
9837 	VERIFY_OFFSET(reserved6, 0x20);
9838 	VERIFY_OFFSET(io_flags, 0x24);
9839 	VERIFY_OFFSET(reserved7, 0x26);
9840 	VERIFY_OFFSET(LUN, 0x34);
9841 	VERIFY_OFFSET(control, 0x3C);
9842 	VERIFY_OFFSET(CDB, 0x40);
9843 	VERIFY_OFFSET(reserved8, 0x50);
9844 	VERIFY_OFFSET(host_context_flags, 0x60);
9845 	VERIFY_OFFSET(timeout_sec, 0x62);
9846 	VERIFY_OFFSET(ReplyQueue, 0x64);
9847 	VERIFY_OFFSET(reserved9, 0x65);
9848 	VERIFY_OFFSET(tag, 0x68);
9849 	VERIFY_OFFSET(host_addr, 0x70);
9850 	VERIFY_OFFSET(CISS_LUN, 0x78);
9851 	VERIFY_OFFSET(SG, 0x78 + 8);
9852 #undef VERIFY_OFFSET
9853 }
9854 
9855 module_init(hpsa_init);
9856 module_exit(hpsa_cleanup);
9857