xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 63dc02bd)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
103 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 	{0,}
105 };
106 
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108 
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114 	{0x3241103C, "Smart Array P212", &SA5_access},
115 	{0x3243103C, "Smart Array P410", &SA5_access},
116 	{0x3245103C, "Smart Array P410i", &SA5_access},
117 	{0x3247103C, "Smart Array P411", &SA5_access},
118 	{0x3249103C, "Smart Array P812", &SA5_access},
119 	{0x324a103C, "Smart Array P712m", &SA5_access},
120 	{0x324b103C, "Smart Array P711m", &SA5_access},
121 	{0x3350103C, "Smart Array", &SA5_access},
122 	{0x3351103C, "Smart Array", &SA5_access},
123 	{0x3352103C, "Smart Array", &SA5_access},
124 	{0x3353103C, "Smart Array", &SA5_access},
125 	{0x3354103C, "Smart Array", &SA5_access},
126 	{0x3355103C, "Smart Array", &SA5_access},
127 	{0x3356103C, "Smart Array", &SA5_access},
128 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130 
131 static int number_of_controllers;
132 
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136 
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141 
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145 
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152 	int cmd_type);
153 
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157 	unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159 	int qdepth, int reason);
160 
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164 
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167 	struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169 	struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172 	int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177 	u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179 	unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182 	void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185 
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188 	unsigned long *priv = shost_priv(sdev->host);
189 	return (struct ctlr_info *) *priv;
190 }
191 
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194 	unsigned long *priv = shost_priv(sh);
195 	return (struct ctlr_info *) *priv;
196 }
197 
198 static int check_for_unit_attention(struct ctlr_info *h,
199 	struct CommandList *c)
200 {
201 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202 		return 0;
203 
204 	switch (c->err_info->SenseInfo[12]) {
205 	case STATE_CHANGED:
206 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207 			"detected, command retried\n", h->ctlr);
208 		break;
209 	case LUN_FAILED:
210 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211 			"detected, action required\n", h->ctlr);
212 		break;
213 	case REPORT_LUNS_CHANGED:
214 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215 			"changed, action required\n", h->ctlr);
216 	/*
217 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
218 	 * target (array) devices.
219 	 */
220 		break;
221 	case POWER_OR_RESET:
222 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
223 			"or device reset detected\n", h->ctlr);
224 		break;
225 	case UNIT_ATTENTION_CLEARED:
226 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
227 		    "cleared by another initiator\n", h->ctlr);
228 		break;
229 	default:
230 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
231 			"unit attention detected\n", h->ctlr);
232 		break;
233 	}
234 	return 1;
235 }
236 
237 static ssize_t host_store_rescan(struct device *dev,
238 				 struct device_attribute *attr,
239 				 const char *buf, size_t count)
240 {
241 	struct ctlr_info *h;
242 	struct Scsi_Host *shost = class_to_shost(dev);
243 	h = shost_to_hba(shost);
244 	hpsa_scan_start(h->scsi_host);
245 	return count;
246 }
247 
248 static ssize_t host_show_firmware_revision(struct device *dev,
249 	     struct device_attribute *attr, char *buf)
250 {
251 	struct ctlr_info *h;
252 	struct Scsi_Host *shost = class_to_shost(dev);
253 	unsigned char *fwrev;
254 
255 	h = shost_to_hba(shost);
256 	if (!h->hba_inquiry_data)
257 		return 0;
258 	fwrev = &h->hba_inquiry_data[32];
259 	return snprintf(buf, 20, "%c%c%c%c\n",
260 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
261 }
262 
263 static ssize_t host_show_commands_outstanding(struct device *dev,
264 	     struct device_attribute *attr, char *buf)
265 {
266 	struct Scsi_Host *shost = class_to_shost(dev);
267 	struct ctlr_info *h = shost_to_hba(shost);
268 
269 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
270 }
271 
272 static ssize_t host_show_transport_mode(struct device *dev,
273 	struct device_attribute *attr, char *buf)
274 {
275 	struct ctlr_info *h;
276 	struct Scsi_Host *shost = class_to_shost(dev);
277 
278 	h = shost_to_hba(shost);
279 	return snprintf(buf, 20, "%s\n",
280 		h->transMethod & CFGTBL_Trans_Performant ?
281 			"performant" : "simple");
282 }
283 
284 /* List of controllers which cannot be hard reset on kexec with reset_devices */
285 static u32 unresettable_controller[] = {
286 	0x324a103C, /* Smart Array P712m */
287 	0x324b103C, /* SmartArray P711m */
288 	0x3223103C, /* Smart Array P800 */
289 	0x3234103C, /* Smart Array P400 */
290 	0x3235103C, /* Smart Array P400i */
291 	0x3211103C, /* Smart Array E200i */
292 	0x3212103C, /* Smart Array E200 */
293 	0x3213103C, /* Smart Array E200i */
294 	0x3214103C, /* Smart Array E200i */
295 	0x3215103C, /* Smart Array E200i */
296 	0x3237103C, /* Smart Array E500 */
297 	0x323D103C, /* Smart Array P700m */
298 	0x40800E11, /* Smart Array 5i */
299 	0x409C0E11, /* Smart Array 6400 */
300 	0x409D0E11, /* Smart Array 6400 EM */
301 	0x40700E11, /* Smart Array 5300 */
302 	0x40820E11, /* Smart Array 532 */
303 	0x40830E11, /* Smart Array 5312 */
304 	0x409A0E11, /* Smart Array 641 */
305 	0x409B0E11, /* Smart Array 642 */
306 	0x40910E11, /* Smart Array 6i */
307 };
308 
309 /* List of controllers which cannot even be soft reset */
310 static u32 soft_unresettable_controller[] = {
311 	0x40800E11, /* Smart Array 5i */
312 	0x40700E11, /* Smart Array 5300 */
313 	0x40820E11, /* Smart Array 532 */
314 	0x40830E11, /* Smart Array 5312 */
315 	0x409A0E11, /* Smart Array 641 */
316 	0x409B0E11, /* Smart Array 642 */
317 	0x40910E11, /* Smart Array 6i */
318 	/* Exclude 640x boards.  These are two pci devices in one slot
319 	 * which share a battery backed cache module.  One controls the
320 	 * cache, the other accesses the cache through the one that controls
321 	 * it.  If we reset the one controlling the cache, the other will
322 	 * likely not be happy.  Just forbid resetting this conjoined mess.
323 	 * The 640x isn't really supported by hpsa anyway.
324 	 */
325 	0x409C0E11, /* Smart Array 6400 */
326 	0x409D0E11, /* Smart Array 6400 EM */
327 };
328 
329 static int ctlr_is_hard_resettable(u32 board_id)
330 {
331 	int i;
332 
333 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
334 		if (unresettable_controller[i] == board_id)
335 			return 0;
336 	return 1;
337 }
338 
339 static int ctlr_is_soft_resettable(u32 board_id)
340 {
341 	int i;
342 
343 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
344 		if (soft_unresettable_controller[i] == board_id)
345 			return 0;
346 	return 1;
347 }
348 
349 static int ctlr_is_resettable(u32 board_id)
350 {
351 	return ctlr_is_hard_resettable(board_id) ||
352 		ctlr_is_soft_resettable(board_id);
353 }
354 
355 static ssize_t host_show_resettable(struct device *dev,
356 	struct device_attribute *attr, char *buf)
357 {
358 	struct ctlr_info *h;
359 	struct Scsi_Host *shost = class_to_shost(dev);
360 
361 	h = shost_to_hba(shost);
362 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
363 }
364 
365 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
366 {
367 	return (scsi3addr[3] & 0xC0) == 0x40;
368 }
369 
370 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
371 	"UNKNOWN"
372 };
373 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
374 
375 static ssize_t raid_level_show(struct device *dev,
376 	     struct device_attribute *attr, char *buf)
377 {
378 	ssize_t l = 0;
379 	unsigned char rlevel;
380 	struct ctlr_info *h;
381 	struct scsi_device *sdev;
382 	struct hpsa_scsi_dev_t *hdev;
383 	unsigned long flags;
384 
385 	sdev = to_scsi_device(dev);
386 	h = sdev_to_hba(sdev);
387 	spin_lock_irqsave(&h->lock, flags);
388 	hdev = sdev->hostdata;
389 	if (!hdev) {
390 		spin_unlock_irqrestore(&h->lock, flags);
391 		return -ENODEV;
392 	}
393 
394 	/* Is this even a logical drive? */
395 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
396 		spin_unlock_irqrestore(&h->lock, flags);
397 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
398 		return l;
399 	}
400 
401 	rlevel = hdev->raid_level;
402 	spin_unlock_irqrestore(&h->lock, flags);
403 	if (rlevel > RAID_UNKNOWN)
404 		rlevel = RAID_UNKNOWN;
405 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
406 	return l;
407 }
408 
409 static ssize_t lunid_show(struct device *dev,
410 	     struct device_attribute *attr, char *buf)
411 {
412 	struct ctlr_info *h;
413 	struct scsi_device *sdev;
414 	struct hpsa_scsi_dev_t *hdev;
415 	unsigned long flags;
416 	unsigned char lunid[8];
417 
418 	sdev = to_scsi_device(dev);
419 	h = sdev_to_hba(sdev);
420 	spin_lock_irqsave(&h->lock, flags);
421 	hdev = sdev->hostdata;
422 	if (!hdev) {
423 		spin_unlock_irqrestore(&h->lock, flags);
424 		return -ENODEV;
425 	}
426 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
427 	spin_unlock_irqrestore(&h->lock, flags);
428 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
429 		lunid[0], lunid[1], lunid[2], lunid[3],
430 		lunid[4], lunid[5], lunid[6], lunid[7]);
431 }
432 
433 static ssize_t unique_id_show(struct device *dev,
434 	     struct device_attribute *attr, char *buf)
435 {
436 	struct ctlr_info *h;
437 	struct scsi_device *sdev;
438 	struct hpsa_scsi_dev_t *hdev;
439 	unsigned long flags;
440 	unsigned char sn[16];
441 
442 	sdev = to_scsi_device(dev);
443 	h = sdev_to_hba(sdev);
444 	spin_lock_irqsave(&h->lock, flags);
445 	hdev = sdev->hostdata;
446 	if (!hdev) {
447 		spin_unlock_irqrestore(&h->lock, flags);
448 		return -ENODEV;
449 	}
450 	memcpy(sn, hdev->device_id, sizeof(sn));
451 	spin_unlock_irqrestore(&h->lock, flags);
452 	return snprintf(buf, 16 * 2 + 2,
453 			"%02X%02X%02X%02X%02X%02X%02X%02X"
454 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
455 			sn[0], sn[1], sn[2], sn[3],
456 			sn[4], sn[5], sn[6], sn[7],
457 			sn[8], sn[9], sn[10], sn[11],
458 			sn[12], sn[13], sn[14], sn[15]);
459 }
460 
461 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
462 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
463 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
464 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
465 static DEVICE_ATTR(firmware_revision, S_IRUGO,
466 	host_show_firmware_revision, NULL);
467 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
468 	host_show_commands_outstanding, NULL);
469 static DEVICE_ATTR(transport_mode, S_IRUGO,
470 	host_show_transport_mode, NULL);
471 static DEVICE_ATTR(resettable, S_IRUGO,
472 	host_show_resettable, NULL);
473 
474 static struct device_attribute *hpsa_sdev_attrs[] = {
475 	&dev_attr_raid_level,
476 	&dev_attr_lunid,
477 	&dev_attr_unique_id,
478 	NULL,
479 };
480 
481 static struct device_attribute *hpsa_shost_attrs[] = {
482 	&dev_attr_rescan,
483 	&dev_attr_firmware_revision,
484 	&dev_attr_commands_outstanding,
485 	&dev_attr_transport_mode,
486 	&dev_attr_resettable,
487 	NULL,
488 };
489 
490 static struct scsi_host_template hpsa_driver_template = {
491 	.module			= THIS_MODULE,
492 	.name			= HPSA,
493 	.proc_name		= HPSA,
494 	.queuecommand		= hpsa_scsi_queue_command,
495 	.scan_start		= hpsa_scan_start,
496 	.scan_finished		= hpsa_scan_finished,
497 	.change_queue_depth	= hpsa_change_queue_depth,
498 	.this_id		= -1,
499 	.use_clustering		= ENABLE_CLUSTERING,
500 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
501 	.ioctl			= hpsa_ioctl,
502 	.slave_alloc		= hpsa_slave_alloc,
503 	.slave_destroy		= hpsa_slave_destroy,
504 #ifdef CONFIG_COMPAT
505 	.compat_ioctl		= hpsa_compat_ioctl,
506 #endif
507 	.sdev_attrs = hpsa_sdev_attrs,
508 	.shost_attrs = hpsa_shost_attrs,
509 	.max_sectors = 8192,
510 };
511 
512 
513 /* Enqueuing and dequeuing functions for cmdlists. */
514 static inline void addQ(struct list_head *list, struct CommandList *c)
515 {
516 	list_add_tail(&c->list, list);
517 }
518 
519 static inline u32 next_command(struct ctlr_info *h)
520 {
521 	u32 a;
522 
523 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
524 		return h->access.command_completed(h);
525 
526 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
527 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
528 		(h->reply_pool_head)++;
529 		h->commands_outstanding--;
530 	} else {
531 		a = FIFO_EMPTY;
532 	}
533 	/* Check for wraparound */
534 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
535 		h->reply_pool_head = h->reply_pool;
536 		h->reply_pool_wraparound ^= 1;
537 	}
538 	return a;
539 }
540 
541 /* set_performant_mode: Modify the tag for cciss performant
542  * set bit 0 for pull model, bits 3-1 for block fetch
543  * register number
544  */
545 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
546 {
547 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
548 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
549 }
550 
551 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
552 	struct CommandList *c)
553 {
554 	unsigned long flags;
555 
556 	set_performant_mode(h, c);
557 	spin_lock_irqsave(&h->lock, flags);
558 	addQ(&h->reqQ, c);
559 	h->Qdepth++;
560 	start_io(h);
561 	spin_unlock_irqrestore(&h->lock, flags);
562 }
563 
564 static inline void removeQ(struct CommandList *c)
565 {
566 	if (WARN_ON(list_empty(&c->list)))
567 		return;
568 	list_del_init(&c->list);
569 }
570 
571 static inline int is_hba_lunid(unsigned char scsi3addr[])
572 {
573 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
574 }
575 
576 static inline int is_scsi_rev_5(struct ctlr_info *h)
577 {
578 	if (!h->hba_inquiry_data)
579 		return 0;
580 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
581 		return 1;
582 	return 0;
583 }
584 
585 static int hpsa_find_target_lun(struct ctlr_info *h,
586 	unsigned char scsi3addr[], int bus, int *target, int *lun)
587 {
588 	/* finds an unused bus, target, lun for a new physical device
589 	 * assumes h->devlock is held
590 	 */
591 	int i, found = 0;
592 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
593 
594 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
595 
596 	for (i = 0; i < h->ndevices; i++) {
597 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
598 			__set_bit(h->dev[i]->target, lun_taken);
599 	}
600 
601 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
602 	if (i < HPSA_MAX_DEVICES) {
603 		/* *bus = 1; */
604 		*target = i;
605 		*lun = 0;
606 		found = 1;
607 	}
608 	return !found;
609 }
610 
611 /* Add an entry into h->dev[] array. */
612 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
613 		struct hpsa_scsi_dev_t *device,
614 		struct hpsa_scsi_dev_t *added[], int *nadded)
615 {
616 	/* assumes h->devlock is held */
617 	int n = h->ndevices;
618 	int i;
619 	unsigned char addr1[8], addr2[8];
620 	struct hpsa_scsi_dev_t *sd;
621 
622 	if (n >= HPSA_MAX_DEVICES) {
623 		dev_err(&h->pdev->dev, "too many devices, some will be "
624 			"inaccessible.\n");
625 		return -1;
626 	}
627 
628 	/* physical devices do not have lun or target assigned until now. */
629 	if (device->lun != -1)
630 		/* Logical device, lun is already assigned. */
631 		goto lun_assigned;
632 
633 	/* If this device a non-zero lun of a multi-lun device
634 	 * byte 4 of the 8-byte LUN addr will contain the logical
635 	 * unit no, zero otherise.
636 	 */
637 	if (device->scsi3addr[4] == 0) {
638 		/* This is not a non-zero lun of a multi-lun device */
639 		if (hpsa_find_target_lun(h, device->scsi3addr,
640 			device->bus, &device->target, &device->lun) != 0)
641 			return -1;
642 		goto lun_assigned;
643 	}
644 
645 	/* This is a non-zero lun of a multi-lun device.
646 	 * Search through our list and find the device which
647 	 * has the same 8 byte LUN address, excepting byte 4.
648 	 * Assign the same bus and target for this new LUN.
649 	 * Use the logical unit number from the firmware.
650 	 */
651 	memcpy(addr1, device->scsi3addr, 8);
652 	addr1[4] = 0;
653 	for (i = 0; i < n; i++) {
654 		sd = h->dev[i];
655 		memcpy(addr2, sd->scsi3addr, 8);
656 		addr2[4] = 0;
657 		/* differ only in byte 4? */
658 		if (memcmp(addr1, addr2, 8) == 0) {
659 			device->bus = sd->bus;
660 			device->target = sd->target;
661 			device->lun = device->scsi3addr[4];
662 			break;
663 		}
664 	}
665 	if (device->lun == -1) {
666 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
667 			" suspect firmware bug or unsupported hardware "
668 			"configuration.\n");
669 			return -1;
670 	}
671 
672 lun_assigned:
673 
674 	h->dev[n] = device;
675 	h->ndevices++;
676 	added[*nadded] = device;
677 	(*nadded)++;
678 
679 	/* initially, (before registering with scsi layer) we don't
680 	 * know our hostno and we don't want to print anything first
681 	 * time anyway (the scsi layer's inquiries will show that info)
682 	 */
683 	/* if (hostno != -1) */
684 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
685 			scsi_device_type(device->devtype), hostno,
686 			device->bus, device->target, device->lun);
687 	return 0;
688 }
689 
690 /* Update an entry in h->dev[] array. */
691 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
692 	int entry, struct hpsa_scsi_dev_t *new_entry)
693 {
694 	/* assumes h->devlock is held */
695 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
696 
697 	/* Raid level changed. */
698 	h->dev[entry]->raid_level = new_entry->raid_level;
699 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
700 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701 		new_entry->target, new_entry->lun);
702 }
703 
704 /* Replace an entry from h->dev[] array. */
705 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
706 	int entry, struct hpsa_scsi_dev_t *new_entry,
707 	struct hpsa_scsi_dev_t *added[], int *nadded,
708 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
709 {
710 	/* assumes h->devlock is held */
711 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
712 	removed[*nremoved] = h->dev[entry];
713 	(*nremoved)++;
714 
715 	/*
716 	 * New physical devices won't have target/lun assigned yet
717 	 * so we need to preserve the values in the slot we are replacing.
718 	 */
719 	if (new_entry->target == -1) {
720 		new_entry->target = h->dev[entry]->target;
721 		new_entry->lun = h->dev[entry]->lun;
722 	}
723 
724 	h->dev[entry] = new_entry;
725 	added[*nadded] = new_entry;
726 	(*nadded)++;
727 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
728 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
729 			new_entry->target, new_entry->lun);
730 }
731 
732 /* Remove an entry from h->dev[] array. */
733 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
734 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
735 {
736 	/* assumes h->devlock is held */
737 	int i;
738 	struct hpsa_scsi_dev_t *sd;
739 
740 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
741 
742 	sd = h->dev[entry];
743 	removed[*nremoved] = h->dev[entry];
744 	(*nremoved)++;
745 
746 	for (i = entry; i < h->ndevices-1; i++)
747 		h->dev[i] = h->dev[i+1];
748 	h->ndevices--;
749 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
750 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
751 		sd->lun);
752 }
753 
754 #define SCSI3ADDR_EQ(a, b) ( \
755 	(a)[7] == (b)[7] && \
756 	(a)[6] == (b)[6] && \
757 	(a)[5] == (b)[5] && \
758 	(a)[4] == (b)[4] && \
759 	(a)[3] == (b)[3] && \
760 	(a)[2] == (b)[2] && \
761 	(a)[1] == (b)[1] && \
762 	(a)[0] == (b)[0])
763 
764 static void fixup_botched_add(struct ctlr_info *h,
765 	struct hpsa_scsi_dev_t *added)
766 {
767 	/* called when scsi_add_device fails in order to re-adjust
768 	 * h->dev[] to match the mid layer's view.
769 	 */
770 	unsigned long flags;
771 	int i, j;
772 
773 	spin_lock_irqsave(&h->lock, flags);
774 	for (i = 0; i < h->ndevices; i++) {
775 		if (h->dev[i] == added) {
776 			for (j = i; j < h->ndevices-1; j++)
777 				h->dev[j] = h->dev[j+1];
778 			h->ndevices--;
779 			break;
780 		}
781 	}
782 	spin_unlock_irqrestore(&h->lock, flags);
783 	kfree(added);
784 }
785 
786 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
787 	struct hpsa_scsi_dev_t *dev2)
788 {
789 	/* we compare everything except lun and target as these
790 	 * are not yet assigned.  Compare parts likely
791 	 * to differ first
792 	 */
793 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
794 		sizeof(dev1->scsi3addr)) != 0)
795 		return 0;
796 	if (memcmp(dev1->device_id, dev2->device_id,
797 		sizeof(dev1->device_id)) != 0)
798 		return 0;
799 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
800 		return 0;
801 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
802 		return 0;
803 	if (dev1->devtype != dev2->devtype)
804 		return 0;
805 	if (dev1->bus != dev2->bus)
806 		return 0;
807 	return 1;
808 }
809 
810 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
811 	struct hpsa_scsi_dev_t *dev2)
812 {
813 	/* Device attributes that can change, but don't mean
814 	 * that the device is a different device, nor that the OS
815 	 * needs to be told anything about the change.
816 	 */
817 	if (dev1->raid_level != dev2->raid_level)
818 		return 1;
819 	return 0;
820 }
821 
822 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
823  * and return needle location in *index.  If scsi3addr matches, but not
824  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
825  * location in *index.
826  * In the case of a minor device attribute change, such as RAID level, just
827  * return DEVICE_UPDATED, along with the updated device's location in index.
828  * If needle not found, return DEVICE_NOT_FOUND.
829  */
830 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
831 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
832 	int *index)
833 {
834 	int i;
835 #define DEVICE_NOT_FOUND 0
836 #define DEVICE_CHANGED 1
837 #define DEVICE_SAME 2
838 #define DEVICE_UPDATED 3
839 	for (i = 0; i < haystack_size; i++) {
840 		if (haystack[i] == NULL) /* previously removed. */
841 			continue;
842 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
843 			*index = i;
844 			if (device_is_the_same(needle, haystack[i])) {
845 				if (device_updated(needle, haystack[i]))
846 					return DEVICE_UPDATED;
847 				return DEVICE_SAME;
848 			} else {
849 				return DEVICE_CHANGED;
850 			}
851 		}
852 	}
853 	*index = -1;
854 	return DEVICE_NOT_FOUND;
855 }
856 
857 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
858 	struct hpsa_scsi_dev_t *sd[], int nsds)
859 {
860 	/* sd contains scsi3 addresses and devtypes, and inquiry
861 	 * data.  This function takes what's in sd to be the current
862 	 * reality and updates h->dev[] to reflect that reality.
863 	 */
864 	int i, entry, device_change, changes = 0;
865 	struct hpsa_scsi_dev_t *csd;
866 	unsigned long flags;
867 	struct hpsa_scsi_dev_t **added, **removed;
868 	int nadded, nremoved;
869 	struct Scsi_Host *sh = NULL;
870 
871 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
872 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
873 
874 	if (!added || !removed) {
875 		dev_warn(&h->pdev->dev, "out of memory in "
876 			"adjust_hpsa_scsi_table\n");
877 		goto free_and_out;
878 	}
879 
880 	spin_lock_irqsave(&h->devlock, flags);
881 
882 	/* find any devices in h->dev[] that are not in
883 	 * sd[] and remove them from h->dev[], and for any
884 	 * devices which have changed, remove the old device
885 	 * info and add the new device info.
886 	 * If minor device attributes change, just update
887 	 * the existing device structure.
888 	 */
889 	i = 0;
890 	nremoved = 0;
891 	nadded = 0;
892 	while (i < h->ndevices) {
893 		csd = h->dev[i];
894 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
895 		if (device_change == DEVICE_NOT_FOUND) {
896 			changes++;
897 			hpsa_scsi_remove_entry(h, hostno, i,
898 				removed, &nremoved);
899 			continue; /* remove ^^^, hence i not incremented */
900 		} else if (device_change == DEVICE_CHANGED) {
901 			changes++;
902 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
903 				added, &nadded, removed, &nremoved);
904 			/* Set it to NULL to prevent it from being freed
905 			 * at the bottom of hpsa_update_scsi_devices()
906 			 */
907 			sd[entry] = NULL;
908 		} else if (device_change == DEVICE_UPDATED) {
909 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
910 		}
911 		i++;
912 	}
913 
914 	/* Now, make sure every device listed in sd[] is also
915 	 * listed in h->dev[], adding them if they aren't found
916 	 */
917 
918 	for (i = 0; i < nsds; i++) {
919 		if (!sd[i]) /* if already added above. */
920 			continue;
921 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
922 					h->ndevices, &entry);
923 		if (device_change == DEVICE_NOT_FOUND) {
924 			changes++;
925 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
926 				added, &nadded) != 0)
927 				break;
928 			sd[i] = NULL; /* prevent from being freed later. */
929 		} else if (device_change == DEVICE_CHANGED) {
930 			/* should never happen... */
931 			changes++;
932 			dev_warn(&h->pdev->dev,
933 				"device unexpectedly changed.\n");
934 			/* but if it does happen, we just ignore that device */
935 		}
936 	}
937 	spin_unlock_irqrestore(&h->devlock, flags);
938 
939 	/* Don't notify scsi mid layer of any changes the first time through
940 	 * (or if there are no changes) scsi_scan_host will do it later the
941 	 * first time through.
942 	 */
943 	if (hostno == -1 || !changes)
944 		goto free_and_out;
945 
946 	sh = h->scsi_host;
947 	/* Notify scsi mid layer of any removed devices */
948 	for (i = 0; i < nremoved; i++) {
949 		struct scsi_device *sdev =
950 			scsi_device_lookup(sh, removed[i]->bus,
951 				removed[i]->target, removed[i]->lun);
952 		if (sdev != NULL) {
953 			scsi_remove_device(sdev);
954 			scsi_device_put(sdev);
955 		} else {
956 			/* We don't expect to get here.
957 			 * future cmds to this device will get selection
958 			 * timeout as if the device was gone.
959 			 */
960 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
961 				" for removal.", hostno, removed[i]->bus,
962 				removed[i]->target, removed[i]->lun);
963 		}
964 		kfree(removed[i]);
965 		removed[i] = NULL;
966 	}
967 
968 	/* Notify scsi mid layer of any added devices */
969 	for (i = 0; i < nadded; i++) {
970 		if (scsi_add_device(sh, added[i]->bus,
971 			added[i]->target, added[i]->lun) == 0)
972 			continue;
973 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
974 			"device not added.\n", hostno, added[i]->bus,
975 			added[i]->target, added[i]->lun);
976 		/* now we have to remove it from h->dev,
977 		 * since it didn't get added to scsi mid layer
978 		 */
979 		fixup_botched_add(h, added[i]);
980 	}
981 
982 free_and_out:
983 	kfree(added);
984 	kfree(removed);
985 }
986 
987 /*
988  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
989  * Assume's h->devlock is held.
990  */
991 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
992 	int bus, int target, int lun)
993 {
994 	int i;
995 	struct hpsa_scsi_dev_t *sd;
996 
997 	for (i = 0; i < h->ndevices; i++) {
998 		sd = h->dev[i];
999 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1000 			return sd;
1001 	}
1002 	return NULL;
1003 }
1004 
1005 /* link sdev->hostdata to our per-device structure. */
1006 static int hpsa_slave_alloc(struct scsi_device *sdev)
1007 {
1008 	struct hpsa_scsi_dev_t *sd;
1009 	unsigned long flags;
1010 	struct ctlr_info *h;
1011 
1012 	h = sdev_to_hba(sdev);
1013 	spin_lock_irqsave(&h->devlock, flags);
1014 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1015 		sdev_id(sdev), sdev->lun);
1016 	if (sd != NULL)
1017 		sdev->hostdata = sd;
1018 	spin_unlock_irqrestore(&h->devlock, flags);
1019 	return 0;
1020 }
1021 
1022 static void hpsa_slave_destroy(struct scsi_device *sdev)
1023 {
1024 	/* nothing to do. */
1025 }
1026 
1027 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1028 {
1029 	int i;
1030 
1031 	if (!h->cmd_sg_list)
1032 		return;
1033 	for (i = 0; i < h->nr_cmds; i++) {
1034 		kfree(h->cmd_sg_list[i]);
1035 		h->cmd_sg_list[i] = NULL;
1036 	}
1037 	kfree(h->cmd_sg_list);
1038 	h->cmd_sg_list = NULL;
1039 }
1040 
1041 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1042 {
1043 	int i;
1044 
1045 	if (h->chainsize <= 0)
1046 		return 0;
1047 
1048 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1049 				GFP_KERNEL);
1050 	if (!h->cmd_sg_list)
1051 		return -ENOMEM;
1052 	for (i = 0; i < h->nr_cmds; i++) {
1053 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1054 						h->chainsize, GFP_KERNEL);
1055 		if (!h->cmd_sg_list[i])
1056 			goto clean;
1057 	}
1058 	return 0;
1059 
1060 clean:
1061 	hpsa_free_sg_chain_blocks(h);
1062 	return -ENOMEM;
1063 }
1064 
1065 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1066 	struct CommandList *c)
1067 {
1068 	struct SGDescriptor *chain_sg, *chain_block;
1069 	u64 temp64;
1070 
1071 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1072 	chain_block = h->cmd_sg_list[c->cmdindex];
1073 	chain_sg->Ext = HPSA_SG_CHAIN;
1074 	chain_sg->Len = sizeof(*chain_sg) *
1075 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1076 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1077 				PCI_DMA_TODEVICE);
1078 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1079 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1080 }
1081 
1082 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1083 	struct CommandList *c)
1084 {
1085 	struct SGDescriptor *chain_sg;
1086 	union u64bit temp64;
1087 
1088 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1089 		return;
1090 
1091 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1092 	temp64.val32.lower = chain_sg->Addr.lower;
1093 	temp64.val32.upper = chain_sg->Addr.upper;
1094 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1095 }
1096 
1097 static void complete_scsi_command(struct CommandList *cp)
1098 {
1099 	struct scsi_cmnd *cmd;
1100 	struct ctlr_info *h;
1101 	struct ErrorInfo *ei;
1102 
1103 	unsigned char sense_key;
1104 	unsigned char asc;      /* additional sense code */
1105 	unsigned char ascq;     /* additional sense code qualifier */
1106 	unsigned long sense_data_size;
1107 
1108 	ei = cp->err_info;
1109 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1110 	h = cp->h;
1111 
1112 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1113 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1114 		hpsa_unmap_sg_chain_block(h, cp);
1115 
1116 	cmd->result = (DID_OK << 16); 		/* host byte */
1117 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1118 	cmd->result |= ei->ScsiStatus;
1119 
1120 	/* copy the sense data whether we need to or not. */
1121 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1122 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1123 	else
1124 		sense_data_size = sizeof(ei->SenseInfo);
1125 	if (ei->SenseLen < sense_data_size)
1126 		sense_data_size = ei->SenseLen;
1127 
1128 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1129 	scsi_set_resid(cmd, ei->ResidualCnt);
1130 
1131 	if (ei->CommandStatus == 0) {
1132 		cmd->scsi_done(cmd);
1133 		cmd_free(h, cp);
1134 		return;
1135 	}
1136 
1137 	/* an error has occurred */
1138 	switch (ei->CommandStatus) {
1139 
1140 	case CMD_TARGET_STATUS:
1141 		if (ei->ScsiStatus) {
1142 			/* Get sense key */
1143 			sense_key = 0xf & ei->SenseInfo[2];
1144 			/* Get additional sense code */
1145 			asc = ei->SenseInfo[12];
1146 			/* Get addition sense code qualifier */
1147 			ascq = ei->SenseInfo[13];
1148 		}
1149 
1150 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1151 			if (check_for_unit_attention(h, cp)) {
1152 				cmd->result = DID_SOFT_ERROR << 16;
1153 				break;
1154 			}
1155 			if (sense_key == ILLEGAL_REQUEST) {
1156 				/*
1157 				 * SCSI REPORT_LUNS is commonly unsupported on
1158 				 * Smart Array.  Suppress noisy complaint.
1159 				 */
1160 				if (cp->Request.CDB[0] == REPORT_LUNS)
1161 					break;
1162 
1163 				/* If ASC/ASCQ indicate Logical Unit
1164 				 * Not Supported condition,
1165 				 */
1166 				if ((asc == 0x25) && (ascq == 0x0)) {
1167 					dev_warn(&h->pdev->dev, "cp %p "
1168 						"has check condition\n", cp);
1169 					break;
1170 				}
1171 			}
1172 
1173 			if (sense_key == NOT_READY) {
1174 				/* If Sense is Not Ready, Logical Unit
1175 				 * Not ready, Manual Intervention
1176 				 * required
1177 				 */
1178 				if ((asc == 0x04) && (ascq == 0x03)) {
1179 					dev_warn(&h->pdev->dev, "cp %p "
1180 						"has check condition: unit "
1181 						"not ready, manual "
1182 						"intervention required\n", cp);
1183 					break;
1184 				}
1185 			}
1186 			if (sense_key == ABORTED_COMMAND) {
1187 				/* Aborted command is retryable */
1188 				dev_warn(&h->pdev->dev, "cp %p "
1189 					"has check condition: aborted command: "
1190 					"ASC: 0x%x, ASCQ: 0x%x\n",
1191 					cp, asc, ascq);
1192 				cmd->result = DID_SOFT_ERROR << 16;
1193 				break;
1194 			}
1195 			/* Must be some other type of check condition */
1196 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1197 					"unknown type: "
1198 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1199 					"Returning result: 0x%x, "
1200 					"cmd=[%02x %02x %02x %02x %02x "
1201 					"%02x %02x %02x %02x %02x %02x "
1202 					"%02x %02x %02x %02x %02x]\n",
1203 					cp, sense_key, asc, ascq,
1204 					cmd->result,
1205 					cmd->cmnd[0], cmd->cmnd[1],
1206 					cmd->cmnd[2], cmd->cmnd[3],
1207 					cmd->cmnd[4], cmd->cmnd[5],
1208 					cmd->cmnd[6], cmd->cmnd[7],
1209 					cmd->cmnd[8], cmd->cmnd[9],
1210 					cmd->cmnd[10], cmd->cmnd[11],
1211 					cmd->cmnd[12], cmd->cmnd[13],
1212 					cmd->cmnd[14], cmd->cmnd[15]);
1213 			break;
1214 		}
1215 
1216 
1217 		/* Problem was not a check condition
1218 		 * Pass it up to the upper layers...
1219 		 */
1220 		if (ei->ScsiStatus) {
1221 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1222 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1223 				"Returning result: 0x%x\n",
1224 				cp, ei->ScsiStatus,
1225 				sense_key, asc, ascq,
1226 				cmd->result);
1227 		} else {  /* scsi status is zero??? How??? */
1228 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1229 				"Returning no connection.\n", cp),
1230 
1231 			/* Ordinarily, this case should never happen,
1232 			 * but there is a bug in some released firmware
1233 			 * revisions that allows it to happen if, for
1234 			 * example, a 4100 backplane loses power and
1235 			 * the tape drive is in it.  We assume that
1236 			 * it's a fatal error of some kind because we
1237 			 * can't show that it wasn't. We will make it
1238 			 * look like selection timeout since that is
1239 			 * the most common reason for this to occur,
1240 			 * and it's severe enough.
1241 			 */
1242 
1243 			cmd->result = DID_NO_CONNECT << 16;
1244 		}
1245 		break;
1246 
1247 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1248 		break;
1249 	case CMD_DATA_OVERRUN:
1250 		dev_warn(&h->pdev->dev, "cp %p has"
1251 			" completed with data overrun "
1252 			"reported\n", cp);
1253 		break;
1254 	case CMD_INVALID: {
1255 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1256 		print_cmd(cp); */
1257 		/* We get CMD_INVALID if you address a non-existent device
1258 		 * instead of a selection timeout (no response).  You will
1259 		 * see this if you yank out a drive, then try to access it.
1260 		 * This is kind of a shame because it means that any other
1261 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1262 		 * missing target. */
1263 		cmd->result = DID_NO_CONNECT << 16;
1264 	}
1265 		break;
1266 	case CMD_PROTOCOL_ERR:
1267 		dev_warn(&h->pdev->dev, "cp %p has "
1268 			"protocol error \n", cp);
1269 		break;
1270 	case CMD_HARDWARE_ERR:
1271 		cmd->result = DID_ERROR << 16;
1272 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1273 		break;
1274 	case CMD_CONNECTION_LOST:
1275 		cmd->result = DID_ERROR << 16;
1276 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1277 		break;
1278 	case CMD_ABORTED:
1279 		cmd->result = DID_ABORT << 16;
1280 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1281 				cp, ei->ScsiStatus);
1282 		break;
1283 	case CMD_ABORT_FAILED:
1284 		cmd->result = DID_ERROR << 16;
1285 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1286 		break;
1287 	case CMD_UNSOLICITED_ABORT:
1288 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1289 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1290 			"abort\n", cp);
1291 		break;
1292 	case CMD_TIMEOUT:
1293 		cmd->result = DID_TIME_OUT << 16;
1294 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1295 		break;
1296 	case CMD_UNABORTABLE:
1297 		cmd->result = DID_ERROR << 16;
1298 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1299 		break;
1300 	default:
1301 		cmd->result = DID_ERROR << 16;
1302 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1303 				cp, ei->CommandStatus);
1304 	}
1305 	cmd->scsi_done(cmd);
1306 	cmd_free(h, cp);
1307 }
1308 
1309 static void hpsa_pci_unmap(struct pci_dev *pdev,
1310 	struct CommandList *c, int sg_used, int data_direction)
1311 {
1312 	int i;
1313 	union u64bit addr64;
1314 
1315 	for (i = 0; i < sg_used; i++) {
1316 		addr64.val32.lower = c->SG[i].Addr.lower;
1317 		addr64.val32.upper = c->SG[i].Addr.upper;
1318 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1319 			data_direction);
1320 	}
1321 }
1322 
1323 static void hpsa_map_one(struct pci_dev *pdev,
1324 		struct CommandList *cp,
1325 		unsigned char *buf,
1326 		size_t buflen,
1327 		int data_direction)
1328 {
1329 	u64 addr64;
1330 
1331 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1332 		cp->Header.SGList = 0;
1333 		cp->Header.SGTotal = 0;
1334 		return;
1335 	}
1336 
1337 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1338 	cp->SG[0].Addr.lower =
1339 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1340 	cp->SG[0].Addr.upper =
1341 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1342 	cp->SG[0].Len = buflen;
1343 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1344 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1345 }
1346 
1347 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1348 	struct CommandList *c)
1349 {
1350 	DECLARE_COMPLETION_ONSTACK(wait);
1351 
1352 	c->waiting = &wait;
1353 	enqueue_cmd_and_start_io(h, c);
1354 	wait_for_completion(&wait);
1355 }
1356 
1357 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1358 	struct CommandList *c)
1359 {
1360 	unsigned long flags;
1361 
1362 	/* If controller lockup detected, fake a hardware error. */
1363 	spin_lock_irqsave(&h->lock, flags);
1364 	if (unlikely(h->lockup_detected)) {
1365 		spin_unlock_irqrestore(&h->lock, flags);
1366 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1367 	} else {
1368 		spin_unlock_irqrestore(&h->lock, flags);
1369 		hpsa_scsi_do_simple_cmd_core(h, c);
1370 	}
1371 }
1372 
1373 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1374 	struct CommandList *c, int data_direction)
1375 {
1376 	int retry_count = 0;
1377 
1378 	do {
1379 		memset(c->err_info, 0, sizeof(*c->err_info));
1380 		hpsa_scsi_do_simple_cmd_core(h, c);
1381 		retry_count++;
1382 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1383 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1384 }
1385 
1386 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1387 {
1388 	struct ErrorInfo *ei;
1389 	struct device *d = &cp->h->pdev->dev;
1390 
1391 	ei = cp->err_info;
1392 	switch (ei->CommandStatus) {
1393 	case CMD_TARGET_STATUS:
1394 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1395 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1396 				ei->ScsiStatus);
1397 		if (ei->ScsiStatus == 0)
1398 			dev_warn(d, "SCSI status is abnormally zero.  "
1399 			"(probably indicates selection timeout "
1400 			"reported incorrectly due to a known "
1401 			"firmware bug, circa July, 2001.)\n");
1402 		break;
1403 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1404 			dev_info(d, "UNDERRUN\n");
1405 		break;
1406 	case CMD_DATA_OVERRUN:
1407 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1408 		break;
1409 	case CMD_INVALID: {
1410 		/* controller unfortunately reports SCSI passthru's
1411 		 * to non-existent targets as invalid commands.
1412 		 */
1413 		dev_warn(d, "cp %p is reported invalid (probably means "
1414 			"target device no longer present)\n", cp);
1415 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1416 		print_cmd(cp);  */
1417 		}
1418 		break;
1419 	case CMD_PROTOCOL_ERR:
1420 		dev_warn(d, "cp %p has protocol error \n", cp);
1421 		break;
1422 	case CMD_HARDWARE_ERR:
1423 		/* cmd->result = DID_ERROR << 16; */
1424 		dev_warn(d, "cp %p had hardware error\n", cp);
1425 		break;
1426 	case CMD_CONNECTION_LOST:
1427 		dev_warn(d, "cp %p had connection lost\n", cp);
1428 		break;
1429 	case CMD_ABORTED:
1430 		dev_warn(d, "cp %p was aborted\n", cp);
1431 		break;
1432 	case CMD_ABORT_FAILED:
1433 		dev_warn(d, "cp %p reports abort failed\n", cp);
1434 		break;
1435 	case CMD_UNSOLICITED_ABORT:
1436 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1437 		break;
1438 	case CMD_TIMEOUT:
1439 		dev_warn(d, "cp %p timed out\n", cp);
1440 		break;
1441 	case CMD_UNABORTABLE:
1442 		dev_warn(d, "Command unabortable\n");
1443 		break;
1444 	default:
1445 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1446 				ei->CommandStatus);
1447 	}
1448 }
1449 
1450 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1451 			unsigned char page, unsigned char *buf,
1452 			unsigned char bufsize)
1453 {
1454 	int rc = IO_OK;
1455 	struct CommandList *c;
1456 	struct ErrorInfo *ei;
1457 
1458 	c = cmd_special_alloc(h);
1459 
1460 	if (c == NULL) {			/* trouble... */
1461 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1462 		return -ENOMEM;
1463 	}
1464 
1465 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1466 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1467 	ei = c->err_info;
1468 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1469 		hpsa_scsi_interpret_error(c);
1470 		rc = -1;
1471 	}
1472 	cmd_special_free(h, c);
1473 	return rc;
1474 }
1475 
1476 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1477 {
1478 	int rc = IO_OK;
1479 	struct CommandList *c;
1480 	struct ErrorInfo *ei;
1481 
1482 	c = cmd_special_alloc(h);
1483 
1484 	if (c == NULL) {			/* trouble... */
1485 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1486 		return -ENOMEM;
1487 	}
1488 
1489 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1490 	hpsa_scsi_do_simple_cmd_core(h, c);
1491 	/* no unmap needed here because no data xfer. */
1492 
1493 	ei = c->err_info;
1494 	if (ei->CommandStatus != 0) {
1495 		hpsa_scsi_interpret_error(c);
1496 		rc = -1;
1497 	}
1498 	cmd_special_free(h, c);
1499 	return rc;
1500 }
1501 
1502 static void hpsa_get_raid_level(struct ctlr_info *h,
1503 	unsigned char *scsi3addr, unsigned char *raid_level)
1504 {
1505 	int rc;
1506 	unsigned char *buf;
1507 
1508 	*raid_level = RAID_UNKNOWN;
1509 	buf = kzalloc(64, GFP_KERNEL);
1510 	if (!buf)
1511 		return;
1512 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1513 	if (rc == 0)
1514 		*raid_level = buf[8];
1515 	if (*raid_level > RAID_UNKNOWN)
1516 		*raid_level = RAID_UNKNOWN;
1517 	kfree(buf);
1518 	return;
1519 }
1520 
1521 /* Get the device id from inquiry page 0x83 */
1522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1523 	unsigned char *device_id, int buflen)
1524 {
1525 	int rc;
1526 	unsigned char *buf;
1527 
1528 	if (buflen > 16)
1529 		buflen = 16;
1530 	buf = kzalloc(64, GFP_KERNEL);
1531 	if (!buf)
1532 		return -1;
1533 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1534 	if (rc == 0)
1535 		memcpy(device_id, &buf[8], buflen);
1536 	kfree(buf);
1537 	return rc != 0;
1538 }
1539 
1540 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1541 		struct ReportLUNdata *buf, int bufsize,
1542 		int extended_response)
1543 {
1544 	int rc = IO_OK;
1545 	struct CommandList *c;
1546 	unsigned char scsi3addr[8];
1547 	struct ErrorInfo *ei;
1548 
1549 	c = cmd_special_alloc(h);
1550 	if (c == NULL) {			/* trouble... */
1551 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1552 		return -1;
1553 	}
1554 	/* address the controller */
1555 	memset(scsi3addr, 0, sizeof(scsi3addr));
1556 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1557 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1558 	if (extended_response)
1559 		c->Request.CDB[1] = extended_response;
1560 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1561 	ei = c->err_info;
1562 	if (ei->CommandStatus != 0 &&
1563 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1564 		hpsa_scsi_interpret_error(c);
1565 		rc = -1;
1566 	}
1567 	cmd_special_free(h, c);
1568 	return rc;
1569 }
1570 
1571 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1572 		struct ReportLUNdata *buf,
1573 		int bufsize, int extended_response)
1574 {
1575 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1576 }
1577 
1578 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1579 		struct ReportLUNdata *buf, int bufsize)
1580 {
1581 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1582 }
1583 
1584 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1585 	int bus, int target, int lun)
1586 {
1587 	device->bus = bus;
1588 	device->target = target;
1589 	device->lun = lun;
1590 }
1591 
1592 static int hpsa_update_device_info(struct ctlr_info *h,
1593 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1594 	unsigned char *is_OBDR_device)
1595 {
1596 
1597 #define OBDR_SIG_OFFSET 43
1598 #define OBDR_TAPE_SIG "$DR-10"
1599 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1600 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1601 
1602 	unsigned char *inq_buff;
1603 	unsigned char *obdr_sig;
1604 
1605 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1606 	if (!inq_buff)
1607 		goto bail_out;
1608 
1609 	/* Do an inquiry to the device to see what it is. */
1610 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1611 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1612 		/* Inquiry failed (msg printed already) */
1613 		dev_err(&h->pdev->dev,
1614 			"hpsa_update_device_info: inquiry failed\n");
1615 		goto bail_out;
1616 	}
1617 
1618 	this_device->devtype = (inq_buff[0] & 0x1f);
1619 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1620 	memcpy(this_device->vendor, &inq_buff[8],
1621 		sizeof(this_device->vendor));
1622 	memcpy(this_device->model, &inq_buff[16],
1623 		sizeof(this_device->model));
1624 	memset(this_device->device_id, 0,
1625 		sizeof(this_device->device_id));
1626 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1627 		sizeof(this_device->device_id));
1628 
1629 	if (this_device->devtype == TYPE_DISK &&
1630 		is_logical_dev_addr_mode(scsi3addr))
1631 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1632 	else
1633 		this_device->raid_level = RAID_UNKNOWN;
1634 
1635 	if (is_OBDR_device) {
1636 		/* See if this is a One-Button-Disaster-Recovery device
1637 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1638 		 */
1639 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1640 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1641 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1642 						OBDR_SIG_LEN) == 0);
1643 	}
1644 
1645 	kfree(inq_buff);
1646 	return 0;
1647 
1648 bail_out:
1649 	kfree(inq_buff);
1650 	return 1;
1651 }
1652 
1653 static unsigned char *ext_target_model[] = {
1654 	"MSA2012",
1655 	"MSA2024",
1656 	"MSA2312",
1657 	"MSA2324",
1658 	"P2000 G3 SAS",
1659 	NULL,
1660 };
1661 
1662 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1663 {
1664 	int i;
1665 
1666 	for (i = 0; ext_target_model[i]; i++)
1667 		if (strncmp(device->model, ext_target_model[i],
1668 			strlen(ext_target_model[i])) == 0)
1669 			return 1;
1670 	return 0;
1671 }
1672 
1673 /* Helper function to assign bus, target, lun mapping of devices.
1674  * Puts non-external target logical volumes on bus 0, external target logical
1675  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1676  * Logical drive target and lun are assigned at this time, but
1677  * physical device lun and target assignment are deferred (assigned
1678  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1679  */
1680 static void figure_bus_target_lun(struct ctlr_info *h,
1681 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1682 {
1683 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1684 
1685 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1686 		/* physical device, target and lun filled in later */
1687 		if (is_hba_lunid(lunaddrbytes))
1688 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1689 		else
1690 			/* defer target, lun assignment for physical devices */
1691 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1692 		return;
1693 	}
1694 	/* It's a logical device */
1695 	if (is_ext_target(h, device)) {
1696 		/* external target way, put logicals on bus 1
1697 		 * and match target/lun numbers box
1698 		 * reports, other smart array, bus 0, target 0, match lunid
1699 		 */
1700 		hpsa_set_bus_target_lun(device,
1701 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1702 		return;
1703 	}
1704 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1705 }
1706 
1707 /*
1708  * If there is no lun 0 on a target, linux won't find any devices.
1709  * For the external targets (arrays), we have to manually detect the enclosure
1710  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1711  * it for some reason.  *tmpdevice is the target we're adding,
1712  * this_device is a pointer into the current element of currentsd[]
1713  * that we're building up in update_scsi_devices(), below.
1714  * lunzerobits is a bitmap that tracks which targets already have a
1715  * lun 0 assigned.
1716  * Returns 1 if an enclosure was added, 0 if not.
1717  */
1718 static int add_ext_target_dev(struct ctlr_info *h,
1719 	struct hpsa_scsi_dev_t *tmpdevice,
1720 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1721 	unsigned long lunzerobits[], int *n_ext_target_devs)
1722 {
1723 	unsigned char scsi3addr[8];
1724 
1725 	if (test_bit(tmpdevice->target, lunzerobits))
1726 		return 0; /* There is already a lun 0 on this target. */
1727 
1728 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1729 		return 0; /* It's the logical targets that may lack lun 0. */
1730 
1731 	if (!is_ext_target(h, tmpdevice))
1732 		return 0; /* Only external target devices have this problem. */
1733 
1734 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1735 		return 0;
1736 
1737 	memset(scsi3addr, 0, 8);
1738 	scsi3addr[3] = tmpdevice->target;
1739 	if (is_hba_lunid(scsi3addr))
1740 		return 0; /* Don't add the RAID controller here. */
1741 
1742 	if (is_scsi_rev_5(h))
1743 		return 0; /* p1210m doesn't need to do this. */
1744 
1745 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1746 		dev_warn(&h->pdev->dev, "Maximum number of external "
1747 			"target devices exceeded.  Check your hardware "
1748 			"configuration.");
1749 		return 0;
1750 	}
1751 
1752 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1753 		return 0;
1754 	(*n_ext_target_devs)++;
1755 	hpsa_set_bus_target_lun(this_device,
1756 				tmpdevice->bus, tmpdevice->target, 0);
1757 	set_bit(tmpdevice->target, lunzerobits);
1758 	return 1;
1759 }
1760 
1761 /*
1762  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1763  * logdev.  The number of luns in physdev and logdev are returned in
1764  * *nphysicals and *nlogicals, respectively.
1765  * Returns 0 on success, -1 otherwise.
1766  */
1767 static int hpsa_gather_lun_info(struct ctlr_info *h,
1768 	int reportlunsize,
1769 	struct ReportLUNdata *physdev, u32 *nphysicals,
1770 	struct ReportLUNdata *logdev, u32 *nlogicals)
1771 {
1772 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1773 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1774 		return -1;
1775 	}
1776 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1777 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1778 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1779 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1780 			*nphysicals - HPSA_MAX_PHYS_LUN);
1781 		*nphysicals = HPSA_MAX_PHYS_LUN;
1782 	}
1783 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1784 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1785 		return -1;
1786 	}
1787 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1788 	/* Reject Logicals in excess of our max capability. */
1789 	if (*nlogicals > HPSA_MAX_LUN) {
1790 		dev_warn(&h->pdev->dev,
1791 			"maximum logical LUNs (%d) exceeded.  "
1792 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1793 			*nlogicals - HPSA_MAX_LUN);
1794 			*nlogicals = HPSA_MAX_LUN;
1795 	}
1796 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1797 		dev_warn(&h->pdev->dev,
1798 			"maximum logical + physical LUNs (%d) exceeded. "
1799 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1800 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1801 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1802 	}
1803 	return 0;
1804 }
1805 
1806 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1807 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1808 	struct ReportLUNdata *logdev_list)
1809 {
1810 	/* Helper function, figure out where the LUN ID info is coming from
1811 	 * given index i, lists of physical and logical devices, where in
1812 	 * the list the raid controller is supposed to appear (first or last)
1813 	 */
1814 
1815 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1816 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1817 
1818 	if (i == raid_ctlr_position)
1819 		return RAID_CTLR_LUNID;
1820 
1821 	if (i < logicals_start)
1822 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1823 
1824 	if (i < last_device)
1825 		return &logdev_list->LUN[i - nphysicals -
1826 			(raid_ctlr_position == 0)][0];
1827 	BUG();
1828 	return NULL;
1829 }
1830 
1831 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1832 {
1833 	/* the idea here is we could get notified
1834 	 * that some devices have changed, so we do a report
1835 	 * physical luns and report logical luns cmd, and adjust
1836 	 * our list of devices accordingly.
1837 	 *
1838 	 * The scsi3addr's of devices won't change so long as the
1839 	 * adapter is not reset.  That means we can rescan and
1840 	 * tell which devices we already know about, vs. new
1841 	 * devices, vs.  disappearing devices.
1842 	 */
1843 	struct ReportLUNdata *physdev_list = NULL;
1844 	struct ReportLUNdata *logdev_list = NULL;
1845 	u32 nphysicals = 0;
1846 	u32 nlogicals = 0;
1847 	u32 ndev_allocated = 0;
1848 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1849 	int ncurrent = 0;
1850 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1851 	int i, n_ext_target_devs, ndevs_to_allocate;
1852 	int raid_ctlr_position;
1853 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1854 
1855 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1856 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1857 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1858 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1859 
1860 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1861 		dev_err(&h->pdev->dev, "out of memory\n");
1862 		goto out;
1863 	}
1864 	memset(lunzerobits, 0, sizeof(lunzerobits));
1865 
1866 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1867 			logdev_list, &nlogicals))
1868 		goto out;
1869 
1870 	/* We might see up to the maximum number of logical and physical disks
1871 	 * plus external target devices, and a device for the local RAID
1872 	 * controller.
1873 	 */
1874 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1875 
1876 	/* Allocate the per device structures */
1877 	for (i = 0; i < ndevs_to_allocate; i++) {
1878 		if (i >= HPSA_MAX_DEVICES) {
1879 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1880 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1881 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1882 			break;
1883 		}
1884 
1885 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1886 		if (!currentsd[i]) {
1887 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1888 				__FILE__, __LINE__);
1889 			goto out;
1890 		}
1891 		ndev_allocated++;
1892 	}
1893 
1894 	if (unlikely(is_scsi_rev_5(h)))
1895 		raid_ctlr_position = 0;
1896 	else
1897 		raid_ctlr_position = nphysicals + nlogicals;
1898 
1899 	/* adjust our table of devices */
1900 	n_ext_target_devs = 0;
1901 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1902 		u8 *lunaddrbytes, is_OBDR = 0;
1903 
1904 		/* Figure out where the LUN ID info is coming from */
1905 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1906 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1907 		/* skip masked physical devices. */
1908 		if (lunaddrbytes[3] & 0xC0 &&
1909 			i < nphysicals + (raid_ctlr_position == 0))
1910 			continue;
1911 
1912 		/* Get device type, vendor, model, device id */
1913 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1914 							&is_OBDR))
1915 			continue; /* skip it if we can't talk to it. */
1916 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1917 		this_device = currentsd[ncurrent];
1918 
1919 		/*
1920 		 * For external target devices, we have to insert a LUN 0 which
1921 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1922 		 * is nonetheless an enclosure device there.  We have to
1923 		 * present that otherwise linux won't find anything if
1924 		 * there is no lun 0.
1925 		 */
1926 		if (add_ext_target_dev(h, tmpdevice, this_device,
1927 				lunaddrbytes, lunzerobits,
1928 				&n_ext_target_devs)) {
1929 			ncurrent++;
1930 			this_device = currentsd[ncurrent];
1931 		}
1932 
1933 		*this_device = *tmpdevice;
1934 
1935 		switch (this_device->devtype) {
1936 		case TYPE_ROM:
1937 			/* We don't *really* support actual CD-ROM devices,
1938 			 * just "One Button Disaster Recovery" tape drive
1939 			 * which temporarily pretends to be a CD-ROM drive.
1940 			 * So we check that the device is really an OBDR tape
1941 			 * device by checking for "$DR-10" in bytes 43-48 of
1942 			 * the inquiry data.
1943 			 */
1944 			if (is_OBDR)
1945 				ncurrent++;
1946 			break;
1947 		case TYPE_DISK:
1948 			if (i < nphysicals)
1949 				break;
1950 			ncurrent++;
1951 			break;
1952 		case TYPE_TAPE:
1953 		case TYPE_MEDIUM_CHANGER:
1954 			ncurrent++;
1955 			break;
1956 		case TYPE_RAID:
1957 			/* Only present the Smartarray HBA as a RAID controller.
1958 			 * If it's a RAID controller other than the HBA itself
1959 			 * (an external RAID controller, MSA500 or similar)
1960 			 * don't present it.
1961 			 */
1962 			if (!is_hba_lunid(lunaddrbytes))
1963 				break;
1964 			ncurrent++;
1965 			break;
1966 		default:
1967 			break;
1968 		}
1969 		if (ncurrent >= HPSA_MAX_DEVICES)
1970 			break;
1971 	}
1972 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1973 out:
1974 	kfree(tmpdevice);
1975 	for (i = 0; i < ndev_allocated; i++)
1976 		kfree(currentsd[i]);
1977 	kfree(currentsd);
1978 	kfree(physdev_list);
1979 	kfree(logdev_list);
1980 }
1981 
1982 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1983  * dma mapping  and fills in the scatter gather entries of the
1984  * hpsa command, cp.
1985  */
1986 static int hpsa_scatter_gather(struct ctlr_info *h,
1987 		struct CommandList *cp,
1988 		struct scsi_cmnd *cmd)
1989 {
1990 	unsigned int len;
1991 	struct scatterlist *sg;
1992 	u64 addr64;
1993 	int use_sg, i, sg_index, chained;
1994 	struct SGDescriptor *curr_sg;
1995 
1996 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1997 
1998 	use_sg = scsi_dma_map(cmd);
1999 	if (use_sg < 0)
2000 		return use_sg;
2001 
2002 	if (!use_sg)
2003 		goto sglist_finished;
2004 
2005 	curr_sg = cp->SG;
2006 	chained = 0;
2007 	sg_index = 0;
2008 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2009 		if (i == h->max_cmd_sg_entries - 1 &&
2010 			use_sg > h->max_cmd_sg_entries) {
2011 			chained = 1;
2012 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2013 			sg_index = 0;
2014 		}
2015 		addr64 = (u64) sg_dma_address(sg);
2016 		len  = sg_dma_len(sg);
2017 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2018 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2019 		curr_sg->Len = len;
2020 		curr_sg->Ext = 0;  /* we are not chaining */
2021 		curr_sg++;
2022 	}
2023 
2024 	if (use_sg + chained > h->maxSG)
2025 		h->maxSG = use_sg + chained;
2026 
2027 	if (chained) {
2028 		cp->Header.SGList = h->max_cmd_sg_entries;
2029 		cp->Header.SGTotal = (u16) (use_sg + 1);
2030 		hpsa_map_sg_chain_block(h, cp);
2031 		return 0;
2032 	}
2033 
2034 sglist_finished:
2035 
2036 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2037 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2038 	return 0;
2039 }
2040 
2041 
2042 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2043 	void (*done)(struct scsi_cmnd *))
2044 {
2045 	struct ctlr_info *h;
2046 	struct hpsa_scsi_dev_t *dev;
2047 	unsigned char scsi3addr[8];
2048 	struct CommandList *c;
2049 	unsigned long flags;
2050 
2051 	/* Get the ptr to our adapter structure out of cmd->host. */
2052 	h = sdev_to_hba(cmd->device);
2053 	dev = cmd->device->hostdata;
2054 	if (!dev) {
2055 		cmd->result = DID_NO_CONNECT << 16;
2056 		done(cmd);
2057 		return 0;
2058 	}
2059 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2060 
2061 	spin_lock_irqsave(&h->lock, flags);
2062 	if (unlikely(h->lockup_detected)) {
2063 		spin_unlock_irqrestore(&h->lock, flags);
2064 		cmd->result = DID_ERROR << 16;
2065 		done(cmd);
2066 		return 0;
2067 	}
2068 	/* Need a lock as this is being allocated from the pool */
2069 	c = cmd_alloc(h);
2070 	spin_unlock_irqrestore(&h->lock, flags);
2071 	if (c == NULL) {			/* trouble... */
2072 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2073 		return SCSI_MLQUEUE_HOST_BUSY;
2074 	}
2075 
2076 	/* Fill in the command list header */
2077 
2078 	cmd->scsi_done = done;    /* save this for use by completion code */
2079 
2080 	/* save c in case we have to abort it  */
2081 	cmd->host_scribble = (unsigned char *) c;
2082 
2083 	c->cmd_type = CMD_SCSI;
2084 	c->scsi_cmd = cmd;
2085 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2086 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2087 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2088 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2089 
2090 	/* Fill in the request block... */
2091 
2092 	c->Request.Timeout = 0;
2093 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2094 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2095 	c->Request.CDBLen = cmd->cmd_len;
2096 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2097 	c->Request.Type.Type = TYPE_CMD;
2098 	c->Request.Type.Attribute = ATTR_SIMPLE;
2099 	switch (cmd->sc_data_direction) {
2100 	case DMA_TO_DEVICE:
2101 		c->Request.Type.Direction = XFER_WRITE;
2102 		break;
2103 	case DMA_FROM_DEVICE:
2104 		c->Request.Type.Direction = XFER_READ;
2105 		break;
2106 	case DMA_NONE:
2107 		c->Request.Type.Direction = XFER_NONE;
2108 		break;
2109 	case DMA_BIDIRECTIONAL:
2110 		/* This can happen if a buggy application does a scsi passthru
2111 		 * and sets both inlen and outlen to non-zero. ( see
2112 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2113 		 */
2114 
2115 		c->Request.Type.Direction = XFER_RSVD;
2116 		/* This is technically wrong, and hpsa controllers should
2117 		 * reject it with CMD_INVALID, which is the most correct
2118 		 * response, but non-fibre backends appear to let it
2119 		 * slide by, and give the same results as if this field
2120 		 * were set correctly.  Either way is acceptable for
2121 		 * our purposes here.
2122 		 */
2123 
2124 		break;
2125 
2126 	default:
2127 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2128 			cmd->sc_data_direction);
2129 		BUG();
2130 		break;
2131 	}
2132 
2133 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2134 		cmd_free(h, c);
2135 		return SCSI_MLQUEUE_HOST_BUSY;
2136 	}
2137 	enqueue_cmd_and_start_io(h, c);
2138 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2139 	return 0;
2140 }
2141 
2142 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2143 
2144 static void hpsa_scan_start(struct Scsi_Host *sh)
2145 {
2146 	struct ctlr_info *h = shost_to_hba(sh);
2147 	unsigned long flags;
2148 
2149 	/* wait until any scan already in progress is finished. */
2150 	while (1) {
2151 		spin_lock_irqsave(&h->scan_lock, flags);
2152 		if (h->scan_finished)
2153 			break;
2154 		spin_unlock_irqrestore(&h->scan_lock, flags);
2155 		wait_event(h->scan_wait_queue, h->scan_finished);
2156 		/* Note: We don't need to worry about a race between this
2157 		 * thread and driver unload because the midlayer will
2158 		 * have incremented the reference count, so unload won't
2159 		 * happen if we're in here.
2160 		 */
2161 	}
2162 	h->scan_finished = 0; /* mark scan as in progress */
2163 	spin_unlock_irqrestore(&h->scan_lock, flags);
2164 
2165 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2166 
2167 	spin_lock_irqsave(&h->scan_lock, flags);
2168 	h->scan_finished = 1; /* mark scan as finished. */
2169 	wake_up_all(&h->scan_wait_queue);
2170 	spin_unlock_irqrestore(&h->scan_lock, flags);
2171 }
2172 
2173 static int hpsa_scan_finished(struct Scsi_Host *sh,
2174 	unsigned long elapsed_time)
2175 {
2176 	struct ctlr_info *h = shost_to_hba(sh);
2177 	unsigned long flags;
2178 	int finished;
2179 
2180 	spin_lock_irqsave(&h->scan_lock, flags);
2181 	finished = h->scan_finished;
2182 	spin_unlock_irqrestore(&h->scan_lock, flags);
2183 	return finished;
2184 }
2185 
2186 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2187 	int qdepth, int reason)
2188 {
2189 	struct ctlr_info *h = sdev_to_hba(sdev);
2190 
2191 	if (reason != SCSI_QDEPTH_DEFAULT)
2192 		return -ENOTSUPP;
2193 
2194 	if (qdepth < 1)
2195 		qdepth = 1;
2196 	else
2197 		if (qdepth > h->nr_cmds)
2198 			qdepth = h->nr_cmds;
2199 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2200 	return sdev->queue_depth;
2201 }
2202 
2203 static void hpsa_unregister_scsi(struct ctlr_info *h)
2204 {
2205 	/* we are being forcibly unloaded, and may not refuse. */
2206 	scsi_remove_host(h->scsi_host);
2207 	scsi_host_put(h->scsi_host);
2208 	h->scsi_host = NULL;
2209 }
2210 
2211 static int hpsa_register_scsi(struct ctlr_info *h)
2212 {
2213 	struct Scsi_Host *sh;
2214 	int error;
2215 
2216 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2217 	if (sh == NULL)
2218 		goto fail;
2219 
2220 	sh->io_port = 0;
2221 	sh->n_io_port = 0;
2222 	sh->this_id = -1;
2223 	sh->max_channel = 3;
2224 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2225 	sh->max_lun = HPSA_MAX_LUN;
2226 	sh->max_id = HPSA_MAX_LUN;
2227 	sh->can_queue = h->nr_cmds;
2228 	sh->cmd_per_lun = h->nr_cmds;
2229 	sh->sg_tablesize = h->maxsgentries;
2230 	h->scsi_host = sh;
2231 	sh->hostdata[0] = (unsigned long) h;
2232 	sh->irq = h->intr[h->intr_mode];
2233 	sh->unique_id = sh->irq;
2234 	error = scsi_add_host(sh, &h->pdev->dev);
2235 	if (error)
2236 		goto fail_host_put;
2237 	scsi_scan_host(sh);
2238 	return 0;
2239 
2240  fail_host_put:
2241 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2242 		" failed for controller %d\n", __func__, h->ctlr);
2243 	scsi_host_put(sh);
2244 	return error;
2245  fail:
2246 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2247 		" failed for controller %d\n", __func__, h->ctlr);
2248 	return -ENOMEM;
2249 }
2250 
2251 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2252 	unsigned char lunaddr[])
2253 {
2254 	int rc = 0;
2255 	int count = 0;
2256 	int waittime = 1; /* seconds */
2257 	struct CommandList *c;
2258 
2259 	c = cmd_special_alloc(h);
2260 	if (!c) {
2261 		dev_warn(&h->pdev->dev, "out of memory in "
2262 			"wait_for_device_to_become_ready.\n");
2263 		return IO_ERROR;
2264 	}
2265 
2266 	/* Send test unit ready until device ready, or give up. */
2267 	while (count < HPSA_TUR_RETRY_LIMIT) {
2268 
2269 		/* Wait for a bit.  do this first, because if we send
2270 		 * the TUR right away, the reset will just abort it.
2271 		 */
2272 		msleep(1000 * waittime);
2273 		count++;
2274 
2275 		/* Increase wait time with each try, up to a point. */
2276 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2277 			waittime = waittime * 2;
2278 
2279 		/* Send the Test Unit Ready */
2280 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2281 		hpsa_scsi_do_simple_cmd_core(h, c);
2282 		/* no unmap needed here because no data xfer. */
2283 
2284 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2285 			break;
2286 
2287 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2288 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2289 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2290 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2291 			break;
2292 
2293 		dev_warn(&h->pdev->dev, "waiting %d secs "
2294 			"for device to become ready.\n", waittime);
2295 		rc = 1; /* device not ready. */
2296 	}
2297 
2298 	if (rc)
2299 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2300 	else
2301 		dev_warn(&h->pdev->dev, "device is ready.\n");
2302 
2303 	cmd_special_free(h, c);
2304 	return rc;
2305 }
2306 
2307 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2308  * complaining.  Doing a host- or bus-reset can't do anything good here.
2309  */
2310 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2311 {
2312 	int rc;
2313 	struct ctlr_info *h;
2314 	struct hpsa_scsi_dev_t *dev;
2315 
2316 	/* find the controller to which the command to be aborted was sent */
2317 	h = sdev_to_hba(scsicmd->device);
2318 	if (h == NULL) /* paranoia */
2319 		return FAILED;
2320 	dev = scsicmd->device->hostdata;
2321 	if (!dev) {
2322 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2323 			"device lookup failed.\n");
2324 		return FAILED;
2325 	}
2326 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2327 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2328 	/* send a reset to the SCSI LUN which the command was sent to */
2329 	rc = hpsa_send_reset(h, dev->scsi3addr);
2330 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2331 		return SUCCESS;
2332 
2333 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2334 	return FAILED;
2335 }
2336 
2337 /*
2338  * For operations that cannot sleep, a command block is allocated at init,
2339  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2340  * which ones are free or in use.  Lock must be held when calling this.
2341  * cmd_free() is the complement.
2342  */
2343 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2344 {
2345 	struct CommandList *c;
2346 	int i;
2347 	union u64bit temp64;
2348 	dma_addr_t cmd_dma_handle, err_dma_handle;
2349 
2350 	do {
2351 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2352 		if (i == h->nr_cmds)
2353 			return NULL;
2354 	} while (test_and_set_bit
2355 		 (i & (BITS_PER_LONG - 1),
2356 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2357 	c = h->cmd_pool + i;
2358 	memset(c, 0, sizeof(*c));
2359 	cmd_dma_handle = h->cmd_pool_dhandle
2360 	    + i * sizeof(*c);
2361 	c->err_info = h->errinfo_pool + i;
2362 	memset(c->err_info, 0, sizeof(*c->err_info));
2363 	err_dma_handle = h->errinfo_pool_dhandle
2364 	    + i * sizeof(*c->err_info);
2365 	h->nr_allocs++;
2366 
2367 	c->cmdindex = i;
2368 
2369 	INIT_LIST_HEAD(&c->list);
2370 	c->busaddr = (u32) cmd_dma_handle;
2371 	temp64.val = (u64) err_dma_handle;
2372 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2373 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2374 	c->ErrDesc.Len = sizeof(*c->err_info);
2375 
2376 	c->h = h;
2377 	return c;
2378 }
2379 
2380 /* For operations that can wait for kmalloc to possibly sleep,
2381  * this routine can be called. Lock need not be held to call
2382  * cmd_special_alloc. cmd_special_free() is the complement.
2383  */
2384 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2385 {
2386 	struct CommandList *c;
2387 	union u64bit temp64;
2388 	dma_addr_t cmd_dma_handle, err_dma_handle;
2389 
2390 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2391 	if (c == NULL)
2392 		return NULL;
2393 	memset(c, 0, sizeof(*c));
2394 
2395 	c->cmdindex = -1;
2396 
2397 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2398 		    &err_dma_handle);
2399 
2400 	if (c->err_info == NULL) {
2401 		pci_free_consistent(h->pdev,
2402 			sizeof(*c), c, cmd_dma_handle);
2403 		return NULL;
2404 	}
2405 	memset(c->err_info, 0, sizeof(*c->err_info));
2406 
2407 	INIT_LIST_HEAD(&c->list);
2408 	c->busaddr = (u32) cmd_dma_handle;
2409 	temp64.val = (u64) err_dma_handle;
2410 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2411 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2412 	c->ErrDesc.Len = sizeof(*c->err_info);
2413 
2414 	c->h = h;
2415 	return c;
2416 }
2417 
2418 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2419 {
2420 	int i;
2421 
2422 	i = c - h->cmd_pool;
2423 	clear_bit(i & (BITS_PER_LONG - 1),
2424 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2425 	h->nr_frees++;
2426 }
2427 
2428 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2429 {
2430 	union u64bit temp64;
2431 
2432 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2433 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2434 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2435 			    c->err_info, (dma_addr_t) temp64.val);
2436 	pci_free_consistent(h->pdev, sizeof(*c),
2437 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2438 }
2439 
2440 #ifdef CONFIG_COMPAT
2441 
2442 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2443 {
2444 	IOCTL32_Command_struct __user *arg32 =
2445 	    (IOCTL32_Command_struct __user *) arg;
2446 	IOCTL_Command_struct arg64;
2447 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2448 	int err;
2449 	u32 cp;
2450 
2451 	memset(&arg64, 0, sizeof(arg64));
2452 	err = 0;
2453 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2454 			   sizeof(arg64.LUN_info));
2455 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2456 			   sizeof(arg64.Request));
2457 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2458 			   sizeof(arg64.error_info));
2459 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2460 	err |= get_user(cp, &arg32->buf);
2461 	arg64.buf = compat_ptr(cp);
2462 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2463 
2464 	if (err)
2465 		return -EFAULT;
2466 
2467 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2468 	if (err)
2469 		return err;
2470 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2471 			 sizeof(arg32->error_info));
2472 	if (err)
2473 		return -EFAULT;
2474 	return err;
2475 }
2476 
2477 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2478 	int cmd, void *arg)
2479 {
2480 	BIG_IOCTL32_Command_struct __user *arg32 =
2481 	    (BIG_IOCTL32_Command_struct __user *) arg;
2482 	BIG_IOCTL_Command_struct arg64;
2483 	BIG_IOCTL_Command_struct __user *p =
2484 	    compat_alloc_user_space(sizeof(arg64));
2485 	int err;
2486 	u32 cp;
2487 
2488 	memset(&arg64, 0, sizeof(arg64));
2489 	err = 0;
2490 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2491 			   sizeof(arg64.LUN_info));
2492 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2493 			   sizeof(arg64.Request));
2494 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2495 			   sizeof(arg64.error_info));
2496 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2497 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2498 	err |= get_user(cp, &arg32->buf);
2499 	arg64.buf = compat_ptr(cp);
2500 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2501 
2502 	if (err)
2503 		return -EFAULT;
2504 
2505 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2506 	if (err)
2507 		return err;
2508 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2509 			 sizeof(arg32->error_info));
2510 	if (err)
2511 		return -EFAULT;
2512 	return err;
2513 }
2514 
2515 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2516 {
2517 	switch (cmd) {
2518 	case CCISS_GETPCIINFO:
2519 	case CCISS_GETINTINFO:
2520 	case CCISS_SETINTINFO:
2521 	case CCISS_GETNODENAME:
2522 	case CCISS_SETNODENAME:
2523 	case CCISS_GETHEARTBEAT:
2524 	case CCISS_GETBUSTYPES:
2525 	case CCISS_GETFIRMVER:
2526 	case CCISS_GETDRIVVER:
2527 	case CCISS_REVALIDVOLS:
2528 	case CCISS_DEREGDISK:
2529 	case CCISS_REGNEWDISK:
2530 	case CCISS_REGNEWD:
2531 	case CCISS_RESCANDISK:
2532 	case CCISS_GETLUNINFO:
2533 		return hpsa_ioctl(dev, cmd, arg);
2534 
2535 	case CCISS_PASSTHRU32:
2536 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2537 	case CCISS_BIG_PASSTHRU32:
2538 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2539 
2540 	default:
2541 		return -ENOIOCTLCMD;
2542 	}
2543 }
2544 #endif
2545 
2546 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2547 {
2548 	struct hpsa_pci_info pciinfo;
2549 
2550 	if (!argp)
2551 		return -EINVAL;
2552 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2553 	pciinfo.bus = h->pdev->bus->number;
2554 	pciinfo.dev_fn = h->pdev->devfn;
2555 	pciinfo.board_id = h->board_id;
2556 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2557 		return -EFAULT;
2558 	return 0;
2559 }
2560 
2561 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2562 {
2563 	DriverVer_type DriverVer;
2564 	unsigned char vmaj, vmin, vsubmin;
2565 	int rc;
2566 
2567 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2568 		&vmaj, &vmin, &vsubmin);
2569 	if (rc != 3) {
2570 		dev_info(&h->pdev->dev, "driver version string '%s' "
2571 			"unrecognized.", HPSA_DRIVER_VERSION);
2572 		vmaj = 0;
2573 		vmin = 0;
2574 		vsubmin = 0;
2575 	}
2576 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2577 	if (!argp)
2578 		return -EINVAL;
2579 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2580 		return -EFAULT;
2581 	return 0;
2582 }
2583 
2584 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2585 {
2586 	IOCTL_Command_struct iocommand;
2587 	struct CommandList *c;
2588 	char *buff = NULL;
2589 	union u64bit temp64;
2590 
2591 	if (!argp)
2592 		return -EINVAL;
2593 	if (!capable(CAP_SYS_RAWIO))
2594 		return -EPERM;
2595 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2596 		return -EFAULT;
2597 	if ((iocommand.buf_size < 1) &&
2598 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2599 		return -EINVAL;
2600 	}
2601 	if (iocommand.buf_size > 0) {
2602 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2603 		if (buff == NULL)
2604 			return -EFAULT;
2605 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2606 			/* Copy the data into the buffer we created */
2607 			if (copy_from_user(buff, iocommand.buf,
2608 				iocommand.buf_size)) {
2609 				kfree(buff);
2610 				return -EFAULT;
2611 			}
2612 		} else {
2613 			memset(buff, 0, iocommand.buf_size);
2614 		}
2615 	}
2616 	c = cmd_special_alloc(h);
2617 	if (c == NULL) {
2618 		kfree(buff);
2619 		return -ENOMEM;
2620 	}
2621 	/* Fill in the command type */
2622 	c->cmd_type = CMD_IOCTL_PEND;
2623 	/* Fill in Command Header */
2624 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2625 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2626 		c->Header.SGList = 1;
2627 		c->Header.SGTotal = 1;
2628 	} else	{ /* no buffers to fill */
2629 		c->Header.SGList = 0;
2630 		c->Header.SGTotal = 0;
2631 	}
2632 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2633 	/* use the kernel address the cmd block for tag */
2634 	c->Header.Tag.lower = c->busaddr;
2635 
2636 	/* Fill in Request block */
2637 	memcpy(&c->Request, &iocommand.Request,
2638 		sizeof(c->Request));
2639 
2640 	/* Fill in the scatter gather information */
2641 	if (iocommand.buf_size > 0) {
2642 		temp64.val = pci_map_single(h->pdev, buff,
2643 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2644 		c->SG[0].Addr.lower = temp64.val32.lower;
2645 		c->SG[0].Addr.upper = temp64.val32.upper;
2646 		c->SG[0].Len = iocommand.buf_size;
2647 		c->SG[0].Ext = 0; /* we are not chaining*/
2648 	}
2649 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2650 	if (iocommand.buf_size > 0)
2651 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2652 	check_ioctl_unit_attention(h, c);
2653 
2654 	/* Copy the error information out */
2655 	memcpy(&iocommand.error_info, c->err_info,
2656 		sizeof(iocommand.error_info));
2657 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2658 		kfree(buff);
2659 		cmd_special_free(h, c);
2660 		return -EFAULT;
2661 	}
2662 	if (iocommand.Request.Type.Direction == XFER_READ &&
2663 		iocommand.buf_size > 0) {
2664 		/* Copy the data out of the buffer we created */
2665 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2666 			kfree(buff);
2667 			cmd_special_free(h, c);
2668 			return -EFAULT;
2669 		}
2670 	}
2671 	kfree(buff);
2672 	cmd_special_free(h, c);
2673 	return 0;
2674 }
2675 
2676 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2677 {
2678 	BIG_IOCTL_Command_struct *ioc;
2679 	struct CommandList *c;
2680 	unsigned char **buff = NULL;
2681 	int *buff_size = NULL;
2682 	union u64bit temp64;
2683 	BYTE sg_used = 0;
2684 	int status = 0;
2685 	int i;
2686 	u32 left;
2687 	u32 sz;
2688 	BYTE __user *data_ptr;
2689 
2690 	if (!argp)
2691 		return -EINVAL;
2692 	if (!capable(CAP_SYS_RAWIO))
2693 		return -EPERM;
2694 	ioc = (BIG_IOCTL_Command_struct *)
2695 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2696 	if (!ioc) {
2697 		status = -ENOMEM;
2698 		goto cleanup1;
2699 	}
2700 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2701 		status = -EFAULT;
2702 		goto cleanup1;
2703 	}
2704 	if ((ioc->buf_size < 1) &&
2705 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2706 		status = -EINVAL;
2707 		goto cleanup1;
2708 	}
2709 	/* Check kmalloc limits  using all SGs */
2710 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2711 		status = -EINVAL;
2712 		goto cleanup1;
2713 	}
2714 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2715 		status = -EINVAL;
2716 		goto cleanup1;
2717 	}
2718 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2719 	if (!buff) {
2720 		status = -ENOMEM;
2721 		goto cleanup1;
2722 	}
2723 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2724 	if (!buff_size) {
2725 		status = -ENOMEM;
2726 		goto cleanup1;
2727 	}
2728 	left = ioc->buf_size;
2729 	data_ptr = ioc->buf;
2730 	while (left) {
2731 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2732 		buff_size[sg_used] = sz;
2733 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2734 		if (buff[sg_used] == NULL) {
2735 			status = -ENOMEM;
2736 			goto cleanup1;
2737 		}
2738 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2739 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2740 				status = -ENOMEM;
2741 				goto cleanup1;
2742 			}
2743 		} else
2744 			memset(buff[sg_used], 0, sz);
2745 		left -= sz;
2746 		data_ptr += sz;
2747 		sg_used++;
2748 	}
2749 	c = cmd_special_alloc(h);
2750 	if (c == NULL) {
2751 		status = -ENOMEM;
2752 		goto cleanup1;
2753 	}
2754 	c->cmd_type = CMD_IOCTL_PEND;
2755 	c->Header.ReplyQueue = 0;
2756 	c->Header.SGList = c->Header.SGTotal = sg_used;
2757 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2758 	c->Header.Tag.lower = c->busaddr;
2759 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2760 	if (ioc->buf_size > 0) {
2761 		int i;
2762 		for (i = 0; i < sg_used; i++) {
2763 			temp64.val = pci_map_single(h->pdev, buff[i],
2764 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2765 			c->SG[i].Addr.lower = temp64.val32.lower;
2766 			c->SG[i].Addr.upper = temp64.val32.upper;
2767 			c->SG[i].Len = buff_size[i];
2768 			/* we are not chaining */
2769 			c->SG[i].Ext = 0;
2770 		}
2771 	}
2772 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2773 	if (sg_used)
2774 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2775 	check_ioctl_unit_attention(h, c);
2776 	/* Copy the error information out */
2777 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2778 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2779 		cmd_special_free(h, c);
2780 		status = -EFAULT;
2781 		goto cleanup1;
2782 	}
2783 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2784 		/* Copy the data out of the buffer we created */
2785 		BYTE __user *ptr = ioc->buf;
2786 		for (i = 0; i < sg_used; i++) {
2787 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2788 				cmd_special_free(h, c);
2789 				status = -EFAULT;
2790 				goto cleanup1;
2791 			}
2792 			ptr += buff_size[i];
2793 		}
2794 	}
2795 	cmd_special_free(h, c);
2796 	status = 0;
2797 cleanup1:
2798 	if (buff) {
2799 		for (i = 0; i < sg_used; i++)
2800 			kfree(buff[i]);
2801 		kfree(buff);
2802 	}
2803 	kfree(buff_size);
2804 	kfree(ioc);
2805 	return status;
2806 }
2807 
2808 static void check_ioctl_unit_attention(struct ctlr_info *h,
2809 	struct CommandList *c)
2810 {
2811 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2812 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2813 		(void) check_for_unit_attention(h, c);
2814 }
2815 /*
2816  * ioctl
2817  */
2818 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2819 {
2820 	struct ctlr_info *h;
2821 	void __user *argp = (void __user *)arg;
2822 
2823 	h = sdev_to_hba(dev);
2824 
2825 	switch (cmd) {
2826 	case CCISS_DEREGDISK:
2827 	case CCISS_REGNEWDISK:
2828 	case CCISS_REGNEWD:
2829 		hpsa_scan_start(h->scsi_host);
2830 		return 0;
2831 	case CCISS_GETPCIINFO:
2832 		return hpsa_getpciinfo_ioctl(h, argp);
2833 	case CCISS_GETDRIVVER:
2834 		return hpsa_getdrivver_ioctl(h, argp);
2835 	case CCISS_PASSTHRU:
2836 		return hpsa_passthru_ioctl(h, argp);
2837 	case CCISS_BIG_PASSTHRU:
2838 		return hpsa_big_passthru_ioctl(h, argp);
2839 	default:
2840 		return -ENOTTY;
2841 	}
2842 }
2843 
2844 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2845 	unsigned char *scsi3addr, u8 reset_type)
2846 {
2847 	struct CommandList *c;
2848 
2849 	c = cmd_alloc(h);
2850 	if (!c)
2851 		return -ENOMEM;
2852 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2853 		RAID_CTLR_LUNID, TYPE_MSG);
2854 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2855 	c->waiting = NULL;
2856 	enqueue_cmd_and_start_io(h, c);
2857 	/* Don't wait for completion, the reset won't complete.  Don't free
2858 	 * the command either.  This is the last command we will send before
2859 	 * re-initializing everything, so it doesn't matter and won't leak.
2860 	 */
2861 	return 0;
2862 }
2863 
2864 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2865 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2866 	int cmd_type)
2867 {
2868 	int pci_dir = XFER_NONE;
2869 
2870 	c->cmd_type = CMD_IOCTL_PEND;
2871 	c->Header.ReplyQueue = 0;
2872 	if (buff != NULL && size > 0) {
2873 		c->Header.SGList = 1;
2874 		c->Header.SGTotal = 1;
2875 	} else {
2876 		c->Header.SGList = 0;
2877 		c->Header.SGTotal = 0;
2878 	}
2879 	c->Header.Tag.lower = c->busaddr;
2880 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2881 
2882 	c->Request.Type.Type = cmd_type;
2883 	if (cmd_type == TYPE_CMD) {
2884 		switch (cmd) {
2885 		case HPSA_INQUIRY:
2886 			/* are we trying to read a vital product page */
2887 			if (page_code != 0) {
2888 				c->Request.CDB[1] = 0x01;
2889 				c->Request.CDB[2] = page_code;
2890 			}
2891 			c->Request.CDBLen = 6;
2892 			c->Request.Type.Attribute = ATTR_SIMPLE;
2893 			c->Request.Type.Direction = XFER_READ;
2894 			c->Request.Timeout = 0;
2895 			c->Request.CDB[0] = HPSA_INQUIRY;
2896 			c->Request.CDB[4] = size & 0xFF;
2897 			break;
2898 		case HPSA_REPORT_LOG:
2899 		case HPSA_REPORT_PHYS:
2900 			/* Talking to controller so It's a physical command
2901 			   mode = 00 target = 0.  Nothing to write.
2902 			 */
2903 			c->Request.CDBLen = 12;
2904 			c->Request.Type.Attribute = ATTR_SIMPLE;
2905 			c->Request.Type.Direction = XFER_READ;
2906 			c->Request.Timeout = 0;
2907 			c->Request.CDB[0] = cmd;
2908 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2909 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2910 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2911 			c->Request.CDB[9] = size & 0xFF;
2912 			break;
2913 		case HPSA_CACHE_FLUSH:
2914 			c->Request.CDBLen = 12;
2915 			c->Request.Type.Attribute = ATTR_SIMPLE;
2916 			c->Request.Type.Direction = XFER_WRITE;
2917 			c->Request.Timeout = 0;
2918 			c->Request.CDB[0] = BMIC_WRITE;
2919 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2920 			c->Request.CDB[7] = (size >> 8) & 0xFF;
2921 			c->Request.CDB[8] = size & 0xFF;
2922 			break;
2923 		case TEST_UNIT_READY:
2924 			c->Request.CDBLen = 6;
2925 			c->Request.Type.Attribute = ATTR_SIMPLE;
2926 			c->Request.Type.Direction = XFER_NONE;
2927 			c->Request.Timeout = 0;
2928 			break;
2929 		default:
2930 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2931 			BUG();
2932 			return;
2933 		}
2934 	} else if (cmd_type == TYPE_MSG) {
2935 		switch (cmd) {
2936 
2937 		case  HPSA_DEVICE_RESET_MSG:
2938 			c->Request.CDBLen = 16;
2939 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2940 			c->Request.Type.Attribute = ATTR_SIMPLE;
2941 			c->Request.Type.Direction = XFER_NONE;
2942 			c->Request.Timeout = 0; /* Don't time out */
2943 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2944 			c->Request.CDB[0] =  cmd;
2945 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2946 			/* If bytes 4-7 are zero, it means reset the */
2947 			/* LunID device */
2948 			c->Request.CDB[4] = 0x00;
2949 			c->Request.CDB[5] = 0x00;
2950 			c->Request.CDB[6] = 0x00;
2951 			c->Request.CDB[7] = 0x00;
2952 		break;
2953 
2954 		default:
2955 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2956 				cmd);
2957 			BUG();
2958 		}
2959 	} else {
2960 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2961 		BUG();
2962 	}
2963 
2964 	switch (c->Request.Type.Direction) {
2965 	case XFER_READ:
2966 		pci_dir = PCI_DMA_FROMDEVICE;
2967 		break;
2968 	case XFER_WRITE:
2969 		pci_dir = PCI_DMA_TODEVICE;
2970 		break;
2971 	case XFER_NONE:
2972 		pci_dir = PCI_DMA_NONE;
2973 		break;
2974 	default:
2975 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2976 	}
2977 
2978 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2979 
2980 	return;
2981 }
2982 
2983 /*
2984  * Map (physical) PCI mem into (virtual) kernel space
2985  */
2986 static void __iomem *remap_pci_mem(ulong base, ulong size)
2987 {
2988 	ulong page_base = ((ulong) base) & PAGE_MASK;
2989 	ulong page_offs = ((ulong) base) - page_base;
2990 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2991 
2992 	return page_remapped ? (page_remapped + page_offs) : NULL;
2993 }
2994 
2995 /* Takes cmds off the submission queue and sends them to the hardware,
2996  * then puts them on the queue of cmds waiting for completion.
2997  */
2998 static void start_io(struct ctlr_info *h)
2999 {
3000 	struct CommandList *c;
3001 
3002 	while (!list_empty(&h->reqQ)) {
3003 		c = list_entry(h->reqQ.next, struct CommandList, list);
3004 		/* can't do anything if fifo is full */
3005 		if ((h->access.fifo_full(h))) {
3006 			dev_warn(&h->pdev->dev, "fifo full\n");
3007 			break;
3008 		}
3009 
3010 		/* Get the first entry from the Request Q */
3011 		removeQ(c);
3012 		h->Qdepth--;
3013 
3014 		/* Tell the controller execute command */
3015 		h->access.submit_command(h, c);
3016 
3017 		/* Put job onto the completed Q */
3018 		addQ(&h->cmpQ, c);
3019 	}
3020 }
3021 
3022 static inline unsigned long get_next_completion(struct ctlr_info *h)
3023 {
3024 	return h->access.command_completed(h);
3025 }
3026 
3027 static inline bool interrupt_pending(struct ctlr_info *h)
3028 {
3029 	return h->access.intr_pending(h);
3030 }
3031 
3032 static inline long interrupt_not_for_us(struct ctlr_info *h)
3033 {
3034 	return (h->access.intr_pending(h) == 0) ||
3035 		(h->interrupts_enabled == 0);
3036 }
3037 
3038 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3039 	u32 raw_tag)
3040 {
3041 	if (unlikely(tag_index >= h->nr_cmds)) {
3042 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3043 		return 1;
3044 	}
3045 	return 0;
3046 }
3047 
3048 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3049 {
3050 	removeQ(c);
3051 	if (likely(c->cmd_type == CMD_SCSI))
3052 		complete_scsi_command(c);
3053 	else if (c->cmd_type == CMD_IOCTL_PEND)
3054 		complete(c->waiting);
3055 }
3056 
3057 static inline u32 hpsa_tag_contains_index(u32 tag)
3058 {
3059 	return tag & DIRECT_LOOKUP_BIT;
3060 }
3061 
3062 static inline u32 hpsa_tag_to_index(u32 tag)
3063 {
3064 	return tag >> DIRECT_LOOKUP_SHIFT;
3065 }
3066 
3067 
3068 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3069 {
3070 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3071 #define HPSA_SIMPLE_ERROR_BITS 0x03
3072 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3073 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3074 	return tag & ~HPSA_PERF_ERROR_BITS;
3075 }
3076 
3077 /* process completion of an indexed ("direct lookup") command */
3078 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3079 	u32 raw_tag)
3080 {
3081 	u32 tag_index;
3082 	struct CommandList *c;
3083 
3084 	tag_index = hpsa_tag_to_index(raw_tag);
3085 	if (bad_tag(h, tag_index, raw_tag))
3086 		return next_command(h);
3087 	c = h->cmd_pool + tag_index;
3088 	finish_cmd(c, raw_tag);
3089 	return next_command(h);
3090 }
3091 
3092 /* process completion of a non-indexed command */
3093 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3094 	u32 raw_tag)
3095 {
3096 	u32 tag;
3097 	struct CommandList *c = NULL;
3098 
3099 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3100 	list_for_each_entry(c, &h->cmpQ, list) {
3101 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3102 			finish_cmd(c, raw_tag);
3103 			return next_command(h);
3104 		}
3105 	}
3106 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3107 	return next_command(h);
3108 }
3109 
3110 /* Some controllers, like p400, will give us one interrupt
3111  * after a soft reset, even if we turned interrupts off.
3112  * Only need to check for this in the hpsa_xxx_discard_completions
3113  * functions.
3114  */
3115 static int ignore_bogus_interrupt(struct ctlr_info *h)
3116 {
3117 	if (likely(!reset_devices))
3118 		return 0;
3119 
3120 	if (likely(h->interrupts_enabled))
3121 		return 0;
3122 
3123 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3124 		"(known firmware bug.)  Ignoring.\n");
3125 
3126 	return 1;
3127 }
3128 
3129 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3130 {
3131 	struct ctlr_info *h = dev_id;
3132 	unsigned long flags;
3133 	u32 raw_tag;
3134 
3135 	if (ignore_bogus_interrupt(h))
3136 		return IRQ_NONE;
3137 
3138 	if (interrupt_not_for_us(h))
3139 		return IRQ_NONE;
3140 	spin_lock_irqsave(&h->lock, flags);
3141 	h->last_intr_timestamp = get_jiffies_64();
3142 	while (interrupt_pending(h)) {
3143 		raw_tag = get_next_completion(h);
3144 		while (raw_tag != FIFO_EMPTY)
3145 			raw_tag = next_command(h);
3146 	}
3147 	spin_unlock_irqrestore(&h->lock, flags);
3148 	return IRQ_HANDLED;
3149 }
3150 
3151 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3152 {
3153 	struct ctlr_info *h = dev_id;
3154 	unsigned long flags;
3155 	u32 raw_tag;
3156 
3157 	if (ignore_bogus_interrupt(h))
3158 		return IRQ_NONE;
3159 
3160 	spin_lock_irqsave(&h->lock, flags);
3161 	h->last_intr_timestamp = get_jiffies_64();
3162 	raw_tag = get_next_completion(h);
3163 	while (raw_tag != FIFO_EMPTY)
3164 		raw_tag = next_command(h);
3165 	spin_unlock_irqrestore(&h->lock, flags);
3166 	return IRQ_HANDLED;
3167 }
3168 
3169 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3170 {
3171 	struct ctlr_info *h = dev_id;
3172 	unsigned long flags;
3173 	u32 raw_tag;
3174 
3175 	if (interrupt_not_for_us(h))
3176 		return IRQ_NONE;
3177 	spin_lock_irqsave(&h->lock, flags);
3178 	h->last_intr_timestamp = get_jiffies_64();
3179 	while (interrupt_pending(h)) {
3180 		raw_tag = get_next_completion(h);
3181 		while (raw_tag != FIFO_EMPTY) {
3182 			if (hpsa_tag_contains_index(raw_tag))
3183 				raw_tag = process_indexed_cmd(h, raw_tag);
3184 			else
3185 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3186 		}
3187 	}
3188 	spin_unlock_irqrestore(&h->lock, flags);
3189 	return IRQ_HANDLED;
3190 }
3191 
3192 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3193 {
3194 	struct ctlr_info *h = dev_id;
3195 	unsigned long flags;
3196 	u32 raw_tag;
3197 
3198 	spin_lock_irqsave(&h->lock, flags);
3199 	h->last_intr_timestamp = get_jiffies_64();
3200 	raw_tag = get_next_completion(h);
3201 	while (raw_tag != FIFO_EMPTY) {
3202 		if (hpsa_tag_contains_index(raw_tag))
3203 			raw_tag = process_indexed_cmd(h, raw_tag);
3204 		else
3205 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3206 	}
3207 	spin_unlock_irqrestore(&h->lock, flags);
3208 	return IRQ_HANDLED;
3209 }
3210 
3211 /* Send a message CDB to the firmware. Careful, this only works
3212  * in simple mode, not performant mode due to the tag lookup.
3213  * We only ever use this immediately after a controller reset.
3214  */
3215 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3216 						unsigned char type)
3217 {
3218 	struct Command {
3219 		struct CommandListHeader CommandHeader;
3220 		struct RequestBlock Request;
3221 		struct ErrDescriptor ErrorDescriptor;
3222 	};
3223 	struct Command *cmd;
3224 	static const size_t cmd_sz = sizeof(*cmd) +
3225 					sizeof(cmd->ErrorDescriptor);
3226 	dma_addr_t paddr64;
3227 	uint32_t paddr32, tag;
3228 	void __iomem *vaddr;
3229 	int i, err;
3230 
3231 	vaddr = pci_ioremap_bar(pdev, 0);
3232 	if (vaddr == NULL)
3233 		return -ENOMEM;
3234 
3235 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3236 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3237 	 * memory.
3238 	 */
3239 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3240 	if (err) {
3241 		iounmap(vaddr);
3242 		return -ENOMEM;
3243 	}
3244 
3245 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3246 	if (cmd == NULL) {
3247 		iounmap(vaddr);
3248 		return -ENOMEM;
3249 	}
3250 
3251 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3252 	 * although there's no guarantee, we assume that the address is at
3253 	 * least 4-byte aligned (most likely, it's page-aligned).
3254 	 */
3255 	paddr32 = paddr64;
3256 
3257 	cmd->CommandHeader.ReplyQueue = 0;
3258 	cmd->CommandHeader.SGList = 0;
3259 	cmd->CommandHeader.SGTotal = 0;
3260 	cmd->CommandHeader.Tag.lower = paddr32;
3261 	cmd->CommandHeader.Tag.upper = 0;
3262 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3263 
3264 	cmd->Request.CDBLen = 16;
3265 	cmd->Request.Type.Type = TYPE_MSG;
3266 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3267 	cmd->Request.Type.Direction = XFER_NONE;
3268 	cmd->Request.Timeout = 0; /* Don't time out */
3269 	cmd->Request.CDB[0] = opcode;
3270 	cmd->Request.CDB[1] = type;
3271 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3272 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3273 	cmd->ErrorDescriptor.Addr.upper = 0;
3274 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3275 
3276 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3277 
3278 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3279 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3280 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3281 			break;
3282 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3283 	}
3284 
3285 	iounmap(vaddr);
3286 
3287 	/* we leak the DMA buffer here ... no choice since the controller could
3288 	 *  still complete the command.
3289 	 */
3290 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3291 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3292 			opcode, type);
3293 		return -ETIMEDOUT;
3294 	}
3295 
3296 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3297 
3298 	if (tag & HPSA_ERROR_BIT) {
3299 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3300 			opcode, type);
3301 		return -EIO;
3302 	}
3303 
3304 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3305 		opcode, type);
3306 	return 0;
3307 }
3308 
3309 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3310 
3311 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3312 	void * __iomem vaddr, u32 use_doorbell)
3313 {
3314 	u16 pmcsr;
3315 	int pos;
3316 
3317 	if (use_doorbell) {
3318 		/* For everything after the P600, the PCI power state method
3319 		 * of resetting the controller doesn't work, so we have this
3320 		 * other way using the doorbell register.
3321 		 */
3322 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3323 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3324 	} else { /* Try to do it the PCI power state way */
3325 
3326 		/* Quoting from the Open CISS Specification: "The Power
3327 		 * Management Control/Status Register (CSR) controls the power
3328 		 * state of the device.  The normal operating state is D0,
3329 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3330 		 * the controller, place the interface device in D3 then to D0,
3331 		 * this causes a secondary PCI reset which will reset the
3332 		 * controller." */
3333 
3334 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3335 		if (pos == 0) {
3336 			dev_err(&pdev->dev,
3337 				"hpsa_reset_controller: "
3338 				"PCI PM not supported\n");
3339 			return -ENODEV;
3340 		}
3341 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3342 		/* enter the D3hot power management state */
3343 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3344 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3345 		pmcsr |= PCI_D3hot;
3346 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3347 
3348 		msleep(500);
3349 
3350 		/* enter the D0 power management state */
3351 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3352 		pmcsr |= PCI_D0;
3353 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3354 
3355 		/*
3356 		 * The P600 requires a small delay when changing states.
3357 		 * Otherwise we may think the board did not reset and we bail.
3358 		 * This for kdump only and is particular to the P600.
3359 		 */
3360 		msleep(500);
3361 	}
3362 	return 0;
3363 }
3364 
3365 static __devinit void init_driver_version(char *driver_version, int len)
3366 {
3367 	memset(driver_version, 0, len);
3368 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3369 }
3370 
3371 static __devinit int write_driver_ver_to_cfgtable(
3372 	struct CfgTable __iomem *cfgtable)
3373 {
3374 	char *driver_version;
3375 	int i, size = sizeof(cfgtable->driver_version);
3376 
3377 	driver_version = kmalloc(size, GFP_KERNEL);
3378 	if (!driver_version)
3379 		return -ENOMEM;
3380 
3381 	init_driver_version(driver_version, size);
3382 	for (i = 0; i < size; i++)
3383 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3384 	kfree(driver_version);
3385 	return 0;
3386 }
3387 
3388 static __devinit void read_driver_ver_from_cfgtable(
3389 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3390 {
3391 	int i;
3392 
3393 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3394 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3395 }
3396 
3397 static __devinit int controller_reset_failed(
3398 	struct CfgTable __iomem *cfgtable)
3399 {
3400 
3401 	char *driver_ver, *old_driver_ver;
3402 	int rc, size = sizeof(cfgtable->driver_version);
3403 
3404 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3405 	if (!old_driver_ver)
3406 		return -ENOMEM;
3407 	driver_ver = old_driver_ver + size;
3408 
3409 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3410 	 * should have been changed, otherwise we know the reset failed.
3411 	 */
3412 	init_driver_version(old_driver_ver, size);
3413 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3414 	rc = !memcmp(driver_ver, old_driver_ver, size);
3415 	kfree(old_driver_ver);
3416 	return rc;
3417 }
3418 /* This does a hard reset of the controller using PCI power management
3419  * states or the using the doorbell register.
3420  */
3421 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3422 {
3423 	u64 cfg_offset;
3424 	u32 cfg_base_addr;
3425 	u64 cfg_base_addr_index;
3426 	void __iomem *vaddr;
3427 	unsigned long paddr;
3428 	u32 misc_fw_support;
3429 	int rc;
3430 	struct CfgTable __iomem *cfgtable;
3431 	u32 use_doorbell;
3432 	u32 board_id;
3433 	u16 command_register;
3434 
3435 	/* For controllers as old as the P600, this is very nearly
3436 	 * the same thing as
3437 	 *
3438 	 * pci_save_state(pci_dev);
3439 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3440 	 * pci_set_power_state(pci_dev, PCI_D0);
3441 	 * pci_restore_state(pci_dev);
3442 	 *
3443 	 * For controllers newer than the P600, the pci power state
3444 	 * method of resetting doesn't work so we have another way
3445 	 * using the doorbell register.
3446 	 */
3447 
3448 	rc = hpsa_lookup_board_id(pdev, &board_id);
3449 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3450 		dev_warn(&pdev->dev, "Not resetting device.\n");
3451 		return -ENODEV;
3452 	}
3453 
3454 	/* if controller is soft- but not hard resettable... */
3455 	if (!ctlr_is_hard_resettable(board_id))
3456 		return -ENOTSUPP; /* try soft reset later. */
3457 
3458 	/* Save the PCI command register */
3459 	pci_read_config_word(pdev, 4, &command_register);
3460 	/* Turn the board off.  This is so that later pci_restore_state()
3461 	 * won't turn the board on before the rest of config space is ready.
3462 	 */
3463 	pci_disable_device(pdev);
3464 	pci_save_state(pdev);
3465 
3466 	/* find the first memory BAR, so we can find the cfg table */
3467 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3468 	if (rc)
3469 		return rc;
3470 	vaddr = remap_pci_mem(paddr, 0x250);
3471 	if (!vaddr)
3472 		return -ENOMEM;
3473 
3474 	/* find cfgtable in order to check if reset via doorbell is supported */
3475 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3476 					&cfg_base_addr_index, &cfg_offset);
3477 	if (rc)
3478 		goto unmap_vaddr;
3479 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3480 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3481 	if (!cfgtable) {
3482 		rc = -ENOMEM;
3483 		goto unmap_vaddr;
3484 	}
3485 	rc = write_driver_ver_to_cfgtable(cfgtable);
3486 	if (rc)
3487 		goto unmap_vaddr;
3488 
3489 	/* If reset via doorbell register is supported, use that.
3490 	 * There are two such methods.  Favor the newest method.
3491 	 */
3492 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3493 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3494 	if (use_doorbell) {
3495 		use_doorbell = DOORBELL_CTLR_RESET2;
3496 	} else {
3497 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3498 		if (use_doorbell) {
3499 			dev_warn(&pdev->dev, "Soft reset not supported. "
3500 				"Firmware update is required.\n");
3501 			rc = -ENOTSUPP; /* try soft reset */
3502 			goto unmap_cfgtable;
3503 		}
3504 	}
3505 
3506 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3507 	if (rc)
3508 		goto unmap_cfgtable;
3509 
3510 	pci_restore_state(pdev);
3511 	rc = pci_enable_device(pdev);
3512 	if (rc) {
3513 		dev_warn(&pdev->dev, "failed to enable device.\n");
3514 		goto unmap_cfgtable;
3515 	}
3516 	pci_write_config_word(pdev, 4, command_register);
3517 
3518 	/* Some devices (notably the HP Smart Array 5i Controller)
3519 	   need a little pause here */
3520 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3521 
3522 	/* Wait for board to become not ready, then ready. */
3523 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3524 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3525 	if (rc) {
3526 		dev_warn(&pdev->dev,
3527 			"failed waiting for board to reset."
3528 			" Will try soft reset.\n");
3529 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3530 		goto unmap_cfgtable;
3531 	}
3532 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3533 	if (rc) {
3534 		dev_warn(&pdev->dev,
3535 			"failed waiting for board to become ready "
3536 			"after hard reset\n");
3537 		goto unmap_cfgtable;
3538 	}
3539 
3540 	rc = controller_reset_failed(vaddr);
3541 	if (rc < 0)
3542 		goto unmap_cfgtable;
3543 	if (rc) {
3544 		dev_warn(&pdev->dev, "Unable to successfully reset "
3545 			"controller. Will try soft reset.\n");
3546 		rc = -ENOTSUPP;
3547 	} else {
3548 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3549 	}
3550 
3551 unmap_cfgtable:
3552 	iounmap(cfgtable);
3553 
3554 unmap_vaddr:
3555 	iounmap(vaddr);
3556 	return rc;
3557 }
3558 
3559 /*
3560  *  We cannot read the structure directly, for portability we must use
3561  *   the io functions.
3562  *   This is for debug only.
3563  */
3564 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3565 {
3566 #ifdef HPSA_DEBUG
3567 	int i;
3568 	char temp_name[17];
3569 
3570 	dev_info(dev, "Controller Configuration information\n");
3571 	dev_info(dev, "------------------------------------\n");
3572 	for (i = 0; i < 4; i++)
3573 		temp_name[i] = readb(&(tb->Signature[i]));
3574 	temp_name[4] = '\0';
3575 	dev_info(dev, "   Signature = %s\n", temp_name);
3576 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3577 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3578 	       readl(&(tb->TransportSupport)));
3579 	dev_info(dev, "   Transport methods active = 0x%x\n",
3580 	       readl(&(tb->TransportActive)));
3581 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3582 	       readl(&(tb->HostWrite.TransportRequest)));
3583 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3584 	       readl(&(tb->HostWrite.CoalIntDelay)));
3585 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3586 	       readl(&(tb->HostWrite.CoalIntCount)));
3587 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3588 	       readl(&(tb->CmdsOutMax)));
3589 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3590 	for (i = 0; i < 16; i++)
3591 		temp_name[i] = readb(&(tb->ServerName[i]));
3592 	temp_name[16] = '\0';
3593 	dev_info(dev, "   Server Name = %s\n", temp_name);
3594 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3595 		readl(&(tb->HeartBeat)));
3596 #endif				/* HPSA_DEBUG */
3597 }
3598 
3599 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3600 {
3601 	int i, offset, mem_type, bar_type;
3602 
3603 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3604 		return 0;
3605 	offset = 0;
3606 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3607 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3608 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3609 			offset += 4;
3610 		else {
3611 			mem_type = pci_resource_flags(pdev, i) &
3612 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3613 			switch (mem_type) {
3614 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3615 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3616 				offset += 4;	/* 32 bit */
3617 				break;
3618 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3619 				offset += 8;
3620 				break;
3621 			default:	/* reserved in PCI 2.2 */
3622 				dev_warn(&pdev->dev,
3623 				       "base address is invalid\n");
3624 				return -1;
3625 				break;
3626 			}
3627 		}
3628 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3629 			return i + 1;
3630 	}
3631 	return -1;
3632 }
3633 
3634 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3635  * controllers that are capable. If not, we use IO-APIC mode.
3636  */
3637 
3638 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3639 {
3640 #ifdef CONFIG_PCI_MSI
3641 	int err;
3642 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3643 	{0, 2}, {0, 3}
3644 	};
3645 
3646 	/* Some boards advertise MSI but don't really support it */
3647 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3648 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3649 		goto default_int_mode;
3650 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3651 		dev_info(&h->pdev->dev, "MSIX\n");
3652 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3653 		if (!err) {
3654 			h->intr[0] = hpsa_msix_entries[0].vector;
3655 			h->intr[1] = hpsa_msix_entries[1].vector;
3656 			h->intr[2] = hpsa_msix_entries[2].vector;
3657 			h->intr[3] = hpsa_msix_entries[3].vector;
3658 			h->msix_vector = 1;
3659 			return;
3660 		}
3661 		if (err > 0) {
3662 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3663 			       "available\n", err);
3664 			goto default_int_mode;
3665 		} else {
3666 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3667 			       err);
3668 			goto default_int_mode;
3669 		}
3670 	}
3671 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3672 		dev_info(&h->pdev->dev, "MSI\n");
3673 		if (!pci_enable_msi(h->pdev))
3674 			h->msi_vector = 1;
3675 		else
3676 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3677 	}
3678 default_int_mode:
3679 #endif				/* CONFIG_PCI_MSI */
3680 	/* if we get here we're going to use the default interrupt mode */
3681 	h->intr[h->intr_mode] = h->pdev->irq;
3682 }
3683 
3684 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3685 {
3686 	int i;
3687 	u32 subsystem_vendor_id, subsystem_device_id;
3688 
3689 	subsystem_vendor_id = pdev->subsystem_vendor;
3690 	subsystem_device_id = pdev->subsystem_device;
3691 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3692 		    subsystem_vendor_id;
3693 
3694 	for (i = 0; i < ARRAY_SIZE(products); i++)
3695 		if (*board_id == products[i].board_id)
3696 			return i;
3697 
3698 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3699 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3700 		!hpsa_allow_any) {
3701 		dev_warn(&pdev->dev, "unrecognized board ID: "
3702 			"0x%08x, ignoring.\n", *board_id);
3703 			return -ENODEV;
3704 	}
3705 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3706 }
3707 
3708 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3709 {
3710 	u16 command;
3711 
3712 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3713 	return ((command & PCI_COMMAND_MEMORY) == 0);
3714 }
3715 
3716 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3717 	unsigned long *memory_bar)
3718 {
3719 	int i;
3720 
3721 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3722 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3723 			/* addressing mode bits already removed */
3724 			*memory_bar = pci_resource_start(pdev, i);
3725 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3726 				*memory_bar);
3727 			return 0;
3728 		}
3729 	dev_warn(&pdev->dev, "no memory BAR found\n");
3730 	return -ENODEV;
3731 }
3732 
3733 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3734 	void __iomem *vaddr, int wait_for_ready)
3735 {
3736 	int i, iterations;
3737 	u32 scratchpad;
3738 	if (wait_for_ready)
3739 		iterations = HPSA_BOARD_READY_ITERATIONS;
3740 	else
3741 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3742 
3743 	for (i = 0; i < iterations; i++) {
3744 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3745 		if (wait_for_ready) {
3746 			if (scratchpad == HPSA_FIRMWARE_READY)
3747 				return 0;
3748 		} else {
3749 			if (scratchpad != HPSA_FIRMWARE_READY)
3750 				return 0;
3751 		}
3752 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3753 	}
3754 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3755 	return -ENODEV;
3756 }
3757 
3758 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3759 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3760 	u64 *cfg_offset)
3761 {
3762 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3763 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3764 	*cfg_base_addr &= (u32) 0x0000ffff;
3765 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3766 	if (*cfg_base_addr_index == -1) {
3767 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3768 		return -ENODEV;
3769 	}
3770 	return 0;
3771 }
3772 
3773 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3774 {
3775 	u64 cfg_offset;
3776 	u32 cfg_base_addr;
3777 	u64 cfg_base_addr_index;
3778 	u32 trans_offset;
3779 	int rc;
3780 
3781 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3782 		&cfg_base_addr_index, &cfg_offset);
3783 	if (rc)
3784 		return rc;
3785 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3786 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3787 	if (!h->cfgtable)
3788 		return -ENOMEM;
3789 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3790 	if (rc)
3791 		return rc;
3792 	/* Find performant mode table. */
3793 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3794 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3795 				cfg_base_addr_index)+cfg_offset+trans_offset,
3796 				sizeof(*h->transtable));
3797 	if (!h->transtable)
3798 		return -ENOMEM;
3799 	return 0;
3800 }
3801 
3802 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3803 {
3804 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3805 
3806 	/* Limit commands in memory limited kdump scenario. */
3807 	if (reset_devices && h->max_commands > 32)
3808 		h->max_commands = 32;
3809 
3810 	if (h->max_commands < 16) {
3811 		dev_warn(&h->pdev->dev, "Controller reports "
3812 			"max supported commands of %d, an obvious lie. "
3813 			"Using 16.  Ensure that firmware is up to date.\n",
3814 			h->max_commands);
3815 		h->max_commands = 16;
3816 	}
3817 }
3818 
3819 /* Interrogate the hardware for some limits:
3820  * max commands, max SG elements without chaining, and with chaining,
3821  * SG chain block size, etc.
3822  */
3823 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3824 {
3825 	hpsa_get_max_perf_mode_cmds(h);
3826 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3827 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3828 	/*
3829 	 * Limit in-command s/g elements to 32 save dma'able memory.
3830 	 * Howvever spec says if 0, use 31
3831 	 */
3832 	h->max_cmd_sg_entries = 31;
3833 	if (h->maxsgentries > 512) {
3834 		h->max_cmd_sg_entries = 32;
3835 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3836 		h->maxsgentries--; /* save one for chain pointer */
3837 	} else {
3838 		h->maxsgentries = 31; /* default to traditional values */
3839 		h->chainsize = 0;
3840 	}
3841 }
3842 
3843 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3844 {
3845 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3846 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3847 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3848 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3849 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3850 		return false;
3851 	}
3852 	return true;
3853 }
3854 
3855 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3856 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3857 {
3858 #ifdef CONFIG_X86
3859 	u32 prefetch;
3860 
3861 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3862 	prefetch |= 0x100;
3863 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3864 #endif
3865 }
3866 
3867 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3868  * in a prefetch beyond physical memory.
3869  */
3870 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3871 {
3872 	u32 dma_prefetch;
3873 
3874 	if (h->board_id != 0x3225103C)
3875 		return;
3876 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3877 	dma_prefetch |= 0x8000;
3878 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3879 }
3880 
3881 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3882 {
3883 	int i;
3884 	u32 doorbell_value;
3885 	unsigned long flags;
3886 
3887 	/* under certain very rare conditions, this can take awhile.
3888 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3889 	 * as we enter this code.)
3890 	 */
3891 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3892 		spin_lock_irqsave(&h->lock, flags);
3893 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3894 		spin_unlock_irqrestore(&h->lock, flags);
3895 		if (!(doorbell_value & CFGTBL_ChangeReq))
3896 			break;
3897 		/* delay and try again */
3898 		usleep_range(10000, 20000);
3899 	}
3900 }
3901 
3902 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3903 {
3904 	u32 trans_support;
3905 
3906 	trans_support = readl(&(h->cfgtable->TransportSupport));
3907 	if (!(trans_support & SIMPLE_MODE))
3908 		return -ENOTSUPP;
3909 
3910 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3911 	/* Update the field, and then ring the doorbell */
3912 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3913 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3914 	hpsa_wait_for_mode_change_ack(h);
3915 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3916 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3917 		dev_warn(&h->pdev->dev,
3918 			"unable to get board into simple mode\n");
3919 		return -ENODEV;
3920 	}
3921 	h->transMethod = CFGTBL_Trans_Simple;
3922 	return 0;
3923 }
3924 
3925 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3926 {
3927 	int prod_index, err;
3928 
3929 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3930 	if (prod_index < 0)
3931 		return -ENODEV;
3932 	h->product_name = products[prod_index].product_name;
3933 	h->access = *(products[prod_index].access);
3934 
3935 	if (hpsa_board_disabled(h->pdev)) {
3936 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3937 		return -ENODEV;
3938 	}
3939 
3940 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3941 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3942 
3943 	err = pci_enable_device(h->pdev);
3944 	if (err) {
3945 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3946 		return err;
3947 	}
3948 
3949 	err = pci_request_regions(h->pdev, HPSA);
3950 	if (err) {
3951 		dev_err(&h->pdev->dev,
3952 			"cannot obtain PCI resources, aborting\n");
3953 		return err;
3954 	}
3955 	hpsa_interrupt_mode(h);
3956 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3957 	if (err)
3958 		goto err_out_free_res;
3959 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3960 	if (!h->vaddr) {
3961 		err = -ENOMEM;
3962 		goto err_out_free_res;
3963 	}
3964 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3965 	if (err)
3966 		goto err_out_free_res;
3967 	err = hpsa_find_cfgtables(h);
3968 	if (err)
3969 		goto err_out_free_res;
3970 	hpsa_find_board_params(h);
3971 
3972 	if (!hpsa_CISS_signature_present(h)) {
3973 		err = -ENODEV;
3974 		goto err_out_free_res;
3975 	}
3976 	hpsa_enable_scsi_prefetch(h);
3977 	hpsa_p600_dma_prefetch_quirk(h);
3978 	err = hpsa_enter_simple_mode(h);
3979 	if (err)
3980 		goto err_out_free_res;
3981 	return 0;
3982 
3983 err_out_free_res:
3984 	if (h->transtable)
3985 		iounmap(h->transtable);
3986 	if (h->cfgtable)
3987 		iounmap(h->cfgtable);
3988 	if (h->vaddr)
3989 		iounmap(h->vaddr);
3990 	/*
3991 	 * Deliberately omit pci_disable_device(): it does something nasty to
3992 	 * Smart Array controllers that pci_enable_device does not undo
3993 	 */
3994 	pci_release_regions(h->pdev);
3995 	return err;
3996 }
3997 
3998 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3999 {
4000 	int rc;
4001 
4002 #define HBA_INQUIRY_BYTE_COUNT 64
4003 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4004 	if (!h->hba_inquiry_data)
4005 		return;
4006 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4007 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4008 	if (rc != 0) {
4009 		kfree(h->hba_inquiry_data);
4010 		h->hba_inquiry_data = NULL;
4011 	}
4012 }
4013 
4014 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4015 {
4016 	int rc, i;
4017 
4018 	if (!reset_devices)
4019 		return 0;
4020 
4021 	/* Reset the controller with a PCI power-cycle or via doorbell */
4022 	rc = hpsa_kdump_hard_reset_controller(pdev);
4023 
4024 	/* -ENOTSUPP here means we cannot reset the controller
4025 	 * but it's already (and still) up and running in
4026 	 * "performant mode".  Or, it might be 640x, which can't reset
4027 	 * due to concerns about shared bbwc between 6402/6404 pair.
4028 	 */
4029 	if (rc == -ENOTSUPP)
4030 		return rc; /* just try to do the kdump anyhow. */
4031 	if (rc)
4032 		return -ENODEV;
4033 
4034 	/* Now try to get the controller to respond to a no-op */
4035 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4036 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4037 		if (hpsa_noop(pdev) == 0)
4038 			break;
4039 		else
4040 			dev_warn(&pdev->dev, "no-op failed%s\n",
4041 					(i < 11 ? "; re-trying" : ""));
4042 	}
4043 	return 0;
4044 }
4045 
4046 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4047 {
4048 	h->cmd_pool_bits = kzalloc(
4049 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4050 		sizeof(unsigned long), GFP_KERNEL);
4051 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4052 		    h->nr_cmds * sizeof(*h->cmd_pool),
4053 		    &(h->cmd_pool_dhandle));
4054 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4055 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4056 		    &(h->errinfo_pool_dhandle));
4057 	if ((h->cmd_pool_bits == NULL)
4058 	    || (h->cmd_pool == NULL)
4059 	    || (h->errinfo_pool == NULL)) {
4060 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4061 		return -ENOMEM;
4062 	}
4063 	return 0;
4064 }
4065 
4066 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4067 {
4068 	kfree(h->cmd_pool_bits);
4069 	if (h->cmd_pool)
4070 		pci_free_consistent(h->pdev,
4071 			    h->nr_cmds * sizeof(struct CommandList),
4072 			    h->cmd_pool, h->cmd_pool_dhandle);
4073 	if (h->errinfo_pool)
4074 		pci_free_consistent(h->pdev,
4075 			    h->nr_cmds * sizeof(struct ErrorInfo),
4076 			    h->errinfo_pool,
4077 			    h->errinfo_pool_dhandle);
4078 }
4079 
4080 static int hpsa_request_irq(struct ctlr_info *h,
4081 	irqreturn_t (*msixhandler)(int, void *),
4082 	irqreturn_t (*intxhandler)(int, void *))
4083 {
4084 	int rc;
4085 
4086 	if (h->msix_vector || h->msi_vector)
4087 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4088 				0, h->devname, h);
4089 	else
4090 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4091 				IRQF_SHARED, h->devname, h);
4092 	if (rc) {
4093 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4094 		       h->intr[h->intr_mode], h->devname);
4095 		return -ENODEV;
4096 	}
4097 	return 0;
4098 }
4099 
4100 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4101 {
4102 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4103 		HPSA_RESET_TYPE_CONTROLLER)) {
4104 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4105 		return -EIO;
4106 	}
4107 
4108 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4109 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4110 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4111 		return -1;
4112 	}
4113 
4114 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4115 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4116 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4117 			"after soft reset.\n");
4118 		return -1;
4119 	}
4120 
4121 	return 0;
4122 }
4123 
4124 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4125 {
4126 	free_irq(h->intr[h->intr_mode], h);
4127 #ifdef CONFIG_PCI_MSI
4128 	if (h->msix_vector)
4129 		pci_disable_msix(h->pdev);
4130 	else if (h->msi_vector)
4131 		pci_disable_msi(h->pdev);
4132 #endif /* CONFIG_PCI_MSI */
4133 	hpsa_free_sg_chain_blocks(h);
4134 	hpsa_free_cmd_pool(h);
4135 	kfree(h->blockFetchTable);
4136 	pci_free_consistent(h->pdev, h->reply_pool_size,
4137 		h->reply_pool, h->reply_pool_dhandle);
4138 	if (h->vaddr)
4139 		iounmap(h->vaddr);
4140 	if (h->transtable)
4141 		iounmap(h->transtable);
4142 	if (h->cfgtable)
4143 		iounmap(h->cfgtable);
4144 	pci_release_regions(h->pdev);
4145 	kfree(h);
4146 }
4147 
4148 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4149 {
4150 	assert_spin_locked(&lockup_detector_lock);
4151 	if (!hpsa_lockup_detector)
4152 		return;
4153 	if (h->lockup_detected)
4154 		return; /* already stopped the lockup detector */
4155 	list_del(&h->lockup_list);
4156 }
4157 
4158 /* Called when controller lockup detected. */
4159 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4160 {
4161 	struct CommandList *c = NULL;
4162 
4163 	assert_spin_locked(&h->lock);
4164 	/* Mark all outstanding commands as failed and complete them. */
4165 	while (!list_empty(list)) {
4166 		c = list_entry(list->next, struct CommandList, list);
4167 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4168 		finish_cmd(c, c->Header.Tag.lower);
4169 	}
4170 }
4171 
4172 static void controller_lockup_detected(struct ctlr_info *h)
4173 {
4174 	unsigned long flags;
4175 
4176 	assert_spin_locked(&lockup_detector_lock);
4177 	remove_ctlr_from_lockup_detector_list(h);
4178 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4179 	spin_lock_irqsave(&h->lock, flags);
4180 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4181 	spin_unlock_irqrestore(&h->lock, flags);
4182 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4183 			h->lockup_detected);
4184 	pci_disable_device(h->pdev);
4185 	spin_lock_irqsave(&h->lock, flags);
4186 	fail_all_cmds_on_list(h, &h->cmpQ);
4187 	fail_all_cmds_on_list(h, &h->reqQ);
4188 	spin_unlock_irqrestore(&h->lock, flags);
4189 }
4190 
4191 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4192 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4193 
4194 static void detect_controller_lockup(struct ctlr_info *h)
4195 {
4196 	u64 now;
4197 	u32 heartbeat;
4198 	unsigned long flags;
4199 
4200 	assert_spin_locked(&lockup_detector_lock);
4201 	now = get_jiffies_64();
4202 	/* If we've received an interrupt recently, we're ok. */
4203 	if (time_after64(h->last_intr_timestamp +
4204 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4205 		return;
4206 
4207 	/*
4208 	 * If we've already checked the heartbeat recently, we're ok.
4209 	 * This could happen if someone sends us a signal. We
4210 	 * otherwise don't care about signals in this thread.
4211 	 */
4212 	if (time_after64(h->last_heartbeat_timestamp +
4213 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4214 		return;
4215 
4216 	/* If heartbeat has not changed since we last looked, we're not ok. */
4217 	spin_lock_irqsave(&h->lock, flags);
4218 	heartbeat = readl(&h->cfgtable->HeartBeat);
4219 	spin_unlock_irqrestore(&h->lock, flags);
4220 	if (h->last_heartbeat == heartbeat) {
4221 		controller_lockup_detected(h);
4222 		return;
4223 	}
4224 
4225 	/* We're ok. */
4226 	h->last_heartbeat = heartbeat;
4227 	h->last_heartbeat_timestamp = now;
4228 }
4229 
4230 static int detect_controller_lockup_thread(void *notused)
4231 {
4232 	struct ctlr_info *h;
4233 	unsigned long flags;
4234 
4235 	while (1) {
4236 		struct list_head *this, *tmp;
4237 
4238 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4239 		if (kthread_should_stop())
4240 			break;
4241 		spin_lock_irqsave(&lockup_detector_lock, flags);
4242 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4243 			h = list_entry(this, struct ctlr_info, lockup_list);
4244 			detect_controller_lockup(h);
4245 		}
4246 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4247 	}
4248 	return 0;
4249 }
4250 
4251 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4252 {
4253 	unsigned long flags;
4254 
4255 	spin_lock_irqsave(&lockup_detector_lock, flags);
4256 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4257 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4258 }
4259 
4260 static void start_controller_lockup_detector(struct ctlr_info *h)
4261 {
4262 	/* Start the lockup detector thread if not already started */
4263 	if (!hpsa_lockup_detector) {
4264 		spin_lock_init(&lockup_detector_lock);
4265 		hpsa_lockup_detector =
4266 			kthread_run(detect_controller_lockup_thread,
4267 						NULL, HPSA);
4268 	}
4269 	if (!hpsa_lockup_detector) {
4270 		dev_warn(&h->pdev->dev,
4271 			"Could not start lockup detector thread\n");
4272 		return;
4273 	}
4274 	add_ctlr_to_lockup_detector_list(h);
4275 }
4276 
4277 static void stop_controller_lockup_detector(struct ctlr_info *h)
4278 {
4279 	unsigned long flags;
4280 
4281 	spin_lock_irqsave(&lockup_detector_lock, flags);
4282 	remove_ctlr_from_lockup_detector_list(h);
4283 	/* If the list of ctlr's to monitor is empty, stop the thread */
4284 	if (list_empty(&hpsa_ctlr_list)) {
4285 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4286 		kthread_stop(hpsa_lockup_detector);
4287 		spin_lock_irqsave(&lockup_detector_lock, flags);
4288 		hpsa_lockup_detector = NULL;
4289 	}
4290 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4291 }
4292 
4293 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4294 				    const struct pci_device_id *ent)
4295 {
4296 	int dac, rc;
4297 	struct ctlr_info *h;
4298 	int try_soft_reset = 0;
4299 	unsigned long flags;
4300 
4301 	if (number_of_controllers == 0)
4302 		printk(KERN_INFO DRIVER_NAME "\n");
4303 
4304 	rc = hpsa_init_reset_devices(pdev);
4305 	if (rc) {
4306 		if (rc != -ENOTSUPP)
4307 			return rc;
4308 		/* If the reset fails in a particular way (it has no way to do
4309 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4310 		 * a soft reset once we get the controller configured up to the
4311 		 * point that it can accept a command.
4312 		 */
4313 		try_soft_reset = 1;
4314 		rc = 0;
4315 	}
4316 
4317 reinit_after_soft_reset:
4318 
4319 	/* Command structures must be aligned on a 32-byte boundary because
4320 	 * the 5 lower bits of the address are used by the hardware. and by
4321 	 * the driver.  See comments in hpsa.h for more info.
4322 	 */
4323 #define COMMANDLIST_ALIGNMENT 32
4324 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4325 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4326 	if (!h)
4327 		return -ENOMEM;
4328 
4329 	h->pdev = pdev;
4330 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4331 	INIT_LIST_HEAD(&h->cmpQ);
4332 	INIT_LIST_HEAD(&h->reqQ);
4333 	spin_lock_init(&h->lock);
4334 	spin_lock_init(&h->scan_lock);
4335 	rc = hpsa_pci_init(h);
4336 	if (rc != 0)
4337 		goto clean1;
4338 
4339 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4340 	h->ctlr = number_of_controllers;
4341 	number_of_controllers++;
4342 
4343 	/* configure PCI DMA stuff */
4344 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4345 	if (rc == 0) {
4346 		dac = 1;
4347 	} else {
4348 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4349 		if (rc == 0) {
4350 			dac = 0;
4351 		} else {
4352 			dev_err(&pdev->dev, "no suitable DMA available\n");
4353 			goto clean1;
4354 		}
4355 	}
4356 
4357 	/* make sure the board interrupts are off */
4358 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4359 
4360 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4361 		goto clean2;
4362 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4363 	       h->devname, pdev->device,
4364 	       h->intr[h->intr_mode], dac ? "" : " not");
4365 	if (hpsa_allocate_cmd_pool(h))
4366 		goto clean4;
4367 	if (hpsa_allocate_sg_chain_blocks(h))
4368 		goto clean4;
4369 	init_waitqueue_head(&h->scan_wait_queue);
4370 	h->scan_finished = 1; /* no scan currently in progress */
4371 
4372 	pci_set_drvdata(pdev, h);
4373 	h->ndevices = 0;
4374 	h->scsi_host = NULL;
4375 	spin_lock_init(&h->devlock);
4376 	hpsa_put_ctlr_into_performant_mode(h);
4377 
4378 	/* At this point, the controller is ready to take commands.
4379 	 * Now, if reset_devices and the hard reset didn't work, try
4380 	 * the soft reset and see if that works.
4381 	 */
4382 	if (try_soft_reset) {
4383 
4384 		/* This is kind of gross.  We may or may not get a completion
4385 		 * from the soft reset command, and if we do, then the value
4386 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4387 		 * after the reset throwing away any completions we get during
4388 		 * that time.  Unregister the interrupt handler and register
4389 		 * fake ones to scoop up any residual completions.
4390 		 */
4391 		spin_lock_irqsave(&h->lock, flags);
4392 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4393 		spin_unlock_irqrestore(&h->lock, flags);
4394 		free_irq(h->intr[h->intr_mode], h);
4395 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4396 					hpsa_intx_discard_completions);
4397 		if (rc) {
4398 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4399 				"soft reset.\n");
4400 			goto clean4;
4401 		}
4402 
4403 		rc = hpsa_kdump_soft_reset(h);
4404 		if (rc)
4405 			/* Neither hard nor soft reset worked, we're hosed. */
4406 			goto clean4;
4407 
4408 		dev_info(&h->pdev->dev, "Board READY.\n");
4409 		dev_info(&h->pdev->dev,
4410 			"Waiting for stale completions to drain.\n");
4411 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4412 		msleep(10000);
4413 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4414 
4415 		rc = controller_reset_failed(h->cfgtable);
4416 		if (rc)
4417 			dev_info(&h->pdev->dev,
4418 				"Soft reset appears to have failed.\n");
4419 
4420 		/* since the controller's reset, we have to go back and re-init
4421 		 * everything.  Easiest to just forget what we've done and do it
4422 		 * all over again.
4423 		 */
4424 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4425 		try_soft_reset = 0;
4426 		if (rc)
4427 			/* don't go to clean4, we already unallocated */
4428 			return -ENODEV;
4429 
4430 		goto reinit_after_soft_reset;
4431 	}
4432 
4433 	/* Turn the interrupts on so we can service requests */
4434 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4435 
4436 	hpsa_hba_inquiry(h);
4437 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4438 	start_controller_lockup_detector(h);
4439 	return 1;
4440 
4441 clean4:
4442 	hpsa_free_sg_chain_blocks(h);
4443 	hpsa_free_cmd_pool(h);
4444 	free_irq(h->intr[h->intr_mode], h);
4445 clean2:
4446 clean1:
4447 	kfree(h);
4448 	return rc;
4449 }
4450 
4451 static void hpsa_flush_cache(struct ctlr_info *h)
4452 {
4453 	char *flush_buf;
4454 	struct CommandList *c;
4455 
4456 	flush_buf = kzalloc(4, GFP_KERNEL);
4457 	if (!flush_buf)
4458 		return;
4459 
4460 	c = cmd_special_alloc(h);
4461 	if (!c) {
4462 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4463 		goto out_of_memory;
4464 	}
4465 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4466 		RAID_CTLR_LUNID, TYPE_CMD);
4467 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4468 	if (c->err_info->CommandStatus != 0)
4469 		dev_warn(&h->pdev->dev,
4470 			"error flushing cache on controller\n");
4471 	cmd_special_free(h, c);
4472 out_of_memory:
4473 	kfree(flush_buf);
4474 }
4475 
4476 static void hpsa_shutdown(struct pci_dev *pdev)
4477 {
4478 	struct ctlr_info *h;
4479 
4480 	h = pci_get_drvdata(pdev);
4481 	/* Turn board interrupts off  and send the flush cache command
4482 	 * sendcmd will turn off interrupt, and send the flush...
4483 	 * To write all data in the battery backed cache to disks
4484 	 */
4485 	hpsa_flush_cache(h);
4486 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4487 	free_irq(h->intr[h->intr_mode], h);
4488 #ifdef CONFIG_PCI_MSI
4489 	if (h->msix_vector)
4490 		pci_disable_msix(h->pdev);
4491 	else if (h->msi_vector)
4492 		pci_disable_msi(h->pdev);
4493 #endif				/* CONFIG_PCI_MSI */
4494 }
4495 
4496 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4497 {
4498 	int i;
4499 
4500 	for (i = 0; i < h->ndevices; i++)
4501 		kfree(h->dev[i]);
4502 }
4503 
4504 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4505 {
4506 	struct ctlr_info *h;
4507 
4508 	if (pci_get_drvdata(pdev) == NULL) {
4509 		dev_err(&pdev->dev, "unable to remove device\n");
4510 		return;
4511 	}
4512 	h = pci_get_drvdata(pdev);
4513 	stop_controller_lockup_detector(h);
4514 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4515 	hpsa_shutdown(pdev);
4516 	iounmap(h->vaddr);
4517 	iounmap(h->transtable);
4518 	iounmap(h->cfgtable);
4519 	hpsa_free_device_info(h);
4520 	hpsa_free_sg_chain_blocks(h);
4521 	pci_free_consistent(h->pdev,
4522 		h->nr_cmds * sizeof(struct CommandList),
4523 		h->cmd_pool, h->cmd_pool_dhandle);
4524 	pci_free_consistent(h->pdev,
4525 		h->nr_cmds * sizeof(struct ErrorInfo),
4526 		h->errinfo_pool, h->errinfo_pool_dhandle);
4527 	pci_free_consistent(h->pdev, h->reply_pool_size,
4528 		h->reply_pool, h->reply_pool_dhandle);
4529 	kfree(h->cmd_pool_bits);
4530 	kfree(h->blockFetchTable);
4531 	kfree(h->hba_inquiry_data);
4532 	/*
4533 	 * Deliberately omit pci_disable_device(): it does something nasty to
4534 	 * Smart Array controllers that pci_enable_device does not undo
4535 	 */
4536 	pci_release_regions(pdev);
4537 	pci_set_drvdata(pdev, NULL);
4538 	kfree(h);
4539 }
4540 
4541 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4542 	__attribute__((unused)) pm_message_t state)
4543 {
4544 	return -ENOSYS;
4545 }
4546 
4547 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4548 {
4549 	return -ENOSYS;
4550 }
4551 
4552 static struct pci_driver hpsa_pci_driver = {
4553 	.name = HPSA,
4554 	.probe = hpsa_init_one,
4555 	.remove = __devexit_p(hpsa_remove_one),
4556 	.id_table = hpsa_pci_device_id,	/* id_table */
4557 	.shutdown = hpsa_shutdown,
4558 	.suspend = hpsa_suspend,
4559 	.resume = hpsa_resume,
4560 };
4561 
4562 /* Fill in bucket_map[], given nsgs (the max number of
4563  * scatter gather elements supported) and bucket[],
4564  * which is an array of 8 integers.  The bucket[] array
4565  * contains 8 different DMA transfer sizes (in 16
4566  * byte increments) which the controller uses to fetch
4567  * commands.  This function fills in bucket_map[], which
4568  * maps a given number of scatter gather elements to one of
4569  * the 8 DMA transfer sizes.  The point of it is to allow the
4570  * controller to only do as much DMA as needed to fetch the
4571  * command, with the DMA transfer size encoded in the lower
4572  * bits of the command address.
4573  */
4574 static void  calc_bucket_map(int bucket[], int num_buckets,
4575 	int nsgs, int *bucket_map)
4576 {
4577 	int i, j, b, size;
4578 
4579 	/* even a command with 0 SGs requires 4 blocks */
4580 #define MINIMUM_TRANSFER_BLOCKS 4
4581 #define NUM_BUCKETS 8
4582 	/* Note, bucket_map must have nsgs+1 entries. */
4583 	for (i = 0; i <= nsgs; i++) {
4584 		/* Compute size of a command with i SG entries */
4585 		size = i + MINIMUM_TRANSFER_BLOCKS;
4586 		b = num_buckets; /* Assume the biggest bucket */
4587 		/* Find the bucket that is just big enough */
4588 		for (j = 0; j < 8; j++) {
4589 			if (bucket[j] >= size) {
4590 				b = j;
4591 				break;
4592 			}
4593 		}
4594 		/* for a command with i SG entries, use bucket b. */
4595 		bucket_map[i] = b;
4596 	}
4597 }
4598 
4599 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4600 	u32 use_short_tags)
4601 {
4602 	int i;
4603 	unsigned long register_value;
4604 
4605 	/* This is a bit complicated.  There are 8 registers on
4606 	 * the controller which we write to to tell it 8 different
4607 	 * sizes of commands which there may be.  It's a way of
4608 	 * reducing the DMA done to fetch each command.  Encoded into
4609 	 * each command's tag are 3 bits which communicate to the controller
4610 	 * which of the eight sizes that command fits within.  The size of
4611 	 * each command depends on how many scatter gather entries there are.
4612 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4613 	 * with the number of 16-byte blocks a command of that size requires.
4614 	 * The smallest command possible requires 5 such 16 byte blocks.
4615 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4616 	 * blocks.  Note, this only extends to the SG entries contained
4617 	 * within the command block, and does not extend to chained blocks
4618 	 * of SG elements.   bft[] contains the eight values we write to
4619 	 * the registers.  They are not evenly distributed, but have more
4620 	 * sizes for small commands, and fewer sizes for larger commands.
4621 	 */
4622 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4623 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4624 	/*  5 = 1 s/g entry or 4k
4625 	 *  6 = 2 s/g entry or 8k
4626 	 *  8 = 4 s/g entry or 16k
4627 	 * 10 = 6 s/g entry or 24k
4628 	 */
4629 
4630 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4631 
4632 	/* Controller spec: zero out this buffer. */
4633 	memset(h->reply_pool, 0, h->reply_pool_size);
4634 	h->reply_pool_head = h->reply_pool;
4635 
4636 	bft[7] = SG_ENTRIES_IN_CMD + 4;
4637 	calc_bucket_map(bft, ARRAY_SIZE(bft),
4638 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
4639 	for (i = 0; i < 8; i++)
4640 		writel(bft[i], &h->transtable->BlockFetch[i]);
4641 
4642 	/* size of controller ring buffer */
4643 	writel(h->max_commands, &h->transtable->RepQSize);
4644 	writel(1, &h->transtable->RepQCount);
4645 	writel(0, &h->transtable->RepQCtrAddrLow32);
4646 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4647 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4648 	writel(0, &h->transtable->RepQAddr0High32);
4649 	writel(CFGTBL_Trans_Performant | use_short_tags,
4650 		&(h->cfgtable->HostWrite.TransportRequest));
4651 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4652 	hpsa_wait_for_mode_change_ack(h);
4653 	register_value = readl(&(h->cfgtable->TransportActive));
4654 	if (!(register_value & CFGTBL_Trans_Performant)) {
4655 		dev_warn(&h->pdev->dev, "unable to get board into"
4656 					" performant mode\n");
4657 		return;
4658 	}
4659 	/* Change the access methods to the performant access methods */
4660 	h->access = SA5_performant_access;
4661 	h->transMethod = CFGTBL_Trans_Performant;
4662 }
4663 
4664 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4665 {
4666 	u32 trans_support;
4667 
4668 	if (hpsa_simple_mode)
4669 		return;
4670 
4671 	trans_support = readl(&(h->cfgtable->TransportSupport));
4672 	if (!(trans_support & PERFORMANT_MODE))
4673 		return;
4674 
4675 	hpsa_get_max_perf_mode_cmds(h);
4676 	/* Performant mode ring buffer and supporting data structures */
4677 	h->reply_pool_size = h->max_commands * sizeof(u64);
4678 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4679 				&(h->reply_pool_dhandle));
4680 
4681 	/* Need a block fetch table for performant mode */
4682 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4683 				sizeof(u32)), GFP_KERNEL);
4684 
4685 	if ((h->reply_pool == NULL)
4686 		|| (h->blockFetchTable == NULL))
4687 		goto clean_up;
4688 
4689 	hpsa_enter_performant_mode(h,
4690 		trans_support & CFGTBL_Trans_use_short_tags);
4691 
4692 	return;
4693 
4694 clean_up:
4695 	if (h->reply_pool)
4696 		pci_free_consistent(h->pdev, h->reply_pool_size,
4697 			h->reply_pool, h->reply_pool_dhandle);
4698 	kfree(h->blockFetchTable);
4699 }
4700 
4701 /*
4702  *  This is it.  Register the PCI driver information for the cards we control
4703  *  the OS will call our registered routines when it finds one of our cards.
4704  */
4705 static int __init hpsa_init(void)
4706 {
4707 	return pci_register_driver(&hpsa_pci_driver);
4708 }
4709 
4710 static void __exit hpsa_cleanup(void)
4711 {
4712 	pci_unregister_driver(&hpsa_pci_driver);
4713 }
4714 
4715 module_init(hpsa_init);
4716 module_exit(hpsa_cleanup);
4717