xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 64405360)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63 
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66 
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 	HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74 
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 	"Use 'simple mode' rather than 'performant mode'");
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
102 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 	{0,}
104 };
105 
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
107 
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers
111  */
112 static struct board_type products[] = {
113 	{0x3241103C, "Smart Array P212", &SA5_access},
114 	{0x3243103C, "Smart Array P410", &SA5_access},
115 	{0x3245103C, "Smart Array P410i", &SA5_access},
116 	{0x3247103C, "Smart Array P411", &SA5_access},
117 	{0x3249103C, "Smart Array P812", &SA5_access},
118 	{0x324a103C, "Smart Array P712m", &SA5_access},
119 	{0x324b103C, "Smart Array P711m", &SA5_access},
120 	{0x3350103C, "Smart Array", &SA5_access},
121 	{0x3351103C, "Smart Array", &SA5_access},
122 	{0x3352103C, "Smart Array", &SA5_access},
123 	{0x3353103C, "Smart Array", &SA5_access},
124 	{0x3354103C, "Smart Array", &SA5_access},
125 	{0x3355103C, "Smart Array", &SA5_access},
126 	{0x3356103C, "Smart Array", &SA5_access},
127 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 };
129 
130 static int number_of_controllers;
131 
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
135 
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
140 
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
144 
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151 	int cmd_type);
152 
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156 	unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158 	int qdepth, int reason);
159 
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
163 
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166 	struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168 	struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171 	int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176 	u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178 	unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181 	void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184 
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
186 {
187 	unsigned long *priv = shost_priv(sdev->host);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
192 {
193 	unsigned long *priv = shost_priv(sh);
194 	return (struct ctlr_info *) *priv;
195 }
196 
197 static int check_for_unit_attention(struct ctlr_info *h,
198 	struct CommandList *c)
199 {
200 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201 		return 0;
202 
203 	switch (c->err_info->SenseInfo[12]) {
204 	case STATE_CHANGED:
205 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206 			"detected, command retried\n", h->ctlr);
207 		break;
208 	case LUN_FAILED:
209 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210 			"detected, action required\n", h->ctlr);
211 		break;
212 	case REPORT_LUNS_CHANGED:
213 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214 			"changed, action required\n", h->ctlr);
215 	/*
216 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
217 	 */
218 		break;
219 	case POWER_OR_RESET:
220 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221 			"or device reset detected\n", h->ctlr);
222 		break;
223 	case UNIT_ATTENTION_CLEARED:
224 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225 		    "cleared by another initiator\n", h->ctlr);
226 		break;
227 	default:
228 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229 			"unit attention detected\n", h->ctlr);
230 		break;
231 	}
232 	return 1;
233 }
234 
235 static ssize_t host_store_rescan(struct device *dev,
236 				 struct device_attribute *attr,
237 				 const char *buf, size_t count)
238 {
239 	struct ctlr_info *h;
240 	struct Scsi_Host *shost = class_to_shost(dev);
241 	h = shost_to_hba(shost);
242 	hpsa_scan_start(h->scsi_host);
243 	return count;
244 }
245 
246 static ssize_t host_show_firmware_revision(struct device *dev,
247 	     struct device_attribute *attr, char *buf)
248 {
249 	struct ctlr_info *h;
250 	struct Scsi_Host *shost = class_to_shost(dev);
251 	unsigned char *fwrev;
252 
253 	h = shost_to_hba(shost);
254 	if (!h->hba_inquiry_data)
255 		return 0;
256 	fwrev = &h->hba_inquiry_data[32];
257 	return snprintf(buf, 20, "%c%c%c%c\n",
258 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
259 }
260 
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262 	     struct device_attribute *attr, char *buf)
263 {
264 	struct Scsi_Host *shost = class_to_shost(dev);
265 	struct ctlr_info *h = shost_to_hba(shost);
266 
267 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
268 }
269 
270 static ssize_t host_show_transport_mode(struct device *dev,
271 	struct device_attribute *attr, char *buf)
272 {
273 	struct ctlr_info *h;
274 	struct Scsi_Host *shost = class_to_shost(dev);
275 
276 	h = shost_to_hba(shost);
277 	return snprintf(buf, 20, "%s\n",
278 		h->transMethod & CFGTBL_Trans_Performant ?
279 			"performant" : "simple");
280 }
281 
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284 	0x324a103C, /* Smart Array P712m */
285 	0x324b103C, /* SmartArray P711m */
286 	0x3223103C, /* Smart Array P800 */
287 	0x3234103C, /* Smart Array P400 */
288 	0x3235103C, /* Smart Array P400i */
289 	0x3211103C, /* Smart Array E200i */
290 	0x3212103C, /* Smart Array E200 */
291 	0x3213103C, /* Smart Array E200i */
292 	0x3214103C, /* Smart Array E200i */
293 	0x3215103C, /* Smart Array E200i */
294 	0x3237103C, /* Smart Array E500 */
295 	0x323D103C, /* Smart Array P700m */
296 	0x40800E11, /* Smart Array 5i */
297 	0x409C0E11, /* Smart Array 6400 */
298 	0x409D0E11, /* Smart Array 6400 EM */
299 };
300 
301 /* List of controllers which cannot even be soft reset */
302 static u32 soft_unresettable_controller[] = {
303 	0x40800E11, /* Smart Array 5i */
304 	/* Exclude 640x boards.  These are two pci devices in one slot
305 	 * which share a battery backed cache module.  One controls the
306 	 * cache, the other accesses the cache through the one that controls
307 	 * it.  If we reset the one controlling the cache, the other will
308 	 * likely not be happy.  Just forbid resetting this conjoined mess.
309 	 * The 640x isn't really supported by hpsa anyway.
310 	 */
311 	0x409C0E11, /* Smart Array 6400 */
312 	0x409D0E11, /* Smart Array 6400 EM */
313 };
314 
315 static int ctlr_is_hard_resettable(u32 board_id)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
320 		if (unresettable_controller[i] == board_id)
321 			return 0;
322 	return 1;
323 }
324 
325 static int ctlr_is_soft_resettable(u32 board_id)
326 {
327 	int i;
328 
329 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
330 		if (soft_unresettable_controller[i] == board_id)
331 			return 0;
332 	return 1;
333 }
334 
335 static int ctlr_is_resettable(u32 board_id)
336 {
337 	return ctlr_is_hard_resettable(board_id) ||
338 		ctlr_is_soft_resettable(board_id);
339 }
340 
341 static ssize_t host_show_resettable(struct device *dev,
342 	struct device_attribute *attr, char *buf)
343 {
344 	struct ctlr_info *h;
345 	struct Scsi_Host *shost = class_to_shost(dev);
346 
347 	h = shost_to_hba(shost);
348 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
349 }
350 
351 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
352 {
353 	return (scsi3addr[3] & 0xC0) == 0x40;
354 }
355 
356 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
357 	"UNKNOWN"
358 };
359 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
360 
361 static ssize_t raid_level_show(struct device *dev,
362 	     struct device_attribute *attr, char *buf)
363 {
364 	ssize_t l = 0;
365 	unsigned char rlevel;
366 	struct ctlr_info *h;
367 	struct scsi_device *sdev;
368 	struct hpsa_scsi_dev_t *hdev;
369 	unsigned long flags;
370 
371 	sdev = to_scsi_device(dev);
372 	h = sdev_to_hba(sdev);
373 	spin_lock_irqsave(&h->lock, flags);
374 	hdev = sdev->hostdata;
375 	if (!hdev) {
376 		spin_unlock_irqrestore(&h->lock, flags);
377 		return -ENODEV;
378 	}
379 
380 	/* Is this even a logical drive? */
381 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
382 		spin_unlock_irqrestore(&h->lock, flags);
383 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
384 		return l;
385 	}
386 
387 	rlevel = hdev->raid_level;
388 	spin_unlock_irqrestore(&h->lock, flags);
389 	if (rlevel > RAID_UNKNOWN)
390 		rlevel = RAID_UNKNOWN;
391 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
392 	return l;
393 }
394 
395 static ssize_t lunid_show(struct device *dev,
396 	     struct device_attribute *attr, char *buf)
397 {
398 	struct ctlr_info *h;
399 	struct scsi_device *sdev;
400 	struct hpsa_scsi_dev_t *hdev;
401 	unsigned long flags;
402 	unsigned char lunid[8];
403 
404 	sdev = to_scsi_device(dev);
405 	h = sdev_to_hba(sdev);
406 	spin_lock_irqsave(&h->lock, flags);
407 	hdev = sdev->hostdata;
408 	if (!hdev) {
409 		spin_unlock_irqrestore(&h->lock, flags);
410 		return -ENODEV;
411 	}
412 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
413 	spin_unlock_irqrestore(&h->lock, flags);
414 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
415 		lunid[0], lunid[1], lunid[2], lunid[3],
416 		lunid[4], lunid[5], lunid[6], lunid[7]);
417 }
418 
419 static ssize_t unique_id_show(struct device *dev,
420 	     struct device_attribute *attr, char *buf)
421 {
422 	struct ctlr_info *h;
423 	struct scsi_device *sdev;
424 	struct hpsa_scsi_dev_t *hdev;
425 	unsigned long flags;
426 	unsigned char sn[16];
427 
428 	sdev = to_scsi_device(dev);
429 	h = sdev_to_hba(sdev);
430 	spin_lock_irqsave(&h->lock, flags);
431 	hdev = sdev->hostdata;
432 	if (!hdev) {
433 		spin_unlock_irqrestore(&h->lock, flags);
434 		return -ENODEV;
435 	}
436 	memcpy(sn, hdev->device_id, sizeof(sn));
437 	spin_unlock_irqrestore(&h->lock, flags);
438 	return snprintf(buf, 16 * 2 + 2,
439 			"%02X%02X%02X%02X%02X%02X%02X%02X"
440 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
441 			sn[0], sn[1], sn[2], sn[3],
442 			sn[4], sn[5], sn[6], sn[7],
443 			sn[8], sn[9], sn[10], sn[11],
444 			sn[12], sn[13], sn[14], sn[15]);
445 }
446 
447 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
448 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
449 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
450 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
451 static DEVICE_ATTR(firmware_revision, S_IRUGO,
452 	host_show_firmware_revision, NULL);
453 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
454 	host_show_commands_outstanding, NULL);
455 static DEVICE_ATTR(transport_mode, S_IRUGO,
456 	host_show_transport_mode, NULL);
457 static DEVICE_ATTR(resettable, S_IRUGO,
458 	host_show_resettable, NULL);
459 
460 static struct device_attribute *hpsa_sdev_attrs[] = {
461 	&dev_attr_raid_level,
462 	&dev_attr_lunid,
463 	&dev_attr_unique_id,
464 	NULL,
465 };
466 
467 static struct device_attribute *hpsa_shost_attrs[] = {
468 	&dev_attr_rescan,
469 	&dev_attr_firmware_revision,
470 	&dev_attr_commands_outstanding,
471 	&dev_attr_transport_mode,
472 	&dev_attr_resettable,
473 	NULL,
474 };
475 
476 static struct scsi_host_template hpsa_driver_template = {
477 	.module			= THIS_MODULE,
478 	.name			= "hpsa",
479 	.proc_name		= "hpsa",
480 	.queuecommand		= hpsa_scsi_queue_command,
481 	.scan_start		= hpsa_scan_start,
482 	.scan_finished		= hpsa_scan_finished,
483 	.change_queue_depth	= hpsa_change_queue_depth,
484 	.this_id		= -1,
485 	.use_clustering		= ENABLE_CLUSTERING,
486 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
487 	.ioctl			= hpsa_ioctl,
488 	.slave_alloc		= hpsa_slave_alloc,
489 	.slave_destroy		= hpsa_slave_destroy,
490 #ifdef CONFIG_COMPAT
491 	.compat_ioctl		= hpsa_compat_ioctl,
492 #endif
493 	.sdev_attrs = hpsa_sdev_attrs,
494 	.shost_attrs = hpsa_shost_attrs,
495 	.max_sectors = 8192,
496 };
497 
498 
499 /* Enqueuing and dequeuing functions for cmdlists. */
500 static inline void addQ(struct list_head *list, struct CommandList *c)
501 {
502 	list_add_tail(&c->list, list);
503 }
504 
505 static inline u32 next_command(struct ctlr_info *h)
506 {
507 	u32 a;
508 
509 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
510 		return h->access.command_completed(h);
511 
512 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
513 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
514 		(h->reply_pool_head)++;
515 		h->commands_outstanding--;
516 	} else {
517 		a = FIFO_EMPTY;
518 	}
519 	/* Check for wraparound */
520 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
521 		h->reply_pool_head = h->reply_pool;
522 		h->reply_pool_wraparound ^= 1;
523 	}
524 	return a;
525 }
526 
527 /* set_performant_mode: Modify the tag for cciss performant
528  * set bit 0 for pull model, bits 3-1 for block fetch
529  * register number
530  */
531 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
532 {
533 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
534 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
535 }
536 
537 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
538 	struct CommandList *c)
539 {
540 	unsigned long flags;
541 
542 	set_performant_mode(h, c);
543 	spin_lock_irqsave(&h->lock, flags);
544 	addQ(&h->reqQ, c);
545 	h->Qdepth++;
546 	start_io(h);
547 	spin_unlock_irqrestore(&h->lock, flags);
548 }
549 
550 static inline void removeQ(struct CommandList *c)
551 {
552 	if (WARN_ON(list_empty(&c->list)))
553 		return;
554 	list_del_init(&c->list);
555 }
556 
557 static inline int is_hba_lunid(unsigned char scsi3addr[])
558 {
559 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
560 }
561 
562 static inline int is_scsi_rev_5(struct ctlr_info *h)
563 {
564 	if (!h->hba_inquiry_data)
565 		return 0;
566 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
567 		return 1;
568 	return 0;
569 }
570 
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572 	unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574 	/* finds an unused bus, target, lun for a new physical device
575 	 * assumes h->devlock is held
576 	 */
577 	int i, found = 0;
578 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
579 
580 	memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
581 
582 	for (i = 0; i < h->ndevices; i++) {
583 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584 			set_bit(h->dev[i]->target, lun_taken);
585 	}
586 
587 	for (i = 0; i < HPSA_MAX_DEVICES; i++) {
588 		if (!test_bit(i, lun_taken)) {
589 			/* *bus = 1; */
590 			*target = i;
591 			*lun = 0;
592 			found = 1;
593 			break;
594 		}
595 	}
596 	return !found;
597 }
598 
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601 		struct hpsa_scsi_dev_t *device,
602 		struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604 	/* assumes h->devlock is held */
605 	int n = h->ndevices;
606 	int i;
607 	unsigned char addr1[8], addr2[8];
608 	struct hpsa_scsi_dev_t *sd;
609 
610 	if (n >= HPSA_MAX_DEVICES) {
611 		dev_err(&h->pdev->dev, "too many devices, some will be "
612 			"inaccessible.\n");
613 		return -1;
614 	}
615 
616 	/* physical devices do not have lun or target assigned until now. */
617 	if (device->lun != -1)
618 		/* Logical device, lun is already assigned. */
619 		goto lun_assigned;
620 
621 	/* If this device a non-zero lun of a multi-lun device
622 	 * byte 4 of the 8-byte LUN addr will contain the logical
623 	 * unit no, zero otherise.
624 	 */
625 	if (device->scsi3addr[4] == 0) {
626 		/* This is not a non-zero lun of a multi-lun device */
627 		if (hpsa_find_target_lun(h, device->scsi3addr,
628 			device->bus, &device->target, &device->lun) != 0)
629 			return -1;
630 		goto lun_assigned;
631 	}
632 
633 	/* This is a non-zero lun of a multi-lun device.
634 	 * Search through our list and find the device which
635 	 * has the same 8 byte LUN address, excepting byte 4.
636 	 * Assign the same bus and target for this new LUN.
637 	 * Use the logical unit number from the firmware.
638 	 */
639 	memcpy(addr1, device->scsi3addr, 8);
640 	addr1[4] = 0;
641 	for (i = 0; i < n; i++) {
642 		sd = h->dev[i];
643 		memcpy(addr2, sd->scsi3addr, 8);
644 		addr2[4] = 0;
645 		/* differ only in byte 4? */
646 		if (memcmp(addr1, addr2, 8) == 0) {
647 			device->bus = sd->bus;
648 			device->target = sd->target;
649 			device->lun = device->scsi3addr[4];
650 			break;
651 		}
652 	}
653 	if (device->lun == -1) {
654 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655 			" suspect firmware bug or unsupported hardware "
656 			"configuration.\n");
657 			return -1;
658 	}
659 
660 lun_assigned:
661 
662 	h->dev[n] = device;
663 	h->ndevices++;
664 	added[*nadded] = device;
665 	(*nadded)++;
666 
667 	/* initially, (before registering with scsi layer) we don't
668 	 * know our hostno and we don't want to print anything first
669 	 * time anyway (the scsi layer's inquiries will show that info)
670 	 */
671 	/* if (hostno != -1) */
672 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673 			scsi_device_type(device->devtype), hostno,
674 			device->bus, device->target, device->lun);
675 	return 0;
676 }
677 
678 /* Replace an entry from h->dev[] array. */
679 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
680 	int entry, struct hpsa_scsi_dev_t *new_entry,
681 	struct hpsa_scsi_dev_t *added[], int *nadded,
682 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
683 {
684 	/* assumes h->devlock is held */
685 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
686 	removed[*nremoved] = h->dev[entry];
687 	(*nremoved)++;
688 
689 	/*
690 	 * New physical devices won't have target/lun assigned yet
691 	 * so we need to preserve the values in the slot we are replacing.
692 	 */
693 	if (new_entry->target == -1) {
694 		new_entry->target = h->dev[entry]->target;
695 		new_entry->lun = h->dev[entry]->lun;
696 	}
697 
698 	h->dev[entry] = new_entry;
699 	added[*nadded] = new_entry;
700 	(*nadded)++;
701 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
702 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
703 			new_entry->target, new_entry->lun);
704 }
705 
706 /* Remove an entry from h->dev[] array. */
707 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
708 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
709 {
710 	/* assumes h->devlock is held */
711 	int i;
712 	struct hpsa_scsi_dev_t *sd;
713 
714 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
715 
716 	sd = h->dev[entry];
717 	removed[*nremoved] = h->dev[entry];
718 	(*nremoved)++;
719 
720 	for (i = entry; i < h->ndevices-1; i++)
721 		h->dev[i] = h->dev[i+1];
722 	h->ndevices--;
723 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
724 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
725 		sd->lun);
726 }
727 
728 #define SCSI3ADDR_EQ(a, b) ( \
729 	(a)[7] == (b)[7] && \
730 	(a)[6] == (b)[6] && \
731 	(a)[5] == (b)[5] && \
732 	(a)[4] == (b)[4] && \
733 	(a)[3] == (b)[3] && \
734 	(a)[2] == (b)[2] && \
735 	(a)[1] == (b)[1] && \
736 	(a)[0] == (b)[0])
737 
738 static void fixup_botched_add(struct ctlr_info *h,
739 	struct hpsa_scsi_dev_t *added)
740 {
741 	/* called when scsi_add_device fails in order to re-adjust
742 	 * h->dev[] to match the mid layer's view.
743 	 */
744 	unsigned long flags;
745 	int i, j;
746 
747 	spin_lock_irqsave(&h->lock, flags);
748 	for (i = 0; i < h->ndevices; i++) {
749 		if (h->dev[i] == added) {
750 			for (j = i; j < h->ndevices-1; j++)
751 				h->dev[j] = h->dev[j+1];
752 			h->ndevices--;
753 			break;
754 		}
755 	}
756 	spin_unlock_irqrestore(&h->lock, flags);
757 	kfree(added);
758 }
759 
760 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
761 	struct hpsa_scsi_dev_t *dev2)
762 {
763 	/* we compare everything except lun and target as these
764 	 * are not yet assigned.  Compare parts likely
765 	 * to differ first
766 	 */
767 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
768 		sizeof(dev1->scsi3addr)) != 0)
769 		return 0;
770 	if (memcmp(dev1->device_id, dev2->device_id,
771 		sizeof(dev1->device_id)) != 0)
772 		return 0;
773 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
774 		return 0;
775 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
776 		return 0;
777 	if (dev1->devtype != dev2->devtype)
778 		return 0;
779 	if (dev1->bus != dev2->bus)
780 		return 0;
781 	return 1;
782 }
783 
784 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
785  * and return needle location in *index.  If scsi3addr matches, but not
786  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
787  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
788  */
789 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
790 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
791 	int *index)
792 {
793 	int i;
794 #define DEVICE_NOT_FOUND 0
795 #define DEVICE_CHANGED 1
796 #define DEVICE_SAME 2
797 	for (i = 0; i < haystack_size; i++) {
798 		if (haystack[i] == NULL) /* previously removed. */
799 			continue;
800 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
801 			*index = i;
802 			if (device_is_the_same(needle, haystack[i]))
803 				return DEVICE_SAME;
804 			else
805 				return DEVICE_CHANGED;
806 		}
807 	}
808 	*index = -1;
809 	return DEVICE_NOT_FOUND;
810 }
811 
812 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
813 	struct hpsa_scsi_dev_t *sd[], int nsds)
814 {
815 	/* sd contains scsi3 addresses and devtypes, and inquiry
816 	 * data.  This function takes what's in sd to be the current
817 	 * reality and updates h->dev[] to reflect that reality.
818 	 */
819 	int i, entry, device_change, changes = 0;
820 	struct hpsa_scsi_dev_t *csd;
821 	unsigned long flags;
822 	struct hpsa_scsi_dev_t **added, **removed;
823 	int nadded, nremoved;
824 	struct Scsi_Host *sh = NULL;
825 
826 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
827 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
828 
829 	if (!added || !removed) {
830 		dev_warn(&h->pdev->dev, "out of memory in "
831 			"adjust_hpsa_scsi_table\n");
832 		goto free_and_out;
833 	}
834 
835 	spin_lock_irqsave(&h->devlock, flags);
836 
837 	/* find any devices in h->dev[] that are not in
838 	 * sd[] and remove them from h->dev[], and for any
839 	 * devices which have changed, remove the old device
840 	 * info and add the new device info.
841 	 */
842 	i = 0;
843 	nremoved = 0;
844 	nadded = 0;
845 	while (i < h->ndevices) {
846 		csd = h->dev[i];
847 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
848 		if (device_change == DEVICE_NOT_FOUND) {
849 			changes++;
850 			hpsa_scsi_remove_entry(h, hostno, i,
851 				removed, &nremoved);
852 			continue; /* remove ^^^, hence i not incremented */
853 		} else if (device_change == DEVICE_CHANGED) {
854 			changes++;
855 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
856 				added, &nadded, removed, &nremoved);
857 			/* Set it to NULL to prevent it from being freed
858 			 * at the bottom of hpsa_update_scsi_devices()
859 			 */
860 			sd[entry] = NULL;
861 		}
862 		i++;
863 	}
864 
865 	/* Now, make sure every device listed in sd[] is also
866 	 * listed in h->dev[], adding them if they aren't found
867 	 */
868 
869 	for (i = 0; i < nsds; i++) {
870 		if (!sd[i]) /* if already added above. */
871 			continue;
872 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
873 					h->ndevices, &entry);
874 		if (device_change == DEVICE_NOT_FOUND) {
875 			changes++;
876 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
877 				added, &nadded) != 0)
878 				break;
879 			sd[i] = NULL; /* prevent from being freed later. */
880 		} else if (device_change == DEVICE_CHANGED) {
881 			/* should never happen... */
882 			changes++;
883 			dev_warn(&h->pdev->dev,
884 				"device unexpectedly changed.\n");
885 			/* but if it does happen, we just ignore that device */
886 		}
887 	}
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 
890 	/* Don't notify scsi mid layer of any changes the first time through
891 	 * (or if there are no changes) scsi_scan_host will do it later the
892 	 * first time through.
893 	 */
894 	if (hostno == -1 || !changes)
895 		goto free_and_out;
896 
897 	sh = h->scsi_host;
898 	/* Notify scsi mid layer of any removed devices */
899 	for (i = 0; i < nremoved; i++) {
900 		struct scsi_device *sdev =
901 			scsi_device_lookup(sh, removed[i]->bus,
902 				removed[i]->target, removed[i]->lun);
903 		if (sdev != NULL) {
904 			scsi_remove_device(sdev);
905 			scsi_device_put(sdev);
906 		} else {
907 			/* We don't expect to get here.
908 			 * future cmds to this device will get selection
909 			 * timeout as if the device was gone.
910 			 */
911 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
912 				" for removal.", hostno, removed[i]->bus,
913 				removed[i]->target, removed[i]->lun);
914 		}
915 		kfree(removed[i]);
916 		removed[i] = NULL;
917 	}
918 
919 	/* Notify scsi mid layer of any added devices */
920 	for (i = 0; i < nadded; i++) {
921 		if (scsi_add_device(sh, added[i]->bus,
922 			added[i]->target, added[i]->lun) == 0)
923 			continue;
924 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
925 			"device not added.\n", hostno, added[i]->bus,
926 			added[i]->target, added[i]->lun);
927 		/* now we have to remove it from h->dev,
928 		 * since it didn't get added to scsi mid layer
929 		 */
930 		fixup_botched_add(h, added[i]);
931 	}
932 
933 free_and_out:
934 	kfree(added);
935 	kfree(removed);
936 }
937 
938 /*
939  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
940  * Assume's h->devlock is held.
941  */
942 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
943 	int bus, int target, int lun)
944 {
945 	int i;
946 	struct hpsa_scsi_dev_t *sd;
947 
948 	for (i = 0; i < h->ndevices; i++) {
949 		sd = h->dev[i];
950 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
951 			return sd;
952 	}
953 	return NULL;
954 }
955 
956 /* link sdev->hostdata to our per-device structure. */
957 static int hpsa_slave_alloc(struct scsi_device *sdev)
958 {
959 	struct hpsa_scsi_dev_t *sd;
960 	unsigned long flags;
961 	struct ctlr_info *h;
962 
963 	h = sdev_to_hba(sdev);
964 	spin_lock_irqsave(&h->devlock, flags);
965 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
966 		sdev_id(sdev), sdev->lun);
967 	if (sd != NULL)
968 		sdev->hostdata = sd;
969 	spin_unlock_irqrestore(&h->devlock, flags);
970 	return 0;
971 }
972 
973 static void hpsa_slave_destroy(struct scsi_device *sdev)
974 {
975 	/* nothing to do. */
976 }
977 
978 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
979 {
980 	int i;
981 
982 	if (!h->cmd_sg_list)
983 		return;
984 	for (i = 0; i < h->nr_cmds; i++) {
985 		kfree(h->cmd_sg_list[i]);
986 		h->cmd_sg_list[i] = NULL;
987 	}
988 	kfree(h->cmd_sg_list);
989 	h->cmd_sg_list = NULL;
990 }
991 
992 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
993 {
994 	int i;
995 
996 	if (h->chainsize <= 0)
997 		return 0;
998 
999 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1000 				GFP_KERNEL);
1001 	if (!h->cmd_sg_list)
1002 		return -ENOMEM;
1003 	for (i = 0; i < h->nr_cmds; i++) {
1004 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1005 						h->chainsize, GFP_KERNEL);
1006 		if (!h->cmd_sg_list[i])
1007 			goto clean;
1008 	}
1009 	return 0;
1010 
1011 clean:
1012 	hpsa_free_sg_chain_blocks(h);
1013 	return -ENOMEM;
1014 }
1015 
1016 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1017 	struct CommandList *c)
1018 {
1019 	struct SGDescriptor *chain_sg, *chain_block;
1020 	u64 temp64;
1021 
1022 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1023 	chain_block = h->cmd_sg_list[c->cmdindex];
1024 	chain_sg->Ext = HPSA_SG_CHAIN;
1025 	chain_sg->Len = sizeof(*chain_sg) *
1026 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1027 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1028 				PCI_DMA_TODEVICE);
1029 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1030 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1031 }
1032 
1033 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1034 	struct CommandList *c)
1035 {
1036 	struct SGDescriptor *chain_sg;
1037 	union u64bit temp64;
1038 
1039 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1040 		return;
1041 
1042 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1043 	temp64.val32.lower = chain_sg->Addr.lower;
1044 	temp64.val32.upper = chain_sg->Addr.upper;
1045 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1046 }
1047 
1048 static void complete_scsi_command(struct CommandList *cp)
1049 {
1050 	struct scsi_cmnd *cmd;
1051 	struct ctlr_info *h;
1052 	struct ErrorInfo *ei;
1053 
1054 	unsigned char sense_key;
1055 	unsigned char asc;      /* additional sense code */
1056 	unsigned char ascq;     /* additional sense code qualifier */
1057 	unsigned long sense_data_size;
1058 
1059 	ei = cp->err_info;
1060 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1061 	h = cp->h;
1062 
1063 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1064 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1065 		hpsa_unmap_sg_chain_block(h, cp);
1066 
1067 	cmd->result = (DID_OK << 16); 		/* host byte */
1068 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1069 	cmd->result |= ei->ScsiStatus;
1070 
1071 	/* copy the sense data whether we need to or not. */
1072 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1073 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1074 	else
1075 		sense_data_size = sizeof(ei->SenseInfo);
1076 	if (ei->SenseLen < sense_data_size)
1077 		sense_data_size = ei->SenseLen;
1078 
1079 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1080 	scsi_set_resid(cmd, ei->ResidualCnt);
1081 
1082 	if (ei->CommandStatus == 0) {
1083 		cmd->scsi_done(cmd);
1084 		cmd_free(h, cp);
1085 		return;
1086 	}
1087 
1088 	/* an error has occurred */
1089 	switch (ei->CommandStatus) {
1090 
1091 	case CMD_TARGET_STATUS:
1092 		if (ei->ScsiStatus) {
1093 			/* Get sense key */
1094 			sense_key = 0xf & ei->SenseInfo[2];
1095 			/* Get additional sense code */
1096 			asc = ei->SenseInfo[12];
1097 			/* Get addition sense code qualifier */
1098 			ascq = ei->SenseInfo[13];
1099 		}
1100 
1101 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1102 			if (check_for_unit_attention(h, cp)) {
1103 				cmd->result = DID_SOFT_ERROR << 16;
1104 				break;
1105 			}
1106 			if (sense_key == ILLEGAL_REQUEST) {
1107 				/*
1108 				 * SCSI REPORT_LUNS is commonly unsupported on
1109 				 * Smart Array.  Suppress noisy complaint.
1110 				 */
1111 				if (cp->Request.CDB[0] == REPORT_LUNS)
1112 					break;
1113 
1114 				/* If ASC/ASCQ indicate Logical Unit
1115 				 * Not Supported condition,
1116 				 */
1117 				if ((asc == 0x25) && (ascq == 0x0)) {
1118 					dev_warn(&h->pdev->dev, "cp %p "
1119 						"has check condition\n", cp);
1120 					break;
1121 				}
1122 			}
1123 
1124 			if (sense_key == NOT_READY) {
1125 				/* If Sense is Not Ready, Logical Unit
1126 				 * Not ready, Manual Intervention
1127 				 * required
1128 				 */
1129 				if ((asc == 0x04) && (ascq == 0x03)) {
1130 					dev_warn(&h->pdev->dev, "cp %p "
1131 						"has check condition: unit "
1132 						"not ready, manual "
1133 						"intervention required\n", cp);
1134 					break;
1135 				}
1136 			}
1137 			if (sense_key == ABORTED_COMMAND) {
1138 				/* Aborted command is retryable */
1139 				dev_warn(&h->pdev->dev, "cp %p "
1140 					"has check condition: aborted command: "
1141 					"ASC: 0x%x, ASCQ: 0x%x\n",
1142 					cp, asc, ascq);
1143 				cmd->result = DID_SOFT_ERROR << 16;
1144 				break;
1145 			}
1146 			/* Must be some other type of check condition */
1147 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1148 					"unknown type: "
1149 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1150 					"Returning result: 0x%x, "
1151 					"cmd=[%02x %02x %02x %02x %02x "
1152 					"%02x %02x %02x %02x %02x %02x "
1153 					"%02x %02x %02x %02x %02x]\n",
1154 					cp, sense_key, asc, ascq,
1155 					cmd->result,
1156 					cmd->cmnd[0], cmd->cmnd[1],
1157 					cmd->cmnd[2], cmd->cmnd[3],
1158 					cmd->cmnd[4], cmd->cmnd[5],
1159 					cmd->cmnd[6], cmd->cmnd[7],
1160 					cmd->cmnd[8], cmd->cmnd[9],
1161 					cmd->cmnd[10], cmd->cmnd[11],
1162 					cmd->cmnd[12], cmd->cmnd[13],
1163 					cmd->cmnd[14], cmd->cmnd[15]);
1164 			break;
1165 		}
1166 
1167 
1168 		/* Problem was not a check condition
1169 		 * Pass it up to the upper layers...
1170 		 */
1171 		if (ei->ScsiStatus) {
1172 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1173 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1174 				"Returning result: 0x%x\n",
1175 				cp, ei->ScsiStatus,
1176 				sense_key, asc, ascq,
1177 				cmd->result);
1178 		} else {  /* scsi status is zero??? How??? */
1179 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1180 				"Returning no connection.\n", cp),
1181 
1182 			/* Ordinarily, this case should never happen,
1183 			 * but there is a bug in some released firmware
1184 			 * revisions that allows it to happen if, for
1185 			 * example, a 4100 backplane loses power and
1186 			 * the tape drive is in it.  We assume that
1187 			 * it's a fatal error of some kind because we
1188 			 * can't show that it wasn't. We will make it
1189 			 * look like selection timeout since that is
1190 			 * the most common reason for this to occur,
1191 			 * and it's severe enough.
1192 			 */
1193 
1194 			cmd->result = DID_NO_CONNECT << 16;
1195 		}
1196 		break;
1197 
1198 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1199 		break;
1200 	case CMD_DATA_OVERRUN:
1201 		dev_warn(&h->pdev->dev, "cp %p has"
1202 			" completed with data overrun "
1203 			"reported\n", cp);
1204 		break;
1205 	case CMD_INVALID: {
1206 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1207 		print_cmd(cp); */
1208 		/* We get CMD_INVALID if you address a non-existent device
1209 		 * instead of a selection timeout (no response).  You will
1210 		 * see this if you yank out a drive, then try to access it.
1211 		 * This is kind of a shame because it means that any other
1212 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1213 		 * missing target. */
1214 		cmd->result = DID_NO_CONNECT << 16;
1215 	}
1216 		break;
1217 	case CMD_PROTOCOL_ERR:
1218 		dev_warn(&h->pdev->dev, "cp %p has "
1219 			"protocol error \n", cp);
1220 		break;
1221 	case CMD_HARDWARE_ERR:
1222 		cmd->result = DID_ERROR << 16;
1223 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1224 		break;
1225 	case CMD_CONNECTION_LOST:
1226 		cmd->result = DID_ERROR << 16;
1227 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1228 		break;
1229 	case CMD_ABORTED:
1230 		cmd->result = DID_ABORT << 16;
1231 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1232 				cp, ei->ScsiStatus);
1233 		break;
1234 	case CMD_ABORT_FAILED:
1235 		cmd->result = DID_ERROR << 16;
1236 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1237 		break;
1238 	case CMD_UNSOLICITED_ABORT:
1239 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1240 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1241 			"abort\n", cp);
1242 		break;
1243 	case CMD_TIMEOUT:
1244 		cmd->result = DID_TIME_OUT << 16;
1245 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1246 		break;
1247 	case CMD_UNABORTABLE:
1248 		cmd->result = DID_ERROR << 16;
1249 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1250 		break;
1251 	default:
1252 		cmd->result = DID_ERROR << 16;
1253 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1254 				cp, ei->CommandStatus);
1255 	}
1256 	cmd->scsi_done(cmd);
1257 	cmd_free(h, cp);
1258 }
1259 
1260 static int hpsa_scsi_detect(struct ctlr_info *h)
1261 {
1262 	struct Scsi_Host *sh;
1263 	int error;
1264 
1265 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1266 	if (sh == NULL)
1267 		goto fail;
1268 
1269 	sh->io_port = 0;
1270 	sh->n_io_port = 0;
1271 	sh->this_id = -1;
1272 	sh->max_channel = 3;
1273 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1274 	sh->max_lun = HPSA_MAX_LUN;
1275 	sh->max_id = HPSA_MAX_LUN;
1276 	sh->can_queue = h->nr_cmds;
1277 	sh->cmd_per_lun = h->nr_cmds;
1278 	sh->sg_tablesize = h->maxsgentries;
1279 	h->scsi_host = sh;
1280 	sh->hostdata[0] = (unsigned long) h;
1281 	sh->irq = h->intr[h->intr_mode];
1282 	sh->unique_id = sh->irq;
1283 	error = scsi_add_host(sh, &h->pdev->dev);
1284 	if (error)
1285 		goto fail_host_put;
1286 	scsi_scan_host(sh);
1287 	return 0;
1288 
1289  fail_host_put:
1290 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1291 		" failed for controller %d\n", h->ctlr);
1292 	scsi_host_put(sh);
1293 	return error;
1294  fail:
1295 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1296 		" failed for controller %d\n", h->ctlr);
1297 	return -ENOMEM;
1298 }
1299 
1300 static void hpsa_pci_unmap(struct pci_dev *pdev,
1301 	struct CommandList *c, int sg_used, int data_direction)
1302 {
1303 	int i;
1304 	union u64bit addr64;
1305 
1306 	for (i = 0; i < sg_used; i++) {
1307 		addr64.val32.lower = c->SG[i].Addr.lower;
1308 		addr64.val32.upper = c->SG[i].Addr.upper;
1309 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1310 			data_direction);
1311 	}
1312 }
1313 
1314 static void hpsa_map_one(struct pci_dev *pdev,
1315 		struct CommandList *cp,
1316 		unsigned char *buf,
1317 		size_t buflen,
1318 		int data_direction)
1319 {
1320 	u64 addr64;
1321 
1322 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1323 		cp->Header.SGList = 0;
1324 		cp->Header.SGTotal = 0;
1325 		return;
1326 	}
1327 
1328 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1329 	cp->SG[0].Addr.lower =
1330 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1331 	cp->SG[0].Addr.upper =
1332 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1333 	cp->SG[0].Len = buflen;
1334 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1335 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1336 }
1337 
1338 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1339 	struct CommandList *c)
1340 {
1341 	DECLARE_COMPLETION_ONSTACK(wait);
1342 
1343 	c->waiting = &wait;
1344 	enqueue_cmd_and_start_io(h, c);
1345 	wait_for_completion(&wait);
1346 }
1347 
1348 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1349 	struct CommandList *c)
1350 {
1351 	unsigned long flags;
1352 
1353 	/* If controller lockup detected, fake a hardware error. */
1354 	spin_lock_irqsave(&h->lock, flags);
1355 	if (unlikely(h->lockup_detected)) {
1356 		spin_unlock_irqrestore(&h->lock, flags);
1357 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1358 	} else {
1359 		spin_unlock_irqrestore(&h->lock, flags);
1360 		hpsa_scsi_do_simple_cmd_core(h, c);
1361 	}
1362 }
1363 
1364 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1365 	struct CommandList *c, int data_direction)
1366 {
1367 	int retry_count = 0;
1368 
1369 	do {
1370 		memset(c->err_info, 0, sizeof(*c->err_info));
1371 		hpsa_scsi_do_simple_cmd_core(h, c);
1372 		retry_count++;
1373 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1374 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1375 }
1376 
1377 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1378 {
1379 	struct ErrorInfo *ei;
1380 	struct device *d = &cp->h->pdev->dev;
1381 
1382 	ei = cp->err_info;
1383 	switch (ei->CommandStatus) {
1384 	case CMD_TARGET_STATUS:
1385 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1386 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1387 				ei->ScsiStatus);
1388 		if (ei->ScsiStatus == 0)
1389 			dev_warn(d, "SCSI status is abnormally zero.  "
1390 			"(probably indicates selection timeout "
1391 			"reported incorrectly due to a known "
1392 			"firmware bug, circa July, 2001.)\n");
1393 		break;
1394 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1395 			dev_info(d, "UNDERRUN\n");
1396 		break;
1397 	case CMD_DATA_OVERRUN:
1398 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1399 		break;
1400 	case CMD_INVALID: {
1401 		/* controller unfortunately reports SCSI passthru's
1402 		 * to non-existent targets as invalid commands.
1403 		 */
1404 		dev_warn(d, "cp %p is reported invalid (probably means "
1405 			"target device no longer present)\n", cp);
1406 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1407 		print_cmd(cp);  */
1408 		}
1409 		break;
1410 	case CMD_PROTOCOL_ERR:
1411 		dev_warn(d, "cp %p has protocol error \n", cp);
1412 		break;
1413 	case CMD_HARDWARE_ERR:
1414 		/* cmd->result = DID_ERROR << 16; */
1415 		dev_warn(d, "cp %p had hardware error\n", cp);
1416 		break;
1417 	case CMD_CONNECTION_LOST:
1418 		dev_warn(d, "cp %p had connection lost\n", cp);
1419 		break;
1420 	case CMD_ABORTED:
1421 		dev_warn(d, "cp %p was aborted\n", cp);
1422 		break;
1423 	case CMD_ABORT_FAILED:
1424 		dev_warn(d, "cp %p reports abort failed\n", cp);
1425 		break;
1426 	case CMD_UNSOLICITED_ABORT:
1427 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1428 		break;
1429 	case CMD_TIMEOUT:
1430 		dev_warn(d, "cp %p timed out\n", cp);
1431 		break;
1432 	case CMD_UNABORTABLE:
1433 		dev_warn(d, "Command unabortable\n");
1434 		break;
1435 	default:
1436 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1437 				ei->CommandStatus);
1438 	}
1439 }
1440 
1441 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1442 			unsigned char page, unsigned char *buf,
1443 			unsigned char bufsize)
1444 {
1445 	int rc = IO_OK;
1446 	struct CommandList *c;
1447 	struct ErrorInfo *ei;
1448 
1449 	c = cmd_special_alloc(h);
1450 
1451 	if (c == NULL) {			/* trouble... */
1452 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1453 		return -ENOMEM;
1454 	}
1455 
1456 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1457 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1458 	ei = c->err_info;
1459 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1460 		hpsa_scsi_interpret_error(c);
1461 		rc = -1;
1462 	}
1463 	cmd_special_free(h, c);
1464 	return rc;
1465 }
1466 
1467 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1468 {
1469 	int rc = IO_OK;
1470 	struct CommandList *c;
1471 	struct ErrorInfo *ei;
1472 
1473 	c = cmd_special_alloc(h);
1474 
1475 	if (c == NULL) {			/* trouble... */
1476 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1477 		return -ENOMEM;
1478 	}
1479 
1480 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1481 	hpsa_scsi_do_simple_cmd_core(h, c);
1482 	/* no unmap needed here because no data xfer. */
1483 
1484 	ei = c->err_info;
1485 	if (ei->CommandStatus != 0) {
1486 		hpsa_scsi_interpret_error(c);
1487 		rc = -1;
1488 	}
1489 	cmd_special_free(h, c);
1490 	return rc;
1491 }
1492 
1493 static void hpsa_get_raid_level(struct ctlr_info *h,
1494 	unsigned char *scsi3addr, unsigned char *raid_level)
1495 {
1496 	int rc;
1497 	unsigned char *buf;
1498 
1499 	*raid_level = RAID_UNKNOWN;
1500 	buf = kzalloc(64, GFP_KERNEL);
1501 	if (!buf)
1502 		return;
1503 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1504 	if (rc == 0)
1505 		*raid_level = buf[8];
1506 	if (*raid_level > RAID_UNKNOWN)
1507 		*raid_level = RAID_UNKNOWN;
1508 	kfree(buf);
1509 	return;
1510 }
1511 
1512 /* Get the device id from inquiry page 0x83 */
1513 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1514 	unsigned char *device_id, int buflen)
1515 {
1516 	int rc;
1517 	unsigned char *buf;
1518 
1519 	if (buflen > 16)
1520 		buflen = 16;
1521 	buf = kzalloc(64, GFP_KERNEL);
1522 	if (!buf)
1523 		return -1;
1524 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1525 	if (rc == 0)
1526 		memcpy(device_id, &buf[8], buflen);
1527 	kfree(buf);
1528 	return rc != 0;
1529 }
1530 
1531 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1532 		struct ReportLUNdata *buf, int bufsize,
1533 		int extended_response)
1534 {
1535 	int rc = IO_OK;
1536 	struct CommandList *c;
1537 	unsigned char scsi3addr[8];
1538 	struct ErrorInfo *ei;
1539 
1540 	c = cmd_special_alloc(h);
1541 	if (c == NULL) {			/* trouble... */
1542 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1543 		return -1;
1544 	}
1545 	/* address the controller */
1546 	memset(scsi3addr, 0, sizeof(scsi3addr));
1547 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1548 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1549 	if (extended_response)
1550 		c->Request.CDB[1] = extended_response;
1551 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1552 	ei = c->err_info;
1553 	if (ei->CommandStatus != 0 &&
1554 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1555 		hpsa_scsi_interpret_error(c);
1556 		rc = -1;
1557 	}
1558 	cmd_special_free(h, c);
1559 	return rc;
1560 }
1561 
1562 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1563 		struct ReportLUNdata *buf,
1564 		int bufsize, int extended_response)
1565 {
1566 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1567 }
1568 
1569 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1570 		struct ReportLUNdata *buf, int bufsize)
1571 {
1572 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1573 }
1574 
1575 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1576 	int bus, int target, int lun)
1577 {
1578 	device->bus = bus;
1579 	device->target = target;
1580 	device->lun = lun;
1581 }
1582 
1583 static int hpsa_update_device_info(struct ctlr_info *h,
1584 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1585 	unsigned char *is_OBDR_device)
1586 {
1587 
1588 #define OBDR_SIG_OFFSET 43
1589 #define OBDR_TAPE_SIG "$DR-10"
1590 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1591 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1592 
1593 	unsigned char *inq_buff;
1594 	unsigned char *obdr_sig;
1595 
1596 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1597 	if (!inq_buff)
1598 		goto bail_out;
1599 
1600 	/* Do an inquiry to the device to see what it is. */
1601 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1602 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1603 		/* Inquiry failed (msg printed already) */
1604 		dev_err(&h->pdev->dev,
1605 			"hpsa_update_device_info: inquiry failed\n");
1606 		goto bail_out;
1607 	}
1608 
1609 	this_device->devtype = (inq_buff[0] & 0x1f);
1610 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1611 	memcpy(this_device->vendor, &inq_buff[8],
1612 		sizeof(this_device->vendor));
1613 	memcpy(this_device->model, &inq_buff[16],
1614 		sizeof(this_device->model));
1615 	memset(this_device->device_id, 0,
1616 		sizeof(this_device->device_id));
1617 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1618 		sizeof(this_device->device_id));
1619 
1620 	if (this_device->devtype == TYPE_DISK &&
1621 		is_logical_dev_addr_mode(scsi3addr))
1622 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1623 	else
1624 		this_device->raid_level = RAID_UNKNOWN;
1625 
1626 	if (is_OBDR_device) {
1627 		/* See if this is a One-Button-Disaster-Recovery device
1628 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1629 		 */
1630 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1631 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1632 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1633 						OBDR_SIG_LEN) == 0);
1634 	}
1635 
1636 	kfree(inq_buff);
1637 	return 0;
1638 
1639 bail_out:
1640 	kfree(inq_buff);
1641 	return 1;
1642 }
1643 
1644 static unsigned char *msa2xxx_model[] = {
1645 	"MSA2012",
1646 	"MSA2024",
1647 	"MSA2312",
1648 	"MSA2324",
1649 	"P2000 G3 SAS",
1650 	NULL,
1651 };
1652 
1653 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; msa2xxx_model[i]; i++)
1658 		if (strncmp(device->model, msa2xxx_model[i],
1659 			strlen(msa2xxx_model[i])) == 0)
1660 			return 1;
1661 	return 0;
1662 }
1663 
1664 /* Helper function to assign bus, target, lun mapping of devices.
1665  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1666  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1667  * Logical drive target and lun are assigned at this time, but
1668  * physical device lun and target assignment are deferred (assigned
1669  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1670  */
1671 static void figure_bus_target_lun(struct ctlr_info *h,
1672 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1673 	struct hpsa_scsi_dev_t *device)
1674 {
1675 	u32 lunid;
1676 
1677 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1678 		/* logical device */
1679 		if (unlikely(is_scsi_rev_5(h))) {
1680 			/* p1210m, logical drives lun assignments
1681 			 * match SCSI REPORT LUNS data.
1682 			 */
1683 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1684 			*bus = 0;
1685 			*target = 0;
1686 			*lun = (lunid & 0x3fff) + 1;
1687 		} else {
1688 			/* not p1210m... */
1689 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1690 			if (is_msa2xxx(h, device)) {
1691 				/* msa2xxx way, put logicals on bus 1
1692 				 * and match target/lun numbers box
1693 				 * reports.
1694 				 */
1695 				*bus = 1;
1696 				*target = (lunid >> 16) & 0x3fff;
1697 				*lun = lunid & 0x00ff;
1698 			} else {
1699 				/* Traditional smart array way. */
1700 				*bus = 0;
1701 				*lun = 0;
1702 				*target = lunid & 0x3fff;
1703 			}
1704 		}
1705 	} else {
1706 		/* physical device */
1707 		if (is_hba_lunid(lunaddrbytes))
1708 			if (unlikely(is_scsi_rev_5(h))) {
1709 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1710 				*target = 0;
1711 				*lun = 0;
1712 				return;
1713 			} else
1714 				*bus = 3; /* traditional smartarray */
1715 		else
1716 			*bus = 2; /* physical disk */
1717 		*target = -1;
1718 		*lun = -1; /* we will fill these in later. */
1719 	}
1720 }
1721 
1722 /*
1723  * If there is no lun 0 on a target, linux won't find any devices.
1724  * For the MSA2xxx boxes, we have to manually detect the enclosure
1725  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1726  * it for some reason.  *tmpdevice is the target we're adding,
1727  * this_device is a pointer into the current element of currentsd[]
1728  * that we're building up in update_scsi_devices(), below.
1729  * lunzerobits is a bitmap that tracks which targets already have a
1730  * lun 0 assigned.
1731  * Returns 1 if an enclosure was added, 0 if not.
1732  */
1733 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1734 	struct hpsa_scsi_dev_t *tmpdevice,
1735 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1736 	int bus, int target, int lun, unsigned long lunzerobits[],
1737 	int *nmsa2xxx_enclosures)
1738 {
1739 	unsigned char scsi3addr[8];
1740 
1741 	if (test_bit(target, lunzerobits))
1742 		return 0; /* There is already a lun 0 on this target. */
1743 
1744 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1745 		return 0; /* It's the logical targets that may lack lun 0. */
1746 
1747 	if (!is_msa2xxx(h, tmpdevice))
1748 		return 0; /* It's only the MSA2xxx that have this problem. */
1749 
1750 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1751 		return 0;
1752 
1753 	memset(scsi3addr, 0, 8);
1754 	scsi3addr[3] = target;
1755 	if (is_hba_lunid(scsi3addr))
1756 		return 0; /* Don't add the RAID controller here. */
1757 
1758 	if (is_scsi_rev_5(h))
1759 		return 0; /* p1210m doesn't need to do this. */
1760 
1761 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1762 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1763 			"enclosures exceeded.  Check your hardware "
1764 			"configuration.");
1765 		return 0;
1766 	}
1767 
1768 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1769 		return 0;
1770 	(*nmsa2xxx_enclosures)++;
1771 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1772 	set_bit(target, lunzerobits);
1773 	return 1;
1774 }
1775 
1776 /*
1777  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1778  * logdev.  The number of luns in physdev and logdev are returned in
1779  * *nphysicals and *nlogicals, respectively.
1780  * Returns 0 on success, -1 otherwise.
1781  */
1782 static int hpsa_gather_lun_info(struct ctlr_info *h,
1783 	int reportlunsize,
1784 	struct ReportLUNdata *physdev, u32 *nphysicals,
1785 	struct ReportLUNdata *logdev, u32 *nlogicals)
1786 {
1787 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1788 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1789 		return -1;
1790 	}
1791 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1792 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1793 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1794 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1795 			*nphysicals - HPSA_MAX_PHYS_LUN);
1796 		*nphysicals = HPSA_MAX_PHYS_LUN;
1797 	}
1798 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1799 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1800 		return -1;
1801 	}
1802 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1803 	/* Reject Logicals in excess of our max capability. */
1804 	if (*nlogicals > HPSA_MAX_LUN) {
1805 		dev_warn(&h->pdev->dev,
1806 			"maximum logical LUNs (%d) exceeded.  "
1807 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1808 			*nlogicals - HPSA_MAX_LUN);
1809 			*nlogicals = HPSA_MAX_LUN;
1810 	}
1811 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1812 		dev_warn(&h->pdev->dev,
1813 			"maximum logical + physical LUNs (%d) exceeded. "
1814 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1815 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1816 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1817 	}
1818 	return 0;
1819 }
1820 
1821 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1822 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1823 	struct ReportLUNdata *logdev_list)
1824 {
1825 	/* Helper function, figure out where the LUN ID info is coming from
1826 	 * given index i, lists of physical and logical devices, where in
1827 	 * the list the raid controller is supposed to appear (first or last)
1828 	 */
1829 
1830 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1831 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1832 
1833 	if (i == raid_ctlr_position)
1834 		return RAID_CTLR_LUNID;
1835 
1836 	if (i < logicals_start)
1837 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1838 
1839 	if (i < last_device)
1840 		return &logdev_list->LUN[i - nphysicals -
1841 			(raid_ctlr_position == 0)][0];
1842 	BUG();
1843 	return NULL;
1844 }
1845 
1846 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1847 {
1848 	/* the idea here is we could get notified
1849 	 * that some devices have changed, so we do a report
1850 	 * physical luns and report logical luns cmd, and adjust
1851 	 * our list of devices accordingly.
1852 	 *
1853 	 * The scsi3addr's of devices won't change so long as the
1854 	 * adapter is not reset.  That means we can rescan and
1855 	 * tell which devices we already know about, vs. new
1856 	 * devices, vs.  disappearing devices.
1857 	 */
1858 	struct ReportLUNdata *physdev_list = NULL;
1859 	struct ReportLUNdata *logdev_list = NULL;
1860 	u32 nphysicals = 0;
1861 	u32 nlogicals = 0;
1862 	u32 ndev_allocated = 0;
1863 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1864 	int ncurrent = 0;
1865 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1866 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1867 	int bus, target, lun;
1868 	int raid_ctlr_position;
1869 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1870 
1871 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1872 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1873 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1874 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1875 
1876 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1877 		dev_err(&h->pdev->dev, "out of memory\n");
1878 		goto out;
1879 	}
1880 	memset(lunzerobits, 0, sizeof(lunzerobits));
1881 
1882 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1883 			logdev_list, &nlogicals))
1884 		goto out;
1885 
1886 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1887 	 * but each of them 4 times through different paths.  The plus 1
1888 	 * is for the RAID controller.
1889 	 */
1890 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1891 
1892 	/* Allocate the per device structures */
1893 	for (i = 0; i < ndevs_to_allocate; i++) {
1894 		if (i >= HPSA_MAX_DEVICES) {
1895 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1896 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1897 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1898 			break;
1899 		}
1900 
1901 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1902 		if (!currentsd[i]) {
1903 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1904 				__FILE__, __LINE__);
1905 			goto out;
1906 		}
1907 		ndev_allocated++;
1908 	}
1909 
1910 	if (unlikely(is_scsi_rev_5(h)))
1911 		raid_ctlr_position = 0;
1912 	else
1913 		raid_ctlr_position = nphysicals + nlogicals;
1914 
1915 	/* adjust our table of devices */
1916 	nmsa2xxx_enclosures = 0;
1917 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1918 		u8 *lunaddrbytes, is_OBDR = 0;
1919 
1920 		/* Figure out where the LUN ID info is coming from */
1921 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1922 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1923 		/* skip masked physical devices. */
1924 		if (lunaddrbytes[3] & 0xC0 &&
1925 			i < nphysicals + (raid_ctlr_position == 0))
1926 			continue;
1927 
1928 		/* Get device type, vendor, model, device id */
1929 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1930 							&is_OBDR))
1931 			continue; /* skip it if we can't talk to it. */
1932 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1933 			tmpdevice);
1934 		this_device = currentsd[ncurrent];
1935 
1936 		/*
1937 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1938 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1939 		 * is nonetheless an enclosure device there.  We have to
1940 		 * present that otherwise linux won't find anything if
1941 		 * there is no lun 0.
1942 		 */
1943 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1944 				lunaddrbytes, bus, target, lun, lunzerobits,
1945 				&nmsa2xxx_enclosures)) {
1946 			ncurrent++;
1947 			this_device = currentsd[ncurrent];
1948 		}
1949 
1950 		*this_device = *tmpdevice;
1951 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1952 
1953 		switch (this_device->devtype) {
1954 		case TYPE_ROM:
1955 			/* We don't *really* support actual CD-ROM devices,
1956 			 * just "One Button Disaster Recovery" tape drive
1957 			 * which temporarily pretends to be a CD-ROM drive.
1958 			 * So we check that the device is really an OBDR tape
1959 			 * device by checking for "$DR-10" in bytes 43-48 of
1960 			 * the inquiry data.
1961 			 */
1962 			if (is_OBDR)
1963 				ncurrent++;
1964 			break;
1965 		case TYPE_DISK:
1966 			if (i < nphysicals)
1967 				break;
1968 			ncurrent++;
1969 			break;
1970 		case TYPE_TAPE:
1971 		case TYPE_MEDIUM_CHANGER:
1972 			ncurrent++;
1973 			break;
1974 		case TYPE_RAID:
1975 			/* Only present the Smartarray HBA as a RAID controller.
1976 			 * If it's a RAID controller other than the HBA itself
1977 			 * (an external RAID controller, MSA500 or similar)
1978 			 * don't present it.
1979 			 */
1980 			if (!is_hba_lunid(lunaddrbytes))
1981 				break;
1982 			ncurrent++;
1983 			break;
1984 		default:
1985 			break;
1986 		}
1987 		if (ncurrent >= HPSA_MAX_DEVICES)
1988 			break;
1989 	}
1990 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1991 out:
1992 	kfree(tmpdevice);
1993 	for (i = 0; i < ndev_allocated; i++)
1994 		kfree(currentsd[i]);
1995 	kfree(currentsd);
1996 	kfree(physdev_list);
1997 	kfree(logdev_list);
1998 }
1999 
2000 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2001  * dma mapping  and fills in the scatter gather entries of the
2002  * hpsa command, cp.
2003  */
2004 static int hpsa_scatter_gather(struct ctlr_info *h,
2005 		struct CommandList *cp,
2006 		struct scsi_cmnd *cmd)
2007 {
2008 	unsigned int len;
2009 	struct scatterlist *sg;
2010 	u64 addr64;
2011 	int use_sg, i, sg_index, chained;
2012 	struct SGDescriptor *curr_sg;
2013 
2014 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2015 
2016 	use_sg = scsi_dma_map(cmd);
2017 	if (use_sg < 0)
2018 		return use_sg;
2019 
2020 	if (!use_sg)
2021 		goto sglist_finished;
2022 
2023 	curr_sg = cp->SG;
2024 	chained = 0;
2025 	sg_index = 0;
2026 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2027 		if (i == h->max_cmd_sg_entries - 1 &&
2028 			use_sg > h->max_cmd_sg_entries) {
2029 			chained = 1;
2030 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2031 			sg_index = 0;
2032 		}
2033 		addr64 = (u64) sg_dma_address(sg);
2034 		len  = sg_dma_len(sg);
2035 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2036 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2037 		curr_sg->Len = len;
2038 		curr_sg->Ext = 0;  /* we are not chaining */
2039 		curr_sg++;
2040 	}
2041 
2042 	if (use_sg + chained > h->maxSG)
2043 		h->maxSG = use_sg + chained;
2044 
2045 	if (chained) {
2046 		cp->Header.SGList = h->max_cmd_sg_entries;
2047 		cp->Header.SGTotal = (u16) (use_sg + 1);
2048 		hpsa_map_sg_chain_block(h, cp);
2049 		return 0;
2050 	}
2051 
2052 sglist_finished:
2053 
2054 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2055 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2056 	return 0;
2057 }
2058 
2059 
2060 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2061 	void (*done)(struct scsi_cmnd *))
2062 {
2063 	struct ctlr_info *h;
2064 	struct hpsa_scsi_dev_t *dev;
2065 	unsigned char scsi3addr[8];
2066 	struct CommandList *c;
2067 	unsigned long flags;
2068 
2069 	/* Get the ptr to our adapter structure out of cmd->host. */
2070 	h = sdev_to_hba(cmd->device);
2071 	dev = cmd->device->hostdata;
2072 	if (!dev) {
2073 		cmd->result = DID_NO_CONNECT << 16;
2074 		done(cmd);
2075 		return 0;
2076 	}
2077 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2078 
2079 	spin_lock_irqsave(&h->lock, flags);
2080 	if (unlikely(h->lockup_detected)) {
2081 		spin_unlock_irqrestore(&h->lock, flags);
2082 		cmd->result = DID_ERROR << 16;
2083 		done(cmd);
2084 		return 0;
2085 	}
2086 	/* Need a lock as this is being allocated from the pool */
2087 	c = cmd_alloc(h);
2088 	spin_unlock_irqrestore(&h->lock, flags);
2089 	if (c == NULL) {			/* trouble... */
2090 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2091 		return SCSI_MLQUEUE_HOST_BUSY;
2092 	}
2093 
2094 	/* Fill in the command list header */
2095 
2096 	cmd->scsi_done = done;    /* save this for use by completion code */
2097 
2098 	/* save c in case we have to abort it  */
2099 	cmd->host_scribble = (unsigned char *) c;
2100 
2101 	c->cmd_type = CMD_SCSI;
2102 	c->scsi_cmd = cmd;
2103 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2104 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2105 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2106 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2107 
2108 	/* Fill in the request block... */
2109 
2110 	c->Request.Timeout = 0;
2111 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2112 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2113 	c->Request.CDBLen = cmd->cmd_len;
2114 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2115 	c->Request.Type.Type = TYPE_CMD;
2116 	c->Request.Type.Attribute = ATTR_SIMPLE;
2117 	switch (cmd->sc_data_direction) {
2118 	case DMA_TO_DEVICE:
2119 		c->Request.Type.Direction = XFER_WRITE;
2120 		break;
2121 	case DMA_FROM_DEVICE:
2122 		c->Request.Type.Direction = XFER_READ;
2123 		break;
2124 	case DMA_NONE:
2125 		c->Request.Type.Direction = XFER_NONE;
2126 		break;
2127 	case DMA_BIDIRECTIONAL:
2128 		/* This can happen if a buggy application does a scsi passthru
2129 		 * and sets both inlen and outlen to non-zero. ( see
2130 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2131 		 */
2132 
2133 		c->Request.Type.Direction = XFER_RSVD;
2134 		/* This is technically wrong, and hpsa controllers should
2135 		 * reject it with CMD_INVALID, which is the most correct
2136 		 * response, but non-fibre backends appear to let it
2137 		 * slide by, and give the same results as if this field
2138 		 * were set correctly.  Either way is acceptable for
2139 		 * our purposes here.
2140 		 */
2141 
2142 		break;
2143 
2144 	default:
2145 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2146 			cmd->sc_data_direction);
2147 		BUG();
2148 		break;
2149 	}
2150 
2151 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2152 		cmd_free(h, c);
2153 		return SCSI_MLQUEUE_HOST_BUSY;
2154 	}
2155 	enqueue_cmd_and_start_io(h, c);
2156 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2157 	return 0;
2158 }
2159 
2160 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2161 
2162 static void hpsa_scan_start(struct Scsi_Host *sh)
2163 {
2164 	struct ctlr_info *h = shost_to_hba(sh);
2165 	unsigned long flags;
2166 
2167 	/* wait until any scan already in progress is finished. */
2168 	while (1) {
2169 		spin_lock_irqsave(&h->scan_lock, flags);
2170 		if (h->scan_finished)
2171 			break;
2172 		spin_unlock_irqrestore(&h->scan_lock, flags);
2173 		wait_event(h->scan_wait_queue, h->scan_finished);
2174 		/* Note: We don't need to worry about a race between this
2175 		 * thread and driver unload because the midlayer will
2176 		 * have incremented the reference count, so unload won't
2177 		 * happen if we're in here.
2178 		 */
2179 	}
2180 	h->scan_finished = 0; /* mark scan as in progress */
2181 	spin_unlock_irqrestore(&h->scan_lock, flags);
2182 
2183 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2184 
2185 	spin_lock_irqsave(&h->scan_lock, flags);
2186 	h->scan_finished = 1; /* mark scan as finished. */
2187 	wake_up_all(&h->scan_wait_queue);
2188 	spin_unlock_irqrestore(&h->scan_lock, flags);
2189 }
2190 
2191 static int hpsa_scan_finished(struct Scsi_Host *sh,
2192 	unsigned long elapsed_time)
2193 {
2194 	struct ctlr_info *h = shost_to_hba(sh);
2195 	unsigned long flags;
2196 	int finished;
2197 
2198 	spin_lock_irqsave(&h->scan_lock, flags);
2199 	finished = h->scan_finished;
2200 	spin_unlock_irqrestore(&h->scan_lock, flags);
2201 	return finished;
2202 }
2203 
2204 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2205 	int qdepth, int reason)
2206 {
2207 	struct ctlr_info *h = sdev_to_hba(sdev);
2208 
2209 	if (reason != SCSI_QDEPTH_DEFAULT)
2210 		return -ENOTSUPP;
2211 
2212 	if (qdepth < 1)
2213 		qdepth = 1;
2214 	else
2215 		if (qdepth > h->nr_cmds)
2216 			qdepth = h->nr_cmds;
2217 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2218 	return sdev->queue_depth;
2219 }
2220 
2221 static void hpsa_unregister_scsi(struct ctlr_info *h)
2222 {
2223 	/* we are being forcibly unloaded, and may not refuse. */
2224 	scsi_remove_host(h->scsi_host);
2225 	scsi_host_put(h->scsi_host);
2226 	h->scsi_host = NULL;
2227 }
2228 
2229 static int hpsa_register_scsi(struct ctlr_info *h)
2230 {
2231 	int rc;
2232 
2233 	rc = hpsa_scsi_detect(h);
2234 	if (rc != 0)
2235 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2236 			" hpsa_scsi_detect(), rc is %d\n", rc);
2237 	return rc;
2238 }
2239 
2240 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2241 	unsigned char lunaddr[])
2242 {
2243 	int rc = 0;
2244 	int count = 0;
2245 	int waittime = 1; /* seconds */
2246 	struct CommandList *c;
2247 
2248 	c = cmd_special_alloc(h);
2249 	if (!c) {
2250 		dev_warn(&h->pdev->dev, "out of memory in "
2251 			"wait_for_device_to_become_ready.\n");
2252 		return IO_ERROR;
2253 	}
2254 
2255 	/* Send test unit ready until device ready, or give up. */
2256 	while (count < HPSA_TUR_RETRY_LIMIT) {
2257 
2258 		/* Wait for a bit.  do this first, because if we send
2259 		 * the TUR right away, the reset will just abort it.
2260 		 */
2261 		msleep(1000 * waittime);
2262 		count++;
2263 
2264 		/* Increase wait time with each try, up to a point. */
2265 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2266 			waittime = waittime * 2;
2267 
2268 		/* Send the Test Unit Ready */
2269 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2270 		hpsa_scsi_do_simple_cmd_core(h, c);
2271 		/* no unmap needed here because no data xfer. */
2272 
2273 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2274 			break;
2275 
2276 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2277 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2278 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2279 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2280 			break;
2281 
2282 		dev_warn(&h->pdev->dev, "waiting %d secs "
2283 			"for device to become ready.\n", waittime);
2284 		rc = 1; /* device not ready. */
2285 	}
2286 
2287 	if (rc)
2288 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2289 	else
2290 		dev_warn(&h->pdev->dev, "device is ready.\n");
2291 
2292 	cmd_special_free(h, c);
2293 	return rc;
2294 }
2295 
2296 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2297  * complaining.  Doing a host- or bus-reset can't do anything good here.
2298  */
2299 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2300 {
2301 	int rc;
2302 	struct ctlr_info *h;
2303 	struct hpsa_scsi_dev_t *dev;
2304 
2305 	/* find the controller to which the command to be aborted was sent */
2306 	h = sdev_to_hba(scsicmd->device);
2307 	if (h == NULL) /* paranoia */
2308 		return FAILED;
2309 	dev = scsicmd->device->hostdata;
2310 	if (!dev) {
2311 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2312 			"device lookup failed.\n");
2313 		return FAILED;
2314 	}
2315 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2316 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2317 	/* send a reset to the SCSI LUN which the command was sent to */
2318 	rc = hpsa_send_reset(h, dev->scsi3addr);
2319 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2320 		return SUCCESS;
2321 
2322 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2323 	return FAILED;
2324 }
2325 
2326 /*
2327  * For operations that cannot sleep, a command block is allocated at init,
2328  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2329  * which ones are free or in use.  Lock must be held when calling this.
2330  * cmd_free() is the complement.
2331  */
2332 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2333 {
2334 	struct CommandList *c;
2335 	int i;
2336 	union u64bit temp64;
2337 	dma_addr_t cmd_dma_handle, err_dma_handle;
2338 
2339 	do {
2340 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2341 		if (i == h->nr_cmds)
2342 			return NULL;
2343 	} while (test_and_set_bit
2344 		 (i & (BITS_PER_LONG - 1),
2345 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2346 	c = h->cmd_pool + i;
2347 	memset(c, 0, sizeof(*c));
2348 	cmd_dma_handle = h->cmd_pool_dhandle
2349 	    + i * sizeof(*c);
2350 	c->err_info = h->errinfo_pool + i;
2351 	memset(c->err_info, 0, sizeof(*c->err_info));
2352 	err_dma_handle = h->errinfo_pool_dhandle
2353 	    + i * sizeof(*c->err_info);
2354 	h->nr_allocs++;
2355 
2356 	c->cmdindex = i;
2357 
2358 	INIT_LIST_HEAD(&c->list);
2359 	c->busaddr = (u32) cmd_dma_handle;
2360 	temp64.val = (u64) err_dma_handle;
2361 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2362 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2363 	c->ErrDesc.Len = sizeof(*c->err_info);
2364 
2365 	c->h = h;
2366 	return c;
2367 }
2368 
2369 /* For operations that can wait for kmalloc to possibly sleep,
2370  * this routine can be called. Lock need not be held to call
2371  * cmd_special_alloc. cmd_special_free() is the complement.
2372  */
2373 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2374 {
2375 	struct CommandList *c;
2376 	union u64bit temp64;
2377 	dma_addr_t cmd_dma_handle, err_dma_handle;
2378 
2379 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2380 	if (c == NULL)
2381 		return NULL;
2382 	memset(c, 0, sizeof(*c));
2383 
2384 	c->cmdindex = -1;
2385 
2386 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2387 		    &err_dma_handle);
2388 
2389 	if (c->err_info == NULL) {
2390 		pci_free_consistent(h->pdev,
2391 			sizeof(*c), c, cmd_dma_handle);
2392 		return NULL;
2393 	}
2394 	memset(c->err_info, 0, sizeof(*c->err_info));
2395 
2396 	INIT_LIST_HEAD(&c->list);
2397 	c->busaddr = (u32) cmd_dma_handle;
2398 	temp64.val = (u64) err_dma_handle;
2399 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2400 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2401 	c->ErrDesc.Len = sizeof(*c->err_info);
2402 
2403 	c->h = h;
2404 	return c;
2405 }
2406 
2407 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2408 {
2409 	int i;
2410 
2411 	i = c - h->cmd_pool;
2412 	clear_bit(i & (BITS_PER_LONG - 1),
2413 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2414 	h->nr_frees++;
2415 }
2416 
2417 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2418 {
2419 	union u64bit temp64;
2420 
2421 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2422 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2423 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2424 			    c->err_info, (dma_addr_t) temp64.val);
2425 	pci_free_consistent(h->pdev, sizeof(*c),
2426 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2427 }
2428 
2429 #ifdef CONFIG_COMPAT
2430 
2431 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2432 {
2433 	IOCTL32_Command_struct __user *arg32 =
2434 	    (IOCTL32_Command_struct __user *) arg;
2435 	IOCTL_Command_struct arg64;
2436 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2437 	int err;
2438 	u32 cp;
2439 
2440 	memset(&arg64, 0, sizeof(arg64));
2441 	err = 0;
2442 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2443 			   sizeof(arg64.LUN_info));
2444 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2445 			   sizeof(arg64.Request));
2446 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2447 			   sizeof(arg64.error_info));
2448 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2449 	err |= get_user(cp, &arg32->buf);
2450 	arg64.buf = compat_ptr(cp);
2451 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2452 
2453 	if (err)
2454 		return -EFAULT;
2455 
2456 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2457 	if (err)
2458 		return err;
2459 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2460 			 sizeof(arg32->error_info));
2461 	if (err)
2462 		return -EFAULT;
2463 	return err;
2464 }
2465 
2466 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2467 	int cmd, void *arg)
2468 {
2469 	BIG_IOCTL32_Command_struct __user *arg32 =
2470 	    (BIG_IOCTL32_Command_struct __user *) arg;
2471 	BIG_IOCTL_Command_struct arg64;
2472 	BIG_IOCTL_Command_struct __user *p =
2473 	    compat_alloc_user_space(sizeof(arg64));
2474 	int err;
2475 	u32 cp;
2476 
2477 	memset(&arg64, 0, sizeof(arg64));
2478 	err = 0;
2479 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2480 			   sizeof(arg64.LUN_info));
2481 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2482 			   sizeof(arg64.Request));
2483 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2484 			   sizeof(arg64.error_info));
2485 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2486 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2487 	err |= get_user(cp, &arg32->buf);
2488 	arg64.buf = compat_ptr(cp);
2489 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2490 
2491 	if (err)
2492 		return -EFAULT;
2493 
2494 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2495 	if (err)
2496 		return err;
2497 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2498 			 sizeof(arg32->error_info));
2499 	if (err)
2500 		return -EFAULT;
2501 	return err;
2502 }
2503 
2504 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2505 {
2506 	switch (cmd) {
2507 	case CCISS_GETPCIINFO:
2508 	case CCISS_GETINTINFO:
2509 	case CCISS_SETINTINFO:
2510 	case CCISS_GETNODENAME:
2511 	case CCISS_SETNODENAME:
2512 	case CCISS_GETHEARTBEAT:
2513 	case CCISS_GETBUSTYPES:
2514 	case CCISS_GETFIRMVER:
2515 	case CCISS_GETDRIVVER:
2516 	case CCISS_REVALIDVOLS:
2517 	case CCISS_DEREGDISK:
2518 	case CCISS_REGNEWDISK:
2519 	case CCISS_REGNEWD:
2520 	case CCISS_RESCANDISK:
2521 	case CCISS_GETLUNINFO:
2522 		return hpsa_ioctl(dev, cmd, arg);
2523 
2524 	case CCISS_PASSTHRU32:
2525 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2526 	case CCISS_BIG_PASSTHRU32:
2527 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2528 
2529 	default:
2530 		return -ENOIOCTLCMD;
2531 	}
2532 }
2533 #endif
2534 
2535 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2536 {
2537 	struct hpsa_pci_info pciinfo;
2538 
2539 	if (!argp)
2540 		return -EINVAL;
2541 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2542 	pciinfo.bus = h->pdev->bus->number;
2543 	pciinfo.dev_fn = h->pdev->devfn;
2544 	pciinfo.board_id = h->board_id;
2545 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2546 		return -EFAULT;
2547 	return 0;
2548 }
2549 
2550 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2551 {
2552 	DriverVer_type DriverVer;
2553 	unsigned char vmaj, vmin, vsubmin;
2554 	int rc;
2555 
2556 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2557 		&vmaj, &vmin, &vsubmin);
2558 	if (rc != 3) {
2559 		dev_info(&h->pdev->dev, "driver version string '%s' "
2560 			"unrecognized.", HPSA_DRIVER_VERSION);
2561 		vmaj = 0;
2562 		vmin = 0;
2563 		vsubmin = 0;
2564 	}
2565 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2566 	if (!argp)
2567 		return -EINVAL;
2568 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2569 		return -EFAULT;
2570 	return 0;
2571 }
2572 
2573 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2574 {
2575 	IOCTL_Command_struct iocommand;
2576 	struct CommandList *c;
2577 	char *buff = NULL;
2578 	union u64bit temp64;
2579 
2580 	if (!argp)
2581 		return -EINVAL;
2582 	if (!capable(CAP_SYS_RAWIO))
2583 		return -EPERM;
2584 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2585 		return -EFAULT;
2586 	if ((iocommand.buf_size < 1) &&
2587 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2588 		return -EINVAL;
2589 	}
2590 	if (iocommand.buf_size > 0) {
2591 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2592 		if (buff == NULL)
2593 			return -EFAULT;
2594 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2595 			/* Copy the data into the buffer we created */
2596 			if (copy_from_user(buff, iocommand.buf,
2597 				iocommand.buf_size)) {
2598 				kfree(buff);
2599 				return -EFAULT;
2600 			}
2601 		} else {
2602 			memset(buff, 0, iocommand.buf_size);
2603 		}
2604 	}
2605 	c = cmd_special_alloc(h);
2606 	if (c == NULL) {
2607 		kfree(buff);
2608 		return -ENOMEM;
2609 	}
2610 	/* Fill in the command type */
2611 	c->cmd_type = CMD_IOCTL_PEND;
2612 	/* Fill in Command Header */
2613 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2614 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2615 		c->Header.SGList = 1;
2616 		c->Header.SGTotal = 1;
2617 	} else	{ /* no buffers to fill */
2618 		c->Header.SGList = 0;
2619 		c->Header.SGTotal = 0;
2620 	}
2621 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2622 	/* use the kernel address the cmd block for tag */
2623 	c->Header.Tag.lower = c->busaddr;
2624 
2625 	/* Fill in Request block */
2626 	memcpy(&c->Request, &iocommand.Request,
2627 		sizeof(c->Request));
2628 
2629 	/* Fill in the scatter gather information */
2630 	if (iocommand.buf_size > 0) {
2631 		temp64.val = pci_map_single(h->pdev, buff,
2632 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2633 		c->SG[0].Addr.lower = temp64.val32.lower;
2634 		c->SG[0].Addr.upper = temp64.val32.upper;
2635 		c->SG[0].Len = iocommand.buf_size;
2636 		c->SG[0].Ext = 0; /* we are not chaining*/
2637 	}
2638 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2639 	if (iocommand.buf_size > 0)
2640 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2641 	check_ioctl_unit_attention(h, c);
2642 
2643 	/* Copy the error information out */
2644 	memcpy(&iocommand.error_info, c->err_info,
2645 		sizeof(iocommand.error_info));
2646 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2647 		kfree(buff);
2648 		cmd_special_free(h, c);
2649 		return -EFAULT;
2650 	}
2651 	if (iocommand.Request.Type.Direction == XFER_READ &&
2652 		iocommand.buf_size > 0) {
2653 		/* Copy the data out of the buffer we created */
2654 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2655 			kfree(buff);
2656 			cmd_special_free(h, c);
2657 			return -EFAULT;
2658 		}
2659 	}
2660 	kfree(buff);
2661 	cmd_special_free(h, c);
2662 	return 0;
2663 }
2664 
2665 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2666 {
2667 	BIG_IOCTL_Command_struct *ioc;
2668 	struct CommandList *c;
2669 	unsigned char **buff = NULL;
2670 	int *buff_size = NULL;
2671 	union u64bit temp64;
2672 	BYTE sg_used = 0;
2673 	int status = 0;
2674 	int i;
2675 	u32 left;
2676 	u32 sz;
2677 	BYTE __user *data_ptr;
2678 
2679 	if (!argp)
2680 		return -EINVAL;
2681 	if (!capable(CAP_SYS_RAWIO))
2682 		return -EPERM;
2683 	ioc = (BIG_IOCTL_Command_struct *)
2684 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2685 	if (!ioc) {
2686 		status = -ENOMEM;
2687 		goto cleanup1;
2688 	}
2689 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2690 		status = -EFAULT;
2691 		goto cleanup1;
2692 	}
2693 	if ((ioc->buf_size < 1) &&
2694 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2695 		status = -EINVAL;
2696 		goto cleanup1;
2697 	}
2698 	/* Check kmalloc limits  using all SGs */
2699 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2700 		status = -EINVAL;
2701 		goto cleanup1;
2702 	}
2703 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2704 		status = -EINVAL;
2705 		goto cleanup1;
2706 	}
2707 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2708 	if (!buff) {
2709 		status = -ENOMEM;
2710 		goto cleanup1;
2711 	}
2712 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2713 	if (!buff_size) {
2714 		status = -ENOMEM;
2715 		goto cleanup1;
2716 	}
2717 	left = ioc->buf_size;
2718 	data_ptr = ioc->buf;
2719 	while (left) {
2720 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2721 		buff_size[sg_used] = sz;
2722 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2723 		if (buff[sg_used] == NULL) {
2724 			status = -ENOMEM;
2725 			goto cleanup1;
2726 		}
2727 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2728 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2729 				status = -ENOMEM;
2730 				goto cleanup1;
2731 			}
2732 		} else
2733 			memset(buff[sg_used], 0, sz);
2734 		left -= sz;
2735 		data_ptr += sz;
2736 		sg_used++;
2737 	}
2738 	c = cmd_special_alloc(h);
2739 	if (c == NULL) {
2740 		status = -ENOMEM;
2741 		goto cleanup1;
2742 	}
2743 	c->cmd_type = CMD_IOCTL_PEND;
2744 	c->Header.ReplyQueue = 0;
2745 	c->Header.SGList = c->Header.SGTotal = sg_used;
2746 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2747 	c->Header.Tag.lower = c->busaddr;
2748 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2749 	if (ioc->buf_size > 0) {
2750 		int i;
2751 		for (i = 0; i < sg_used; i++) {
2752 			temp64.val = pci_map_single(h->pdev, buff[i],
2753 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2754 			c->SG[i].Addr.lower = temp64.val32.lower;
2755 			c->SG[i].Addr.upper = temp64.val32.upper;
2756 			c->SG[i].Len = buff_size[i];
2757 			/* we are not chaining */
2758 			c->SG[i].Ext = 0;
2759 		}
2760 	}
2761 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2762 	if (sg_used)
2763 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2764 	check_ioctl_unit_attention(h, c);
2765 	/* Copy the error information out */
2766 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2767 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2768 		cmd_special_free(h, c);
2769 		status = -EFAULT;
2770 		goto cleanup1;
2771 	}
2772 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2773 		/* Copy the data out of the buffer we created */
2774 		BYTE __user *ptr = ioc->buf;
2775 		for (i = 0; i < sg_used; i++) {
2776 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2777 				cmd_special_free(h, c);
2778 				status = -EFAULT;
2779 				goto cleanup1;
2780 			}
2781 			ptr += buff_size[i];
2782 		}
2783 	}
2784 	cmd_special_free(h, c);
2785 	status = 0;
2786 cleanup1:
2787 	if (buff) {
2788 		for (i = 0; i < sg_used; i++)
2789 			kfree(buff[i]);
2790 		kfree(buff);
2791 	}
2792 	kfree(buff_size);
2793 	kfree(ioc);
2794 	return status;
2795 }
2796 
2797 static void check_ioctl_unit_attention(struct ctlr_info *h,
2798 	struct CommandList *c)
2799 {
2800 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2801 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2802 		(void) check_for_unit_attention(h, c);
2803 }
2804 /*
2805  * ioctl
2806  */
2807 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2808 {
2809 	struct ctlr_info *h;
2810 	void __user *argp = (void __user *)arg;
2811 
2812 	h = sdev_to_hba(dev);
2813 
2814 	switch (cmd) {
2815 	case CCISS_DEREGDISK:
2816 	case CCISS_REGNEWDISK:
2817 	case CCISS_REGNEWD:
2818 		hpsa_scan_start(h->scsi_host);
2819 		return 0;
2820 	case CCISS_GETPCIINFO:
2821 		return hpsa_getpciinfo_ioctl(h, argp);
2822 	case CCISS_GETDRIVVER:
2823 		return hpsa_getdrivver_ioctl(h, argp);
2824 	case CCISS_PASSTHRU:
2825 		return hpsa_passthru_ioctl(h, argp);
2826 	case CCISS_BIG_PASSTHRU:
2827 		return hpsa_big_passthru_ioctl(h, argp);
2828 	default:
2829 		return -ENOTTY;
2830 	}
2831 }
2832 
2833 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2834 	unsigned char *scsi3addr, u8 reset_type)
2835 {
2836 	struct CommandList *c;
2837 
2838 	c = cmd_alloc(h);
2839 	if (!c)
2840 		return -ENOMEM;
2841 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2842 		RAID_CTLR_LUNID, TYPE_MSG);
2843 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2844 	c->waiting = NULL;
2845 	enqueue_cmd_and_start_io(h, c);
2846 	/* Don't wait for completion, the reset won't complete.  Don't free
2847 	 * the command either.  This is the last command we will send before
2848 	 * re-initializing everything, so it doesn't matter and won't leak.
2849 	 */
2850 	return 0;
2851 }
2852 
2853 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2854 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2855 	int cmd_type)
2856 {
2857 	int pci_dir = XFER_NONE;
2858 
2859 	c->cmd_type = CMD_IOCTL_PEND;
2860 	c->Header.ReplyQueue = 0;
2861 	if (buff != NULL && size > 0) {
2862 		c->Header.SGList = 1;
2863 		c->Header.SGTotal = 1;
2864 	} else {
2865 		c->Header.SGList = 0;
2866 		c->Header.SGTotal = 0;
2867 	}
2868 	c->Header.Tag.lower = c->busaddr;
2869 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2870 
2871 	c->Request.Type.Type = cmd_type;
2872 	if (cmd_type == TYPE_CMD) {
2873 		switch (cmd) {
2874 		case HPSA_INQUIRY:
2875 			/* are we trying to read a vital product page */
2876 			if (page_code != 0) {
2877 				c->Request.CDB[1] = 0x01;
2878 				c->Request.CDB[2] = page_code;
2879 			}
2880 			c->Request.CDBLen = 6;
2881 			c->Request.Type.Attribute = ATTR_SIMPLE;
2882 			c->Request.Type.Direction = XFER_READ;
2883 			c->Request.Timeout = 0;
2884 			c->Request.CDB[0] = HPSA_INQUIRY;
2885 			c->Request.CDB[4] = size & 0xFF;
2886 			break;
2887 		case HPSA_REPORT_LOG:
2888 		case HPSA_REPORT_PHYS:
2889 			/* Talking to controller so It's a physical command
2890 			   mode = 00 target = 0.  Nothing to write.
2891 			 */
2892 			c->Request.CDBLen = 12;
2893 			c->Request.Type.Attribute = ATTR_SIMPLE;
2894 			c->Request.Type.Direction = XFER_READ;
2895 			c->Request.Timeout = 0;
2896 			c->Request.CDB[0] = cmd;
2897 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2898 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2899 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2900 			c->Request.CDB[9] = size & 0xFF;
2901 			break;
2902 		case HPSA_CACHE_FLUSH:
2903 			c->Request.CDBLen = 12;
2904 			c->Request.Type.Attribute = ATTR_SIMPLE;
2905 			c->Request.Type.Direction = XFER_WRITE;
2906 			c->Request.Timeout = 0;
2907 			c->Request.CDB[0] = BMIC_WRITE;
2908 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2909 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2910 			c->Request.CDB[8] = size & 0xFF;
2911 			break;
2912 		case TEST_UNIT_READY:
2913 			c->Request.CDBLen = 6;
2914 			c->Request.Type.Attribute = ATTR_SIMPLE;
2915 			c->Request.Type.Direction = XFER_NONE;
2916 			c->Request.Timeout = 0;
2917 			break;
2918 		default:
2919 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2920 			BUG();
2921 			return;
2922 		}
2923 	} else if (cmd_type == TYPE_MSG) {
2924 		switch (cmd) {
2925 
2926 		case  HPSA_DEVICE_RESET_MSG:
2927 			c->Request.CDBLen = 16;
2928 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2929 			c->Request.Type.Attribute = ATTR_SIMPLE;
2930 			c->Request.Type.Direction = XFER_NONE;
2931 			c->Request.Timeout = 0; /* Don't time out */
2932 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2933 			c->Request.CDB[0] =  cmd;
2934 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2935 			/* If bytes 4-7 are zero, it means reset the */
2936 			/* LunID device */
2937 			c->Request.CDB[4] = 0x00;
2938 			c->Request.CDB[5] = 0x00;
2939 			c->Request.CDB[6] = 0x00;
2940 			c->Request.CDB[7] = 0x00;
2941 		break;
2942 
2943 		default:
2944 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2945 				cmd);
2946 			BUG();
2947 		}
2948 	} else {
2949 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2950 		BUG();
2951 	}
2952 
2953 	switch (c->Request.Type.Direction) {
2954 	case XFER_READ:
2955 		pci_dir = PCI_DMA_FROMDEVICE;
2956 		break;
2957 	case XFER_WRITE:
2958 		pci_dir = PCI_DMA_TODEVICE;
2959 		break;
2960 	case XFER_NONE:
2961 		pci_dir = PCI_DMA_NONE;
2962 		break;
2963 	default:
2964 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2965 	}
2966 
2967 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2968 
2969 	return;
2970 }
2971 
2972 /*
2973  * Map (physical) PCI mem into (virtual) kernel space
2974  */
2975 static void __iomem *remap_pci_mem(ulong base, ulong size)
2976 {
2977 	ulong page_base = ((ulong) base) & PAGE_MASK;
2978 	ulong page_offs = ((ulong) base) - page_base;
2979 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2980 
2981 	return page_remapped ? (page_remapped + page_offs) : NULL;
2982 }
2983 
2984 /* Takes cmds off the submission queue and sends them to the hardware,
2985  * then puts them on the queue of cmds waiting for completion.
2986  */
2987 static void start_io(struct ctlr_info *h)
2988 {
2989 	struct CommandList *c;
2990 
2991 	while (!list_empty(&h->reqQ)) {
2992 		c = list_entry(h->reqQ.next, struct CommandList, list);
2993 		/* can't do anything if fifo is full */
2994 		if ((h->access.fifo_full(h))) {
2995 			dev_warn(&h->pdev->dev, "fifo full\n");
2996 			break;
2997 		}
2998 
2999 		/* Get the first entry from the Request Q */
3000 		removeQ(c);
3001 		h->Qdepth--;
3002 
3003 		/* Tell the controller execute command */
3004 		h->access.submit_command(h, c);
3005 
3006 		/* Put job onto the completed Q */
3007 		addQ(&h->cmpQ, c);
3008 	}
3009 }
3010 
3011 static inline unsigned long get_next_completion(struct ctlr_info *h)
3012 {
3013 	return h->access.command_completed(h);
3014 }
3015 
3016 static inline bool interrupt_pending(struct ctlr_info *h)
3017 {
3018 	return h->access.intr_pending(h);
3019 }
3020 
3021 static inline long interrupt_not_for_us(struct ctlr_info *h)
3022 {
3023 	return (h->access.intr_pending(h) == 0) ||
3024 		(h->interrupts_enabled == 0);
3025 }
3026 
3027 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3028 	u32 raw_tag)
3029 {
3030 	if (unlikely(tag_index >= h->nr_cmds)) {
3031 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3032 		return 1;
3033 	}
3034 	return 0;
3035 }
3036 
3037 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3038 {
3039 	removeQ(c);
3040 	if (likely(c->cmd_type == CMD_SCSI))
3041 		complete_scsi_command(c);
3042 	else if (c->cmd_type == CMD_IOCTL_PEND)
3043 		complete(c->waiting);
3044 }
3045 
3046 static inline u32 hpsa_tag_contains_index(u32 tag)
3047 {
3048 	return tag & DIRECT_LOOKUP_BIT;
3049 }
3050 
3051 static inline u32 hpsa_tag_to_index(u32 tag)
3052 {
3053 	return tag >> DIRECT_LOOKUP_SHIFT;
3054 }
3055 
3056 
3057 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3058 {
3059 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3060 #define HPSA_SIMPLE_ERROR_BITS 0x03
3061 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3062 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3063 	return tag & ~HPSA_PERF_ERROR_BITS;
3064 }
3065 
3066 /* process completion of an indexed ("direct lookup") command */
3067 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3068 	u32 raw_tag)
3069 {
3070 	u32 tag_index;
3071 	struct CommandList *c;
3072 
3073 	tag_index = hpsa_tag_to_index(raw_tag);
3074 	if (bad_tag(h, tag_index, raw_tag))
3075 		return next_command(h);
3076 	c = h->cmd_pool + tag_index;
3077 	finish_cmd(c, raw_tag);
3078 	return next_command(h);
3079 }
3080 
3081 /* process completion of a non-indexed command */
3082 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3083 	u32 raw_tag)
3084 {
3085 	u32 tag;
3086 	struct CommandList *c = NULL;
3087 
3088 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3089 	list_for_each_entry(c, &h->cmpQ, list) {
3090 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3091 			finish_cmd(c, raw_tag);
3092 			return next_command(h);
3093 		}
3094 	}
3095 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3096 	return next_command(h);
3097 }
3098 
3099 /* Some controllers, like p400, will give us one interrupt
3100  * after a soft reset, even if we turned interrupts off.
3101  * Only need to check for this in the hpsa_xxx_discard_completions
3102  * functions.
3103  */
3104 static int ignore_bogus_interrupt(struct ctlr_info *h)
3105 {
3106 	if (likely(!reset_devices))
3107 		return 0;
3108 
3109 	if (likely(h->interrupts_enabled))
3110 		return 0;
3111 
3112 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3113 		"(known firmware bug.)  Ignoring.\n");
3114 
3115 	return 1;
3116 }
3117 
3118 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3119 {
3120 	struct ctlr_info *h = dev_id;
3121 	unsigned long flags;
3122 	u32 raw_tag;
3123 
3124 	if (ignore_bogus_interrupt(h))
3125 		return IRQ_NONE;
3126 
3127 	if (interrupt_not_for_us(h))
3128 		return IRQ_NONE;
3129 	spin_lock_irqsave(&h->lock, flags);
3130 	h->last_intr_timestamp = get_jiffies_64();
3131 	while (interrupt_pending(h)) {
3132 		raw_tag = get_next_completion(h);
3133 		while (raw_tag != FIFO_EMPTY)
3134 			raw_tag = next_command(h);
3135 	}
3136 	spin_unlock_irqrestore(&h->lock, flags);
3137 	return IRQ_HANDLED;
3138 }
3139 
3140 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3141 {
3142 	struct ctlr_info *h = dev_id;
3143 	unsigned long flags;
3144 	u32 raw_tag;
3145 
3146 	if (ignore_bogus_interrupt(h))
3147 		return IRQ_NONE;
3148 
3149 	spin_lock_irqsave(&h->lock, flags);
3150 	h->last_intr_timestamp = get_jiffies_64();
3151 	raw_tag = get_next_completion(h);
3152 	while (raw_tag != FIFO_EMPTY)
3153 		raw_tag = next_command(h);
3154 	spin_unlock_irqrestore(&h->lock, flags);
3155 	return IRQ_HANDLED;
3156 }
3157 
3158 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3159 {
3160 	struct ctlr_info *h = dev_id;
3161 	unsigned long flags;
3162 	u32 raw_tag;
3163 
3164 	if (interrupt_not_for_us(h))
3165 		return IRQ_NONE;
3166 	spin_lock_irqsave(&h->lock, flags);
3167 	h->last_intr_timestamp = get_jiffies_64();
3168 	while (interrupt_pending(h)) {
3169 		raw_tag = get_next_completion(h);
3170 		while (raw_tag != FIFO_EMPTY) {
3171 			if (hpsa_tag_contains_index(raw_tag))
3172 				raw_tag = process_indexed_cmd(h, raw_tag);
3173 			else
3174 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3175 		}
3176 	}
3177 	spin_unlock_irqrestore(&h->lock, flags);
3178 	return IRQ_HANDLED;
3179 }
3180 
3181 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3182 {
3183 	struct ctlr_info *h = dev_id;
3184 	unsigned long flags;
3185 	u32 raw_tag;
3186 
3187 	spin_lock_irqsave(&h->lock, flags);
3188 	h->last_intr_timestamp = get_jiffies_64();
3189 	raw_tag = get_next_completion(h);
3190 	while (raw_tag != FIFO_EMPTY) {
3191 		if (hpsa_tag_contains_index(raw_tag))
3192 			raw_tag = process_indexed_cmd(h, raw_tag);
3193 		else
3194 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3195 	}
3196 	spin_unlock_irqrestore(&h->lock, flags);
3197 	return IRQ_HANDLED;
3198 }
3199 
3200 /* Send a message CDB to the firmware. Careful, this only works
3201  * in simple mode, not performant mode due to the tag lookup.
3202  * We only ever use this immediately after a controller reset.
3203  */
3204 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3205 						unsigned char type)
3206 {
3207 	struct Command {
3208 		struct CommandListHeader CommandHeader;
3209 		struct RequestBlock Request;
3210 		struct ErrDescriptor ErrorDescriptor;
3211 	};
3212 	struct Command *cmd;
3213 	static const size_t cmd_sz = sizeof(*cmd) +
3214 					sizeof(cmd->ErrorDescriptor);
3215 	dma_addr_t paddr64;
3216 	uint32_t paddr32, tag;
3217 	void __iomem *vaddr;
3218 	int i, err;
3219 
3220 	vaddr = pci_ioremap_bar(pdev, 0);
3221 	if (vaddr == NULL)
3222 		return -ENOMEM;
3223 
3224 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3225 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3226 	 * memory.
3227 	 */
3228 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3229 	if (err) {
3230 		iounmap(vaddr);
3231 		return -ENOMEM;
3232 	}
3233 
3234 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3235 	if (cmd == NULL) {
3236 		iounmap(vaddr);
3237 		return -ENOMEM;
3238 	}
3239 
3240 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3241 	 * although there's no guarantee, we assume that the address is at
3242 	 * least 4-byte aligned (most likely, it's page-aligned).
3243 	 */
3244 	paddr32 = paddr64;
3245 
3246 	cmd->CommandHeader.ReplyQueue = 0;
3247 	cmd->CommandHeader.SGList = 0;
3248 	cmd->CommandHeader.SGTotal = 0;
3249 	cmd->CommandHeader.Tag.lower = paddr32;
3250 	cmd->CommandHeader.Tag.upper = 0;
3251 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3252 
3253 	cmd->Request.CDBLen = 16;
3254 	cmd->Request.Type.Type = TYPE_MSG;
3255 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3256 	cmd->Request.Type.Direction = XFER_NONE;
3257 	cmd->Request.Timeout = 0; /* Don't time out */
3258 	cmd->Request.CDB[0] = opcode;
3259 	cmd->Request.CDB[1] = type;
3260 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3261 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3262 	cmd->ErrorDescriptor.Addr.upper = 0;
3263 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3264 
3265 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3266 
3267 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3268 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3269 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3270 			break;
3271 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3272 	}
3273 
3274 	iounmap(vaddr);
3275 
3276 	/* we leak the DMA buffer here ... no choice since the controller could
3277 	 *  still complete the command.
3278 	 */
3279 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3280 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3281 			opcode, type);
3282 		return -ETIMEDOUT;
3283 	}
3284 
3285 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3286 
3287 	if (tag & HPSA_ERROR_BIT) {
3288 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3289 			opcode, type);
3290 		return -EIO;
3291 	}
3292 
3293 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3294 		opcode, type);
3295 	return 0;
3296 }
3297 
3298 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3299 
3300 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3301 	void * __iomem vaddr, u32 use_doorbell)
3302 {
3303 	u16 pmcsr;
3304 	int pos;
3305 
3306 	if (use_doorbell) {
3307 		/* For everything after the P600, the PCI power state method
3308 		 * of resetting the controller doesn't work, so we have this
3309 		 * other way using the doorbell register.
3310 		 */
3311 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3312 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3313 	} else { /* Try to do it the PCI power state way */
3314 
3315 		/* Quoting from the Open CISS Specification: "The Power
3316 		 * Management Control/Status Register (CSR) controls the power
3317 		 * state of the device.  The normal operating state is D0,
3318 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3319 		 * the controller, place the interface device in D3 then to D0,
3320 		 * this causes a secondary PCI reset which will reset the
3321 		 * controller." */
3322 
3323 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3324 		if (pos == 0) {
3325 			dev_err(&pdev->dev,
3326 				"hpsa_reset_controller: "
3327 				"PCI PM not supported\n");
3328 			return -ENODEV;
3329 		}
3330 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3331 		/* enter the D3hot power management state */
3332 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3333 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3334 		pmcsr |= PCI_D3hot;
3335 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3336 
3337 		msleep(500);
3338 
3339 		/* enter the D0 power management state */
3340 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3341 		pmcsr |= PCI_D0;
3342 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3343 
3344 		/*
3345 		 * The P600 requires a small delay when changing states.
3346 		 * Otherwise we may think the board did not reset and we bail.
3347 		 * This for kdump only and is particular to the P600.
3348 		 */
3349 		msleep(500);
3350 	}
3351 	return 0;
3352 }
3353 
3354 static __devinit void init_driver_version(char *driver_version, int len)
3355 {
3356 	memset(driver_version, 0, len);
3357 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3358 }
3359 
3360 static __devinit int write_driver_ver_to_cfgtable(
3361 	struct CfgTable __iomem *cfgtable)
3362 {
3363 	char *driver_version;
3364 	int i, size = sizeof(cfgtable->driver_version);
3365 
3366 	driver_version = kmalloc(size, GFP_KERNEL);
3367 	if (!driver_version)
3368 		return -ENOMEM;
3369 
3370 	init_driver_version(driver_version, size);
3371 	for (i = 0; i < size; i++)
3372 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3373 	kfree(driver_version);
3374 	return 0;
3375 }
3376 
3377 static __devinit void read_driver_ver_from_cfgtable(
3378 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3379 {
3380 	int i;
3381 
3382 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3383 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3384 }
3385 
3386 static __devinit int controller_reset_failed(
3387 	struct CfgTable __iomem *cfgtable)
3388 {
3389 
3390 	char *driver_ver, *old_driver_ver;
3391 	int rc, size = sizeof(cfgtable->driver_version);
3392 
3393 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3394 	if (!old_driver_ver)
3395 		return -ENOMEM;
3396 	driver_ver = old_driver_ver + size;
3397 
3398 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3399 	 * should have been changed, otherwise we know the reset failed.
3400 	 */
3401 	init_driver_version(old_driver_ver, size);
3402 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3403 	rc = !memcmp(driver_ver, old_driver_ver, size);
3404 	kfree(old_driver_ver);
3405 	return rc;
3406 }
3407 /* This does a hard reset of the controller using PCI power management
3408  * states or the using the doorbell register.
3409  */
3410 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3411 {
3412 	u64 cfg_offset;
3413 	u32 cfg_base_addr;
3414 	u64 cfg_base_addr_index;
3415 	void __iomem *vaddr;
3416 	unsigned long paddr;
3417 	u32 misc_fw_support;
3418 	int rc;
3419 	struct CfgTable __iomem *cfgtable;
3420 	u32 use_doorbell;
3421 	u32 board_id;
3422 	u16 command_register;
3423 
3424 	/* For controllers as old as the P600, this is very nearly
3425 	 * the same thing as
3426 	 *
3427 	 * pci_save_state(pci_dev);
3428 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3429 	 * pci_set_power_state(pci_dev, PCI_D0);
3430 	 * pci_restore_state(pci_dev);
3431 	 *
3432 	 * For controllers newer than the P600, the pci power state
3433 	 * method of resetting doesn't work so we have another way
3434 	 * using the doorbell register.
3435 	 */
3436 
3437 	rc = hpsa_lookup_board_id(pdev, &board_id);
3438 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3439 		dev_warn(&pdev->dev, "Not resetting device.\n");
3440 		return -ENODEV;
3441 	}
3442 
3443 	/* if controller is soft- but not hard resettable... */
3444 	if (!ctlr_is_hard_resettable(board_id))
3445 		return -ENOTSUPP; /* try soft reset later. */
3446 
3447 	/* Save the PCI command register */
3448 	pci_read_config_word(pdev, 4, &command_register);
3449 	/* Turn the board off.  This is so that later pci_restore_state()
3450 	 * won't turn the board on before the rest of config space is ready.
3451 	 */
3452 	pci_disable_device(pdev);
3453 	pci_save_state(pdev);
3454 
3455 	/* find the first memory BAR, so we can find the cfg table */
3456 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3457 	if (rc)
3458 		return rc;
3459 	vaddr = remap_pci_mem(paddr, 0x250);
3460 	if (!vaddr)
3461 		return -ENOMEM;
3462 
3463 	/* find cfgtable in order to check if reset via doorbell is supported */
3464 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3465 					&cfg_base_addr_index, &cfg_offset);
3466 	if (rc)
3467 		goto unmap_vaddr;
3468 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3469 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3470 	if (!cfgtable) {
3471 		rc = -ENOMEM;
3472 		goto unmap_vaddr;
3473 	}
3474 	rc = write_driver_ver_to_cfgtable(cfgtable);
3475 	if (rc)
3476 		goto unmap_vaddr;
3477 
3478 	/* If reset via doorbell register is supported, use that.
3479 	 * There are two such methods.  Favor the newest method.
3480 	 */
3481 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3482 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3483 	if (use_doorbell) {
3484 		use_doorbell = DOORBELL_CTLR_RESET2;
3485 	} else {
3486 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3487 		if (use_doorbell) {
3488 			dev_warn(&pdev->dev, "Soft reset not supported. "
3489 				"Firmware update is required.\n");
3490 			rc = -ENOTSUPP; /* try soft reset */
3491 			goto unmap_cfgtable;
3492 		}
3493 	}
3494 
3495 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3496 	if (rc)
3497 		goto unmap_cfgtable;
3498 
3499 	pci_restore_state(pdev);
3500 	rc = pci_enable_device(pdev);
3501 	if (rc) {
3502 		dev_warn(&pdev->dev, "failed to enable device.\n");
3503 		goto unmap_cfgtable;
3504 	}
3505 	pci_write_config_word(pdev, 4, command_register);
3506 
3507 	/* Some devices (notably the HP Smart Array 5i Controller)
3508 	   need a little pause here */
3509 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3510 
3511 	/* Wait for board to become not ready, then ready. */
3512 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3513 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3514 	if (rc) {
3515 		dev_warn(&pdev->dev,
3516 			"failed waiting for board to reset."
3517 			" Will try soft reset.\n");
3518 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3519 		goto unmap_cfgtable;
3520 	}
3521 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3522 	if (rc) {
3523 		dev_warn(&pdev->dev,
3524 			"failed waiting for board to become ready "
3525 			"after hard reset\n");
3526 		goto unmap_cfgtable;
3527 	}
3528 
3529 	rc = controller_reset_failed(vaddr);
3530 	if (rc < 0)
3531 		goto unmap_cfgtable;
3532 	if (rc) {
3533 		dev_warn(&pdev->dev, "Unable to successfully reset "
3534 			"controller. Will try soft reset.\n");
3535 		rc = -ENOTSUPP;
3536 	} else {
3537 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3538 	}
3539 
3540 unmap_cfgtable:
3541 	iounmap(cfgtable);
3542 
3543 unmap_vaddr:
3544 	iounmap(vaddr);
3545 	return rc;
3546 }
3547 
3548 /*
3549  *  We cannot read the structure directly, for portability we must use
3550  *   the io functions.
3551  *   This is for debug only.
3552  */
3553 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3554 {
3555 #ifdef HPSA_DEBUG
3556 	int i;
3557 	char temp_name[17];
3558 
3559 	dev_info(dev, "Controller Configuration information\n");
3560 	dev_info(dev, "------------------------------------\n");
3561 	for (i = 0; i < 4; i++)
3562 		temp_name[i] = readb(&(tb->Signature[i]));
3563 	temp_name[4] = '\0';
3564 	dev_info(dev, "   Signature = %s\n", temp_name);
3565 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3566 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3567 	       readl(&(tb->TransportSupport)));
3568 	dev_info(dev, "   Transport methods active = 0x%x\n",
3569 	       readl(&(tb->TransportActive)));
3570 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3571 	       readl(&(tb->HostWrite.TransportRequest)));
3572 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3573 	       readl(&(tb->HostWrite.CoalIntDelay)));
3574 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3575 	       readl(&(tb->HostWrite.CoalIntCount)));
3576 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3577 	       readl(&(tb->CmdsOutMax)));
3578 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3579 	for (i = 0; i < 16; i++)
3580 		temp_name[i] = readb(&(tb->ServerName[i]));
3581 	temp_name[16] = '\0';
3582 	dev_info(dev, "   Server Name = %s\n", temp_name);
3583 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3584 		readl(&(tb->HeartBeat)));
3585 #endif				/* HPSA_DEBUG */
3586 }
3587 
3588 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3589 {
3590 	int i, offset, mem_type, bar_type;
3591 
3592 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3593 		return 0;
3594 	offset = 0;
3595 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3596 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3597 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3598 			offset += 4;
3599 		else {
3600 			mem_type = pci_resource_flags(pdev, i) &
3601 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3602 			switch (mem_type) {
3603 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3604 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3605 				offset += 4;	/* 32 bit */
3606 				break;
3607 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3608 				offset += 8;
3609 				break;
3610 			default:	/* reserved in PCI 2.2 */
3611 				dev_warn(&pdev->dev,
3612 				       "base address is invalid\n");
3613 				return -1;
3614 				break;
3615 			}
3616 		}
3617 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3618 			return i + 1;
3619 	}
3620 	return -1;
3621 }
3622 
3623 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3624  * controllers that are capable. If not, we use IO-APIC mode.
3625  */
3626 
3627 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3628 {
3629 #ifdef CONFIG_PCI_MSI
3630 	int err;
3631 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3632 	{0, 2}, {0, 3}
3633 	};
3634 
3635 	/* Some boards advertise MSI but don't really support it */
3636 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3637 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3638 		goto default_int_mode;
3639 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3640 		dev_info(&h->pdev->dev, "MSIX\n");
3641 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3642 		if (!err) {
3643 			h->intr[0] = hpsa_msix_entries[0].vector;
3644 			h->intr[1] = hpsa_msix_entries[1].vector;
3645 			h->intr[2] = hpsa_msix_entries[2].vector;
3646 			h->intr[3] = hpsa_msix_entries[3].vector;
3647 			h->msix_vector = 1;
3648 			return;
3649 		}
3650 		if (err > 0) {
3651 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3652 			       "available\n", err);
3653 			goto default_int_mode;
3654 		} else {
3655 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3656 			       err);
3657 			goto default_int_mode;
3658 		}
3659 	}
3660 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3661 		dev_info(&h->pdev->dev, "MSI\n");
3662 		if (!pci_enable_msi(h->pdev))
3663 			h->msi_vector = 1;
3664 		else
3665 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3666 	}
3667 default_int_mode:
3668 #endif				/* CONFIG_PCI_MSI */
3669 	/* if we get here we're going to use the default interrupt mode */
3670 	h->intr[h->intr_mode] = h->pdev->irq;
3671 }
3672 
3673 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3674 {
3675 	int i;
3676 	u32 subsystem_vendor_id, subsystem_device_id;
3677 
3678 	subsystem_vendor_id = pdev->subsystem_vendor;
3679 	subsystem_device_id = pdev->subsystem_device;
3680 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3681 		    subsystem_vendor_id;
3682 
3683 	for (i = 0; i < ARRAY_SIZE(products); i++)
3684 		if (*board_id == products[i].board_id)
3685 			return i;
3686 
3687 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3688 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3689 		!hpsa_allow_any) {
3690 		dev_warn(&pdev->dev, "unrecognized board ID: "
3691 			"0x%08x, ignoring.\n", *board_id);
3692 			return -ENODEV;
3693 	}
3694 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3695 }
3696 
3697 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3698 {
3699 	u16 command;
3700 
3701 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3702 	return ((command & PCI_COMMAND_MEMORY) == 0);
3703 }
3704 
3705 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3706 	unsigned long *memory_bar)
3707 {
3708 	int i;
3709 
3710 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3711 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3712 			/* addressing mode bits already removed */
3713 			*memory_bar = pci_resource_start(pdev, i);
3714 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3715 				*memory_bar);
3716 			return 0;
3717 		}
3718 	dev_warn(&pdev->dev, "no memory BAR found\n");
3719 	return -ENODEV;
3720 }
3721 
3722 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3723 	void __iomem *vaddr, int wait_for_ready)
3724 {
3725 	int i, iterations;
3726 	u32 scratchpad;
3727 	if (wait_for_ready)
3728 		iterations = HPSA_BOARD_READY_ITERATIONS;
3729 	else
3730 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3731 
3732 	for (i = 0; i < iterations; i++) {
3733 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3734 		if (wait_for_ready) {
3735 			if (scratchpad == HPSA_FIRMWARE_READY)
3736 				return 0;
3737 		} else {
3738 			if (scratchpad != HPSA_FIRMWARE_READY)
3739 				return 0;
3740 		}
3741 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3742 	}
3743 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3744 	return -ENODEV;
3745 }
3746 
3747 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3748 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3749 	u64 *cfg_offset)
3750 {
3751 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3752 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3753 	*cfg_base_addr &= (u32) 0x0000ffff;
3754 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3755 	if (*cfg_base_addr_index == -1) {
3756 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3757 		return -ENODEV;
3758 	}
3759 	return 0;
3760 }
3761 
3762 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3763 {
3764 	u64 cfg_offset;
3765 	u32 cfg_base_addr;
3766 	u64 cfg_base_addr_index;
3767 	u32 trans_offset;
3768 	int rc;
3769 
3770 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3771 		&cfg_base_addr_index, &cfg_offset);
3772 	if (rc)
3773 		return rc;
3774 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3775 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3776 	if (!h->cfgtable)
3777 		return -ENOMEM;
3778 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3779 	if (rc)
3780 		return rc;
3781 	/* Find performant mode table. */
3782 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3783 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3784 				cfg_base_addr_index)+cfg_offset+trans_offset,
3785 				sizeof(*h->transtable));
3786 	if (!h->transtable)
3787 		return -ENOMEM;
3788 	return 0;
3789 }
3790 
3791 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3792 {
3793 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3794 
3795 	/* Limit commands in memory limited kdump scenario. */
3796 	if (reset_devices && h->max_commands > 32)
3797 		h->max_commands = 32;
3798 
3799 	if (h->max_commands < 16) {
3800 		dev_warn(&h->pdev->dev, "Controller reports "
3801 			"max supported commands of %d, an obvious lie. "
3802 			"Using 16.  Ensure that firmware is up to date.\n",
3803 			h->max_commands);
3804 		h->max_commands = 16;
3805 	}
3806 }
3807 
3808 /* Interrogate the hardware for some limits:
3809  * max commands, max SG elements without chaining, and with chaining,
3810  * SG chain block size, etc.
3811  */
3812 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3813 {
3814 	hpsa_get_max_perf_mode_cmds(h);
3815 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3816 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3817 	/*
3818 	 * Limit in-command s/g elements to 32 save dma'able memory.
3819 	 * Howvever spec says if 0, use 31
3820 	 */
3821 	h->max_cmd_sg_entries = 31;
3822 	if (h->maxsgentries > 512) {
3823 		h->max_cmd_sg_entries = 32;
3824 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3825 		h->maxsgentries--; /* save one for chain pointer */
3826 	} else {
3827 		h->maxsgentries = 31; /* default to traditional values */
3828 		h->chainsize = 0;
3829 	}
3830 }
3831 
3832 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3833 {
3834 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3835 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3836 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3837 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3838 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3839 		return false;
3840 	}
3841 	return true;
3842 }
3843 
3844 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3845 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3846 {
3847 #ifdef CONFIG_X86
3848 	u32 prefetch;
3849 
3850 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3851 	prefetch |= 0x100;
3852 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3853 #endif
3854 }
3855 
3856 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3857  * in a prefetch beyond physical memory.
3858  */
3859 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3860 {
3861 	u32 dma_prefetch;
3862 
3863 	if (h->board_id != 0x3225103C)
3864 		return;
3865 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3866 	dma_prefetch |= 0x8000;
3867 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3868 }
3869 
3870 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3871 {
3872 	int i;
3873 	u32 doorbell_value;
3874 	unsigned long flags;
3875 
3876 	/* under certain very rare conditions, this can take awhile.
3877 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3878 	 * as we enter this code.)
3879 	 */
3880 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3881 		spin_lock_irqsave(&h->lock, flags);
3882 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3883 		spin_unlock_irqrestore(&h->lock, flags);
3884 		if (!(doorbell_value & CFGTBL_ChangeReq))
3885 			break;
3886 		/* delay and try again */
3887 		usleep_range(10000, 20000);
3888 	}
3889 }
3890 
3891 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3892 {
3893 	u32 trans_support;
3894 
3895 	trans_support = readl(&(h->cfgtable->TransportSupport));
3896 	if (!(trans_support & SIMPLE_MODE))
3897 		return -ENOTSUPP;
3898 
3899 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3900 	/* Update the field, and then ring the doorbell */
3901 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3902 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3903 	hpsa_wait_for_mode_change_ack(h);
3904 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3905 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3906 		dev_warn(&h->pdev->dev,
3907 			"unable to get board into simple mode\n");
3908 		return -ENODEV;
3909 	}
3910 	h->transMethod = CFGTBL_Trans_Simple;
3911 	return 0;
3912 }
3913 
3914 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3915 {
3916 	int prod_index, err;
3917 
3918 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3919 	if (prod_index < 0)
3920 		return -ENODEV;
3921 	h->product_name = products[prod_index].product_name;
3922 	h->access = *(products[prod_index].access);
3923 
3924 	if (hpsa_board_disabled(h->pdev)) {
3925 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3926 		return -ENODEV;
3927 	}
3928 
3929 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3930 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3931 
3932 	err = pci_enable_device(h->pdev);
3933 	if (err) {
3934 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3935 		return err;
3936 	}
3937 
3938 	err = pci_request_regions(h->pdev, "hpsa");
3939 	if (err) {
3940 		dev_err(&h->pdev->dev,
3941 			"cannot obtain PCI resources, aborting\n");
3942 		return err;
3943 	}
3944 	hpsa_interrupt_mode(h);
3945 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3946 	if (err)
3947 		goto err_out_free_res;
3948 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3949 	if (!h->vaddr) {
3950 		err = -ENOMEM;
3951 		goto err_out_free_res;
3952 	}
3953 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3954 	if (err)
3955 		goto err_out_free_res;
3956 	err = hpsa_find_cfgtables(h);
3957 	if (err)
3958 		goto err_out_free_res;
3959 	hpsa_find_board_params(h);
3960 
3961 	if (!hpsa_CISS_signature_present(h)) {
3962 		err = -ENODEV;
3963 		goto err_out_free_res;
3964 	}
3965 	hpsa_enable_scsi_prefetch(h);
3966 	hpsa_p600_dma_prefetch_quirk(h);
3967 	err = hpsa_enter_simple_mode(h);
3968 	if (err)
3969 		goto err_out_free_res;
3970 	return 0;
3971 
3972 err_out_free_res:
3973 	if (h->transtable)
3974 		iounmap(h->transtable);
3975 	if (h->cfgtable)
3976 		iounmap(h->cfgtable);
3977 	if (h->vaddr)
3978 		iounmap(h->vaddr);
3979 	/*
3980 	 * Deliberately omit pci_disable_device(): it does something nasty to
3981 	 * Smart Array controllers that pci_enable_device does not undo
3982 	 */
3983 	pci_release_regions(h->pdev);
3984 	return err;
3985 }
3986 
3987 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3988 {
3989 	int rc;
3990 
3991 #define HBA_INQUIRY_BYTE_COUNT 64
3992 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3993 	if (!h->hba_inquiry_data)
3994 		return;
3995 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3996 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3997 	if (rc != 0) {
3998 		kfree(h->hba_inquiry_data);
3999 		h->hba_inquiry_data = NULL;
4000 	}
4001 }
4002 
4003 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4004 {
4005 	int rc, i;
4006 
4007 	if (!reset_devices)
4008 		return 0;
4009 
4010 	/* Reset the controller with a PCI power-cycle or via doorbell */
4011 	rc = hpsa_kdump_hard_reset_controller(pdev);
4012 
4013 	/* -ENOTSUPP here means we cannot reset the controller
4014 	 * but it's already (and still) up and running in
4015 	 * "performant mode".  Or, it might be 640x, which can't reset
4016 	 * due to concerns about shared bbwc between 6402/6404 pair.
4017 	 */
4018 	if (rc == -ENOTSUPP)
4019 		return rc; /* just try to do the kdump anyhow. */
4020 	if (rc)
4021 		return -ENODEV;
4022 
4023 	/* Now try to get the controller to respond to a no-op */
4024 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4025 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4026 		if (hpsa_noop(pdev) == 0)
4027 			break;
4028 		else
4029 			dev_warn(&pdev->dev, "no-op failed%s\n",
4030 					(i < 11 ? "; re-trying" : ""));
4031 	}
4032 	return 0;
4033 }
4034 
4035 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4036 {
4037 	h->cmd_pool_bits = kzalloc(
4038 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4039 		sizeof(unsigned long), GFP_KERNEL);
4040 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4041 		    h->nr_cmds * sizeof(*h->cmd_pool),
4042 		    &(h->cmd_pool_dhandle));
4043 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4044 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4045 		    &(h->errinfo_pool_dhandle));
4046 	if ((h->cmd_pool_bits == NULL)
4047 	    || (h->cmd_pool == NULL)
4048 	    || (h->errinfo_pool == NULL)) {
4049 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4050 		return -ENOMEM;
4051 	}
4052 	return 0;
4053 }
4054 
4055 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4056 {
4057 	kfree(h->cmd_pool_bits);
4058 	if (h->cmd_pool)
4059 		pci_free_consistent(h->pdev,
4060 			    h->nr_cmds * sizeof(struct CommandList),
4061 			    h->cmd_pool, h->cmd_pool_dhandle);
4062 	if (h->errinfo_pool)
4063 		pci_free_consistent(h->pdev,
4064 			    h->nr_cmds * sizeof(struct ErrorInfo),
4065 			    h->errinfo_pool,
4066 			    h->errinfo_pool_dhandle);
4067 }
4068 
4069 static int hpsa_request_irq(struct ctlr_info *h,
4070 	irqreturn_t (*msixhandler)(int, void *),
4071 	irqreturn_t (*intxhandler)(int, void *))
4072 {
4073 	int rc;
4074 
4075 	if (h->msix_vector || h->msi_vector)
4076 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4077 				0, h->devname, h);
4078 	else
4079 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4080 				IRQF_SHARED, h->devname, h);
4081 	if (rc) {
4082 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4083 		       h->intr[h->intr_mode], h->devname);
4084 		return -ENODEV;
4085 	}
4086 	return 0;
4087 }
4088 
4089 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4090 {
4091 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4092 		HPSA_RESET_TYPE_CONTROLLER)) {
4093 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4094 		return -EIO;
4095 	}
4096 
4097 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4098 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4099 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4100 		return -1;
4101 	}
4102 
4103 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4104 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4105 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4106 			"after soft reset.\n");
4107 		return -1;
4108 	}
4109 
4110 	return 0;
4111 }
4112 
4113 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4114 {
4115 	free_irq(h->intr[h->intr_mode], h);
4116 #ifdef CONFIG_PCI_MSI
4117 	if (h->msix_vector)
4118 		pci_disable_msix(h->pdev);
4119 	else if (h->msi_vector)
4120 		pci_disable_msi(h->pdev);
4121 #endif /* CONFIG_PCI_MSI */
4122 	hpsa_free_sg_chain_blocks(h);
4123 	hpsa_free_cmd_pool(h);
4124 	kfree(h->blockFetchTable);
4125 	pci_free_consistent(h->pdev, h->reply_pool_size,
4126 		h->reply_pool, h->reply_pool_dhandle);
4127 	if (h->vaddr)
4128 		iounmap(h->vaddr);
4129 	if (h->transtable)
4130 		iounmap(h->transtable);
4131 	if (h->cfgtable)
4132 		iounmap(h->cfgtable);
4133 	pci_release_regions(h->pdev);
4134 	kfree(h);
4135 }
4136 
4137 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4138 {
4139 	assert_spin_locked(&lockup_detector_lock);
4140 	if (!hpsa_lockup_detector)
4141 		return;
4142 	if (h->lockup_detected)
4143 		return; /* already stopped the lockup detector */
4144 	list_del(&h->lockup_list);
4145 }
4146 
4147 /* Called when controller lockup detected. */
4148 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4149 {
4150 	struct CommandList *c = NULL;
4151 
4152 	assert_spin_locked(&h->lock);
4153 	/* Mark all outstanding commands as failed and complete them. */
4154 	while (!list_empty(list)) {
4155 		c = list_entry(list->next, struct CommandList, list);
4156 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4157 		finish_cmd(c, c->Header.Tag.lower);
4158 	}
4159 }
4160 
4161 static void controller_lockup_detected(struct ctlr_info *h)
4162 {
4163 	unsigned long flags;
4164 
4165 	assert_spin_locked(&lockup_detector_lock);
4166 	remove_ctlr_from_lockup_detector_list(h);
4167 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4168 	spin_lock_irqsave(&h->lock, flags);
4169 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4170 	spin_unlock_irqrestore(&h->lock, flags);
4171 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4172 			h->lockup_detected);
4173 	pci_disable_device(h->pdev);
4174 	spin_lock_irqsave(&h->lock, flags);
4175 	fail_all_cmds_on_list(h, &h->cmpQ);
4176 	fail_all_cmds_on_list(h, &h->reqQ);
4177 	spin_unlock_irqrestore(&h->lock, flags);
4178 }
4179 
4180 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4181 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4182 
4183 static void detect_controller_lockup(struct ctlr_info *h)
4184 {
4185 	u64 now;
4186 	u32 heartbeat;
4187 	unsigned long flags;
4188 
4189 	assert_spin_locked(&lockup_detector_lock);
4190 	now = get_jiffies_64();
4191 	/* If we've received an interrupt recently, we're ok. */
4192 	if (time_after64(h->last_intr_timestamp +
4193 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4194 		return;
4195 
4196 	/*
4197 	 * If we've already checked the heartbeat recently, we're ok.
4198 	 * This could happen if someone sends us a signal. We
4199 	 * otherwise don't care about signals in this thread.
4200 	 */
4201 	if (time_after64(h->last_heartbeat_timestamp +
4202 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4203 		return;
4204 
4205 	/* If heartbeat has not changed since we last looked, we're not ok. */
4206 	spin_lock_irqsave(&h->lock, flags);
4207 	heartbeat = readl(&h->cfgtable->HeartBeat);
4208 	spin_unlock_irqrestore(&h->lock, flags);
4209 	if (h->last_heartbeat == heartbeat) {
4210 		controller_lockup_detected(h);
4211 		return;
4212 	}
4213 
4214 	/* We're ok. */
4215 	h->last_heartbeat = heartbeat;
4216 	h->last_heartbeat_timestamp = now;
4217 }
4218 
4219 static int detect_controller_lockup_thread(void *notused)
4220 {
4221 	struct ctlr_info *h;
4222 	unsigned long flags;
4223 
4224 	while (1) {
4225 		struct list_head *this, *tmp;
4226 
4227 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4228 		if (kthread_should_stop())
4229 			break;
4230 		spin_lock_irqsave(&lockup_detector_lock, flags);
4231 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4232 			h = list_entry(this, struct ctlr_info, lockup_list);
4233 			detect_controller_lockup(h);
4234 		}
4235 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4236 	}
4237 	return 0;
4238 }
4239 
4240 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4241 {
4242 	unsigned long flags;
4243 
4244 	spin_lock_irqsave(&lockup_detector_lock, flags);
4245 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4246 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4247 }
4248 
4249 static void start_controller_lockup_detector(struct ctlr_info *h)
4250 {
4251 	/* Start the lockup detector thread if not already started */
4252 	if (!hpsa_lockup_detector) {
4253 		spin_lock_init(&lockup_detector_lock);
4254 		hpsa_lockup_detector =
4255 			kthread_run(detect_controller_lockup_thread,
4256 						NULL, "hpsa");
4257 	}
4258 	if (!hpsa_lockup_detector) {
4259 		dev_warn(&h->pdev->dev,
4260 			"Could not start lockup detector thread\n");
4261 		return;
4262 	}
4263 	add_ctlr_to_lockup_detector_list(h);
4264 }
4265 
4266 static void stop_controller_lockup_detector(struct ctlr_info *h)
4267 {
4268 	unsigned long flags;
4269 
4270 	spin_lock_irqsave(&lockup_detector_lock, flags);
4271 	remove_ctlr_from_lockup_detector_list(h);
4272 	/* If the list of ctlr's to monitor is empty, stop the thread */
4273 	if (list_empty(&hpsa_ctlr_list)) {
4274 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4275 		kthread_stop(hpsa_lockup_detector);
4276 		spin_lock_irqsave(&lockup_detector_lock, flags);
4277 		hpsa_lockup_detector = NULL;
4278 	}
4279 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4280 }
4281 
4282 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4283 				    const struct pci_device_id *ent)
4284 {
4285 	int dac, rc;
4286 	struct ctlr_info *h;
4287 	int try_soft_reset = 0;
4288 	unsigned long flags;
4289 
4290 	if (number_of_controllers == 0)
4291 		printk(KERN_INFO DRIVER_NAME "\n");
4292 
4293 	rc = hpsa_init_reset_devices(pdev);
4294 	if (rc) {
4295 		if (rc != -ENOTSUPP)
4296 			return rc;
4297 		/* If the reset fails in a particular way (it has no way to do
4298 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4299 		 * a soft reset once we get the controller configured up to the
4300 		 * point that it can accept a command.
4301 		 */
4302 		try_soft_reset = 1;
4303 		rc = 0;
4304 	}
4305 
4306 reinit_after_soft_reset:
4307 
4308 	/* Command structures must be aligned on a 32-byte boundary because
4309 	 * the 5 lower bits of the address are used by the hardware. and by
4310 	 * the driver.  See comments in hpsa.h for more info.
4311 	 */
4312 #define COMMANDLIST_ALIGNMENT 32
4313 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4314 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4315 	if (!h)
4316 		return -ENOMEM;
4317 
4318 	h->pdev = pdev;
4319 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4320 	INIT_LIST_HEAD(&h->cmpQ);
4321 	INIT_LIST_HEAD(&h->reqQ);
4322 	spin_lock_init(&h->lock);
4323 	spin_lock_init(&h->scan_lock);
4324 	rc = hpsa_pci_init(h);
4325 	if (rc != 0)
4326 		goto clean1;
4327 
4328 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4329 	h->ctlr = number_of_controllers;
4330 	number_of_controllers++;
4331 
4332 	/* configure PCI DMA stuff */
4333 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4334 	if (rc == 0) {
4335 		dac = 1;
4336 	} else {
4337 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4338 		if (rc == 0) {
4339 			dac = 0;
4340 		} else {
4341 			dev_err(&pdev->dev, "no suitable DMA available\n");
4342 			goto clean1;
4343 		}
4344 	}
4345 
4346 	/* make sure the board interrupts are off */
4347 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4348 
4349 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4350 		goto clean2;
4351 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4352 	       h->devname, pdev->device,
4353 	       h->intr[h->intr_mode], dac ? "" : " not");
4354 	if (hpsa_allocate_cmd_pool(h))
4355 		goto clean4;
4356 	if (hpsa_allocate_sg_chain_blocks(h))
4357 		goto clean4;
4358 	init_waitqueue_head(&h->scan_wait_queue);
4359 	h->scan_finished = 1; /* no scan currently in progress */
4360 
4361 	pci_set_drvdata(pdev, h);
4362 	h->ndevices = 0;
4363 	h->scsi_host = NULL;
4364 	spin_lock_init(&h->devlock);
4365 	hpsa_put_ctlr_into_performant_mode(h);
4366 
4367 	/* At this point, the controller is ready to take commands.
4368 	 * Now, if reset_devices and the hard reset didn't work, try
4369 	 * the soft reset and see if that works.
4370 	 */
4371 	if (try_soft_reset) {
4372 
4373 		/* This is kind of gross.  We may or may not get a completion
4374 		 * from the soft reset command, and if we do, then the value
4375 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4376 		 * after the reset throwing away any completions we get during
4377 		 * that time.  Unregister the interrupt handler and register
4378 		 * fake ones to scoop up any residual completions.
4379 		 */
4380 		spin_lock_irqsave(&h->lock, flags);
4381 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4382 		spin_unlock_irqrestore(&h->lock, flags);
4383 		free_irq(h->intr[h->intr_mode], h);
4384 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4385 					hpsa_intx_discard_completions);
4386 		if (rc) {
4387 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4388 				"soft reset.\n");
4389 			goto clean4;
4390 		}
4391 
4392 		rc = hpsa_kdump_soft_reset(h);
4393 		if (rc)
4394 			/* Neither hard nor soft reset worked, we're hosed. */
4395 			goto clean4;
4396 
4397 		dev_info(&h->pdev->dev, "Board READY.\n");
4398 		dev_info(&h->pdev->dev,
4399 			"Waiting for stale completions to drain.\n");
4400 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4401 		msleep(10000);
4402 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4403 
4404 		rc = controller_reset_failed(h->cfgtable);
4405 		if (rc)
4406 			dev_info(&h->pdev->dev,
4407 				"Soft reset appears to have failed.\n");
4408 
4409 		/* since the controller's reset, we have to go back and re-init
4410 		 * everything.  Easiest to just forget what we've done and do it
4411 		 * all over again.
4412 		 */
4413 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4414 		try_soft_reset = 0;
4415 		if (rc)
4416 			/* don't go to clean4, we already unallocated */
4417 			return -ENODEV;
4418 
4419 		goto reinit_after_soft_reset;
4420 	}
4421 
4422 	/* Turn the interrupts on so we can service requests */
4423 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4424 
4425 	hpsa_hba_inquiry(h);
4426 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4427 	start_controller_lockup_detector(h);
4428 	return 1;
4429 
4430 clean4:
4431 	hpsa_free_sg_chain_blocks(h);
4432 	hpsa_free_cmd_pool(h);
4433 	free_irq(h->intr[h->intr_mode], h);
4434 clean2:
4435 clean1:
4436 	kfree(h);
4437 	return rc;
4438 }
4439 
4440 static void hpsa_flush_cache(struct ctlr_info *h)
4441 {
4442 	char *flush_buf;
4443 	struct CommandList *c;
4444 
4445 	flush_buf = kzalloc(4, GFP_KERNEL);
4446 	if (!flush_buf)
4447 		return;
4448 
4449 	c = cmd_special_alloc(h);
4450 	if (!c) {
4451 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4452 		goto out_of_memory;
4453 	}
4454 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4455 		RAID_CTLR_LUNID, TYPE_CMD);
4456 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4457 	if (c->err_info->CommandStatus != 0)
4458 		dev_warn(&h->pdev->dev,
4459 			"error flushing cache on controller\n");
4460 	cmd_special_free(h, c);
4461 out_of_memory:
4462 	kfree(flush_buf);
4463 }
4464 
4465 static void hpsa_shutdown(struct pci_dev *pdev)
4466 {
4467 	struct ctlr_info *h;
4468 
4469 	h = pci_get_drvdata(pdev);
4470 	/* Turn board interrupts off  and send the flush cache command
4471 	 * sendcmd will turn off interrupt, and send the flush...
4472 	 * To write all data in the battery backed cache to disks
4473 	 */
4474 	hpsa_flush_cache(h);
4475 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4476 	free_irq(h->intr[h->intr_mode], h);
4477 #ifdef CONFIG_PCI_MSI
4478 	if (h->msix_vector)
4479 		pci_disable_msix(h->pdev);
4480 	else if (h->msi_vector)
4481 		pci_disable_msi(h->pdev);
4482 #endif				/* CONFIG_PCI_MSI */
4483 }
4484 
4485 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4486 {
4487 	struct ctlr_info *h;
4488 
4489 	if (pci_get_drvdata(pdev) == NULL) {
4490 		dev_err(&pdev->dev, "unable to remove device\n");
4491 		return;
4492 	}
4493 	h = pci_get_drvdata(pdev);
4494 	stop_controller_lockup_detector(h);
4495 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4496 	hpsa_shutdown(pdev);
4497 	iounmap(h->vaddr);
4498 	iounmap(h->transtable);
4499 	iounmap(h->cfgtable);
4500 	hpsa_free_sg_chain_blocks(h);
4501 	pci_free_consistent(h->pdev,
4502 		h->nr_cmds * sizeof(struct CommandList),
4503 		h->cmd_pool, h->cmd_pool_dhandle);
4504 	pci_free_consistent(h->pdev,
4505 		h->nr_cmds * sizeof(struct ErrorInfo),
4506 		h->errinfo_pool, h->errinfo_pool_dhandle);
4507 	pci_free_consistent(h->pdev, h->reply_pool_size,
4508 		h->reply_pool, h->reply_pool_dhandle);
4509 	kfree(h->cmd_pool_bits);
4510 	kfree(h->blockFetchTable);
4511 	kfree(h->hba_inquiry_data);
4512 	/*
4513 	 * Deliberately omit pci_disable_device(): it does something nasty to
4514 	 * Smart Array controllers that pci_enable_device does not undo
4515 	 */
4516 	pci_release_regions(pdev);
4517 	pci_set_drvdata(pdev, NULL);
4518 	kfree(h);
4519 }
4520 
4521 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4522 	__attribute__((unused)) pm_message_t state)
4523 {
4524 	return -ENOSYS;
4525 }
4526 
4527 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4528 {
4529 	return -ENOSYS;
4530 }
4531 
4532 static struct pci_driver hpsa_pci_driver = {
4533 	.name = "hpsa",
4534 	.probe = hpsa_init_one,
4535 	.remove = __devexit_p(hpsa_remove_one),
4536 	.id_table = hpsa_pci_device_id,	/* id_table */
4537 	.shutdown = hpsa_shutdown,
4538 	.suspend = hpsa_suspend,
4539 	.resume = hpsa_resume,
4540 };
4541 
4542 /* Fill in bucket_map[], given nsgs (the max number of
4543  * scatter gather elements supported) and bucket[],
4544  * which is an array of 8 integers.  The bucket[] array
4545  * contains 8 different DMA transfer sizes (in 16
4546  * byte increments) which the controller uses to fetch
4547  * commands.  This function fills in bucket_map[], which
4548  * maps a given number of scatter gather elements to one of
4549  * the 8 DMA transfer sizes.  The point of it is to allow the
4550  * controller to only do as much DMA as needed to fetch the
4551  * command, with the DMA transfer size encoded in the lower
4552  * bits of the command address.
4553  */
4554 static void  calc_bucket_map(int bucket[], int num_buckets,
4555 	int nsgs, int *bucket_map)
4556 {
4557 	int i, j, b, size;
4558 
4559 	/* even a command with 0 SGs requires 4 blocks */
4560 #define MINIMUM_TRANSFER_BLOCKS 4
4561 #define NUM_BUCKETS 8
4562 	/* Note, bucket_map must have nsgs+1 entries. */
4563 	for (i = 0; i <= nsgs; i++) {
4564 		/* Compute size of a command with i SG entries */
4565 		size = i + MINIMUM_TRANSFER_BLOCKS;
4566 		b = num_buckets; /* Assume the biggest bucket */
4567 		/* Find the bucket that is just big enough */
4568 		for (j = 0; j < 8; j++) {
4569 			if (bucket[j] >= size) {
4570 				b = j;
4571 				break;
4572 			}
4573 		}
4574 		/* for a command with i SG entries, use bucket b. */
4575 		bucket_map[i] = b;
4576 	}
4577 }
4578 
4579 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4580 	u32 use_short_tags)
4581 {
4582 	int i;
4583 	unsigned long register_value;
4584 
4585 	/* This is a bit complicated.  There are 8 registers on
4586 	 * the controller which we write to to tell it 8 different
4587 	 * sizes of commands which there may be.  It's a way of
4588 	 * reducing the DMA done to fetch each command.  Encoded into
4589 	 * each command's tag are 3 bits which communicate to the controller
4590 	 * which of the eight sizes that command fits within.  The size of
4591 	 * each command depends on how many scatter gather entries there are.
4592 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4593 	 * with the number of 16-byte blocks a command of that size requires.
4594 	 * The smallest command possible requires 5 such 16 byte blocks.
4595 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4596 	 * blocks.  Note, this only extends to the SG entries contained
4597 	 * within the command block, and does not extend to chained blocks
4598 	 * of SG elements.   bft[] contains the eight values we write to
4599 	 * the registers.  They are not evenly distributed, but have more
4600 	 * sizes for small commands, and fewer sizes for larger commands.
4601 	 */
4602 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4603 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4604 	/*  5 = 1 s/g entry or 4k
4605 	 *  6 = 2 s/g entry or 8k
4606 	 *  8 = 4 s/g entry or 16k
4607 	 * 10 = 6 s/g entry or 24k
4608 	 */
4609 
4610 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4611 
4612 	/* Controller spec: zero out this buffer. */
4613 	memset(h->reply_pool, 0, h->reply_pool_size);
4614 	h->reply_pool_head = h->reply_pool;
4615 
4616 	bft[7] = h->max_sg_entries + 4;
4617 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4618 	for (i = 0; i < 8; i++)
4619 		writel(bft[i], &h->transtable->BlockFetch[i]);
4620 
4621 	/* size of controller ring buffer */
4622 	writel(h->max_commands, &h->transtable->RepQSize);
4623 	writel(1, &h->transtable->RepQCount);
4624 	writel(0, &h->transtable->RepQCtrAddrLow32);
4625 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4626 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4627 	writel(0, &h->transtable->RepQAddr0High32);
4628 	writel(CFGTBL_Trans_Performant | use_short_tags,
4629 		&(h->cfgtable->HostWrite.TransportRequest));
4630 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4631 	hpsa_wait_for_mode_change_ack(h);
4632 	register_value = readl(&(h->cfgtable->TransportActive));
4633 	if (!(register_value & CFGTBL_Trans_Performant)) {
4634 		dev_warn(&h->pdev->dev, "unable to get board into"
4635 					" performant mode\n");
4636 		return;
4637 	}
4638 	/* Change the access methods to the performant access methods */
4639 	h->access = SA5_performant_access;
4640 	h->transMethod = CFGTBL_Trans_Performant;
4641 }
4642 
4643 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4644 {
4645 	u32 trans_support;
4646 
4647 	if (hpsa_simple_mode)
4648 		return;
4649 
4650 	trans_support = readl(&(h->cfgtable->TransportSupport));
4651 	if (!(trans_support & PERFORMANT_MODE))
4652 		return;
4653 
4654 	hpsa_get_max_perf_mode_cmds(h);
4655 	h->max_sg_entries = 32;
4656 	/* Performant mode ring buffer and supporting data structures */
4657 	h->reply_pool_size = h->max_commands * sizeof(u64);
4658 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4659 				&(h->reply_pool_dhandle));
4660 
4661 	/* Need a block fetch table for performant mode */
4662 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4663 				sizeof(u32)), GFP_KERNEL);
4664 
4665 	if ((h->reply_pool == NULL)
4666 		|| (h->blockFetchTable == NULL))
4667 		goto clean_up;
4668 
4669 	hpsa_enter_performant_mode(h,
4670 		trans_support & CFGTBL_Trans_use_short_tags);
4671 
4672 	return;
4673 
4674 clean_up:
4675 	if (h->reply_pool)
4676 		pci_free_consistent(h->pdev, h->reply_pool_size,
4677 			h->reply_pool, h->reply_pool_dhandle);
4678 	kfree(h->blockFetchTable);
4679 }
4680 
4681 /*
4682  *  This is it.  Register the PCI driver information for the cards we control
4683  *  the OS will call our registered routines when it finds one of our cards.
4684  */
4685 static int __init hpsa_init(void)
4686 {
4687 	return pci_register_driver(&hpsa_pci_driver);
4688 }
4689 
4690 static void __exit hpsa_cleanup(void)
4691 {
4692 	pci_unregister_driver(&hpsa_pci_driver);
4693 }
4694 
4695 module_init(hpsa_init);
4696 module_exit(hpsa_cleanup);
4697