xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 5bd8e16d)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334D},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
125 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
126 	{0,}
127 };
128 
129 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
130 
131 /*  board_id = Subsystem Device ID & Vendor ID
132  *  product = Marketing Name for the board
133  *  access = Address of the struct of function pointers
134  */
135 static struct board_type products[] = {
136 	{0x3241103C, "Smart Array P212", &SA5_access},
137 	{0x3243103C, "Smart Array P410", &SA5_access},
138 	{0x3245103C, "Smart Array P410i", &SA5_access},
139 	{0x3247103C, "Smart Array P411", &SA5_access},
140 	{0x3249103C, "Smart Array P812", &SA5_access},
141 	{0x324A103C, "Smart Array P712m", &SA5_access},
142 	{0x324B103C, "Smart Array P711m", &SA5_access},
143 	{0x3350103C, "Smart Array P222", &SA5_access},
144 	{0x3351103C, "Smart Array P420", &SA5_access},
145 	{0x3352103C, "Smart Array P421", &SA5_access},
146 	{0x3353103C, "Smart Array P822", &SA5_access},
147 	{0x334D103C, "Smart Array P822se", &SA5_access},
148 	{0x3354103C, "Smart Array P420i", &SA5_access},
149 	{0x3355103C, "Smart Array P220i", &SA5_access},
150 	{0x3356103C, "Smart Array P721m", &SA5_access},
151 	{0x1921103C, "Smart Array P830i", &SA5_access},
152 	{0x1922103C, "Smart Array P430", &SA5_access},
153 	{0x1923103C, "Smart Array P431", &SA5_access},
154 	{0x1924103C, "Smart Array P830", &SA5_access},
155 	{0x1926103C, "Smart Array P731m", &SA5_access},
156 	{0x1928103C, "Smart Array P230i", &SA5_access},
157 	{0x1929103C, "Smart Array P530", &SA5_access},
158 	{0x21BD103C, "Smart Array", &SA5_access},
159 	{0x21BE103C, "Smart Array", &SA5_access},
160 	{0x21BF103C, "Smart Array", &SA5_access},
161 	{0x21C0103C, "Smart Array", &SA5_access},
162 	{0x21C1103C, "Smart Array", &SA5_access},
163 	{0x21C2103C, "Smart Array", &SA5_access},
164 	{0x21C3103C, "Smart Array", &SA5_access},
165 	{0x21C4103C, "Smart Array", &SA5_access},
166 	{0x21C5103C, "Smart Array", &SA5_access},
167 	{0x21C7103C, "Smart Array", &SA5_access},
168 	{0x21C8103C, "Smart Array", &SA5_access},
169 	{0x21C9103C, "Smart Array", &SA5_access},
170 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
171 };
172 
173 static int number_of_controllers;
174 
175 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
176 static spinlock_t lockup_detector_lock;
177 static struct task_struct *hpsa_lockup_detector;
178 
179 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
180 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
181 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
182 static void start_io(struct ctlr_info *h);
183 
184 #ifdef CONFIG_COMPAT
185 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
186 #endif
187 
188 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
189 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
190 static struct CommandList *cmd_alloc(struct ctlr_info *h);
191 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
192 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
193 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
194 	int cmd_type);
195 
196 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
197 static void hpsa_scan_start(struct Scsi_Host *);
198 static int hpsa_scan_finished(struct Scsi_Host *sh,
199 	unsigned long elapsed_time);
200 static int hpsa_change_queue_depth(struct scsi_device *sdev,
201 	int qdepth, int reason);
202 
203 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
205 static int hpsa_slave_alloc(struct scsi_device *sdev);
206 static void hpsa_slave_destroy(struct scsi_device *sdev);
207 
208 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
209 static int check_for_unit_attention(struct ctlr_info *h,
210 	struct CommandList *c);
211 static void check_ioctl_unit_attention(struct ctlr_info *h,
212 	struct CommandList *c);
213 /* performant mode helper functions */
214 static void calc_bucket_map(int *bucket, int num_buckets,
215 	int nsgs, int *bucket_map);
216 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
217 static inline u32 next_command(struct ctlr_info *h, u8 q);
218 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
219 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
220 			       u64 *cfg_offset);
221 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
222 				    unsigned long *memory_bar);
223 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
224 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
225 				     int wait_for_ready);
226 static inline void finish_cmd(struct CommandList *c);
227 #define BOARD_NOT_READY 0
228 #define BOARD_READY 1
229 
230 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
231 {
232 	unsigned long *priv = shost_priv(sdev->host);
233 	return (struct ctlr_info *) *priv;
234 }
235 
236 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
237 {
238 	unsigned long *priv = shost_priv(sh);
239 	return (struct ctlr_info *) *priv;
240 }
241 
242 static int check_for_unit_attention(struct ctlr_info *h,
243 	struct CommandList *c)
244 {
245 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
246 		return 0;
247 
248 	switch (c->err_info->SenseInfo[12]) {
249 	case STATE_CHANGED:
250 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
251 			"detected, command retried\n", h->ctlr);
252 		break;
253 	case LUN_FAILED:
254 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
255 			"detected, action required\n", h->ctlr);
256 		break;
257 	case REPORT_LUNS_CHANGED:
258 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
259 			"changed, action required\n", h->ctlr);
260 	/*
261 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
262 	 * target (array) devices.
263 	 */
264 		break;
265 	case POWER_OR_RESET:
266 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
267 			"or device reset detected\n", h->ctlr);
268 		break;
269 	case UNIT_ATTENTION_CLEARED:
270 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
271 		    "cleared by another initiator\n", h->ctlr);
272 		break;
273 	default:
274 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
275 			"unit attention detected\n", h->ctlr);
276 		break;
277 	}
278 	return 1;
279 }
280 
281 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
282 {
283 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
284 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
285 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
286 		return 0;
287 	dev_warn(&h->pdev->dev, HPSA "device busy");
288 	return 1;
289 }
290 
291 static ssize_t host_store_rescan(struct device *dev,
292 				 struct device_attribute *attr,
293 				 const char *buf, size_t count)
294 {
295 	struct ctlr_info *h;
296 	struct Scsi_Host *shost = class_to_shost(dev);
297 	h = shost_to_hba(shost);
298 	hpsa_scan_start(h->scsi_host);
299 	return count;
300 }
301 
302 static ssize_t host_show_firmware_revision(struct device *dev,
303 	     struct device_attribute *attr, char *buf)
304 {
305 	struct ctlr_info *h;
306 	struct Scsi_Host *shost = class_to_shost(dev);
307 	unsigned char *fwrev;
308 
309 	h = shost_to_hba(shost);
310 	if (!h->hba_inquiry_data)
311 		return 0;
312 	fwrev = &h->hba_inquiry_data[32];
313 	return snprintf(buf, 20, "%c%c%c%c\n",
314 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
315 }
316 
317 static ssize_t host_show_commands_outstanding(struct device *dev,
318 	     struct device_attribute *attr, char *buf)
319 {
320 	struct Scsi_Host *shost = class_to_shost(dev);
321 	struct ctlr_info *h = shost_to_hba(shost);
322 
323 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
324 }
325 
326 static ssize_t host_show_transport_mode(struct device *dev,
327 	struct device_attribute *attr, char *buf)
328 {
329 	struct ctlr_info *h;
330 	struct Scsi_Host *shost = class_to_shost(dev);
331 
332 	h = shost_to_hba(shost);
333 	return snprintf(buf, 20, "%s\n",
334 		h->transMethod & CFGTBL_Trans_Performant ?
335 			"performant" : "simple");
336 }
337 
338 /* List of controllers which cannot be hard reset on kexec with reset_devices */
339 static u32 unresettable_controller[] = {
340 	0x324a103C, /* Smart Array P712m */
341 	0x324b103C, /* SmartArray P711m */
342 	0x3223103C, /* Smart Array P800 */
343 	0x3234103C, /* Smart Array P400 */
344 	0x3235103C, /* Smart Array P400i */
345 	0x3211103C, /* Smart Array E200i */
346 	0x3212103C, /* Smart Array E200 */
347 	0x3213103C, /* Smart Array E200i */
348 	0x3214103C, /* Smart Array E200i */
349 	0x3215103C, /* Smart Array E200i */
350 	0x3237103C, /* Smart Array E500 */
351 	0x323D103C, /* Smart Array P700m */
352 	0x40800E11, /* Smart Array 5i */
353 	0x409C0E11, /* Smart Array 6400 */
354 	0x409D0E11, /* Smart Array 6400 EM */
355 	0x40700E11, /* Smart Array 5300 */
356 	0x40820E11, /* Smart Array 532 */
357 	0x40830E11, /* Smart Array 5312 */
358 	0x409A0E11, /* Smart Array 641 */
359 	0x409B0E11, /* Smart Array 642 */
360 	0x40910E11, /* Smart Array 6i */
361 };
362 
363 /* List of controllers which cannot even be soft reset */
364 static u32 soft_unresettable_controller[] = {
365 	0x40800E11, /* Smart Array 5i */
366 	0x40700E11, /* Smart Array 5300 */
367 	0x40820E11, /* Smart Array 532 */
368 	0x40830E11, /* Smart Array 5312 */
369 	0x409A0E11, /* Smart Array 641 */
370 	0x409B0E11, /* Smart Array 642 */
371 	0x40910E11, /* Smart Array 6i */
372 	/* Exclude 640x boards.  These are two pci devices in one slot
373 	 * which share a battery backed cache module.  One controls the
374 	 * cache, the other accesses the cache through the one that controls
375 	 * it.  If we reset the one controlling the cache, the other will
376 	 * likely not be happy.  Just forbid resetting this conjoined mess.
377 	 * The 640x isn't really supported by hpsa anyway.
378 	 */
379 	0x409C0E11, /* Smart Array 6400 */
380 	0x409D0E11, /* Smart Array 6400 EM */
381 };
382 
383 static int ctlr_is_hard_resettable(u32 board_id)
384 {
385 	int i;
386 
387 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
388 		if (unresettable_controller[i] == board_id)
389 			return 0;
390 	return 1;
391 }
392 
393 static int ctlr_is_soft_resettable(u32 board_id)
394 {
395 	int i;
396 
397 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
398 		if (soft_unresettable_controller[i] == board_id)
399 			return 0;
400 	return 1;
401 }
402 
403 static int ctlr_is_resettable(u32 board_id)
404 {
405 	return ctlr_is_hard_resettable(board_id) ||
406 		ctlr_is_soft_resettable(board_id);
407 }
408 
409 static ssize_t host_show_resettable(struct device *dev,
410 	struct device_attribute *attr, char *buf)
411 {
412 	struct ctlr_info *h;
413 	struct Scsi_Host *shost = class_to_shost(dev);
414 
415 	h = shost_to_hba(shost);
416 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
417 }
418 
419 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
420 {
421 	return (scsi3addr[3] & 0xC0) == 0x40;
422 }
423 
424 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
425 	"1(ADM)", "UNKNOWN"
426 };
427 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
428 
429 static ssize_t raid_level_show(struct device *dev,
430 	     struct device_attribute *attr, char *buf)
431 {
432 	ssize_t l = 0;
433 	unsigned char rlevel;
434 	struct ctlr_info *h;
435 	struct scsi_device *sdev;
436 	struct hpsa_scsi_dev_t *hdev;
437 	unsigned long flags;
438 
439 	sdev = to_scsi_device(dev);
440 	h = sdev_to_hba(sdev);
441 	spin_lock_irqsave(&h->lock, flags);
442 	hdev = sdev->hostdata;
443 	if (!hdev) {
444 		spin_unlock_irqrestore(&h->lock, flags);
445 		return -ENODEV;
446 	}
447 
448 	/* Is this even a logical drive? */
449 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
450 		spin_unlock_irqrestore(&h->lock, flags);
451 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
452 		return l;
453 	}
454 
455 	rlevel = hdev->raid_level;
456 	spin_unlock_irqrestore(&h->lock, flags);
457 	if (rlevel > RAID_UNKNOWN)
458 		rlevel = RAID_UNKNOWN;
459 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
460 	return l;
461 }
462 
463 static ssize_t lunid_show(struct device *dev,
464 	     struct device_attribute *attr, char *buf)
465 {
466 	struct ctlr_info *h;
467 	struct scsi_device *sdev;
468 	struct hpsa_scsi_dev_t *hdev;
469 	unsigned long flags;
470 	unsigned char lunid[8];
471 
472 	sdev = to_scsi_device(dev);
473 	h = sdev_to_hba(sdev);
474 	spin_lock_irqsave(&h->lock, flags);
475 	hdev = sdev->hostdata;
476 	if (!hdev) {
477 		spin_unlock_irqrestore(&h->lock, flags);
478 		return -ENODEV;
479 	}
480 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
481 	spin_unlock_irqrestore(&h->lock, flags);
482 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
483 		lunid[0], lunid[1], lunid[2], lunid[3],
484 		lunid[4], lunid[5], lunid[6], lunid[7]);
485 }
486 
487 static ssize_t unique_id_show(struct device *dev,
488 	     struct device_attribute *attr, char *buf)
489 {
490 	struct ctlr_info *h;
491 	struct scsi_device *sdev;
492 	struct hpsa_scsi_dev_t *hdev;
493 	unsigned long flags;
494 	unsigned char sn[16];
495 
496 	sdev = to_scsi_device(dev);
497 	h = sdev_to_hba(sdev);
498 	spin_lock_irqsave(&h->lock, flags);
499 	hdev = sdev->hostdata;
500 	if (!hdev) {
501 		spin_unlock_irqrestore(&h->lock, flags);
502 		return -ENODEV;
503 	}
504 	memcpy(sn, hdev->device_id, sizeof(sn));
505 	spin_unlock_irqrestore(&h->lock, flags);
506 	return snprintf(buf, 16 * 2 + 2,
507 			"%02X%02X%02X%02X%02X%02X%02X%02X"
508 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
509 			sn[0], sn[1], sn[2], sn[3],
510 			sn[4], sn[5], sn[6], sn[7],
511 			sn[8], sn[9], sn[10], sn[11],
512 			sn[12], sn[13], sn[14], sn[15]);
513 }
514 
515 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
516 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
517 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
518 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
519 static DEVICE_ATTR(firmware_revision, S_IRUGO,
520 	host_show_firmware_revision, NULL);
521 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
522 	host_show_commands_outstanding, NULL);
523 static DEVICE_ATTR(transport_mode, S_IRUGO,
524 	host_show_transport_mode, NULL);
525 static DEVICE_ATTR(resettable, S_IRUGO,
526 	host_show_resettable, NULL);
527 
528 static struct device_attribute *hpsa_sdev_attrs[] = {
529 	&dev_attr_raid_level,
530 	&dev_attr_lunid,
531 	&dev_attr_unique_id,
532 	NULL,
533 };
534 
535 static struct device_attribute *hpsa_shost_attrs[] = {
536 	&dev_attr_rescan,
537 	&dev_attr_firmware_revision,
538 	&dev_attr_commands_outstanding,
539 	&dev_attr_transport_mode,
540 	&dev_attr_resettable,
541 	NULL,
542 };
543 
544 static struct scsi_host_template hpsa_driver_template = {
545 	.module			= THIS_MODULE,
546 	.name			= HPSA,
547 	.proc_name		= HPSA,
548 	.queuecommand		= hpsa_scsi_queue_command,
549 	.scan_start		= hpsa_scan_start,
550 	.scan_finished		= hpsa_scan_finished,
551 	.change_queue_depth	= hpsa_change_queue_depth,
552 	.this_id		= -1,
553 	.use_clustering		= ENABLE_CLUSTERING,
554 	.eh_abort_handler	= hpsa_eh_abort_handler,
555 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
556 	.ioctl			= hpsa_ioctl,
557 	.slave_alloc		= hpsa_slave_alloc,
558 	.slave_destroy		= hpsa_slave_destroy,
559 #ifdef CONFIG_COMPAT
560 	.compat_ioctl		= hpsa_compat_ioctl,
561 #endif
562 	.sdev_attrs = hpsa_sdev_attrs,
563 	.shost_attrs = hpsa_shost_attrs,
564 	.max_sectors = 8192,
565 };
566 
567 
568 /* Enqueuing and dequeuing functions for cmdlists. */
569 static inline void addQ(struct list_head *list, struct CommandList *c)
570 {
571 	list_add_tail(&c->list, list);
572 }
573 
574 static inline u32 next_command(struct ctlr_info *h, u8 q)
575 {
576 	u32 a;
577 	struct reply_pool *rq = &h->reply_queue[q];
578 	unsigned long flags;
579 
580 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
581 		return h->access.command_completed(h, q);
582 
583 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
584 		a = rq->head[rq->current_entry];
585 		rq->current_entry++;
586 		spin_lock_irqsave(&h->lock, flags);
587 		h->commands_outstanding--;
588 		spin_unlock_irqrestore(&h->lock, flags);
589 	} else {
590 		a = FIFO_EMPTY;
591 	}
592 	/* Check for wraparound */
593 	if (rq->current_entry == h->max_commands) {
594 		rq->current_entry = 0;
595 		rq->wraparound ^= 1;
596 	}
597 	return a;
598 }
599 
600 /* set_performant_mode: Modify the tag for cciss performant
601  * set bit 0 for pull model, bits 3-1 for block fetch
602  * register number
603  */
604 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
605 {
606 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
607 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
608 		if (likely(h->msix_vector))
609 			c->Header.ReplyQueue =
610 				raw_smp_processor_id() % h->nreply_queues;
611 	}
612 }
613 
614 static int is_firmware_flash_cmd(u8 *cdb)
615 {
616 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
617 }
618 
619 /*
620  * During firmware flash, the heartbeat register may not update as frequently
621  * as it should.  So we dial down lockup detection during firmware flash. and
622  * dial it back up when firmware flash completes.
623  */
624 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
625 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
626 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
627 		struct CommandList *c)
628 {
629 	if (!is_firmware_flash_cmd(c->Request.CDB))
630 		return;
631 	atomic_inc(&h->firmware_flash_in_progress);
632 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
633 }
634 
635 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
636 		struct CommandList *c)
637 {
638 	if (is_firmware_flash_cmd(c->Request.CDB) &&
639 		atomic_dec_and_test(&h->firmware_flash_in_progress))
640 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
641 }
642 
643 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
644 	struct CommandList *c)
645 {
646 	unsigned long flags;
647 
648 	set_performant_mode(h, c);
649 	dial_down_lockup_detection_during_fw_flash(h, c);
650 	spin_lock_irqsave(&h->lock, flags);
651 	addQ(&h->reqQ, c);
652 	h->Qdepth++;
653 	spin_unlock_irqrestore(&h->lock, flags);
654 	start_io(h);
655 }
656 
657 static inline void removeQ(struct CommandList *c)
658 {
659 	if (WARN_ON(list_empty(&c->list)))
660 		return;
661 	list_del_init(&c->list);
662 }
663 
664 static inline int is_hba_lunid(unsigned char scsi3addr[])
665 {
666 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
667 }
668 
669 static inline int is_scsi_rev_5(struct ctlr_info *h)
670 {
671 	if (!h->hba_inquiry_data)
672 		return 0;
673 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
674 		return 1;
675 	return 0;
676 }
677 
678 static int hpsa_find_target_lun(struct ctlr_info *h,
679 	unsigned char scsi3addr[], int bus, int *target, int *lun)
680 {
681 	/* finds an unused bus, target, lun for a new physical device
682 	 * assumes h->devlock is held
683 	 */
684 	int i, found = 0;
685 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
686 
687 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
688 
689 	for (i = 0; i < h->ndevices; i++) {
690 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
691 			__set_bit(h->dev[i]->target, lun_taken);
692 	}
693 
694 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
695 	if (i < HPSA_MAX_DEVICES) {
696 		/* *bus = 1; */
697 		*target = i;
698 		*lun = 0;
699 		found = 1;
700 	}
701 	return !found;
702 }
703 
704 /* Add an entry into h->dev[] array. */
705 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
706 		struct hpsa_scsi_dev_t *device,
707 		struct hpsa_scsi_dev_t *added[], int *nadded)
708 {
709 	/* assumes h->devlock is held */
710 	int n = h->ndevices;
711 	int i;
712 	unsigned char addr1[8], addr2[8];
713 	struct hpsa_scsi_dev_t *sd;
714 
715 	if (n >= HPSA_MAX_DEVICES) {
716 		dev_err(&h->pdev->dev, "too many devices, some will be "
717 			"inaccessible.\n");
718 		return -1;
719 	}
720 
721 	/* physical devices do not have lun or target assigned until now. */
722 	if (device->lun != -1)
723 		/* Logical device, lun is already assigned. */
724 		goto lun_assigned;
725 
726 	/* If this device a non-zero lun of a multi-lun device
727 	 * byte 4 of the 8-byte LUN addr will contain the logical
728 	 * unit no, zero otherise.
729 	 */
730 	if (device->scsi3addr[4] == 0) {
731 		/* This is not a non-zero lun of a multi-lun device */
732 		if (hpsa_find_target_lun(h, device->scsi3addr,
733 			device->bus, &device->target, &device->lun) != 0)
734 			return -1;
735 		goto lun_assigned;
736 	}
737 
738 	/* This is a non-zero lun of a multi-lun device.
739 	 * Search through our list and find the device which
740 	 * has the same 8 byte LUN address, excepting byte 4.
741 	 * Assign the same bus and target for this new LUN.
742 	 * Use the logical unit number from the firmware.
743 	 */
744 	memcpy(addr1, device->scsi3addr, 8);
745 	addr1[4] = 0;
746 	for (i = 0; i < n; i++) {
747 		sd = h->dev[i];
748 		memcpy(addr2, sd->scsi3addr, 8);
749 		addr2[4] = 0;
750 		/* differ only in byte 4? */
751 		if (memcmp(addr1, addr2, 8) == 0) {
752 			device->bus = sd->bus;
753 			device->target = sd->target;
754 			device->lun = device->scsi3addr[4];
755 			break;
756 		}
757 	}
758 	if (device->lun == -1) {
759 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
760 			" suspect firmware bug or unsupported hardware "
761 			"configuration.\n");
762 			return -1;
763 	}
764 
765 lun_assigned:
766 
767 	h->dev[n] = device;
768 	h->ndevices++;
769 	added[*nadded] = device;
770 	(*nadded)++;
771 
772 	/* initially, (before registering with scsi layer) we don't
773 	 * know our hostno and we don't want to print anything first
774 	 * time anyway (the scsi layer's inquiries will show that info)
775 	 */
776 	/* if (hostno != -1) */
777 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
778 			scsi_device_type(device->devtype), hostno,
779 			device->bus, device->target, device->lun);
780 	return 0;
781 }
782 
783 /* Update an entry in h->dev[] array. */
784 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
785 	int entry, struct hpsa_scsi_dev_t *new_entry)
786 {
787 	/* assumes h->devlock is held */
788 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
789 
790 	/* Raid level changed. */
791 	h->dev[entry]->raid_level = new_entry->raid_level;
792 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
793 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
794 		new_entry->target, new_entry->lun);
795 }
796 
797 /* Replace an entry from h->dev[] array. */
798 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
799 	int entry, struct hpsa_scsi_dev_t *new_entry,
800 	struct hpsa_scsi_dev_t *added[], int *nadded,
801 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
802 {
803 	/* assumes h->devlock is held */
804 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
805 	removed[*nremoved] = h->dev[entry];
806 	(*nremoved)++;
807 
808 	/*
809 	 * New physical devices won't have target/lun assigned yet
810 	 * so we need to preserve the values in the slot we are replacing.
811 	 */
812 	if (new_entry->target == -1) {
813 		new_entry->target = h->dev[entry]->target;
814 		new_entry->lun = h->dev[entry]->lun;
815 	}
816 
817 	h->dev[entry] = new_entry;
818 	added[*nadded] = new_entry;
819 	(*nadded)++;
820 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
821 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
822 			new_entry->target, new_entry->lun);
823 }
824 
825 /* Remove an entry from h->dev[] array. */
826 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
827 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
828 {
829 	/* assumes h->devlock is held */
830 	int i;
831 	struct hpsa_scsi_dev_t *sd;
832 
833 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
834 
835 	sd = h->dev[entry];
836 	removed[*nremoved] = h->dev[entry];
837 	(*nremoved)++;
838 
839 	for (i = entry; i < h->ndevices-1; i++)
840 		h->dev[i] = h->dev[i+1];
841 	h->ndevices--;
842 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
843 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
844 		sd->lun);
845 }
846 
847 #define SCSI3ADDR_EQ(a, b) ( \
848 	(a)[7] == (b)[7] && \
849 	(a)[6] == (b)[6] && \
850 	(a)[5] == (b)[5] && \
851 	(a)[4] == (b)[4] && \
852 	(a)[3] == (b)[3] && \
853 	(a)[2] == (b)[2] && \
854 	(a)[1] == (b)[1] && \
855 	(a)[0] == (b)[0])
856 
857 static void fixup_botched_add(struct ctlr_info *h,
858 	struct hpsa_scsi_dev_t *added)
859 {
860 	/* called when scsi_add_device fails in order to re-adjust
861 	 * h->dev[] to match the mid layer's view.
862 	 */
863 	unsigned long flags;
864 	int i, j;
865 
866 	spin_lock_irqsave(&h->lock, flags);
867 	for (i = 0; i < h->ndevices; i++) {
868 		if (h->dev[i] == added) {
869 			for (j = i; j < h->ndevices-1; j++)
870 				h->dev[j] = h->dev[j+1];
871 			h->ndevices--;
872 			break;
873 		}
874 	}
875 	spin_unlock_irqrestore(&h->lock, flags);
876 	kfree(added);
877 }
878 
879 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
880 	struct hpsa_scsi_dev_t *dev2)
881 {
882 	/* we compare everything except lun and target as these
883 	 * are not yet assigned.  Compare parts likely
884 	 * to differ first
885 	 */
886 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
887 		sizeof(dev1->scsi3addr)) != 0)
888 		return 0;
889 	if (memcmp(dev1->device_id, dev2->device_id,
890 		sizeof(dev1->device_id)) != 0)
891 		return 0;
892 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
893 		return 0;
894 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
895 		return 0;
896 	if (dev1->devtype != dev2->devtype)
897 		return 0;
898 	if (dev1->bus != dev2->bus)
899 		return 0;
900 	return 1;
901 }
902 
903 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
904 	struct hpsa_scsi_dev_t *dev2)
905 {
906 	/* Device attributes that can change, but don't mean
907 	 * that the device is a different device, nor that the OS
908 	 * needs to be told anything about the change.
909 	 */
910 	if (dev1->raid_level != dev2->raid_level)
911 		return 1;
912 	return 0;
913 }
914 
915 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
916  * and return needle location in *index.  If scsi3addr matches, but not
917  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
918  * location in *index.
919  * In the case of a minor device attribute change, such as RAID level, just
920  * return DEVICE_UPDATED, along with the updated device's location in index.
921  * If needle not found, return DEVICE_NOT_FOUND.
922  */
923 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
924 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
925 	int *index)
926 {
927 	int i;
928 #define DEVICE_NOT_FOUND 0
929 #define DEVICE_CHANGED 1
930 #define DEVICE_SAME 2
931 #define DEVICE_UPDATED 3
932 	for (i = 0; i < haystack_size; i++) {
933 		if (haystack[i] == NULL) /* previously removed. */
934 			continue;
935 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
936 			*index = i;
937 			if (device_is_the_same(needle, haystack[i])) {
938 				if (device_updated(needle, haystack[i]))
939 					return DEVICE_UPDATED;
940 				return DEVICE_SAME;
941 			} else {
942 				return DEVICE_CHANGED;
943 			}
944 		}
945 	}
946 	*index = -1;
947 	return DEVICE_NOT_FOUND;
948 }
949 
950 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
951 	struct hpsa_scsi_dev_t *sd[], int nsds)
952 {
953 	/* sd contains scsi3 addresses and devtypes, and inquiry
954 	 * data.  This function takes what's in sd to be the current
955 	 * reality and updates h->dev[] to reflect that reality.
956 	 */
957 	int i, entry, device_change, changes = 0;
958 	struct hpsa_scsi_dev_t *csd;
959 	unsigned long flags;
960 	struct hpsa_scsi_dev_t **added, **removed;
961 	int nadded, nremoved;
962 	struct Scsi_Host *sh = NULL;
963 
964 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
965 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
966 
967 	if (!added || !removed) {
968 		dev_warn(&h->pdev->dev, "out of memory in "
969 			"adjust_hpsa_scsi_table\n");
970 		goto free_and_out;
971 	}
972 
973 	spin_lock_irqsave(&h->devlock, flags);
974 
975 	/* find any devices in h->dev[] that are not in
976 	 * sd[] and remove them from h->dev[], and for any
977 	 * devices which have changed, remove the old device
978 	 * info and add the new device info.
979 	 * If minor device attributes change, just update
980 	 * the existing device structure.
981 	 */
982 	i = 0;
983 	nremoved = 0;
984 	nadded = 0;
985 	while (i < h->ndevices) {
986 		csd = h->dev[i];
987 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
988 		if (device_change == DEVICE_NOT_FOUND) {
989 			changes++;
990 			hpsa_scsi_remove_entry(h, hostno, i,
991 				removed, &nremoved);
992 			continue; /* remove ^^^, hence i not incremented */
993 		} else if (device_change == DEVICE_CHANGED) {
994 			changes++;
995 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
996 				added, &nadded, removed, &nremoved);
997 			/* Set it to NULL to prevent it from being freed
998 			 * at the bottom of hpsa_update_scsi_devices()
999 			 */
1000 			sd[entry] = NULL;
1001 		} else if (device_change == DEVICE_UPDATED) {
1002 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1003 		}
1004 		i++;
1005 	}
1006 
1007 	/* Now, make sure every device listed in sd[] is also
1008 	 * listed in h->dev[], adding them if they aren't found
1009 	 */
1010 
1011 	for (i = 0; i < nsds; i++) {
1012 		if (!sd[i]) /* if already added above. */
1013 			continue;
1014 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1015 					h->ndevices, &entry);
1016 		if (device_change == DEVICE_NOT_FOUND) {
1017 			changes++;
1018 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1019 				added, &nadded) != 0)
1020 				break;
1021 			sd[i] = NULL; /* prevent from being freed later. */
1022 		} else if (device_change == DEVICE_CHANGED) {
1023 			/* should never happen... */
1024 			changes++;
1025 			dev_warn(&h->pdev->dev,
1026 				"device unexpectedly changed.\n");
1027 			/* but if it does happen, we just ignore that device */
1028 		}
1029 	}
1030 	spin_unlock_irqrestore(&h->devlock, flags);
1031 
1032 	/* Don't notify scsi mid layer of any changes the first time through
1033 	 * (or if there are no changes) scsi_scan_host will do it later the
1034 	 * first time through.
1035 	 */
1036 	if (hostno == -1 || !changes)
1037 		goto free_and_out;
1038 
1039 	sh = h->scsi_host;
1040 	/* Notify scsi mid layer of any removed devices */
1041 	for (i = 0; i < nremoved; i++) {
1042 		struct scsi_device *sdev =
1043 			scsi_device_lookup(sh, removed[i]->bus,
1044 				removed[i]->target, removed[i]->lun);
1045 		if (sdev != NULL) {
1046 			scsi_remove_device(sdev);
1047 			scsi_device_put(sdev);
1048 		} else {
1049 			/* We don't expect to get here.
1050 			 * future cmds to this device will get selection
1051 			 * timeout as if the device was gone.
1052 			 */
1053 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1054 				" for removal.", hostno, removed[i]->bus,
1055 				removed[i]->target, removed[i]->lun);
1056 		}
1057 		kfree(removed[i]);
1058 		removed[i] = NULL;
1059 	}
1060 
1061 	/* Notify scsi mid layer of any added devices */
1062 	for (i = 0; i < nadded; i++) {
1063 		if (scsi_add_device(sh, added[i]->bus,
1064 			added[i]->target, added[i]->lun) == 0)
1065 			continue;
1066 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1067 			"device not added.\n", hostno, added[i]->bus,
1068 			added[i]->target, added[i]->lun);
1069 		/* now we have to remove it from h->dev,
1070 		 * since it didn't get added to scsi mid layer
1071 		 */
1072 		fixup_botched_add(h, added[i]);
1073 	}
1074 
1075 free_and_out:
1076 	kfree(added);
1077 	kfree(removed);
1078 }
1079 
1080 /*
1081  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1082  * Assume's h->devlock is held.
1083  */
1084 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1085 	int bus, int target, int lun)
1086 {
1087 	int i;
1088 	struct hpsa_scsi_dev_t *sd;
1089 
1090 	for (i = 0; i < h->ndevices; i++) {
1091 		sd = h->dev[i];
1092 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1093 			return sd;
1094 	}
1095 	return NULL;
1096 }
1097 
1098 /* link sdev->hostdata to our per-device structure. */
1099 static int hpsa_slave_alloc(struct scsi_device *sdev)
1100 {
1101 	struct hpsa_scsi_dev_t *sd;
1102 	unsigned long flags;
1103 	struct ctlr_info *h;
1104 
1105 	h = sdev_to_hba(sdev);
1106 	spin_lock_irqsave(&h->devlock, flags);
1107 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1108 		sdev_id(sdev), sdev->lun);
1109 	if (sd != NULL)
1110 		sdev->hostdata = sd;
1111 	spin_unlock_irqrestore(&h->devlock, flags);
1112 	return 0;
1113 }
1114 
1115 static void hpsa_slave_destroy(struct scsi_device *sdev)
1116 {
1117 	/* nothing to do. */
1118 }
1119 
1120 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1121 {
1122 	int i;
1123 
1124 	if (!h->cmd_sg_list)
1125 		return;
1126 	for (i = 0; i < h->nr_cmds; i++) {
1127 		kfree(h->cmd_sg_list[i]);
1128 		h->cmd_sg_list[i] = NULL;
1129 	}
1130 	kfree(h->cmd_sg_list);
1131 	h->cmd_sg_list = NULL;
1132 }
1133 
1134 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1135 {
1136 	int i;
1137 
1138 	if (h->chainsize <= 0)
1139 		return 0;
1140 
1141 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1142 				GFP_KERNEL);
1143 	if (!h->cmd_sg_list)
1144 		return -ENOMEM;
1145 	for (i = 0; i < h->nr_cmds; i++) {
1146 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1147 						h->chainsize, GFP_KERNEL);
1148 		if (!h->cmd_sg_list[i])
1149 			goto clean;
1150 	}
1151 	return 0;
1152 
1153 clean:
1154 	hpsa_free_sg_chain_blocks(h);
1155 	return -ENOMEM;
1156 }
1157 
1158 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1159 	struct CommandList *c)
1160 {
1161 	struct SGDescriptor *chain_sg, *chain_block;
1162 	u64 temp64;
1163 
1164 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1165 	chain_block = h->cmd_sg_list[c->cmdindex];
1166 	chain_sg->Ext = HPSA_SG_CHAIN;
1167 	chain_sg->Len = sizeof(*chain_sg) *
1168 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1169 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1170 				PCI_DMA_TODEVICE);
1171 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1172 		/* prevent subsequent unmapping */
1173 		chain_sg->Addr.lower = 0;
1174 		chain_sg->Addr.upper = 0;
1175 		return -1;
1176 	}
1177 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1178 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1179 	return 0;
1180 }
1181 
1182 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1183 	struct CommandList *c)
1184 {
1185 	struct SGDescriptor *chain_sg;
1186 	union u64bit temp64;
1187 
1188 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1189 		return;
1190 
1191 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1192 	temp64.val32.lower = chain_sg->Addr.lower;
1193 	temp64.val32.upper = chain_sg->Addr.upper;
1194 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1195 }
1196 
1197 static void complete_scsi_command(struct CommandList *cp)
1198 {
1199 	struct scsi_cmnd *cmd;
1200 	struct ctlr_info *h;
1201 	struct ErrorInfo *ei;
1202 
1203 	unsigned char sense_key;
1204 	unsigned char asc;      /* additional sense code */
1205 	unsigned char ascq;     /* additional sense code qualifier */
1206 	unsigned long sense_data_size;
1207 
1208 	ei = cp->err_info;
1209 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1210 	h = cp->h;
1211 
1212 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1213 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1214 		hpsa_unmap_sg_chain_block(h, cp);
1215 
1216 	cmd->result = (DID_OK << 16); 		/* host byte */
1217 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1218 	cmd->result |= ei->ScsiStatus;
1219 
1220 	/* copy the sense data whether we need to or not. */
1221 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1222 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1223 	else
1224 		sense_data_size = sizeof(ei->SenseInfo);
1225 	if (ei->SenseLen < sense_data_size)
1226 		sense_data_size = ei->SenseLen;
1227 
1228 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1229 	scsi_set_resid(cmd, ei->ResidualCnt);
1230 
1231 	if (ei->CommandStatus == 0) {
1232 		cmd_free(h, cp);
1233 		cmd->scsi_done(cmd);
1234 		return;
1235 	}
1236 
1237 	/* an error has occurred */
1238 	switch (ei->CommandStatus) {
1239 
1240 	case CMD_TARGET_STATUS:
1241 		if (ei->ScsiStatus) {
1242 			/* Get sense key */
1243 			sense_key = 0xf & ei->SenseInfo[2];
1244 			/* Get additional sense code */
1245 			asc = ei->SenseInfo[12];
1246 			/* Get addition sense code qualifier */
1247 			ascq = ei->SenseInfo[13];
1248 		}
1249 
1250 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1251 			if (check_for_unit_attention(h, cp)) {
1252 				cmd->result = DID_SOFT_ERROR << 16;
1253 				break;
1254 			}
1255 			if (sense_key == ILLEGAL_REQUEST) {
1256 				/*
1257 				 * SCSI REPORT_LUNS is commonly unsupported on
1258 				 * Smart Array.  Suppress noisy complaint.
1259 				 */
1260 				if (cp->Request.CDB[0] == REPORT_LUNS)
1261 					break;
1262 
1263 				/* If ASC/ASCQ indicate Logical Unit
1264 				 * Not Supported condition,
1265 				 */
1266 				if ((asc == 0x25) && (ascq == 0x0)) {
1267 					dev_warn(&h->pdev->dev, "cp %p "
1268 						"has check condition\n", cp);
1269 					break;
1270 				}
1271 			}
1272 
1273 			if (sense_key == NOT_READY) {
1274 				/* If Sense is Not Ready, Logical Unit
1275 				 * Not ready, Manual Intervention
1276 				 * required
1277 				 */
1278 				if ((asc == 0x04) && (ascq == 0x03)) {
1279 					dev_warn(&h->pdev->dev, "cp %p "
1280 						"has check condition: unit "
1281 						"not ready, manual "
1282 						"intervention required\n", cp);
1283 					break;
1284 				}
1285 			}
1286 			if (sense_key == ABORTED_COMMAND) {
1287 				/* Aborted command is retryable */
1288 				dev_warn(&h->pdev->dev, "cp %p "
1289 					"has check condition: aborted command: "
1290 					"ASC: 0x%x, ASCQ: 0x%x\n",
1291 					cp, asc, ascq);
1292 				cmd->result = DID_SOFT_ERROR << 16;
1293 				break;
1294 			}
1295 			/* Must be some other type of check condition */
1296 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1297 					"unknown type: "
1298 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299 					"Returning result: 0x%x, "
1300 					"cmd=[%02x %02x %02x %02x %02x "
1301 					"%02x %02x %02x %02x %02x %02x "
1302 					"%02x %02x %02x %02x %02x]\n",
1303 					cp, sense_key, asc, ascq,
1304 					cmd->result,
1305 					cmd->cmnd[0], cmd->cmnd[1],
1306 					cmd->cmnd[2], cmd->cmnd[3],
1307 					cmd->cmnd[4], cmd->cmnd[5],
1308 					cmd->cmnd[6], cmd->cmnd[7],
1309 					cmd->cmnd[8], cmd->cmnd[9],
1310 					cmd->cmnd[10], cmd->cmnd[11],
1311 					cmd->cmnd[12], cmd->cmnd[13],
1312 					cmd->cmnd[14], cmd->cmnd[15]);
1313 			break;
1314 		}
1315 
1316 
1317 		/* Problem was not a check condition
1318 		 * Pass it up to the upper layers...
1319 		 */
1320 		if (ei->ScsiStatus) {
1321 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1322 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1323 				"Returning result: 0x%x\n",
1324 				cp, ei->ScsiStatus,
1325 				sense_key, asc, ascq,
1326 				cmd->result);
1327 		} else {  /* scsi status is zero??? How??? */
1328 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1329 				"Returning no connection.\n", cp),
1330 
1331 			/* Ordinarily, this case should never happen,
1332 			 * but there is a bug in some released firmware
1333 			 * revisions that allows it to happen if, for
1334 			 * example, a 4100 backplane loses power and
1335 			 * the tape drive is in it.  We assume that
1336 			 * it's a fatal error of some kind because we
1337 			 * can't show that it wasn't. We will make it
1338 			 * look like selection timeout since that is
1339 			 * the most common reason for this to occur,
1340 			 * and it's severe enough.
1341 			 */
1342 
1343 			cmd->result = DID_NO_CONNECT << 16;
1344 		}
1345 		break;
1346 
1347 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1348 		break;
1349 	case CMD_DATA_OVERRUN:
1350 		dev_warn(&h->pdev->dev, "cp %p has"
1351 			" completed with data overrun "
1352 			"reported\n", cp);
1353 		break;
1354 	case CMD_INVALID: {
1355 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1356 		print_cmd(cp); */
1357 		/* We get CMD_INVALID if you address a non-existent device
1358 		 * instead of a selection timeout (no response).  You will
1359 		 * see this if you yank out a drive, then try to access it.
1360 		 * This is kind of a shame because it means that any other
1361 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1362 		 * missing target. */
1363 		cmd->result = DID_NO_CONNECT << 16;
1364 	}
1365 		break;
1366 	case CMD_PROTOCOL_ERR:
1367 		cmd->result = DID_ERROR << 16;
1368 		dev_warn(&h->pdev->dev, "cp %p has "
1369 			"protocol error\n", cp);
1370 		break;
1371 	case CMD_HARDWARE_ERR:
1372 		cmd->result = DID_ERROR << 16;
1373 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1374 		break;
1375 	case CMD_CONNECTION_LOST:
1376 		cmd->result = DID_ERROR << 16;
1377 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1378 		break;
1379 	case CMD_ABORTED:
1380 		cmd->result = DID_ABORT << 16;
1381 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1382 				cp, ei->ScsiStatus);
1383 		break;
1384 	case CMD_ABORT_FAILED:
1385 		cmd->result = DID_ERROR << 16;
1386 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1387 		break;
1388 	case CMD_UNSOLICITED_ABORT:
1389 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1390 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1391 			"abort\n", cp);
1392 		break;
1393 	case CMD_TIMEOUT:
1394 		cmd->result = DID_TIME_OUT << 16;
1395 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1396 		break;
1397 	case CMD_UNABORTABLE:
1398 		cmd->result = DID_ERROR << 16;
1399 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1400 		break;
1401 	default:
1402 		cmd->result = DID_ERROR << 16;
1403 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1404 				cp, ei->CommandStatus);
1405 	}
1406 	cmd_free(h, cp);
1407 	cmd->scsi_done(cmd);
1408 }
1409 
1410 static void hpsa_pci_unmap(struct pci_dev *pdev,
1411 	struct CommandList *c, int sg_used, int data_direction)
1412 {
1413 	int i;
1414 	union u64bit addr64;
1415 
1416 	for (i = 0; i < sg_used; i++) {
1417 		addr64.val32.lower = c->SG[i].Addr.lower;
1418 		addr64.val32.upper = c->SG[i].Addr.upper;
1419 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1420 			data_direction);
1421 	}
1422 }
1423 
1424 static int hpsa_map_one(struct pci_dev *pdev,
1425 		struct CommandList *cp,
1426 		unsigned char *buf,
1427 		size_t buflen,
1428 		int data_direction)
1429 {
1430 	u64 addr64;
1431 
1432 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1433 		cp->Header.SGList = 0;
1434 		cp->Header.SGTotal = 0;
1435 		return 0;
1436 	}
1437 
1438 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1439 	if (dma_mapping_error(&pdev->dev, addr64)) {
1440 		/* Prevent subsequent unmap of something never mapped */
1441 		cp->Header.SGList = 0;
1442 		cp->Header.SGTotal = 0;
1443 		return -1;
1444 	}
1445 	cp->SG[0].Addr.lower =
1446 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1447 	cp->SG[0].Addr.upper =
1448 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1449 	cp->SG[0].Len = buflen;
1450 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1451 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1452 	return 0;
1453 }
1454 
1455 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1456 	struct CommandList *c)
1457 {
1458 	DECLARE_COMPLETION_ONSTACK(wait);
1459 
1460 	c->waiting = &wait;
1461 	enqueue_cmd_and_start_io(h, c);
1462 	wait_for_completion(&wait);
1463 }
1464 
1465 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1466 	struct CommandList *c)
1467 {
1468 	unsigned long flags;
1469 
1470 	/* If controller lockup detected, fake a hardware error. */
1471 	spin_lock_irqsave(&h->lock, flags);
1472 	if (unlikely(h->lockup_detected)) {
1473 		spin_unlock_irqrestore(&h->lock, flags);
1474 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1475 	} else {
1476 		spin_unlock_irqrestore(&h->lock, flags);
1477 		hpsa_scsi_do_simple_cmd_core(h, c);
1478 	}
1479 }
1480 
1481 #define MAX_DRIVER_CMD_RETRIES 25
1482 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1483 	struct CommandList *c, int data_direction)
1484 {
1485 	int backoff_time = 10, retry_count = 0;
1486 
1487 	do {
1488 		memset(c->err_info, 0, sizeof(*c->err_info));
1489 		hpsa_scsi_do_simple_cmd_core(h, c);
1490 		retry_count++;
1491 		if (retry_count > 3) {
1492 			msleep(backoff_time);
1493 			if (backoff_time < 1000)
1494 				backoff_time *= 2;
1495 		}
1496 	} while ((check_for_unit_attention(h, c) ||
1497 			check_for_busy(h, c)) &&
1498 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1499 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1500 }
1501 
1502 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1503 {
1504 	struct ErrorInfo *ei;
1505 	struct device *d = &cp->h->pdev->dev;
1506 
1507 	ei = cp->err_info;
1508 	switch (ei->CommandStatus) {
1509 	case CMD_TARGET_STATUS:
1510 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1511 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1512 				ei->ScsiStatus);
1513 		if (ei->ScsiStatus == 0)
1514 			dev_warn(d, "SCSI status is abnormally zero.  "
1515 			"(probably indicates selection timeout "
1516 			"reported incorrectly due to a known "
1517 			"firmware bug, circa July, 2001.)\n");
1518 		break;
1519 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1520 			dev_info(d, "UNDERRUN\n");
1521 		break;
1522 	case CMD_DATA_OVERRUN:
1523 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1524 		break;
1525 	case CMD_INVALID: {
1526 		/* controller unfortunately reports SCSI passthru's
1527 		 * to non-existent targets as invalid commands.
1528 		 */
1529 		dev_warn(d, "cp %p is reported invalid (probably means "
1530 			"target device no longer present)\n", cp);
1531 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1532 		print_cmd(cp);  */
1533 		}
1534 		break;
1535 	case CMD_PROTOCOL_ERR:
1536 		dev_warn(d, "cp %p has protocol error \n", cp);
1537 		break;
1538 	case CMD_HARDWARE_ERR:
1539 		/* cmd->result = DID_ERROR << 16; */
1540 		dev_warn(d, "cp %p had hardware error\n", cp);
1541 		break;
1542 	case CMD_CONNECTION_LOST:
1543 		dev_warn(d, "cp %p had connection lost\n", cp);
1544 		break;
1545 	case CMD_ABORTED:
1546 		dev_warn(d, "cp %p was aborted\n", cp);
1547 		break;
1548 	case CMD_ABORT_FAILED:
1549 		dev_warn(d, "cp %p reports abort failed\n", cp);
1550 		break;
1551 	case CMD_UNSOLICITED_ABORT:
1552 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1553 		break;
1554 	case CMD_TIMEOUT:
1555 		dev_warn(d, "cp %p timed out\n", cp);
1556 		break;
1557 	case CMD_UNABORTABLE:
1558 		dev_warn(d, "Command unabortable\n");
1559 		break;
1560 	default:
1561 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1562 				ei->CommandStatus);
1563 	}
1564 }
1565 
1566 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1567 			unsigned char page, unsigned char *buf,
1568 			unsigned char bufsize)
1569 {
1570 	int rc = IO_OK;
1571 	struct CommandList *c;
1572 	struct ErrorInfo *ei;
1573 
1574 	c = cmd_special_alloc(h);
1575 
1576 	if (c == NULL) {			/* trouble... */
1577 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1578 		return -ENOMEM;
1579 	}
1580 
1581 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1582 			page, scsi3addr, TYPE_CMD)) {
1583 		rc = -1;
1584 		goto out;
1585 	}
1586 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1587 	ei = c->err_info;
1588 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1589 		hpsa_scsi_interpret_error(c);
1590 		rc = -1;
1591 	}
1592 out:
1593 	cmd_special_free(h, c);
1594 	return rc;
1595 }
1596 
1597 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1598 {
1599 	int rc = IO_OK;
1600 	struct CommandList *c;
1601 	struct ErrorInfo *ei;
1602 
1603 	c = cmd_special_alloc(h);
1604 
1605 	if (c == NULL) {			/* trouble... */
1606 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1607 		return -ENOMEM;
1608 	}
1609 
1610 	/* fill_cmd can't fail here, no data buffer to map. */
1611 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1612 			NULL, 0, 0, scsi3addr, TYPE_MSG);
1613 	hpsa_scsi_do_simple_cmd_core(h, c);
1614 	/* no unmap needed here because no data xfer. */
1615 
1616 	ei = c->err_info;
1617 	if (ei->CommandStatus != 0) {
1618 		hpsa_scsi_interpret_error(c);
1619 		rc = -1;
1620 	}
1621 	cmd_special_free(h, c);
1622 	return rc;
1623 }
1624 
1625 static void hpsa_get_raid_level(struct ctlr_info *h,
1626 	unsigned char *scsi3addr, unsigned char *raid_level)
1627 {
1628 	int rc;
1629 	unsigned char *buf;
1630 
1631 	*raid_level = RAID_UNKNOWN;
1632 	buf = kzalloc(64, GFP_KERNEL);
1633 	if (!buf)
1634 		return;
1635 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1636 	if (rc == 0)
1637 		*raid_level = buf[8];
1638 	if (*raid_level > RAID_UNKNOWN)
1639 		*raid_level = RAID_UNKNOWN;
1640 	kfree(buf);
1641 	return;
1642 }
1643 
1644 /* Get the device id from inquiry page 0x83 */
1645 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1646 	unsigned char *device_id, int buflen)
1647 {
1648 	int rc;
1649 	unsigned char *buf;
1650 
1651 	if (buflen > 16)
1652 		buflen = 16;
1653 	buf = kzalloc(64, GFP_KERNEL);
1654 	if (!buf)
1655 		return -1;
1656 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1657 	if (rc == 0)
1658 		memcpy(device_id, &buf[8], buflen);
1659 	kfree(buf);
1660 	return rc != 0;
1661 }
1662 
1663 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1664 		struct ReportLUNdata *buf, int bufsize,
1665 		int extended_response)
1666 {
1667 	int rc = IO_OK;
1668 	struct CommandList *c;
1669 	unsigned char scsi3addr[8];
1670 	struct ErrorInfo *ei;
1671 
1672 	c = cmd_special_alloc(h);
1673 	if (c == NULL) {			/* trouble... */
1674 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1675 		return -1;
1676 	}
1677 	/* address the controller */
1678 	memset(scsi3addr, 0, sizeof(scsi3addr));
1679 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1680 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1681 		rc = -1;
1682 		goto out;
1683 	}
1684 	if (extended_response)
1685 		c->Request.CDB[1] = extended_response;
1686 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1687 	ei = c->err_info;
1688 	if (ei->CommandStatus != 0 &&
1689 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1690 		hpsa_scsi_interpret_error(c);
1691 		rc = -1;
1692 	}
1693 out:
1694 	cmd_special_free(h, c);
1695 	return rc;
1696 }
1697 
1698 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1699 		struct ReportLUNdata *buf,
1700 		int bufsize, int extended_response)
1701 {
1702 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1703 }
1704 
1705 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1706 		struct ReportLUNdata *buf, int bufsize)
1707 {
1708 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1709 }
1710 
1711 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1712 	int bus, int target, int lun)
1713 {
1714 	device->bus = bus;
1715 	device->target = target;
1716 	device->lun = lun;
1717 }
1718 
1719 static int hpsa_update_device_info(struct ctlr_info *h,
1720 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1721 	unsigned char *is_OBDR_device)
1722 {
1723 
1724 #define OBDR_SIG_OFFSET 43
1725 #define OBDR_TAPE_SIG "$DR-10"
1726 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1727 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1728 
1729 	unsigned char *inq_buff;
1730 	unsigned char *obdr_sig;
1731 
1732 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1733 	if (!inq_buff)
1734 		goto bail_out;
1735 
1736 	/* Do an inquiry to the device to see what it is. */
1737 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1738 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1739 		/* Inquiry failed (msg printed already) */
1740 		dev_err(&h->pdev->dev,
1741 			"hpsa_update_device_info: inquiry failed\n");
1742 		goto bail_out;
1743 	}
1744 
1745 	this_device->devtype = (inq_buff[0] & 0x1f);
1746 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1747 	memcpy(this_device->vendor, &inq_buff[8],
1748 		sizeof(this_device->vendor));
1749 	memcpy(this_device->model, &inq_buff[16],
1750 		sizeof(this_device->model));
1751 	memset(this_device->device_id, 0,
1752 		sizeof(this_device->device_id));
1753 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1754 		sizeof(this_device->device_id));
1755 
1756 	if (this_device->devtype == TYPE_DISK &&
1757 		is_logical_dev_addr_mode(scsi3addr))
1758 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1759 	else
1760 		this_device->raid_level = RAID_UNKNOWN;
1761 
1762 	if (is_OBDR_device) {
1763 		/* See if this is a One-Button-Disaster-Recovery device
1764 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1765 		 */
1766 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1767 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1768 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1769 						OBDR_SIG_LEN) == 0);
1770 	}
1771 
1772 	kfree(inq_buff);
1773 	return 0;
1774 
1775 bail_out:
1776 	kfree(inq_buff);
1777 	return 1;
1778 }
1779 
1780 static unsigned char *ext_target_model[] = {
1781 	"MSA2012",
1782 	"MSA2024",
1783 	"MSA2312",
1784 	"MSA2324",
1785 	"P2000 G3 SAS",
1786 	NULL,
1787 };
1788 
1789 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1790 {
1791 	int i;
1792 
1793 	for (i = 0; ext_target_model[i]; i++)
1794 		if (strncmp(device->model, ext_target_model[i],
1795 			strlen(ext_target_model[i])) == 0)
1796 			return 1;
1797 	return 0;
1798 }
1799 
1800 /* Helper function to assign bus, target, lun mapping of devices.
1801  * Puts non-external target logical volumes on bus 0, external target logical
1802  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1803  * Logical drive target and lun are assigned at this time, but
1804  * physical device lun and target assignment are deferred (assigned
1805  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1806  */
1807 static void figure_bus_target_lun(struct ctlr_info *h,
1808 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1809 {
1810 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1811 
1812 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1813 		/* physical device, target and lun filled in later */
1814 		if (is_hba_lunid(lunaddrbytes))
1815 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1816 		else
1817 			/* defer target, lun assignment for physical devices */
1818 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1819 		return;
1820 	}
1821 	/* It's a logical device */
1822 	if (is_ext_target(h, device)) {
1823 		/* external target way, put logicals on bus 1
1824 		 * and match target/lun numbers box
1825 		 * reports, other smart array, bus 0, target 0, match lunid
1826 		 */
1827 		hpsa_set_bus_target_lun(device,
1828 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1829 		return;
1830 	}
1831 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1832 }
1833 
1834 /*
1835  * If there is no lun 0 on a target, linux won't find any devices.
1836  * For the external targets (arrays), we have to manually detect the enclosure
1837  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1838  * it for some reason.  *tmpdevice is the target we're adding,
1839  * this_device is a pointer into the current element of currentsd[]
1840  * that we're building up in update_scsi_devices(), below.
1841  * lunzerobits is a bitmap that tracks which targets already have a
1842  * lun 0 assigned.
1843  * Returns 1 if an enclosure was added, 0 if not.
1844  */
1845 static int add_ext_target_dev(struct ctlr_info *h,
1846 	struct hpsa_scsi_dev_t *tmpdevice,
1847 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1848 	unsigned long lunzerobits[], int *n_ext_target_devs)
1849 {
1850 	unsigned char scsi3addr[8];
1851 
1852 	if (test_bit(tmpdevice->target, lunzerobits))
1853 		return 0; /* There is already a lun 0 on this target. */
1854 
1855 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1856 		return 0; /* It's the logical targets that may lack lun 0. */
1857 
1858 	if (!is_ext_target(h, tmpdevice))
1859 		return 0; /* Only external target devices have this problem. */
1860 
1861 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1862 		return 0;
1863 
1864 	memset(scsi3addr, 0, 8);
1865 	scsi3addr[3] = tmpdevice->target;
1866 	if (is_hba_lunid(scsi3addr))
1867 		return 0; /* Don't add the RAID controller here. */
1868 
1869 	if (is_scsi_rev_5(h))
1870 		return 0; /* p1210m doesn't need to do this. */
1871 
1872 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1873 		dev_warn(&h->pdev->dev, "Maximum number of external "
1874 			"target devices exceeded.  Check your hardware "
1875 			"configuration.");
1876 		return 0;
1877 	}
1878 
1879 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1880 		return 0;
1881 	(*n_ext_target_devs)++;
1882 	hpsa_set_bus_target_lun(this_device,
1883 				tmpdevice->bus, tmpdevice->target, 0);
1884 	set_bit(tmpdevice->target, lunzerobits);
1885 	return 1;
1886 }
1887 
1888 /*
1889  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1890  * logdev.  The number of luns in physdev and logdev are returned in
1891  * *nphysicals and *nlogicals, respectively.
1892  * Returns 0 on success, -1 otherwise.
1893  */
1894 static int hpsa_gather_lun_info(struct ctlr_info *h,
1895 	int reportlunsize,
1896 	struct ReportLUNdata *physdev, u32 *nphysicals,
1897 	struct ReportLUNdata *logdev, u32 *nlogicals)
1898 {
1899 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1900 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1901 		return -1;
1902 	}
1903 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1904 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1905 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1906 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1907 			*nphysicals - HPSA_MAX_PHYS_LUN);
1908 		*nphysicals = HPSA_MAX_PHYS_LUN;
1909 	}
1910 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1911 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1912 		return -1;
1913 	}
1914 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1915 	/* Reject Logicals in excess of our max capability. */
1916 	if (*nlogicals > HPSA_MAX_LUN) {
1917 		dev_warn(&h->pdev->dev,
1918 			"maximum logical LUNs (%d) exceeded.  "
1919 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1920 			*nlogicals - HPSA_MAX_LUN);
1921 			*nlogicals = HPSA_MAX_LUN;
1922 	}
1923 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1924 		dev_warn(&h->pdev->dev,
1925 			"maximum logical + physical LUNs (%d) exceeded. "
1926 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1927 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1928 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1929 	}
1930 	return 0;
1931 }
1932 
1933 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1934 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1935 	struct ReportLUNdata *logdev_list)
1936 {
1937 	/* Helper function, figure out where the LUN ID info is coming from
1938 	 * given index i, lists of physical and logical devices, where in
1939 	 * the list the raid controller is supposed to appear (first or last)
1940 	 */
1941 
1942 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1943 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1944 
1945 	if (i == raid_ctlr_position)
1946 		return RAID_CTLR_LUNID;
1947 
1948 	if (i < logicals_start)
1949 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1950 
1951 	if (i < last_device)
1952 		return &logdev_list->LUN[i - nphysicals -
1953 			(raid_ctlr_position == 0)][0];
1954 	BUG();
1955 	return NULL;
1956 }
1957 
1958 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1959 {
1960 	/* the idea here is we could get notified
1961 	 * that some devices have changed, so we do a report
1962 	 * physical luns and report logical luns cmd, and adjust
1963 	 * our list of devices accordingly.
1964 	 *
1965 	 * The scsi3addr's of devices won't change so long as the
1966 	 * adapter is not reset.  That means we can rescan and
1967 	 * tell which devices we already know about, vs. new
1968 	 * devices, vs.  disappearing devices.
1969 	 */
1970 	struct ReportLUNdata *physdev_list = NULL;
1971 	struct ReportLUNdata *logdev_list = NULL;
1972 	u32 nphysicals = 0;
1973 	u32 nlogicals = 0;
1974 	u32 ndev_allocated = 0;
1975 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1976 	int ncurrent = 0;
1977 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1978 	int i, n_ext_target_devs, ndevs_to_allocate;
1979 	int raid_ctlr_position;
1980 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1981 
1982 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1983 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1985 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1986 
1987 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1988 		dev_err(&h->pdev->dev, "out of memory\n");
1989 		goto out;
1990 	}
1991 	memset(lunzerobits, 0, sizeof(lunzerobits));
1992 
1993 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1994 			logdev_list, &nlogicals))
1995 		goto out;
1996 
1997 	/* We might see up to the maximum number of logical and physical disks
1998 	 * plus external target devices, and a device for the local RAID
1999 	 * controller.
2000 	 */
2001 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2002 
2003 	/* Allocate the per device structures */
2004 	for (i = 0; i < ndevs_to_allocate; i++) {
2005 		if (i >= HPSA_MAX_DEVICES) {
2006 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2007 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
2008 				ndevs_to_allocate - HPSA_MAX_DEVICES);
2009 			break;
2010 		}
2011 
2012 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2013 		if (!currentsd[i]) {
2014 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2015 				__FILE__, __LINE__);
2016 			goto out;
2017 		}
2018 		ndev_allocated++;
2019 	}
2020 
2021 	if (unlikely(is_scsi_rev_5(h)))
2022 		raid_ctlr_position = 0;
2023 	else
2024 		raid_ctlr_position = nphysicals + nlogicals;
2025 
2026 	/* adjust our table of devices */
2027 	n_ext_target_devs = 0;
2028 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2029 		u8 *lunaddrbytes, is_OBDR = 0;
2030 
2031 		/* Figure out where the LUN ID info is coming from */
2032 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2033 			i, nphysicals, nlogicals, physdev_list, logdev_list);
2034 		/* skip masked physical devices. */
2035 		if (lunaddrbytes[3] & 0xC0 &&
2036 			i < nphysicals + (raid_ctlr_position == 0))
2037 			continue;
2038 
2039 		/* Get device type, vendor, model, device id */
2040 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2041 							&is_OBDR))
2042 			continue; /* skip it if we can't talk to it. */
2043 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2044 		this_device = currentsd[ncurrent];
2045 
2046 		/*
2047 		 * For external target devices, we have to insert a LUN 0 which
2048 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2049 		 * is nonetheless an enclosure device there.  We have to
2050 		 * present that otherwise linux won't find anything if
2051 		 * there is no lun 0.
2052 		 */
2053 		if (add_ext_target_dev(h, tmpdevice, this_device,
2054 				lunaddrbytes, lunzerobits,
2055 				&n_ext_target_devs)) {
2056 			ncurrent++;
2057 			this_device = currentsd[ncurrent];
2058 		}
2059 
2060 		*this_device = *tmpdevice;
2061 
2062 		switch (this_device->devtype) {
2063 		case TYPE_ROM:
2064 			/* We don't *really* support actual CD-ROM devices,
2065 			 * just "One Button Disaster Recovery" tape drive
2066 			 * which temporarily pretends to be a CD-ROM drive.
2067 			 * So we check that the device is really an OBDR tape
2068 			 * device by checking for "$DR-10" in bytes 43-48 of
2069 			 * the inquiry data.
2070 			 */
2071 			if (is_OBDR)
2072 				ncurrent++;
2073 			break;
2074 		case TYPE_DISK:
2075 			if (i < nphysicals)
2076 				break;
2077 			ncurrent++;
2078 			break;
2079 		case TYPE_TAPE:
2080 		case TYPE_MEDIUM_CHANGER:
2081 			ncurrent++;
2082 			break;
2083 		case TYPE_RAID:
2084 			/* Only present the Smartarray HBA as a RAID controller.
2085 			 * If it's a RAID controller other than the HBA itself
2086 			 * (an external RAID controller, MSA500 or similar)
2087 			 * don't present it.
2088 			 */
2089 			if (!is_hba_lunid(lunaddrbytes))
2090 				break;
2091 			ncurrent++;
2092 			break;
2093 		default:
2094 			break;
2095 		}
2096 		if (ncurrent >= HPSA_MAX_DEVICES)
2097 			break;
2098 	}
2099 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2100 out:
2101 	kfree(tmpdevice);
2102 	for (i = 0; i < ndev_allocated; i++)
2103 		kfree(currentsd[i]);
2104 	kfree(currentsd);
2105 	kfree(physdev_list);
2106 	kfree(logdev_list);
2107 }
2108 
2109 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2110  * dma mapping  and fills in the scatter gather entries of the
2111  * hpsa command, cp.
2112  */
2113 static int hpsa_scatter_gather(struct ctlr_info *h,
2114 		struct CommandList *cp,
2115 		struct scsi_cmnd *cmd)
2116 {
2117 	unsigned int len;
2118 	struct scatterlist *sg;
2119 	u64 addr64;
2120 	int use_sg, i, sg_index, chained;
2121 	struct SGDescriptor *curr_sg;
2122 
2123 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2124 
2125 	use_sg = scsi_dma_map(cmd);
2126 	if (use_sg < 0)
2127 		return use_sg;
2128 
2129 	if (!use_sg)
2130 		goto sglist_finished;
2131 
2132 	curr_sg = cp->SG;
2133 	chained = 0;
2134 	sg_index = 0;
2135 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2136 		if (i == h->max_cmd_sg_entries - 1 &&
2137 			use_sg > h->max_cmd_sg_entries) {
2138 			chained = 1;
2139 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2140 			sg_index = 0;
2141 		}
2142 		addr64 = (u64) sg_dma_address(sg);
2143 		len  = sg_dma_len(sg);
2144 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2145 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2146 		curr_sg->Len = len;
2147 		curr_sg->Ext = 0;  /* we are not chaining */
2148 		curr_sg++;
2149 	}
2150 
2151 	if (use_sg + chained > h->maxSG)
2152 		h->maxSG = use_sg + chained;
2153 
2154 	if (chained) {
2155 		cp->Header.SGList = h->max_cmd_sg_entries;
2156 		cp->Header.SGTotal = (u16) (use_sg + 1);
2157 		if (hpsa_map_sg_chain_block(h, cp)) {
2158 			scsi_dma_unmap(cmd);
2159 			return -1;
2160 		}
2161 		return 0;
2162 	}
2163 
2164 sglist_finished:
2165 
2166 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2167 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2168 	return 0;
2169 }
2170 
2171 
2172 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2173 	void (*done)(struct scsi_cmnd *))
2174 {
2175 	struct ctlr_info *h;
2176 	struct hpsa_scsi_dev_t *dev;
2177 	unsigned char scsi3addr[8];
2178 	struct CommandList *c;
2179 	unsigned long flags;
2180 
2181 	/* Get the ptr to our adapter structure out of cmd->host. */
2182 	h = sdev_to_hba(cmd->device);
2183 	dev = cmd->device->hostdata;
2184 	if (!dev) {
2185 		cmd->result = DID_NO_CONNECT << 16;
2186 		done(cmd);
2187 		return 0;
2188 	}
2189 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2190 
2191 	spin_lock_irqsave(&h->lock, flags);
2192 	if (unlikely(h->lockup_detected)) {
2193 		spin_unlock_irqrestore(&h->lock, flags);
2194 		cmd->result = DID_ERROR << 16;
2195 		done(cmd);
2196 		return 0;
2197 	}
2198 	spin_unlock_irqrestore(&h->lock, flags);
2199 	c = cmd_alloc(h);
2200 	if (c == NULL) {			/* trouble... */
2201 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2202 		return SCSI_MLQUEUE_HOST_BUSY;
2203 	}
2204 
2205 	/* Fill in the command list header */
2206 
2207 	cmd->scsi_done = done;    /* save this for use by completion code */
2208 
2209 	/* save c in case we have to abort it  */
2210 	cmd->host_scribble = (unsigned char *) c;
2211 
2212 	c->cmd_type = CMD_SCSI;
2213 	c->scsi_cmd = cmd;
2214 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2215 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2216 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2217 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2218 
2219 	/* Fill in the request block... */
2220 
2221 	c->Request.Timeout = 0;
2222 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2223 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2224 	c->Request.CDBLen = cmd->cmd_len;
2225 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2226 	c->Request.Type.Type = TYPE_CMD;
2227 	c->Request.Type.Attribute = ATTR_SIMPLE;
2228 	switch (cmd->sc_data_direction) {
2229 	case DMA_TO_DEVICE:
2230 		c->Request.Type.Direction = XFER_WRITE;
2231 		break;
2232 	case DMA_FROM_DEVICE:
2233 		c->Request.Type.Direction = XFER_READ;
2234 		break;
2235 	case DMA_NONE:
2236 		c->Request.Type.Direction = XFER_NONE;
2237 		break;
2238 	case DMA_BIDIRECTIONAL:
2239 		/* This can happen if a buggy application does a scsi passthru
2240 		 * and sets both inlen and outlen to non-zero. ( see
2241 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2242 		 */
2243 
2244 		c->Request.Type.Direction = XFER_RSVD;
2245 		/* This is technically wrong, and hpsa controllers should
2246 		 * reject it with CMD_INVALID, which is the most correct
2247 		 * response, but non-fibre backends appear to let it
2248 		 * slide by, and give the same results as if this field
2249 		 * were set correctly.  Either way is acceptable for
2250 		 * our purposes here.
2251 		 */
2252 
2253 		break;
2254 
2255 	default:
2256 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2257 			cmd->sc_data_direction);
2258 		BUG();
2259 		break;
2260 	}
2261 
2262 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2263 		cmd_free(h, c);
2264 		return SCSI_MLQUEUE_HOST_BUSY;
2265 	}
2266 	enqueue_cmd_and_start_io(h, c);
2267 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2268 	return 0;
2269 }
2270 
2271 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2272 
2273 static void hpsa_scan_start(struct Scsi_Host *sh)
2274 {
2275 	struct ctlr_info *h = shost_to_hba(sh);
2276 	unsigned long flags;
2277 
2278 	/* wait until any scan already in progress is finished. */
2279 	while (1) {
2280 		spin_lock_irqsave(&h->scan_lock, flags);
2281 		if (h->scan_finished)
2282 			break;
2283 		spin_unlock_irqrestore(&h->scan_lock, flags);
2284 		wait_event(h->scan_wait_queue, h->scan_finished);
2285 		/* Note: We don't need to worry about a race between this
2286 		 * thread and driver unload because the midlayer will
2287 		 * have incremented the reference count, so unload won't
2288 		 * happen if we're in here.
2289 		 */
2290 	}
2291 	h->scan_finished = 0; /* mark scan as in progress */
2292 	spin_unlock_irqrestore(&h->scan_lock, flags);
2293 
2294 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2295 
2296 	spin_lock_irqsave(&h->scan_lock, flags);
2297 	h->scan_finished = 1; /* mark scan as finished. */
2298 	wake_up_all(&h->scan_wait_queue);
2299 	spin_unlock_irqrestore(&h->scan_lock, flags);
2300 }
2301 
2302 static int hpsa_scan_finished(struct Scsi_Host *sh,
2303 	unsigned long elapsed_time)
2304 {
2305 	struct ctlr_info *h = shost_to_hba(sh);
2306 	unsigned long flags;
2307 	int finished;
2308 
2309 	spin_lock_irqsave(&h->scan_lock, flags);
2310 	finished = h->scan_finished;
2311 	spin_unlock_irqrestore(&h->scan_lock, flags);
2312 	return finished;
2313 }
2314 
2315 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2316 	int qdepth, int reason)
2317 {
2318 	struct ctlr_info *h = sdev_to_hba(sdev);
2319 
2320 	if (reason != SCSI_QDEPTH_DEFAULT)
2321 		return -ENOTSUPP;
2322 
2323 	if (qdepth < 1)
2324 		qdepth = 1;
2325 	else
2326 		if (qdepth > h->nr_cmds)
2327 			qdepth = h->nr_cmds;
2328 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2329 	return sdev->queue_depth;
2330 }
2331 
2332 static void hpsa_unregister_scsi(struct ctlr_info *h)
2333 {
2334 	/* we are being forcibly unloaded, and may not refuse. */
2335 	scsi_remove_host(h->scsi_host);
2336 	scsi_host_put(h->scsi_host);
2337 	h->scsi_host = NULL;
2338 }
2339 
2340 static int hpsa_register_scsi(struct ctlr_info *h)
2341 {
2342 	struct Scsi_Host *sh;
2343 	int error;
2344 
2345 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2346 	if (sh == NULL)
2347 		goto fail;
2348 
2349 	sh->io_port = 0;
2350 	sh->n_io_port = 0;
2351 	sh->this_id = -1;
2352 	sh->max_channel = 3;
2353 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2354 	sh->max_lun = HPSA_MAX_LUN;
2355 	sh->max_id = HPSA_MAX_LUN;
2356 	sh->can_queue = h->nr_cmds;
2357 	sh->cmd_per_lun = h->nr_cmds;
2358 	sh->sg_tablesize = h->maxsgentries;
2359 	h->scsi_host = sh;
2360 	sh->hostdata[0] = (unsigned long) h;
2361 	sh->irq = h->intr[h->intr_mode];
2362 	sh->unique_id = sh->irq;
2363 	error = scsi_add_host(sh, &h->pdev->dev);
2364 	if (error)
2365 		goto fail_host_put;
2366 	scsi_scan_host(sh);
2367 	return 0;
2368 
2369  fail_host_put:
2370 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2371 		" failed for controller %d\n", __func__, h->ctlr);
2372 	scsi_host_put(sh);
2373 	return error;
2374  fail:
2375 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2376 		" failed for controller %d\n", __func__, h->ctlr);
2377 	return -ENOMEM;
2378 }
2379 
2380 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2381 	unsigned char lunaddr[])
2382 {
2383 	int rc = 0;
2384 	int count = 0;
2385 	int waittime = 1; /* seconds */
2386 	struct CommandList *c;
2387 
2388 	c = cmd_special_alloc(h);
2389 	if (!c) {
2390 		dev_warn(&h->pdev->dev, "out of memory in "
2391 			"wait_for_device_to_become_ready.\n");
2392 		return IO_ERROR;
2393 	}
2394 
2395 	/* Send test unit ready until device ready, or give up. */
2396 	while (count < HPSA_TUR_RETRY_LIMIT) {
2397 
2398 		/* Wait for a bit.  do this first, because if we send
2399 		 * the TUR right away, the reset will just abort it.
2400 		 */
2401 		msleep(1000 * waittime);
2402 		count++;
2403 
2404 		/* Increase wait time with each try, up to a point. */
2405 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2406 			waittime = waittime * 2;
2407 
2408 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2409 		(void) fill_cmd(c, TEST_UNIT_READY, h,
2410 				NULL, 0, 0, lunaddr, TYPE_CMD);
2411 		hpsa_scsi_do_simple_cmd_core(h, c);
2412 		/* no unmap needed here because no data xfer. */
2413 
2414 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2415 			break;
2416 
2417 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2418 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2419 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2420 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2421 			break;
2422 
2423 		dev_warn(&h->pdev->dev, "waiting %d secs "
2424 			"for device to become ready.\n", waittime);
2425 		rc = 1; /* device not ready. */
2426 	}
2427 
2428 	if (rc)
2429 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2430 	else
2431 		dev_warn(&h->pdev->dev, "device is ready.\n");
2432 
2433 	cmd_special_free(h, c);
2434 	return rc;
2435 }
2436 
2437 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2438  * complaining.  Doing a host- or bus-reset can't do anything good here.
2439  */
2440 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2441 {
2442 	int rc;
2443 	struct ctlr_info *h;
2444 	struct hpsa_scsi_dev_t *dev;
2445 
2446 	/* find the controller to which the command to be aborted was sent */
2447 	h = sdev_to_hba(scsicmd->device);
2448 	if (h == NULL) /* paranoia */
2449 		return FAILED;
2450 	dev = scsicmd->device->hostdata;
2451 	if (!dev) {
2452 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2453 			"device lookup failed.\n");
2454 		return FAILED;
2455 	}
2456 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2457 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2458 	/* send a reset to the SCSI LUN which the command was sent to */
2459 	rc = hpsa_send_reset(h, dev->scsi3addr);
2460 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2461 		return SUCCESS;
2462 
2463 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2464 	return FAILED;
2465 }
2466 
2467 static void swizzle_abort_tag(u8 *tag)
2468 {
2469 	u8 original_tag[8];
2470 
2471 	memcpy(original_tag, tag, 8);
2472 	tag[0] = original_tag[3];
2473 	tag[1] = original_tag[2];
2474 	tag[2] = original_tag[1];
2475 	tag[3] = original_tag[0];
2476 	tag[4] = original_tag[7];
2477 	tag[5] = original_tag[6];
2478 	tag[6] = original_tag[5];
2479 	tag[7] = original_tag[4];
2480 }
2481 
2482 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2483 	struct CommandList *abort, int swizzle)
2484 {
2485 	int rc = IO_OK;
2486 	struct CommandList *c;
2487 	struct ErrorInfo *ei;
2488 
2489 	c = cmd_special_alloc(h);
2490 	if (c == NULL) {	/* trouble... */
2491 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2492 		return -ENOMEM;
2493 	}
2494 
2495 	/* fill_cmd can't fail here, no buffer to map */
2496 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2497 		0, 0, scsi3addr, TYPE_MSG);
2498 	if (swizzle)
2499 		swizzle_abort_tag(&c->Request.CDB[4]);
2500 	hpsa_scsi_do_simple_cmd_core(h, c);
2501 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2502 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2503 	/* no unmap needed here because no data xfer. */
2504 
2505 	ei = c->err_info;
2506 	switch (ei->CommandStatus) {
2507 	case CMD_SUCCESS:
2508 		break;
2509 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2510 		rc = -1;
2511 		break;
2512 	default:
2513 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2514 			__func__, abort->Header.Tag.upper,
2515 			abort->Header.Tag.lower);
2516 		hpsa_scsi_interpret_error(c);
2517 		rc = -1;
2518 		break;
2519 	}
2520 	cmd_special_free(h, c);
2521 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2522 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2523 	return rc;
2524 }
2525 
2526 /*
2527  * hpsa_find_cmd_in_queue
2528  *
2529  * Used to determine whether a command (find) is still present
2530  * in queue_head.   Optionally excludes the last element of queue_head.
2531  *
2532  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2533  * not yet been submitted, and so can be aborted by the driver without
2534  * sending an abort to the hardware.
2535  *
2536  * Returns pointer to command if found in queue, NULL otherwise.
2537  */
2538 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2539 			struct scsi_cmnd *find, struct list_head *queue_head)
2540 {
2541 	unsigned long flags;
2542 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2543 
2544 	if (!find)
2545 		return 0;
2546 	spin_lock_irqsave(&h->lock, flags);
2547 	list_for_each_entry(c, queue_head, list) {
2548 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2549 			continue;
2550 		if (c->scsi_cmd == find) {
2551 			spin_unlock_irqrestore(&h->lock, flags);
2552 			return c;
2553 		}
2554 	}
2555 	spin_unlock_irqrestore(&h->lock, flags);
2556 	return NULL;
2557 }
2558 
2559 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2560 					u8 *tag, struct list_head *queue_head)
2561 {
2562 	unsigned long flags;
2563 	struct CommandList *c;
2564 
2565 	spin_lock_irqsave(&h->lock, flags);
2566 	list_for_each_entry(c, queue_head, list) {
2567 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2568 			continue;
2569 		spin_unlock_irqrestore(&h->lock, flags);
2570 		return c;
2571 	}
2572 	spin_unlock_irqrestore(&h->lock, flags);
2573 	return NULL;
2574 }
2575 
2576 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2577  * tell which kind we're dealing with, so we send the abort both ways.  There
2578  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2579  * way we construct our tags but we check anyway in case the assumptions which
2580  * make this true someday become false.
2581  */
2582 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2583 	unsigned char *scsi3addr, struct CommandList *abort)
2584 {
2585 	u8 swizzled_tag[8];
2586 	struct CommandList *c;
2587 	int rc = 0, rc2 = 0;
2588 
2589 	/* we do not expect to find the swizzled tag in our queue, but
2590 	 * check anyway just to be sure the assumptions which make this
2591 	 * the case haven't become wrong.
2592 	 */
2593 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2594 	swizzle_abort_tag(swizzled_tag);
2595 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2596 	if (c != NULL) {
2597 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2598 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2599 	}
2600 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2601 
2602 	/* if the command is still in our queue, we can't conclude that it was
2603 	 * aborted (it might have just completed normally) but in any case
2604 	 * we don't need to try to abort it another way.
2605 	 */
2606 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2607 	if (c)
2608 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2609 	return rc && rc2;
2610 }
2611 
2612 /* Send an abort for the specified command.
2613  *	If the device and controller support it,
2614  *		send a task abort request.
2615  */
2616 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2617 {
2618 
2619 	int i, rc;
2620 	struct ctlr_info *h;
2621 	struct hpsa_scsi_dev_t *dev;
2622 	struct CommandList *abort; /* pointer to command to be aborted */
2623 	struct CommandList *found;
2624 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2625 	char msg[256];		/* For debug messaging. */
2626 	int ml = 0;
2627 
2628 	/* Find the controller of the command to be aborted */
2629 	h = sdev_to_hba(sc->device);
2630 	if (WARN(h == NULL,
2631 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2632 		return FAILED;
2633 
2634 	/* Check that controller supports some kind of task abort */
2635 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2636 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2637 		return FAILED;
2638 
2639 	memset(msg, 0, sizeof(msg));
2640 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2641 		h->scsi_host->host_no, sc->device->channel,
2642 		sc->device->id, sc->device->lun);
2643 
2644 	/* Find the device of the command to be aborted */
2645 	dev = sc->device->hostdata;
2646 	if (!dev) {
2647 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2648 				msg);
2649 		return FAILED;
2650 	}
2651 
2652 	/* Get SCSI command to be aborted */
2653 	abort = (struct CommandList *) sc->host_scribble;
2654 	if (abort == NULL) {
2655 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2656 				msg);
2657 		return FAILED;
2658 	}
2659 
2660 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2661 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2662 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2663 	if (as != NULL)
2664 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2665 			as->cmnd[0], as->serial_number);
2666 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2667 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2668 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2669 
2670 	/* Search reqQ to See if command is queued but not submitted,
2671 	 * if so, complete the command with aborted status and remove
2672 	 * it from the reqQ.
2673 	 */
2674 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2675 	if (found) {
2676 		found->err_info->CommandStatus = CMD_ABORTED;
2677 		finish_cmd(found);
2678 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2679 				msg);
2680 		return SUCCESS;
2681 	}
2682 
2683 	/* not in reqQ, if also not in cmpQ, must have already completed */
2684 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2685 	if (!found)  {
2686 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2687 				msg);
2688 		return SUCCESS;
2689 	}
2690 
2691 	/*
2692 	 * Command is in flight, or possibly already completed
2693 	 * by the firmware (but not to the scsi mid layer) but we can't
2694 	 * distinguish which.  Send the abort down.
2695 	 */
2696 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2697 	if (rc != 0) {
2698 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2699 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2700 			h->scsi_host->host_no,
2701 			dev->bus, dev->target, dev->lun);
2702 		return FAILED;
2703 	}
2704 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2705 
2706 	/* If the abort(s) above completed and actually aborted the
2707 	 * command, then the command to be aborted should already be
2708 	 * completed.  If not, wait around a bit more to see if they
2709 	 * manage to complete normally.
2710 	 */
2711 #define ABORT_COMPLETE_WAIT_SECS 30
2712 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2713 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2714 		if (!found)
2715 			return SUCCESS;
2716 		msleep(100);
2717 	}
2718 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2719 		msg, ABORT_COMPLETE_WAIT_SECS);
2720 	return FAILED;
2721 }
2722 
2723 
2724 /*
2725  * For operations that cannot sleep, a command block is allocated at init,
2726  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2727  * which ones are free or in use.  Lock must be held when calling this.
2728  * cmd_free() is the complement.
2729  */
2730 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2731 {
2732 	struct CommandList *c;
2733 	int i;
2734 	union u64bit temp64;
2735 	dma_addr_t cmd_dma_handle, err_dma_handle;
2736 	unsigned long flags;
2737 
2738 	spin_lock_irqsave(&h->lock, flags);
2739 	do {
2740 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2741 		if (i == h->nr_cmds) {
2742 			spin_unlock_irqrestore(&h->lock, flags);
2743 			return NULL;
2744 		}
2745 	} while (test_and_set_bit
2746 		 (i & (BITS_PER_LONG - 1),
2747 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2748 	spin_unlock_irqrestore(&h->lock, flags);
2749 
2750 	c = h->cmd_pool + i;
2751 	memset(c, 0, sizeof(*c));
2752 	cmd_dma_handle = h->cmd_pool_dhandle
2753 	    + i * sizeof(*c);
2754 	c->err_info = h->errinfo_pool + i;
2755 	memset(c->err_info, 0, sizeof(*c->err_info));
2756 	err_dma_handle = h->errinfo_pool_dhandle
2757 	    + i * sizeof(*c->err_info);
2758 
2759 	c->cmdindex = i;
2760 
2761 	INIT_LIST_HEAD(&c->list);
2762 	c->busaddr = (u32) cmd_dma_handle;
2763 	temp64.val = (u64) err_dma_handle;
2764 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2765 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2766 	c->ErrDesc.Len = sizeof(*c->err_info);
2767 
2768 	c->h = h;
2769 	return c;
2770 }
2771 
2772 /* For operations that can wait for kmalloc to possibly sleep,
2773  * this routine can be called. Lock need not be held to call
2774  * cmd_special_alloc. cmd_special_free() is the complement.
2775  */
2776 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2777 {
2778 	struct CommandList *c;
2779 	union u64bit temp64;
2780 	dma_addr_t cmd_dma_handle, err_dma_handle;
2781 
2782 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2783 	if (c == NULL)
2784 		return NULL;
2785 	memset(c, 0, sizeof(*c));
2786 
2787 	c->cmdindex = -1;
2788 
2789 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2790 		    &err_dma_handle);
2791 
2792 	if (c->err_info == NULL) {
2793 		pci_free_consistent(h->pdev,
2794 			sizeof(*c), c, cmd_dma_handle);
2795 		return NULL;
2796 	}
2797 	memset(c->err_info, 0, sizeof(*c->err_info));
2798 
2799 	INIT_LIST_HEAD(&c->list);
2800 	c->busaddr = (u32) cmd_dma_handle;
2801 	temp64.val = (u64) err_dma_handle;
2802 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2803 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2804 	c->ErrDesc.Len = sizeof(*c->err_info);
2805 
2806 	c->h = h;
2807 	return c;
2808 }
2809 
2810 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2811 {
2812 	int i;
2813 	unsigned long flags;
2814 
2815 	i = c - h->cmd_pool;
2816 	spin_lock_irqsave(&h->lock, flags);
2817 	clear_bit(i & (BITS_PER_LONG - 1),
2818 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2819 	spin_unlock_irqrestore(&h->lock, flags);
2820 }
2821 
2822 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2823 {
2824 	union u64bit temp64;
2825 
2826 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2827 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2828 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2829 			    c->err_info, (dma_addr_t) temp64.val);
2830 	pci_free_consistent(h->pdev, sizeof(*c),
2831 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2832 }
2833 
2834 #ifdef CONFIG_COMPAT
2835 
2836 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2837 {
2838 	IOCTL32_Command_struct __user *arg32 =
2839 	    (IOCTL32_Command_struct __user *) arg;
2840 	IOCTL_Command_struct arg64;
2841 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2842 	int err;
2843 	u32 cp;
2844 
2845 	memset(&arg64, 0, sizeof(arg64));
2846 	err = 0;
2847 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2848 			   sizeof(arg64.LUN_info));
2849 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2850 			   sizeof(arg64.Request));
2851 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2852 			   sizeof(arg64.error_info));
2853 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2854 	err |= get_user(cp, &arg32->buf);
2855 	arg64.buf = compat_ptr(cp);
2856 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2857 
2858 	if (err)
2859 		return -EFAULT;
2860 
2861 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2862 	if (err)
2863 		return err;
2864 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2865 			 sizeof(arg32->error_info));
2866 	if (err)
2867 		return -EFAULT;
2868 	return err;
2869 }
2870 
2871 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2872 	int cmd, void *arg)
2873 {
2874 	BIG_IOCTL32_Command_struct __user *arg32 =
2875 	    (BIG_IOCTL32_Command_struct __user *) arg;
2876 	BIG_IOCTL_Command_struct arg64;
2877 	BIG_IOCTL_Command_struct __user *p =
2878 	    compat_alloc_user_space(sizeof(arg64));
2879 	int err;
2880 	u32 cp;
2881 
2882 	memset(&arg64, 0, sizeof(arg64));
2883 	err = 0;
2884 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2885 			   sizeof(arg64.LUN_info));
2886 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2887 			   sizeof(arg64.Request));
2888 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2889 			   sizeof(arg64.error_info));
2890 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2891 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2892 	err |= get_user(cp, &arg32->buf);
2893 	arg64.buf = compat_ptr(cp);
2894 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2895 
2896 	if (err)
2897 		return -EFAULT;
2898 
2899 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2900 	if (err)
2901 		return err;
2902 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2903 			 sizeof(arg32->error_info));
2904 	if (err)
2905 		return -EFAULT;
2906 	return err;
2907 }
2908 
2909 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2910 {
2911 	switch (cmd) {
2912 	case CCISS_GETPCIINFO:
2913 	case CCISS_GETINTINFO:
2914 	case CCISS_SETINTINFO:
2915 	case CCISS_GETNODENAME:
2916 	case CCISS_SETNODENAME:
2917 	case CCISS_GETHEARTBEAT:
2918 	case CCISS_GETBUSTYPES:
2919 	case CCISS_GETFIRMVER:
2920 	case CCISS_GETDRIVVER:
2921 	case CCISS_REVALIDVOLS:
2922 	case CCISS_DEREGDISK:
2923 	case CCISS_REGNEWDISK:
2924 	case CCISS_REGNEWD:
2925 	case CCISS_RESCANDISK:
2926 	case CCISS_GETLUNINFO:
2927 		return hpsa_ioctl(dev, cmd, arg);
2928 
2929 	case CCISS_PASSTHRU32:
2930 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2931 	case CCISS_BIG_PASSTHRU32:
2932 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2933 
2934 	default:
2935 		return -ENOIOCTLCMD;
2936 	}
2937 }
2938 #endif
2939 
2940 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2941 {
2942 	struct hpsa_pci_info pciinfo;
2943 
2944 	if (!argp)
2945 		return -EINVAL;
2946 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2947 	pciinfo.bus = h->pdev->bus->number;
2948 	pciinfo.dev_fn = h->pdev->devfn;
2949 	pciinfo.board_id = h->board_id;
2950 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2951 		return -EFAULT;
2952 	return 0;
2953 }
2954 
2955 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2956 {
2957 	DriverVer_type DriverVer;
2958 	unsigned char vmaj, vmin, vsubmin;
2959 	int rc;
2960 
2961 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2962 		&vmaj, &vmin, &vsubmin);
2963 	if (rc != 3) {
2964 		dev_info(&h->pdev->dev, "driver version string '%s' "
2965 			"unrecognized.", HPSA_DRIVER_VERSION);
2966 		vmaj = 0;
2967 		vmin = 0;
2968 		vsubmin = 0;
2969 	}
2970 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2971 	if (!argp)
2972 		return -EINVAL;
2973 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2974 		return -EFAULT;
2975 	return 0;
2976 }
2977 
2978 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2979 {
2980 	IOCTL_Command_struct iocommand;
2981 	struct CommandList *c;
2982 	char *buff = NULL;
2983 	union u64bit temp64;
2984 	int rc = 0;
2985 
2986 	if (!argp)
2987 		return -EINVAL;
2988 	if (!capable(CAP_SYS_RAWIO))
2989 		return -EPERM;
2990 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2991 		return -EFAULT;
2992 	if ((iocommand.buf_size < 1) &&
2993 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2994 		return -EINVAL;
2995 	}
2996 	if (iocommand.buf_size > 0) {
2997 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2998 		if (buff == NULL)
2999 			return -EFAULT;
3000 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
3001 			/* Copy the data into the buffer we created */
3002 			if (copy_from_user(buff, iocommand.buf,
3003 				iocommand.buf_size)) {
3004 				rc = -EFAULT;
3005 				goto out_kfree;
3006 			}
3007 		} else {
3008 			memset(buff, 0, iocommand.buf_size);
3009 		}
3010 	}
3011 	c = cmd_special_alloc(h);
3012 	if (c == NULL) {
3013 		rc = -ENOMEM;
3014 		goto out_kfree;
3015 	}
3016 	/* Fill in the command type */
3017 	c->cmd_type = CMD_IOCTL_PEND;
3018 	/* Fill in Command Header */
3019 	c->Header.ReplyQueue = 0; /* unused in simple mode */
3020 	if (iocommand.buf_size > 0) {	/* buffer to fill */
3021 		c->Header.SGList = 1;
3022 		c->Header.SGTotal = 1;
3023 	} else	{ /* no buffers to fill */
3024 		c->Header.SGList = 0;
3025 		c->Header.SGTotal = 0;
3026 	}
3027 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3028 	/* use the kernel address the cmd block for tag */
3029 	c->Header.Tag.lower = c->busaddr;
3030 
3031 	/* Fill in Request block */
3032 	memcpy(&c->Request, &iocommand.Request,
3033 		sizeof(c->Request));
3034 
3035 	/* Fill in the scatter gather information */
3036 	if (iocommand.buf_size > 0) {
3037 		temp64.val = pci_map_single(h->pdev, buff,
3038 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3039 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3040 			c->SG[0].Addr.lower = 0;
3041 			c->SG[0].Addr.upper = 0;
3042 			c->SG[0].Len = 0;
3043 			rc = -ENOMEM;
3044 			goto out;
3045 		}
3046 		c->SG[0].Addr.lower = temp64.val32.lower;
3047 		c->SG[0].Addr.upper = temp64.val32.upper;
3048 		c->SG[0].Len = iocommand.buf_size;
3049 		c->SG[0].Ext = 0; /* we are not chaining*/
3050 	}
3051 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3052 	if (iocommand.buf_size > 0)
3053 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3054 	check_ioctl_unit_attention(h, c);
3055 
3056 	/* Copy the error information out */
3057 	memcpy(&iocommand.error_info, c->err_info,
3058 		sizeof(iocommand.error_info));
3059 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3060 		rc = -EFAULT;
3061 		goto out;
3062 	}
3063 	if (iocommand.Request.Type.Direction == XFER_READ &&
3064 		iocommand.buf_size > 0) {
3065 		/* Copy the data out of the buffer we created */
3066 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3067 			rc = -EFAULT;
3068 			goto out;
3069 		}
3070 	}
3071 out:
3072 	cmd_special_free(h, c);
3073 out_kfree:
3074 	kfree(buff);
3075 	return rc;
3076 }
3077 
3078 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3079 {
3080 	BIG_IOCTL_Command_struct *ioc;
3081 	struct CommandList *c;
3082 	unsigned char **buff = NULL;
3083 	int *buff_size = NULL;
3084 	union u64bit temp64;
3085 	BYTE sg_used = 0;
3086 	int status = 0;
3087 	int i;
3088 	u32 left;
3089 	u32 sz;
3090 	BYTE __user *data_ptr;
3091 
3092 	if (!argp)
3093 		return -EINVAL;
3094 	if (!capable(CAP_SYS_RAWIO))
3095 		return -EPERM;
3096 	ioc = (BIG_IOCTL_Command_struct *)
3097 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3098 	if (!ioc) {
3099 		status = -ENOMEM;
3100 		goto cleanup1;
3101 	}
3102 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3103 		status = -EFAULT;
3104 		goto cleanup1;
3105 	}
3106 	if ((ioc->buf_size < 1) &&
3107 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3108 		status = -EINVAL;
3109 		goto cleanup1;
3110 	}
3111 	/* Check kmalloc limits  using all SGs */
3112 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3113 		status = -EINVAL;
3114 		goto cleanup1;
3115 	}
3116 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3117 		status = -EINVAL;
3118 		goto cleanup1;
3119 	}
3120 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3121 	if (!buff) {
3122 		status = -ENOMEM;
3123 		goto cleanup1;
3124 	}
3125 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3126 	if (!buff_size) {
3127 		status = -ENOMEM;
3128 		goto cleanup1;
3129 	}
3130 	left = ioc->buf_size;
3131 	data_ptr = ioc->buf;
3132 	while (left) {
3133 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3134 		buff_size[sg_used] = sz;
3135 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3136 		if (buff[sg_used] == NULL) {
3137 			status = -ENOMEM;
3138 			goto cleanup1;
3139 		}
3140 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3141 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3142 				status = -ENOMEM;
3143 				goto cleanup1;
3144 			}
3145 		} else
3146 			memset(buff[sg_used], 0, sz);
3147 		left -= sz;
3148 		data_ptr += sz;
3149 		sg_used++;
3150 	}
3151 	c = cmd_special_alloc(h);
3152 	if (c == NULL) {
3153 		status = -ENOMEM;
3154 		goto cleanup1;
3155 	}
3156 	c->cmd_type = CMD_IOCTL_PEND;
3157 	c->Header.ReplyQueue = 0;
3158 	c->Header.SGList = c->Header.SGTotal = sg_used;
3159 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3160 	c->Header.Tag.lower = c->busaddr;
3161 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3162 	if (ioc->buf_size > 0) {
3163 		int i;
3164 		for (i = 0; i < sg_used; i++) {
3165 			temp64.val = pci_map_single(h->pdev, buff[i],
3166 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3167 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3168 				c->SG[i].Addr.lower = 0;
3169 				c->SG[i].Addr.upper = 0;
3170 				c->SG[i].Len = 0;
3171 				hpsa_pci_unmap(h->pdev, c, i,
3172 					PCI_DMA_BIDIRECTIONAL);
3173 				status = -ENOMEM;
3174 				goto cleanup1;
3175 			}
3176 			c->SG[i].Addr.lower = temp64.val32.lower;
3177 			c->SG[i].Addr.upper = temp64.val32.upper;
3178 			c->SG[i].Len = buff_size[i];
3179 			/* we are not chaining */
3180 			c->SG[i].Ext = 0;
3181 		}
3182 	}
3183 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3184 	if (sg_used)
3185 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3186 	check_ioctl_unit_attention(h, c);
3187 	/* Copy the error information out */
3188 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3189 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3190 		cmd_special_free(h, c);
3191 		status = -EFAULT;
3192 		goto cleanup1;
3193 	}
3194 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3195 		/* Copy the data out of the buffer we created */
3196 		BYTE __user *ptr = ioc->buf;
3197 		for (i = 0; i < sg_used; i++) {
3198 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3199 				cmd_special_free(h, c);
3200 				status = -EFAULT;
3201 				goto cleanup1;
3202 			}
3203 			ptr += buff_size[i];
3204 		}
3205 	}
3206 	cmd_special_free(h, c);
3207 	status = 0;
3208 cleanup1:
3209 	if (buff) {
3210 		for (i = 0; i < sg_used; i++)
3211 			kfree(buff[i]);
3212 		kfree(buff);
3213 	}
3214 	kfree(buff_size);
3215 	kfree(ioc);
3216 	return status;
3217 }
3218 
3219 static void check_ioctl_unit_attention(struct ctlr_info *h,
3220 	struct CommandList *c)
3221 {
3222 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3223 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3224 		(void) check_for_unit_attention(h, c);
3225 }
3226 /*
3227  * ioctl
3228  */
3229 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3230 {
3231 	struct ctlr_info *h;
3232 	void __user *argp = (void __user *)arg;
3233 
3234 	h = sdev_to_hba(dev);
3235 
3236 	switch (cmd) {
3237 	case CCISS_DEREGDISK:
3238 	case CCISS_REGNEWDISK:
3239 	case CCISS_REGNEWD:
3240 		hpsa_scan_start(h->scsi_host);
3241 		return 0;
3242 	case CCISS_GETPCIINFO:
3243 		return hpsa_getpciinfo_ioctl(h, argp);
3244 	case CCISS_GETDRIVVER:
3245 		return hpsa_getdrivver_ioctl(h, argp);
3246 	case CCISS_PASSTHRU:
3247 		return hpsa_passthru_ioctl(h, argp);
3248 	case CCISS_BIG_PASSTHRU:
3249 		return hpsa_big_passthru_ioctl(h, argp);
3250 	default:
3251 		return -ENOTTY;
3252 	}
3253 }
3254 
3255 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3256 				u8 reset_type)
3257 {
3258 	struct CommandList *c;
3259 
3260 	c = cmd_alloc(h);
3261 	if (!c)
3262 		return -ENOMEM;
3263 	/* fill_cmd can't fail here, no data buffer to map */
3264 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3265 		RAID_CTLR_LUNID, TYPE_MSG);
3266 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3267 	c->waiting = NULL;
3268 	enqueue_cmd_and_start_io(h, c);
3269 	/* Don't wait for completion, the reset won't complete.  Don't free
3270 	 * the command either.  This is the last command we will send before
3271 	 * re-initializing everything, so it doesn't matter and won't leak.
3272 	 */
3273 	return 0;
3274 }
3275 
3276 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3277 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3278 	int cmd_type)
3279 {
3280 	int pci_dir = XFER_NONE;
3281 	struct CommandList *a; /* for commands to be aborted */
3282 
3283 	c->cmd_type = CMD_IOCTL_PEND;
3284 	c->Header.ReplyQueue = 0;
3285 	if (buff != NULL && size > 0) {
3286 		c->Header.SGList = 1;
3287 		c->Header.SGTotal = 1;
3288 	} else {
3289 		c->Header.SGList = 0;
3290 		c->Header.SGTotal = 0;
3291 	}
3292 	c->Header.Tag.lower = c->busaddr;
3293 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3294 
3295 	c->Request.Type.Type = cmd_type;
3296 	if (cmd_type == TYPE_CMD) {
3297 		switch (cmd) {
3298 		case HPSA_INQUIRY:
3299 			/* are we trying to read a vital product page */
3300 			if (page_code != 0) {
3301 				c->Request.CDB[1] = 0x01;
3302 				c->Request.CDB[2] = page_code;
3303 			}
3304 			c->Request.CDBLen = 6;
3305 			c->Request.Type.Attribute = ATTR_SIMPLE;
3306 			c->Request.Type.Direction = XFER_READ;
3307 			c->Request.Timeout = 0;
3308 			c->Request.CDB[0] = HPSA_INQUIRY;
3309 			c->Request.CDB[4] = size & 0xFF;
3310 			break;
3311 		case HPSA_REPORT_LOG:
3312 		case HPSA_REPORT_PHYS:
3313 			/* Talking to controller so It's a physical command
3314 			   mode = 00 target = 0.  Nothing to write.
3315 			 */
3316 			c->Request.CDBLen = 12;
3317 			c->Request.Type.Attribute = ATTR_SIMPLE;
3318 			c->Request.Type.Direction = XFER_READ;
3319 			c->Request.Timeout = 0;
3320 			c->Request.CDB[0] = cmd;
3321 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3322 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3323 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3324 			c->Request.CDB[9] = size & 0xFF;
3325 			break;
3326 		case HPSA_CACHE_FLUSH:
3327 			c->Request.CDBLen = 12;
3328 			c->Request.Type.Attribute = ATTR_SIMPLE;
3329 			c->Request.Type.Direction = XFER_WRITE;
3330 			c->Request.Timeout = 0;
3331 			c->Request.CDB[0] = BMIC_WRITE;
3332 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3333 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3334 			c->Request.CDB[8] = size & 0xFF;
3335 			break;
3336 		case TEST_UNIT_READY:
3337 			c->Request.CDBLen = 6;
3338 			c->Request.Type.Attribute = ATTR_SIMPLE;
3339 			c->Request.Type.Direction = XFER_NONE;
3340 			c->Request.Timeout = 0;
3341 			break;
3342 		default:
3343 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3344 			BUG();
3345 			return -1;
3346 		}
3347 	} else if (cmd_type == TYPE_MSG) {
3348 		switch (cmd) {
3349 
3350 		case  HPSA_DEVICE_RESET_MSG:
3351 			c->Request.CDBLen = 16;
3352 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3353 			c->Request.Type.Attribute = ATTR_SIMPLE;
3354 			c->Request.Type.Direction = XFER_NONE;
3355 			c->Request.Timeout = 0; /* Don't time out */
3356 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3357 			c->Request.CDB[0] =  cmd;
3358 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3359 			/* If bytes 4-7 are zero, it means reset the */
3360 			/* LunID device */
3361 			c->Request.CDB[4] = 0x00;
3362 			c->Request.CDB[5] = 0x00;
3363 			c->Request.CDB[6] = 0x00;
3364 			c->Request.CDB[7] = 0x00;
3365 			break;
3366 		case  HPSA_ABORT_MSG:
3367 			a = buff;       /* point to command to be aborted */
3368 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3369 				a->Header.Tag.upper, a->Header.Tag.lower,
3370 				c->Header.Tag.upper, c->Header.Tag.lower);
3371 			c->Request.CDBLen = 16;
3372 			c->Request.Type.Type = TYPE_MSG;
3373 			c->Request.Type.Attribute = ATTR_SIMPLE;
3374 			c->Request.Type.Direction = XFER_WRITE;
3375 			c->Request.Timeout = 0; /* Don't time out */
3376 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3377 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3378 			c->Request.CDB[2] = 0x00; /* reserved */
3379 			c->Request.CDB[3] = 0x00; /* reserved */
3380 			/* Tag to abort goes in CDB[4]-CDB[11] */
3381 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3382 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3383 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3384 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3385 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3386 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3387 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3388 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3389 			c->Request.CDB[12] = 0x00; /* reserved */
3390 			c->Request.CDB[13] = 0x00; /* reserved */
3391 			c->Request.CDB[14] = 0x00; /* reserved */
3392 			c->Request.CDB[15] = 0x00; /* reserved */
3393 		break;
3394 		default:
3395 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3396 				cmd);
3397 			BUG();
3398 		}
3399 	} else {
3400 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3401 		BUG();
3402 	}
3403 
3404 	switch (c->Request.Type.Direction) {
3405 	case XFER_READ:
3406 		pci_dir = PCI_DMA_FROMDEVICE;
3407 		break;
3408 	case XFER_WRITE:
3409 		pci_dir = PCI_DMA_TODEVICE;
3410 		break;
3411 	case XFER_NONE:
3412 		pci_dir = PCI_DMA_NONE;
3413 		break;
3414 	default:
3415 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3416 	}
3417 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3418 		return -1;
3419 	return 0;
3420 }
3421 
3422 /*
3423  * Map (physical) PCI mem into (virtual) kernel space
3424  */
3425 static void __iomem *remap_pci_mem(ulong base, ulong size)
3426 {
3427 	ulong page_base = ((ulong) base) & PAGE_MASK;
3428 	ulong page_offs = ((ulong) base) - page_base;
3429 	void __iomem *page_remapped = ioremap_nocache(page_base,
3430 		page_offs + size);
3431 
3432 	return page_remapped ? (page_remapped + page_offs) : NULL;
3433 }
3434 
3435 /* Takes cmds off the submission queue and sends them to the hardware,
3436  * then puts them on the queue of cmds waiting for completion.
3437  */
3438 static void start_io(struct ctlr_info *h)
3439 {
3440 	struct CommandList *c;
3441 	unsigned long flags;
3442 
3443 	spin_lock_irqsave(&h->lock, flags);
3444 	while (!list_empty(&h->reqQ)) {
3445 		c = list_entry(h->reqQ.next, struct CommandList, list);
3446 		/* can't do anything if fifo is full */
3447 		if ((h->access.fifo_full(h))) {
3448 			dev_warn(&h->pdev->dev, "fifo full\n");
3449 			break;
3450 		}
3451 
3452 		/* Get the first entry from the Request Q */
3453 		removeQ(c);
3454 		h->Qdepth--;
3455 
3456 		/* Put job onto the completed Q */
3457 		addQ(&h->cmpQ, c);
3458 
3459 		/* Must increment commands_outstanding before unlocking
3460 		 * and submitting to avoid race checking for fifo full
3461 		 * condition.
3462 		 */
3463 		h->commands_outstanding++;
3464 		if (h->commands_outstanding > h->max_outstanding)
3465 			h->max_outstanding = h->commands_outstanding;
3466 
3467 		/* Tell the controller execute command */
3468 		spin_unlock_irqrestore(&h->lock, flags);
3469 		h->access.submit_command(h, c);
3470 		spin_lock_irqsave(&h->lock, flags);
3471 	}
3472 	spin_unlock_irqrestore(&h->lock, flags);
3473 }
3474 
3475 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3476 {
3477 	return h->access.command_completed(h, q);
3478 }
3479 
3480 static inline bool interrupt_pending(struct ctlr_info *h)
3481 {
3482 	return h->access.intr_pending(h);
3483 }
3484 
3485 static inline long interrupt_not_for_us(struct ctlr_info *h)
3486 {
3487 	return (h->access.intr_pending(h) == 0) ||
3488 		(h->interrupts_enabled == 0);
3489 }
3490 
3491 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3492 	u32 raw_tag)
3493 {
3494 	if (unlikely(tag_index >= h->nr_cmds)) {
3495 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3496 		return 1;
3497 	}
3498 	return 0;
3499 }
3500 
3501 static inline void finish_cmd(struct CommandList *c)
3502 {
3503 	unsigned long flags;
3504 
3505 	spin_lock_irqsave(&c->h->lock, flags);
3506 	removeQ(c);
3507 	spin_unlock_irqrestore(&c->h->lock, flags);
3508 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3509 	if (likely(c->cmd_type == CMD_SCSI))
3510 		complete_scsi_command(c);
3511 	else if (c->cmd_type == CMD_IOCTL_PEND)
3512 		complete(c->waiting);
3513 }
3514 
3515 static inline u32 hpsa_tag_contains_index(u32 tag)
3516 {
3517 	return tag & DIRECT_LOOKUP_BIT;
3518 }
3519 
3520 static inline u32 hpsa_tag_to_index(u32 tag)
3521 {
3522 	return tag >> DIRECT_LOOKUP_SHIFT;
3523 }
3524 
3525 
3526 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3527 {
3528 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3529 #define HPSA_SIMPLE_ERROR_BITS 0x03
3530 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3531 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3532 	return tag & ~HPSA_PERF_ERROR_BITS;
3533 }
3534 
3535 /* process completion of an indexed ("direct lookup") command */
3536 static inline void process_indexed_cmd(struct ctlr_info *h,
3537 	u32 raw_tag)
3538 {
3539 	u32 tag_index;
3540 	struct CommandList *c;
3541 
3542 	tag_index = hpsa_tag_to_index(raw_tag);
3543 	if (!bad_tag(h, tag_index, raw_tag)) {
3544 		c = h->cmd_pool + tag_index;
3545 		finish_cmd(c);
3546 	}
3547 }
3548 
3549 /* process completion of a non-indexed command */
3550 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3551 	u32 raw_tag)
3552 {
3553 	u32 tag;
3554 	struct CommandList *c = NULL;
3555 	unsigned long flags;
3556 
3557 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3558 	spin_lock_irqsave(&h->lock, flags);
3559 	list_for_each_entry(c, &h->cmpQ, list) {
3560 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3561 			spin_unlock_irqrestore(&h->lock, flags);
3562 			finish_cmd(c);
3563 			return;
3564 		}
3565 	}
3566 	spin_unlock_irqrestore(&h->lock, flags);
3567 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3568 }
3569 
3570 /* Some controllers, like p400, will give us one interrupt
3571  * after a soft reset, even if we turned interrupts off.
3572  * Only need to check for this in the hpsa_xxx_discard_completions
3573  * functions.
3574  */
3575 static int ignore_bogus_interrupt(struct ctlr_info *h)
3576 {
3577 	if (likely(!reset_devices))
3578 		return 0;
3579 
3580 	if (likely(h->interrupts_enabled))
3581 		return 0;
3582 
3583 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3584 		"(known firmware bug.)  Ignoring.\n");
3585 
3586 	return 1;
3587 }
3588 
3589 /*
3590  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3591  * Relies on (h-q[x] == x) being true for x such that
3592  * 0 <= x < MAX_REPLY_QUEUES.
3593  */
3594 static struct ctlr_info *queue_to_hba(u8 *queue)
3595 {
3596 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3597 }
3598 
3599 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3600 {
3601 	struct ctlr_info *h = queue_to_hba(queue);
3602 	u8 q = *(u8 *) queue;
3603 	u32 raw_tag;
3604 
3605 	if (ignore_bogus_interrupt(h))
3606 		return IRQ_NONE;
3607 
3608 	if (interrupt_not_for_us(h))
3609 		return IRQ_NONE;
3610 	h->last_intr_timestamp = get_jiffies_64();
3611 	while (interrupt_pending(h)) {
3612 		raw_tag = get_next_completion(h, q);
3613 		while (raw_tag != FIFO_EMPTY)
3614 			raw_tag = next_command(h, q);
3615 	}
3616 	return IRQ_HANDLED;
3617 }
3618 
3619 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3620 {
3621 	struct ctlr_info *h = queue_to_hba(queue);
3622 	u32 raw_tag;
3623 	u8 q = *(u8 *) queue;
3624 
3625 	if (ignore_bogus_interrupt(h))
3626 		return IRQ_NONE;
3627 
3628 	h->last_intr_timestamp = get_jiffies_64();
3629 	raw_tag = get_next_completion(h, q);
3630 	while (raw_tag != FIFO_EMPTY)
3631 		raw_tag = next_command(h, q);
3632 	return IRQ_HANDLED;
3633 }
3634 
3635 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3636 {
3637 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3638 	u32 raw_tag;
3639 	u8 q = *(u8 *) queue;
3640 
3641 	if (interrupt_not_for_us(h))
3642 		return IRQ_NONE;
3643 	h->last_intr_timestamp = get_jiffies_64();
3644 	while (interrupt_pending(h)) {
3645 		raw_tag = get_next_completion(h, q);
3646 		while (raw_tag != FIFO_EMPTY) {
3647 			if (likely(hpsa_tag_contains_index(raw_tag)))
3648 				process_indexed_cmd(h, raw_tag);
3649 			else
3650 				process_nonindexed_cmd(h, raw_tag);
3651 			raw_tag = next_command(h, q);
3652 		}
3653 	}
3654 	return IRQ_HANDLED;
3655 }
3656 
3657 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3658 {
3659 	struct ctlr_info *h = queue_to_hba(queue);
3660 	u32 raw_tag;
3661 	u8 q = *(u8 *) queue;
3662 
3663 	h->last_intr_timestamp = get_jiffies_64();
3664 	raw_tag = get_next_completion(h, q);
3665 	while (raw_tag != FIFO_EMPTY) {
3666 		if (likely(hpsa_tag_contains_index(raw_tag)))
3667 			process_indexed_cmd(h, raw_tag);
3668 		else
3669 			process_nonindexed_cmd(h, raw_tag);
3670 		raw_tag = next_command(h, q);
3671 	}
3672 	return IRQ_HANDLED;
3673 }
3674 
3675 /* Send a message CDB to the firmware. Careful, this only works
3676  * in simple mode, not performant mode due to the tag lookup.
3677  * We only ever use this immediately after a controller reset.
3678  */
3679 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3680 			unsigned char type)
3681 {
3682 	struct Command {
3683 		struct CommandListHeader CommandHeader;
3684 		struct RequestBlock Request;
3685 		struct ErrDescriptor ErrorDescriptor;
3686 	};
3687 	struct Command *cmd;
3688 	static const size_t cmd_sz = sizeof(*cmd) +
3689 					sizeof(cmd->ErrorDescriptor);
3690 	dma_addr_t paddr64;
3691 	uint32_t paddr32, tag;
3692 	void __iomem *vaddr;
3693 	int i, err;
3694 
3695 	vaddr = pci_ioremap_bar(pdev, 0);
3696 	if (vaddr == NULL)
3697 		return -ENOMEM;
3698 
3699 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3700 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3701 	 * memory.
3702 	 */
3703 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3704 	if (err) {
3705 		iounmap(vaddr);
3706 		return -ENOMEM;
3707 	}
3708 
3709 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3710 	if (cmd == NULL) {
3711 		iounmap(vaddr);
3712 		return -ENOMEM;
3713 	}
3714 
3715 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3716 	 * although there's no guarantee, we assume that the address is at
3717 	 * least 4-byte aligned (most likely, it's page-aligned).
3718 	 */
3719 	paddr32 = paddr64;
3720 
3721 	cmd->CommandHeader.ReplyQueue = 0;
3722 	cmd->CommandHeader.SGList = 0;
3723 	cmd->CommandHeader.SGTotal = 0;
3724 	cmd->CommandHeader.Tag.lower = paddr32;
3725 	cmd->CommandHeader.Tag.upper = 0;
3726 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3727 
3728 	cmd->Request.CDBLen = 16;
3729 	cmd->Request.Type.Type = TYPE_MSG;
3730 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3731 	cmd->Request.Type.Direction = XFER_NONE;
3732 	cmd->Request.Timeout = 0; /* Don't time out */
3733 	cmd->Request.CDB[0] = opcode;
3734 	cmd->Request.CDB[1] = type;
3735 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3736 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3737 	cmd->ErrorDescriptor.Addr.upper = 0;
3738 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3739 
3740 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3741 
3742 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3743 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3744 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3745 			break;
3746 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3747 	}
3748 
3749 	iounmap(vaddr);
3750 
3751 	/* we leak the DMA buffer here ... no choice since the controller could
3752 	 *  still complete the command.
3753 	 */
3754 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3755 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3756 			opcode, type);
3757 		return -ETIMEDOUT;
3758 	}
3759 
3760 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3761 
3762 	if (tag & HPSA_ERROR_BIT) {
3763 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3764 			opcode, type);
3765 		return -EIO;
3766 	}
3767 
3768 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3769 		opcode, type);
3770 	return 0;
3771 }
3772 
3773 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3774 
3775 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3776 	void * __iomem vaddr, u32 use_doorbell)
3777 {
3778 	u16 pmcsr;
3779 	int pos;
3780 
3781 	if (use_doorbell) {
3782 		/* For everything after the P600, the PCI power state method
3783 		 * of resetting the controller doesn't work, so we have this
3784 		 * other way using the doorbell register.
3785 		 */
3786 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3787 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3788 	} else { /* Try to do it the PCI power state way */
3789 
3790 		/* Quoting from the Open CISS Specification: "The Power
3791 		 * Management Control/Status Register (CSR) controls the power
3792 		 * state of the device.  The normal operating state is D0,
3793 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3794 		 * the controller, place the interface device in D3 then to D0,
3795 		 * this causes a secondary PCI reset which will reset the
3796 		 * controller." */
3797 
3798 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3799 		if (pos == 0) {
3800 			dev_err(&pdev->dev,
3801 				"hpsa_reset_controller: "
3802 				"PCI PM not supported\n");
3803 			return -ENODEV;
3804 		}
3805 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3806 		/* enter the D3hot power management state */
3807 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3808 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3809 		pmcsr |= PCI_D3hot;
3810 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3811 
3812 		msleep(500);
3813 
3814 		/* enter the D0 power management state */
3815 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3816 		pmcsr |= PCI_D0;
3817 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3818 
3819 		/*
3820 		 * The P600 requires a small delay when changing states.
3821 		 * Otherwise we may think the board did not reset and we bail.
3822 		 * This for kdump only and is particular to the P600.
3823 		 */
3824 		msleep(500);
3825 	}
3826 	return 0;
3827 }
3828 
3829 static void init_driver_version(char *driver_version, int len)
3830 {
3831 	memset(driver_version, 0, len);
3832 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3833 }
3834 
3835 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3836 {
3837 	char *driver_version;
3838 	int i, size = sizeof(cfgtable->driver_version);
3839 
3840 	driver_version = kmalloc(size, GFP_KERNEL);
3841 	if (!driver_version)
3842 		return -ENOMEM;
3843 
3844 	init_driver_version(driver_version, size);
3845 	for (i = 0; i < size; i++)
3846 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3847 	kfree(driver_version);
3848 	return 0;
3849 }
3850 
3851 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3852 					  unsigned char *driver_ver)
3853 {
3854 	int i;
3855 
3856 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3857 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3858 }
3859 
3860 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3861 {
3862 
3863 	char *driver_ver, *old_driver_ver;
3864 	int rc, size = sizeof(cfgtable->driver_version);
3865 
3866 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3867 	if (!old_driver_ver)
3868 		return -ENOMEM;
3869 	driver_ver = old_driver_ver + size;
3870 
3871 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3872 	 * should have been changed, otherwise we know the reset failed.
3873 	 */
3874 	init_driver_version(old_driver_ver, size);
3875 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3876 	rc = !memcmp(driver_ver, old_driver_ver, size);
3877 	kfree(old_driver_ver);
3878 	return rc;
3879 }
3880 /* This does a hard reset of the controller using PCI power management
3881  * states or the using the doorbell register.
3882  */
3883 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3884 {
3885 	u64 cfg_offset;
3886 	u32 cfg_base_addr;
3887 	u64 cfg_base_addr_index;
3888 	void __iomem *vaddr;
3889 	unsigned long paddr;
3890 	u32 misc_fw_support;
3891 	int rc;
3892 	struct CfgTable __iomem *cfgtable;
3893 	u32 use_doorbell;
3894 	u32 board_id;
3895 	u16 command_register;
3896 
3897 	/* For controllers as old as the P600, this is very nearly
3898 	 * the same thing as
3899 	 *
3900 	 * pci_save_state(pci_dev);
3901 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3902 	 * pci_set_power_state(pci_dev, PCI_D0);
3903 	 * pci_restore_state(pci_dev);
3904 	 *
3905 	 * For controllers newer than the P600, the pci power state
3906 	 * method of resetting doesn't work so we have another way
3907 	 * using the doorbell register.
3908 	 */
3909 
3910 	rc = hpsa_lookup_board_id(pdev, &board_id);
3911 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3912 		dev_warn(&pdev->dev, "Not resetting device.\n");
3913 		return -ENODEV;
3914 	}
3915 
3916 	/* if controller is soft- but not hard resettable... */
3917 	if (!ctlr_is_hard_resettable(board_id))
3918 		return -ENOTSUPP; /* try soft reset later. */
3919 
3920 	/* Save the PCI command register */
3921 	pci_read_config_word(pdev, 4, &command_register);
3922 	/* Turn the board off.  This is so that later pci_restore_state()
3923 	 * won't turn the board on before the rest of config space is ready.
3924 	 */
3925 	pci_disable_device(pdev);
3926 	pci_save_state(pdev);
3927 
3928 	/* find the first memory BAR, so we can find the cfg table */
3929 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3930 	if (rc)
3931 		return rc;
3932 	vaddr = remap_pci_mem(paddr, 0x250);
3933 	if (!vaddr)
3934 		return -ENOMEM;
3935 
3936 	/* find cfgtable in order to check if reset via doorbell is supported */
3937 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3938 					&cfg_base_addr_index, &cfg_offset);
3939 	if (rc)
3940 		goto unmap_vaddr;
3941 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3942 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3943 	if (!cfgtable) {
3944 		rc = -ENOMEM;
3945 		goto unmap_vaddr;
3946 	}
3947 	rc = write_driver_ver_to_cfgtable(cfgtable);
3948 	if (rc)
3949 		goto unmap_vaddr;
3950 
3951 	/* If reset via doorbell register is supported, use that.
3952 	 * There are two such methods.  Favor the newest method.
3953 	 */
3954 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3955 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3956 	if (use_doorbell) {
3957 		use_doorbell = DOORBELL_CTLR_RESET2;
3958 	} else {
3959 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3960 		if (use_doorbell) {
3961 			dev_warn(&pdev->dev, "Soft reset not supported. "
3962 				"Firmware update is required.\n");
3963 			rc = -ENOTSUPP; /* try soft reset */
3964 			goto unmap_cfgtable;
3965 		}
3966 	}
3967 
3968 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3969 	if (rc)
3970 		goto unmap_cfgtable;
3971 
3972 	pci_restore_state(pdev);
3973 	rc = pci_enable_device(pdev);
3974 	if (rc) {
3975 		dev_warn(&pdev->dev, "failed to enable device.\n");
3976 		goto unmap_cfgtable;
3977 	}
3978 	pci_write_config_word(pdev, 4, command_register);
3979 
3980 	/* Some devices (notably the HP Smart Array 5i Controller)
3981 	   need a little pause here */
3982 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3983 
3984 	/* Wait for board to become not ready, then ready. */
3985 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3986 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3987 	if (rc) {
3988 		dev_warn(&pdev->dev,
3989 			"failed waiting for board to reset."
3990 			" Will try soft reset.\n");
3991 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3992 		goto unmap_cfgtable;
3993 	}
3994 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3995 	if (rc) {
3996 		dev_warn(&pdev->dev,
3997 			"failed waiting for board to become ready "
3998 			"after hard reset\n");
3999 		goto unmap_cfgtable;
4000 	}
4001 
4002 	rc = controller_reset_failed(vaddr);
4003 	if (rc < 0)
4004 		goto unmap_cfgtable;
4005 	if (rc) {
4006 		dev_warn(&pdev->dev, "Unable to successfully reset "
4007 			"controller. Will try soft reset.\n");
4008 		rc = -ENOTSUPP;
4009 	} else {
4010 		dev_info(&pdev->dev, "board ready after hard reset.\n");
4011 	}
4012 
4013 unmap_cfgtable:
4014 	iounmap(cfgtable);
4015 
4016 unmap_vaddr:
4017 	iounmap(vaddr);
4018 	return rc;
4019 }
4020 
4021 /*
4022  *  We cannot read the structure directly, for portability we must use
4023  *   the io functions.
4024  *   This is for debug only.
4025  */
4026 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4027 {
4028 #ifdef HPSA_DEBUG
4029 	int i;
4030 	char temp_name[17];
4031 
4032 	dev_info(dev, "Controller Configuration information\n");
4033 	dev_info(dev, "------------------------------------\n");
4034 	for (i = 0; i < 4; i++)
4035 		temp_name[i] = readb(&(tb->Signature[i]));
4036 	temp_name[4] = '\0';
4037 	dev_info(dev, "   Signature = %s\n", temp_name);
4038 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4039 	dev_info(dev, "   Transport methods supported = 0x%x\n",
4040 	       readl(&(tb->TransportSupport)));
4041 	dev_info(dev, "   Transport methods active = 0x%x\n",
4042 	       readl(&(tb->TransportActive)));
4043 	dev_info(dev, "   Requested transport Method = 0x%x\n",
4044 	       readl(&(tb->HostWrite.TransportRequest)));
4045 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4046 	       readl(&(tb->HostWrite.CoalIntDelay)));
4047 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4048 	       readl(&(tb->HostWrite.CoalIntCount)));
4049 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
4050 	       readl(&(tb->CmdsOutMax)));
4051 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4052 	for (i = 0; i < 16; i++)
4053 		temp_name[i] = readb(&(tb->ServerName[i]));
4054 	temp_name[16] = '\0';
4055 	dev_info(dev, "   Server Name = %s\n", temp_name);
4056 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4057 		readl(&(tb->HeartBeat)));
4058 #endif				/* HPSA_DEBUG */
4059 }
4060 
4061 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4062 {
4063 	int i, offset, mem_type, bar_type;
4064 
4065 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
4066 		return 0;
4067 	offset = 0;
4068 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4069 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4070 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4071 			offset += 4;
4072 		else {
4073 			mem_type = pci_resource_flags(pdev, i) &
4074 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4075 			switch (mem_type) {
4076 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
4077 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4078 				offset += 4;	/* 32 bit */
4079 				break;
4080 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
4081 				offset += 8;
4082 				break;
4083 			default:	/* reserved in PCI 2.2 */
4084 				dev_warn(&pdev->dev,
4085 				       "base address is invalid\n");
4086 				return -1;
4087 				break;
4088 			}
4089 		}
4090 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4091 			return i + 1;
4092 	}
4093 	return -1;
4094 }
4095 
4096 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4097  * controllers that are capable. If not, we use IO-APIC mode.
4098  */
4099 
4100 static void hpsa_interrupt_mode(struct ctlr_info *h)
4101 {
4102 #ifdef CONFIG_PCI_MSI
4103 	int err, i;
4104 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4105 
4106 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4107 		hpsa_msix_entries[i].vector = 0;
4108 		hpsa_msix_entries[i].entry = i;
4109 	}
4110 
4111 	/* Some boards advertise MSI but don't really support it */
4112 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4113 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4114 		goto default_int_mode;
4115 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4116 		dev_info(&h->pdev->dev, "MSIX\n");
4117 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4118 						MAX_REPLY_QUEUES);
4119 		if (!err) {
4120 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4121 				h->intr[i] = hpsa_msix_entries[i].vector;
4122 			h->msix_vector = 1;
4123 			return;
4124 		}
4125 		if (err > 0) {
4126 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4127 			       "available\n", err);
4128 			goto default_int_mode;
4129 		} else {
4130 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4131 			       err);
4132 			goto default_int_mode;
4133 		}
4134 	}
4135 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4136 		dev_info(&h->pdev->dev, "MSI\n");
4137 		if (!pci_enable_msi(h->pdev))
4138 			h->msi_vector = 1;
4139 		else
4140 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4141 	}
4142 default_int_mode:
4143 #endif				/* CONFIG_PCI_MSI */
4144 	/* if we get here we're going to use the default interrupt mode */
4145 	h->intr[h->intr_mode] = h->pdev->irq;
4146 }
4147 
4148 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4149 {
4150 	int i;
4151 	u32 subsystem_vendor_id, subsystem_device_id;
4152 
4153 	subsystem_vendor_id = pdev->subsystem_vendor;
4154 	subsystem_device_id = pdev->subsystem_device;
4155 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4156 		    subsystem_vendor_id;
4157 
4158 	for (i = 0; i < ARRAY_SIZE(products); i++)
4159 		if (*board_id == products[i].board_id)
4160 			return i;
4161 
4162 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4163 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4164 		!hpsa_allow_any) {
4165 		dev_warn(&pdev->dev, "unrecognized board ID: "
4166 			"0x%08x, ignoring.\n", *board_id);
4167 			return -ENODEV;
4168 	}
4169 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4170 }
4171 
4172 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4173 				    unsigned long *memory_bar)
4174 {
4175 	int i;
4176 
4177 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4178 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4179 			/* addressing mode bits already removed */
4180 			*memory_bar = pci_resource_start(pdev, i);
4181 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4182 				*memory_bar);
4183 			return 0;
4184 		}
4185 	dev_warn(&pdev->dev, "no memory BAR found\n");
4186 	return -ENODEV;
4187 }
4188 
4189 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4190 				     int wait_for_ready)
4191 {
4192 	int i, iterations;
4193 	u32 scratchpad;
4194 	if (wait_for_ready)
4195 		iterations = HPSA_BOARD_READY_ITERATIONS;
4196 	else
4197 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4198 
4199 	for (i = 0; i < iterations; i++) {
4200 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4201 		if (wait_for_ready) {
4202 			if (scratchpad == HPSA_FIRMWARE_READY)
4203 				return 0;
4204 		} else {
4205 			if (scratchpad != HPSA_FIRMWARE_READY)
4206 				return 0;
4207 		}
4208 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4209 	}
4210 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4211 	return -ENODEV;
4212 }
4213 
4214 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4215 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4216 			       u64 *cfg_offset)
4217 {
4218 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4219 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4220 	*cfg_base_addr &= (u32) 0x0000ffff;
4221 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4222 	if (*cfg_base_addr_index == -1) {
4223 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4224 		return -ENODEV;
4225 	}
4226 	return 0;
4227 }
4228 
4229 static int hpsa_find_cfgtables(struct ctlr_info *h)
4230 {
4231 	u64 cfg_offset;
4232 	u32 cfg_base_addr;
4233 	u64 cfg_base_addr_index;
4234 	u32 trans_offset;
4235 	int rc;
4236 
4237 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4238 		&cfg_base_addr_index, &cfg_offset);
4239 	if (rc)
4240 		return rc;
4241 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4242 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4243 	if (!h->cfgtable)
4244 		return -ENOMEM;
4245 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4246 	if (rc)
4247 		return rc;
4248 	/* Find performant mode table. */
4249 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4250 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4251 				cfg_base_addr_index)+cfg_offset+trans_offset,
4252 				sizeof(*h->transtable));
4253 	if (!h->transtable)
4254 		return -ENOMEM;
4255 	return 0;
4256 }
4257 
4258 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4259 {
4260 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4261 
4262 	/* Limit commands in memory limited kdump scenario. */
4263 	if (reset_devices && h->max_commands > 32)
4264 		h->max_commands = 32;
4265 
4266 	if (h->max_commands < 16) {
4267 		dev_warn(&h->pdev->dev, "Controller reports "
4268 			"max supported commands of %d, an obvious lie. "
4269 			"Using 16.  Ensure that firmware is up to date.\n",
4270 			h->max_commands);
4271 		h->max_commands = 16;
4272 	}
4273 }
4274 
4275 /* Interrogate the hardware for some limits:
4276  * max commands, max SG elements without chaining, and with chaining,
4277  * SG chain block size, etc.
4278  */
4279 static void hpsa_find_board_params(struct ctlr_info *h)
4280 {
4281 	hpsa_get_max_perf_mode_cmds(h);
4282 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4283 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4284 	/*
4285 	 * Limit in-command s/g elements to 32 save dma'able memory.
4286 	 * Howvever spec says if 0, use 31
4287 	 */
4288 	h->max_cmd_sg_entries = 31;
4289 	if (h->maxsgentries > 512) {
4290 		h->max_cmd_sg_entries = 32;
4291 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4292 		h->maxsgentries--; /* save one for chain pointer */
4293 	} else {
4294 		h->maxsgentries = 31; /* default to traditional values */
4295 		h->chainsize = 0;
4296 	}
4297 
4298 	/* Find out what task management functions are supported and cache */
4299 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4300 }
4301 
4302 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4303 {
4304 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4305 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4306 		return false;
4307 	}
4308 	return true;
4309 }
4310 
4311 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4312 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4313 {
4314 #ifdef CONFIG_X86
4315 	u32 prefetch;
4316 
4317 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4318 	prefetch |= 0x100;
4319 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4320 #endif
4321 }
4322 
4323 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4324  * in a prefetch beyond physical memory.
4325  */
4326 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4327 {
4328 	u32 dma_prefetch;
4329 
4330 	if (h->board_id != 0x3225103C)
4331 		return;
4332 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4333 	dma_prefetch |= 0x8000;
4334 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4335 }
4336 
4337 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4338 {
4339 	int i;
4340 	u32 doorbell_value;
4341 	unsigned long flags;
4342 
4343 	/* under certain very rare conditions, this can take awhile.
4344 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4345 	 * as we enter this code.)
4346 	 */
4347 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4348 		spin_lock_irqsave(&h->lock, flags);
4349 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4350 		spin_unlock_irqrestore(&h->lock, flags);
4351 		if (!(doorbell_value & CFGTBL_ChangeReq))
4352 			break;
4353 		/* delay and try again */
4354 		usleep_range(10000, 20000);
4355 	}
4356 }
4357 
4358 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4359 {
4360 	u32 trans_support;
4361 
4362 	trans_support = readl(&(h->cfgtable->TransportSupport));
4363 	if (!(trans_support & SIMPLE_MODE))
4364 		return -ENOTSUPP;
4365 
4366 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4367 	/* Update the field, and then ring the doorbell */
4368 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4369 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4370 	hpsa_wait_for_mode_change_ack(h);
4371 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4372 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4373 		dev_warn(&h->pdev->dev,
4374 			"unable to get board into simple mode\n");
4375 		return -ENODEV;
4376 	}
4377 	h->transMethod = CFGTBL_Trans_Simple;
4378 	return 0;
4379 }
4380 
4381 static int hpsa_pci_init(struct ctlr_info *h)
4382 {
4383 	int prod_index, err;
4384 
4385 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4386 	if (prod_index < 0)
4387 		return -ENODEV;
4388 	h->product_name = products[prod_index].product_name;
4389 	h->access = *(products[prod_index].access);
4390 
4391 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4392 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4393 
4394 	err = pci_enable_device(h->pdev);
4395 	if (err) {
4396 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4397 		return err;
4398 	}
4399 
4400 	/* Enable bus mastering (pci_disable_device may disable this) */
4401 	pci_set_master(h->pdev);
4402 
4403 	err = pci_request_regions(h->pdev, HPSA);
4404 	if (err) {
4405 		dev_err(&h->pdev->dev,
4406 			"cannot obtain PCI resources, aborting\n");
4407 		return err;
4408 	}
4409 	hpsa_interrupt_mode(h);
4410 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4411 	if (err)
4412 		goto err_out_free_res;
4413 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4414 	if (!h->vaddr) {
4415 		err = -ENOMEM;
4416 		goto err_out_free_res;
4417 	}
4418 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4419 	if (err)
4420 		goto err_out_free_res;
4421 	err = hpsa_find_cfgtables(h);
4422 	if (err)
4423 		goto err_out_free_res;
4424 	hpsa_find_board_params(h);
4425 
4426 	if (!hpsa_CISS_signature_present(h)) {
4427 		err = -ENODEV;
4428 		goto err_out_free_res;
4429 	}
4430 	hpsa_enable_scsi_prefetch(h);
4431 	hpsa_p600_dma_prefetch_quirk(h);
4432 	err = hpsa_enter_simple_mode(h);
4433 	if (err)
4434 		goto err_out_free_res;
4435 	return 0;
4436 
4437 err_out_free_res:
4438 	if (h->transtable)
4439 		iounmap(h->transtable);
4440 	if (h->cfgtable)
4441 		iounmap(h->cfgtable);
4442 	if (h->vaddr)
4443 		iounmap(h->vaddr);
4444 	pci_disable_device(h->pdev);
4445 	pci_release_regions(h->pdev);
4446 	return err;
4447 }
4448 
4449 static void hpsa_hba_inquiry(struct ctlr_info *h)
4450 {
4451 	int rc;
4452 
4453 #define HBA_INQUIRY_BYTE_COUNT 64
4454 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4455 	if (!h->hba_inquiry_data)
4456 		return;
4457 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4458 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4459 	if (rc != 0) {
4460 		kfree(h->hba_inquiry_data);
4461 		h->hba_inquiry_data = NULL;
4462 	}
4463 }
4464 
4465 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4466 {
4467 	int rc, i;
4468 
4469 	if (!reset_devices)
4470 		return 0;
4471 
4472 	/* Reset the controller with a PCI power-cycle or via doorbell */
4473 	rc = hpsa_kdump_hard_reset_controller(pdev);
4474 
4475 	/* -ENOTSUPP here means we cannot reset the controller
4476 	 * but it's already (and still) up and running in
4477 	 * "performant mode".  Or, it might be 640x, which can't reset
4478 	 * due to concerns about shared bbwc between 6402/6404 pair.
4479 	 */
4480 	if (rc == -ENOTSUPP)
4481 		return rc; /* just try to do the kdump anyhow. */
4482 	if (rc)
4483 		return -ENODEV;
4484 
4485 	/* Now try to get the controller to respond to a no-op */
4486 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4487 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4488 		if (hpsa_noop(pdev) == 0)
4489 			break;
4490 		else
4491 			dev_warn(&pdev->dev, "no-op failed%s\n",
4492 					(i < 11 ? "; re-trying" : ""));
4493 	}
4494 	return 0;
4495 }
4496 
4497 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4498 {
4499 	h->cmd_pool_bits = kzalloc(
4500 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4501 		sizeof(unsigned long), GFP_KERNEL);
4502 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4503 		    h->nr_cmds * sizeof(*h->cmd_pool),
4504 		    &(h->cmd_pool_dhandle));
4505 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4506 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4507 		    &(h->errinfo_pool_dhandle));
4508 	if ((h->cmd_pool_bits == NULL)
4509 	    || (h->cmd_pool == NULL)
4510 	    || (h->errinfo_pool == NULL)) {
4511 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4512 		return -ENOMEM;
4513 	}
4514 	return 0;
4515 }
4516 
4517 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4518 {
4519 	kfree(h->cmd_pool_bits);
4520 	if (h->cmd_pool)
4521 		pci_free_consistent(h->pdev,
4522 			    h->nr_cmds * sizeof(struct CommandList),
4523 			    h->cmd_pool, h->cmd_pool_dhandle);
4524 	if (h->errinfo_pool)
4525 		pci_free_consistent(h->pdev,
4526 			    h->nr_cmds * sizeof(struct ErrorInfo),
4527 			    h->errinfo_pool,
4528 			    h->errinfo_pool_dhandle);
4529 }
4530 
4531 static int hpsa_request_irq(struct ctlr_info *h,
4532 	irqreturn_t (*msixhandler)(int, void *),
4533 	irqreturn_t (*intxhandler)(int, void *))
4534 {
4535 	int rc, i;
4536 
4537 	/*
4538 	 * initialize h->q[x] = x so that interrupt handlers know which
4539 	 * queue to process.
4540 	 */
4541 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4542 		h->q[i] = (u8) i;
4543 
4544 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4545 		/* If performant mode and MSI-X, use multiple reply queues */
4546 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4547 			rc = request_irq(h->intr[i], msixhandler,
4548 					0, h->devname,
4549 					&h->q[i]);
4550 	} else {
4551 		/* Use single reply pool */
4552 		if (h->msix_vector || h->msi_vector) {
4553 			rc = request_irq(h->intr[h->intr_mode],
4554 				msixhandler, 0, h->devname,
4555 				&h->q[h->intr_mode]);
4556 		} else {
4557 			rc = request_irq(h->intr[h->intr_mode],
4558 				intxhandler, IRQF_SHARED, h->devname,
4559 				&h->q[h->intr_mode]);
4560 		}
4561 	}
4562 	if (rc) {
4563 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4564 		       h->intr[h->intr_mode], h->devname);
4565 		return -ENODEV;
4566 	}
4567 	return 0;
4568 }
4569 
4570 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4571 {
4572 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4573 		HPSA_RESET_TYPE_CONTROLLER)) {
4574 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4575 		return -EIO;
4576 	}
4577 
4578 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4579 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4580 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4581 		return -1;
4582 	}
4583 
4584 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4585 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4586 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4587 			"after soft reset.\n");
4588 		return -1;
4589 	}
4590 
4591 	return 0;
4592 }
4593 
4594 static void free_irqs(struct ctlr_info *h)
4595 {
4596 	int i;
4597 
4598 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4599 		/* Single reply queue, only one irq to free */
4600 		i = h->intr_mode;
4601 		free_irq(h->intr[i], &h->q[i]);
4602 		return;
4603 	}
4604 
4605 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4606 		free_irq(h->intr[i], &h->q[i]);
4607 }
4608 
4609 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4610 {
4611 	free_irqs(h);
4612 #ifdef CONFIG_PCI_MSI
4613 	if (h->msix_vector) {
4614 		if (h->pdev->msix_enabled)
4615 			pci_disable_msix(h->pdev);
4616 	} else if (h->msi_vector) {
4617 		if (h->pdev->msi_enabled)
4618 			pci_disable_msi(h->pdev);
4619 	}
4620 #endif /* CONFIG_PCI_MSI */
4621 }
4622 
4623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4624 {
4625 	hpsa_free_irqs_and_disable_msix(h);
4626 	hpsa_free_sg_chain_blocks(h);
4627 	hpsa_free_cmd_pool(h);
4628 	kfree(h->blockFetchTable);
4629 	pci_free_consistent(h->pdev, h->reply_pool_size,
4630 		h->reply_pool, h->reply_pool_dhandle);
4631 	if (h->vaddr)
4632 		iounmap(h->vaddr);
4633 	if (h->transtable)
4634 		iounmap(h->transtable);
4635 	if (h->cfgtable)
4636 		iounmap(h->cfgtable);
4637 	pci_release_regions(h->pdev);
4638 	kfree(h);
4639 }
4640 
4641 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4642 {
4643 	assert_spin_locked(&lockup_detector_lock);
4644 	if (!hpsa_lockup_detector)
4645 		return;
4646 	if (h->lockup_detected)
4647 		return; /* already stopped the lockup detector */
4648 	list_del(&h->lockup_list);
4649 }
4650 
4651 /* Called when controller lockup detected. */
4652 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4653 {
4654 	struct CommandList *c = NULL;
4655 
4656 	assert_spin_locked(&h->lock);
4657 	/* Mark all outstanding commands as failed and complete them. */
4658 	while (!list_empty(list)) {
4659 		c = list_entry(list->next, struct CommandList, list);
4660 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4661 		finish_cmd(c);
4662 	}
4663 }
4664 
4665 static void controller_lockup_detected(struct ctlr_info *h)
4666 {
4667 	unsigned long flags;
4668 
4669 	assert_spin_locked(&lockup_detector_lock);
4670 	remove_ctlr_from_lockup_detector_list(h);
4671 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4672 	spin_lock_irqsave(&h->lock, flags);
4673 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4674 	spin_unlock_irqrestore(&h->lock, flags);
4675 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4676 			h->lockup_detected);
4677 	pci_disable_device(h->pdev);
4678 	spin_lock_irqsave(&h->lock, flags);
4679 	fail_all_cmds_on_list(h, &h->cmpQ);
4680 	fail_all_cmds_on_list(h, &h->reqQ);
4681 	spin_unlock_irqrestore(&h->lock, flags);
4682 }
4683 
4684 static void detect_controller_lockup(struct ctlr_info *h)
4685 {
4686 	u64 now;
4687 	u32 heartbeat;
4688 	unsigned long flags;
4689 
4690 	assert_spin_locked(&lockup_detector_lock);
4691 	now = get_jiffies_64();
4692 	/* If we've received an interrupt recently, we're ok. */
4693 	if (time_after64(h->last_intr_timestamp +
4694 				(h->heartbeat_sample_interval), now))
4695 		return;
4696 
4697 	/*
4698 	 * If we've already checked the heartbeat recently, we're ok.
4699 	 * This could happen if someone sends us a signal. We
4700 	 * otherwise don't care about signals in this thread.
4701 	 */
4702 	if (time_after64(h->last_heartbeat_timestamp +
4703 				(h->heartbeat_sample_interval), now))
4704 		return;
4705 
4706 	/* If heartbeat has not changed since we last looked, we're not ok. */
4707 	spin_lock_irqsave(&h->lock, flags);
4708 	heartbeat = readl(&h->cfgtable->HeartBeat);
4709 	spin_unlock_irqrestore(&h->lock, flags);
4710 	if (h->last_heartbeat == heartbeat) {
4711 		controller_lockup_detected(h);
4712 		return;
4713 	}
4714 
4715 	/* We're ok. */
4716 	h->last_heartbeat = heartbeat;
4717 	h->last_heartbeat_timestamp = now;
4718 }
4719 
4720 static int detect_controller_lockup_thread(void *notused)
4721 {
4722 	struct ctlr_info *h;
4723 	unsigned long flags;
4724 
4725 	while (1) {
4726 		struct list_head *this, *tmp;
4727 
4728 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4729 		if (kthread_should_stop())
4730 			break;
4731 		spin_lock_irqsave(&lockup_detector_lock, flags);
4732 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4733 			h = list_entry(this, struct ctlr_info, lockup_list);
4734 			detect_controller_lockup(h);
4735 		}
4736 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4737 	}
4738 	return 0;
4739 }
4740 
4741 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4742 {
4743 	unsigned long flags;
4744 
4745 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4746 	spin_lock_irqsave(&lockup_detector_lock, flags);
4747 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4748 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4749 }
4750 
4751 static void start_controller_lockup_detector(struct ctlr_info *h)
4752 {
4753 	/* Start the lockup detector thread if not already started */
4754 	if (!hpsa_lockup_detector) {
4755 		spin_lock_init(&lockup_detector_lock);
4756 		hpsa_lockup_detector =
4757 			kthread_run(detect_controller_lockup_thread,
4758 						NULL, HPSA);
4759 	}
4760 	if (!hpsa_lockup_detector) {
4761 		dev_warn(&h->pdev->dev,
4762 			"Could not start lockup detector thread\n");
4763 		return;
4764 	}
4765 	add_ctlr_to_lockup_detector_list(h);
4766 }
4767 
4768 static void stop_controller_lockup_detector(struct ctlr_info *h)
4769 {
4770 	unsigned long flags;
4771 
4772 	spin_lock_irqsave(&lockup_detector_lock, flags);
4773 	remove_ctlr_from_lockup_detector_list(h);
4774 	/* If the list of ctlr's to monitor is empty, stop the thread */
4775 	if (list_empty(&hpsa_ctlr_list)) {
4776 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4777 		kthread_stop(hpsa_lockup_detector);
4778 		spin_lock_irqsave(&lockup_detector_lock, flags);
4779 		hpsa_lockup_detector = NULL;
4780 	}
4781 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4782 }
4783 
4784 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4785 {
4786 	int dac, rc;
4787 	struct ctlr_info *h;
4788 	int try_soft_reset = 0;
4789 	unsigned long flags;
4790 
4791 	if (number_of_controllers == 0)
4792 		printk(KERN_INFO DRIVER_NAME "\n");
4793 
4794 	rc = hpsa_init_reset_devices(pdev);
4795 	if (rc) {
4796 		if (rc != -ENOTSUPP)
4797 			return rc;
4798 		/* If the reset fails in a particular way (it has no way to do
4799 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4800 		 * a soft reset once we get the controller configured up to the
4801 		 * point that it can accept a command.
4802 		 */
4803 		try_soft_reset = 1;
4804 		rc = 0;
4805 	}
4806 
4807 reinit_after_soft_reset:
4808 
4809 	/* Command structures must be aligned on a 32-byte boundary because
4810 	 * the 5 lower bits of the address are used by the hardware. and by
4811 	 * the driver.  See comments in hpsa.h for more info.
4812 	 */
4813 #define COMMANDLIST_ALIGNMENT 32
4814 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4815 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4816 	if (!h)
4817 		return -ENOMEM;
4818 
4819 	h->pdev = pdev;
4820 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4821 	INIT_LIST_HEAD(&h->cmpQ);
4822 	INIT_LIST_HEAD(&h->reqQ);
4823 	spin_lock_init(&h->lock);
4824 	spin_lock_init(&h->scan_lock);
4825 	rc = hpsa_pci_init(h);
4826 	if (rc != 0)
4827 		goto clean1;
4828 
4829 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4830 	h->ctlr = number_of_controllers;
4831 	number_of_controllers++;
4832 
4833 	/* configure PCI DMA stuff */
4834 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4835 	if (rc == 0) {
4836 		dac = 1;
4837 	} else {
4838 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4839 		if (rc == 0) {
4840 			dac = 0;
4841 		} else {
4842 			dev_err(&pdev->dev, "no suitable DMA available\n");
4843 			goto clean1;
4844 		}
4845 	}
4846 
4847 	/* make sure the board interrupts are off */
4848 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4849 
4850 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4851 		goto clean2;
4852 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4853 	       h->devname, pdev->device,
4854 	       h->intr[h->intr_mode], dac ? "" : " not");
4855 	if (hpsa_allocate_cmd_pool(h))
4856 		goto clean4;
4857 	if (hpsa_allocate_sg_chain_blocks(h))
4858 		goto clean4;
4859 	init_waitqueue_head(&h->scan_wait_queue);
4860 	h->scan_finished = 1; /* no scan currently in progress */
4861 
4862 	pci_set_drvdata(pdev, h);
4863 	h->ndevices = 0;
4864 	h->scsi_host = NULL;
4865 	spin_lock_init(&h->devlock);
4866 	hpsa_put_ctlr_into_performant_mode(h);
4867 
4868 	/* At this point, the controller is ready to take commands.
4869 	 * Now, if reset_devices and the hard reset didn't work, try
4870 	 * the soft reset and see if that works.
4871 	 */
4872 	if (try_soft_reset) {
4873 
4874 		/* This is kind of gross.  We may or may not get a completion
4875 		 * from the soft reset command, and if we do, then the value
4876 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4877 		 * after the reset throwing away any completions we get during
4878 		 * that time.  Unregister the interrupt handler and register
4879 		 * fake ones to scoop up any residual completions.
4880 		 */
4881 		spin_lock_irqsave(&h->lock, flags);
4882 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4883 		spin_unlock_irqrestore(&h->lock, flags);
4884 		free_irqs(h);
4885 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4886 					hpsa_intx_discard_completions);
4887 		if (rc) {
4888 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4889 				"soft reset.\n");
4890 			goto clean4;
4891 		}
4892 
4893 		rc = hpsa_kdump_soft_reset(h);
4894 		if (rc)
4895 			/* Neither hard nor soft reset worked, we're hosed. */
4896 			goto clean4;
4897 
4898 		dev_info(&h->pdev->dev, "Board READY.\n");
4899 		dev_info(&h->pdev->dev,
4900 			"Waiting for stale completions to drain.\n");
4901 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4902 		msleep(10000);
4903 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4904 
4905 		rc = controller_reset_failed(h->cfgtable);
4906 		if (rc)
4907 			dev_info(&h->pdev->dev,
4908 				"Soft reset appears to have failed.\n");
4909 
4910 		/* since the controller's reset, we have to go back and re-init
4911 		 * everything.  Easiest to just forget what we've done and do it
4912 		 * all over again.
4913 		 */
4914 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4915 		try_soft_reset = 0;
4916 		if (rc)
4917 			/* don't go to clean4, we already unallocated */
4918 			return -ENODEV;
4919 
4920 		goto reinit_after_soft_reset;
4921 	}
4922 
4923 	/* Turn the interrupts on so we can service requests */
4924 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4925 
4926 	hpsa_hba_inquiry(h);
4927 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4928 	start_controller_lockup_detector(h);
4929 	return 1;
4930 
4931 clean4:
4932 	hpsa_free_sg_chain_blocks(h);
4933 	hpsa_free_cmd_pool(h);
4934 	free_irqs(h);
4935 clean2:
4936 clean1:
4937 	kfree(h);
4938 	return rc;
4939 }
4940 
4941 static void hpsa_flush_cache(struct ctlr_info *h)
4942 {
4943 	char *flush_buf;
4944 	struct CommandList *c;
4945 
4946 	flush_buf = kzalloc(4, GFP_KERNEL);
4947 	if (!flush_buf)
4948 		return;
4949 
4950 	c = cmd_special_alloc(h);
4951 	if (!c) {
4952 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4953 		goto out_of_memory;
4954 	}
4955 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4956 		RAID_CTLR_LUNID, TYPE_CMD)) {
4957 		goto out;
4958 	}
4959 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4960 	if (c->err_info->CommandStatus != 0)
4961 out:
4962 		dev_warn(&h->pdev->dev,
4963 			"error flushing cache on controller\n");
4964 	cmd_special_free(h, c);
4965 out_of_memory:
4966 	kfree(flush_buf);
4967 }
4968 
4969 static void hpsa_shutdown(struct pci_dev *pdev)
4970 {
4971 	struct ctlr_info *h;
4972 
4973 	h = pci_get_drvdata(pdev);
4974 	/* Turn board interrupts off  and send the flush cache command
4975 	 * sendcmd will turn off interrupt, and send the flush...
4976 	 * To write all data in the battery backed cache to disks
4977 	 */
4978 	hpsa_flush_cache(h);
4979 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4980 	hpsa_free_irqs_and_disable_msix(h);
4981 }
4982 
4983 static void hpsa_free_device_info(struct ctlr_info *h)
4984 {
4985 	int i;
4986 
4987 	for (i = 0; i < h->ndevices; i++)
4988 		kfree(h->dev[i]);
4989 }
4990 
4991 static void hpsa_remove_one(struct pci_dev *pdev)
4992 {
4993 	struct ctlr_info *h;
4994 
4995 	if (pci_get_drvdata(pdev) == NULL) {
4996 		dev_err(&pdev->dev, "unable to remove device\n");
4997 		return;
4998 	}
4999 	h = pci_get_drvdata(pdev);
5000 	stop_controller_lockup_detector(h);
5001 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
5002 	hpsa_shutdown(pdev);
5003 	iounmap(h->vaddr);
5004 	iounmap(h->transtable);
5005 	iounmap(h->cfgtable);
5006 	hpsa_free_device_info(h);
5007 	hpsa_free_sg_chain_blocks(h);
5008 	pci_free_consistent(h->pdev,
5009 		h->nr_cmds * sizeof(struct CommandList),
5010 		h->cmd_pool, h->cmd_pool_dhandle);
5011 	pci_free_consistent(h->pdev,
5012 		h->nr_cmds * sizeof(struct ErrorInfo),
5013 		h->errinfo_pool, h->errinfo_pool_dhandle);
5014 	pci_free_consistent(h->pdev, h->reply_pool_size,
5015 		h->reply_pool, h->reply_pool_dhandle);
5016 	kfree(h->cmd_pool_bits);
5017 	kfree(h->blockFetchTable);
5018 	kfree(h->hba_inquiry_data);
5019 	pci_disable_device(pdev);
5020 	pci_release_regions(pdev);
5021 	pci_set_drvdata(pdev, NULL);
5022 	kfree(h);
5023 }
5024 
5025 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5026 	__attribute__((unused)) pm_message_t state)
5027 {
5028 	return -ENOSYS;
5029 }
5030 
5031 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5032 {
5033 	return -ENOSYS;
5034 }
5035 
5036 static struct pci_driver hpsa_pci_driver = {
5037 	.name = HPSA,
5038 	.probe = hpsa_init_one,
5039 	.remove = hpsa_remove_one,
5040 	.id_table = hpsa_pci_device_id,	/* id_table */
5041 	.shutdown = hpsa_shutdown,
5042 	.suspend = hpsa_suspend,
5043 	.resume = hpsa_resume,
5044 };
5045 
5046 /* Fill in bucket_map[], given nsgs (the max number of
5047  * scatter gather elements supported) and bucket[],
5048  * which is an array of 8 integers.  The bucket[] array
5049  * contains 8 different DMA transfer sizes (in 16
5050  * byte increments) which the controller uses to fetch
5051  * commands.  This function fills in bucket_map[], which
5052  * maps a given number of scatter gather elements to one of
5053  * the 8 DMA transfer sizes.  The point of it is to allow the
5054  * controller to only do as much DMA as needed to fetch the
5055  * command, with the DMA transfer size encoded in the lower
5056  * bits of the command address.
5057  */
5058 static void  calc_bucket_map(int bucket[], int num_buckets,
5059 	int nsgs, int *bucket_map)
5060 {
5061 	int i, j, b, size;
5062 
5063 	/* even a command with 0 SGs requires 4 blocks */
5064 #define MINIMUM_TRANSFER_BLOCKS 4
5065 #define NUM_BUCKETS 8
5066 	/* Note, bucket_map must have nsgs+1 entries. */
5067 	for (i = 0; i <= nsgs; i++) {
5068 		/* Compute size of a command with i SG entries */
5069 		size = i + MINIMUM_TRANSFER_BLOCKS;
5070 		b = num_buckets; /* Assume the biggest bucket */
5071 		/* Find the bucket that is just big enough */
5072 		for (j = 0; j < 8; j++) {
5073 			if (bucket[j] >= size) {
5074 				b = j;
5075 				break;
5076 			}
5077 		}
5078 		/* for a command with i SG entries, use bucket b. */
5079 		bucket_map[i] = b;
5080 	}
5081 }
5082 
5083 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5084 {
5085 	int i;
5086 	unsigned long register_value;
5087 
5088 	/* This is a bit complicated.  There are 8 registers on
5089 	 * the controller which we write to to tell it 8 different
5090 	 * sizes of commands which there may be.  It's a way of
5091 	 * reducing the DMA done to fetch each command.  Encoded into
5092 	 * each command's tag are 3 bits which communicate to the controller
5093 	 * which of the eight sizes that command fits within.  The size of
5094 	 * each command depends on how many scatter gather entries there are.
5095 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5096 	 * with the number of 16-byte blocks a command of that size requires.
5097 	 * The smallest command possible requires 5 such 16 byte blocks.
5098 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5099 	 * blocks.  Note, this only extends to the SG entries contained
5100 	 * within the command block, and does not extend to chained blocks
5101 	 * of SG elements.   bft[] contains the eight values we write to
5102 	 * the registers.  They are not evenly distributed, but have more
5103 	 * sizes for small commands, and fewer sizes for larger commands.
5104 	 */
5105 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5106 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5107 	/*  5 = 1 s/g entry or 4k
5108 	 *  6 = 2 s/g entry or 8k
5109 	 *  8 = 4 s/g entry or 16k
5110 	 * 10 = 6 s/g entry or 24k
5111 	 */
5112 
5113 	/* Controller spec: zero out this buffer. */
5114 	memset(h->reply_pool, 0, h->reply_pool_size);
5115 
5116 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5117 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5118 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5119 	for (i = 0; i < 8; i++)
5120 		writel(bft[i], &h->transtable->BlockFetch[i]);
5121 
5122 	/* size of controller ring buffer */
5123 	writel(h->max_commands, &h->transtable->RepQSize);
5124 	writel(h->nreply_queues, &h->transtable->RepQCount);
5125 	writel(0, &h->transtable->RepQCtrAddrLow32);
5126 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5127 
5128 	for (i = 0; i < h->nreply_queues; i++) {
5129 		writel(0, &h->transtable->RepQAddr[i].upper);
5130 		writel(h->reply_pool_dhandle +
5131 			(h->max_commands * sizeof(u64) * i),
5132 			&h->transtable->RepQAddr[i].lower);
5133 	}
5134 
5135 	writel(CFGTBL_Trans_Performant | use_short_tags |
5136 		CFGTBL_Trans_enable_directed_msix,
5137 		&(h->cfgtable->HostWrite.TransportRequest));
5138 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5139 	hpsa_wait_for_mode_change_ack(h);
5140 	register_value = readl(&(h->cfgtable->TransportActive));
5141 	if (!(register_value & CFGTBL_Trans_Performant)) {
5142 		dev_warn(&h->pdev->dev, "unable to get board into"
5143 					" performant mode\n");
5144 		return;
5145 	}
5146 	/* Change the access methods to the performant access methods */
5147 	h->access = SA5_performant_access;
5148 	h->transMethod = CFGTBL_Trans_Performant;
5149 }
5150 
5151 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5152 {
5153 	u32 trans_support;
5154 	int i;
5155 
5156 	if (hpsa_simple_mode)
5157 		return;
5158 
5159 	trans_support = readl(&(h->cfgtable->TransportSupport));
5160 	if (!(trans_support & PERFORMANT_MODE))
5161 		return;
5162 
5163 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5164 	hpsa_get_max_perf_mode_cmds(h);
5165 	/* Performant mode ring buffer and supporting data structures */
5166 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5167 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5168 				&(h->reply_pool_dhandle));
5169 
5170 	for (i = 0; i < h->nreply_queues; i++) {
5171 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5172 		h->reply_queue[i].size = h->max_commands;
5173 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5174 		h->reply_queue[i].current_entry = 0;
5175 	}
5176 
5177 	/* Need a block fetch table for performant mode */
5178 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5179 				sizeof(u32)), GFP_KERNEL);
5180 
5181 	if ((h->reply_pool == NULL)
5182 		|| (h->blockFetchTable == NULL))
5183 		goto clean_up;
5184 
5185 	hpsa_enter_performant_mode(h,
5186 		trans_support & CFGTBL_Trans_use_short_tags);
5187 
5188 	return;
5189 
5190 clean_up:
5191 	if (h->reply_pool)
5192 		pci_free_consistent(h->pdev, h->reply_pool_size,
5193 			h->reply_pool, h->reply_pool_dhandle);
5194 	kfree(h->blockFetchTable);
5195 }
5196 
5197 /*
5198  *  This is it.  Register the PCI driver information for the cards we control
5199  *  the OS will call our registered routines when it finds one of our cards.
5200  */
5201 static int __init hpsa_init(void)
5202 {
5203 	return pci_register_driver(&hpsa_pci_driver);
5204 }
5205 
5206 static void __exit hpsa_cleanup(void)
5207 {
5208 	pci_unregister_driver(&hpsa_pci_driver);
5209 }
5210 
5211 module_init(hpsa_init);
5212 module_exit(hpsa_cleanup);
5213