xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 79f08d9e)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334D},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
124 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
125 	{0,}
126 };
127 
128 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
129 
130 /*  board_id = Subsystem Device ID & Vendor ID
131  *  product = Marketing Name for the board
132  *  access = Address of the struct of function pointers
133  */
134 static struct board_type products[] = {
135 	{0x3241103C, "Smart Array P212", &SA5_access},
136 	{0x3243103C, "Smart Array P410", &SA5_access},
137 	{0x3245103C, "Smart Array P410i", &SA5_access},
138 	{0x3247103C, "Smart Array P411", &SA5_access},
139 	{0x3249103C, "Smart Array P812", &SA5_access},
140 	{0x324A103C, "Smart Array P712m", &SA5_access},
141 	{0x324B103C, "Smart Array P711m", &SA5_access},
142 	{0x3350103C, "Smart Array P222", &SA5_access},
143 	{0x3351103C, "Smart Array P420", &SA5_access},
144 	{0x3352103C, "Smart Array P421", &SA5_access},
145 	{0x3353103C, "Smart Array P822", &SA5_access},
146 	{0x334D103C, "Smart Array P822se", &SA5_access},
147 	{0x3354103C, "Smart Array P420i", &SA5_access},
148 	{0x3355103C, "Smart Array P220i", &SA5_access},
149 	{0x3356103C, "Smart Array P721m", &SA5_access},
150 	{0x1921103C, "Smart Array P830i", &SA5_access},
151 	{0x1922103C, "Smart Array P430", &SA5_access},
152 	{0x1923103C, "Smart Array P431", &SA5_access},
153 	{0x1924103C, "Smart Array P830", &SA5_access},
154 	{0x1926103C, "Smart Array P731m", &SA5_access},
155 	{0x1928103C, "Smart Array P230i", &SA5_access},
156 	{0x1929103C, "Smart Array P530", &SA5_access},
157 	{0x21BD103C, "Smart Array", &SA5_access},
158 	{0x21BE103C, "Smart Array", &SA5_access},
159 	{0x21BF103C, "Smart Array", &SA5_access},
160 	{0x21C0103C, "Smart Array", &SA5_access},
161 	{0x21C1103C, "Smart Array", &SA5_access},
162 	{0x21C2103C, "Smart Array", &SA5_access},
163 	{0x21C3103C, "Smart Array", &SA5_access},
164 	{0x21C4103C, "Smart Array", &SA5_access},
165 	{0x21C5103C, "Smart Array", &SA5_access},
166 	{0x21C7103C, "Smart Array", &SA5_access},
167 	{0x21C8103C, "Smart Array", &SA5_access},
168 	{0x21C9103C, "Smart Array", &SA5_access},
169 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
170 };
171 
172 static int number_of_controllers;
173 
174 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
175 static spinlock_t lockup_detector_lock;
176 static struct task_struct *hpsa_lockup_detector;
177 
178 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
180 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
181 static void start_io(struct ctlr_info *h);
182 
183 #ifdef CONFIG_COMPAT
184 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
185 #endif
186 
187 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
188 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
189 static struct CommandList *cmd_alloc(struct ctlr_info *h);
190 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
191 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
192 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
193 	int cmd_type);
194 
195 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
196 static void hpsa_scan_start(struct Scsi_Host *);
197 static int hpsa_scan_finished(struct Scsi_Host *sh,
198 	unsigned long elapsed_time);
199 static int hpsa_change_queue_depth(struct scsi_device *sdev,
200 	int qdepth, int reason);
201 
202 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
203 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_slave_alloc(struct scsi_device *sdev);
205 static void hpsa_slave_destroy(struct scsi_device *sdev);
206 
207 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
208 static int check_for_unit_attention(struct ctlr_info *h,
209 	struct CommandList *c);
210 static void check_ioctl_unit_attention(struct ctlr_info *h,
211 	struct CommandList *c);
212 /* performant mode helper functions */
213 static void calc_bucket_map(int *bucket, int num_buckets,
214 	int nsgs, int *bucket_map);
215 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
216 static inline u32 next_command(struct ctlr_info *h, u8 q);
217 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
218 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
219 			       u64 *cfg_offset);
220 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
221 				    unsigned long *memory_bar);
222 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
223 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
224 				     int wait_for_ready);
225 static inline void finish_cmd(struct CommandList *c);
226 #define BOARD_NOT_READY 0
227 #define BOARD_READY 1
228 
229 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
230 {
231 	unsigned long *priv = shost_priv(sdev->host);
232 	return (struct ctlr_info *) *priv;
233 }
234 
235 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
236 {
237 	unsigned long *priv = shost_priv(sh);
238 	return (struct ctlr_info *) *priv;
239 }
240 
241 static int check_for_unit_attention(struct ctlr_info *h,
242 	struct CommandList *c)
243 {
244 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
245 		return 0;
246 
247 	switch (c->err_info->SenseInfo[12]) {
248 	case STATE_CHANGED:
249 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
250 			"detected, command retried\n", h->ctlr);
251 		break;
252 	case LUN_FAILED:
253 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
254 			"detected, action required\n", h->ctlr);
255 		break;
256 	case REPORT_LUNS_CHANGED:
257 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
258 			"changed, action required\n", h->ctlr);
259 	/*
260 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
261 	 * target (array) devices.
262 	 */
263 		break;
264 	case POWER_OR_RESET:
265 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
266 			"or device reset detected\n", h->ctlr);
267 		break;
268 	case UNIT_ATTENTION_CLEARED:
269 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
270 		    "cleared by another initiator\n", h->ctlr);
271 		break;
272 	default:
273 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
274 			"unit attention detected\n", h->ctlr);
275 		break;
276 	}
277 	return 1;
278 }
279 
280 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
281 {
282 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
283 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
284 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
285 		return 0;
286 	dev_warn(&h->pdev->dev, HPSA "device busy");
287 	return 1;
288 }
289 
290 static ssize_t host_store_rescan(struct device *dev,
291 				 struct device_attribute *attr,
292 				 const char *buf, size_t count)
293 {
294 	struct ctlr_info *h;
295 	struct Scsi_Host *shost = class_to_shost(dev);
296 	h = shost_to_hba(shost);
297 	hpsa_scan_start(h->scsi_host);
298 	return count;
299 }
300 
301 static ssize_t host_show_firmware_revision(struct device *dev,
302 	     struct device_attribute *attr, char *buf)
303 {
304 	struct ctlr_info *h;
305 	struct Scsi_Host *shost = class_to_shost(dev);
306 	unsigned char *fwrev;
307 
308 	h = shost_to_hba(shost);
309 	if (!h->hba_inquiry_data)
310 		return 0;
311 	fwrev = &h->hba_inquiry_data[32];
312 	return snprintf(buf, 20, "%c%c%c%c\n",
313 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
314 }
315 
316 static ssize_t host_show_commands_outstanding(struct device *dev,
317 	     struct device_attribute *attr, char *buf)
318 {
319 	struct Scsi_Host *shost = class_to_shost(dev);
320 	struct ctlr_info *h = shost_to_hba(shost);
321 
322 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
323 }
324 
325 static ssize_t host_show_transport_mode(struct device *dev,
326 	struct device_attribute *attr, char *buf)
327 {
328 	struct ctlr_info *h;
329 	struct Scsi_Host *shost = class_to_shost(dev);
330 
331 	h = shost_to_hba(shost);
332 	return snprintf(buf, 20, "%s\n",
333 		h->transMethod & CFGTBL_Trans_Performant ?
334 			"performant" : "simple");
335 }
336 
337 /* List of controllers which cannot be hard reset on kexec with reset_devices */
338 static u32 unresettable_controller[] = {
339 	0x324a103C, /* Smart Array P712m */
340 	0x324b103C, /* SmartArray P711m */
341 	0x3223103C, /* Smart Array P800 */
342 	0x3234103C, /* Smart Array P400 */
343 	0x3235103C, /* Smart Array P400i */
344 	0x3211103C, /* Smart Array E200i */
345 	0x3212103C, /* Smart Array E200 */
346 	0x3213103C, /* Smart Array E200i */
347 	0x3214103C, /* Smart Array E200i */
348 	0x3215103C, /* Smart Array E200i */
349 	0x3237103C, /* Smart Array E500 */
350 	0x323D103C, /* Smart Array P700m */
351 	0x40800E11, /* Smart Array 5i */
352 	0x409C0E11, /* Smart Array 6400 */
353 	0x409D0E11, /* Smart Array 6400 EM */
354 	0x40700E11, /* Smart Array 5300 */
355 	0x40820E11, /* Smart Array 532 */
356 	0x40830E11, /* Smart Array 5312 */
357 	0x409A0E11, /* Smart Array 641 */
358 	0x409B0E11, /* Smart Array 642 */
359 	0x40910E11, /* Smart Array 6i */
360 };
361 
362 /* List of controllers which cannot even be soft reset */
363 static u32 soft_unresettable_controller[] = {
364 	0x40800E11, /* Smart Array 5i */
365 	0x40700E11, /* Smart Array 5300 */
366 	0x40820E11, /* Smart Array 532 */
367 	0x40830E11, /* Smart Array 5312 */
368 	0x409A0E11, /* Smart Array 641 */
369 	0x409B0E11, /* Smart Array 642 */
370 	0x40910E11, /* Smart Array 6i */
371 	/* Exclude 640x boards.  These are two pci devices in one slot
372 	 * which share a battery backed cache module.  One controls the
373 	 * cache, the other accesses the cache through the one that controls
374 	 * it.  If we reset the one controlling the cache, the other will
375 	 * likely not be happy.  Just forbid resetting this conjoined mess.
376 	 * The 640x isn't really supported by hpsa anyway.
377 	 */
378 	0x409C0E11, /* Smart Array 6400 */
379 	0x409D0E11, /* Smart Array 6400 EM */
380 };
381 
382 static int ctlr_is_hard_resettable(u32 board_id)
383 {
384 	int i;
385 
386 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
387 		if (unresettable_controller[i] == board_id)
388 			return 0;
389 	return 1;
390 }
391 
392 static int ctlr_is_soft_resettable(u32 board_id)
393 {
394 	int i;
395 
396 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
397 		if (soft_unresettable_controller[i] == board_id)
398 			return 0;
399 	return 1;
400 }
401 
402 static int ctlr_is_resettable(u32 board_id)
403 {
404 	return ctlr_is_hard_resettable(board_id) ||
405 		ctlr_is_soft_resettable(board_id);
406 }
407 
408 static ssize_t host_show_resettable(struct device *dev,
409 	struct device_attribute *attr, char *buf)
410 {
411 	struct ctlr_info *h;
412 	struct Scsi_Host *shost = class_to_shost(dev);
413 
414 	h = shost_to_hba(shost);
415 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
416 }
417 
418 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
419 {
420 	return (scsi3addr[3] & 0xC0) == 0x40;
421 }
422 
423 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
424 	"1(ADM)", "UNKNOWN"
425 };
426 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
427 
428 static ssize_t raid_level_show(struct device *dev,
429 	     struct device_attribute *attr, char *buf)
430 {
431 	ssize_t l = 0;
432 	unsigned char rlevel;
433 	struct ctlr_info *h;
434 	struct scsi_device *sdev;
435 	struct hpsa_scsi_dev_t *hdev;
436 	unsigned long flags;
437 
438 	sdev = to_scsi_device(dev);
439 	h = sdev_to_hba(sdev);
440 	spin_lock_irqsave(&h->lock, flags);
441 	hdev = sdev->hostdata;
442 	if (!hdev) {
443 		spin_unlock_irqrestore(&h->lock, flags);
444 		return -ENODEV;
445 	}
446 
447 	/* Is this even a logical drive? */
448 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
449 		spin_unlock_irqrestore(&h->lock, flags);
450 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
451 		return l;
452 	}
453 
454 	rlevel = hdev->raid_level;
455 	spin_unlock_irqrestore(&h->lock, flags);
456 	if (rlevel > RAID_UNKNOWN)
457 		rlevel = RAID_UNKNOWN;
458 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
459 	return l;
460 }
461 
462 static ssize_t lunid_show(struct device *dev,
463 	     struct device_attribute *attr, char *buf)
464 {
465 	struct ctlr_info *h;
466 	struct scsi_device *sdev;
467 	struct hpsa_scsi_dev_t *hdev;
468 	unsigned long flags;
469 	unsigned char lunid[8];
470 
471 	sdev = to_scsi_device(dev);
472 	h = sdev_to_hba(sdev);
473 	spin_lock_irqsave(&h->lock, flags);
474 	hdev = sdev->hostdata;
475 	if (!hdev) {
476 		spin_unlock_irqrestore(&h->lock, flags);
477 		return -ENODEV;
478 	}
479 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
480 	spin_unlock_irqrestore(&h->lock, flags);
481 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
482 		lunid[0], lunid[1], lunid[2], lunid[3],
483 		lunid[4], lunid[5], lunid[6], lunid[7]);
484 }
485 
486 static ssize_t unique_id_show(struct device *dev,
487 	     struct device_attribute *attr, char *buf)
488 {
489 	struct ctlr_info *h;
490 	struct scsi_device *sdev;
491 	struct hpsa_scsi_dev_t *hdev;
492 	unsigned long flags;
493 	unsigned char sn[16];
494 
495 	sdev = to_scsi_device(dev);
496 	h = sdev_to_hba(sdev);
497 	spin_lock_irqsave(&h->lock, flags);
498 	hdev = sdev->hostdata;
499 	if (!hdev) {
500 		spin_unlock_irqrestore(&h->lock, flags);
501 		return -ENODEV;
502 	}
503 	memcpy(sn, hdev->device_id, sizeof(sn));
504 	spin_unlock_irqrestore(&h->lock, flags);
505 	return snprintf(buf, 16 * 2 + 2,
506 			"%02X%02X%02X%02X%02X%02X%02X%02X"
507 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
508 			sn[0], sn[1], sn[2], sn[3],
509 			sn[4], sn[5], sn[6], sn[7],
510 			sn[8], sn[9], sn[10], sn[11],
511 			sn[12], sn[13], sn[14], sn[15]);
512 }
513 
514 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
515 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
516 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
517 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
518 static DEVICE_ATTR(firmware_revision, S_IRUGO,
519 	host_show_firmware_revision, NULL);
520 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
521 	host_show_commands_outstanding, NULL);
522 static DEVICE_ATTR(transport_mode, S_IRUGO,
523 	host_show_transport_mode, NULL);
524 static DEVICE_ATTR(resettable, S_IRUGO,
525 	host_show_resettable, NULL);
526 
527 static struct device_attribute *hpsa_sdev_attrs[] = {
528 	&dev_attr_raid_level,
529 	&dev_attr_lunid,
530 	&dev_attr_unique_id,
531 	NULL,
532 };
533 
534 static struct device_attribute *hpsa_shost_attrs[] = {
535 	&dev_attr_rescan,
536 	&dev_attr_firmware_revision,
537 	&dev_attr_commands_outstanding,
538 	&dev_attr_transport_mode,
539 	&dev_attr_resettable,
540 	NULL,
541 };
542 
543 static struct scsi_host_template hpsa_driver_template = {
544 	.module			= THIS_MODULE,
545 	.name			= HPSA,
546 	.proc_name		= HPSA,
547 	.queuecommand		= hpsa_scsi_queue_command,
548 	.scan_start		= hpsa_scan_start,
549 	.scan_finished		= hpsa_scan_finished,
550 	.change_queue_depth	= hpsa_change_queue_depth,
551 	.this_id		= -1,
552 	.use_clustering		= ENABLE_CLUSTERING,
553 	.eh_abort_handler	= hpsa_eh_abort_handler,
554 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
555 	.ioctl			= hpsa_ioctl,
556 	.slave_alloc		= hpsa_slave_alloc,
557 	.slave_destroy		= hpsa_slave_destroy,
558 #ifdef CONFIG_COMPAT
559 	.compat_ioctl		= hpsa_compat_ioctl,
560 #endif
561 	.sdev_attrs = hpsa_sdev_attrs,
562 	.shost_attrs = hpsa_shost_attrs,
563 	.max_sectors = 8192,
564 };
565 
566 
567 /* Enqueuing and dequeuing functions for cmdlists. */
568 static inline void addQ(struct list_head *list, struct CommandList *c)
569 {
570 	list_add_tail(&c->list, list);
571 }
572 
573 static inline u32 next_command(struct ctlr_info *h, u8 q)
574 {
575 	u32 a;
576 	struct reply_pool *rq = &h->reply_queue[q];
577 	unsigned long flags;
578 
579 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
580 		return h->access.command_completed(h, q);
581 
582 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
583 		a = rq->head[rq->current_entry];
584 		rq->current_entry++;
585 		spin_lock_irqsave(&h->lock, flags);
586 		h->commands_outstanding--;
587 		spin_unlock_irqrestore(&h->lock, flags);
588 	} else {
589 		a = FIFO_EMPTY;
590 	}
591 	/* Check for wraparound */
592 	if (rq->current_entry == h->max_commands) {
593 		rq->current_entry = 0;
594 		rq->wraparound ^= 1;
595 	}
596 	return a;
597 }
598 
599 /* set_performant_mode: Modify the tag for cciss performant
600  * set bit 0 for pull model, bits 3-1 for block fetch
601  * register number
602  */
603 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
604 {
605 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
606 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
607 		if (likely(h->msix_vector))
608 			c->Header.ReplyQueue =
609 				raw_smp_processor_id() % h->nreply_queues;
610 	}
611 }
612 
613 static int is_firmware_flash_cmd(u8 *cdb)
614 {
615 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
616 }
617 
618 /*
619  * During firmware flash, the heartbeat register may not update as frequently
620  * as it should.  So we dial down lockup detection during firmware flash. and
621  * dial it back up when firmware flash completes.
622  */
623 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
624 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
625 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
626 		struct CommandList *c)
627 {
628 	if (!is_firmware_flash_cmd(c->Request.CDB))
629 		return;
630 	atomic_inc(&h->firmware_flash_in_progress);
631 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
632 }
633 
634 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
635 		struct CommandList *c)
636 {
637 	if (is_firmware_flash_cmd(c->Request.CDB) &&
638 		atomic_dec_and_test(&h->firmware_flash_in_progress))
639 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
640 }
641 
642 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
643 	struct CommandList *c)
644 {
645 	unsigned long flags;
646 
647 	set_performant_mode(h, c);
648 	dial_down_lockup_detection_during_fw_flash(h, c);
649 	spin_lock_irqsave(&h->lock, flags);
650 	addQ(&h->reqQ, c);
651 	h->Qdepth++;
652 	spin_unlock_irqrestore(&h->lock, flags);
653 	start_io(h);
654 }
655 
656 static inline void removeQ(struct CommandList *c)
657 {
658 	if (WARN_ON(list_empty(&c->list)))
659 		return;
660 	list_del_init(&c->list);
661 }
662 
663 static inline int is_hba_lunid(unsigned char scsi3addr[])
664 {
665 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
666 }
667 
668 static inline int is_scsi_rev_5(struct ctlr_info *h)
669 {
670 	if (!h->hba_inquiry_data)
671 		return 0;
672 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
673 		return 1;
674 	return 0;
675 }
676 
677 static int hpsa_find_target_lun(struct ctlr_info *h,
678 	unsigned char scsi3addr[], int bus, int *target, int *lun)
679 {
680 	/* finds an unused bus, target, lun for a new physical device
681 	 * assumes h->devlock is held
682 	 */
683 	int i, found = 0;
684 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
685 
686 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
687 
688 	for (i = 0; i < h->ndevices; i++) {
689 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
690 			__set_bit(h->dev[i]->target, lun_taken);
691 	}
692 
693 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
694 	if (i < HPSA_MAX_DEVICES) {
695 		/* *bus = 1; */
696 		*target = i;
697 		*lun = 0;
698 		found = 1;
699 	}
700 	return !found;
701 }
702 
703 /* Add an entry into h->dev[] array. */
704 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
705 		struct hpsa_scsi_dev_t *device,
706 		struct hpsa_scsi_dev_t *added[], int *nadded)
707 {
708 	/* assumes h->devlock is held */
709 	int n = h->ndevices;
710 	int i;
711 	unsigned char addr1[8], addr2[8];
712 	struct hpsa_scsi_dev_t *sd;
713 
714 	if (n >= HPSA_MAX_DEVICES) {
715 		dev_err(&h->pdev->dev, "too many devices, some will be "
716 			"inaccessible.\n");
717 		return -1;
718 	}
719 
720 	/* physical devices do not have lun or target assigned until now. */
721 	if (device->lun != -1)
722 		/* Logical device, lun is already assigned. */
723 		goto lun_assigned;
724 
725 	/* If this device a non-zero lun of a multi-lun device
726 	 * byte 4 of the 8-byte LUN addr will contain the logical
727 	 * unit no, zero otherise.
728 	 */
729 	if (device->scsi3addr[4] == 0) {
730 		/* This is not a non-zero lun of a multi-lun device */
731 		if (hpsa_find_target_lun(h, device->scsi3addr,
732 			device->bus, &device->target, &device->lun) != 0)
733 			return -1;
734 		goto lun_assigned;
735 	}
736 
737 	/* This is a non-zero lun of a multi-lun device.
738 	 * Search through our list and find the device which
739 	 * has the same 8 byte LUN address, excepting byte 4.
740 	 * Assign the same bus and target for this new LUN.
741 	 * Use the logical unit number from the firmware.
742 	 */
743 	memcpy(addr1, device->scsi3addr, 8);
744 	addr1[4] = 0;
745 	for (i = 0; i < n; i++) {
746 		sd = h->dev[i];
747 		memcpy(addr2, sd->scsi3addr, 8);
748 		addr2[4] = 0;
749 		/* differ only in byte 4? */
750 		if (memcmp(addr1, addr2, 8) == 0) {
751 			device->bus = sd->bus;
752 			device->target = sd->target;
753 			device->lun = device->scsi3addr[4];
754 			break;
755 		}
756 	}
757 	if (device->lun == -1) {
758 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
759 			" suspect firmware bug or unsupported hardware "
760 			"configuration.\n");
761 			return -1;
762 	}
763 
764 lun_assigned:
765 
766 	h->dev[n] = device;
767 	h->ndevices++;
768 	added[*nadded] = device;
769 	(*nadded)++;
770 
771 	/* initially, (before registering with scsi layer) we don't
772 	 * know our hostno and we don't want to print anything first
773 	 * time anyway (the scsi layer's inquiries will show that info)
774 	 */
775 	/* if (hostno != -1) */
776 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
777 			scsi_device_type(device->devtype), hostno,
778 			device->bus, device->target, device->lun);
779 	return 0;
780 }
781 
782 /* Update an entry in h->dev[] array. */
783 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
784 	int entry, struct hpsa_scsi_dev_t *new_entry)
785 {
786 	/* assumes h->devlock is held */
787 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
788 
789 	/* Raid level changed. */
790 	h->dev[entry]->raid_level = new_entry->raid_level;
791 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
792 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
793 		new_entry->target, new_entry->lun);
794 }
795 
796 /* Replace an entry from h->dev[] array. */
797 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
798 	int entry, struct hpsa_scsi_dev_t *new_entry,
799 	struct hpsa_scsi_dev_t *added[], int *nadded,
800 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
801 {
802 	/* assumes h->devlock is held */
803 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
804 	removed[*nremoved] = h->dev[entry];
805 	(*nremoved)++;
806 
807 	/*
808 	 * New physical devices won't have target/lun assigned yet
809 	 * so we need to preserve the values in the slot we are replacing.
810 	 */
811 	if (new_entry->target == -1) {
812 		new_entry->target = h->dev[entry]->target;
813 		new_entry->lun = h->dev[entry]->lun;
814 	}
815 
816 	h->dev[entry] = new_entry;
817 	added[*nadded] = new_entry;
818 	(*nadded)++;
819 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
820 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
821 			new_entry->target, new_entry->lun);
822 }
823 
824 /* Remove an entry from h->dev[] array. */
825 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
826 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
827 {
828 	/* assumes h->devlock is held */
829 	int i;
830 	struct hpsa_scsi_dev_t *sd;
831 
832 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
833 
834 	sd = h->dev[entry];
835 	removed[*nremoved] = h->dev[entry];
836 	(*nremoved)++;
837 
838 	for (i = entry; i < h->ndevices-1; i++)
839 		h->dev[i] = h->dev[i+1];
840 	h->ndevices--;
841 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
842 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
843 		sd->lun);
844 }
845 
846 #define SCSI3ADDR_EQ(a, b) ( \
847 	(a)[7] == (b)[7] && \
848 	(a)[6] == (b)[6] && \
849 	(a)[5] == (b)[5] && \
850 	(a)[4] == (b)[4] && \
851 	(a)[3] == (b)[3] && \
852 	(a)[2] == (b)[2] && \
853 	(a)[1] == (b)[1] && \
854 	(a)[0] == (b)[0])
855 
856 static void fixup_botched_add(struct ctlr_info *h,
857 	struct hpsa_scsi_dev_t *added)
858 {
859 	/* called when scsi_add_device fails in order to re-adjust
860 	 * h->dev[] to match the mid layer's view.
861 	 */
862 	unsigned long flags;
863 	int i, j;
864 
865 	spin_lock_irqsave(&h->lock, flags);
866 	for (i = 0; i < h->ndevices; i++) {
867 		if (h->dev[i] == added) {
868 			for (j = i; j < h->ndevices-1; j++)
869 				h->dev[j] = h->dev[j+1];
870 			h->ndevices--;
871 			break;
872 		}
873 	}
874 	spin_unlock_irqrestore(&h->lock, flags);
875 	kfree(added);
876 }
877 
878 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
879 	struct hpsa_scsi_dev_t *dev2)
880 {
881 	/* we compare everything except lun and target as these
882 	 * are not yet assigned.  Compare parts likely
883 	 * to differ first
884 	 */
885 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
886 		sizeof(dev1->scsi3addr)) != 0)
887 		return 0;
888 	if (memcmp(dev1->device_id, dev2->device_id,
889 		sizeof(dev1->device_id)) != 0)
890 		return 0;
891 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
892 		return 0;
893 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
894 		return 0;
895 	if (dev1->devtype != dev2->devtype)
896 		return 0;
897 	if (dev1->bus != dev2->bus)
898 		return 0;
899 	return 1;
900 }
901 
902 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
903 	struct hpsa_scsi_dev_t *dev2)
904 {
905 	/* Device attributes that can change, but don't mean
906 	 * that the device is a different device, nor that the OS
907 	 * needs to be told anything about the change.
908 	 */
909 	if (dev1->raid_level != dev2->raid_level)
910 		return 1;
911 	return 0;
912 }
913 
914 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
915  * and return needle location in *index.  If scsi3addr matches, but not
916  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
917  * location in *index.
918  * In the case of a minor device attribute change, such as RAID level, just
919  * return DEVICE_UPDATED, along with the updated device's location in index.
920  * If needle not found, return DEVICE_NOT_FOUND.
921  */
922 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
923 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
924 	int *index)
925 {
926 	int i;
927 #define DEVICE_NOT_FOUND 0
928 #define DEVICE_CHANGED 1
929 #define DEVICE_SAME 2
930 #define DEVICE_UPDATED 3
931 	for (i = 0; i < haystack_size; i++) {
932 		if (haystack[i] == NULL) /* previously removed. */
933 			continue;
934 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
935 			*index = i;
936 			if (device_is_the_same(needle, haystack[i])) {
937 				if (device_updated(needle, haystack[i]))
938 					return DEVICE_UPDATED;
939 				return DEVICE_SAME;
940 			} else {
941 				return DEVICE_CHANGED;
942 			}
943 		}
944 	}
945 	*index = -1;
946 	return DEVICE_NOT_FOUND;
947 }
948 
949 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
950 	struct hpsa_scsi_dev_t *sd[], int nsds)
951 {
952 	/* sd contains scsi3 addresses and devtypes, and inquiry
953 	 * data.  This function takes what's in sd to be the current
954 	 * reality and updates h->dev[] to reflect that reality.
955 	 */
956 	int i, entry, device_change, changes = 0;
957 	struct hpsa_scsi_dev_t *csd;
958 	unsigned long flags;
959 	struct hpsa_scsi_dev_t **added, **removed;
960 	int nadded, nremoved;
961 	struct Scsi_Host *sh = NULL;
962 
963 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
964 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
965 
966 	if (!added || !removed) {
967 		dev_warn(&h->pdev->dev, "out of memory in "
968 			"adjust_hpsa_scsi_table\n");
969 		goto free_and_out;
970 	}
971 
972 	spin_lock_irqsave(&h->devlock, flags);
973 
974 	/* find any devices in h->dev[] that are not in
975 	 * sd[] and remove them from h->dev[], and for any
976 	 * devices which have changed, remove the old device
977 	 * info and add the new device info.
978 	 * If minor device attributes change, just update
979 	 * the existing device structure.
980 	 */
981 	i = 0;
982 	nremoved = 0;
983 	nadded = 0;
984 	while (i < h->ndevices) {
985 		csd = h->dev[i];
986 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
987 		if (device_change == DEVICE_NOT_FOUND) {
988 			changes++;
989 			hpsa_scsi_remove_entry(h, hostno, i,
990 				removed, &nremoved);
991 			continue; /* remove ^^^, hence i not incremented */
992 		} else if (device_change == DEVICE_CHANGED) {
993 			changes++;
994 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
995 				added, &nadded, removed, &nremoved);
996 			/* Set it to NULL to prevent it from being freed
997 			 * at the bottom of hpsa_update_scsi_devices()
998 			 */
999 			sd[entry] = NULL;
1000 		} else if (device_change == DEVICE_UPDATED) {
1001 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1002 		}
1003 		i++;
1004 	}
1005 
1006 	/* Now, make sure every device listed in sd[] is also
1007 	 * listed in h->dev[], adding them if they aren't found
1008 	 */
1009 
1010 	for (i = 0; i < nsds; i++) {
1011 		if (!sd[i]) /* if already added above. */
1012 			continue;
1013 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1014 					h->ndevices, &entry);
1015 		if (device_change == DEVICE_NOT_FOUND) {
1016 			changes++;
1017 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1018 				added, &nadded) != 0)
1019 				break;
1020 			sd[i] = NULL; /* prevent from being freed later. */
1021 		} else if (device_change == DEVICE_CHANGED) {
1022 			/* should never happen... */
1023 			changes++;
1024 			dev_warn(&h->pdev->dev,
1025 				"device unexpectedly changed.\n");
1026 			/* but if it does happen, we just ignore that device */
1027 		}
1028 	}
1029 	spin_unlock_irqrestore(&h->devlock, flags);
1030 
1031 	/* Don't notify scsi mid layer of any changes the first time through
1032 	 * (or if there are no changes) scsi_scan_host will do it later the
1033 	 * first time through.
1034 	 */
1035 	if (hostno == -1 || !changes)
1036 		goto free_and_out;
1037 
1038 	sh = h->scsi_host;
1039 	/* Notify scsi mid layer of any removed devices */
1040 	for (i = 0; i < nremoved; i++) {
1041 		struct scsi_device *sdev =
1042 			scsi_device_lookup(sh, removed[i]->bus,
1043 				removed[i]->target, removed[i]->lun);
1044 		if (sdev != NULL) {
1045 			scsi_remove_device(sdev);
1046 			scsi_device_put(sdev);
1047 		} else {
1048 			/* We don't expect to get here.
1049 			 * future cmds to this device will get selection
1050 			 * timeout as if the device was gone.
1051 			 */
1052 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1053 				" for removal.", hostno, removed[i]->bus,
1054 				removed[i]->target, removed[i]->lun);
1055 		}
1056 		kfree(removed[i]);
1057 		removed[i] = NULL;
1058 	}
1059 
1060 	/* Notify scsi mid layer of any added devices */
1061 	for (i = 0; i < nadded; i++) {
1062 		if (scsi_add_device(sh, added[i]->bus,
1063 			added[i]->target, added[i]->lun) == 0)
1064 			continue;
1065 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1066 			"device not added.\n", hostno, added[i]->bus,
1067 			added[i]->target, added[i]->lun);
1068 		/* now we have to remove it from h->dev,
1069 		 * since it didn't get added to scsi mid layer
1070 		 */
1071 		fixup_botched_add(h, added[i]);
1072 	}
1073 
1074 free_and_out:
1075 	kfree(added);
1076 	kfree(removed);
1077 }
1078 
1079 /*
1080  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1081  * Assume's h->devlock is held.
1082  */
1083 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1084 	int bus, int target, int lun)
1085 {
1086 	int i;
1087 	struct hpsa_scsi_dev_t *sd;
1088 
1089 	for (i = 0; i < h->ndevices; i++) {
1090 		sd = h->dev[i];
1091 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1092 			return sd;
1093 	}
1094 	return NULL;
1095 }
1096 
1097 /* link sdev->hostdata to our per-device structure. */
1098 static int hpsa_slave_alloc(struct scsi_device *sdev)
1099 {
1100 	struct hpsa_scsi_dev_t *sd;
1101 	unsigned long flags;
1102 	struct ctlr_info *h;
1103 
1104 	h = sdev_to_hba(sdev);
1105 	spin_lock_irqsave(&h->devlock, flags);
1106 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1107 		sdev_id(sdev), sdev->lun);
1108 	if (sd != NULL)
1109 		sdev->hostdata = sd;
1110 	spin_unlock_irqrestore(&h->devlock, flags);
1111 	return 0;
1112 }
1113 
1114 static void hpsa_slave_destroy(struct scsi_device *sdev)
1115 {
1116 	/* nothing to do. */
1117 }
1118 
1119 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1120 {
1121 	int i;
1122 
1123 	if (!h->cmd_sg_list)
1124 		return;
1125 	for (i = 0; i < h->nr_cmds; i++) {
1126 		kfree(h->cmd_sg_list[i]);
1127 		h->cmd_sg_list[i] = NULL;
1128 	}
1129 	kfree(h->cmd_sg_list);
1130 	h->cmd_sg_list = NULL;
1131 }
1132 
1133 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1134 {
1135 	int i;
1136 
1137 	if (h->chainsize <= 0)
1138 		return 0;
1139 
1140 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1141 				GFP_KERNEL);
1142 	if (!h->cmd_sg_list)
1143 		return -ENOMEM;
1144 	for (i = 0; i < h->nr_cmds; i++) {
1145 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1146 						h->chainsize, GFP_KERNEL);
1147 		if (!h->cmd_sg_list[i])
1148 			goto clean;
1149 	}
1150 	return 0;
1151 
1152 clean:
1153 	hpsa_free_sg_chain_blocks(h);
1154 	return -ENOMEM;
1155 }
1156 
1157 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1158 	struct CommandList *c)
1159 {
1160 	struct SGDescriptor *chain_sg, *chain_block;
1161 	u64 temp64;
1162 
1163 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1164 	chain_block = h->cmd_sg_list[c->cmdindex];
1165 	chain_sg->Ext = HPSA_SG_CHAIN;
1166 	chain_sg->Len = sizeof(*chain_sg) *
1167 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1168 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1169 				PCI_DMA_TODEVICE);
1170 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1171 		/* prevent subsequent unmapping */
1172 		chain_sg->Addr.lower = 0;
1173 		chain_sg->Addr.upper = 0;
1174 		return -1;
1175 	}
1176 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1177 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1178 	return 0;
1179 }
1180 
1181 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1182 	struct CommandList *c)
1183 {
1184 	struct SGDescriptor *chain_sg;
1185 	union u64bit temp64;
1186 
1187 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1188 		return;
1189 
1190 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1191 	temp64.val32.lower = chain_sg->Addr.lower;
1192 	temp64.val32.upper = chain_sg->Addr.upper;
1193 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1194 }
1195 
1196 static void complete_scsi_command(struct CommandList *cp)
1197 {
1198 	struct scsi_cmnd *cmd;
1199 	struct ctlr_info *h;
1200 	struct ErrorInfo *ei;
1201 
1202 	unsigned char sense_key;
1203 	unsigned char asc;      /* additional sense code */
1204 	unsigned char ascq;     /* additional sense code qualifier */
1205 	unsigned long sense_data_size;
1206 
1207 	ei = cp->err_info;
1208 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1209 	h = cp->h;
1210 
1211 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1212 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1213 		hpsa_unmap_sg_chain_block(h, cp);
1214 
1215 	cmd->result = (DID_OK << 16); 		/* host byte */
1216 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1217 	cmd->result |= ei->ScsiStatus;
1218 
1219 	/* copy the sense data whether we need to or not. */
1220 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1221 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1222 	else
1223 		sense_data_size = sizeof(ei->SenseInfo);
1224 	if (ei->SenseLen < sense_data_size)
1225 		sense_data_size = ei->SenseLen;
1226 
1227 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1228 	scsi_set_resid(cmd, ei->ResidualCnt);
1229 
1230 	if (ei->CommandStatus == 0) {
1231 		cmd_free(h, cp);
1232 		cmd->scsi_done(cmd);
1233 		return;
1234 	}
1235 
1236 	/* an error has occurred */
1237 	switch (ei->CommandStatus) {
1238 
1239 	case CMD_TARGET_STATUS:
1240 		if (ei->ScsiStatus) {
1241 			/* Get sense key */
1242 			sense_key = 0xf & ei->SenseInfo[2];
1243 			/* Get additional sense code */
1244 			asc = ei->SenseInfo[12];
1245 			/* Get addition sense code qualifier */
1246 			ascq = ei->SenseInfo[13];
1247 		}
1248 
1249 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1250 			if (check_for_unit_attention(h, cp)) {
1251 				cmd->result = DID_SOFT_ERROR << 16;
1252 				break;
1253 			}
1254 			if (sense_key == ILLEGAL_REQUEST) {
1255 				/*
1256 				 * SCSI REPORT_LUNS is commonly unsupported on
1257 				 * Smart Array.  Suppress noisy complaint.
1258 				 */
1259 				if (cp->Request.CDB[0] == REPORT_LUNS)
1260 					break;
1261 
1262 				/* If ASC/ASCQ indicate Logical Unit
1263 				 * Not Supported condition,
1264 				 */
1265 				if ((asc == 0x25) && (ascq == 0x0)) {
1266 					dev_warn(&h->pdev->dev, "cp %p "
1267 						"has check condition\n", cp);
1268 					break;
1269 				}
1270 			}
1271 
1272 			if (sense_key == NOT_READY) {
1273 				/* If Sense is Not Ready, Logical Unit
1274 				 * Not ready, Manual Intervention
1275 				 * required
1276 				 */
1277 				if ((asc == 0x04) && (ascq == 0x03)) {
1278 					dev_warn(&h->pdev->dev, "cp %p "
1279 						"has check condition: unit "
1280 						"not ready, manual "
1281 						"intervention required\n", cp);
1282 					break;
1283 				}
1284 			}
1285 			if (sense_key == ABORTED_COMMAND) {
1286 				/* Aborted command is retryable */
1287 				dev_warn(&h->pdev->dev, "cp %p "
1288 					"has check condition: aborted command: "
1289 					"ASC: 0x%x, ASCQ: 0x%x\n",
1290 					cp, asc, ascq);
1291 				cmd->result = DID_SOFT_ERROR << 16;
1292 				break;
1293 			}
1294 			/* Must be some other type of check condition */
1295 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1296 					"unknown type: "
1297 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1298 					"Returning result: 0x%x, "
1299 					"cmd=[%02x %02x %02x %02x %02x "
1300 					"%02x %02x %02x %02x %02x %02x "
1301 					"%02x %02x %02x %02x %02x]\n",
1302 					cp, sense_key, asc, ascq,
1303 					cmd->result,
1304 					cmd->cmnd[0], cmd->cmnd[1],
1305 					cmd->cmnd[2], cmd->cmnd[3],
1306 					cmd->cmnd[4], cmd->cmnd[5],
1307 					cmd->cmnd[6], cmd->cmnd[7],
1308 					cmd->cmnd[8], cmd->cmnd[9],
1309 					cmd->cmnd[10], cmd->cmnd[11],
1310 					cmd->cmnd[12], cmd->cmnd[13],
1311 					cmd->cmnd[14], cmd->cmnd[15]);
1312 			break;
1313 		}
1314 
1315 
1316 		/* Problem was not a check condition
1317 		 * Pass it up to the upper layers...
1318 		 */
1319 		if (ei->ScsiStatus) {
1320 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1321 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1322 				"Returning result: 0x%x\n",
1323 				cp, ei->ScsiStatus,
1324 				sense_key, asc, ascq,
1325 				cmd->result);
1326 		} else {  /* scsi status is zero??? How??? */
1327 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1328 				"Returning no connection.\n", cp),
1329 
1330 			/* Ordinarily, this case should never happen,
1331 			 * but there is a bug in some released firmware
1332 			 * revisions that allows it to happen if, for
1333 			 * example, a 4100 backplane loses power and
1334 			 * the tape drive is in it.  We assume that
1335 			 * it's a fatal error of some kind because we
1336 			 * can't show that it wasn't. We will make it
1337 			 * look like selection timeout since that is
1338 			 * the most common reason for this to occur,
1339 			 * and it's severe enough.
1340 			 */
1341 
1342 			cmd->result = DID_NO_CONNECT << 16;
1343 		}
1344 		break;
1345 
1346 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1347 		break;
1348 	case CMD_DATA_OVERRUN:
1349 		dev_warn(&h->pdev->dev, "cp %p has"
1350 			" completed with data overrun "
1351 			"reported\n", cp);
1352 		break;
1353 	case CMD_INVALID: {
1354 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1355 		print_cmd(cp); */
1356 		/* We get CMD_INVALID if you address a non-existent device
1357 		 * instead of a selection timeout (no response).  You will
1358 		 * see this if you yank out a drive, then try to access it.
1359 		 * This is kind of a shame because it means that any other
1360 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1361 		 * missing target. */
1362 		cmd->result = DID_NO_CONNECT << 16;
1363 	}
1364 		break;
1365 	case CMD_PROTOCOL_ERR:
1366 		cmd->result = DID_ERROR << 16;
1367 		dev_warn(&h->pdev->dev, "cp %p has "
1368 			"protocol error\n", cp);
1369 		break;
1370 	case CMD_HARDWARE_ERR:
1371 		cmd->result = DID_ERROR << 16;
1372 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1373 		break;
1374 	case CMD_CONNECTION_LOST:
1375 		cmd->result = DID_ERROR << 16;
1376 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1377 		break;
1378 	case CMD_ABORTED:
1379 		cmd->result = DID_ABORT << 16;
1380 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1381 				cp, ei->ScsiStatus);
1382 		break;
1383 	case CMD_ABORT_FAILED:
1384 		cmd->result = DID_ERROR << 16;
1385 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1386 		break;
1387 	case CMD_UNSOLICITED_ABORT:
1388 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1389 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1390 			"abort\n", cp);
1391 		break;
1392 	case CMD_TIMEOUT:
1393 		cmd->result = DID_TIME_OUT << 16;
1394 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1395 		break;
1396 	case CMD_UNABORTABLE:
1397 		cmd->result = DID_ERROR << 16;
1398 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1399 		break;
1400 	default:
1401 		cmd->result = DID_ERROR << 16;
1402 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1403 				cp, ei->CommandStatus);
1404 	}
1405 	cmd_free(h, cp);
1406 	cmd->scsi_done(cmd);
1407 }
1408 
1409 static void hpsa_pci_unmap(struct pci_dev *pdev,
1410 	struct CommandList *c, int sg_used, int data_direction)
1411 {
1412 	int i;
1413 	union u64bit addr64;
1414 
1415 	for (i = 0; i < sg_used; i++) {
1416 		addr64.val32.lower = c->SG[i].Addr.lower;
1417 		addr64.val32.upper = c->SG[i].Addr.upper;
1418 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1419 			data_direction);
1420 	}
1421 }
1422 
1423 static int hpsa_map_one(struct pci_dev *pdev,
1424 		struct CommandList *cp,
1425 		unsigned char *buf,
1426 		size_t buflen,
1427 		int data_direction)
1428 {
1429 	u64 addr64;
1430 
1431 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1432 		cp->Header.SGList = 0;
1433 		cp->Header.SGTotal = 0;
1434 		return 0;
1435 	}
1436 
1437 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1438 	if (dma_mapping_error(&pdev->dev, addr64)) {
1439 		/* Prevent subsequent unmap of something never mapped */
1440 		cp->Header.SGList = 0;
1441 		cp->Header.SGTotal = 0;
1442 		return -1;
1443 	}
1444 	cp->SG[0].Addr.lower =
1445 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1446 	cp->SG[0].Addr.upper =
1447 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1448 	cp->SG[0].Len = buflen;
1449 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1450 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1451 	return 0;
1452 }
1453 
1454 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1455 	struct CommandList *c)
1456 {
1457 	DECLARE_COMPLETION_ONSTACK(wait);
1458 
1459 	c->waiting = &wait;
1460 	enqueue_cmd_and_start_io(h, c);
1461 	wait_for_completion(&wait);
1462 }
1463 
1464 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1465 	struct CommandList *c)
1466 {
1467 	unsigned long flags;
1468 
1469 	/* If controller lockup detected, fake a hardware error. */
1470 	spin_lock_irqsave(&h->lock, flags);
1471 	if (unlikely(h->lockup_detected)) {
1472 		spin_unlock_irqrestore(&h->lock, flags);
1473 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1474 	} else {
1475 		spin_unlock_irqrestore(&h->lock, flags);
1476 		hpsa_scsi_do_simple_cmd_core(h, c);
1477 	}
1478 }
1479 
1480 #define MAX_DRIVER_CMD_RETRIES 25
1481 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1482 	struct CommandList *c, int data_direction)
1483 {
1484 	int backoff_time = 10, retry_count = 0;
1485 
1486 	do {
1487 		memset(c->err_info, 0, sizeof(*c->err_info));
1488 		hpsa_scsi_do_simple_cmd_core(h, c);
1489 		retry_count++;
1490 		if (retry_count > 3) {
1491 			msleep(backoff_time);
1492 			if (backoff_time < 1000)
1493 				backoff_time *= 2;
1494 		}
1495 	} while ((check_for_unit_attention(h, c) ||
1496 			check_for_busy(h, c)) &&
1497 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1498 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1499 }
1500 
1501 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1502 {
1503 	struct ErrorInfo *ei;
1504 	struct device *d = &cp->h->pdev->dev;
1505 
1506 	ei = cp->err_info;
1507 	switch (ei->CommandStatus) {
1508 	case CMD_TARGET_STATUS:
1509 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1510 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1511 				ei->ScsiStatus);
1512 		if (ei->ScsiStatus == 0)
1513 			dev_warn(d, "SCSI status is abnormally zero.  "
1514 			"(probably indicates selection timeout "
1515 			"reported incorrectly due to a known "
1516 			"firmware bug, circa July, 2001.)\n");
1517 		break;
1518 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1519 			dev_info(d, "UNDERRUN\n");
1520 		break;
1521 	case CMD_DATA_OVERRUN:
1522 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1523 		break;
1524 	case CMD_INVALID: {
1525 		/* controller unfortunately reports SCSI passthru's
1526 		 * to non-existent targets as invalid commands.
1527 		 */
1528 		dev_warn(d, "cp %p is reported invalid (probably means "
1529 			"target device no longer present)\n", cp);
1530 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1531 		print_cmd(cp);  */
1532 		}
1533 		break;
1534 	case CMD_PROTOCOL_ERR:
1535 		dev_warn(d, "cp %p has protocol error \n", cp);
1536 		break;
1537 	case CMD_HARDWARE_ERR:
1538 		/* cmd->result = DID_ERROR << 16; */
1539 		dev_warn(d, "cp %p had hardware error\n", cp);
1540 		break;
1541 	case CMD_CONNECTION_LOST:
1542 		dev_warn(d, "cp %p had connection lost\n", cp);
1543 		break;
1544 	case CMD_ABORTED:
1545 		dev_warn(d, "cp %p was aborted\n", cp);
1546 		break;
1547 	case CMD_ABORT_FAILED:
1548 		dev_warn(d, "cp %p reports abort failed\n", cp);
1549 		break;
1550 	case CMD_UNSOLICITED_ABORT:
1551 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1552 		break;
1553 	case CMD_TIMEOUT:
1554 		dev_warn(d, "cp %p timed out\n", cp);
1555 		break;
1556 	case CMD_UNABORTABLE:
1557 		dev_warn(d, "Command unabortable\n");
1558 		break;
1559 	default:
1560 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1561 				ei->CommandStatus);
1562 	}
1563 }
1564 
1565 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1566 			unsigned char page, unsigned char *buf,
1567 			unsigned char bufsize)
1568 {
1569 	int rc = IO_OK;
1570 	struct CommandList *c;
1571 	struct ErrorInfo *ei;
1572 
1573 	c = cmd_special_alloc(h);
1574 
1575 	if (c == NULL) {			/* trouble... */
1576 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1577 		return -ENOMEM;
1578 	}
1579 
1580 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1581 			page, scsi3addr, TYPE_CMD)) {
1582 		rc = -1;
1583 		goto out;
1584 	}
1585 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1586 	ei = c->err_info;
1587 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1588 		hpsa_scsi_interpret_error(c);
1589 		rc = -1;
1590 	}
1591 out:
1592 	cmd_special_free(h, c);
1593 	return rc;
1594 }
1595 
1596 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1597 {
1598 	int rc = IO_OK;
1599 	struct CommandList *c;
1600 	struct ErrorInfo *ei;
1601 
1602 	c = cmd_special_alloc(h);
1603 
1604 	if (c == NULL) {			/* trouble... */
1605 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1606 		return -ENOMEM;
1607 	}
1608 
1609 	/* fill_cmd can't fail here, no data buffer to map. */
1610 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1611 			NULL, 0, 0, scsi3addr, TYPE_MSG);
1612 	hpsa_scsi_do_simple_cmd_core(h, c);
1613 	/* no unmap needed here because no data xfer. */
1614 
1615 	ei = c->err_info;
1616 	if (ei->CommandStatus != 0) {
1617 		hpsa_scsi_interpret_error(c);
1618 		rc = -1;
1619 	}
1620 	cmd_special_free(h, c);
1621 	return rc;
1622 }
1623 
1624 static void hpsa_get_raid_level(struct ctlr_info *h,
1625 	unsigned char *scsi3addr, unsigned char *raid_level)
1626 {
1627 	int rc;
1628 	unsigned char *buf;
1629 
1630 	*raid_level = RAID_UNKNOWN;
1631 	buf = kzalloc(64, GFP_KERNEL);
1632 	if (!buf)
1633 		return;
1634 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1635 	if (rc == 0)
1636 		*raid_level = buf[8];
1637 	if (*raid_level > RAID_UNKNOWN)
1638 		*raid_level = RAID_UNKNOWN;
1639 	kfree(buf);
1640 	return;
1641 }
1642 
1643 /* Get the device id from inquiry page 0x83 */
1644 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1645 	unsigned char *device_id, int buflen)
1646 {
1647 	int rc;
1648 	unsigned char *buf;
1649 
1650 	if (buflen > 16)
1651 		buflen = 16;
1652 	buf = kzalloc(64, GFP_KERNEL);
1653 	if (!buf)
1654 		return -1;
1655 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1656 	if (rc == 0)
1657 		memcpy(device_id, &buf[8], buflen);
1658 	kfree(buf);
1659 	return rc != 0;
1660 }
1661 
1662 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1663 		struct ReportLUNdata *buf, int bufsize,
1664 		int extended_response)
1665 {
1666 	int rc = IO_OK;
1667 	struct CommandList *c;
1668 	unsigned char scsi3addr[8];
1669 	struct ErrorInfo *ei;
1670 
1671 	c = cmd_special_alloc(h);
1672 	if (c == NULL) {			/* trouble... */
1673 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1674 		return -1;
1675 	}
1676 	/* address the controller */
1677 	memset(scsi3addr, 0, sizeof(scsi3addr));
1678 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1679 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1680 		rc = -1;
1681 		goto out;
1682 	}
1683 	if (extended_response)
1684 		c->Request.CDB[1] = extended_response;
1685 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1686 	ei = c->err_info;
1687 	if (ei->CommandStatus != 0 &&
1688 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1689 		hpsa_scsi_interpret_error(c);
1690 		rc = -1;
1691 	}
1692 out:
1693 	cmd_special_free(h, c);
1694 	return rc;
1695 }
1696 
1697 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1698 		struct ReportLUNdata *buf,
1699 		int bufsize, int extended_response)
1700 {
1701 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1702 }
1703 
1704 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1705 		struct ReportLUNdata *buf, int bufsize)
1706 {
1707 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1708 }
1709 
1710 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1711 	int bus, int target, int lun)
1712 {
1713 	device->bus = bus;
1714 	device->target = target;
1715 	device->lun = lun;
1716 }
1717 
1718 static int hpsa_update_device_info(struct ctlr_info *h,
1719 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1720 	unsigned char *is_OBDR_device)
1721 {
1722 
1723 #define OBDR_SIG_OFFSET 43
1724 #define OBDR_TAPE_SIG "$DR-10"
1725 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1726 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1727 
1728 	unsigned char *inq_buff;
1729 	unsigned char *obdr_sig;
1730 
1731 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1732 	if (!inq_buff)
1733 		goto bail_out;
1734 
1735 	/* Do an inquiry to the device to see what it is. */
1736 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1737 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1738 		/* Inquiry failed (msg printed already) */
1739 		dev_err(&h->pdev->dev,
1740 			"hpsa_update_device_info: inquiry failed\n");
1741 		goto bail_out;
1742 	}
1743 
1744 	this_device->devtype = (inq_buff[0] & 0x1f);
1745 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1746 	memcpy(this_device->vendor, &inq_buff[8],
1747 		sizeof(this_device->vendor));
1748 	memcpy(this_device->model, &inq_buff[16],
1749 		sizeof(this_device->model));
1750 	memset(this_device->device_id, 0,
1751 		sizeof(this_device->device_id));
1752 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1753 		sizeof(this_device->device_id));
1754 
1755 	if (this_device->devtype == TYPE_DISK &&
1756 		is_logical_dev_addr_mode(scsi3addr))
1757 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1758 	else
1759 		this_device->raid_level = RAID_UNKNOWN;
1760 
1761 	if (is_OBDR_device) {
1762 		/* See if this is a One-Button-Disaster-Recovery device
1763 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1764 		 */
1765 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1766 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1767 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1768 						OBDR_SIG_LEN) == 0);
1769 	}
1770 
1771 	kfree(inq_buff);
1772 	return 0;
1773 
1774 bail_out:
1775 	kfree(inq_buff);
1776 	return 1;
1777 }
1778 
1779 static unsigned char *ext_target_model[] = {
1780 	"MSA2012",
1781 	"MSA2024",
1782 	"MSA2312",
1783 	"MSA2324",
1784 	"P2000 G3 SAS",
1785 	NULL,
1786 };
1787 
1788 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1789 {
1790 	int i;
1791 
1792 	for (i = 0; ext_target_model[i]; i++)
1793 		if (strncmp(device->model, ext_target_model[i],
1794 			strlen(ext_target_model[i])) == 0)
1795 			return 1;
1796 	return 0;
1797 }
1798 
1799 /* Helper function to assign bus, target, lun mapping of devices.
1800  * Puts non-external target logical volumes on bus 0, external target logical
1801  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1802  * Logical drive target and lun are assigned at this time, but
1803  * physical device lun and target assignment are deferred (assigned
1804  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1805  */
1806 static void figure_bus_target_lun(struct ctlr_info *h,
1807 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1808 {
1809 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1810 
1811 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1812 		/* physical device, target and lun filled in later */
1813 		if (is_hba_lunid(lunaddrbytes))
1814 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1815 		else
1816 			/* defer target, lun assignment for physical devices */
1817 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1818 		return;
1819 	}
1820 	/* It's a logical device */
1821 	if (is_ext_target(h, device)) {
1822 		/* external target way, put logicals on bus 1
1823 		 * and match target/lun numbers box
1824 		 * reports, other smart array, bus 0, target 0, match lunid
1825 		 */
1826 		hpsa_set_bus_target_lun(device,
1827 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1828 		return;
1829 	}
1830 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1831 }
1832 
1833 /*
1834  * If there is no lun 0 on a target, linux won't find any devices.
1835  * For the external targets (arrays), we have to manually detect the enclosure
1836  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1837  * it for some reason.  *tmpdevice is the target we're adding,
1838  * this_device is a pointer into the current element of currentsd[]
1839  * that we're building up in update_scsi_devices(), below.
1840  * lunzerobits is a bitmap that tracks which targets already have a
1841  * lun 0 assigned.
1842  * Returns 1 if an enclosure was added, 0 if not.
1843  */
1844 static int add_ext_target_dev(struct ctlr_info *h,
1845 	struct hpsa_scsi_dev_t *tmpdevice,
1846 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1847 	unsigned long lunzerobits[], int *n_ext_target_devs)
1848 {
1849 	unsigned char scsi3addr[8];
1850 
1851 	if (test_bit(tmpdevice->target, lunzerobits))
1852 		return 0; /* There is already a lun 0 on this target. */
1853 
1854 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1855 		return 0; /* It's the logical targets that may lack lun 0. */
1856 
1857 	if (!is_ext_target(h, tmpdevice))
1858 		return 0; /* Only external target devices have this problem. */
1859 
1860 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1861 		return 0;
1862 
1863 	memset(scsi3addr, 0, 8);
1864 	scsi3addr[3] = tmpdevice->target;
1865 	if (is_hba_lunid(scsi3addr))
1866 		return 0; /* Don't add the RAID controller here. */
1867 
1868 	if (is_scsi_rev_5(h))
1869 		return 0; /* p1210m doesn't need to do this. */
1870 
1871 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1872 		dev_warn(&h->pdev->dev, "Maximum number of external "
1873 			"target devices exceeded.  Check your hardware "
1874 			"configuration.");
1875 		return 0;
1876 	}
1877 
1878 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1879 		return 0;
1880 	(*n_ext_target_devs)++;
1881 	hpsa_set_bus_target_lun(this_device,
1882 				tmpdevice->bus, tmpdevice->target, 0);
1883 	set_bit(tmpdevice->target, lunzerobits);
1884 	return 1;
1885 }
1886 
1887 /*
1888  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1889  * logdev.  The number of luns in physdev and logdev are returned in
1890  * *nphysicals and *nlogicals, respectively.
1891  * Returns 0 on success, -1 otherwise.
1892  */
1893 static int hpsa_gather_lun_info(struct ctlr_info *h,
1894 	int reportlunsize,
1895 	struct ReportLUNdata *physdev, u32 *nphysicals,
1896 	struct ReportLUNdata *logdev, u32 *nlogicals)
1897 {
1898 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1899 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1900 		return -1;
1901 	}
1902 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1903 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1904 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1905 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1906 			*nphysicals - HPSA_MAX_PHYS_LUN);
1907 		*nphysicals = HPSA_MAX_PHYS_LUN;
1908 	}
1909 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1910 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1911 		return -1;
1912 	}
1913 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1914 	/* Reject Logicals in excess of our max capability. */
1915 	if (*nlogicals > HPSA_MAX_LUN) {
1916 		dev_warn(&h->pdev->dev,
1917 			"maximum logical LUNs (%d) exceeded.  "
1918 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1919 			*nlogicals - HPSA_MAX_LUN);
1920 			*nlogicals = HPSA_MAX_LUN;
1921 	}
1922 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1923 		dev_warn(&h->pdev->dev,
1924 			"maximum logical + physical LUNs (%d) exceeded. "
1925 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1926 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1927 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1928 	}
1929 	return 0;
1930 }
1931 
1932 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1933 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1934 	struct ReportLUNdata *logdev_list)
1935 {
1936 	/* Helper function, figure out where the LUN ID info is coming from
1937 	 * given index i, lists of physical and logical devices, where in
1938 	 * the list the raid controller is supposed to appear (first or last)
1939 	 */
1940 
1941 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1942 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1943 
1944 	if (i == raid_ctlr_position)
1945 		return RAID_CTLR_LUNID;
1946 
1947 	if (i < logicals_start)
1948 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1949 
1950 	if (i < last_device)
1951 		return &logdev_list->LUN[i - nphysicals -
1952 			(raid_ctlr_position == 0)][0];
1953 	BUG();
1954 	return NULL;
1955 }
1956 
1957 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1958 {
1959 	/* the idea here is we could get notified
1960 	 * that some devices have changed, so we do a report
1961 	 * physical luns and report logical luns cmd, and adjust
1962 	 * our list of devices accordingly.
1963 	 *
1964 	 * The scsi3addr's of devices won't change so long as the
1965 	 * adapter is not reset.  That means we can rescan and
1966 	 * tell which devices we already know about, vs. new
1967 	 * devices, vs.  disappearing devices.
1968 	 */
1969 	struct ReportLUNdata *physdev_list = NULL;
1970 	struct ReportLUNdata *logdev_list = NULL;
1971 	u32 nphysicals = 0;
1972 	u32 nlogicals = 0;
1973 	u32 ndev_allocated = 0;
1974 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1975 	int ncurrent = 0;
1976 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1977 	int i, n_ext_target_devs, ndevs_to_allocate;
1978 	int raid_ctlr_position;
1979 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1980 
1981 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1982 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1983 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1985 
1986 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1987 		dev_err(&h->pdev->dev, "out of memory\n");
1988 		goto out;
1989 	}
1990 	memset(lunzerobits, 0, sizeof(lunzerobits));
1991 
1992 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1993 			logdev_list, &nlogicals))
1994 		goto out;
1995 
1996 	/* We might see up to the maximum number of logical and physical disks
1997 	 * plus external target devices, and a device for the local RAID
1998 	 * controller.
1999 	 */
2000 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2001 
2002 	/* Allocate the per device structures */
2003 	for (i = 0; i < ndevs_to_allocate; i++) {
2004 		if (i >= HPSA_MAX_DEVICES) {
2005 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2006 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
2007 				ndevs_to_allocate - HPSA_MAX_DEVICES);
2008 			break;
2009 		}
2010 
2011 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2012 		if (!currentsd[i]) {
2013 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2014 				__FILE__, __LINE__);
2015 			goto out;
2016 		}
2017 		ndev_allocated++;
2018 	}
2019 
2020 	if (unlikely(is_scsi_rev_5(h)))
2021 		raid_ctlr_position = 0;
2022 	else
2023 		raid_ctlr_position = nphysicals + nlogicals;
2024 
2025 	/* adjust our table of devices */
2026 	n_ext_target_devs = 0;
2027 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2028 		u8 *lunaddrbytes, is_OBDR = 0;
2029 
2030 		/* Figure out where the LUN ID info is coming from */
2031 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2032 			i, nphysicals, nlogicals, physdev_list, logdev_list);
2033 		/* skip masked physical devices. */
2034 		if (lunaddrbytes[3] & 0xC0 &&
2035 			i < nphysicals + (raid_ctlr_position == 0))
2036 			continue;
2037 
2038 		/* Get device type, vendor, model, device id */
2039 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2040 							&is_OBDR))
2041 			continue; /* skip it if we can't talk to it. */
2042 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2043 		this_device = currentsd[ncurrent];
2044 
2045 		/*
2046 		 * For external target devices, we have to insert a LUN 0 which
2047 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2048 		 * is nonetheless an enclosure device there.  We have to
2049 		 * present that otherwise linux won't find anything if
2050 		 * there is no lun 0.
2051 		 */
2052 		if (add_ext_target_dev(h, tmpdevice, this_device,
2053 				lunaddrbytes, lunzerobits,
2054 				&n_ext_target_devs)) {
2055 			ncurrent++;
2056 			this_device = currentsd[ncurrent];
2057 		}
2058 
2059 		*this_device = *tmpdevice;
2060 
2061 		switch (this_device->devtype) {
2062 		case TYPE_ROM:
2063 			/* We don't *really* support actual CD-ROM devices,
2064 			 * just "One Button Disaster Recovery" tape drive
2065 			 * which temporarily pretends to be a CD-ROM drive.
2066 			 * So we check that the device is really an OBDR tape
2067 			 * device by checking for "$DR-10" in bytes 43-48 of
2068 			 * the inquiry data.
2069 			 */
2070 			if (is_OBDR)
2071 				ncurrent++;
2072 			break;
2073 		case TYPE_DISK:
2074 			if (i < nphysicals)
2075 				break;
2076 			ncurrent++;
2077 			break;
2078 		case TYPE_TAPE:
2079 		case TYPE_MEDIUM_CHANGER:
2080 			ncurrent++;
2081 			break;
2082 		case TYPE_RAID:
2083 			/* Only present the Smartarray HBA as a RAID controller.
2084 			 * If it's a RAID controller other than the HBA itself
2085 			 * (an external RAID controller, MSA500 or similar)
2086 			 * don't present it.
2087 			 */
2088 			if (!is_hba_lunid(lunaddrbytes))
2089 				break;
2090 			ncurrent++;
2091 			break;
2092 		default:
2093 			break;
2094 		}
2095 		if (ncurrent >= HPSA_MAX_DEVICES)
2096 			break;
2097 	}
2098 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2099 out:
2100 	kfree(tmpdevice);
2101 	for (i = 0; i < ndev_allocated; i++)
2102 		kfree(currentsd[i]);
2103 	kfree(currentsd);
2104 	kfree(physdev_list);
2105 	kfree(logdev_list);
2106 }
2107 
2108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2109  * dma mapping  and fills in the scatter gather entries of the
2110  * hpsa command, cp.
2111  */
2112 static int hpsa_scatter_gather(struct ctlr_info *h,
2113 		struct CommandList *cp,
2114 		struct scsi_cmnd *cmd)
2115 {
2116 	unsigned int len;
2117 	struct scatterlist *sg;
2118 	u64 addr64;
2119 	int use_sg, i, sg_index, chained;
2120 	struct SGDescriptor *curr_sg;
2121 
2122 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2123 
2124 	use_sg = scsi_dma_map(cmd);
2125 	if (use_sg < 0)
2126 		return use_sg;
2127 
2128 	if (!use_sg)
2129 		goto sglist_finished;
2130 
2131 	curr_sg = cp->SG;
2132 	chained = 0;
2133 	sg_index = 0;
2134 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2135 		if (i == h->max_cmd_sg_entries - 1 &&
2136 			use_sg > h->max_cmd_sg_entries) {
2137 			chained = 1;
2138 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2139 			sg_index = 0;
2140 		}
2141 		addr64 = (u64) sg_dma_address(sg);
2142 		len  = sg_dma_len(sg);
2143 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2144 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2145 		curr_sg->Len = len;
2146 		curr_sg->Ext = 0;  /* we are not chaining */
2147 		curr_sg++;
2148 	}
2149 
2150 	if (use_sg + chained > h->maxSG)
2151 		h->maxSG = use_sg + chained;
2152 
2153 	if (chained) {
2154 		cp->Header.SGList = h->max_cmd_sg_entries;
2155 		cp->Header.SGTotal = (u16) (use_sg + 1);
2156 		if (hpsa_map_sg_chain_block(h, cp)) {
2157 			scsi_dma_unmap(cmd);
2158 			return -1;
2159 		}
2160 		return 0;
2161 	}
2162 
2163 sglist_finished:
2164 
2165 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2166 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2167 	return 0;
2168 }
2169 
2170 
2171 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2172 	void (*done)(struct scsi_cmnd *))
2173 {
2174 	struct ctlr_info *h;
2175 	struct hpsa_scsi_dev_t *dev;
2176 	unsigned char scsi3addr[8];
2177 	struct CommandList *c;
2178 	unsigned long flags;
2179 
2180 	/* Get the ptr to our adapter structure out of cmd->host. */
2181 	h = sdev_to_hba(cmd->device);
2182 	dev = cmd->device->hostdata;
2183 	if (!dev) {
2184 		cmd->result = DID_NO_CONNECT << 16;
2185 		done(cmd);
2186 		return 0;
2187 	}
2188 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2189 
2190 	spin_lock_irqsave(&h->lock, flags);
2191 	if (unlikely(h->lockup_detected)) {
2192 		spin_unlock_irqrestore(&h->lock, flags);
2193 		cmd->result = DID_ERROR << 16;
2194 		done(cmd);
2195 		return 0;
2196 	}
2197 	spin_unlock_irqrestore(&h->lock, flags);
2198 	c = cmd_alloc(h);
2199 	if (c == NULL) {			/* trouble... */
2200 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2201 		return SCSI_MLQUEUE_HOST_BUSY;
2202 	}
2203 
2204 	/* Fill in the command list header */
2205 
2206 	cmd->scsi_done = done;    /* save this for use by completion code */
2207 
2208 	/* save c in case we have to abort it  */
2209 	cmd->host_scribble = (unsigned char *) c;
2210 
2211 	c->cmd_type = CMD_SCSI;
2212 	c->scsi_cmd = cmd;
2213 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2214 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2215 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2216 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2217 
2218 	/* Fill in the request block... */
2219 
2220 	c->Request.Timeout = 0;
2221 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2222 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2223 	c->Request.CDBLen = cmd->cmd_len;
2224 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2225 	c->Request.Type.Type = TYPE_CMD;
2226 	c->Request.Type.Attribute = ATTR_SIMPLE;
2227 	switch (cmd->sc_data_direction) {
2228 	case DMA_TO_DEVICE:
2229 		c->Request.Type.Direction = XFER_WRITE;
2230 		break;
2231 	case DMA_FROM_DEVICE:
2232 		c->Request.Type.Direction = XFER_READ;
2233 		break;
2234 	case DMA_NONE:
2235 		c->Request.Type.Direction = XFER_NONE;
2236 		break;
2237 	case DMA_BIDIRECTIONAL:
2238 		/* This can happen if a buggy application does a scsi passthru
2239 		 * and sets both inlen and outlen to non-zero. ( see
2240 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2241 		 */
2242 
2243 		c->Request.Type.Direction = XFER_RSVD;
2244 		/* This is technically wrong, and hpsa controllers should
2245 		 * reject it with CMD_INVALID, which is the most correct
2246 		 * response, but non-fibre backends appear to let it
2247 		 * slide by, and give the same results as if this field
2248 		 * were set correctly.  Either way is acceptable for
2249 		 * our purposes here.
2250 		 */
2251 
2252 		break;
2253 
2254 	default:
2255 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2256 			cmd->sc_data_direction);
2257 		BUG();
2258 		break;
2259 	}
2260 
2261 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2262 		cmd_free(h, c);
2263 		return SCSI_MLQUEUE_HOST_BUSY;
2264 	}
2265 	enqueue_cmd_and_start_io(h, c);
2266 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2267 	return 0;
2268 }
2269 
2270 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2271 
2272 static void hpsa_scan_start(struct Scsi_Host *sh)
2273 {
2274 	struct ctlr_info *h = shost_to_hba(sh);
2275 	unsigned long flags;
2276 
2277 	/* wait until any scan already in progress is finished. */
2278 	while (1) {
2279 		spin_lock_irqsave(&h->scan_lock, flags);
2280 		if (h->scan_finished)
2281 			break;
2282 		spin_unlock_irqrestore(&h->scan_lock, flags);
2283 		wait_event(h->scan_wait_queue, h->scan_finished);
2284 		/* Note: We don't need to worry about a race between this
2285 		 * thread and driver unload because the midlayer will
2286 		 * have incremented the reference count, so unload won't
2287 		 * happen if we're in here.
2288 		 */
2289 	}
2290 	h->scan_finished = 0; /* mark scan as in progress */
2291 	spin_unlock_irqrestore(&h->scan_lock, flags);
2292 
2293 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2294 
2295 	spin_lock_irqsave(&h->scan_lock, flags);
2296 	h->scan_finished = 1; /* mark scan as finished. */
2297 	wake_up_all(&h->scan_wait_queue);
2298 	spin_unlock_irqrestore(&h->scan_lock, flags);
2299 }
2300 
2301 static int hpsa_scan_finished(struct Scsi_Host *sh,
2302 	unsigned long elapsed_time)
2303 {
2304 	struct ctlr_info *h = shost_to_hba(sh);
2305 	unsigned long flags;
2306 	int finished;
2307 
2308 	spin_lock_irqsave(&h->scan_lock, flags);
2309 	finished = h->scan_finished;
2310 	spin_unlock_irqrestore(&h->scan_lock, flags);
2311 	return finished;
2312 }
2313 
2314 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2315 	int qdepth, int reason)
2316 {
2317 	struct ctlr_info *h = sdev_to_hba(sdev);
2318 
2319 	if (reason != SCSI_QDEPTH_DEFAULT)
2320 		return -ENOTSUPP;
2321 
2322 	if (qdepth < 1)
2323 		qdepth = 1;
2324 	else
2325 		if (qdepth > h->nr_cmds)
2326 			qdepth = h->nr_cmds;
2327 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2328 	return sdev->queue_depth;
2329 }
2330 
2331 static void hpsa_unregister_scsi(struct ctlr_info *h)
2332 {
2333 	/* we are being forcibly unloaded, and may not refuse. */
2334 	scsi_remove_host(h->scsi_host);
2335 	scsi_host_put(h->scsi_host);
2336 	h->scsi_host = NULL;
2337 }
2338 
2339 static int hpsa_register_scsi(struct ctlr_info *h)
2340 {
2341 	struct Scsi_Host *sh;
2342 	int error;
2343 
2344 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2345 	if (sh == NULL)
2346 		goto fail;
2347 
2348 	sh->io_port = 0;
2349 	sh->n_io_port = 0;
2350 	sh->this_id = -1;
2351 	sh->max_channel = 3;
2352 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2353 	sh->max_lun = HPSA_MAX_LUN;
2354 	sh->max_id = HPSA_MAX_LUN;
2355 	sh->can_queue = h->nr_cmds;
2356 	sh->cmd_per_lun = h->nr_cmds;
2357 	sh->sg_tablesize = h->maxsgentries;
2358 	h->scsi_host = sh;
2359 	sh->hostdata[0] = (unsigned long) h;
2360 	sh->irq = h->intr[h->intr_mode];
2361 	sh->unique_id = sh->irq;
2362 	error = scsi_add_host(sh, &h->pdev->dev);
2363 	if (error)
2364 		goto fail_host_put;
2365 	scsi_scan_host(sh);
2366 	return 0;
2367 
2368  fail_host_put:
2369 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2370 		" failed for controller %d\n", __func__, h->ctlr);
2371 	scsi_host_put(sh);
2372 	return error;
2373  fail:
2374 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2375 		" failed for controller %d\n", __func__, h->ctlr);
2376 	return -ENOMEM;
2377 }
2378 
2379 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2380 	unsigned char lunaddr[])
2381 {
2382 	int rc = 0;
2383 	int count = 0;
2384 	int waittime = 1; /* seconds */
2385 	struct CommandList *c;
2386 
2387 	c = cmd_special_alloc(h);
2388 	if (!c) {
2389 		dev_warn(&h->pdev->dev, "out of memory in "
2390 			"wait_for_device_to_become_ready.\n");
2391 		return IO_ERROR;
2392 	}
2393 
2394 	/* Send test unit ready until device ready, or give up. */
2395 	while (count < HPSA_TUR_RETRY_LIMIT) {
2396 
2397 		/* Wait for a bit.  do this first, because if we send
2398 		 * the TUR right away, the reset will just abort it.
2399 		 */
2400 		msleep(1000 * waittime);
2401 		count++;
2402 
2403 		/* Increase wait time with each try, up to a point. */
2404 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2405 			waittime = waittime * 2;
2406 
2407 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2408 		(void) fill_cmd(c, TEST_UNIT_READY, h,
2409 				NULL, 0, 0, lunaddr, TYPE_CMD);
2410 		hpsa_scsi_do_simple_cmd_core(h, c);
2411 		/* no unmap needed here because no data xfer. */
2412 
2413 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2414 			break;
2415 
2416 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2417 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2418 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2419 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2420 			break;
2421 
2422 		dev_warn(&h->pdev->dev, "waiting %d secs "
2423 			"for device to become ready.\n", waittime);
2424 		rc = 1; /* device not ready. */
2425 	}
2426 
2427 	if (rc)
2428 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2429 	else
2430 		dev_warn(&h->pdev->dev, "device is ready.\n");
2431 
2432 	cmd_special_free(h, c);
2433 	return rc;
2434 }
2435 
2436 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2437  * complaining.  Doing a host- or bus-reset can't do anything good here.
2438  */
2439 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2440 {
2441 	int rc;
2442 	struct ctlr_info *h;
2443 	struct hpsa_scsi_dev_t *dev;
2444 
2445 	/* find the controller to which the command to be aborted was sent */
2446 	h = sdev_to_hba(scsicmd->device);
2447 	if (h == NULL) /* paranoia */
2448 		return FAILED;
2449 	dev = scsicmd->device->hostdata;
2450 	if (!dev) {
2451 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2452 			"device lookup failed.\n");
2453 		return FAILED;
2454 	}
2455 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2456 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2457 	/* send a reset to the SCSI LUN which the command was sent to */
2458 	rc = hpsa_send_reset(h, dev->scsi3addr);
2459 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2460 		return SUCCESS;
2461 
2462 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2463 	return FAILED;
2464 }
2465 
2466 static void swizzle_abort_tag(u8 *tag)
2467 {
2468 	u8 original_tag[8];
2469 
2470 	memcpy(original_tag, tag, 8);
2471 	tag[0] = original_tag[3];
2472 	tag[1] = original_tag[2];
2473 	tag[2] = original_tag[1];
2474 	tag[3] = original_tag[0];
2475 	tag[4] = original_tag[7];
2476 	tag[5] = original_tag[6];
2477 	tag[6] = original_tag[5];
2478 	tag[7] = original_tag[4];
2479 }
2480 
2481 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2482 	struct CommandList *abort, int swizzle)
2483 {
2484 	int rc = IO_OK;
2485 	struct CommandList *c;
2486 	struct ErrorInfo *ei;
2487 
2488 	c = cmd_special_alloc(h);
2489 	if (c == NULL) {	/* trouble... */
2490 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2491 		return -ENOMEM;
2492 	}
2493 
2494 	/* fill_cmd can't fail here, no buffer to map */
2495 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2496 		0, 0, scsi3addr, TYPE_MSG);
2497 	if (swizzle)
2498 		swizzle_abort_tag(&c->Request.CDB[4]);
2499 	hpsa_scsi_do_simple_cmd_core(h, c);
2500 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2501 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2502 	/* no unmap needed here because no data xfer. */
2503 
2504 	ei = c->err_info;
2505 	switch (ei->CommandStatus) {
2506 	case CMD_SUCCESS:
2507 		break;
2508 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2509 		rc = -1;
2510 		break;
2511 	default:
2512 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2513 			__func__, abort->Header.Tag.upper,
2514 			abort->Header.Tag.lower);
2515 		hpsa_scsi_interpret_error(c);
2516 		rc = -1;
2517 		break;
2518 	}
2519 	cmd_special_free(h, c);
2520 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2521 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2522 	return rc;
2523 }
2524 
2525 /*
2526  * hpsa_find_cmd_in_queue
2527  *
2528  * Used to determine whether a command (find) is still present
2529  * in queue_head.   Optionally excludes the last element of queue_head.
2530  *
2531  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2532  * not yet been submitted, and so can be aborted by the driver without
2533  * sending an abort to the hardware.
2534  *
2535  * Returns pointer to command if found in queue, NULL otherwise.
2536  */
2537 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2538 			struct scsi_cmnd *find, struct list_head *queue_head)
2539 {
2540 	unsigned long flags;
2541 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2542 
2543 	if (!find)
2544 		return 0;
2545 	spin_lock_irqsave(&h->lock, flags);
2546 	list_for_each_entry(c, queue_head, list) {
2547 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2548 			continue;
2549 		if (c->scsi_cmd == find) {
2550 			spin_unlock_irqrestore(&h->lock, flags);
2551 			return c;
2552 		}
2553 	}
2554 	spin_unlock_irqrestore(&h->lock, flags);
2555 	return NULL;
2556 }
2557 
2558 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2559 					u8 *tag, struct list_head *queue_head)
2560 {
2561 	unsigned long flags;
2562 	struct CommandList *c;
2563 
2564 	spin_lock_irqsave(&h->lock, flags);
2565 	list_for_each_entry(c, queue_head, list) {
2566 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2567 			continue;
2568 		spin_unlock_irqrestore(&h->lock, flags);
2569 		return c;
2570 	}
2571 	spin_unlock_irqrestore(&h->lock, flags);
2572 	return NULL;
2573 }
2574 
2575 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2576  * tell which kind we're dealing with, so we send the abort both ways.  There
2577  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2578  * way we construct our tags but we check anyway in case the assumptions which
2579  * make this true someday become false.
2580  */
2581 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2582 	unsigned char *scsi3addr, struct CommandList *abort)
2583 {
2584 	u8 swizzled_tag[8];
2585 	struct CommandList *c;
2586 	int rc = 0, rc2 = 0;
2587 
2588 	/* we do not expect to find the swizzled tag in our queue, but
2589 	 * check anyway just to be sure the assumptions which make this
2590 	 * the case haven't become wrong.
2591 	 */
2592 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2593 	swizzle_abort_tag(swizzled_tag);
2594 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2595 	if (c != NULL) {
2596 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2597 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2598 	}
2599 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2600 
2601 	/* if the command is still in our queue, we can't conclude that it was
2602 	 * aborted (it might have just completed normally) but in any case
2603 	 * we don't need to try to abort it another way.
2604 	 */
2605 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2606 	if (c)
2607 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2608 	return rc && rc2;
2609 }
2610 
2611 /* Send an abort for the specified command.
2612  *	If the device and controller support it,
2613  *		send a task abort request.
2614  */
2615 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2616 {
2617 
2618 	int i, rc;
2619 	struct ctlr_info *h;
2620 	struct hpsa_scsi_dev_t *dev;
2621 	struct CommandList *abort; /* pointer to command to be aborted */
2622 	struct CommandList *found;
2623 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2624 	char msg[256];		/* For debug messaging. */
2625 	int ml = 0;
2626 
2627 	/* Find the controller of the command to be aborted */
2628 	h = sdev_to_hba(sc->device);
2629 	if (WARN(h == NULL,
2630 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2631 		return FAILED;
2632 
2633 	/* Check that controller supports some kind of task abort */
2634 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2635 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2636 		return FAILED;
2637 
2638 	memset(msg, 0, sizeof(msg));
2639 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2640 		h->scsi_host->host_no, sc->device->channel,
2641 		sc->device->id, sc->device->lun);
2642 
2643 	/* Find the device of the command to be aborted */
2644 	dev = sc->device->hostdata;
2645 	if (!dev) {
2646 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2647 				msg);
2648 		return FAILED;
2649 	}
2650 
2651 	/* Get SCSI command to be aborted */
2652 	abort = (struct CommandList *) sc->host_scribble;
2653 	if (abort == NULL) {
2654 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2655 				msg);
2656 		return FAILED;
2657 	}
2658 
2659 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2660 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2661 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2662 	if (as != NULL)
2663 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2664 			as->cmnd[0], as->serial_number);
2665 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2666 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2667 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2668 
2669 	/* Search reqQ to See if command is queued but not submitted,
2670 	 * if so, complete the command with aborted status and remove
2671 	 * it from the reqQ.
2672 	 */
2673 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2674 	if (found) {
2675 		found->err_info->CommandStatus = CMD_ABORTED;
2676 		finish_cmd(found);
2677 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2678 				msg);
2679 		return SUCCESS;
2680 	}
2681 
2682 	/* not in reqQ, if also not in cmpQ, must have already completed */
2683 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2684 	if (!found)  {
2685 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2686 				msg);
2687 		return SUCCESS;
2688 	}
2689 
2690 	/*
2691 	 * Command is in flight, or possibly already completed
2692 	 * by the firmware (but not to the scsi mid layer) but we can't
2693 	 * distinguish which.  Send the abort down.
2694 	 */
2695 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2696 	if (rc != 0) {
2697 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2698 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2699 			h->scsi_host->host_no,
2700 			dev->bus, dev->target, dev->lun);
2701 		return FAILED;
2702 	}
2703 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2704 
2705 	/* If the abort(s) above completed and actually aborted the
2706 	 * command, then the command to be aborted should already be
2707 	 * completed.  If not, wait around a bit more to see if they
2708 	 * manage to complete normally.
2709 	 */
2710 #define ABORT_COMPLETE_WAIT_SECS 30
2711 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2712 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2713 		if (!found)
2714 			return SUCCESS;
2715 		msleep(100);
2716 	}
2717 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2718 		msg, ABORT_COMPLETE_WAIT_SECS);
2719 	return FAILED;
2720 }
2721 
2722 
2723 /*
2724  * For operations that cannot sleep, a command block is allocated at init,
2725  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2726  * which ones are free or in use.  Lock must be held when calling this.
2727  * cmd_free() is the complement.
2728  */
2729 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2730 {
2731 	struct CommandList *c;
2732 	int i;
2733 	union u64bit temp64;
2734 	dma_addr_t cmd_dma_handle, err_dma_handle;
2735 	unsigned long flags;
2736 
2737 	spin_lock_irqsave(&h->lock, flags);
2738 	do {
2739 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2740 		if (i == h->nr_cmds) {
2741 			spin_unlock_irqrestore(&h->lock, flags);
2742 			return NULL;
2743 		}
2744 	} while (test_and_set_bit
2745 		 (i & (BITS_PER_LONG - 1),
2746 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2747 	spin_unlock_irqrestore(&h->lock, flags);
2748 
2749 	c = h->cmd_pool + i;
2750 	memset(c, 0, sizeof(*c));
2751 	cmd_dma_handle = h->cmd_pool_dhandle
2752 	    + i * sizeof(*c);
2753 	c->err_info = h->errinfo_pool + i;
2754 	memset(c->err_info, 0, sizeof(*c->err_info));
2755 	err_dma_handle = h->errinfo_pool_dhandle
2756 	    + i * sizeof(*c->err_info);
2757 
2758 	c->cmdindex = i;
2759 
2760 	INIT_LIST_HEAD(&c->list);
2761 	c->busaddr = (u32) cmd_dma_handle;
2762 	temp64.val = (u64) err_dma_handle;
2763 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2764 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2765 	c->ErrDesc.Len = sizeof(*c->err_info);
2766 
2767 	c->h = h;
2768 	return c;
2769 }
2770 
2771 /* For operations that can wait for kmalloc to possibly sleep,
2772  * this routine can be called. Lock need not be held to call
2773  * cmd_special_alloc. cmd_special_free() is the complement.
2774  */
2775 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2776 {
2777 	struct CommandList *c;
2778 	union u64bit temp64;
2779 	dma_addr_t cmd_dma_handle, err_dma_handle;
2780 
2781 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2782 	if (c == NULL)
2783 		return NULL;
2784 	memset(c, 0, sizeof(*c));
2785 
2786 	c->cmdindex = -1;
2787 
2788 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2789 		    &err_dma_handle);
2790 
2791 	if (c->err_info == NULL) {
2792 		pci_free_consistent(h->pdev,
2793 			sizeof(*c), c, cmd_dma_handle);
2794 		return NULL;
2795 	}
2796 	memset(c->err_info, 0, sizeof(*c->err_info));
2797 
2798 	INIT_LIST_HEAD(&c->list);
2799 	c->busaddr = (u32) cmd_dma_handle;
2800 	temp64.val = (u64) err_dma_handle;
2801 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2802 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2803 	c->ErrDesc.Len = sizeof(*c->err_info);
2804 
2805 	c->h = h;
2806 	return c;
2807 }
2808 
2809 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2810 {
2811 	int i;
2812 	unsigned long flags;
2813 
2814 	i = c - h->cmd_pool;
2815 	spin_lock_irqsave(&h->lock, flags);
2816 	clear_bit(i & (BITS_PER_LONG - 1),
2817 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2818 	spin_unlock_irqrestore(&h->lock, flags);
2819 }
2820 
2821 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2822 {
2823 	union u64bit temp64;
2824 
2825 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2826 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2827 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2828 			    c->err_info, (dma_addr_t) temp64.val);
2829 	pci_free_consistent(h->pdev, sizeof(*c),
2830 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2831 }
2832 
2833 #ifdef CONFIG_COMPAT
2834 
2835 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2836 {
2837 	IOCTL32_Command_struct __user *arg32 =
2838 	    (IOCTL32_Command_struct __user *) arg;
2839 	IOCTL_Command_struct arg64;
2840 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2841 	int err;
2842 	u32 cp;
2843 
2844 	memset(&arg64, 0, sizeof(arg64));
2845 	err = 0;
2846 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2847 			   sizeof(arg64.LUN_info));
2848 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2849 			   sizeof(arg64.Request));
2850 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2851 			   sizeof(arg64.error_info));
2852 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2853 	err |= get_user(cp, &arg32->buf);
2854 	arg64.buf = compat_ptr(cp);
2855 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2856 
2857 	if (err)
2858 		return -EFAULT;
2859 
2860 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2861 	if (err)
2862 		return err;
2863 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2864 			 sizeof(arg32->error_info));
2865 	if (err)
2866 		return -EFAULT;
2867 	return err;
2868 }
2869 
2870 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2871 	int cmd, void *arg)
2872 {
2873 	BIG_IOCTL32_Command_struct __user *arg32 =
2874 	    (BIG_IOCTL32_Command_struct __user *) arg;
2875 	BIG_IOCTL_Command_struct arg64;
2876 	BIG_IOCTL_Command_struct __user *p =
2877 	    compat_alloc_user_space(sizeof(arg64));
2878 	int err;
2879 	u32 cp;
2880 
2881 	memset(&arg64, 0, sizeof(arg64));
2882 	err = 0;
2883 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2884 			   sizeof(arg64.LUN_info));
2885 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2886 			   sizeof(arg64.Request));
2887 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2888 			   sizeof(arg64.error_info));
2889 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2890 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2891 	err |= get_user(cp, &arg32->buf);
2892 	arg64.buf = compat_ptr(cp);
2893 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2894 
2895 	if (err)
2896 		return -EFAULT;
2897 
2898 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2899 	if (err)
2900 		return err;
2901 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2902 			 sizeof(arg32->error_info));
2903 	if (err)
2904 		return -EFAULT;
2905 	return err;
2906 }
2907 
2908 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2909 {
2910 	switch (cmd) {
2911 	case CCISS_GETPCIINFO:
2912 	case CCISS_GETINTINFO:
2913 	case CCISS_SETINTINFO:
2914 	case CCISS_GETNODENAME:
2915 	case CCISS_SETNODENAME:
2916 	case CCISS_GETHEARTBEAT:
2917 	case CCISS_GETBUSTYPES:
2918 	case CCISS_GETFIRMVER:
2919 	case CCISS_GETDRIVVER:
2920 	case CCISS_REVALIDVOLS:
2921 	case CCISS_DEREGDISK:
2922 	case CCISS_REGNEWDISK:
2923 	case CCISS_REGNEWD:
2924 	case CCISS_RESCANDISK:
2925 	case CCISS_GETLUNINFO:
2926 		return hpsa_ioctl(dev, cmd, arg);
2927 
2928 	case CCISS_PASSTHRU32:
2929 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2930 	case CCISS_BIG_PASSTHRU32:
2931 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2932 
2933 	default:
2934 		return -ENOIOCTLCMD;
2935 	}
2936 }
2937 #endif
2938 
2939 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2940 {
2941 	struct hpsa_pci_info pciinfo;
2942 
2943 	if (!argp)
2944 		return -EINVAL;
2945 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2946 	pciinfo.bus = h->pdev->bus->number;
2947 	pciinfo.dev_fn = h->pdev->devfn;
2948 	pciinfo.board_id = h->board_id;
2949 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2950 		return -EFAULT;
2951 	return 0;
2952 }
2953 
2954 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2955 {
2956 	DriverVer_type DriverVer;
2957 	unsigned char vmaj, vmin, vsubmin;
2958 	int rc;
2959 
2960 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2961 		&vmaj, &vmin, &vsubmin);
2962 	if (rc != 3) {
2963 		dev_info(&h->pdev->dev, "driver version string '%s' "
2964 			"unrecognized.", HPSA_DRIVER_VERSION);
2965 		vmaj = 0;
2966 		vmin = 0;
2967 		vsubmin = 0;
2968 	}
2969 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2970 	if (!argp)
2971 		return -EINVAL;
2972 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2973 		return -EFAULT;
2974 	return 0;
2975 }
2976 
2977 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2978 {
2979 	IOCTL_Command_struct iocommand;
2980 	struct CommandList *c;
2981 	char *buff = NULL;
2982 	union u64bit temp64;
2983 	int rc = 0;
2984 
2985 	if (!argp)
2986 		return -EINVAL;
2987 	if (!capable(CAP_SYS_RAWIO))
2988 		return -EPERM;
2989 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2990 		return -EFAULT;
2991 	if ((iocommand.buf_size < 1) &&
2992 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2993 		return -EINVAL;
2994 	}
2995 	if (iocommand.buf_size > 0) {
2996 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2997 		if (buff == NULL)
2998 			return -EFAULT;
2999 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
3000 			/* Copy the data into the buffer we created */
3001 			if (copy_from_user(buff, iocommand.buf,
3002 				iocommand.buf_size)) {
3003 				rc = -EFAULT;
3004 				goto out_kfree;
3005 			}
3006 		} else {
3007 			memset(buff, 0, iocommand.buf_size);
3008 		}
3009 	}
3010 	c = cmd_special_alloc(h);
3011 	if (c == NULL) {
3012 		rc = -ENOMEM;
3013 		goto out_kfree;
3014 	}
3015 	/* Fill in the command type */
3016 	c->cmd_type = CMD_IOCTL_PEND;
3017 	/* Fill in Command Header */
3018 	c->Header.ReplyQueue = 0; /* unused in simple mode */
3019 	if (iocommand.buf_size > 0) {	/* buffer to fill */
3020 		c->Header.SGList = 1;
3021 		c->Header.SGTotal = 1;
3022 	} else	{ /* no buffers to fill */
3023 		c->Header.SGList = 0;
3024 		c->Header.SGTotal = 0;
3025 	}
3026 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3027 	/* use the kernel address the cmd block for tag */
3028 	c->Header.Tag.lower = c->busaddr;
3029 
3030 	/* Fill in Request block */
3031 	memcpy(&c->Request, &iocommand.Request,
3032 		sizeof(c->Request));
3033 
3034 	/* Fill in the scatter gather information */
3035 	if (iocommand.buf_size > 0) {
3036 		temp64.val = pci_map_single(h->pdev, buff,
3037 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3038 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3039 			c->SG[0].Addr.lower = 0;
3040 			c->SG[0].Addr.upper = 0;
3041 			c->SG[0].Len = 0;
3042 			rc = -ENOMEM;
3043 			goto out;
3044 		}
3045 		c->SG[0].Addr.lower = temp64.val32.lower;
3046 		c->SG[0].Addr.upper = temp64.val32.upper;
3047 		c->SG[0].Len = iocommand.buf_size;
3048 		c->SG[0].Ext = 0; /* we are not chaining*/
3049 	}
3050 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3051 	if (iocommand.buf_size > 0)
3052 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3053 	check_ioctl_unit_attention(h, c);
3054 
3055 	/* Copy the error information out */
3056 	memcpy(&iocommand.error_info, c->err_info,
3057 		sizeof(iocommand.error_info));
3058 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3059 		rc = -EFAULT;
3060 		goto out;
3061 	}
3062 	if (iocommand.Request.Type.Direction == XFER_READ &&
3063 		iocommand.buf_size > 0) {
3064 		/* Copy the data out of the buffer we created */
3065 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3066 			rc = -EFAULT;
3067 			goto out;
3068 		}
3069 	}
3070 out:
3071 	cmd_special_free(h, c);
3072 out_kfree:
3073 	kfree(buff);
3074 	return rc;
3075 }
3076 
3077 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3078 {
3079 	BIG_IOCTL_Command_struct *ioc;
3080 	struct CommandList *c;
3081 	unsigned char **buff = NULL;
3082 	int *buff_size = NULL;
3083 	union u64bit temp64;
3084 	BYTE sg_used = 0;
3085 	int status = 0;
3086 	int i;
3087 	u32 left;
3088 	u32 sz;
3089 	BYTE __user *data_ptr;
3090 
3091 	if (!argp)
3092 		return -EINVAL;
3093 	if (!capable(CAP_SYS_RAWIO))
3094 		return -EPERM;
3095 	ioc = (BIG_IOCTL_Command_struct *)
3096 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3097 	if (!ioc) {
3098 		status = -ENOMEM;
3099 		goto cleanup1;
3100 	}
3101 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3102 		status = -EFAULT;
3103 		goto cleanup1;
3104 	}
3105 	if ((ioc->buf_size < 1) &&
3106 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3107 		status = -EINVAL;
3108 		goto cleanup1;
3109 	}
3110 	/* Check kmalloc limits  using all SGs */
3111 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3112 		status = -EINVAL;
3113 		goto cleanup1;
3114 	}
3115 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3116 		status = -EINVAL;
3117 		goto cleanup1;
3118 	}
3119 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3120 	if (!buff) {
3121 		status = -ENOMEM;
3122 		goto cleanup1;
3123 	}
3124 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3125 	if (!buff_size) {
3126 		status = -ENOMEM;
3127 		goto cleanup1;
3128 	}
3129 	left = ioc->buf_size;
3130 	data_ptr = ioc->buf;
3131 	while (left) {
3132 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3133 		buff_size[sg_used] = sz;
3134 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3135 		if (buff[sg_used] == NULL) {
3136 			status = -ENOMEM;
3137 			goto cleanup1;
3138 		}
3139 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3140 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3141 				status = -ENOMEM;
3142 				goto cleanup1;
3143 			}
3144 		} else
3145 			memset(buff[sg_used], 0, sz);
3146 		left -= sz;
3147 		data_ptr += sz;
3148 		sg_used++;
3149 	}
3150 	c = cmd_special_alloc(h);
3151 	if (c == NULL) {
3152 		status = -ENOMEM;
3153 		goto cleanup1;
3154 	}
3155 	c->cmd_type = CMD_IOCTL_PEND;
3156 	c->Header.ReplyQueue = 0;
3157 	c->Header.SGList = c->Header.SGTotal = sg_used;
3158 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3159 	c->Header.Tag.lower = c->busaddr;
3160 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3161 	if (ioc->buf_size > 0) {
3162 		int i;
3163 		for (i = 0; i < sg_used; i++) {
3164 			temp64.val = pci_map_single(h->pdev, buff[i],
3165 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3166 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3167 				c->SG[i].Addr.lower = 0;
3168 				c->SG[i].Addr.upper = 0;
3169 				c->SG[i].Len = 0;
3170 				hpsa_pci_unmap(h->pdev, c, i,
3171 					PCI_DMA_BIDIRECTIONAL);
3172 				status = -ENOMEM;
3173 				goto cleanup1;
3174 			}
3175 			c->SG[i].Addr.lower = temp64.val32.lower;
3176 			c->SG[i].Addr.upper = temp64.val32.upper;
3177 			c->SG[i].Len = buff_size[i];
3178 			/* we are not chaining */
3179 			c->SG[i].Ext = 0;
3180 		}
3181 	}
3182 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3183 	if (sg_used)
3184 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3185 	check_ioctl_unit_attention(h, c);
3186 	/* Copy the error information out */
3187 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3188 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3189 		cmd_special_free(h, c);
3190 		status = -EFAULT;
3191 		goto cleanup1;
3192 	}
3193 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3194 		/* Copy the data out of the buffer we created */
3195 		BYTE __user *ptr = ioc->buf;
3196 		for (i = 0; i < sg_used; i++) {
3197 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3198 				cmd_special_free(h, c);
3199 				status = -EFAULT;
3200 				goto cleanup1;
3201 			}
3202 			ptr += buff_size[i];
3203 		}
3204 	}
3205 	cmd_special_free(h, c);
3206 	status = 0;
3207 cleanup1:
3208 	if (buff) {
3209 		for (i = 0; i < sg_used; i++)
3210 			kfree(buff[i]);
3211 		kfree(buff);
3212 	}
3213 	kfree(buff_size);
3214 	kfree(ioc);
3215 	return status;
3216 }
3217 
3218 static void check_ioctl_unit_attention(struct ctlr_info *h,
3219 	struct CommandList *c)
3220 {
3221 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3222 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3223 		(void) check_for_unit_attention(h, c);
3224 }
3225 /*
3226  * ioctl
3227  */
3228 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3229 {
3230 	struct ctlr_info *h;
3231 	void __user *argp = (void __user *)arg;
3232 
3233 	h = sdev_to_hba(dev);
3234 
3235 	switch (cmd) {
3236 	case CCISS_DEREGDISK:
3237 	case CCISS_REGNEWDISK:
3238 	case CCISS_REGNEWD:
3239 		hpsa_scan_start(h->scsi_host);
3240 		return 0;
3241 	case CCISS_GETPCIINFO:
3242 		return hpsa_getpciinfo_ioctl(h, argp);
3243 	case CCISS_GETDRIVVER:
3244 		return hpsa_getdrivver_ioctl(h, argp);
3245 	case CCISS_PASSTHRU:
3246 		return hpsa_passthru_ioctl(h, argp);
3247 	case CCISS_BIG_PASSTHRU:
3248 		return hpsa_big_passthru_ioctl(h, argp);
3249 	default:
3250 		return -ENOTTY;
3251 	}
3252 }
3253 
3254 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3255 				u8 reset_type)
3256 {
3257 	struct CommandList *c;
3258 
3259 	c = cmd_alloc(h);
3260 	if (!c)
3261 		return -ENOMEM;
3262 	/* fill_cmd can't fail here, no data buffer to map */
3263 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3264 		RAID_CTLR_LUNID, TYPE_MSG);
3265 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3266 	c->waiting = NULL;
3267 	enqueue_cmd_and_start_io(h, c);
3268 	/* Don't wait for completion, the reset won't complete.  Don't free
3269 	 * the command either.  This is the last command we will send before
3270 	 * re-initializing everything, so it doesn't matter and won't leak.
3271 	 */
3272 	return 0;
3273 }
3274 
3275 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3276 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3277 	int cmd_type)
3278 {
3279 	int pci_dir = XFER_NONE;
3280 	struct CommandList *a; /* for commands to be aborted */
3281 
3282 	c->cmd_type = CMD_IOCTL_PEND;
3283 	c->Header.ReplyQueue = 0;
3284 	if (buff != NULL && size > 0) {
3285 		c->Header.SGList = 1;
3286 		c->Header.SGTotal = 1;
3287 	} else {
3288 		c->Header.SGList = 0;
3289 		c->Header.SGTotal = 0;
3290 	}
3291 	c->Header.Tag.lower = c->busaddr;
3292 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3293 
3294 	c->Request.Type.Type = cmd_type;
3295 	if (cmd_type == TYPE_CMD) {
3296 		switch (cmd) {
3297 		case HPSA_INQUIRY:
3298 			/* are we trying to read a vital product page */
3299 			if (page_code != 0) {
3300 				c->Request.CDB[1] = 0x01;
3301 				c->Request.CDB[2] = page_code;
3302 			}
3303 			c->Request.CDBLen = 6;
3304 			c->Request.Type.Attribute = ATTR_SIMPLE;
3305 			c->Request.Type.Direction = XFER_READ;
3306 			c->Request.Timeout = 0;
3307 			c->Request.CDB[0] = HPSA_INQUIRY;
3308 			c->Request.CDB[4] = size & 0xFF;
3309 			break;
3310 		case HPSA_REPORT_LOG:
3311 		case HPSA_REPORT_PHYS:
3312 			/* Talking to controller so It's a physical command
3313 			   mode = 00 target = 0.  Nothing to write.
3314 			 */
3315 			c->Request.CDBLen = 12;
3316 			c->Request.Type.Attribute = ATTR_SIMPLE;
3317 			c->Request.Type.Direction = XFER_READ;
3318 			c->Request.Timeout = 0;
3319 			c->Request.CDB[0] = cmd;
3320 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3321 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3322 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3323 			c->Request.CDB[9] = size & 0xFF;
3324 			break;
3325 		case HPSA_CACHE_FLUSH:
3326 			c->Request.CDBLen = 12;
3327 			c->Request.Type.Attribute = ATTR_SIMPLE;
3328 			c->Request.Type.Direction = XFER_WRITE;
3329 			c->Request.Timeout = 0;
3330 			c->Request.CDB[0] = BMIC_WRITE;
3331 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3332 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3333 			c->Request.CDB[8] = size & 0xFF;
3334 			break;
3335 		case TEST_UNIT_READY:
3336 			c->Request.CDBLen = 6;
3337 			c->Request.Type.Attribute = ATTR_SIMPLE;
3338 			c->Request.Type.Direction = XFER_NONE;
3339 			c->Request.Timeout = 0;
3340 			break;
3341 		default:
3342 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3343 			BUG();
3344 			return -1;
3345 		}
3346 	} else if (cmd_type == TYPE_MSG) {
3347 		switch (cmd) {
3348 
3349 		case  HPSA_DEVICE_RESET_MSG:
3350 			c->Request.CDBLen = 16;
3351 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3352 			c->Request.Type.Attribute = ATTR_SIMPLE;
3353 			c->Request.Type.Direction = XFER_NONE;
3354 			c->Request.Timeout = 0; /* Don't time out */
3355 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3356 			c->Request.CDB[0] =  cmd;
3357 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3358 			/* If bytes 4-7 are zero, it means reset the */
3359 			/* LunID device */
3360 			c->Request.CDB[4] = 0x00;
3361 			c->Request.CDB[5] = 0x00;
3362 			c->Request.CDB[6] = 0x00;
3363 			c->Request.CDB[7] = 0x00;
3364 			break;
3365 		case  HPSA_ABORT_MSG:
3366 			a = buff;       /* point to command to be aborted */
3367 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3368 				a->Header.Tag.upper, a->Header.Tag.lower,
3369 				c->Header.Tag.upper, c->Header.Tag.lower);
3370 			c->Request.CDBLen = 16;
3371 			c->Request.Type.Type = TYPE_MSG;
3372 			c->Request.Type.Attribute = ATTR_SIMPLE;
3373 			c->Request.Type.Direction = XFER_WRITE;
3374 			c->Request.Timeout = 0; /* Don't time out */
3375 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3376 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3377 			c->Request.CDB[2] = 0x00; /* reserved */
3378 			c->Request.CDB[3] = 0x00; /* reserved */
3379 			/* Tag to abort goes in CDB[4]-CDB[11] */
3380 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3381 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3382 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3383 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3384 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3385 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3386 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3387 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3388 			c->Request.CDB[12] = 0x00; /* reserved */
3389 			c->Request.CDB[13] = 0x00; /* reserved */
3390 			c->Request.CDB[14] = 0x00; /* reserved */
3391 			c->Request.CDB[15] = 0x00; /* reserved */
3392 		break;
3393 		default:
3394 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3395 				cmd);
3396 			BUG();
3397 		}
3398 	} else {
3399 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3400 		BUG();
3401 	}
3402 
3403 	switch (c->Request.Type.Direction) {
3404 	case XFER_READ:
3405 		pci_dir = PCI_DMA_FROMDEVICE;
3406 		break;
3407 	case XFER_WRITE:
3408 		pci_dir = PCI_DMA_TODEVICE;
3409 		break;
3410 	case XFER_NONE:
3411 		pci_dir = PCI_DMA_NONE;
3412 		break;
3413 	default:
3414 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3415 	}
3416 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3417 		return -1;
3418 	return 0;
3419 }
3420 
3421 /*
3422  * Map (physical) PCI mem into (virtual) kernel space
3423  */
3424 static void __iomem *remap_pci_mem(ulong base, ulong size)
3425 {
3426 	ulong page_base = ((ulong) base) & PAGE_MASK;
3427 	ulong page_offs = ((ulong) base) - page_base;
3428 	void __iomem *page_remapped = ioremap_nocache(page_base,
3429 		page_offs + size);
3430 
3431 	return page_remapped ? (page_remapped + page_offs) : NULL;
3432 }
3433 
3434 /* Takes cmds off the submission queue and sends them to the hardware,
3435  * then puts them on the queue of cmds waiting for completion.
3436  */
3437 static void start_io(struct ctlr_info *h)
3438 {
3439 	struct CommandList *c;
3440 	unsigned long flags;
3441 
3442 	spin_lock_irqsave(&h->lock, flags);
3443 	while (!list_empty(&h->reqQ)) {
3444 		c = list_entry(h->reqQ.next, struct CommandList, list);
3445 		/* can't do anything if fifo is full */
3446 		if ((h->access.fifo_full(h))) {
3447 			dev_warn(&h->pdev->dev, "fifo full\n");
3448 			break;
3449 		}
3450 
3451 		/* Get the first entry from the Request Q */
3452 		removeQ(c);
3453 		h->Qdepth--;
3454 
3455 		/* Put job onto the completed Q */
3456 		addQ(&h->cmpQ, c);
3457 
3458 		/* Must increment commands_outstanding before unlocking
3459 		 * and submitting to avoid race checking for fifo full
3460 		 * condition.
3461 		 */
3462 		h->commands_outstanding++;
3463 		if (h->commands_outstanding > h->max_outstanding)
3464 			h->max_outstanding = h->commands_outstanding;
3465 
3466 		/* Tell the controller execute command */
3467 		spin_unlock_irqrestore(&h->lock, flags);
3468 		h->access.submit_command(h, c);
3469 		spin_lock_irqsave(&h->lock, flags);
3470 	}
3471 	spin_unlock_irqrestore(&h->lock, flags);
3472 }
3473 
3474 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3475 {
3476 	return h->access.command_completed(h, q);
3477 }
3478 
3479 static inline bool interrupt_pending(struct ctlr_info *h)
3480 {
3481 	return h->access.intr_pending(h);
3482 }
3483 
3484 static inline long interrupt_not_for_us(struct ctlr_info *h)
3485 {
3486 	return (h->access.intr_pending(h) == 0) ||
3487 		(h->interrupts_enabled == 0);
3488 }
3489 
3490 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3491 	u32 raw_tag)
3492 {
3493 	if (unlikely(tag_index >= h->nr_cmds)) {
3494 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3495 		return 1;
3496 	}
3497 	return 0;
3498 }
3499 
3500 static inline void finish_cmd(struct CommandList *c)
3501 {
3502 	unsigned long flags;
3503 
3504 	spin_lock_irqsave(&c->h->lock, flags);
3505 	removeQ(c);
3506 	spin_unlock_irqrestore(&c->h->lock, flags);
3507 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3508 	if (likely(c->cmd_type == CMD_SCSI))
3509 		complete_scsi_command(c);
3510 	else if (c->cmd_type == CMD_IOCTL_PEND)
3511 		complete(c->waiting);
3512 }
3513 
3514 static inline u32 hpsa_tag_contains_index(u32 tag)
3515 {
3516 	return tag & DIRECT_LOOKUP_BIT;
3517 }
3518 
3519 static inline u32 hpsa_tag_to_index(u32 tag)
3520 {
3521 	return tag >> DIRECT_LOOKUP_SHIFT;
3522 }
3523 
3524 
3525 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3526 {
3527 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3528 #define HPSA_SIMPLE_ERROR_BITS 0x03
3529 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3530 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3531 	return tag & ~HPSA_PERF_ERROR_BITS;
3532 }
3533 
3534 /* process completion of an indexed ("direct lookup") command */
3535 static inline void process_indexed_cmd(struct ctlr_info *h,
3536 	u32 raw_tag)
3537 {
3538 	u32 tag_index;
3539 	struct CommandList *c;
3540 
3541 	tag_index = hpsa_tag_to_index(raw_tag);
3542 	if (!bad_tag(h, tag_index, raw_tag)) {
3543 		c = h->cmd_pool + tag_index;
3544 		finish_cmd(c);
3545 	}
3546 }
3547 
3548 /* process completion of a non-indexed command */
3549 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3550 	u32 raw_tag)
3551 {
3552 	u32 tag;
3553 	struct CommandList *c = NULL;
3554 	unsigned long flags;
3555 
3556 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3557 	spin_lock_irqsave(&h->lock, flags);
3558 	list_for_each_entry(c, &h->cmpQ, list) {
3559 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3560 			spin_unlock_irqrestore(&h->lock, flags);
3561 			finish_cmd(c);
3562 			return;
3563 		}
3564 	}
3565 	spin_unlock_irqrestore(&h->lock, flags);
3566 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3567 }
3568 
3569 /* Some controllers, like p400, will give us one interrupt
3570  * after a soft reset, even if we turned interrupts off.
3571  * Only need to check for this in the hpsa_xxx_discard_completions
3572  * functions.
3573  */
3574 static int ignore_bogus_interrupt(struct ctlr_info *h)
3575 {
3576 	if (likely(!reset_devices))
3577 		return 0;
3578 
3579 	if (likely(h->interrupts_enabled))
3580 		return 0;
3581 
3582 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3583 		"(known firmware bug.)  Ignoring.\n");
3584 
3585 	return 1;
3586 }
3587 
3588 /*
3589  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3590  * Relies on (h-q[x] == x) being true for x such that
3591  * 0 <= x < MAX_REPLY_QUEUES.
3592  */
3593 static struct ctlr_info *queue_to_hba(u8 *queue)
3594 {
3595 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3596 }
3597 
3598 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3599 {
3600 	struct ctlr_info *h = queue_to_hba(queue);
3601 	u8 q = *(u8 *) queue;
3602 	u32 raw_tag;
3603 
3604 	if (ignore_bogus_interrupt(h))
3605 		return IRQ_NONE;
3606 
3607 	if (interrupt_not_for_us(h))
3608 		return IRQ_NONE;
3609 	h->last_intr_timestamp = get_jiffies_64();
3610 	while (interrupt_pending(h)) {
3611 		raw_tag = get_next_completion(h, q);
3612 		while (raw_tag != FIFO_EMPTY)
3613 			raw_tag = next_command(h, q);
3614 	}
3615 	return IRQ_HANDLED;
3616 }
3617 
3618 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3619 {
3620 	struct ctlr_info *h = queue_to_hba(queue);
3621 	u32 raw_tag;
3622 	u8 q = *(u8 *) queue;
3623 
3624 	if (ignore_bogus_interrupt(h))
3625 		return IRQ_NONE;
3626 
3627 	h->last_intr_timestamp = get_jiffies_64();
3628 	raw_tag = get_next_completion(h, q);
3629 	while (raw_tag != FIFO_EMPTY)
3630 		raw_tag = next_command(h, q);
3631 	return IRQ_HANDLED;
3632 }
3633 
3634 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3635 {
3636 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3637 	u32 raw_tag;
3638 	u8 q = *(u8 *) queue;
3639 
3640 	if (interrupt_not_for_us(h))
3641 		return IRQ_NONE;
3642 	h->last_intr_timestamp = get_jiffies_64();
3643 	while (interrupt_pending(h)) {
3644 		raw_tag = get_next_completion(h, q);
3645 		while (raw_tag != FIFO_EMPTY) {
3646 			if (likely(hpsa_tag_contains_index(raw_tag)))
3647 				process_indexed_cmd(h, raw_tag);
3648 			else
3649 				process_nonindexed_cmd(h, raw_tag);
3650 			raw_tag = next_command(h, q);
3651 		}
3652 	}
3653 	return IRQ_HANDLED;
3654 }
3655 
3656 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3657 {
3658 	struct ctlr_info *h = queue_to_hba(queue);
3659 	u32 raw_tag;
3660 	u8 q = *(u8 *) queue;
3661 
3662 	h->last_intr_timestamp = get_jiffies_64();
3663 	raw_tag = get_next_completion(h, q);
3664 	while (raw_tag != FIFO_EMPTY) {
3665 		if (likely(hpsa_tag_contains_index(raw_tag)))
3666 			process_indexed_cmd(h, raw_tag);
3667 		else
3668 			process_nonindexed_cmd(h, raw_tag);
3669 		raw_tag = next_command(h, q);
3670 	}
3671 	return IRQ_HANDLED;
3672 }
3673 
3674 /* Send a message CDB to the firmware. Careful, this only works
3675  * in simple mode, not performant mode due to the tag lookup.
3676  * We only ever use this immediately after a controller reset.
3677  */
3678 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3679 			unsigned char type)
3680 {
3681 	struct Command {
3682 		struct CommandListHeader CommandHeader;
3683 		struct RequestBlock Request;
3684 		struct ErrDescriptor ErrorDescriptor;
3685 	};
3686 	struct Command *cmd;
3687 	static const size_t cmd_sz = sizeof(*cmd) +
3688 					sizeof(cmd->ErrorDescriptor);
3689 	dma_addr_t paddr64;
3690 	uint32_t paddr32, tag;
3691 	void __iomem *vaddr;
3692 	int i, err;
3693 
3694 	vaddr = pci_ioremap_bar(pdev, 0);
3695 	if (vaddr == NULL)
3696 		return -ENOMEM;
3697 
3698 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3699 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3700 	 * memory.
3701 	 */
3702 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3703 	if (err) {
3704 		iounmap(vaddr);
3705 		return -ENOMEM;
3706 	}
3707 
3708 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3709 	if (cmd == NULL) {
3710 		iounmap(vaddr);
3711 		return -ENOMEM;
3712 	}
3713 
3714 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3715 	 * although there's no guarantee, we assume that the address is at
3716 	 * least 4-byte aligned (most likely, it's page-aligned).
3717 	 */
3718 	paddr32 = paddr64;
3719 
3720 	cmd->CommandHeader.ReplyQueue = 0;
3721 	cmd->CommandHeader.SGList = 0;
3722 	cmd->CommandHeader.SGTotal = 0;
3723 	cmd->CommandHeader.Tag.lower = paddr32;
3724 	cmd->CommandHeader.Tag.upper = 0;
3725 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3726 
3727 	cmd->Request.CDBLen = 16;
3728 	cmd->Request.Type.Type = TYPE_MSG;
3729 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3730 	cmd->Request.Type.Direction = XFER_NONE;
3731 	cmd->Request.Timeout = 0; /* Don't time out */
3732 	cmd->Request.CDB[0] = opcode;
3733 	cmd->Request.CDB[1] = type;
3734 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3735 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3736 	cmd->ErrorDescriptor.Addr.upper = 0;
3737 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3738 
3739 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3740 
3741 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3742 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3743 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3744 			break;
3745 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3746 	}
3747 
3748 	iounmap(vaddr);
3749 
3750 	/* we leak the DMA buffer here ... no choice since the controller could
3751 	 *  still complete the command.
3752 	 */
3753 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3754 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3755 			opcode, type);
3756 		return -ETIMEDOUT;
3757 	}
3758 
3759 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3760 
3761 	if (tag & HPSA_ERROR_BIT) {
3762 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3763 			opcode, type);
3764 		return -EIO;
3765 	}
3766 
3767 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3768 		opcode, type);
3769 	return 0;
3770 }
3771 
3772 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3773 
3774 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3775 	void * __iomem vaddr, u32 use_doorbell)
3776 {
3777 	u16 pmcsr;
3778 	int pos;
3779 
3780 	if (use_doorbell) {
3781 		/* For everything after the P600, the PCI power state method
3782 		 * of resetting the controller doesn't work, so we have this
3783 		 * other way using the doorbell register.
3784 		 */
3785 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3786 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3787 	} else { /* Try to do it the PCI power state way */
3788 
3789 		/* Quoting from the Open CISS Specification: "The Power
3790 		 * Management Control/Status Register (CSR) controls the power
3791 		 * state of the device.  The normal operating state is D0,
3792 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3793 		 * the controller, place the interface device in D3 then to D0,
3794 		 * this causes a secondary PCI reset which will reset the
3795 		 * controller." */
3796 
3797 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3798 		if (pos == 0) {
3799 			dev_err(&pdev->dev,
3800 				"hpsa_reset_controller: "
3801 				"PCI PM not supported\n");
3802 			return -ENODEV;
3803 		}
3804 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3805 		/* enter the D3hot power management state */
3806 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3807 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3808 		pmcsr |= PCI_D3hot;
3809 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3810 
3811 		msleep(500);
3812 
3813 		/* enter the D0 power management state */
3814 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3815 		pmcsr |= PCI_D0;
3816 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3817 
3818 		/*
3819 		 * The P600 requires a small delay when changing states.
3820 		 * Otherwise we may think the board did not reset and we bail.
3821 		 * This for kdump only and is particular to the P600.
3822 		 */
3823 		msleep(500);
3824 	}
3825 	return 0;
3826 }
3827 
3828 static void init_driver_version(char *driver_version, int len)
3829 {
3830 	memset(driver_version, 0, len);
3831 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3832 }
3833 
3834 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3835 {
3836 	char *driver_version;
3837 	int i, size = sizeof(cfgtable->driver_version);
3838 
3839 	driver_version = kmalloc(size, GFP_KERNEL);
3840 	if (!driver_version)
3841 		return -ENOMEM;
3842 
3843 	init_driver_version(driver_version, size);
3844 	for (i = 0; i < size; i++)
3845 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3846 	kfree(driver_version);
3847 	return 0;
3848 }
3849 
3850 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3851 					  unsigned char *driver_ver)
3852 {
3853 	int i;
3854 
3855 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3856 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3857 }
3858 
3859 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3860 {
3861 
3862 	char *driver_ver, *old_driver_ver;
3863 	int rc, size = sizeof(cfgtable->driver_version);
3864 
3865 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3866 	if (!old_driver_ver)
3867 		return -ENOMEM;
3868 	driver_ver = old_driver_ver + size;
3869 
3870 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3871 	 * should have been changed, otherwise we know the reset failed.
3872 	 */
3873 	init_driver_version(old_driver_ver, size);
3874 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3875 	rc = !memcmp(driver_ver, old_driver_ver, size);
3876 	kfree(old_driver_ver);
3877 	return rc;
3878 }
3879 /* This does a hard reset of the controller using PCI power management
3880  * states or the using the doorbell register.
3881  */
3882 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3883 {
3884 	u64 cfg_offset;
3885 	u32 cfg_base_addr;
3886 	u64 cfg_base_addr_index;
3887 	void __iomem *vaddr;
3888 	unsigned long paddr;
3889 	u32 misc_fw_support;
3890 	int rc;
3891 	struct CfgTable __iomem *cfgtable;
3892 	u32 use_doorbell;
3893 	u32 board_id;
3894 	u16 command_register;
3895 
3896 	/* For controllers as old as the P600, this is very nearly
3897 	 * the same thing as
3898 	 *
3899 	 * pci_save_state(pci_dev);
3900 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3901 	 * pci_set_power_state(pci_dev, PCI_D0);
3902 	 * pci_restore_state(pci_dev);
3903 	 *
3904 	 * For controllers newer than the P600, the pci power state
3905 	 * method of resetting doesn't work so we have another way
3906 	 * using the doorbell register.
3907 	 */
3908 
3909 	rc = hpsa_lookup_board_id(pdev, &board_id);
3910 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3911 		dev_warn(&pdev->dev, "Not resetting device.\n");
3912 		return -ENODEV;
3913 	}
3914 
3915 	/* if controller is soft- but not hard resettable... */
3916 	if (!ctlr_is_hard_resettable(board_id))
3917 		return -ENOTSUPP; /* try soft reset later. */
3918 
3919 	/* Save the PCI command register */
3920 	pci_read_config_word(pdev, 4, &command_register);
3921 	/* Turn the board off.  This is so that later pci_restore_state()
3922 	 * won't turn the board on before the rest of config space is ready.
3923 	 */
3924 	pci_disable_device(pdev);
3925 	pci_save_state(pdev);
3926 
3927 	/* find the first memory BAR, so we can find the cfg table */
3928 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3929 	if (rc)
3930 		return rc;
3931 	vaddr = remap_pci_mem(paddr, 0x250);
3932 	if (!vaddr)
3933 		return -ENOMEM;
3934 
3935 	/* find cfgtable in order to check if reset via doorbell is supported */
3936 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3937 					&cfg_base_addr_index, &cfg_offset);
3938 	if (rc)
3939 		goto unmap_vaddr;
3940 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3941 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3942 	if (!cfgtable) {
3943 		rc = -ENOMEM;
3944 		goto unmap_vaddr;
3945 	}
3946 	rc = write_driver_ver_to_cfgtable(cfgtable);
3947 	if (rc)
3948 		goto unmap_vaddr;
3949 
3950 	/* If reset via doorbell register is supported, use that.
3951 	 * There are two such methods.  Favor the newest method.
3952 	 */
3953 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3954 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3955 	if (use_doorbell) {
3956 		use_doorbell = DOORBELL_CTLR_RESET2;
3957 	} else {
3958 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3959 		if (use_doorbell) {
3960 			dev_warn(&pdev->dev, "Soft reset not supported. "
3961 				"Firmware update is required.\n");
3962 			rc = -ENOTSUPP; /* try soft reset */
3963 			goto unmap_cfgtable;
3964 		}
3965 	}
3966 
3967 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3968 	if (rc)
3969 		goto unmap_cfgtable;
3970 
3971 	pci_restore_state(pdev);
3972 	rc = pci_enable_device(pdev);
3973 	if (rc) {
3974 		dev_warn(&pdev->dev, "failed to enable device.\n");
3975 		goto unmap_cfgtable;
3976 	}
3977 	pci_write_config_word(pdev, 4, command_register);
3978 
3979 	/* Some devices (notably the HP Smart Array 5i Controller)
3980 	   need a little pause here */
3981 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3982 
3983 	/* Wait for board to become not ready, then ready. */
3984 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3985 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3986 	if (rc) {
3987 		dev_warn(&pdev->dev,
3988 			"failed waiting for board to reset."
3989 			" Will try soft reset.\n");
3990 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3991 		goto unmap_cfgtable;
3992 	}
3993 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3994 	if (rc) {
3995 		dev_warn(&pdev->dev,
3996 			"failed waiting for board to become ready "
3997 			"after hard reset\n");
3998 		goto unmap_cfgtable;
3999 	}
4000 
4001 	rc = controller_reset_failed(vaddr);
4002 	if (rc < 0)
4003 		goto unmap_cfgtable;
4004 	if (rc) {
4005 		dev_warn(&pdev->dev, "Unable to successfully reset "
4006 			"controller. Will try soft reset.\n");
4007 		rc = -ENOTSUPP;
4008 	} else {
4009 		dev_info(&pdev->dev, "board ready after hard reset.\n");
4010 	}
4011 
4012 unmap_cfgtable:
4013 	iounmap(cfgtable);
4014 
4015 unmap_vaddr:
4016 	iounmap(vaddr);
4017 	return rc;
4018 }
4019 
4020 /*
4021  *  We cannot read the structure directly, for portability we must use
4022  *   the io functions.
4023  *   This is for debug only.
4024  */
4025 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4026 {
4027 #ifdef HPSA_DEBUG
4028 	int i;
4029 	char temp_name[17];
4030 
4031 	dev_info(dev, "Controller Configuration information\n");
4032 	dev_info(dev, "------------------------------------\n");
4033 	for (i = 0; i < 4; i++)
4034 		temp_name[i] = readb(&(tb->Signature[i]));
4035 	temp_name[4] = '\0';
4036 	dev_info(dev, "   Signature = %s\n", temp_name);
4037 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4038 	dev_info(dev, "   Transport methods supported = 0x%x\n",
4039 	       readl(&(tb->TransportSupport)));
4040 	dev_info(dev, "   Transport methods active = 0x%x\n",
4041 	       readl(&(tb->TransportActive)));
4042 	dev_info(dev, "   Requested transport Method = 0x%x\n",
4043 	       readl(&(tb->HostWrite.TransportRequest)));
4044 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4045 	       readl(&(tb->HostWrite.CoalIntDelay)));
4046 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4047 	       readl(&(tb->HostWrite.CoalIntCount)));
4048 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
4049 	       readl(&(tb->CmdsOutMax)));
4050 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4051 	for (i = 0; i < 16; i++)
4052 		temp_name[i] = readb(&(tb->ServerName[i]));
4053 	temp_name[16] = '\0';
4054 	dev_info(dev, "   Server Name = %s\n", temp_name);
4055 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4056 		readl(&(tb->HeartBeat)));
4057 #endif				/* HPSA_DEBUG */
4058 }
4059 
4060 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4061 {
4062 	int i, offset, mem_type, bar_type;
4063 
4064 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
4065 		return 0;
4066 	offset = 0;
4067 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4068 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4069 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4070 			offset += 4;
4071 		else {
4072 			mem_type = pci_resource_flags(pdev, i) &
4073 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4074 			switch (mem_type) {
4075 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
4076 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4077 				offset += 4;	/* 32 bit */
4078 				break;
4079 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
4080 				offset += 8;
4081 				break;
4082 			default:	/* reserved in PCI 2.2 */
4083 				dev_warn(&pdev->dev,
4084 				       "base address is invalid\n");
4085 				return -1;
4086 				break;
4087 			}
4088 		}
4089 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4090 			return i + 1;
4091 	}
4092 	return -1;
4093 }
4094 
4095 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4096  * controllers that are capable. If not, we use IO-APIC mode.
4097  */
4098 
4099 static void hpsa_interrupt_mode(struct ctlr_info *h)
4100 {
4101 #ifdef CONFIG_PCI_MSI
4102 	int err, i;
4103 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4104 
4105 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4106 		hpsa_msix_entries[i].vector = 0;
4107 		hpsa_msix_entries[i].entry = i;
4108 	}
4109 
4110 	/* Some boards advertise MSI but don't really support it */
4111 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4112 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4113 		goto default_int_mode;
4114 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4115 		dev_info(&h->pdev->dev, "MSIX\n");
4116 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4117 						MAX_REPLY_QUEUES);
4118 		if (!err) {
4119 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4120 				h->intr[i] = hpsa_msix_entries[i].vector;
4121 			h->msix_vector = 1;
4122 			return;
4123 		}
4124 		if (err > 0) {
4125 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4126 			       "available\n", err);
4127 			goto default_int_mode;
4128 		} else {
4129 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4130 			       err);
4131 			goto default_int_mode;
4132 		}
4133 	}
4134 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4135 		dev_info(&h->pdev->dev, "MSI\n");
4136 		if (!pci_enable_msi(h->pdev))
4137 			h->msi_vector = 1;
4138 		else
4139 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4140 	}
4141 default_int_mode:
4142 #endif				/* CONFIG_PCI_MSI */
4143 	/* if we get here we're going to use the default interrupt mode */
4144 	h->intr[h->intr_mode] = h->pdev->irq;
4145 }
4146 
4147 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4148 {
4149 	int i;
4150 	u32 subsystem_vendor_id, subsystem_device_id;
4151 
4152 	subsystem_vendor_id = pdev->subsystem_vendor;
4153 	subsystem_device_id = pdev->subsystem_device;
4154 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4155 		    subsystem_vendor_id;
4156 
4157 	for (i = 0; i < ARRAY_SIZE(products); i++)
4158 		if (*board_id == products[i].board_id)
4159 			return i;
4160 
4161 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4162 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4163 		!hpsa_allow_any) {
4164 		dev_warn(&pdev->dev, "unrecognized board ID: "
4165 			"0x%08x, ignoring.\n", *board_id);
4166 			return -ENODEV;
4167 	}
4168 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4169 }
4170 
4171 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4172 				    unsigned long *memory_bar)
4173 {
4174 	int i;
4175 
4176 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4177 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4178 			/* addressing mode bits already removed */
4179 			*memory_bar = pci_resource_start(pdev, i);
4180 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4181 				*memory_bar);
4182 			return 0;
4183 		}
4184 	dev_warn(&pdev->dev, "no memory BAR found\n");
4185 	return -ENODEV;
4186 }
4187 
4188 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4189 				     int wait_for_ready)
4190 {
4191 	int i, iterations;
4192 	u32 scratchpad;
4193 	if (wait_for_ready)
4194 		iterations = HPSA_BOARD_READY_ITERATIONS;
4195 	else
4196 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4197 
4198 	for (i = 0; i < iterations; i++) {
4199 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4200 		if (wait_for_ready) {
4201 			if (scratchpad == HPSA_FIRMWARE_READY)
4202 				return 0;
4203 		} else {
4204 			if (scratchpad != HPSA_FIRMWARE_READY)
4205 				return 0;
4206 		}
4207 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4208 	}
4209 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4210 	return -ENODEV;
4211 }
4212 
4213 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4214 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4215 			       u64 *cfg_offset)
4216 {
4217 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4218 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4219 	*cfg_base_addr &= (u32) 0x0000ffff;
4220 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4221 	if (*cfg_base_addr_index == -1) {
4222 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4223 		return -ENODEV;
4224 	}
4225 	return 0;
4226 }
4227 
4228 static int hpsa_find_cfgtables(struct ctlr_info *h)
4229 {
4230 	u64 cfg_offset;
4231 	u32 cfg_base_addr;
4232 	u64 cfg_base_addr_index;
4233 	u32 trans_offset;
4234 	int rc;
4235 
4236 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4237 		&cfg_base_addr_index, &cfg_offset);
4238 	if (rc)
4239 		return rc;
4240 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4241 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4242 	if (!h->cfgtable)
4243 		return -ENOMEM;
4244 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4245 	if (rc)
4246 		return rc;
4247 	/* Find performant mode table. */
4248 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4249 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4250 				cfg_base_addr_index)+cfg_offset+trans_offset,
4251 				sizeof(*h->transtable));
4252 	if (!h->transtable)
4253 		return -ENOMEM;
4254 	return 0;
4255 }
4256 
4257 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4258 {
4259 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4260 
4261 	/* Limit commands in memory limited kdump scenario. */
4262 	if (reset_devices && h->max_commands > 32)
4263 		h->max_commands = 32;
4264 
4265 	if (h->max_commands < 16) {
4266 		dev_warn(&h->pdev->dev, "Controller reports "
4267 			"max supported commands of %d, an obvious lie. "
4268 			"Using 16.  Ensure that firmware is up to date.\n",
4269 			h->max_commands);
4270 		h->max_commands = 16;
4271 	}
4272 }
4273 
4274 /* Interrogate the hardware for some limits:
4275  * max commands, max SG elements without chaining, and with chaining,
4276  * SG chain block size, etc.
4277  */
4278 static void hpsa_find_board_params(struct ctlr_info *h)
4279 {
4280 	hpsa_get_max_perf_mode_cmds(h);
4281 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4282 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4283 	/*
4284 	 * Limit in-command s/g elements to 32 save dma'able memory.
4285 	 * Howvever spec says if 0, use 31
4286 	 */
4287 	h->max_cmd_sg_entries = 31;
4288 	if (h->maxsgentries > 512) {
4289 		h->max_cmd_sg_entries = 32;
4290 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4291 		h->maxsgentries--; /* save one for chain pointer */
4292 	} else {
4293 		h->maxsgentries = 31; /* default to traditional values */
4294 		h->chainsize = 0;
4295 	}
4296 
4297 	/* Find out what task management functions are supported and cache */
4298 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4299 }
4300 
4301 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4302 {
4303 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4304 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4305 		return false;
4306 	}
4307 	return true;
4308 }
4309 
4310 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4311 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4312 {
4313 #ifdef CONFIG_X86
4314 	u32 prefetch;
4315 
4316 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4317 	prefetch |= 0x100;
4318 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4319 #endif
4320 }
4321 
4322 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4323  * in a prefetch beyond physical memory.
4324  */
4325 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4326 {
4327 	u32 dma_prefetch;
4328 
4329 	if (h->board_id != 0x3225103C)
4330 		return;
4331 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4332 	dma_prefetch |= 0x8000;
4333 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4334 }
4335 
4336 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4337 {
4338 	int i;
4339 	u32 doorbell_value;
4340 	unsigned long flags;
4341 
4342 	/* under certain very rare conditions, this can take awhile.
4343 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4344 	 * as we enter this code.)
4345 	 */
4346 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4347 		spin_lock_irqsave(&h->lock, flags);
4348 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4349 		spin_unlock_irqrestore(&h->lock, flags);
4350 		if (!(doorbell_value & CFGTBL_ChangeReq))
4351 			break;
4352 		/* delay and try again */
4353 		usleep_range(10000, 20000);
4354 	}
4355 }
4356 
4357 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4358 {
4359 	u32 trans_support;
4360 
4361 	trans_support = readl(&(h->cfgtable->TransportSupport));
4362 	if (!(trans_support & SIMPLE_MODE))
4363 		return -ENOTSUPP;
4364 
4365 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4366 	/* Update the field, and then ring the doorbell */
4367 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4368 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4369 	hpsa_wait_for_mode_change_ack(h);
4370 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4371 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4372 		dev_warn(&h->pdev->dev,
4373 			"unable to get board into simple mode\n");
4374 		return -ENODEV;
4375 	}
4376 	h->transMethod = CFGTBL_Trans_Simple;
4377 	return 0;
4378 }
4379 
4380 static int hpsa_pci_init(struct ctlr_info *h)
4381 {
4382 	int prod_index, err;
4383 
4384 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4385 	if (prod_index < 0)
4386 		return -ENODEV;
4387 	h->product_name = products[prod_index].product_name;
4388 	h->access = *(products[prod_index].access);
4389 
4390 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4391 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4392 
4393 	err = pci_enable_device(h->pdev);
4394 	if (err) {
4395 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4396 		return err;
4397 	}
4398 
4399 	/* Enable bus mastering (pci_disable_device may disable this) */
4400 	pci_set_master(h->pdev);
4401 
4402 	err = pci_request_regions(h->pdev, HPSA);
4403 	if (err) {
4404 		dev_err(&h->pdev->dev,
4405 			"cannot obtain PCI resources, aborting\n");
4406 		return err;
4407 	}
4408 	hpsa_interrupt_mode(h);
4409 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4410 	if (err)
4411 		goto err_out_free_res;
4412 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4413 	if (!h->vaddr) {
4414 		err = -ENOMEM;
4415 		goto err_out_free_res;
4416 	}
4417 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4418 	if (err)
4419 		goto err_out_free_res;
4420 	err = hpsa_find_cfgtables(h);
4421 	if (err)
4422 		goto err_out_free_res;
4423 	hpsa_find_board_params(h);
4424 
4425 	if (!hpsa_CISS_signature_present(h)) {
4426 		err = -ENODEV;
4427 		goto err_out_free_res;
4428 	}
4429 	hpsa_enable_scsi_prefetch(h);
4430 	hpsa_p600_dma_prefetch_quirk(h);
4431 	err = hpsa_enter_simple_mode(h);
4432 	if (err)
4433 		goto err_out_free_res;
4434 	return 0;
4435 
4436 err_out_free_res:
4437 	if (h->transtable)
4438 		iounmap(h->transtable);
4439 	if (h->cfgtable)
4440 		iounmap(h->cfgtable);
4441 	if (h->vaddr)
4442 		iounmap(h->vaddr);
4443 	pci_disable_device(h->pdev);
4444 	pci_release_regions(h->pdev);
4445 	return err;
4446 }
4447 
4448 static void hpsa_hba_inquiry(struct ctlr_info *h)
4449 {
4450 	int rc;
4451 
4452 #define HBA_INQUIRY_BYTE_COUNT 64
4453 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4454 	if (!h->hba_inquiry_data)
4455 		return;
4456 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4457 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4458 	if (rc != 0) {
4459 		kfree(h->hba_inquiry_data);
4460 		h->hba_inquiry_data = NULL;
4461 	}
4462 }
4463 
4464 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4465 {
4466 	int rc, i;
4467 
4468 	if (!reset_devices)
4469 		return 0;
4470 
4471 	/* Reset the controller with a PCI power-cycle or via doorbell */
4472 	rc = hpsa_kdump_hard_reset_controller(pdev);
4473 
4474 	/* -ENOTSUPP here means we cannot reset the controller
4475 	 * but it's already (and still) up and running in
4476 	 * "performant mode".  Or, it might be 640x, which can't reset
4477 	 * due to concerns about shared bbwc between 6402/6404 pair.
4478 	 */
4479 	if (rc == -ENOTSUPP)
4480 		return rc; /* just try to do the kdump anyhow. */
4481 	if (rc)
4482 		return -ENODEV;
4483 
4484 	/* Now try to get the controller to respond to a no-op */
4485 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4486 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4487 		if (hpsa_noop(pdev) == 0)
4488 			break;
4489 		else
4490 			dev_warn(&pdev->dev, "no-op failed%s\n",
4491 					(i < 11 ? "; re-trying" : ""));
4492 	}
4493 	return 0;
4494 }
4495 
4496 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4497 {
4498 	h->cmd_pool_bits = kzalloc(
4499 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4500 		sizeof(unsigned long), GFP_KERNEL);
4501 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4502 		    h->nr_cmds * sizeof(*h->cmd_pool),
4503 		    &(h->cmd_pool_dhandle));
4504 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4505 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4506 		    &(h->errinfo_pool_dhandle));
4507 	if ((h->cmd_pool_bits == NULL)
4508 	    || (h->cmd_pool == NULL)
4509 	    || (h->errinfo_pool == NULL)) {
4510 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4511 		return -ENOMEM;
4512 	}
4513 	return 0;
4514 }
4515 
4516 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4517 {
4518 	kfree(h->cmd_pool_bits);
4519 	if (h->cmd_pool)
4520 		pci_free_consistent(h->pdev,
4521 			    h->nr_cmds * sizeof(struct CommandList),
4522 			    h->cmd_pool, h->cmd_pool_dhandle);
4523 	if (h->errinfo_pool)
4524 		pci_free_consistent(h->pdev,
4525 			    h->nr_cmds * sizeof(struct ErrorInfo),
4526 			    h->errinfo_pool,
4527 			    h->errinfo_pool_dhandle);
4528 }
4529 
4530 static int hpsa_request_irq(struct ctlr_info *h,
4531 	irqreturn_t (*msixhandler)(int, void *),
4532 	irqreturn_t (*intxhandler)(int, void *))
4533 {
4534 	int rc, i;
4535 
4536 	/*
4537 	 * initialize h->q[x] = x so that interrupt handlers know which
4538 	 * queue to process.
4539 	 */
4540 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4541 		h->q[i] = (u8) i;
4542 
4543 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4544 		/* If performant mode and MSI-X, use multiple reply queues */
4545 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4546 			rc = request_irq(h->intr[i], msixhandler,
4547 					0, h->devname,
4548 					&h->q[i]);
4549 	} else {
4550 		/* Use single reply pool */
4551 		if (h->msix_vector || h->msi_vector) {
4552 			rc = request_irq(h->intr[h->intr_mode],
4553 				msixhandler, 0, h->devname,
4554 				&h->q[h->intr_mode]);
4555 		} else {
4556 			rc = request_irq(h->intr[h->intr_mode],
4557 				intxhandler, IRQF_SHARED, h->devname,
4558 				&h->q[h->intr_mode]);
4559 		}
4560 	}
4561 	if (rc) {
4562 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4563 		       h->intr[h->intr_mode], h->devname);
4564 		return -ENODEV;
4565 	}
4566 	return 0;
4567 }
4568 
4569 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4570 {
4571 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4572 		HPSA_RESET_TYPE_CONTROLLER)) {
4573 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4574 		return -EIO;
4575 	}
4576 
4577 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4578 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4579 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4580 		return -1;
4581 	}
4582 
4583 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4584 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4585 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4586 			"after soft reset.\n");
4587 		return -1;
4588 	}
4589 
4590 	return 0;
4591 }
4592 
4593 static void free_irqs(struct ctlr_info *h)
4594 {
4595 	int i;
4596 
4597 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4598 		/* Single reply queue, only one irq to free */
4599 		i = h->intr_mode;
4600 		free_irq(h->intr[i], &h->q[i]);
4601 		return;
4602 	}
4603 
4604 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4605 		free_irq(h->intr[i], &h->q[i]);
4606 }
4607 
4608 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4609 {
4610 	free_irqs(h);
4611 #ifdef CONFIG_PCI_MSI
4612 	if (h->msix_vector) {
4613 		if (h->pdev->msix_enabled)
4614 			pci_disable_msix(h->pdev);
4615 	} else if (h->msi_vector) {
4616 		if (h->pdev->msi_enabled)
4617 			pci_disable_msi(h->pdev);
4618 	}
4619 #endif /* CONFIG_PCI_MSI */
4620 }
4621 
4622 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4623 {
4624 	hpsa_free_irqs_and_disable_msix(h);
4625 	hpsa_free_sg_chain_blocks(h);
4626 	hpsa_free_cmd_pool(h);
4627 	kfree(h->blockFetchTable);
4628 	pci_free_consistent(h->pdev, h->reply_pool_size,
4629 		h->reply_pool, h->reply_pool_dhandle);
4630 	if (h->vaddr)
4631 		iounmap(h->vaddr);
4632 	if (h->transtable)
4633 		iounmap(h->transtable);
4634 	if (h->cfgtable)
4635 		iounmap(h->cfgtable);
4636 	pci_release_regions(h->pdev);
4637 	kfree(h);
4638 }
4639 
4640 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4641 {
4642 	assert_spin_locked(&lockup_detector_lock);
4643 	if (!hpsa_lockup_detector)
4644 		return;
4645 	if (h->lockup_detected)
4646 		return; /* already stopped the lockup detector */
4647 	list_del(&h->lockup_list);
4648 }
4649 
4650 /* Called when controller lockup detected. */
4651 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4652 {
4653 	struct CommandList *c = NULL;
4654 
4655 	assert_spin_locked(&h->lock);
4656 	/* Mark all outstanding commands as failed and complete them. */
4657 	while (!list_empty(list)) {
4658 		c = list_entry(list->next, struct CommandList, list);
4659 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4660 		finish_cmd(c);
4661 	}
4662 }
4663 
4664 static void controller_lockup_detected(struct ctlr_info *h)
4665 {
4666 	unsigned long flags;
4667 
4668 	assert_spin_locked(&lockup_detector_lock);
4669 	remove_ctlr_from_lockup_detector_list(h);
4670 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4671 	spin_lock_irqsave(&h->lock, flags);
4672 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4673 	spin_unlock_irqrestore(&h->lock, flags);
4674 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4675 			h->lockup_detected);
4676 	pci_disable_device(h->pdev);
4677 	spin_lock_irqsave(&h->lock, flags);
4678 	fail_all_cmds_on_list(h, &h->cmpQ);
4679 	fail_all_cmds_on_list(h, &h->reqQ);
4680 	spin_unlock_irqrestore(&h->lock, flags);
4681 }
4682 
4683 static void detect_controller_lockup(struct ctlr_info *h)
4684 {
4685 	u64 now;
4686 	u32 heartbeat;
4687 	unsigned long flags;
4688 
4689 	assert_spin_locked(&lockup_detector_lock);
4690 	now = get_jiffies_64();
4691 	/* If we've received an interrupt recently, we're ok. */
4692 	if (time_after64(h->last_intr_timestamp +
4693 				(h->heartbeat_sample_interval), now))
4694 		return;
4695 
4696 	/*
4697 	 * If we've already checked the heartbeat recently, we're ok.
4698 	 * This could happen if someone sends us a signal. We
4699 	 * otherwise don't care about signals in this thread.
4700 	 */
4701 	if (time_after64(h->last_heartbeat_timestamp +
4702 				(h->heartbeat_sample_interval), now))
4703 		return;
4704 
4705 	/* If heartbeat has not changed since we last looked, we're not ok. */
4706 	spin_lock_irqsave(&h->lock, flags);
4707 	heartbeat = readl(&h->cfgtable->HeartBeat);
4708 	spin_unlock_irqrestore(&h->lock, flags);
4709 	if (h->last_heartbeat == heartbeat) {
4710 		controller_lockup_detected(h);
4711 		return;
4712 	}
4713 
4714 	/* We're ok. */
4715 	h->last_heartbeat = heartbeat;
4716 	h->last_heartbeat_timestamp = now;
4717 }
4718 
4719 static int detect_controller_lockup_thread(void *notused)
4720 {
4721 	struct ctlr_info *h;
4722 	unsigned long flags;
4723 
4724 	while (1) {
4725 		struct list_head *this, *tmp;
4726 
4727 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4728 		if (kthread_should_stop())
4729 			break;
4730 		spin_lock_irqsave(&lockup_detector_lock, flags);
4731 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4732 			h = list_entry(this, struct ctlr_info, lockup_list);
4733 			detect_controller_lockup(h);
4734 		}
4735 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4736 	}
4737 	return 0;
4738 }
4739 
4740 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4741 {
4742 	unsigned long flags;
4743 
4744 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4745 	spin_lock_irqsave(&lockup_detector_lock, flags);
4746 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4747 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4748 }
4749 
4750 static void start_controller_lockup_detector(struct ctlr_info *h)
4751 {
4752 	/* Start the lockup detector thread if not already started */
4753 	if (!hpsa_lockup_detector) {
4754 		spin_lock_init(&lockup_detector_lock);
4755 		hpsa_lockup_detector =
4756 			kthread_run(detect_controller_lockup_thread,
4757 						NULL, HPSA);
4758 	}
4759 	if (!hpsa_lockup_detector) {
4760 		dev_warn(&h->pdev->dev,
4761 			"Could not start lockup detector thread\n");
4762 		return;
4763 	}
4764 	add_ctlr_to_lockup_detector_list(h);
4765 }
4766 
4767 static void stop_controller_lockup_detector(struct ctlr_info *h)
4768 {
4769 	unsigned long flags;
4770 
4771 	spin_lock_irqsave(&lockup_detector_lock, flags);
4772 	remove_ctlr_from_lockup_detector_list(h);
4773 	/* If the list of ctlr's to monitor is empty, stop the thread */
4774 	if (list_empty(&hpsa_ctlr_list)) {
4775 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4776 		kthread_stop(hpsa_lockup_detector);
4777 		spin_lock_irqsave(&lockup_detector_lock, flags);
4778 		hpsa_lockup_detector = NULL;
4779 	}
4780 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4781 }
4782 
4783 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4784 {
4785 	int dac, rc;
4786 	struct ctlr_info *h;
4787 	int try_soft_reset = 0;
4788 	unsigned long flags;
4789 
4790 	if (number_of_controllers == 0)
4791 		printk(KERN_INFO DRIVER_NAME "\n");
4792 
4793 	rc = hpsa_init_reset_devices(pdev);
4794 	if (rc) {
4795 		if (rc != -ENOTSUPP)
4796 			return rc;
4797 		/* If the reset fails in a particular way (it has no way to do
4798 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4799 		 * a soft reset once we get the controller configured up to the
4800 		 * point that it can accept a command.
4801 		 */
4802 		try_soft_reset = 1;
4803 		rc = 0;
4804 	}
4805 
4806 reinit_after_soft_reset:
4807 
4808 	/* Command structures must be aligned on a 32-byte boundary because
4809 	 * the 5 lower bits of the address are used by the hardware. and by
4810 	 * the driver.  See comments in hpsa.h for more info.
4811 	 */
4812 #define COMMANDLIST_ALIGNMENT 32
4813 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4814 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4815 	if (!h)
4816 		return -ENOMEM;
4817 
4818 	h->pdev = pdev;
4819 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4820 	INIT_LIST_HEAD(&h->cmpQ);
4821 	INIT_LIST_HEAD(&h->reqQ);
4822 	spin_lock_init(&h->lock);
4823 	spin_lock_init(&h->scan_lock);
4824 	rc = hpsa_pci_init(h);
4825 	if (rc != 0)
4826 		goto clean1;
4827 
4828 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4829 	h->ctlr = number_of_controllers;
4830 	number_of_controllers++;
4831 
4832 	/* configure PCI DMA stuff */
4833 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4834 	if (rc == 0) {
4835 		dac = 1;
4836 	} else {
4837 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4838 		if (rc == 0) {
4839 			dac = 0;
4840 		} else {
4841 			dev_err(&pdev->dev, "no suitable DMA available\n");
4842 			goto clean1;
4843 		}
4844 	}
4845 
4846 	/* make sure the board interrupts are off */
4847 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4848 
4849 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4850 		goto clean2;
4851 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4852 	       h->devname, pdev->device,
4853 	       h->intr[h->intr_mode], dac ? "" : " not");
4854 	if (hpsa_allocate_cmd_pool(h))
4855 		goto clean4;
4856 	if (hpsa_allocate_sg_chain_blocks(h))
4857 		goto clean4;
4858 	init_waitqueue_head(&h->scan_wait_queue);
4859 	h->scan_finished = 1; /* no scan currently in progress */
4860 
4861 	pci_set_drvdata(pdev, h);
4862 	h->ndevices = 0;
4863 	h->scsi_host = NULL;
4864 	spin_lock_init(&h->devlock);
4865 	hpsa_put_ctlr_into_performant_mode(h);
4866 
4867 	/* At this point, the controller is ready to take commands.
4868 	 * Now, if reset_devices and the hard reset didn't work, try
4869 	 * the soft reset and see if that works.
4870 	 */
4871 	if (try_soft_reset) {
4872 
4873 		/* This is kind of gross.  We may or may not get a completion
4874 		 * from the soft reset command, and if we do, then the value
4875 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4876 		 * after the reset throwing away any completions we get during
4877 		 * that time.  Unregister the interrupt handler and register
4878 		 * fake ones to scoop up any residual completions.
4879 		 */
4880 		spin_lock_irqsave(&h->lock, flags);
4881 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4882 		spin_unlock_irqrestore(&h->lock, flags);
4883 		free_irqs(h);
4884 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4885 					hpsa_intx_discard_completions);
4886 		if (rc) {
4887 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4888 				"soft reset.\n");
4889 			goto clean4;
4890 		}
4891 
4892 		rc = hpsa_kdump_soft_reset(h);
4893 		if (rc)
4894 			/* Neither hard nor soft reset worked, we're hosed. */
4895 			goto clean4;
4896 
4897 		dev_info(&h->pdev->dev, "Board READY.\n");
4898 		dev_info(&h->pdev->dev,
4899 			"Waiting for stale completions to drain.\n");
4900 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4901 		msleep(10000);
4902 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4903 
4904 		rc = controller_reset_failed(h->cfgtable);
4905 		if (rc)
4906 			dev_info(&h->pdev->dev,
4907 				"Soft reset appears to have failed.\n");
4908 
4909 		/* since the controller's reset, we have to go back and re-init
4910 		 * everything.  Easiest to just forget what we've done and do it
4911 		 * all over again.
4912 		 */
4913 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4914 		try_soft_reset = 0;
4915 		if (rc)
4916 			/* don't go to clean4, we already unallocated */
4917 			return -ENODEV;
4918 
4919 		goto reinit_after_soft_reset;
4920 	}
4921 
4922 	/* Turn the interrupts on so we can service requests */
4923 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4924 
4925 	hpsa_hba_inquiry(h);
4926 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4927 	start_controller_lockup_detector(h);
4928 	return 1;
4929 
4930 clean4:
4931 	hpsa_free_sg_chain_blocks(h);
4932 	hpsa_free_cmd_pool(h);
4933 	free_irqs(h);
4934 clean2:
4935 clean1:
4936 	kfree(h);
4937 	return rc;
4938 }
4939 
4940 static void hpsa_flush_cache(struct ctlr_info *h)
4941 {
4942 	char *flush_buf;
4943 	struct CommandList *c;
4944 
4945 	flush_buf = kzalloc(4, GFP_KERNEL);
4946 	if (!flush_buf)
4947 		return;
4948 
4949 	c = cmd_special_alloc(h);
4950 	if (!c) {
4951 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4952 		goto out_of_memory;
4953 	}
4954 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4955 		RAID_CTLR_LUNID, TYPE_CMD)) {
4956 		goto out;
4957 	}
4958 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4959 	if (c->err_info->CommandStatus != 0)
4960 out:
4961 		dev_warn(&h->pdev->dev,
4962 			"error flushing cache on controller\n");
4963 	cmd_special_free(h, c);
4964 out_of_memory:
4965 	kfree(flush_buf);
4966 }
4967 
4968 static void hpsa_shutdown(struct pci_dev *pdev)
4969 {
4970 	struct ctlr_info *h;
4971 
4972 	h = pci_get_drvdata(pdev);
4973 	/* Turn board interrupts off  and send the flush cache command
4974 	 * sendcmd will turn off interrupt, and send the flush...
4975 	 * To write all data in the battery backed cache to disks
4976 	 */
4977 	hpsa_flush_cache(h);
4978 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4979 	hpsa_free_irqs_and_disable_msix(h);
4980 }
4981 
4982 static void hpsa_free_device_info(struct ctlr_info *h)
4983 {
4984 	int i;
4985 
4986 	for (i = 0; i < h->ndevices; i++)
4987 		kfree(h->dev[i]);
4988 }
4989 
4990 static void hpsa_remove_one(struct pci_dev *pdev)
4991 {
4992 	struct ctlr_info *h;
4993 
4994 	if (pci_get_drvdata(pdev) == NULL) {
4995 		dev_err(&pdev->dev, "unable to remove device\n");
4996 		return;
4997 	}
4998 	h = pci_get_drvdata(pdev);
4999 	stop_controller_lockup_detector(h);
5000 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
5001 	hpsa_shutdown(pdev);
5002 	iounmap(h->vaddr);
5003 	iounmap(h->transtable);
5004 	iounmap(h->cfgtable);
5005 	hpsa_free_device_info(h);
5006 	hpsa_free_sg_chain_blocks(h);
5007 	pci_free_consistent(h->pdev,
5008 		h->nr_cmds * sizeof(struct CommandList),
5009 		h->cmd_pool, h->cmd_pool_dhandle);
5010 	pci_free_consistent(h->pdev,
5011 		h->nr_cmds * sizeof(struct ErrorInfo),
5012 		h->errinfo_pool, h->errinfo_pool_dhandle);
5013 	pci_free_consistent(h->pdev, h->reply_pool_size,
5014 		h->reply_pool, h->reply_pool_dhandle);
5015 	kfree(h->cmd_pool_bits);
5016 	kfree(h->blockFetchTable);
5017 	kfree(h->hba_inquiry_data);
5018 	pci_disable_device(pdev);
5019 	pci_release_regions(pdev);
5020 	kfree(h);
5021 }
5022 
5023 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5024 	__attribute__((unused)) pm_message_t state)
5025 {
5026 	return -ENOSYS;
5027 }
5028 
5029 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5030 {
5031 	return -ENOSYS;
5032 }
5033 
5034 static struct pci_driver hpsa_pci_driver = {
5035 	.name = HPSA,
5036 	.probe = hpsa_init_one,
5037 	.remove = hpsa_remove_one,
5038 	.id_table = hpsa_pci_device_id,	/* id_table */
5039 	.shutdown = hpsa_shutdown,
5040 	.suspend = hpsa_suspend,
5041 	.resume = hpsa_resume,
5042 };
5043 
5044 /* Fill in bucket_map[], given nsgs (the max number of
5045  * scatter gather elements supported) and bucket[],
5046  * which is an array of 8 integers.  The bucket[] array
5047  * contains 8 different DMA transfer sizes (in 16
5048  * byte increments) which the controller uses to fetch
5049  * commands.  This function fills in bucket_map[], which
5050  * maps a given number of scatter gather elements to one of
5051  * the 8 DMA transfer sizes.  The point of it is to allow the
5052  * controller to only do as much DMA as needed to fetch the
5053  * command, with the DMA transfer size encoded in the lower
5054  * bits of the command address.
5055  */
5056 static void  calc_bucket_map(int bucket[], int num_buckets,
5057 	int nsgs, int *bucket_map)
5058 {
5059 	int i, j, b, size;
5060 
5061 	/* even a command with 0 SGs requires 4 blocks */
5062 #define MINIMUM_TRANSFER_BLOCKS 4
5063 #define NUM_BUCKETS 8
5064 	/* Note, bucket_map must have nsgs+1 entries. */
5065 	for (i = 0; i <= nsgs; i++) {
5066 		/* Compute size of a command with i SG entries */
5067 		size = i + MINIMUM_TRANSFER_BLOCKS;
5068 		b = num_buckets; /* Assume the biggest bucket */
5069 		/* Find the bucket that is just big enough */
5070 		for (j = 0; j < 8; j++) {
5071 			if (bucket[j] >= size) {
5072 				b = j;
5073 				break;
5074 			}
5075 		}
5076 		/* for a command with i SG entries, use bucket b. */
5077 		bucket_map[i] = b;
5078 	}
5079 }
5080 
5081 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5082 {
5083 	int i;
5084 	unsigned long register_value;
5085 
5086 	/* This is a bit complicated.  There are 8 registers on
5087 	 * the controller which we write to to tell it 8 different
5088 	 * sizes of commands which there may be.  It's a way of
5089 	 * reducing the DMA done to fetch each command.  Encoded into
5090 	 * each command's tag are 3 bits which communicate to the controller
5091 	 * which of the eight sizes that command fits within.  The size of
5092 	 * each command depends on how many scatter gather entries there are.
5093 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5094 	 * with the number of 16-byte blocks a command of that size requires.
5095 	 * The smallest command possible requires 5 such 16 byte blocks.
5096 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5097 	 * blocks.  Note, this only extends to the SG entries contained
5098 	 * within the command block, and does not extend to chained blocks
5099 	 * of SG elements.   bft[] contains the eight values we write to
5100 	 * the registers.  They are not evenly distributed, but have more
5101 	 * sizes for small commands, and fewer sizes for larger commands.
5102 	 */
5103 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5104 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5105 	/*  5 = 1 s/g entry or 4k
5106 	 *  6 = 2 s/g entry or 8k
5107 	 *  8 = 4 s/g entry or 16k
5108 	 * 10 = 6 s/g entry or 24k
5109 	 */
5110 
5111 	/* Controller spec: zero out this buffer. */
5112 	memset(h->reply_pool, 0, h->reply_pool_size);
5113 
5114 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5115 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5116 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5117 	for (i = 0; i < 8; i++)
5118 		writel(bft[i], &h->transtable->BlockFetch[i]);
5119 
5120 	/* size of controller ring buffer */
5121 	writel(h->max_commands, &h->transtable->RepQSize);
5122 	writel(h->nreply_queues, &h->transtable->RepQCount);
5123 	writel(0, &h->transtable->RepQCtrAddrLow32);
5124 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5125 
5126 	for (i = 0; i < h->nreply_queues; i++) {
5127 		writel(0, &h->transtable->RepQAddr[i].upper);
5128 		writel(h->reply_pool_dhandle +
5129 			(h->max_commands * sizeof(u64) * i),
5130 			&h->transtable->RepQAddr[i].lower);
5131 	}
5132 
5133 	writel(CFGTBL_Trans_Performant | use_short_tags |
5134 		CFGTBL_Trans_enable_directed_msix,
5135 		&(h->cfgtable->HostWrite.TransportRequest));
5136 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5137 	hpsa_wait_for_mode_change_ack(h);
5138 	register_value = readl(&(h->cfgtable->TransportActive));
5139 	if (!(register_value & CFGTBL_Trans_Performant)) {
5140 		dev_warn(&h->pdev->dev, "unable to get board into"
5141 					" performant mode\n");
5142 		return;
5143 	}
5144 	/* Change the access methods to the performant access methods */
5145 	h->access = SA5_performant_access;
5146 	h->transMethod = CFGTBL_Trans_Performant;
5147 }
5148 
5149 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5150 {
5151 	u32 trans_support;
5152 	int i;
5153 
5154 	if (hpsa_simple_mode)
5155 		return;
5156 
5157 	trans_support = readl(&(h->cfgtable->TransportSupport));
5158 	if (!(trans_support & PERFORMANT_MODE))
5159 		return;
5160 
5161 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5162 	hpsa_get_max_perf_mode_cmds(h);
5163 	/* Performant mode ring buffer and supporting data structures */
5164 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5165 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5166 				&(h->reply_pool_dhandle));
5167 
5168 	for (i = 0; i < h->nreply_queues; i++) {
5169 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5170 		h->reply_queue[i].size = h->max_commands;
5171 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5172 		h->reply_queue[i].current_entry = 0;
5173 	}
5174 
5175 	/* Need a block fetch table for performant mode */
5176 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5177 				sizeof(u32)), GFP_KERNEL);
5178 
5179 	if ((h->reply_pool == NULL)
5180 		|| (h->blockFetchTable == NULL))
5181 		goto clean_up;
5182 
5183 	hpsa_enter_performant_mode(h,
5184 		trans_support & CFGTBL_Trans_use_short_tags);
5185 
5186 	return;
5187 
5188 clean_up:
5189 	if (h->reply_pool)
5190 		pci_free_consistent(h->pdev, h->reply_pool_size,
5191 			h->reply_pool, h->reply_pool_dhandle);
5192 	kfree(h->blockFetchTable);
5193 }
5194 
5195 /*
5196  *  This is it.  Register the PCI driver information for the cards we control
5197  *  the OS will call our registered routines when it finds one of our cards.
5198  */
5199 static int __init hpsa_init(void)
5200 {
5201 	return pci_register_driver(&hpsa_pci_driver);
5202 }
5203 
5204 static void __exit hpsa_cleanup(void)
5205 {
5206 	pci_unregister_driver(&hpsa_pci_driver);
5207 }
5208 
5209 module_init(hpsa_init);
5210 module_exit(hpsa_cleanup);
5211