xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 5b4cb650)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
969 	.ioctl			= hpsa_ioctl,
970 	.slave_alloc		= hpsa_slave_alloc,
971 	.slave_configure	= hpsa_slave_configure,
972 	.slave_destroy		= hpsa_slave_destroy,
973 #ifdef CONFIG_COMPAT
974 	.compat_ioctl		= hpsa_compat_ioctl,
975 #endif
976 	.sdev_attrs = hpsa_sdev_attrs,
977 	.shost_attrs = hpsa_shost_attrs,
978 	.max_sectors = 2048,
979 	.no_write_same = 1,
980 };
981 
982 static inline u32 next_command(struct ctlr_info *h, u8 q)
983 {
984 	u32 a;
985 	struct reply_queue_buffer *rq = &h->reply_queue[q];
986 
987 	if (h->transMethod & CFGTBL_Trans_io_accel1)
988 		return h->access.command_completed(h, q);
989 
990 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
991 		return h->access.command_completed(h, q);
992 
993 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
994 		a = rq->head[rq->current_entry];
995 		rq->current_entry++;
996 		atomic_dec(&h->commands_outstanding);
997 	} else {
998 		a = FIFO_EMPTY;
999 	}
1000 	/* Check for wraparound */
1001 	if (rq->current_entry == h->max_commands) {
1002 		rq->current_entry = 0;
1003 		rq->wraparound ^= 1;
1004 	}
1005 	return a;
1006 }
1007 
1008 /*
1009  * There are some special bits in the bus address of the
1010  * command that we have to set for the controller to know
1011  * how to process the command:
1012  *
1013  * Normal performant mode:
1014  * bit 0: 1 means performant mode, 0 means simple mode.
1015  * bits 1-3 = block fetch table entry
1016  * bits 4-6 = command type (== 0)
1017  *
1018  * ioaccel1 mode:
1019  * bit 0 = "performant mode" bit.
1020  * bits 1-3 = block fetch table entry
1021  * bits 4-6 = command type (== 110)
1022  * (command type is needed because ioaccel1 mode
1023  * commands are submitted through the same register as normal
1024  * mode commands, so this is how the controller knows whether
1025  * the command is normal mode or ioaccel1 mode.)
1026  *
1027  * ioaccel2 mode:
1028  * bit 0 = "performant mode" bit.
1029  * bits 1-4 = block fetch table entry (note extra bit)
1030  * bits 4-6 = not needed, because ioaccel2 mode has
1031  * a separate special register for submitting commands.
1032  */
1033 
1034 /*
1035  * set_performant_mode: Modify the tag for cciss performant
1036  * set bit 0 for pull model, bits 3-1 for block fetch
1037  * register number
1038  */
1039 #define DEFAULT_REPLY_QUEUE (-1)
1040 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1041 					int reply_queue)
1042 {
1043 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1044 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1045 		if (unlikely(!h->msix_vectors))
1046 			return;
1047 		c->Header.ReplyQueue = reply_queue;
1048 	}
1049 }
1050 
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052 						struct CommandList *c,
1053 						int reply_queue)
1054 {
1055 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056 
1057 	/*
1058 	 * Tell the controller to post the reply to the queue for this
1059 	 * processor.  This seems to give the best I/O throughput.
1060 	 */
1061 	cp->ReplyQueue = reply_queue;
1062 	/*
1063 	 * Set the bits in the address sent down to include:
1064 	 *  - performant mode bit (bit 0)
1065 	 *  - pull count (bits 1-3)
1066 	 *  - command type (bits 4-6)
1067 	 */
1068 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1069 					IOACCEL1_BUSADDR_CMDTYPE;
1070 }
1071 
1072 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1073 						struct CommandList *c,
1074 						int reply_queue)
1075 {
1076 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1077 		&h->ioaccel2_cmd_pool[c->cmdindex];
1078 
1079 	/* Tell the controller to post the reply to the queue for this
1080 	 * processor.  This seems to give the best I/O throughput.
1081 	 */
1082 	cp->reply_queue = reply_queue;
1083 	/* Set the bits in the address sent down to include:
1084 	 *  - performant mode bit not used in ioaccel mode 2
1085 	 *  - pull count (bits 0-3)
1086 	 *  - command type isn't needed for ioaccel2
1087 	 */
1088 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1089 }
1090 
1091 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1092 						struct CommandList *c,
1093 						int reply_queue)
1094 {
1095 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1096 
1097 	/*
1098 	 * Tell the controller to post the reply to the queue for this
1099 	 * processor.  This seems to give the best I/O throughput.
1100 	 */
1101 	cp->reply_queue = reply_queue;
1102 	/*
1103 	 * Set the bits in the address sent down to include:
1104 	 *  - performant mode bit not used in ioaccel mode 2
1105 	 *  - pull count (bits 0-3)
1106 	 *  - command type isn't needed for ioaccel2
1107 	 */
1108 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1109 }
1110 
1111 static int is_firmware_flash_cmd(u8 *cdb)
1112 {
1113 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1114 }
1115 
1116 /*
1117  * During firmware flash, the heartbeat register may not update as frequently
1118  * as it should.  So we dial down lockup detection during firmware flash. and
1119  * dial it back up when firmware flash completes.
1120  */
1121 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1122 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1123 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1124 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1125 		struct CommandList *c)
1126 {
1127 	if (!is_firmware_flash_cmd(c->Request.CDB))
1128 		return;
1129 	atomic_inc(&h->firmware_flash_in_progress);
1130 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1131 }
1132 
1133 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1134 		struct CommandList *c)
1135 {
1136 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1137 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1138 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1139 }
1140 
1141 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1142 	struct CommandList *c, int reply_queue)
1143 {
1144 	dial_down_lockup_detection_during_fw_flash(h, c);
1145 	atomic_inc(&h->commands_outstanding);
1146 
1147 	reply_queue = h->reply_map[raw_smp_processor_id()];
1148 	switch (c->cmd_type) {
1149 	case CMD_IOACCEL1:
1150 		set_ioaccel1_performant_mode(h, c, reply_queue);
1151 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152 		break;
1153 	case CMD_IOACCEL2:
1154 		set_ioaccel2_performant_mode(h, c, reply_queue);
1155 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156 		break;
1157 	case IOACCEL2_TMF:
1158 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160 		break;
1161 	default:
1162 		set_performant_mode(h, c, reply_queue);
1163 		h->access.submit_command(h, c);
1164 	}
1165 }
1166 
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169 	if (unlikely(hpsa_is_pending_event(c)))
1170 		return finish_cmd(c);
1171 
1172 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1173 }
1174 
1175 static inline int is_hba_lunid(unsigned char scsi3addr[])
1176 {
1177 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1178 }
1179 
1180 static inline int is_scsi_rev_5(struct ctlr_info *h)
1181 {
1182 	if (!h->hba_inquiry_data)
1183 		return 0;
1184 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1185 		return 1;
1186 	return 0;
1187 }
1188 
1189 static int hpsa_find_target_lun(struct ctlr_info *h,
1190 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1191 {
1192 	/* finds an unused bus, target, lun for a new physical device
1193 	 * assumes h->devlock is held
1194 	 */
1195 	int i, found = 0;
1196 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1197 
1198 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1199 
1200 	for (i = 0; i < h->ndevices; i++) {
1201 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1202 			__set_bit(h->dev[i]->target, lun_taken);
1203 	}
1204 
1205 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1206 	if (i < HPSA_MAX_DEVICES) {
1207 		/* *bus = 1; */
1208 		*target = i;
1209 		*lun = 0;
1210 		found = 1;
1211 	}
1212 	return !found;
1213 }
1214 
1215 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1216 	struct hpsa_scsi_dev_t *dev, char *description)
1217 {
1218 #define LABEL_SIZE 25
1219 	char label[LABEL_SIZE];
1220 
1221 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1222 		return;
1223 
1224 	switch (dev->devtype) {
1225 	case TYPE_RAID:
1226 		snprintf(label, LABEL_SIZE, "controller");
1227 		break;
1228 	case TYPE_ENCLOSURE:
1229 		snprintf(label, LABEL_SIZE, "enclosure");
1230 		break;
1231 	case TYPE_DISK:
1232 	case TYPE_ZBC:
1233 		if (dev->external)
1234 			snprintf(label, LABEL_SIZE, "external");
1235 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1236 			snprintf(label, LABEL_SIZE, "%s",
1237 				raid_label[PHYSICAL_DRIVE]);
1238 		else
1239 			snprintf(label, LABEL_SIZE, "RAID-%s",
1240 				dev->raid_level > RAID_UNKNOWN ? "?" :
1241 				raid_label[dev->raid_level]);
1242 		break;
1243 	case TYPE_ROM:
1244 		snprintf(label, LABEL_SIZE, "rom");
1245 		break;
1246 	case TYPE_TAPE:
1247 		snprintf(label, LABEL_SIZE, "tape");
1248 		break;
1249 	case TYPE_MEDIUM_CHANGER:
1250 		snprintf(label, LABEL_SIZE, "changer");
1251 		break;
1252 	default:
1253 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1254 		break;
1255 	}
1256 
1257 	dev_printk(level, &h->pdev->dev,
1258 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1259 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1260 			description,
1261 			scsi_device_type(dev->devtype),
1262 			dev->vendor,
1263 			dev->model,
1264 			label,
1265 			dev->offload_config ? '+' : '-',
1266 			dev->offload_to_be_enabled ? '+' : '-',
1267 			dev->expose_device);
1268 }
1269 
1270 /* Add an entry into h->dev[] array. */
1271 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1272 		struct hpsa_scsi_dev_t *device,
1273 		struct hpsa_scsi_dev_t *added[], int *nadded)
1274 {
1275 	/* assumes h->devlock is held */
1276 	int n = h->ndevices;
1277 	int i;
1278 	unsigned char addr1[8], addr2[8];
1279 	struct hpsa_scsi_dev_t *sd;
1280 
1281 	if (n >= HPSA_MAX_DEVICES) {
1282 		dev_err(&h->pdev->dev, "too many devices, some will be "
1283 			"inaccessible.\n");
1284 		return -1;
1285 	}
1286 
1287 	/* physical devices do not have lun or target assigned until now. */
1288 	if (device->lun != -1)
1289 		/* Logical device, lun is already assigned. */
1290 		goto lun_assigned;
1291 
1292 	/* If this device a non-zero lun of a multi-lun device
1293 	 * byte 4 of the 8-byte LUN addr will contain the logical
1294 	 * unit no, zero otherwise.
1295 	 */
1296 	if (device->scsi3addr[4] == 0) {
1297 		/* This is not a non-zero lun of a multi-lun device */
1298 		if (hpsa_find_target_lun(h, device->scsi3addr,
1299 			device->bus, &device->target, &device->lun) != 0)
1300 			return -1;
1301 		goto lun_assigned;
1302 	}
1303 
1304 	/* This is a non-zero lun of a multi-lun device.
1305 	 * Search through our list and find the device which
1306 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1307 	 * Assign the same bus and target for this new LUN.
1308 	 * Use the logical unit number from the firmware.
1309 	 */
1310 	memcpy(addr1, device->scsi3addr, 8);
1311 	addr1[4] = 0;
1312 	addr1[5] = 0;
1313 	for (i = 0; i < n; i++) {
1314 		sd = h->dev[i];
1315 		memcpy(addr2, sd->scsi3addr, 8);
1316 		addr2[4] = 0;
1317 		addr2[5] = 0;
1318 		/* differ only in byte 4 and 5? */
1319 		if (memcmp(addr1, addr2, 8) == 0) {
1320 			device->bus = sd->bus;
1321 			device->target = sd->target;
1322 			device->lun = device->scsi3addr[4];
1323 			break;
1324 		}
1325 	}
1326 	if (device->lun == -1) {
1327 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1328 			" suspect firmware bug or unsupported hardware "
1329 			"configuration.\n");
1330 			return -1;
1331 	}
1332 
1333 lun_assigned:
1334 
1335 	h->dev[n] = device;
1336 	h->ndevices++;
1337 	added[*nadded] = device;
1338 	(*nadded)++;
1339 	hpsa_show_dev_msg(KERN_INFO, h, device,
1340 		device->expose_device ? "added" : "masked");
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Called during a scan operation.
1346  *
1347  * Update an entry in h->dev[] array.
1348  */
1349 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1350 	int entry, struct hpsa_scsi_dev_t *new_entry)
1351 {
1352 	/* assumes h->devlock is held */
1353 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1354 
1355 	/* Raid level changed. */
1356 	h->dev[entry]->raid_level = new_entry->raid_level;
1357 
1358 	/*
1359 	 * ioacccel_handle may have changed for a dual domain disk
1360 	 */
1361 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1362 
1363 	/* Raid offload parameters changed.  Careful about the ordering. */
1364 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1365 		/*
1366 		 * if drive is newly offload_enabled, we want to copy the
1367 		 * raid map data first.  If previously offload_enabled and
1368 		 * offload_config were set, raid map data had better be
1369 		 * the same as it was before. If raid map data has changed
1370 		 * then it had better be the case that
1371 		 * h->dev[entry]->offload_enabled is currently 0.
1372 		 */
1373 		h->dev[entry]->raid_map = new_entry->raid_map;
1374 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 	}
1376 	if (new_entry->offload_to_be_enabled) {
1377 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1378 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1379 	}
1380 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1381 	h->dev[entry]->offload_config = new_entry->offload_config;
1382 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1383 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1384 
1385 	/*
1386 	 * We can turn off ioaccel offload now, but need to delay turning
1387 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1388 	 * can't do that until all the devices are updated.
1389 	 */
1390 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1391 
1392 	/*
1393 	 * turn ioaccel off immediately if told to do so.
1394 	 */
1395 	if (!new_entry->offload_to_be_enabled)
1396 		h->dev[entry]->offload_enabled = 0;
1397 
1398 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1399 }
1400 
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403 	int entry, struct hpsa_scsi_dev_t *new_entry,
1404 	struct hpsa_scsi_dev_t *added[], int *nadded,
1405 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407 	/* assumes h->devlock is held */
1408 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409 	removed[*nremoved] = h->dev[entry];
1410 	(*nremoved)++;
1411 
1412 	/*
1413 	 * New physical devices won't have target/lun assigned yet
1414 	 * so we need to preserve the values in the slot we are replacing.
1415 	 */
1416 	if (new_entry->target == -1) {
1417 		new_entry->target = h->dev[entry]->target;
1418 		new_entry->lun = h->dev[entry]->lun;
1419 	}
1420 
1421 	h->dev[entry] = new_entry;
1422 	added[*nadded] = new_entry;
1423 	(*nadded)++;
1424 
1425 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1426 }
1427 
1428 /* Remove an entry from h->dev[] array. */
1429 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1430 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1431 {
1432 	/* assumes h->devlock is held */
1433 	int i;
1434 	struct hpsa_scsi_dev_t *sd;
1435 
1436 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1437 
1438 	sd = h->dev[entry];
1439 	removed[*nremoved] = h->dev[entry];
1440 	(*nremoved)++;
1441 
1442 	for (i = entry; i < h->ndevices-1; i++)
1443 		h->dev[i] = h->dev[i+1];
1444 	h->ndevices--;
1445 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1446 }
1447 
1448 #define SCSI3ADDR_EQ(a, b) ( \
1449 	(a)[7] == (b)[7] && \
1450 	(a)[6] == (b)[6] && \
1451 	(a)[5] == (b)[5] && \
1452 	(a)[4] == (b)[4] && \
1453 	(a)[3] == (b)[3] && \
1454 	(a)[2] == (b)[2] && \
1455 	(a)[1] == (b)[1] && \
1456 	(a)[0] == (b)[0])
1457 
1458 static void fixup_botched_add(struct ctlr_info *h,
1459 	struct hpsa_scsi_dev_t *added)
1460 {
1461 	/* called when scsi_add_device fails in order to re-adjust
1462 	 * h->dev[] to match the mid layer's view.
1463 	 */
1464 	unsigned long flags;
1465 	int i, j;
1466 
1467 	spin_lock_irqsave(&h->lock, flags);
1468 	for (i = 0; i < h->ndevices; i++) {
1469 		if (h->dev[i] == added) {
1470 			for (j = i; j < h->ndevices-1; j++)
1471 				h->dev[j] = h->dev[j+1];
1472 			h->ndevices--;
1473 			break;
1474 		}
1475 	}
1476 	spin_unlock_irqrestore(&h->lock, flags);
1477 	kfree(added);
1478 }
1479 
1480 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1481 	struct hpsa_scsi_dev_t *dev2)
1482 {
1483 	/* we compare everything except lun and target as these
1484 	 * are not yet assigned.  Compare parts likely
1485 	 * to differ first
1486 	 */
1487 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1488 		sizeof(dev1->scsi3addr)) != 0)
1489 		return 0;
1490 	if (memcmp(dev1->device_id, dev2->device_id,
1491 		sizeof(dev1->device_id)) != 0)
1492 		return 0;
1493 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1494 		return 0;
1495 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1496 		return 0;
1497 	if (dev1->devtype != dev2->devtype)
1498 		return 0;
1499 	if (dev1->bus != dev2->bus)
1500 		return 0;
1501 	return 1;
1502 }
1503 
1504 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1505 	struct hpsa_scsi_dev_t *dev2)
1506 {
1507 	/* Device attributes that can change, but don't mean
1508 	 * that the device is a different device, nor that the OS
1509 	 * needs to be told anything about the change.
1510 	 */
1511 	if (dev1->raid_level != dev2->raid_level)
1512 		return 1;
1513 	if (dev1->offload_config != dev2->offload_config)
1514 		return 1;
1515 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1516 		return 1;
1517 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1518 		if (dev1->queue_depth != dev2->queue_depth)
1519 			return 1;
1520 	/*
1521 	 * This can happen for dual domain devices. An active
1522 	 * path change causes the ioaccel handle to change
1523 	 *
1524 	 * for example note the handle differences between p0 and p1
1525 	 * Device                    WWN               ,WWN hash,Handle
1526 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1527 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1528 	 */
1529 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1530 		return 1;
1531 	return 0;
1532 }
1533 
1534 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1535  * and return needle location in *index.  If scsi3addr matches, but not
1536  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1537  * location in *index.
1538  * In the case of a minor device attribute change, such as RAID level, just
1539  * return DEVICE_UPDATED, along with the updated device's location in index.
1540  * If needle not found, return DEVICE_NOT_FOUND.
1541  */
1542 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1543 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1544 	int *index)
1545 {
1546 	int i;
1547 #define DEVICE_NOT_FOUND 0
1548 #define DEVICE_CHANGED 1
1549 #define DEVICE_SAME 2
1550 #define DEVICE_UPDATED 3
1551 	if (needle == NULL)
1552 		return DEVICE_NOT_FOUND;
1553 
1554 	for (i = 0; i < haystack_size; i++) {
1555 		if (haystack[i] == NULL) /* previously removed. */
1556 			continue;
1557 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1558 			*index = i;
1559 			if (device_is_the_same(needle, haystack[i])) {
1560 				if (device_updated(needle, haystack[i]))
1561 					return DEVICE_UPDATED;
1562 				return DEVICE_SAME;
1563 			} else {
1564 				/* Keep offline devices offline */
1565 				if (needle->volume_offline)
1566 					return DEVICE_NOT_FOUND;
1567 				return DEVICE_CHANGED;
1568 			}
1569 		}
1570 	}
1571 	*index = -1;
1572 	return DEVICE_NOT_FOUND;
1573 }
1574 
1575 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1576 					unsigned char scsi3addr[])
1577 {
1578 	struct offline_device_entry *device;
1579 	unsigned long flags;
1580 
1581 	/* Check to see if device is already on the list */
1582 	spin_lock_irqsave(&h->offline_device_lock, flags);
1583 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1584 		if (memcmp(device->scsi3addr, scsi3addr,
1585 			sizeof(device->scsi3addr)) == 0) {
1586 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587 			return;
1588 		}
1589 	}
1590 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591 
1592 	/* Device is not on the list, add it. */
1593 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1594 	if (!device)
1595 		return;
1596 
1597 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1598 	spin_lock_irqsave(&h->offline_device_lock, flags);
1599 	list_add_tail(&device->offline_list, &h->offline_device_list);
1600 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1601 }
1602 
1603 /* Print a message explaining various offline volume states */
1604 static void hpsa_show_volume_status(struct ctlr_info *h,
1605 	struct hpsa_scsi_dev_t *sd)
1606 {
1607 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1608 		dev_info(&h->pdev->dev,
1609 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1610 			h->scsi_host->host_no,
1611 			sd->bus, sd->target, sd->lun);
1612 	switch (sd->volume_offline) {
1613 	case HPSA_LV_OK:
1614 		break;
1615 	case HPSA_LV_UNDERGOING_ERASE:
1616 		dev_info(&h->pdev->dev,
1617 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1618 			h->scsi_host->host_no,
1619 			sd->bus, sd->target, sd->lun);
1620 		break;
1621 	case HPSA_LV_NOT_AVAILABLE:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_UNDERGOING_RPI:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_PENDING_RPI:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_ENCRYPTED_NO_KEY:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_PENDING_ENCRYPTION:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	}
1682 }
1683 
1684 /*
1685  * Figure the list of physical drive pointers for a logical drive with
1686  * raid offload configured.
1687  */
1688 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1689 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1690 				struct hpsa_scsi_dev_t *logical_drive)
1691 {
1692 	struct raid_map_data *map = &logical_drive->raid_map;
1693 	struct raid_map_disk_data *dd = &map->data[0];
1694 	int i, j;
1695 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1696 				le16_to_cpu(map->metadata_disks_per_row);
1697 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1698 				le16_to_cpu(map->layout_map_count) *
1699 				total_disks_per_row;
1700 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1701 				total_disks_per_row;
1702 	int qdepth;
1703 
1704 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1705 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1706 
1707 	logical_drive->nphysical_disks = nraid_map_entries;
1708 
1709 	qdepth = 0;
1710 	for (i = 0; i < nraid_map_entries; i++) {
1711 		logical_drive->phys_disk[i] = NULL;
1712 		if (!logical_drive->offload_config)
1713 			continue;
1714 		for (j = 0; j < ndevices; j++) {
1715 			if (dev[j] == NULL)
1716 				continue;
1717 			if (dev[j]->devtype != TYPE_DISK &&
1718 			    dev[j]->devtype != TYPE_ZBC)
1719 				continue;
1720 			if (is_logical_device(dev[j]))
1721 				continue;
1722 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1723 				continue;
1724 
1725 			logical_drive->phys_disk[i] = dev[j];
1726 			if (i < nphys_disk)
1727 				qdepth = min(h->nr_cmds, qdepth +
1728 				    logical_drive->phys_disk[i]->queue_depth);
1729 			break;
1730 		}
1731 
1732 		/*
1733 		 * This can happen if a physical drive is removed and
1734 		 * the logical drive is degraded.  In that case, the RAID
1735 		 * map data will refer to a physical disk which isn't actually
1736 		 * present.  And in that case offload_enabled should already
1737 		 * be 0, but we'll turn it off here just in case
1738 		 */
1739 		if (!logical_drive->phys_disk[i]) {
1740 			dev_warn(&h->pdev->dev,
1741 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1742 				__func__,
1743 				h->scsi_host->host_no, logical_drive->bus,
1744 				logical_drive->target, logical_drive->lun);
1745 			logical_drive->offload_enabled = 0;
1746 			logical_drive->offload_to_be_enabled = 0;
1747 			logical_drive->queue_depth = 8;
1748 		}
1749 	}
1750 	if (nraid_map_entries)
1751 		/*
1752 		 * This is correct for reads, too high for full stripe writes,
1753 		 * way too high for partial stripe writes
1754 		 */
1755 		logical_drive->queue_depth = qdepth;
1756 	else {
1757 		if (logical_drive->external)
1758 			logical_drive->queue_depth = EXTERNAL_QD;
1759 		else
1760 			logical_drive->queue_depth = h->nr_cmds;
1761 	}
1762 }
1763 
1764 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1765 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; i < ndevices; i++) {
1770 		if (dev[i] == NULL)
1771 			continue;
1772 		if (dev[i]->devtype != TYPE_DISK &&
1773 		    dev[i]->devtype != TYPE_ZBC)
1774 			continue;
1775 		if (!is_logical_device(dev[i]))
1776 			continue;
1777 
1778 		/*
1779 		 * If offload is currently enabled, the RAID map and
1780 		 * phys_disk[] assignment *better* not be changing
1781 		 * because we would be changing ioaccel phsy_disk[] pointers
1782 		 * on a ioaccel volume processing I/O requests.
1783 		 *
1784 		 * If an ioaccel volume status changed, initially because it was
1785 		 * re-configured and thus underwent a transformation, or
1786 		 * a drive failed, we would have received a state change
1787 		 * request and ioaccel should have been turned off. When the
1788 		 * transformation completes, we get another state change
1789 		 * request to turn ioaccel back on. In this case, we need
1790 		 * to update the ioaccel information.
1791 		 *
1792 		 * Thus: If it is not currently enabled, but will be after
1793 		 * the scan completes, make sure the ioaccel pointers
1794 		 * are up to date.
1795 		 */
1796 
1797 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1798 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1799 	}
1800 }
1801 
1802 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1803 {
1804 	int rc = 0;
1805 
1806 	if (!h->scsi_host)
1807 		return 1;
1808 
1809 	if (is_logical_device(device)) /* RAID */
1810 		rc = scsi_add_device(h->scsi_host, device->bus,
1811 					device->target, device->lun);
1812 	else /* HBA */
1813 		rc = hpsa_add_sas_device(h->sas_host, device);
1814 
1815 	return rc;
1816 }
1817 
1818 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1819 						struct hpsa_scsi_dev_t *dev)
1820 {
1821 	int i;
1822 	int count = 0;
1823 
1824 	for (i = 0; i < h->nr_cmds; i++) {
1825 		struct CommandList *c = h->cmd_pool + i;
1826 		int refcount = atomic_inc_return(&c->refcount);
1827 
1828 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1829 				dev->scsi3addr)) {
1830 			unsigned long flags;
1831 
1832 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1833 			if (!hpsa_is_cmd_idle(c))
1834 				++count;
1835 			spin_unlock_irqrestore(&h->lock, flags);
1836 		}
1837 
1838 		cmd_free(h, c);
1839 	}
1840 
1841 	return count;
1842 }
1843 
1844 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1845 						struct hpsa_scsi_dev_t *device)
1846 {
1847 	int cmds = 0;
1848 	int waits = 0;
1849 
1850 	while (1) {
1851 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1852 		if (cmds == 0)
1853 			break;
1854 		if (++waits > 20)
1855 			break;
1856 		msleep(1000);
1857 	}
1858 
1859 	if (waits > 20)
1860 		dev_warn(&h->pdev->dev,
1861 			"%s: removing device with %d outstanding commands!\n",
1862 			__func__, cmds);
1863 }
1864 
1865 static void hpsa_remove_device(struct ctlr_info *h,
1866 			struct hpsa_scsi_dev_t *device)
1867 {
1868 	struct scsi_device *sdev = NULL;
1869 
1870 	if (!h->scsi_host)
1871 		return;
1872 
1873 	/*
1874 	 * Allow for commands to drain
1875 	 */
1876 	device->removed = 1;
1877 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1878 
1879 	if (is_logical_device(device)) { /* RAID */
1880 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1881 						device->target, device->lun);
1882 		if (sdev) {
1883 			scsi_remove_device(sdev);
1884 			scsi_device_put(sdev);
1885 		} else {
1886 			/*
1887 			 * We don't expect to get here.  Future commands
1888 			 * to this device will get a selection timeout as
1889 			 * if the device were gone.
1890 			 */
1891 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1892 					"didn't find device for removal.");
1893 		}
1894 	} else { /* HBA */
1895 
1896 		hpsa_remove_sas_device(device);
1897 	}
1898 }
1899 
1900 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1901 	struct hpsa_scsi_dev_t *sd[], int nsds)
1902 {
1903 	/* sd contains scsi3 addresses and devtypes, and inquiry
1904 	 * data.  This function takes what's in sd to be the current
1905 	 * reality and updates h->dev[] to reflect that reality.
1906 	 */
1907 	int i, entry, device_change, changes = 0;
1908 	struct hpsa_scsi_dev_t *csd;
1909 	unsigned long flags;
1910 	struct hpsa_scsi_dev_t **added, **removed;
1911 	int nadded, nremoved;
1912 
1913 	/*
1914 	 * A reset can cause a device status to change
1915 	 * re-schedule the scan to see what happened.
1916 	 */
1917 	spin_lock_irqsave(&h->reset_lock, flags);
1918 	if (h->reset_in_progress) {
1919 		h->drv_req_rescan = 1;
1920 		spin_unlock_irqrestore(&h->reset_lock, flags);
1921 		return;
1922 	}
1923 	spin_unlock_irqrestore(&h->reset_lock, flags);
1924 
1925 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1926 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1927 
1928 	if (!added || !removed) {
1929 		dev_warn(&h->pdev->dev, "out of memory in "
1930 			"adjust_hpsa_scsi_table\n");
1931 		goto free_and_out;
1932 	}
1933 
1934 	spin_lock_irqsave(&h->devlock, flags);
1935 
1936 	/* find any devices in h->dev[] that are not in
1937 	 * sd[] and remove them from h->dev[], and for any
1938 	 * devices which have changed, remove the old device
1939 	 * info and add the new device info.
1940 	 * If minor device attributes change, just update
1941 	 * the existing device structure.
1942 	 */
1943 	i = 0;
1944 	nremoved = 0;
1945 	nadded = 0;
1946 	while (i < h->ndevices) {
1947 		csd = h->dev[i];
1948 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1949 		if (device_change == DEVICE_NOT_FOUND) {
1950 			changes++;
1951 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1952 			continue; /* remove ^^^, hence i not incremented */
1953 		} else if (device_change == DEVICE_CHANGED) {
1954 			changes++;
1955 			hpsa_scsi_replace_entry(h, i, sd[entry],
1956 				added, &nadded, removed, &nremoved);
1957 			/* Set it to NULL to prevent it from being freed
1958 			 * at the bottom of hpsa_update_scsi_devices()
1959 			 */
1960 			sd[entry] = NULL;
1961 		} else if (device_change == DEVICE_UPDATED) {
1962 			hpsa_scsi_update_entry(h, i, sd[entry]);
1963 		}
1964 		i++;
1965 	}
1966 
1967 	/* Now, make sure every device listed in sd[] is also
1968 	 * listed in h->dev[], adding them if they aren't found
1969 	 */
1970 
1971 	for (i = 0; i < nsds; i++) {
1972 		if (!sd[i]) /* if already added above. */
1973 			continue;
1974 
1975 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1976 		 * as the SCSI mid-layer does not handle such devices well.
1977 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1978 		 * at 160Hz, and prevents the system from coming up.
1979 		 */
1980 		if (sd[i]->volume_offline) {
1981 			hpsa_show_volume_status(h, sd[i]);
1982 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1983 			continue;
1984 		}
1985 
1986 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1987 					h->ndevices, &entry);
1988 		if (device_change == DEVICE_NOT_FOUND) {
1989 			changes++;
1990 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1991 				break;
1992 			sd[i] = NULL; /* prevent from being freed later. */
1993 		} else if (device_change == DEVICE_CHANGED) {
1994 			/* should never happen... */
1995 			changes++;
1996 			dev_warn(&h->pdev->dev,
1997 				"device unexpectedly changed.\n");
1998 			/* but if it does happen, we just ignore that device */
1999 		}
2000 	}
2001 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2002 
2003 	/*
2004 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2005 	 * any logical drives that need it enabled.
2006 	 *
2007 	 * The raid map should be current by now.
2008 	 *
2009 	 * We are updating the device list used for I/O requests.
2010 	 */
2011 	for (i = 0; i < h->ndevices; i++) {
2012 		if (h->dev[i] == NULL)
2013 			continue;
2014 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2015 	}
2016 
2017 	spin_unlock_irqrestore(&h->devlock, flags);
2018 
2019 	/* Monitor devices which are in one of several NOT READY states to be
2020 	 * brought online later. This must be done without holding h->devlock,
2021 	 * so don't touch h->dev[]
2022 	 */
2023 	for (i = 0; i < nsds; i++) {
2024 		if (!sd[i]) /* if already added above. */
2025 			continue;
2026 		if (sd[i]->volume_offline)
2027 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2028 	}
2029 
2030 	/* Don't notify scsi mid layer of any changes the first time through
2031 	 * (or if there are no changes) scsi_scan_host will do it later the
2032 	 * first time through.
2033 	 */
2034 	if (!changes)
2035 		goto free_and_out;
2036 
2037 	/* Notify scsi mid layer of any removed devices */
2038 	for (i = 0; i < nremoved; i++) {
2039 		if (removed[i] == NULL)
2040 			continue;
2041 		if (removed[i]->expose_device)
2042 			hpsa_remove_device(h, removed[i]);
2043 		kfree(removed[i]);
2044 		removed[i] = NULL;
2045 	}
2046 
2047 	/* Notify scsi mid layer of any added devices */
2048 	for (i = 0; i < nadded; i++) {
2049 		int rc = 0;
2050 
2051 		if (added[i] == NULL)
2052 			continue;
2053 		if (!(added[i]->expose_device))
2054 			continue;
2055 		rc = hpsa_add_device(h, added[i]);
2056 		if (!rc)
2057 			continue;
2058 		dev_warn(&h->pdev->dev,
2059 			"addition failed %d, device not added.", rc);
2060 		/* now we have to remove it from h->dev,
2061 		 * since it didn't get added to scsi mid layer
2062 		 */
2063 		fixup_botched_add(h, added[i]);
2064 		h->drv_req_rescan = 1;
2065 	}
2066 
2067 free_and_out:
2068 	kfree(added);
2069 	kfree(removed);
2070 }
2071 
2072 /*
2073  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2074  * Assume's h->devlock is held.
2075  */
2076 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2077 	int bus, int target, int lun)
2078 {
2079 	int i;
2080 	struct hpsa_scsi_dev_t *sd;
2081 
2082 	for (i = 0; i < h->ndevices; i++) {
2083 		sd = h->dev[i];
2084 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2085 			return sd;
2086 	}
2087 	return NULL;
2088 }
2089 
2090 static int hpsa_slave_alloc(struct scsi_device *sdev)
2091 {
2092 	struct hpsa_scsi_dev_t *sd = NULL;
2093 	unsigned long flags;
2094 	struct ctlr_info *h;
2095 
2096 	h = sdev_to_hba(sdev);
2097 	spin_lock_irqsave(&h->devlock, flags);
2098 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2099 		struct scsi_target *starget;
2100 		struct sas_rphy *rphy;
2101 
2102 		starget = scsi_target(sdev);
2103 		rphy = target_to_rphy(starget);
2104 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2105 		if (sd) {
2106 			sd->target = sdev_id(sdev);
2107 			sd->lun = sdev->lun;
2108 		}
2109 	}
2110 	if (!sd)
2111 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2112 					sdev_id(sdev), sdev->lun);
2113 
2114 	if (sd && sd->expose_device) {
2115 		atomic_set(&sd->ioaccel_cmds_out, 0);
2116 		sdev->hostdata = sd;
2117 	} else
2118 		sdev->hostdata = NULL;
2119 	spin_unlock_irqrestore(&h->devlock, flags);
2120 	return 0;
2121 }
2122 
2123 /* configure scsi device based on internal per-device structure */
2124 static int hpsa_slave_configure(struct scsi_device *sdev)
2125 {
2126 	struct hpsa_scsi_dev_t *sd;
2127 	int queue_depth;
2128 
2129 	sd = sdev->hostdata;
2130 	sdev->no_uld_attach = !sd || !sd->expose_device;
2131 
2132 	if (sd) {
2133 		if (sd->external)
2134 			queue_depth = EXTERNAL_QD;
2135 		else
2136 			queue_depth = sd->queue_depth != 0 ?
2137 					sd->queue_depth : sdev->host->can_queue;
2138 	} else
2139 		queue_depth = sdev->host->can_queue;
2140 
2141 	scsi_change_queue_depth(sdev, queue_depth);
2142 
2143 	return 0;
2144 }
2145 
2146 static void hpsa_slave_destroy(struct scsi_device *sdev)
2147 {
2148 	/* nothing to do. */
2149 }
2150 
2151 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153 	int i;
2154 
2155 	if (!h->ioaccel2_cmd_sg_list)
2156 		return;
2157 	for (i = 0; i < h->nr_cmds; i++) {
2158 		kfree(h->ioaccel2_cmd_sg_list[i]);
2159 		h->ioaccel2_cmd_sg_list[i] = NULL;
2160 	}
2161 	kfree(h->ioaccel2_cmd_sg_list);
2162 	h->ioaccel2_cmd_sg_list = NULL;
2163 }
2164 
2165 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 	int i;
2168 
2169 	if (h->chainsize <= 0)
2170 		return 0;
2171 
2172 	h->ioaccel2_cmd_sg_list =
2173 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2174 					GFP_KERNEL);
2175 	if (!h->ioaccel2_cmd_sg_list)
2176 		return -ENOMEM;
2177 	for (i = 0; i < h->nr_cmds; i++) {
2178 		h->ioaccel2_cmd_sg_list[i] =
2179 			kmalloc_array(h->maxsgentries,
2180 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2181 				      GFP_KERNEL);
2182 		if (!h->ioaccel2_cmd_sg_list[i])
2183 			goto clean;
2184 	}
2185 	return 0;
2186 
2187 clean:
2188 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2189 	return -ENOMEM;
2190 }
2191 
2192 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193 {
2194 	int i;
2195 
2196 	if (!h->cmd_sg_list)
2197 		return;
2198 	for (i = 0; i < h->nr_cmds; i++) {
2199 		kfree(h->cmd_sg_list[i]);
2200 		h->cmd_sg_list[i] = NULL;
2201 	}
2202 	kfree(h->cmd_sg_list);
2203 	h->cmd_sg_list = NULL;
2204 }
2205 
2206 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207 {
2208 	int i;
2209 
2210 	if (h->chainsize <= 0)
2211 		return 0;
2212 
2213 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2214 				 GFP_KERNEL);
2215 	if (!h->cmd_sg_list)
2216 		return -ENOMEM;
2217 
2218 	for (i = 0; i < h->nr_cmds; i++) {
2219 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2220 						  sizeof(*h->cmd_sg_list[i]),
2221 						  GFP_KERNEL);
2222 		if (!h->cmd_sg_list[i])
2223 			goto clean;
2224 
2225 	}
2226 	return 0;
2227 
2228 clean:
2229 	hpsa_free_sg_chain_blocks(h);
2230 	return -ENOMEM;
2231 }
2232 
2233 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2234 	struct io_accel2_cmd *cp, struct CommandList *c)
2235 {
2236 	struct ioaccel2_sg_element *chain_block;
2237 	u64 temp64;
2238 	u32 chain_size;
2239 
2240 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2241 	chain_size = le32_to_cpu(cp->sg[0].length);
2242 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2243 				DMA_TO_DEVICE);
2244 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2245 		/* prevent subsequent unmapping */
2246 		cp->sg->address = 0;
2247 		return -1;
2248 	}
2249 	cp->sg->address = cpu_to_le64(temp64);
2250 	return 0;
2251 }
2252 
2253 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2254 	struct io_accel2_cmd *cp)
2255 {
2256 	struct ioaccel2_sg_element *chain_sg;
2257 	u64 temp64;
2258 	u32 chain_size;
2259 
2260 	chain_sg = cp->sg;
2261 	temp64 = le64_to_cpu(chain_sg->address);
2262 	chain_size = le32_to_cpu(cp->sg[0].length);
2263 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2264 }
2265 
2266 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2267 	struct CommandList *c)
2268 {
2269 	struct SGDescriptor *chain_sg, *chain_block;
2270 	u64 temp64;
2271 	u32 chain_len;
2272 
2273 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2274 	chain_block = h->cmd_sg_list[c->cmdindex];
2275 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2276 	chain_len = sizeof(*chain_sg) *
2277 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2278 	chain_sg->Len = cpu_to_le32(chain_len);
2279 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2280 				DMA_TO_DEVICE);
2281 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2282 		/* prevent subsequent unmapping */
2283 		chain_sg->Addr = cpu_to_le64(0);
2284 		return -1;
2285 	}
2286 	chain_sg->Addr = cpu_to_le64(temp64);
2287 	return 0;
2288 }
2289 
2290 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2291 	struct CommandList *c)
2292 {
2293 	struct SGDescriptor *chain_sg;
2294 
2295 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2296 		return;
2297 
2298 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2299 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2300 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2301 }
2302 
2303 
2304 /* Decode the various types of errors on ioaccel2 path.
2305  * Return 1 for any error that should generate a RAID path retry.
2306  * Return 0 for errors that don't require a RAID path retry.
2307  */
2308 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2309 					struct CommandList *c,
2310 					struct scsi_cmnd *cmd,
2311 					struct io_accel2_cmd *c2,
2312 					struct hpsa_scsi_dev_t *dev)
2313 {
2314 	int data_len;
2315 	int retry = 0;
2316 	u32 ioaccel2_resid = 0;
2317 
2318 	switch (c2->error_data.serv_response) {
2319 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2320 		switch (c2->error_data.status) {
2321 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2322 			break;
2323 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2324 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2325 			if (c2->error_data.data_present !=
2326 					IOACCEL2_SENSE_DATA_PRESENT) {
2327 				memset(cmd->sense_buffer, 0,
2328 					SCSI_SENSE_BUFFERSIZE);
2329 				break;
2330 			}
2331 			/* copy the sense data */
2332 			data_len = c2->error_data.sense_data_len;
2333 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2334 				data_len = SCSI_SENSE_BUFFERSIZE;
2335 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2336 				data_len =
2337 					sizeof(c2->error_data.sense_data_buff);
2338 			memcpy(cmd->sense_buffer,
2339 				c2->error_data.sense_data_buff, data_len);
2340 			retry = 1;
2341 			break;
2342 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2343 			retry = 1;
2344 			break;
2345 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2346 			retry = 1;
2347 			break;
2348 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2349 			retry = 1;
2350 			break;
2351 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2352 			retry = 1;
2353 			break;
2354 		default:
2355 			retry = 1;
2356 			break;
2357 		}
2358 		break;
2359 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2360 		switch (c2->error_data.status) {
2361 		case IOACCEL2_STATUS_SR_IO_ERROR:
2362 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2363 		case IOACCEL2_STATUS_SR_OVERRUN:
2364 			retry = 1;
2365 			break;
2366 		case IOACCEL2_STATUS_SR_UNDERRUN:
2367 			cmd->result = (DID_OK << 16);		/* host byte */
2368 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2369 			ioaccel2_resid = get_unaligned_le32(
2370 						&c2->error_data.resid_cnt[0]);
2371 			scsi_set_resid(cmd, ioaccel2_resid);
2372 			break;
2373 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2374 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2375 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2376 			/*
2377 			 * Did an HBA disk disappear? We will eventually
2378 			 * get a state change event from the controller but
2379 			 * in the meantime, we need to tell the OS that the
2380 			 * HBA disk is no longer there and stop I/O
2381 			 * from going down. This allows the potential re-insert
2382 			 * of the disk to get the same device node.
2383 			 */
2384 			if (dev->physical_device && dev->expose_device) {
2385 				cmd->result = DID_NO_CONNECT << 16;
2386 				dev->removed = 1;
2387 				h->drv_req_rescan = 1;
2388 				dev_warn(&h->pdev->dev,
2389 					"%s: device is gone!\n", __func__);
2390 			} else
2391 				/*
2392 				 * Retry by sending down the RAID path.
2393 				 * We will get an event from ctlr to
2394 				 * trigger rescan regardless.
2395 				 */
2396 				retry = 1;
2397 			break;
2398 		default:
2399 			retry = 1;
2400 		}
2401 		break;
2402 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2403 		break;
2404 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2405 		break;
2406 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2407 		retry = 1;
2408 		break;
2409 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2410 		break;
2411 	default:
2412 		retry = 1;
2413 		break;
2414 	}
2415 
2416 	return retry;	/* retry on raid path? */
2417 }
2418 
2419 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2420 		struct CommandList *c)
2421 {
2422 	bool do_wake = false;
2423 
2424 	/*
2425 	 * Reset c->scsi_cmd here so that the reset handler will know
2426 	 * this command has completed.  Then, check to see if the handler is
2427 	 * waiting for this command, and, if so, wake it.
2428 	 */
2429 	c->scsi_cmd = SCSI_CMD_IDLE;
2430 	mb();	/* Declare command idle before checking for pending events. */
2431 	if (c->reset_pending) {
2432 		unsigned long flags;
2433 		struct hpsa_scsi_dev_t *dev;
2434 
2435 		/*
2436 		 * There appears to be a reset pending; lock the lock and
2437 		 * reconfirm.  If so, then decrement the count of outstanding
2438 		 * commands and wake the reset command if this is the last one.
2439 		 */
2440 		spin_lock_irqsave(&h->lock, flags);
2441 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2442 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2443 			do_wake = true;
2444 		c->reset_pending = NULL;
2445 		spin_unlock_irqrestore(&h->lock, flags);
2446 	}
2447 
2448 	if (do_wake)
2449 		wake_up_all(&h->event_sync_wait_queue);
2450 }
2451 
2452 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2453 				      struct CommandList *c)
2454 {
2455 	hpsa_cmd_resolve_events(h, c);
2456 	cmd_tagged_free(h, c);
2457 }
2458 
2459 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2460 		struct CommandList *c, struct scsi_cmnd *cmd)
2461 {
2462 	hpsa_cmd_resolve_and_free(h, c);
2463 	if (cmd && cmd->scsi_done)
2464 		cmd->scsi_done(cmd);
2465 }
2466 
2467 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2468 {
2469 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2470 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2471 }
2472 
2473 static void process_ioaccel2_completion(struct ctlr_info *h,
2474 		struct CommandList *c, struct scsi_cmnd *cmd,
2475 		struct hpsa_scsi_dev_t *dev)
2476 {
2477 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2478 
2479 	/* check for good status */
2480 	if (likely(c2->error_data.serv_response == 0 &&
2481 			c2->error_data.status == 0))
2482 		return hpsa_cmd_free_and_done(h, c, cmd);
2483 
2484 	/*
2485 	 * Any RAID offload error results in retry which will use
2486 	 * the normal I/O path so the controller can handle whatever is
2487 	 * wrong.
2488 	 */
2489 	if (is_logical_device(dev) &&
2490 		c2->error_data.serv_response ==
2491 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2492 		if (c2->error_data.status ==
2493 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2494 			dev->offload_enabled = 0;
2495 			dev->offload_to_be_enabled = 0;
2496 		}
2497 
2498 		return hpsa_retry_cmd(h, c);
2499 	}
2500 
2501 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2502 		return hpsa_retry_cmd(h, c);
2503 
2504 	return hpsa_cmd_free_and_done(h, c, cmd);
2505 }
2506 
2507 /* Returns 0 on success, < 0 otherwise. */
2508 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2509 					struct CommandList *cp)
2510 {
2511 	u8 tmf_status = cp->err_info->ScsiStatus;
2512 
2513 	switch (tmf_status) {
2514 	case CISS_TMF_COMPLETE:
2515 		/*
2516 		 * CISS_TMF_COMPLETE never happens, instead,
2517 		 * ei->CommandStatus == 0 for this case.
2518 		 */
2519 	case CISS_TMF_SUCCESS:
2520 		return 0;
2521 	case CISS_TMF_INVALID_FRAME:
2522 	case CISS_TMF_NOT_SUPPORTED:
2523 	case CISS_TMF_FAILED:
2524 	case CISS_TMF_WRONG_LUN:
2525 	case CISS_TMF_OVERLAPPED_TAG:
2526 		break;
2527 	default:
2528 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2529 				tmf_status);
2530 		break;
2531 	}
2532 	return -tmf_status;
2533 }
2534 
2535 static void complete_scsi_command(struct CommandList *cp)
2536 {
2537 	struct scsi_cmnd *cmd;
2538 	struct ctlr_info *h;
2539 	struct ErrorInfo *ei;
2540 	struct hpsa_scsi_dev_t *dev;
2541 	struct io_accel2_cmd *c2;
2542 
2543 	u8 sense_key;
2544 	u8 asc;      /* additional sense code */
2545 	u8 ascq;     /* additional sense code qualifier */
2546 	unsigned long sense_data_size;
2547 
2548 	ei = cp->err_info;
2549 	cmd = cp->scsi_cmd;
2550 	h = cp->h;
2551 
2552 	if (!cmd->device) {
2553 		cmd->result = DID_NO_CONNECT << 16;
2554 		return hpsa_cmd_free_and_done(h, cp, cmd);
2555 	}
2556 
2557 	dev = cmd->device->hostdata;
2558 	if (!dev) {
2559 		cmd->result = DID_NO_CONNECT << 16;
2560 		return hpsa_cmd_free_and_done(h, cp, cmd);
2561 	}
2562 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2563 
2564 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2565 	if ((cp->cmd_type == CMD_SCSI) &&
2566 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2567 		hpsa_unmap_sg_chain_block(h, cp);
2568 
2569 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2570 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2571 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2572 
2573 	cmd->result = (DID_OK << 16); 		/* host byte */
2574 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2575 
2576 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2577 		if (dev->physical_device && dev->expose_device &&
2578 			dev->removed) {
2579 			cmd->result = DID_NO_CONNECT << 16;
2580 			return hpsa_cmd_free_and_done(h, cp, cmd);
2581 		}
2582 		if (likely(cp->phys_disk != NULL))
2583 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2584 	}
2585 
2586 	/*
2587 	 * We check for lockup status here as it may be set for
2588 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2589 	 * fail_all_oustanding_cmds()
2590 	 */
2591 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2592 		/* DID_NO_CONNECT will prevent a retry */
2593 		cmd->result = DID_NO_CONNECT << 16;
2594 		return hpsa_cmd_free_and_done(h, cp, cmd);
2595 	}
2596 
2597 	if ((unlikely(hpsa_is_pending_event(cp))))
2598 		if (cp->reset_pending)
2599 			return hpsa_cmd_free_and_done(h, cp, cmd);
2600 
2601 	if (cp->cmd_type == CMD_IOACCEL2)
2602 		return process_ioaccel2_completion(h, cp, cmd, dev);
2603 
2604 	scsi_set_resid(cmd, ei->ResidualCnt);
2605 	if (ei->CommandStatus == 0)
2606 		return hpsa_cmd_free_and_done(h, cp, cmd);
2607 
2608 	/* For I/O accelerator commands, copy over some fields to the normal
2609 	 * CISS header used below for error handling.
2610 	 */
2611 	if (cp->cmd_type == CMD_IOACCEL1) {
2612 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2613 		cp->Header.SGList = scsi_sg_count(cmd);
2614 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2615 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2616 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2617 		cp->Header.tag = c->tag;
2618 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2619 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2620 
2621 		/* Any RAID offload error results in retry which will use
2622 		 * the normal I/O path so the controller can handle whatever's
2623 		 * wrong.
2624 		 */
2625 		if (is_logical_device(dev)) {
2626 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2627 				dev->offload_enabled = 0;
2628 			return hpsa_retry_cmd(h, cp);
2629 		}
2630 	}
2631 
2632 	/* an error has occurred */
2633 	switch (ei->CommandStatus) {
2634 
2635 	case CMD_TARGET_STATUS:
2636 		cmd->result |= ei->ScsiStatus;
2637 		/* copy the sense data */
2638 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2639 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2640 		else
2641 			sense_data_size = sizeof(ei->SenseInfo);
2642 		if (ei->SenseLen < sense_data_size)
2643 			sense_data_size = ei->SenseLen;
2644 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2645 		if (ei->ScsiStatus)
2646 			decode_sense_data(ei->SenseInfo, sense_data_size,
2647 				&sense_key, &asc, &ascq);
2648 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2649 			if (sense_key == ABORTED_COMMAND) {
2650 				cmd->result |= DID_SOFT_ERROR << 16;
2651 				break;
2652 			}
2653 			break;
2654 		}
2655 		/* Problem was not a check condition
2656 		 * Pass it up to the upper layers...
2657 		 */
2658 		if (ei->ScsiStatus) {
2659 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2660 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2661 				"Returning result: 0x%x\n",
2662 				cp, ei->ScsiStatus,
2663 				sense_key, asc, ascq,
2664 				cmd->result);
2665 		} else {  /* scsi status is zero??? How??? */
2666 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2667 				"Returning no connection.\n", cp),
2668 
2669 			/* Ordinarily, this case should never happen,
2670 			 * but there is a bug in some released firmware
2671 			 * revisions that allows it to happen if, for
2672 			 * example, a 4100 backplane loses power and
2673 			 * the tape drive is in it.  We assume that
2674 			 * it's a fatal error of some kind because we
2675 			 * can't show that it wasn't. We will make it
2676 			 * look like selection timeout since that is
2677 			 * the most common reason for this to occur,
2678 			 * and it's severe enough.
2679 			 */
2680 
2681 			cmd->result = DID_NO_CONNECT << 16;
2682 		}
2683 		break;
2684 
2685 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2686 		break;
2687 	case CMD_DATA_OVERRUN:
2688 		dev_warn(&h->pdev->dev,
2689 			"CDB %16phN data overrun\n", cp->Request.CDB);
2690 		break;
2691 	case CMD_INVALID: {
2692 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2693 		print_cmd(cp); */
2694 		/* We get CMD_INVALID if you address a non-existent device
2695 		 * instead of a selection timeout (no response).  You will
2696 		 * see this if you yank out a drive, then try to access it.
2697 		 * This is kind of a shame because it means that any other
2698 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2699 		 * missing target. */
2700 		cmd->result = DID_NO_CONNECT << 16;
2701 	}
2702 		break;
2703 	case CMD_PROTOCOL_ERR:
2704 		cmd->result = DID_ERROR << 16;
2705 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2706 				cp->Request.CDB);
2707 		break;
2708 	case CMD_HARDWARE_ERR:
2709 		cmd->result = DID_ERROR << 16;
2710 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2711 			cp->Request.CDB);
2712 		break;
2713 	case CMD_CONNECTION_LOST:
2714 		cmd->result = DID_ERROR << 16;
2715 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2716 			cp->Request.CDB);
2717 		break;
2718 	case CMD_ABORTED:
2719 		cmd->result = DID_ABORT << 16;
2720 		break;
2721 	case CMD_ABORT_FAILED:
2722 		cmd->result = DID_ERROR << 16;
2723 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2724 			cp->Request.CDB);
2725 		break;
2726 	case CMD_UNSOLICITED_ABORT:
2727 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2728 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2729 			cp->Request.CDB);
2730 		break;
2731 	case CMD_TIMEOUT:
2732 		cmd->result = DID_TIME_OUT << 16;
2733 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2734 			cp->Request.CDB);
2735 		break;
2736 	case CMD_UNABORTABLE:
2737 		cmd->result = DID_ERROR << 16;
2738 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2739 		break;
2740 	case CMD_TMF_STATUS:
2741 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2742 			cmd->result = DID_ERROR << 16;
2743 		break;
2744 	case CMD_IOACCEL_DISABLED:
2745 		/* This only handles the direct pass-through case since RAID
2746 		 * offload is handled above.  Just attempt a retry.
2747 		 */
2748 		cmd->result = DID_SOFT_ERROR << 16;
2749 		dev_warn(&h->pdev->dev,
2750 				"cp %p had HP SSD Smart Path error\n", cp);
2751 		break;
2752 	default:
2753 		cmd->result = DID_ERROR << 16;
2754 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2755 				cp, ei->CommandStatus);
2756 	}
2757 
2758 	return hpsa_cmd_free_and_done(h, cp, cmd);
2759 }
2760 
2761 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2762 		int sg_used, enum dma_data_direction data_direction)
2763 {
2764 	int i;
2765 
2766 	for (i = 0; i < sg_used; i++)
2767 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2768 				le32_to_cpu(c->SG[i].Len),
2769 				data_direction);
2770 }
2771 
2772 static int hpsa_map_one(struct pci_dev *pdev,
2773 		struct CommandList *cp,
2774 		unsigned char *buf,
2775 		size_t buflen,
2776 		enum dma_data_direction data_direction)
2777 {
2778 	u64 addr64;
2779 
2780 	if (buflen == 0 || data_direction == DMA_NONE) {
2781 		cp->Header.SGList = 0;
2782 		cp->Header.SGTotal = cpu_to_le16(0);
2783 		return 0;
2784 	}
2785 
2786 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2787 	if (dma_mapping_error(&pdev->dev, addr64)) {
2788 		/* Prevent subsequent unmap of something never mapped */
2789 		cp->Header.SGList = 0;
2790 		cp->Header.SGTotal = cpu_to_le16(0);
2791 		return -1;
2792 	}
2793 	cp->SG[0].Addr = cpu_to_le64(addr64);
2794 	cp->SG[0].Len = cpu_to_le32(buflen);
2795 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2796 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2797 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2798 	return 0;
2799 }
2800 
2801 #define NO_TIMEOUT ((unsigned long) -1)
2802 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2803 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2804 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2805 {
2806 	DECLARE_COMPLETION_ONSTACK(wait);
2807 
2808 	c->waiting = &wait;
2809 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2810 	if (timeout_msecs == NO_TIMEOUT) {
2811 		/* TODO: get rid of this no-timeout thing */
2812 		wait_for_completion_io(&wait);
2813 		return IO_OK;
2814 	}
2815 	if (!wait_for_completion_io_timeout(&wait,
2816 					msecs_to_jiffies(timeout_msecs))) {
2817 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2818 		return -ETIMEDOUT;
2819 	}
2820 	return IO_OK;
2821 }
2822 
2823 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2824 				   int reply_queue, unsigned long timeout_msecs)
2825 {
2826 	if (unlikely(lockup_detected(h))) {
2827 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2828 		return IO_OK;
2829 	}
2830 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2831 }
2832 
2833 static u32 lockup_detected(struct ctlr_info *h)
2834 {
2835 	int cpu;
2836 	u32 rc, *lockup_detected;
2837 
2838 	cpu = get_cpu();
2839 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2840 	rc = *lockup_detected;
2841 	put_cpu();
2842 	return rc;
2843 }
2844 
2845 #define MAX_DRIVER_CMD_RETRIES 25
2846 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2847 		struct CommandList *c, enum dma_data_direction data_direction,
2848 		unsigned long timeout_msecs)
2849 {
2850 	int backoff_time = 10, retry_count = 0;
2851 	int rc;
2852 
2853 	do {
2854 		memset(c->err_info, 0, sizeof(*c->err_info));
2855 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2856 						  timeout_msecs);
2857 		if (rc)
2858 			break;
2859 		retry_count++;
2860 		if (retry_count > 3) {
2861 			msleep(backoff_time);
2862 			if (backoff_time < 1000)
2863 				backoff_time *= 2;
2864 		}
2865 	} while ((check_for_unit_attention(h, c) ||
2866 			check_for_busy(h, c)) &&
2867 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2868 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2869 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2870 		rc = -EIO;
2871 	return rc;
2872 }
2873 
2874 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2875 				struct CommandList *c)
2876 {
2877 	const u8 *cdb = c->Request.CDB;
2878 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2879 
2880 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2881 		 txt, lun, cdb);
2882 }
2883 
2884 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2885 			struct CommandList *cp)
2886 {
2887 	const struct ErrorInfo *ei = cp->err_info;
2888 	struct device *d = &cp->h->pdev->dev;
2889 	u8 sense_key, asc, ascq;
2890 	int sense_len;
2891 
2892 	switch (ei->CommandStatus) {
2893 	case CMD_TARGET_STATUS:
2894 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2895 			sense_len = sizeof(ei->SenseInfo);
2896 		else
2897 			sense_len = ei->SenseLen;
2898 		decode_sense_data(ei->SenseInfo, sense_len,
2899 					&sense_key, &asc, &ascq);
2900 		hpsa_print_cmd(h, "SCSI status", cp);
2901 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2902 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2903 				sense_key, asc, ascq);
2904 		else
2905 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2906 		if (ei->ScsiStatus == 0)
2907 			dev_warn(d, "SCSI status is abnormally zero.  "
2908 			"(probably indicates selection timeout "
2909 			"reported incorrectly due to a known "
2910 			"firmware bug, circa July, 2001.)\n");
2911 		break;
2912 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2913 		break;
2914 	case CMD_DATA_OVERRUN:
2915 		hpsa_print_cmd(h, "overrun condition", cp);
2916 		break;
2917 	case CMD_INVALID: {
2918 		/* controller unfortunately reports SCSI passthru's
2919 		 * to non-existent targets as invalid commands.
2920 		 */
2921 		hpsa_print_cmd(h, "invalid command", cp);
2922 		dev_warn(d, "probably means device no longer present\n");
2923 		}
2924 		break;
2925 	case CMD_PROTOCOL_ERR:
2926 		hpsa_print_cmd(h, "protocol error", cp);
2927 		break;
2928 	case CMD_HARDWARE_ERR:
2929 		hpsa_print_cmd(h, "hardware error", cp);
2930 		break;
2931 	case CMD_CONNECTION_LOST:
2932 		hpsa_print_cmd(h, "connection lost", cp);
2933 		break;
2934 	case CMD_ABORTED:
2935 		hpsa_print_cmd(h, "aborted", cp);
2936 		break;
2937 	case CMD_ABORT_FAILED:
2938 		hpsa_print_cmd(h, "abort failed", cp);
2939 		break;
2940 	case CMD_UNSOLICITED_ABORT:
2941 		hpsa_print_cmd(h, "unsolicited abort", cp);
2942 		break;
2943 	case CMD_TIMEOUT:
2944 		hpsa_print_cmd(h, "timed out", cp);
2945 		break;
2946 	case CMD_UNABORTABLE:
2947 		hpsa_print_cmd(h, "unabortable", cp);
2948 		break;
2949 	case CMD_CTLR_LOCKUP:
2950 		hpsa_print_cmd(h, "controller lockup detected", cp);
2951 		break;
2952 	default:
2953 		hpsa_print_cmd(h, "unknown status", cp);
2954 		dev_warn(d, "Unknown command status %x\n",
2955 				ei->CommandStatus);
2956 	}
2957 }
2958 
2959 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2960 					u8 page, u8 *buf, size_t bufsize)
2961 {
2962 	int rc = IO_OK;
2963 	struct CommandList *c;
2964 	struct ErrorInfo *ei;
2965 
2966 	c = cmd_alloc(h);
2967 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2968 			page, scsi3addr, TYPE_CMD)) {
2969 		rc = -1;
2970 		goto out;
2971 	}
2972 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2973 			NO_TIMEOUT);
2974 	if (rc)
2975 		goto out;
2976 	ei = c->err_info;
2977 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2978 		hpsa_scsi_interpret_error(h, c);
2979 		rc = -1;
2980 	}
2981 out:
2982 	cmd_free(h, c);
2983 	return rc;
2984 }
2985 
2986 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2987 						u8 *scsi3addr)
2988 {
2989 	u8 *buf;
2990 	u64 sa = 0;
2991 	int rc = 0;
2992 
2993 	buf = kzalloc(1024, GFP_KERNEL);
2994 	if (!buf)
2995 		return 0;
2996 
2997 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2998 					buf, 1024);
2999 
3000 	if (rc)
3001 		goto out;
3002 
3003 	sa = get_unaligned_be64(buf+12);
3004 
3005 out:
3006 	kfree(buf);
3007 	return sa;
3008 }
3009 
3010 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3011 			u16 page, unsigned char *buf,
3012 			unsigned char bufsize)
3013 {
3014 	int rc = IO_OK;
3015 	struct CommandList *c;
3016 	struct ErrorInfo *ei;
3017 
3018 	c = cmd_alloc(h);
3019 
3020 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3021 			page, scsi3addr, TYPE_CMD)) {
3022 		rc = -1;
3023 		goto out;
3024 	}
3025 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3026 			NO_TIMEOUT);
3027 	if (rc)
3028 		goto out;
3029 	ei = c->err_info;
3030 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3031 		hpsa_scsi_interpret_error(h, c);
3032 		rc = -1;
3033 	}
3034 out:
3035 	cmd_free(h, c);
3036 	return rc;
3037 }
3038 
3039 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3040 	u8 reset_type, int reply_queue)
3041 {
3042 	int rc = IO_OK;
3043 	struct CommandList *c;
3044 	struct ErrorInfo *ei;
3045 
3046 	c = cmd_alloc(h);
3047 
3048 
3049 	/* fill_cmd can't fail here, no data buffer to map. */
3050 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3051 			scsi3addr, TYPE_MSG);
3052 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3053 	if (rc) {
3054 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3055 		goto out;
3056 	}
3057 	/* no unmap needed here because no data xfer. */
3058 
3059 	ei = c->err_info;
3060 	if (ei->CommandStatus != 0) {
3061 		hpsa_scsi_interpret_error(h, c);
3062 		rc = -1;
3063 	}
3064 out:
3065 	cmd_free(h, c);
3066 	return rc;
3067 }
3068 
3069 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3070 			       struct hpsa_scsi_dev_t *dev,
3071 			       unsigned char *scsi3addr)
3072 {
3073 	int i;
3074 	bool match = false;
3075 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3076 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3077 
3078 	if (hpsa_is_cmd_idle(c))
3079 		return false;
3080 
3081 	switch (c->cmd_type) {
3082 	case CMD_SCSI:
3083 	case CMD_IOCTL_PEND:
3084 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3085 				sizeof(c->Header.LUN.LunAddrBytes));
3086 		break;
3087 
3088 	case CMD_IOACCEL1:
3089 	case CMD_IOACCEL2:
3090 		if (c->phys_disk == dev) {
3091 			/* HBA mode match */
3092 			match = true;
3093 		} else {
3094 			/* Possible RAID mode -- check each phys dev. */
3095 			/* FIXME:  Do we need to take out a lock here?  If
3096 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3097 			 * instead. */
3098 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3099 				/* FIXME: an alternate test might be
3100 				 *
3101 				 * match = dev->phys_disk[i]->ioaccel_handle
3102 				 *              == c2->scsi_nexus;      */
3103 				match = dev->phys_disk[i] == c->phys_disk;
3104 			}
3105 		}
3106 		break;
3107 
3108 	case IOACCEL2_TMF:
3109 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3110 			match = dev->phys_disk[i]->ioaccel_handle ==
3111 					le32_to_cpu(ac->it_nexus);
3112 		}
3113 		break;
3114 
3115 	case 0:		/* The command is in the middle of being initialized. */
3116 		match = false;
3117 		break;
3118 
3119 	default:
3120 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3121 			c->cmd_type);
3122 		BUG();
3123 	}
3124 
3125 	return match;
3126 }
3127 
3128 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3129 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3130 {
3131 	int i;
3132 	int rc = 0;
3133 
3134 	/* We can really only handle one reset at a time */
3135 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3136 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3137 		return -EINTR;
3138 	}
3139 
3140 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3141 
3142 	for (i = 0; i < h->nr_cmds; i++) {
3143 		struct CommandList *c = h->cmd_pool + i;
3144 		int refcount = atomic_inc_return(&c->refcount);
3145 
3146 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3147 			unsigned long flags;
3148 
3149 			/*
3150 			 * Mark the target command as having a reset pending,
3151 			 * then lock a lock so that the command cannot complete
3152 			 * while we're considering it.  If the command is not
3153 			 * idle then count it; otherwise revoke the event.
3154 			 */
3155 			c->reset_pending = dev;
3156 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3157 			if (!hpsa_is_cmd_idle(c))
3158 				atomic_inc(&dev->reset_cmds_out);
3159 			else
3160 				c->reset_pending = NULL;
3161 			spin_unlock_irqrestore(&h->lock, flags);
3162 		}
3163 
3164 		cmd_free(h, c);
3165 	}
3166 
3167 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3168 	if (!rc)
3169 		wait_event(h->event_sync_wait_queue,
3170 			atomic_read(&dev->reset_cmds_out) == 0 ||
3171 			lockup_detected(h));
3172 
3173 	if (unlikely(lockup_detected(h))) {
3174 		dev_warn(&h->pdev->dev,
3175 			 "Controller lockup detected during reset wait\n");
3176 		rc = -ENODEV;
3177 	}
3178 
3179 	if (unlikely(rc))
3180 		atomic_set(&dev->reset_cmds_out, 0);
3181 	else
3182 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3183 
3184 	mutex_unlock(&h->reset_mutex);
3185 	return rc;
3186 }
3187 
3188 static void hpsa_get_raid_level(struct ctlr_info *h,
3189 	unsigned char *scsi3addr, unsigned char *raid_level)
3190 {
3191 	int rc;
3192 	unsigned char *buf;
3193 
3194 	*raid_level = RAID_UNKNOWN;
3195 	buf = kzalloc(64, GFP_KERNEL);
3196 	if (!buf)
3197 		return;
3198 
3199 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3200 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3201 		goto exit;
3202 
3203 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3204 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3205 
3206 	if (rc == 0)
3207 		*raid_level = buf[8];
3208 	if (*raid_level > RAID_UNKNOWN)
3209 		*raid_level = RAID_UNKNOWN;
3210 exit:
3211 	kfree(buf);
3212 	return;
3213 }
3214 
3215 #define HPSA_MAP_DEBUG
3216 #ifdef HPSA_MAP_DEBUG
3217 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3218 				struct raid_map_data *map_buff)
3219 {
3220 	struct raid_map_disk_data *dd = &map_buff->data[0];
3221 	int map, row, col;
3222 	u16 map_cnt, row_cnt, disks_per_row;
3223 
3224 	if (rc != 0)
3225 		return;
3226 
3227 	/* Show details only if debugging has been activated. */
3228 	if (h->raid_offload_debug < 2)
3229 		return;
3230 
3231 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3232 				le32_to_cpu(map_buff->structure_size));
3233 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3234 			le32_to_cpu(map_buff->volume_blk_size));
3235 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3236 			le64_to_cpu(map_buff->volume_blk_cnt));
3237 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3238 			map_buff->phys_blk_shift);
3239 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3240 			map_buff->parity_rotation_shift);
3241 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3242 			le16_to_cpu(map_buff->strip_size));
3243 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3244 			le64_to_cpu(map_buff->disk_starting_blk));
3245 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3246 			le64_to_cpu(map_buff->disk_blk_cnt));
3247 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3248 			le16_to_cpu(map_buff->data_disks_per_row));
3249 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3250 			le16_to_cpu(map_buff->metadata_disks_per_row));
3251 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3252 			le16_to_cpu(map_buff->row_cnt));
3253 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3254 			le16_to_cpu(map_buff->layout_map_count));
3255 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3256 			le16_to_cpu(map_buff->flags));
3257 	dev_info(&h->pdev->dev, "encryption = %s\n",
3258 			le16_to_cpu(map_buff->flags) &
3259 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3260 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3261 			le16_to_cpu(map_buff->dekindex));
3262 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3263 	for (map = 0; map < map_cnt; map++) {
3264 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3265 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3266 		for (row = 0; row < row_cnt; row++) {
3267 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3268 			disks_per_row =
3269 				le16_to_cpu(map_buff->data_disks_per_row);
3270 			for (col = 0; col < disks_per_row; col++, dd++)
3271 				dev_info(&h->pdev->dev,
3272 					"    D%02u: h=0x%04x xor=%u,%u\n",
3273 					col, dd->ioaccel_handle,
3274 					dd->xor_mult[0], dd->xor_mult[1]);
3275 			disks_per_row =
3276 				le16_to_cpu(map_buff->metadata_disks_per_row);
3277 			for (col = 0; col < disks_per_row; col++, dd++)
3278 				dev_info(&h->pdev->dev,
3279 					"    M%02u: h=0x%04x xor=%u,%u\n",
3280 					col, dd->ioaccel_handle,
3281 					dd->xor_mult[0], dd->xor_mult[1]);
3282 		}
3283 	}
3284 }
3285 #else
3286 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3287 			__attribute__((unused)) int rc,
3288 			__attribute__((unused)) struct raid_map_data *map_buff)
3289 {
3290 }
3291 #endif
3292 
3293 static int hpsa_get_raid_map(struct ctlr_info *h,
3294 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3295 {
3296 	int rc = 0;
3297 	struct CommandList *c;
3298 	struct ErrorInfo *ei;
3299 
3300 	c = cmd_alloc(h);
3301 
3302 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3303 			sizeof(this_device->raid_map), 0,
3304 			scsi3addr, TYPE_CMD)) {
3305 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3306 		cmd_free(h, c);
3307 		return -1;
3308 	}
3309 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3310 			NO_TIMEOUT);
3311 	if (rc)
3312 		goto out;
3313 	ei = c->err_info;
3314 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3315 		hpsa_scsi_interpret_error(h, c);
3316 		rc = -1;
3317 		goto out;
3318 	}
3319 	cmd_free(h, c);
3320 
3321 	/* @todo in the future, dynamically allocate RAID map memory */
3322 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3323 				sizeof(this_device->raid_map)) {
3324 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3325 		rc = -1;
3326 	}
3327 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3328 	return rc;
3329 out:
3330 	cmd_free(h, c);
3331 	return rc;
3332 }
3333 
3334 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3335 		unsigned char scsi3addr[], u16 bmic_device_index,
3336 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3337 {
3338 	int rc = IO_OK;
3339 	struct CommandList *c;
3340 	struct ErrorInfo *ei;
3341 
3342 	c = cmd_alloc(h);
3343 
3344 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3345 		0, RAID_CTLR_LUNID, TYPE_CMD);
3346 	if (rc)
3347 		goto out;
3348 
3349 	c->Request.CDB[2] = bmic_device_index & 0xff;
3350 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3351 
3352 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3353 			NO_TIMEOUT);
3354 	if (rc)
3355 		goto out;
3356 	ei = c->err_info;
3357 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3358 		hpsa_scsi_interpret_error(h, c);
3359 		rc = -1;
3360 	}
3361 out:
3362 	cmd_free(h, c);
3363 	return rc;
3364 }
3365 
3366 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3367 	struct bmic_identify_controller *buf, size_t bufsize)
3368 {
3369 	int rc = IO_OK;
3370 	struct CommandList *c;
3371 	struct ErrorInfo *ei;
3372 
3373 	c = cmd_alloc(h);
3374 
3375 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3376 		0, RAID_CTLR_LUNID, TYPE_CMD);
3377 	if (rc)
3378 		goto out;
3379 
3380 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3381 			NO_TIMEOUT);
3382 	if (rc)
3383 		goto out;
3384 	ei = c->err_info;
3385 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3386 		hpsa_scsi_interpret_error(h, c);
3387 		rc = -1;
3388 	}
3389 out:
3390 	cmd_free(h, c);
3391 	return rc;
3392 }
3393 
3394 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3395 		unsigned char scsi3addr[], u16 bmic_device_index,
3396 		struct bmic_identify_physical_device *buf, size_t bufsize)
3397 {
3398 	int rc = IO_OK;
3399 	struct CommandList *c;
3400 	struct ErrorInfo *ei;
3401 
3402 	c = cmd_alloc(h);
3403 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3404 		0, RAID_CTLR_LUNID, TYPE_CMD);
3405 	if (rc)
3406 		goto out;
3407 
3408 	c->Request.CDB[2] = bmic_device_index & 0xff;
3409 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3410 
3411 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3412 						NO_TIMEOUT);
3413 	ei = c->err_info;
3414 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3415 		hpsa_scsi_interpret_error(h, c);
3416 		rc = -1;
3417 	}
3418 out:
3419 	cmd_free(h, c);
3420 
3421 	return rc;
3422 }
3423 
3424 /*
3425  * get enclosure information
3426  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3427  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3428  * Uses id_physical_device to determine the box_index.
3429  */
3430 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3431 			unsigned char *scsi3addr,
3432 			struct ReportExtendedLUNdata *rlep, int rle_index,
3433 			struct hpsa_scsi_dev_t *encl_dev)
3434 {
3435 	int rc = -1;
3436 	struct CommandList *c = NULL;
3437 	struct ErrorInfo *ei = NULL;
3438 	struct bmic_sense_storage_box_params *bssbp = NULL;
3439 	struct bmic_identify_physical_device *id_phys = NULL;
3440 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3441 	u16 bmic_device_index = 0;
3442 
3443 	encl_dev->eli =
3444 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445 
3446 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3447 
3448 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3449 		rc = IO_OK;
3450 		goto out;
3451 	}
3452 
3453 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3454 		rc = IO_OK;
3455 		goto out;
3456 	}
3457 
3458 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3459 	if (!bssbp)
3460 		goto out;
3461 
3462 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3463 	if (!id_phys)
3464 		goto out;
3465 
3466 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3467 						id_phys, sizeof(*id_phys));
3468 	if (rc) {
3469 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3470 			__func__, encl_dev->external, bmic_device_index);
3471 		goto out;
3472 	}
3473 
3474 	c = cmd_alloc(h);
3475 
3476 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3477 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3478 
3479 	if (rc)
3480 		goto out;
3481 
3482 	if (id_phys->phys_connector[1] == 'E')
3483 		c->Request.CDB[5] = id_phys->box_index;
3484 	else
3485 		c->Request.CDB[5] = 0;
3486 
3487 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3488 						NO_TIMEOUT);
3489 	if (rc)
3490 		goto out;
3491 
3492 	ei = c->err_info;
3493 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3494 		rc = -1;
3495 		goto out;
3496 	}
3497 
3498 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3499 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3500 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3501 
3502 	rc = IO_OK;
3503 out:
3504 	kfree(bssbp);
3505 	kfree(id_phys);
3506 
3507 	if (c)
3508 		cmd_free(h, c);
3509 
3510 	if (rc != IO_OK)
3511 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3512 			"Error, could not get enclosure information");
3513 }
3514 
3515 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3516 						unsigned char *scsi3addr)
3517 {
3518 	struct ReportExtendedLUNdata *physdev;
3519 	u32 nphysicals;
3520 	u64 sa = 0;
3521 	int i;
3522 
3523 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3524 	if (!physdev)
3525 		return 0;
3526 
3527 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3528 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3529 		kfree(physdev);
3530 		return 0;
3531 	}
3532 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3533 
3534 	for (i = 0; i < nphysicals; i++)
3535 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3536 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3537 			break;
3538 		}
3539 
3540 	kfree(physdev);
3541 
3542 	return sa;
3543 }
3544 
3545 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3546 					struct hpsa_scsi_dev_t *dev)
3547 {
3548 	int rc;
3549 	u64 sa = 0;
3550 
3551 	if (is_hba_lunid(scsi3addr)) {
3552 		struct bmic_sense_subsystem_info *ssi;
3553 
3554 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3555 		if (!ssi)
3556 			return;
3557 
3558 		rc = hpsa_bmic_sense_subsystem_information(h,
3559 					scsi3addr, 0, ssi, sizeof(*ssi));
3560 		if (rc == 0) {
3561 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3562 			h->sas_address = sa;
3563 		}
3564 
3565 		kfree(ssi);
3566 	} else
3567 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3568 
3569 	dev->sas_address = sa;
3570 }
3571 
3572 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3573 	struct ReportExtendedLUNdata *physdev)
3574 {
3575 	u32 nphysicals;
3576 	int i;
3577 
3578 	if (h->discovery_polling)
3579 		return;
3580 
3581 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3582 
3583 	for (i = 0; i < nphysicals; i++) {
3584 		if (physdev->LUN[i].device_type ==
3585 			BMIC_DEVICE_TYPE_CONTROLLER
3586 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3587 			dev_info(&h->pdev->dev,
3588 				"External controller present, activate discovery polling and disable rld caching\n");
3589 			hpsa_disable_rld_caching(h);
3590 			h->discovery_polling = 1;
3591 			break;
3592 		}
3593 	}
3594 }
3595 
3596 /* Get a device id from inquiry page 0x83 */
3597 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3598 	unsigned char scsi3addr[], u8 page)
3599 {
3600 	int rc;
3601 	int i;
3602 	int pages;
3603 	unsigned char *buf, bufsize;
3604 
3605 	buf = kzalloc(256, GFP_KERNEL);
3606 	if (!buf)
3607 		return false;
3608 
3609 	/* Get the size of the page list first */
3610 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3611 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3612 				buf, HPSA_VPD_HEADER_SZ);
3613 	if (rc != 0)
3614 		goto exit_unsupported;
3615 	pages = buf[3];
3616 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3617 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3618 	else
3619 		bufsize = 255;
3620 
3621 	/* Get the whole VPD page list */
3622 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624 				buf, bufsize);
3625 	if (rc != 0)
3626 		goto exit_unsupported;
3627 
3628 	pages = buf[3];
3629 	for (i = 1; i <= pages; i++)
3630 		if (buf[3 + i] == page)
3631 			goto exit_supported;
3632 exit_unsupported:
3633 	kfree(buf);
3634 	return false;
3635 exit_supported:
3636 	kfree(buf);
3637 	return true;
3638 }
3639 
3640 /*
3641  * Called during a scan operation.
3642  * Sets ioaccel status on the new device list, not the existing device list
3643  *
3644  * The device list used during I/O will be updated later in
3645  * adjust_hpsa_scsi_table.
3646  */
3647 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3648 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3649 {
3650 	int rc;
3651 	unsigned char *buf;
3652 	u8 ioaccel_status;
3653 
3654 	this_device->offload_config = 0;
3655 	this_device->offload_enabled = 0;
3656 	this_device->offload_to_be_enabled = 0;
3657 
3658 	buf = kzalloc(64, GFP_KERNEL);
3659 	if (!buf)
3660 		return;
3661 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3662 		goto out;
3663 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3664 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3665 	if (rc != 0)
3666 		goto out;
3667 
3668 #define IOACCEL_STATUS_BYTE 4
3669 #define OFFLOAD_CONFIGURED_BIT 0x01
3670 #define OFFLOAD_ENABLED_BIT 0x02
3671 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3672 	this_device->offload_config =
3673 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3674 	if (this_device->offload_config) {
3675 		this_device->offload_to_be_enabled =
3676 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3677 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3678 			this_device->offload_to_be_enabled = 0;
3679 	}
3680 
3681 out:
3682 	kfree(buf);
3683 	return;
3684 }
3685 
3686 /* Get the device id from inquiry page 0x83 */
3687 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3688 	unsigned char *device_id, int index, int buflen)
3689 {
3690 	int rc;
3691 	unsigned char *buf;
3692 
3693 	/* Does controller have VPD for device id? */
3694 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3695 		return 1; /* not supported */
3696 
3697 	buf = kzalloc(64, GFP_KERNEL);
3698 	if (!buf)
3699 		return -ENOMEM;
3700 
3701 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3702 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3703 	if (rc == 0) {
3704 		if (buflen > 16)
3705 			buflen = 16;
3706 		memcpy(device_id, &buf[8], buflen);
3707 	}
3708 
3709 	kfree(buf);
3710 
3711 	return rc; /*0 - got id,  otherwise, didn't */
3712 }
3713 
3714 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3715 		void *buf, int bufsize,
3716 		int extended_response)
3717 {
3718 	int rc = IO_OK;
3719 	struct CommandList *c;
3720 	unsigned char scsi3addr[8];
3721 	struct ErrorInfo *ei;
3722 
3723 	c = cmd_alloc(h);
3724 
3725 	/* address the controller */
3726 	memset(scsi3addr, 0, sizeof(scsi3addr));
3727 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3728 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3729 		rc = -EAGAIN;
3730 		goto out;
3731 	}
3732 	if (extended_response)
3733 		c->Request.CDB[1] = extended_response;
3734 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3735 			NO_TIMEOUT);
3736 	if (rc)
3737 		goto out;
3738 	ei = c->err_info;
3739 	if (ei->CommandStatus != 0 &&
3740 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3741 		hpsa_scsi_interpret_error(h, c);
3742 		rc = -EIO;
3743 	} else {
3744 		struct ReportLUNdata *rld = buf;
3745 
3746 		if (rld->extended_response_flag != extended_response) {
3747 			if (!h->legacy_board) {
3748 				dev_err(&h->pdev->dev,
3749 					"report luns requested format %u, got %u\n",
3750 					extended_response,
3751 					rld->extended_response_flag);
3752 				rc = -EINVAL;
3753 			} else
3754 				rc = -EOPNOTSUPP;
3755 		}
3756 	}
3757 out:
3758 	cmd_free(h, c);
3759 	return rc;
3760 }
3761 
3762 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3763 		struct ReportExtendedLUNdata *buf, int bufsize)
3764 {
3765 	int rc;
3766 	struct ReportLUNdata *lbuf;
3767 
3768 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3769 				      HPSA_REPORT_PHYS_EXTENDED);
3770 	if (!rc || rc != -EOPNOTSUPP)
3771 		return rc;
3772 
3773 	/* REPORT PHYS EXTENDED is not supported */
3774 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3775 	if (!lbuf)
3776 		return -ENOMEM;
3777 
3778 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3779 	if (!rc) {
3780 		int i;
3781 		u32 nphys;
3782 
3783 		/* Copy ReportLUNdata header */
3784 		memcpy(buf, lbuf, 8);
3785 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3786 		for (i = 0; i < nphys; i++)
3787 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3788 	}
3789 	kfree(lbuf);
3790 	return rc;
3791 }
3792 
3793 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3794 		struct ReportLUNdata *buf, int bufsize)
3795 {
3796 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3797 }
3798 
3799 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3800 	int bus, int target, int lun)
3801 {
3802 	device->bus = bus;
3803 	device->target = target;
3804 	device->lun = lun;
3805 }
3806 
3807 /* Use VPD inquiry to get details of volume status */
3808 static int hpsa_get_volume_status(struct ctlr_info *h,
3809 					unsigned char scsi3addr[])
3810 {
3811 	int rc;
3812 	int status;
3813 	int size;
3814 	unsigned char *buf;
3815 
3816 	buf = kzalloc(64, GFP_KERNEL);
3817 	if (!buf)
3818 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3819 
3820 	/* Does controller have VPD for logical volume status? */
3821 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3822 		goto exit_failed;
3823 
3824 	/* Get the size of the VPD return buffer */
3825 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3826 					buf, HPSA_VPD_HEADER_SZ);
3827 	if (rc != 0)
3828 		goto exit_failed;
3829 	size = buf[3];
3830 
3831 	/* Now get the whole VPD buffer */
3832 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3833 					buf, size + HPSA_VPD_HEADER_SZ);
3834 	if (rc != 0)
3835 		goto exit_failed;
3836 	status = buf[4]; /* status byte */
3837 
3838 	kfree(buf);
3839 	return status;
3840 exit_failed:
3841 	kfree(buf);
3842 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 }
3844 
3845 /* Determine offline status of a volume.
3846  * Return either:
3847  *  0 (not offline)
3848  *  0xff (offline for unknown reasons)
3849  *  # (integer code indicating one of several NOT READY states
3850  *     describing why a volume is to be kept offline)
3851  */
3852 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3853 					unsigned char scsi3addr[])
3854 {
3855 	struct CommandList *c;
3856 	unsigned char *sense;
3857 	u8 sense_key, asc, ascq;
3858 	int sense_len;
3859 	int rc, ldstat = 0;
3860 	u16 cmd_status;
3861 	u8 scsi_status;
3862 #define ASC_LUN_NOT_READY 0x04
3863 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3864 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3865 
3866 	c = cmd_alloc(h);
3867 
3868 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3869 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3870 					NO_TIMEOUT);
3871 	if (rc) {
3872 		cmd_free(h, c);
3873 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3874 	}
3875 	sense = c->err_info->SenseInfo;
3876 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3877 		sense_len = sizeof(c->err_info->SenseInfo);
3878 	else
3879 		sense_len = c->err_info->SenseLen;
3880 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3881 	cmd_status = c->err_info->CommandStatus;
3882 	scsi_status = c->err_info->ScsiStatus;
3883 	cmd_free(h, c);
3884 
3885 	/* Determine the reason for not ready state */
3886 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3887 
3888 	/* Keep volume offline in certain cases: */
3889 	switch (ldstat) {
3890 	case HPSA_LV_FAILED:
3891 	case HPSA_LV_UNDERGOING_ERASE:
3892 	case HPSA_LV_NOT_AVAILABLE:
3893 	case HPSA_LV_UNDERGOING_RPI:
3894 	case HPSA_LV_PENDING_RPI:
3895 	case HPSA_LV_ENCRYPTED_NO_KEY:
3896 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3897 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3898 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3899 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3900 		return ldstat;
3901 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3902 		/* If VPD status page isn't available,
3903 		 * use ASC/ASCQ to determine state
3904 		 */
3905 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3906 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3907 			return ldstat;
3908 		break;
3909 	default:
3910 		break;
3911 	}
3912 	return HPSA_LV_OK;
3913 }
3914 
3915 static int hpsa_update_device_info(struct ctlr_info *h,
3916 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3917 	unsigned char *is_OBDR_device)
3918 {
3919 
3920 #define OBDR_SIG_OFFSET 43
3921 #define OBDR_TAPE_SIG "$DR-10"
3922 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3923 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3924 
3925 	unsigned char *inq_buff;
3926 	unsigned char *obdr_sig;
3927 	int rc = 0;
3928 
3929 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3930 	if (!inq_buff) {
3931 		rc = -ENOMEM;
3932 		goto bail_out;
3933 	}
3934 
3935 	/* Do an inquiry to the device to see what it is. */
3936 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3937 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3938 		dev_err(&h->pdev->dev,
3939 			"%s: inquiry failed, device will be skipped.\n",
3940 			__func__);
3941 		rc = HPSA_INQUIRY_FAILED;
3942 		goto bail_out;
3943 	}
3944 
3945 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3946 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3947 
3948 	this_device->devtype = (inq_buff[0] & 0x1f);
3949 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3950 	memcpy(this_device->vendor, &inq_buff[8],
3951 		sizeof(this_device->vendor));
3952 	memcpy(this_device->model, &inq_buff[16],
3953 		sizeof(this_device->model));
3954 	this_device->rev = inq_buff[2];
3955 	memset(this_device->device_id, 0,
3956 		sizeof(this_device->device_id));
3957 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3958 		sizeof(this_device->device_id)) < 0)
3959 		dev_err(&h->pdev->dev,
3960 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3961 			h->ctlr, __func__,
3962 			h->scsi_host->host_no,
3963 			this_device->target, this_device->lun,
3964 			scsi_device_type(this_device->devtype),
3965 			this_device->model);
3966 
3967 	if ((this_device->devtype == TYPE_DISK ||
3968 		this_device->devtype == TYPE_ZBC) &&
3969 		is_logical_dev_addr_mode(scsi3addr)) {
3970 		unsigned char volume_offline;
3971 
3972 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3973 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3974 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3975 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3976 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3977 		    h->legacy_board) {
3978 			/*
3979 			 * Legacy boards might not support volume status
3980 			 */
3981 			dev_info(&h->pdev->dev,
3982 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3983 				 this_device->target, this_device->lun);
3984 			volume_offline = 0;
3985 		}
3986 		this_device->volume_offline = volume_offline;
3987 		if (volume_offline == HPSA_LV_FAILED) {
3988 			rc = HPSA_LV_FAILED;
3989 			dev_err(&h->pdev->dev,
3990 				"%s: LV failed, device will be skipped.\n",
3991 				__func__);
3992 			goto bail_out;
3993 		}
3994 	} else {
3995 		this_device->raid_level = RAID_UNKNOWN;
3996 		this_device->offload_config = 0;
3997 		this_device->offload_enabled = 0;
3998 		this_device->offload_to_be_enabled = 0;
3999 		this_device->hba_ioaccel_enabled = 0;
4000 		this_device->volume_offline = 0;
4001 		this_device->queue_depth = h->nr_cmds;
4002 	}
4003 
4004 	if (this_device->external)
4005 		this_device->queue_depth = EXTERNAL_QD;
4006 
4007 	if (is_OBDR_device) {
4008 		/* See if this is a One-Button-Disaster-Recovery device
4009 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4010 		 */
4011 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4012 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4013 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4014 						OBDR_SIG_LEN) == 0);
4015 	}
4016 	kfree(inq_buff);
4017 	return 0;
4018 
4019 bail_out:
4020 	kfree(inq_buff);
4021 	return rc;
4022 }
4023 
4024 /*
4025  * Helper function to assign bus, target, lun mapping of devices.
4026  * Logical drive target and lun are assigned at this time, but
4027  * physical device lun and target assignment are deferred (assigned
4028  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4029 */
4030 static void figure_bus_target_lun(struct ctlr_info *h,
4031 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4032 {
4033 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4034 
4035 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4036 		/* physical device, target and lun filled in later */
4037 		if (is_hba_lunid(lunaddrbytes)) {
4038 			int bus = HPSA_HBA_BUS;
4039 
4040 			if (!device->rev)
4041 				bus = HPSA_LEGACY_HBA_BUS;
4042 			hpsa_set_bus_target_lun(device,
4043 					bus, 0, lunid & 0x3fff);
4044 		} else
4045 			/* defer target, lun assignment for physical devices */
4046 			hpsa_set_bus_target_lun(device,
4047 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4048 		return;
4049 	}
4050 	/* It's a logical device */
4051 	if (device->external) {
4052 		hpsa_set_bus_target_lun(device,
4053 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4054 			lunid & 0x00ff);
4055 		return;
4056 	}
4057 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4058 				0, lunid & 0x3fff);
4059 }
4060 
4061 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4062 	int i, int nphysicals, int nlocal_logicals)
4063 {
4064 	/* In report logicals, local logicals are listed first,
4065 	* then any externals.
4066 	*/
4067 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4068 
4069 	if (i == raid_ctlr_position)
4070 		return 0;
4071 
4072 	if (i < logicals_start)
4073 		return 0;
4074 
4075 	/* i is in logicals range, but still within local logicals */
4076 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4077 		return 0;
4078 
4079 	return 1; /* it's an external lun */
4080 }
4081 
4082 /*
4083  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4084  * logdev.  The number of luns in physdev and logdev are returned in
4085  * *nphysicals and *nlogicals, respectively.
4086  * Returns 0 on success, -1 otherwise.
4087  */
4088 static int hpsa_gather_lun_info(struct ctlr_info *h,
4089 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4090 	struct ReportLUNdata *logdev, u32 *nlogicals)
4091 {
4092 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4093 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4094 		return -1;
4095 	}
4096 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4097 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4098 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4099 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4100 		*nphysicals = HPSA_MAX_PHYS_LUN;
4101 	}
4102 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4103 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4104 		return -1;
4105 	}
4106 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4107 	/* Reject Logicals in excess of our max capability. */
4108 	if (*nlogicals > HPSA_MAX_LUN) {
4109 		dev_warn(&h->pdev->dev,
4110 			"maximum logical LUNs (%d) exceeded.  "
4111 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4112 			*nlogicals - HPSA_MAX_LUN);
4113 			*nlogicals = HPSA_MAX_LUN;
4114 	}
4115 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4116 		dev_warn(&h->pdev->dev,
4117 			"maximum logical + physical LUNs (%d) exceeded. "
4118 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4119 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4120 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4121 	}
4122 	return 0;
4123 }
4124 
4125 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4126 	int i, int nphysicals, int nlogicals,
4127 	struct ReportExtendedLUNdata *physdev_list,
4128 	struct ReportLUNdata *logdev_list)
4129 {
4130 	/* Helper function, figure out where the LUN ID info is coming from
4131 	 * given index i, lists of physical and logical devices, where in
4132 	 * the list the raid controller is supposed to appear (first or last)
4133 	 */
4134 
4135 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4136 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4137 
4138 	if (i == raid_ctlr_position)
4139 		return RAID_CTLR_LUNID;
4140 
4141 	if (i < logicals_start)
4142 		return &physdev_list->LUN[i -
4143 				(raid_ctlr_position == 0)].lunid[0];
4144 
4145 	if (i < last_device)
4146 		return &logdev_list->LUN[i - nphysicals -
4147 			(raid_ctlr_position == 0)][0];
4148 	BUG();
4149 	return NULL;
4150 }
4151 
4152 /* get physical drive ioaccel handle and queue depth */
4153 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4154 		struct hpsa_scsi_dev_t *dev,
4155 		struct ReportExtendedLUNdata *rlep, int rle_index,
4156 		struct bmic_identify_physical_device *id_phys)
4157 {
4158 	int rc;
4159 	struct ext_report_lun_entry *rle;
4160 
4161 	rle = &rlep->LUN[rle_index];
4162 
4163 	dev->ioaccel_handle = rle->ioaccel_handle;
4164 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4165 		dev->hba_ioaccel_enabled = 1;
4166 	memset(id_phys, 0, sizeof(*id_phys));
4167 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4168 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4169 			sizeof(*id_phys));
4170 	if (!rc)
4171 		/* Reserve space for FW operations */
4172 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4173 #define DRIVE_QUEUE_DEPTH 7
4174 		dev->queue_depth =
4175 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4176 				DRIVE_CMDS_RESERVED_FOR_FW;
4177 	else
4178 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4179 }
4180 
4181 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4182 	struct ReportExtendedLUNdata *rlep, int rle_index,
4183 	struct bmic_identify_physical_device *id_phys)
4184 {
4185 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4186 
4187 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4188 		this_device->hba_ioaccel_enabled = 1;
4189 
4190 	memcpy(&this_device->active_path_index,
4191 		&id_phys->active_path_number,
4192 		sizeof(this_device->active_path_index));
4193 	memcpy(&this_device->path_map,
4194 		&id_phys->redundant_path_present_map,
4195 		sizeof(this_device->path_map));
4196 	memcpy(&this_device->box,
4197 		&id_phys->alternate_paths_phys_box_on_port,
4198 		sizeof(this_device->box));
4199 	memcpy(&this_device->phys_connector,
4200 		&id_phys->alternate_paths_phys_connector,
4201 		sizeof(this_device->phys_connector));
4202 	memcpy(&this_device->bay,
4203 		&id_phys->phys_bay_in_box,
4204 		sizeof(this_device->bay));
4205 }
4206 
4207 /* get number of local logical disks. */
4208 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4209 	struct bmic_identify_controller *id_ctlr,
4210 	u32 *nlocals)
4211 {
4212 	int rc;
4213 
4214 	if (!id_ctlr) {
4215 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4216 			__func__);
4217 		return -ENOMEM;
4218 	}
4219 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4220 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4221 	if (!rc)
4222 		if (id_ctlr->configured_logical_drive_count < 255)
4223 			*nlocals = id_ctlr->configured_logical_drive_count;
4224 		else
4225 			*nlocals = le16_to_cpu(
4226 					id_ctlr->extended_logical_unit_count);
4227 	else
4228 		*nlocals = -1;
4229 	return rc;
4230 }
4231 
4232 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4233 {
4234 	struct bmic_identify_physical_device *id_phys;
4235 	bool is_spare = false;
4236 	int rc;
4237 
4238 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4239 	if (!id_phys)
4240 		return false;
4241 
4242 	rc = hpsa_bmic_id_physical_device(h,
4243 					lunaddrbytes,
4244 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4245 					id_phys, sizeof(*id_phys));
4246 	if (rc == 0)
4247 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4248 
4249 	kfree(id_phys);
4250 	return is_spare;
4251 }
4252 
4253 #define RPL_DEV_FLAG_NON_DISK                           0x1
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4256 
4257 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4258 
4259 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4260 				struct ext_report_lun_entry *rle)
4261 {
4262 	u8 device_flags;
4263 	u8 device_type;
4264 
4265 	if (!MASKED_DEVICE(lunaddrbytes))
4266 		return false;
4267 
4268 	device_flags = rle->device_flags;
4269 	device_type = rle->device_type;
4270 
4271 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4272 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4273 			return false;
4274 		return true;
4275 	}
4276 
4277 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4278 		return false;
4279 
4280 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4281 		return false;
4282 
4283 	/*
4284 	 * Spares may be spun down, we do not want to
4285 	 * do an Inquiry to a RAID set spare drive as
4286 	 * that would have them spun up, that is a
4287 	 * performance hit because I/O to the RAID device
4288 	 * stops while the spin up occurs which can take
4289 	 * over 50 seconds.
4290 	 */
4291 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4292 		return true;
4293 
4294 	return false;
4295 }
4296 
4297 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4298 {
4299 	/* the idea here is we could get notified
4300 	 * that some devices have changed, so we do a report
4301 	 * physical luns and report logical luns cmd, and adjust
4302 	 * our list of devices accordingly.
4303 	 *
4304 	 * The scsi3addr's of devices won't change so long as the
4305 	 * adapter is not reset.  That means we can rescan and
4306 	 * tell which devices we already know about, vs. new
4307 	 * devices, vs.  disappearing devices.
4308 	 */
4309 	struct ReportExtendedLUNdata *physdev_list = NULL;
4310 	struct ReportLUNdata *logdev_list = NULL;
4311 	struct bmic_identify_physical_device *id_phys = NULL;
4312 	struct bmic_identify_controller *id_ctlr = NULL;
4313 	u32 nphysicals = 0;
4314 	u32 nlogicals = 0;
4315 	u32 nlocal_logicals = 0;
4316 	u32 ndev_allocated = 0;
4317 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4318 	int ncurrent = 0;
4319 	int i, n_ext_target_devs, ndevs_to_allocate;
4320 	int raid_ctlr_position;
4321 	bool physical_device;
4322 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4323 
4324 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4325 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4326 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4327 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4328 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4329 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4330 
4331 	if (!currentsd || !physdev_list || !logdev_list ||
4332 		!tmpdevice || !id_phys || !id_ctlr) {
4333 		dev_err(&h->pdev->dev, "out of memory\n");
4334 		goto out;
4335 	}
4336 	memset(lunzerobits, 0, sizeof(lunzerobits));
4337 
4338 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4339 
4340 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4341 			logdev_list, &nlogicals)) {
4342 		h->drv_req_rescan = 1;
4343 		goto out;
4344 	}
4345 
4346 	/* Set number of local logicals (non PTRAID) */
4347 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4348 		dev_warn(&h->pdev->dev,
4349 			"%s: Can't determine number of local logical devices.\n",
4350 			__func__);
4351 	}
4352 
4353 	/* We might see up to the maximum number of logical and physical disks
4354 	 * plus external target devices, and a device for the local RAID
4355 	 * controller.
4356 	 */
4357 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4358 
4359 	hpsa_ext_ctrl_present(h, physdev_list);
4360 
4361 	/* Allocate the per device structures */
4362 	for (i = 0; i < ndevs_to_allocate; i++) {
4363 		if (i >= HPSA_MAX_DEVICES) {
4364 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4365 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4366 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4367 			break;
4368 		}
4369 
4370 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4371 		if (!currentsd[i]) {
4372 			h->drv_req_rescan = 1;
4373 			goto out;
4374 		}
4375 		ndev_allocated++;
4376 	}
4377 
4378 	if (is_scsi_rev_5(h))
4379 		raid_ctlr_position = 0;
4380 	else
4381 		raid_ctlr_position = nphysicals + nlogicals;
4382 
4383 	/* adjust our table of devices */
4384 	n_ext_target_devs = 0;
4385 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4386 		u8 *lunaddrbytes, is_OBDR = 0;
4387 		int rc = 0;
4388 		int phys_dev_index = i - (raid_ctlr_position == 0);
4389 		bool skip_device = false;
4390 
4391 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4392 
4393 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4394 
4395 		/* Figure out where the LUN ID info is coming from */
4396 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4397 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4398 
4399 		/* Determine if this is a lun from an external target array */
4400 		tmpdevice->external =
4401 			figure_external_status(h, raid_ctlr_position, i,
4402 						nphysicals, nlocal_logicals);
4403 
4404 		/*
4405 		 * Skip over some devices such as a spare.
4406 		 */
4407 		if (!tmpdevice->external && physical_device) {
4408 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4409 					&physdev_list->LUN[phys_dev_index]);
4410 			if (skip_device)
4411 				continue;
4412 		}
4413 
4414 		/* Get device type, vendor, model, device id, raid_map */
4415 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4416 							&is_OBDR);
4417 		if (rc == -ENOMEM) {
4418 			dev_warn(&h->pdev->dev,
4419 				"Out of memory, rescan deferred.\n");
4420 			h->drv_req_rescan = 1;
4421 			goto out;
4422 		}
4423 		if (rc) {
4424 			h->drv_req_rescan = 1;
4425 			continue;
4426 		}
4427 
4428 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4429 		this_device = currentsd[ncurrent];
4430 
4431 		*this_device = *tmpdevice;
4432 		this_device->physical_device = physical_device;
4433 
4434 		/*
4435 		 * Expose all devices except for physical devices that
4436 		 * are masked.
4437 		 */
4438 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4439 			this_device->expose_device = 0;
4440 		else
4441 			this_device->expose_device = 1;
4442 
4443 
4444 		/*
4445 		 * Get the SAS address for physical devices that are exposed.
4446 		 */
4447 		if (this_device->physical_device && this_device->expose_device)
4448 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4449 
4450 		switch (this_device->devtype) {
4451 		case TYPE_ROM:
4452 			/* We don't *really* support actual CD-ROM devices,
4453 			 * just "One Button Disaster Recovery" tape drive
4454 			 * which temporarily pretends to be a CD-ROM drive.
4455 			 * So we check that the device is really an OBDR tape
4456 			 * device by checking for "$DR-10" in bytes 43-48 of
4457 			 * the inquiry data.
4458 			 */
4459 			if (is_OBDR)
4460 				ncurrent++;
4461 			break;
4462 		case TYPE_DISK:
4463 		case TYPE_ZBC:
4464 			if (this_device->physical_device) {
4465 				/* The disk is in HBA mode. */
4466 				/* Never use RAID mapper in HBA mode. */
4467 				this_device->offload_enabled = 0;
4468 				hpsa_get_ioaccel_drive_info(h, this_device,
4469 					physdev_list, phys_dev_index, id_phys);
4470 				hpsa_get_path_info(this_device,
4471 					physdev_list, phys_dev_index, id_phys);
4472 			}
4473 			ncurrent++;
4474 			break;
4475 		case TYPE_TAPE:
4476 		case TYPE_MEDIUM_CHANGER:
4477 			ncurrent++;
4478 			break;
4479 		case TYPE_ENCLOSURE:
4480 			if (!this_device->external)
4481 				hpsa_get_enclosure_info(h, lunaddrbytes,
4482 						physdev_list, phys_dev_index,
4483 						this_device);
4484 			ncurrent++;
4485 			break;
4486 		case TYPE_RAID:
4487 			/* Only present the Smartarray HBA as a RAID controller.
4488 			 * If it's a RAID controller other than the HBA itself
4489 			 * (an external RAID controller, MSA500 or similar)
4490 			 * don't present it.
4491 			 */
4492 			if (!is_hba_lunid(lunaddrbytes))
4493 				break;
4494 			ncurrent++;
4495 			break;
4496 		default:
4497 			break;
4498 		}
4499 		if (ncurrent >= HPSA_MAX_DEVICES)
4500 			break;
4501 	}
4502 
4503 	if (h->sas_host == NULL) {
4504 		int rc = 0;
4505 
4506 		rc = hpsa_add_sas_host(h);
4507 		if (rc) {
4508 			dev_warn(&h->pdev->dev,
4509 				"Could not add sas host %d\n", rc);
4510 			goto out;
4511 		}
4512 	}
4513 
4514 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4515 out:
4516 	kfree(tmpdevice);
4517 	for (i = 0; i < ndev_allocated; i++)
4518 		kfree(currentsd[i]);
4519 	kfree(currentsd);
4520 	kfree(physdev_list);
4521 	kfree(logdev_list);
4522 	kfree(id_ctlr);
4523 	kfree(id_phys);
4524 }
4525 
4526 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4527 				   struct scatterlist *sg)
4528 {
4529 	u64 addr64 = (u64) sg_dma_address(sg);
4530 	unsigned int len = sg_dma_len(sg);
4531 
4532 	desc->Addr = cpu_to_le64(addr64);
4533 	desc->Len = cpu_to_le32(len);
4534 	desc->Ext = 0;
4535 }
4536 
4537 /*
4538  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4539  * dma mapping  and fills in the scatter gather entries of the
4540  * hpsa command, cp.
4541  */
4542 static int hpsa_scatter_gather(struct ctlr_info *h,
4543 		struct CommandList *cp,
4544 		struct scsi_cmnd *cmd)
4545 {
4546 	struct scatterlist *sg;
4547 	int use_sg, i, sg_limit, chained, last_sg;
4548 	struct SGDescriptor *curr_sg;
4549 
4550 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4551 
4552 	use_sg = scsi_dma_map(cmd);
4553 	if (use_sg < 0)
4554 		return use_sg;
4555 
4556 	if (!use_sg)
4557 		goto sglist_finished;
4558 
4559 	/*
4560 	 * If the number of entries is greater than the max for a single list,
4561 	 * then we have a chained list; we will set up all but one entry in the
4562 	 * first list (the last entry is saved for link information);
4563 	 * otherwise, we don't have a chained list and we'll set up at each of
4564 	 * the entries in the one list.
4565 	 */
4566 	curr_sg = cp->SG;
4567 	chained = use_sg > h->max_cmd_sg_entries;
4568 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4569 	last_sg = scsi_sg_count(cmd) - 1;
4570 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4571 		hpsa_set_sg_descriptor(curr_sg, sg);
4572 		curr_sg++;
4573 	}
4574 
4575 	if (chained) {
4576 		/*
4577 		 * Continue with the chained list.  Set curr_sg to the chained
4578 		 * list.  Modify the limit to the total count less the entries
4579 		 * we've already set up.  Resume the scan at the list entry
4580 		 * where the previous loop left off.
4581 		 */
4582 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4583 		sg_limit = use_sg - sg_limit;
4584 		for_each_sg(sg, sg, sg_limit, i) {
4585 			hpsa_set_sg_descriptor(curr_sg, sg);
4586 			curr_sg++;
4587 		}
4588 	}
4589 
4590 	/* Back the pointer up to the last entry and mark it as "last". */
4591 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4592 
4593 	if (use_sg + chained > h->maxSG)
4594 		h->maxSG = use_sg + chained;
4595 
4596 	if (chained) {
4597 		cp->Header.SGList = h->max_cmd_sg_entries;
4598 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4599 		if (hpsa_map_sg_chain_block(h, cp)) {
4600 			scsi_dma_unmap(cmd);
4601 			return -1;
4602 		}
4603 		return 0;
4604 	}
4605 
4606 sglist_finished:
4607 
4608 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4609 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4610 	return 0;
4611 }
4612 
4613 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4614 						u8 *cdb, int cdb_len,
4615 						const char *func)
4616 {
4617 	dev_warn(&h->pdev->dev,
4618 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4619 		 func, cdb_len, cdb);
4620 }
4621 
4622 #define IO_ACCEL_INELIGIBLE 1
4623 /* zero-length transfers trigger hardware errors. */
4624 static bool is_zero_length_transfer(u8 *cdb)
4625 {
4626 	u32 block_cnt;
4627 
4628 	/* Block zero-length transfer sizes on certain commands. */
4629 	switch (cdb[0]) {
4630 	case READ_10:
4631 	case WRITE_10:
4632 	case VERIFY:		/* 0x2F */
4633 	case WRITE_VERIFY:	/* 0x2E */
4634 		block_cnt = get_unaligned_be16(&cdb[7]);
4635 		break;
4636 	case READ_12:
4637 	case WRITE_12:
4638 	case VERIFY_12: /* 0xAF */
4639 	case WRITE_VERIFY_12:	/* 0xAE */
4640 		block_cnt = get_unaligned_be32(&cdb[6]);
4641 		break;
4642 	case READ_16:
4643 	case WRITE_16:
4644 	case VERIFY_16:		/* 0x8F */
4645 		block_cnt = get_unaligned_be32(&cdb[10]);
4646 		break;
4647 	default:
4648 		return false;
4649 	}
4650 
4651 	return block_cnt == 0;
4652 }
4653 
4654 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4655 {
4656 	int is_write = 0;
4657 	u32 block;
4658 	u32 block_cnt;
4659 
4660 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4661 	switch (cdb[0]) {
4662 	case WRITE_6:
4663 	case WRITE_12:
4664 		is_write = 1;
4665 		/* fall through */
4666 	case READ_6:
4667 	case READ_12:
4668 		if (*cdb_len == 6) {
4669 			block = (((cdb[1] & 0x1F) << 16) |
4670 				(cdb[2] << 8) |
4671 				cdb[3]);
4672 			block_cnt = cdb[4];
4673 			if (block_cnt == 0)
4674 				block_cnt = 256;
4675 		} else {
4676 			BUG_ON(*cdb_len != 12);
4677 			block = get_unaligned_be32(&cdb[2]);
4678 			block_cnt = get_unaligned_be32(&cdb[6]);
4679 		}
4680 		if (block_cnt > 0xffff)
4681 			return IO_ACCEL_INELIGIBLE;
4682 
4683 		cdb[0] = is_write ? WRITE_10 : READ_10;
4684 		cdb[1] = 0;
4685 		cdb[2] = (u8) (block >> 24);
4686 		cdb[3] = (u8) (block >> 16);
4687 		cdb[4] = (u8) (block >> 8);
4688 		cdb[5] = (u8) (block);
4689 		cdb[6] = 0;
4690 		cdb[7] = (u8) (block_cnt >> 8);
4691 		cdb[8] = (u8) (block_cnt);
4692 		cdb[9] = 0;
4693 		*cdb_len = 10;
4694 		break;
4695 	}
4696 	return 0;
4697 }
4698 
4699 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4700 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4701 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4702 {
4703 	struct scsi_cmnd *cmd = c->scsi_cmd;
4704 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4705 	unsigned int len;
4706 	unsigned int total_len = 0;
4707 	struct scatterlist *sg;
4708 	u64 addr64;
4709 	int use_sg, i;
4710 	struct SGDescriptor *curr_sg;
4711 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4712 
4713 	/* TODO: implement chaining support */
4714 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4715 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4716 		return IO_ACCEL_INELIGIBLE;
4717 	}
4718 
4719 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4720 
4721 	if (is_zero_length_transfer(cdb)) {
4722 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4723 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4724 		return IO_ACCEL_INELIGIBLE;
4725 	}
4726 
4727 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4728 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4729 		return IO_ACCEL_INELIGIBLE;
4730 	}
4731 
4732 	c->cmd_type = CMD_IOACCEL1;
4733 
4734 	/* Adjust the DMA address to point to the accelerated command buffer */
4735 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4736 				(c->cmdindex * sizeof(*cp));
4737 	BUG_ON(c->busaddr & 0x0000007F);
4738 
4739 	use_sg = scsi_dma_map(cmd);
4740 	if (use_sg < 0) {
4741 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4742 		return use_sg;
4743 	}
4744 
4745 	if (use_sg) {
4746 		curr_sg = cp->SG;
4747 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4748 			addr64 = (u64) sg_dma_address(sg);
4749 			len  = sg_dma_len(sg);
4750 			total_len += len;
4751 			curr_sg->Addr = cpu_to_le64(addr64);
4752 			curr_sg->Len = cpu_to_le32(len);
4753 			curr_sg->Ext = cpu_to_le32(0);
4754 			curr_sg++;
4755 		}
4756 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4757 
4758 		switch (cmd->sc_data_direction) {
4759 		case DMA_TO_DEVICE:
4760 			control |= IOACCEL1_CONTROL_DATA_OUT;
4761 			break;
4762 		case DMA_FROM_DEVICE:
4763 			control |= IOACCEL1_CONTROL_DATA_IN;
4764 			break;
4765 		case DMA_NONE:
4766 			control |= IOACCEL1_CONTROL_NODATAXFER;
4767 			break;
4768 		default:
4769 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4770 			cmd->sc_data_direction);
4771 			BUG();
4772 			break;
4773 		}
4774 	} else {
4775 		control |= IOACCEL1_CONTROL_NODATAXFER;
4776 	}
4777 
4778 	c->Header.SGList = use_sg;
4779 	/* Fill out the command structure to submit */
4780 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4781 	cp->transfer_len = cpu_to_le32(total_len);
4782 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4783 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4784 	cp->control = cpu_to_le32(control);
4785 	memcpy(cp->CDB, cdb, cdb_len);
4786 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4787 	/* Tag was already set at init time. */
4788 	enqueue_cmd_and_start_io(h, c);
4789 	return 0;
4790 }
4791 
4792 /*
4793  * Queue a command directly to a device behind the controller using the
4794  * I/O accelerator path.
4795  */
4796 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4797 	struct CommandList *c)
4798 {
4799 	struct scsi_cmnd *cmd = c->scsi_cmd;
4800 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4801 
4802 	if (!dev)
4803 		return -1;
4804 
4805 	c->phys_disk = dev;
4806 
4807 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4808 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4809 }
4810 
4811 /*
4812  * Set encryption parameters for the ioaccel2 request
4813  */
4814 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4815 	struct CommandList *c, struct io_accel2_cmd *cp)
4816 {
4817 	struct scsi_cmnd *cmd = c->scsi_cmd;
4818 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4819 	struct raid_map_data *map = &dev->raid_map;
4820 	u64 first_block;
4821 
4822 	/* Are we doing encryption on this device */
4823 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4824 		return;
4825 	/* Set the data encryption key index. */
4826 	cp->dekindex = map->dekindex;
4827 
4828 	/* Set the encryption enable flag, encoded into direction field. */
4829 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4830 
4831 	/* Set encryption tweak values based on logical block address
4832 	 * If block size is 512, tweak value is LBA.
4833 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4834 	 */
4835 	switch (cmd->cmnd[0]) {
4836 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4837 	case READ_6:
4838 	case WRITE_6:
4839 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4840 				(cmd->cmnd[2] << 8) |
4841 				cmd->cmnd[3]);
4842 		break;
4843 	case WRITE_10:
4844 	case READ_10:
4845 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4846 	case WRITE_12:
4847 	case READ_12:
4848 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4849 		break;
4850 	case WRITE_16:
4851 	case READ_16:
4852 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4853 		break;
4854 	default:
4855 		dev_err(&h->pdev->dev,
4856 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4857 			__func__, cmd->cmnd[0]);
4858 		BUG();
4859 		break;
4860 	}
4861 
4862 	if (le32_to_cpu(map->volume_blk_size) != 512)
4863 		first_block = first_block *
4864 				le32_to_cpu(map->volume_blk_size)/512;
4865 
4866 	cp->tweak_lower = cpu_to_le32(first_block);
4867 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4868 }
4869 
4870 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4871 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4872 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4873 {
4874 	struct scsi_cmnd *cmd = c->scsi_cmd;
4875 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4876 	struct ioaccel2_sg_element *curr_sg;
4877 	int use_sg, i;
4878 	struct scatterlist *sg;
4879 	u64 addr64;
4880 	u32 len;
4881 	u32 total_len = 0;
4882 
4883 	if (!cmd->device)
4884 		return -1;
4885 
4886 	if (!cmd->device->hostdata)
4887 		return -1;
4888 
4889 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4890 
4891 	if (is_zero_length_transfer(cdb)) {
4892 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4893 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4894 		return IO_ACCEL_INELIGIBLE;
4895 	}
4896 
4897 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4898 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4899 		return IO_ACCEL_INELIGIBLE;
4900 	}
4901 
4902 	c->cmd_type = CMD_IOACCEL2;
4903 	/* Adjust the DMA address to point to the accelerated command buffer */
4904 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4905 				(c->cmdindex * sizeof(*cp));
4906 	BUG_ON(c->busaddr & 0x0000007F);
4907 
4908 	memset(cp, 0, sizeof(*cp));
4909 	cp->IU_type = IOACCEL2_IU_TYPE;
4910 
4911 	use_sg = scsi_dma_map(cmd);
4912 	if (use_sg < 0) {
4913 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4914 		return use_sg;
4915 	}
4916 
4917 	if (use_sg) {
4918 		curr_sg = cp->sg;
4919 		if (use_sg > h->ioaccel_maxsg) {
4920 			addr64 = le64_to_cpu(
4921 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4922 			curr_sg->address = cpu_to_le64(addr64);
4923 			curr_sg->length = 0;
4924 			curr_sg->reserved[0] = 0;
4925 			curr_sg->reserved[1] = 0;
4926 			curr_sg->reserved[2] = 0;
4927 			curr_sg->chain_indicator = 0x80;
4928 
4929 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4930 		}
4931 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4932 			addr64 = (u64) sg_dma_address(sg);
4933 			len  = sg_dma_len(sg);
4934 			total_len += len;
4935 			curr_sg->address = cpu_to_le64(addr64);
4936 			curr_sg->length = cpu_to_le32(len);
4937 			curr_sg->reserved[0] = 0;
4938 			curr_sg->reserved[1] = 0;
4939 			curr_sg->reserved[2] = 0;
4940 			curr_sg->chain_indicator = 0;
4941 			curr_sg++;
4942 		}
4943 
4944 		switch (cmd->sc_data_direction) {
4945 		case DMA_TO_DEVICE:
4946 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4947 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4948 			break;
4949 		case DMA_FROM_DEVICE:
4950 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4951 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4952 			break;
4953 		case DMA_NONE:
4954 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4956 			break;
4957 		default:
4958 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4959 				cmd->sc_data_direction);
4960 			BUG();
4961 			break;
4962 		}
4963 	} else {
4964 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4966 	}
4967 
4968 	/* Set encryption parameters, if necessary */
4969 	set_encrypt_ioaccel2(h, c, cp);
4970 
4971 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4972 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4973 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4974 
4975 	cp->data_len = cpu_to_le32(total_len);
4976 	cp->err_ptr = cpu_to_le64(c->busaddr +
4977 			offsetof(struct io_accel2_cmd, error_data));
4978 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4979 
4980 	/* fill in sg elements */
4981 	if (use_sg > h->ioaccel_maxsg) {
4982 		cp->sg_count = 1;
4983 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4984 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4985 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4986 			scsi_dma_unmap(cmd);
4987 			return -1;
4988 		}
4989 	} else
4990 		cp->sg_count = (u8) use_sg;
4991 
4992 	enqueue_cmd_and_start_io(h, c);
4993 	return 0;
4994 }
4995 
4996 /*
4997  * Queue a command to the correct I/O accelerator path.
4998  */
4999 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5000 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5001 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5002 {
5003 	if (!c->scsi_cmd->device)
5004 		return -1;
5005 
5006 	if (!c->scsi_cmd->device->hostdata)
5007 		return -1;
5008 
5009 	/* Try to honor the device's queue depth */
5010 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5011 					phys_disk->queue_depth) {
5012 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5013 		return IO_ACCEL_INELIGIBLE;
5014 	}
5015 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5016 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5017 						cdb, cdb_len, scsi3addr,
5018 						phys_disk);
5019 	else
5020 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5021 						cdb, cdb_len, scsi3addr,
5022 						phys_disk);
5023 }
5024 
5025 static void raid_map_helper(struct raid_map_data *map,
5026 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5027 {
5028 	if (offload_to_mirror == 0)  {
5029 		/* use physical disk in the first mirrored group. */
5030 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5031 		return;
5032 	}
5033 	do {
5034 		/* determine mirror group that *map_index indicates */
5035 		*current_group = *map_index /
5036 			le16_to_cpu(map->data_disks_per_row);
5037 		if (offload_to_mirror == *current_group)
5038 			continue;
5039 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5040 			/* select map index from next group */
5041 			*map_index += le16_to_cpu(map->data_disks_per_row);
5042 			(*current_group)++;
5043 		} else {
5044 			/* select map index from first group */
5045 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5046 			*current_group = 0;
5047 		}
5048 	} while (offload_to_mirror != *current_group);
5049 }
5050 
5051 /*
5052  * Attempt to perform offload RAID mapping for a logical volume I/O.
5053  */
5054 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5055 	struct CommandList *c)
5056 {
5057 	struct scsi_cmnd *cmd = c->scsi_cmd;
5058 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5059 	struct raid_map_data *map = &dev->raid_map;
5060 	struct raid_map_disk_data *dd = &map->data[0];
5061 	int is_write = 0;
5062 	u32 map_index;
5063 	u64 first_block, last_block;
5064 	u32 block_cnt;
5065 	u32 blocks_per_row;
5066 	u64 first_row, last_row;
5067 	u32 first_row_offset, last_row_offset;
5068 	u32 first_column, last_column;
5069 	u64 r0_first_row, r0_last_row;
5070 	u32 r5or6_blocks_per_row;
5071 	u64 r5or6_first_row, r5or6_last_row;
5072 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5073 	u32 r5or6_first_column, r5or6_last_column;
5074 	u32 total_disks_per_row;
5075 	u32 stripesize;
5076 	u32 first_group, last_group, current_group;
5077 	u32 map_row;
5078 	u32 disk_handle;
5079 	u64 disk_block;
5080 	u32 disk_block_cnt;
5081 	u8 cdb[16];
5082 	u8 cdb_len;
5083 	u16 strip_size;
5084 #if BITS_PER_LONG == 32
5085 	u64 tmpdiv;
5086 #endif
5087 	int offload_to_mirror;
5088 
5089 	if (!dev)
5090 		return -1;
5091 
5092 	/* check for valid opcode, get LBA and block count */
5093 	switch (cmd->cmnd[0]) {
5094 	case WRITE_6:
5095 		is_write = 1;
5096 		/* fall through */
5097 	case READ_6:
5098 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5099 				(cmd->cmnd[2] << 8) |
5100 				cmd->cmnd[3]);
5101 		block_cnt = cmd->cmnd[4];
5102 		if (block_cnt == 0)
5103 			block_cnt = 256;
5104 		break;
5105 	case WRITE_10:
5106 		is_write = 1;
5107 		/* fall through */
5108 	case READ_10:
5109 		first_block =
5110 			(((u64) cmd->cmnd[2]) << 24) |
5111 			(((u64) cmd->cmnd[3]) << 16) |
5112 			(((u64) cmd->cmnd[4]) << 8) |
5113 			cmd->cmnd[5];
5114 		block_cnt =
5115 			(((u32) cmd->cmnd[7]) << 8) |
5116 			cmd->cmnd[8];
5117 		break;
5118 	case WRITE_12:
5119 		is_write = 1;
5120 		/* fall through */
5121 	case READ_12:
5122 		first_block =
5123 			(((u64) cmd->cmnd[2]) << 24) |
5124 			(((u64) cmd->cmnd[3]) << 16) |
5125 			(((u64) cmd->cmnd[4]) << 8) |
5126 			cmd->cmnd[5];
5127 		block_cnt =
5128 			(((u32) cmd->cmnd[6]) << 24) |
5129 			(((u32) cmd->cmnd[7]) << 16) |
5130 			(((u32) cmd->cmnd[8]) << 8) |
5131 		cmd->cmnd[9];
5132 		break;
5133 	case WRITE_16:
5134 		is_write = 1;
5135 		/* fall through */
5136 	case READ_16:
5137 		first_block =
5138 			(((u64) cmd->cmnd[2]) << 56) |
5139 			(((u64) cmd->cmnd[3]) << 48) |
5140 			(((u64) cmd->cmnd[4]) << 40) |
5141 			(((u64) cmd->cmnd[5]) << 32) |
5142 			(((u64) cmd->cmnd[6]) << 24) |
5143 			(((u64) cmd->cmnd[7]) << 16) |
5144 			(((u64) cmd->cmnd[8]) << 8) |
5145 			cmd->cmnd[9];
5146 		block_cnt =
5147 			(((u32) cmd->cmnd[10]) << 24) |
5148 			(((u32) cmd->cmnd[11]) << 16) |
5149 			(((u32) cmd->cmnd[12]) << 8) |
5150 			cmd->cmnd[13];
5151 		break;
5152 	default:
5153 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5154 	}
5155 	last_block = first_block + block_cnt - 1;
5156 
5157 	/* check for write to non-RAID-0 */
5158 	if (is_write && dev->raid_level != 0)
5159 		return IO_ACCEL_INELIGIBLE;
5160 
5161 	/* check for invalid block or wraparound */
5162 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5163 		last_block < first_block)
5164 		return IO_ACCEL_INELIGIBLE;
5165 
5166 	/* calculate stripe information for the request */
5167 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5168 				le16_to_cpu(map->strip_size);
5169 	strip_size = le16_to_cpu(map->strip_size);
5170 #if BITS_PER_LONG == 32
5171 	tmpdiv = first_block;
5172 	(void) do_div(tmpdiv, blocks_per_row);
5173 	first_row = tmpdiv;
5174 	tmpdiv = last_block;
5175 	(void) do_div(tmpdiv, blocks_per_row);
5176 	last_row = tmpdiv;
5177 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5178 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5179 	tmpdiv = first_row_offset;
5180 	(void) do_div(tmpdiv, strip_size);
5181 	first_column = tmpdiv;
5182 	tmpdiv = last_row_offset;
5183 	(void) do_div(tmpdiv, strip_size);
5184 	last_column = tmpdiv;
5185 #else
5186 	first_row = first_block / blocks_per_row;
5187 	last_row = last_block / blocks_per_row;
5188 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5189 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5190 	first_column = first_row_offset / strip_size;
5191 	last_column = last_row_offset / strip_size;
5192 #endif
5193 
5194 	/* if this isn't a single row/column then give to the controller */
5195 	if ((first_row != last_row) || (first_column != last_column))
5196 		return IO_ACCEL_INELIGIBLE;
5197 
5198 	/* proceeding with driver mapping */
5199 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5200 				le16_to_cpu(map->metadata_disks_per_row);
5201 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5202 				le16_to_cpu(map->row_cnt);
5203 	map_index = (map_row * total_disks_per_row) + first_column;
5204 
5205 	switch (dev->raid_level) {
5206 	case HPSA_RAID_0:
5207 		break; /* nothing special to do */
5208 	case HPSA_RAID_1:
5209 		/* Handles load balance across RAID 1 members.
5210 		 * (2-drive R1 and R10 with even # of drives.)
5211 		 * Appropriate for SSDs, not optimal for HDDs
5212 		 */
5213 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5214 		if (dev->offload_to_mirror)
5215 			map_index += le16_to_cpu(map->data_disks_per_row);
5216 		dev->offload_to_mirror = !dev->offload_to_mirror;
5217 		break;
5218 	case HPSA_RAID_ADM:
5219 		/* Handles N-way mirrors  (R1-ADM)
5220 		 * and R10 with # of drives divisible by 3.)
5221 		 */
5222 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5223 
5224 		offload_to_mirror = dev->offload_to_mirror;
5225 		raid_map_helper(map, offload_to_mirror,
5226 				&map_index, &current_group);
5227 		/* set mirror group to use next time */
5228 		offload_to_mirror =
5229 			(offload_to_mirror >=
5230 			le16_to_cpu(map->layout_map_count) - 1)
5231 			? 0 : offload_to_mirror + 1;
5232 		dev->offload_to_mirror = offload_to_mirror;
5233 		/* Avoid direct use of dev->offload_to_mirror within this
5234 		 * function since multiple threads might simultaneously
5235 		 * increment it beyond the range of dev->layout_map_count -1.
5236 		 */
5237 		break;
5238 	case HPSA_RAID_5:
5239 	case HPSA_RAID_6:
5240 		if (le16_to_cpu(map->layout_map_count) <= 1)
5241 			break;
5242 
5243 		/* Verify first and last block are in same RAID group */
5244 		r5or6_blocks_per_row =
5245 			le16_to_cpu(map->strip_size) *
5246 			le16_to_cpu(map->data_disks_per_row);
5247 		BUG_ON(r5or6_blocks_per_row == 0);
5248 		stripesize = r5or6_blocks_per_row *
5249 			le16_to_cpu(map->layout_map_count);
5250 #if BITS_PER_LONG == 32
5251 		tmpdiv = first_block;
5252 		first_group = do_div(tmpdiv, stripesize);
5253 		tmpdiv = first_group;
5254 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5255 		first_group = tmpdiv;
5256 		tmpdiv = last_block;
5257 		last_group = do_div(tmpdiv, stripesize);
5258 		tmpdiv = last_group;
5259 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5260 		last_group = tmpdiv;
5261 #else
5262 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5263 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5264 #endif
5265 		if (first_group != last_group)
5266 			return IO_ACCEL_INELIGIBLE;
5267 
5268 		/* Verify request is in a single row of RAID 5/6 */
5269 #if BITS_PER_LONG == 32
5270 		tmpdiv = first_block;
5271 		(void) do_div(tmpdiv, stripesize);
5272 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5273 		tmpdiv = last_block;
5274 		(void) do_div(tmpdiv, stripesize);
5275 		r5or6_last_row = r0_last_row = tmpdiv;
5276 #else
5277 		first_row = r5or6_first_row = r0_first_row =
5278 						first_block / stripesize;
5279 		r5or6_last_row = r0_last_row = last_block / stripesize;
5280 #endif
5281 		if (r5or6_first_row != r5or6_last_row)
5282 			return IO_ACCEL_INELIGIBLE;
5283 
5284 
5285 		/* Verify request is in a single column */
5286 #if BITS_PER_LONG == 32
5287 		tmpdiv = first_block;
5288 		first_row_offset = do_div(tmpdiv, stripesize);
5289 		tmpdiv = first_row_offset;
5290 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5291 		r5or6_first_row_offset = first_row_offset;
5292 		tmpdiv = last_block;
5293 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5294 		tmpdiv = r5or6_last_row_offset;
5295 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5296 		tmpdiv = r5or6_first_row_offset;
5297 		(void) do_div(tmpdiv, map->strip_size);
5298 		first_column = r5or6_first_column = tmpdiv;
5299 		tmpdiv = r5or6_last_row_offset;
5300 		(void) do_div(tmpdiv, map->strip_size);
5301 		r5or6_last_column = tmpdiv;
5302 #else
5303 		first_row_offset = r5or6_first_row_offset =
5304 			(u32)((first_block % stripesize) %
5305 						r5or6_blocks_per_row);
5306 
5307 		r5or6_last_row_offset =
5308 			(u32)((last_block % stripesize) %
5309 						r5or6_blocks_per_row);
5310 
5311 		first_column = r5or6_first_column =
5312 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5313 		r5or6_last_column =
5314 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5315 #endif
5316 		if (r5or6_first_column != r5or6_last_column)
5317 			return IO_ACCEL_INELIGIBLE;
5318 
5319 		/* Request is eligible */
5320 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5321 			le16_to_cpu(map->row_cnt);
5322 
5323 		map_index = (first_group *
5324 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5325 			(map_row * total_disks_per_row) + first_column;
5326 		break;
5327 	default:
5328 		return IO_ACCEL_INELIGIBLE;
5329 	}
5330 
5331 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5332 		return IO_ACCEL_INELIGIBLE;
5333 
5334 	c->phys_disk = dev->phys_disk[map_index];
5335 	if (!c->phys_disk)
5336 		return IO_ACCEL_INELIGIBLE;
5337 
5338 	disk_handle = dd[map_index].ioaccel_handle;
5339 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5340 			first_row * le16_to_cpu(map->strip_size) +
5341 			(first_row_offset - first_column *
5342 			le16_to_cpu(map->strip_size));
5343 	disk_block_cnt = block_cnt;
5344 
5345 	/* handle differing logical/physical block sizes */
5346 	if (map->phys_blk_shift) {
5347 		disk_block <<= map->phys_blk_shift;
5348 		disk_block_cnt <<= map->phys_blk_shift;
5349 	}
5350 	BUG_ON(disk_block_cnt > 0xffff);
5351 
5352 	/* build the new CDB for the physical disk I/O */
5353 	if (disk_block > 0xffffffff) {
5354 		cdb[0] = is_write ? WRITE_16 : READ_16;
5355 		cdb[1] = 0;
5356 		cdb[2] = (u8) (disk_block >> 56);
5357 		cdb[3] = (u8) (disk_block >> 48);
5358 		cdb[4] = (u8) (disk_block >> 40);
5359 		cdb[5] = (u8) (disk_block >> 32);
5360 		cdb[6] = (u8) (disk_block >> 24);
5361 		cdb[7] = (u8) (disk_block >> 16);
5362 		cdb[8] = (u8) (disk_block >> 8);
5363 		cdb[9] = (u8) (disk_block);
5364 		cdb[10] = (u8) (disk_block_cnt >> 24);
5365 		cdb[11] = (u8) (disk_block_cnt >> 16);
5366 		cdb[12] = (u8) (disk_block_cnt >> 8);
5367 		cdb[13] = (u8) (disk_block_cnt);
5368 		cdb[14] = 0;
5369 		cdb[15] = 0;
5370 		cdb_len = 16;
5371 	} else {
5372 		cdb[0] = is_write ? WRITE_10 : READ_10;
5373 		cdb[1] = 0;
5374 		cdb[2] = (u8) (disk_block >> 24);
5375 		cdb[3] = (u8) (disk_block >> 16);
5376 		cdb[4] = (u8) (disk_block >> 8);
5377 		cdb[5] = (u8) (disk_block);
5378 		cdb[6] = 0;
5379 		cdb[7] = (u8) (disk_block_cnt >> 8);
5380 		cdb[8] = (u8) (disk_block_cnt);
5381 		cdb[9] = 0;
5382 		cdb_len = 10;
5383 	}
5384 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5385 						dev->scsi3addr,
5386 						dev->phys_disk[map_index]);
5387 }
5388 
5389 /*
5390  * Submit commands down the "normal" RAID stack path
5391  * All callers to hpsa_ciss_submit must check lockup_detected
5392  * beforehand, before (opt.) and after calling cmd_alloc
5393  */
5394 static int hpsa_ciss_submit(struct ctlr_info *h,
5395 	struct CommandList *c, struct scsi_cmnd *cmd,
5396 	unsigned char scsi3addr[])
5397 {
5398 	cmd->host_scribble = (unsigned char *) c;
5399 	c->cmd_type = CMD_SCSI;
5400 	c->scsi_cmd = cmd;
5401 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5402 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5403 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5404 
5405 	/* Fill in the request block... */
5406 
5407 	c->Request.Timeout = 0;
5408 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5409 	c->Request.CDBLen = cmd->cmd_len;
5410 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5411 	switch (cmd->sc_data_direction) {
5412 	case DMA_TO_DEVICE:
5413 		c->Request.type_attr_dir =
5414 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5415 		break;
5416 	case DMA_FROM_DEVICE:
5417 		c->Request.type_attr_dir =
5418 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5419 		break;
5420 	case DMA_NONE:
5421 		c->Request.type_attr_dir =
5422 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5423 		break;
5424 	case DMA_BIDIRECTIONAL:
5425 		/* This can happen if a buggy application does a scsi passthru
5426 		 * and sets both inlen and outlen to non-zero. ( see
5427 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5428 		 */
5429 
5430 		c->Request.type_attr_dir =
5431 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5432 		/* This is technically wrong, and hpsa controllers should
5433 		 * reject it with CMD_INVALID, which is the most correct
5434 		 * response, but non-fibre backends appear to let it
5435 		 * slide by, and give the same results as if this field
5436 		 * were set correctly.  Either way is acceptable for
5437 		 * our purposes here.
5438 		 */
5439 
5440 		break;
5441 
5442 	default:
5443 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5444 			cmd->sc_data_direction);
5445 		BUG();
5446 		break;
5447 	}
5448 
5449 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5450 		hpsa_cmd_resolve_and_free(h, c);
5451 		return SCSI_MLQUEUE_HOST_BUSY;
5452 	}
5453 	enqueue_cmd_and_start_io(h, c);
5454 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5455 	return 0;
5456 }
5457 
5458 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5459 				struct CommandList *c)
5460 {
5461 	dma_addr_t cmd_dma_handle, err_dma_handle;
5462 
5463 	/* Zero out all of commandlist except the last field, refcount */
5464 	memset(c, 0, offsetof(struct CommandList, refcount));
5465 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5466 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5467 	c->err_info = h->errinfo_pool + index;
5468 	memset(c->err_info, 0, sizeof(*c->err_info));
5469 	err_dma_handle = h->errinfo_pool_dhandle
5470 	    + index * sizeof(*c->err_info);
5471 	c->cmdindex = index;
5472 	c->busaddr = (u32) cmd_dma_handle;
5473 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5474 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5475 	c->h = h;
5476 	c->scsi_cmd = SCSI_CMD_IDLE;
5477 }
5478 
5479 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5480 {
5481 	int i;
5482 
5483 	for (i = 0; i < h->nr_cmds; i++) {
5484 		struct CommandList *c = h->cmd_pool + i;
5485 
5486 		hpsa_cmd_init(h, i, c);
5487 		atomic_set(&c->refcount, 0);
5488 	}
5489 }
5490 
5491 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5492 				struct CommandList *c)
5493 {
5494 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5495 
5496 	BUG_ON(c->cmdindex != index);
5497 
5498 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5499 	memset(c->err_info, 0, sizeof(*c->err_info));
5500 	c->busaddr = (u32) cmd_dma_handle;
5501 }
5502 
5503 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5504 		struct CommandList *c, struct scsi_cmnd *cmd,
5505 		unsigned char *scsi3addr)
5506 {
5507 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5508 	int rc = IO_ACCEL_INELIGIBLE;
5509 
5510 	if (!dev)
5511 		return SCSI_MLQUEUE_HOST_BUSY;
5512 
5513 	cmd->host_scribble = (unsigned char *) c;
5514 
5515 	if (dev->offload_enabled) {
5516 		hpsa_cmd_init(h, c->cmdindex, c);
5517 		c->cmd_type = CMD_SCSI;
5518 		c->scsi_cmd = cmd;
5519 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5520 		if (rc < 0)     /* scsi_dma_map failed. */
5521 			rc = SCSI_MLQUEUE_HOST_BUSY;
5522 	} else if (dev->hba_ioaccel_enabled) {
5523 		hpsa_cmd_init(h, c->cmdindex, c);
5524 		c->cmd_type = CMD_SCSI;
5525 		c->scsi_cmd = cmd;
5526 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5527 		if (rc < 0)     /* scsi_dma_map failed. */
5528 			rc = SCSI_MLQUEUE_HOST_BUSY;
5529 	}
5530 	return rc;
5531 }
5532 
5533 static void hpsa_command_resubmit_worker(struct work_struct *work)
5534 {
5535 	struct scsi_cmnd *cmd;
5536 	struct hpsa_scsi_dev_t *dev;
5537 	struct CommandList *c = container_of(work, struct CommandList, work);
5538 
5539 	cmd = c->scsi_cmd;
5540 	dev = cmd->device->hostdata;
5541 	if (!dev) {
5542 		cmd->result = DID_NO_CONNECT << 16;
5543 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5544 	}
5545 	if (c->reset_pending)
5546 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5547 	if (c->cmd_type == CMD_IOACCEL2) {
5548 		struct ctlr_info *h = c->h;
5549 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5550 		int rc;
5551 
5552 		if (c2->error_data.serv_response ==
5553 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5554 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5555 			if (rc == 0)
5556 				return;
5557 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5558 				/*
5559 				 * If we get here, it means dma mapping failed.
5560 				 * Try again via scsi mid layer, which will
5561 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5562 				 */
5563 				cmd->result = DID_IMM_RETRY << 16;
5564 				return hpsa_cmd_free_and_done(h, c, cmd);
5565 			}
5566 			/* else, fall thru and resubmit down CISS path */
5567 		}
5568 	}
5569 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5570 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5571 		/*
5572 		 * If we get here, it means dma mapping failed. Try
5573 		 * again via scsi mid layer, which will then get
5574 		 * SCSI_MLQUEUE_HOST_BUSY.
5575 		 *
5576 		 * hpsa_ciss_submit will have already freed c
5577 		 * if it encountered a dma mapping failure.
5578 		 */
5579 		cmd->result = DID_IMM_RETRY << 16;
5580 		cmd->scsi_done(cmd);
5581 	}
5582 }
5583 
5584 /* Running in struct Scsi_Host->host_lock less mode */
5585 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5586 {
5587 	struct ctlr_info *h;
5588 	struct hpsa_scsi_dev_t *dev;
5589 	unsigned char scsi3addr[8];
5590 	struct CommandList *c;
5591 	int rc = 0;
5592 
5593 	/* Get the ptr to our adapter structure out of cmd->host. */
5594 	h = sdev_to_hba(cmd->device);
5595 
5596 	BUG_ON(cmd->request->tag < 0);
5597 
5598 	dev = cmd->device->hostdata;
5599 	if (!dev) {
5600 		cmd->result = DID_NO_CONNECT << 16;
5601 		cmd->scsi_done(cmd);
5602 		return 0;
5603 	}
5604 
5605 	if (dev->removed) {
5606 		cmd->result = DID_NO_CONNECT << 16;
5607 		cmd->scsi_done(cmd);
5608 		return 0;
5609 	}
5610 
5611 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5612 
5613 	if (unlikely(lockup_detected(h))) {
5614 		cmd->result = DID_NO_CONNECT << 16;
5615 		cmd->scsi_done(cmd);
5616 		return 0;
5617 	}
5618 	c = cmd_tagged_alloc(h, cmd);
5619 
5620 	/*
5621 	 * Call alternate submit routine for I/O accelerated commands.
5622 	 * Retries always go down the normal I/O path.
5623 	 */
5624 	if (likely(cmd->retries == 0 &&
5625 			!blk_rq_is_passthrough(cmd->request) &&
5626 			h->acciopath_status)) {
5627 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5628 		if (rc == 0)
5629 			return 0;
5630 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5631 			hpsa_cmd_resolve_and_free(h, c);
5632 			return SCSI_MLQUEUE_HOST_BUSY;
5633 		}
5634 	}
5635 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5636 }
5637 
5638 static void hpsa_scan_complete(struct ctlr_info *h)
5639 {
5640 	unsigned long flags;
5641 
5642 	spin_lock_irqsave(&h->scan_lock, flags);
5643 	h->scan_finished = 1;
5644 	wake_up(&h->scan_wait_queue);
5645 	spin_unlock_irqrestore(&h->scan_lock, flags);
5646 }
5647 
5648 static void hpsa_scan_start(struct Scsi_Host *sh)
5649 {
5650 	struct ctlr_info *h = shost_to_hba(sh);
5651 	unsigned long flags;
5652 
5653 	/*
5654 	 * Don't let rescans be initiated on a controller known to be locked
5655 	 * up.  If the controller locks up *during* a rescan, that thread is
5656 	 * probably hosed, but at least we can prevent new rescan threads from
5657 	 * piling up on a locked up controller.
5658 	 */
5659 	if (unlikely(lockup_detected(h)))
5660 		return hpsa_scan_complete(h);
5661 
5662 	/*
5663 	 * If a scan is already waiting to run, no need to add another
5664 	 */
5665 	spin_lock_irqsave(&h->scan_lock, flags);
5666 	if (h->scan_waiting) {
5667 		spin_unlock_irqrestore(&h->scan_lock, flags);
5668 		return;
5669 	}
5670 
5671 	spin_unlock_irqrestore(&h->scan_lock, flags);
5672 
5673 	/* wait until any scan already in progress is finished. */
5674 	while (1) {
5675 		spin_lock_irqsave(&h->scan_lock, flags);
5676 		if (h->scan_finished)
5677 			break;
5678 		h->scan_waiting = 1;
5679 		spin_unlock_irqrestore(&h->scan_lock, flags);
5680 		wait_event(h->scan_wait_queue, h->scan_finished);
5681 		/* Note: We don't need to worry about a race between this
5682 		 * thread and driver unload because the midlayer will
5683 		 * have incremented the reference count, so unload won't
5684 		 * happen if we're in here.
5685 		 */
5686 	}
5687 	h->scan_finished = 0; /* mark scan as in progress */
5688 	h->scan_waiting = 0;
5689 	spin_unlock_irqrestore(&h->scan_lock, flags);
5690 
5691 	if (unlikely(lockup_detected(h)))
5692 		return hpsa_scan_complete(h);
5693 
5694 	/*
5695 	 * Do the scan after a reset completion
5696 	 */
5697 	spin_lock_irqsave(&h->reset_lock, flags);
5698 	if (h->reset_in_progress) {
5699 		h->drv_req_rescan = 1;
5700 		spin_unlock_irqrestore(&h->reset_lock, flags);
5701 		hpsa_scan_complete(h);
5702 		return;
5703 	}
5704 	spin_unlock_irqrestore(&h->reset_lock, flags);
5705 
5706 	hpsa_update_scsi_devices(h);
5707 
5708 	hpsa_scan_complete(h);
5709 }
5710 
5711 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5712 {
5713 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5714 
5715 	if (!logical_drive)
5716 		return -ENODEV;
5717 
5718 	if (qdepth < 1)
5719 		qdepth = 1;
5720 	else if (qdepth > logical_drive->queue_depth)
5721 		qdepth = logical_drive->queue_depth;
5722 
5723 	return scsi_change_queue_depth(sdev, qdepth);
5724 }
5725 
5726 static int hpsa_scan_finished(struct Scsi_Host *sh,
5727 	unsigned long elapsed_time)
5728 {
5729 	struct ctlr_info *h = shost_to_hba(sh);
5730 	unsigned long flags;
5731 	int finished;
5732 
5733 	spin_lock_irqsave(&h->scan_lock, flags);
5734 	finished = h->scan_finished;
5735 	spin_unlock_irqrestore(&h->scan_lock, flags);
5736 	return finished;
5737 }
5738 
5739 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5740 {
5741 	struct Scsi_Host *sh;
5742 
5743 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5744 	if (sh == NULL) {
5745 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5746 		return -ENOMEM;
5747 	}
5748 
5749 	sh->io_port = 0;
5750 	sh->n_io_port = 0;
5751 	sh->this_id = -1;
5752 	sh->max_channel = 3;
5753 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5754 	sh->max_lun = HPSA_MAX_LUN;
5755 	sh->max_id = HPSA_MAX_LUN;
5756 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5757 	sh->cmd_per_lun = sh->can_queue;
5758 	sh->sg_tablesize = h->maxsgentries;
5759 	sh->transportt = hpsa_sas_transport_template;
5760 	sh->hostdata[0] = (unsigned long) h;
5761 	sh->irq = pci_irq_vector(h->pdev, 0);
5762 	sh->unique_id = sh->irq;
5763 
5764 	h->scsi_host = sh;
5765 	return 0;
5766 }
5767 
5768 static int hpsa_scsi_add_host(struct ctlr_info *h)
5769 {
5770 	int rv;
5771 
5772 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5773 	if (rv) {
5774 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5775 		return rv;
5776 	}
5777 	scsi_scan_host(h->scsi_host);
5778 	return 0;
5779 }
5780 
5781 /*
5782  * The block layer has already gone to the trouble of picking out a unique,
5783  * small-integer tag for this request.  We use an offset from that value as
5784  * an index to select our command block.  (The offset allows us to reserve the
5785  * low-numbered entries for our own uses.)
5786  */
5787 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5788 {
5789 	int idx = scmd->request->tag;
5790 
5791 	if (idx < 0)
5792 		return idx;
5793 
5794 	/* Offset to leave space for internal cmds. */
5795 	return idx += HPSA_NRESERVED_CMDS;
5796 }
5797 
5798 /*
5799  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5800  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5801  */
5802 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5803 				struct CommandList *c, unsigned char lunaddr[],
5804 				int reply_queue)
5805 {
5806 	int rc;
5807 
5808 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5809 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5810 			NULL, 0, 0, lunaddr, TYPE_CMD);
5811 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5812 	if (rc)
5813 		return rc;
5814 	/* no unmap needed here because no data xfer. */
5815 
5816 	/* Check if the unit is already ready. */
5817 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5818 		return 0;
5819 
5820 	/*
5821 	 * The first command sent after reset will receive "unit attention" to
5822 	 * indicate that the LUN has been reset...this is actually what we're
5823 	 * looking for (but, success is good too).
5824 	 */
5825 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5826 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5827 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5828 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5829 		return 0;
5830 
5831 	return 1;
5832 }
5833 
5834 /*
5835  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5836  * returns zero when the unit is ready, and non-zero when giving up.
5837  */
5838 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5839 				struct CommandList *c,
5840 				unsigned char lunaddr[], int reply_queue)
5841 {
5842 	int rc;
5843 	int count = 0;
5844 	int waittime = 1; /* seconds */
5845 
5846 	/* Send test unit ready until device ready, or give up. */
5847 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5848 
5849 		/*
5850 		 * Wait for a bit.  do this first, because if we send
5851 		 * the TUR right away, the reset will just abort it.
5852 		 */
5853 		msleep(1000 * waittime);
5854 
5855 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5856 		if (!rc)
5857 			break;
5858 
5859 		/* Increase wait time with each try, up to a point. */
5860 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5861 			waittime *= 2;
5862 
5863 		dev_warn(&h->pdev->dev,
5864 			 "waiting %d secs for device to become ready.\n",
5865 			 waittime);
5866 	}
5867 
5868 	return rc;
5869 }
5870 
5871 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5872 					   unsigned char lunaddr[],
5873 					   int reply_queue)
5874 {
5875 	int first_queue;
5876 	int last_queue;
5877 	int rq;
5878 	int rc = 0;
5879 	struct CommandList *c;
5880 
5881 	c = cmd_alloc(h);
5882 
5883 	/*
5884 	 * If no specific reply queue was requested, then send the TUR
5885 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5886 	 * the loop exactly once using only the specified queue.
5887 	 */
5888 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5889 		first_queue = 0;
5890 		last_queue = h->nreply_queues - 1;
5891 	} else {
5892 		first_queue = reply_queue;
5893 		last_queue = reply_queue;
5894 	}
5895 
5896 	for (rq = first_queue; rq <= last_queue; rq++) {
5897 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5898 		if (rc)
5899 			break;
5900 	}
5901 
5902 	if (rc)
5903 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5904 	else
5905 		dev_warn(&h->pdev->dev, "device is ready.\n");
5906 
5907 	cmd_free(h, c);
5908 	return rc;
5909 }
5910 
5911 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5912  * complaining.  Doing a host- or bus-reset can't do anything good here.
5913  */
5914 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5915 {
5916 	int rc = SUCCESS;
5917 	struct ctlr_info *h;
5918 	struct hpsa_scsi_dev_t *dev;
5919 	u8 reset_type;
5920 	char msg[48];
5921 	unsigned long flags;
5922 
5923 	/* find the controller to which the command to be aborted was sent */
5924 	h = sdev_to_hba(scsicmd->device);
5925 	if (h == NULL) /* paranoia */
5926 		return FAILED;
5927 
5928 	spin_lock_irqsave(&h->reset_lock, flags);
5929 	h->reset_in_progress = 1;
5930 	spin_unlock_irqrestore(&h->reset_lock, flags);
5931 
5932 	if (lockup_detected(h)) {
5933 		rc = FAILED;
5934 		goto return_reset_status;
5935 	}
5936 
5937 	dev = scsicmd->device->hostdata;
5938 	if (!dev) {
5939 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5940 		rc = FAILED;
5941 		goto return_reset_status;
5942 	}
5943 
5944 	if (dev->devtype == TYPE_ENCLOSURE) {
5945 		rc = SUCCESS;
5946 		goto return_reset_status;
5947 	}
5948 
5949 	/* if controller locked up, we can guarantee command won't complete */
5950 	if (lockup_detected(h)) {
5951 		snprintf(msg, sizeof(msg),
5952 			 "cmd %d RESET FAILED, lockup detected",
5953 			 hpsa_get_cmd_index(scsicmd));
5954 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5955 		rc = FAILED;
5956 		goto return_reset_status;
5957 	}
5958 
5959 	/* this reset request might be the result of a lockup; check */
5960 	if (detect_controller_lockup(h)) {
5961 		snprintf(msg, sizeof(msg),
5962 			 "cmd %d RESET FAILED, new lockup detected",
5963 			 hpsa_get_cmd_index(scsicmd));
5964 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5965 		rc = FAILED;
5966 		goto return_reset_status;
5967 	}
5968 
5969 	/* Do not attempt on controller */
5970 	if (is_hba_lunid(dev->scsi3addr)) {
5971 		rc = SUCCESS;
5972 		goto return_reset_status;
5973 	}
5974 
5975 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5976 		reset_type = HPSA_DEVICE_RESET_MSG;
5977 	else
5978 		reset_type = HPSA_PHYS_TARGET_RESET;
5979 
5980 	sprintf(msg, "resetting %s",
5981 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5982 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5983 
5984 	/* send a reset to the SCSI LUN which the command was sent to */
5985 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5986 			   DEFAULT_REPLY_QUEUE);
5987 	if (rc == 0)
5988 		rc = SUCCESS;
5989 	else
5990 		rc = FAILED;
5991 
5992 	sprintf(msg, "reset %s %s",
5993 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5994 		rc == SUCCESS ? "completed successfully" : "failed");
5995 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5996 
5997 return_reset_status:
5998 	spin_lock_irqsave(&h->reset_lock, flags);
5999 	h->reset_in_progress = 0;
6000 	spin_unlock_irqrestore(&h->reset_lock, flags);
6001 	return rc;
6002 }
6003 
6004 /*
6005  * For operations with an associated SCSI command, a command block is allocated
6006  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6007  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6008  * the complement, although cmd_free() may be called instead.
6009  */
6010 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6011 					    struct scsi_cmnd *scmd)
6012 {
6013 	int idx = hpsa_get_cmd_index(scmd);
6014 	struct CommandList *c = h->cmd_pool + idx;
6015 
6016 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6017 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6018 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6019 		/* The index value comes from the block layer, so if it's out of
6020 		 * bounds, it's probably not our bug.
6021 		 */
6022 		BUG();
6023 	}
6024 
6025 	atomic_inc(&c->refcount);
6026 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6027 		/*
6028 		 * We expect that the SCSI layer will hand us a unique tag
6029 		 * value.  Thus, there should never be a collision here between
6030 		 * two requests...because if the selected command isn't idle
6031 		 * then someone is going to be very disappointed.
6032 		 */
6033 		dev_err(&h->pdev->dev,
6034 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6035 			idx);
6036 		if (c->scsi_cmd != NULL)
6037 			scsi_print_command(c->scsi_cmd);
6038 		scsi_print_command(scmd);
6039 	}
6040 
6041 	hpsa_cmd_partial_init(h, idx, c);
6042 	return c;
6043 }
6044 
6045 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6046 {
6047 	/*
6048 	 * Release our reference to the block.  We don't need to do anything
6049 	 * else to free it, because it is accessed by index.
6050 	 */
6051 	(void)atomic_dec(&c->refcount);
6052 }
6053 
6054 /*
6055  * For operations that cannot sleep, a command block is allocated at init,
6056  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6057  * which ones are free or in use.  Lock must be held when calling this.
6058  * cmd_free() is the complement.
6059  * This function never gives up and returns NULL.  If it hangs,
6060  * another thread must call cmd_free() to free some tags.
6061  */
6062 
6063 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6064 {
6065 	struct CommandList *c;
6066 	int refcount, i;
6067 	int offset = 0;
6068 
6069 	/*
6070 	 * There is some *extremely* small but non-zero chance that that
6071 	 * multiple threads could get in here, and one thread could
6072 	 * be scanning through the list of bits looking for a free
6073 	 * one, but the free ones are always behind him, and other
6074 	 * threads sneak in behind him and eat them before he can
6075 	 * get to them, so that while there is always a free one, a
6076 	 * very unlucky thread might be starved anyway, never able to
6077 	 * beat the other threads.  In reality, this happens so
6078 	 * infrequently as to be indistinguishable from never.
6079 	 *
6080 	 * Note that we start allocating commands before the SCSI host structure
6081 	 * is initialized.  Since the search starts at bit zero, this
6082 	 * all works, since we have at least one command structure available;
6083 	 * however, it means that the structures with the low indexes have to be
6084 	 * reserved for driver-initiated requests, while requests from the block
6085 	 * layer will use the higher indexes.
6086 	 */
6087 
6088 	for (;;) {
6089 		i = find_next_zero_bit(h->cmd_pool_bits,
6090 					HPSA_NRESERVED_CMDS,
6091 					offset);
6092 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6093 			offset = 0;
6094 			continue;
6095 		}
6096 		c = h->cmd_pool + i;
6097 		refcount = atomic_inc_return(&c->refcount);
6098 		if (unlikely(refcount > 1)) {
6099 			cmd_free(h, c); /* already in use */
6100 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6101 			continue;
6102 		}
6103 		set_bit(i & (BITS_PER_LONG - 1),
6104 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6105 		break; /* it's ours now. */
6106 	}
6107 	hpsa_cmd_partial_init(h, i, c);
6108 	return c;
6109 }
6110 
6111 /*
6112  * This is the complementary operation to cmd_alloc().  Note, however, in some
6113  * corner cases it may also be used to free blocks allocated by
6114  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6115  * the clear-bit is harmless.
6116  */
6117 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6118 {
6119 	if (atomic_dec_and_test(&c->refcount)) {
6120 		int i;
6121 
6122 		i = c - h->cmd_pool;
6123 		clear_bit(i & (BITS_PER_LONG - 1),
6124 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6125 	}
6126 }
6127 
6128 #ifdef CONFIG_COMPAT
6129 
6130 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6131 	void __user *arg)
6132 {
6133 	IOCTL32_Command_struct __user *arg32 =
6134 	    (IOCTL32_Command_struct __user *) arg;
6135 	IOCTL_Command_struct arg64;
6136 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6137 	int err;
6138 	u32 cp;
6139 
6140 	memset(&arg64, 0, sizeof(arg64));
6141 	err = 0;
6142 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6143 			   sizeof(arg64.LUN_info));
6144 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6145 			   sizeof(arg64.Request));
6146 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6147 			   sizeof(arg64.error_info));
6148 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6149 	err |= get_user(cp, &arg32->buf);
6150 	arg64.buf = compat_ptr(cp);
6151 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6152 
6153 	if (err)
6154 		return -EFAULT;
6155 
6156 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6157 	if (err)
6158 		return err;
6159 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6160 			 sizeof(arg32->error_info));
6161 	if (err)
6162 		return -EFAULT;
6163 	return err;
6164 }
6165 
6166 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6167 	int cmd, void __user *arg)
6168 {
6169 	BIG_IOCTL32_Command_struct __user *arg32 =
6170 	    (BIG_IOCTL32_Command_struct __user *) arg;
6171 	BIG_IOCTL_Command_struct arg64;
6172 	BIG_IOCTL_Command_struct __user *p =
6173 	    compat_alloc_user_space(sizeof(arg64));
6174 	int err;
6175 	u32 cp;
6176 
6177 	memset(&arg64, 0, sizeof(arg64));
6178 	err = 0;
6179 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6180 			   sizeof(arg64.LUN_info));
6181 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6182 			   sizeof(arg64.Request));
6183 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6184 			   sizeof(arg64.error_info));
6185 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6186 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6187 	err |= get_user(cp, &arg32->buf);
6188 	arg64.buf = compat_ptr(cp);
6189 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6190 
6191 	if (err)
6192 		return -EFAULT;
6193 
6194 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6195 	if (err)
6196 		return err;
6197 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6198 			 sizeof(arg32->error_info));
6199 	if (err)
6200 		return -EFAULT;
6201 	return err;
6202 }
6203 
6204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6205 {
6206 	switch (cmd) {
6207 	case CCISS_GETPCIINFO:
6208 	case CCISS_GETINTINFO:
6209 	case CCISS_SETINTINFO:
6210 	case CCISS_GETNODENAME:
6211 	case CCISS_SETNODENAME:
6212 	case CCISS_GETHEARTBEAT:
6213 	case CCISS_GETBUSTYPES:
6214 	case CCISS_GETFIRMVER:
6215 	case CCISS_GETDRIVVER:
6216 	case CCISS_REVALIDVOLS:
6217 	case CCISS_DEREGDISK:
6218 	case CCISS_REGNEWDISK:
6219 	case CCISS_REGNEWD:
6220 	case CCISS_RESCANDISK:
6221 	case CCISS_GETLUNINFO:
6222 		return hpsa_ioctl(dev, cmd, arg);
6223 
6224 	case CCISS_PASSTHRU32:
6225 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6226 	case CCISS_BIG_PASSTHRU32:
6227 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6228 
6229 	default:
6230 		return -ENOIOCTLCMD;
6231 	}
6232 }
6233 #endif
6234 
6235 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6236 {
6237 	struct hpsa_pci_info pciinfo;
6238 
6239 	if (!argp)
6240 		return -EINVAL;
6241 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6242 	pciinfo.bus = h->pdev->bus->number;
6243 	pciinfo.dev_fn = h->pdev->devfn;
6244 	pciinfo.board_id = h->board_id;
6245 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6246 		return -EFAULT;
6247 	return 0;
6248 }
6249 
6250 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6251 {
6252 	DriverVer_type DriverVer;
6253 	unsigned char vmaj, vmin, vsubmin;
6254 	int rc;
6255 
6256 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6257 		&vmaj, &vmin, &vsubmin);
6258 	if (rc != 3) {
6259 		dev_info(&h->pdev->dev, "driver version string '%s' "
6260 			"unrecognized.", HPSA_DRIVER_VERSION);
6261 		vmaj = 0;
6262 		vmin = 0;
6263 		vsubmin = 0;
6264 	}
6265 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6266 	if (!argp)
6267 		return -EINVAL;
6268 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6269 		return -EFAULT;
6270 	return 0;
6271 }
6272 
6273 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6274 {
6275 	IOCTL_Command_struct iocommand;
6276 	struct CommandList *c;
6277 	char *buff = NULL;
6278 	u64 temp64;
6279 	int rc = 0;
6280 
6281 	if (!argp)
6282 		return -EINVAL;
6283 	if (!capable(CAP_SYS_RAWIO))
6284 		return -EPERM;
6285 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6286 		return -EFAULT;
6287 	if ((iocommand.buf_size < 1) &&
6288 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6289 		return -EINVAL;
6290 	}
6291 	if (iocommand.buf_size > 0) {
6292 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6293 		if (buff == NULL)
6294 			return -ENOMEM;
6295 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6296 			/* Copy the data into the buffer we created */
6297 			if (copy_from_user(buff, iocommand.buf,
6298 				iocommand.buf_size)) {
6299 				rc = -EFAULT;
6300 				goto out_kfree;
6301 			}
6302 		} else {
6303 			memset(buff, 0, iocommand.buf_size);
6304 		}
6305 	}
6306 	c = cmd_alloc(h);
6307 
6308 	/* Fill in the command type */
6309 	c->cmd_type = CMD_IOCTL_PEND;
6310 	c->scsi_cmd = SCSI_CMD_BUSY;
6311 	/* Fill in Command Header */
6312 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6313 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6314 		c->Header.SGList = 1;
6315 		c->Header.SGTotal = cpu_to_le16(1);
6316 	} else	{ /* no buffers to fill */
6317 		c->Header.SGList = 0;
6318 		c->Header.SGTotal = cpu_to_le16(0);
6319 	}
6320 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6321 
6322 	/* Fill in Request block */
6323 	memcpy(&c->Request, &iocommand.Request,
6324 		sizeof(c->Request));
6325 
6326 	/* Fill in the scatter gather information */
6327 	if (iocommand.buf_size > 0) {
6328 		temp64 = dma_map_single(&h->pdev->dev, buff,
6329 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6330 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6331 			c->SG[0].Addr = cpu_to_le64(0);
6332 			c->SG[0].Len = cpu_to_le32(0);
6333 			rc = -ENOMEM;
6334 			goto out;
6335 		}
6336 		c->SG[0].Addr = cpu_to_le64(temp64);
6337 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6338 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6339 	}
6340 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6341 					NO_TIMEOUT);
6342 	if (iocommand.buf_size > 0)
6343 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6344 	check_ioctl_unit_attention(h, c);
6345 	if (rc) {
6346 		rc = -EIO;
6347 		goto out;
6348 	}
6349 
6350 	/* Copy the error information out */
6351 	memcpy(&iocommand.error_info, c->err_info,
6352 		sizeof(iocommand.error_info));
6353 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6354 		rc = -EFAULT;
6355 		goto out;
6356 	}
6357 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6358 		iocommand.buf_size > 0) {
6359 		/* Copy the data out of the buffer we created */
6360 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6361 			rc = -EFAULT;
6362 			goto out;
6363 		}
6364 	}
6365 out:
6366 	cmd_free(h, c);
6367 out_kfree:
6368 	kfree(buff);
6369 	return rc;
6370 }
6371 
6372 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6373 {
6374 	BIG_IOCTL_Command_struct *ioc;
6375 	struct CommandList *c;
6376 	unsigned char **buff = NULL;
6377 	int *buff_size = NULL;
6378 	u64 temp64;
6379 	BYTE sg_used = 0;
6380 	int status = 0;
6381 	u32 left;
6382 	u32 sz;
6383 	BYTE __user *data_ptr;
6384 
6385 	if (!argp)
6386 		return -EINVAL;
6387 	if (!capable(CAP_SYS_RAWIO))
6388 		return -EPERM;
6389 	ioc = vmemdup_user(argp, sizeof(*ioc));
6390 	if (IS_ERR(ioc)) {
6391 		status = PTR_ERR(ioc);
6392 		goto cleanup1;
6393 	}
6394 	if ((ioc->buf_size < 1) &&
6395 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6396 		status = -EINVAL;
6397 		goto cleanup1;
6398 	}
6399 	/* Check kmalloc limits  using all SGs */
6400 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6401 		status = -EINVAL;
6402 		goto cleanup1;
6403 	}
6404 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6405 		status = -EINVAL;
6406 		goto cleanup1;
6407 	}
6408 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6409 	if (!buff) {
6410 		status = -ENOMEM;
6411 		goto cleanup1;
6412 	}
6413 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6414 	if (!buff_size) {
6415 		status = -ENOMEM;
6416 		goto cleanup1;
6417 	}
6418 	left = ioc->buf_size;
6419 	data_ptr = ioc->buf;
6420 	while (left) {
6421 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6422 		buff_size[sg_used] = sz;
6423 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6424 		if (buff[sg_used] == NULL) {
6425 			status = -ENOMEM;
6426 			goto cleanup1;
6427 		}
6428 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6429 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6430 				status = -EFAULT;
6431 				goto cleanup1;
6432 			}
6433 		} else
6434 			memset(buff[sg_used], 0, sz);
6435 		left -= sz;
6436 		data_ptr += sz;
6437 		sg_used++;
6438 	}
6439 	c = cmd_alloc(h);
6440 
6441 	c->cmd_type = CMD_IOCTL_PEND;
6442 	c->scsi_cmd = SCSI_CMD_BUSY;
6443 	c->Header.ReplyQueue = 0;
6444 	c->Header.SGList = (u8) sg_used;
6445 	c->Header.SGTotal = cpu_to_le16(sg_used);
6446 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6447 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6448 	if (ioc->buf_size > 0) {
6449 		int i;
6450 		for (i = 0; i < sg_used; i++) {
6451 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6452 				    buff_size[i], DMA_BIDIRECTIONAL);
6453 			if (dma_mapping_error(&h->pdev->dev,
6454 							(dma_addr_t) temp64)) {
6455 				c->SG[i].Addr = cpu_to_le64(0);
6456 				c->SG[i].Len = cpu_to_le32(0);
6457 				hpsa_pci_unmap(h->pdev, c, i,
6458 					DMA_BIDIRECTIONAL);
6459 				status = -ENOMEM;
6460 				goto cleanup0;
6461 			}
6462 			c->SG[i].Addr = cpu_to_le64(temp64);
6463 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6464 			c->SG[i].Ext = cpu_to_le32(0);
6465 		}
6466 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6467 	}
6468 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6469 						NO_TIMEOUT);
6470 	if (sg_used)
6471 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6472 	check_ioctl_unit_attention(h, c);
6473 	if (status) {
6474 		status = -EIO;
6475 		goto cleanup0;
6476 	}
6477 
6478 	/* Copy the error information out */
6479 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6480 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6481 		status = -EFAULT;
6482 		goto cleanup0;
6483 	}
6484 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6485 		int i;
6486 
6487 		/* Copy the data out of the buffer we created */
6488 		BYTE __user *ptr = ioc->buf;
6489 		for (i = 0; i < sg_used; i++) {
6490 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6491 				status = -EFAULT;
6492 				goto cleanup0;
6493 			}
6494 			ptr += buff_size[i];
6495 		}
6496 	}
6497 	status = 0;
6498 cleanup0:
6499 	cmd_free(h, c);
6500 cleanup1:
6501 	if (buff) {
6502 		int i;
6503 
6504 		for (i = 0; i < sg_used; i++)
6505 			kfree(buff[i]);
6506 		kfree(buff);
6507 	}
6508 	kfree(buff_size);
6509 	kvfree(ioc);
6510 	return status;
6511 }
6512 
6513 static void check_ioctl_unit_attention(struct ctlr_info *h,
6514 	struct CommandList *c)
6515 {
6516 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6517 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6518 		(void) check_for_unit_attention(h, c);
6519 }
6520 
6521 /*
6522  * ioctl
6523  */
6524 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6525 {
6526 	struct ctlr_info *h;
6527 	void __user *argp = (void __user *)arg;
6528 	int rc;
6529 
6530 	h = sdev_to_hba(dev);
6531 
6532 	switch (cmd) {
6533 	case CCISS_DEREGDISK:
6534 	case CCISS_REGNEWDISK:
6535 	case CCISS_REGNEWD:
6536 		hpsa_scan_start(h->scsi_host);
6537 		return 0;
6538 	case CCISS_GETPCIINFO:
6539 		return hpsa_getpciinfo_ioctl(h, argp);
6540 	case CCISS_GETDRIVVER:
6541 		return hpsa_getdrivver_ioctl(h, argp);
6542 	case CCISS_PASSTHRU:
6543 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6544 			return -EAGAIN;
6545 		rc = hpsa_passthru_ioctl(h, argp);
6546 		atomic_inc(&h->passthru_cmds_avail);
6547 		return rc;
6548 	case CCISS_BIG_PASSTHRU:
6549 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6550 			return -EAGAIN;
6551 		rc = hpsa_big_passthru_ioctl(h, argp);
6552 		atomic_inc(&h->passthru_cmds_avail);
6553 		return rc;
6554 	default:
6555 		return -ENOTTY;
6556 	}
6557 }
6558 
6559 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6560 				u8 reset_type)
6561 {
6562 	struct CommandList *c;
6563 
6564 	c = cmd_alloc(h);
6565 
6566 	/* fill_cmd can't fail here, no data buffer to map */
6567 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6568 		RAID_CTLR_LUNID, TYPE_MSG);
6569 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6570 	c->waiting = NULL;
6571 	enqueue_cmd_and_start_io(h, c);
6572 	/* Don't wait for completion, the reset won't complete.  Don't free
6573 	 * the command either.  This is the last command we will send before
6574 	 * re-initializing everything, so it doesn't matter and won't leak.
6575 	 */
6576 	return;
6577 }
6578 
6579 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6580 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6581 	int cmd_type)
6582 {
6583 	enum dma_data_direction dir = DMA_NONE;
6584 
6585 	c->cmd_type = CMD_IOCTL_PEND;
6586 	c->scsi_cmd = SCSI_CMD_BUSY;
6587 	c->Header.ReplyQueue = 0;
6588 	if (buff != NULL && size > 0) {
6589 		c->Header.SGList = 1;
6590 		c->Header.SGTotal = cpu_to_le16(1);
6591 	} else {
6592 		c->Header.SGList = 0;
6593 		c->Header.SGTotal = cpu_to_le16(0);
6594 	}
6595 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6596 
6597 	if (cmd_type == TYPE_CMD) {
6598 		switch (cmd) {
6599 		case HPSA_INQUIRY:
6600 			/* are we trying to read a vital product page */
6601 			if (page_code & VPD_PAGE) {
6602 				c->Request.CDB[1] = 0x01;
6603 				c->Request.CDB[2] = (page_code & 0xff);
6604 			}
6605 			c->Request.CDBLen = 6;
6606 			c->Request.type_attr_dir =
6607 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6608 			c->Request.Timeout = 0;
6609 			c->Request.CDB[0] = HPSA_INQUIRY;
6610 			c->Request.CDB[4] = size & 0xFF;
6611 			break;
6612 		case RECEIVE_DIAGNOSTIC:
6613 			c->Request.CDBLen = 6;
6614 			c->Request.type_attr_dir =
6615 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616 			c->Request.Timeout = 0;
6617 			c->Request.CDB[0] = cmd;
6618 			c->Request.CDB[1] = 1;
6619 			c->Request.CDB[2] = 1;
6620 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6621 			c->Request.CDB[4] = size & 0xFF;
6622 			break;
6623 		case HPSA_REPORT_LOG:
6624 		case HPSA_REPORT_PHYS:
6625 			/* Talking to controller so It's a physical command
6626 			   mode = 00 target = 0.  Nothing to write.
6627 			 */
6628 			c->Request.CDBLen = 12;
6629 			c->Request.type_attr_dir =
6630 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631 			c->Request.Timeout = 0;
6632 			c->Request.CDB[0] = cmd;
6633 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6634 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6635 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6636 			c->Request.CDB[9] = size & 0xFF;
6637 			break;
6638 		case BMIC_SENSE_DIAG_OPTIONS:
6639 			c->Request.CDBLen = 16;
6640 			c->Request.type_attr_dir =
6641 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6642 			c->Request.Timeout = 0;
6643 			/* Spec says this should be BMIC_WRITE */
6644 			c->Request.CDB[0] = BMIC_READ;
6645 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6646 			break;
6647 		case BMIC_SET_DIAG_OPTIONS:
6648 			c->Request.CDBLen = 16;
6649 			c->Request.type_attr_dir =
6650 					TYPE_ATTR_DIR(cmd_type,
6651 						ATTR_SIMPLE, XFER_WRITE);
6652 			c->Request.Timeout = 0;
6653 			c->Request.CDB[0] = BMIC_WRITE;
6654 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6655 			break;
6656 		case HPSA_CACHE_FLUSH:
6657 			c->Request.CDBLen = 12;
6658 			c->Request.type_attr_dir =
6659 					TYPE_ATTR_DIR(cmd_type,
6660 						ATTR_SIMPLE, XFER_WRITE);
6661 			c->Request.Timeout = 0;
6662 			c->Request.CDB[0] = BMIC_WRITE;
6663 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6664 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6665 			c->Request.CDB[8] = size & 0xFF;
6666 			break;
6667 		case TEST_UNIT_READY:
6668 			c->Request.CDBLen = 6;
6669 			c->Request.type_attr_dir =
6670 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6671 			c->Request.Timeout = 0;
6672 			break;
6673 		case HPSA_GET_RAID_MAP:
6674 			c->Request.CDBLen = 12;
6675 			c->Request.type_attr_dir =
6676 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677 			c->Request.Timeout = 0;
6678 			c->Request.CDB[0] = HPSA_CISS_READ;
6679 			c->Request.CDB[1] = cmd;
6680 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6681 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6682 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6683 			c->Request.CDB[9] = size & 0xFF;
6684 			break;
6685 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6686 			c->Request.CDBLen = 10;
6687 			c->Request.type_attr_dir =
6688 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689 			c->Request.Timeout = 0;
6690 			c->Request.CDB[0] = BMIC_READ;
6691 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6692 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6693 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6694 			break;
6695 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6696 			c->Request.CDBLen = 10;
6697 			c->Request.type_attr_dir =
6698 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699 			c->Request.Timeout = 0;
6700 			c->Request.CDB[0] = BMIC_READ;
6701 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6702 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6703 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6704 			break;
6705 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6706 			c->Request.CDBLen = 10;
6707 			c->Request.type_attr_dir =
6708 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709 			c->Request.Timeout = 0;
6710 			c->Request.CDB[0] = BMIC_READ;
6711 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6712 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6713 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6714 			break;
6715 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6716 			c->Request.CDBLen = 10;
6717 			c->Request.type_attr_dir =
6718 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 			c->Request.Timeout = 0;
6720 			c->Request.CDB[0] = BMIC_READ;
6721 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6722 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6724 			break;
6725 		case BMIC_IDENTIFY_CONTROLLER:
6726 			c->Request.CDBLen = 10;
6727 			c->Request.type_attr_dir =
6728 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729 			c->Request.Timeout = 0;
6730 			c->Request.CDB[0] = BMIC_READ;
6731 			c->Request.CDB[1] = 0;
6732 			c->Request.CDB[2] = 0;
6733 			c->Request.CDB[3] = 0;
6734 			c->Request.CDB[4] = 0;
6735 			c->Request.CDB[5] = 0;
6736 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6737 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6738 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6739 			c->Request.CDB[9] = 0;
6740 			break;
6741 		default:
6742 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6743 			BUG();
6744 		}
6745 	} else if (cmd_type == TYPE_MSG) {
6746 		switch (cmd) {
6747 
6748 		case  HPSA_PHYS_TARGET_RESET:
6749 			c->Request.CDBLen = 16;
6750 			c->Request.type_attr_dir =
6751 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6752 			c->Request.Timeout = 0; /* Don't time out */
6753 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6754 			c->Request.CDB[0] = HPSA_RESET;
6755 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6756 			/* Physical target reset needs no control bytes 4-7*/
6757 			c->Request.CDB[4] = 0x00;
6758 			c->Request.CDB[5] = 0x00;
6759 			c->Request.CDB[6] = 0x00;
6760 			c->Request.CDB[7] = 0x00;
6761 			break;
6762 		case  HPSA_DEVICE_RESET_MSG:
6763 			c->Request.CDBLen = 16;
6764 			c->Request.type_attr_dir =
6765 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6766 			c->Request.Timeout = 0; /* Don't time out */
6767 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6768 			c->Request.CDB[0] =  cmd;
6769 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6770 			/* If bytes 4-7 are zero, it means reset the */
6771 			/* LunID device */
6772 			c->Request.CDB[4] = 0x00;
6773 			c->Request.CDB[5] = 0x00;
6774 			c->Request.CDB[6] = 0x00;
6775 			c->Request.CDB[7] = 0x00;
6776 			break;
6777 		default:
6778 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6779 				cmd);
6780 			BUG();
6781 		}
6782 	} else {
6783 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6784 		BUG();
6785 	}
6786 
6787 	switch (GET_DIR(c->Request.type_attr_dir)) {
6788 	case XFER_READ:
6789 		dir = DMA_FROM_DEVICE;
6790 		break;
6791 	case XFER_WRITE:
6792 		dir = DMA_TO_DEVICE;
6793 		break;
6794 	case XFER_NONE:
6795 		dir = DMA_NONE;
6796 		break;
6797 	default:
6798 		dir = DMA_BIDIRECTIONAL;
6799 	}
6800 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6801 		return -1;
6802 	return 0;
6803 }
6804 
6805 /*
6806  * Map (physical) PCI mem into (virtual) kernel space
6807  */
6808 static void __iomem *remap_pci_mem(ulong base, ulong size)
6809 {
6810 	ulong page_base = ((ulong) base) & PAGE_MASK;
6811 	ulong page_offs = ((ulong) base) - page_base;
6812 	void __iomem *page_remapped = ioremap_nocache(page_base,
6813 		page_offs + size);
6814 
6815 	return page_remapped ? (page_remapped + page_offs) : NULL;
6816 }
6817 
6818 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6819 {
6820 	return h->access.command_completed(h, q);
6821 }
6822 
6823 static inline bool interrupt_pending(struct ctlr_info *h)
6824 {
6825 	return h->access.intr_pending(h);
6826 }
6827 
6828 static inline long interrupt_not_for_us(struct ctlr_info *h)
6829 {
6830 	return (h->access.intr_pending(h) == 0) ||
6831 		(h->interrupts_enabled == 0);
6832 }
6833 
6834 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6835 	u32 raw_tag)
6836 {
6837 	if (unlikely(tag_index >= h->nr_cmds)) {
6838 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6839 		return 1;
6840 	}
6841 	return 0;
6842 }
6843 
6844 static inline void finish_cmd(struct CommandList *c)
6845 {
6846 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6847 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6848 			|| c->cmd_type == CMD_IOACCEL2))
6849 		complete_scsi_command(c);
6850 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6851 		complete(c->waiting);
6852 }
6853 
6854 /* process completion of an indexed ("direct lookup") command */
6855 static inline void process_indexed_cmd(struct ctlr_info *h,
6856 	u32 raw_tag)
6857 {
6858 	u32 tag_index;
6859 	struct CommandList *c;
6860 
6861 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6862 	if (!bad_tag(h, tag_index, raw_tag)) {
6863 		c = h->cmd_pool + tag_index;
6864 		finish_cmd(c);
6865 	}
6866 }
6867 
6868 /* Some controllers, like p400, will give us one interrupt
6869  * after a soft reset, even if we turned interrupts off.
6870  * Only need to check for this in the hpsa_xxx_discard_completions
6871  * functions.
6872  */
6873 static int ignore_bogus_interrupt(struct ctlr_info *h)
6874 {
6875 	if (likely(!reset_devices))
6876 		return 0;
6877 
6878 	if (likely(h->interrupts_enabled))
6879 		return 0;
6880 
6881 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6882 		"(known firmware bug.)  Ignoring.\n");
6883 
6884 	return 1;
6885 }
6886 
6887 /*
6888  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6889  * Relies on (h-q[x] == x) being true for x such that
6890  * 0 <= x < MAX_REPLY_QUEUES.
6891  */
6892 static struct ctlr_info *queue_to_hba(u8 *queue)
6893 {
6894 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6895 }
6896 
6897 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6898 {
6899 	struct ctlr_info *h = queue_to_hba(queue);
6900 	u8 q = *(u8 *) queue;
6901 	u32 raw_tag;
6902 
6903 	if (ignore_bogus_interrupt(h))
6904 		return IRQ_NONE;
6905 
6906 	if (interrupt_not_for_us(h))
6907 		return IRQ_NONE;
6908 	h->last_intr_timestamp = get_jiffies_64();
6909 	while (interrupt_pending(h)) {
6910 		raw_tag = get_next_completion(h, q);
6911 		while (raw_tag != FIFO_EMPTY)
6912 			raw_tag = next_command(h, q);
6913 	}
6914 	return IRQ_HANDLED;
6915 }
6916 
6917 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6918 {
6919 	struct ctlr_info *h = queue_to_hba(queue);
6920 	u32 raw_tag;
6921 	u8 q = *(u8 *) queue;
6922 
6923 	if (ignore_bogus_interrupt(h))
6924 		return IRQ_NONE;
6925 
6926 	h->last_intr_timestamp = get_jiffies_64();
6927 	raw_tag = get_next_completion(h, q);
6928 	while (raw_tag != FIFO_EMPTY)
6929 		raw_tag = next_command(h, q);
6930 	return IRQ_HANDLED;
6931 }
6932 
6933 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6934 {
6935 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6936 	u32 raw_tag;
6937 	u8 q = *(u8 *) queue;
6938 
6939 	if (interrupt_not_for_us(h))
6940 		return IRQ_NONE;
6941 	h->last_intr_timestamp = get_jiffies_64();
6942 	while (interrupt_pending(h)) {
6943 		raw_tag = get_next_completion(h, q);
6944 		while (raw_tag != FIFO_EMPTY) {
6945 			process_indexed_cmd(h, raw_tag);
6946 			raw_tag = next_command(h, q);
6947 		}
6948 	}
6949 	return IRQ_HANDLED;
6950 }
6951 
6952 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6953 {
6954 	struct ctlr_info *h = queue_to_hba(queue);
6955 	u32 raw_tag;
6956 	u8 q = *(u8 *) queue;
6957 
6958 	h->last_intr_timestamp = get_jiffies_64();
6959 	raw_tag = get_next_completion(h, q);
6960 	while (raw_tag != FIFO_EMPTY) {
6961 		process_indexed_cmd(h, raw_tag);
6962 		raw_tag = next_command(h, q);
6963 	}
6964 	return IRQ_HANDLED;
6965 }
6966 
6967 /* Send a message CDB to the firmware. Careful, this only works
6968  * in simple mode, not performant mode due to the tag lookup.
6969  * We only ever use this immediately after a controller reset.
6970  */
6971 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6972 			unsigned char type)
6973 {
6974 	struct Command {
6975 		struct CommandListHeader CommandHeader;
6976 		struct RequestBlock Request;
6977 		struct ErrDescriptor ErrorDescriptor;
6978 	};
6979 	struct Command *cmd;
6980 	static const size_t cmd_sz = sizeof(*cmd) +
6981 					sizeof(cmd->ErrorDescriptor);
6982 	dma_addr_t paddr64;
6983 	__le32 paddr32;
6984 	u32 tag;
6985 	void __iomem *vaddr;
6986 	int i, err;
6987 
6988 	vaddr = pci_ioremap_bar(pdev, 0);
6989 	if (vaddr == NULL)
6990 		return -ENOMEM;
6991 
6992 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6993 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6994 	 * memory.
6995 	 */
6996 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6997 	if (err) {
6998 		iounmap(vaddr);
6999 		return err;
7000 	}
7001 
7002 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7003 	if (cmd == NULL) {
7004 		iounmap(vaddr);
7005 		return -ENOMEM;
7006 	}
7007 
7008 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7009 	 * although there's no guarantee, we assume that the address is at
7010 	 * least 4-byte aligned (most likely, it's page-aligned).
7011 	 */
7012 	paddr32 = cpu_to_le32(paddr64);
7013 
7014 	cmd->CommandHeader.ReplyQueue = 0;
7015 	cmd->CommandHeader.SGList = 0;
7016 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7017 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7018 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7019 
7020 	cmd->Request.CDBLen = 16;
7021 	cmd->Request.type_attr_dir =
7022 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7023 	cmd->Request.Timeout = 0; /* Don't time out */
7024 	cmd->Request.CDB[0] = opcode;
7025 	cmd->Request.CDB[1] = type;
7026 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7027 	cmd->ErrorDescriptor.Addr =
7028 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7029 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7030 
7031 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7032 
7033 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7034 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7035 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7036 			break;
7037 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7038 	}
7039 
7040 	iounmap(vaddr);
7041 
7042 	/* we leak the DMA buffer here ... no choice since the controller could
7043 	 *  still complete the command.
7044 	 */
7045 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7046 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7047 			opcode, type);
7048 		return -ETIMEDOUT;
7049 	}
7050 
7051 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7052 
7053 	if (tag & HPSA_ERROR_BIT) {
7054 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7055 			opcode, type);
7056 		return -EIO;
7057 	}
7058 
7059 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7060 		opcode, type);
7061 	return 0;
7062 }
7063 
7064 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7065 
7066 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7067 	void __iomem *vaddr, u32 use_doorbell)
7068 {
7069 
7070 	if (use_doorbell) {
7071 		/* For everything after the P600, the PCI power state method
7072 		 * of resetting the controller doesn't work, so we have this
7073 		 * other way using the doorbell register.
7074 		 */
7075 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7076 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7077 
7078 		/* PMC hardware guys tell us we need a 10 second delay after
7079 		 * doorbell reset and before any attempt to talk to the board
7080 		 * at all to ensure that this actually works and doesn't fall
7081 		 * over in some weird corner cases.
7082 		 */
7083 		msleep(10000);
7084 	} else { /* Try to do it the PCI power state way */
7085 
7086 		/* Quoting from the Open CISS Specification: "The Power
7087 		 * Management Control/Status Register (CSR) controls the power
7088 		 * state of the device.  The normal operating state is D0,
7089 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7090 		 * the controller, place the interface device in D3 then to D0,
7091 		 * this causes a secondary PCI reset which will reset the
7092 		 * controller." */
7093 
7094 		int rc = 0;
7095 
7096 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7097 
7098 		/* enter the D3hot power management state */
7099 		rc = pci_set_power_state(pdev, PCI_D3hot);
7100 		if (rc)
7101 			return rc;
7102 
7103 		msleep(500);
7104 
7105 		/* enter the D0 power management state */
7106 		rc = pci_set_power_state(pdev, PCI_D0);
7107 		if (rc)
7108 			return rc;
7109 
7110 		/*
7111 		 * The P600 requires a small delay when changing states.
7112 		 * Otherwise we may think the board did not reset and we bail.
7113 		 * This for kdump only and is particular to the P600.
7114 		 */
7115 		msleep(500);
7116 	}
7117 	return 0;
7118 }
7119 
7120 static void init_driver_version(char *driver_version, int len)
7121 {
7122 	memset(driver_version, 0, len);
7123 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7124 }
7125 
7126 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7127 {
7128 	char *driver_version;
7129 	int i, size = sizeof(cfgtable->driver_version);
7130 
7131 	driver_version = kmalloc(size, GFP_KERNEL);
7132 	if (!driver_version)
7133 		return -ENOMEM;
7134 
7135 	init_driver_version(driver_version, size);
7136 	for (i = 0; i < size; i++)
7137 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7138 	kfree(driver_version);
7139 	return 0;
7140 }
7141 
7142 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7143 					  unsigned char *driver_ver)
7144 {
7145 	int i;
7146 
7147 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7148 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7149 }
7150 
7151 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7152 {
7153 
7154 	char *driver_ver, *old_driver_ver;
7155 	int rc, size = sizeof(cfgtable->driver_version);
7156 
7157 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7158 	if (!old_driver_ver)
7159 		return -ENOMEM;
7160 	driver_ver = old_driver_ver + size;
7161 
7162 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7163 	 * should have been changed, otherwise we know the reset failed.
7164 	 */
7165 	init_driver_version(old_driver_ver, size);
7166 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7167 	rc = !memcmp(driver_ver, old_driver_ver, size);
7168 	kfree(old_driver_ver);
7169 	return rc;
7170 }
7171 /* This does a hard reset of the controller using PCI power management
7172  * states or the using the doorbell register.
7173  */
7174 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7175 {
7176 	u64 cfg_offset;
7177 	u32 cfg_base_addr;
7178 	u64 cfg_base_addr_index;
7179 	void __iomem *vaddr;
7180 	unsigned long paddr;
7181 	u32 misc_fw_support;
7182 	int rc;
7183 	struct CfgTable __iomem *cfgtable;
7184 	u32 use_doorbell;
7185 	u16 command_register;
7186 
7187 	/* For controllers as old as the P600, this is very nearly
7188 	 * the same thing as
7189 	 *
7190 	 * pci_save_state(pci_dev);
7191 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7192 	 * pci_set_power_state(pci_dev, PCI_D0);
7193 	 * pci_restore_state(pci_dev);
7194 	 *
7195 	 * For controllers newer than the P600, the pci power state
7196 	 * method of resetting doesn't work so we have another way
7197 	 * using the doorbell register.
7198 	 */
7199 
7200 	if (!ctlr_is_resettable(board_id)) {
7201 		dev_warn(&pdev->dev, "Controller not resettable\n");
7202 		return -ENODEV;
7203 	}
7204 
7205 	/* if controller is soft- but not hard resettable... */
7206 	if (!ctlr_is_hard_resettable(board_id))
7207 		return -ENOTSUPP; /* try soft reset later. */
7208 
7209 	/* Save the PCI command register */
7210 	pci_read_config_word(pdev, 4, &command_register);
7211 	pci_save_state(pdev);
7212 
7213 	/* find the first memory BAR, so we can find the cfg table */
7214 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7215 	if (rc)
7216 		return rc;
7217 	vaddr = remap_pci_mem(paddr, 0x250);
7218 	if (!vaddr)
7219 		return -ENOMEM;
7220 
7221 	/* find cfgtable in order to check if reset via doorbell is supported */
7222 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7223 					&cfg_base_addr_index, &cfg_offset);
7224 	if (rc)
7225 		goto unmap_vaddr;
7226 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7227 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7228 	if (!cfgtable) {
7229 		rc = -ENOMEM;
7230 		goto unmap_vaddr;
7231 	}
7232 	rc = write_driver_ver_to_cfgtable(cfgtable);
7233 	if (rc)
7234 		goto unmap_cfgtable;
7235 
7236 	/* If reset via doorbell register is supported, use that.
7237 	 * There are two such methods.  Favor the newest method.
7238 	 */
7239 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7240 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7241 	if (use_doorbell) {
7242 		use_doorbell = DOORBELL_CTLR_RESET2;
7243 	} else {
7244 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7245 		if (use_doorbell) {
7246 			dev_warn(&pdev->dev,
7247 				"Soft reset not supported. Firmware update is required.\n");
7248 			rc = -ENOTSUPP; /* try soft reset */
7249 			goto unmap_cfgtable;
7250 		}
7251 	}
7252 
7253 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7254 	if (rc)
7255 		goto unmap_cfgtable;
7256 
7257 	pci_restore_state(pdev);
7258 	pci_write_config_word(pdev, 4, command_register);
7259 
7260 	/* Some devices (notably the HP Smart Array 5i Controller)
7261 	   need a little pause here */
7262 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7263 
7264 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7265 	if (rc) {
7266 		dev_warn(&pdev->dev,
7267 			"Failed waiting for board to become ready after hard reset\n");
7268 		goto unmap_cfgtable;
7269 	}
7270 
7271 	rc = controller_reset_failed(vaddr);
7272 	if (rc < 0)
7273 		goto unmap_cfgtable;
7274 	if (rc) {
7275 		dev_warn(&pdev->dev, "Unable to successfully reset "
7276 			"controller. Will try soft reset.\n");
7277 		rc = -ENOTSUPP;
7278 	} else {
7279 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7280 	}
7281 
7282 unmap_cfgtable:
7283 	iounmap(cfgtable);
7284 
7285 unmap_vaddr:
7286 	iounmap(vaddr);
7287 	return rc;
7288 }
7289 
7290 /*
7291  *  We cannot read the structure directly, for portability we must use
7292  *   the io functions.
7293  *   This is for debug only.
7294  */
7295 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7296 {
7297 #ifdef HPSA_DEBUG
7298 	int i;
7299 	char temp_name[17];
7300 
7301 	dev_info(dev, "Controller Configuration information\n");
7302 	dev_info(dev, "------------------------------------\n");
7303 	for (i = 0; i < 4; i++)
7304 		temp_name[i] = readb(&(tb->Signature[i]));
7305 	temp_name[4] = '\0';
7306 	dev_info(dev, "   Signature = %s\n", temp_name);
7307 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7308 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7309 	       readl(&(tb->TransportSupport)));
7310 	dev_info(dev, "   Transport methods active = 0x%x\n",
7311 	       readl(&(tb->TransportActive)));
7312 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7313 	       readl(&(tb->HostWrite.TransportRequest)));
7314 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7315 	       readl(&(tb->HostWrite.CoalIntDelay)));
7316 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7317 	       readl(&(tb->HostWrite.CoalIntCount)));
7318 	dev_info(dev, "   Max outstanding commands = %d\n",
7319 	       readl(&(tb->CmdsOutMax)));
7320 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7321 	for (i = 0; i < 16; i++)
7322 		temp_name[i] = readb(&(tb->ServerName[i]));
7323 	temp_name[16] = '\0';
7324 	dev_info(dev, "   Server Name = %s\n", temp_name);
7325 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7326 		readl(&(tb->HeartBeat)));
7327 #endif				/* HPSA_DEBUG */
7328 }
7329 
7330 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7331 {
7332 	int i, offset, mem_type, bar_type;
7333 
7334 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7335 		return 0;
7336 	offset = 0;
7337 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7338 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7339 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7340 			offset += 4;
7341 		else {
7342 			mem_type = pci_resource_flags(pdev, i) &
7343 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7344 			switch (mem_type) {
7345 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7346 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7347 				offset += 4;	/* 32 bit */
7348 				break;
7349 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7350 				offset += 8;
7351 				break;
7352 			default:	/* reserved in PCI 2.2 */
7353 				dev_warn(&pdev->dev,
7354 				       "base address is invalid\n");
7355 				return -1;
7356 				break;
7357 			}
7358 		}
7359 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7360 			return i + 1;
7361 	}
7362 	return -1;
7363 }
7364 
7365 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7366 {
7367 	pci_free_irq_vectors(h->pdev);
7368 	h->msix_vectors = 0;
7369 }
7370 
7371 static void hpsa_setup_reply_map(struct ctlr_info *h)
7372 {
7373 	const struct cpumask *mask;
7374 	unsigned int queue, cpu;
7375 
7376 	for (queue = 0; queue < h->msix_vectors; queue++) {
7377 		mask = pci_irq_get_affinity(h->pdev, queue);
7378 		if (!mask)
7379 			goto fallback;
7380 
7381 		for_each_cpu(cpu, mask)
7382 			h->reply_map[cpu] = queue;
7383 	}
7384 	return;
7385 
7386 fallback:
7387 	for_each_possible_cpu(cpu)
7388 		h->reply_map[cpu] = 0;
7389 }
7390 
7391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7392  * controllers that are capable. If not, we use legacy INTx mode.
7393  */
7394 static int hpsa_interrupt_mode(struct ctlr_info *h)
7395 {
7396 	unsigned int flags = PCI_IRQ_LEGACY;
7397 	int ret;
7398 
7399 	/* Some boards advertise MSI but don't really support it */
7400 	switch (h->board_id) {
7401 	case 0x40700E11:
7402 	case 0x40800E11:
7403 	case 0x40820E11:
7404 	case 0x40830E11:
7405 		break;
7406 	default:
7407 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7408 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7409 		if (ret > 0) {
7410 			h->msix_vectors = ret;
7411 			return 0;
7412 		}
7413 
7414 		flags |= PCI_IRQ_MSI;
7415 		break;
7416 	}
7417 
7418 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7419 	if (ret < 0)
7420 		return ret;
7421 	return 0;
7422 }
7423 
7424 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7425 				bool *legacy_board)
7426 {
7427 	int i;
7428 	u32 subsystem_vendor_id, subsystem_device_id;
7429 
7430 	subsystem_vendor_id = pdev->subsystem_vendor;
7431 	subsystem_device_id = pdev->subsystem_device;
7432 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7433 		    subsystem_vendor_id;
7434 
7435 	if (legacy_board)
7436 		*legacy_board = false;
7437 	for (i = 0; i < ARRAY_SIZE(products); i++)
7438 		if (*board_id == products[i].board_id) {
7439 			if (products[i].access != &SA5A_access &&
7440 			    products[i].access != &SA5B_access)
7441 				return i;
7442 			dev_warn(&pdev->dev,
7443 				 "legacy board ID: 0x%08x\n",
7444 				 *board_id);
7445 			if (legacy_board)
7446 			    *legacy_board = true;
7447 			return i;
7448 		}
7449 
7450 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7451 	if (legacy_board)
7452 		*legacy_board = true;
7453 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7454 }
7455 
7456 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7457 				    unsigned long *memory_bar)
7458 {
7459 	int i;
7460 
7461 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7462 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7463 			/* addressing mode bits already removed */
7464 			*memory_bar = pci_resource_start(pdev, i);
7465 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7466 				*memory_bar);
7467 			return 0;
7468 		}
7469 	dev_warn(&pdev->dev, "no memory BAR found\n");
7470 	return -ENODEV;
7471 }
7472 
7473 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7474 				     int wait_for_ready)
7475 {
7476 	int i, iterations;
7477 	u32 scratchpad;
7478 	if (wait_for_ready)
7479 		iterations = HPSA_BOARD_READY_ITERATIONS;
7480 	else
7481 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7482 
7483 	for (i = 0; i < iterations; i++) {
7484 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7485 		if (wait_for_ready) {
7486 			if (scratchpad == HPSA_FIRMWARE_READY)
7487 				return 0;
7488 		} else {
7489 			if (scratchpad != HPSA_FIRMWARE_READY)
7490 				return 0;
7491 		}
7492 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7493 	}
7494 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7495 	return -ENODEV;
7496 }
7497 
7498 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7499 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7500 			       u64 *cfg_offset)
7501 {
7502 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7503 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7504 	*cfg_base_addr &= (u32) 0x0000ffff;
7505 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7506 	if (*cfg_base_addr_index == -1) {
7507 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7508 		return -ENODEV;
7509 	}
7510 	return 0;
7511 }
7512 
7513 static void hpsa_free_cfgtables(struct ctlr_info *h)
7514 {
7515 	if (h->transtable) {
7516 		iounmap(h->transtable);
7517 		h->transtable = NULL;
7518 	}
7519 	if (h->cfgtable) {
7520 		iounmap(h->cfgtable);
7521 		h->cfgtable = NULL;
7522 	}
7523 }
7524 
7525 /* Find and map CISS config table and transfer table
7526 + * several items must be unmapped (freed) later
7527 + * */
7528 static int hpsa_find_cfgtables(struct ctlr_info *h)
7529 {
7530 	u64 cfg_offset;
7531 	u32 cfg_base_addr;
7532 	u64 cfg_base_addr_index;
7533 	u32 trans_offset;
7534 	int rc;
7535 
7536 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7537 		&cfg_base_addr_index, &cfg_offset);
7538 	if (rc)
7539 		return rc;
7540 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7541 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7542 	if (!h->cfgtable) {
7543 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7544 		return -ENOMEM;
7545 	}
7546 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7547 	if (rc)
7548 		return rc;
7549 	/* Find performant mode table. */
7550 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7551 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7552 				cfg_base_addr_index)+cfg_offset+trans_offset,
7553 				sizeof(*h->transtable));
7554 	if (!h->transtable) {
7555 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7556 		hpsa_free_cfgtables(h);
7557 		return -ENOMEM;
7558 	}
7559 	return 0;
7560 }
7561 
7562 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7563 {
7564 #define MIN_MAX_COMMANDS 16
7565 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7566 
7567 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7568 
7569 	/* Limit commands in memory limited kdump scenario. */
7570 	if (reset_devices && h->max_commands > 32)
7571 		h->max_commands = 32;
7572 
7573 	if (h->max_commands < MIN_MAX_COMMANDS) {
7574 		dev_warn(&h->pdev->dev,
7575 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7576 			h->max_commands,
7577 			MIN_MAX_COMMANDS);
7578 		h->max_commands = MIN_MAX_COMMANDS;
7579 	}
7580 }
7581 
7582 /* If the controller reports that the total max sg entries is greater than 512,
7583  * then we know that chained SG blocks work.  (Original smart arrays did not
7584  * support chained SG blocks and would return zero for max sg entries.)
7585  */
7586 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7587 {
7588 	return h->maxsgentries > 512;
7589 }
7590 
7591 /* Interrogate the hardware for some limits:
7592  * max commands, max SG elements without chaining, and with chaining,
7593  * SG chain block size, etc.
7594  */
7595 static void hpsa_find_board_params(struct ctlr_info *h)
7596 {
7597 	hpsa_get_max_perf_mode_cmds(h);
7598 	h->nr_cmds = h->max_commands;
7599 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7600 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7601 	if (hpsa_supports_chained_sg_blocks(h)) {
7602 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7603 		h->max_cmd_sg_entries = 32;
7604 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7605 		h->maxsgentries--; /* save one for chain pointer */
7606 	} else {
7607 		/*
7608 		 * Original smart arrays supported at most 31 s/g entries
7609 		 * embedded inline in the command (trying to use more
7610 		 * would lock up the controller)
7611 		 */
7612 		h->max_cmd_sg_entries = 31;
7613 		h->maxsgentries = 31; /* default to traditional values */
7614 		h->chainsize = 0;
7615 	}
7616 
7617 	/* Find out what task management functions are supported and cache */
7618 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7619 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7620 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7621 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7622 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7623 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7624 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7625 }
7626 
7627 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7628 {
7629 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7630 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7631 		return false;
7632 	}
7633 	return true;
7634 }
7635 
7636 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7637 {
7638 	u32 driver_support;
7639 
7640 	driver_support = readl(&(h->cfgtable->driver_support));
7641 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7642 #ifdef CONFIG_X86
7643 	driver_support |= ENABLE_SCSI_PREFETCH;
7644 #endif
7645 	driver_support |= ENABLE_UNIT_ATTN;
7646 	writel(driver_support, &(h->cfgtable->driver_support));
7647 }
7648 
7649 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7650  * in a prefetch beyond physical memory.
7651  */
7652 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7653 {
7654 	u32 dma_prefetch;
7655 
7656 	if (h->board_id != 0x3225103C)
7657 		return;
7658 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7659 	dma_prefetch |= 0x8000;
7660 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7661 }
7662 
7663 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7664 {
7665 	int i;
7666 	u32 doorbell_value;
7667 	unsigned long flags;
7668 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7669 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7670 		spin_lock_irqsave(&h->lock, flags);
7671 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7672 		spin_unlock_irqrestore(&h->lock, flags);
7673 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7674 			goto done;
7675 		/* delay and try again */
7676 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7677 	}
7678 	return -ENODEV;
7679 done:
7680 	return 0;
7681 }
7682 
7683 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7684 {
7685 	int i;
7686 	u32 doorbell_value;
7687 	unsigned long flags;
7688 
7689 	/* under certain very rare conditions, this can take awhile.
7690 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7691 	 * as we enter this code.)
7692 	 */
7693 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7694 		if (h->remove_in_progress)
7695 			goto done;
7696 		spin_lock_irqsave(&h->lock, flags);
7697 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7698 		spin_unlock_irqrestore(&h->lock, flags);
7699 		if (!(doorbell_value & CFGTBL_ChangeReq))
7700 			goto done;
7701 		/* delay and try again */
7702 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7703 	}
7704 	return -ENODEV;
7705 done:
7706 	return 0;
7707 }
7708 
7709 /* return -ENODEV or other reason on error, 0 on success */
7710 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7711 {
7712 	u32 trans_support;
7713 
7714 	trans_support = readl(&(h->cfgtable->TransportSupport));
7715 	if (!(trans_support & SIMPLE_MODE))
7716 		return -ENOTSUPP;
7717 
7718 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7719 
7720 	/* Update the field, and then ring the doorbell */
7721 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7722 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7723 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7724 	if (hpsa_wait_for_mode_change_ack(h))
7725 		goto error;
7726 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7727 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7728 		goto error;
7729 	h->transMethod = CFGTBL_Trans_Simple;
7730 	return 0;
7731 error:
7732 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7733 	return -ENODEV;
7734 }
7735 
7736 /* free items allocated or mapped by hpsa_pci_init */
7737 static void hpsa_free_pci_init(struct ctlr_info *h)
7738 {
7739 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7740 	iounmap(h->vaddr);			/* pci_init 3 */
7741 	h->vaddr = NULL;
7742 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7743 	/*
7744 	 * call pci_disable_device before pci_release_regions per
7745 	 * Documentation/PCI/pci.txt
7746 	 */
7747 	pci_disable_device(h->pdev);		/* pci_init 1 */
7748 	pci_release_regions(h->pdev);		/* pci_init 2 */
7749 }
7750 
7751 /* several items must be freed later */
7752 static int hpsa_pci_init(struct ctlr_info *h)
7753 {
7754 	int prod_index, err;
7755 	bool legacy_board;
7756 
7757 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7758 	if (prod_index < 0)
7759 		return prod_index;
7760 	h->product_name = products[prod_index].product_name;
7761 	h->access = *(products[prod_index].access);
7762 	h->legacy_board = legacy_board;
7763 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7764 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7765 
7766 	err = pci_enable_device(h->pdev);
7767 	if (err) {
7768 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7769 		pci_disable_device(h->pdev);
7770 		return err;
7771 	}
7772 
7773 	err = pci_request_regions(h->pdev, HPSA);
7774 	if (err) {
7775 		dev_err(&h->pdev->dev,
7776 			"failed to obtain PCI resources\n");
7777 		pci_disable_device(h->pdev);
7778 		return err;
7779 	}
7780 
7781 	pci_set_master(h->pdev);
7782 
7783 	err = hpsa_interrupt_mode(h);
7784 	if (err)
7785 		goto clean1;
7786 
7787 	/* setup mapping between CPU and reply queue */
7788 	hpsa_setup_reply_map(h);
7789 
7790 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7791 	if (err)
7792 		goto clean2;	/* intmode+region, pci */
7793 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7794 	if (!h->vaddr) {
7795 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7796 		err = -ENOMEM;
7797 		goto clean2;	/* intmode+region, pci */
7798 	}
7799 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7800 	if (err)
7801 		goto clean3;	/* vaddr, intmode+region, pci */
7802 	err = hpsa_find_cfgtables(h);
7803 	if (err)
7804 		goto clean3;	/* vaddr, intmode+region, pci */
7805 	hpsa_find_board_params(h);
7806 
7807 	if (!hpsa_CISS_signature_present(h)) {
7808 		err = -ENODEV;
7809 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7810 	}
7811 	hpsa_set_driver_support_bits(h);
7812 	hpsa_p600_dma_prefetch_quirk(h);
7813 	err = hpsa_enter_simple_mode(h);
7814 	if (err)
7815 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7816 	return 0;
7817 
7818 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7819 	hpsa_free_cfgtables(h);
7820 clean3:	/* vaddr, intmode+region, pci */
7821 	iounmap(h->vaddr);
7822 	h->vaddr = NULL;
7823 clean2:	/* intmode+region, pci */
7824 	hpsa_disable_interrupt_mode(h);
7825 clean1:
7826 	/*
7827 	 * call pci_disable_device before pci_release_regions per
7828 	 * Documentation/PCI/pci.txt
7829 	 */
7830 	pci_disable_device(h->pdev);
7831 	pci_release_regions(h->pdev);
7832 	return err;
7833 }
7834 
7835 static void hpsa_hba_inquiry(struct ctlr_info *h)
7836 {
7837 	int rc;
7838 
7839 #define HBA_INQUIRY_BYTE_COUNT 64
7840 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7841 	if (!h->hba_inquiry_data)
7842 		return;
7843 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7844 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7845 	if (rc != 0) {
7846 		kfree(h->hba_inquiry_data);
7847 		h->hba_inquiry_data = NULL;
7848 	}
7849 }
7850 
7851 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7852 {
7853 	int rc, i;
7854 	void __iomem *vaddr;
7855 
7856 	if (!reset_devices)
7857 		return 0;
7858 
7859 	/* kdump kernel is loading, we don't know in which state is
7860 	 * the pci interface. The dev->enable_cnt is equal zero
7861 	 * so we call enable+disable, wait a while and switch it on.
7862 	 */
7863 	rc = pci_enable_device(pdev);
7864 	if (rc) {
7865 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7866 		return -ENODEV;
7867 	}
7868 	pci_disable_device(pdev);
7869 	msleep(260);			/* a randomly chosen number */
7870 	rc = pci_enable_device(pdev);
7871 	if (rc) {
7872 		dev_warn(&pdev->dev, "failed to enable device.\n");
7873 		return -ENODEV;
7874 	}
7875 
7876 	pci_set_master(pdev);
7877 
7878 	vaddr = pci_ioremap_bar(pdev, 0);
7879 	if (vaddr == NULL) {
7880 		rc = -ENOMEM;
7881 		goto out_disable;
7882 	}
7883 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7884 	iounmap(vaddr);
7885 
7886 	/* Reset the controller with a PCI power-cycle or via doorbell */
7887 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7888 
7889 	/* -ENOTSUPP here means we cannot reset the controller
7890 	 * but it's already (and still) up and running in
7891 	 * "performant mode".  Or, it might be 640x, which can't reset
7892 	 * due to concerns about shared bbwc between 6402/6404 pair.
7893 	 */
7894 	if (rc)
7895 		goto out_disable;
7896 
7897 	/* Now try to get the controller to respond to a no-op */
7898 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7899 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7900 		if (hpsa_noop(pdev) == 0)
7901 			break;
7902 		else
7903 			dev_warn(&pdev->dev, "no-op failed%s\n",
7904 					(i < 11 ? "; re-trying" : ""));
7905 	}
7906 
7907 out_disable:
7908 
7909 	pci_disable_device(pdev);
7910 	return rc;
7911 }
7912 
7913 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7914 {
7915 	kfree(h->cmd_pool_bits);
7916 	h->cmd_pool_bits = NULL;
7917 	if (h->cmd_pool) {
7918 		dma_free_coherent(&h->pdev->dev,
7919 				h->nr_cmds * sizeof(struct CommandList),
7920 				h->cmd_pool,
7921 				h->cmd_pool_dhandle);
7922 		h->cmd_pool = NULL;
7923 		h->cmd_pool_dhandle = 0;
7924 	}
7925 	if (h->errinfo_pool) {
7926 		dma_free_coherent(&h->pdev->dev,
7927 				h->nr_cmds * sizeof(struct ErrorInfo),
7928 				h->errinfo_pool,
7929 				h->errinfo_pool_dhandle);
7930 		h->errinfo_pool = NULL;
7931 		h->errinfo_pool_dhandle = 0;
7932 	}
7933 }
7934 
7935 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7936 {
7937 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7938 				   sizeof(unsigned long),
7939 				   GFP_KERNEL);
7940 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7941 		    h->nr_cmds * sizeof(*h->cmd_pool),
7942 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7943 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7944 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7945 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
7946 	if ((h->cmd_pool_bits == NULL)
7947 	    || (h->cmd_pool == NULL)
7948 	    || (h->errinfo_pool == NULL)) {
7949 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7950 		goto clean_up;
7951 	}
7952 	hpsa_preinitialize_commands(h);
7953 	return 0;
7954 clean_up:
7955 	hpsa_free_cmd_pool(h);
7956 	return -ENOMEM;
7957 }
7958 
7959 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7960 static void hpsa_free_irqs(struct ctlr_info *h)
7961 {
7962 	int i;
7963 
7964 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7965 		/* Single reply queue, only one irq to free */
7966 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7967 		h->q[h->intr_mode] = 0;
7968 		return;
7969 	}
7970 
7971 	for (i = 0; i < h->msix_vectors; i++) {
7972 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7973 		h->q[i] = 0;
7974 	}
7975 	for (; i < MAX_REPLY_QUEUES; i++)
7976 		h->q[i] = 0;
7977 }
7978 
7979 /* returns 0 on success; cleans up and returns -Enn on error */
7980 static int hpsa_request_irqs(struct ctlr_info *h,
7981 	irqreturn_t (*msixhandler)(int, void *),
7982 	irqreturn_t (*intxhandler)(int, void *))
7983 {
7984 	int rc, i;
7985 
7986 	/*
7987 	 * initialize h->q[x] = x so that interrupt handlers know which
7988 	 * queue to process.
7989 	 */
7990 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7991 		h->q[i] = (u8) i;
7992 
7993 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7994 		/* If performant mode and MSI-X, use multiple reply queues */
7995 		for (i = 0; i < h->msix_vectors; i++) {
7996 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7997 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7998 					0, h->intrname[i],
7999 					&h->q[i]);
8000 			if (rc) {
8001 				int j;
8002 
8003 				dev_err(&h->pdev->dev,
8004 					"failed to get irq %d for %s\n",
8005 				       pci_irq_vector(h->pdev, i), h->devname);
8006 				for (j = 0; j < i; j++) {
8007 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8008 					h->q[j] = 0;
8009 				}
8010 				for (; j < MAX_REPLY_QUEUES; j++)
8011 					h->q[j] = 0;
8012 				return rc;
8013 			}
8014 		}
8015 	} else {
8016 		/* Use single reply pool */
8017 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8018 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8019 				h->msix_vectors ? "x" : "");
8020 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8021 				msixhandler, 0,
8022 				h->intrname[0],
8023 				&h->q[h->intr_mode]);
8024 		} else {
8025 			sprintf(h->intrname[h->intr_mode],
8026 				"%s-intx", h->devname);
8027 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8028 				intxhandler, IRQF_SHARED,
8029 				h->intrname[0],
8030 				&h->q[h->intr_mode]);
8031 		}
8032 	}
8033 	if (rc) {
8034 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8035 		       pci_irq_vector(h->pdev, 0), h->devname);
8036 		hpsa_free_irqs(h);
8037 		return -ENODEV;
8038 	}
8039 	return 0;
8040 }
8041 
8042 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8043 {
8044 	int rc;
8045 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8046 
8047 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8048 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8049 	if (rc) {
8050 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8051 		return rc;
8052 	}
8053 
8054 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8055 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8056 	if (rc) {
8057 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8058 			"after soft reset.\n");
8059 		return rc;
8060 	}
8061 
8062 	return 0;
8063 }
8064 
8065 static void hpsa_free_reply_queues(struct ctlr_info *h)
8066 {
8067 	int i;
8068 
8069 	for (i = 0; i < h->nreply_queues; i++) {
8070 		if (!h->reply_queue[i].head)
8071 			continue;
8072 		dma_free_coherent(&h->pdev->dev,
8073 					h->reply_queue_size,
8074 					h->reply_queue[i].head,
8075 					h->reply_queue[i].busaddr);
8076 		h->reply_queue[i].head = NULL;
8077 		h->reply_queue[i].busaddr = 0;
8078 	}
8079 	h->reply_queue_size = 0;
8080 }
8081 
8082 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8083 {
8084 	hpsa_free_performant_mode(h);		/* init_one 7 */
8085 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8086 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8087 	hpsa_free_irqs(h);			/* init_one 4 */
8088 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8089 	h->scsi_host = NULL;			/* init_one 3 */
8090 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8091 	free_percpu(h->lockup_detected);	/* init_one 2 */
8092 	h->lockup_detected = NULL;		/* init_one 2 */
8093 	if (h->resubmit_wq) {
8094 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8095 		h->resubmit_wq = NULL;
8096 	}
8097 	if (h->rescan_ctlr_wq) {
8098 		destroy_workqueue(h->rescan_ctlr_wq);
8099 		h->rescan_ctlr_wq = NULL;
8100 	}
8101 	kfree(h);				/* init_one 1 */
8102 }
8103 
8104 /* Called when controller lockup detected. */
8105 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8106 {
8107 	int i, refcount;
8108 	struct CommandList *c;
8109 	int failcount = 0;
8110 
8111 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8112 	for (i = 0; i < h->nr_cmds; i++) {
8113 		c = h->cmd_pool + i;
8114 		refcount = atomic_inc_return(&c->refcount);
8115 		if (refcount > 1) {
8116 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8117 			finish_cmd(c);
8118 			atomic_dec(&h->commands_outstanding);
8119 			failcount++;
8120 		}
8121 		cmd_free(h, c);
8122 	}
8123 	dev_warn(&h->pdev->dev,
8124 		"failed %d commands in fail_all\n", failcount);
8125 }
8126 
8127 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8128 {
8129 	int cpu;
8130 
8131 	for_each_online_cpu(cpu) {
8132 		u32 *lockup_detected;
8133 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8134 		*lockup_detected = value;
8135 	}
8136 	wmb(); /* be sure the per-cpu variables are out to memory */
8137 }
8138 
8139 static void controller_lockup_detected(struct ctlr_info *h)
8140 {
8141 	unsigned long flags;
8142 	u32 lockup_detected;
8143 
8144 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8145 	spin_lock_irqsave(&h->lock, flags);
8146 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8147 	if (!lockup_detected) {
8148 		/* no heartbeat, but controller gave us a zero. */
8149 		dev_warn(&h->pdev->dev,
8150 			"lockup detected after %d but scratchpad register is zero\n",
8151 			h->heartbeat_sample_interval / HZ);
8152 		lockup_detected = 0xffffffff;
8153 	}
8154 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8155 	spin_unlock_irqrestore(&h->lock, flags);
8156 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8157 			lockup_detected, h->heartbeat_sample_interval / HZ);
8158 	if (lockup_detected == 0xffff0000) {
8159 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8160 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8161 	}
8162 	pci_disable_device(h->pdev);
8163 	fail_all_outstanding_cmds(h);
8164 }
8165 
8166 static int detect_controller_lockup(struct ctlr_info *h)
8167 {
8168 	u64 now;
8169 	u32 heartbeat;
8170 	unsigned long flags;
8171 
8172 	now = get_jiffies_64();
8173 	/* If we've received an interrupt recently, we're ok. */
8174 	if (time_after64(h->last_intr_timestamp +
8175 				(h->heartbeat_sample_interval), now))
8176 		return false;
8177 
8178 	/*
8179 	 * If we've already checked the heartbeat recently, we're ok.
8180 	 * This could happen if someone sends us a signal. We
8181 	 * otherwise don't care about signals in this thread.
8182 	 */
8183 	if (time_after64(h->last_heartbeat_timestamp +
8184 				(h->heartbeat_sample_interval), now))
8185 		return false;
8186 
8187 	/* If heartbeat has not changed since we last looked, we're not ok. */
8188 	spin_lock_irqsave(&h->lock, flags);
8189 	heartbeat = readl(&h->cfgtable->HeartBeat);
8190 	spin_unlock_irqrestore(&h->lock, flags);
8191 	if (h->last_heartbeat == heartbeat) {
8192 		controller_lockup_detected(h);
8193 		return true;
8194 	}
8195 
8196 	/* We're ok. */
8197 	h->last_heartbeat = heartbeat;
8198 	h->last_heartbeat_timestamp = now;
8199 	return false;
8200 }
8201 
8202 /*
8203  * Set ioaccel status for all ioaccel volumes.
8204  *
8205  * Called from monitor controller worker (hpsa_event_monitor_worker)
8206  *
8207  * A Volume (or Volumes that comprise an Array set may be undergoing a
8208  * transformation, so we will be turning off ioaccel for all volumes that
8209  * make up the Array.
8210  */
8211 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8212 {
8213 	int rc;
8214 	int i;
8215 	u8 ioaccel_status;
8216 	unsigned char *buf;
8217 	struct hpsa_scsi_dev_t *device;
8218 
8219 	if (!h)
8220 		return;
8221 
8222 	buf = kmalloc(64, GFP_KERNEL);
8223 	if (!buf)
8224 		return;
8225 
8226 	/*
8227 	 * Run through current device list used during I/O requests.
8228 	 */
8229 	for (i = 0; i < h->ndevices; i++) {
8230 		device = h->dev[i];
8231 
8232 		if (!device)
8233 			continue;
8234 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8235 						HPSA_VPD_LV_IOACCEL_STATUS))
8236 			continue;
8237 
8238 		memset(buf, 0, 64);
8239 
8240 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8241 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8242 					buf, 64);
8243 		if (rc != 0)
8244 			continue;
8245 
8246 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8247 		device->offload_config =
8248 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8249 		if (device->offload_config)
8250 			device->offload_to_be_enabled =
8251 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8252 
8253 		/*
8254 		 * Immediately turn off ioaccel for any volume the
8255 		 * controller tells us to. Some of the reasons could be:
8256 		 *    transformation - change to the LVs of an Array.
8257 		 *    degraded volume - component failure
8258 		 *
8259 		 * If ioaccel is to be re-enabled, re-enable later during the
8260 		 * scan operation so the driver can get a fresh raidmap
8261 		 * before turning ioaccel back on.
8262 		 *
8263 		 */
8264 		if (!device->offload_to_be_enabled)
8265 			device->offload_enabled = 0;
8266 	}
8267 
8268 	kfree(buf);
8269 }
8270 
8271 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8272 {
8273 	char *event_type;
8274 
8275 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8276 		return;
8277 
8278 	/* Ask the controller to clear the events we're handling. */
8279 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8280 			| CFGTBL_Trans_io_accel2)) &&
8281 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8282 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8283 
8284 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8285 			event_type = "state change";
8286 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8287 			event_type = "configuration change";
8288 		/* Stop sending new RAID offload reqs via the IO accelerator */
8289 		scsi_block_requests(h->scsi_host);
8290 		hpsa_set_ioaccel_status(h);
8291 		hpsa_drain_accel_commands(h);
8292 		/* Set 'accelerator path config change' bit */
8293 		dev_warn(&h->pdev->dev,
8294 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8295 			h->events, event_type);
8296 		writel(h->events, &(h->cfgtable->clear_event_notify));
8297 		/* Set the "clear event notify field update" bit 6 */
8298 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8299 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8300 		hpsa_wait_for_clear_event_notify_ack(h);
8301 		scsi_unblock_requests(h->scsi_host);
8302 	} else {
8303 		/* Acknowledge controller notification events. */
8304 		writel(h->events, &(h->cfgtable->clear_event_notify));
8305 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8306 		hpsa_wait_for_clear_event_notify_ack(h);
8307 	}
8308 	return;
8309 }
8310 
8311 /* Check a register on the controller to see if there are configuration
8312  * changes (added/changed/removed logical drives, etc.) which mean that
8313  * we should rescan the controller for devices.
8314  * Also check flag for driver-initiated rescan.
8315  */
8316 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8317 {
8318 	if (h->drv_req_rescan) {
8319 		h->drv_req_rescan = 0;
8320 		return 1;
8321 	}
8322 
8323 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8324 		return 0;
8325 
8326 	h->events = readl(&(h->cfgtable->event_notify));
8327 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8328 }
8329 
8330 /*
8331  * Check if any of the offline devices have become ready
8332  */
8333 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8334 {
8335 	unsigned long flags;
8336 	struct offline_device_entry *d;
8337 	struct list_head *this, *tmp;
8338 
8339 	spin_lock_irqsave(&h->offline_device_lock, flags);
8340 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8341 		d = list_entry(this, struct offline_device_entry,
8342 				offline_list);
8343 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8344 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8345 			spin_lock_irqsave(&h->offline_device_lock, flags);
8346 			list_del(&d->offline_list);
8347 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8348 			return 1;
8349 		}
8350 		spin_lock_irqsave(&h->offline_device_lock, flags);
8351 	}
8352 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8353 	return 0;
8354 }
8355 
8356 static int hpsa_luns_changed(struct ctlr_info *h)
8357 {
8358 	int rc = 1; /* assume there are changes */
8359 	struct ReportLUNdata *logdev = NULL;
8360 
8361 	/* if we can't find out if lun data has changed,
8362 	 * assume that it has.
8363 	 */
8364 
8365 	if (!h->lastlogicals)
8366 		return rc;
8367 
8368 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8369 	if (!logdev)
8370 		return rc;
8371 
8372 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8373 		dev_warn(&h->pdev->dev,
8374 			"report luns failed, can't track lun changes.\n");
8375 		goto out;
8376 	}
8377 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8378 		dev_info(&h->pdev->dev,
8379 			"Lun changes detected.\n");
8380 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8381 		goto out;
8382 	} else
8383 		rc = 0; /* no changes detected. */
8384 out:
8385 	kfree(logdev);
8386 	return rc;
8387 }
8388 
8389 static void hpsa_perform_rescan(struct ctlr_info *h)
8390 {
8391 	struct Scsi_Host *sh = NULL;
8392 	unsigned long flags;
8393 
8394 	/*
8395 	 * Do the scan after the reset
8396 	 */
8397 	spin_lock_irqsave(&h->reset_lock, flags);
8398 	if (h->reset_in_progress) {
8399 		h->drv_req_rescan = 1;
8400 		spin_unlock_irqrestore(&h->reset_lock, flags);
8401 		return;
8402 	}
8403 	spin_unlock_irqrestore(&h->reset_lock, flags);
8404 
8405 	sh = scsi_host_get(h->scsi_host);
8406 	if (sh != NULL) {
8407 		hpsa_scan_start(sh);
8408 		scsi_host_put(sh);
8409 		h->drv_req_rescan = 0;
8410 	}
8411 }
8412 
8413 /*
8414  * watch for controller events
8415  */
8416 static void hpsa_event_monitor_worker(struct work_struct *work)
8417 {
8418 	struct ctlr_info *h = container_of(to_delayed_work(work),
8419 					struct ctlr_info, event_monitor_work);
8420 	unsigned long flags;
8421 
8422 	spin_lock_irqsave(&h->lock, flags);
8423 	if (h->remove_in_progress) {
8424 		spin_unlock_irqrestore(&h->lock, flags);
8425 		return;
8426 	}
8427 	spin_unlock_irqrestore(&h->lock, flags);
8428 
8429 	if (hpsa_ctlr_needs_rescan(h)) {
8430 		hpsa_ack_ctlr_events(h);
8431 		hpsa_perform_rescan(h);
8432 	}
8433 
8434 	spin_lock_irqsave(&h->lock, flags);
8435 	if (!h->remove_in_progress)
8436 		schedule_delayed_work(&h->event_monitor_work,
8437 					HPSA_EVENT_MONITOR_INTERVAL);
8438 	spin_unlock_irqrestore(&h->lock, flags);
8439 }
8440 
8441 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8442 {
8443 	unsigned long flags;
8444 	struct ctlr_info *h = container_of(to_delayed_work(work),
8445 					struct ctlr_info, rescan_ctlr_work);
8446 
8447 	spin_lock_irqsave(&h->lock, flags);
8448 	if (h->remove_in_progress) {
8449 		spin_unlock_irqrestore(&h->lock, flags);
8450 		return;
8451 	}
8452 	spin_unlock_irqrestore(&h->lock, flags);
8453 
8454 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8455 		hpsa_perform_rescan(h);
8456 	} else if (h->discovery_polling) {
8457 		if (hpsa_luns_changed(h)) {
8458 			dev_info(&h->pdev->dev,
8459 				"driver discovery polling rescan.\n");
8460 			hpsa_perform_rescan(h);
8461 		}
8462 	}
8463 	spin_lock_irqsave(&h->lock, flags);
8464 	if (!h->remove_in_progress)
8465 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8466 				h->heartbeat_sample_interval);
8467 	spin_unlock_irqrestore(&h->lock, flags);
8468 }
8469 
8470 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8471 {
8472 	unsigned long flags;
8473 	struct ctlr_info *h = container_of(to_delayed_work(work),
8474 					struct ctlr_info, monitor_ctlr_work);
8475 
8476 	detect_controller_lockup(h);
8477 	if (lockup_detected(h))
8478 		return;
8479 
8480 	spin_lock_irqsave(&h->lock, flags);
8481 	if (!h->remove_in_progress)
8482 		schedule_delayed_work(&h->monitor_ctlr_work,
8483 				h->heartbeat_sample_interval);
8484 	spin_unlock_irqrestore(&h->lock, flags);
8485 }
8486 
8487 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8488 						char *name)
8489 {
8490 	struct workqueue_struct *wq = NULL;
8491 
8492 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8493 	if (!wq)
8494 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8495 
8496 	return wq;
8497 }
8498 
8499 static void hpda_free_ctlr_info(struct ctlr_info *h)
8500 {
8501 	kfree(h->reply_map);
8502 	kfree(h);
8503 }
8504 
8505 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8506 {
8507 	struct ctlr_info *h;
8508 
8509 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8510 	if (!h)
8511 		return NULL;
8512 
8513 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8514 	if (!h->reply_map) {
8515 		kfree(h);
8516 		return NULL;
8517 	}
8518 	return h;
8519 }
8520 
8521 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8522 {
8523 	int dac, rc;
8524 	struct ctlr_info *h;
8525 	int try_soft_reset = 0;
8526 	unsigned long flags;
8527 	u32 board_id;
8528 
8529 	if (number_of_controllers == 0)
8530 		printk(KERN_INFO DRIVER_NAME "\n");
8531 
8532 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8533 	if (rc < 0) {
8534 		dev_warn(&pdev->dev, "Board ID not found\n");
8535 		return rc;
8536 	}
8537 
8538 	rc = hpsa_init_reset_devices(pdev, board_id);
8539 	if (rc) {
8540 		if (rc != -ENOTSUPP)
8541 			return rc;
8542 		/* If the reset fails in a particular way (it has no way to do
8543 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8544 		 * a soft reset once we get the controller configured up to the
8545 		 * point that it can accept a command.
8546 		 */
8547 		try_soft_reset = 1;
8548 		rc = 0;
8549 	}
8550 
8551 reinit_after_soft_reset:
8552 
8553 	/* Command structures must be aligned on a 32-byte boundary because
8554 	 * the 5 lower bits of the address are used by the hardware. and by
8555 	 * the driver.  See comments in hpsa.h for more info.
8556 	 */
8557 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8558 	h = hpda_alloc_ctlr_info();
8559 	if (!h) {
8560 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8561 		return -ENOMEM;
8562 	}
8563 
8564 	h->pdev = pdev;
8565 
8566 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8567 	INIT_LIST_HEAD(&h->offline_device_list);
8568 	spin_lock_init(&h->lock);
8569 	spin_lock_init(&h->offline_device_lock);
8570 	spin_lock_init(&h->scan_lock);
8571 	spin_lock_init(&h->reset_lock);
8572 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8573 
8574 	/* Allocate and clear per-cpu variable lockup_detected */
8575 	h->lockup_detected = alloc_percpu(u32);
8576 	if (!h->lockup_detected) {
8577 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8578 		rc = -ENOMEM;
8579 		goto clean1;	/* aer/h */
8580 	}
8581 	set_lockup_detected_for_all_cpus(h, 0);
8582 
8583 	rc = hpsa_pci_init(h);
8584 	if (rc)
8585 		goto clean2;	/* lu, aer/h */
8586 
8587 	/* relies on h-> settings made by hpsa_pci_init, including
8588 	 * interrupt_mode h->intr */
8589 	rc = hpsa_scsi_host_alloc(h);
8590 	if (rc)
8591 		goto clean2_5;	/* pci, lu, aer/h */
8592 
8593 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8594 	h->ctlr = number_of_controllers;
8595 	number_of_controllers++;
8596 
8597 	/* configure PCI DMA stuff */
8598 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8599 	if (rc == 0) {
8600 		dac = 1;
8601 	} else {
8602 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8603 		if (rc == 0) {
8604 			dac = 0;
8605 		} else {
8606 			dev_err(&pdev->dev, "no suitable DMA available\n");
8607 			goto clean3;	/* shost, pci, lu, aer/h */
8608 		}
8609 	}
8610 
8611 	/* make sure the board interrupts are off */
8612 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8613 
8614 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8615 	if (rc)
8616 		goto clean3;	/* shost, pci, lu, aer/h */
8617 	rc = hpsa_alloc_cmd_pool(h);
8618 	if (rc)
8619 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8620 	rc = hpsa_alloc_sg_chain_blocks(h);
8621 	if (rc)
8622 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8623 	init_waitqueue_head(&h->scan_wait_queue);
8624 	init_waitqueue_head(&h->event_sync_wait_queue);
8625 	mutex_init(&h->reset_mutex);
8626 	h->scan_finished = 1; /* no scan currently in progress */
8627 	h->scan_waiting = 0;
8628 
8629 	pci_set_drvdata(pdev, h);
8630 	h->ndevices = 0;
8631 
8632 	spin_lock_init(&h->devlock);
8633 	rc = hpsa_put_ctlr_into_performant_mode(h);
8634 	if (rc)
8635 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8636 
8637 	/* create the resubmit workqueue */
8638 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8639 	if (!h->rescan_ctlr_wq) {
8640 		rc = -ENOMEM;
8641 		goto clean7;
8642 	}
8643 
8644 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8645 	if (!h->resubmit_wq) {
8646 		rc = -ENOMEM;
8647 		goto clean7;	/* aer/h */
8648 	}
8649 
8650 	/*
8651 	 * At this point, the controller is ready to take commands.
8652 	 * Now, if reset_devices and the hard reset didn't work, try
8653 	 * the soft reset and see if that works.
8654 	 */
8655 	if (try_soft_reset) {
8656 
8657 		/* This is kind of gross.  We may or may not get a completion
8658 		 * from the soft reset command, and if we do, then the value
8659 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8660 		 * after the reset throwing away any completions we get during
8661 		 * that time.  Unregister the interrupt handler and register
8662 		 * fake ones to scoop up any residual completions.
8663 		 */
8664 		spin_lock_irqsave(&h->lock, flags);
8665 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8666 		spin_unlock_irqrestore(&h->lock, flags);
8667 		hpsa_free_irqs(h);
8668 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8669 					hpsa_intx_discard_completions);
8670 		if (rc) {
8671 			dev_warn(&h->pdev->dev,
8672 				"Failed to request_irq after soft reset.\n");
8673 			/*
8674 			 * cannot goto clean7 or free_irqs will be called
8675 			 * again. Instead, do its work
8676 			 */
8677 			hpsa_free_performant_mode(h);	/* clean7 */
8678 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8679 			hpsa_free_cmd_pool(h);		/* clean5 */
8680 			/*
8681 			 * skip hpsa_free_irqs(h) clean4 since that
8682 			 * was just called before request_irqs failed
8683 			 */
8684 			goto clean3;
8685 		}
8686 
8687 		rc = hpsa_kdump_soft_reset(h);
8688 		if (rc)
8689 			/* Neither hard nor soft reset worked, we're hosed. */
8690 			goto clean7;
8691 
8692 		dev_info(&h->pdev->dev, "Board READY.\n");
8693 		dev_info(&h->pdev->dev,
8694 			"Waiting for stale completions to drain.\n");
8695 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8696 		msleep(10000);
8697 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8698 
8699 		rc = controller_reset_failed(h->cfgtable);
8700 		if (rc)
8701 			dev_info(&h->pdev->dev,
8702 				"Soft reset appears to have failed.\n");
8703 
8704 		/* since the controller's reset, we have to go back and re-init
8705 		 * everything.  Easiest to just forget what we've done and do it
8706 		 * all over again.
8707 		 */
8708 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8709 		try_soft_reset = 0;
8710 		if (rc)
8711 			/* don't goto clean, we already unallocated */
8712 			return -ENODEV;
8713 
8714 		goto reinit_after_soft_reset;
8715 	}
8716 
8717 	/* Enable Accelerated IO path at driver layer */
8718 	h->acciopath_status = 1;
8719 	/* Disable discovery polling.*/
8720 	h->discovery_polling = 0;
8721 
8722 
8723 	/* Turn the interrupts on so we can service requests */
8724 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8725 
8726 	hpsa_hba_inquiry(h);
8727 
8728 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8729 	if (!h->lastlogicals)
8730 		dev_info(&h->pdev->dev,
8731 			"Can't track change to report lun data\n");
8732 
8733 	/* hook into SCSI subsystem */
8734 	rc = hpsa_scsi_add_host(h);
8735 	if (rc)
8736 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8737 
8738 	/* Monitor the controller for firmware lockups */
8739 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8740 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8741 	schedule_delayed_work(&h->monitor_ctlr_work,
8742 				h->heartbeat_sample_interval);
8743 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8744 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8745 				h->heartbeat_sample_interval);
8746 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8747 	schedule_delayed_work(&h->event_monitor_work,
8748 				HPSA_EVENT_MONITOR_INTERVAL);
8749 	return 0;
8750 
8751 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8752 	hpsa_free_performant_mode(h);
8753 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8755 	hpsa_free_sg_chain_blocks(h);
8756 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8757 	hpsa_free_cmd_pool(h);
8758 clean4: /* irq, shost, pci, lu, aer/h */
8759 	hpsa_free_irqs(h);
8760 clean3: /* shost, pci, lu, aer/h */
8761 	scsi_host_put(h->scsi_host);
8762 	h->scsi_host = NULL;
8763 clean2_5: /* pci, lu, aer/h */
8764 	hpsa_free_pci_init(h);
8765 clean2: /* lu, aer/h */
8766 	if (h->lockup_detected) {
8767 		free_percpu(h->lockup_detected);
8768 		h->lockup_detected = NULL;
8769 	}
8770 clean1:	/* wq/aer/h */
8771 	if (h->resubmit_wq) {
8772 		destroy_workqueue(h->resubmit_wq);
8773 		h->resubmit_wq = NULL;
8774 	}
8775 	if (h->rescan_ctlr_wq) {
8776 		destroy_workqueue(h->rescan_ctlr_wq);
8777 		h->rescan_ctlr_wq = NULL;
8778 	}
8779 	kfree(h);
8780 	return rc;
8781 }
8782 
8783 static void hpsa_flush_cache(struct ctlr_info *h)
8784 {
8785 	char *flush_buf;
8786 	struct CommandList *c;
8787 	int rc;
8788 
8789 	if (unlikely(lockup_detected(h)))
8790 		return;
8791 	flush_buf = kzalloc(4, GFP_KERNEL);
8792 	if (!flush_buf)
8793 		return;
8794 
8795 	c = cmd_alloc(h);
8796 
8797 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8798 		RAID_CTLR_LUNID, TYPE_CMD)) {
8799 		goto out;
8800 	}
8801 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8802 			DEFAULT_TIMEOUT);
8803 	if (rc)
8804 		goto out;
8805 	if (c->err_info->CommandStatus != 0)
8806 out:
8807 		dev_warn(&h->pdev->dev,
8808 			"error flushing cache on controller\n");
8809 	cmd_free(h, c);
8810 	kfree(flush_buf);
8811 }
8812 
8813 /* Make controller gather fresh report lun data each time we
8814  * send down a report luns request
8815  */
8816 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8817 {
8818 	u32 *options;
8819 	struct CommandList *c;
8820 	int rc;
8821 
8822 	/* Don't bother trying to set diag options if locked up */
8823 	if (unlikely(h->lockup_detected))
8824 		return;
8825 
8826 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8827 	if (!options)
8828 		return;
8829 
8830 	c = cmd_alloc(h);
8831 
8832 	/* first, get the current diag options settings */
8833 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8834 		RAID_CTLR_LUNID, TYPE_CMD))
8835 		goto errout;
8836 
8837 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8838 			NO_TIMEOUT);
8839 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8840 		goto errout;
8841 
8842 	/* Now, set the bit for disabling the RLD caching */
8843 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8844 
8845 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8846 		RAID_CTLR_LUNID, TYPE_CMD))
8847 		goto errout;
8848 
8849 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8850 			NO_TIMEOUT);
8851 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8852 		goto errout;
8853 
8854 	/* Now verify that it got set: */
8855 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8856 		RAID_CTLR_LUNID, TYPE_CMD))
8857 		goto errout;
8858 
8859 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8860 			NO_TIMEOUT);
8861 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8862 		goto errout;
8863 
8864 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8865 		goto out;
8866 
8867 errout:
8868 	dev_err(&h->pdev->dev,
8869 			"Error: failed to disable report lun data caching.\n");
8870 out:
8871 	cmd_free(h, c);
8872 	kfree(options);
8873 }
8874 
8875 static void __hpsa_shutdown(struct pci_dev *pdev)
8876 {
8877 	struct ctlr_info *h;
8878 
8879 	h = pci_get_drvdata(pdev);
8880 	/* Turn board interrupts off  and send the flush cache command
8881 	 * sendcmd will turn off interrupt, and send the flush...
8882 	 * To write all data in the battery backed cache to disks
8883 	 */
8884 	hpsa_flush_cache(h);
8885 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8886 	hpsa_free_irqs(h);			/* init_one 4 */
8887 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8888 }
8889 
8890 static void hpsa_shutdown(struct pci_dev *pdev)
8891 {
8892 	__hpsa_shutdown(pdev);
8893 	pci_disable_device(pdev);
8894 }
8895 
8896 static void hpsa_free_device_info(struct ctlr_info *h)
8897 {
8898 	int i;
8899 
8900 	for (i = 0; i < h->ndevices; i++) {
8901 		kfree(h->dev[i]);
8902 		h->dev[i] = NULL;
8903 	}
8904 }
8905 
8906 static void hpsa_remove_one(struct pci_dev *pdev)
8907 {
8908 	struct ctlr_info *h;
8909 	unsigned long flags;
8910 
8911 	if (pci_get_drvdata(pdev) == NULL) {
8912 		dev_err(&pdev->dev, "unable to remove device\n");
8913 		return;
8914 	}
8915 	h = pci_get_drvdata(pdev);
8916 
8917 	/* Get rid of any controller monitoring work items */
8918 	spin_lock_irqsave(&h->lock, flags);
8919 	h->remove_in_progress = 1;
8920 	spin_unlock_irqrestore(&h->lock, flags);
8921 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8922 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8923 	cancel_delayed_work_sync(&h->event_monitor_work);
8924 	destroy_workqueue(h->rescan_ctlr_wq);
8925 	destroy_workqueue(h->resubmit_wq);
8926 
8927 	hpsa_delete_sas_host(h);
8928 
8929 	/*
8930 	 * Call before disabling interrupts.
8931 	 * scsi_remove_host can trigger I/O operations especially
8932 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8933 	 * operations which cannot complete and will hang the system.
8934 	 */
8935 	if (h->scsi_host)
8936 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8937 	/* includes hpsa_free_irqs - init_one 4 */
8938 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8939 	__hpsa_shutdown(pdev);
8940 
8941 	hpsa_free_device_info(h);		/* scan */
8942 
8943 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8944 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8945 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8946 	hpsa_free_performant_mode(h);			/* init_one 7 */
8947 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8948 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8949 	kfree(h->lastlogicals);
8950 
8951 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8952 
8953 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8954 	h->scsi_host = NULL;				/* init_one 3 */
8955 
8956 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8957 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8958 
8959 	free_percpu(h->lockup_detected);		/* init_one 2 */
8960 	h->lockup_detected = NULL;			/* init_one 2 */
8961 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8962 
8963 	hpda_free_ctlr_info(h);				/* init_one 1 */
8964 }
8965 
8966 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8967 	__attribute__((unused)) pm_message_t state)
8968 {
8969 	return -ENOSYS;
8970 }
8971 
8972 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8973 {
8974 	return -ENOSYS;
8975 }
8976 
8977 static struct pci_driver hpsa_pci_driver = {
8978 	.name = HPSA,
8979 	.probe = hpsa_init_one,
8980 	.remove = hpsa_remove_one,
8981 	.id_table = hpsa_pci_device_id,	/* id_table */
8982 	.shutdown = hpsa_shutdown,
8983 	.suspend = hpsa_suspend,
8984 	.resume = hpsa_resume,
8985 };
8986 
8987 /* Fill in bucket_map[], given nsgs (the max number of
8988  * scatter gather elements supported) and bucket[],
8989  * which is an array of 8 integers.  The bucket[] array
8990  * contains 8 different DMA transfer sizes (in 16
8991  * byte increments) which the controller uses to fetch
8992  * commands.  This function fills in bucket_map[], which
8993  * maps a given number of scatter gather elements to one of
8994  * the 8 DMA transfer sizes.  The point of it is to allow the
8995  * controller to only do as much DMA as needed to fetch the
8996  * command, with the DMA transfer size encoded in the lower
8997  * bits of the command address.
8998  */
8999 static void  calc_bucket_map(int bucket[], int num_buckets,
9000 	int nsgs, int min_blocks, u32 *bucket_map)
9001 {
9002 	int i, j, b, size;
9003 
9004 	/* Note, bucket_map must have nsgs+1 entries. */
9005 	for (i = 0; i <= nsgs; i++) {
9006 		/* Compute size of a command with i SG entries */
9007 		size = i + min_blocks;
9008 		b = num_buckets; /* Assume the biggest bucket */
9009 		/* Find the bucket that is just big enough */
9010 		for (j = 0; j < num_buckets; j++) {
9011 			if (bucket[j] >= size) {
9012 				b = j;
9013 				break;
9014 			}
9015 		}
9016 		/* for a command with i SG entries, use bucket b. */
9017 		bucket_map[i] = b;
9018 	}
9019 }
9020 
9021 /*
9022  * return -ENODEV on err, 0 on success (or no action)
9023  * allocates numerous items that must be freed later
9024  */
9025 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9026 {
9027 	int i;
9028 	unsigned long register_value;
9029 	unsigned long transMethod = CFGTBL_Trans_Performant |
9030 			(trans_support & CFGTBL_Trans_use_short_tags) |
9031 				CFGTBL_Trans_enable_directed_msix |
9032 			(trans_support & (CFGTBL_Trans_io_accel1 |
9033 				CFGTBL_Trans_io_accel2));
9034 	struct access_method access = SA5_performant_access;
9035 
9036 	/* This is a bit complicated.  There are 8 registers on
9037 	 * the controller which we write to to tell it 8 different
9038 	 * sizes of commands which there may be.  It's a way of
9039 	 * reducing the DMA done to fetch each command.  Encoded into
9040 	 * each command's tag are 3 bits which communicate to the controller
9041 	 * which of the eight sizes that command fits within.  The size of
9042 	 * each command depends on how many scatter gather entries there are.
9043 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9044 	 * with the number of 16-byte blocks a command of that size requires.
9045 	 * The smallest command possible requires 5 such 16 byte blocks.
9046 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9047 	 * blocks.  Note, this only extends to the SG entries contained
9048 	 * within the command block, and does not extend to chained blocks
9049 	 * of SG elements.   bft[] contains the eight values we write to
9050 	 * the registers.  They are not evenly distributed, but have more
9051 	 * sizes for small commands, and fewer sizes for larger commands.
9052 	 */
9053 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9054 #define MIN_IOACCEL2_BFT_ENTRY 5
9055 #define HPSA_IOACCEL2_HEADER_SZ 4
9056 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9057 			13, 14, 15, 16, 17, 18, 19,
9058 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9059 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9060 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9061 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9062 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9063 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9064 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9065 	/*  5 = 1 s/g entry or 4k
9066 	 *  6 = 2 s/g entry or 8k
9067 	 *  8 = 4 s/g entry or 16k
9068 	 * 10 = 6 s/g entry or 24k
9069 	 */
9070 
9071 	/* If the controller supports either ioaccel method then
9072 	 * we can also use the RAID stack submit path that does not
9073 	 * perform the superfluous readl() after each command submission.
9074 	 */
9075 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9076 		access = SA5_performant_access_no_read;
9077 
9078 	/* Controller spec: zero out this buffer. */
9079 	for (i = 0; i < h->nreply_queues; i++)
9080 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9081 
9082 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9083 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9084 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9085 	for (i = 0; i < 8; i++)
9086 		writel(bft[i], &h->transtable->BlockFetch[i]);
9087 
9088 	/* size of controller ring buffer */
9089 	writel(h->max_commands, &h->transtable->RepQSize);
9090 	writel(h->nreply_queues, &h->transtable->RepQCount);
9091 	writel(0, &h->transtable->RepQCtrAddrLow32);
9092 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9093 
9094 	for (i = 0; i < h->nreply_queues; i++) {
9095 		writel(0, &h->transtable->RepQAddr[i].upper);
9096 		writel(h->reply_queue[i].busaddr,
9097 			&h->transtable->RepQAddr[i].lower);
9098 	}
9099 
9100 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9101 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9102 	/*
9103 	 * enable outbound interrupt coalescing in accelerator mode;
9104 	 */
9105 	if (trans_support & CFGTBL_Trans_io_accel1) {
9106 		access = SA5_ioaccel_mode1_access;
9107 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9108 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9109 	} else
9110 		if (trans_support & CFGTBL_Trans_io_accel2)
9111 			access = SA5_ioaccel_mode2_access;
9112 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9113 	if (hpsa_wait_for_mode_change_ack(h)) {
9114 		dev_err(&h->pdev->dev,
9115 			"performant mode problem - doorbell timeout\n");
9116 		return -ENODEV;
9117 	}
9118 	register_value = readl(&(h->cfgtable->TransportActive));
9119 	if (!(register_value & CFGTBL_Trans_Performant)) {
9120 		dev_err(&h->pdev->dev,
9121 			"performant mode problem - transport not active\n");
9122 		return -ENODEV;
9123 	}
9124 	/* Change the access methods to the performant access methods */
9125 	h->access = access;
9126 	h->transMethod = transMethod;
9127 
9128 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9129 		(trans_support & CFGTBL_Trans_io_accel2)))
9130 		return 0;
9131 
9132 	if (trans_support & CFGTBL_Trans_io_accel1) {
9133 		/* Set up I/O accelerator mode */
9134 		for (i = 0; i < h->nreply_queues; i++) {
9135 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9136 			h->reply_queue[i].current_entry =
9137 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9138 		}
9139 		bft[7] = h->ioaccel_maxsg + 8;
9140 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9141 				h->ioaccel1_blockFetchTable);
9142 
9143 		/* initialize all reply queue entries to unused */
9144 		for (i = 0; i < h->nreply_queues; i++)
9145 			memset(h->reply_queue[i].head,
9146 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9147 				h->reply_queue_size);
9148 
9149 		/* set all the constant fields in the accelerator command
9150 		 * frames once at init time to save CPU cycles later.
9151 		 */
9152 		for (i = 0; i < h->nr_cmds; i++) {
9153 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9154 
9155 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9156 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9157 					(i * sizeof(struct ErrorInfo)));
9158 			cp->err_info_len = sizeof(struct ErrorInfo);
9159 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9160 			cp->host_context_flags =
9161 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9162 			cp->timeout_sec = 0;
9163 			cp->ReplyQueue = 0;
9164 			cp->tag =
9165 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9166 			cp->host_addr =
9167 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9168 					(i * sizeof(struct io_accel1_cmd)));
9169 		}
9170 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9171 		u64 cfg_offset, cfg_base_addr_index;
9172 		u32 bft2_offset, cfg_base_addr;
9173 		int rc;
9174 
9175 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9176 			&cfg_base_addr_index, &cfg_offset);
9177 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9178 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9179 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9180 				4, h->ioaccel2_blockFetchTable);
9181 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9182 		BUILD_BUG_ON(offsetof(struct CfgTable,
9183 				io_accel_request_size_offset) != 0xb8);
9184 		h->ioaccel2_bft2_regs =
9185 			remap_pci_mem(pci_resource_start(h->pdev,
9186 					cfg_base_addr_index) +
9187 					cfg_offset + bft2_offset,
9188 					ARRAY_SIZE(bft2) *
9189 					sizeof(*h->ioaccel2_bft2_regs));
9190 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9191 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9192 	}
9193 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9194 	if (hpsa_wait_for_mode_change_ack(h)) {
9195 		dev_err(&h->pdev->dev,
9196 			"performant mode problem - enabling ioaccel mode\n");
9197 		return -ENODEV;
9198 	}
9199 	return 0;
9200 }
9201 
9202 /* Free ioaccel1 mode command blocks and block fetch table */
9203 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9204 {
9205 	if (h->ioaccel_cmd_pool) {
9206 		pci_free_consistent(h->pdev,
9207 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9208 			h->ioaccel_cmd_pool,
9209 			h->ioaccel_cmd_pool_dhandle);
9210 		h->ioaccel_cmd_pool = NULL;
9211 		h->ioaccel_cmd_pool_dhandle = 0;
9212 	}
9213 	kfree(h->ioaccel1_blockFetchTable);
9214 	h->ioaccel1_blockFetchTable = NULL;
9215 }
9216 
9217 /* Allocate ioaccel1 mode command blocks and block fetch table */
9218 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9219 {
9220 	h->ioaccel_maxsg =
9221 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9222 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9223 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9224 
9225 	/* Command structures must be aligned on a 128-byte boundary
9226 	 * because the 7 lower bits of the address are used by the
9227 	 * hardware.
9228 	 */
9229 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9230 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9231 	h->ioaccel_cmd_pool =
9232 		dma_alloc_coherent(&h->pdev->dev,
9233 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9234 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9235 
9236 	h->ioaccel1_blockFetchTable =
9237 		kmalloc(((h->ioaccel_maxsg + 1) *
9238 				sizeof(u32)), GFP_KERNEL);
9239 
9240 	if ((h->ioaccel_cmd_pool == NULL) ||
9241 		(h->ioaccel1_blockFetchTable == NULL))
9242 		goto clean_up;
9243 
9244 	memset(h->ioaccel_cmd_pool, 0,
9245 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9246 	return 0;
9247 
9248 clean_up:
9249 	hpsa_free_ioaccel1_cmd_and_bft(h);
9250 	return -ENOMEM;
9251 }
9252 
9253 /* Free ioaccel2 mode command blocks and block fetch table */
9254 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9255 {
9256 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9257 
9258 	if (h->ioaccel2_cmd_pool) {
9259 		pci_free_consistent(h->pdev,
9260 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9261 			h->ioaccel2_cmd_pool,
9262 			h->ioaccel2_cmd_pool_dhandle);
9263 		h->ioaccel2_cmd_pool = NULL;
9264 		h->ioaccel2_cmd_pool_dhandle = 0;
9265 	}
9266 	kfree(h->ioaccel2_blockFetchTable);
9267 	h->ioaccel2_blockFetchTable = NULL;
9268 }
9269 
9270 /* Allocate ioaccel2 mode command blocks and block fetch table */
9271 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9272 {
9273 	int rc;
9274 
9275 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9276 
9277 	h->ioaccel_maxsg =
9278 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9279 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9280 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9281 
9282 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9283 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9284 	h->ioaccel2_cmd_pool =
9285 		dma_alloc_coherent(&h->pdev->dev,
9286 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9287 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9288 
9289 	h->ioaccel2_blockFetchTable =
9290 		kmalloc(((h->ioaccel_maxsg + 1) *
9291 				sizeof(u32)), GFP_KERNEL);
9292 
9293 	if ((h->ioaccel2_cmd_pool == NULL) ||
9294 		(h->ioaccel2_blockFetchTable == NULL)) {
9295 		rc = -ENOMEM;
9296 		goto clean_up;
9297 	}
9298 
9299 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9300 	if (rc)
9301 		goto clean_up;
9302 
9303 	memset(h->ioaccel2_cmd_pool, 0,
9304 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9305 	return 0;
9306 
9307 clean_up:
9308 	hpsa_free_ioaccel2_cmd_and_bft(h);
9309 	return rc;
9310 }
9311 
9312 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9313 static void hpsa_free_performant_mode(struct ctlr_info *h)
9314 {
9315 	kfree(h->blockFetchTable);
9316 	h->blockFetchTable = NULL;
9317 	hpsa_free_reply_queues(h);
9318 	hpsa_free_ioaccel1_cmd_and_bft(h);
9319 	hpsa_free_ioaccel2_cmd_and_bft(h);
9320 }
9321 
9322 /* return -ENODEV on error, 0 on success (or no action)
9323  * allocates numerous items that must be freed later
9324  */
9325 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9326 {
9327 	u32 trans_support;
9328 	unsigned long transMethod = CFGTBL_Trans_Performant |
9329 					CFGTBL_Trans_use_short_tags;
9330 	int i, rc;
9331 
9332 	if (hpsa_simple_mode)
9333 		return 0;
9334 
9335 	trans_support = readl(&(h->cfgtable->TransportSupport));
9336 	if (!(trans_support & PERFORMANT_MODE))
9337 		return 0;
9338 
9339 	/* Check for I/O accelerator mode support */
9340 	if (trans_support & CFGTBL_Trans_io_accel1) {
9341 		transMethod |= CFGTBL_Trans_io_accel1 |
9342 				CFGTBL_Trans_enable_directed_msix;
9343 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9344 		if (rc)
9345 			return rc;
9346 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9347 		transMethod |= CFGTBL_Trans_io_accel2 |
9348 				CFGTBL_Trans_enable_directed_msix;
9349 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9350 		if (rc)
9351 			return rc;
9352 	}
9353 
9354 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9355 	hpsa_get_max_perf_mode_cmds(h);
9356 	/* Performant mode ring buffer and supporting data structures */
9357 	h->reply_queue_size = h->max_commands * sizeof(u64);
9358 
9359 	for (i = 0; i < h->nreply_queues; i++) {
9360 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9361 						h->reply_queue_size,
9362 						&h->reply_queue[i].busaddr,
9363 						GFP_KERNEL);
9364 		if (!h->reply_queue[i].head) {
9365 			rc = -ENOMEM;
9366 			goto clean1;	/* rq, ioaccel */
9367 		}
9368 		h->reply_queue[i].size = h->max_commands;
9369 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9370 		h->reply_queue[i].current_entry = 0;
9371 	}
9372 
9373 	/* Need a block fetch table for performant mode */
9374 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9375 				sizeof(u32)), GFP_KERNEL);
9376 	if (!h->blockFetchTable) {
9377 		rc = -ENOMEM;
9378 		goto clean1;	/* rq, ioaccel */
9379 	}
9380 
9381 	rc = hpsa_enter_performant_mode(h, trans_support);
9382 	if (rc)
9383 		goto clean2;	/* bft, rq, ioaccel */
9384 	return 0;
9385 
9386 clean2:	/* bft, rq, ioaccel */
9387 	kfree(h->blockFetchTable);
9388 	h->blockFetchTable = NULL;
9389 clean1:	/* rq, ioaccel */
9390 	hpsa_free_reply_queues(h);
9391 	hpsa_free_ioaccel1_cmd_and_bft(h);
9392 	hpsa_free_ioaccel2_cmd_and_bft(h);
9393 	return rc;
9394 }
9395 
9396 static int is_accelerated_cmd(struct CommandList *c)
9397 {
9398 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9399 }
9400 
9401 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9402 {
9403 	struct CommandList *c = NULL;
9404 	int i, accel_cmds_out;
9405 	int refcount;
9406 
9407 	do { /* wait for all outstanding ioaccel commands to drain out */
9408 		accel_cmds_out = 0;
9409 		for (i = 0; i < h->nr_cmds; i++) {
9410 			c = h->cmd_pool + i;
9411 			refcount = atomic_inc_return(&c->refcount);
9412 			if (refcount > 1) /* Command is allocated */
9413 				accel_cmds_out += is_accelerated_cmd(c);
9414 			cmd_free(h, c);
9415 		}
9416 		if (accel_cmds_out <= 0)
9417 			break;
9418 		msleep(100);
9419 	} while (1);
9420 }
9421 
9422 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9423 				struct hpsa_sas_port *hpsa_sas_port)
9424 {
9425 	struct hpsa_sas_phy *hpsa_sas_phy;
9426 	struct sas_phy *phy;
9427 
9428 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9429 	if (!hpsa_sas_phy)
9430 		return NULL;
9431 
9432 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9433 		hpsa_sas_port->next_phy_index);
9434 	if (!phy) {
9435 		kfree(hpsa_sas_phy);
9436 		return NULL;
9437 	}
9438 
9439 	hpsa_sas_port->next_phy_index++;
9440 	hpsa_sas_phy->phy = phy;
9441 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9442 
9443 	return hpsa_sas_phy;
9444 }
9445 
9446 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9447 {
9448 	struct sas_phy *phy = hpsa_sas_phy->phy;
9449 
9450 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9451 	if (hpsa_sas_phy->added_to_port)
9452 		list_del(&hpsa_sas_phy->phy_list_entry);
9453 	sas_phy_delete(phy);
9454 	kfree(hpsa_sas_phy);
9455 }
9456 
9457 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9458 {
9459 	int rc;
9460 	struct hpsa_sas_port *hpsa_sas_port;
9461 	struct sas_phy *phy;
9462 	struct sas_identify *identify;
9463 
9464 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9465 	phy = hpsa_sas_phy->phy;
9466 
9467 	identify = &phy->identify;
9468 	memset(identify, 0, sizeof(*identify));
9469 	identify->sas_address = hpsa_sas_port->sas_address;
9470 	identify->device_type = SAS_END_DEVICE;
9471 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9472 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9473 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9474 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9475 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9476 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9477 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9478 
9479 	rc = sas_phy_add(hpsa_sas_phy->phy);
9480 	if (rc)
9481 		return rc;
9482 
9483 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9484 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9485 			&hpsa_sas_port->phy_list_head);
9486 	hpsa_sas_phy->added_to_port = true;
9487 
9488 	return 0;
9489 }
9490 
9491 static int
9492 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9493 				struct sas_rphy *rphy)
9494 {
9495 	struct sas_identify *identify;
9496 
9497 	identify = &rphy->identify;
9498 	identify->sas_address = hpsa_sas_port->sas_address;
9499 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9500 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9501 
9502 	return sas_rphy_add(rphy);
9503 }
9504 
9505 static struct hpsa_sas_port
9506 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9507 				u64 sas_address)
9508 {
9509 	int rc;
9510 	struct hpsa_sas_port *hpsa_sas_port;
9511 	struct sas_port *port;
9512 
9513 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9514 	if (!hpsa_sas_port)
9515 		return NULL;
9516 
9517 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9518 	hpsa_sas_port->parent_node = hpsa_sas_node;
9519 
9520 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9521 	if (!port)
9522 		goto free_hpsa_port;
9523 
9524 	rc = sas_port_add(port);
9525 	if (rc)
9526 		goto free_sas_port;
9527 
9528 	hpsa_sas_port->port = port;
9529 	hpsa_sas_port->sas_address = sas_address;
9530 	list_add_tail(&hpsa_sas_port->port_list_entry,
9531 			&hpsa_sas_node->port_list_head);
9532 
9533 	return hpsa_sas_port;
9534 
9535 free_sas_port:
9536 	sas_port_free(port);
9537 free_hpsa_port:
9538 	kfree(hpsa_sas_port);
9539 
9540 	return NULL;
9541 }
9542 
9543 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9544 {
9545 	struct hpsa_sas_phy *hpsa_sas_phy;
9546 	struct hpsa_sas_phy *next;
9547 
9548 	list_for_each_entry_safe(hpsa_sas_phy, next,
9549 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9550 		hpsa_free_sas_phy(hpsa_sas_phy);
9551 
9552 	sas_port_delete(hpsa_sas_port->port);
9553 	list_del(&hpsa_sas_port->port_list_entry);
9554 	kfree(hpsa_sas_port);
9555 }
9556 
9557 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9558 {
9559 	struct hpsa_sas_node *hpsa_sas_node;
9560 
9561 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9562 	if (hpsa_sas_node) {
9563 		hpsa_sas_node->parent_dev = parent_dev;
9564 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9565 	}
9566 
9567 	return hpsa_sas_node;
9568 }
9569 
9570 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9571 {
9572 	struct hpsa_sas_port *hpsa_sas_port;
9573 	struct hpsa_sas_port *next;
9574 
9575 	if (!hpsa_sas_node)
9576 		return;
9577 
9578 	list_for_each_entry_safe(hpsa_sas_port, next,
9579 			&hpsa_sas_node->port_list_head, port_list_entry)
9580 		hpsa_free_sas_port(hpsa_sas_port);
9581 
9582 	kfree(hpsa_sas_node);
9583 }
9584 
9585 static struct hpsa_scsi_dev_t
9586 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9587 					struct sas_rphy *rphy)
9588 {
9589 	int i;
9590 	struct hpsa_scsi_dev_t *device;
9591 
9592 	for (i = 0; i < h->ndevices; i++) {
9593 		device = h->dev[i];
9594 		if (!device->sas_port)
9595 			continue;
9596 		if (device->sas_port->rphy == rphy)
9597 			return device;
9598 	}
9599 
9600 	return NULL;
9601 }
9602 
9603 static int hpsa_add_sas_host(struct ctlr_info *h)
9604 {
9605 	int rc;
9606 	struct device *parent_dev;
9607 	struct hpsa_sas_node *hpsa_sas_node;
9608 	struct hpsa_sas_port *hpsa_sas_port;
9609 	struct hpsa_sas_phy *hpsa_sas_phy;
9610 
9611 	parent_dev = &h->scsi_host->shost_dev;
9612 
9613 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9614 	if (!hpsa_sas_node)
9615 		return -ENOMEM;
9616 
9617 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9618 	if (!hpsa_sas_port) {
9619 		rc = -ENODEV;
9620 		goto free_sas_node;
9621 	}
9622 
9623 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9624 	if (!hpsa_sas_phy) {
9625 		rc = -ENODEV;
9626 		goto free_sas_port;
9627 	}
9628 
9629 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9630 	if (rc)
9631 		goto free_sas_phy;
9632 
9633 	h->sas_host = hpsa_sas_node;
9634 
9635 	return 0;
9636 
9637 free_sas_phy:
9638 	hpsa_free_sas_phy(hpsa_sas_phy);
9639 free_sas_port:
9640 	hpsa_free_sas_port(hpsa_sas_port);
9641 free_sas_node:
9642 	hpsa_free_sas_node(hpsa_sas_node);
9643 
9644 	return rc;
9645 }
9646 
9647 static void hpsa_delete_sas_host(struct ctlr_info *h)
9648 {
9649 	hpsa_free_sas_node(h->sas_host);
9650 }
9651 
9652 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9653 				struct hpsa_scsi_dev_t *device)
9654 {
9655 	int rc;
9656 	struct hpsa_sas_port *hpsa_sas_port;
9657 	struct sas_rphy *rphy;
9658 
9659 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9660 	if (!hpsa_sas_port)
9661 		return -ENOMEM;
9662 
9663 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9664 	if (!rphy) {
9665 		rc = -ENODEV;
9666 		goto free_sas_port;
9667 	}
9668 
9669 	hpsa_sas_port->rphy = rphy;
9670 	device->sas_port = hpsa_sas_port;
9671 
9672 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9673 	if (rc)
9674 		goto free_sas_port;
9675 
9676 	return 0;
9677 
9678 free_sas_port:
9679 	hpsa_free_sas_port(hpsa_sas_port);
9680 	device->sas_port = NULL;
9681 
9682 	return rc;
9683 }
9684 
9685 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9686 {
9687 	if (device->sas_port) {
9688 		hpsa_free_sas_port(device->sas_port);
9689 		device->sas_port = NULL;
9690 	}
9691 }
9692 
9693 static int
9694 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9695 {
9696 	return 0;
9697 }
9698 
9699 static int
9700 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9701 {
9702 	struct Scsi_Host *shost = phy_to_shost(rphy);
9703 	struct ctlr_info *h;
9704 	struct hpsa_scsi_dev_t *sd;
9705 
9706 	if (!shost)
9707 		return -ENXIO;
9708 
9709 	h = shost_to_hba(shost);
9710 
9711 	if (!h)
9712 		return -ENXIO;
9713 
9714 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9715 	if (!sd)
9716 		return -ENXIO;
9717 
9718 	*identifier = sd->eli;
9719 
9720 	return 0;
9721 }
9722 
9723 static int
9724 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9725 {
9726 	return -ENXIO;
9727 }
9728 
9729 static int
9730 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9731 {
9732 	return 0;
9733 }
9734 
9735 static int
9736 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9737 {
9738 	return 0;
9739 }
9740 
9741 static int
9742 hpsa_sas_phy_setup(struct sas_phy *phy)
9743 {
9744 	return 0;
9745 }
9746 
9747 static void
9748 hpsa_sas_phy_release(struct sas_phy *phy)
9749 {
9750 }
9751 
9752 static int
9753 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9754 {
9755 	return -EINVAL;
9756 }
9757 
9758 static struct sas_function_template hpsa_sas_transport_functions = {
9759 	.get_linkerrors = hpsa_sas_get_linkerrors,
9760 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9761 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9762 	.phy_reset = hpsa_sas_phy_reset,
9763 	.phy_enable = hpsa_sas_phy_enable,
9764 	.phy_setup = hpsa_sas_phy_setup,
9765 	.phy_release = hpsa_sas_phy_release,
9766 	.set_phy_speed = hpsa_sas_phy_speed,
9767 };
9768 
9769 /*
9770  *  This is it.  Register the PCI driver information for the cards we control
9771  *  the OS will call our registered routines when it finds one of our cards.
9772  */
9773 static int __init hpsa_init(void)
9774 {
9775 	int rc;
9776 
9777 	hpsa_sas_transport_template =
9778 		sas_attach_transport(&hpsa_sas_transport_functions);
9779 	if (!hpsa_sas_transport_template)
9780 		return -ENODEV;
9781 
9782 	rc = pci_register_driver(&hpsa_pci_driver);
9783 
9784 	if (rc)
9785 		sas_release_transport(hpsa_sas_transport_template);
9786 
9787 	return rc;
9788 }
9789 
9790 static void __exit hpsa_cleanup(void)
9791 {
9792 	pci_unregister_driver(&hpsa_pci_driver);
9793 	sas_release_transport(hpsa_sas_transport_template);
9794 }
9795 
9796 static void __attribute__((unused)) verify_offsets(void)
9797 {
9798 #define VERIFY_OFFSET(member, offset) \
9799 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9800 
9801 	VERIFY_OFFSET(structure_size, 0);
9802 	VERIFY_OFFSET(volume_blk_size, 4);
9803 	VERIFY_OFFSET(volume_blk_cnt, 8);
9804 	VERIFY_OFFSET(phys_blk_shift, 16);
9805 	VERIFY_OFFSET(parity_rotation_shift, 17);
9806 	VERIFY_OFFSET(strip_size, 18);
9807 	VERIFY_OFFSET(disk_starting_blk, 20);
9808 	VERIFY_OFFSET(disk_blk_cnt, 28);
9809 	VERIFY_OFFSET(data_disks_per_row, 36);
9810 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9811 	VERIFY_OFFSET(row_cnt, 40);
9812 	VERIFY_OFFSET(layout_map_count, 42);
9813 	VERIFY_OFFSET(flags, 44);
9814 	VERIFY_OFFSET(dekindex, 46);
9815 	/* VERIFY_OFFSET(reserved, 48 */
9816 	VERIFY_OFFSET(data, 64);
9817 
9818 #undef VERIFY_OFFSET
9819 
9820 #define VERIFY_OFFSET(member, offset) \
9821 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9822 
9823 	VERIFY_OFFSET(IU_type, 0);
9824 	VERIFY_OFFSET(direction, 1);
9825 	VERIFY_OFFSET(reply_queue, 2);
9826 	/* VERIFY_OFFSET(reserved1, 3);  */
9827 	VERIFY_OFFSET(scsi_nexus, 4);
9828 	VERIFY_OFFSET(Tag, 8);
9829 	VERIFY_OFFSET(cdb, 16);
9830 	VERIFY_OFFSET(cciss_lun, 32);
9831 	VERIFY_OFFSET(data_len, 40);
9832 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9833 	VERIFY_OFFSET(sg_count, 45);
9834 	/* VERIFY_OFFSET(reserved3 */
9835 	VERIFY_OFFSET(err_ptr, 48);
9836 	VERIFY_OFFSET(err_len, 56);
9837 	/* VERIFY_OFFSET(reserved4  */
9838 	VERIFY_OFFSET(sg, 64);
9839 
9840 #undef VERIFY_OFFSET
9841 
9842 #define VERIFY_OFFSET(member, offset) \
9843 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9844 
9845 	VERIFY_OFFSET(dev_handle, 0x00);
9846 	VERIFY_OFFSET(reserved1, 0x02);
9847 	VERIFY_OFFSET(function, 0x03);
9848 	VERIFY_OFFSET(reserved2, 0x04);
9849 	VERIFY_OFFSET(err_info, 0x0C);
9850 	VERIFY_OFFSET(reserved3, 0x10);
9851 	VERIFY_OFFSET(err_info_len, 0x12);
9852 	VERIFY_OFFSET(reserved4, 0x13);
9853 	VERIFY_OFFSET(sgl_offset, 0x14);
9854 	VERIFY_OFFSET(reserved5, 0x15);
9855 	VERIFY_OFFSET(transfer_len, 0x1C);
9856 	VERIFY_OFFSET(reserved6, 0x20);
9857 	VERIFY_OFFSET(io_flags, 0x24);
9858 	VERIFY_OFFSET(reserved7, 0x26);
9859 	VERIFY_OFFSET(LUN, 0x34);
9860 	VERIFY_OFFSET(control, 0x3C);
9861 	VERIFY_OFFSET(CDB, 0x40);
9862 	VERIFY_OFFSET(reserved8, 0x50);
9863 	VERIFY_OFFSET(host_context_flags, 0x60);
9864 	VERIFY_OFFSET(timeout_sec, 0x62);
9865 	VERIFY_OFFSET(ReplyQueue, 0x64);
9866 	VERIFY_OFFSET(reserved9, 0x65);
9867 	VERIFY_OFFSET(tag, 0x68);
9868 	VERIFY_OFFSET(host_addr, 0x70);
9869 	VERIFY_OFFSET(CISS_LUN, 0x78);
9870 	VERIFY_OFFSET(SG, 0x78 + 8);
9871 #undef VERIFY_OFFSET
9872 }
9873 
9874 module_init(hpsa_init);
9875 module_exit(hpsa_cleanup);
9876