xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 6f4eaea2)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259 			       IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261 				   BIG_IOCTL_Command_struct *ioc);
262 
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265 	void __user *arg);
266 #endif
267 
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272 					    struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275 	int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283 	unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285 
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status, len;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 	char tmpbuf[10];
460 
461 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 		return -EACCES;
463 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 	strncpy(tmpbuf, buf, len);
465 	tmpbuf[len] = '\0';
466 	if (sscanf(tmpbuf, "%d", &status) != 1)
467 		return -EINVAL;
468 	h = shost_to_hba(shost);
469 	h->acciopath_status = !!status;
470 	dev_warn(&h->pdev->dev,
471 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 		h->acciopath_status ? "enabled" : "disabled");
473 	return count;
474 }
475 
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 					 struct device_attribute *attr,
478 					 const char *buf, size_t count)
479 {
480 	int debug_level, len;
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	char tmpbuf[10];
484 
485 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 		return -EACCES;
487 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 	strncpy(tmpbuf, buf, len);
489 	tmpbuf[len] = '\0';
490 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491 		return -EINVAL;
492 	if (debug_level < 0)
493 		debug_level = 0;
494 	h = shost_to_hba(shost);
495 	h->raid_offload_debug = debug_level;
496 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 		h->raid_offload_debug);
498 	return count;
499 }
500 
501 static ssize_t host_store_rescan(struct device *dev,
502 				 struct device_attribute *attr,
503 				 const char *buf, size_t count)
504 {
505 	struct ctlr_info *h;
506 	struct Scsi_Host *shost = class_to_shost(dev);
507 	h = shost_to_hba(shost);
508 	hpsa_scan_start(h->scsi_host);
509 	return count;
510 }
511 
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514 	device->offload_enabled = 0;
515 	device->offload_to_be_enabled = 0;
516 }
517 
518 static ssize_t host_show_firmware_revision(struct device *dev,
519 	     struct device_attribute *attr, char *buf)
520 {
521 	struct ctlr_info *h;
522 	struct Scsi_Host *shost = class_to_shost(dev);
523 	unsigned char *fwrev;
524 
525 	h = shost_to_hba(shost);
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	fwrev = &h->hba_inquiry_data[32];
529 	return snprintf(buf, 20, "%c%c%c%c\n",
530 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532 
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 	     struct device_attribute *attr, char *buf)
535 {
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 	struct ctlr_info *h = shost_to_hba(shost);
538 
539 	return snprintf(buf, 20, "%d\n",
540 			atomic_read(&h->commands_outstanding));
541 }
542 
543 static ssize_t host_show_transport_mode(struct device *dev,
544 	struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct Scsi_Host *shost = class_to_shost(dev);
548 
549 	h = shost_to_hba(shost);
550 	return snprintf(buf, 20, "%s\n",
551 		h->transMethod & CFGTBL_Trans_Performant ?
552 			"performant" : "simple");
553 }
554 
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 	struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct Scsi_Host *shost = class_to_shost(dev);
560 
561 	h = shost_to_hba(shost);
562 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565 
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 	0x324a103C, /* Smart Array P712m */
569 	0x324b103C, /* Smart Array P711m */
570 	0x3223103C, /* Smart Array P800 */
571 	0x3234103C, /* Smart Array P400 */
572 	0x3235103C, /* Smart Array P400i */
573 	0x3211103C, /* Smart Array E200i */
574 	0x3212103C, /* Smart Array E200 */
575 	0x3213103C, /* Smart Array E200i */
576 	0x3214103C, /* Smart Array E200i */
577 	0x3215103C, /* Smart Array E200i */
578 	0x3237103C, /* Smart Array E500 */
579 	0x323D103C, /* Smart Array P700m */
580 	0x40800E11, /* Smart Array 5i */
581 	0x409C0E11, /* Smart Array 6400 */
582 	0x409D0E11, /* Smart Array 6400 EM */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 };
590 
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 	0x40800E11, /* Smart Array 5i */
594 	0x40700E11, /* Smart Array 5300 */
595 	0x40820E11, /* Smart Array 532 */
596 	0x40830E11, /* Smart Array 5312 */
597 	0x409A0E11, /* Smart Array 641 */
598 	0x409B0E11, /* Smart Array 642 */
599 	0x40910E11, /* Smart Array 6i */
600 	/* Exclude 640x boards.  These are two pci devices in one slot
601 	 * which share a battery backed cache module.  One controls the
602 	 * cache, the other accesses the cache through the one that controls
603 	 * it.  If we reset the one controlling the cache, the other will
604 	 * likely not be happy.  Just forbid resetting this conjoined mess.
605 	 * The 640x isn't really supported by hpsa anyway.
606 	 */
607 	0x409C0E11, /* Smart Array 6400 */
608 	0x409D0E11, /* Smart Array 6400 EM */
609 };
610 
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613 	int i;
614 
615 	for (i = 0; i < nelems; i++)
616 		if (a[i] == board_id)
617 			return 1;
618 	return 0;
619 }
620 
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623 	return !board_id_in_array(unresettable_controller,
624 			ARRAY_SIZE(unresettable_controller), board_id);
625 }
626 
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629 	return !board_id_in_array(soft_unresettable_controller,
630 			ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632 
633 static int ctlr_is_resettable(u32 board_id)
634 {
635 	return ctlr_is_hard_resettable(board_id) ||
636 		ctlr_is_soft_resettable(board_id);
637 }
638 
639 static ssize_t host_show_resettable(struct device *dev,
640 	struct device_attribute *attr, char *buf)
641 {
642 	struct ctlr_info *h;
643 	struct Scsi_Host *shost = class_to_shost(dev);
644 
645 	h = shost_to_hba(shost);
646 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648 
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651 	return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653 
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0	0
658 #define HPSA_RAID_4	1
659 #define HPSA_RAID_1	2	/* also used for RAID 10 */
660 #define HPSA_RAID_5	3	/* also used for RAID 50 */
661 #define HPSA_RAID_51	4
662 #define HPSA_RAID_6	5	/* also used for RAID 60 */
663 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669 	return !device->physical_device;
670 }
671 
672 static ssize_t raid_level_show(struct device *dev,
673 	     struct device_attribute *attr, char *buf)
674 {
675 	ssize_t l = 0;
676 	unsigned char rlevel;
677 	struct ctlr_info *h;
678 	struct scsi_device *sdev;
679 	struct hpsa_scsi_dev_t *hdev;
680 	unsigned long flags;
681 
682 	sdev = to_scsi_device(dev);
683 	h = sdev_to_hba(sdev);
684 	spin_lock_irqsave(&h->lock, flags);
685 	hdev = sdev->hostdata;
686 	if (!hdev) {
687 		spin_unlock_irqrestore(&h->lock, flags);
688 		return -ENODEV;
689 	}
690 
691 	/* Is this even a logical drive? */
692 	if (!is_logical_device(hdev)) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
695 		return l;
696 	}
697 
698 	rlevel = hdev->raid_level;
699 	spin_unlock_irqrestore(&h->lock, flags);
700 	if (rlevel > RAID_UNKNOWN)
701 		rlevel = RAID_UNKNOWN;
702 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703 	return l;
704 }
705 
706 static ssize_t lunid_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char lunid[8];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727 
728 static ssize_t unique_id_show(struct device *dev,
729 	     struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	unsigned char sn[16];
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	memcpy(sn, hdev->device_id, sizeof(sn));
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	return snprintf(buf, 16 * 2 + 2,
748 			"%02X%02X%02X%02X%02X%02X%02X%02X"
749 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 			sn[0], sn[1], sn[2], sn[3],
751 			sn[4], sn[5], sn[6], sn[7],
752 			sn[8], sn[9], sn[10], sn[11],
753 			sn[12], sn[13], sn[14], sn[15]);
754 }
755 
756 static ssize_t sas_address_show(struct device *dev,
757 	      struct device_attribute *attr, char *buf)
758 {
759 	struct ctlr_info *h;
760 	struct scsi_device *sdev;
761 	struct hpsa_scsi_dev_t *hdev;
762 	unsigned long flags;
763 	u64 sas_address;
764 
765 	sdev = to_scsi_device(dev);
766 	h = sdev_to_hba(sdev);
767 	spin_lock_irqsave(&h->lock, flags);
768 	hdev = sdev->hostdata;
769 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 		spin_unlock_irqrestore(&h->lock, flags);
771 		return -ENODEV;
772 	}
773 	sas_address = hdev->sas_address;
774 	spin_unlock_irqrestore(&h->lock, flags);
775 
776 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778 
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 	     struct device_attribute *attr, char *buf)
781 {
782 	struct ctlr_info *h;
783 	struct scsi_device *sdev;
784 	struct hpsa_scsi_dev_t *hdev;
785 	unsigned long flags;
786 	int offload_enabled;
787 
788 	sdev = to_scsi_device(dev);
789 	h = sdev_to_hba(sdev);
790 	spin_lock_irqsave(&h->lock, flags);
791 	hdev = sdev->hostdata;
792 	if (!hdev) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENODEV;
795 	}
796 	offload_enabled = hdev->offload_enabled;
797 	spin_unlock_irqrestore(&h->lock, flags);
798 
799 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 		return snprintf(buf, 20, "%d\n", offload_enabled);
801 	else
802 		return snprintf(buf, 40, "%s\n",
803 				"Not applicable for a controller");
804 }
805 
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808 	     struct device_attribute *attr, char *buf)
809 {
810 	struct ctlr_info *h;
811 	struct scsi_device *sdev;
812 	struct hpsa_scsi_dev_t *hdev;
813 	unsigned long flags;
814 	int i;
815 	int output_len = 0;
816 	u8 box;
817 	u8 bay;
818 	u8 path_map_index = 0;
819 	char *active;
820 	unsigned char phys_connector[2];
821 
822 	sdev = to_scsi_device(dev);
823 	h = sdev_to_hba(sdev);
824 	spin_lock_irqsave(&h->devlock, flags);
825 	hdev = sdev->hostdata;
826 	if (!hdev) {
827 		spin_unlock_irqrestore(&h->devlock, flags);
828 		return -ENODEV;
829 	}
830 
831 	bay = hdev->bay;
832 	for (i = 0; i < MAX_PATHS; i++) {
833 		path_map_index = 1<<i;
834 		if (i == hdev->active_path_index)
835 			active = "Active";
836 		else if (hdev->path_map & path_map_index)
837 			active = "Inactive";
838 		else
839 			continue;
840 
841 		output_len += scnprintf(buf + output_len,
842 				PAGE_SIZE - output_len,
843 				"[%d:%d:%d:%d] %20.20s ",
844 				h->scsi_host->host_no,
845 				hdev->bus, hdev->target, hdev->lun,
846 				scsi_device_type(hdev->devtype));
847 
848 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 			output_len += scnprintf(buf + output_len,
850 						PAGE_SIZE - output_len,
851 						"%s\n", active);
852 			continue;
853 		}
854 
855 		box = hdev->box[i];
856 		memcpy(&phys_connector, &hdev->phys_connector[i],
857 			sizeof(phys_connector));
858 		if (phys_connector[0] < '0')
859 			phys_connector[0] = '0';
860 		if (phys_connector[1] < '0')
861 			phys_connector[1] = '0';
862 		output_len += scnprintf(buf + output_len,
863 				PAGE_SIZE - output_len,
864 				"PORT: %.2s ",
865 				phys_connector);
866 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 			hdev->expose_device) {
868 			if (box == 0 || box == 0xFF) {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BAY: %hhu %s\n",
872 					bay, active);
873 			} else {
874 				output_len += scnprintf(buf + output_len,
875 					PAGE_SIZE - output_len,
876 					"BOX: %hhu BAY: %hhu %s\n",
877 					box, bay, active);
878 			}
879 		} else if (box != 0 && box != 0xFF) {
880 			output_len += scnprintf(buf + output_len,
881 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882 				box, active);
883 		} else
884 			output_len += scnprintf(buf + output_len,
885 				PAGE_SIZE - output_len, "%s\n", active);
886 	}
887 
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 	return output_len;
890 }
891 
892 static ssize_t host_show_ctlr_num(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901 
902 static ssize_t host_show_legacy_board(struct device *dev,
903 	struct device_attribute *attr, char *buf)
904 {
905 	struct ctlr_info *h;
906 	struct Scsi_Host *shost = class_to_shost(dev);
907 
908 	h = shost_to_hba(shost);
909 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911 
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 			host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 		host_show_hp_ssd_smart_path_status,
922 		host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 			host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 	host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 	host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 	host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 	host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 	host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 	host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 	host_show_legacy_board, NULL);
939 
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941 	&dev_attr_raid_level,
942 	&dev_attr_lunid,
943 	&dev_attr_unique_id,
944 	&dev_attr_hp_ssd_smart_path_enabled,
945 	&dev_attr_path_info,
946 	&dev_attr_sas_address,
947 	NULL,
948 };
949 
950 static struct device_attribute *hpsa_shost_attrs[] = {
951 	&dev_attr_rescan,
952 	&dev_attr_firmware_revision,
953 	&dev_attr_commands_outstanding,
954 	&dev_attr_transport_mode,
955 	&dev_attr_resettable,
956 	&dev_attr_hp_ssd_smart_path_status,
957 	&dev_attr_raid_offload_debug,
958 	&dev_attr_lockup_detected,
959 	&dev_attr_ctlr_num,
960 	&dev_attr_legacy_board,
961 	NULL,
962 };
963 
964 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
966 
967 static struct scsi_host_template hpsa_driver_template = {
968 	.module			= THIS_MODULE,
969 	.name			= HPSA,
970 	.proc_name		= HPSA,
971 	.queuecommand		= hpsa_scsi_queue_command,
972 	.scan_start		= hpsa_scan_start,
973 	.scan_finished		= hpsa_scan_finished,
974 	.change_queue_depth	= hpsa_change_queue_depth,
975 	.this_id		= -1,
976 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
977 	.ioctl			= hpsa_ioctl,
978 	.slave_alloc		= hpsa_slave_alloc,
979 	.slave_configure	= hpsa_slave_configure,
980 	.slave_destroy		= hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982 	.compat_ioctl		= hpsa_compat_ioctl,
983 #endif
984 	.sdev_attrs = hpsa_sdev_attrs,
985 	.shost_attrs = hpsa_shost_attrs,
986 	.max_sectors = 2048,
987 	.no_write_same = 1,
988 };
989 
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992 	u32 a;
993 	struct reply_queue_buffer *rq = &h->reply_queue[q];
994 
995 	if (h->transMethod & CFGTBL_Trans_io_accel1)
996 		return h->access.command_completed(h, q);
997 
998 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999 		return h->access.command_completed(h, q);
1000 
1001 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002 		a = rq->head[rq->current_entry];
1003 		rq->current_entry++;
1004 		atomic_dec(&h->commands_outstanding);
1005 	} else {
1006 		a = FIFO_EMPTY;
1007 	}
1008 	/* Check for wraparound */
1009 	if (rq->current_entry == h->max_commands) {
1010 		rq->current_entry = 0;
1011 		rq->wraparound ^= 1;
1012 	}
1013 	return a;
1014 }
1015 
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041 
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049 					int reply_queue)
1050 {
1051 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053 		if (unlikely(!h->msix_vectors))
1054 			return;
1055 		c->Header.ReplyQueue = reply_queue;
1056 	}
1057 }
1058 
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060 						struct CommandList *c,
1061 						int reply_queue)
1062 {
1063 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064 
1065 	/*
1066 	 * Tell the controller to post the reply to the queue for this
1067 	 * processor.  This seems to give the best I/O throughput.
1068 	 */
1069 	cp->ReplyQueue = reply_queue;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	cp->reply_queue = reply_queue;
1091 	/* Set the bits in the address sent down to include:
1092 	 *  - performant mode bit not used in ioaccel mode 2
1093 	 *  - pull count (bits 0-3)
1094 	 *  - command type isn't needed for ioaccel2
1095 	 */
1096 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098 
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100 						struct CommandList *c,
1101 						int reply_queue)
1102 {
1103 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104 
1105 	/*
1106 	 * Tell the controller to post the reply to the queue for this
1107 	 * processor.  This seems to give the best I/O throughput.
1108 	 */
1109 	cp->reply_queue = reply_queue;
1110 	/*
1111 	 * Set the bits in the address sent down to include:
1112 	 *  - performant mode bit not used in ioaccel mode 2
1113 	 *  - pull count (bits 0-3)
1114 	 *  - command type isn't needed for ioaccel2
1115 	 */
1116 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118 
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123 
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133 		struct CommandList *c)
1134 {
1135 	if (!is_firmware_flash_cmd(c->Request.CDB))
1136 		return;
1137 	atomic_inc(&h->firmware_flash_in_progress);
1138 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140 
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142 		struct CommandList *c)
1143 {
1144 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1145 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1146 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148 
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150 	struct CommandList *c, int reply_queue)
1151 {
1152 	dial_down_lockup_detection_during_fw_flash(h, c);
1153 	atomic_inc(&h->commands_outstanding);
1154 	/*
1155 	 * Check to see if the command is being retried.
1156 	 */
1157 	if (c->device && !c->retry_pending)
1158 		atomic_inc(&c->device->commands_outstanding);
1159 
1160 	reply_queue = h->reply_map[raw_smp_processor_id()];
1161 	switch (c->cmd_type) {
1162 	case CMD_IOACCEL1:
1163 		set_ioaccel1_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1165 		break;
1166 	case CMD_IOACCEL2:
1167 		set_ioaccel2_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169 		break;
1170 	case IOACCEL2_TMF:
1171 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1172 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1173 		break;
1174 	default:
1175 		set_performant_mode(h, c, reply_queue);
1176 		h->access.submit_command(h, c);
1177 	}
1178 }
1179 
1180 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1181 {
1182 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1183 }
1184 
1185 static inline int is_hba_lunid(unsigned char scsi3addr[])
1186 {
1187 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1188 }
1189 
1190 static inline int is_scsi_rev_5(struct ctlr_info *h)
1191 {
1192 	if (!h->hba_inquiry_data)
1193 		return 0;
1194 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1195 		return 1;
1196 	return 0;
1197 }
1198 
1199 static int hpsa_find_target_lun(struct ctlr_info *h,
1200 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1201 {
1202 	/* finds an unused bus, target, lun for a new physical device
1203 	 * assumes h->devlock is held
1204 	 */
1205 	int i, found = 0;
1206 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1207 
1208 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1209 
1210 	for (i = 0; i < h->ndevices; i++) {
1211 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1212 			__set_bit(h->dev[i]->target, lun_taken);
1213 	}
1214 
1215 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1216 	if (i < HPSA_MAX_DEVICES) {
1217 		/* *bus = 1; */
1218 		*target = i;
1219 		*lun = 0;
1220 		found = 1;
1221 	}
1222 	return !found;
1223 }
1224 
1225 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1226 	struct hpsa_scsi_dev_t *dev, char *description)
1227 {
1228 #define LABEL_SIZE 25
1229 	char label[LABEL_SIZE];
1230 
1231 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1232 		return;
1233 
1234 	switch (dev->devtype) {
1235 	case TYPE_RAID:
1236 		snprintf(label, LABEL_SIZE, "controller");
1237 		break;
1238 	case TYPE_ENCLOSURE:
1239 		snprintf(label, LABEL_SIZE, "enclosure");
1240 		break;
1241 	case TYPE_DISK:
1242 	case TYPE_ZBC:
1243 		if (dev->external)
1244 			snprintf(label, LABEL_SIZE, "external");
1245 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1246 			snprintf(label, LABEL_SIZE, "%s",
1247 				raid_label[PHYSICAL_DRIVE]);
1248 		else
1249 			snprintf(label, LABEL_SIZE, "RAID-%s",
1250 				dev->raid_level > RAID_UNKNOWN ? "?" :
1251 				raid_label[dev->raid_level]);
1252 		break;
1253 	case TYPE_ROM:
1254 		snprintf(label, LABEL_SIZE, "rom");
1255 		break;
1256 	case TYPE_TAPE:
1257 		snprintf(label, LABEL_SIZE, "tape");
1258 		break;
1259 	case TYPE_MEDIUM_CHANGER:
1260 		snprintf(label, LABEL_SIZE, "changer");
1261 		break;
1262 	default:
1263 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1264 		break;
1265 	}
1266 
1267 	dev_printk(level, &h->pdev->dev,
1268 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1269 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1270 			description,
1271 			scsi_device_type(dev->devtype),
1272 			dev->vendor,
1273 			dev->model,
1274 			label,
1275 			dev->offload_config ? '+' : '-',
1276 			dev->offload_to_be_enabled ? '+' : '-',
1277 			dev->expose_device);
1278 }
1279 
1280 /* Add an entry into h->dev[] array. */
1281 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1282 		struct hpsa_scsi_dev_t *device,
1283 		struct hpsa_scsi_dev_t *added[], int *nadded)
1284 {
1285 	/* assumes h->devlock is held */
1286 	int n = h->ndevices;
1287 	int i;
1288 	unsigned char addr1[8], addr2[8];
1289 	struct hpsa_scsi_dev_t *sd;
1290 
1291 	if (n >= HPSA_MAX_DEVICES) {
1292 		dev_err(&h->pdev->dev, "too many devices, some will be "
1293 			"inaccessible.\n");
1294 		return -1;
1295 	}
1296 
1297 	/* physical devices do not have lun or target assigned until now. */
1298 	if (device->lun != -1)
1299 		/* Logical device, lun is already assigned. */
1300 		goto lun_assigned;
1301 
1302 	/* If this device a non-zero lun of a multi-lun device
1303 	 * byte 4 of the 8-byte LUN addr will contain the logical
1304 	 * unit no, zero otherwise.
1305 	 */
1306 	if (device->scsi3addr[4] == 0) {
1307 		/* This is not a non-zero lun of a multi-lun device */
1308 		if (hpsa_find_target_lun(h, device->scsi3addr,
1309 			device->bus, &device->target, &device->lun) != 0)
1310 			return -1;
1311 		goto lun_assigned;
1312 	}
1313 
1314 	/* This is a non-zero lun of a multi-lun device.
1315 	 * Search through our list and find the device which
1316 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1317 	 * Assign the same bus and target for this new LUN.
1318 	 * Use the logical unit number from the firmware.
1319 	 */
1320 	memcpy(addr1, device->scsi3addr, 8);
1321 	addr1[4] = 0;
1322 	addr1[5] = 0;
1323 	for (i = 0; i < n; i++) {
1324 		sd = h->dev[i];
1325 		memcpy(addr2, sd->scsi3addr, 8);
1326 		addr2[4] = 0;
1327 		addr2[5] = 0;
1328 		/* differ only in byte 4 and 5? */
1329 		if (memcmp(addr1, addr2, 8) == 0) {
1330 			device->bus = sd->bus;
1331 			device->target = sd->target;
1332 			device->lun = device->scsi3addr[4];
1333 			break;
1334 		}
1335 	}
1336 	if (device->lun == -1) {
1337 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1338 			" suspect firmware bug or unsupported hardware "
1339 			"configuration.\n");
1340 		return -1;
1341 	}
1342 
1343 lun_assigned:
1344 
1345 	h->dev[n] = device;
1346 	h->ndevices++;
1347 	added[*nadded] = device;
1348 	(*nadded)++;
1349 	hpsa_show_dev_msg(KERN_INFO, h, device,
1350 		device->expose_device ? "added" : "masked");
1351 	return 0;
1352 }
1353 
1354 /*
1355  * Called during a scan operation.
1356  *
1357  * Update an entry in h->dev[] array.
1358  */
1359 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1360 	int entry, struct hpsa_scsi_dev_t *new_entry)
1361 {
1362 	/* assumes h->devlock is held */
1363 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1364 
1365 	/* Raid level changed. */
1366 	h->dev[entry]->raid_level = new_entry->raid_level;
1367 
1368 	/*
1369 	 * ioacccel_handle may have changed for a dual domain disk
1370 	 */
1371 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372 
1373 	/* Raid offload parameters changed.  Careful about the ordering. */
1374 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1375 		/*
1376 		 * if drive is newly offload_enabled, we want to copy the
1377 		 * raid map data first.  If previously offload_enabled and
1378 		 * offload_config were set, raid map data had better be
1379 		 * the same as it was before. If raid map data has changed
1380 		 * then it had better be the case that
1381 		 * h->dev[entry]->offload_enabled is currently 0.
1382 		 */
1383 		h->dev[entry]->raid_map = new_entry->raid_map;
1384 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385 	}
1386 	if (new_entry->offload_to_be_enabled) {
1387 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1389 	}
1390 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1391 	h->dev[entry]->offload_config = new_entry->offload_config;
1392 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1393 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1394 
1395 	/*
1396 	 * We can turn off ioaccel offload now, but need to delay turning
1397 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1398 	 * can't do that until all the devices are updated.
1399 	 */
1400 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1401 
1402 	/*
1403 	 * turn ioaccel off immediately if told to do so.
1404 	 */
1405 	if (!new_entry->offload_to_be_enabled)
1406 		h->dev[entry]->offload_enabled = 0;
1407 
1408 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1409 }
1410 
1411 /* Replace an entry from h->dev[] array. */
1412 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1413 	int entry, struct hpsa_scsi_dev_t *new_entry,
1414 	struct hpsa_scsi_dev_t *added[], int *nadded,
1415 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1416 {
1417 	/* assumes h->devlock is held */
1418 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1419 	removed[*nremoved] = h->dev[entry];
1420 	(*nremoved)++;
1421 
1422 	/*
1423 	 * New physical devices won't have target/lun assigned yet
1424 	 * so we need to preserve the values in the slot we are replacing.
1425 	 */
1426 	if (new_entry->target == -1) {
1427 		new_entry->target = h->dev[entry]->target;
1428 		new_entry->lun = h->dev[entry]->lun;
1429 	}
1430 
1431 	h->dev[entry] = new_entry;
1432 	added[*nadded] = new_entry;
1433 	(*nadded)++;
1434 
1435 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1436 }
1437 
1438 /* Remove an entry from h->dev[] array. */
1439 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1440 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1441 {
1442 	/* assumes h->devlock is held */
1443 	int i;
1444 	struct hpsa_scsi_dev_t *sd;
1445 
1446 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1447 
1448 	sd = h->dev[entry];
1449 	removed[*nremoved] = h->dev[entry];
1450 	(*nremoved)++;
1451 
1452 	for (i = entry; i < h->ndevices-1; i++)
1453 		h->dev[i] = h->dev[i+1];
1454 	h->ndevices--;
1455 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1456 }
1457 
1458 #define SCSI3ADDR_EQ(a, b) ( \
1459 	(a)[7] == (b)[7] && \
1460 	(a)[6] == (b)[6] && \
1461 	(a)[5] == (b)[5] && \
1462 	(a)[4] == (b)[4] && \
1463 	(a)[3] == (b)[3] && \
1464 	(a)[2] == (b)[2] && \
1465 	(a)[1] == (b)[1] && \
1466 	(a)[0] == (b)[0])
1467 
1468 static void fixup_botched_add(struct ctlr_info *h,
1469 	struct hpsa_scsi_dev_t *added)
1470 {
1471 	/* called when scsi_add_device fails in order to re-adjust
1472 	 * h->dev[] to match the mid layer's view.
1473 	 */
1474 	unsigned long flags;
1475 	int i, j;
1476 
1477 	spin_lock_irqsave(&h->lock, flags);
1478 	for (i = 0; i < h->ndevices; i++) {
1479 		if (h->dev[i] == added) {
1480 			for (j = i; j < h->ndevices-1; j++)
1481 				h->dev[j] = h->dev[j+1];
1482 			h->ndevices--;
1483 			break;
1484 		}
1485 	}
1486 	spin_unlock_irqrestore(&h->lock, flags);
1487 	kfree(added);
1488 }
1489 
1490 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1491 	struct hpsa_scsi_dev_t *dev2)
1492 {
1493 	/* we compare everything except lun and target as these
1494 	 * are not yet assigned.  Compare parts likely
1495 	 * to differ first
1496 	 */
1497 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1498 		sizeof(dev1->scsi3addr)) != 0)
1499 		return 0;
1500 	if (memcmp(dev1->device_id, dev2->device_id,
1501 		sizeof(dev1->device_id)) != 0)
1502 		return 0;
1503 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1504 		return 0;
1505 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1506 		return 0;
1507 	if (dev1->devtype != dev2->devtype)
1508 		return 0;
1509 	if (dev1->bus != dev2->bus)
1510 		return 0;
1511 	return 1;
1512 }
1513 
1514 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1515 	struct hpsa_scsi_dev_t *dev2)
1516 {
1517 	/* Device attributes that can change, but don't mean
1518 	 * that the device is a different device, nor that the OS
1519 	 * needs to be told anything about the change.
1520 	 */
1521 	if (dev1->raid_level != dev2->raid_level)
1522 		return 1;
1523 	if (dev1->offload_config != dev2->offload_config)
1524 		return 1;
1525 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1526 		return 1;
1527 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1528 		if (dev1->queue_depth != dev2->queue_depth)
1529 			return 1;
1530 	/*
1531 	 * This can happen for dual domain devices. An active
1532 	 * path change causes the ioaccel handle to change
1533 	 *
1534 	 * for example note the handle differences between p0 and p1
1535 	 * Device                    WWN               ,WWN hash,Handle
1536 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1537 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1538 	 */
1539 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1540 		return 1;
1541 	return 0;
1542 }
1543 
1544 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1545  * and return needle location in *index.  If scsi3addr matches, but not
1546  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1547  * location in *index.
1548  * In the case of a minor device attribute change, such as RAID level, just
1549  * return DEVICE_UPDATED, along with the updated device's location in index.
1550  * If needle not found, return DEVICE_NOT_FOUND.
1551  */
1552 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1553 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1554 	int *index)
1555 {
1556 	int i;
1557 #define DEVICE_NOT_FOUND 0
1558 #define DEVICE_CHANGED 1
1559 #define DEVICE_SAME 2
1560 #define DEVICE_UPDATED 3
1561 	if (needle == NULL)
1562 		return DEVICE_NOT_FOUND;
1563 
1564 	for (i = 0; i < haystack_size; i++) {
1565 		if (haystack[i] == NULL) /* previously removed. */
1566 			continue;
1567 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1568 			*index = i;
1569 			if (device_is_the_same(needle, haystack[i])) {
1570 				if (device_updated(needle, haystack[i]))
1571 					return DEVICE_UPDATED;
1572 				return DEVICE_SAME;
1573 			} else {
1574 				/* Keep offline devices offline */
1575 				if (needle->volume_offline)
1576 					return DEVICE_NOT_FOUND;
1577 				return DEVICE_CHANGED;
1578 			}
1579 		}
1580 	}
1581 	*index = -1;
1582 	return DEVICE_NOT_FOUND;
1583 }
1584 
1585 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1586 					unsigned char scsi3addr[])
1587 {
1588 	struct offline_device_entry *device;
1589 	unsigned long flags;
1590 
1591 	/* Check to see if device is already on the list */
1592 	spin_lock_irqsave(&h->offline_device_lock, flags);
1593 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1594 		if (memcmp(device->scsi3addr, scsi3addr,
1595 			sizeof(device->scsi3addr)) == 0) {
1596 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 			return;
1598 		}
1599 	}
1600 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1601 
1602 	/* Device is not on the list, add it. */
1603 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1604 	if (!device)
1605 		return;
1606 
1607 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1608 	spin_lock_irqsave(&h->offline_device_lock, flags);
1609 	list_add_tail(&device->offline_list, &h->offline_device_list);
1610 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1611 }
1612 
1613 /* Print a message explaining various offline volume states */
1614 static void hpsa_show_volume_status(struct ctlr_info *h,
1615 	struct hpsa_scsi_dev_t *sd)
1616 {
1617 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1618 		dev_info(&h->pdev->dev,
1619 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1620 			h->scsi_host->host_no,
1621 			sd->bus, sd->target, sd->lun);
1622 	switch (sd->volume_offline) {
1623 	case HPSA_LV_OK:
1624 		break;
1625 	case HPSA_LV_UNDERGOING_ERASE:
1626 		dev_info(&h->pdev->dev,
1627 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1628 			h->scsi_host->host_no,
1629 			sd->bus, sd->target, sd->lun);
1630 		break;
1631 	case HPSA_LV_NOT_AVAILABLE:
1632 		dev_info(&h->pdev->dev,
1633 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1634 			h->scsi_host->host_no,
1635 			sd->bus, sd->target, sd->lun);
1636 		break;
1637 	case HPSA_LV_UNDERGOING_RPI:
1638 		dev_info(&h->pdev->dev,
1639 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1640 			h->scsi_host->host_no,
1641 			sd->bus, sd->target, sd->lun);
1642 		break;
1643 	case HPSA_LV_PENDING_RPI:
1644 		dev_info(&h->pdev->dev,
1645 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1646 			h->scsi_host->host_no,
1647 			sd->bus, sd->target, sd->lun);
1648 		break;
1649 	case HPSA_LV_ENCRYPTED_NO_KEY:
1650 		dev_info(&h->pdev->dev,
1651 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1652 			h->scsi_host->host_no,
1653 			sd->bus, sd->target, sd->lun);
1654 		break;
1655 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1656 		dev_info(&h->pdev->dev,
1657 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1658 			h->scsi_host->host_no,
1659 			sd->bus, sd->target, sd->lun);
1660 		break;
1661 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1662 		dev_info(&h->pdev->dev,
1663 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1664 			h->scsi_host->host_no,
1665 			sd->bus, sd->target, sd->lun);
1666 		break;
1667 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1668 		dev_info(&h->pdev->dev,
1669 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1670 			h->scsi_host->host_no,
1671 			sd->bus, sd->target, sd->lun);
1672 		break;
1673 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1674 		dev_info(&h->pdev->dev,
1675 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1676 			h->scsi_host->host_no,
1677 			sd->bus, sd->target, sd->lun);
1678 		break;
1679 	case HPSA_LV_PENDING_ENCRYPTION:
1680 		dev_info(&h->pdev->dev,
1681 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1682 			h->scsi_host->host_no,
1683 			sd->bus, sd->target, sd->lun);
1684 		break;
1685 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1686 		dev_info(&h->pdev->dev,
1687 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1688 			h->scsi_host->host_no,
1689 			sd->bus, sd->target, sd->lun);
1690 		break;
1691 	}
1692 }
1693 
1694 /*
1695  * Figure the list of physical drive pointers for a logical drive with
1696  * raid offload configured.
1697  */
1698 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1699 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1700 				struct hpsa_scsi_dev_t *logical_drive)
1701 {
1702 	struct raid_map_data *map = &logical_drive->raid_map;
1703 	struct raid_map_disk_data *dd = &map->data[0];
1704 	int i, j;
1705 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1706 				le16_to_cpu(map->metadata_disks_per_row);
1707 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1708 				le16_to_cpu(map->layout_map_count) *
1709 				total_disks_per_row;
1710 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1711 				total_disks_per_row;
1712 	int qdepth;
1713 
1714 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1715 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1716 
1717 	logical_drive->nphysical_disks = nraid_map_entries;
1718 
1719 	qdepth = 0;
1720 	for (i = 0; i < nraid_map_entries; i++) {
1721 		logical_drive->phys_disk[i] = NULL;
1722 		if (!logical_drive->offload_config)
1723 			continue;
1724 		for (j = 0; j < ndevices; j++) {
1725 			if (dev[j] == NULL)
1726 				continue;
1727 			if (dev[j]->devtype != TYPE_DISK &&
1728 			    dev[j]->devtype != TYPE_ZBC)
1729 				continue;
1730 			if (is_logical_device(dev[j]))
1731 				continue;
1732 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1733 				continue;
1734 
1735 			logical_drive->phys_disk[i] = dev[j];
1736 			if (i < nphys_disk)
1737 				qdepth = min(h->nr_cmds, qdepth +
1738 				    logical_drive->phys_disk[i]->queue_depth);
1739 			break;
1740 		}
1741 
1742 		/*
1743 		 * This can happen if a physical drive is removed and
1744 		 * the logical drive is degraded.  In that case, the RAID
1745 		 * map data will refer to a physical disk which isn't actually
1746 		 * present.  And in that case offload_enabled should already
1747 		 * be 0, but we'll turn it off here just in case
1748 		 */
1749 		if (!logical_drive->phys_disk[i]) {
1750 			dev_warn(&h->pdev->dev,
1751 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1752 				__func__,
1753 				h->scsi_host->host_no, logical_drive->bus,
1754 				logical_drive->target, logical_drive->lun);
1755 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1756 			logical_drive->queue_depth = 8;
1757 		}
1758 	}
1759 	if (nraid_map_entries)
1760 		/*
1761 		 * This is correct for reads, too high for full stripe writes,
1762 		 * way too high for partial stripe writes
1763 		 */
1764 		logical_drive->queue_depth = qdepth;
1765 	else {
1766 		if (logical_drive->external)
1767 			logical_drive->queue_depth = EXTERNAL_QD;
1768 		else
1769 			logical_drive->queue_depth = h->nr_cmds;
1770 	}
1771 }
1772 
1773 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1774 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1775 {
1776 	int i;
1777 
1778 	for (i = 0; i < ndevices; i++) {
1779 		if (dev[i] == NULL)
1780 			continue;
1781 		if (dev[i]->devtype != TYPE_DISK &&
1782 		    dev[i]->devtype != TYPE_ZBC)
1783 			continue;
1784 		if (!is_logical_device(dev[i]))
1785 			continue;
1786 
1787 		/*
1788 		 * If offload is currently enabled, the RAID map and
1789 		 * phys_disk[] assignment *better* not be changing
1790 		 * because we would be changing ioaccel phsy_disk[] pointers
1791 		 * on a ioaccel volume processing I/O requests.
1792 		 *
1793 		 * If an ioaccel volume status changed, initially because it was
1794 		 * re-configured and thus underwent a transformation, or
1795 		 * a drive failed, we would have received a state change
1796 		 * request and ioaccel should have been turned off. When the
1797 		 * transformation completes, we get another state change
1798 		 * request to turn ioaccel back on. In this case, we need
1799 		 * to update the ioaccel information.
1800 		 *
1801 		 * Thus: If it is not currently enabled, but will be after
1802 		 * the scan completes, make sure the ioaccel pointers
1803 		 * are up to date.
1804 		 */
1805 
1806 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1807 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1808 	}
1809 }
1810 
1811 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1812 {
1813 	int rc = 0;
1814 
1815 	if (!h->scsi_host)
1816 		return 1;
1817 
1818 	if (is_logical_device(device)) /* RAID */
1819 		rc = scsi_add_device(h->scsi_host, device->bus,
1820 					device->target, device->lun);
1821 	else /* HBA */
1822 		rc = hpsa_add_sas_device(h->sas_host, device);
1823 
1824 	return rc;
1825 }
1826 
1827 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1828 						struct hpsa_scsi_dev_t *dev)
1829 {
1830 	int i;
1831 	int count = 0;
1832 
1833 	for (i = 0; i < h->nr_cmds; i++) {
1834 		struct CommandList *c = h->cmd_pool + i;
1835 		int refcount = atomic_inc_return(&c->refcount);
1836 
1837 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1838 				dev->scsi3addr)) {
1839 			unsigned long flags;
1840 
1841 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1842 			if (!hpsa_is_cmd_idle(c))
1843 				++count;
1844 			spin_unlock_irqrestore(&h->lock, flags);
1845 		}
1846 
1847 		cmd_free(h, c);
1848 	}
1849 
1850 	return count;
1851 }
1852 
1853 #define NUM_WAIT 20
1854 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1855 						struct hpsa_scsi_dev_t *device)
1856 {
1857 	int cmds = 0;
1858 	int waits = 0;
1859 	int num_wait = NUM_WAIT;
1860 
1861 	if (device->external)
1862 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1863 
1864 	while (1) {
1865 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1866 		if (cmds == 0)
1867 			break;
1868 		if (++waits > num_wait)
1869 			break;
1870 		msleep(1000);
1871 	}
1872 
1873 	if (waits > num_wait) {
1874 		dev_warn(&h->pdev->dev,
1875 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1876 			__func__,
1877 			h->scsi_host->host_no,
1878 			device->bus, device->target, device->lun, cmds);
1879 	}
1880 }
1881 
1882 static void hpsa_remove_device(struct ctlr_info *h,
1883 			struct hpsa_scsi_dev_t *device)
1884 {
1885 	struct scsi_device *sdev = NULL;
1886 
1887 	if (!h->scsi_host)
1888 		return;
1889 
1890 	/*
1891 	 * Allow for commands to drain
1892 	 */
1893 	device->removed = 1;
1894 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1895 
1896 	if (is_logical_device(device)) { /* RAID */
1897 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1898 						device->target, device->lun);
1899 		if (sdev) {
1900 			scsi_remove_device(sdev);
1901 			scsi_device_put(sdev);
1902 		} else {
1903 			/*
1904 			 * We don't expect to get here.  Future commands
1905 			 * to this device will get a selection timeout as
1906 			 * if the device were gone.
1907 			 */
1908 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1909 					"didn't find device for removal.");
1910 		}
1911 	} else { /* HBA */
1912 
1913 		hpsa_remove_sas_device(device);
1914 	}
1915 }
1916 
1917 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1918 	struct hpsa_scsi_dev_t *sd[], int nsds)
1919 {
1920 	/* sd contains scsi3 addresses and devtypes, and inquiry
1921 	 * data.  This function takes what's in sd to be the current
1922 	 * reality and updates h->dev[] to reflect that reality.
1923 	 */
1924 	int i, entry, device_change, changes = 0;
1925 	struct hpsa_scsi_dev_t *csd;
1926 	unsigned long flags;
1927 	struct hpsa_scsi_dev_t **added, **removed;
1928 	int nadded, nremoved;
1929 
1930 	/*
1931 	 * A reset can cause a device status to change
1932 	 * re-schedule the scan to see what happened.
1933 	 */
1934 	spin_lock_irqsave(&h->reset_lock, flags);
1935 	if (h->reset_in_progress) {
1936 		h->drv_req_rescan = 1;
1937 		spin_unlock_irqrestore(&h->reset_lock, flags);
1938 		return;
1939 	}
1940 	spin_unlock_irqrestore(&h->reset_lock, flags);
1941 
1942 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1943 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1944 
1945 	if (!added || !removed) {
1946 		dev_warn(&h->pdev->dev, "out of memory in "
1947 			"adjust_hpsa_scsi_table\n");
1948 		goto free_and_out;
1949 	}
1950 
1951 	spin_lock_irqsave(&h->devlock, flags);
1952 
1953 	/* find any devices in h->dev[] that are not in
1954 	 * sd[] and remove them from h->dev[], and for any
1955 	 * devices which have changed, remove the old device
1956 	 * info and add the new device info.
1957 	 * If minor device attributes change, just update
1958 	 * the existing device structure.
1959 	 */
1960 	i = 0;
1961 	nremoved = 0;
1962 	nadded = 0;
1963 	while (i < h->ndevices) {
1964 		csd = h->dev[i];
1965 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1966 		if (device_change == DEVICE_NOT_FOUND) {
1967 			changes++;
1968 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1969 			continue; /* remove ^^^, hence i not incremented */
1970 		} else if (device_change == DEVICE_CHANGED) {
1971 			changes++;
1972 			hpsa_scsi_replace_entry(h, i, sd[entry],
1973 				added, &nadded, removed, &nremoved);
1974 			/* Set it to NULL to prevent it from being freed
1975 			 * at the bottom of hpsa_update_scsi_devices()
1976 			 */
1977 			sd[entry] = NULL;
1978 		} else if (device_change == DEVICE_UPDATED) {
1979 			hpsa_scsi_update_entry(h, i, sd[entry]);
1980 		}
1981 		i++;
1982 	}
1983 
1984 	/* Now, make sure every device listed in sd[] is also
1985 	 * listed in h->dev[], adding them if they aren't found
1986 	 */
1987 
1988 	for (i = 0; i < nsds; i++) {
1989 		if (!sd[i]) /* if already added above. */
1990 			continue;
1991 
1992 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1993 		 * as the SCSI mid-layer does not handle such devices well.
1994 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1995 		 * at 160Hz, and prevents the system from coming up.
1996 		 */
1997 		if (sd[i]->volume_offline) {
1998 			hpsa_show_volume_status(h, sd[i]);
1999 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2000 			continue;
2001 		}
2002 
2003 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2004 					h->ndevices, &entry);
2005 		if (device_change == DEVICE_NOT_FOUND) {
2006 			changes++;
2007 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2008 				break;
2009 			sd[i] = NULL; /* prevent from being freed later. */
2010 		} else if (device_change == DEVICE_CHANGED) {
2011 			/* should never happen... */
2012 			changes++;
2013 			dev_warn(&h->pdev->dev,
2014 				"device unexpectedly changed.\n");
2015 			/* but if it does happen, we just ignore that device */
2016 		}
2017 	}
2018 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2019 
2020 	/*
2021 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2022 	 * any logical drives that need it enabled.
2023 	 *
2024 	 * The raid map should be current by now.
2025 	 *
2026 	 * We are updating the device list used for I/O requests.
2027 	 */
2028 	for (i = 0; i < h->ndevices; i++) {
2029 		if (h->dev[i] == NULL)
2030 			continue;
2031 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2032 	}
2033 
2034 	spin_unlock_irqrestore(&h->devlock, flags);
2035 
2036 	/* Monitor devices which are in one of several NOT READY states to be
2037 	 * brought online later. This must be done without holding h->devlock,
2038 	 * so don't touch h->dev[]
2039 	 */
2040 	for (i = 0; i < nsds; i++) {
2041 		if (!sd[i]) /* if already added above. */
2042 			continue;
2043 		if (sd[i]->volume_offline)
2044 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2045 	}
2046 
2047 	/* Don't notify scsi mid layer of any changes the first time through
2048 	 * (or if there are no changes) scsi_scan_host will do it later the
2049 	 * first time through.
2050 	 */
2051 	if (!changes)
2052 		goto free_and_out;
2053 
2054 	/* Notify scsi mid layer of any removed devices */
2055 	for (i = 0; i < nremoved; i++) {
2056 		if (removed[i] == NULL)
2057 			continue;
2058 		if (removed[i]->expose_device)
2059 			hpsa_remove_device(h, removed[i]);
2060 		kfree(removed[i]);
2061 		removed[i] = NULL;
2062 	}
2063 
2064 	/* Notify scsi mid layer of any added devices */
2065 	for (i = 0; i < nadded; i++) {
2066 		int rc = 0;
2067 
2068 		if (added[i] == NULL)
2069 			continue;
2070 		if (!(added[i]->expose_device))
2071 			continue;
2072 		rc = hpsa_add_device(h, added[i]);
2073 		if (!rc)
2074 			continue;
2075 		dev_warn(&h->pdev->dev,
2076 			"addition failed %d, device not added.", rc);
2077 		/* now we have to remove it from h->dev,
2078 		 * since it didn't get added to scsi mid layer
2079 		 */
2080 		fixup_botched_add(h, added[i]);
2081 		h->drv_req_rescan = 1;
2082 	}
2083 
2084 free_and_out:
2085 	kfree(added);
2086 	kfree(removed);
2087 }
2088 
2089 /*
2090  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2091  * Assume's h->devlock is held.
2092  */
2093 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2094 	int bus, int target, int lun)
2095 {
2096 	int i;
2097 	struct hpsa_scsi_dev_t *sd;
2098 
2099 	for (i = 0; i < h->ndevices; i++) {
2100 		sd = h->dev[i];
2101 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2102 			return sd;
2103 	}
2104 	return NULL;
2105 }
2106 
2107 static int hpsa_slave_alloc(struct scsi_device *sdev)
2108 {
2109 	struct hpsa_scsi_dev_t *sd = NULL;
2110 	unsigned long flags;
2111 	struct ctlr_info *h;
2112 
2113 	h = sdev_to_hba(sdev);
2114 	spin_lock_irqsave(&h->devlock, flags);
2115 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2116 		struct scsi_target *starget;
2117 		struct sas_rphy *rphy;
2118 
2119 		starget = scsi_target(sdev);
2120 		rphy = target_to_rphy(starget);
2121 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2122 		if (sd) {
2123 			sd->target = sdev_id(sdev);
2124 			sd->lun = sdev->lun;
2125 		}
2126 	}
2127 	if (!sd)
2128 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2129 					sdev_id(sdev), sdev->lun);
2130 
2131 	if (sd && sd->expose_device) {
2132 		atomic_set(&sd->ioaccel_cmds_out, 0);
2133 		sdev->hostdata = sd;
2134 	} else
2135 		sdev->hostdata = NULL;
2136 	spin_unlock_irqrestore(&h->devlock, flags);
2137 	return 0;
2138 }
2139 
2140 /* configure scsi device based on internal per-device structure */
2141 #define CTLR_TIMEOUT (120 * HZ)
2142 static int hpsa_slave_configure(struct scsi_device *sdev)
2143 {
2144 	struct hpsa_scsi_dev_t *sd;
2145 	int queue_depth;
2146 
2147 	sd = sdev->hostdata;
2148 	sdev->no_uld_attach = !sd || !sd->expose_device;
2149 
2150 	if (sd) {
2151 		sd->was_removed = 0;
2152 		queue_depth = sd->queue_depth != 0 ?
2153 				sd->queue_depth : sdev->host->can_queue;
2154 		if (sd->external) {
2155 			queue_depth = EXTERNAL_QD;
2156 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2157 			blk_queue_rq_timeout(sdev->request_queue,
2158 						HPSA_EH_PTRAID_TIMEOUT);
2159 		}
2160 		if (is_hba_lunid(sd->scsi3addr)) {
2161 			sdev->eh_timeout = CTLR_TIMEOUT;
2162 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2163 		}
2164 	} else {
2165 		queue_depth = sdev->host->can_queue;
2166 	}
2167 
2168 	scsi_change_queue_depth(sdev, queue_depth);
2169 
2170 	return 0;
2171 }
2172 
2173 static void hpsa_slave_destroy(struct scsi_device *sdev)
2174 {
2175 	struct hpsa_scsi_dev_t *hdev = NULL;
2176 
2177 	hdev = sdev->hostdata;
2178 
2179 	if (hdev)
2180 		hdev->was_removed = 1;
2181 }
2182 
2183 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2184 {
2185 	int i;
2186 
2187 	if (!h->ioaccel2_cmd_sg_list)
2188 		return;
2189 	for (i = 0; i < h->nr_cmds; i++) {
2190 		kfree(h->ioaccel2_cmd_sg_list[i]);
2191 		h->ioaccel2_cmd_sg_list[i] = NULL;
2192 	}
2193 	kfree(h->ioaccel2_cmd_sg_list);
2194 	h->ioaccel2_cmd_sg_list = NULL;
2195 }
2196 
2197 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2198 {
2199 	int i;
2200 
2201 	if (h->chainsize <= 0)
2202 		return 0;
2203 
2204 	h->ioaccel2_cmd_sg_list =
2205 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2206 					GFP_KERNEL);
2207 	if (!h->ioaccel2_cmd_sg_list)
2208 		return -ENOMEM;
2209 	for (i = 0; i < h->nr_cmds; i++) {
2210 		h->ioaccel2_cmd_sg_list[i] =
2211 			kmalloc_array(h->maxsgentries,
2212 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2213 				      GFP_KERNEL);
2214 		if (!h->ioaccel2_cmd_sg_list[i])
2215 			goto clean;
2216 	}
2217 	return 0;
2218 
2219 clean:
2220 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2221 	return -ENOMEM;
2222 }
2223 
2224 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2225 {
2226 	int i;
2227 
2228 	if (!h->cmd_sg_list)
2229 		return;
2230 	for (i = 0; i < h->nr_cmds; i++) {
2231 		kfree(h->cmd_sg_list[i]);
2232 		h->cmd_sg_list[i] = NULL;
2233 	}
2234 	kfree(h->cmd_sg_list);
2235 	h->cmd_sg_list = NULL;
2236 }
2237 
2238 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2239 {
2240 	int i;
2241 
2242 	if (h->chainsize <= 0)
2243 		return 0;
2244 
2245 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2246 				 GFP_KERNEL);
2247 	if (!h->cmd_sg_list)
2248 		return -ENOMEM;
2249 
2250 	for (i = 0; i < h->nr_cmds; i++) {
2251 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2252 						  sizeof(*h->cmd_sg_list[i]),
2253 						  GFP_KERNEL);
2254 		if (!h->cmd_sg_list[i])
2255 			goto clean;
2256 
2257 	}
2258 	return 0;
2259 
2260 clean:
2261 	hpsa_free_sg_chain_blocks(h);
2262 	return -ENOMEM;
2263 }
2264 
2265 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2266 	struct io_accel2_cmd *cp, struct CommandList *c)
2267 {
2268 	struct ioaccel2_sg_element *chain_block;
2269 	u64 temp64;
2270 	u32 chain_size;
2271 
2272 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2273 	chain_size = le32_to_cpu(cp->sg[0].length);
2274 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2275 				DMA_TO_DEVICE);
2276 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2277 		/* prevent subsequent unmapping */
2278 		cp->sg->address = 0;
2279 		return -1;
2280 	}
2281 	cp->sg->address = cpu_to_le64(temp64);
2282 	return 0;
2283 }
2284 
2285 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2286 	struct io_accel2_cmd *cp)
2287 {
2288 	struct ioaccel2_sg_element *chain_sg;
2289 	u64 temp64;
2290 	u32 chain_size;
2291 
2292 	chain_sg = cp->sg;
2293 	temp64 = le64_to_cpu(chain_sg->address);
2294 	chain_size = le32_to_cpu(cp->sg[0].length);
2295 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2296 }
2297 
2298 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2299 	struct CommandList *c)
2300 {
2301 	struct SGDescriptor *chain_sg, *chain_block;
2302 	u64 temp64;
2303 	u32 chain_len;
2304 
2305 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2306 	chain_block = h->cmd_sg_list[c->cmdindex];
2307 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2308 	chain_len = sizeof(*chain_sg) *
2309 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2310 	chain_sg->Len = cpu_to_le32(chain_len);
2311 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2312 				DMA_TO_DEVICE);
2313 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2314 		/* prevent subsequent unmapping */
2315 		chain_sg->Addr = cpu_to_le64(0);
2316 		return -1;
2317 	}
2318 	chain_sg->Addr = cpu_to_le64(temp64);
2319 	return 0;
2320 }
2321 
2322 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2323 	struct CommandList *c)
2324 {
2325 	struct SGDescriptor *chain_sg;
2326 
2327 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2328 		return;
2329 
2330 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2331 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2332 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2333 }
2334 
2335 
2336 /* Decode the various types of errors on ioaccel2 path.
2337  * Return 1 for any error that should generate a RAID path retry.
2338  * Return 0 for errors that don't require a RAID path retry.
2339  */
2340 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2341 					struct CommandList *c,
2342 					struct scsi_cmnd *cmd,
2343 					struct io_accel2_cmd *c2,
2344 					struct hpsa_scsi_dev_t *dev)
2345 {
2346 	int data_len;
2347 	int retry = 0;
2348 	u32 ioaccel2_resid = 0;
2349 
2350 	switch (c2->error_data.serv_response) {
2351 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2352 		switch (c2->error_data.status) {
2353 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2354 			if (cmd)
2355 				cmd->result = 0;
2356 			break;
2357 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2358 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2359 			if (c2->error_data.data_present !=
2360 					IOACCEL2_SENSE_DATA_PRESENT) {
2361 				memset(cmd->sense_buffer, 0,
2362 					SCSI_SENSE_BUFFERSIZE);
2363 				break;
2364 			}
2365 			/* copy the sense data */
2366 			data_len = c2->error_data.sense_data_len;
2367 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2368 				data_len = SCSI_SENSE_BUFFERSIZE;
2369 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2370 				data_len =
2371 					sizeof(c2->error_data.sense_data_buff);
2372 			memcpy(cmd->sense_buffer,
2373 				c2->error_data.sense_data_buff, data_len);
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2383 			retry = 1;
2384 			break;
2385 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2386 			retry = 1;
2387 			break;
2388 		default:
2389 			retry = 1;
2390 			break;
2391 		}
2392 		break;
2393 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2394 		switch (c2->error_data.status) {
2395 		case IOACCEL2_STATUS_SR_IO_ERROR:
2396 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2397 		case IOACCEL2_STATUS_SR_OVERRUN:
2398 			retry = 1;
2399 			break;
2400 		case IOACCEL2_STATUS_SR_UNDERRUN:
2401 			cmd->result = (DID_OK << 16);		/* host byte */
2402 			ioaccel2_resid = get_unaligned_le32(
2403 						&c2->error_data.resid_cnt[0]);
2404 			scsi_set_resid(cmd, ioaccel2_resid);
2405 			break;
2406 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2407 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2408 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2409 			/*
2410 			 * Did an HBA disk disappear? We will eventually
2411 			 * get a state change event from the controller but
2412 			 * in the meantime, we need to tell the OS that the
2413 			 * HBA disk is no longer there and stop I/O
2414 			 * from going down. This allows the potential re-insert
2415 			 * of the disk to get the same device node.
2416 			 */
2417 			if (dev->physical_device && dev->expose_device) {
2418 				cmd->result = DID_NO_CONNECT << 16;
2419 				dev->removed = 1;
2420 				h->drv_req_rescan = 1;
2421 				dev_warn(&h->pdev->dev,
2422 					"%s: device is gone!\n", __func__);
2423 			} else
2424 				/*
2425 				 * Retry by sending down the RAID path.
2426 				 * We will get an event from ctlr to
2427 				 * trigger rescan regardless.
2428 				 */
2429 				retry = 1;
2430 			break;
2431 		default:
2432 			retry = 1;
2433 		}
2434 		break;
2435 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2436 		break;
2437 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2438 		break;
2439 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2440 		retry = 1;
2441 		break;
2442 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2443 		break;
2444 	default:
2445 		retry = 1;
2446 		break;
2447 	}
2448 
2449 	if (dev->in_reset)
2450 		retry = 0;
2451 
2452 	return retry;	/* retry on raid path? */
2453 }
2454 
2455 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2456 		struct CommandList *c)
2457 {
2458 	struct hpsa_scsi_dev_t *dev = c->device;
2459 
2460 	/*
2461 	 * Reset c->scsi_cmd here so that the reset handler will know
2462 	 * this command has completed.  Then, check to see if the handler is
2463 	 * waiting for this command, and, if so, wake it.
2464 	 */
2465 	c->scsi_cmd = SCSI_CMD_IDLE;
2466 	mb();	/* Declare command idle before checking for pending events. */
2467 	if (dev) {
2468 		atomic_dec(&dev->commands_outstanding);
2469 		if (dev->in_reset &&
2470 			atomic_read(&dev->commands_outstanding) <= 0)
2471 			wake_up_all(&h->event_sync_wait_queue);
2472 	}
2473 }
2474 
2475 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2476 				      struct CommandList *c)
2477 {
2478 	hpsa_cmd_resolve_events(h, c);
2479 	cmd_tagged_free(h, c);
2480 }
2481 
2482 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2483 		struct CommandList *c, struct scsi_cmnd *cmd)
2484 {
2485 	hpsa_cmd_resolve_and_free(h, c);
2486 	if (cmd && cmd->scsi_done)
2487 		cmd->scsi_done(cmd);
2488 }
2489 
2490 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2491 {
2492 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2493 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2494 }
2495 
2496 static void process_ioaccel2_completion(struct ctlr_info *h,
2497 		struct CommandList *c, struct scsi_cmnd *cmd,
2498 		struct hpsa_scsi_dev_t *dev)
2499 {
2500 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2501 
2502 	/* check for good status */
2503 	if (likely(c2->error_data.serv_response == 0 &&
2504 			c2->error_data.status == 0)) {
2505 		cmd->result = 0;
2506 		return hpsa_cmd_free_and_done(h, c, cmd);
2507 	}
2508 
2509 	/*
2510 	 * Any RAID offload error results in retry which will use
2511 	 * the normal I/O path so the controller can handle whatever is
2512 	 * wrong.
2513 	 */
2514 	if (is_logical_device(dev) &&
2515 		c2->error_data.serv_response ==
2516 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2517 		if (c2->error_data.status ==
2518 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2519 			hpsa_turn_off_ioaccel_for_device(dev);
2520 		}
2521 
2522 		if (dev->in_reset) {
2523 			cmd->result = DID_RESET << 16;
2524 			return hpsa_cmd_free_and_done(h, c, cmd);
2525 		}
2526 
2527 		return hpsa_retry_cmd(h, c);
2528 	}
2529 
2530 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2531 		return hpsa_retry_cmd(h, c);
2532 
2533 	return hpsa_cmd_free_and_done(h, c, cmd);
2534 }
2535 
2536 /* Returns 0 on success, < 0 otherwise. */
2537 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2538 					struct CommandList *cp)
2539 {
2540 	u8 tmf_status = cp->err_info->ScsiStatus;
2541 
2542 	switch (tmf_status) {
2543 	case CISS_TMF_COMPLETE:
2544 		/*
2545 		 * CISS_TMF_COMPLETE never happens, instead,
2546 		 * ei->CommandStatus == 0 for this case.
2547 		 */
2548 	case CISS_TMF_SUCCESS:
2549 		return 0;
2550 	case CISS_TMF_INVALID_FRAME:
2551 	case CISS_TMF_NOT_SUPPORTED:
2552 	case CISS_TMF_FAILED:
2553 	case CISS_TMF_WRONG_LUN:
2554 	case CISS_TMF_OVERLAPPED_TAG:
2555 		break;
2556 	default:
2557 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2558 				tmf_status);
2559 		break;
2560 	}
2561 	return -tmf_status;
2562 }
2563 
2564 static void complete_scsi_command(struct CommandList *cp)
2565 {
2566 	struct scsi_cmnd *cmd;
2567 	struct ctlr_info *h;
2568 	struct ErrorInfo *ei;
2569 	struct hpsa_scsi_dev_t *dev;
2570 	struct io_accel2_cmd *c2;
2571 
2572 	u8 sense_key;
2573 	u8 asc;      /* additional sense code */
2574 	u8 ascq;     /* additional sense code qualifier */
2575 	unsigned long sense_data_size;
2576 
2577 	ei = cp->err_info;
2578 	cmd = cp->scsi_cmd;
2579 	h = cp->h;
2580 
2581 	if (!cmd->device) {
2582 		cmd->result = DID_NO_CONNECT << 16;
2583 		return hpsa_cmd_free_and_done(h, cp, cmd);
2584 	}
2585 
2586 	dev = cmd->device->hostdata;
2587 	if (!dev) {
2588 		cmd->result = DID_NO_CONNECT << 16;
2589 		return hpsa_cmd_free_and_done(h, cp, cmd);
2590 	}
2591 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2592 
2593 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2594 	if ((cp->cmd_type == CMD_SCSI) &&
2595 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2596 		hpsa_unmap_sg_chain_block(h, cp);
2597 
2598 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2599 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2600 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2601 
2602 	cmd->result = (DID_OK << 16);		/* host byte */
2603 
2604 	/* SCSI command has already been cleaned up in SML */
2605 	if (dev->was_removed) {
2606 		hpsa_cmd_resolve_and_free(h, cp);
2607 		return;
2608 	}
2609 
2610 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2611 		if (dev->physical_device && dev->expose_device &&
2612 			dev->removed) {
2613 			cmd->result = DID_NO_CONNECT << 16;
2614 			return hpsa_cmd_free_and_done(h, cp, cmd);
2615 		}
2616 		if (likely(cp->phys_disk != NULL))
2617 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2618 	}
2619 
2620 	/*
2621 	 * We check for lockup status here as it may be set for
2622 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2623 	 * fail_all_oustanding_cmds()
2624 	 */
2625 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2626 		/* DID_NO_CONNECT will prevent a retry */
2627 		cmd->result = DID_NO_CONNECT << 16;
2628 		return hpsa_cmd_free_and_done(h, cp, cmd);
2629 	}
2630 
2631 	if (cp->cmd_type == CMD_IOACCEL2)
2632 		return process_ioaccel2_completion(h, cp, cmd, dev);
2633 
2634 	scsi_set_resid(cmd, ei->ResidualCnt);
2635 	if (ei->CommandStatus == 0)
2636 		return hpsa_cmd_free_and_done(h, cp, cmd);
2637 
2638 	/* For I/O accelerator commands, copy over some fields to the normal
2639 	 * CISS header used below for error handling.
2640 	 */
2641 	if (cp->cmd_type == CMD_IOACCEL1) {
2642 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2643 		cp->Header.SGList = scsi_sg_count(cmd);
2644 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2645 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2646 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2647 		cp->Header.tag = c->tag;
2648 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2649 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2650 
2651 		/* Any RAID offload error results in retry which will use
2652 		 * the normal I/O path so the controller can handle whatever's
2653 		 * wrong.
2654 		 */
2655 		if (is_logical_device(dev)) {
2656 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2657 				dev->offload_enabled = 0;
2658 			return hpsa_retry_cmd(h, cp);
2659 		}
2660 	}
2661 
2662 	/* an error has occurred */
2663 	switch (ei->CommandStatus) {
2664 
2665 	case CMD_TARGET_STATUS:
2666 		cmd->result |= ei->ScsiStatus;
2667 		/* copy the sense data */
2668 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2669 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2670 		else
2671 			sense_data_size = sizeof(ei->SenseInfo);
2672 		if (ei->SenseLen < sense_data_size)
2673 			sense_data_size = ei->SenseLen;
2674 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2675 		if (ei->ScsiStatus)
2676 			decode_sense_data(ei->SenseInfo, sense_data_size,
2677 				&sense_key, &asc, &ascq);
2678 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2679 			switch (sense_key) {
2680 			case ABORTED_COMMAND:
2681 				cmd->result |= DID_SOFT_ERROR << 16;
2682 				break;
2683 			case UNIT_ATTENTION:
2684 				if (asc == 0x3F && ascq == 0x0E)
2685 					h->drv_req_rescan = 1;
2686 				break;
2687 			case ILLEGAL_REQUEST:
2688 				if (asc == 0x25 && ascq == 0x00) {
2689 					dev->removed = 1;
2690 					cmd->result = DID_NO_CONNECT << 16;
2691 				}
2692 				break;
2693 			}
2694 			break;
2695 		}
2696 		/* Problem was not a check condition
2697 		 * Pass it up to the upper layers...
2698 		 */
2699 		if (ei->ScsiStatus) {
2700 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2701 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2702 				"Returning result: 0x%x\n",
2703 				cp, ei->ScsiStatus,
2704 				sense_key, asc, ascq,
2705 				cmd->result);
2706 		} else {  /* scsi status is zero??? How??? */
2707 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2708 				"Returning no connection.\n", cp),
2709 
2710 			/* Ordinarily, this case should never happen,
2711 			 * but there is a bug in some released firmware
2712 			 * revisions that allows it to happen if, for
2713 			 * example, a 4100 backplane loses power and
2714 			 * the tape drive is in it.  We assume that
2715 			 * it's a fatal error of some kind because we
2716 			 * can't show that it wasn't. We will make it
2717 			 * look like selection timeout since that is
2718 			 * the most common reason for this to occur,
2719 			 * and it's severe enough.
2720 			 */
2721 
2722 			cmd->result = DID_NO_CONNECT << 16;
2723 		}
2724 		break;
2725 
2726 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2727 		break;
2728 	case CMD_DATA_OVERRUN:
2729 		dev_warn(&h->pdev->dev,
2730 			"CDB %16phN data overrun\n", cp->Request.CDB);
2731 		break;
2732 	case CMD_INVALID: {
2733 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2734 		print_cmd(cp); */
2735 		/* We get CMD_INVALID if you address a non-existent device
2736 		 * instead of a selection timeout (no response).  You will
2737 		 * see this if you yank out a drive, then try to access it.
2738 		 * This is kind of a shame because it means that any other
2739 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2740 		 * missing target. */
2741 		cmd->result = DID_NO_CONNECT << 16;
2742 	}
2743 		break;
2744 	case CMD_PROTOCOL_ERR:
2745 		cmd->result = DID_ERROR << 16;
2746 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2747 				cp->Request.CDB);
2748 		break;
2749 	case CMD_HARDWARE_ERR:
2750 		cmd->result = DID_ERROR << 16;
2751 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2752 			cp->Request.CDB);
2753 		break;
2754 	case CMD_CONNECTION_LOST:
2755 		cmd->result = DID_ERROR << 16;
2756 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2757 			cp->Request.CDB);
2758 		break;
2759 	case CMD_ABORTED:
2760 		cmd->result = DID_ABORT << 16;
2761 		break;
2762 	case CMD_ABORT_FAILED:
2763 		cmd->result = DID_ERROR << 16;
2764 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2765 			cp->Request.CDB);
2766 		break;
2767 	case CMD_UNSOLICITED_ABORT:
2768 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2769 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2770 			cp->Request.CDB);
2771 		break;
2772 	case CMD_TIMEOUT:
2773 		cmd->result = DID_TIME_OUT << 16;
2774 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2775 			cp->Request.CDB);
2776 		break;
2777 	case CMD_UNABORTABLE:
2778 		cmd->result = DID_ERROR << 16;
2779 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2780 		break;
2781 	case CMD_TMF_STATUS:
2782 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2783 			cmd->result = DID_ERROR << 16;
2784 		break;
2785 	case CMD_IOACCEL_DISABLED:
2786 		/* This only handles the direct pass-through case since RAID
2787 		 * offload is handled above.  Just attempt a retry.
2788 		 */
2789 		cmd->result = DID_SOFT_ERROR << 16;
2790 		dev_warn(&h->pdev->dev,
2791 				"cp %p had HP SSD Smart Path error\n", cp);
2792 		break;
2793 	default:
2794 		cmd->result = DID_ERROR << 16;
2795 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2796 				cp, ei->CommandStatus);
2797 	}
2798 
2799 	return hpsa_cmd_free_and_done(h, cp, cmd);
2800 }
2801 
2802 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2803 		int sg_used, enum dma_data_direction data_direction)
2804 {
2805 	int i;
2806 
2807 	for (i = 0; i < sg_used; i++)
2808 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2809 				le32_to_cpu(c->SG[i].Len),
2810 				data_direction);
2811 }
2812 
2813 static int hpsa_map_one(struct pci_dev *pdev,
2814 		struct CommandList *cp,
2815 		unsigned char *buf,
2816 		size_t buflen,
2817 		enum dma_data_direction data_direction)
2818 {
2819 	u64 addr64;
2820 
2821 	if (buflen == 0 || data_direction == DMA_NONE) {
2822 		cp->Header.SGList = 0;
2823 		cp->Header.SGTotal = cpu_to_le16(0);
2824 		return 0;
2825 	}
2826 
2827 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2828 	if (dma_mapping_error(&pdev->dev, addr64)) {
2829 		/* Prevent subsequent unmap of something never mapped */
2830 		cp->Header.SGList = 0;
2831 		cp->Header.SGTotal = cpu_to_le16(0);
2832 		return -1;
2833 	}
2834 	cp->SG[0].Addr = cpu_to_le64(addr64);
2835 	cp->SG[0].Len = cpu_to_le32(buflen);
2836 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2837 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2838 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2839 	return 0;
2840 }
2841 
2842 #define NO_TIMEOUT ((unsigned long) -1)
2843 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2844 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2845 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2846 {
2847 	DECLARE_COMPLETION_ONSTACK(wait);
2848 
2849 	c->waiting = &wait;
2850 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2851 	if (timeout_msecs == NO_TIMEOUT) {
2852 		/* TODO: get rid of this no-timeout thing */
2853 		wait_for_completion_io(&wait);
2854 		return IO_OK;
2855 	}
2856 	if (!wait_for_completion_io_timeout(&wait,
2857 					msecs_to_jiffies(timeout_msecs))) {
2858 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2859 		return -ETIMEDOUT;
2860 	}
2861 	return IO_OK;
2862 }
2863 
2864 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2865 				   int reply_queue, unsigned long timeout_msecs)
2866 {
2867 	if (unlikely(lockup_detected(h))) {
2868 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2869 		return IO_OK;
2870 	}
2871 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2872 }
2873 
2874 static u32 lockup_detected(struct ctlr_info *h)
2875 {
2876 	int cpu;
2877 	u32 rc, *lockup_detected;
2878 
2879 	cpu = get_cpu();
2880 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2881 	rc = *lockup_detected;
2882 	put_cpu();
2883 	return rc;
2884 }
2885 
2886 #define MAX_DRIVER_CMD_RETRIES 25
2887 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2888 		struct CommandList *c, enum dma_data_direction data_direction,
2889 		unsigned long timeout_msecs)
2890 {
2891 	int backoff_time = 10, retry_count = 0;
2892 	int rc;
2893 
2894 	do {
2895 		memset(c->err_info, 0, sizeof(*c->err_info));
2896 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2897 						  timeout_msecs);
2898 		if (rc)
2899 			break;
2900 		retry_count++;
2901 		if (retry_count > 3) {
2902 			msleep(backoff_time);
2903 			if (backoff_time < 1000)
2904 				backoff_time *= 2;
2905 		}
2906 	} while ((check_for_unit_attention(h, c) ||
2907 			check_for_busy(h, c)) &&
2908 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2909 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2910 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2911 		rc = -EIO;
2912 	return rc;
2913 }
2914 
2915 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2916 				struct CommandList *c)
2917 {
2918 	const u8 *cdb = c->Request.CDB;
2919 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2920 
2921 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2922 		 txt, lun, cdb);
2923 }
2924 
2925 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2926 			struct CommandList *cp)
2927 {
2928 	const struct ErrorInfo *ei = cp->err_info;
2929 	struct device *d = &cp->h->pdev->dev;
2930 	u8 sense_key, asc, ascq;
2931 	int sense_len;
2932 
2933 	switch (ei->CommandStatus) {
2934 	case CMD_TARGET_STATUS:
2935 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2936 			sense_len = sizeof(ei->SenseInfo);
2937 		else
2938 			sense_len = ei->SenseLen;
2939 		decode_sense_data(ei->SenseInfo, sense_len,
2940 					&sense_key, &asc, &ascq);
2941 		hpsa_print_cmd(h, "SCSI status", cp);
2942 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2943 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2944 				sense_key, asc, ascq);
2945 		else
2946 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2947 		if (ei->ScsiStatus == 0)
2948 			dev_warn(d, "SCSI status is abnormally zero.  "
2949 			"(probably indicates selection timeout "
2950 			"reported incorrectly due to a known "
2951 			"firmware bug, circa July, 2001.)\n");
2952 		break;
2953 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2954 		break;
2955 	case CMD_DATA_OVERRUN:
2956 		hpsa_print_cmd(h, "overrun condition", cp);
2957 		break;
2958 	case CMD_INVALID: {
2959 		/* controller unfortunately reports SCSI passthru's
2960 		 * to non-existent targets as invalid commands.
2961 		 */
2962 		hpsa_print_cmd(h, "invalid command", cp);
2963 		dev_warn(d, "probably means device no longer present\n");
2964 		}
2965 		break;
2966 	case CMD_PROTOCOL_ERR:
2967 		hpsa_print_cmd(h, "protocol error", cp);
2968 		break;
2969 	case CMD_HARDWARE_ERR:
2970 		hpsa_print_cmd(h, "hardware error", cp);
2971 		break;
2972 	case CMD_CONNECTION_LOST:
2973 		hpsa_print_cmd(h, "connection lost", cp);
2974 		break;
2975 	case CMD_ABORTED:
2976 		hpsa_print_cmd(h, "aborted", cp);
2977 		break;
2978 	case CMD_ABORT_FAILED:
2979 		hpsa_print_cmd(h, "abort failed", cp);
2980 		break;
2981 	case CMD_UNSOLICITED_ABORT:
2982 		hpsa_print_cmd(h, "unsolicited abort", cp);
2983 		break;
2984 	case CMD_TIMEOUT:
2985 		hpsa_print_cmd(h, "timed out", cp);
2986 		break;
2987 	case CMD_UNABORTABLE:
2988 		hpsa_print_cmd(h, "unabortable", cp);
2989 		break;
2990 	case CMD_CTLR_LOCKUP:
2991 		hpsa_print_cmd(h, "controller lockup detected", cp);
2992 		break;
2993 	default:
2994 		hpsa_print_cmd(h, "unknown status", cp);
2995 		dev_warn(d, "Unknown command status %x\n",
2996 				ei->CommandStatus);
2997 	}
2998 }
2999 
3000 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3001 					u8 page, u8 *buf, size_t bufsize)
3002 {
3003 	int rc = IO_OK;
3004 	struct CommandList *c;
3005 	struct ErrorInfo *ei;
3006 
3007 	c = cmd_alloc(h);
3008 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3009 			page, scsi3addr, TYPE_CMD)) {
3010 		rc = -1;
3011 		goto out;
3012 	}
3013 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3014 			NO_TIMEOUT);
3015 	if (rc)
3016 		goto out;
3017 	ei = c->err_info;
3018 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3019 		hpsa_scsi_interpret_error(h, c);
3020 		rc = -1;
3021 	}
3022 out:
3023 	cmd_free(h, c);
3024 	return rc;
3025 }
3026 
3027 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3028 						u8 *scsi3addr)
3029 {
3030 	u8 *buf;
3031 	u64 sa = 0;
3032 	int rc = 0;
3033 
3034 	buf = kzalloc(1024, GFP_KERNEL);
3035 	if (!buf)
3036 		return 0;
3037 
3038 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3039 					buf, 1024);
3040 
3041 	if (rc)
3042 		goto out;
3043 
3044 	sa = get_unaligned_be64(buf+12);
3045 
3046 out:
3047 	kfree(buf);
3048 	return sa;
3049 }
3050 
3051 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3052 			u16 page, unsigned char *buf,
3053 			unsigned char bufsize)
3054 {
3055 	int rc = IO_OK;
3056 	struct CommandList *c;
3057 	struct ErrorInfo *ei;
3058 
3059 	c = cmd_alloc(h);
3060 
3061 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3062 			page, scsi3addr, TYPE_CMD)) {
3063 		rc = -1;
3064 		goto out;
3065 	}
3066 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3067 			NO_TIMEOUT);
3068 	if (rc)
3069 		goto out;
3070 	ei = c->err_info;
3071 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3072 		hpsa_scsi_interpret_error(h, c);
3073 		rc = -1;
3074 	}
3075 out:
3076 	cmd_free(h, c);
3077 	return rc;
3078 }
3079 
3080 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3081 	u8 reset_type, int reply_queue)
3082 {
3083 	int rc = IO_OK;
3084 	struct CommandList *c;
3085 	struct ErrorInfo *ei;
3086 
3087 	c = cmd_alloc(h);
3088 	c->device = dev;
3089 
3090 	/* fill_cmd can't fail here, no data buffer to map. */
3091 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3092 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3093 	if (rc) {
3094 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3095 		goto out;
3096 	}
3097 	/* no unmap needed here because no data xfer. */
3098 
3099 	ei = c->err_info;
3100 	if (ei->CommandStatus != 0) {
3101 		hpsa_scsi_interpret_error(h, c);
3102 		rc = -1;
3103 	}
3104 out:
3105 	cmd_free(h, c);
3106 	return rc;
3107 }
3108 
3109 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3110 			       struct hpsa_scsi_dev_t *dev,
3111 			       unsigned char *scsi3addr)
3112 {
3113 	int i;
3114 	bool match = false;
3115 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3116 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3117 
3118 	if (hpsa_is_cmd_idle(c))
3119 		return false;
3120 
3121 	switch (c->cmd_type) {
3122 	case CMD_SCSI:
3123 	case CMD_IOCTL_PEND:
3124 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3125 				sizeof(c->Header.LUN.LunAddrBytes));
3126 		break;
3127 
3128 	case CMD_IOACCEL1:
3129 	case CMD_IOACCEL2:
3130 		if (c->phys_disk == dev) {
3131 			/* HBA mode match */
3132 			match = true;
3133 		} else {
3134 			/* Possible RAID mode -- check each phys dev. */
3135 			/* FIXME:  Do we need to take out a lock here?  If
3136 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3137 			 * instead. */
3138 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3139 				/* FIXME: an alternate test might be
3140 				 *
3141 				 * match = dev->phys_disk[i]->ioaccel_handle
3142 				 *              == c2->scsi_nexus;      */
3143 				match = dev->phys_disk[i] == c->phys_disk;
3144 			}
3145 		}
3146 		break;
3147 
3148 	case IOACCEL2_TMF:
3149 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3150 			match = dev->phys_disk[i]->ioaccel_handle ==
3151 					le32_to_cpu(ac->it_nexus);
3152 		}
3153 		break;
3154 
3155 	case 0:		/* The command is in the middle of being initialized. */
3156 		match = false;
3157 		break;
3158 
3159 	default:
3160 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3161 			c->cmd_type);
3162 		BUG();
3163 	}
3164 
3165 	return match;
3166 }
3167 
3168 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3169 	u8 reset_type, int reply_queue)
3170 {
3171 	int rc = 0;
3172 
3173 	/* We can really only handle one reset at a time */
3174 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3175 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3176 		return -EINTR;
3177 	}
3178 
3179 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3180 	if (!rc) {
3181 		/* incremented by sending the reset request */
3182 		atomic_dec(&dev->commands_outstanding);
3183 		wait_event(h->event_sync_wait_queue,
3184 			atomic_read(&dev->commands_outstanding) <= 0 ||
3185 			lockup_detected(h));
3186 	}
3187 
3188 	if (unlikely(lockup_detected(h))) {
3189 		dev_warn(&h->pdev->dev,
3190 			 "Controller lockup detected during reset wait\n");
3191 		rc = -ENODEV;
3192 	}
3193 
3194 	if (!rc)
3195 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3196 
3197 	mutex_unlock(&h->reset_mutex);
3198 	return rc;
3199 }
3200 
3201 static void hpsa_get_raid_level(struct ctlr_info *h,
3202 	unsigned char *scsi3addr, unsigned char *raid_level)
3203 {
3204 	int rc;
3205 	unsigned char *buf;
3206 
3207 	*raid_level = RAID_UNKNOWN;
3208 	buf = kzalloc(64, GFP_KERNEL);
3209 	if (!buf)
3210 		return;
3211 
3212 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3213 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3214 		goto exit;
3215 
3216 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3217 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3218 
3219 	if (rc == 0)
3220 		*raid_level = buf[8];
3221 	if (*raid_level > RAID_UNKNOWN)
3222 		*raid_level = RAID_UNKNOWN;
3223 exit:
3224 	kfree(buf);
3225 	return;
3226 }
3227 
3228 #define HPSA_MAP_DEBUG
3229 #ifdef HPSA_MAP_DEBUG
3230 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3231 				struct raid_map_data *map_buff)
3232 {
3233 	struct raid_map_disk_data *dd = &map_buff->data[0];
3234 	int map, row, col;
3235 	u16 map_cnt, row_cnt, disks_per_row;
3236 
3237 	if (rc != 0)
3238 		return;
3239 
3240 	/* Show details only if debugging has been activated. */
3241 	if (h->raid_offload_debug < 2)
3242 		return;
3243 
3244 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3245 				le32_to_cpu(map_buff->structure_size));
3246 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3247 			le32_to_cpu(map_buff->volume_blk_size));
3248 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3249 			le64_to_cpu(map_buff->volume_blk_cnt));
3250 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3251 			map_buff->phys_blk_shift);
3252 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3253 			map_buff->parity_rotation_shift);
3254 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3255 			le16_to_cpu(map_buff->strip_size));
3256 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3257 			le64_to_cpu(map_buff->disk_starting_blk));
3258 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3259 			le64_to_cpu(map_buff->disk_blk_cnt));
3260 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3261 			le16_to_cpu(map_buff->data_disks_per_row));
3262 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3263 			le16_to_cpu(map_buff->metadata_disks_per_row));
3264 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3265 			le16_to_cpu(map_buff->row_cnt));
3266 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3267 			le16_to_cpu(map_buff->layout_map_count));
3268 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3269 			le16_to_cpu(map_buff->flags));
3270 	dev_info(&h->pdev->dev, "encryption = %s\n",
3271 			le16_to_cpu(map_buff->flags) &
3272 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3273 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3274 			le16_to_cpu(map_buff->dekindex));
3275 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3276 	for (map = 0; map < map_cnt; map++) {
3277 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3278 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3279 		for (row = 0; row < row_cnt; row++) {
3280 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3281 			disks_per_row =
3282 				le16_to_cpu(map_buff->data_disks_per_row);
3283 			for (col = 0; col < disks_per_row; col++, dd++)
3284 				dev_info(&h->pdev->dev,
3285 					"    D%02u: h=0x%04x xor=%u,%u\n",
3286 					col, dd->ioaccel_handle,
3287 					dd->xor_mult[0], dd->xor_mult[1]);
3288 			disks_per_row =
3289 				le16_to_cpu(map_buff->metadata_disks_per_row);
3290 			for (col = 0; col < disks_per_row; col++, dd++)
3291 				dev_info(&h->pdev->dev,
3292 					"    M%02u: h=0x%04x xor=%u,%u\n",
3293 					col, dd->ioaccel_handle,
3294 					dd->xor_mult[0], dd->xor_mult[1]);
3295 		}
3296 	}
3297 }
3298 #else
3299 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3300 			__attribute__((unused)) int rc,
3301 			__attribute__((unused)) struct raid_map_data *map_buff)
3302 {
3303 }
3304 #endif
3305 
3306 static int hpsa_get_raid_map(struct ctlr_info *h,
3307 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3308 {
3309 	int rc = 0;
3310 	struct CommandList *c;
3311 	struct ErrorInfo *ei;
3312 
3313 	c = cmd_alloc(h);
3314 
3315 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3316 			sizeof(this_device->raid_map), 0,
3317 			scsi3addr, TYPE_CMD)) {
3318 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3319 		cmd_free(h, c);
3320 		return -1;
3321 	}
3322 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3323 			NO_TIMEOUT);
3324 	if (rc)
3325 		goto out;
3326 	ei = c->err_info;
3327 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3328 		hpsa_scsi_interpret_error(h, c);
3329 		rc = -1;
3330 		goto out;
3331 	}
3332 	cmd_free(h, c);
3333 
3334 	/* @todo in the future, dynamically allocate RAID map memory */
3335 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3336 				sizeof(this_device->raid_map)) {
3337 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3338 		rc = -1;
3339 	}
3340 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3341 	return rc;
3342 out:
3343 	cmd_free(h, c);
3344 	return rc;
3345 }
3346 
3347 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3348 		unsigned char scsi3addr[], u16 bmic_device_index,
3349 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3350 {
3351 	int rc = IO_OK;
3352 	struct CommandList *c;
3353 	struct ErrorInfo *ei;
3354 
3355 	c = cmd_alloc(h);
3356 
3357 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3358 		0, RAID_CTLR_LUNID, TYPE_CMD);
3359 	if (rc)
3360 		goto out;
3361 
3362 	c->Request.CDB[2] = bmic_device_index & 0xff;
3363 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3364 
3365 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3366 			NO_TIMEOUT);
3367 	if (rc)
3368 		goto out;
3369 	ei = c->err_info;
3370 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3371 		hpsa_scsi_interpret_error(h, c);
3372 		rc = -1;
3373 	}
3374 out:
3375 	cmd_free(h, c);
3376 	return rc;
3377 }
3378 
3379 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3380 	struct bmic_identify_controller *buf, size_t bufsize)
3381 {
3382 	int rc = IO_OK;
3383 	struct CommandList *c;
3384 	struct ErrorInfo *ei;
3385 
3386 	c = cmd_alloc(h);
3387 
3388 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3389 		0, RAID_CTLR_LUNID, TYPE_CMD);
3390 	if (rc)
3391 		goto out;
3392 
3393 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3394 			NO_TIMEOUT);
3395 	if (rc)
3396 		goto out;
3397 	ei = c->err_info;
3398 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3399 		hpsa_scsi_interpret_error(h, c);
3400 		rc = -1;
3401 	}
3402 out:
3403 	cmd_free(h, c);
3404 	return rc;
3405 }
3406 
3407 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3408 		unsigned char scsi3addr[], u16 bmic_device_index,
3409 		struct bmic_identify_physical_device *buf, size_t bufsize)
3410 {
3411 	int rc = IO_OK;
3412 	struct CommandList *c;
3413 	struct ErrorInfo *ei;
3414 
3415 	c = cmd_alloc(h);
3416 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3417 		0, RAID_CTLR_LUNID, TYPE_CMD);
3418 	if (rc)
3419 		goto out;
3420 
3421 	c->Request.CDB[2] = bmic_device_index & 0xff;
3422 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3423 
3424 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3425 						NO_TIMEOUT);
3426 	ei = c->err_info;
3427 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3428 		hpsa_scsi_interpret_error(h, c);
3429 		rc = -1;
3430 	}
3431 out:
3432 	cmd_free(h, c);
3433 
3434 	return rc;
3435 }
3436 
3437 /*
3438  * get enclosure information
3439  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3440  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3441  * Uses id_physical_device to determine the box_index.
3442  */
3443 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3444 			unsigned char *scsi3addr,
3445 			struct ReportExtendedLUNdata *rlep, int rle_index,
3446 			struct hpsa_scsi_dev_t *encl_dev)
3447 {
3448 	int rc = -1;
3449 	struct CommandList *c = NULL;
3450 	struct ErrorInfo *ei = NULL;
3451 	struct bmic_sense_storage_box_params *bssbp = NULL;
3452 	struct bmic_identify_physical_device *id_phys = NULL;
3453 	struct ext_report_lun_entry *rle;
3454 	u16 bmic_device_index = 0;
3455 
3456 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3457 		return;
3458 
3459 	rle = &rlep->LUN[rle_index];
3460 
3461 	encl_dev->eli =
3462 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3463 
3464 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3465 
3466 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3467 		rc = IO_OK;
3468 		goto out;
3469 	}
3470 
3471 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3472 		rc = IO_OK;
3473 		goto out;
3474 	}
3475 
3476 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3477 	if (!bssbp)
3478 		goto out;
3479 
3480 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3481 	if (!id_phys)
3482 		goto out;
3483 
3484 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3485 						id_phys, sizeof(*id_phys));
3486 	if (rc) {
3487 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3488 			__func__, encl_dev->external, bmic_device_index);
3489 		goto out;
3490 	}
3491 
3492 	c = cmd_alloc(h);
3493 
3494 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3495 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3496 
3497 	if (rc)
3498 		goto out;
3499 
3500 	if (id_phys->phys_connector[1] == 'E')
3501 		c->Request.CDB[5] = id_phys->box_index;
3502 	else
3503 		c->Request.CDB[5] = 0;
3504 
3505 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3506 						NO_TIMEOUT);
3507 	if (rc)
3508 		goto out;
3509 
3510 	ei = c->err_info;
3511 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3512 		rc = -1;
3513 		goto out;
3514 	}
3515 
3516 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3517 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3518 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3519 
3520 	rc = IO_OK;
3521 out:
3522 	kfree(bssbp);
3523 	kfree(id_phys);
3524 
3525 	if (c)
3526 		cmd_free(h, c);
3527 
3528 	if (rc != IO_OK)
3529 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3530 			"Error, could not get enclosure information");
3531 }
3532 
3533 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3534 						unsigned char *scsi3addr)
3535 {
3536 	struct ReportExtendedLUNdata *physdev;
3537 	u32 nphysicals;
3538 	u64 sa = 0;
3539 	int i;
3540 
3541 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3542 	if (!physdev)
3543 		return 0;
3544 
3545 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3546 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3547 		kfree(physdev);
3548 		return 0;
3549 	}
3550 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3551 
3552 	for (i = 0; i < nphysicals; i++)
3553 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3554 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3555 			break;
3556 		}
3557 
3558 	kfree(physdev);
3559 
3560 	return sa;
3561 }
3562 
3563 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3564 					struct hpsa_scsi_dev_t *dev)
3565 {
3566 	int rc;
3567 	u64 sa = 0;
3568 
3569 	if (is_hba_lunid(scsi3addr)) {
3570 		struct bmic_sense_subsystem_info *ssi;
3571 
3572 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3573 		if (!ssi)
3574 			return;
3575 
3576 		rc = hpsa_bmic_sense_subsystem_information(h,
3577 					scsi3addr, 0, ssi, sizeof(*ssi));
3578 		if (rc == 0) {
3579 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3580 			h->sas_address = sa;
3581 		}
3582 
3583 		kfree(ssi);
3584 	} else
3585 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3586 
3587 	dev->sas_address = sa;
3588 }
3589 
3590 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3591 	struct ReportExtendedLUNdata *physdev)
3592 {
3593 	u32 nphysicals;
3594 	int i;
3595 
3596 	if (h->discovery_polling)
3597 		return;
3598 
3599 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3600 
3601 	for (i = 0; i < nphysicals; i++) {
3602 		if (physdev->LUN[i].device_type ==
3603 			BMIC_DEVICE_TYPE_CONTROLLER
3604 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3605 			dev_info(&h->pdev->dev,
3606 				"External controller present, activate discovery polling and disable rld caching\n");
3607 			hpsa_disable_rld_caching(h);
3608 			h->discovery_polling = 1;
3609 			break;
3610 		}
3611 	}
3612 }
3613 
3614 /* Get a device id from inquiry page 0x83 */
3615 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3616 	unsigned char scsi3addr[], u8 page)
3617 {
3618 	int rc;
3619 	int i;
3620 	int pages;
3621 	unsigned char *buf, bufsize;
3622 
3623 	buf = kzalloc(256, GFP_KERNEL);
3624 	if (!buf)
3625 		return false;
3626 
3627 	/* Get the size of the page list first */
3628 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3629 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3630 				buf, HPSA_VPD_HEADER_SZ);
3631 	if (rc != 0)
3632 		goto exit_unsupported;
3633 	pages = buf[3];
3634 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3635 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3636 	else
3637 		bufsize = 255;
3638 
3639 	/* Get the whole VPD page list */
3640 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3641 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3642 				buf, bufsize);
3643 	if (rc != 0)
3644 		goto exit_unsupported;
3645 
3646 	pages = buf[3];
3647 	for (i = 1; i <= pages; i++)
3648 		if (buf[3 + i] == page)
3649 			goto exit_supported;
3650 exit_unsupported:
3651 	kfree(buf);
3652 	return false;
3653 exit_supported:
3654 	kfree(buf);
3655 	return true;
3656 }
3657 
3658 /*
3659  * Called during a scan operation.
3660  * Sets ioaccel status on the new device list, not the existing device list
3661  *
3662  * The device list used during I/O will be updated later in
3663  * adjust_hpsa_scsi_table.
3664  */
3665 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3666 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3667 {
3668 	int rc;
3669 	unsigned char *buf;
3670 	u8 ioaccel_status;
3671 
3672 	this_device->offload_config = 0;
3673 	this_device->offload_enabled = 0;
3674 	this_device->offload_to_be_enabled = 0;
3675 
3676 	buf = kzalloc(64, GFP_KERNEL);
3677 	if (!buf)
3678 		return;
3679 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3680 		goto out;
3681 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3682 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3683 	if (rc != 0)
3684 		goto out;
3685 
3686 #define IOACCEL_STATUS_BYTE 4
3687 #define OFFLOAD_CONFIGURED_BIT 0x01
3688 #define OFFLOAD_ENABLED_BIT 0x02
3689 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3690 	this_device->offload_config =
3691 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3692 	if (this_device->offload_config) {
3693 		bool offload_enabled =
3694 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3695 		/*
3696 		 * Check to see if offload can be enabled.
3697 		 */
3698 		if (offload_enabled) {
3699 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3700 			if (rc) /* could not load raid_map */
3701 				goto out;
3702 			this_device->offload_to_be_enabled = 1;
3703 		}
3704 	}
3705 
3706 out:
3707 	kfree(buf);
3708 	return;
3709 }
3710 
3711 /* Get the device id from inquiry page 0x83 */
3712 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3713 	unsigned char *device_id, int index, int buflen)
3714 {
3715 	int rc;
3716 	unsigned char *buf;
3717 
3718 	/* Does controller have VPD for device id? */
3719 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3720 		return 1; /* not supported */
3721 
3722 	buf = kzalloc(64, GFP_KERNEL);
3723 	if (!buf)
3724 		return -ENOMEM;
3725 
3726 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3727 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3728 	if (rc == 0) {
3729 		if (buflen > 16)
3730 			buflen = 16;
3731 		memcpy(device_id, &buf[8], buflen);
3732 	}
3733 
3734 	kfree(buf);
3735 
3736 	return rc; /*0 - got id,  otherwise, didn't */
3737 }
3738 
3739 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3740 		void *buf, int bufsize,
3741 		int extended_response)
3742 {
3743 	int rc = IO_OK;
3744 	struct CommandList *c;
3745 	unsigned char scsi3addr[8];
3746 	struct ErrorInfo *ei;
3747 
3748 	c = cmd_alloc(h);
3749 
3750 	/* address the controller */
3751 	memset(scsi3addr, 0, sizeof(scsi3addr));
3752 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3753 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3754 		rc = -EAGAIN;
3755 		goto out;
3756 	}
3757 	if (extended_response)
3758 		c->Request.CDB[1] = extended_response;
3759 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3760 			NO_TIMEOUT);
3761 	if (rc)
3762 		goto out;
3763 	ei = c->err_info;
3764 	if (ei->CommandStatus != 0 &&
3765 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3766 		hpsa_scsi_interpret_error(h, c);
3767 		rc = -EIO;
3768 	} else {
3769 		struct ReportLUNdata *rld = buf;
3770 
3771 		if (rld->extended_response_flag != extended_response) {
3772 			if (!h->legacy_board) {
3773 				dev_err(&h->pdev->dev,
3774 					"report luns requested format %u, got %u\n",
3775 					extended_response,
3776 					rld->extended_response_flag);
3777 				rc = -EINVAL;
3778 			} else
3779 				rc = -EOPNOTSUPP;
3780 		}
3781 	}
3782 out:
3783 	cmd_free(h, c);
3784 	return rc;
3785 }
3786 
3787 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3788 		struct ReportExtendedLUNdata *buf, int bufsize)
3789 {
3790 	int rc;
3791 	struct ReportLUNdata *lbuf;
3792 
3793 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3794 				      HPSA_REPORT_PHYS_EXTENDED);
3795 	if (!rc || rc != -EOPNOTSUPP)
3796 		return rc;
3797 
3798 	/* REPORT PHYS EXTENDED is not supported */
3799 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3800 	if (!lbuf)
3801 		return -ENOMEM;
3802 
3803 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3804 	if (!rc) {
3805 		int i;
3806 		u32 nphys;
3807 
3808 		/* Copy ReportLUNdata header */
3809 		memcpy(buf, lbuf, 8);
3810 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3811 		for (i = 0; i < nphys; i++)
3812 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3813 	}
3814 	kfree(lbuf);
3815 	return rc;
3816 }
3817 
3818 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3819 		struct ReportLUNdata *buf, int bufsize)
3820 {
3821 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3822 }
3823 
3824 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3825 	int bus, int target, int lun)
3826 {
3827 	device->bus = bus;
3828 	device->target = target;
3829 	device->lun = lun;
3830 }
3831 
3832 /* Use VPD inquiry to get details of volume status */
3833 static int hpsa_get_volume_status(struct ctlr_info *h,
3834 					unsigned char scsi3addr[])
3835 {
3836 	int rc;
3837 	int status;
3838 	int size;
3839 	unsigned char *buf;
3840 
3841 	buf = kzalloc(64, GFP_KERNEL);
3842 	if (!buf)
3843 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3844 
3845 	/* Does controller have VPD for logical volume status? */
3846 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3847 		goto exit_failed;
3848 
3849 	/* Get the size of the VPD return buffer */
3850 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3851 					buf, HPSA_VPD_HEADER_SZ);
3852 	if (rc != 0)
3853 		goto exit_failed;
3854 	size = buf[3];
3855 
3856 	/* Now get the whole VPD buffer */
3857 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3858 					buf, size + HPSA_VPD_HEADER_SZ);
3859 	if (rc != 0)
3860 		goto exit_failed;
3861 	status = buf[4]; /* status byte */
3862 
3863 	kfree(buf);
3864 	return status;
3865 exit_failed:
3866 	kfree(buf);
3867 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3868 }
3869 
3870 /* Determine offline status of a volume.
3871  * Return either:
3872  *  0 (not offline)
3873  *  0xff (offline for unknown reasons)
3874  *  # (integer code indicating one of several NOT READY states
3875  *     describing why a volume is to be kept offline)
3876  */
3877 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3878 					unsigned char scsi3addr[])
3879 {
3880 	struct CommandList *c;
3881 	unsigned char *sense;
3882 	u8 sense_key, asc, ascq;
3883 	int sense_len;
3884 	int rc, ldstat = 0;
3885 #define ASC_LUN_NOT_READY 0x04
3886 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3887 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3888 
3889 	c = cmd_alloc(h);
3890 
3891 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3892 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3893 					NO_TIMEOUT);
3894 	if (rc) {
3895 		cmd_free(h, c);
3896 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3897 	}
3898 	sense = c->err_info->SenseInfo;
3899 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3900 		sense_len = sizeof(c->err_info->SenseInfo);
3901 	else
3902 		sense_len = c->err_info->SenseLen;
3903 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3904 	cmd_free(h, c);
3905 
3906 	/* Determine the reason for not ready state */
3907 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3908 
3909 	/* Keep volume offline in certain cases: */
3910 	switch (ldstat) {
3911 	case HPSA_LV_FAILED:
3912 	case HPSA_LV_UNDERGOING_ERASE:
3913 	case HPSA_LV_NOT_AVAILABLE:
3914 	case HPSA_LV_UNDERGOING_RPI:
3915 	case HPSA_LV_PENDING_RPI:
3916 	case HPSA_LV_ENCRYPTED_NO_KEY:
3917 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3918 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3919 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3920 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3921 		return ldstat;
3922 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3923 		/* If VPD status page isn't available,
3924 		 * use ASC/ASCQ to determine state
3925 		 */
3926 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3927 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3928 			return ldstat;
3929 		break;
3930 	default:
3931 		break;
3932 	}
3933 	return HPSA_LV_OK;
3934 }
3935 
3936 static int hpsa_update_device_info(struct ctlr_info *h,
3937 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3938 	unsigned char *is_OBDR_device)
3939 {
3940 
3941 #define OBDR_SIG_OFFSET 43
3942 #define OBDR_TAPE_SIG "$DR-10"
3943 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3944 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3945 
3946 	unsigned char *inq_buff;
3947 	unsigned char *obdr_sig;
3948 	int rc = 0;
3949 
3950 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3951 	if (!inq_buff) {
3952 		rc = -ENOMEM;
3953 		goto bail_out;
3954 	}
3955 
3956 	/* Do an inquiry to the device to see what it is. */
3957 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3958 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3959 		dev_err(&h->pdev->dev,
3960 			"%s: inquiry failed, device will be skipped.\n",
3961 			__func__);
3962 		rc = HPSA_INQUIRY_FAILED;
3963 		goto bail_out;
3964 	}
3965 
3966 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3967 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3968 
3969 	this_device->devtype = (inq_buff[0] & 0x1f);
3970 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3971 	memcpy(this_device->vendor, &inq_buff[8],
3972 		sizeof(this_device->vendor));
3973 	memcpy(this_device->model, &inq_buff[16],
3974 		sizeof(this_device->model));
3975 	this_device->rev = inq_buff[2];
3976 	memset(this_device->device_id, 0,
3977 		sizeof(this_device->device_id));
3978 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3979 		sizeof(this_device->device_id)) < 0) {
3980 		dev_err(&h->pdev->dev,
3981 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3982 			h->ctlr, __func__,
3983 			h->scsi_host->host_no,
3984 			this_device->bus, this_device->target,
3985 			this_device->lun,
3986 			scsi_device_type(this_device->devtype),
3987 			this_device->model);
3988 		rc = HPSA_LV_FAILED;
3989 		goto bail_out;
3990 	}
3991 
3992 	if ((this_device->devtype == TYPE_DISK ||
3993 		this_device->devtype == TYPE_ZBC) &&
3994 		is_logical_dev_addr_mode(scsi3addr)) {
3995 		unsigned char volume_offline;
3996 
3997 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3998 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3999 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4000 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4001 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4002 		    h->legacy_board) {
4003 			/*
4004 			 * Legacy boards might not support volume status
4005 			 */
4006 			dev_info(&h->pdev->dev,
4007 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4008 				 this_device->target, this_device->lun);
4009 			volume_offline = 0;
4010 		}
4011 		this_device->volume_offline = volume_offline;
4012 		if (volume_offline == HPSA_LV_FAILED) {
4013 			rc = HPSA_LV_FAILED;
4014 			dev_err(&h->pdev->dev,
4015 				"%s: LV failed, device will be skipped.\n",
4016 				__func__);
4017 			goto bail_out;
4018 		}
4019 	} else {
4020 		this_device->raid_level = RAID_UNKNOWN;
4021 		this_device->offload_config = 0;
4022 		hpsa_turn_off_ioaccel_for_device(this_device);
4023 		this_device->hba_ioaccel_enabled = 0;
4024 		this_device->volume_offline = 0;
4025 		this_device->queue_depth = h->nr_cmds;
4026 	}
4027 
4028 	if (this_device->external)
4029 		this_device->queue_depth = EXTERNAL_QD;
4030 
4031 	if (is_OBDR_device) {
4032 		/* See if this is a One-Button-Disaster-Recovery device
4033 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4034 		 */
4035 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4036 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4037 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4038 						OBDR_SIG_LEN) == 0);
4039 	}
4040 	kfree(inq_buff);
4041 	return 0;
4042 
4043 bail_out:
4044 	kfree(inq_buff);
4045 	return rc;
4046 }
4047 
4048 /*
4049  * Helper function to assign bus, target, lun mapping of devices.
4050  * Logical drive target and lun are assigned at this time, but
4051  * physical device lun and target assignment are deferred (assigned
4052  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4053 */
4054 static void figure_bus_target_lun(struct ctlr_info *h,
4055 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4056 {
4057 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4058 
4059 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4060 		/* physical device, target and lun filled in later */
4061 		if (is_hba_lunid(lunaddrbytes)) {
4062 			int bus = HPSA_HBA_BUS;
4063 
4064 			if (!device->rev)
4065 				bus = HPSA_LEGACY_HBA_BUS;
4066 			hpsa_set_bus_target_lun(device,
4067 					bus, 0, lunid & 0x3fff);
4068 		} else
4069 			/* defer target, lun assignment for physical devices */
4070 			hpsa_set_bus_target_lun(device,
4071 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4072 		return;
4073 	}
4074 	/* It's a logical device */
4075 	if (device->external) {
4076 		hpsa_set_bus_target_lun(device,
4077 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4078 			lunid & 0x00ff);
4079 		return;
4080 	}
4081 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4082 				0, lunid & 0x3fff);
4083 }
4084 
4085 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4086 	int i, int nphysicals, int nlocal_logicals)
4087 {
4088 	/* In report logicals, local logicals are listed first,
4089 	* then any externals.
4090 	*/
4091 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4092 
4093 	if (i == raid_ctlr_position)
4094 		return 0;
4095 
4096 	if (i < logicals_start)
4097 		return 0;
4098 
4099 	/* i is in logicals range, but still within local logicals */
4100 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4101 		return 0;
4102 
4103 	return 1; /* it's an external lun */
4104 }
4105 
4106 /*
4107  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4108  * logdev.  The number of luns in physdev and logdev are returned in
4109  * *nphysicals and *nlogicals, respectively.
4110  * Returns 0 on success, -1 otherwise.
4111  */
4112 static int hpsa_gather_lun_info(struct ctlr_info *h,
4113 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4114 	struct ReportLUNdata *logdev, u32 *nlogicals)
4115 {
4116 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4117 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4118 		return -1;
4119 	}
4120 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4121 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4122 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4123 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4124 		*nphysicals = HPSA_MAX_PHYS_LUN;
4125 	}
4126 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4127 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4128 		return -1;
4129 	}
4130 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4131 	/* Reject Logicals in excess of our max capability. */
4132 	if (*nlogicals > HPSA_MAX_LUN) {
4133 		dev_warn(&h->pdev->dev,
4134 			"maximum logical LUNs (%d) exceeded.  "
4135 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4136 			*nlogicals - HPSA_MAX_LUN);
4137 		*nlogicals = HPSA_MAX_LUN;
4138 	}
4139 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4140 		dev_warn(&h->pdev->dev,
4141 			"maximum logical + physical LUNs (%d) exceeded. "
4142 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4143 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4144 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4145 	}
4146 	return 0;
4147 }
4148 
4149 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4150 	int i, int nphysicals, int nlogicals,
4151 	struct ReportExtendedLUNdata *physdev_list,
4152 	struct ReportLUNdata *logdev_list)
4153 {
4154 	/* Helper function, figure out where the LUN ID info is coming from
4155 	 * given index i, lists of physical and logical devices, where in
4156 	 * the list the raid controller is supposed to appear (first or last)
4157 	 */
4158 
4159 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4160 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4161 
4162 	if (i == raid_ctlr_position)
4163 		return RAID_CTLR_LUNID;
4164 
4165 	if (i < logicals_start)
4166 		return &physdev_list->LUN[i -
4167 				(raid_ctlr_position == 0)].lunid[0];
4168 
4169 	if (i < last_device)
4170 		return &logdev_list->LUN[i - nphysicals -
4171 			(raid_ctlr_position == 0)][0];
4172 	BUG();
4173 	return NULL;
4174 }
4175 
4176 /* get physical drive ioaccel handle and queue depth */
4177 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4178 		struct hpsa_scsi_dev_t *dev,
4179 		struct ReportExtendedLUNdata *rlep, int rle_index,
4180 		struct bmic_identify_physical_device *id_phys)
4181 {
4182 	int rc;
4183 	struct ext_report_lun_entry *rle;
4184 
4185 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4186 		return;
4187 
4188 	rle = &rlep->LUN[rle_index];
4189 
4190 	dev->ioaccel_handle = rle->ioaccel_handle;
4191 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4192 		dev->hba_ioaccel_enabled = 1;
4193 	memset(id_phys, 0, sizeof(*id_phys));
4194 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4195 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4196 			sizeof(*id_phys));
4197 	if (!rc)
4198 		/* Reserve space for FW operations */
4199 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4200 #define DRIVE_QUEUE_DEPTH 7
4201 		dev->queue_depth =
4202 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4203 				DRIVE_CMDS_RESERVED_FOR_FW;
4204 	else
4205 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4206 }
4207 
4208 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4209 	struct ReportExtendedLUNdata *rlep, int rle_index,
4210 	struct bmic_identify_physical_device *id_phys)
4211 {
4212 	struct ext_report_lun_entry *rle;
4213 
4214 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4215 		return;
4216 
4217 	rle = &rlep->LUN[rle_index];
4218 
4219 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4220 		this_device->hba_ioaccel_enabled = 1;
4221 
4222 	memcpy(&this_device->active_path_index,
4223 		&id_phys->active_path_number,
4224 		sizeof(this_device->active_path_index));
4225 	memcpy(&this_device->path_map,
4226 		&id_phys->redundant_path_present_map,
4227 		sizeof(this_device->path_map));
4228 	memcpy(&this_device->box,
4229 		&id_phys->alternate_paths_phys_box_on_port,
4230 		sizeof(this_device->box));
4231 	memcpy(&this_device->phys_connector,
4232 		&id_phys->alternate_paths_phys_connector,
4233 		sizeof(this_device->phys_connector));
4234 	memcpy(&this_device->bay,
4235 		&id_phys->phys_bay_in_box,
4236 		sizeof(this_device->bay));
4237 }
4238 
4239 /* get number of local logical disks. */
4240 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4241 	struct bmic_identify_controller *id_ctlr,
4242 	u32 *nlocals)
4243 {
4244 	int rc;
4245 
4246 	if (!id_ctlr) {
4247 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4248 			__func__);
4249 		return -ENOMEM;
4250 	}
4251 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4252 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4253 	if (!rc)
4254 		if (id_ctlr->configured_logical_drive_count < 255)
4255 			*nlocals = id_ctlr->configured_logical_drive_count;
4256 		else
4257 			*nlocals = le16_to_cpu(
4258 					id_ctlr->extended_logical_unit_count);
4259 	else
4260 		*nlocals = -1;
4261 	return rc;
4262 }
4263 
4264 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4265 {
4266 	struct bmic_identify_physical_device *id_phys;
4267 	bool is_spare = false;
4268 	int rc;
4269 
4270 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4271 	if (!id_phys)
4272 		return false;
4273 
4274 	rc = hpsa_bmic_id_physical_device(h,
4275 					lunaddrbytes,
4276 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4277 					id_phys, sizeof(*id_phys));
4278 	if (rc == 0)
4279 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4280 
4281 	kfree(id_phys);
4282 	return is_spare;
4283 }
4284 
4285 #define RPL_DEV_FLAG_NON_DISK                           0x1
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4287 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4288 
4289 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4290 
4291 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4292 				struct ext_report_lun_entry *rle)
4293 {
4294 	u8 device_flags;
4295 	u8 device_type;
4296 
4297 	if (!MASKED_DEVICE(lunaddrbytes))
4298 		return false;
4299 
4300 	device_flags = rle->device_flags;
4301 	device_type = rle->device_type;
4302 
4303 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4304 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4305 			return false;
4306 		return true;
4307 	}
4308 
4309 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4310 		return false;
4311 
4312 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4313 		return false;
4314 
4315 	/*
4316 	 * Spares may be spun down, we do not want to
4317 	 * do an Inquiry to a RAID set spare drive as
4318 	 * that would have them spun up, that is a
4319 	 * performance hit because I/O to the RAID device
4320 	 * stops while the spin up occurs which can take
4321 	 * over 50 seconds.
4322 	 */
4323 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4324 		return true;
4325 
4326 	return false;
4327 }
4328 
4329 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4330 {
4331 	/* the idea here is we could get notified
4332 	 * that some devices have changed, so we do a report
4333 	 * physical luns and report logical luns cmd, and adjust
4334 	 * our list of devices accordingly.
4335 	 *
4336 	 * The scsi3addr's of devices won't change so long as the
4337 	 * adapter is not reset.  That means we can rescan and
4338 	 * tell which devices we already know about, vs. new
4339 	 * devices, vs.  disappearing devices.
4340 	 */
4341 	struct ReportExtendedLUNdata *physdev_list = NULL;
4342 	struct ReportLUNdata *logdev_list = NULL;
4343 	struct bmic_identify_physical_device *id_phys = NULL;
4344 	struct bmic_identify_controller *id_ctlr = NULL;
4345 	u32 nphysicals = 0;
4346 	u32 nlogicals = 0;
4347 	u32 nlocal_logicals = 0;
4348 	u32 ndev_allocated = 0;
4349 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4350 	int ncurrent = 0;
4351 	int i, ndevs_to_allocate;
4352 	int raid_ctlr_position;
4353 	bool physical_device;
4354 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4355 
4356 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4357 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4358 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4359 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4360 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4361 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4362 
4363 	if (!currentsd || !physdev_list || !logdev_list ||
4364 		!tmpdevice || !id_phys || !id_ctlr) {
4365 		dev_err(&h->pdev->dev, "out of memory\n");
4366 		goto out;
4367 	}
4368 	memset(lunzerobits, 0, sizeof(lunzerobits));
4369 
4370 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4371 
4372 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4373 			logdev_list, &nlogicals)) {
4374 		h->drv_req_rescan = 1;
4375 		goto out;
4376 	}
4377 
4378 	/* Set number of local logicals (non PTRAID) */
4379 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4380 		dev_warn(&h->pdev->dev,
4381 			"%s: Can't determine number of local logical devices.\n",
4382 			__func__);
4383 	}
4384 
4385 	/* We might see up to the maximum number of logical and physical disks
4386 	 * plus external target devices, and a device for the local RAID
4387 	 * controller.
4388 	 */
4389 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4390 
4391 	hpsa_ext_ctrl_present(h, physdev_list);
4392 
4393 	/* Allocate the per device structures */
4394 	for (i = 0; i < ndevs_to_allocate; i++) {
4395 		if (i >= HPSA_MAX_DEVICES) {
4396 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4397 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4398 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4399 			break;
4400 		}
4401 
4402 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4403 		if (!currentsd[i]) {
4404 			h->drv_req_rescan = 1;
4405 			goto out;
4406 		}
4407 		ndev_allocated++;
4408 	}
4409 
4410 	if (is_scsi_rev_5(h))
4411 		raid_ctlr_position = 0;
4412 	else
4413 		raid_ctlr_position = nphysicals + nlogicals;
4414 
4415 	/* adjust our table of devices */
4416 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4417 		u8 *lunaddrbytes, is_OBDR = 0;
4418 		int rc = 0;
4419 		int phys_dev_index = i - (raid_ctlr_position == 0);
4420 		bool skip_device = false;
4421 
4422 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4423 
4424 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4425 
4426 		/* Figure out where the LUN ID info is coming from */
4427 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4428 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4429 
4430 		/* Determine if this is a lun from an external target array */
4431 		tmpdevice->external =
4432 			figure_external_status(h, raid_ctlr_position, i,
4433 						nphysicals, nlocal_logicals);
4434 
4435 		/*
4436 		 * Skip over some devices such as a spare.
4437 		 */
4438 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4439 			physical_device) {
4440 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4441 					&physdev_list->LUN[phys_dev_index]);
4442 			if (skip_device)
4443 				continue;
4444 		}
4445 
4446 		/* Get device type, vendor, model, device id, raid_map */
4447 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4448 							&is_OBDR);
4449 		if (rc == -ENOMEM) {
4450 			dev_warn(&h->pdev->dev,
4451 				"Out of memory, rescan deferred.\n");
4452 			h->drv_req_rescan = 1;
4453 			goto out;
4454 		}
4455 		if (rc) {
4456 			h->drv_req_rescan = 1;
4457 			continue;
4458 		}
4459 
4460 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4461 		this_device = currentsd[ncurrent];
4462 
4463 		*this_device = *tmpdevice;
4464 		this_device->physical_device = physical_device;
4465 
4466 		/*
4467 		 * Expose all devices except for physical devices that
4468 		 * are masked.
4469 		 */
4470 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4471 			this_device->expose_device = 0;
4472 		else
4473 			this_device->expose_device = 1;
4474 
4475 
4476 		/*
4477 		 * Get the SAS address for physical devices that are exposed.
4478 		 */
4479 		if (this_device->physical_device && this_device->expose_device)
4480 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4481 
4482 		switch (this_device->devtype) {
4483 		case TYPE_ROM:
4484 			/* We don't *really* support actual CD-ROM devices,
4485 			 * just "One Button Disaster Recovery" tape drive
4486 			 * which temporarily pretends to be a CD-ROM drive.
4487 			 * So we check that the device is really an OBDR tape
4488 			 * device by checking for "$DR-10" in bytes 43-48 of
4489 			 * the inquiry data.
4490 			 */
4491 			if (is_OBDR)
4492 				ncurrent++;
4493 			break;
4494 		case TYPE_DISK:
4495 		case TYPE_ZBC:
4496 			if (this_device->physical_device) {
4497 				/* The disk is in HBA mode. */
4498 				/* Never use RAID mapper in HBA mode. */
4499 				this_device->offload_enabled = 0;
4500 				hpsa_get_ioaccel_drive_info(h, this_device,
4501 					physdev_list, phys_dev_index, id_phys);
4502 				hpsa_get_path_info(this_device,
4503 					physdev_list, phys_dev_index, id_phys);
4504 			}
4505 			ncurrent++;
4506 			break;
4507 		case TYPE_TAPE:
4508 		case TYPE_MEDIUM_CHANGER:
4509 			ncurrent++;
4510 			break;
4511 		case TYPE_ENCLOSURE:
4512 			if (!this_device->external)
4513 				hpsa_get_enclosure_info(h, lunaddrbytes,
4514 						physdev_list, phys_dev_index,
4515 						this_device);
4516 			ncurrent++;
4517 			break;
4518 		case TYPE_RAID:
4519 			/* Only present the Smartarray HBA as a RAID controller.
4520 			 * If it's a RAID controller other than the HBA itself
4521 			 * (an external RAID controller, MSA500 or similar)
4522 			 * don't present it.
4523 			 */
4524 			if (!is_hba_lunid(lunaddrbytes))
4525 				break;
4526 			ncurrent++;
4527 			break;
4528 		default:
4529 			break;
4530 		}
4531 		if (ncurrent >= HPSA_MAX_DEVICES)
4532 			break;
4533 	}
4534 
4535 	if (h->sas_host == NULL) {
4536 		int rc = 0;
4537 
4538 		rc = hpsa_add_sas_host(h);
4539 		if (rc) {
4540 			dev_warn(&h->pdev->dev,
4541 				"Could not add sas host %d\n", rc);
4542 			goto out;
4543 		}
4544 	}
4545 
4546 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4547 out:
4548 	kfree(tmpdevice);
4549 	for (i = 0; i < ndev_allocated; i++)
4550 		kfree(currentsd[i]);
4551 	kfree(currentsd);
4552 	kfree(physdev_list);
4553 	kfree(logdev_list);
4554 	kfree(id_ctlr);
4555 	kfree(id_phys);
4556 }
4557 
4558 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4559 				   struct scatterlist *sg)
4560 {
4561 	u64 addr64 = (u64) sg_dma_address(sg);
4562 	unsigned int len = sg_dma_len(sg);
4563 
4564 	desc->Addr = cpu_to_le64(addr64);
4565 	desc->Len = cpu_to_le32(len);
4566 	desc->Ext = 0;
4567 }
4568 
4569 /*
4570  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4571  * dma mapping  and fills in the scatter gather entries of the
4572  * hpsa command, cp.
4573  */
4574 static int hpsa_scatter_gather(struct ctlr_info *h,
4575 		struct CommandList *cp,
4576 		struct scsi_cmnd *cmd)
4577 {
4578 	struct scatterlist *sg;
4579 	int use_sg, i, sg_limit, chained;
4580 	struct SGDescriptor *curr_sg;
4581 
4582 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4583 
4584 	use_sg = scsi_dma_map(cmd);
4585 	if (use_sg < 0)
4586 		return use_sg;
4587 
4588 	if (!use_sg)
4589 		goto sglist_finished;
4590 
4591 	/*
4592 	 * If the number of entries is greater than the max for a single list,
4593 	 * then we have a chained list; we will set up all but one entry in the
4594 	 * first list (the last entry is saved for link information);
4595 	 * otherwise, we don't have a chained list and we'll set up at each of
4596 	 * the entries in the one list.
4597 	 */
4598 	curr_sg = cp->SG;
4599 	chained = use_sg > h->max_cmd_sg_entries;
4600 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4601 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4602 		hpsa_set_sg_descriptor(curr_sg, sg);
4603 		curr_sg++;
4604 	}
4605 
4606 	if (chained) {
4607 		/*
4608 		 * Continue with the chained list.  Set curr_sg to the chained
4609 		 * list.  Modify the limit to the total count less the entries
4610 		 * we've already set up.  Resume the scan at the list entry
4611 		 * where the previous loop left off.
4612 		 */
4613 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4614 		sg_limit = use_sg - sg_limit;
4615 		for_each_sg(sg, sg, sg_limit, i) {
4616 			hpsa_set_sg_descriptor(curr_sg, sg);
4617 			curr_sg++;
4618 		}
4619 	}
4620 
4621 	/* Back the pointer up to the last entry and mark it as "last". */
4622 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4623 
4624 	if (use_sg + chained > h->maxSG)
4625 		h->maxSG = use_sg + chained;
4626 
4627 	if (chained) {
4628 		cp->Header.SGList = h->max_cmd_sg_entries;
4629 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4630 		if (hpsa_map_sg_chain_block(h, cp)) {
4631 			scsi_dma_unmap(cmd);
4632 			return -1;
4633 		}
4634 		return 0;
4635 	}
4636 
4637 sglist_finished:
4638 
4639 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4640 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4641 	return 0;
4642 }
4643 
4644 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4645 						u8 *cdb, int cdb_len,
4646 						const char *func)
4647 {
4648 	dev_warn(&h->pdev->dev,
4649 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4650 		 func, cdb_len, cdb);
4651 }
4652 
4653 #define IO_ACCEL_INELIGIBLE 1
4654 /* zero-length transfers trigger hardware errors. */
4655 static bool is_zero_length_transfer(u8 *cdb)
4656 {
4657 	u32 block_cnt;
4658 
4659 	/* Block zero-length transfer sizes on certain commands. */
4660 	switch (cdb[0]) {
4661 	case READ_10:
4662 	case WRITE_10:
4663 	case VERIFY:		/* 0x2F */
4664 	case WRITE_VERIFY:	/* 0x2E */
4665 		block_cnt = get_unaligned_be16(&cdb[7]);
4666 		break;
4667 	case READ_12:
4668 	case WRITE_12:
4669 	case VERIFY_12: /* 0xAF */
4670 	case WRITE_VERIFY_12:	/* 0xAE */
4671 		block_cnt = get_unaligned_be32(&cdb[6]);
4672 		break;
4673 	case READ_16:
4674 	case WRITE_16:
4675 	case VERIFY_16:		/* 0x8F */
4676 		block_cnt = get_unaligned_be32(&cdb[10]);
4677 		break;
4678 	default:
4679 		return false;
4680 	}
4681 
4682 	return block_cnt == 0;
4683 }
4684 
4685 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4686 {
4687 	int is_write = 0;
4688 	u32 block;
4689 	u32 block_cnt;
4690 
4691 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4692 	switch (cdb[0]) {
4693 	case WRITE_6:
4694 	case WRITE_12:
4695 		is_write = 1;
4696 		fallthrough;
4697 	case READ_6:
4698 	case READ_12:
4699 		if (*cdb_len == 6) {
4700 			block = (((cdb[1] & 0x1F) << 16) |
4701 				(cdb[2] << 8) |
4702 				cdb[3]);
4703 			block_cnt = cdb[4];
4704 			if (block_cnt == 0)
4705 				block_cnt = 256;
4706 		} else {
4707 			BUG_ON(*cdb_len != 12);
4708 			block = get_unaligned_be32(&cdb[2]);
4709 			block_cnt = get_unaligned_be32(&cdb[6]);
4710 		}
4711 		if (block_cnt > 0xffff)
4712 			return IO_ACCEL_INELIGIBLE;
4713 
4714 		cdb[0] = is_write ? WRITE_10 : READ_10;
4715 		cdb[1] = 0;
4716 		cdb[2] = (u8) (block >> 24);
4717 		cdb[3] = (u8) (block >> 16);
4718 		cdb[4] = (u8) (block >> 8);
4719 		cdb[5] = (u8) (block);
4720 		cdb[6] = 0;
4721 		cdb[7] = (u8) (block_cnt >> 8);
4722 		cdb[8] = (u8) (block_cnt);
4723 		cdb[9] = 0;
4724 		*cdb_len = 10;
4725 		break;
4726 	}
4727 	return 0;
4728 }
4729 
4730 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4731 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4732 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4733 {
4734 	struct scsi_cmnd *cmd = c->scsi_cmd;
4735 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4736 	unsigned int len;
4737 	unsigned int total_len = 0;
4738 	struct scatterlist *sg;
4739 	u64 addr64;
4740 	int use_sg, i;
4741 	struct SGDescriptor *curr_sg;
4742 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4743 
4744 	/* TODO: implement chaining support */
4745 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4746 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4747 		return IO_ACCEL_INELIGIBLE;
4748 	}
4749 
4750 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4751 
4752 	if (is_zero_length_transfer(cdb)) {
4753 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4754 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4755 		return IO_ACCEL_INELIGIBLE;
4756 	}
4757 
4758 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4759 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4760 		return IO_ACCEL_INELIGIBLE;
4761 	}
4762 
4763 	c->cmd_type = CMD_IOACCEL1;
4764 
4765 	/* Adjust the DMA address to point to the accelerated command buffer */
4766 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4767 				(c->cmdindex * sizeof(*cp));
4768 	BUG_ON(c->busaddr & 0x0000007F);
4769 
4770 	use_sg = scsi_dma_map(cmd);
4771 	if (use_sg < 0) {
4772 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4773 		return use_sg;
4774 	}
4775 
4776 	if (use_sg) {
4777 		curr_sg = cp->SG;
4778 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4779 			addr64 = (u64) sg_dma_address(sg);
4780 			len  = sg_dma_len(sg);
4781 			total_len += len;
4782 			curr_sg->Addr = cpu_to_le64(addr64);
4783 			curr_sg->Len = cpu_to_le32(len);
4784 			curr_sg->Ext = cpu_to_le32(0);
4785 			curr_sg++;
4786 		}
4787 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4788 
4789 		switch (cmd->sc_data_direction) {
4790 		case DMA_TO_DEVICE:
4791 			control |= IOACCEL1_CONTROL_DATA_OUT;
4792 			break;
4793 		case DMA_FROM_DEVICE:
4794 			control |= IOACCEL1_CONTROL_DATA_IN;
4795 			break;
4796 		case DMA_NONE:
4797 			control |= IOACCEL1_CONTROL_NODATAXFER;
4798 			break;
4799 		default:
4800 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4801 			cmd->sc_data_direction);
4802 			BUG();
4803 			break;
4804 		}
4805 	} else {
4806 		control |= IOACCEL1_CONTROL_NODATAXFER;
4807 	}
4808 
4809 	c->Header.SGList = use_sg;
4810 	/* Fill out the command structure to submit */
4811 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4812 	cp->transfer_len = cpu_to_le32(total_len);
4813 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4814 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4815 	cp->control = cpu_to_le32(control);
4816 	memcpy(cp->CDB, cdb, cdb_len);
4817 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4818 	/* Tag was already set at init time. */
4819 	enqueue_cmd_and_start_io(h, c);
4820 	return 0;
4821 }
4822 
4823 /*
4824  * Queue a command directly to a device behind the controller using the
4825  * I/O accelerator path.
4826  */
4827 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4828 	struct CommandList *c)
4829 {
4830 	struct scsi_cmnd *cmd = c->scsi_cmd;
4831 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4832 
4833 	if (!dev)
4834 		return -1;
4835 
4836 	c->phys_disk = dev;
4837 
4838 	if (dev->in_reset)
4839 		return -1;
4840 
4841 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4842 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4843 }
4844 
4845 /*
4846  * Set encryption parameters for the ioaccel2 request
4847  */
4848 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4849 	struct CommandList *c, struct io_accel2_cmd *cp)
4850 {
4851 	struct scsi_cmnd *cmd = c->scsi_cmd;
4852 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4853 	struct raid_map_data *map = &dev->raid_map;
4854 	u64 first_block;
4855 
4856 	/* Are we doing encryption on this device */
4857 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4858 		return;
4859 	/* Set the data encryption key index. */
4860 	cp->dekindex = map->dekindex;
4861 
4862 	/* Set the encryption enable flag, encoded into direction field. */
4863 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4864 
4865 	/* Set encryption tweak values based on logical block address
4866 	 * If block size is 512, tweak value is LBA.
4867 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4868 	 */
4869 	switch (cmd->cmnd[0]) {
4870 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4871 	case READ_6:
4872 	case WRITE_6:
4873 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4874 				(cmd->cmnd[2] << 8) |
4875 				cmd->cmnd[3]);
4876 		break;
4877 	case WRITE_10:
4878 	case READ_10:
4879 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4880 	case WRITE_12:
4881 	case READ_12:
4882 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4883 		break;
4884 	case WRITE_16:
4885 	case READ_16:
4886 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4887 		break;
4888 	default:
4889 		dev_err(&h->pdev->dev,
4890 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4891 			__func__, cmd->cmnd[0]);
4892 		BUG();
4893 		break;
4894 	}
4895 
4896 	if (le32_to_cpu(map->volume_blk_size) != 512)
4897 		first_block = first_block *
4898 				le32_to_cpu(map->volume_blk_size)/512;
4899 
4900 	cp->tweak_lower = cpu_to_le32(first_block);
4901 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4902 }
4903 
4904 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4905 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4906 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4907 {
4908 	struct scsi_cmnd *cmd = c->scsi_cmd;
4909 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4910 	struct ioaccel2_sg_element *curr_sg;
4911 	int use_sg, i;
4912 	struct scatterlist *sg;
4913 	u64 addr64;
4914 	u32 len;
4915 	u32 total_len = 0;
4916 
4917 	if (!cmd->device)
4918 		return -1;
4919 
4920 	if (!cmd->device->hostdata)
4921 		return -1;
4922 
4923 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4924 
4925 	if (is_zero_length_transfer(cdb)) {
4926 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4927 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4928 		return IO_ACCEL_INELIGIBLE;
4929 	}
4930 
4931 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4932 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4933 		return IO_ACCEL_INELIGIBLE;
4934 	}
4935 
4936 	c->cmd_type = CMD_IOACCEL2;
4937 	/* Adjust the DMA address to point to the accelerated command buffer */
4938 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4939 				(c->cmdindex * sizeof(*cp));
4940 	BUG_ON(c->busaddr & 0x0000007F);
4941 
4942 	memset(cp, 0, sizeof(*cp));
4943 	cp->IU_type = IOACCEL2_IU_TYPE;
4944 
4945 	use_sg = scsi_dma_map(cmd);
4946 	if (use_sg < 0) {
4947 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4948 		return use_sg;
4949 	}
4950 
4951 	if (use_sg) {
4952 		curr_sg = cp->sg;
4953 		if (use_sg > h->ioaccel_maxsg) {
4954 			addr64 = le64_to_cpu(
4955 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4956 			curr_sg->address = cpu_to_le64(addr64);
4957 			curr_sg->length = 0;
4958 			curr_sg->reserved[0] = 0;
4959 			curr_sg->reserved[1] = 0;
4960 			curr_sg->reserved[2] = 0;
4961 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4962 
4963 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4964 		}
4965 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4966 			addr64 = (u64) sg_dma_address(sg);
4967 			len  = sg_dma_len(sg);
4968 			total_len += len;
4969 			curr_sg->address = cpu_to_le64(addr64);
4970 			curr_sg->length = cpu_to_le32(len);
4971 			curr_sg->reserved[0] = 0;
4972 			curr_sg->reserved[1] = 0;
4973 			curr_sg->reserved[2] = 0;
4974 			curr_sg->chain_indicator = 0;
4975 			curr_sg++;
4976 		}
4977 
4978 		/*
4979 		 * Set the last s/g element bit
4980 		 */
4981 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4982 
4983 		switch (cmd->sc_data_direction) {
4984 		case DMA_TO_DEVICE:
4985 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4987 			break;
4988 		case DMA_FROM_DEVICE:
4989 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4990 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4991 			break;
4992 		case DMA_NONE:
4993 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4994 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4995 			break;
4996 		default:
4997 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4998 				cmd->sc_data_direction);
4999 			BUG();
5000 			break;
5001 		}
5002 	} else {
5003 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5004 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5005 	}
5006 
5007 	/* Set encryption parameters, if necessary */
5008 	set_encrypt_ioaccel2(h, c, cp);
5009 
5010 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5011 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5012 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5013 
5014 	cp->data_len = cpu_to_le32(total_len);
5015 	cp->err_ptr = cpu_to_le64(c->busaddr +
5016 			offsetof(struct io_accel2_cmd, error_data));
5017 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5018 
5019 	/* fill in sg elements */
5020 	if (use_sg > h->ioaccel_maxsg) {
5021 		cp->sg_count = 1;
5022 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5023 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5024 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5025 			scsi_dma_unmap(cmd);
5026 			return -1;
5027 		}
5028 	} else
5029 		cp->sg_count = (u8) use_sg;
5030 
5031 	if (phys_disk->in_reset) {
5032 		cmd->result = DID_RESET << 16;
5033 		return -1;
5034 	}
5035 
5036 	enqueue_cmd_and_start_io(h, c);
5037 	return 0;
5038 }
5039 
5040 /*
5041  * Queue a command to the correct I/O accelerator path.
5042  */
5043 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5044 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5045 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5046 {
5047 	if (!c->scsi_cmd->device)
5048 		return -1;
5049 
5050 	if (!c->scsi_cmd->device->hostdata)
5051 		return -1;
5052 
5053 	if (phys_disk->in_reset)
5054 		return -1;
5055 
5056 	/* Try to honor the device's queue depth */
5057 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5058 					phys_disk->queue_depth) {
5059 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5060 		return IO_ACCEL_INELIGIBLE;
5061 	}
5062 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5063 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5064 						cdb, cdb_len, scsi3addr,
5065 						phys_disk);
5066 	else
5067 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5068 						cdb, cdb_len, scsi3addr,
5069 						phys_disk);
5070 }
5071 
5072 static void raid_map_helper(struct raid_map_data *map,
5073 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5074 {
5075 	if (offload_to_mirror == 0)  {
5076 		/* use physical disk in the first mirrored group. */
5077 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5078 		return;
5079 	}
5080 	do {
5081 		/* determine mirror group that *map_index indicates */
5082 		*current_group = *map_index /
5083 			le16_to_cpu(map->data_disks_per_row);
5084 		if (offload_to_mirror == *current_group)
5085 			continue;
5086 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5087 			/* select map index from next group */
5088 			*map_index += le16_to_cpu(map->data_disks_per_row);
5089 			(*current_group)++;
5090 		} else {
5091 			/* select map index from first group */
5092 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5093 			*current_group = 0;
5094 		}
5095 	} while (offload_to_mirror != *current_group);
5096 }
5097 
5098 /*
5099  * Attempt to perform offload RAID mapping for a logical volume I/O.
5100  */
5101 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5102 	struct CommandList *c)
5103 {
5104 	struct scsi_cmnd *cmd = c->scsi_cmd;
5105 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5106 	struct raid_map_data *map = &dev->raid_map;
5107 	struct raid_map_disk_data *dd = &map->data[0];
5108 	int is_write = 0;
5109 	u32 map_index;
5110 	u64 first_block, last_block;
5111 	u32 block_cnt;
5112 	u32 blocks_per_row;
5113 	u64 first_row, last_row;
5114 	u32 first_row_offset, last_row_offset;
5115 	u32 first_column, last_column;
5116 	u64 r0_first_row, r0_last_row;
5117 	u32 r5or6_blocks_per_row;
5118 	u64 r5or6_first_row, r5or6_last_row;
5119 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5120 	u32 r5or6_first_column, r5or6_last_column;
5121 	u32 total_disks_per_row;
5122 	u32 stripesize;
5123 	u32 first_group, last_group, current_group;
5124 	u32 map_row;
5125 	u32 disk_handle;
5126 	u64 disk_block;
5127 	u32 disk_block_cnt;
5128 	u8 cdb[16];
5129 	u8 cdb_len;
5130 	u16 strip_size;
5131 #if BITS_PER_LONG == 32
5132 	u64 tmpdiv;
5133 #endif
5134 	int offload_to_mirror;
5135 
5136 	if (!dev)
5137 		return -1;
5138 
5139 	if (dev->in_reset)
5140 		return -1;
5141 
5142 	/* check for valid opcode, get LBA and block count */
5143 	switch (cmd->cmnd[0]) {
5144 	case WRITE_6:
5145 		is_write = 1;
5146 		fallthrough;
5147 	case READ_6:
5148 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5149 				(cmd->cmnd[2] << 8) |
5150 				cmd->cmnd[3]);
5151 		block_cnt = cmd->cmnd[4];
5152 		if (block_cnt == 0)
5153 			block_cnt = 256;
5154 		break;
5155 	case WRITE_10:
5156 		is_write = 1;
5157 		fallthrough;
5158 	case READ_10:
5159 		first_block =
5160 			(((u64) cmd->cmnd[2]) << 24) |
5161 			(((u64) cmd->cmnd[3]) << 16) |
5162 			(((u64) cmd->cmnd[4]) << 8) |
5163 			cmd->cmnd[5];
5164 		block_cnt =
5165 			(((u32) cmd->cmnd[7]) << 8) |
5166 			cmd->cmnd[8];
5167 		break;
5168 	case WRITE_12:
5169 		is_write = 1;
5170 		fallthrough;
5171 	case READ_12:
5172 		first_block =
5173 			(((u64) cmd->cmnd[2]) << 24) |
5174 			(((u64) cmd->cmnd[3]) << 16) |
5175 			(((u64) cmd->cmnd[4]) << 8) |
5176 			cmd->cmnd[5];
5177 		block_cnt =
5178 			(((u32) cmd->cmnd[6]) << 24) |
5179 			(((u32) cmd->cmnd[7]) << 16) |
5180 			(((u32) cmd->cmnd[8]) << 8) |
5181 		cmd->cmnd[9];
5182 		break;
5183 	case WRITE_16:
5184 		is_write = 1;
5185 		fallthrough;
5186 	case READ_16:
5187 		first_block =
5188 			(((u64) cmd->cmnd[2]) << 56) |
5189 			(((u64) cmd->cmnd[3]) << 48) |
5190 			(((u64) cmd->cmnd[4]) << 40) |
5191 			(((u64) cmd->cmnd[5]) << 32) |
5192 			(((u64) cmd->cmnd[6]) << 24) |
5193 			(((u64) cmd->cmnd[7]) << 16) |
5194 			(((u64) cmd->cmnd[8]) << 8) |
5195 			cmd->cmnd[9];
5196 		block_cnt =
5197 			(((u32) cmd->cmnd[10]) << 24) |
5198 			(((u32) cmd->cmnd[11]) << 16) |
5199 			(((u32) cmd->cmnd[12]) << 8) |
5200 			cmd->cmnd[13];
5201 		break;
5202 	default:
5203 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5204 	}
5205 	last_block = first_block + block_cnt - 1;
5206 
5207 	/* check for write to non-RAID-0 */
5208 	if (is_write && dev->raid_level != 0)
5209 		return IO_ACCEL_INELIGIBLE;
5210 
5211 	/* check for invalid block or wraparound */
5212 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5213 		last_block < first_block)
5214 		return IO_ACCEL_INELIGIBLE;
5215 
5216 	/* calculate stripe information for the request */
5217 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5218 				le16_to_cpu(map->strip_size);
5219 	strip_size = le16_to_cpu(map->strip_size);
5220 #if BITS_PER_LONG == 32
5221 	tmpdiv = first_block;
5222 	(void) do_div(tmpdiv, blocks_per_row);
5223 	first_row = tmpdiv;
5224 	tmpdiv = last_block;
5225 	(void) do_div(tmpdiv, blocks_per_row);
5226 	last_row = tmpdiv;
5227 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5228 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5229 	tmpdiv = first_row_offset;
5230 	(void) do_div(tmpdiv, strip_size);
5231 	first_column = tmpdiv;
5232 	tmpdiv = last_row_offset;
5233 	(void) do_div(tmpdiv, strip_size);
5234 	last_column = tmpdiv;
5235 #else
5236 	first_row = first_block / blocks_per_row;
5237 	last_row = last_block / blocks_per_row;
5238 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5239 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5240 	first_column = first_row_offset / strip_size;
5241 	last_column = last_row_offset / strip_size;
5242 #endif
5243 
5244 	/* if this isn't a single row/column then give to the controller */
5245 	if ((first_row != last_row) || (first_column != last_column))
5246 		return IO_ACCEL_INELIGIBLE;
5247 
5248 	/* proceeding with driver mapping */
5249 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5250 				le16_to_cpu(map->metadata_disks_per_row);
5251 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5252 				le16_to_cpu(map->row_cnt);
5253 	map_index = (map_row * total_disks_per_row) + first_column;
5254 
5255 	switch (dev->raid_level) {
5256 	case HPSA_RAID_0:
5257 		break; /* nothing special to do */
5258 	case HPSA_RAID_1:
5259 		/* Handles load balance across RAID 1 members.
5260 		 * (2-drive R1 and R10 with even # of drives.)
5261 		 * Appropriate for SSDs, not optimal for HDDs
5262 		 * Ensure we have the correct raid_map.
5263 		 */
5264 		if (le16_to_cpu(map->layout_map_count) != 2) {
5265 			hpsa_turn_off_ioaccel_for_device(dev);
5266 			return IO_ACCEL_INELIGIBLE;
5267 		}
5268 		if (dev->offload_to_mirror)
5269 			map_index += le16_to_cpu(map->data_disks_per_row);
5270 		dev->offload_to_mirror = !dev->offload_to_mirror;
5271 		break;
5272 	case HPSA_RAID_ADM:
5273 		/* Handles N-way mirrors  (R1-ADM)
5274 		 * and R10 with # of drives divisible by 3.)
5275 		 * Ensure we have the correct raid_map.
5276 		 */
5277 		if (le16_to_cpu(map->layout_map_count) != 3) {
5278 			hpsa_turn_off_ioaccel_for_device(dev);
5279 			return IO_ACCEL_INELIGIBLE;
5280 		}
5281 
5282 		offload_to_mirror = dev->offload_to_mirror;
5283 		raid_map_helper(map, offload_to_mirror,
5284 				&map_index, &current_group);
5285 		/* set mirror group to use next time */
5286 		offload_to_mirror =
5287 			(offload_to_mirror >=
5288 			le16_to_cpu(map->layout_map_count) - 1)
5289 			? 0 : offload_to_mirror + 1;
5290 		dev->offload_to_mirror = offload_to_mirror;
5291 		/* Avoid direct use of dev->offload_to_mirror within this
5292 		 * function since multiple threads might simultaneously
5293 		 * increment it beyond the range of dev->layout_map_count -1.
5294 		 */
5295 		break;
5296 	case HPSA_RAID_5:
5297 	case HPSA_RAID_6:
5298 		if (le16_to_cpu(map->layout_map_count) <= 1)
5299 			break;
5300 
5301 		/* Verify first and last block are in same RAID group */
5302 		r5or6_blocks_per_row =
5303 			le16_to_cpu(map->strip_size) *
5304 			le16_to_cpu(map->data_disks_per_row);
5305 		if (r5or6_blocks_per_row == 0) {
5306 			hpsa_turn_off_ioaccel_for_device(dev);
5307 			return IO_ACCEL_INELIGIBLE;
5308 		}
5309 		stripesize = r5or6_blocks_per_row *
5310 			le16_to_cpu(map->layout_map_count);
5311 #if BITS_PER_LONG == 32
5312 		tmpdiv = first_block;
5313 		first_group = do_div(tmpdiv, stripesize);
5314 		tmpdiv = first_group;
5315 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5316 		first_group = tmpdiv;
5317 		tmpdiv = last_block;
5318 		last_group = do_div(tmpdiv, stripesize);
5319 		tmpdiv = last_group;
5320 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5321 		last_group = tmpdiv;
5322 #else
5323 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5324 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5325 #endif
5326 		if (first_group != last_group)
5327 			return IO_ACCEL_INELIGIBLE;
5328 
5329 		/* Verify request is in a single row of RAID 5/6 */
5330 #if BITS_PER_LONG == 32
5331 		tmpdiv = first_block;
5332 		(void) do_div(tmpdiv, stripesize);
5333 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5334 		tmpdiv = last_block;
5335 		(void) do_div(tmpdiv, stripesize);
5336 		r5or6_last_row = r0_last_row = tmpdiv;
5337 #else
5338 		first_row = r5or6_first_row = r0_first_row =
5339 						first_block / stripesize;
5340 		r5or6_last_row = r0_last_row = last_block / stripesize;
5341 #endif
5342 		if (r5or6_first_row != r5or6_last_row)
5343 			return IO_ACCEL_INELIGIBLE;
5344 
5345 
5346 		/* Verify request is in a single column */
5347 #if BITS_PER_LONG == 32
5348 		tmpdiv = first_block;
5349 		first_row_offset = do_div(tmpdiv, stripesize);
5350 		tmpdiv = first_row_offset;
5351 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5352 		r5or6_first_row_offset = first_row_offset;
5353 		tmpdiv = last_block;
5354 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5355 		tmpdiv = r5or6_last_row_offset;
5356 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5357 		tmpdiv = r5or6_first_row_offset;
5358 		(void) do_div(tmpdiv, map->strip_size);
5359 		first_column = r5or6_first_column = tmpdiv;
5360 		tmpdiv = r5or6_last_row_offset;
5361 		(void) do_div(tmpdiv, map->strip_size);
5362 		r5or6_last_column = tmpdiv;
5363 #else
5364 		first_row_offset = r5or6_first_row_offset =
5365 			(u32)((first_block % stripesize) %
5366 						r5or6_blocks_per_row);
5367 
5368 		r5or6_last_row_offset =
5369 			(u32)((last_block % stripesize) %
5370 						r5or6_blocks_per_row);
5371 
5372 		first_column = r5or6_first_column =
5373 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5374 		r5or6_last_column =
5375 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5376 #endif
5377 		if (r5or6_first_column != r5or6_last_column)
5378 			return IO_ACCEL_INELIGIBLE;
5379 
5380 		/* Request is eligible */
5381 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5382 			le16_to_cpu(map->row_cnt);
5383 
5384 		map_index = (first_group *
5385 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5386 			(map_row * total_disks_per_row) + first_column;
5387 		break;
5388 	default:
5389 		return IO_ACCEL_INELIGIBLE;
5390 	}
5391 
5392 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5393 		return IO_ACCEL_INELIGIBLE;
5394 
5395 	c->phys_disk = dev->phys_disk[map_index];
5396 	if (!c->phys_disk)
5397 		return IO_ACCEL_INELIGIBLE;
5398 
5399 	disk_handle = dd[map_index].ioaccel_handle;
5400 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5401 			first_row * le16_to_cpu(map->strip_size) +
5402 			(first_row_offset - first_column *
5403 			le16_to_cpu(map->strip_size));
5404 	disk_block_cnt = block_cnt;
5405 
5406 	/* handle differing logical/physical block sizes */
5407 	if (map->phys_blk_shift) {
5408 		disk_block <<= map->phys_blk_shift;
5409 		disk_block_cnt <<= map->phys_blk_shift;
5410 	}
5411 	BUG_ON(disk_block_cnt > 0xffff);
5412 
5413 	/* build the new CDB for the physical disk I/O */
5414 	if (disk_block > 0xffffffff) {
5415 		cdb[0] = is_write ? WRITE_16 : READ_16;
5416 		cdb[1] = 0;
5417 		cdb[2] = (u8) (disk_block >> 56);
5418 		cdb[3] = (u8) (disk_block >> 48);
5419 		cdb[4] = (u8) (disk_block >> 40);
5420 		cdb[5] = (u8) (disk_block >> 32);
5421 		cdb[6] = (u8) (disk_block >> 24);
5422 		cdb[7] = (u8) (disk_block >> 16);
5423 		cdb[8] = (u8) (disk_block >> 8);
5424 		cdb[9] = (u8) (disk_block);
5425 		cdb[10] = (u8) (disk_block_cnt >> 24);
5426 		cdb[11] = (u8) (disk_block_cnt >> 16);
5427 		cdb[12] = (u8) (disk_block_cnt >> 8);
5428 		cdb[13] = (u8) (disk_block_cnt);
5429 		cdb[14] = 0;
5430 		cdb[15] = 0;
5431 		cdb_len = 16;
5432 	} else {
5433 		cdb[0] = is_write ? WRITE_10 : READ_10;
5434 		cdb[1] = 0;
5435 		cdb[2] = (u8) (disk_block >> 24);
5436 		cdb[3] = (u8) (disk_block >> 16);
5437 		cdb[4] = (u8) (disk_block >> 8);
5438 		cdb[5] = (u8) (disk_block);
5439 		cdb[6] = 0;
5440 		cdb[7] = (u8) (disk_block_cnt >> 8);
5441 		cdb[8] = (u8) (disk_block_cnt);
5442 		cdb[9] = 0;
5443 		cdb_len = 10;
5444 	}
5445 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5446 						dev->scsi3addr,
5447 						dev->phys_disk[map_index]);
5448 }
5449 
5450 /*
5451  * Submit commands down the "normal" RAID stack path
5452  * All callers to hpsa_ciss_submit must check lockup_detected
5453  * beforehand, before (opt.) and after calling cmd_alloc
5454  */
5455 static int hpsa_ciss_submit(struct ctlr_info *h,
5456 	struct CommandList *c, struct scsi_cmnd *cmd,
5457 	struct hpsa_scsi_dev_t *dev)
5458 {
5459 	cmd->host_scribble = (unsigned char *) c;
5460 	c->cmd_type = CMD_SCSI;
5461 	c->scsi_cmd = cmd;
5462 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5463 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5464 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5465 
5466 	/* Fill in the request block... */
5467 
5468 	c->Request.Timeout = 0;
5469 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5470 	c->Request.CDBLen = cmd->cmd_len;
5471 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5472 	switch (cmd->sc_data_direction) {
5473 	case DMA_TO_DEVICE:
5474 		c->Request.type_attr_dir =
5475 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5476 		break;
5477 	case DMA_FROM_DEVICE:
5478 		c->Request.type_attr_dir =
5479 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5480 		break;
5481 	case DMA_NONE:
5482 		c->Request.type_attr_dir =
5483 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5484 		break;
5485 	case DMA_BIDIRECTIONAL:
5486 		/* This can happen if a buggy application does a scsi passthru
5487 		 * and sets both inlen and outlen to non-zero. ( see
5488 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5489 		 */
5490 
5491 		c->Request.type_attr_dir =
5492 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5493 		/* This is technically wrong, and hpsa controllers should
5494 		 * reject it with CMD_INVALID, which is the most correct
5495 		 * response, but non-fibre backends appear to let it
5496 		 * slide by, and give the same results as if this field
5497 		 * were set correctly.  Either way is acceptable for
5498 		 * our purposes here.
5499 		 */
5500 
5501 		break;
5502 
5503 	default:
5504 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5505 			cmd->sc_data_direction);
5506 		BUG();
5507 		break;
5508 	}
5509 
5510 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5511 		hpsa_cmd_resolve_and_free(h, c);
5512 		return SCSI_MLQUEUE_HOST_BUSY;
5513 	}
5514 
5515 	if (dev->in_reset) {
5516 		hpsa_cmd_resolve_and_free(h, c);
5517 		return SCSI_MLQUEUE_HOST_BUSY;
5518 	}
5519 
5520 	c->device = dev;
5521 
5522 	enqueue_cmd_and_start_io(h, c);
5523 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5524 	return 0;
5525 }
5526 
5527 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5528 				struct CommandList *c)
5529 {
5530 	dma_addr_t cmd_dma_handle, err_dma_handle;
5531 
5532 	/* Zero out all of commandlist except the last field, refcount */
5533 	memset(c, 0, offsetof(struct CommandList, refcount));
5534 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5535 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5536 	c->err_info = h->errinfo_pool + index;
5537 	memset(c->err_info, 0, sizeof(*c->err_info));
5538 	err_dma_handle = h->errinfo_pool_dhandle
5539 	    + index * sizeof(*c->err_info);
5540 	c->cmdindex = index;
5541 	c->busaddr = (u32) cmd_dma_handle;
5542 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5543 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5544 	c->h = h;
5545 	c->scsi_cmd = SCSI_CMD_IDLE;
5546 }
5547 
5548 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5549 {
5550 	int i;
5551 
5552 	for (i = 0; i < h->nr_cmds; i++) {
5553 		struct CommandList *c = h->cmd_pool + i;
5554 
5555 		hpsa_cmd_init(h, i, c);
5556 		atomic_set(&c->refcount, 0);
5557 	}
5558 }
5559 
5560 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5561 				struct CommandList *c)
5562 {
5563 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5564 
5565 	BUG_ON(c->cmdindex != index);
5566 
5567 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5568 	memset(c->err_info, 0, sizeof(*c->err_info));
5569 	c->busaddr = (u32) cmd_dma_handle;
5570 }
5571 
5572 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5573 		struct CommandList *c, struct scsi_cmnd *cmd,
5574 		bool retry)
5575 {
5576 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5577 	int rc = IO_ACCEL_INELIGIBLE;
5578 
5579 	if (!dev)
5580 		return SCSI_MLQUEUE_HOST_BUSY;
5581 
5582 	if (dev->in_reset)
5583 		return SCSI_MLQUEUE_HOST_BUSY;
5584 
5585 	if (hpsa_simple_mode)
5586 		return IO_ACCEL_INELIGIBLE;
5587 
5588 	cmd->host_scribble = (unsigned char *) c;
5589 
5590 	if (dev->offload_enabled) {
5591 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5592 		c->cmd_type = CMD_SCSI;
5593 		c->scsi_cmd = cmd;
5594 		c->device = dev;
5595 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5596 			c->retry_pending = true;
5597 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5598 		if (rc < 0)     /* scsi_dma_map failed. */
5599 			rc = SCSI_MLQUEUE_HOST_BUSY;
5600 	} else if (dev->hba_ioaccel_enabled) {
5601 		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5602 		c->cmd_type = CMD_SCSI;
5603 		c->scsi_cmd = cmd;
5604 		c->device = dev;
5605 		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5606 			c->retry_pending = true;
5607 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5608 		if (rc < 0)     /* scsi_dma_map failed. */
5609 			rc = SCSI_MLQUEUE_HOST_BUSY;
5610 	}
5611 	return rc;
5612 }
5613 
5614 static void hpsa_command_resubmit_worker(struct work_struct *work)
5615 {
5616 	struct scsi_cmnd *cmd;
5617 	struct hpsa_scsi_dev_t *dev;
5618 	struct CommandList *c = container_of(work, struct CommandList, work);
5619 
5620 	cmd = c->scsi_cmd;
5621 	dev = cmd->device->hostdata;
5622 	if (!dev) {
5623 		cmd->result = DID_NO_CONNECT << 16;
5624 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5625 	}
5626 
5627 	if (dev->in_reset) {
5628 		cmd->result = DID_RESET << 16;
5629 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5630 	}
5631 
5632 	if (c->cmd_type == CMD_IOACCEL2) {
5633 		struct ctlr_info *h = c->h;
5634 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5635 		int rc;
5636 
5637 		if (c2->error_data.serv_response ==
5638 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5639 			/* Resubmit with the retry_pending flag set. */
5640 			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5641 			if (rc == 0)
5642 				return;
5643 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5644 				/*
5645 				 * If we get here, it means dma mapping failed.
5646 				 * Try again via scsi mid layer, which will
5647 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5648 				 */
5649 				cmd->result = DID_IMM_RETRY << 16;
5650 				return hpsa_cmd_free_and_done(h, c, cmd);
5651 			}
5652 			/* else, fall thru and resubmit down CISS path */
5653 		}
5654 	}
5655 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5656 	/*
5657 	 * Here we have not come in though queue_command, so we
5658 	 * can set the retry_pending flag to true for a driver initiated
5659 	 * retry attempt (I.E. not a SML retry).
5660 	 * I.E. We are submitting a driver initiated retry.
5661 	 * Note: hpsa_ciss_submit does not zero out the command fields like
5662 	 *       ioaccel submit does.
5663 	 */
5664 	c->retry_pending = true;
5665 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5666 		/*
5667 		 * If we get here, it means dma mapping failed. Try
5668 		 * again via scsi mid layer, which will then get
5669 		 * SCSI_MLQUEUE_HOST_BUSY.
5670 		 *
5671 		 * hpsa_ciss_submit will have already freed c
5672 		 * if it encountered a dma mapping failure.
5673 		 */
5674 		cmd->result = DID_IMM_RETRY << 16;
5675 		cmd->scsi_done(cmd);
5676 	}
5677 }
5678 
5679 /* Running in struct Scsi_Host->host_lock less mode */
5680 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5681 {
5682 	struct ctlr_info *h;
5683 	struct hpsa_scsi_dev_t *dev;
5684 	struct CommandList *c;
5685 	int rc = 0;
5686 
5687 	/* Get the ptr to our adapter structure out of cmd->host. */
5688 	h = sdev_to_hba(cmd->device);
5689 
5690 	BUG_ON(cmd->request->tag < 0);
5691 
5692 	dev = cmd->device->hostdata;
5693 	if (!dev) {
5694 		cmd->result = DID_NO_CONNECT << 16;
5695 		cmd->scsi_done(cmd);
5696 		return 0;
5697 	}
5698 
5699 	if (dev->removed) {
5700 		cmd->result = DID_NO_CONNECT << 16;
5701 		cmd->scsi_done(cmd);
5702 		return 0;
5703 	}
5704 
5705 	if (unlikely(lockup_detected(h))) {
5706 		cmd->result = DID_NO_CONNECT << 16;
5707 		cmd->scsi_done(cmd);
5708 		return 0;
5709 	}
5710 
5711 	if (dev->in_reset)
5712 		return SCSI_MLQUEUE_DEVICE_BUSY;
5713 
5714 	c = cmd_tagged_alloc(h, cmd);
5715 	if (c == NULL)
5716 		return SCSI_MLQUEUE_DEVICE_BUSY;
5717 
5718 	/*
5719 	 * This is necessary because the SML doesn't zero out this field during
5720 	 * error recovery.
5721 	 */
5722 	cmd->result = 0;
5723 
5724 	/*
5725 	 * Call alternate submit routine for I/O accelerated commands.
5726 	 * Retries always go down the normal I/O path.
5727 	 * Note: If cmd->retries is non-zero, then this is a SML
5728 	 *       initiated retry and not a driver initiated retry.
5729 	 *       This command has been obtained from cmd_tagged_alloc
5730 	 *       and is therefore a brand-new command.
5731 	 */
5732 	if (likely(cmd->retries == 0 &&
5733 			!blk_rq_is_passthrough(cmd->request) &&
5734 			h->acciopath_status)) {
5735 		/* Submit with the retry_pending flag unset. */
5736 		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5737 		if (rc == 0)
5738 			return 0;
5739 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5740 			hpsa_cmd_resolve_and_free(h, c);
5741 			return SCSI_MLQUEUE_HOST_BUSY;
5742 		}
5743 	}
5744 	return hpsa_ciss_submit(h, c, cmd, dev);
5745 }
5746 
5747 static void hpsa_scan_complete(struct ctlr_info *h)
5748 {
5749 	unsigned long flags;
5750 
5751 	spin_lock_irqsave(&h->scan_lock, flags);
5752 	h->scan_finished = 1;
5753 	wake_up(&h->scan_wait_queue);
5754 	spin_unlock_irqrestore(&h->scan_lock, flags);
5755 }
5756 
5757 static void hpsa_scan_start(struct Scsi_Host *sh)
5758 {
5759 	struct ctlr_info *h = shost_to_hba(sh);
5760 	unsigned long flags;
5761 
5762 	/*
5763 	 * Don't let rescans be initiated on a controller known to be locked
5764 	 * up.  If the controller locks up *during* a rescan, that thread is
5765 	 * probably hosed, but at least we can prevent new rescan threads from
5766 	 * piling up on a locked up controller.
5767 	 */
5768 	if (unlikely(lockup_detected(h)))
5769 		return hpsa_scan_complete(h);
5770 
5771 	/*
5772 	 * If a scan is already waiting to run, no need to add another
5773 	 */
5774 	spin_lock_irqsave(&h->scan_lock, flags);
5775 	if (h->scan_waiting) {
5776 		spin_unlock_irqrestore(&h->scan_lock, flags);
5777 		return;
5778 	}
5779 
5780 	spin_unlock_irqrestore(&h->scan_lock, flags);
5781 
5782 	/* wait until any scan already in progress is finished. */
5783 	while (1) {
5784 		spin_lock_irqsave(&h->scan_lock, flags);
5785 		if (h->scan_finished)
5786 			break;
5787 		h->scan_waiting = 1;
5788 		spin_unlock_irqrestore(&h->scan_lock, flags);
5789 		wait_event(h->scan_wait_queue, h->scan_finished);
5790 		/* Note: We don't need to worry about a race between this
5791 		 * thread and driver unload because the midlayer will
5792 		 * have incremented the reference count, so unload won't
5793 		 * happen if we're in here.
5794 		 */
5795 	}
5796 	h->scan_finished = 0; /* mark scan as in progress */
5797 	h->scan_waiting = 0;
5798 	spin_unlock_irqrestore(&h->scan_lock, flags);
5799 
5800 	if (unlikely(lockup_detected(h)))
5801 		return hpsa_scan_complete(h);
5802 
5803 	/*
5804 	 * Do the scan after a reset completion
5805 	 */
5806 	spin_lock_irqsave(&h->reset_lock, flags);
5807 	if (h->reset_in_progress) {
5808 		h->drv_req_rescan = 1;
5809 		spin_unlock_irqrestore(&h->reset_lock, flags);
5810 		hpsa_scan_complete(h);
5811 		return;
5812 	}
5813 	spin_unlock_irqrestore(&h->reset_lock, flags);
5814 
5815 	hpsa_update_scsi_devices(h);
5816 
5817 	hpsa_scan_complete(h);
5818 }
5819 
5820 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5821 {
5822 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5823 
5824 	if (!logical_drive)
5825 		return -ENODEV;
5826 
5827 	if (qdepth < 1)
5828 		qdepth = 1;
5829 	else if (qdepth > logical_drive->queue_depth)
5830 		qdepth = logical_drive->queue_depth;
5831 
5832 	return scsi_change_queue_depth(sdev, qdepth);
5833 }
5834 
5835 static int hpsa_scan_finished(struct Scsi_Host *sh,
5836 	unsigned long elapsed_time)
5837 {
5838 	struct ctlr_info *h = shost_to_hba(sh);
5839 	unsigned long flags;
5840 	int finished;
5841 
5842 	spin_lock_irqsave(&h->scan_lock, flags);
5843 	finished = h->scan_finished;
5844 	spin_unlock_irqrestore(&h->scan_lock, flags);
5845 	return finished;
5846 }
5847 
5848 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5849 {
5850 	struct Scsi_Host *sh;
5851 
5852 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5853 	if (sh == NULL) {
5854 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5855 		return -ENOMEM;
5856 	}
5857 
5858 	sh->io_port = 0;
5859 	sh->n_io_port = 0;
5860 	sh->this_id = -1;
5861 	sh->max_channel = 3;
5862 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5863 	sh->max_lun = HPSA_MAX_LUN;
5864 	sh->max_id = HPSA_MAX_LUN;
5865 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5866 	sh->cmd_per_lun = sh->can_queue;
5867 	sh->sg_tablesize = h->maxsgentries;
5868 	sh->transportt = hpsa_sas_transport_template;
5869 	sh->hostdata[0] = (unsigned long) h;
5870 	sh->irq = pci_irq_vector(h->pdev, 0);
5871 	sh->unique_id = sh->irq;
5872 
5873 	h->scsi_host = sh;
5874 	return 0;
5875 }
5876 
5877 static int hpsa_scsi_add_host(struct ctlr_info *h)
5878 {
5879 	int rv;
5880 
5881 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5882 	if (rv) {
5883 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5884 		return rv;
5885 	}
5886 	scsi_scan_host(h->scsi_host);
5887 	return 0;
5888 }
5889 
5890 /*
5891  * The block layer has already gone to the trouble of picking out a unique,
5892  * small-integer tag for this request.  We use an offset from that value as
5893  * an index to select our command block.  (The offset allows us to reserve the
5894  * low-numbered entries for our own uses.)
5895  */
5896 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5897 {
5898 	int idx = scmd->request->tag;
5899 
5900 	if (idx < 0)
5901 		return idx;
5902 
5903 	/* Offset to leave space for internal cmds. */
5904 	return idx += HPSA_NRESERVED_CMDS;
5905 }
5906 
5907 /*
5908  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5909  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5910  */
5911 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5912 				struct CommandList *c, unsigned char lunaddr[],
5913 				int reply_queue)
5914 {
5915 	int rc;
5916 
5917 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5918 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5919 			NULL, 0, 0, lunaddr, TYPE_CMD);
5920 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5921 	if (rc)
5922 		return rc;
5923 	/* no unmap needed here because no data xfer. */
5924 
5925 	/* Check if the unit is already ready. */
5926 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5927 		return 0;
5928 
5929 	/*
5930 	 * The first command sent after reset will receive "unit attention" to
5931 	 * indicate that the LUN has been reset...this is actually what we're
5932 	 * looking for (but, success is good too).
5933 	 */
5934 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5935 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5936 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5937 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5938 		return 0;
5939 
5940 	return 1;
5941 }
5942 
5943 /*
5944  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5945  * returns zero when the unit is ready, and non-zero when giving up.
5946  */
5947 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5948 				struct CommandList *c,
5949 				unsigned char lunaddr[], int reply_queue)
5950 {
5951 	int rc;
5952 	int count = 0;
5953 	int waittime = 1; /* seconds */
5954 
5955 	/* Send test unit ready until device ready, or give up. */
5956 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5957 
5958 		/*
5959 		 * Wait for a bit.  do this first, because if we send
5960 		 * the TUR right away, the reset will just abort it.
5961 		 */
5962 		msleep(1000 * waittime);
5963 
5964 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5965 		if (!rc)
5966 			break;
5967 
5968 		/* Increase wait time with each try, up to a point. */
5969 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5970 			waittime *= 2;
5971 
5972 		dev_warn(&h->pdev->dev,
5973 			 "waiting %d secs for device to become ready.\n",
5974 			 waittime);
5975 	}
5976 
5977 	return rc;
5978 }
5979 
5980 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5981 					   unsigned char lunaddr[],
5982 					   int reply_queue)
5983 {
5984 	int first_queue;
5985 	int last_queue;
5986 	int rq;
5987 	int rc = 0;
5988 	struct CommandList *c;
5989 
5990 	c = cmd_alloc(h);
5991 
5992 	/*
5993 	 * If no specific reply queue was requested, then send the TUR
5994 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5995 	 * the loop exactly once using only the specified queue.
5996 	 */
5997 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5998 		first_queue = 0;
5999 		last_queue = h->nreply_queues - 1;
6000 	} else {
6001 		first_queue = reply_queue;
6002 		last_queue = reply_queue;
6003 	}
6004 
6005 	for (rq = first_queue; rq <= last_queue; rq++) {
6006 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6007 		if (rc)
6008 			break;
6009 	}
6010 
6011 	if (rc)
6012 		dev_warn(&h->pdev->dev, "giving up on device.\n");
6013 	else
6014 		dev_warn(&h->pdev->dev, "device is ready.\n");
6015 
6016 	cmd_free(h, c);
6017 	return rc;
6018 }
6019 
6020 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6021  * complaining.  Doing a host- or bus-reset can't do anything good here.
6022  */
6023 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6024 {
6025 	int rc = SUCCESS;
6026 	int i;
6027 	struct ctlr_info *h;
6028 	struct hpsa_scsi_dev_t *dev = NULL;
6029 	u8 reset_type;
6030 	char msg[48];
6031 	unsigned long flags;
6032 
6033 	/* find the controller to which the command to be aborted was sent */
6034 	h = sdev_to_hba(scsicmd->device);
6035 	if (h == NULL) /* paranoia */
6036 		return FAILED;
6037 
6038 	spin_lock_irqsave(&h->reset_lock, flags);
6039 	h->reset_in_progress = 1;
6040 	spin_unlock_irqrestore(&h->reset_lock, flags);
6041 
6042 	if (lockup_detected(h)) {
6043 		rc = FAILED;
6044 		goto return_reset_status;
6045 	}
6046 
6047 	dev = scsicmd->device->hostdata;
6048 	if (!dev) {
6049 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6050 		rc = FAILED;
6051 		goto return_reset_status;
6052 	}
6053 
6054 	if (dev->devtype == TYPE_ENCLOSURE) {
6055 		rc = SUCCESS;
6056 		goto return_reset_status;
6057 	}
6058 
6059 	/* if controller locked up, we can guarantee command won't complete */
6060 	if (lockup_detected(h)) {
6061 		snprintf(msg, sizeof(msg),
6062 			 "cmd %d RESET FAILED, lockup detected",
6063 			 hpsa_get_cmd_index(scsicmd));
6064 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6065 		rc = FAILED;
6066 		goto return_reset_status;
6067 	}
6068 
6069 	/* this reset request might be the result of a lockup; check */
6070 	if (detect_controller_lockup(h)) {
6071 		snprintf(msg, sizeof(msg),
6072 			 "cmd %d RESET FAILED, new lockup detected",
6073 			 hpsa_get_cmd_index(scsicmd));
6074 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6075 		rc = FAILED;
6076 		goto return_reset_status;
6077 	}
6078 
6079 	/* Do not attempt on controller */
6080 	if (is_hba_lunid(dev->scsi3addr)) {
6081 		rc = SUCCESS;
6082 		goto return_reset_status;
6083 	}
6084 
6085 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6086 		reset_type = HPSA_DEVICE_RESET_MSG;
6087 	else
6088 		reset_type = HPSA_PHYS_TARGET_RESET;
6089 
6090 	sprintf(msg, "resetting %s",
6091 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6092 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6093 
6094 	/*
6095 	 * wait to see if any commands will complete before sending reset
6096 	 */
6097 	dev->in_reset = true; /* block any new cmds from OS for this device */
6098 	for (i = 0; i < 10; i++) {
6099 		if (atomic_read(&dev->commands_outstanding) > 0)
6100 			msleep(1000);
6101 		else
6102 			break;
6103 	}
6104 
6105 	/* send a reset to the SCSI LUN which the command was sent to */
6106 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6107 	if (rc == 0)
6108 		rc = SUCCESS;
6109 	else
6110 		rc = FAILED;
6111 
6112 	sprintf(msg, "reset %s %s",
6113 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6114 		rc == SUCCESS ? "completed successfully" : "failed");
6115 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6116 
6117 return_reset_status:
6118 	spin_lock_irqsave(&h->reset_lock, flags);
6119 	h->reset_in_progress = 0;
6120 	if (dev)
6121 		dev->in_reset = false;
6122 	spin_unlock_irqrestore(&h->reset_lock, flags);
6123 	return rc;
6124 }
6125 
6126 /*
6127  * For operations with an associated SCSI command, a command block is allocated
6128  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6129  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6130  * the complement, although cmd_free() may be called instead.
6131  * This function is only called for new requests from queue_command.
6132  */
6133 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6134 					    struct scsi_cmnd *scmd)
6135 {
6136 	int idx = hpsa_get_cmd_index(scmd);
6137 	struct CommandList *c = h->cmd_pool + idx;
6138 
6139 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6140 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6141 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6142 		/* The index value comes from the block layer, so if it's out of
6143 		 * bounds, it's probably not our bug.
6144 		 */
6145 		BUG();
6146 	}
6147 
6148 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6149 		/*
6150 		 * We expect that the SCSI layer will hand us a unique tag
6151 		 * value.  Thus, there should never be a collision here between
6152 		 * two requests...because if the selected command isn't idle
6153 		 * then someone is going to be very disappointed.
6154 		 */
6155 		if (idx != h->last_collision_tag) { /* Print once per tag */
6156 			dev_warn(&h->pdev->dev,
6157 				"%s: tag collision (tag=%d)\n", __func__, idx);
6158 			if (scmd)
6159 				scsi_print_command(scmd);
6160 			h->last_collision_tag = idx;
6161 		}
6162 		return NULL;
6163 	}
6164 
6165 	atomic_inc(&c->refcount);
6166 	hpsa_cmd_partial_init(h, idx, c);
6167 
6168 	/*
6169 	 * This is a new command obtained from queue_command so
6170 	 * there have not been any driver initiated retry attempts.
6171 	 */
6172 	c->retry_pending = false;
6173 
6174 	return c;
6175 }
6176 
6177 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6178 {
6179 	/*
6180 	 * Release our reference to the block.  We don't need to do anything
6181 	 * else to free it, because it is accessed by index.
6182 	 */
6183 	(void)atomic_dec(&c->refcount);
6184 }
6185 
6186 /*
6187  * For operations that cannot sleep, a command block is allocated at init,
6188  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6189  * which ones are free or in use.  Lock must be held when calling this.
6190  * cmd_free() is the complement.
6191  * This function never gives up and returns NULL.  If it hangs,
6192  * another thread must call cmd_free() to free some tags.
6193  */
6194 
6195 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6196 {
6197 	struct CommandList *c;
6198 	int refcount, i;
6199 	int offset = 0;
6200 
6201 	/*
6202 	 * There is some *extremely* small but non-zero chance that that
6203 	 * multiple threads could get in here, and one thread could
6204 	 * be scanning through the list of bits looking for a free
6205 	 * one, but the free ones are always behind him, and other
6206 	 * threads sneak in behind him and eat them before he can
6207 	 * get to them, so that while there is always a free one, a
6208 	 * very unlucky thread might be starved anyway, never able to
6209 	 * beat the other threads.  In reality, this happens so
6210 	 * infrequently as to be indistinguishable from never.
6211 	 *
6212 	 * Note that we start allocating commands before the SCSI host structure
6213 	 * is initialized.  Since the search starts at bit zero, this
6214 	 * all works, since we have at least one command structure available;
6215 	 * however, it means that the structures with the low indexes have to be
6216 	 * reserved for driver-initiated requests, while requests from the block
6217 	 * layer will use the higher indexes.
6218 	 */
6219 
6220 	for (;;) {
6221 		i = find_next_zero_bit(h->cmd_pool_bits,
6222 					HPSA_NRESERVED_CMDS,
6223 					offset);
6224 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6225 			offset = 0;
6226 			continue;
6227 		}
6228 		c = h->cmd_pool + i;
6229 		refcount = atomic_inc_return(&c->refcount);
6230 		if (unlikely(refcount > 1)) {
6231 			cmd_free(h, c); /* already in use */
6232 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6233 			continue;
6234 		}
6235 		set_bit(i & (BITS_PER_LONG - 1),
6236 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6237 		break; /* it's ours now. */
6238 	}
6239 	hpsa_cmd_partial_init(h, i, c);
6240 	c->device = NULL;
6241 
6242 	/*
6243 	 * cmd_alloc is for "internal" commands and they are never
6244 	 * retried.
6245 	 */
6246 	c->retry_pending = false;
6247 
6248 	return c;
6249 }
6250 
6251 /*
6252  * This is the complementary operation to cmd_alloc().  Note, however, in some
6253  * corner cases it may also be used to free blocks allocated by
6254  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6255  * the clear-bit is harmless.
6256  */
6257 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6258 {
6259 	if (atomic_dec_and_test(&c->refcount)) {
6260 		int i;
6261 
6262 		i = c - h->cmd_pool;
6263 		clear_bit(i & (BITS_PER_LONG - 1),
6264 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6265 	}
6266 }
6267 
6268 #ifdef CONFIG_COMPAT
6269 
6270 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6271 	void __user *arg)
6272 {
6273 	struct ctlr_info *h = sdev_to_hba(dev);
6274 	IOCTL32_Command_struct __user *arg32 = arg;
6275 	IOCTL_Command_struct arg64;
6276 	int err;
6277 	u32 cp;
6278 
6279 	if (!arg)
6280 		return -EINVAL;
6281 
6282 	memset(&arg64, 0, sizeof(arg64));
6283 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6284 		return -EFAULT;
6285 	if (get_user(cp, &arg32->buf))
6286 		return -EFAULT;
6287 	arg64.buf = compat_ptr(cp);
6288 
6289 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6290 		return -EAGAIN;
6291 	err = hpsa_passthru_ioctl(h, &arg64);
6292 	atomic_inc(&h->passthru_cmds_avail);
6293 	if (err)
6294 		return err;
6295 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6296 			 sizeof(arg32->error_info)))
6297 		return -EFAULT;
6298 	return 0;
6299 }
6300 
6301 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6302 	unsigned int cmd, void __user *arg)
6303 {
6304 	struct ctlr_info *h = sdev_to_hba(dev);
6305 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6306 	BIG_IOCTL_Command_struct arg64;
6307 	int err;
6308 	u32 cp;
6309 
6310 	if (!arg)
6311 		return -EINVAL;
6312 	memset(&arg64, 0, sizeof(arg64));
6313 	if (copy_from_user(&arg64, arg32,
6314 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6315 		return -EFAULT;
6316 	if (get_user(cp, &arg32->buf))
6317 		return -EFAULT;
6318 	arg64.buf = compat_ptr(cp);
6319 
6320 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6321 		return -EAGAIN;
6322 	err = hpsa_big_passthru_ioctl(h, &arg64);
6323 	atomic_inc(&h->passthru_cmds_avail);
6324 	if (err)
6325 		return err;
6326 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6327 			 sizeof(arg32->error_info)))
6328 		return -EFAULT;
6329 	return 0;
6330 }
6331 
6332 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6333 			     void __user *arg)
6334 {
6335 	switch (cmd) {
6336 	case CCISS_GETPCIINFO:
6337 	case CCISS_GETINTINFO:
6338 	case CCISS_SETINTINFO:
6339 	case CCISS_GETNODENAME:
6340 	case CCISS_SETNODENAME:
6341 	case CCISS_GETHEARTBEAT:
6342 	case CCISS_GETBUSTYPES:
6343 	case CCISS_GETFIRMVER:
6344 	case CCISS_GETDRIVVER:
6345 	case CCISS_REVALIDVOLS:
6346 	case CCISS_DEREGDISK:
6347 	case CCISS_REGNEWDISK:
6348 	case CCISS_REGNEWD:
6349 	case CCISS_RESCANDISK:
6350 	case CCISS_GETLUNINFO:
6351 		return hpsa_ioctl(dev, cmd, arg);
6352 
6353 	case CCISS_PASSTHRU32:
6354 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6355 	case CCISS_BIG_PASSTHRU32:
6356 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6357 
6358 	default:
6359 		return -ENOIOCTLCMD;
6360 	}
6361 }
6362 #endif
6363 
6364 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6365 {
6366 	struct hpsa_pci_info pciinfo;
6367 
6368 	if (!argp)
6369 		return -EINVAL;
6370 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6371 	pciinfo.bus = h->pdev->bus->number;
6372 	pciinfo.dev_fn = h->pdev->devfn;
6373 	pciinfo.board_id = h->board_id;
6374 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6375 		return -EFAULT;
6376 	return 0;
6377 }
6378 
6379 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6380 {
6381 	DriverVer_type DriverVer;
6382 	unsigned char vmaj, vmin, vsubmin;
6383 	int rc;
6384 
6385 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6386 		&vmaj, &vmin, &vsubmin);
6387 	if (rc != 3) {
6388 		dev_info(&h->pdev->dev, "driver version string '%s' "
6389 			"unrecognized.", HPSA_DRIVER_VERSION);
6390 		vmaj = 0;
6391 		vmin = 0;
6392 		vsubmin = 0;
6393 	}
6394 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6395 	if (!argp)
6396 		return -EINVAL;
6397 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6398 		return -EFAULT;
6399 	return 0;
6400 }
6401 
6402 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6403 			       IOCTL_Command_struct *iocommand)
6404 {
6405 	struct CommandList *c;
6406 	char *buff = NULL;
6407 	u64 temp64;
6408 	int rc = 0;
6409 
6410 	if (!capable(CAP_SYS_RAWIO))
6411 		return -EPERM;
6412 	if ((iocommand->buf_size < 1) &&
6413 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6414 		return -EINVAL;
6415 	}
6416 	if (iocommand->buf_size > 0) {
6417 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6418 		if (buff == NULL)
6419 			return -ENOMEM;
6420 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6421 			/* Copy the data into the buffer we created */
6422 			if (copy_from_user(buff, iocommand->buf,
6423 				iocommand->buf_size)) {
6424 				rc = -EFAULT;
6425 				goto out_kfree;
6426 			}
6427 		} else {
6428 			memset(buff, 0, iocommand->buf_size);
6429 		}
6430 	}
6431 	c = cmd_alloc(h);
6432 
6433 	/* Fill in the command type */
6434 	c->cmd_type = CMD_IOCTL_PEND;
6435 	c->scsi_cmd = SCSI_CMD_BUSY;
6436 	/* Fill in Command Header */
6437 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6438 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6439 		c->Header.SGList = 1;
6440 		c->Header.SGTotal = cpu_to_le16(1);
6441 	} else	{ /* no buffers to fill */
6442 		c->Header.SGList = 0;
6443 		c->Header.SGTotal = cpu_to_le16(0);
6444 	}
6445 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6446 
6447 	/* Fill in Request block */
6448 	memcpy(&c->Request, &iocommand->Request,
6449 		sizeof(c->Request));
6450 
6451 	/* Fill in the scatter gather information */
6452 	if (iocommand->buf_size > 0) {
6453 		temp64 = dma_map_single(&h->pdev->dev, buff,
6454 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6455 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6456 			c->SG[0].Addr = cpu_to_le64(0);
6457 			c->SG[0].Len = cpu_to_le32(0);
6458 			rc = -ENOMEM;
6459 			goto out;
6460 		}
6461 		c->SG[0].Addr = cpu_to_le64(temp64);
6462 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6463 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6464 	}
6465 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466 					NO_TIMEOUT);
6467 	if (iocommand->buf_size > 0)
6468 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6469 	check_ioctl_unit_attention(h, c);
6470 	if (rc) {
6471 		rc = -EIO;
6472 		goto out;
6473 	}
6474 
6475 	/* Copy the error information out */
6476 	memcpy(&iocommand->error_info, c->err_info,
6477 		sizeof(iocommand->error_info));
6478 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6479 		iocommand->buf_size > 0) {
6480 		/* Copy the data out of the buffer we created */
6481 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6482 			rc = -EFAULT;
6483 			goto out;
6484 		}
6485 	}
6486 out:
6487 	cmd_free(h, c);
6488 out_kfree:
6489 	kfree(buff);
6490 	return rc;
6491 }
6492 
6493 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6494 				   BIG_IOCTL_Command_struct *ioc)
6495 {
6496 	struct CommandList *c;
6497 	unsigned char **buff = NULL;
6498 	int *buff_size = NULL;
6499 	u64 temp64;
6500 	BYTE sg_used = 0;
6501 	int status = 0;
6502 	u32 left;
6503 	u32 sz;
6504 	BYTE __user *data_ptr;
6505 
6506 	if (!capable(CAP_SYS_RAWIO))
6507 		return -EPERM;
6508 
6509 	if ((ioc->buf_size < 1) &&
6510 	    (ioc->Request.Type.Direction != XFER_NONE))
6511 		return -EINVAL;
6512 	/* Check kmalloc limits  using all SGs */
6513 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6514 		return -EINVAL;
6515 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6516 		return -EINVAL;
6517 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6518 	if (!buff) {
6519 		status = -ENOMEM;
6520 		goto cleanup1;
6521 	}
6522 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6523 	if (!buff_size) {
6524 		status = -ENOMEM;
6525 		goto cleanup1;
6526 	}
6527 	left = ioc->buf_size;
6528 	data_ptr = ioc->buf;
6529 	while (left) {
6530 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6531 		buff_size[sg_used] = sz;
6532 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6533 		if (buff[sg_used] == NULL) {
6534 			status = -ENOMEM;
6535 			goto cleanup1;
6536 		}
6537 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6538 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6539 				status = -EFAULT;
6540 				goto cleanup1;
6541 			}
6542 		} else
6543 			memset(buff[sg_used], 0, sz);
6544 		left -= sz;
6545 		data_ptr += sz;
6546 		sg_used++;
6547 	}
6548 	c = cmd_alloc(h);
6549 
6550 	c->cmd_type = CMD_IOCTL_PEND;
6551 	c->scsi_cmd = SCSI_CMD_BUSY;
6552 	c->Header.ReplyQueue = 0;
6553 	c->Header.SGList = (u8) sg_used;
6554 	c->Header.SGTotal = cpu_to_le16(sg_used);
6555 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6556 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6557 	if (ioc->buf_size > 0) {
6558 		int i;
6559 		for (i = 0; i < sg_used; i++) {
6560 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6561 				    buff_size[i], DMA_BIDIRECTIONAL);
6562 			if (dma_mapping_error(&h->pdev->dev,
6563 							(dma_addr_t) temp64)) {
6564 				c->SG[i].Addr = cpu_to_le64(0);
6565 				c->SG[i].Len = cpu_to_le32(0);
6566 				hpsa_pci_unmap(h->pdev, c, i,
6567 					DMA_BIDIRECTIONAL);
6568 				status = -ENOMEM;
6569 				goto cleanup0;
6570 			}
6571 			c->SG[i].Addr = cpu_to_le64(temp64);
6572 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6573 			c->SG[i].Ext = cpu_to_le32(0);
6574 		}
6575 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6576 	}
6577 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6578 						NO_TIMEOUT);
6579 	if (sg_used)
6580 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6581 	check_ioctl_unit_attention(h, c);
6582 	if (status) {
6583 		status = -EIO;
6584 		goto cleanup0;
6585 	}
6586 
6587 	/* Copy the error information out */
6588 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6589 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6590 		int i;
6591 
6592 		/* Copy the data out of the buffer we created */
6593 		BYTE __user *ptr = ioc->buf;
6594 		for (i = 0; i < sg_used; i++) {
6595 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6596 				status = -EFAULT;
6597 				goto cleanup0;
6598 			}
6599 			ptr += buff_size[i];
6600 		}
6601 	}
6602 	status = 0;
6603 cleanup0:
6604 	cmd_free(h, c);
6605 cleanup1:
6606 	if (buff) {
6607 		int i;
6608 
6609 		for (i = 0; i < sg_used; i++)
6610 			kfree(buff[i]);
6611 		kfree(buff);
6612 	}
6613 	kfree(buff_size);
6614 	return status;
6615 }
6616 
6617 static void check_ioctl_unit_attention(struct ctlr_info *h,
6618 	struct CommandList *c)
6619 {
6620 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6621 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6622 		(void) check_for_unit_attention(h, c);
6623 }
6624 
6625 /*
6626  * ioctl
6627  */
6628 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6629 		      void __user *argp)
6630 {
6631 	struct ctlr_info *h = sdev_to_hba(dev);
6632 	int rc;
6633 
6634 	switch (cmd) {
6635 	case CCISS_DEREGDISK:
6636 	case CCISS_REGNEWDISK:
6637 	case CCISS_REGNEWD:
6638 		hpsa_scan_start(h->scsi_host);
6639 		return 0;
6640 	case CCISS_GETPCIINFO:
6641 		return hpsa_getpciinfo_ioctl(h, argp);
6642 	case CCISS_GETDRIVVER:
6643 		return hpsa_getdrivver_ioctl(h, argp);
6644 	case CCISS_PASSTHRU: {
6645 		IOCTL_Command_struct iocommand;
6646 
6647 		if (!argp)
6648 			return -EINVAL;
6649 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6650 			return -EFAULT;
6651 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6652 			return -EAGAIN;
6653 		rc = hpsa_passthru_ioctl(h, &iocommand);
6654 		atomic_inc(&h->passthru_cmds_avail);
6655 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6656 			rc = -EFAULT;
6657 		return rc;
6658 	}
6659 	case CCISS_BIG_PASSTHRU: {
6660 		BIG_IOCTL_Command_struct ioc;
6661 		if (!argp)
6662 			return -EINVAL;
6663 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6664 			return -EFAULT;
6665 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6666 			return -EAGAIN;
6667 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6668 		atomic_inc(&h->passthru_cmds_avail);
6669 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6670 			rc = -EFAULT;
6671 		return rc;
6672 	}
6673 	default:
6674 		return -ENOTTY;
6675 	}
6676 }
6677 
6678 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6679 {
6680 	struct CommandList *c;
6681 
6682 	c = cmd_alloc(h);
6683 
6684 	/* fill_cmd can't fail here, no data buffer to map */
6685 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6686 		RAID_CTLR_LUNID, TYPE_MSG);
6687 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6688 	c->waiting = NULL;
6689 	enqueue_cmd_and_start_io(h, c);
6690 	/* Don't wait for completion, the reset won't complete.  Don't free
6691 	 * the command either.  This is the last command we will send before
6692 	 * re-initializing everything, so it doesn't matter and won't leak.
6693 	 */
6694 	return;
6695 }
6696 
6697 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6698 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6699 	int cmd_type)
6700 {
6701 	enum dma_data_direction dir = DMA_NONE;
6702 
6703 	c->cmd_type = CMD_IOCTL_PEND;
6704 	c->scsi_cmd = SCSI_CMD_BUSY;
6705 	c->Header.ReplyQueue = 0;
6706 	if (buff != NULL && size > 0) {
6707 		c->Header.SGList = 1;
6708 		c->Header.SGTotal = cpu_to_le16(1);
6709 	} else {
6710 		c->Header.SGList = 0;
6711 		c->Header.SGTotal = cpu_to_le16(0);
6712 	}
6713 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6714 
6715 	if (cmd_type == TYPE_CMD) {
6716 		switch (cmd) {
6717 		case HPSA_INQUIRY:
6718 			/* are we trying to read a vital product page */
6719 			if (page_code & VPD_PAGE) {
6720 				c->Request.CDB[1] = 0x01;
6721 				c->Request.CDB[2] = (page_code & 0xff);
6722 			}
6723 			c->Request.CDBLen = 6;
6724 			c->Request.type_attr_dir =
6725 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726 			c->Request.Timeout = 0;
6727 			c->Request.CDB[0] = HPSA_INQUIRY;
6728 			c->Request.CDB[4] = size & 0xFF;
6729 			break;
6730 		case RECEIVE_DIAGNOSTIC:
6731 			c->Request.CDBLen = 6;
6732 			c->Request.type_attr_dir =
6733 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6734 			c->Request.Timeout = 0;
6735 			c->Request.CDB[0] = cmd;
6736 			c->Request.CDB[1] = 1;
6737 			c->Request.CDB[2] = 1;
6738 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6739 			c->Request.CDB[4] = size & 0xFF;
6740 			break;
6741 		case HPSA_REPORT_LOG:
6742 		case HPSA_REPORT_PHYS:
6743 			/* Talking to controller so It's a physical command
6744 			   mode = 00 target = 0.  Nothing to write.
6745 			 */
6746 			c->Request.CDBLen = 12;
6747 			c->Request.type_attr_dir =
6748 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6749 			c->Request.Timeout = 0;
6750 			c->Request.CDB[0] = cmd;
6751 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6752 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6753 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6754 			c->Request.CDB[9] = size & 0xFF;
6755 			break;
6756 		case BMIC_SENSE_DIAG_OPTIONS:
6757 			c->Request.CDBLen = 16;
6758 			c->Request.type_attr_dir =
6759 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6760 			c->Request.Timeout = 0;
6761 			/* Spec says this should be BMIC_WRITE */
6762 			c->Request.CDB[0] = BMIC_READ;
6763 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6764 			break;
6765 		case BMIC_SET_DIAG_OPTIONS:
6766 			c->Request.CDBLen = 16;
6767 			c->Request.type_attr_dir =
6768 					TYPE_ATTR_DIR(cmd_type,
6769 						ATTR_SIMPLE, XFER_WRITE);
6770 			c->Request.Timeout = 0;
6771 			c->Request.CDB[0] = BMIC_WRITE;
6772 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6773 			break;
6774 		case HPSA_CACHE_FLUSH:
6775 			c->Request.CDBLen = 12;
6776 			c->Request.type_attr_dir =
6777 					TYPE_ATTR_DIR(cmd_type,
6778 						ATTR_SIMPLE, XFER_WRITE);
6779 			c->Request.Timeout = 0;
6780 			c->Request.CDB[0] = BMIC_WRITE;
6781 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6782 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6783 			c->Request.CDB[8] = size & 0xFF;
6784 			break;
6785 		case TEST_UNIT_READY:
6786 			c->Request.CDBLen = 6;
6787 			c->Request.type_attr_dir =
6788 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789 			c->Request.Timeout = 0;
6790 			break;
6791 		case HPSA_GET_RAID_MAP:
6792 			c->Request.CDBLen = 12;
6793 			c->Request.type_attr_dir =
6794 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6795 			c->Request.Timeout = 0;
6796 			c->Request.CDB[0] = HPSA_CISS_READ;
6797 			c->Request.CDB[1] = cmd;
6798 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6799 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6800 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6801 			c->Request.CDB[9] = size & 0xFF;
6802 			break;
6803 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6804 			c->Request.CDBLen = 10;
6805 			c->Request.type_attr_dir =
6806 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807 			c->Request.Timeout = 0;
6808 			c->Request.CDB[0] = BMIC_READ;
6809 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6810 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6811 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6812 			break;
6813 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6814 			c->Request.CDBLen = 10;
6815 			c->Request.type_attr_dir =
6816 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817 			c->Request.Timeout = 0;
6818 			c->Request.CDB[0] = BMIC_READ;
6819 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6820 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6821 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6822 			break;
6823 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6824 			c->Request.CDBLen = 10;
6825 			c->Request.type_attr_dir =
6826 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6827 			c->Request.Timeout = 0;
6828 			c->Request.CDB[0] = BMIC_READ;
6829 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6830 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6831 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6832 			break;
6833 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6834 			c->Request.CDBLen = 10;
6835 			c->Request.type_attr_dir =
6836 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6837 			c->Request.Timeout = 0;
6838 			c->Request.CDB[0] = BMIC_READ;
6839 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6840 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6841 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6842 			break;
6843 		case BMIC_IDENTIFY_CONTROLLER:
6844 			c->Request.CDBLen = 10;
6845 			c->Request.type_attr_dir =
6846 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6847 			c->Request.Timeout = 0;
6848 			c->Request.CDB[0] = BMIC_READ;
6849 			c->Request.CDB[1] = 0;
6850 			c->Request.CDB[2] = 0;
6851 			c->Request.CDB[3] = 0;
6852 			c->Request.CDB[4] = 0;
6853 			c->Request.CDB[5] = 0;
6854 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6855 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6856 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6857 			c->Request.CDB[9] = 0;
6858 			break;
6859 		default:
6860 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6861 			BUG();
6862 		}
6863 	} else if (cmd_type == TYPE_MSG) {
6864 		switch (cmd) {
6865 
6866 		case  HPSA_PHYS_TARGET_RESET:
6867 			c->Request.CDBLen = 16;
6868 			c->Request.type_attr_dir =
6869 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6870 			c->Request.Timeout = 0; /* Don't time out */
6871 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6872 			c->Request.CDB[0] = HPSA_RESET;
6873 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6874 			/* Physical target reset needs no control bytes 4-7*/
6875 			c->Request.CDB[4] = 0x00;
6876 			c->Request.CDB[5] = 0x00;
6877 			c->Request.CDB[6] = 0x00;
6878 			c->Request.CDB[7] = 0x00;
6879 			break;
6880 		case  HPSA_DEVICE_RESET_MSG:
6881 			c->Request.CDBLen = 16;
6882 			c->Request.type_attr_dir =
6883 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6884 			c->Request.Timeout = 0; /* Don't time out */
6885 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6886 			c->Request.CDB[0] =  cmd;
6887 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6888 			/* If bytes 4-7 are zero, it means reset the */
6889 			/* LunID device */
6890 			c->Request.CDB[4] = 0x00;
6891 			c->Request.CDB[5] = 0x00;
6892 			c->Request.CDB[6] = 0x00;
6893 			c->Request.CDB[7] = 0x00;
6894 			break;
6895 		default:
6896 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6897 				cmd);
6898 			BUG();
6899 		}
6900 	} else {
6901 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6902 		BUG();
6903 	}
6904 
6905 	switch (GET_DIR(c->Request.type_attr_dir)) {
6906 	case XFER_READ:
6907 		dir = DMA_FROM_DEVICE;
6908 		break;
6909 	case XFER_WRITE:
6910 		dir = DMA_TO_DEVICE;
6911 		break;
6912 	case XFER_NONE:
6913 		dir = DMA_NONE;
6914 		break;
6915 	default:
6916 		dir = DMA_BIDIRECTIONAL;
6917 	}
6918 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6919 		return -1;
6920 	return 0;
6921 }
6922 
6923 /*
6924  * Map (physical) PCI mem into (virtual) kernel space
6925  */
6926 static void __iomem *remap_pci_mem(ulong base, ulong size)
6927 {
6928 	ulong page_base = ((ulong) base) & PAGE_MASK;
6929 	ulong page_offs = ((ulong) base) - page_base;
6930 	void __iomem *page_remapped = ioremap(page_base,
6931 		page_offs + size);
6932 
6933 	return page_remapped ? (page_remapped + page_offs) : NULL;
6934 }
6935 
6936 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6937 {
6938 	return h->access.command_completed(h, q);
6939 }
6940 
6941 static inline bool interrupt_pending(struct ctlr_info *h)
6942 {
6943 	return h->access.intr_pending(h);
6944 }
6945 
6946 static inline long interrupt_not_for_us(struct ctlr_info *h)
6947 {
6948 	return (h->access.intr_pending(h) == 0) ||
6949 		(h->interrupts_enabled == 0);
6950 }
6951 
6952 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6953 	u32 raw_tag)
6954 {
6955 	if (unlikely(tag_index >= h->nr_cmds)) {
6956 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6957 		return 1;
6958 	}
6959 	return 0;
6960 }
6961 
6962 static inline void finish_cmd(struct CommandList *c)
6963 {
6964 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6965 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6966 			|| c->cmd_type == CMD_IOACCEL2))
6967 		complete_scsi_command(c);
6968 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6969 		complete(c->waiting);
6970 }
6971 
6972 /* process completion of an indexed ("direct lookup") command */
6973 static inline void process_indexed_cmd(struct ctlr_info *h,
6974 	u32 raw_tag)
6975 {
6976 	u32 tag_index;
6977 	struct CommandList *c;
6978 
6979 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6980 	if (!bad_tag(h, tag_index, raw_tag)) {
6981 		c = h->cmd_pool + tag_index;
6982 		finish_cmd(c);
6983 	}
6984 }
6985 
6986 /* Some controllers, like p400, will give us one interrupt
6987  * after a soft reset, even if we turned interrupts off.
6988  * Only need to check for this in the hpsa_xxx_discard_completions
6989  * functions.
6990  */
6991 static int ignore_bogus_interrupt(struct ctlr_info *h)
6992 {
6993 	if (likely(!reset_devices))
6994 		return 0;
6995 
6996 	if (likely(h->interrupts_enabled))
6997 		return 0;
6998 
6999 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7000 		"(known firmware bug.)  Ignoring.\n");
7001 
7002 	return 1;
7003 }
7004 
7005 /*
7006  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7007  * Relies on (h-q[x] == x) being true for x such that
7008  * 0 <= x < MAX_REPLY_QUEUES.
7009  */
7010 static struct ctlr_info *queue_to_hba(u8 *queue)
7011 {
7012 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7013 }
7014 
7015 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7016 {
7017 	struct ctlr_info *h = queue_to_hba(queue);
7018 	u8 q = *(u8 *) queue;
7019 	u32 raw_tag;
7020 
7021 	if (ignore_bogus_interrupt(h))
7022 		return IRQ_NONE;
7023 
7024 	if (interrupt_not_for_us(h))
7025 		return IRQ_NONE;
7026 	h->last_intr_timestamp = get_jiffies_64();
7027 	while (interrupt_pending(h)) {
7028 		raw_tag = get_next_completion(h, q);
7029 		while (raw_tag != FIFO_EMPTY)
7030 			raw_tag = next_command(h, q);
7031 	}
7032 	return IRQ_HANDLED;
7033 }
7034 
7035 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7036 {
7037 	struct ctlr_info *h = queue_to_hba(queue);
7038 	u32 raw_tag;
7039 	u8 q = *(u8 *) queue;
7040 
7041 	if (ignore_bogus_interrupt(h))
7042 		return IRQ_NONE;
7043 
7044 	h->last_intr_timestamp = get_jiffies_64();
7045 	raw_tag = get_next_completion(h, q);
7046 	while (raw_tag != FIFO_EMPTY)
7047 		raw_tag = next_command(h, q);
7048 	return IRQ_HANDLED;
7049 }
7050 
7051 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7052 {
7053 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7054 	u32 raw_tag;
7055 	u8 q = *(u8 *) queue;
7056 
7057 	if (interrupt_not_for_us(h))
7058 		return IRQ_NONE;
7059 	h->last_intr_timestamp = get_jiffies_64();
7060 	while (interrupt_pending(h)) {
7061 		raw_tag = get_next_completion(h, q);
7062 		while (raw_tag != FIFO_EMPTY) {
7063 			process_indexed_cmd(h, raw_tag);
7064 			raw_tag = next_command(h, q);
7065 		}
7066 	}
7067 	return IRQ_HANDLED;
7068 }
7069 
7070 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7071 {
7072 	struct ctlr_info *h = queue_to_hba(queue);
7073 	u32 raw_tag;
7074 	u8 q = *(u8 *) queue;
7075 
7076 	h->last_intr_timestamp = get_jiffies_64();
7077 	raw_tag = get_next_completion(h, q);
7078 	while (raw_tag != FIFO_EMPTY) {
7079 		process_indexed_cmd(h, raw_tag);
7080 		raw_tag = next_command(h, q);
7081 	}
7082 	return IRQ_HANDLED;
7083 }
7084 
7085 /* Send a message CDB to the firmware. Careful, this only works
7086  * in simple mode, not performant mode due to the tag lookup.
7087  * We only ever use this immediately after a controller reset.
7088  */
7089 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7090 			unsigned char type)
7091 {
7092 	struct Command {
7093 		struct CommandListHeader CommandHeader;
7094 		struct RequestBlock Request;
7095 		struct ErrDescriptor ErrorDescriptor;
7096 	};
7097 	struct Command *cmd;
7098 	static const size_t cmd_sz = sizeof(*cmd) +
7099 					sizeof(cmd->ErrorDescriptor);
7100 	dma_addr_t paddr64;
7101 	__le32 paddr32;
7102 	u32 tag;
7103 	void __iomem *vaddr;
7104 	int i, err;
7105 
7106 	vaddr = pci_ioremap_bar(pdev, 0);
7107 	if (vaddr == NULL)
7108 		return -ENOMEM;
7109 
7110 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7111 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7112 	 * memory.
7113 	 */
7114 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7115 	if (err) {
7116 		iounmap(vaddr);
7117 		return err;
7118 	}
7119 
7120 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7121 	if (cmd == NULL) {
7122 		iounmap(vaddr);
7123 		return -ENOMEM;
7124 	}
7125 
7126 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7127 	 * although there's no guarantee, we assume that the address is at
7128 	 * least 4-byte aligned (most likely, it's page-aligned).
7129 	 */
7130 	paddr32 = cpu_to_le32(paddr64);
7131 
7132 	cmd->CommandHeader.ReplyQueue = 0;
7133 	cmd->CommandHeader.SGList = 0;
7134 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7135 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7136 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7137 
7138 	cmd->Request.CDBLen = 16;
7139 	cmd->Request.type_attr_dir =
7140 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7141 	cmd->Request.Timeout = 0; /* Don't time out */
7142 	cmd->Request.CDB[0] = opcode;
7143 	cmd->Request.CDB[1] = type;
7144 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7145 	cmd->ErrorDescriptor.Addr =
7146 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7147 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7148 
7149 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7150 
7151 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7152 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7153 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7154 			break;
7155 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7156 	}
7157 
7158 	iounmap(vaddr);
7159 
7160 	/* we leak the DMA buffer here ... no choice since the controller could
7161 	 *  still complete the command.
7162 	 */
7163 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7164 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7165 			opcode, type);
7166 		return -ETIMEDOUT;
7167 	}
7168 
7169 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7170 
7171 	if (tag & HPSA_ERROR_BIT) {
7172 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7173 			opcode, type);
7174 		return -EIO;
7175 	}
7176 
7177 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7178 		opcode, type);
7179 	return 0;
7180 }
7181 
7182 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7183 
7184 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7185 	void __iomem *vaddr, u32 use_doorbell)
7186 {
7187 
7188 	if (use_doorbell) {
7189 		/* For everything after the P600, the PCI power state method
7190 		 * of resetting the controller doesn't work, so we have this
7191 		 * other way using the doorbell register.
7192 		 */
7193 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7194 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7195 
7196 		/* PMC hardware guys tell us we need a 10 second delay after
7197 		 * doorbell reset and before any attempt to talk to the board
7198 		 * at all to ensure that this actually works and doesn't fall
7199 		 * over in some weird corner cases.
7200 		 */
7201 		msleep(10000);
7202 	} else { /* Try to do it the PCI power state way */
7203 
7204 		/* Quoting from the Open CISS Specification: "The Power
7205 		 * Management Control/Status Register (CSR) controls the power
7206 		 * state of the device.  The normal operating state is D0,
7207 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7208 		 * the controller, place the interface device in D3 then to D0,
7209 		 * this causes a secondary PCI reset which will reset the
7210 		 * controller." */
7211 
7212 		int rc = 0;
7213 
7214 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7215 
7216 		/* enter the D3hot power management state */
7217 		rc = pci_set_power_state(pdev, PCI_D3hot);
7218 		if (rc)
7219 			return rc;
7220 
7221 		msleep(500);
7222 
7223 		/* enter the D0 power management state */
7224 		rc = pci_set_power_state(pdev, PCI_D0);
7225 		if (rc)
7226 			return rc;
7227 
7228 		/*
7229 		 * The P600 requires a small delay when changing states.
7230 		 * Otherwise we may think the board did not reset and we bail.
7231 		 * This for kdump only and is particular to the P600.
7232 		 */
7233 		msleep(500);
7234 	}
7235 	return 0;
7236 }
7237 
7238 static void init_driver_version(char *driver_version, int len)
7239 {
7240 	memset(driver_version, 0, len);
7241 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7242 }
7243 
7244 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7245 {
7246 	char *driver_version;
7247 	int i, size = sizeof(cfgtable->driver_version);
7248 
7249 	driver_version = kmalloc(size, GFP_KERNEL);
7250 	if (!driver_version)
7251 		return -ENOMEM;
7252 
7253 	init_driver_version(driver_version, size);
7254 	for (i = 0; i < size; i++)
7255 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7256 	kfree(driver_version);
7257 	return 0;
7258 }
7259 
7260 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7261 					  unsigned char *driver_ver)
7262 {
7263 	int i;
7264 
7265 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7266 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7267 }
7268 
7269 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7270 {
7271 
7272 	char *driver_ver, *old_driver_ver;
7273 	int rc, size = sizeof(cfgtable->driver_version);
7274 
7275 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7276 	if (!old_driver_ver)
7277 		return -ENOMEM;
7278 	driver_ver = old_driver_ver + size;
7279 
7280 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7281 	 * should have been changed, otherwise we know the reset failed.
7282 	 */
7283 	init_driver_version(old_driver_ver, size);
7284 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7285 	rc = !memcmp(driver_ver, old_driver_ver, size);
7286 	kfree(old_driver_ver);
7287 	return rc;
7288 }
7289 /* This does a hard reset of the controller using PCI power management
7290  * states or the using the doorbell register.
7291  */
7292 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7293 {
7294 	u64 cfg_offset;
7295 	u32 cfg_base_addr;
7296 	u64 cfg_base_addr_index;
7297 	void __iomem *vaddr;
7298 	unsigned long paddr;
7299 	u32 misc_fw_support;
7300 	int rc;
7301 	struct CfgTable __iomem *cfgtable;
7302 	u32 use_doorbell;
7303 	u16 command_register;
7304 
7305 	/* For controllers as old as the P600, this is very nearly
7306 	 * the same thing as
7307 	 *
7308 	 * pci_save_state(pci_dev);
7309 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7310 	 * pci_set_power_state(pci_dev, PCI_D0);
7311 	 * pci_restore_state(pci_dev);
7312 	 *
7313 	 * For controllers newer than the P600, the pci power state
7314 	 * method of resetting doesn't work so we have another way
7315 	 * using the doorbell register.
7316 	 */
7317 
7318 	if (!ctlr_is_resettable(board_id)) {
7319 		dev_warn(&pdev->dev, "Controller not resettable\n");
7320 		return -ENODEV;
7321 	}
7322 
7323 	/* if controller is soft- but not hard resettable... */
7324 	if (!ctlr_is_hard_resettable(board_id))
7325 		return -ENOTSUPP; /* try soft reset later. */
7326 
7327 	/* Save the PCI command register */
7328 	pci_read_config_word(pdev, 4, &command_register);
7329 	pci_save_state(pdev);
7330 
7331 	/* find the first memory BAR, so we can find the cfg table */
7332 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7333 	if (rc)
7334 		return rc;
7335 	vaddr = remap_pci_mem(paddr, 0x250);
7336 	if (!vaddr)
7337 		return -ENOMEM;
7338 
7339 	/* find cfgtable in order to check if reset via doorbell is supported */
7340 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7341 					&cfg_base_addr_index, &cfg_offset);
7342 	if (rc)
7343 		goto unmap_vaddr;
7344 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7345 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7346 	if (!cfgtable) {
7347 		rc = -ENOMEM;
7348 		goto unmap_vaddr;
7349 	}
7350 	rc = write_driver_ver_to_cfgtable(cfgtable);
7351 	if (rc)
7352 		goto unmap_cfgtable;
7353 
7354 	/* If reset via doorbell register is supported, use that.
7355 	 * There are two such methods.  Favor the newest method.
7356 	 */
7357 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7358 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7359 	if (use_doorbell) {
7360 		use_doorbell = DOORBELL_CTLR_RESET2;
7361 	} else {
7362 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7363 		if (use_doorbell) {
7364 			dev_warn(&pdev->dev,
7365 				"Soft reset not supported. Firmware update is required.\n");
7366 			rc = -ENOTSUPP; /* try soft reset */
7367 			goto unmap_cfgtable;
7368 		}
7369 	}
7370 
7371 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7372 	if (rc)
7373 		goto unmap_cfgtable;
7374 
7375 	pci_restore_state(pdev);
7376 	pci_write_config_word(pdev, 4, command_register);
7377 
7378 	/* Some devices (notably the HP Smart Array 5i Controller)
7379 	   need a little pause here */
7380 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7381 
7382 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7383 	if (rc) {
7384 		dev_warn(&pdev->dev,
7385 			"Failed waiting for board to become ready after hard reset\n");
7386 		goto unmap_cfgtable;
7387 	}
7388 
7389 	rc = controller_reset_failed(vaddr);
7390 	if (rc < 0)
7391 		goto unmap_cfgtable;
7392 	if (rc) {
7393 		dev_warn(&pdev->dev, "Unable to successfully reset "
7394 			"controller. Will try soft reset.\n");
7395 		rc = -ENOTSUPP;
7396 	} else {
7397 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7398 	}
7399 
7400 unmap_cfgtable:
7401 	iounmap(cfgtable);
7402 
7403 unmap_vaddr:
7404 	iounmap(vaddr);
7405 	return rc;
7406 }
7407 
7408 /*
7409  *  We cannot read the structure directly, for portability we must use
7410  *   the io functions.
7411  *   This is for debug only.
7412  */
7413 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7414 {
7415 #ifdef HPSA_DEBUG
7416 	int i;
7417 	char temp_name[17];
7418 
7419 	dev_info(dev, "Controller Configuration information\n");
7420 	dev_info(dev, "------------------------------------\n");
7421 	for (i = 0; i < 4; i++)
7422 		temp_name[i] = readb(&(tb->Signature[i]));
7423 	temp_name[4] = '\0';
7424 	dev_info(dev, "   Signature = %s\n", temp_name);
7425 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7426 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7427 	       readl(&(tb->TransportSupport)));
7428 	dev_info(dev, "   Transport methods active = 0x%x\n",
7429 	       readl(&(tb->TransportActive)));
7430 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7431 	       readl(&(tb->HostWrite.TransportRequest)));
7432 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7433 	       readl(&(tb->HostWrite.CoalIntDelay)));
7434 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7435 	       readl(&(tb->HostWrite.CoalIntCount)));
7436 	dev_info(dev, "   Max outstanding commands = %d\n",
7437 	       readl(&(tb->CmdsOutMax)));
7438 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7439 	for (i = 0; i < 16; i++)
7440 		temp_name[i] = readb(&(tb->ServerName[i]));
7441 	temp_name[16] = '\0';
7442 	dev_info(dev, "   Server Name = %s\n", temp_name);
7443 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7444 		readl(&(tb->HeartBeat)));
7445 #endif				/* HPSA_DEBUG */
7446 }
7447 
7448 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7449 {
7450 	int i, offset, mem_type, bar_type;
7451 
7452 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7453 		return 0;
7454 	offset = 0;
7455 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7456 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7457 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7458 			offset += 4;
7459 		else {
7460 			mem_type = pci_resource_flags(pdev, i) &
7461 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7462 			switch (mem_type) {
7463 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7464 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7465 				offset += 4;	/* 32 bit */
7466 				break;
7467 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7468 				offset += 8;
7469 				break;
7470 			default:	/* reserved in PCI 2.2 */
7471 				dev_warn(&pdev->dev,
7472 				       "base address is invalid\n");
7473 				return -1;
7474 			}
7475 		}
7476 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7477 			return i + 1;
7478 	}
7479 	return -1;
7480 }
7481 
7482 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7483 {
7484 	pci_free_irq_vectors(h->pdev);
7485 	h->msix_vectors = 0;
7486 }
7487 
7488 static void hpsa_setup_reply_map(struct ctlr_info *h)
7489 {
7490 	const struct cpumask *mask;
7491 	unsigned int queue, cpu;
7492 
7493 	for (queue = 0; queue < h->msix_vectors; queue++) {
7494 		mask = pci_irq_get_affinity(h->pdev, queue);
7495 		if (!mask)
7496 			goto fallback;
7497 
7498 		for_each_cpu(cpu, mask)
7499 			h->reply_map[cpu] = queue;
7500 	}
7501 	return;
7502 
7503 fallback:
7504 	for_each_possible_cpu(cpu)
7505 		h->reply_map[cpu] = 0;
7506 }
7507 
7508 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7509  * controllers that are capable. If not, we use legacy INTx mode.
7510  */
7511 static int hpsa_interrupt_mode(struct ctlr_info *h)
7512 {
7513 	unsigned int flags = PCI_IRQ_LEGACY;
7514 	int ret;
7515 
7516 	/* Some boards advertise MSI but don't really support it */
7517 	switch (h->board_id) {
7518 	case 0x40700E11:
7519 	case 0x40800E11:
7520 	case 0x40820E11:
7521 	case 0x40830E11:
7522 		break;
7523 	default:
7524 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7525 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7526 		if (ret > 0) {
7527 			h->msix_vectors = ret;
7528 			return 0;
7529 		}
7530 
7531 		flags |= PCI_IRQ_MSI;
7532 		break;
7533 	}
7534 
7535 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7536 	if (ret < 0)
7537 		return ret;
7538 	return 0;
7539 }
7540 
7541 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7542 				bool *legacy_board)
7543 {
7544 	int i;
7545 	u32 subsystem_vendor_id, subsystem_device_id;
7546 
7547 	subsystem_vendor_id = pdev->subsystem_vendor;
7548 	subsystem_device_id = pdev->subsystem_device;
7549 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7550 		    subsystem_vendor_id;
7551 
7552 	if (legacy_board)
7553 		*legacy_board = false;
7554 	for (i = 0; i < ARRAY_SIZE(products); i++)
7555 		if (*board_id == products[i].board_id) {
7556 			if (products[i].access != &SA5A_access &&
7557 			    products[i].access != &SA5B_access)
7558 				return i;
7559 			dev_warn(&pdev->dev,
7560 				 "legacy board ID: 0x%08x\n",
7561 				 *board_id);
7562 			if (legacy_board)
7563 			    *legacy_board = true;
7564 			return i;
7565 		}
7566 
7567 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7568 	if (legacy_board)
7569 		*legacy_board = true;
7570 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7571 }
7572 
7573 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7574 				    unsigned long *memory_bar)
7575 {
7576 	int i;
7577 
7578 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7579 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7580 			/* addressing mode bits already removed */
7581 			*memory_bar = pci_resource_start(pdev, i);
7582 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7583 				*memory_bar);
7584 			return 0;
7585 		}
7586 	dev_warn(&pdev->dev, "no memory BAR found\n");
7587 	return -ENODEV;
7588 }
7589 
7590 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7591 				     int wait_for_ready)
7592 {
7593 	int i, iterations;
7594 	u32 scratchpad;
7595 	if (wait_for_ready)
7596 		iterations = HPSA_BOARD_READY_ITERATIONS;
7597 	else
7598 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7599 
7600 	for (i = 0; i < iterations; i++) {
7601 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7602 		if (wait_for_ready) {
7603 			if (scratchpad == HPSA_FIRMWARE_READY)
7604 				return 0;
7605 		} else {
7606 			if (scratchpad != HPSA_FIRMWARE_READY)
7607 				return 0;
7608 		}
7609 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7610 	}
7611 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7612 	return -ENODEV;
7613 }
7614 
7615 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7616 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7617 			       u64 *cfg_offset)
7618 {
7619 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7620 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7621 	*cfg_base_addr &= (u32) 0x0000ffff;
7622 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7623 	if (*cfg_base_addr_index == -1) {
7624 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7625 		return -ENODEV;
7626 	}
7627 	return 0;
7628 }
7629 
7630 static void hpsa_free_cfgtables(struct ctlr_info *h)
7631 {
7632 	if (h->transtable) {
7633 		iounmap(h->transtable);
7634 		h->transtable = NULL;
7635 	}
7636 	if (h->cfgtable) {
7637 		iounmap(h->cfgtable);
7638 		h->cfgtable = NULL;
7639 	}
7640 }
7641 
7642 /* Find and map CISS config table and transfer table
7643 + * several items must be unmapped (freed) later
7644 + * */
7645 static int hpsa_find_cfgtables(struct ctlr_info *h)
7646 {
7647 	u64 cfg_offset;
7648 	u32 cfg_base_addr;
7649 	u64 cfg_base_addr_index;
7650 	u32 trans_offset;
7651 	int rc;
7652 
7653 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7654 		&cfg_base_addr_index, &cfg_offset);
7655 	if (rc)
7656 		return rc;
7657 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7658 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7659 	if (!h->cfgtable) {
7660 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7661 		return -ENOMEM;
7662 	}
7663 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7664 	if (rc)
7665 		return rc;
7666 	/* Find performant mode table. */
7667 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7668 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7669 				cfg_base_addr_index)+cfg_offset+trans_offset,
7670 				sizeof(*h->transtable));
7671 	if (!h->transtable) {
7672 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7673 		hpsa_free_cfgtables(h);
7674 		return -ENOMEM;
7675 	}
7676 	return 0;
7677 }
7678 
7679 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7680 {
7681 #define MIN_MAX_COMMANDS 16
7682 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7683 
7684 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7685 
7686 	/* Limit commands in memory limited kdump scenario. */
7687 	if (reset_devices && h->max_commands > 32)
7688 		h->max_commands = 32;
7689 
7690 	if (h->max_commands < MIN_MAX_COMMANDS) {
7691 		dev_warn(&h->pdev->dev,
7692 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7693 			h->max_commands,
7694 			MIN_MAX_COMMANDS);
7695 		h->max_commands = MIN_MAX_COMMANDS;
7696 	}
7697 }
7698 
7699 /* If the controller reports that the total max sg entries is greater than 512,
7700  * then we know that chained SG blocks work.  (Original smart arrays did not
7701  * support chained SG blocks and would return zero for max sg entries.)
7702  */
7703 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7704 {
7705 	return h->maxsgentries > 512;
7706 }
7707 
7708 /* Interrogate the hardware for some limits:
7709  * max commands, max SG elements without chaining, and with chaining,
7710  * SG chain block size, etc.
7711  */
7712 static void hpsa_find_board_params(struct ctlr_info *h)
7713 {
7714 	hpsa_get_max_perf_mode_cmds(h);
7715 	h->nr_cmds = h->max_commands;
7716 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7717 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7718 	if (hpsa_supports_chained_sg_blocks(h)) {
7719 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7720 		h->max_cmd_sg_entries = 32;
7721 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7722 		h->maxsgentries--; /* save one for chain pointer */
7723 	} else {
7724 		/*
7725 		 * Original smart arrays supported at most 31 s/g entries
7726 		 * embedded inline in the command (trying to use more
7727 		 * would lock up the controller)
7728 		 */
7729 		h->max_cmd_sg_entries = 31;
7730 		h->maxsgentries = 31; /* default to traditional values */
7731 		h->chainsize = 0;
7732 	}
7733 
7734 	/* Find out what task management functions are supported and cache */
7735 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7736 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7737 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7738 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7739 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7740 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7741 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7742 }
7743 
7744 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7745 {
7746 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7747 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7748 		return false;
7749 	}
7750 	return true;
7751 }
7752 
7753 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7754 {
7755 	u32 driver_support;
7756 
7757 	driver_support = readl(&(h->cfgtable->driver_support));
7758 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7759 #ifdef CONFIG_X86
7760 	driver_support |= ENABLE_SCSI_PREFETCH;
7761 #endif
7762 	driver_support |= ENABLE_UNIT_ATTN;
7763 	writel(driver_support, &(h->cfgtable->driver_support));
7764 }
7765 
7766 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7767  * in a prefetch beyond physical memory.
7768  */
7769 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7770 {
7771 	u32 dma_prefetch;
7772 
7773 	if (h->board_id != 0x3225103C)
7774 		return;
7775 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7776 	dma_prefetch |= 0x8000;
7777 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7778 }
7779 
7780 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7781 {
7782 	int i;
7783 	u32 doorbell_value;
7784 	unsigned long flags;
7785 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7786 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7787 		spin_lock_irqsave(&h->lock, flags);
7788 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7789 		spin_unlock_irqrestore(&h->lock, flags);
7790 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7791 			goto done;
7792 		/* delay and try again */
7793 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7794 	}
7795 	return -ENODEV;
7796 done:
7797 	return 0;
7798 }
7799 
7800 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7801 {
7802 	int i;
7803 	u32 doorbell_value;
7804 	unsigned long flags;
7805 
7806 	/* under certain very rare conditions, this can take awhile.
7807 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7808 	 * as we enter this code.)
7809 	 */
7810 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7811 		if (h->remove_in_progress)
7812 			goto done;
7813 		spin_lock_irqsave(&h->lock, flags);
7814 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7815 		spin_unlock_irqrestore(&h->lock, flags);
7816 		if (!(doorbell_value & CFGTBL_ChangeReq))
7817 			goto done;
7818 		/* delay and try again */
7819 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7820 	}
7821 	return -ENODEV;
7822 done:
7823 	return 0;
7824 }
7825 
7826 /* return -ENODEV or other reason on error, 0 on success */
7827 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7828 {
7829 	u32 trans_support;
7830 
7831 	trans_support = readl(&(h->cfgtable->TransportSupport));
7832 	if (!(trans_support & SIMPLE_MODE))
7833 		return -ENOTSUPP;
7834 
7835 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7836 
7837 	/* Update the field, and then ring the doorbell */
7838 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7839 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7840 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7841 	if (hpsa_wait_for_mode_change_ack(h))
7842 		goto error;
7843 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7844 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7845 		goto error;
7846 	h->transMethod = CFGTBL_Trans_Simple;
7847 	return 0;
7848 error:
7849 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7850 	return -ENODEV;
7851 }
7852 
7853 /* free items allocated or mapped by hpsa_pci_init */
7854 static void hpsa_free_pci_init(struct ctlr_info *h)
7855 {
7856 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7857 	iounmap(h->vaddr);			/* pci_init 3 */
7858 	h->vaddr = NULL;
7859 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7860 	/*
7861 	 * call pci_disable_device before pci_release_regions per
7862 	 * Documentation/driver-api/pci/pci.rst
7863 	 */
7864 	pci_disable_device(h->pdev);		/* pci_init 1 */
7865 	pci_release_regions(h->pdev);		/* pci_init 2 */
7866 }
7867 
7868 /* several items must be freed later */
7869 static int hpsa_pci_init(struct ctlr_info *h)
7870 {
7871 	int prod_index, err;
7872 	bool legacy_board;
7873 
7874 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7875 	if (prod_index < 0)
7876 		return prod_index;
7877 	h->product_name = products[prod_index].product_name;
7878 	h->access = *(products[prod_index].access);
7879 	h->legacy_board = legacy_board;
7880 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7881 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7882 
7883 	err = pci_enable_device(h->pdev);
7884 	if (err) {
7885 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7886 		pci_disable_device(h->pdev);
7887 		return err;
7888 	}
7889 
7890 	err = pci_request_regions(h->pdev, HPSA);
7891 	if (err) {
7892 		dev_err(&h->pdev->dev,
7893 			"failed to obtain PCI resources\n");
7894 		pci_disable_device(h->pdev);
7895 		return err;
7896 	}
7897 
7898 	pci_set_master(h->pdev);
7899 
7900 	err = hpsa_interrupt_mode(h);
7901 	if (err)
7902 		goto clean1;
7903 
7904 	/* setup mapping between CPU and reply queue */
7905 	hpsa_setup_reply_map(h);
7906 
7907 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7908 	if (err)
7909 		goto clean2;	/* intmode+region, pci */
7910 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7911 	if (!h->vaddr) {
7912 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7913 		err = -ENOMEM;
7914 		goto clean2;	/* intmode+region, pci */
7915 	}
7916 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7917 	if (err)
7918 		goto clean3;	/* vaddr, intmode+region, pci */
7919 	err = hpsa_find_cfgtables(h);
7920 	if (err)
7921 		goto clean3;	/* vaddr, intmode+region, pci */
7922 	hpsa_find_board_params(h);
7923 
7924 	if (!hpsa_CISS_signature_present(h)) {
7925 		err = -ENODEV;
7926 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7927 	}
7928 	hpsa_set_driver_support_bits(h);
7929 	hpsa_p600_dma_prefetch_quirk(h);
7930 	err = hpsa_enter_simple_mode(h);
7931 	if (err)
7932 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7933 	return 0;
7934 
7935 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7936 	hpsa_free_cfgtables(h);
7937 clean3:	/* vaddr, intmode+region, pci */
7938 	iounmap(h->vaddr);
7939 	h->vaddr = NULL;
7940 clean2:	/* intmode+region, pci */
7941 	hpsa_disable_interrupt_mode(h);
7942 clean1:
7943 	/*
7944 	 * call pci_disable_device before pci_release_regions per
7945 	 * Documentation/driver-api/pci/pci.rst
7946 	 */
7947 	pci_disable_device(h->pdev);
7948 	pci_release_regions(h->pdev);
7949 	return err;
7950 }
7951 
7952 static void hpsa_hba_inquiry(struct ctlr_info *h)
7953 {
7954 	int rc;
7955 
7956 #define HBA_INQUIRY_BYTE_COUNT 64
7957 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7958 	if (!h->hba_inquiry_data)
7959 		return;
7960 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7961 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7962 	if (rc != 0) {
7963 		kfree(h->hba_inquiry_data);
7964 		h->hba_inquiry_data = NULL;
7965 	}
7966 }
7967 
7968 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7969 {
7970 	int rc, i;
7971 	void __iomem *vaddr;
7972 
7973 	if (!reset_devices)
7974 		return 0;
7975 
7976 	/* kdump kernel is loading, we don't know in which state is
7977 	 * the pci interface. The dev->enable_cnt is equal zero
7978 	 * so we call enable+disable, wait a while and switch it on.
7979 	 */
7980 	rc = pci_enable_device(pdev);
7981 	if (rc) {
7982 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7983 		return -ENODEV;
7984 	}
7985 	pci_disable_device(pdev);
7986 	msleep(260);			/* a randomly chosen number */
7987 	rc = pci_enable_device(pdev);
7988 	if (rc) {
7989 		dev_warn(&pdev->dev, "failed to enable device.\n");
7990 		return -ENODEV;
7991 	}
7992 
7993 	pci_set_master(pdev);
7994 
7995 	vaddr = pci_ioremap_bar(pdev, 0);
7996 	if (vaddr == NULL) {
7997 		rc = -ENOMEM;
7998 		goto out_disable;
7999 	}
8000 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8001 	iounmap(vaddr);
8002 
8003 	/* Reset the controller with a PCI power-cycle or via doorbell */
8004 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8005 
8006 	/* -ENOTSUPP here means we cannot reset the controller
8007 	 * but it's already (and still) up and running in
8008 	 * "performant mode".  Or, it might be 640x, which can't reset
8009 	 * due to concerns about shared bbwc between 6402/6404 pair.
8010 	 */
8011 	if (rc)
8012 		goto out_disable;
8013 
8014 	/* Now try to get the controller to respond to a no-op */
8015 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8016 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8017 		if (hpsa_noop(pdev) == 0)
8018 			break;
8019 		else
8020 			dev_warn(&pdev->dev, "no-op failed%s\n",
8021 					(i < 11 ? "; re-trying" : ""));
8022 	}
8023 
8024 out_disable:
8025 
8026 	pci_disable_device(pdev);
8027 	return rc;
8028 }
8029 
8030 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8031 {
8032 	kfree(h->cmd_pool_bits);
8033 	h->cmd_pool_bits = NULL;
8034 	if (h->cmd_pool) {
8035 		dma_free_coherent(&h->pdev->dev,
8036 				h->nr_cmds * sizeof(struct CommandList),
8037 				h->cmd_pool,
8038 				h->cmd_pool_dhandle);
8039 		h->cmd_pool = NULL;
8040 		h->cmd_pool_dhandle = 0;
8041 	}
8042 	if (h->errinfo_pool) {
8043 		dma_free_coherent(&h->pdev->dev,
8044 				h->nr_cmds * sizeof(struct ErrorInfo),
8045 				h->errinfo_pool,
8046 				h->errinfo_pool_dhandle);
8047 		h->errinfo_pool = NULL;
8048 		h->errinfo_pool_dhandle = 0;
8049 	}
8050 }
8051 
8052 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8053 {
8054 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8055 				   sizeof(unsigned long),
8056 				   GFP_KERNEL);
8057 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8058 		    h->nr_cmds * sizeof(*h->cmd_pool),
8059 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8060 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8061 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8062 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8063 	if ((h->cmd_pool_bits == NULL)
8064 	    || (h->cmd_pool == NULL)
8065 	    || (h->errinfo_pool == NULL)) {
8066 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8067 		goto clean_up;
8068 	}
8069 	hpsa_preinitialize_commands(h);
8070 	return 0;
8071 clean_up:
8072 	hpsa_free_cmd_pool(h);
8073 	return -ENOMEM;
8074 }
8075 
8076 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8077 static void hpsa_free_irqs(struct ctlr_info *h)
8078 {
8079 	int i;
8080 	int irq_vector = 0;
8081 
8082 	if (hpsa_simple_mode)
8083 		irq_vector = h->intr_mode;
8084 
8085 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8086 		/* Single reply queue, only one irq to free */
8087 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8088 				&h->q[h->intr_mode]);
8089 		h->q[h->intr_mode] = 0;
8090 		return;
8091 	}
8092 
8093 	for (i = 0; i < h->msix_vectors; i++) {
8094 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8095 		h->q[i] = 0;
8096 	}
8097 	for (; i < MAX_REPLY_QUEUES; i++)
8098 		h->q[i] = 0;
8099 }
8100 
8101 /* returns 0 on success; cleans up and returns -Enn on error */
8102 static int hpsa_request_irqs(struct ctlr_info *h,
8103 	irqreturn_t (*msixhandler)(int, void *),
8104 	irqreturn_t (*intxhandler)(int, void *))
8105 {
8106 	int rc, i;
8107 	int irq_vector = 0;
8108 
8109 	if (hpsa_simple_mode)
8110 		irq_vector = h->intr_mode;
8111 
8112 	/*
8113 	 * initialize h->q[x] = x so that interrupt handlers know which
8114 	 * queue to process.
8115 	 */
8116 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8117 		h->q[i] = (u8) i;
8118 
8119 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8120 		/* If performant mode and MSI-X, use multiple reply queues */
8121 		for (i = 0; i < h->msix_vectors; i++) {
8122 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8123 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8124 					0, h->intrname[i],
8125 					&h->q[i]);
8126 			if (rc) {
8127 				int j;
8128 
8129 				dev_err(&h->pdev->dev,
8130 					"failed to get irq %d for %s\n",
8131 				       pci_irq_vector(h->pdev, i), h->devname);
8132 				for (j = 0; j < i; j++) {
8133 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8134 					h->q[j] = 0;
8135 				}
8136 				for (; j < MAX_REPLY_QUEUES; j++)
8137 					h->q[j] = 0;
8138 				return rc;
8139 			}
8140 		}
8141 	} else {
8142 		/* Use single reply pool */
8143 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8144 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8145 				h->msix_vectors ? "x" : "");
8146 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8147 				msixhandler, 0,
8148 				h->intrname[0],
8149 				&h->q[h->intr_mode]);
8150 		} else {
8151 			sprintf(h->intrname[h->intr_mode],
8152 				"%s-intx", h->devname);
8153 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8154 				intxhandler, IRQF_SHARED,
8155 				h->intrname[0],
8156 				&h->q[h->intr_mode]);
8157 		}
8158 	}
8159 	if (rc) {
8160 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8161 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8162 		hpsa_free_irqs(h);
8163 		return -ENODEV;
8164 	}
8165 	return 0;
8166 }
8167 
8168 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8169 {
8170 	int rc;
8171 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8172 
8173 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8174 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8175 	if (rc) {
8176 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8177 		return rc;
8178 	}
8179 
8180 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8181 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8182 	if (rc) {
8183 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8184 			"after soft reset.\n");
8185 		return rc;
8186 	}
8187 
8188 	return 0;
8189 }
8190 
8191 static void hpsa_free_reply_queues(struct ctlr_info *h)
8192 {
8193 	int i;
8194 
8195 	for (i = 0; i < h->nreply_queues; i++) {
8196 		if (!h->reply_queue[i].head)
8197 			continue;
8198 		dma_free_coherent(&h->pdev->dev,
8199 					h->reply_queue_size,
8200 					h->reply_queue[i].head,
8201 					h->reply_queue[i].busaddr);
8202 		h->reply_queue[i].head = NULL;
8203 		h->reply_queue[i].busaddr = 0;
8204 	}
8205 	h->reply_queue_size = 0;
8206 }
8207 
8208 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8209 {
8210 	hpsa_free_performant_mode(h);		/* init_one 7 */
8211 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8212 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8213 	hpsa_free_irqs(h);			/* init_one 4 */
8214 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8215 	h->scsi_host = NULL;			/* init_one 3 */
8216 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8217 	free_percpu(h->lockup_detected);	/* init_one 2 */
8218 	h->lockup_detected = NULL;		/* init_one 2 */
8219 	if (h->resubmit_wq) {
8220 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8221 		h->resubmit_wq = NULL;
8222 	}
8223 	if (h->rescan_ctlr_wq) {
8224 		destroy_workqueue(h->rescan_ctlr_wq);
8225 		h->rescan_ctlr_wq = NULL;
8226 	}
8227 	if (h->monitor_ctlr_wq) {
8228 		destroy_workqueue(h->monitor_ctlr_wq);
8229 		h->monitor_ctlr_wq = NULL;
8230 	}
8231 
8232 	kfree(h);				/* init_one 1 */
8233 }
8234 
8235 /* Called when controller lockup detected. */
8236 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8237 {
8238 	int i, refcount;
8239 	struct CommandList *c;
8240 	int failcount = 0;
8241 
8242 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8243 	for (i = 0; i < h->nr_cmds; i++) {
8244 		c = h->cmd_pool + i;
8245 		refcount = atomic_inc_return(&c->refcount);
8246 		if (refcount > 1) {
8247 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8248 			finish_cmd(c);
8249 			atomic_dec(&h->commands_outstanding);
8250 			failcount++;
8251 		}
8252 		cmd_free(h, c);
8253 	}
8254 	dev_warn(&h->pdev->dev,
8255 		"failed %d commands in fail_all\n", failcount);
8256 }
8257 
8258 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8259 {
8260 	int cpu;
8261 
8262 	for_each_online_cpu(cpu) {
8263 		u32 *lockup_detected;
8264 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8265 		*lockup_detected = value;
8266 	}
8267 	wmb(); /* be sure the per-cpu variables are out to memory */
8268 }
8269 
8270 static void controller_lockup_detected(struct ctlr_info *h)
8271 {
8272 	unsigned long flags;
8273 	u32 lockup_detected;
8274 
8275 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8276 	spin_lock_irqsave(&h->lock, flags);
8277 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8278 	if (!lockup_detected) {
8279 		/* no heartbeat, but controller gave us a zero. */
8280 		dev_warn(&h->pdev->dev,
8281 			"lockup detected after %d but scratchpad register is zero\n",
8282 			h->heartbeat_sample_interval / HZ);
8283 		lockup_detected = 0xffffffff;
8284 	}
8285 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8286 	spin_unlock_irqrestore(&h->lock, flags);
8287 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8288 			lockup_detected, h->heartbeat_sample_interval / HZ);
8289 	if (lockup_detected == 0xffff0000) {
8290 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8291 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8292 	}
8293 	pci_disable_device(h->pdev);
8294 	fail_all_outstanding_cmds(h);
8295 }
8296 
8297 static int detect_controller_lockup(struct ctlr_info *h)
8298 {
8299 	u64 now;
8300 	u32 heartbeat;
8301 	unsigned long flags;
8302 
8303 	now = get_jiffies_64();
8304 	/* If we've received an interrupt recently, we're ok. */
8305 	if (time_after64(h->last_intr_timestamp +
8306 				(h->heartbeat_sample_interval), now))
8307 		return false;
8308 
8309 	/*
8310 	 * If we've already checked the heartbeat recently, we're ok.
8311 	 * This could happen if someone sends us a signal. We
8312 	 * otherwise don't care about signals in this thread.
8313 	 */
8314 	if (time_after64(h->last_heartbeat_timestamp +
8315 				(h->heartbeat_sample_interval), now))
8316 		return false;
8317 
8318 	/* If heartbeat has not changed since we last looked, we're not ok. */
8319 	spin_lock_irqsave(&h->lock, flags);
8320 	heartbeat = readl(&h->cfgtable->HeartBeat);
8321 	spin_unlock_irqrestore(&h->lock, flags);
8322 	if (h->last_heartbeat == heartbeat) {
8323 		controller_lockup_detected(h);
8324 		return true;
8325 	}
8326 
8327 	/* We're ok. */
8328 	h->last_heartbeat = heartbeat;
8329 	h->last_heartbeat_timestamp = now;
8330 	return false;
8331 }
8332 
8333 /*
8334  * Set ioaccel status for all ioaccel volumes.
8335  *
8336  * Called from monitor controller worker (hpsa_event_monitor_worker)
8337  *
8338  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8339  * transformation, so we will be turning off ioaccel for all volumes that
8340  * make up the Array.
8341  */
8342 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8343 {
8344 	int rc;
8345 	int i;
8346 	u8 ioaccel_status;
8347 	unsigned char *buf;
8348 	struct hpsa_scsi_dev_t *device;
8349 
8350 	if (!h)
8351 		return;
8352 
8353 	buf = kmalloc(64, GFP_KERNEL);
8354 	if (!buf)
8355 		return;
8356 
8357 	/*
8358 	 * Run through current device list used during I/O requests.
8359 	 */
8360 	for (i = 0; i < h->ndevices; i++) {
8361 		int offload_to_be_enabled = 0;
8362 		int offload_config = 0;
8363 
8364 		device = h->dev[i];
8365 
8366 		if (!device)
8367 			continue;
8368 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8369 						HPSA_VPD_LV_IOACCEL_STATUS))
8370 			continue;
8371 
8372 		memset(buf, 0, 64);
8373 
8374 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8375 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8376 					buf, 64);
8377 		if (rc != 0)
8378 			continue;
8379 
8380 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8381 
8382 		/*
8383 		 * Check if offload is still configured on
8384 		 */
8385 		offload_config =
8386 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8387 		/*
8388 		 * If offload is configured on, check to see if ioaccel
8389 		 * needs to be enabled.
8390 		 */
8391 		if (offload_config)
8392 			offload_to_be_enabled =
8393 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8394 
8395 		/*
8396 		 * If ioaccel is to be re-enabled, re-enable later during the
8397 		 * scan operation so the driver can get a fresh raidmap
8398 		 * before turning ioaccel back on.
8399 		 */
8400 		if (offload_to_be_enabled)
8401 			continue;
8402 
8403 		/*
8404 		 * Immediately turn off ioaccel for any volume the
8405 		 * controller tells us to. Some of the reasons could be:
8406 		 *    transformation - change to the LVs of an Array.
8407 		 *    degraded volume - component failure
8408 		 */
8409 		hpsa_turn_off_ioaccel_for_device(device);
8410 	}
8411 
8412 	kfree(buf);
8413 }
8414 
8415 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8416 {
8417 	char *event_type;
8418 
8419 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8420 		return;
8421 
8422 	/* Ask the controller to clear the events we're handling. */
8423 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8424 			| CFGTBL_Trans_io_accel2)) &&
8425 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8426 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8427 
8428 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8429 			event_type = "state change";
8430 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8431 			event_type = "configuration change";
8432 		/* Stop sending new RAID offload reqs via the IO accelerator */
8433 		scsi_block_requests(h->scsi_host);
8434 		hpsa_set_ioaccel_status(h);
8435 		hpsa_drain_accel_commands(h);
8436 		/* Set 'accelerator path config change' bit */
8437 		dev_warn(&h->pdev->dev,
8438 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8439 			h->events, event_type);
8440 		writel(h->events, &(h->cfgtable->clear_event_notify));
8441 		/* Set the "clear event notify field update" bit 6 */
8442 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8443 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8444 		hpsa_wait_for_clear_event_notify_ack(h);
8445 		scsi_unblock_requests(h->scsi_host);
8446 	} else {
8447 		/* Acknowledge controller notification events. */
8448 		writel(h->events, &(h->cfgtable->clear_event_notify));
8449 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8450 		hpsa_wait_for_clear_event_notify_ack(h);
8451 	}
8452 	return;
8453 }
8454 
8455 /* Check a register on the controller to see if there are configuration
8456  * changes (added/changed/removed logical drives, etc.) which mean that
8457  * we should rescan the controller for devices.
8458  * Also check flag for driver-initiated rescan.
8459  */
8460 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8461 {
8462 	if (h->drv_req_rescan) {
8463 		h->drv_req_rescan = 0;
8464 		return 1;
8465 	}
8466 
8467 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8468 		return 0;
8469 
8470 	h->events = readl(&(h->cfgtable->event_notify));
8471 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8472 }
8473 
8474 /*
8475  * Check if any of the offline devices have become ready
8476  */
8477 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8478 {
8479 	unsigned long flags;
8480 	struct offline_device_entry *d;
8481 	struct list_head *this, *tmp;
8482 
8483 	spin_lock_irqsave(&h->offline_device_lock, flags);
8484 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8485 		d = list_entry(this, struct offline_device_entry,
8486 				offline_list);
8487 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8488 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8489 			spin_lock_irqsave(&h->offline_device_lock, flags);
8490 			list_del(&d->offline_list);
8491 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8492 			return 1;
8493 		}
8494 		spin_lock_irqsave(&h->offline_device_lock, flags);
8495 	}
8496 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8497 	return 0;
8498 }
8499 
8500 static int hpsa_luns_changed(struct ctlr_info *h)
8501 {
8502 	int rc = 1; /* assume there are changes */
8503 	struct ReportLUNdata *logdev = NULL;
8504 
8505 	/* if we can't find out if lun data has changed,
8506 	 * assume that it has.
8507 	 */
8508 
8509 	if (!h->lastlogicals)
8510 		return rc;
8511 
8512 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8513 	if (!logdev)
8514 		return rc;
8515 
8516 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8517 		dev_warn(&h->pdev->dev,
8518 			"report luns failed, can't track lun changes.\n");
8519 		goto out;
8520 	}
8521 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8522 		dev_info(&h->pdev->dev,
8523 			"Lun changes detected.\n");
8524 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8525 		goto out;
8526 	} else
8527 		rc = 0; /* no changes detected. */
8528 out:
8529 	kfree(logdev);
8530 	return rc;
8531 }
8532 
8533 static void hpsa_perform_rescan(struct ctlr_info *h)
8534 {
8535 	struct Scsi_Host *sh = NULL;
8536 	unsigned long flags;
8537 
8538 	/*
8539 	 * Do the scan after the reset
8540 	 */
8541 	spin_lock_irqsave(&h->reset_lock, flags);
8542 	if (h->reset_in_progress) {
8543 		h->drv_req_rescan = 1;
8544 		spin_unlock_irqrestore(&h->reset_lock, flags);
8545 		return;
8546 	}
8547 	spin_unlock_irqrestore(&h->reset_lock, flags);
8548 
8549 	sh = scsi_host_get(h->scsi_host);
8550 	if (sh != NULL) {
8551 		hpsa_scan_start(sh);
8552 		scsi_host_put(sh);
8553 		h->drv_req_rescan = 0;
8554 	}
8555 }
8556 
8557 /*
8558  * watch for controller events
8559  */
8560 static void hpsa_event_monitor_worker(struct work_struct *work)
8561 {
8562 	struct ctlr_info *h = container_of(to_delayed_work(work),
8563 					struct ctlr_info, event_monitor_work);
8564 	unsigned long flags;
8565 
8566 	spin_lock_irqsave(&h->lock, flags);
8567 	if (h->remove_in_progress) {
8568 		spin_unlock_irqrestore(&h->lock, flags);
8569 		return;
8570 	}
8571 	spin_unlock_irqrestore(&h->lock, flags);
8572 
8573 	if (hpsa_ctlr_needs_rescan(h)) {
8574 		hpsa_ack_ctlr_events(h);
8575 		hpsa_perform_rescan(h);
8576 	}
8577 
8578 	spin_lock_irqsave(&h->lock, flags);
8579 	if (!h->remove_in_progress)
8580 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8581 				HPSA_EVENT_MONITOR_INTERVAL);
8582 	spin_unlock_irqrestore(&h->lock, flags);
8583 }
8584 
8585 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8586 {
8587 	unsigned long flags;
8588 	struct ctlr_info *h = container_of(to_delayed_work(work),
8589 					struct ctlr_info, rescan_ctlr_work);
8590 
8591 	spin_lock_irqsave(&h->lock, flags);
8592 	if (h->remove_in_progress) {
8593 		spin_unlock_irqrestore(&h->lock, flags);
8594 		return;
8595 	}
8596 	spin_unlock_irqrestore(&h->lock, flags);
8597 
8598 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8599 		hpsa_perform_rescan(h);
8600 	} else if (h->discovery_polling) {
8601 		if (hpsa_luns_changed(h)) {
8602 			dev_info(&h->pdev->dev,
8603 				"driver discovery polling rescan.\n");
8604 			hpsa_perform_rescan(h);
8605 		}
8606 	}
8607 	spin_lock_irqsave(&h->lock, flags);
8608 	if (!h->remove_in_progress)
8609 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8610 				h->heartbeat_sample_interval);
8611 	spin_unlock_irqrestore(&h->lock, flags);
8612 }
8613 
8614 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8615 {
8616 	unsigned long flags;
8617 	struct ctlr_info *h = container_of(to_delayed_work(work),
8618 					struct ctlr_info, monitor_ctlr_work);
8619 
8620 	detect_controller_lockup(h);
8621 	if (lockup_detected(h))
8622 		return;
8623 
8624 	spin_lock_irqsave(&h->lock, flags);
8625 	if (!h->remove_in_progress)
8626 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8627 				h->heartbeat_sample_interval);
8628 	spin_unlock_irqrestore(&h->lock, flags);
8629 }
8630 
8631 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8632 						char *name)
8633 {
8634 	struct workqueue_struct *wq = NULL;
8635 
8636 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8637 	if (!wq)
8638 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8639 
8640 	return wq;
8641 }
8642 
8643 static void hpda_free_ctlr_info(struct ctlr_info *h)
8644 {
8645 	kfree(h->reply_map);
8646 	kfree(h);
8647 }
8648 
8649 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8650 {
8651 	struct ctlr_info *h;
8652 
8653 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8654 	if (!h)
8655 		return NULL;
8656 
8657 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8658 	if (!h->reply_map) {
8659 		kfree(h);
8660 		return NULL;
8661 	}
8662 	return h;
8663 }
8664 
8665 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8666 {
8667 	int rc;
8668 	struct ctlr_info *h;
8669 	int try_soft_reset = 0;
8670 	unsigned long flags;
8671 	u32 board_id;
8672 
8673 	if (number_of_controllers == 0)
8674 		printk(KERN_INFO DRIVER_NAME "\n");
8675 
8676 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8677 	if (rc < 0) {
8678 		dev_warn(&pdev->dev, "Board ID not found\n");
8679 		return rc;
8680 	}
8681 
8682 	rc = hpsa_init_reset_devices(pdev, board_id);
8683 	if (rc) {
8684 		if (rc != -ENOTSUPP)
8685 			return rc;
8686 		/* If the reset fails in a particular way (it has no way to do
8687 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8688 		 * a soft reset once we get the controller configured up to the
8689 		 * point that it can accept a command.
8690 		 */
8691 		try_soft_reset = 1;
8692 		rc = 0;
8693 	}
8694 
8695 reinit_after_soft_reset:
8696 
8697 	/* Command structures must be aligned on a 32-byte boundary because
8698 	 * the 5 lower bits of the address are used by the hardware. and by
8699 	 * the driver.  See comments in hpsa.h for more info.
8700 	 */
8701 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8702 	h = hpda_alloc_ctlr_info();
8703 	if (!h) {
8704 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8705 		return -ENOMEM;
8706 	}
8707 
8708 	h->pdev = pdev;
8709 
8710 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8711 	INIT_LIST_HEAD(&h->offline_device_list);
8712 	spin_lock_init(&h->lock);
8713 	spin_lock_init(&h->offline_device_lock);
8714 	spin_lock_init(&h->scan_lock);
8715 	spin_lock_init(&h->reset_lock);
8716 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8717 
8718 	/* Allocate and clear per-cpu variable lockup_detected */
8719 	h->lockup_detected = alloc_percpu(u32);
8720 	if (!h->lockup_detected) {
8721 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8722 		rc = -ENOMEM;
8723 		goto clean1;	/* aer/h */
8724 	}
8725 	set_lockup_detected_for_all_cpus(h, 0);
8726 
8727 	rc = hpsa_pci_init(h);
8728 	if (rc)
8729 		goto clean2;	/* lu, aer/h */
8730 
8731 	/* relies on h-> settings made by hpsa_pci_init, including
8732 	 * interrupt_mode h->intr */
8733 	rc = hpsa_scsi_host_alloc(h);
8734 	if (rc)
8735 		goto clean2_5;	/* pci, lu, aer/h */
8736 
8737 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8738 	h->ctlr = number_of_controllers;
8739 	number_of_controllers++;
8740 
8741 	/* configure PCI DMA stuff */
8742 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8743 	if (rc != 0) {
8744 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8745 		if (rc != 0) {
8746 			dev_err(&pdev->dev, "no suitable DMA available\n");
8747 			goto clean3;	/* shost, pci, lu, aer/h */
8748 		}
8749 	}
8750 
8751 	/* make sure the board interrupts are off */
8752 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753 
8754 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8755 	if (rc)
8756 		goto clean3;	/* shost, pci, lu, aer/h */
8757 	rc = hpsa_alloc_cmd_pool(h);
8758 	if (rc)
8759 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8760 	rc = hpsa_alloc_sg_chain_blocks(h);
8761 	if (rc)
8762 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8763 	init_waitqueue_head(&h->scan_wait_queue);
8764 	init_waitqueue_head(&h->event_sync_wait_queue);
8765 	mutex_init(&h->reset_mutex);
8766 	h->scan_finished = 1; /* no scan currently in progress */
8767 	h->scan_waiting = 0;
8768 
8769 	pci_set_drvdata(pdev, h);
8770 	h->ndevices = 0;
8771 
8772 	spin_lock_init(&h->devlock);
8773 	rc = hpsa_put_ctlr_into_performant_mode(h);
8774 	if (rc)
8775 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8776 
8777 	/* create the resubmit workqueue */
8778 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8779 	if (!h->rescan_ctlr_wq) {
8780 		rc = -ENOMEM;
8781 		goto clean7;
8782 	}
8783 
8784 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8785 	if (!h->resubmit_wq) {
8786 		rc = -ENOMEM;
8787 		goto clean7;	/* aer/h */
8788 	}
8789 
8790 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8791 	if (!h->monitor_ctlr_wq) {
8792 		rc = -ENOMEM;
8793 		goto clean7;
8794 	}
8795 
8796 	/*
8797 	 * At this point, the controller is ready to take commands.
8798 	 * Now, if reset_devices and the hard reset didn't work, try
8799 	 * the soft reset and see if that works.
8800 	 */
8801 	if (try_soft_reset) {
8802 
8803 		/* This is kind of gross.  We may or may not get a completion
8804 		 * from the soft reset command, and if we do, then the value
8805 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8806 		 * after the reset throwing away any completions we get during
8807 		 * that time.  Unregister the interrupt handler and register
8808 		 * fake ones to scoop up any residual completions.
8809 		 */
8810 		spin_lock_irqsave(&h->lock, flags);
8811 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8812 		spin_unlock_irqrestore(&h->lock, flags);
8813 		hpsa_free_irqs(h);
8814 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8815 					hpsa_intx_discard_completions);
8816 		if (rc) {
8817 			dev_warn(&h->pdev->dev,
8818 				"Failed to request_irq after soft reset.\n");
8819 			/*
8820 			 * cannot goto clean7 or free_irqs will be called
8821 			 * again. Instead, do its work
8822 			 */
8823 			hpsa_free_performant_mode(h);	/* clean7 */
8824 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8825 			hpsa_free_cmd_pool(h);		/* clean5 */
8826 			/*
8827 			 * skip hpsa_free_irqs(h) clean4 since that
8828 			 * was just called before request_irqs failed
8829 			 */
8830 			goto clean3;
8831 		}
8832 
8833 		rc = hpsa_kdump_soft_reset(h);
8834 		if (rc)
8835 			/* Neither hard nor soft reset worked, we're hosed. */
8836 			goto clean7;
8837 
8838 		dev_info(&h->pdev->dev, "Board READY.\n");
8839 		dev_info(&h->pdev->dev,
8840 			"Waiting for stale completions to drain.\n");
8841 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8842 		msleep(10000);
8843 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8844 
8845 		rc = controller_reset_failed(h->cfgtable);
8846 		if (rc)
8847 			dev_info(&h->pdev->dev,
8848 				"Soft reset appears to have failed.\n");
8849 
8850 		/* since the controller's reset, we have to go back and re-init
8851 		 * everything.  Easiest to just forget what we've done and do it
8852 		 * all over again.
8853 		 */
8854 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8855 		try_soft_reset = 0;
8856 		if (rc)
8857 			/* don't goto clean, we already unallocated */
8858 			return -ENODEV;
8859 
8860 		goto reinit_after_soft_reset;
8861 	}
8862 
8863 	/* Enable Accelerated IO path at driver layer */
8864 	h->acciopath_status = 1;
8865 	/* Disable discovery polling.*/
8866 	h->discovery_polling = 0;
8867 
8868 
8869 	/* Turn the interrupts on so we can service requests */
8870 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8871 
8872 	hpsa_hba_inquiry(h);
8873 
8874 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8875 	if (!h->lastlogicals)
8876 		dev_info(&h->pdev->dev,
8877 			"Can't track change to report lun data\n");
8878 
8879 	/* hook into SCSI subsystem */
8880 	rc = hpsa_scsi_add_host(h);
8881 	if (rc)
8882 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8883 
8884 	/* Monitor the controller for firmware lockups */
8885 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8886 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8887 	schedule_delayed_work(&h->monitor_ctlr_work,
8888 				h->heartbeat_sample_interval);
8889 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8890 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8891 				h->heartbeat_sample_interval);
8892 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8893 	schedule_delayed_work(&h->event_monitor_work,
8894 				HPSA_EVENT_MONITOR_INTERVAL);
8895 	return 0;
8896 
8897 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8898 	kfree(h->lastlogicals);
8899 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8900 	hpsa_free_performant_mode(h);
8901 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8902 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8903 	hpsa_free_sg_chain_blocks(h);
8904 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8905 	hpsa_free_cmd_pool(h);
8906 clean4: /* irq, shost, pci, lu, aer/h */
8907 	hpsa_free_irqs(h);
8908 clean3: /* shost, pci, lu, aer/h */
8909 	scsi_host_put(h->scsi_host);
8910 	h->scsi_host = NULL;
8911 clean2_5: /* pci, lu, aer/h */
8912 	hpsa_free_pci_init(h);
8913 clean2: /* lu, aer/h */
8914 	if (h->lockup_detected) {
8915 		free_percpu(h->lockup_detected);
8916 		h->lockup_detected = NULL;
8917 	}
8918 clean1:	/* wq/aer/h */
8919 	if (h->resubmit_wq) {
8920 		destroy_workqueue(h->resubmit_wq);
8921 		h->resubmit_wq = NULL;
8922 	}
8923 	if (h->rescan_ctlr_wq) {
8924 		destroy_workqueue(h->rescan_ctlr_wq);
8925 		h->rescan_ctlr_wq = NULL;
8926 	}
8927 	if (h->monitor_ctlr_wq) {
8928 		destroy_workqueue(h->monitor_ctlr_wq);
8929 		h->monitor_ctlr_wq = NULL;
8930 	}
8931 	kfree(h);
8932 	return rc;
8933 }
8934 
8935 static void hpsa_flush_cache(struct ctlr_info *h)
8936 {
8937 	char *flush_buf;
8938 	struct CommandList *c;
8939 	int rc;
8940 
8941 	if (unlikely(lockup_detected(h)))
8942 		return;
8943 	flush_buf = kzalloc(4, GFP_KERNEL);
8944 	if (!flush_buf)
8945 		return;
8946 
8947 	c = cmd_alloc(h);
8948 
8949 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8950 		RAID_CTLR_LUNID, TYPE_CMD)) {
8951 		goto out;
8952 	}
8953 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8954 			DEFAULT_TIMEOUT);
8955 	if (rc)
8956 		goto out;
8957 	if (c->err_info->CommandStatus != 0)
8958 out:
8959 		dev_warn(&h->pdev->dev,
8960 			"error flushing cache on controller\n");
8961 	cmd_free(h, c);
8962 	kfree(flush_buf);
8963 }
8964 
8965 /* Make controller gather fresh report lun data each time we
8966  * send down a report luns request
8967  */
8968 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8969 {
8970 	u32 *options;
8971 	struct CommandList *c;
8972 	int rc;
8973 
8974 	/* Don't bother trying to set diag options if locked up */
8975 	if (unlikely(h->lockup_detected))
8976 		return;
8977 
8978 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8979 	if (!options)
8980 		return;
8981 
8982 	c = cmd_alloc(h);
8983 
8984 	/* first, get the current diag options settings */
8985 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8986 		RAID_CTLR_LUNID, TYPE_CMD))
8987 		goto errout;
8988 
8989 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8990 			NO_TIMEOUT);
8991 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8992 		goto errout;
8993 
8994 	/* Now, set the bit for disabling the RLD caching */
8995 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8996 
8997 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8998 		RAID_CTLR_LUNID, TYPE_CMD))
8999 		goto errout;
9000 
9001 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9002 			NO_TIMEOUT);
9003 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9004 		goto errout;
9005 
9006 	/* Now verify that it got set: */
9007 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9008 		RAID_CTLR_LUNID, TYPE_CMD))
9009 		goto errout;
9010 
9011 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9012 			NO_TIMEOUT);
9013 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9014 		goto errout;
9015 
9016 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9017 		goto out;
9018 
9019 errout:
9020 	dev_err(&h->pdev->dev,
9021 			"Error: failed to disable report lun data caching.\n");
9022 out:
9023 	cmd_free(h, c);
9024 	kfree(options);
9025 }
9026 
9027 static void __hpsa_shutdown(struct pci_dev *pdev)
9028 {
9029 	struct ctlr_info *h;
9030 
9031 	h = pci_get_drvdata(pdev);
9032 	/* Turn board interrupts off  and send the flush cache command
9033 	 * sendcmd will turn off interrupt, and send the flush...
9034 	 * To write all data in the battery backed cache to disks
9035 	 */
9036 	hpsa_flush_cache(h);
9037 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9038 	hpsa_free_irqs(h);			/* init_one 4 */
9039 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9040 }
9041 
9042 static void hpsa_shutdown(struct pci_dev *pdev)
9043 {
9044 	__hpsa_shutdown(pdev);
9045 	pci_disable_device(pdev);
9046 }
9047 
9048 static void hpsa_free_device_info(struct ctlr_info *h)
9049 {
9050 	int i;
9051 
9052 	for (i = 0; i < h->ndevices; i++) {
9053 		kfree(h->dev[i]);
9054 		h->dev[i] = NULL;
9055 	}
9056 }
9057 
9058 static void hpsa_remove_one(struct pci_dev *pdev)
9059 {
9060 	struct ctlr_info *h;
9061 	unsigned long flags;
9062 
9063 	if (pci_get_drvdata(pdev) == NULL) {
9064 		dev_err(&pdev->dev, "unable to remove device\n");
9065 		return;
9066 	}
9067 	h = pci_get_drvdata(pdev);
9068 
9069 	/* Get rid of any controller monitoring work items */
9070 	spin_lock_irqsave(&h->lock, flags);
9071 	h->remove_in_progress = 1;
9072 	spin_unlock_irqrestore(&h->lock, flags);
9073 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9074 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9075 	cancel_delayed_work_sync(&h->event_monitor_work);
9076 	destroy_workqueue(h->rescan_ctlr_wq);
9077 	destroy_workqueue(h->resubmit_wq);
9078 	destroy_workqueue(h->monitor_ctlr_wq);
9079 
9080 	hpsa_delete_sas_host(h);
9081 
9082 	/*
9083 	 * Call before disabling interrupts.
9084 	 * scsi_remove_host can trigger I/O operations especially
9085 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9086 	 * operations which cannot complete and will hang the system.
9087 	 */
9088 	if (h->scsi_host)
9089 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9090 	/* includes hpsa_free_irqs - init_one 4 */
9091 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9092 	__hpsa_shutdown(pdev);
9093 
9094 	hpsa_free_device_info(h);		/* scan */
9095 
9096 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9097 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9098 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9099 	hpsa_free_performant_mode(h);			/* init_one 7 */
9100 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9101 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9102 	kfree(h->lastlogicals);
9103 
9104 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9105 
9106 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9107 	h->scsi_host = NULL;				/* init_one 3 */
9108 
9109 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9110 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9111 
9112 	free_percpu(h->lockup_detected);		/* init_one 2 */
9113 	h->lockup_detected = NULL;			/* init_one 2 */
9114 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9115 
9116 	hpda_free_ctlr_info(h);				/* init_one 1 */
9117 }
9118 
9119 static int __maybe_unused hpsa_suspend(
9120 	__attribute__((unused)) struct device *dev)
9121 {
9122 	return -ENOSYS;
9123 }
9124 
9125 static int __maybe_unused hpsa_resume
9126 	(__attribute__((unused)) struct device *dev)
9127 {
9128 	return -ENOSYS;
9129 }
9130 
9131 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9132 
9133 static struct pci_driver hpsa_pci_driver = {
9134 	.name = HPSA,
9135 	.probe = hpsa_init_one,
9136 	.remove = hpsa_remove_one,
9137 	.id_table = hpsa_pci_device_id,	/* id_table */
9138 	.shutdown = hpsa_shutdown,
9139 	.driver.pm = &hpsa_pm_ops,
9140 };
9141 
9142 /* Fill in bucket_map[], given nsgs (the max number of
9143  * scatter gather elements supported) and bucket[],
9144  * which is an array of 8 integers.  The bucket[] array
9145  * contains 8 different DMA transfer sizes (in 16
9146  * byte increments) which the controller uses to fetch
9147  * commands.  This function fills in bucket_map[], which
9148  * maps a given number of scatter gather elements to one of
9149  * the 8 DMA transfer sizes.  The point of it is to allow the
9150  * controller to only do as much DMA as needed to fetch the
9151  * command, with the DMA transfer size encoded in the lower
9152  * bits of the command address.
9153  */
9154 static void  calc_bucket_map(int bucket[], int num_buckets,
9155 	int nsgs, int min_blocks, u32 *bucket_map)
9156 {
9157 	int i, j, b, size;
9158 
9159 	/* Note, bucket_map must have nsgs+1 entries. */
9160 	for (i = 0; i <= nsgs; i++) {
9161 		/* Compute size of a command with i SG entries */
9162 		size = i + min_blocks;
9163 		b = num_buckets; /* Assume the biggest bucket */
9164 		/* Find the bucket that is just big enough */
9165 		for (j = 0; j < num_buckets; j++) {
9166 			if (bucket[j] >= size) {
9167 				b = j;
9168 				break;
9169 			}
9170 		}
9171 		/* for a command with i SG entries, use bucket b. */
9172 		bucket_map[i] = b;
9173 	}
9174 }
9175 
9176 /*
9177  * return -ENODEV on err, 0 on success (or no action)
9178  * allocates numerous items that must be freed later
9179  */
9180 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9181 {
9182 	int i;
9183 	unsigned long register_value;
9184 	unsigned long transMethod = CFGTBL_Trans_Performant |
9185 			(trans_support & CFGTBL_Trans_use_short_tags) |
9186 				CFGTBL_Trans_enable_directed_msix |
9187 			(trans_support & (CFGTBL_Trans_io_accel1 |
9188 				CFGTBL_Trans_io_accel2));
9189 	struct access_method access = SA5_performant_access;
9190 
9191 	/* This is a bit complicated.  There are 8 registers on
9192 	 * the controller which we write to to tell it 8 different
9193 	 * sizes of commands which there may be.  It's a way of
9194 	 * reducing the DMA done to fetch each command.  Encoded into
9195 	 * each command's tag are 3 bits which communicate to the controller
9196 	 * which of the eight sizes that command fits within.  The size of
9197 	 * each command depends on how many scatter gather entries there are.
9198 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9199 	 * with the number of 16-byte blocks a command of that size requires.
9200 	 * The smallest command possible requires 5 such 16 byte blocks.
9201 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9202 	 * blocks.  Note, this only extends to the SG entries contained
9203 	 * within the command block, and does not extend to chained blocks
9204 	 * of SG elements.   bft[] contains the eight values we write to
9205 	 * the registers.  They are not evenly distributed, but have more
9206 	 * sizes for small commands, and fewer sizes for larger commands.
9207 	 */
9208 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9209 #define MIN_IOACCEL2_BFT_ENTRY 5
9210 #define HPSA_IOACCEL2_HEADER_SZ 4
9211 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9212 			13, 14, 15, 16, 17, 18, 19,
9213 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9214 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9215 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9216 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9217 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9218 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9219 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9220 	/*  5 = 1 s/g entry or 4k
9221 	 *  6 = 2 s/g entry or 8k
9222 	 *  8 = 4 s/g entry or 16k
9223 	 * 10 = 6 s/g entry or 24k
9224 	 */
9225 
9226 	/* If the controller supports either ioaccel method then
9227 	 * we can also use the RAID stack submit path that does not
9228 	 * perform the superfluous readl() after each command submission.
9229 	 */
9230 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9231 		access = SA5_performant_access_no_read;
9232 
9233 	/* Controller spec: zero out this buffer. */
9234 	for (i = 0; i < h->nreply_queues; i++)
9235 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9236 
9237 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9238 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9239 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9240 	for (i = 0; i < 8; i++)
9241 		writel(bft[i], &h->transtable->BlockFetch[i]);
9242 
9243 	/* size of controller ring buffer */
9244 	writel(h->max_commands, &h->transtable->RepQSize);
9245 	writel(h->nreply_queues, &h->transtable->RepQCount);
9246 	writel(0, &h->transtable->RepQCtrAddrLow32);
9247 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9248 
9249 	for (i = 0; i < h->nreply_queues; i++) {
9250 		writel(0, &h->transtable->RepQAddr[i].upper);
9251 		writel(h->reply_queue[i].busaddr,
9252 			&h->transtable->RepQAddr[i].lower);
9253 	}
9254 
9255 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9256 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9257 	/*
9258 	 * enable outbound interrupt coalescing in accelerator mode;
9259 	 */
9260 	if (trans_support & CFGTBL_Trans_io_accel1) {
9261 		access = SA5_ioaccel_mode1_access;
9262 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9263 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9264 	} else
9265 		if (trans_support & CFGTBL_Trans_io_accel2)
9266 			access = SA5_ioaccel_mode2_access;
9267 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9268 	if (hpsa_wait_for_mode_change_ack(h)) {
9269 		dev_err(&h->pdev->dev,
9270 			"performant mode problem - doorbell timeout\n");
9271 		return -ENODEV;
9272 	}
9273 	register_value = readl(&(h->cfgtable->TransportActive));
9274 	if (!(register_value & CFGTBL_Trans_Performant)) {
9275 		dev_err(&h->pdev->dev,
9276 			"performant mode problem - transport not active\n");
9277 		return -ENODEV;
9278 	}
9279 	/* Change the access methods to the performant access methods */
9280 	h->access = access;
9281 	h->transMethod = transMethod;
9282 
9283 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9284 		(trans_support & CFGTBL_Trans_io_accel2)))
9285 		return 0;
9286 
9287 	if (trans_support & CFGTBL_Trans_io_accel1) {
9288 		/* Set up I/O accelerator mode */
9289 		for (i = 0; i < h->nreply_queues; i++) {
9290 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9291 			h->reply_queue[i].current_entry =
9292 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9293 		}
9294 		bft[7] = h->ioaccel_maxsg + 8;
9295 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9296 				h->ioaccel1_blockFetchTable);
9297 
9298 		/* initialize all reply queue entries to unused */
9299 		for (i = 0; i < h->nreply_queues; i++)
9300 			memset(h->reply_queue[i].head,
9301 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9302 				h->reply_queue_size);
9303 
9304 		/* set all the constant fields in the accelerator command
9305 		 * frames once at init time to save CPU cycles later.
9306 		 */
9307 		for (i = 0; i < h->nr_cmds; i++) {
9308 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9309 
9310 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9311 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9312 					(i * sizeof(struct ErrorInfo)));
9313 			cp->err_info_len = sizeof(struct ErrorInfo);
9314 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9315 			cp->host_context_flags =
9316 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9317 			cp->timeout_sec = 0;
9318 			cp->ReplyQueue = 0;
9319 			cp->tag =
9320 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9321 			cp->host_addr =
9322 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9323 					(i * sizeof(struct io_accel1_cmd)));
9324 		}
9325 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9326 		u64 cfg_offset, cfg_base_addr_index;
9327 		u32 bft2_offset, cfg_base_addr;
9328 
9329 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9330 				    &cfg_base_addr_index, &cfg_offset);
9331 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9332 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9333 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9334 				4, h->ioaccel2_blockFetchTable);
9335 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9336 		BUILD_BUG_ON(offsetof(struct CfgTable,
9337 				io_accel_request_size_offset) != 0xb8);
9338 		h->ioaccel2_bft2_regs =
9339 			remap_pci_mem(pci_resource_start(h->pdev,
9340 					cfg_base_addr_index) +
9341 					cfg_offset + bft2_offset,
9342 					ARRAY_SIZE(bft2) *
9343 					sizeof(*h->ioaccel2_bft2_regs));
9344 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9345 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9346 	}
9347 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9348 	if (hpsa_wait_for_mode_change_ack(h)) {
9349 		dev_err(&h->pdev->dev,
9350 			"performant mode problem - enabling ioaccel mode\n");
9351 		return -ENODEV;
9352 	}
9353 	return 0;
9354 }
9355 
9356 /* Free ioaccel1 mode command blocks and block fetch table */
9357 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9358 {
9359 	if (h->ioaccel_cmd_pool) {
9360 		dma_free_coherent(&h->pdev->dev,
9361 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9362 				  h->ioaccel_cmd_pool,
9363 				  h->ioaccel_cmd_pool_dhandle);
9364 		h->ioaccel_cmd_pool = NULL;
9365 		h->ioaccel_cmd_pool_dhandle = 0;
9366 	}
9367 	kfree(h->ioaccel1_blockFetchTable);
9368 	h->ioaccel1_blockFetchTable = NULL;
9369 }
9370 
9371 /* Allocate ioaccel1 mode command blocks and block fetch table */
9372 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9373 {
9374 	h->ioaccel_maxsg =
9375 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9376 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9377 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9378 
9379 	/* Command structures must be aligned on a 128-byte boundary
9380 	 * because the 7 lower bits of the address are used by the
9381 	 * hardware.
9382 	 */
9383 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9384 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9385 	h->ioaccel_cmd_pool =
9386 		dma_alloc_coherent(&h->pdev->dev,
9387 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9388 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9389 
9390 	h->ioaccel1_blockFetchTable =
9391 		kmalloc(((h->ioaccel_maxsg + 1) *
9392 				sizeof(u32)), GFP_KERNEL);
9393 
9394 	if ((h->ioaccel_cmd_pool == NULL) ||
9395 		(h->ioaccel1_blockFetchTable == NULL))
9396 		goto clean_up;
9397 
9398 	memset(h->ioaccel_cmd_pool, 0,
9399 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9400 	return 0;
9401 
9402 clean_up:
9403 	hpsa_free_ioaccel1_cmd_and_bft(h);
9404 	return -ENOMEM;
9405 }
9406 
9407 /* Free ioaccel2 mode command blocks and block fetch table */
9408 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9409 {
9410 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9411 
9412 	if (h->ioaccel2_cmd_pool) {
9413 		dma_free_coherent(&h->pdev->dev,
9414 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9415 				  h->ioaccel2_cmd_pool,
9416 				  h->ioaccel2_cmd_pool_dhandle);
9417 		h->ioaccel2_cmd_pool = NULL;
9418 		h->ioaccel2_cmd_pool_dhandle = 0;
9419 	}
9420 	kfree(h->ioaccel2_blockFetchTable);
9421 	h->ioaccel2_blockFetchTable = NULL;
9422 }
9423 
9424 /* Allocate ioaccel2 mode command blocks and block fetch table */
9425 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9426 {
9427 	int rc;
9428 
9429 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9430 
9431 	h->ioaccel_maxsg =
9432 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9433 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9434 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9435 
9436 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9437 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9438 	h->ioaccel2_cmd_pool =
9439 		dma_alloc_coherent(&h->pdev->dev,
9440 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9441 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9442 
9443 	h->ioaccel2_blockFetchTable =
9444 		kmalloc(((h->ioaccel_maxsg + 1) *
9445 				sizeof(u32)), GFP_KERNEL);
9446 
9447 	if ((h->ioaccel2_cmd_pool == NULL) ||
9448 		(h->ioaccel2_blockFetchTable == NULL)) {
9449 		rc = -ENOMEM;
9450 		goto clean_up;
9451 	}
9452 
9453 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9454 	if (rc)
9455 		goto clean_up;
9456 
9457 	memset(h->ioaccel2_cmd_pool, 0,
9458 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9459 	return 0;
9460 
9461 clean_up:
9462 	hpsa_free_ioaccel2_cmd_and_bft(h);
9463 	return rc;
9464 }
9465 
9466 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9467 static void hpsa_free_performant_mode(struct ctlr_info *h)
9468 {
9469 	kfree(h->blockFetchTable);
9470 	h->blockFetchTable = NULL;
9471 	hpsa_free_reply_queues(h);
9472 	hpsa_free_ioaccel1_cmd_and_bft(h);
9473 	hpsa_free_ioaccel2_cmd_and_bft(h);
9474 }
9475 
9476 /* return -ENODEV on error, 0 on success (or no action)
9477  * allocates numerous items that must be freed later
9478  */
9479 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9480 {
9481 	u32 trans_support;
9482 	unsigned long transMethod = CFGTBL_Trans_Performant |
9483 					CFGTBL_Trans_use_short_tags;
9484 	int i, rc;
9485 
9486 	if (hpsa_simple_mode)
9487 		return 0;
9488 
9489 	trans_support = readl(&(h->cfgtable->TransportSupport));
9490 	if (!(trans_support & PERFORMANT_MODE))
9491 		return 0;
9492 
9493 	/* Check for I/O accelerator mode support */
9494 	if (trans_support & CFGTBL_Trans_io_accel1) {
9495 		transMethod |= CFGTBL_Trans_io_accel1 |
9496 				CFGTBL_Trans_enable_directed_msix;
9497 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9498 		if (rc)
9499 			return rc;
9500 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9501 		transMethod |= CFGTBL_Trans_io_accel2 |
9502 				CFGTBL_Trans_enable_directed_msix;
9503 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9504 		if (rc)
9505 			return rc;
9506 	}
9507 
9508 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9509 	hpsa_get_max_perf_mode_cmds(h);
9510 	/* Performant mode ring buffer and supporting data structures */
9511 	h->reply_queue_size = h->max_commands * sizeof(u64);
9512 
9513 	for (i = 0; i < h->nreply_queues; i++) {
9514 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9515 						h->reply_queue_size,
9516 						&h->reply_queue[i].busaddr,
9517 						GFP_KERNEL);
9518 		if (!h->reply_queue[i].head) {
9519 			rc = -ENOMEM;
9520 			goto clean1;	/* rq, ioaccel */
9521 		}
9522 		h->reply_queue[i].size = h->max_commands;
9523 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9524 		h->reply_queue[i].current_entry = 0;
9525 	}
9526 
9527 	/* Need a block fetch table for performant mode */
9528 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9529 				sizeof(u32)), GFP_KERNEL);
9530 	if (!h->blockFetchTable) {
9531 		rc = -ENOMEM;
9532 		goto clean1;	/* rq, ioaccel */
9533 	}
9534 
9535 	rc = hpsa_enter_performant_mode(h, trans_support);
9536 	if (rc)
9537 		goto clean2;	/* bft, rq, ioaccel */
9538 	return 0;
9539 
9540 clean2:	/* bft, rq, ioaccel */
9541 	kfree(h->blockFetchTable);
9542 	h->blockFetchTable = NULL;
9543 clean1:	/* rq, ioaccel */
9544 	hpsa_free_reply_queues(h);
9545 	hpsa_free_ioaccel1_cmd_and_bft(h);
9546 	hpsa_free_ioaccel2_cmd_and_bft(h);
9547 	return rc;
9548 }
9549 
9550 static int is_accelerated_cmd(struct CommandList *c)
9551 {
9552 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9553 }
9554 
9555 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9556 {
9557 	struct CommandList *c = NULL;
9558 	int i, accel_cmds_out;
9559 	int refcount;
9560 
9561 	do { /* wait for all outstanding ioaccel commands to drain out */
9562 		accel_cmds_out = 0;
9563 		for (i = 0; i < h->nr_cmds; i++) {
9564 			c = h->cmd_pool + i;
9565 			refcount = atomic_inc_return(&c->refcount);
9566 			if (refcount > 1) /* Command is allocated */
9567 				accel_cmds_out += is_accelerated_cmd(c);
9568 			cmd_free(h, c);
9569 		}
9570 		if (accel_cmds_out <= 0)
9571 			break;
9572 		msleep(100);
9573 	} while (1);
9574 }
9575 
9576 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9577 				struct hpsa_sas_port *hpsa_sas_port)
9578 {
9579 	struct hpsa_sas_phy *hpsa_sas_phy;
9580 	struct sas_phy *phy;
9581 
9582 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9583 	if (!hpsa_sas_phy)
9584 		return NULL;
9585 
9586 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9587 		hpsa_sas_port->next_phy_index);
9588 	if (!phy) {
9589 		kfree(hpsa_sas_phy);
9590 		return NULL;
9591 	}
9592 
9593 	hpsa_sas_port->next_phy_index++;
9594 	hpsa_sas_phy->phy = phy;
9595 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9596 
9597 	return hpsa_sas_phy;
9598 }
9599 
9600 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9601 {
9602 	struct sas_phy *phy = hpsa_sas_phy->phy;
9603 
9604 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9605 	if (hpsa_sas_phy->added_to_port)
9606 		list_del(&hpsa_sas_phy->phy_list_entry);
9607 	sas_phy_delete(phy);
9608 	kfree(hpsa_sas_phy);
9609 }
9610 
9611 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9612 {
9613 	int rc;
9614 	struct hpsa_sas_port *hpsa_sas_port;
9615 	struct sas_phy *phy;
9616 	struct sas_identify *identify;
9617 
9618 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9619 	phy = hpsa_sas_phy->phy;
9620 
9621 	identify = &phy->identify;
9622 	memset(identify, 0, sizeof(*identify));
9623 	identify->sas_address = hpsa_sas_port->sas_address;
9624 	identify->device_type = SAS_END_DEVICE;
9625 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9627 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9629 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9631 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9632 
9633 	rc = sas_phy_add(hpsa_sas_phy->phy);
9634 	if (rc)
9635 		return rc;
9636 
9637 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9638 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9639 			&hpsa_sas_port->phy_list_head);
9640 	hpsa_sas_phy->added_to_port = true;
9641 
9642 	return 0;
9643 }
9644 
9645 static int
9646 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9647 				struct sas_rphy *rphy)
9648 {
9649 	struct sas_identify *identify;
9650 
9651 	identify = &rphy->identify;
9652 	identify->sas_address = hpsa_sas_port->sas_address;
9653 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9654 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9655 
9656 	return sas_rphy_add(rphy);
9657 }
9658 
9659 static struct hpsa_sas_port
9660 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9661 				u64 sas_address)
9662 {
9663 	int rc;
9664 	struct hpsa_sas_port *hpsa_sas_port;
9665 	struct sas_port *port;
9666 
9667 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9668 	if (!hpsa_sas_port)
9669 		return NULL;
9670 
9671 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9672 	hpsa_sas_port->parent_node = hpsa_sas_node;
9673 
9674 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9675 	if (!port)
9676 		goto free_hpsa_port;
9677 
9678 	rc = sas_port_add(port);
9679 	if (rc)
9680 		goto free_sas_port;
9681 
9682 	hpsa_sas_port->port = port;
9683 	hpsa_sas_port->sas_address = sas_address;
9684 	list_add_tail(&hpsa_sas_port->port_list_entry,
9685 			&hpsa_sas_node->port_list_head);
9686 
9687 	return hpsa_sas_port;
9688 
9689 free_sas_port:
9690 	sas_port_free(port);
9691 free_hpsa_port:
9692 	kfree(hpsa_sas_port);
9693 
9694 	return NULL;
9695 }
9696 
9697 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9698 {
9699 	struct hpsa_sas_phy *hpsa_sas_phy;
9700 	struct hpsa_sas_phy *next;
9701 
9702 	list_for_each_entry_safe(hpsa_sas_phy, next,
9703 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9704 		hpsa_free_sas_phy(hpsa_sas_phy);
9705 
9706 	sas_port_delete(hpsa_sas_port->port);
9707 	list_del(&hpsa_sas_port->port_list_entry);
9708 	kfree(hpsa_sas_port);
9709 }
9710 
9711 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9712 {
9713 	struct hpsa_sas_node *hpsa_sas_node;
9714 
9715 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9716 	if (hpsa_sas_node) {
9717 		hpsa_sas_node->parent_dev = parent_dev;
9718 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9719 	}
9720 
9721 	return hpsa_sas_node;
9722 }
9723 
9724 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9725 {
9726 	struct hpsa_sas_port *hpsa_sas_port;
9727 	struct hpsa_sas_port *next;
9728 
9729 	if (!hpsa_sas_node)
9730 		return;
9731 
9732 	list_for_each_entry_safe(hpsa_sas_port, next,
9733 			&hpsa_sas_node->port_list_head, port_list_entry)
9734 		hpsa_free_sas_port(hpsa_sas_port);
9735 
9736 	kfree(hpsa_sas_node);
9737 }
9738 
9739 static struct hpsa_scsi_dev_t
9740 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9741 					struct sas_rphy *rphy)
9742 {
9743 	int i;
9744 	struct hpsa_scsi_dev_t *device;
9745 
9746 	for (i = 0; i < h->ndevices; i++) {
9747 		device = h->dev[i];
9748 		if (!device->sas_port)
9749 			continue;
9750 		if (device->sas_port->rphy == rphy)
9751 			return device;
9752 	}
9753 
9754 	return NULL;
9755 }
9756 
9757 static int hpsa_add_sas_host(struct ctlr_info *h)
9758 {
9759 	int rc;
9760 	struct device *parent_dev;
9761 	struct hpsa_sas_node *hpsa_sas_node;
9762 	struct hpsa_sas_port *hpsa_sas_port;
9763 	struct hpsa_sas_phy *hpsa_sas_phy;
9764 
9765 	parent_dev = &h->scsi_host->shost_dev;
9766 
9767 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9768 	if (!hpsa_sas_node)
9769 		return -ENOMEM;
9770 
9771 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9772 	if (!hpsa_sas_port) {
9773 		rc = -ENODEV;
9774 		goto free_sas_node;
9775 	}
9776 
9777 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9778 	if (!hpsa_sas_phy) {
9779 		rc = -ENODEV;
9780 		goto free_sas_port;
9781 	}
9782 
9783 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9784 	if (rc)
9785 		goto free_sas_phy;
9786 
9787 	h->sas_host = hpsa_sas_node;
9788 
9789 	return 0;
9790 
9791 free_sas_phy:
9792 	hpsa_free_sas_phy(hpsa_sas_phy);
9793 free_sas_port:
9794 	hpsa_free_sas_port(hpsa_sas_port);
9795 free_sas_node:
9796 	hpsa_free_sas_node(hpsa_sas_node);
9797 
9798 	return rc;
9799 }
9800 
9801 static void hpsa_delete_sas_host(struct ctlr_info *h)
9802 {
9803 	hpsa_free_sas_node(h->sas_host);
9804 }
9805 
9806 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9807 				struct hpsa_scsi_dev_t *device)
9808 {
9809 	int rc;
9810 	struct hpsa_sas_port *hpsa_sas_port;
9811 	struct sas_rphy *rphy;
9812 
9813 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9814 	if (!hpsa_sas_port)
9815 		return -ENOMEM;
9816 
9817 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9818 	if (!rphy) {
9819 		rc = -ENODEV;
9820 		goto free_sas_port;
9821 	}
9822 
9823 	hpsa_sas_port->rphy = rphy;
9824 	device->sas_port = hpsa_sas_port;
9825 
9826 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9827 	if (rc)
9828 		goto free_sas_port;
9829 
9830 	return 0;
9831 
9832 free_sas_port:
9833 	hpsa_free_sas_port(hpsa_sas_port);
9834 	device->sas_port = NULL;
9835 
9836 	return rc;
9837 }
9838 
9839 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9840 {
9841 	if (device->sas_port) {
9842 		hpsa_free_sas_port(device->sas_port);
9843 		device->sas_port = NULL;
9844 	}
9845 }
9846 
9847 static int
9848 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9849 {
9850 	return 0;
9851 }
9852 
9853 static int
9854 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9855 {
9856 	struct Scsi_Host *shost = phy_to_shost(rphy);
9857 	struct ctlr_info *h;
9858 	struct hpsa_scsi_dev_t *sd;
9859 
9860 	if (!shost)
9861 		return -ENXIO;
9862 
9863 	h = shost_to_hba(shost);
9864 
9865 	if (!h)
9866 		return -ENXIO;
9867 
9868 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9869 	if (!sd)
9870 		return -ENXIO;
9871 
9872 	*identifier = sd->eli;
9873 
9874 	return 0;
9875 }
9876 
9877 static int
9878 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9879 {
9880 	return -ENXIO;
9881 }
9882 
9883 static int
9884 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9885 {
9886 	return 0;
9887 }
9888 
9889 static int
9890 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9891 {
9892 	return 0;
9893 }
9894 
9895 static int
9896 hpsa_sas_phy_setup(struct sas_phy *phy)
9897 {
9898 	return 0;
9899 }
9900 
9901 static void
9902 hpsa_sas_phy_release(struct sas_phy *phy)
9903 {
9904 }
9905 
9906 static int
9907 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9908 {
9909 	return -EINVAL;
9910 }
9911 
9912 static struct sas_function_template hpsa_sas_transport_functions = {
9913 	.get_linkerrors = hpsa_sas_get_linkerrors,
9914 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9915 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9916 	.phy_reset = hpsa_sas_phy_reset,
9917 	.phy_enable = hpsa_sas_phy_enable,
9918 	.phy_setup = hpsa_sas_phy_setup,
9919 	.phy_release = hpsa_sas_phy_release,
9920 	.set_phy_speed = hpsa_sas_phy_speed,
9921 };
9922 
9923 /*
9924  *  This is it.  Register the PCI driver information for the cards we control
9925  *  the OS will call our registered routines when it finds one of our cards.
9926  */
9927 static int __init hpsa_init(void)
9928 {
9929 	int rc;
9930 
9931 	hpsa_sas_transport_template =
9932 		sas_attach_transport(&hpsa_sas_transport_functions);
9933 	if (!hpsa_sas_transport_template)
9934 		return -ENODEV;
9935 
9936 	rc = pci_register_driver(&hpsa_pci_driver);
9937 
9938 	if (rc)
9939 		sas_release_transport(hpsa_sas_transport_template);
9940 
9941 	return rc;
9942 }
9943 
9944 static void __exit hpsa_cleanup(void)
9945 {
9946 	pci_unregister_driver(&hpsa_pci_driver);
9947 	sas_release_transport(hpsa_sas_transport_template);
9948 }
9949 
9950 static void __attribute__((unused)) verify_offsets(void)
9951 {
9952 #define VERIFY_OFFSET(member, offset) \
9953 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9954 
9955 	VERIFY_OFFSET(structure_size, 0);
9956 	VERIFY_OFFSET(volume_blk_size, 4);
9957 	VERIFY_OFFSET(volume_blk_cnt, 8);
9958 	VERIFY_OFFSET(phys_blk_shift, 16);
9959 	VERIFY_OFFSET(parity_rotation_shift, 17);
9960 	VERIFY_OFFSET(strip_size, 18);
9961 	VERIFY_OFFSET(disk_starting_blk, 20);
9962 	VERIFY_OFFSET(disk_blk_cnt, 28);
9963 	VERIFY_OFFSET(data_disks_per_row, 36);
9964 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9965 	VERIFY_OFFSET(row_cnt, 40);
9966 	VERIFY_OFFSET(layout_map_count, 42);
9967 	VERIFY_OFFSET(flags, 44);
9968 	VERIFY_OFFSET(dekindex, 46);
9969 	/* VERIFY_OFFSET(reserved, 48 */
9970 	VERIFY_OFFSET(data, 64);
9971 
9972 #undef VERIFY_OFFSET
9973 
9974 #define VERIFY_OFFSET(member, offset) \
9975 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9976 
9977 	VERIFY_OFFSET(IU_type, 0);
9978 	VERIFY_OFFSET(direction, 1);
9979 	VERIFY_OFFSET(reply_queue, 2);
9980 	/* VERIFY_OFFSET(reserved1, 3);  */
9981 	VERIFY_OFFSET(scsi_nexus, 4);
9982 	VERIFY_OFFSET(Tag, 8);
9983 	VERIFY_OFFSET(cdb, 16);
9984 	VERIFY_OFFSET(cciss_lun, 32);
9985 	VERIFY_OFFSET(data_len, 40);
9986 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9987 	VERIFY_OFFSET(sg_count, 45);
9988 	/* VERIFY_OFFSET(reserved3 */
9989 	VERIFY_OFFSET(err_ptr, 48);
9990 	VERIFY_OFFSET(err_len, 56);
9991 	/* VERIFY_OFFSET(reserved4  */
9992 	VERIFY_OFFSET(sg, 64);
9993 
9994 #undef VERIFY_OFFSET
9995 
9996 #define VERIFY_OFFSET(member, offset) \
9997 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9998 
9999 	VERIFY_OFFSET(dev_handle, 0x00);
10000 	VERIFY_OFFSET(reserved1, 0x02);
10001 	VERIFY_OFFSET(function, 0x03);
10002 	VERIFY_OFFSET(reserved2, 0x04);
10003 	VERIFY_OFFSET(err_info, 0x0C);
10004 	VERIFY_OFFSET(reserved3, 0x10);
10005 	VERIFY_OFFSET(err_info_len, 0x12);
10006 	VERIFY_OFFSET(reserved4, 0x13);
10007 	VERIFY_OFFSET(sgl_offset, 0x14);
10008 	VERIFY_OFFSET(reserved5, 0x15);
10009 	VERIFY_OFFSET(transfer_len, 0x1C);
10010 	VERIFY_OFFSET(reserved6, 0x20);
10011 	VERIFY_OFFSET(io_flags, 0x24);
10012 	VERIFY_OFFSET(reserved7, 0x26);
10013 	VERIFY_OFFSET(LUN, 0x34);
10014 	VERIFY_OFFSET(control, 0x3C);
10015 	VERIFY_OFFSET(CDB, 0x40);
10016 	VERIFY_OFFSET(reserved8, 0x50);
10017 	VERIFY_OFFSET(host_context_flags, 0x60);
10018 	VERIFY_OFFSET(timeout_sec, 0x62);
10019 	VERIFY_OFFSET(ReplyQueue, 0x64);
10020 	VERIFY_OFFSET(reserved9, 0x65);
10021 	VERIFY_OFFSET(tag, 0x68);
10022 	VERIFY_OFFSET(host_addr, 0x70);
10023 	VERIFY_OFFSET(CISS_LUN, 0x78);
10024 	VERIFY_OFFSET(SG, 0x78 + 8);
10025 #undef VERIFY_OFFSET
10026 }
10027 
10028 module_init(hpsa_init);
10029 module_exit(hpsa_cleanup);
10030