xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 7630abd0)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 	/* Exclude 640x boards.  These are two pci devices in one slot
297 	 * which share a battery backed cache module.  One controls the
298 	 * cache, the other accesses the cache through the one that controls
299 	 * it.  If we reset the one controlling the cache, the other will
300 	 * likely not be happy.  Just forbid resetting this conjoined mess.
301 	 * The 640x isn't really supported by hpsa anyway.
302 	 */
303 	0x409C0E11, /* Smart Array 6400 */
304 	0x409D0E11, /* Smart Array 6400 EM */
305 };
306 
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 		if (unresettable_controller[i] == board_id)
313 			return 0;
314 	return 1;
315 }
316 
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 		if (soft_unresettable_controller[i] == board_id)
323 			return 0;
324 	return 1;
325 }
326 
327 static int ctlr_is_resettable(u32 board_id)
328 {
329 	return ctlr_is_hard_resettable(board_id) ||
330 		ctlr_is_soft_resettable(board_id);
331 }
332 
333 static ssize_t host_show_resettable(struct device *dev,
334 	struct device_attribute *attr, char *buf)
335 {
336 	struct ctlr_info *h;
337 	struct Scsi_Host *shost = class_to_shost(dev);
338 
339 	h = shost_to_hba(shost);
340 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342 
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345 	return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347 
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 	"UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352 
353 static ssize_t raid_level_show(struct device *dev,
354 	     struct device_attribute *attr, char *buf)
355 {
356 	ssize_t l = 0;
357 	unsigned char rlevel;
358 	struct ctlr_info *h;
359 	struct scsi_device *sdev;
360 	struct hpsa_scsi_dev_t *hdev;
361 	unsigned long flags;
362 
363 	sdev = to_scsi_device(dev);
364 	h = sdev_to_hba(sdev);
365 	spin_lock_irqsave(&h->lock, flags);
366 	hdev = sdev->hostdata;
367 	if (!hdev) {
368 		spin_unlock_irqrestore(&h->lock, flags);
369 		return -ENODEV;
370 	}
371 
372 	/* Is this even a logical drive? */
373 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 		spin_unlock_irqrestore(&h->lock, flags);
375 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 		return l;
377 	}
378 
379 	rlevel = hdev->raid_level;
380 	spin_unlock_irqrestore(&h->lock, flags);
381 	if (rlevel > RAID_UNKNOWN)
382 		rlevel = RAID_UNKNOWN;
383 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 	return l;
385 }
386 
387 static ssize_t lunid_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	struct ctlr_info *h;
391 	struct scsi_device *sdev;
392 	struct hpsa_scsi_dev_t *hdev;
393 	unsigned long flags;
394 	unsigned char lunid[8];
395 
396 	sdev = to_scsi_device(dev);
397 	h = sdev_to_hba(sdev);
398 	spin_lock_irqsave(&h->lock, flags);
399 	hdev = sdev->hostdata;
400 	if (!hdev) {
401 		spin_unlock_irqrestore(&h->lock, flags);
402 		return -ENODEV;
403 	}
404 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 	spin_unlock_irqrestore(&h->lock, flags);
406 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 		lunid[0], lunid[1], lunid[2], lunid[3],
408 		lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410 
411 static ssize_t unique_id_show(struct device *dev,
412 	     struct device_attribute *attr, char *buf)
413 {
414 	struct ctlr_info *h;
415 	struct scsi_device *sdev;
416 	struct hpsa_scsi_dev_t *hdev;
417 	unsigned long flags;
418 	unsigned char sn[16];
419 
420 	sdev = to_scsi_device(dev);
421 	h = sdev_to_hba(sdev);
422 	spin_lock_irqsave(&h->lock, flags);
423 	hdev = sdev->hostdata;
424 	if (!hdev) {
425 		spin_unlock_irqrestore(&h->lock, flags);
426 		return -ENODEV;
427 	}
428 	memcpy(sn, hdev->device_id, sizeof(sn));
429 	spin_unlock_irqrestore(&h->lock, flags);
430 	return snprintf(buf, 16 * 2 + 2,
431 			"%02X%02X%02X%02X%02X%02X%02X%02X"
432 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 			sn[0], sn[1], sn[2], sn[3],
434 			sn[4], sn[5], sn[6], sn[7],
435 			sn[8], sn[9], sn[10], sn[11],
436 			sn[12], sn[13], sn[14], sn[15]);
437 }
438 
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 	host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 	host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 	host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 	host_show_resettable, NULL);
451 
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 	&dev_attr_raid_level,
454 	&dev_attr_lunid,
455 	&dev_attr_unique_id,
456 	NULL,
457 };
458 
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 	&dev_attr_rescan,
461 	&dev_attr_firmware_revision,
462 	&dev_attr_commands_outstanding,
463 	&dev_attr_transport_mode,
464 	&dev_attr_resettable,
465 	NULL,
466 };
467 
468 static struct scsi_host_template hpsa_driver_template = {
469 	.module			= THIS_MODULE,
470 	.name			= "hpsa",
471 	.proc_name		= "hpsa",
472 	.queuecommand		= hpsa_scsi_queue_command,
473 	.scan_start		= hpsa_scan_start,
474 	.scan_finished		= hpsa_scan_finished,
475 	.change_queue_depth	= hpsa_change_queue_depth,
476 	.this_id		= -1,
477 	.use_clustering		= ENABLE_CLUSTERING,
478 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 	.ioctl			= hpsa_ioctl,
480 	.slave_alloc		= hpsa_slave_alloc,
481 	.slave_destroy		= hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 	.compat_ioctl		= hpsa_compat_ioctl,
484 #endif
485 	.sdev_attrs = hpsa_sdev_attrs,
486 	.shost_attrs = hpsa_shost_attrs,
487 };
488 
489 
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493 	list_add_tail(&c->list, list);
494 }
495 
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498 	u32 a;
499 
500 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 		return h->access.command_completed(h);
502 
503 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 		(h->reply_pool_head)++;
506 		h->commands_outstanding--;
507 	} else {
508 		a = FIFO_EMPTY;
509 	}
510 	/* Check for wraparound */
511 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 		h->reply_pool_head = h->reply_pool;
513 		h->reply_pool_wraparound ^= 1;
514 	}
515 	return a;
516 }
517 
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527 
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 	struct CommandList *c)
530 {
531 	unsigned long flags;
532 
533 	set_performant_mode(h, c);
534 	spin_lock_irqsave(&h->lock, flags);
535 	addQ(&h->reqQ, c);
536 	h->Qdepth++;
537 	start_io(h);
538 	spin_unlock_irqrestore(&h->lock, flags);
539 }
540 
541 static inline void removeQ(struct CommandList *c)
542 {
543 	if (WARN_ON(list_empty(&c->list)))
544 		return;
545 	list_del_init(&c->list);
546 }
547 
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552 
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555 	if (!h->hba_inquiry_data)
556 		return 0;
557 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 		return 1;
559 	return 0;
560 }
561 
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 	unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565 	/* finds an unused bus, target, lun for a new physical device
566 	 * assumes h->devlock is held
567 	 */
568 	int i, found = 0;
569 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570 
571 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572 
573 	for (i = 0; i < h->ndevices; i++) {
574 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 			set_bit(h->dev[i]->target, lun_taken);
576 	}
577 
578 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 		if (!test_bit(i, lun_taken)) {
580 			/* *bus = 1; */
581 			*target = i;
582 			*lun = 0;
583 			found = 1;
584 			break;
585 		}
586 	}
587 	return !found;
588 }
589 
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 		struct hpsa_scsi_dev_t *device,
593 		struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595 	/* assumes h->devlock is held */
596 	int n = h->ndevices;
597 	int i;
598 	unsigned char addr1[8], addr2[8];
599 	struct hpsa_scsi_dev_t *sd;
600 
601 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 		dev_err(&h->pdev->dev, "too many devices, some will be "
603 			"inaccessible.\n");
604 		return -1;
605 	}
606 
607 	/* physical devices do not have lun or target assigned until now. */
608 	if (device->lun != -1)
609 		/* Logical device, lun is already assigned. */
610 		goto lun_assigned;
611 
612 	/* If this device a non-zero lun of a multi-lun device
613 	 * byte 4 of the 8-byte LUN addr will contain the logical
614 	 * unit no, zero otherise.
615 	 */
616 	if (device->scsi3addr[4] == 0) {
617 		/* This is not a non-zero lun of a multi-lun device */
618 		if (hpsa_find_target_lun(h, device->scsi3addr,
619 			device->bus, &device->target, &device->lun) != 0)
620 			return -1;
621 		goto lun_assigned;
622 	}
623 
624 	/* This is a non-zero lun of a multi-lun device.
625 	 * Search through our list and find the device which
626 	 * has the same 8 byte LUN address, excepting byte 4.
627 	 * Assign the same bus and target for this new LUN.
628 	 * Use the logical unit number from the firmware.
629 	 */
630 	memcpy(addr1, device->scsi3addr, 8);
631 	addr1[4] = 0;
632 	for (i = 0; i < n; i++) {
633 		sd = h->dev[i];
634 		memcpy(addr2, sd->scsi3addr, 8);
635 		addr2[4] = 0;
636 		/* differ only in byte 4? */
637 		if (memcmp(addr1, addr2, 8) == 0) {
638 			device->bus = sd->bus;
639 			device->target = sd->target;
640 			device->lun = device->scsi3addr[4];
641 			break;
642 		}
643 	}
644 	if (device->lun == -1) {
645 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 			" suspect firmware bug or unsupported hardware "
647 			"configuration.\n");
648 			return -1;
649 	}
650 
651 lun_assigned:
652 
653 	h->dev[n] = device;
654 	h->ndevices++;
655 	added[*nadded] = device;
656 	(*nadded)++;
657 
658 	/* initially, (before registering with scsi layer) we don't
659 	 * know our hostno and we don't want to print anything first
660 	 * time anyway (the scsi layer's inquiries will show that info)
661 	 */
662 	/* if (hostno != -1) */
663 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 			scsi_device_type(device->devtype), hostno,
665 			device->bus, device->target, device->lun);
666 	return 0;
667 }
668 
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 	int entry, struct hpsa_scsi_dev_t *new_entry,
672 	struct hpsa_scsi_dev_t *added[], int *nadded,
673 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675 	/* assumes h->devlock is held */
676 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 	removed[*nremoved] = h->dev[entry];
678 	(*nremoved)++;
679 	h->dev[entry] = new_entry;
680 	added[*nadded] = new_entry;
681 	(*nadded)++;
682 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684 			new_entry->target, new_entry->lun);
685 }
686 
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
690 {
691 	/* assumes h->devlock is held */
692 	int i;
693 	struct hpsa_scsi_dev_t *sd;
694 
695 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
696 
697 	sd = h->dev[entry];
698 	removed[*nremoved] = h->dev[entry];
699 	(*nremoved)++;
700 
701 	for (i = entry; i < h->ndevices-1; i++)
702 		h->dev[i] = h->dev[i+1];
703 	h->ndevices--;
704 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706 		sd->lun);
707 }
708 
709 #define SCSI3ADDR_EQ(a, b) ( \
710 	(a)[7] == (b)[7] && \
711 	(a)[6] == (b)[6] && \
712 	(a)[5] == (b)[5] && \
713 	(a)[4] == (b)[4] && \
714 	(a)[3] == (b)[3] && \
715 	(a)[2] == (b)[2] && \
716 	(a)[1] == (b)[1] && \
717 	(a)[0] == (b)[0])
718 
719 static void fixup_botched_add(struct ctlr_info *h,
720 	struct hpsa_scsi_dev_t *added)
721 {
722 	/* called when scsi_add_device fails in order to re-adjust
723 	 * h->dev[] to match the mid layer's view.
724 	 */
725 	unsigned long flags;
726 	int i, j;
727 
728 	spin_lock_irqsave(&h->lock, flags);
729 	for (i = 0; i < h->ndevices; i++) {
730 		if (h->dev[i] == added) {
731 			for (j = i; j < h->ndevices-1; j++)
732 				h->dev[j] = h->dev[j+1];
733 			h->ndevices--;
734 			break;
735 		}
736 	}
737 	spin_unlock_irqrestore(&h->lock, flags);
738 	kfree(added);
739 }
740 
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742 	struct hpsa_scsi_dev_t *dev2)
743 {
744 	/* we compare everything except lun and target as these
745 	 * are not yet assigned.  Compare parts likely
746 	 * to differ first
747 	 */
748 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749 		sizeof(dev1->scsi3addr)) != 0)
750 		return 0;
751 	if (memcmp(dev1->device_id, dev2->device_id,
752 		sizeof(dev1->device_id)) != 0)
753 		return 0;
754 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755 		return 0;
756 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757 		return 0;
758 	if (dev1->devtype != dev2->devtype)
759 		return 0;
760 	if (dev1->bus != dev2->bus)
761 		return 0;
762 	return 1;
763 }
764 
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772 	int *index)
773 {
774 	int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778 	for (i = 0; i < haystack_size; i++) {
779 		if (haystack[i] == NULL) /* previously removed. */
780 			continue;
781 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782 			*index = i;
783 			if (device_is_the_same(needle, haystack[i]))
784 				return DEVICE_SAME;
785 			else
786 				return DEVICE_CHANGED;
787 		}
788 	}
789 	*index = -1;
790 	return DEVICE_NOT_FOUND;
791 }
792 
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794 	struct hpsa_scsi_dev_t *sd[], int nsds)
795 {
796 	/* sd contains scsi3 addresses and devtypes, and inquiry
797 	 * data.  This function takes what's in sd to be the current
798 	 * reality and updates h->dev[] to reflect that reality.
799 	 */
800 	int i, entry, device_change, changes = 0;
801 	struct hpsa_scsi_dev_t *csd;
802 	unsigned long flags;
803 	struct hpsa_scsi_dev_t **added, **removed;
804 	int nadded, nremoved;
805 	struct Scsi_Host *sh = NULL;
806 
807 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808 		GFP_KERNEL);
809 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810 		GFP_KERNEL);
811 
812 	if (!added || !removed) {
813 		dev_warn(&h->pdev->dev, "out of memory in "
814 			"adjust_hpsa_scsi_table\n");
815 		goto free_and_out;
816 	}
817 
818 	spin_lock_irqsave(&h->devlock, flags);
819 
820 	/* find any devices in h->dev[] that are not in
821 	 * sd[] and remove them from h->dev[], and for any
822 	 * devices which have changed, remove the old device
823 	 * info and add the new device info.
824 	 */
825 	i = 0;
826 	nremoved = 0;
827 	nadded = 0;
828 	while (i < h->ndevices) {
829 		csd = h->dev[i];
830 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831 		if (device_change == DEVICE_NOT_FOUND) {
832 			changes++;
833 			hpsa_scsi_remove_entry(h, hostno, i,
834 				removed, &nremoved);
835 			continue; /* remove ^^^, hence i not incremented */
836 		} else if (device_change == DEVICE_CHANGED) {
837 			changes++;
838 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839 				added, &nadded, removed, &nremoved);
840 			/* Set it to NULL to prevent it from being freed
841 			 * at the bottom of hpsa_update_scsi_devices()
842 			 */
843 			sd[entry] = NULL;
844 		}
845 		i++;
846 	}
847 
848 	/* Now, make sure every device listed in sd[] is also
849 	 * listed in h->dev[], adding them if they aren't found
850 	 */
851 
852 	for (i = 0; i < nsds; i++) {
853 		if (!sd[i]) /* if already added above. */
854 			continue;
855 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856 					h->ndevices, &entry);
857 		if (device_change == DEVICE_NOT_FOUND) {
858 			changes++;
859 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
860 				added, &nadded) != 0)
861 				break;
862 			sd[i] = NULL; /* prevent from being freed later. */
863 		} else if (device_change == DEVICE_CHANGED) {
864 			/* should never happen... */
865 			changes++;
866 			dev_warn(&h->pdev->dev,
867 				"device unexpectedly changed.\n");
868 			/* but if it does happen, we just ignore that device */
869 		}
870 	}
871 	spin_unlock_irqrestore(&h->devlock, flags);
872 
873 	/* Don't notify scsi mid layer of any changes the first time through
874 	 * (or if there are no changes) scsi_scan_host will do it later the
875 	 * first time through.
876 	 */
877 	if (hostno == -1 || !changes)
878 		goto free_and_out;
879 
880 	sh = h->scsi_host;
881 	/* Notify scsi mid layer of any removed devices */
882 	for (i = 0; i < nremoved; i++) {
883 		struct scsi_device *sdev =
884 			scsi_device_lookup(sh, removed[i]->bus,
885 				removed[i]->target, removed[i]->lun);
886 		if (sdev != NULL) {
887 			scsi_remove_device(sdev);
888 			scsi_device_put(sdev);
889 		} else {
890 			/* We don't expect to get here.
891 			 * future cmds to this device will get selection
892 			 * timeout as if the device was gone.
893 			 */
894 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895 				" for removal.", hostno, removed[i]->bus,
896 				removed[i]->target, removed[i]->lun);
897 		}
898 		kfree(removed[i]);
899 		removed[i] = NULL;
900 	}
901 
902 	/* Notify scsi mid layer of any added devices */
903 	for (i = 0; i < nadded; i++) {
904 		if (scsi_add_device(sh, added[i]->bus,
905 			added[i]->target, added[i]->lun) == 0)
906 			continue;
907 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908 			"device not added.\n", hostno, added[i]->bus,
909 			added[i]->target, added[i]->lun);
910 		/* now we have to remove it from h->dev,
911 		 * since it didn't get added to scsi mid layer
912 		 */
913 		fixup_botched_add(h, added[i]);
914 	}
915 
916 free_and_out:
917 	kfree(added);
918 	kfree(removed);
919 }
920 
921 /*
922  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923  * Assume's h->devlock is held.
924  */
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926 	int bus, int target, int lun)
927 {
928 	int i;
929 	struct hpsa_scsi_dev_t *sd;
930 
931 	for (i = 0; i < h->ndevices; i++) {
932 		sd = h->dev[i];
933 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
934 			return sd;
935 	}
936 	return NULL;
937 }
938 
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
941 {
942 	struct hpsa_scsi_dev_t *sd;
943 	unsigned long flags;
944 	struct ctlr_info *h;
945 
946 	h = sdev_to_hba(sdev);
947 	spin_lock_irqsave(&h->devlock, flags);
948 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949 		sdev_id(sdev), sdev->lun);
950 	if (sd != NULL)
951 		sdev->hostdata = sd;
952 	spin_unlock_irqrestore(&h->devlock, flags);
953 	return 0;
954 }
955 
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
957 {
958 	/* nothing to do. */
959 }
960 
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
962 {
963 	int i;
964 
965 	if (!h->cmd_sg_list)
966 		return;
967 	for (i = 0; i < h->nr_cmds; i++) {
968 		kfree(h->cmd_sg_list[i]);
969 		h->cmd_sg_list[i] = NULL;
970 	}
971 	kfree(h->cmd_sg_list);
972 	h->cmd_sg_list = NULL;
973 }
974 
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
976 {
977 	int i;
978 
979 	if (h->chainsize <= 0)
980 		return 0;
981 
982 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983 				GFP_KERNEL);
984 	if (!h->cmd_sg_list)
985 		return -ENOMEM;
986 	for (i = 0; i < h->nr_cmds; i++) {
987 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988 						h->chainsize, GFP_KERNEL);
989 		if (!h->cmd_sg_list[i])
990 			goto clean;
991 	}
992 	return 0;
993 
994 clean:
995 	hpsa_free_sg_chain_blocks(h);
996 	return -ENOMEM;
997 }
998 
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000 	struct CommandList *c)
1001 {
1002 	struct SGDescriptor *chain_sg, *chain_block;
1003 	u64 temp64;
1004 
1005 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006 	chain_block = h->cmd_sg_list[c->cmdindex];
1007 	chain_sg->Ext = HPSA_SG_CHAIN;
1008 	chain_sg->Len = sizeof(*chain_sg) *
1009 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1010 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011 				PCI_DMA_TODEVICE);
1012 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1014 }
1015 
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017 	struct CommandList *c)
1018 {
1019 	struct SGDescriptor *chain_sg;
1020 	union u64bit temp64;
1021 
1022 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023 		return;
1024 
1025 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026 	temp64.val32.lower = chain_sg->Addr.lower;
1027 	temp64.val32.upper = chain_sg->Addr.upper;
1028 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1029 }
1030 
1031 static void complete_scsi_command(struct CommandList *cp)
1032 {
1033 	struct scsi_cmnd *cmd;
1034 	struct ctlr_info *h;
1035 	struct ErrorInfo *ei;
1036 
1037 	unsigned char sense_key;
1038 	unsigned char asc;      /* additional sense code */
1039 	unsigned char ascq;     /* additional sense code qualifier */
1040 
1041 	ei = cp->err_info;
1042 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1043 	h = cp->h;
1044 
1045 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1046 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1047 		hpsa_unmap_sg_chain_block(h, cp);
1048 
1049 	cmd->result = (DID_OK << 16); 		/* host byte */
1050 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1051 	cmd->result |= ei->ScsiStatus;
1052 
1053 	/* copy the sense data whether we need to or not. */
1054 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1055 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1056 			SCSI_SENSE_BUFFERSIZE :
1057 			ei->SenseLen);
1058 	scsi_set_resid(cmd, ei->ResidualCnt);
1059 
1060 	if (ei->CommandStatus == 0) {
1061 		cmd->scsi_done(cmd);
1062 		cmd_free(h, cp);
1063 		return;
1064 	}
1065 
1066 	/* an error has occurred */
1067 	switch (ei->CommandStatus) {
1068 
1069 	case CMD_TARGET_STATUS:
1070 		if (ei->ScsiStatus) {
1071 			/* Get sense key */
1072 			sense_key = 0xf & ei->SenseInfo[2];
1073 			/* Get additional sense code */
1074 			asc = ei->SenseInfo[12];
1075 			/* Get addition sense code qualifier */
1076 			ascq = ei->SenseInfo[13];
1077 		}
1078 
1079 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1080 			if (check_for_unit_attention(h, cp)) {
1081 				cmd->result = DID_SOFT_ERROR << 16;
1082 				break;
1083 			}
1084 			if (sense_key == ILLEGAL_REQUEST) {
1085 				/*
1086 				 * SCSI REPORT_LUNS is commonly unsupported on
1087 				 * Smart Array.  Suppress noisy complaint.
1088 				 */
1089 				if (cp->Request.CDB[0] == REPORT_LUNS)
1090 					break;
1091 
1092 				/* If ASC/ASCQ indicate Logical Unit
1093 				 * Not Supported condition,
1094 				 */
1095 				if ((asc == 0x25) && (ascq == 0x0)) {
1096 					dev_warn(&h->pdev->dev, "cp %p "
1097 						"has check condition\n", cp);
1098 					break;
1099 				}
1100 			}
1101 
1102 			if (sense_key == NOT_READY) {
1103 				/* If Sense is Not Ready, Logical Unit
1104 				 * Not ready, Manual Intervention
1105 				 * required
1106 				 */
1107 				if ((asc == 0x04) && (ascq == 0x03)) {
1108 					dev_warn(&h->pdev->dev, "cp %p "
1109 						"has check condition: unit "
1110 						"not ready, manual "
1111 						"intervention required\n", cp);
1112 					break;
1113 				}
1114 			}
1115 			if (sense_key == ABORTED_COMMAND) {
1116 				/* Aborted command is retryable */
1117 				dev_warn(&h->pdev->dev, "cp %p "
1118 					"has check condition: aborted command: "
1119 					"ASC: 0x%x, ASCQ: 0x%x\n",
1120 					cp, asc, ascq);
1121 				cmd->result = DID_SOFT_ERROR << 16;
1122 				break;
1123 			}
1124 			/* Must be some other type of check condition */
1125 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1126 					"unknown type: "
1127 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1128 					"Returning result: 0x%x, "
1129 					"cmd=[%02x %02x %02x %02x %02x "
1130 					"%02x %02x %02x %02x %02x %02x "
1131 					"%02x %02x %02x %02x %02x]\n",
1132 					cp, sense_key, asc, ascq,
1133 					cmd->result,
1134 					cmd->cmnd[0], cmd->cmnd[1],
1135 					cmd->cmnd[2], cmd->cmnd[3],
1136 					cmd->cmnd[4], cmd->cmnd[5],
1137 					cmd->cmnd[6], cmd->cmnd[7],
1138 					cmd->cmnd[8], cmd->cmnd[9],
1139 					cmd->cmnd[10], cmd->cmnd[11],
1140 					cmd->cmnd[12], cmd->cmnd[13],
1141 					cmd->cmnd[14], cmd->cmnd[15]);
1142 			break;
1143 		}
1144 
1145 
1146 		/* Problem was not a check condition
1147 		 * Pass it up to the upper layers...
1148 		 */
1149 		if (ei->ScsiStatus) {
1150 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1151 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1152 				"Returning result: 0x%x\n",
1153 				cp, ei->ScsiStatus,
1154 				sense_key, asc, ascq,
1155 				cmd->result);
1156 		} else {  /* scsi status is zero??? How??? */
1157 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1158 				"Returning no connection.\n", cp),
1159 
1160 			/* Ordinarily, this case should never happen,
1161 			 * but there is a bug in some released firmware
1162 			 * revisions that allows it to happen if, for
1163 			 * example, a 4100 backplane loses power and
1164 			 * the tape drive is in it.  We assume that
1165 			 * it's a fatal error of some kind because we
1166 			 * can't show that it wasn't. We will make it
1167 			 * look like selection timeout since that is
1168 			 * the most common reason for this to occur,
1169 			 * and it's severe enough.
1170 			 */
1171 
1172 			cmd->result = DID_NO_CONNECT << 16;
1173 		}
1174 		break;
1175 
1176 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1177 		break;
1178 	case CMD_DATA_OVERRUN:
1179 		dev_warn(&h->pdev->dev, "cp %p has"
1180 			" completed with data overrun "
1181 			"reported\n", cp);
1182 		break;
1183 	case CMD_INVALID: {
1184 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1185 		print_cmd(cp); */
1186 		/* We get CMD_INVALID if you address a non-existent device
1187 		 * instead of a selection timeout (no response).  You will
1188 		 * see this if you yank out a drive, then try to access it.
1189 		 * This is kind of a shame because it means that any other
1190 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1191 		 * missing target. */
1192 		cmd->result = DID_NO_CONNECT << 16;
1193 	}
1194 		break;
1195 	case CMD_PROTOCOL_ERR:
1196 		dev_warn(&h->pdev->dev, "cp %p has "
1197 			"protocol error \n", cp);
1198 		break;
1199 	case CMD_HARDWARE_ERR:
1200 		cmd->result = DID_ERROR << 16;
1201 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1202 		break;
1203 	case CMD_CONNECTION_LOST:
1204 		cmd->result = DID_ERROR << 16;
1205 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1206 		break;
1207 	case CMD_ABORTED:
1208 		cmd->result = DID_ABORT << 16;
1209 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1210 				cp, ei->ScsiStatus);
1211 		break;
1212 	case CMD_ABORT_FAILED:
1213 		cmd->result = DID_ERROR << 16;
1214 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1215 		break;
1216 	case CMD_UNSOLICITED_ABORT:
1217 		cmd->result = DID_RESET << 16;
1218 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1219 			"abort\n", cp);
1220 		break;
1221 	case CMD_TIMEOUT:
1222 		cmd->result = DID_TIME_OUT << 16;
1223 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1224 		break;
1225 	case CMD_UNABORTABLE:
1226 		cmd->result = DID_ERROR << 16;
1227 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1228 		break;
1229 	default:
1230 		cmd->result = DID_ERROR << 16;
1231 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1232 				cp, ei->CommandStatus);
1233 	}
1234 	cmd->scsi_done(cmd);
1235 	cmd_free(h, cp);
1236 }
1237 
1238 static int hpsa_scsi_detect(struct ctlr_info *h)
1239 {
1240 	struct Scsi_Host *sh;
1241 	int error;
1242 
1243 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1244 	if (sh == NULL)
1245 		goto fail;
1246 
1247 	sh->io_port = 0;
1248 	sh->n_io_port = 0;
1249 	sh->this_id = -1;
1250 	sh->max_channel = 3;
1251 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1252 	sh->max_lun = HPSA_MAX_LUN;
1253 	sh->max_id = HPSA_MAX_LUN;
1254 	sh->can_queue = h->nr_cmds;
1255 	sh->cmd_per_lun = h->nr_cmds;
1256 	sh->sg_tablesize = h->maxsgentries;
1257 	h->scsi_host = sh;
1258 	sh->hostdata[0] = (unsigned long) h;
1259 	sh->irq = h->intr[h->intr_mode];
1260 	sh->unique_id = sh->irq;
1261 	error = scsi_add_host(sh, &h->pdev->dev);
1262 	if (error)
1263 		goto fail_host_put;
1264 	scsi_scan_host(sh);
1265 	return 0;
1266 
1267  fail_host_put:
1268 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1269 		" failed for controller %d\n", h->ctlr);
1270 	scsi_host_put(sh);
1271 	return error;
1272  fail:
1273 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1274 		" failed for controller %d\n", h->ctlr);
1275 	return -ENOMEM;
1276 }
1277 
1278 static void hpsa_pci_unmap(struct pci_dev *pdev,
1279 	struct CommandList *c, int sg_used, int data_direction)
1280 {
1281 	int i;
1282 	union u64bit addr64;
1283 
1284 	for (i = 0; i < sg_used; i++) {
1285 		addr64.val32.lower = c->SG[i].Addr.lower;
1286 		addr64.val32.upper = c->SG[i].Addr.upper;
1287 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1288 			data_direction);
1289 	}
1290 }
1291 
1292 static void hpsa_map_one(struct pci_dev *pdev,
1293 		struct CommandList *cp,
1294 		unsigned char *buf,
1295 		size_t buflen,
1296 		int data_direction)
1297 {
1298 	u64 addr64;
1299 
1300 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1301 		cp->Header.SGList = 0;
1302 		cp->Header.SGTotal = 0;
1303 		return;
1304 	}
1305 
1306 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1307 	cp->SG[0].Addr.lower =
1308 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1309 	cp->SG[0].Addr.upper =
1310 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1311 	cp->SG[0].Len = buflen;
1312 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1313 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1314 }
1315 
1316 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1317 	struct CommandList *c)
1318 {
1319 	DECLARE_COMPLETION_ONSTACK(wait);
1320 
1321 	c->waiting = &wait;
1322 	enqueue_cmd_and_start_io(h, c);
1323 	wait_for_completion(&wait);
1324 }
1325 
1326 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1327 	struct CommandList *c, int data_direction)
1328 {
1329 	int retry_count = 0;
1330 
1331 	do {
1332 		memset(c->err_info, 0, sizeof(*c->err_info));
1333 		hpsa_scsi_do_simple_cmd_core(h, c);
1334 		retry_count++;
1335 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1336 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1337 }
1338 
1339 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1340 {
1341 	struct ErrorInfo *ei;
1342 	struct device *d = &cp->h->pdev->dev;
1343 
1344 	ei = cp->err_info;
1345 	switch (ei->CommandStatus) {
1346 	case CMD_TARGET_STATUS:
1347 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1348 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1349 				ei->ScsiStatus);
1350 		if (ei->ScsiStatus == 0)
1351 			dev_warn(d, "SCSI status is abnormally zero.  "
1352 			"(probably indicates selection timeout "
1353 			"reported incorrectly due to a known "
1354 			"firmware bug, circa July, 2001.)\n");
1355 		break;
1356 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1357 			dev_info(d, "UNDERRUN\n");
1358 		break;
1359 	case CMD_DATA_OVERRUN:
1360 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1361 		break;
1362 	case CMD_INVALID: {
1363 		/* controller unfortunately reports SCSI passthru's
1364 		 * to non-existent targets as invalid commands.
1365 		 */
1366 		dev_warn(d, "cp %p is reported invalid (probably means "
1367 			"target device no longer present)\n", cp);
1368 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1369 		print_cmd(cp);  */
1370 		}
1371 		break;
1372 	case CMD_PROTOCOL_ERR:
1373 		dev_warn(d, "cp %p has protocol error \n", cp);
1374 		break;
1375 	case CMD_HARDWARE_ERR:
1376 		/* cmd->result = DID_ERROR << 16; */
1377 		dev_warn(d, "cp %p had hardware error\n", cp);
1378 		break;
1379 	case CMD_CONNECTION_LOST:
1380 		dev_warn(d, "cp %p had connection lost\n", cp);
1381 		break;
1382 	case CMD_ABORTED:
1383 		dev_warn(d, "cp %p was aborted\n", cp);
1384 		break;
1385 	case CMD_ABORT_FAILED:
1386 		dev_warn(d, "cp %p reports abort failed\n", cp);
1387 		break;
1388 	case CMD_UNSOLICITED_ABORT:
1389 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1390 		break;
1391 	case CMD_TIMEOUT:
1392 		dev_warn(d, "cp %p timed out\n", cp);
1393 		break;
1394 	case CMD_UNABORTABLE:
1395 		dev_warn(d, "Command unabortable\n");
1396 		break;
1397 	default:
1398 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1399 				ei->CommandStatus);
1400 	}
1401 }
1402 
1403 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1404 			unsigned char page, unsigned char *buf,
1405 			unsigned char bufsize)
1406 {
1407 	int rc = IO_OK;
1408 	struct CommandList *c;
1409 	struct ErrorInfo *ei;
1410 
1411 	c = cmd_special_alloc(h);
1412 
1413 	if (c == NULL) {			/* trouble... */
1414 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1415 		return -ENOMEM;
1416 	}
1417 
1418 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1419 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1420 	ei = c->err_info;
1421 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1422 		hpsa_scsi_interpret_error(c);
1423 		rc = -1;
1424 	}
1425 	cmd_special_free(h, c);
1426 	return rc;
1427 }
1428 
1429 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1430 {
1431 	int rc = IO_OK;
1432 	struct CommandList *c;
1433 	struct ErrorInfo *ei;
1434 
1435 	c = cmd_special_alloc(h);
1436 
1437 	if (c == NULL) {			/* trouble... */
1438 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1439 		return -ENOMEM;
1440 	}
1441 
1442 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1443 	hpsa_scsi_do_simple_cmd_core(h, c);
1444 	/* no unmap needed here because no data xfer. */
1445 
1446 	ei = c->err_info;
1447 	if (ei->CommandStatus != 0) {
1448 		hpsa_scsi_interpret_error(c);
1449 		rc = -1;
1450 	}
1451 	cmd_special_free(h, c);
1452 	return rc;
1453 }
1454 
1455 static void hpsa_get_raid_level(struct ctlr_info *h,
1456 	unsigned char *scsi3addr, unsigned char *raid_level)
1457 {
1458 	int rc;
1459 	unsigned char *buf;
1460 
1461 	*raid_level = RAID_UNKNOWN;
1462 	buf = kzalloc(64, GFP_KERNEL);
1463 	if (!buf)
1464 		return;
1465 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1466 	if (rc == 0)
1467 		*raid_level = buf[8];
1468 	if (*raid_level > RAID_UNKNOWN)
1469 		*raid_level = RAID_UNKNOWN;
1470 	kfree(buf);
1471 	return;
1472 }
1473 
1474 /* Get the device id from inquiry page 0x83 */
1475 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1476 	unsigned char *device_id, int buflen)
1477 {
1478 	int rc;
1479 	unsigned char *buf;
1480 
1481 	if (buflen > 16)
1482 		buflen = 16;
1483 	buf = kzalloc(64, GFP_KERNEL);
1484 	if (!buf)
1485 		return -1;
1486 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1487 	if (rc == 0)
1488 		memcpy(device_id, &buf[8], buflen);
1489 	kfree(buf);
1490 	return rc != 0;
1491 }
1492 
1493 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1494 		struct ReportLUNdata *buf, int bufsize,
1495 		int extended_response)
1496 {
1497 	int rc = IO_OK;
1498 	struct CommandList *c;
1499 	unsigned char scsi3addr[8];
1500 	struct ErrorInfo *ei;
1501 
1502 	c = cmd_special_alloc(h);
1503 	if (c == NULL) {			/* trouble... */
1504 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1505 		return -1;
1506 	}
1507 	/* address the controller */
1508 	memset(scsi3addr, 0, sizeof(scsi3addr));
1509 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1510 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1511 	if (extended_response)
1512 		c->Request.CDB[1] = extended_response;
1513 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1514 	ei = c->err_info;
1515 	if (ei->CommandStatus != 0 &&
1516 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1517 		hpsa_scsi_interpret_error(c);
1518 		rc = -1;
1519 	}
1520 	cmd_special_free(h, c);
1521 	return rc;
1522 }
1523 
1524 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1525 		struct ReportLUNdata *buf,
1526 		int bufsize, int extended_response)
1527 {
1528 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1529 }
1530 
1531 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1532 		struct ReportLUNdata *buf, int bufsize)
1533 {
1534 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1535 }
1536 
1537 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1538 	int bus, int target, int lun)
1539 {
1540 	device->bus = bus;
1541 	device->target = target;
1542 	device->lun = lun;
1543 }
1544 
1545 static int hpsa_update_device_info(struct ctlr_info *h,
1546 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1547 {
1548 #define OBDR_TAPE_INQ_SIZE 49
1549 	unsigned char *inq_buff;
1550 
1551 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1552 	if (!inq_buff)
1553 		goto bail_out;
1554 
1555 	/* Do an inquiry to the device to see what it is. */
1556 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1557 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1558 		/* Inquiry failed (msg printed already) */
1559 		dev_err(&h->pdev->dev,
1560 			"hpsa_update_device_info: inquiry failed\n");
1561 		goto bail_out;
1562 	}
1563 
1564 	this_device->devtype = (inq_buff[0] & 0x1f);
1565 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1566 	memcpy(this_device->vendor, &inq_buff[8],
1567 		sizeof(this_device->vendor));
1568 	memcpy(this_device->model, &inq_buff[16],
1569 		sizeof(this_device->model));
1570 	memset(this_device->device_id, 0,
1571 		sizeof(this_device->device_id));
1572 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1573 		sizeof(this_device->device_id));
1574 
1575 	if (this_device->devtype == TYPE_DISK &&
1576 		is_logical_dev_addr_mode(scsi3addr))
1577 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1578 	else
1579 		this_device->raid_level = RAID_UNKNOWN;
1580 
1581 	kfree(inq_buff);
1582 	return 0;
1583 
1584 bail_out:
1585 	kfree(inq_buff);
1586 	return 1;
1587 }
1588 
1589 static unsigned char *msa2xxx_model[] = {
1590 	"MSA2012",
1591 	"MSA2024",
1592 	"MSA2312",
1593 	"MSA2324",
1594 	"P2000 G3 SAS",
1595 	NULL,
1596 };
1597 
1598 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1599 {
1600 	int i;
1601 
1602 	for (i = 0; msa2xxx_model[i]; i++)
1603 		if (strncmp(device->model, msa2xxx_model[i],
1604 			strlen(msa2xxx_model[i])) == 0)
1605 			return 1;
1606 	return 0;
1607 }
1608 
1609 /* Helper function to assign bus, target, lun mapping of devices.
1610  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1611  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1612  * Logical drive target and lun are assigned at this time, but
1613  * physical device lun and target assignment are deferred (assigned
1614  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1615  */
1616 static void figure_bus_target_lun(struct ctlr_info *h,
1617 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1618 	struct hpsa_scsi_dev_t *device)
1619 {
1620 	u32 lunid;
1621 
1622 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1623 		/* logical device */
1624 		if (unlikely(is_scsi_rev_5(h))) {
1625 			/* p1210m, logical drives lun assignments
1626 			 * match SCSI REPORT LUNS data.
1627 			 */
1628 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1629 			*bus = 0;
1630 			*target = 0;
1631 			*lun = (lunid & 0x3fff) + 1;
1632 		} else {
1633 			/* not p1210m... */
1634 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1635 			if (is_msa2xxx(h, device)) {
1636 				/* msa2xxx way, put logicals on bus 1
1637 				 * and match target/lun numbers box
1638 				 * reports.
1639 				 */
1640 				*bus = 1;
1641 				*target = (lunid >> 16) & 0x3fff;
1642 				*lun = lunid & 0x00ff;
1643 			} else {
1644 				/* Traditional smart array way. */
1645 				*bus = 0;
1646 				*lun = 0;
1647 				*target = lunid & 0x3fff;
1648 			}
1649 		}
1650 	} else {
1651 		/* physical device */
1652 		if (is_hba_lunid(lunaddrbytes))
1653 			if (unlikely(is_scsi_rev_5(h))) {
1654 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1655 				*target = 0;
1656 				*lun = 0;
1657 				return;
1658 			} else
1659 				*bus = 3; /* traditional smartarray */
1660 		else
1661 			*bus = 2; /* physical disk */
1662 		*target = -1;
1663 		*lun = -1; /* we will fill these in later. */
1664 	}
1665 }
1666 
1667 /*
1668  * If there is no lun 0 on a target, linux won't find any devices.
1669  * For the MSA2xxx boxes, we have to manually detect the enclosure
1670  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1671  * it for some reason.  *tmpdevice is the target we're adding,
1672  * this_device is a pointer into the current element of currentsd[]
1673  * that we're building up in update_scsi_devices(), below.
1674  * lunzerobits is a bitmap that tracks which targets already have a
1675  * lun 0 assigned.
1676  * Returns 1 if an enclosure was added, 0 if not.
1677  */
1678 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1679 	struct hpsa_scsi_dev_t *tmpdevice,
1680 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1681 	int bus, int target, int lun, unsigned long lunzerobits[],
1682 	int *nmsa2xxx_enclosures)
1683 {
1684 	unsigned char scsi3addr[8];
1685 
1686 	if (test_bit(target, lunzerobits))
1687 		return 0; /* There is already a lun 0 on this target. */
1688 
1689 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1690 		return 0; /* It's the logical targets that may lack lun 0. */
1691 
1692 	if (!is_msa2xxx(h, tmpdevice))
1693 		return 0; /* It's only the MSA2xxx that have this problem. */
1694 
1695 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1696 		return 0;
1697 
1698 	memset(scsi3addr, 0, 8);
1699 	scsi3addr[3] = target;
1700 	if (is_hba_lunid(scsi3addr))
1701 		return 0; /* Don't add the RAID controller here. */
1702 
1703 	if (is_scsi_rev_5(h))
1704 		return 0; /* p1210m doesn't need to do this. */
1705 
1706 #define MAX_MSA2XXX_ENCLOSURES 32
1707 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1708 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1709 			"enclosures exceeded.  Check your hardware "
1710 			"configuration.");
1711 		return 0;
1712 	}
1713 
1714 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1715 		return 0;
1716 	(*nmsa2xxx_enclosures)++;
1717 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1718 	set_bit(target, lunzerobits);
1719 	return 1;
1720 }
1721 
1722 /*
1723  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1724  * logdev.  The number of luns in physdev and logdev are returned in
1725  * *nphysicals and *nlogicals, respectively.
1726  * Returns 0 on success, -1 otherwise.
1727  */
1728 static int hpsa_gather_lun_info(struct ctlr_info *h,
1729 	int reportlunsize,
1730 	struct ReportLUNdata *physdev, u32 *nphysicals,
1731 	struct ReportLUNdata *logdev, u32 *nlogicals)
1732 {
1733 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1734 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1735 		return -1;
1736 	}
1737 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1738 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1739 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1740 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1741 			*nphysicals - HPSA_MAX_PHYS_LUN);
1742 		*nphysicals = HPSA_MAX_PHYS_LUN;
1743 	}
1744 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1745 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1746 		return -1;
1747 	}
1748 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1749 	/* Reject Logicals in excess of our max capability. */
1750 	if (*nlogicals > HPSA_MAX_LUN) {
1751 		dev_warn(&h->pdev->dev,
1752 			"maximum logical LUNs (%d) exceeded.  "
1753 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1754 			*nlogicals - HPSA_MAX_LUN);
1755 			*nlogicals = HPSA_MAX_LUN;
1756 	}
1757 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1758 		dev_warn(&h->pdev->dev,
1759 			"maximum logical + physical LUNs (%d) exceeded. "
1760 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1761 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1762 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1763 	}
1764 	return 0;
1765 }
1766 
1767 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1768 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1769 	struct ReportLUNdata *logdev_list)
1770 {
1771 	/* Helper function, figure out where the LUN ID info is coming from
1772 	 * given index i, lists of physical and logical devices, where in
1773 	 * the list the raid controller is supposed to appear (first or last)
1774 	 */
1775 
1776 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1777 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1778 
1779 	if (i == raid_ctlr_position)
1780 		return RAID_CTLR_LUNID;
1781 
1782 	if (i < logicals_start)
1783 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1784 
1785 	if (i < last_device)
1786 		return &logdev_list->LUN[i - nphysicals -
1787 			(raid_ctlr_position == 0)][0];
1788 	BUG();
1789 	return NULL;
1790 }
1791 
1792 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1793 {
1794 	/* the idea here is we could get notified
1795 	 * that some devices have changed, so we do a report
1796 	 * physical luns and report logical luns cmd, and adjust
1797 	 * our list of devices accordingly.
1798 	 *
1799 	 * The scsi3addr's of devices won't change so long as the
1800 	 * adapter is not reset.  That means we can rescan and
1801 	 * tell which devices we already know about, vs. new
1802 	 * devices, vs.  disappearing devices.
1803 	 */
1804 	struct ReportLUNdata *physdev_list = NULL;
1805 	struct ReportLUNdata *logdev_list = NULL;
1806 	unsigned char *inq_buff = NULL;
1807 	u32 nphysicals = 0;
1808 	u32 nlogicals = 0;
1809 	u32 ndev_allocated = 0;
1810 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1811 	int ncurrent = 0;
1812 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1813 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1814 	int bus, target, lun;
1815 	int raid_ctlr_position;
1816 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1817 
1818 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1819 		GFP_KERNEL);
1820 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1821 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1822 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1823 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1824 
1825 	if (!currentsd || !physdev_list || !logdev_list ||
1826 		!inq_buff || !tmpdevice) {
1827 		dev_err(&h->pdev->dev, "out of memory\n");
1828 		goto out;
1829 	}
1830 	memset(lunzerobits, 0, sizeof(lunzerobits));
1831 
1832 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1833 			logdev_list, &nlogicals))
1834 		goto out;
1835 
1836 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1837 	 * but each of them 4 times through different paths.  The plus 1
1838 	 * is for the RAID controller.
1839 	 */
1840 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1841 
1842 	/* Allocate the per device structures */
1843 	for (i = 0; i < ndevs_to_allocate; i++) {
1844 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1845 		if (!currentsd[i]) {
1846 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1847 				__FILE__, __LINE__);
1848 			goto out;
1849 		}
1850 		ndev_allocated++;
1851 	}
1852 
1853 	if (unlikely(is_scsi_rev_5(h)))
1854 		raid_ctlr_position = 0;
1855 	else
1856 		raid_ctlr_position = nphysicals + nlogicals;
1857 
1858 	/* adjust our table of devices */
1859 	nmsa2xxx_enclosures = 0;
1860 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1861 		u8 *lunaddrbytes;
1862 
1863 		/* Figure out where the LUN ID info is coming from */
1864 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1865 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1866 		/* skip masked physical devices. */
1867 		if (lunaddrbytes[3] & 0xC0 &&
1868 			i < nphysicals + (raid_ctlr_position == 0))
1869 			continue;
1870 
1871 		/* Get device type, vendor, model, device id */
1872 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1873 			continue; /* skip it if we can't talk to it. */
1874 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1875 			tmpdevice);
1876 		this_device = currentsd[ncurrent];
1877 
1878 		/*
1879 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1880 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1881 		 * is nonetheless an enclosure device there.  We have to
1882 		 * present that otherwise linux won't find anything if
1883 		 * there is no lun 0.
1884 		 */
1885 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1886 				lunaddrbytes, bus, target, lun, lunzerobits,
1887 				&nmsa2xxx_enclosures)) {
1888 			ncurrent++;
1889 			this_device = currentsd[ncurrent];
1890 		}
1891 
1892 		*this_device = *tmpdevice;
1893 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1894 
1895 		switch (this_device->devtype) {
1896 		case TYPE_ROM: {
1897 			/* We don't *really* support actual CD-ROM devices,
1898 			 * just "One Button Disaster Recovery" tape drive
1899 			 * which temporarily pretends to be a CD-ROM drive.
1900 			 * So we check that the device is really an OBDR tape
1901 			 * device by checking for "$DR-10" in bytes 43-48 of
1902 			 * the inquiry data.
1903 			 */
1904 				char obdr_sig[7];
1905 #define OBDR_TAPE_SIG "$DR-10"
1906 				strncpy(obdr_sig, &inq_buff[43], 6);
1907 				obdr_sig[6] = '\0';
1908 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1909 					/* Not OBDR device, ignore it. */
1910 					break;
1911 			}
1912 			ncurrent++;
1913 			break;
1914 		case TYPE_DISK:
1915 			if (i < nphysicals)
1916 				break;
1917 			ncurrent++;
1918 			break;
1919 		case TYPE_TAPE:
1920 		case TYPE_MEDIUM_CHANGER:
1921 			ncurrent++;
1922 			break;
1923 		case TYPE_RAID:
1924 			/* Only present the Smartarray HBA as a RAID controller.
1925 			 * If it's a RAID controller other than the HBA itself
1926 			 * (an external RAID controller, MSA500 or similar)
1927 			 * don't present it.
1928 			 */
1929 			if (!is_hba_lunid(lunaddrbytes))
1930 				break;
1931 			ncurrent++;
1932 			break;
1933 		default:
1934 			break;
1935 		}
1936 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1937 			break;
1938 	}
1939 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1940 out:
1941 	kfree(tmpdevice);
1942 	for (i = 0; i < ndev_allocated; i++)
1943 		kfree(currentsd[i]);
1944 	kfree(currentsd);
1945 	kfree(inq_buff);
1946 	kfree(physdev_list);
1947 	kfree(logdev_list);
1948 }
1949 
1950 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1951  * dma mapping  and fills in the scatter gather entries of the
1952  * hpsa command, cp.
1953  */
1954 static int hpsa_scatter_gather(struct ctlr_info *h,
1955 		struct CommandList *cp,
1956 		struct scsi_cmnd *cmd)
1957 {
1958 	unsigned int len;
1959 	struct scatterlist *sg;
1960 	u64 addr64;
1961 	int use_sg, i, sg_index, chained;
1962 	struct SGDescriptor *curr_sg;
1963 
1964 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1965 
1966 	use_sg = scsi_dma_map(cmd);
1967 	if (use_sg < 0)
1968 		return use_sg;
1969 
1970 	if (!use_sg)
1971 		goto sglist_finished;
1972 
1973 	curr_sg = cp->SG;
1974 	chained = 0;
1975 	sg_index = 0;
1976 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1977 		if (i == h->max_cmd_sg_entries - 1 &&
1978 			use_sg > h->max_cmd_sg_entries) {
1979 			chained = 1;
1980 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1981 			sg_index = 0;
1982 		}
1983 		addr64 = (u64) sg_dma_address(sg);
1984 		len  = sg_dma_len(sg);
1985 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1986 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1987 		curr_sg->Len = len;
1988 		curr_sg->Ext = 0;  /* we are not chaining */
1989 		curr_sg++;
1990 	}
1991 
1992 	if (use_sg + chained > h->maxSG)
1993 		h->maxSG = use_sg + chained;
1994 
1995 	if (chained) {
1996 		cp->Header.SGList = h->max_cmd_sg_entries;
1997 		cp->Header.SGTotal = (u16) (use_sg + 1);
1998 		hpsa_map_sg_chain_block(h, cp);
1999 		return 0;
2000 	}
2001 
2002 sglist_finished:
2003 
2004 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2005 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2006 	return 0;
2007 }
2008 
2009 
2010 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2011 	void (*done)(struct scsi_cmnd *))
2012 {
2013 	struct ctlr_info *h;
2014 	struct hpsa_scsi_dev_t *dev;
2015 	unsigned char scsi3addr[8];
2016 	struct CommandList *c;
2017 	unsigned long flags;
2018 
2019 	/* Get the ptr to our adapter structure out of cmd->host. */
2020 	h = sdev_to_hba(cmd->device);
2021 	dev = cmd->device->hostdata;
2022 	if (!dev) {
2023 		cmd->result = DID_NO_CONNECT << 16;
2024 		done(cmd);
2025 		return 0;
2026 	}
2027 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2028 
2029 	/* Need a lock as this is being allocated from the pool */
2030 	spin_lock_irqsave(&h->lock, flags);
2031 	c = cmd_alloc(h);
2032 	spin_unlock_irqrestore(&h->lock, flags);
2033 	if (c == NULL) {			/* trouble... */
2034 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2035 		return SCSI_MLQUEUE_HOST_BUSY;
2036 	}
2037 
2038 	/* Fill in the command list header */
2039 
2040 	cmd->scsi_done = done;    /* save this for use by completion code */
2041 
2042 	/* save c in case we have to abort it  */
2043 	cmd->host_scribble = (unsigned char *) c;
2044 
2045 	c->cmd_type = CMD_SCSI;
2046 	c->scsi_cmd = cmd;
2047 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2048 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2049 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2050 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2051 
2052 	/* Fill in the request block... */
2053 
2054 	c->Request.Timeout = 0;
2055 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2056 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2057 	c->Request.CDBLen = cmd->cmd_len;
2058 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2059 	c->Request.Type.Type = TYPE_CMD;
2060 	c->Request.Type.Attribute = ATTR_SIMPLE;
2061 	switch (cmd->sc_data_direction) {
2062 	case DMA_TO_DEVICE:
2063 		c->Request.Type.Direction = XFER_WRITE;
2064 		break;
2065 	case DMA_FROM_DEVICE:
2066 		c->Request.Type.Direction = XFER_READ;
2067 		break;
2068 	case DMA_NONE:
2069 		c->Request.Type.Direction = XFER_NONE;
2070 		break;
2071 	case DMA_BIDIRECTIONAL:
2072 		/* This can happen if a buggy application does a scsi passthru
2073 		 * and sets both inlen and outlen to non-zero. ( see
2074 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2075 		 */
2076 
2077 		c->Request.Type.Direction = XFER_RSVD;
2078 		/* This is technically wrong, and hpsa controllers should
2079 		 * reject it with CMD_INVALID, which is the most correct
2080 		 * response, but non-fibre backends appear to let it
2081 		 * slide by, and give the same results as if this field
2082 		 * were set correctly.  Either way is acceptable for
2083 		 * our purposes here.
2084 		 */
2085 
2086 		break;
2087 
2088 	default:
2089 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2090 			cmd->sc_data_direction);
2091 		BUG();
2092 		break;
2093 	}
2094 
2095 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2096 		cmd_free(h, c);
2097 		return SCSI_MLQUEUE_HOST_BUSY;
2098 	}
2099 	enqueue_cmd_and_start_io(h, c);
2100 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2101 	return 0;
2102 }
2103 
2104 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2105 
2106 static void hpsa_scan_start(struct Scsi_Host *sh)
2107 {
2108 	struct ctlr_info *h = shost_to_hba(sh);
2109 	unsigned long flags;
2110 
2111 	/* wait until any scan already in progress is finished. */
2112 	while (1) {
2113 		spin_lock_irqsave(&h->scan_lock, flags);
2114 		if (h->scan_finished)
2115 			break;
2116 		spin_unlock_irqrestore(&h->scan_lock, flags);
2117 		wait_event(h->scan_wait_queue, h->scan_finished);
2118 		/* Note: We don't need to worry about a race between this
2119 		 * thread and driver unload because the midlayer will
2120 		 * have incremented the reference count, so unload won't
2121 		 * happen if we're in here.
2122 		 */
2123 	}
2124 	h->scan_finished = 0; /* mark scan as in progress */
2125 	spin_unlock_irqrestore(&h->scan_lock, flags);
2126 
2127 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2128 
2129 	spin_lock_irqsave(&h->scan_lock, flags);
2130 	h->scan_finished = 1; /* mark scan as finished. */
2131 	wake_up_all(&h->scan_wait_queue);
2132 	spin_unlock_irqrestore(&h->scan_lock, flags);
2133 }
2134 
2135 static int hpsa_scan_finished(struct Scsi_Host *sh,
2136 	unsigned long elapsed_time)
2137 {
2138 	struct ctlr_info *h = shost_to_hba(sh);
2139 	unsigned long flags;
2140 	int finished;
2141 
2142 	spin_lock_irqsave(&h->scan_lock, flags);
2143 	finished = h->scan_finished;
2144 	spin_unlock_irqrestore(&h->scan_lock, flags);
2145 	return finished;
2146 }
2147 
2148 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2149 	int qdepth, int reason)
2150 {
2151 	struct ctlr_info *h = sdev_to_hba(sdev);
2152 
2153 	if (reason != SCSI_QDEPTH_DEFAULT)
2154 		return -ENOTSUPP;
2155 
2156 	if (qdepth < 1)
2157 		qdepth = 1;
2158 	else
2159 		if (qdepth > h->nr_cmds)
2160 			qdepth = h->nr_cmds;
2161 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2162 	return sdev->queue_depth;
2163 }
2164 
2165 static void hpsa_unregister_scsi(struct ctlr_info *h)
2166 {
2167 	/* we are being forcibly unloaded, and may not refuse. */
2168 	scsi_remove_host(h->scsi_host);
2169 	scsi_host_put(h->scsi_host);
2170 	h->scsi_host = NULL;
2171 }
2172 
2173 static int hpsa_register_scsi(struct ctlr_info *h)
2174 {
2175 	int rc;
2176 
2177 	rc = hpsa_scsi_detect(h);
2178 	if (rc != 0)
2179 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2180 			" hpsa_scsi_detect(), rc is %d\n", rc);
2181 	return rc;
2182 }
2183 
2184 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2185 	unsigned char lunaddr[])
2186 {
2187 	int rc = 0;
2188 	int count = 0;
2189 	int waittime = 1; /* seconds */
2190 	struct CommandList *c;
2191 
2192 	c = cmd_special_alloc(h);
2193 	if (!c) {
2194 		dev_warn(&h->pdev->dev, "out of memory in "
2195 			"wait_for_device_to_become_ready.\n");
2196 		return IO_ERROR;
2197 	}
2198 
2199 	/* Send test unit ready until device ready, or give up. */
2200 	while (count < HPSA_TUR_RETRY_LIMIT) {
2201 
2202 		/* Wait for a bit.  do this first, because if we send
2203 		 * the TUR right away, the reset will just abort it.
2204 		 */
2205 		msleep(1000 * waittime);
2206 		count++;
2207 
2208 		/* Increase wait time with each try, up to a point. */
2209 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2210 			waittime = waittime * 2;
2211 
2212 		/* Send the Test Unit Ready */
2213 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2214 		hpsa_scsi_do_simple_cmd_core(h, c);
2215 		/* no unmap needed here because no data xfer. */
2216 
2217 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2218 			break;
2219 
2220 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2221 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2222 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2223 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2224 			break;
2225 
2226 		dev_warn(&h->pdev->dev, "waiting %d secs "
2227 			"for device to become ready.\n", waittime);
2228 		rc = 1; /* device not ready. */
2229 	}
2230 
2231 	if (rc)
2232 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2233 	else
2234 		dev_warn(&h->pdev->dev, "device is ready.\n");
2235 
2236 	cmd_special_free(h, c);
2237 	return rc;
2238 }
2239 
2240 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2241  * complaining.  Doing a host- or bus-reset can't do anything good here.
2242  */
2243 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2244 {
2245 	int rc;
2246 	struct ctlr_info *h;
2247 	struct hpsa_scsi_dev_t *dev;
2248 
2249 	/* find the controller to which the command to be aborted was sent */
2250 	h = sdev_to_hba(scsicmd->device);
2251 	if (h == NULL) /* paranoia */
2252 		return FAILED;
2253 	dev = scsicmd->device->hostdata;
2254 	if (!dev) {
2255 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2256 			"device lookup failed.\n");
2257 		return FAILED;
2258 	}
2259 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2260 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2261 	/* send a reset to the SCSI LUN which the command was sent to */
2262 	rc = hpsa_send_reset(h, dev->scsi3addr);
2263 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2264 		return SUCCESS;
2265 
2266 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2267 	return FAILED;
2268 }
2269 
2270 /*
2271  * For operations that cannot sleep, a command block is allocated at init,
2272  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2273  * which ones are free or in use.  Lock must be held when calling this.
2274  * cmd_free() is the complement.
2275  */
2276 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2277 {
2278 	struct CommandList *c;
2279 	int i;
2280 	union u64bit temp64;
2281 	dma_addr_t cmd_dma_handle, err_dma_handle;
2282 
2283 	do {
2284 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2285 		if (i == h->nr_cmds)
2286 			return NULL;
2287 	} while (test_and_set_bit
2288 		 (i & (BITS_PER_LONG - 1),
2289 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2290 	c = h->cmd_pool + i;
2291 	memset(c, 0, sizeof(*c));
2292 	cmd_dma_handle = h->cmd_pool_dhandle
2293 	    + i * sizeof(*c);
2294 	c->err_info = h->errinfo_pool + i;
2295 	memset(c->err_info, 0, sizeof(*c->err_info));
2296 	err_dma_handle = h->errinfo_pool_dhandle
2297 	    + i * sizeof(*c->err_info);
2298 	h->nr_allocs++;
2299 
2300 	c->cmdindex = i;
2301 
2302 	INIT_LIST_HEAD(&c->list);
2303 	c->busaddr = (u32) cmd_dma_handle;
2304 	temp64.val = (u64) err_dma_handle;
2305 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2306 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2307 	c->ErrDesc.Len = sizeof(*c->err_info);
2308 
2309 	c->h = h;
2310 	return c;
2311 }
2312 
2313 /* For operations that can wait for kmalloc to possibly sleep,
2314  * this routine can be called. Lock need not be held to call
2315  * cmd_special_alloc. cmd_special_free() is the complement.
2316  */
2317 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2318 {
2319 	struct CommandList *c;
2320 	union u64bit temp64;
2321 	dma_addr_t cmd_dma_handle, err_dma_handle;
2322 
2323 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2324 	if (c == NULL)
2325 		return NULL;
2326 	memset(c, 0, sizeof(*c));
2327 
2328 	c->cmdindex = -1;
2329 
2330 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2331 		    &err_dma_handle);
2332 
2333 	if (c->err_info == NULL) {
2334 		pci_free_consistent(h->pdev,
2335 			sizeof(*c), c, cmd_dma_handle);
2336 		return NULL;
2337 	}
2338 	memset(c->err_info, 0, sizeof(*c->err_info));
2339 
2340 	INIT_LIST_HEAD(&c->list);
2341 	c->busaddr = (u32) cmd_dma_handle;
2342 	temp64.val = (u64) err_dma_handle;
2343 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2344 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2345 	c->ErrDesc.Len = sizeof(*c->err_info);
2346 
2347 	c->h = h;
2348 	return c;
2349 }
2350 
2351 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2352 {
2353 	int i;
2354 
2355 	i = c - h->cmd_pool;
2356 	clear_bit(i & (BITS_PER_LONG - 1),
2357 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2358 	h->nr_frees++;
2359 }
2360 
2361 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2362 {
2363 	union u64bit temp64;
2364 
2365 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2366 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2367 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2368 			    c->err_info, (dma_addr_t) temp64.val);
2369 	pci_free_consistent(h->pdev, sizeof(*c),
2370 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2371 }
2372 
2373 #ifdef CONFIG_COMPAT
2374 
2375 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2376 {
2377 	IOCTL32_Command_struct __user *arg32 =
2378 	    (IOCTL32_Command_struct __user *) arg;
2379 	IOCTL_Command_struct arg64;
2380 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2381 	int err;
2382 	u32 cp;
2383 
2384 	memset(&arg64, 0, sizeof(arg64));
2385 	err = 0;
2386 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2387 			   sizeof(arg64.LUN_info));
2388 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2389 			   sizeof(arg64.Request));
2390 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2391 			   sizeof(arg64.error_info));
2392 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2393 	err |= get_user(cp, &arg32->buf);
2394 	arg64.buf = compat_ptr(cp);
2395 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2396 
2397 	if (err)
2398 		return -EFAULT;
2399 
2400 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2401 	if (err)
2402 		return err;
2403 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2404 			 sizeof(arg32->error_info));
2405 	if (err)
2406 		return -EFAULT;
2407 	return err;
2408 }
2409 
2410 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2411 	int cmd, void *arg)
2412 {
2413 	BIG_IOCTL32_Command_struct __user *arg32 =
2414 	    (BIG_IOCTL32_Command_struct __user *) arg;
2415 	BIG_IOCTL_Command_struct arg64;
2416 	BIG_IOCTL_Command_struct __user *p =
2417 	    compat_alloc_user_space(sizeof(arg64));
2418 	int err;
2419 	u32 cp;
2420 
2421 	memset(&arg64, 0, sizeof(arg64));
2422 	err = 0;
2423 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2424 			   sizeof(arg64.LUN_info));
2425 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2426 			   sizeof(arg64.Request));
2427 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2428 			   sizeof(arg64.error_info));
2429 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2430 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2431 	err |= get_user(cp, &arg32->buf);
2432 	arg64.buf = compat_ptr(cp);
2433 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2434 
2435 	if (err)
2436 		return -EFAULT;
2437 
2438 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2439 	if (err)
2440 		return err;
2441 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2442 			 sizeof(arg32->error_info));
2443 	if (err)
2444 		return -EFAULT;
2445 	return err;
2446 }
2447 
2448 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2449 {
2450 	switch (cmd) {
2451 	case CCISS_GETPCIINFO:
2452 	case CCISS_GETINTINFO:
2453 	case CCISS_SETINTINFO:
2454 	case CCISS_GETNODENAME:
2455 	case CCISS_SETNODENAME:
2456 	case CCISS_GETHEARTBEAT:
2457 	case CCISS_GETBUSTYPES:
2458 	case CCISS_GETFIRMVER:
2459 	case CCISS_GETDRIVVER:
2460 	case CCISS_REVALIDVOLS:
2461 	case CCISS_DEREGDISK:
2462 	case CCISS_REGNEWDISK:
2463 	case CCISS_REGNEWD:
2464 	case CCISS_RESCANDISK:
2465 	case CCISS_GETLUNINFO:
2466 		return hpsa_ioctl(dev, cmd, arg);
2467 
2468 	case CCISS_PASSTHRU32:
2469 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2470 	case CCISS_BIG_PASSTHRU32:
2471 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2472 
2473 	default:
2474 		return -ENOIOCTLCMD;
2475 	}
2476 }
2477 #endif
2478 
2479 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2480 {
2481 	struct hpsa_pci_info pciinfo;
2482 
2483 	if (!argp)
2484 		return -EINVAL;
2485 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2486 	pciinfo.bus = h->pdev->bus->number;
2487 	pciinfo.dev_fn = h->pdev->devfn;
2488 	pciinfo.board_id = h->board_id;
2489 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2490 		return -EFAULT;
2491 	return 0;
2492 }
2493 
2494 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2495 {
2496 	DriverVer_type DriverVer;
2497 	unsigned char vmaj, vmin, vsubmin;
2498 	int rc;
2499 
2500 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2501 		&vmaj, &vmin, &vsubmin);
2502 	if (rc != 3) {
2503 		dev_info(&h->pdev->dev, "driver version string '%s' "
2504 			"unrecognized.", HPSA_DRIVER_VERSION);
2505 		vmaj = 0;
2506 		vmin = 0;
2507 		vsubmin = 0;
2508 	}
2509 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2510 	if (!argp)
2511 		return -EINVAL;
2512 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2513 		return -EFAULT;
2514 	return 0;
2515 }
2516 
2517 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2518 {
2519 	IOCTL_Command_struct iocommand;
2520 	struct CommandList *c;
2521 	char *buff = NULL;
2522 	union u64bit temp64;
2523 
2524 	if (!argp)
2525 		return -EINVAL;
2526 	if (!capable(CAP_SYS_RAWIO))
2527 		return -EPERM;
2528 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2529 		return -EFAULT;
2530 	if ((iocommand.buf_size < 1) &&
2531 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2532 		return -EINVAL;
2533 	}
2534 	if (iocommand.buf_size > 0) {
2535 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2536 		if (buff == NULL)
2537 			return -EFAULT;
2538 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2539 			/* Copy the data into the buffer we created */
2540 			if (copy_from_user(buff, iocommand.buf,
2541 				iocommand.buf_size)) {
2542 				kfree(buff);
2543 				return -EFAULT;
2544 			}
2545 		} else {
2546 			memset(buff, 0, iocommand.buf_size);
2547 		}
2548 	}
2549 	c = cmd_special_alloc(h);
2550 	if (c == NULL) {
2551 		kfree(buff);
2552 		return -ENOMEM;
2553 	}
2554 	/* Fill in the command type */
2555 	c->cmd_type = CMD_IOCTL_PEND;
2556 	/* Fill in Command Header */
2557 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2558 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2559 		c->Header.SGList = 1;
2560 		c->Header.SGTotal = 1;
2561 	} else	{ /* no buffers to fill */
2562 		c->Header.SGList = 0;
2563 		c->Header.SGTotal = 0;
2564 	}
2565 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2566 	/* use the kernel address the cmd block for tag */
2567 	c->Header.Tag.lower = c->busaddr;
2568 
2569 	/* Fill in Request block */
2570 	memcpy(&c->Request, &iocommand.Request,
2571 		sizeof(c->Request));
2572 
2573 	/* Fill in the scatter gather information */
2574 	if (iocommand.buf_size > 0) {
2575 		temp64.val = pci_map_single(h->pdev, buff,
2576 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2577 		c->SG[0].Addr.lower = temp64.val32.lower;
2578 		c->SG[0].Addr.upper = temp64.val32.upper;
2579 		c->SG[0].Len = iocommand.buf_size;
2580 		c->SG[0].Ext = 0; /* we are not chaining*/
2581 	}
2582 	hpsa_scsi_do_simple_cmd_core(h, c);
2583 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2584 	check_ioctl_unit_attention(h, c);
2585 
2586 	/* Copy the error information out */
2587 	memcpy(&iocommand.error_info, c->err_info,
2588 		sizeof(iocommand.error_info));
2589 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2590 		kfree(buff);
2591 		cmd_special_free(h, c);
2592 		return -EFAULT;
2593 	}
2594 	if (iocommand.Request.Type.Direction == XFER_READ &&
2595 		iocommand.buf_size > 0) {
2596 		/* Copy the data out of the buffer we created */
2597 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2598 			kfree(buff);
2599 			cmd_special_free(h, c);
2600 			return -EFAULT;
2601 		}
2602 	}
2603 	kfree(buff);
2604 	cmd_special_free(h, c);
2605 	return 0;
2606 }
2607 
2608 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2609 {
2610 	BIG_IOCTL_Command_struct *ioc;
2611 	struct CommandList *c;
2612 	unsigned char **buff = NULL;
2613 	int *buff_size = NULL;
2614 	union u64bit temp64;
2615 	BYTE sg_used = 0;
2616 	int status = 0;
2617 	int i;
2618 	u32 left;
2619 	u32 sz;
2620 	BYTE __user *data_ptr;
2621 
2622 	if (!argp)
2623 		return -EINVAL;
2624 	if (!capable(CAP_SYS_RAWIO))
2625 		return -EPERM;
2626 	ioc = (BIG_IOCTL_Command_struct *)
2627 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2628 	if (!ioc) {
2629 		status = -ENOMEM;
2630 		goto cleanup1;
2631 	}
2632 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2633 		status = -EFAULT;
2634 		goto cleanup1;
2635 	}
2636 	if ((ioc->buf_size < 1) &&
2637 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2638 		status = -EINVAL;
2639 		goto cleanup1;
2640 	}
2641 	/* Check kmalloc limits  using all SGs */
2642 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2643 		status = -EINVAL;
2644 		goto cleanup1;
2645 	}
2646 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2647 		status = -EINVAL;
2648 		goto cleanup1;
2649 	}
2650 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2651 	if (!buff) {
2652 		status = -ENOMEM;
2653 		goto cleanup1;
2654 	}
2655 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2656 	if (!buff_size) {
2657 		status = -ENOMEM;
2658 		goto cleanup1;
2659 	}
2660 	left = ioc->buf_size;
2661 	data_ptr = ioc->buf;
2662 	while (left) {
2663 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2664 		buff_size[sg_used] = sz;
2665 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2666 		if (buff[sg_used] == NULL) {
2667 			status = -ENOMEM;
2668 			goto cleanup1;
2669 		}
2670 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2671 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2672 				status = -ENOMEM;
2673 				goto cleanup1;
2674 			}
2675 		} else
2676 			memset(buff[sg_used], 0, sz);
2677 		left -= sz;
2678 		data_ptr += sz;
2679 		sg_used++;
2680 	}
2681 	c = cmd_special_alloc(h);
2682 	if (c == NULL) {
2683 		status = -ENOMEM;
2684 		goto cleanup1;
2685 	}
2686 	c->cmd_type = CMD_IOCTL_PEND;
2687 	c->Header.ReplyQueue = 0;
2688 	c->Header.SGList = c->Header.SGTotal = sg_used;
2689 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2690 	c->Header.Tag.lower = c->busaddr;
2691 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2692 	if (ioc->buf_size > 0) {
2693 		int i;
2694 		for (i = 0; i < sg_used; i++) {
2695 			temp64.val = pci_map_single(h->pdev, buff[i],
2696 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2697 			c->SG[i].Addr.lower = temp64.val32.lower;
2698 			c->SG[i].Addr.upper = temp64.val32.upper;
2699 			c->SG[i].Len = buff_size[i];
2700 			/* we are not chaining */
2701 			c->SG[i].Ext = 0;
2702 		}
2703 	}
2704 	hpsa_scsi_do_simple_cmd_core(h, c);
2705 	if (sg_used)
2706 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2707 	check_ioctl_unit_attention(h, c);
2708 	/* Copy the error information out */
2709 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2710 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2711 		cmd_special_free(h, c);
2712 		status = -EFAULT;
2713 		goto cleanup1;
2714 	}
2715 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2716 		/* Copy the data out of the buffer we created */
2717 		BYTE __user *ptr = ioc->buf;
2718 		for (i = 0; i < sg_used; i++) {
2719 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2720 				cmd_special_free(h, c);
2721 				status = -EFAULT;
2722 				goto cleanup1;
2723 			}
2724 			ptr += buff_size[i];
2725 		}
2726 	}
2727 	cmd_special_free(h, c);
2728 	status = 0;
2729 cleanup1:
2730 	if (buff) {
2731 		for (i = 0; i < sg_used; i++)
2732 			kfree(buff[i]);
2733 		kfree(buff);
2734 	}
2735 	kfree(buff_size);
2736 	kfree(ioc);
2737 	return status;
2738 }
2739 
2740 static void check_ioctl_unit_attention(struct ctlr_info *h,
2741 	struct CommandList *c)
2742 {
2743 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2744 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2745 		(void) check_for_unit_attention(h, c);
2746 }
2747 /*
2748  * ioctl
2749  */
2750 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2751 {
2752 	struct ctlr_info *h;
2753 	void __user *argp = (void __user *)arg;
2754 
2755 	h = sdev_to_hba(dev);
2756 
2757 	switch (cmd) {
2758 	case CCISS_DEREGDISK:
2759 	case CCISS_REGNEWDISK:
2760 	case CCISS_REGNEWD:
2761 		hpsa_scan_start(h->scsi_host);
2762 		return 0;
2763 	case CCISS_GETPCIINFO:
2764 		return hpsa_getpciinfo_ioctl(h, argp);
2765 	case CCISS_GETDRIVVER:
2766 		return hpsa_getdrivver_ioctl(h, argp);
2767 	case CCISS_PASSTHRU:
2768 		return hpsa_passthru_ioctl(h, argp);
2769 	case CCISS_BIG_PASSTHRU:
2770 		return hpsa_big_passthru_ioctl(h, argp);
2771 	default:
2772 		return -ENOTTY;
2773 	}
2774 }
2775 
2776 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2777 	unsigned char *scsi3addr, u8 reset_type)
2778 {
2779 	struct CommandList *c;
2780 
2781 	c = cmd_alloc(h);
2782 	if (!c)
2783 		return -ENOMEM;
2784 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2785 		RAID_CTLR_LUNID, TYPE_MSG);
2786 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2787 	c->waiting = NULL;
2788 	enqueue_cmd_and_start_io(h, c);
2789 	/* Don't wait for completion, the reset won't complete.  Don't free
2790 	 * the command either.  This is the last command we will send before
2791 	 * re-initializing everything, so it doesn't matter and won't leak.
2792 	 */
2793 	return 0;
2794 }
2795 
2796 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2797 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2798 	int cmd_type)
2799 {
2800 	int pci_dir = XFER_NONE;
2801 
2802 	c->cmd_type = CMD_IOCTL_PEND;
2803 	c->Header.ReplyQueue = 0;
2804 	if (buff != NULL && size > 0) {
2805 		c->Header.SGList = 1;
2806 		c->Header.SGTotal = 1;
2807 	} else {
2808 		c->Header.SGList = 0;
2809 		c->Header.SGTotal = 0;
2810 	}
2811 	c->Header.Tag.lower = c->busaddr;
2812 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2813 
2814 	c->Request.Type.Type = cmd_type;
2815 	if (cmd_type == TYPE_CMD) {
2816 		switch (cmd) {
2817 		case HPSA_INQUIRY:
2818 			/* are we trying to read a vital product page */
2819 			if (page_code != 0) {
2820 				c->Request.CDB[1] = 0x01;
2821 				c->Request.CDB[2] = page_code;
2822 			}
2823 			c->Request.CDBLen = 6;
2824 			c->Request.Type.Attribute = ATTR_SIMPLE;
2825 			c->Request.Type.Direction = XFER_READ;
2826 			c->Request.Timeout = 0;
2827 			c->Request.CDB[0] = HPSA_INQUIRY;
2828 			c->Request.CDB[4] = size & 0xFF;
2829 			break;
2830 		case HPSA_REPORT_LOG:
2831 		case HPSA_REPORT_PHYS:
2832 			/* Talking to controller so It's a physical command
2833 			   mode = 00 target = 0.  Nothing to write.
2834 			 */
2835 			c->Request.CDBLen = 12;
2836 			c->Request.Type.Attribute = ATTR_SIMPLE;
2837 			c->Request.Type.Direction = XFER_READ;
2838 			c->Request.Timeout = 0;
2839 			c->Request.CDB[0] = cmd;
2840 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2841 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2842 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2843 			c->Request.CDB[9] = size & 0xFF;
2844 			break;
2845 		case HPSA_CACHE_FLUSH:
2846 			c->Request.CDBLen = 12;
2847 			c->Request.Type.Attribute = ATTR_SIMPLE;
2848 			c->Request.Type.Direction = XFER_WRITE;
2849 			c->Request.Timeout = 0;
2850 			c->Request.CDB[0] = BMIC_WRITE;
2851 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2852 			break;
2853 		case TEST_UNIT_READY:
2854 			c->Request.CDBLen = 6;
2855 			c->Request.Type.Attribute = ATTR_SIMPLE;
2856 			c->Request.Type.Direction = XFER_NONE;
2857 			c->Request.Timeout = 0;
2858 			break;
2859 		default:
2860 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2861 			BUG();
2862 			return;
2863 		}
2864 	} else if (cmd_type == TYPE_MSG) {
2865 		switch (cmd) {
2866 
2867 		case  HPSA_DEVICE_RESET_MSG:
2868 			c->Request.CDBLen = 16;
2869 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2870 			c->Request.Type.Attribute = ATTR_SIMPLE;
2871 			c->Request.Type.Direction = XFER_NONE;
2872 			c->Request.Timeout = 0; /* Don't time out */
2873 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2874 			c->Request.CDB[0] =  cmd;
2875 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2876 			/* If bytes 4-7 are zero, it means reset the */
2877 			/* LunID device */
2878 			c->Request.CDB[4] = 0x00;
2879 			c->Request.CDB[5] = 0x00;
2880 			c->Request.CDB[6] = 0x00;
2881 			c->Request.CDB[7] = 0x00;
2882 		break;
2883 
2884 		default:
2885 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2886 				cmd);
2887 			BUG();
2888 		}
2889 	} else {
2890 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2891 		BUG();
2892 	}
2893 
2894 	switch (c->Request.Type.Direction) {
2895 	case XFER_READ:
2896 		pci_dir = PCI_DMA_FROMDEVICE;
2897 		break;
2898 	case XFER_WRITE:
2899 		pci_dir = PCI_DMA_TODEVICE;
2900 		break;
2901 	case XFER_NONE:
2902 		pci_dir = PCI_DMA_NONE;
2903 		break;
2904 	default:
2905 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2906 	}
2907 
2908 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2909 
2910 	return;
2911 }
2912 
2913 /*
2914  * Map (physical) PCI mem into (virtual) kernel space
2915  */
2916 static void __iomem *remap_pci_mem(ulong base, ulong size)
2917 {
2918 	ulong page_base = ((ulong) base) & PAGE_MASK;
2919 	ulong page_offs = ((ulong) base) - page_base;
2920 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2921 
2922 	return page_remapped ? (page_remapped + page_offs) : NULL;
2923 }
2924 
2925 /* Takes cmds off the submission queue and sends them to the hardware,
2926  * then puts them on the queue of cmds waiting for completion.
2927  */
2928 static void start_io(struct ctlr_info *h)
2929 {
2930 	struct CommandList *c;
2931 
2932 	while (!list_empty(&h->reqQ)) {
2933 		c = list_entry(h->reqQ.next, struct CommandList, list);
2934 		/* can't do anything if fifo is full */
2935 		if ((h->access.fifo_full(h))) {
2936 			dev_warn(&h->pdev->dev, "fifo full\n");
2937 			break;
2938 		}
2939 
2940 		/* Get the first entry from the Request Q */
2941 		removeQ(c);
2942 		h->Qdepth--;
2943 
2944 		/* Tell the controller execute command */
2945 		h->access.submit_command(h, c);
2946 
2947 		/* Put job onto the completed Q */
2948 		addQ(&h->cmpQ, c);
2949 	}
2950 }
2951 
2952 static inline unsigned long get_next_completion(struct ctlr_info *h)
2953 {
2954 	return h->access.command_completed(h);
2955 }
2956 
2957 static inline bool interrupt_pending(struct ctlr_info *h)
2958 {
2959 	return h->access.intr_pending(h);
2960 }
2961 
2962 static inline long interrupt_not_for_us(struct ctlr_info *h)
2963 {
2964 	return (h->access.intr_pending(h) == 0) ||
2965 		(h->interrupts_enabled == 0);
2966 }
2967 
2968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2969 	u32 raw_tag)
2970 {
2971 	if (unlikely(tag_index >= h->nr_cmds)) {
2972 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2973 		return 1;
2974 	}
2975 	return 0;
2976 }
2977 
2978 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2979 {
2980 	removeQ(c);
2981 	if (likely(c->cmd_type == CMD_SCSI))
2982 		complete_scsi_command(c);
2983 	else if (c->cmd_type == CMD_IOCTL_PEND)
2984 		complete(c->waiting);
2985 }
2986 
2987 static inline u32 hpsa_tag_contains_index(u32 tag)
2988 {
2989 	return tag & DIRECT_LOOKUP_BIT;
2990 }
2991 
2992 static inline u32 hpsa_tag_to_index(u32 tag)
2993 {
2994 	return tag >> DIRECT_LOOKUP_SHIFT;
2995 }
2996 
2997 
2998 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2999 {
3000 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3001 #define HPSA_SIMPLE_ERROR_BITS 0x03
3002 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3003 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3004 	return tag & ~HPSA_PERF_ERROR_BITS;
3005 }
3006 
3007 /* process completion of an indexed ("direct lookup") command */
3008 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3009 	u32 raw_tag)
3010 {
3011 	u32 tag_index;
3012 	struct CommandList *c;
3013 
3014 	tag_index = hpsa_tag_to_index(raw_tag);
3015 	if (bad_tag(h, tag_index, raw_tag))
3016 		return next_command(h);
3017 	c = h->cmd_pool + tag_index;
3018 	finish_cmd(c, raw_tag);
3019 	return next_command(h);
3020 }
3021 
3022 /* process completion of a non-indexed command */
3023 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3024 	u32 raw_tag)
3025 {
3026 	u32 tag;
3027 	struct CommandList *c = NULL;
3028 
3029 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3030 	list_for_each_entry(c, &h->cmpQ, list) {
3031 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3032 			finish_cmd(c, raw_tag);
3033 			return next_command(h);
3034 		}
3035 	}
3036 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3037 	return next_command(h);
3038 }
3039 
3040 /* Some controllers, like p400, will give us one interrupt
3041  * after a soft reset, even if we turned interrupts off.
3042  * Only need to check for this in the hpsa_xxx_discard_completions
3043  * functions.
3044  */
3045 static int ignore_bogus_interrupt(struct ctlr_info *h)
3046 {
3047 	if (likely(!reset_devices))
3048 		return 0;
3049 
3050 	if (likely(h->interrupts_enabled))
3051 		return 0;
3052 
3053 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3054 		"(known firmware bug.)  Ignoring.\n");
3055 
3056 	return 1;
3057 }
3058 
3059 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3060 {
3061 	struct ctlr_info *h = dev_id;
3062 	unsigned long flags;
3063 	u32 raw_tag;
3064 
3065 	if (ignore_bogus_interrupt(h))
3066 		return IRQ_NONE;
3067 
3068 	if (interrupt_not_for_us(h))
3069 		return IRQ_NONE;
3070 	spin_lock_irqsave(&h->lock, flags);
3071 	while (interrupt_pending(h)) {
3072 		raw_tag = get_next_completion(h);
3073 		while (raw_tag != FIFO_EMPTY)
3074 			raw_tag = next_command(h);
3075 	}
3076 	spin_unlock_irqrestore(&h->lock, flags);
3077 	return IRQ_HANDLED;
3078 }
3079 
3080 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3081 {
3082 	struct ctlr_info *h = dev_id;
3083 	unsigned long flags;
3084 	u32 raw_tag;
3085 
3086 	if (ignore_bogus_interrupt(h))
3087 		return IRQ_NONE;
3088 
3089 	spin_lock_irqsave(&h->lock, flags);
3090 	raw_tag = get_next_completion(h);
3091 	while (raw_tag != FIFO_EMPTY)
3092 		raw_tag = next_command(h);
3093 	spin_unlock_irqrestore(&h->lock, flags);
3094 	return IRQ_HANDLED;
3095 }
3096 
3097 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3098 {
3099 	struct ctlr_info *h = dev_id;
3100 	unsigned long flags;
3101 	u32 raw_tag;
3102 
3103 	if (interrupt_not_for_us(h))
3104 		return IRQ_NONE;
3105 	spin_lock_irqsave(&h->lock, flags);
3106 	while (interrupt_pending(h)) {
3107 		raw_tag = get_next_completion(h);
3108 		while (raw_tag != FIFO_EMPTY) {
3109 			if (hpsa_tag_contains_index(raw_tag))
3110 				raw_tag = process_indexed_cmd(h, raw_tag);
3111 			else
3112 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3113 		}
3114 	}
3115 	spin_unlock_irqrestore(&h->lock, flags);
3116 	return IRQ_HANDLED;
3117 }
3118 
3119 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3120 {
3121 	struct ctlr_info *h = dev_id;
3122 	unsigned long flags;
3123 	u32 raw_tag;
3124 
3125 	spin_lock_irqsave(&h->lock, flags);
3126 	raw_tag = get_next_completion(h);
3127 	while (raw_tag != FIFO_EMPTY) {
3128 		if (hpsa_tag_contains_index(raw_tag))
3129 			raw_tag = process_indexed_cmd(h, raw_tag);
3130 		else
3131 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3132 	}
3133 	spin_unlock_irqrestore(&h->lock, flags);
3134 	return IRQ_HANDLED;
3135 }
3136 
3137 /* Send a message CDB to the firmware. Careful, this only works
3138  * in simple mode, not performant mode due to the tag lookup.
3139  * We only ever use this immediately after a controller reset.
3140  */
3141 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3142 						unsigned char type)
3143 {
3144 	struct Command {
3145 		struct CommandListHeader CommandHeader;
3146 		struct RequestBlock Request;
3147 		struct ErrDescriptor ErrorDescriptor;
3148 	};
3149 	struct Command *cmd;
3150 	static const size_t cmd_sz = sizeof(*cmd) +
3151 					sizeof(cmd->ErrorDescriptor);
3152 	dma_addr_t paddr64;
3153 	uint32_t paddr32, tag;
3154 	void __iomem *vaddr;
3155 	int i, err;
3156 
3157 	vaddr = pci_ioremap_bar(pdev, 0);
3158 	if (vaddr == NULL)
3159 		return -ENOMEM;
3160 
3161 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3162 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3163 	 * memory.
3164 	 */
3165 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3166 	if (err) {
3167 		iounmap(vaddr);
3168 		return -ENOMEM;
3169 	}
3170 
3171 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3172 	if (cmd == NULL) {
3173 		iounmap(vaddr);
3174 		return -ENOMEM;
3175 	}
3176 
3177 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3178 	 * although there's no guarantee, we assume that the address is at
3179 	 * least 4-byte aligned (most likely, it's page-aligned).
3180 	 */
3181 	paddr32 = paddr64;
3182 
3183 	cmd->CommandHeader.ReplyQueue = 0;
3184 	cmd->CommandHeader.SGList = 0;
3185 	cmd->CommandHeader.SGTotal = 0;
3186 	cmd->CommandHeader.Tag.lower = paddr32;
3187 	cmd->CommandHeader.Tag.upper = 0;
3188 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3189 
3190 	cmd->Request.CDBLen = 16;
3191 	cmd->Request.Type.Type = TYPE_MSG;
3192 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3193 	cmd->Request.Type.Direction = XFER_NONE;
3194 	cmd->Request.Timeout = 0; /* Don't time out */
3195 	cmd->Request.CDB[0] = opcode;
3196 	cmd->Request.CDB[1] = type;
3197 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3198 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3199 	cmd->ErrorDescriptor.Addr.upper = 0;
3200 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3201 
3202 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3203 
3204 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3205 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3206 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3207 			break;
3208 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3209 	}
3210 
3211 	iounmap(vaddr);
3212 
3213 	/* we leak the DMA buffer here ... no choice since the controller could
3214 	 *  still complete the command.
3215 	 */
3216 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3217 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3218 			opcode, type);
3219 		return -ETIMEDOUT;
3220 	}
3221 
3222 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3223 
3224 	if (tag & HPSA_ERROR_BIT) {
3225 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3226 			opcode, type);
3227 		return -EIO;
3228 	}
3229 
3230 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3231 		opcode, type);
3232 	return 0;
3233 }
3234 
3235 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3236 
3237 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3238 	void * __iomem vaddr, u32 use_doorbell)
3239 {
3240 	u16 pmcsr;
3241 	int pos;
3242 
3243 	if (use_doorbell) {
3244 		/* For everything after the P600, the PCI power state method
3245 		 * of resetting the controller doesn't work, so we have this
3246 		 * other way using the doorbell register.
3247 		 */
3248 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3249 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3250 	} else { /* Try to do it the PCI power state way */
3251 
3252 		/* Quoting from the Open CISS Specification: "The Power
3253 		 * Management Control/Status Register (CSR) controls the power
3254 		 * state of the device.  The normal operating state is D0,
3255 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3256 		 * the controller, place the interface device in D3 then to D0,
3257 		 * this causes a secondary PCI reset which will reset the
3258 		 * controller." */
3259 
3260 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3261 		if (pos == 0) {
3262 			dev_err(&pdev->dev,
3263 				"hpsa_reset_controller: "
3264 				"PCI PM not supported\n");
3265 			return -ENODEV;
3266 		}
3267 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3268 		/* enter the D3hot power management state */
3269 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3270 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3271 		pmcsr |= PCI_D3hot;
3272 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3273 
3274 		msleep(500);
3275 
3276 		/* enter the D0 power management state */
3277 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3278 		pmcsr |= PCI_D0;
3279 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3280 	}
3281 	return 0;
3282 }
3283 
3284 static __devinit void init_driver_version(char *driver_version, int len)
3285 {
3286 	memset(driver_version, 0, len);
3287 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3288 }
3289 
3290 static __devinit int write_driver_ver_to_cfgtable(
3291 	struct CfgTable __iomem *cfgtable)
3292 {
3293 	char *driver_version;
3294 	int i, size = sizeof(cfgtable->driver_version);
3295 
3296 	driver_version = kmalloc(size, GFP_KERNEL);
3297 	if (!driver_version)
3298 		return -ENOMEM;
3299 
3300 	init_driver_version(driver_version, size);
3301 	for (i = 0; i < size; i++)
3302 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3303 	kfree(driver_version);
3304 	return 0;
3305 }
3306 
3307 static __devinit void read_driver_ver_from_cfgtable(
3308 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3309 {
3310 	int i;
3311 
3312 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3313 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3314 }
3315 
3316 static __devinit int controller_reset_failed(
3317 	struct CfgTable __iomem *cfgtable)
3318 {
3319 
3320 	char *driver_ver, *old_driver_ver;
3321 	int rc, size = sizeof(cfgtable->driver_version);
3322 
3323 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3324 	if (!old_driver_ver)
3325 		return -ENOMEM;
3326 	driver_ver = old_driver_ver + size;
3327 
3328 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3329 	 * should have been changed, otherwise we know the reset failed.
3330 	 */
3331 	init_driver_version(old_driver_ver, size);
3332 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3333 	rc = !memcmp(driver_ver, old_driver_ver, size);
3334 	kfree(old_driver_ver);
3335 	return rc;
3336 }
3337 /* This does a hard reset of the controller using PCI power management
3338  * states or the using the doorbell register.
3339  */
3340 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3341 {
3342 	u64 cfg_offset;
3343 	u32 cfg_base_addr;
3344 	u64 cfg_base_addr_index;
3345 	void __iomem *vaddr;
3346 	unsigned long paddr;
3347 	u32 misc_fw_support;
3348 	int rc;
3349 	struct CfgTable __iomem *cfgtable;
3350 	u32 use_doorbell;
3351 	u32 board_id;
3352 	u16 command_register;
3353 
3354 	/* For controllers as old as the P600, this is very nearly
3355 	 * the same thing as
3356 	 *
3357 	 * pci_save_state(pci_dev);
3358 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3359 	 * pci_set_power_state(pci_dev, PCI_D0);
3360 	 * pci_restore_state(pci_dev);
3361 	 *
3362 	 * For controllers newer than the P600, the pci power state
3363 	 * method of resetting doesn't work so we have another way
3364 	 * using the doorbell register.
3365 	 */
3366 
3367 	rc = hpsa_lookup_board_id(pdev, &board_id);
3368 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3369 		dev_warn(&pdev->dev, "Not resetting device.\n");
3370 		return -ENODEV;
3371 	}
3372 
3373 	/* if controller is soft- but not hard resettable... */
3374 	if (!ctlr_is_hard_resettable(board_id))
3375 		return -ENOTSUPP; /* try soft reset later. */
3376 
3377 	/* Save the PCI command register */
3378 	pci_read_config_word(pdev, 4, &command_register);
3379 	/* Turn the board off.  This is so that later pci_restore_state()
3380 	 * won't turn the board on before the rest of config space is ready.
3381 	 */
3382 	pci_disable_device(pdev);
3383 	pci_save_state(pdev);
3384 
3385 	/* find the first memory BAR, so we can find the cfg table */
3386 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3387 	if (rc)
3388 		return rc;
3389 	vaddr = remap_pci_mem(paddr, 0x250);
3390 	if (!vaddr)
3391 		return -ENOMEM;
3392 
3393 	/* find cfgtable in order to check if reset via doorbell is supported */
3394 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3395 					&cfg_base_addr_index, &cfg_offset);
3396 	if (rc)
3397 		goto unmap_vaddr;
3398 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3399 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3400 	if (!cfgtable) {
3401 		rc = -ENOMEM;
3402 		goto unmap_vaddr;
3403 	}
3404 	rc = write_driver_ver_to_cfgtable(cfgtable);
3405 	if (rc)
3406 		goto unmap_vaddr;
3407 
3408 	/* If reset via doorbell register is supported, use that.
3409 	 * There are two such methods.  Favor the newest method.
3410 	 */
3411 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3412 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3413 	if (use_doorbell) {
3414 		use_doorbell = DOORBELL_CTLR_RESET2;
3415 	} else {
3416 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3417 		if (use_doorbell) {
3418 			dev_warn(&pdev->dev, "Controller claims that "
3419 				"'Bit 2 doorbell reset' is "
3420 				"supported, but not 'bit 5 doorbell reset'.  "
3421 				"Firmware update is recommended.\n");
3422 			rc = -ENOTSUPP; /* try soft reset */
3423 			goto unmap_cfgtable;
3424 		}
3425 	}
3426 
3427 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3428 	if (rc)
3429 		goto unmap_cfgtable;
3430 
3431 	pci_restore_state(pdev);
3432 	rc = pci_enable_device(pdev);
3433 	if (rc) {
3434 		dev_warn(&pdev->dev, "failed to enable device.\n");
3435 		goto unmap_cfgtable;
3436 	}
3437 	pci_write_config_word(pdev, 4, command_register);
3438 
3439 	/* Some devices (notably the HP Smart Array 5i Controller)
3440 	   need a little pause here */
3441 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3442 
3443 	/* Wait for board to become not ready, then ready. */
3444 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3445 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3446 	if (rc) {
3447 		dev_warn(&pdev->dev,
3448 			"failed waiting for board to reset."
3449 			" Will try soft reset.\n");
3450 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3451 		goto unmap_cfgtable;
3452 	}
3453 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3454 	if (rc) {
3455 		dev_warn(&pdev->dev,
3456 			"failed waiting for board to become ready "
3457 			"after hard reset\n");
3458 		goto unmap_cfgtable;
3459 	}
3460 
3461 	rc = controller_reset_failed(vaddr);
3462 	if (rc < 0)
3463 		goto unmap_cfgtable;
3464 	if (rc) {
3465 		dev_warn(&pdev->dev, "Unable to successfully reset "
3466 			"controller. Will try soft reset.\n");
3467 		rc = -ENOTSUPP;
3468 	} else {
3469 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3470 	}
3471 
3472 unmap_cfgtable:
3473 	iounmap(cfgtable);
3474 
3475 unmap_vaddr:
3476 	iounmap(vaddr);
3477 	return rc;
3478 }
3479 
3480 /*
3481  *  We cannot read the structure directly, for portability we must use
3482  *   the io functions.
3483  *   This is for debug only.
3484  */
3485 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3486 {
3487 #ifdef HPSA_DEBUG
3488 	int i;
3489 	char temp_name[17];
3490 
3491 	dev_info(dev, "Controller Configuration information\n");
3492 	dev_info(dev, "------------------------------------\n");
3493 	for (i = 0; i < 4; i++)
3494 		temp_name[i] = readb(&(tb->Signature[i]));
3495 	temp_name[4] = '\0';
3496 	dev_info(dev, "   Signature = %s\n", temp_name);
3497 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3498 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3499 	       readl(&(tb->TransportSupport)));
3500 	dev_info(dev, "   Transport methods active = 0x%x\n",
3501 	       readl(&(tb->TransportActive)));
3502 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3503 	       readl(&(tb->HostWrite.TransportRequest)));
3504 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3505 	       readl(&(tb->HostWrite.CoalIntDelay)));
3506 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3507 	       readl(&(tb->HostWrite.CoalIntCount)));
3508 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3509 	       readl(&(tb->CmdsOutMax)));
3510 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3511 	for (i = 0; i < 16; i++)
3512 		temp_name[i] = readb(&(tb->ServerName[i]));
3513 	temp_name[16] = '\0';
3514 	dev_info(dev, "   Server Name = %s\n", temp_name);
3515 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3516 		readl(&(tb->HeartBeat)));
3517 #endif				/* HPSA_DEBUG */
3518 }
3519 
3520 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3521 {
3522 	int i, offset, mem_type, bar_type;
3523 
3524 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3525 		return 0;
3526 	offset = 0;
3527 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3528 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3529 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3530 			offset += 4;
3531 		else {
3532 			mem_type = pci_resource_flags(pdev, i) &
3533 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3534 			switch (mem_type) {
3535 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3536 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3537 				offset += 4;	/* 32 bit */
3538 				break;
3539 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3540 				offset += 8;
3541 				break;
3542 			default:	/* reserved in PCI 2.2 */
3543 				dev_warn(&pdev->dev,
3544 				       "base address is invalid\n");
3545 				return -1;
3546 				break;
3547 			}
3548 		}
3549 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3550 			return i + 1;
3551 	}
3552 	return -1;
3553 }
3554 
3555 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3556  * controllers that are capable. If not, we use IO-APIC mode.
3557  */
3558 
3559 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3560 {
3561 #ifdef CONFIG_PCI_MSI
3562 	int err;
3563 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3564 	{0, 2}, {0, 3}
3565 	};
3566 
3567 	/* Some boards advertise MSI but don't really support it */
3568 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3569 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3570 		goto default_int_mode;
3571 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3572 		dev_info(&h->pdev->dev, "MSIX\n");
3573 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3574 		if (!err) {
3575 			h->intr[0] = hpsa_msix_entries[0].vector;
3576 			h->intr[1] = hpsa_msix_entries[1].vector;
3577 			h->intr[2] = hpsa_msix_entries[2].vector;
3578 			h->intr[3] = hpsa_msix_entries[3].vector;
3579 			h->msix_vector = 1;
3580 			return;
3581 		}
3582 		if (err > 0) {
3583 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3584 			       "available\n", err);
3585 			goto default_int_mode;
3586 		} else {
3587 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3588 			       err);
3589 			goto default_int_mode;
3590 		}
3591 	}
3592 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3593 		dev_info(&h->pdev->dev, "MSI\n");
3594 		if (!pci_enable_msi(h->pdev))
3595 			h->msi_vector = 1;
3596 		else
3597 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3598 	}
3599 default_int_mode:
3600 #endif				/* CONFIG_PCI_MSI */
3601 	/* if we get here we're going to use the default interrupt mode */
3602 	h->intr[h->intr_mode] = h->pdev->irq;
3603 }
3604 
3605 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3606 {
3607 	int i;
3608 	u32 subsystem_vendor_id, subsystem_device_id;
3609 
3610 	subsystem_vendor_id = pdev->subsystem_vendor;
3611 	subsystem_device_id = pdev->subsystem_device;
3612 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3613 		    subsystem_vendor_id;
3614 
3615 	for (i = 0; i < ARRAY_SIZE(products); i++)
3616 		if (*board_id == products[i].board_id)
3617 			return i;
3618 
3619 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3620 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3621 		!hpsa_allow_any) {
3622 		dev_warn(&pdev->dev, "unrecognized board ID: "
3623 			"0x%08x, ignoring.\n", *board_id);
3624 			return -ENODEV;
3625 	}
3626 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3627 }
3628 
3629 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3630 {
3631 	u16 command;
3632 
3633 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3634 	return ((command & PCI_COMMAND_MEMORY) == 0);
3635 }
3636 
3637 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3638 	unsigned long *memory_bar)
3639 {
3640 	int i;
3641 
3642 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3643 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3644 			/* addressing mode bits already removed */
3645 			*memory_bar = pci_resource_start(pdev, i);
3646 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3647 				*memory_bar);
3648 			return 0;
3649 		}
3650 	dev_warn(&pdev->dev, "no memory BAR found\n");
3651 	return -ENODEV;
3652 }
3653 
3654 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3655 	void __iomem *vaddr, int wait_for_ready)
3656 {
3657 	int i, iterations;
3658 	u32 scratchpad;
3659 	if (wait_for_ready)
3660 		iterations = HPSA_BOARD_READY_ITERATIONS;
3661 	else
3662 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3663 
3664 	for (i = 0; i < iterations; i++) {
3665 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3666 		if (wait_for_ready) {
3667 			if (scratchpad == HPSA_FIRMWARE_READY)
3668 				return 0;
3669 		} else {
3670 			if (scratchpad != HPSA_FIRMWARE_READY)
3671 				return 0;
3672 		}
3673 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3674 	}
3675 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3676 	return -ENODEV;
3677 }
3678 
3679 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3680 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3681 	u64 *cfg_offset)
3682 {
3683 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3684 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3685 	*cfg_base_addr &= (u32) 0x0000ffff;
3686 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3687 	if (*cfg_base_addr_index == -1) {
3688 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3689 		return -ENODEV;
3690 	}
3691 	return 0;
3692 }
3693 
3694 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3695 {
3696 	u64 cfg_offset;
3697 	u32 cfg_base_addr;
3698 	u64 cfg_base_addr_index;
3699 	u32 trans_offset;
3700 	int rc;
3701 
3702 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3703 		&cfg_base_addr_index, &cfg_offset);
3704 	if (rc)
3705 		return rc;
3706 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3707 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3708 	if (!h->cfgtable)
3709 		return -ENOMEM;
3710 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3711 	if (rc)
3712 		return rc;
3713 	/* Find performant mode table. */
3714 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3715 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3716 				cfg_base_addr_index)+cfg_offset+trans_offset,
3717 				sizeof(*h->transtable));
3718 	if (!h->transtable)
3719 		return -ENOMEM;
3720 	return 0;
3721 }
3722 
3723 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3724 {
3725 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3726 
3727 	/* Limit commands in memory limited kdump scenario. */
3728 	if (reset_devices && h->max_commands > 32)
3729 		h->max_commands = 32;
3730 
3731 	if (h->max_commands < 16) {
3732 		dev_warn(&h->pdev->dev, "Controller reports "
3733 			"max supported commands of %d, an obvious lie. "
3734 			"Using 16.  Ensure that firmware is up to date.\n",
3735 			h->max_commands);
3736 		h->max_commands = 16;
3737 	}
3738 }
3739 
3740 /* Interrogate the hardware for some limits:
3741  * max commands, max SG elements without chaining, and with chaining,
3742  * SG chain block size, etc.
3743  */
3744 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3745 {
3746 	hpsa_get_max_perf_mode_cmds(h);
3747 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3748 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3749 	/*
3750 	 * Limit in-command s/g elements to 32 save dma'able memory.
3751 	 * Howvever spec says if 0, use 31
3752 	 */
3753 	h->max_cmd_sg_entries = 31;
3754 	if (h->maxsgentries > 512) {
3755 		h->max_cmd_sg_entries = 32;
3756 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3757 		h->maxsgentries--; /* save one for chain pointer */
3758 	} else {
3759 		h->maxsgentries = 31; /* default to traditional values */
3760 		h->chainsize = 0;
3761 	}
3762 }
3763 
3764 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3765 {
3766 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3767 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3768 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3769 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3770 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3771 		return false;
3772 	}
3773 	return true;
3774 }
3775 
3776 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3777 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3778 {
3779 #ifdef CONFIG_X86
3780 	u32 prefetch;
3781 
3782 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3783 	prefetch |= 0x100;
3784 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3785 #endif
3786 }
3787 
3788 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3789  * in a prefetch beyond physical memory.
3790  */
3791 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3792 {
3793 	u32 dma_prefetch;
3794 
3795 	if (h->board_id != 0x3225103C)
3796 		return;
3797 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3798 	dma_prefetch |= 0x8000;
3799 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3800 }
3801 
3802 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3803 {
3804 	int i;
3805 	u32 doorbell_value;
3806 	unsigned long flags;
3807 
3808 	/* under certain very rare conditions, this can take awhile.
3809 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3810 	 * as we enter this code.)
3811 	 */
3812 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3813 		spin_lock_irqsave(&h->lock, flags);
3814 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3815 		spin_unlock_irqrestore(&h->lock, flags);
3816 		if (!(doorbell_value & CFGTBL_ChangeReq))
3817 			break;
3818 		/* delay and try again */
3819 		usleep_range(10000, 20000);
3820 	}
3821 }
3822 
3823 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3824 {
3825 	u32 trans_support;
3826 
3827 	trans_support = readl(&(h->cfgtable->TransportSupport));
3828 	if (!(trans_support & SIMPLE_MODE))
3829 		return -ENOTSUPP;
3830 
3831 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3832 	/* Update the field, and then ring the doorbell */
3833 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3834 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3835 	hpsa_wait_for_mode_change_ack(h);
3836 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3837 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3838 		dev_warn(&h->pdev->dev,
3839 			"unable to get board into simple mode\n");
3840 		return -ENODEV;
3841 	}
3842 	h->transMethod = CFGTBL_Trans_Simple;
3843 	return 0;
3844 }
3845 
3846 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3847 {
3848 	int prod_index, err;
3849 
3850 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3851 	if (prod_index < 0)
3852 		return -ENODEV;
3853 	h->product_name = products[prod_index].product_name;
3854 	h->access = *(products[prod_index].access);
3855 
3856 	if (hpsa_board_disabled(h->pdev)) {
3857 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3858 		return -ENODEV;
3859 	}
3860 	err = pci_enable_device(h->pdev);
3861 	if (err) {
3862 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3863 		return err;
3864 	}
3865 
3866 	err = pci_request_regions(h->pdev, "hpsa");
3867 	if (err) {
3868 		dev_err(&h->pdev->dev,
3869 			"cannot obtain PCI resources, aborting\n");
3870 		return err;
3871 	}
3872 	hpsa_interrupt_mode(h);
3873 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3874 	if (err)
3875 		goto err_out_free_res;
3876 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3877 	if (!h->vaddr) {
3878 		err = -ENOMEM;
3879 		goto err_out_free_res;
3880 	}
3881 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3882 	if (err)
3883 		goto err_out_free_res;
3884 	err = hpsa_find_cfgtables(h);
3885 	if (err)
3886 		goto err_out_free_res;
3887 	hpsa_find_board_params(h);
3888 
3889 	if (!hpsa_CISS_signature_present(h)) {
3890 		err = -ENODEV;
3891 		goto err_out_free_res;
3892 	}
3893 	hpsa_enable_scsi_prefetch(h);
3894 	hpsa_p600_dma_prefetch_quirk(h);
3895 	err = hpsa_enter_simple_mode(h);
3896 	if (err)
3897 		goto err_out_free_res;
3898 	return 0;
3899 
3900 err_out_free_res:
3901 	if (h->transtable)
3902 		iounmap(h->transtable);
3903 	if (h->cfgtable)
3904 		iounmap(h->cfgtable);
3905 	if (h->vaddr)
3906 		iounmap(h->vaddr);
3907 	/*
3908 	 * Deliberately omit pci_disable_device(): it does something nasty to
3909 	 * Smart Array controllers that pci_enable_device does not undo
3910 	 */
3911 	pci_release_regions(h->pdev);
3912 	return err;
3913 }
3914 
3915 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3916 {
3917 	int rc;
3918 
3919 #define HBA_INQUIRY_BYTE_COUNT 64
3920 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3921 	if (!h->hba_inquiry_data)
3922 		return;
3923 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3924 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3925 	if (rc != 0) {
3926 		kfree(h->hba_inquiry_data);
3927 		h->hba_inquiry_data = NULL;
3928 	}
3929 }
3930 
3931 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3932 {
3933 	int rc, i;
3934 
3935 	if (!reset_devices)
3936 		return 0;
3937 
3938 	/* Reset the controller with a PCI power-cycle or via doorbell */
3939 	rc = hpsa_kdump_hard_reset_controller(pdev);
3940 
3941 	/* -ENOTSUPP here means we cannot reset the controller
3942 	 * but it's already (and still) up and running in
3943 	 * "performant mode".  Or, it might be 640x, which can't reset
3944 	 * due to concerns about shared bbwc between 6402/6404 pair.
3945 	 */
3946 	if (rc == -ENOTSUPP)
3947 		return rc; /* just try to do the kdump anyhow. */
3948 	if (rc)
3949 		return -ENODEV;
3950 
3951 	/* Now try to get the controller to respond to a no-op */
3952 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3953 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3954 		if (hpsa_noop(pdev) == 0)
3955 			break;
3956 		else
3957 			dev_warn(&pdev->dev, "no-op failed%s\n",
3958 					(i < 11 ? "; re-trying" : ""));
3959 	}
3960 	return 0;
3961 }
3962 
3963 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3964 {
3965 	h->cmd_pool_bits = kzalloc(
3966 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3967 		sizeof(unsigned long), GFP_KERNEL);
3968 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3969 		    h->nr_cmds * sizeof(*h->cmd_pool),
3970 		    &(h->cmd_pool_dhandle));
3971 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3972 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3973 		    &(h->errinfo_pool_dhandle));
3974 	if ((h->cmd_pool_bits == NULL)
3975 	    || (h->cmd_pool == NULL)
3976 	    || (h->errinfo_pool == NULL)) {
3977 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3978 		return -ENOMEM;
3979 	}
3980 	return 0;
3981 }
3982 
3983 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3984 {
3985 	kfree(h->cmd_pool_bits);
3986 	if (h->cmd_pool)
3987 		pci_free_consistent(h->pdev,
3988 			    h->nr_cmds * sizeof(struct CommandList),
3989 			    h->cmd_pool, h->cmd_pool_dhandle);
3990 	if (h->errinfo_pool)
3991 		pci_free_consistent(h->pdev,
3992 			    h->nr_cmds * sizeof(struct ErrorInfo),
3993 			    h->errinfo_pool,
3994 			    h->errinfo_pool_dhandle);
3995 }
3996 
3997 static int hpsa_request_irq(struct ctlr_info *h,
3998 	irqreturn_t (*msixhandler)(int, void *),
3999 	irqreturn_t (*intxhandler)(int, void *))
4000 {
4001 	int rc;
4002 
4003 	if (h->msix_vector || h->msi_vector)
4004 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4005 				IRQF_DISABLED, h->devname, h);
4006 	else
4007 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4008 				IRQF_DISABLED, h->devname, h);
4009 	if (rc) {
4010 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4011 		       h->intr[h->intr_mode], h->devname);
4012 		return -ENODEV;
4013 	}
4014 	return 0;
4015 }
4016 
4017 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4018 {
4019 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4020 		HPSA_RESET_TYPE_CONTROLLER)) {
4021 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4022 		return -EIO;
4023 	}
4024 
4025 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4026 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4027 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4028 		return -1;
4029 	}
4030 
4031 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4032 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4033 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4034 			"after soft reset.\n");
4035 		return -1;
4036 	}
4037 
4038 	return 0;
4039 }
4040 
4041 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4042 {
4043 	free_irq(h->intr[h->intr_mode], h);
4044 #ifdef CONFIG_PCI_MSI
4045 	if (h->msix_vector)
4046 		pci_disable_msix(h->pdev);
4047 	else if (h->msi_vector)
4048 		pci_disable_msi(h->pdev);
4049 #endif /* CONFIG_PCI_MSI */
4050 	hpsa_free_sg_chain_blocks(h);
4051 	hpsa_free_cmd_pool(h);
4052 	kfree(h->blockFetchTable);
4053 	pci_free_consistent(h->pdev, h->reply_pool_size,
4054 		h->reply_pool, h->reply_pool_dhandle);
4055 	if (h->vaddr)
4056 		iounmap(h->vaddr);
4057 	if (h->transtable)
4058 		iounmap(h->transtable);
4059 	if (h->cfgtable)
4060 		iounmap(h->cfgtable);
4061 	pci_release_regions(h->pdev);
4062 	kfree(h);
4063 }
4064 
4065 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4066 				    const struct pci_device_id *ent)
4067 {
4068 	int dac, rc;
4069 	struct ctlr_info *h;
4070 	int try_soft_reset = 0;
4071 	unsigned long flags;
4072 
4073 	if (number_of_controllers == 0)
4074 		printk(KERN_INFO DRIVER_NAME "\n");
4075 
4076 	rc = hpsa_init_reset_devices(pdev);
4077 	if (rc) {
4078 		if (rc != -ENOTSUPP)
4079 			return rc;
4080 		/* If the reset fails in a particular way (it has no way to do
4081 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4082 		 * a soft reset once we get the controller configured up to the
4083 		 * point that it can accept a command.
4084 		 */
4085 		try_soft_reset = 1;
4086 		rc = 0;
4087 	}
4088 
4089 reinit_after_soft_reset:
4090 
4091 	/* Command structures must be aligned on a 32-byte boundary because
4092 	 * the 5 lower bits of the address are used by the hardware. and by
4093 	 * the driver.  See comments in hpsa.h for more info.
4094 	 */
4095 #define COMMANDLIST_ALIGNMENT 32
4096 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4097 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4098 	if (!h)
4099 		return -ENOMEM;
4100 
4101 	h->pdev = pdev;
4102 	h->busy_initializing = 1;
4103 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4104 	INIT_LIST_HEAD(&h->cmpQ);
4105 	INIT_LIST_HEAD(&h->reqQ);
4106 	spin_lock_init(&h->lock);
4107 	spin_lock_init(&h->scan_lock);
4108 	rc = hpsa_pci_init(h);
4109 	if (rc != 0)
4110 		goto clean1;
4111 
4112 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4113 	h->ctlr = number_of_controllers;
4114 	number_of_controllers++;
4115 
4116 	/* configure PCI DMA stuff */
4117 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4118 	if (rc == 0) {
4119 		dac = 1;
4120 	} else {
4121 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4122 		if (rc == 0) {
4123 			dac = 0;
4124 		} else {
4125 			dev_err(&pdev->dev, "no suitable DMA available\n");
4126 			goto clean1;
4127 		}
4128 	}
4129 
4130 	/* make sure the board interrupts are off */
4131 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4132 
4133 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4134 		goto clean2;
4135 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4136 	       h->devname, pdev->device,
4137 	       h->intr[h->intr_mode], dac ? "" : " not");
4138 	if (hpsa_allocate_cmd_pool(h))
4139 		goto clean4;
4140 	if (hpsa_allocate_sg_chain_blocks(h))
4141 		goto clean4;
4142 	init_waitqueue_head(&h->scan_wait_queue);
4143 	h->scan_finished = 1; /* no scan currently in progress */
4144 
4145 	pci_set_drvdata(pdev, h);
4146 	h->ndevices = 0;
4147 	h->scsi_host = NULL;
4148 	spin_lock_init(&h->devlock);
4149 	hpsa_put_ctlr_into_performant_mode(h);
4150 
4151 	/* At this point, the controller is ready to take commands.
4152 	 * Now, if reset_devices and the hard reset didn't work, try
4153 	 * the soft reset and see if that works.
4154 	 */
4155 	if (try_soft_reset) {
4156 
4157 		/* This is kind of gross.  We may or may not get a completion
4158 		 * from the soft reset command, and if we do, then the value
4159 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4160 		 * after the reset throwing away any completions we get during
4161 		 * that time.  Unregister the interrupt handler and register
4162 		 * fake ones to scoop up any residual completions.
4163 		 */
4164 		spin_lock_irqsave(&h->lock, flags);
4165 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166 		spin_unlock_irqrestore(&h->lock, flags);
4167 		free_irq(h->intr[h->intr_mode], h);
4168 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4169 					hpsa_intx_discard_completions);
4170 		if (rc) {
4171 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4172 				"soft reset.\n");
4173 			goto clean4;
4174 		}
4175 
4176 		rc = hpsa_kdump_soft_reset(h);
4177 		if (rc)
4178 			/* Neither hard nor soft reset worked, we're hosed. */
4179 			goto clean4;
4180 
4181 		dev_info(&h->pdev->dev, "Board READY.\n");
4182 		dev_info(&h->pdev->dev,
4183 			"Waiting for stale completions to drain.\n");
4184 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4185 		msleep(10000);
4186 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4187 
4188 		rc = controller_reset_failed(h->cfgtable);
4189 		if (rc)
4190 			dev_info(&h->pdev->dev,
4191 				"Soft reset appears to have failed.\n");
4192 
4193 		/* since the controller's reset, we have to go back and re-init
4194 		 * everything.  Easiest to just forget what we've done and do it
4195 		 * all over again.
4196 		 */
4197 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4198 		try_soft_reset = 0;
4199 		if (rc)
4200 			/* don't go to clean4, we already unallocated */
4201 			return -ENODEV;
4202 
4203 		goto reinit_after_soft_reset;
4204 	}
4205 
4206 	/* Turn the interrupts on so we can service requests */
4207 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4208 
4209 	hpsa_hba_inquiry(h);
4210 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4211 	h->busy_initializing = 0;
4212 	return 1;
4213 
4214 clean4:
4215 	hpsa_free_sg_chain_blocks(h);
4216 	hpsa_free_cmd_pool(h);
4217 	free_irq(h->intr[h->intr_mode], h);
4218 clean2:
4219 clean1:
4220 	h->busy_initializing = 0;
4221 	kfree(h);
4222 	return rc;
4223 }
4224 
4225 static void hpsa_flush_cache(struct ctlr_info *h)
4226 {
4227 	char *flush_buf;
4228 	struct CommandList *c;
4229 
4230 	flush_buf = kzalloc(4, GFP_KERNEL);
4231 	if (!flush_buf)
4232 		return;
4233 
4234 	c = cmd_special_alloc(h);
4235 	if (!c) {
4236 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4237 		goto out_of_memory;
4238 	}
4239 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4240 		RAID_CTLR_LUNID, TYPE_CMD);
4241 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4242 	if (c->err_info->CommandStatus != 0)
4243 		dev_warn(&h->pdev->dev,
4244 			"error flushing cache on controller\n");
4245 	cmd_special_free(h, c);
4246 out_of_memory:
4247 	kfree(flush_buf);
4248 }
4249 
4250 static void hpsa_shutdown(struct pci_dev *pdev)
4251 {
4252 	struct ctlr_info *h;
4253 
4254 	h = pci_get_drvdata(pdev);
4255 	/* Turn board interrupts off  and send the flush cache command
4256 	 * sendcmd will turn off interrupt, and send the flush...
4257 	 * To write all data in the battery backed cache to disks
4258 	 */
4259 	hpsa_flush_cache(h);
4260 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4261 	free_irq(h->intr[h->intr_mode], h);
4262 #ifdef CONFIG_PCI_MSI
4263 	if (h->msix_vector)
4264 		pci_disable_msix(h->pdev);
4265 	else if (h->msi_vector)
4266 		pci_disable_msi(h->pdev);
4267 #endif				/* CONFIG_PCI_MSI */
4268 }
4269 
4270 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4271 {
4272 	struct ctlr_info *h;
4273 
4274 	if (pci_get_drvdata(pdev) == NULL) {
4275 		dev_err(&pdev->dev, "unable to remove device \n");
4276 		return;
4277 	}
4278 	h = pci_get_drvdata(pdev);
4279 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4280 	hpsa_shutdown(pdev);
4281 	iounmap(h->vaddr);
4282 	iounmap(h->transtable);
4283 	iounmap(h->cfgtable);
4284 	hpsa_free_sg_chain_blocks(h);
4285 	pci_free_consistent(h->pdev,
4286 		h->nr_cmds * sizeof(struct CommandList),
4287 		h->cmd_pool, h->cmd_pool_dhandle);
4288 	pci_free_consistent(h->pdev,
4289 		h->nr_cmds * sizeof(struct ErrorInfo),
4290 		h->errinfo_pool, h->errinfo_pool_dhandle);
4291 	pci_free_consistent(h->pdev, h->reply_pool_size,
4292 		h->reply_pool, h->reply_pool_dhandle);
4293 	kfree(h->cmd_pool_bits);
4294 	kfree(h->blockFetchTable);
4295 	kfree(h->hba_inquiry_data);
4296 	/*
4297 	 * Deliberately omit pci_disable_device(): it does something nasty to
4298 	 * Smart Array controllers that pci_enable_device does not undo
4299 	 */
4300 	pci_release_regions(pdev);
4301 	pci_set_drvdata(pdev, NULL);
4302 	kfree(h);
4303 }
4304 
4305 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4306 	__attribute__((unused)) pm_message_t state)
4307 {
4308 	return -ENOSYS;
4309 }
4310 
4311 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4312 {
4313 	return -ENOSYS;
4314 }
4315 
4316 static struct pci_driver hpsa_pci_driver = {
4317 	.name = "hpsa",
4318 	.probe = hpsa_init_one,
4319 	.remove = __devexit_p(hpsa_remove_one),
4320 	.id_table = hpsa_pci_device_id,	/* id_table */
4321 	.shutdown = hpsa_shutdown,
4322 	.suspend = hpsa_suspend,
4323 	.resume = hpsa_resume,
4324 };
4325 
4326 /* Fill in bucket_map[], given nsgs (the max number of
4327  * scatter gather elements supported) and bucket[],
4328  * which is an array of 8 integers.  The bucket[] array
4329  * contains 8 different DMA transfer sizes (in 16
4330  * byte increments) which the controller uses to fetch
4331  * commands.  This function fills in bucket_map[], which
4332  * maps a given number of scatter gather elements to one of
4333  * the 8 DMA transfer sizes.  The point of it is to allow the
4334  * controller to only do as much DMA as needed to fetch the
4335  * command, with the DMA transfer size encoded in the lower
4336  * bits of the command address.
4337  */
4338 static void  calc_bucket_map(int bucket[], int num_buckets,
4339 	int nsgs, int *bucket_map)
4340 {
4341 	int i, j, b, size;
4342 
4343 	/* even a command with 0 SGs requires 4 blocks */
4344 #define MINIMUM_TRANSFER_BLOCKS 4
4345 #define NUM_BUCKETS 8
4346 	/* Note, bucket_map must have nsgs+1 entries. */
4347 	for (i = 0; i <= nsgs; i++) {
4348 		/* Compute size of a command with i SG entries */
4349 		size = i + MINIMUM_TRANSFER_BLOCKS;
4350 		b = num_buckets; /* Assume the biggest bucket */
4351 		/* Find the bucket that is just big enough */
4352 		for (j = 0; j < 8; j++) {
4353 			if (bucket[j] >= size) {
4354 				b = j;
4355 				break;
4356 			}
4357 		}
4358 		/* for a command with i SG entries, use bucket b. */
4359 		bucket_map[i] = b;
4360 	}
4361 }
4362 
4363 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4364 	u32 use_short_tags)
4365 {
4366 	int i;
4367 	unsigned long register_value;
4368 
4369 	/* This is a bit complicated.  There are 8 registers on
4370 	 * the controller which we write to to tell it 8 different
4371 	 * sizes of commands which there may be.  It's a way of
4372 	 * reducing the DMA done to fetch each command.  Encoded into
4373 	 * each command's tag are 3 bits which communicate to the controller
4374 	 * which of the eight sizes that command fits within.  The size of
4375 	 * each command depends on how many scatter gather entries there are.
4376 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4377 	 * with the number of 16-byte blocks a command of that size requires.
4378 	 * The smallest command possible requires 5 such 16 byte blocks.
4379 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4380 	 * blocks.  Note, this only extends to the SG entries contained
4381 	 * within the command block, and does not extend to chained blocks
4382 	 * of SG elements.   bft[] contains the eight values we write to
4383 	 * the registers.  They are not evenly distributed, but have more
4384 	 * sizes for small commands, and fewer sizes for larger commands.
4385 	 */
4386 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4387 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4388 	/*  5 = 1 s/g entry or 4k
4389 	 *  6 = 2 s/g entry or 8k
4390 	 *  8 = 4 s/g entry or 16k
4391 	 * 10 = 6 s/g entry or 24k
4392 	 */
4393 
4394 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4395 
4396 	/* Controller spec: zero out this buffer. */
4397 	memset(h->reply_pool, 0, h->reply_pool_size);
4398 	h->reply_pool_head = h->reply_pool;
4399 
4400 	bft[7] = h->max_sg_entries + 4;
4401 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4402 	for (i = 0; i < 8; i++)
4403 		writel(bft[i], &h->transtable->BlockFetch[i]);
4404 
4405 	/* size of controller ring buffer */
4406 	writel(h->max_commands, &h->transtable->RepQSize);
4407 	writel(1, &h->transtable->RepQCount);
4408 	writel(0, &h->transtable->RepQCtrAddrLow32);
4409 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4410 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4411 	writel(0, &h->transtable->RepQAddr0High32);
4412 	writel(CFGTBL_Trans_Performant | use_short_tags,
4413 		&(h->cfgtable->HostWrite.TransportRequest));
4414 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4415 	hpsa_wait_for_mode_change_ack(h);
4416 	register_value = readl(&(h->cfgtable->TransportActive));
4417 	if (!(register_value & CFGTBL_Trans_Performant)) {
4418 		dev_warn(&h->pdev->dev, "unable to get board into"
4419 					" performant mode\n");
4420 		return;
4421 	}
4422 	/* Change the access methods to the performant access methods */
4423 	h->access = SA5_performant_access;
4424 	h->transMethod = CFGTBL_Trans_Performant;
4425 }
4426 
4427 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4428 {
4429 	u32 trans_support;
4430 
4431 	if (hpsa_simple_mode)
4432 		return;
4433 
4434 	trans_support = readl(&(h->cfgtable->TransportSupport));
4435 	if (!(trans_support & PERFORMANT_MODE))
4436 		return;
4437 
4438 	hpsa_get_max_perf_mode_cmds(h);
4439 	h->max_sg_entries = 32;
4440 	/* Performant mode ring buffer and supporting data structures */
4441 	h->reply_pool_size = h->max_commands * sizeof(u64);
4442 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4443 				&(h->reply_pool_dhandle));
4444 
4445 	/* Need a block fetch table for performant mode */
4446 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4447 				sizeof(u32)), GFP_KERNEL);
4448 
4449 	if ((h->reply_pool == NULL)
4450 		|| (h->blockFetchTable == NULL))
4451 		goto clean_up;
4452 
4453 	hpsa_enter_performant_mode(h,
4454 		trans_support & CFGTBL_Trans_use_short_tags);
4455 
4456 	return;
4457 
4458 clean_up:
4459 	if (h->reply_pool)
4460 		pci_free_consistent(h->pdev, h->reply_pool_size,
4461 			h->reply_pool, h->reply_pool_dhandle);
4462 	kfree(h->blockFetchTable);
4463 }
4464 
4465 /*
4466  *  This is it.  Register the PCI driver information for the cards we control
4467  *  the OS will call our registered routines when it finds one of our cards.
4468  */
4469 static int __init hpsa_init(void)
4470 {
4471 	return pci_register_driver(&hpsa_pci_driver);
4472 }
4473 
4474 static void __exit hpsa_cleanup(void)
4475 {
4476 	pci_unregister_driver(&hpsa_pci_driver);
4477 }
4478 
4479 module_init(hpsa_init);
4480 module_exit(hpsa_cleanup);
4481