1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/compat.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/uaccess.h> 37 #include <linux/io.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/completion.h> 40 #include <linux/moduleparam.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_device.h> 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_tcq.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "2.0.2-1" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 static int hpsa_simple_mode; 78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 79 MODULE_PARM_DESC(hpsa_simple_mode, 80 "Use 'simple mode' rather than 'performant mode'"); 81 82 /* define the PCI info for the cards we can control */ 83 static const struct pci_device_id hpsa_pci_device_id[] = { 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 101 {0,} 102 }; 103 104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 105 106 /* board_id = Subsystem Device ID & Vendor ID 107 * product = Marketing Name for the board 108 * access = Address of the struct of function pointers 109 */ 110 static struct board_type products[] = { 111 {0x3241103C, "Smart Array P212", &SA5_access}, 112 {0x3243103C, "Smart Array P410", &SA5_access}, 113 {0x3245103C, "Smart Array P410i", &SA5_access}, 114 {0x3247103C, "Smart Array P411", &SA5_access}, 115 {0x3249103C, "Smart Array P812", &SA5_access}, 116 {0x324a103C, "Smart Array P712m", &SA5_access}, 117 {0x324b103C, "Smart Array P711m", &SA5_access}, 118 {0x3350103C, "Smart Array", &SA5_access}, 119 {0x3351103C, "Smart Array", &SA5_access}, 120 {0x3352103C, "Smart Array", &SA5_access}, 121 {0x3353103C, "Smart Array", &SA5_access}, 122 {0x3354103C, "Smart Array", &SA5_access}, 123 {0x3355103C, "Smart Array", &SA5_access}, 124 {0x3356103C, "Smart Array", &SA5_access}, 125 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 126 }; 127 128 static int number_of_controllers; 129 130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 133 static void start_io(struct ctlr_info *h); 134 135 #ifdef CONFIG_COMPAT 136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 137 #endif 138 139 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 141 static struct CommandList *cmd_alloc(struct ctlr_info *h); 142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 145 int cmd_type); 146 147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 148 static void hpsa_scan_start(struct Scsi_Host *); 149 static int hpsa_scan_finished(struct Scsi_Host *sh, 150 unsigned long elapsed_time); 151 static int hpsa_change_queue_depth(struct scsi_device *sdev, 152 int qdepth, int reason); 153 154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 155 static int hpsa_slave_alloc(struct scsi_device *sdev); 156 static void hpsa_slave_destroy(struct scsi_device *sdev); 157 158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 159 static int check_for_unit_attention(struct ctlr_info *h, 160 struct CommandList *c); 161 static void check_ioctl_unit_attention(struct ctlr_info *h, 162 struct CommandList *c); 163 /* performant mode helper functions */ 164 static void calc_bucket_map(int *bucket, int num_buckets, 165 int nsgs, int *bucket_map); 166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 167 static inline u32 next_command(struct ctlr_info *h); 168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 170 u64 *cfg_offset); 171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 172 unsigned long *memory_bar); 173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 175 void __iomem *vaddr, int wait_for_ready); 176 #define BOARD_NOT_READY 0 177 #define BOARD_READY 1 178 179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 180 { 181 unsigned long *priv = shost_priv(sdev->host); 182 return (struct ctlr_info *) *priv; 183 } 184 185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 186 { 187 unsigned long *priv = shost_priv(sh); 188 return (struct ctlr_info *) *priv; 189 } 190 191 static int check_for_unit_attention(struct ctlr_info *h, 192 struct CommandList *c) 193 { 194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 195 return 0; 196 197 switch (c->err_info->SenseInfo[12]) { 198 case STATE_CHANGED: 199 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 200 "detected, command retried\n", h->ctlr); 201 break; 202 case LUN_FAILED: 203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 204 "detected, action required\n", h->ctlr); 205 break; 206 case REPORT_LUNS_CHANGED: 207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 208 "changed, action required\n", h->ctlr); 209 /* 210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 211 */ 212 break; 213 case POWER_OR_RESET: 214 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 215 "or device reset detected\n", h->ctlr); 216 break; 217 case UNIT_ATTENTION_CLEARED: 218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 219 "cleared by another initiator\n", h->ctlr); 220 break; 221 default: 222 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 223 "unit attention detected\n", h->ctlr); 224 break; 225 } 226 return 1; 227 } 228 229 static ssize_t host_store_rescan(struct device *dev, 230 struct device_attribute *attr, 231 const char *buf, size_t count) 232 { 233 struct ctlr_info *h; 234 struct Scsi_Host *shost = class_to_shost(dev); 235 h = shost_to_hba(shost); 236 hpsa_scan_start(h->scsi_host); 237 return count; 238 } 239 240 static ssize_t host_show_firmware_revision(struct device *dev, 241 struct device_attribute *attr, char *buf) 242 { 243 struct ctlr_info *h; 244 struct Scsi_Host *shost = class_to_shost(dev); 245 unsigned char *fwrev; 246 247 h = shost_to_hba(shost); 248 if (!h->hba_inquiry_data) 249 return 0; 250 fwrev = &h->hba_inquiry_data[32]; 251 return snprintf(buf, 20, "%c%c%c%c\n", 252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 253 } 254 255 static ssize_t host_show_commands_outstanding(struct device *dev, 256 struct device_attribute *attr, char *buf) 257 { 258 struct Scsi_Host *shost = class_to_shost(dev); 259 struct ctlr_info *h = shost_to_hba(shost); 260 261 return snprintf(buf, 20, "%d\n", h->commands_outstanding); 262 } 263 264 static ssize_t host_show_transport_mode(struct device *dev, 265 struct device_attribute *attr, char *buf) 266 { 267 struct ctlr_info *h; 268 struct Scsi_Host *shost = class_to_shost(dev); 269 270 h = shost_to_hba(shost); 271 return snprintf(buf, 20, "%s\n", 272 h->transMethod & CFGTBL_Trans_Performant ? 273 "performant" : "simple"); 274 } 275 276 /* List of controllers which cannot be reset on kexec with reset_devices */ 277 static u32 unresettable_controller[] = { 278 0x324a103C, /* Smart Array P712m */ 279 0x324b103C, /* SmartArray P711m */ 280 0x3223103C, /* Smart Array P800 */ 281 0x3234103C, /* Smart Array P400 */ 282 0x3235103C, /* Smart Array P400i */ 283 0x3211103C, /* Smart Array E200i */ 284 0x3212103C, /* Smart Array E200 */ 285 0x3213103C, /* Smart Array E200i */ 286 0x3214103C, /* Smart Array E200i */ 287 0x3215103C, /* Smart Array E200i */ 288 0x3237103C, /* Smart Array E500 */ 289 0x323D103C, /* Smart Array P700m */ 290 0x409C0E11, /* Smart Array 6400 */ 291 0x409D0E11, /* Smart Array 6400 EM */ 292 }; 293 294 static int ctlr_is_resettable(struct ctlr_info *h) 295 { 296 int i; 297 298 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) 299 if (unresettable_controller[i] == h->board_id) 300 return 0; 301 return 1; 302 } 303 304 static ssize_t host_show_resettable(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 struct ctlr_info *h; 308 struct Scsi_Host *shost = class_to_shost(dev); 309 310 h = shost_to_hba(shost); 311 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h)); 312 } 313 314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 315 { 316 return (scsi3addr[3] & 0xC0) == 0x40; 317 } 318 319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 320 "UNKNOWN" 321 }; 322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 323 324 static ssize_t raid_level_show(struct device *dev, 325 struct device_attribute *attr, char *buf) 326 { 327 ssize_t l = 0; 328 unsigned char rlevel; 329 struct ctlr_info *h; 330 struct scsi_device *sdev; 331 struct hpsa_scsi_dev_t *hdev; 332 unsigned long flags; 333 334 sdev = to_scsi_device(dev); 335 h = sdev_to_hba(sdev); 336 spin_lock_irqsave(&h->lock, flags); 337 hdev = sdev->hostdata; 338 if (!hdev) { 339 spin_unlock_irqrestore(&h->lock, flags); 340 return -ENODEV; 341 } 342 343 /* Is this even a logical drive? */ 344 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 345 spin_unlock_irqrestore(&h->lock, flags); 346 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 347 return l; 348 } 349 350 rlevel = hdev->raid_level; 351 spin_unlock_irqrestore(&h->lock, flags); 352 if (rlevel > RAID_UNKNOWN) 353 rlevel = RAID_UNKNOWN; 354 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 355 return l; 356 } 357 358 static ssize_t lunid_show(struct device *dev, 359 struct device_attribute *attr, char *buf) 360 { 361 struct ctlr_info *h; 362 struct scsi_device *sdev; 363 struct hpsa_scsi_dev_t *hdev; 364 unsigned long flags; 365 unsigned char lunid[8]; 366 367 sdev = to_scsi_device(dev); 368 h = sdev_to_hba(sdev); 369 spin_lock_irqsave(&h->lock, flags); 370 hdev = sdev->hostdata; 371 if (!hdev) { 372 spin_unlock_irqrestore(&h->lock, flags); 373 return -ENODEV; 374 } 375 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 376 spin_unlock_irqrestore(&h->lock, flags); 377 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 378 lunid[0], lunid[1], lunid[2], lunid[3], 379 lunid[4], lunid[5], lunid[6], lunid[7]); 380 } 381 382 static ssize_t unique_id_show(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct ctlr_info *h; 386 struct scsi_device *sdev; 387 struct hpsa_scsi_dev_t *hdev; 388 unsigned long flags; 389 unsigned char sn[16]; 390 391 sdev = to_scsi_device(dev); 392 h = sdev_to_hba(sdev); 393 spin_lock_irqsave(&h->lock, flags); 394 hdev = sdev->hostdata; 395 if (!hdev) { 396 spin_unlock_irqrestore(&h->lock, flags); 397 return -ENODEV; 398 } 399 memcpy(sn, hdev->device_id, sizeof(sn)); 400 spin_unlock_irqrestore(&h->lock, flags); 401 return snprintf(buf, 16 * 2 + 2, 402 "%02X%02X%02X%02X%02X%02X%02X%02X" 403 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 404 sn[0], sn[1], sn[2], sn[3], 405 sn[4], sn[5], sn[6], sn[7], 406 sn[8], sn[9], sn[10], sn[11], 407 sn[12], sn[13], sn[14], sn[15]); 408 } 409 410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 414 static DEVICE_ATTR(firmware_revision, S_IRUGO, 415 host_show_firmware_revision, NULL); 416 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 417 host_show_commands_outstanding, NULL); 418 static DEVICE_ATTR(transport_mode, S_IRUGO, 419 host_show_transport_mode, NULL); 420 static DEVICE_ATTR(resettable, S_IRUGO, 421 host_show_resettable, NULL); 422 423 static struct device_attribute *hpsa_sdev_attrs[] = { 424 &dev_attr_raid_level, 425 &dev_attr_lunid, 426 &dev_attr_unique_id, 427 NULL, 428 }; 429 430 static struct device_attribute *hpsa_shost_attrs[] = { 431 &dev_attr_rescan, 432 &dev_attr_firmware_revision, 433 &dev_attr_commands_outstanding, 434 &dev_attr_transport_mode, 435 &dev_attr_resettable, 436 NULL, 437 }; 438 439 static struct scsi_host_template hpsa_driver_template = { 440 .module = THIS_MODULE, 441 .name = "hpsa", 442 .proc_name = "hpsa", 443 .queuecommand = hpsa_scsi_queue_command, 444 .scan_start = hpsa_scan_start, 445 .scan_finished = hpsa_scan_finished, 446 .change_queue_depth = hpsa_change_queue_depth, 447 .this_id = -1, 448 .use_clustering = ENABLE_CLUSTERING, 449 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 450 .ioctl = hpsa_ioctl, 451 .slave_alloc = hpsa_slave_alloc, 452 .slave_destroy = hpsa_slave_destroy, 453 #ifdef CONFIG_COMPAT 454 .compat_ioctl = hpsa_compat_ioctl, 455 #endif 456 .sdev_attrs = hpsa_sdev_attrs, 457 .shost_attrs = hpsa_shost_attrs, 458 }; 459 460 461 /* Enqueuing and dequeuing functions for cmdlists. */ 462 static inline void addQ(struct list_head *list, struct CommandList *c) 463 { 464 list_add_tail(&c->list, list); 465 } 466 467 static inline u32 next_command(struct ctlr_info *h) 468 { 469 u32 a; 470 471 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 472 return h->access.command_completed(h); 473 474 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 475 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 476 (h->reply_pool_head)++; 477 h->commands_outstanding--; 478 } else { 479 a = FIFO_EMPTY; 480 } 481 /* Check for wraparound */ 482 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 483 h->reply_pool_head = h->reply_pool; 484 h->reply_pool_wraparound ^= 1; 485 } 486 return a; 487 } 488 489 /* set_performant_mode: Modify the tag for cciss performant 490 * set bit 0 for pull model, bits 3-1 for block fetch 491 * register number 492 */ 493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 494 { 495 if (likely(h->transMethod & CFGTBL_Trans_Performant)) 496 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 497 } 498 499 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 500 struct CommandList *c) 501 { 502 unsigned long flags; 503 504 set_performant_mode(h, c); 505 spin_lock_irqsave(&h->lock, flags); 506 addQ(&h->reqQ, c); 507 h->Qdepth++; 508 start_io(h); 509 spin_unlock_irqrestore(&h->lock, flags); 510 } 511 512 static inline void removeQ(struct CommandList *c) 513 { 514 if (WARN_ON(list_empty(&c->list))) 515 return; 516 list_del_init(&c->list); 517 } 518 519 static inline int is_hba_lunid(unsigned char scsi3addr[]) 520 { 521 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 522 } 523 524 static inline int is_scsi_rev_5(struct ctlr_info *h) 525 { 526 if (!h->hba_inquiry_data) 527 return 0; 528 if ((h->hba_inquiry_data[2] & 0x07) == 5) 529 return 1; 530 return 0; 531 } 532 533 static int hpsa_find_target_lun(struct ctlr_info *h, 534 unsigned char scsi3addr[], int bus, int *target, int *lun) 535 { 536 /* finds an unused bus, target, lun for a new physical device 537 * assumes h->devlock is held 538 */ 539 int i, found = 0; 540 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 541 542 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 543 544 for (i = 0; i < h->ndevices; i++) { 545 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 546 set_bit(h->dev[i]->target, lun_taken); 547 } 548 549 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 550 if (!test_bit(i, lun_taken)) { 551 /* *bus = 1; */ 552 *target = i; 553 *lun = 0; 554 found = 1; 555 break; 556 } 557 } 558 return !found; 559 } 560 561 /* Add an entry into h->dev[] array. */ 562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 563 struct hpsa_scsi_dev_t *device, 564 struct hpsa_scsi_dev_t *added[], int *nadded) 565 { 566 /* assumes h->devlock is held */ 567 int n = h->ndevices; 568 int i; 569 unsigned char addr1[8], addr2[8]; 570 struct hpsa_scsi_dev_t *sd; 571 572 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 573 dev_err(&h->pdev->dev, "too many devices, some will be " 574 "inaccessible.\n"); 575 return -1; 576 } 577 578 /* physical devices do not have lun or target assigned until now. */ 579 if (device->lun != -1) 580 /* Logical device, lun is already assigned. */ 581 goto lun_assigned; 582 583 /* If this device a non-zero lun of a multi-lun device 584 * byte 4 of the 8-byte LUN addr will contain the logical 585 * unit no, zero otherise. 586 */ 587 if (device->scsi3addr[4] == 0) { 588 /* This is not a non-zero lun of a multi-lun device */ 589 if (hpsa_find_target_lun(h, device->scsi3addr, 590 device->bus, &device->target, &device->lun) != 0) 591 return -1; 592 goto lun_assigned; 593 } 594 595 /* This is a non-zero lun of a multi-lun device. 596 * Search through our list and find the device which 597 * has the same 8 byte LUN address, excepting byte 4. 598 * Assign the same bus and target for this new LUN. 599 * Use the logical unit number from the firmware. 600 */ 601 memcpy(addr1, device->scsi3addr, 8); 602 addr1[4] = 0; 603 for (i = 0; i < n; i++) { 604 sd = h->dev[i]; 605 memcpy(addr2, sd->scsi3addr, 8); 606 addr2[4] = 0; 607 /* differ only in byte 4? */ 608 if (memcmp(addr1, addr2, 8) == 0) { 609 device->bus = sd->bus; 610 device->target = sd->target; 611 device->lun = device->scsi3addr[4]; 612 break; 613 } 614 } 615 if (device->lun == -1) { 616 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 617 " suspect firmware bug or unsupported hardware " 618 "configuration.\n"); 619 return -1; 620 } 621 622 lun_assigned: 623 624 h->dev[n] = device; 625 h->ndevices++; 626 added[*nadded] = device; 627 (*nadded)++; 628 629 /* initially, (before registering with scsi layer) we don't 630 * know our hostno and we don't want to print anything first 631 * time anyway (the scsi layer's inquiries will show that info) 632 */ 633 /* if (hostno != -1) */ 634 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 635 scsi_device_type(device->devtype), hostno, 636 device->bus, device->target, device->lun); 637 return 0; 638 } 639 640 /* Replace an entry from h->dev[] array. */ 641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 642 int entry, struct hpsa_scsi_dev_t *new_entry, 643 struct hpsa_scsi_dev_t *added[], int *nadded, 644 struct hpsa_scsi_dev_t *removed[], int *nremoved) 645 { 646 /* assumes h->devlock is held */ 647 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 648 removed[*nremoved] = h->dev[entry]; 649 (*nremoved)++; 650 h->dev[entry] = new_entry; 651 added[*nadded] = new_entry; 652 (*nadded)++; 653 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 654 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 655 new_entry->target, new_entry->lun); 656 } 657 658 /* Remove an entry from h->dev[] array. */ 659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 660 struct hpsa_scsi_dev_t *removed[], int *nremoved) 661 { 662 /* assumes h->devlock is held */ 663 int i; 664 struct hpsa_scsi_dev_t *sd; 665 666 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 667 668 sd = h->dev[entry]; 669 removed[*nremoved] = h->dev[entry]; 670 (*nremoved)++; 671 672 for (i = entry; i < h->ndevices-1; i++) 673 h->dev[i] = h->dev[i+1]; 674 h->ndevices--; 675 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 676 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 677 sd->lun); 678 } 679 680 #define SCSI3ADDR_EQ(a, b) ( \ 681 (a)[7] == (b)[7] && \ 682 (a)[6] == (b)[6] && \ 683 (a)[5] == (b)[5] && \ 684 (a)[4] == (b)[4] && \ 685 (a)[3] == (b)[3] && \ 686 (a)[2] == (b)[2] && \ 687 (a)[1] == (b)[1] && \ 688 (a)[0] == (b)[0]) 689 690 static void fixup_botched_add(struct ctlr_info *h, 691 struct hpsa_scsi_dev_t *added) 692 { 693 /* called when scsi_add_device fails in order to re-adjust 694 * h->dev[] to match the mid layer's view. 695 */ 696 unsigned long flags; 697 int i, j; 698 699 spin_lock_irqsave(&h->lock, flags); 700 for (i = 0; i < h->ndevices; i++) { 701 if (h->dev[i] == added) { 702 for (j = i; j < h->ndevices-1; j++) 703 h->dev[j] = h->dev[j+1]; 704 h->ndevices--; 705 break; 706 } 707 } 708 spin_unlock_irqrestore(&h->lock, flags); 709 kfree(added); 710 } 711 712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 713 struct hpsa_scsi_dev_t *dev2) 714 { 715 /* we compare everything except lun and target as these 716 * are not yet assigned. Compare parts likely 717 * to differ first 718 */ 719 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 720 sizeof(dev1->scsi3addr)) != 0) 721 return 0; 722 if (memcmp(dev1->device_id, dev2->device_id, 723 sizeof(dev1->device_id)) != 0) 724 return 0; 725 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 726 return 0; 727 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 728 return 0; 729 if (dev1->devtype != dev2->devtype) 730 return 0; 731 if (dev1->bus != dev2->bus) 732 return 0; 733 return 1; 734 } 735 736 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 737 * and return needle location in *index. If scsi3addr matches, but not 738 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 739 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 740 */ 741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 742 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 743 int *index) 744 { 745 int i; 746 #define DEVICE_NOT_FOUND 0 747 #define DEVICE_CHANGED 1 748 #define DEVICE_SAME 2 749 for (i = 0; i < haystack_size; i++) { 750 if (haystack[i] == NULL) /* previously removed. */ 751 continue; 752 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 753 *index = i; 754 if (device_is_the_same(needle, haystack[i])) 755 return DEVICE_SAME; 756 else 757 return DEVICE_CHANGED; 758 } 759 } 760 *index = -1; 761 return DEVICE_NOT_FOUND; 762 } 763 764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 765 struct hpsa_scsi_dev_t *sd[], int nsds) 766 { 767 /* sd contains scsi3 addresses and devtypes, and inquiry 768 * data. This function takes what's in sd to be the current 769 * reality and updates h->dev[] to reflect that reality. 770 */ 771 int i, entry, device_change, changes = 0; 772 struct hpsa_scsi_dev_t *csd; 773 unsigned long flags; 774 struct hpsa_scsi_dev_t **added, **removed; 775 int nadded, nremoved; 776 struct Scsi_Host *sh = NULL; 777 778 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 779 GFP_KERNEL); 780 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 781 GFP_KERNEL); 782 783 if (!added || !removed) { 784 dev_warn(&h->pdev->dev, "out of memory in " 785 "adjust_hpsa_scsi_table\n"); 786 goto free_and_out; 787 } 788 789 spin_lock_irqsave(&h->devlock, flags); 790 791 /* find any devices in h->dev[] that are not in 792 * sd[] and remove them from h->dev[], and for any 793 * devices which have changed, remove the old device 794 * info and add the new device info. 795 */ 796 i = 0; 797 nremoved = 0; 798 nadded = 0; 799 while (i < h->ndevices) { 800 csd = h->dev[i]; 801 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 802 if (device_change == DEVICE_NOT_FOUND) { 803 changes++; 804 hpsa_scsi_remove_entry(h, hostno, i, 805 removed, &nremoved); 806 continue; /* remove ^^^, hence i not incremented */ 807 } else if (device_change == DEVICE_CHANGED) { 808 changes++; 809 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 810 added, &nadded, removed, &nremoved); 811 /* Set it to NULL to prevent it from being freed 812 * at the bottom of hpsa_update_scsi_devices() 813 */ 814 sd[entry] = NULL; 815 } 816 i++; 817 } 818 819 /* Now, make sure every device listed in sd[] is also 820 * listed in h->dev[], adding them if they aren't found 821 */ 822 823 for (i = 0; i < nsds; i++) { 824 if (!sd[i]) /* if already added above. */ 825 continue; 826 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 827 h->ndevices, &entry); 828 if (device_change == DEVICE_NOT_FOUND) { 829 changes++; 830 if (hpsa_scsi_add_entry(h, hostno, sd[i], 831 added, &nadded) != 0) 832 break; 833 sd[i] = NULL; /* prevent from being freed later. */ 834 } else if (device_change == DEVICE_CHANGED) { 835 /* should never happen... */ 836 changes++; 837 dev_warn(&h->pdev->dev, 838 "device unexpectedly changed.\n"); 839 /* but if it does happen, we just ignore that device */ 840 } 841 } 842 spin_unlock_irqrestore(&h->devlock, flags); 843 844 /* Don't notify scsi mid layer of any changes the first time through 845 * (or if there are no changes) scsi_scan_host will do it later the 846 * first time through. 847 */ 848 if (hostno == -1 || !changes) 849 goto free_and_out; 850 851 sh = h->scsi_host; 852 /* Notify scsi mid layer of any removed devices */ 853 for (i = 0; i < nremoved; i++) { 854 struct scsi_device *sdev = 855 scsi_device_lookup(sh, removed[i]->bus, 856 removed[i]->target, removed[i]->lun); 857 if (sdev != NULL) { 858 scsi_remove_device(sdev); 859 scsi_device_put(sdev); 860 } else { 861 /* We don't expect to get here. 862 * future cmds to this device will get selection 863 * timeout as if the device was gone. 864 */ 865 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 866 " for removal.", hostno, removed[i]->bus, 867 removed[i]->target, removed[i]->lun); 868 } 869 kfree(removed[i]); 870 removed[i] = NULL; 871 } 872 873 /* Notify scsi mid layer of any added devices */ 874 for (i = 0; i < nadded; i++) { 875 if (scsi_add_device(sh, added[i]->bus, 876 added[i]->target, added[i]->lun) == 0) 877 continue; 878 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 879 "device not added.\n", hostno, added[i]->bus, 880 added[i]->target, added[i]->lun); 881 /* now we have to remove it from h->dev, 882 * since it didn't get added to scsi mid layer 883 */ 884 fixup_botched_add(h, added[i]); 885 } 886 887 free_and_out: 888 kfree(added); 889 kfree(removed); 890 } 891 892 /* 893 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 894 * Assume's h->devlock is held. 895 */ 896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 897 int bus, int target, int lun) 898 { 899 int i; 900 struct hpsa_scsi_dev_t *sd; 901 902 for (i = 0; i < h->ndevices; i++) { 903 sd = h->dev[i]; 904 if (sd->bus == bus && sd->target == target && sd->lun == lun) 905 return sd; 906 } 907 return NULL; 908 } 909 910 /* link sdev->hostdata to our per-device structure. */ 911 static int hpsa_slave_alloc(struct scsi_device *sdev) 912 { 913 struct hpsa_scsi_dev_t *sd; 914 unsigned long flags; 915 struct ctlr_info *h; 916 917 h = sdev_to_hba(sdev); 918 spin_lock_irqsave(&h->devlock, flags); 919 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 920 sdev_id(sdev), sdev->lun); 921 if (sd != NULL) 922 sdev->hostdata = sd; 923 spin_unlock_irqrestore(&h->devlock, flags); 924 return 0; 925 } 926 927 static void hpsa_slave_destroy(struct scsi_device *sdev) 928 { 929 /* nothing to do. */ 930 } 931 932 static void hpsa_scsi_setup(struct ctlr_info *h) 933 { 934 h->ndevices = 0; 935 h->scsi_host = NULL; 936 spin_lock_init(&h->devlock); 937 } 938 939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 940 { 941 int i; 942 943 if (!h->cmd_sg_list) 944 return; 945 for (i = 0; i < h->nr_cmds; i++) { 946 kfree(h->cmd_sg_list[i]); 947 h->cmd_sg_list[i] = NULL; 948 } 949 kfree(h->cmd_sg_list); 950 h->cmd_sg_list = NULL; 951 } 952 953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 954 { 955 int i; 956 957 if (h->chainsize <= 0) 958 return 0; 959 960 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 961 GFP_KERNEL); 962 if (!h->cmd_sg_list) 963 return -ENOMEM; 964 for (i = 0; i < h->nr_cmds; i++) { 965 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 966 h->chainsize, GFP_KERNEL); 967 if (!h->cmd_sg_list[i]) 968 goto clean; 969 } 970 return 0; 971 972 clean: 973 hpsa_free_sg_chain_blocks(h); 974 return -ENOMEM; 975 } 976 977 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 978 struct CommandList *c) 979 { 980 struct SGDescriptor *chain_sg, *chain_block; 981 u64 temp64; 982 983 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 984 chain_block = h->cmd_sg_list[c->cmdindex]; 985 chain_sg->Ext = HPSA_SG_CHAIN; 986 chain_sg->Len = sizeof(*chain_sg) * 987 (c->Header.SGTotal - h->max_cmd_sg_entries); 988 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 989 PCI_DMA_TODEVICE); 990 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 991 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 992 } 993 994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 995 struct CommandList *c) 996 { 997 struct SGDescriptor *chain_sg; 998 union u64bit temp64; 999 1000 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 1001 return; 1002 1003 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1004 temp64.val32.lower = chain_sg->Addr.lower; 1005 temp64.val32.upper = chain_sg->Addr.upper; 1006 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 1007 } 1008 1009 static void complete_scsi_command(struct CommandList *cp, 1010 int timeout, u32 tag) 1011 { 1012 struct scsi_cmnd *cmd; 1013 struct ctlr_info *h; 1014 struct ErrorInfo *ei; 1015 1016 unsigned char sense_key; 1017 unsigned char asc; /* additional sense code */ 1018 unsigned char ascq; /* additional sense code qualifier */ 1019 1020 ei = cp->err_info; 1021 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 1022 h = cp->h; 1023 1024 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1025 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 1026 hpsa_unmap_sg_chain_block(h, cp); 1027 1028 cmd->result = (DID_OK << 16); /* host byte */ 1029 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1030 cmd->result |= ei->ScsiStatus; 1031 1032 /* copy the sense data whether we need to or not. */ 1033 memcpy(cmd->sense_buffer, ei->SenseInfo, 1034 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 1035 SCSI_SENSE_BUFFERSIZE : 1036 ei->SenseLen); 1037 scsi_set_resid(cmd, ei->ResidualCnt); 1038 1039 if (ei->CommandStatus == 0) { 1040 cmd->scsi_done(cmd); 1041 cmd_free(h, cp); 1042 return; 1043 } 1044 1045 /* an error has occurred */ 1046 switch (ei->CommandStatus) { 1047 1048 case CMD_TARGET_STATUS: 1049 if (ei->ScsiStatus) { 1050 /* Get sense key */ 1051 sense_key = 0xf & ei->SenseInfo[2]; 1052 /* Get additional sense code */ 1053 asc = ei->SenseInfo[12]; 1054 /* Get addition sense code qualifier */ 1055 ascq = ei->SenseInfo[13]; 1056 } 1057 1058 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1059 if (check_for_unit_attention(h, cp)) { 1060 cmd->result = DID_SOFT_ERROR << 16; 1061 break; 1062 } 1063 if (sense_key == ILLEGAL_REQUEST) { 1064 /* 1065 * SCSI REPORT_LUNS is commonly unsupported on 1066 * Smart Array. Suppress noisy complaint. 1067 */ 1068 if (cp->Request.CDB[0] == REPORT_LUNS) 1069 break; 1070 1071 /* If ASC/ASCQ indicate Logical Unit 1072 * Not Supported condition, 1073 */ 1074 if ((asc == 0x25) && (ascq == 0x0)) { 1075 dev_warn(&h->pdev->dev, "cp %p " 1076 "has check condition\n", cp); 1077 break; 1078 } 1079 } 1080 1081 if (sense_key == NOT_READY) { 1082 /* If Sense is Not Ready, Logical Unit 1083 * Not ready, Manual Intervention 1084 * required 1085 */ 1086 if ((asc == 0x04) && (ascq == 0x03)) { 1087 dev_warn(&h->pdev->dev, "cp %p " 1088 "has check condition: unit " 1089 "not ready, manual " 1090 "intervention required\n", cp); 1091 break; 1092 } 1093 } 1094 if (sense_key == ABORTED_COMMAND) { 1095 /* Aborted command is retryable */ 1096 dev_warn(&h->pdev->dev, "cp %p " 1097 "has check condition: aborted command: " 1098 "ASC: 0x%x, ASCQ: 0x%x\n", 1099 cp, asc, ascq); 1100 cmd->result = DID_SOFT_ERROR << 16; 1101 break; 1102 } 1103 /* Must be some other type of check condition */ 1104 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1105 "unknown type: " 1106 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1107 "Returning result: 0x%x, " 1108 "cmd=[%02x %02x %02x %02x %02x " 1109 "%02x %02x %02x %02x %02x %02x " 1110 "%02x %02x %02x %02x %02x]\n", 1111 cp, sense_key, asc, ascq, 1112 cmd->result, 1113 cmd->cmnd[0], cmd->cmnd[1], 1114 cmd->cmnd[2], cmd->cmnd[3], 1115 cmd->cmnd[4], cmd->cmnd[5], 1116 cmd->cmnd[6], cmd->cmnd[7], 1117 cmd->cmnd[8], cmd->cmnd[9], 1118 cmd->cmnd[10], cmd->cmnd[11], 1119 cmd->cmnd[12], cmd->cmnd[13], 1120 cmd->cmnd[14], cmd->cmnd[15]); 1121 break; 1122 } 1123 1124 1125 /* Problem was not a check condition 1126 * Pass it up to the upper layers... 1127 */ 1128 if (ei->ScsiStatus) { 1129 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1130 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1131 "Returning result: 0x%x\n", 1132 cp, ei->ScsiStatus, 1133 sense_key, asc, ascq, 1134 cmd->result); 1135 } else { /* scsi status is zero??? How??? */ 1136 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1137 "Returning no connection.\n", cp), 1138 1139 /* Ordinarily, this case should never happen, 1140 * but there is a bug in some released firmware 1141 * revisions that allows it to happen if, for 1142 * example, a 4100 backplane loses power and 1143 * the tape drive is in it. We assume that 1144 * it's a fatal error of some kind because we 1145 * can't show that it wasn't. We will make it 1146 * look like selection timeout since that is 1147 * the most common reason for this to occur, 1148 * and it's severe enough. 1149 */ 1150 1151 cmd->result = DID_NO_CONNECT << 16; 1152 } 1153 break; 1154 1155 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1156 break; 1157 case CMD_DATA_OVERRUN: 1158 dev_warn(&h->pdev->dev, "cp %p has" 1159 " completed with data overrun " 1160 "reported\n", cp); 1161 break; 1162 case CMD_INVALID: { 1163 /* print_bytes(cp, sizeof(*cp), 1, 0); 1164 print_cmd(cp); */ 1165 /* We get CMD_INVALID if you address a non-existent device 1166 * instead of a selection timeout (no response). You will 1167 * see this if you yank out a drive, then try to access it. 1168 * This is kind of a shame because it means that any other 1169 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1170 * missing target. */ 1171 cmd->result = DID_NO_CONNECT << 16; 1172 } 1173 break; 1174 case CMD_PROTOCOL_ERR: 1175 dev_warn(&h->pdev->dev, "cp %p has " 1176 "protocol error \n", cp); 1177 break; 1178 case CMD_HARDWARE_ERR: 1179 cmd->result = DID_ERROR << 16; 1180 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1181 break; 1182 case CMD_CONNECTION_LOST: 1183 cmd->result = DID_ERROR << 16; 1184 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1185 break; 1186 case CMD_ABORTED: 1187 cmd->result = DID_ABORT << 16; 1188 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1189 cp, ei->ScsiStatus); 1190 break; 1191 case CMD_ABORT_FAILED: 1192 cmd->result = DID_ERROR << 16; 1193 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1194 break; 1195 case CMD_UNSOLICITED_ABORT: 1196 cmd->result = DID_RESET << 16; 1197 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1198 "abort\n", cp); 1199 break; 1200 case CMD_TIMEOUT: 1201 cmd->result = DID_TIME_OUT << 16; 1202 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1203 break; 1204 case CMD_UNABORTABLE: 1205 cmd->result = DID_ERROR << 16; 1206 dev_warn(&h->pdev->dev, "Command unabortable\n"); 1207 break; 1208 default: 1209 cmd->result = DID_ERROR << 16; 1210 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1211 cp, ei->CommandStatus); 1212 } 1213 cmd->scsi_done(cmd); 1214 cmd_free(h, cp); 1215 } 1216 1217 static int hpsa_scsi_detect(struct ctlr_info *h) 1218 { 1219 struct Scsi_Host *sh; 1220 int error; 1221 1222 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1223 if (sh == NULL) 1224 goto fail; 1225 1226 sh->io_port = 0; 1227 sh->n_io_port = 0; 1228 sh->this_id = -1; 1229 sh->max_channel = 3; 1230 sh->max_cmd_len = MAX_COMMAND_SIZE; 1231 sh->max_lun = HPSA_MAX_LUN; 1232 sh->max_id = HPSA_MAX_LUN; 1233 sh->can_queue = h->nr_cmds; 1234 sh->cmd_per_lun = h->nr_cmds; 1235 sh->sg_tablesize = h->maxsgentries; 1236 h->scsi_host = sh; 1237 sh->hostdata[0] = (unsigned long) h; 1238 sh->irq = h->intr[h->intr_mode]; 1239 sh->unique_id = sh->irq; 1240 error = scsi_add_host(sh, &h->pdev->dev); 1241 if (error) 1242 goto fail_host_put; 1243 scsi_scan_host(sh); 1244 return 0; 1245 1246 fail_host_put: 1247 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1248 " failed for controller %d\n", h->ctlr); 1249 scsi_host_put(sh); 1250 return error; 1251 fail: 1252 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1253 " failed for controller %d\n", h->ctlr); 1254 return -ENOMEM; 1255 } 1256 1257 static void hpsa_pci_unmap(struct pci_dev *pdev, 1258 struct CommandList *c, int sg_used, int data_direction) 1259 { 1260 int i; 1261 union u64bit addr64; 1262 1263 for (i = 0; i < sg_used; i++) { 1264 addr64.val32.lower = c->SG[i].Addr.lower; 1265 addr64.val32.upper = c->SG[i].Addr.upper; 1266 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1267 data_direction); 1268 } 1269 } 1270 1271 static void hpsa_map_one(struct pci_dev *pdev, 1272 struct CommandList *cp, 1273 unsigned char *buf, 1274 size_t buflen, 1275 int data_direction) 1276 { 1277 u64 addr64; 1278 1279 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1280 cp->Header.SGList = 0; 1281 cp->Header.SGTotal = 0; 1282 return; 1283 } 1284 1285 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1286 cp->SG[0].Addr.lower = 1287 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1288 cp->SG[0].Addr.upper = 1289 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1290 cp->SG[0].Len = buflen; 1291 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1292 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1293 } 1294 1295 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1296 struct CommandList *c) 1297 { 1298 DECLARE_COMPLETION_ONSTACK(wait); 1299 1300 c->waiting = &wait; 1301 enqueue_cmd_and_start_io(h, c); 1302 wait_for_completion(&wait); 1303 } 1304 1305 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1306 struct CommandList *c, int data_direction) 1307 { 1308 int retry_count = 0; 1309 1310 do { 1311 memset(c->err_info, 0, sizeof(c->err_info)); 1312 hpsa_scsi_do_simple_cmd_core(h, c); 1313 retry_count++; 1314 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1315 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1316 } 1317 1318 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1319 { 1320 struct ErrorInfo *ei; 1321 struct device *d = &cp->h->pdev->dev; 1322 1323 ei = cp->err_info; 1324 switch (ei->CommandStatus) { 1325 case CMD_TARGET_STATUS: 1326 dev_warn(d, "cmd %p has completed with errors\n", cp); 1327 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1328 ei->ScsiStatus); 1329 if (ei->ScsiStatus == 0) 1330 dev_warn(d, "SCSI status is abnormally zero. " 1331 "(probably indicates selection timeout " 1332 "reported incorrectly due to a known " 1333 "firmware bug, circa July, 2001.)\n"); 1334 break; 1335 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1336 dev_info(d, "UNDERRUN\n"); 1337 break; 1338 case CMD_DATA_OVERRUN: 1339 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1340 break; 1341 case CMD_INVALID: { 1342 /* controller unfortunately reports SCSI passthru's 1343 * to non-existent targets as invalid commands. 1344 */ 1345 dev_warn(d, "cp %p is reported invalid (probably means " 1346 "target device no longer present)\n", cp); 1347 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1348 print_cmd(cp); */ 1349 } 1350 break; 1351 case CMD_PROTOCOL_ERR: 1352 dev_warn(d, "cp %p has protocol error \n", cp); 1353 break; 1354 case CMD_HARDWARE_ERR: 1355 /* cmd->result = DID_ERROR << 16; */ 1356 dev_warn(d, "cp %p had hardware error\n", cp); 1357 break; 1358 case CMD_CONNECTION_LOST: 1359 dev_warn(d, "cp %p had connection lost\n", cp); 1360 break; 1361 case CMD_ABORTED: 1362 dev_warn(d, "cp %p was aborted\n", cp); 1363 break; 1364 case CMD_ABORT_FAILED: 1365 dev_warn(d, "cp %p reports abort failed\n", cp); 1366 break; 1367 case CMD_UNSOLICITED_ABORT: 1368 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1369 break; 1370 case CMD_TIMEOUT: 1371 dev_warn(d, "cp %p timed out\n", cp); 1372 break; 1373 case CMD_UNABORTABLE: 1374 dev_warn(d, "Command unabortable\n"); 1375 break; 1376 default: 1377 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1378 ei->CommandStatus); 1379 } 1380 } 1381 1382 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1383 unsigned char page, unsigned char *buf, 1384 unsigned char bufsize) 1385 { 1386 int rc = IO_OK; 1387 struct CommandList *c; 1388 struct ErrorInfo *ei; 1389 1390 c = cmd_special_alloc(h); 1391 1392 if (c == NULL) { /* trouble... */ 1393 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1394 return -ENOMEM; 1395 } 1396 1397 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1398 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1399 ei = c->err_info; 1400 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1401 hpsa_scsi_interpret_error(c); 1402 rc = -1; 1403 } 1404 cmd_special_free(h, c); 1405 return rc; 1406 } 1407 1408 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1409 { 1410 int rc = IO_OK; 1411 struct CommandList *c; 1412 struct ErrorInfo *ei; 1413 1414 c = cmd_special_alloc(h); 1415 1416 if (c == NULL) { /* trouble... */ 1417 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1418 return -ENOMEM; 1419 } 1420 1421 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1422 hpsa_scsi_do_simple_cmd_core(h, c); 1423 /* no unmap needed here because no data xfer. */ 1424 1425 ei = c->err_info; 1426 if (ei->CommandStatus != 0) { 1427 hpsa_scsi_interpret_error(c); 1428 rc = -1; 1429 } 1430 cmd_special_free(h, c); 1431 return rc; 1432 } 1433 1434 static void hpsa_get_raid_level(struct ctlr_info *h, 1435 unsigned char *scsi3addr, unsigned char *raid_level) 1436 { 1437 int rc; 1438 unsigned char *buf; 1439 1440 *raid_level = RAID_UNKNOWN; 1441 buf = kzalloc(64, GFP_KERNEL); 1442 if (!buf) 1443 return; 1444 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1445 if (rc == 0) 1446 *raid_level = buf[8]; 1447 if (*raid_level > RAID_UNKNOWN) 1448 *raid_level = RAID_UNKNOWN; 1449 kfree(buf); 1450 return; 1451 } 1452 1453 /* Get the device id from inquiry page 0x83 */ 1454 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1455 unsigned char *device_id, int buflen) 1456 { 1457 int rc; 1458 unsigned char *buf; 1459 1460 if (buflen > 16) 1461 buflen = 16; 1462 buf = kzalloc(64, GFP_KERNEL); 1463 if (!buf) 1464 return -1; 1465 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1466 if (rc == 0) 1467 memcpy(device_id, &buf[8], buflen); 1468 kfree(buf); 1469 return rc != 0; 1470 } 1471 1472 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1473 struct ReportLUNdata *buf, int bufsize, 1474 int extended_response) 1475 { 1476 int rc = IO_OK; 1477 struct CommandList *c; 1478 unsigned char scsi3addr[8]; 1479 struct ErrorInfo *ei; 1480 1481 c = cmd_special_alloc(h); 1482 if (c == NULL) { /* trouble... */ 1483 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1484 return -1; 1485 } 1486 /* address the controller */ 1487 memset(scsi3addr, 0, sizeof(scsi3addr)); 1488 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1489 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1490 if (extended_response) 1491 c->Request.CDB[1] = extended_response; 1492 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1493 ei = c->err_info; 1494 if (ei->CommandStatus != 0 && 1495 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1496 hpsa_scsi_interpret_error(c); 1497 rc = -1; 1498 } 1499 cmd_special_free(h, c); 1500 return rc; 1501 } 1502 1503 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1504 struct ReportLUNdata *buf, 1505 int bufsize, int extended_response) 1506 { 1507 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1508 } 1509 1510 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1511 struct ReportLUNdata *buf, int bufsize) 1512 { 1513 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1514 } 1515 1516 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1517 int bus, int target, int lun) 1518 { 1519 device->bus = bus; 1520 device->target = target; 1521 device->lun = lun; 1522 } 1523 1524 static int hpsa_update_device_info(struct ctlr_info *h, 1525 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1526 { 1527 #define OBDR_TAPE_INQ_SIZE 49 1528 unsigned char *inq_buff; 1529 1530 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1531 if (!inq_buff) 1532 goto bail_out; 1533 1534 /* Do an inquiry to the device to see what it is. */ 1535 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1536 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1537 /* Inquiry failed (msg printed already) */ 1538 dev_err(&h->pdev->dev, 1539 "hpsa_update_device_info: inquiry failed\n"); 1540 goto bail_out; 1541 } 1542 1543 this_device->devtype = (inq_buff[0] & 0x1f); 1544 memcpy(this_device->scsi3addr, scsi3addr, 8); 1545 memcpy(this_device->vendor, &inq_buff[8], 1546 sizeof(this_device->vendor)); 1547 memcpy(this_device->model, &inq_buff[16], 1548 sizeof(this_device->model)); 1549 memset(this_device->device_id, 0, 1550 sizeof(this_device->device_id)); 1551 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1552 sizeof(this_device->device_id)); 1553 1554 if (this_device->devtype == TYPE_DISK && 1555 is_logical_dev_addr_mode(scsi3addr)) 1556 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1557 else 1558 this_device->raid_level = RAID_UNKNOWN; 1559 1560 kfree(inq_buff); 1561 return 0; 1562 1563 bail_out: 1564 kfree(inq_buff); 1565 return 1; 1566 } 1567 1568 static unsigned char *msa2xxx_model[] = { 1569 "MSA2012", 1570 "MSA2024", 1571 "MSA2312", 1572 "MSA2324", 1573 NULL, 1574 }; 1575 1576 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1577 { 1578 int i; 1579 1580 for (i = 0; msa2xxx_model[i]; i++) 1581 if (strncmp(device->model, msa2xxx_model[i], 1582 strlen(msa2xxx_model[i])) == 0) 1583 return 1; 1584 return 0; 1585 } 1586 1587 /* Helper function to assign bus, target, lun mapping of devices. 1588 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1589 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1590 * Logical drive target and lun are assigned at this time, but 1591 * physical device lun and target assignment are deferred (assigned 1592 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1593 */ 1594 static void figure_bus_target_lun(struct ctlr_info *h, 1595 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1596 struct hpsa_scsi_dev_t *device) 1597 { 1598 u32 lunid; 1599 1600 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1601 /* logical device */ 1602 if (unlikely(is_scsi_rev_5(h))) { 1603 /* p1210m, logical drives lun assignments 1604 * match SCSI REPORT LUNS data. 1605 */ 1606 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1607 *bus = 0; 1608 *target = 0; 1609 *lun = (lunid & 0x3fff) + 1; 1610 } else { 1611 /* not p1210m... */ 1612 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1613 if (is_msa2xxx(h, device)) { 1614 /* msa2xxx way, put logicals on bus 1 1615 * and match target/lun numbers box 1616 * reports. 1617 */ 1618 *bus = 1; 1619 *target = (lunid >> 16) & 0x3fff; 1620 *lun = lunid & 0x00ff; 1621 } else { 1622 /* Traditional smart array way. */ 1623 *bus = 0; 1624 *lun = 0; 1625 *target = lunid & 0x3fff; 1626 } 1627 } 1628 } else { 1629 /* physical device */ 1630 if (is_hba_lunid(lunaddrbytes)) 1631 if (unlikely(is_scsi_rev_5(h))) { 1632 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1633 *target = 0; 1634 *lun = 0; 1635 return; 1636 } else 1637 *bus = 3; /* traditional smartarray */ 1638 else 1639 *bus = 2; /* physical disk */ 1640 *target = -1; 1641 *lun = -1; /* we will fill these in later. */ 1642 } 1643 } 1644 1645 /* 1646 * If there is no lun 0 on a target, linux won't find any devices. 1647 * For the MSA2xxx boxes, we have to manually detect the enclosure 1648 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1649 * it for some reason. *tmpdevice is the target we're adding, 1650 * this_device is a pointer into the current element of currentsd[] 1651 * that we're building up in update_scsi_devices(), below. 1652 * lunzerobits is a bitmap that tracks which targets already have a 1653 * lun 0 assigned. 1654 * Returns 1 if an enclosure was added, 0 if not. 1655 */ 1656 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1657 struct hpsa_scsi_dev_t *tmpdevice, 1658 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1659 int bus, int target, int lun, unsigned long lunzerobits[], 1660 int *nmsa2xxx_enclosures) 1661 { 1662 unsigned char scsi3addr[8]; 1663 1664 if (test_bit(target, lunzerobits)) 1665 return 0; /* There is already a lun 0 on this target. */ 1666 1667 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1668 return 0; /* It's the logical targets that may lack lun 0. */ 1669 1670 if (!is_msa2xxx(h, tmpdevice)) 1671 return 0; /* It's only the MSA2xxx that have this problem. */ 1672 1673 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1674 return 0; 1675 1676 memset(scsi3addr, 0, 8); 1677 scsi3addr[3] = target; 1678 if (is_hba_lunid(scsi3addr)) 1679 return 0; /* Don't add the RAID controller here. */ 1680 1681 if (is_scsi_rev_5(h)) 1682 return 0; /* p1210m doesn't need to do this. */ 1683 1684 #define MAX_MSA2XXX_ENCLOSURES 32 1685 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1686 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1687 "enclosures exceeded. Check your hardware " 1688 "configuration."); 1689 return 0; 1690 } 1691 1692 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1693 return 0; 1694 (*nmsa2xxx_enclosures)++; 1695 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1696 set_bit(target, lunzerobits); 1697 return 1; 1698 } 1699 1700 /* 1701 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1702 * logdev. The number of luns in physdev and logdev are returned in 1703 * *nphysicals and *nlogicals, respectively. 1704 * Returns 0 on success, -1 otherwise. 1705 */ 1706 static int hpsa_gather_lun_info(struct ctlr_info *h, 1707 int reportlunsize, 1708 struct ReportLUNdata *physdev, u32 *nphysicals, 1709 struct ReportLUNdata *logdev, u32 *nlogicals) 1710 { 1711 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1712 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1713 return -1; 1714 } 1715 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1716 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1717 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1718 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1719 *nphysicals - HPSA_MAX_PHYS_LUN); 1720 *nphysicals = HPSA_MAX_PHYS_LUN; 1721 } 1722 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1723 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1724 return -1; 1725 } 1726 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1727 /* Reject Logicals in excess of our max capability. */ 1728 if (*nlogicals > HPSA_MAX_LUN) { 1729 dev_warn(&h->pdev->dev, 1730 "maximum logical LUNs (%d) exceeded. " 1731 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1732 *nlogicals - HPSA_MAX_LUN); 1733 *nlogicals = HPSA_MAX_LUN; 1734 } 1735 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1736 dev_warn(&h->pdev->dev, 1737 "maximum logical + physical LUNs (%d) exceeded. " 1738 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1739 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1740 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1741 } 1742 return 0; 1743 } 1744 1745 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1746 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1747 struct ReportLUNdata *logdev_list) 1748 { 1749 /* Helper function, figure out where the LUN ID info is coming from 1750 * given index i, lists of physical and logical devices, where in 1751 * the list the raid controller is supposed to appear (first or last) 1752 */ 1753 1754 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1755 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1756 1757 if (i == raid_ctlr_position) 1758 return RAID_CTLR_LUNID; 1759 1760 if (i < logicals_start) 1761 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1762 1763 if (i < last_device) 1764 return &logdev_list->LUN[i - nphysicals - 1765 (raid_ctlr_position == 0)][0]; 1766 BUG(); 1767 return NULL; 1768 } 1769 1770 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1771 { 1772 /* the idea here is we could get notified 1773 * that some devices have changed, so we do a report 1774 * physical luns and report logical luns cmd, and adjust 1775 * our list of devices accordingly. 1776 * 1777 * The scsi3addr's of devices won't change so long as the 1778 * adapter is not reset. That means we can rescan and 1779 * tell which devices we already know about, vs. new 1780 * devices, vs. disappearing devices. 1781 */ 1782 struct ReportLUNdata *physdev_list = NULL; 1783 struct ReportLUNdata *logdev_list = NULL; 1784 unsigned char *inq_buff = NULL; 1785 u32 nphysicals = 0; 1786 u32 nlogicals = 0; 1787 u32 ndev_allocated = 0; 1788 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1789 int ncurrent = 0; 1790 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1791 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1792 int bus, target, lun; 1793 int raid_ctlr_position; 1794 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1795 1796 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1797 GFP_KERNEL); 1798 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1799 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1800 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1801 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1802 1803 if (!currentsd || !physdev_list || !logdev_list || 1804 !inq_buff || !tmpdevice) { 1805 dev_err(&h->pdev->dev, "out of memory\n"); 1806 goto out; 1807 } 1808 memset(lunzerobits, 0, sizeof(lunzerobits)); 1809 1810 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1811 logdev_list, &nlogicals)) 1812 goto out; 1813 1814 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1815 * but each of them 4 times through different paths. The plus 1 1816 * is for the RAID controller. 1817 */ 1818 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1819 1820 /* Allocate the per device structures */ 1821 for (i = 0; i < ndevs_to_allocate; i++) { 1822 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1823 if (!currentsd[i]) { 1824 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1825 __FILE__, __LINE__); 1826 goto out; 1827 } 1828 ndev_allocated++; 1829 } 1830 1831 if (unlikely(is_scsi_rev_5(h))) 1832 raid_ctlr_position = 0; 1833 else 1834 raid_ctlr_position = nphysicals + nlogicals; 1835 1836 /* adjust our table of devices */ 1837 nmsa2xxx_enclosures = 0; 1838 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1839 u8 *lunaddrbytes; 1840 1841 /* Figure out where the LUN ID info is coming from */ 1842 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1843 i, nphysicals, nlogicals, physdev_list, logdev_list); 1844 /* skip masked physical devices. */ 1845 if (lunaddrbytes[3] & 0xC0 && 1846 i < nphysicals + (raid_ctlr_position == 0)) 1847 continue; 1848 1849 /* Get device type, vendor, model, device id */ 1850 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1851 continue; /* skip it if we can't talk to it. */ 1852 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1853 tmpdevice); 1854 this_device = currentsd[ncurrent]; 1855 1856 /* 1857 * For the msa2xxx boxes, we have to insert a LUN 0 which 1858 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1859 * is nonetheless an enclosure device there. We have to 1860 * present that otherwise linux won't find anything if 1861 * there is no lun 0. 1862 */ 1863 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1864 lunaddrbytes, bus, target, lun, lunzerobits, 1865 &nmsa2xxx_enclosures)) { 1866 ncurrent++; 1867 this_device = currentsd[ncurrent]; 1868 } 1869 1870 *this_device = *tmpdevice; 1871 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1872 1873 switch (this_device->devtype) { 1874 case TYPE_ROM: { 1875 /* We don't *really* support actual CD-ROM devices, 1876 * just "One Button Disaster Recovery" tape drive 1877 * which temporarily pretends to be a CD-ROM drive. 1878 * So we check that the device is really an OBDR tape 1879 * device by checking for "$DR-10" in bytes 43-48 of 1880 * the inquiry data. 1881 */ 1882 char obdr_sig[7]; 1883 #define OBDR_TAPE_SIG "$DR-10" 1884 strncpy(obdr_sig, &inq_buff[43], 6); 1885 obdr_sig[6] = '\0'; 1886 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1887 /* Not OBDR device, ignore it. */ 1888 break; 1889 } 1890 ncurrent++; 1891 break; 1892 case TYPE_DISK: 1893 if (i < nphysicals) 1894 break; 1895 ncurrent++; 1896 break; 1897 case TYPE_TAPE: 1898 case TYPE_MEDIUM_CHANGER: 1899 ncurrent++; 1900 break; 1901 case TYPE_RAID: 1902 /* Only present the Smartarray HBA as a RAID controller. 1903 * If it's a RAID controller other than the HBA itself 1904 * (an external RAID controller, MSA500 or similar) 1905 * don't present it. 1906 */ 1907 if (!is_hba_lunid(lunaddrbytes)) 1908 break; 1909 ncurrent++; 1910 break; 1911 default: 1912 break; 1913 } 1914 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1915 break; 1916 } 1917 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1918 out: 1919 kfree(tmpdevice); 1920 for (i = 0; i < ndev_allocated; i++) 1921 kfree(currentsd[i]); 1922 kfree(currentsd); 1923 kfree(inq_buff); 1924 kfree(physdev_list); 1925 kfree(logdev_list); 1926 } 1927 1928 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1929 * dma mapping and fills in the scatter gather entries of the 1930 * hpsa command, cp. 1931 */ 1932 static int hpsa_scatter_gather(struct ctlr_info *h, 1933 struct CommandList *cp, 1934 struct scsi_cmnd *cmd) 1935 { 1936 unsigned int len; 1937 struct scatterlist *sg; 1938 u64 addr64; 1939 int use_sg, i, sg_index, chained; 1940 struct SGDescriptor *curr_sg; 1941 1942 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 1943 1944 use_sg = scsi_dma_map(cmd); 1945 if (use_sg < 0) 1946 return use_sg; 1947 1948 if (!use_sg) 1949 goto sglist_finished; 1950 1951 curr_sg = cp->SG; 1952 chained = 0; 1953 sg_index = 0; 1954 scsi_for_each_sg(cmd, sg, use_sg, i) { 1955 if (i == h->max_cmd_sg_entries - 1 && 1956 use_sg > h->max_cmd_sg_entries) { 1957 chained = 1; 1958 curr_sg = h->cmd_sg_list[cp->cmdindex]; 1959 sg_index = 0; 1960 } 1961 addr64 = (u64) sg_dma_address(sg); 1962 len = sg_dma_len(sg); 1963 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 1964 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 1965 curr_sg->Len = len; 1966 curr_sg->Ext = 0; /* we are not chaining */ 1967 curr_sg++; 1968 } 1969 1970 if (use_sg + chained > h->maxSG) 1971 h->maxSG = use_sg + chained; 1972 1973 if (chained) { 1974 cp->Header.SGList = h->max_cmd_sg_entries; 1975 cp->Header.SGTotal = (u16) (use_sg + 1); 1976 hpsa_map_sg_chain_block(h, cp); 1977 return 0; 1978 } 1979 1980 sglist_finished: 1981 1982 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 1983 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 1984 return 0; 1985 } 1986 1987 1988 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 1989 void (*done)(struct scsi_cmnd *)) 1990 { 1991 struct ctlr_info *h; 1992 struct hpsa_scsi_dev_t *dev; 1993 unsigned char scsi3addr[8]; 1994 struct CommandList *c; 1995 unsigned long flags; 1996 1997 /* Get the ptr to our adapter structure out of cmd->host. */ 1998 h = sdev_to_hba(cmd->device); 1999 dev = cmd->device->hostdata; 2000 if (!dev) { 2001 cmd->result = DID_NO_CONNECT << 16; 2002 done(cmd); 2003 return 0; 2004 } 2005 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 2006 2007 /* Need a lock as this is being allocated from the pool */ 2008 spin_lock_irqsave(&h->lock, flags); 2009 c = cmd_alloc(h); 2010 spin_unlock_irqrestore(&h->lock, flags); 2011 if (c == NULL) { /* trouble... */ 2012 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2013 return SCSI_MLQUEUE_HOST_BUSY; 2014 } 2015 2016 /* Fill in the command list header */ 2017 2018 cmd->scsi_done = done; /* save this for use by completion code */ 2019 2020 /* save c in case we have to abort it */ 2021 cmd->host_scribble = (unsigned char *) c; 2022 2023 c->cmd_type = CMD_SCSI; 2024 c->scsi_cmd = cmd; 2025 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2026 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 2027 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 2028 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 2029 2030 /* Fill in the request block... */ 2031 2032 c->Request.Timeout = 0; 2033 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 2034 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 2035 c->Request.CDBLen = cmd->cmd_len; 2036 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 2037 c->Request.Type.Type = TYPE_CMD; 2038 c->Request.Type.Attribute = ATTR_SIMPLE; 2039 switch (cmd->sc_data_direction) { 2040 case DMA_TO_DEVICE: 2041 c->Request.Type.Direction = XFER_WRITE; 2042 break; 2043 case DMA_FROM_DEVICE: 2044 c->Request.Type.Direction = XFER_READ; 2045 break; 2046 case DMA_NONE: 2047 c->Request.Type.Direction = XFER_NONE; 2048 break; 2049 case DMA_BIDIRECTIONAL: 2050 /* This can happen if a buggy application does a scsi passthru 2051 * and sets both inlen and outlen to non-zero. ( see 2052 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 2053 */ 2054 2055 c->Request.Type.Direction = XFER_RSVD; 2056 /* This is technically wrong, and hpsa controllers should 2057 * reject it with CMD_INVALID, which is the most correct 2058 * response, but non-fibre backends appear to let it 2059 * slide by, and give the same results as if this field 2060 * were set correctly. Either way is acceptable for 2061 * our purposes here. 2062 */ 2063 2064 break; 2065 2066 default: 2067 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 2068 cmd->sc_data_direction); 2069 BUG(); 2070 break; 2071 } 2072 2073 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 2074 cmd_free(h, c); 2075 return SCSI_MLQUEUE_HOST_BUSY; 2076 } 2077 enqueue_cmd_and_start_io(h, c); 2078 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2079 return 0; 2080 } 2081 2082 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2083 2084 static void hpsa_scan_start(struct Scsi_Host *sh) 2085 { 2086 struct ctlr_info *h = shost_to_hba(sh); 2087 unsigned long flags; 2088 2089 /* wait until any scan already in progress is finished. */ 2090 while (1) { 2091 spin_lock_irqsave(&h->scan_lock, flags); 2092 if (h->scan_finished) 2093 break; 2094 spin_unlock_irqrestore(&h->scan_lock, flags); 2095 wait_event(h->scan_wait_queue, h->scan_finished); 2096 /* Note: We don't need to worry about a race between this 2097 * thread and driver unload because the midlayer will 2098 * have incremented the reference count, so unload won't 2099 * happen if we're in here. 2100 */ 2101 } 2102 h->scan_finished = 0; /* mark scan as in progress */ 2103 spin_unlock_irqrestore(&h->scan_lock, flags); 2104 2105 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2106 2107 spin_lock_irqsave(&h->scan_lock, flags); 2108 h->scan_finished = 1; /* mark scan as finished. */ 2109 wake_up_all(&h->scan_wait_queue); 2110 spin_unlock_irqrestore(&h->scan_lock, flags); 2111 } 2112 2113 static int hpsa_scan_finished(struct Scsi_Host *sh, 2114 unsigned long elapsed_time) 2115 { 2116 struct ctlr_info *h = shost_to_hba(sh); 2117 unsigned long flags; 2118 int finished; 2119 2120 spin_lock_irqsave(&h->scan_lock, flags); 2121 finished = h->scan_finished; 2122 spin_unlock_irqrestore(&h->scan_lock, flags); 2123 return finished; 2124 } 2125 2126 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2127 int qdepth, int reason) 2128 { 2129 struct ctlr_info *h = sdev_to_hba(sdev); 2130 2131 if (reason != SCSI_QDEPTH_DEFAULT) 2132 return -ENOTSUPP; 2133 2134 if (qdepth < 1) 2135 qdepth = 1; 2136 else 2137 if (qdepth > h->nr_cmds) 2138 qdepth = h->nr_cmds; 2139 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2140 return sdev->queue_depth; 2141 } 2142 2143 static void hpsa_unregister_scsi(struct ctlr_info *h) 2144 { 2145 /* we are being forcibly unloaded, and may not refuse. */ 2146 scsi_remove_host(h->scsi_host); 2147 scsi_host_put(h->scsi_host); 2148 h->scsi_host = NULL; 2149 } 2150 2151 static int hpsa_register_scsi(struct ctlr_info *h) 2152 { 2153 int rc; 2154 2155 rc = hpsa_scsi_detect(h); 2156 if (rc != 0) 2157 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2158 " hpsa_scsi_detect(), rc is %d\n", rc); 2159 return rc; 2160 } 2161 2162 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2163 unsigned char lunaddr[]) 2164 { 2165 int rc = 0; 2166 int count = 0; 2167 int waittime = 1; /* seconds */ 2168 struct CommandList *c; 2169 2170 c = cmd_special_alloc(h); 2171 if (!c) { 2172 dev_warn(&h->pdev->dev, "out of memory in " 2173 "wait_for_device_to_become_ready.\n"); 2174 return IO_ERROR; 2175 } 2176 2177 /* Send test unit ready until device ready, or give up. */ 2178 while (count < HPSA_TUR_RETRY_LIMIT) { 2179 2180 /* Wait for a bit. do this first, because if we send 2181 * the TUR right away, the reset will just abort it. 2182 */ 2183 msleep(1000 * waittime); 2184 count++; 2185 2186 /* Increase wait time with each try, up to a point. */ 2187 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2188 waittime = waittime * 2; 2189 2190 /* Send the Test Unit Ready */ 2191 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2192 hpsa_scsi_do_simple_cmd_core(h, c); 2193 /* no unmap needed here because no data xfer. */ 2194 2195 if (c->err_info->CommandStatus == CMD_SUCCESS) 2196 break; 2197 2198 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2199 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2200 (c->err_info->SenseInfo[2] == NO_SENSE || 2201 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2202 break; 2203 2204 dev_warn(&h->pdev->dev, "waiting %d secs " 2205 "for device to become ready.\n", waittime); 2206 rc = 1; /* device not ready. */ 2207 } 2208 2209 if (rc) 2210 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2211 else 2212 dev_warn(&h->pdev->dev, "device is ready.\n"); 2213 2214 cmd_special_free(h, c); 2215 return rc; 2216 } 2217 2218 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2219 * complaining. Doing a host- or bus-reset can't do anything good here. 2220 */ 2221 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2222 { 2223 int rc; 2224 struct ctlr_info *h; 2225 struct hpsa_scsi_dev_t *dev; 2226 2227 /* find the controller to which the command to be aborted was sent */ 2228 h = sdev_to_hba(scsicmd->device); 2229 if (h == NULL) /* paranoia */ 2230 return FAILED; 2231 dev = scsicmd->device->hostdata; 2232 if (!dev) { 2233 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2234 "device lookup failed.\n"); 2235 return FAILED; 2236 } 2237 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2238 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2239 /* send a reset to the SCSI LUN which the command was sent to */ 2240 rc = hpsa_send_reset(h, dev->scsi3addr); 2241 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2242 return SUCCESS; 2243 2244 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2245 return FAILED; 2246 } 2247 2248 /* 2249 * For operations that cannot sleep, a command block is allocated at init, 2250 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2251 * which ones are free or in use. Lock must be held when calling this. 2252 * cmd_free() is the complement. 2253 */ 2254 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2255 { 2256 struct CommandList *c; 2257 int i; 2258 union u64bit temp64; 2259 dma_addr_t cmd_dma_handle, err_dma_handle; 2260 2261 do { 2262 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2263 if (i == h->nr_cmds) 2264 return NULL; 2265 } while (test_and_set_bit 2266 (i & (BITS_PER_LONG - 1), 2267 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2268 c = h->cmd_pool + i; 2269 memset(c, 0, sizeof(*c)); 2270 cmd_dma_handle = h->cmd_pool_dhandle 2271 + i * sizeof(*c); 2272 c->err_info = h->errinfo_pool + i; 2273 memset(c->err_info, 0, sizeof(*c->err_info)); 2274 err_dma_handle = h->errinfo_pool_dhandle 2275 + i * sizeof(*c->err_info); 2276 h->nr_allocs++; 2277 2278 c->cmdindex = i; 2279 2280 INIT_LIST_HEAD(&c->list); 2281 c->busaddr = (u32) cmd_dma_handle; 2282 temp64.val = (u64) err_dma_handle; 2283 c->ErrDesc.Addr.lower = temp64.val32.lower; 2284 c->ErrDesc.Addr.upper = temp64.val32.upper; 2285 c->ErrDesc.Len = sizeof(*c->err_info); 2286 2287 c->h = h; 2288 return c; 2289 } 2290 2291 /* For operations that can wait for kmalloc to possibly sleep, 2292 * this routine can be called. Lock need not be held to call 2293 * cmd_special_alloc. cmd_special_free() is the complement. 2294 */ 2295 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2296 { 2297 struct CommandList *c; 2298 union u64bit temp64; 2299 dma_addr_t cmd_dma_handle, err_dma_handle; 2300 2301 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2302 if (c == NULL) 2303 return NULL; 2304 memset(c, 0, sizeof(*c)); 2305 2306 c->cmdindex = -1; 2307 2308 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2309 &err_dma_handle); 2310 2311 if (c->err_info == NULL) { 2312 pci_free_consistent(h->pdev, 2313 sizeof(*c), c, cmd_dma_handle); 2314 return NULL; 2315 } 2316 memset(c->err_info, 0, sizeof(*c->err_info)); 2317 2318 INIT_LIST_HEAD(&c->list); 2319 c->busaddr = (u32) cmd_dma_handle; 2320 temp64.val = (u64) err_dma_handle; 2321 c->ErrDesc.Addr.lower = temp64.val32.lower; 2322 c->ErrDesc.Addr.upper = temp64.val32.upper; 2323 c->ErrDesc.Len = sizeof(*c->err_info); 2324 2325 c->h = h; 2326 return c; 2327 } 2328 2329 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2330 { 2331 int i; 2332 2333 i = c - h->cmd_pool; 2334 clear_bit(i & (BITS_PER_LONG - 1), 2335 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2336 h->nr_frees++; 2337 } 2338 2339 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2340 { 2341 union u64bit temp64; 2342 2343 temp64.val32.lower = c->ErrDesc.Addr.lower; 2344 temp64.val32.upper = c->ErrDesc.Addr.upper; 2345 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2346 c->err_info, (dma_addr_t) temp64.val); 2347 pci_free_consistent(h->pdev, sizeof(*c), 2348 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); 2349 } 2350 2351 #ifdef CONFIG_COMPAT 2352 2353 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2354 { 2355 IOCTL32_Command_struct __user *arg32 = 2356 (IOCTL32_Command_struct __user *) arg; 2357 IOCTL_Command_struct arg64; 2358 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2359 int err; 2360 u32 cp; 2361 2362 memset(&arg64, 0, sizeof(arg64)); 2363 err = 0; 2364 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2365 sizeof(arg64.LUN_info)); 2366 err |= copy_from_user(&arg64.Request, &arg32->Request, 2367 sizeof(arg64.Request)); 2368 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2369 sizeof(arg64.error_info)); 2370 err |= get_user(arg64.buf_size, &arg32->buf_size); 2371 err |= get_user(cp, &arg32->buf); 2372 arg64.buf = compat_ptr(cp); 2373 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2374 2375 if (err) 2376 return -EFAULT; 2377 2378 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2379 if (err) 2380 return err; 2381 err |= copy_in_user(&arg32->error_info, &p->error_info, 2382 sizeof(arg32->error_info)); 2383 if (err) 2384 return -EFAULT; 2385 return err; 2386 } 2387 2388 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2389 int cmd, void *arg) 2390 { 2391 BIG_IOCTL32_Command_struct __user *arg32 = 2392 (BIG_IOCTL32_Command_struct __user *) arg; 2393 BIG_IOCTL_Command_struct arg64; 2394 BIG_IOCTL_Command_struct __user *p = 2395 compat_alloc_user_space(sizeof(arg64)); 2396 int err; 2397 u32 cp; 2398 2399 memset(&arg64, 0, sizeof(arg64)); 2400 err = 0; 2401 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2402 sizeof(arg64.LUN_info)); 2403 err |= copy_from_user(&arg64.Request, &arg32->Request, 2404 sizeof(arg64.Request)); 2405 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2406 sizeof(arg64.error_info)); 2407 err |= get_user(arg64.buf_size, &arg32->buf_size); 2408 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2409 err |= get_user(cp, &arg32->buf); 2410 arg64.buf = compat_ptr(cp); 2411 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2412 2413 if (err) 2414 return -EFAULT; 2415 2416 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2417 if (err) 2418 return err; 2419 err |= copy_in_user(&arg32->error_info, &p->error_info, 2420 sizeof(arg32->error_info)); 2421 if (err) 2422 return -EFAULT; 2423 return err; 2424 } 2425 2426 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2427 { 2428 switch (cmd) { 2429 case CCISS_GETPCIINFO: 2430 case CCISS_GETINTINFO: 2431 case CCISS_SETINTINFO: 2432 case CCISS_GETNODENAME: 2433 case CCISS_SETNODENAME: 2434 case CCISS_GETHEARTBEAT: 2435 case CCISS_GETBUSTYPES: 2436 case CCISS_GETFIRMVER: 2437 case CCISS_GETDRIVVER: 2438 case CCISS_REVALIDVOLS: 2439 case CCISS_DEREGDISK: 2440 case CCISS_REGNEWDISK: 2441 case CCISS_REGNEWD: 2442 case CCISS_RESCANDISK: 2443 case CCISS_GETLUNINFO: 2444 return hpsa_ioctl(dev, cmd, arg); 2445 2446 case CCISS_PASSTHRU32: 2447 return hpsa_ioctl32_passthru(dev, cmd, arg); 2448 case CCISS_BIG_PASSTHRU32: 2449 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2450 2451 default: 2452 return -ENOIOCTLCMD; 2453 } 2454 } 2455 #endif 2456 2457 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2458 { 2459 struct hpsa_pci_info pciinfo; 2460 2461 if (!argp) 2462 return -EINVAL; 2463 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2464 pciinfo.bus = h->pdev->bus->number; 2465 pciinfo.dev_fn = h->pdev->devfn; 2466 pciinfo.board_id = h->board_id; 2467 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2468 return -EFAULT; 2469 return 0; 2470 } 2471 2472 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2473 { 2474 DriverVer_type DriverVer; 2475 unsigned char vmaj, vmin, vsubmin; 2476 int rc; 2477 2478 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2479 &vmaj, &vmin, &vsubmin); 2480 if (rc != 3) { 2481 dev_info(&h->pdev->dev, "driver version string '%s' " 2482 "unrecognized.", HPSA_DRIVER_VERSION); 2483 vmaj = 0; 2484 vmin = 0; 2485 vsubmin = 0; 2486 } 2487 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2488 if (!argp) 2489 return -EINVAL; 2490 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2491 return -EFAULT; 2492 return 0; 2493 } 2494 2495 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2496 { 2497 IOCTL_Command_struct iocommand; 2498 struct CommandList *c; 2499 char *buff = NULL; 2500 union u64bit temp64; 2501 2502 if (!argp) 2503 return -EINVAL; 2504 if (!capable(CAP_SYS_RAWIO)) 2505 return -EPERM; 2506 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2507 return -EFAULT; 2508 if ((iocommand.buf_size < 1) && 2509 (iocommand.Request.Type.Direction != XFER_NONE)) { 2510 return -EINVAL; 2511 } 2512 if (iocommand.buf_size > 0) { 2513 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2514 if (buff == NULL) 2515 return -EFAULT; 2516 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2517 /* Copy the data into the buffer we created */ 2518 if (copy_from_user(buff, iocommand.buf, 2519 iocommand.buf_size)) { 2520 kfree(buff); 2521 return -EFAULT; 2522 } 2523 } else { 2524 memset(buff, 0, iocommand.buf_size); 2525 } 2526 } 2527 c = cmd_special_alloc(h); 2528 if (c == NULL) { 2529 kfree(buff); 2530 return -ENOMEM; 2531 } 2532 /* Fill in the command type */ 2533 c->cmd_type = CMD_IOCTL_PEND; 2534 /* Fill in Command Header */ 2535 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2536 if (iocommand.buf_size > 0) { /* buffer to fill */ 2537 c->Header.SGList = 1; 2538 c->Header.SGTotal = 1; 2539 } else { /* no buffers to fill */ 2540 c->Header.SGList = 0; 2541 c->Header.SGTotal = 0; 2542 } 2543 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2544 /* use the kernel address the cmd block for tag */ 2545 c->Header.Tag.lower = c->busaddr; 2546 2547 /* Fill in Request block */ 2548 memcpy(&c->Request, &iocommand.Request, 2549 sizeof(c->Request)); 2550 2551 /* Fill in the scatter gather information */ 2552 if (iocommand.buf_size > 0) { 2553 temp64.val = pci_map_single(h->pdev, buff, 2554 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2555 c->SG[0].Addr.lower = temp64.val32.lower; 2556 c->SG[0].Addr.upper = temp64.val32.upper; 2557 c->SG[0].Len = iocommand.buf_size; 2558 c->SG[0].Ext = 0; /* we are not chaining*/ 2559 } 2560 hpsa_scsi_do_simple_cmd_core(h, c); 2561 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2562 check_ioctl_unit_attention(h, c); 2563 2564 /* Copy the error information out */ 2565 memcpy(&iocommand.error_info, c->err_info, 2566 sizeof(iocommand.error_info)); 2567 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2568 kfree(buff); 2569 cmd_special_free(h, c); 2570 return -EFAULT; 2571 } 2572 if (iocommand.Request.Type.Direction == XFER_READ && 2573 iocommand.buf_size > 0) { 2574 /* Copy the data out of the buffer we created */ 2575 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2576 kfree(buff); 2577 cmd_special_free(h, c); 2578 return -EFAULT; 2579 } 2580 } 2581 kfree(buff); 2582 cmd_special_free(h, c); 2583 return 0; 2584 } 2585 2586 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2587 { 2588 BIG_IOCTL_Command_struct *ioc; 2589 struct CommandList *c; 2590 unsigned char **buff = NULL; 2591 int *buff_size = NULL; 2592 union u64bit temp64; 2593 BYTE sg_used = 0; 2594 int status = 0; 2595 int i; 2596 u32 left; 2597 u32 sz; 2598 BYTE __user *data_ptr; 2599 2600 if (!argp) 2601 return -EINVAL; 2602 if (!capable(CAP_SYS_RAWIO)) 2603 return -EPERM; 2604 ioc = (BIG_IOCTL_Command_struct *) 2605 kmalloc(sizeof(*ioc), GFP_KERNEL); 2606 if (!ioc) { 2607 status = -ENOMEM; 2608 goto cleanup1; 2609 } 2610 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2611 status = -EFAULT; 2612 goto cleanup1; 2613 } 2614 if ((ioc->buf_size < 1) && 2615 (ioc->Request.Type.Direction != XFER_NONE)) { 2616 status = -EINVAL; 2617 goto cleanup1; 2618 } 2619 /* Check kmalloc limits using all SGs */ 2620 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2621 status = -EINVAL; 2622 goto cleanup1; 2623 } 2624 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2625 status = -EINVAL; 2626 goto cleanup1; 2627 } 2628 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2629 if (!buff) { 2630 status = -ENOMEM; 2631 goto cleanup1; 2632 } 2633 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2634 if (!buff_size) { 2635 status = -ENOMEM; 2636 goto cleanup1; 2637 } 2638 left = ioc->buf_size; 2639 data_ptr = ioc->buf; 2640 while (left) { 2641 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2642 buff_size[sg_used] = sz; 2643 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2644 if (buff[sg_used] == NULL) { 2645 status = -ENOMEM; 2646 goto cleanup1; 2647 } 2648 if (ioc->Request.Type.Direction == XFER_WRITE) { 2649 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2650 status = -ENOMEM; 2651 goto cleanup1; 2652 } 2653 } else 2654 memset(buff[sg_used], 0, sz); 2655 left -= sz; 2656 data_ptr += sz; 2657 sg_used++; 2658 } 2659 c = cmd_special_alloc(h); 2660 if (c == NULL) { 2661 status = -ENOMEM; 2662 goto cleanup1; 2663 } 2664 c->cmd_type = CMD_IOCTL_PEND; 2665 c->Header.ReplyQueue = 0; 2666 c->Header.SGList = c->Header.SGTotal = sg_used; 2667 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2668 c->Header.Tag.lower = c->busaddr; 2669 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2670 if (ioc->buf_size > 0) { 2671 int i; 2672 for (i = 0; i < sg_used; i++) { 2673 temp64.val = pci_map_single(h->pdev, buff[i], 2674 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2675 c->SG[i].Addr.lower = temp64.val32.lower; 2676 c->SG[i].Addr.upper = temp64.val32.upper; 2677 c->SG[i].Len = buff_size[i]; 2678 /* we are not chaining */ 2679 c->SG[i].Ext = 0; 2680 } 2681 } 2682 hpsa_scsi_do_simple_cmd_core(h, c); 2683 if (sg_used) 2684 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2685 check_ioctl_unit_attention(h, c); 2686 /* Copy the error information out */ 2687 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2688 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2689 cmd_special_free(h, c); 2690 status = -EFAULT; 2691 goto cleanup1; 2692 } 2693 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { 2694 /* Copy the data out of the buffer we created */ 2695 BYTE __user *ptr = ioc->buf; 2696 for (i = 0; i < sg_used; i++) { 2697 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2698 cmd_special_free(h, c); 2699 status = -EFAULT; 2700 goto cleanup1; 2701 } 2702 ptr += buff_size[i]; 2703 } 2704 } 2705 cmd_special_free(h, c); 2706 status = 0; 2707 cleanup1: 2708 if (buff) { 2709 for (i = 0; i < sg_used; i++) 2710 kfree(buff[i]); 2711 kfree(buff); 2712 } 2713 kfree(buff_size); 2714 kfree(ioc); 2715 return status; 2716 } 2717 2718 static void check_ioctl_unit_attention(struct ctlr_info *h, 2719 struct CommandList *c) 2720 { 2721 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2722 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2723 (void) check_for_unit_attention(h, c); 2724 } 2725 /* 2726 * ioctl 2727 */ 2728 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2729 { 2730 struct ctlr_info *h; 2731 void __user *argp = (void __user *)arg; 2732 2733 h = sdev_to_hba(dev); 2734 2735 switch (cmd) { 2736 case CCISS_DEREGDISK: 2737 case CCISS_REGNEWDISK: 2738 case CCISS_REGNEWD: 2739 hpsa_scan_start(h->scsi_host); 2740 return 0; 2741 case CCISS_GETPCIINFO: 2742 return hpsa_getpciinfo_ioctl(h, argp); 2743 case CCISS_GETDRIVVER: 2744 return hpsa_getdrivver_ioctl(h, argp); 2745 case CCISS_PASSTHRU: 2746 return hpsa_passthru_ioctl(h, argp); 2747 case CCISS_BIG_PASSTHRU: 2748 return hpsa_big_passthru_ioctl(h, argp); 2749 default: 2750 return -ENOTTY; 2751 } 2752 } 2753 2754 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2755 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2756 int cmd_type) 2757 { 2758 int pci_dir = XFER_NONE; 2759 2760 c->cmd_type = CMD_IOCTL_PEND; 2761 c->Header.ReplyQueue = 0; 2762 if (buff != NULL && size > 0) { 2763 c->Header.SGList = 1; 2764 c->Header.SGTotal = 1; 2765 } else { 2766 c->Header.SGList = 0; 2767 c->Header.SGTotal = 0; 2768 } 2769 c->Header.Tag.lower = c->busaddr; 2770 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2771 2772 c->Request.Type.Type = cmd_type; 2773 if (cmd_type == TYPE_CMD) { 2774 switch (cmd) { 2775 case HPSA_INQUIRY: 2776 /* are we trying to read a vital product page */ 2777 if (page_code != 0) { 2778 c->Request.CDB[1] = 0x01; 2779 c->Request.CDB[2] = page_code; 2780 } 2781 c->Request.CDBLen = 6; 2782 c->Request.Type.Attribute = ATTR_SIMPLE; 2783 c->Request.Type.Direction = XFER_READ; 2784 c->Request.Timeout = 0; 2785 c->Request.CDB[0] = HPSA_INQUIRY; 2786 c->Request.CDB[4] = size & 0xFF; 2787 break; 2788 case HPSA_REPORT_LOG: 2789 case HPSA_REPORT_PHYS: 2790 /* Talking to controller so It's a physical command 2791 mode = 00 target = 0. Nothing to write. 2792 */ 2793 c->Request.CDBLen = 12; 2794 c->Request.Type.Attribute = ATTR_SIMPLE; 2795 c->Request.Type.Direction = XFER_READ; 2796 c->Request.Timeout = 0; 2797 c->Request.CDB[0] = cmd; 2798 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2799 c->Request.CDB[7] = (size >> 16) & 0xFF; 2800 c->Request.CDB[8] = (size >> 8) & 0xFF; 2801 c->Request.CDB[9] = size & 0xFF; 2802 break; 2803 case HPSA_CACHE_FLUSH: 2804 c->Request.CDBLen = 12; 2805 c->Request.Type.Attribute = ATTR_SIMPLE; 2806 c->Request.Type.Direction = XFER_WRITE; 2807 c->Request.Timeout = 0; 2808 c->Request.CDB[0] = BMIC_WRITE; 2809 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2810 break; 2811 case TEST_UNIT_READY: 2812 c->Request.CDBLen = 6; 2813 c->Request.Type.Attribute = ATTR_SIMPLE; 2814 c->Request.Type.Direction = XFER_NONE; 2815 c->Request.Timeout = 0; 2816 break; 2817 default: 2818 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2819 BUG(); 2820 return; 2821 } 2822 } else if (cmd_type == TYPE_MSG) { 2823 switch (cmd) { 2824 2825 case HPSA_DEVICE_RESET_MSG: 2826 c->Request.CDBLen = 16; 2827 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2828 c->Request.Type.Attribute = ATTR_SIMPLE; 2829 c->Request.Type.Direction = XFER_NONE; 2830 c->Request.Timeout = 0; /* Don't time out */ 2831 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2832 c->Request.CDB[1] = 0x03; /* Reset target above */ 2833 /* If bytes 4-7 are zero, it means reset the */ 2834 /* LunID device */ 2835 c->Request.CDB[4] = 0x00; 2836 c->Request.CDB[5] = 0x00; 2837 c->Request.CDB[6] = 0x00; 2838 c->Request.CDB[7] = 0x00; 2839 break; 2840 2841 default: 2842 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2843 cmd); 2844 BUG(); 2845 } 2846 } else { 2847 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2848 BUG(); 2849 } 2850 2851 switch (c->Request.Type.Direction) { 2852 case XFER_READ: 2853 pci_dir = PCI_DMA_FROMDEVICE; 2854 break; 2855 case XFER_WRITE: 2856 pci_dir = PCI_DMA_TODEVICE; 2857 break; 2858 case XFER_NONE: 2859 pci_dir = PCI_DMA_NONE; 2860 break; 2861 default: 2862 pci_dir = PCI_DMA_BIDIRECTIONAL; 2863 } 2864 2865 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2866 2867 return; 2868 } 2869 2870 /* 2871 * Map (physical) PCI mem into (virtual) kernel space 2872 */ 2873 static void __iomem *remap_pci_mem(ulong base, ulong size) 2874 { 2875 ulong page_base = ((ulong) base) & PAGE_MASK; 2876 ulong page_offs = ((ulong) base) - page_base; 2877 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2878 2879 return page_remapped ? (page_remapped + page_offs) : NULL; 2880 } 2881 2882 /* Takes cmds off the submission queue and sends them to the hardware, 2883 * then puts them on the queue of cmds waiting for completion. 2884 */ 2885 static void start_io(struct ctlr_info *h) 2886 { 2887 struct CommandList *c; 2888 2889 while (!list_empty(&h->reqQ)) { 2890 c = list_entry(h->reqQ.next, struct CommandList, list); 2891 /* can't do anything if fifo is full */ 2892 if ((h->access.fifo_full(h))) { 2893 dev_warn(&h->pdev->dev, "fifo full\n"); 2894 break; 2895 } 2896 2897 /* Get the first entry from the Request Q */ 2898 removeQ(c); 2899 h->Qdepth--; 2900 2901 /* Tell the controller execute command */ 2902 h->access.submit_command(h, c); 2903 2904 /* Put job onto the completed Q */ 2905 addQ(&h->cmpQ, c); 2906 } 2907 } 2908 2909 static inline unsigned long get_next_completion(struct ctlr_info *h) 2910 { 2911 return h->access.command_completed(h); 2912 } 2913 2914 static inline bool interrupt_pending(struct ctlr_info *h) 2915 { 2916 return h->access.intr_pending(h); 2917 } 2918 2919 static inline long interrupt_not_for_us(struct ctlr_info *h) 2920 { 2921 return (h->access.intr_pending(h) == 0) || 2922 (h->interrupts_enabled == 0); 2923 } 2924 2925 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2926 u32 raw_tag) 2927 { 2928 if (unlikely(tag_index >= h->nr_cmds)) { 2929 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2930 return 1; 2931 } 2932 return 0; 2933 } 2934 2935 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2936 { 2937 removeQ(c); 2938 if (likely(c->cmd_type == CMD_SCSI)) 2939 complete_scsi_command(c, 0, raw_tag); 2940 else if (c->cmd_type == CMD_IOCTL_PEND) 2941 complete(c->waiting); 2942 } 2943 2944 static inline u32 hpsa_tag_contains_index(u32 tag) 2945 { 2946 return tag & DIRECT_LOOKUP_BIT; 2947 } 2948 2949 static inline u32 hpsa_tag_to_index(u32 tag) 2950 { 2951 return tag >> DIRECT_LOOKUP_SHIFT; 2952 } 2953 2954 2955 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 2956 { 2957 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 2958 #define HPSA_SIMPLE_ERROR_BITS 0x03 2959 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 2960 return tag & ~HPSA_SIMPLE_ERROR_BITS; 2961 return tag & ~HPSA_PERF_ERROR_BITS; 2962 } 2963 2964 /* process completion of an indexed ("direct lookup") command */ 2965 static inline u32 process_indexed_cmd(struct ctlr_info *h, 2966 u32 raw_tag) 2967 { 2968 u32 tag_index; 2969 struct CommandList *c; 2970 2971 tag_index = hpsa_tag_to_index(raw_tag); 2972 if (bad_tag(h, tag_index, raw_tag)) 2973 return next_command(h); 2974 c = h->cmd_pool + tag_index; 2975 finish_cmd(c, raw_tag); 2976 return next_command(h); 2977 } 2978 2979 /* process completion of a non-indexed command */ 2980 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 2981 u32 raw_tag) 2982 { 2983 u32 tag; 2984 struct CommandList *c = NULL; 2985 2986 tag = hpsa_tag_discard_error_bits(h, raw_tag); 2987 list_for_each_entry(c, &h->cmpQ, list) { 2988 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 2989 finish_cmd(c, raw_tag); 2990 return next_command(h); 2991 } 2992 } 2993 bad_tag(h, h->nr_cmds + 1, raw_tag); 2994 return next_command(h); 2995 } 2996 2997 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id) 2998 { 2999 struct ctlr_info *h = dev_id; 3000 unsigned long flags; 3001 u32 raw_tag; 3002 3003 if (interrupt_not_for_us(h)) 3004 return IRQ_NONE; 3005 spin_lock_irqsave(&h->lock, flags); 3006 while (interrupt_pending(h)) { 3007 raw_tag = get_next_completion(h); 3008 while (raw_tag != FIFO_EMPTY) { 3009 if (hpsa_tag_contains_index(raw_tag)) 3010 raw_tag = process_indexed_cmd(h, raw_tag); 3011 else 3012 raw_tag = process_nonindexed_cmd(h, raw_tag); 3013 } 3014 } 3015 spin_unlock_irqrestore(&h->lock, flags); 3016 return IRQ_HANDLED; 3017 } 3018 3019 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id) 3020 { 3021 struct ctlr_info *h = dev_id; 3022 unsigned long flags; 3023 u32 raw_tag; 3024 3025 spin_lock_irqsave(&h->lock, flags); 3026 raw_tag = get_next_completion(h); 3027 while (raw_tag != FIFO_EMPTY) { 3028 if (hpsa_tag_contains_index(raw_tag)) 3029 raw_tag = process_indexed_cmd(h, raw_tag); 3030 else 3031 raw_tag = process_nonindexed_cmd(h, raw_tag); 3032 } 3033 spin_unlock_irqrestore(&h->lock, flags); 3034 return IRQ_HANDLED; 3035 } 3036 3037 /* Send a message CDB to the firmware. Careful, this only works 3038 * in simple mode, not performant mode due to the tag lookup. 3039 * We only ever use this immediately after a controller reset. 3040 */ 3041 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 3042 unsigned char type) 3043 { 3044 struct Command { 3045 struct CommandListHeader CommandHeader; 3046 struct RequestBlock Request; 3047 struct ErrDescriptor ErrorDescriptor; 3048 }; 3049 struct Command *cmd; 3050 static const size_t cmd_sz = sizeof(*cmd) + 3051 sizeof(cmd->ErrorDescriptor); 3052 dma_addr_t paddr64; 3053 uint32_t paddr32, tag; 3054 void __iomem *vaddr; 3055 int i, err; 3056 3057 vaddr = pci_ioremap_bar(pdev, 0); 3058 if (vaddr == NULL) 3059 return -ENOMEM; 3060 3061 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 3062 * CCISS commands, so they must be allocated from the lower 4GiB of 3063 * memory. 3064 */ 3065 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3066 if (err) { 3067 iounmap(vaddr); 3068 return -ENOMEM; 3069 } 3070 3071 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 3072 if (cmd == NULL) { 3073 iounmap(vaddr); 3074 return -ENOMEM; 3075 } 3076 3077 /* This must fit, because of the 32-bit consistent DMA mask. Also, 3078 * although there's no guarantee, we assume that the address is at 3079 * least 4-byte aligned (most likely, it's page-aligned). 3080 */ 3081 paddr32 = paddr64; 3082 3083 cmd->CommandHeader.ReplyQueue = 0; 3084 cmd->CommandHeader.SGList = 0; 3085 cmd->CommandHeader.SGTotal = 0; 3086 cmd->CommandHeader.Tag.lower = paddr32; 3087 cmd->CommandHeader.Tag.upper = 0; 3088 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3089 3090 cmd->Request.CDBLen = 16; 3091 cmd->Request.Type.Type = TYPE_MSG; 3092 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3093 cmd->Request.Type.Direction = XFER_NONE; 3094 cmd->Request.Timeout = 0; /* Don't time out */ 3095 cmd->Request.CDB[0] = opcode; 3096 cmd->Request.CDB[1] = type; 3097 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3098 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3099 cmd->ErrorDescriptor.Addr.upper = 0; 3100 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3101 3102 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3103 3104 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3105 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3106 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) 3107 break; 3108 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3109 } 3110 3111 iounmap(vaddr); 3112 3113 /* we leak the DMA buffer here ... no choice since the controller could 3114 * still complete the command. 3115 */ 3116 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3117 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3118 opcode, type); 3119 return -ETIMEDOUT; 3120 } 3121 3122 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3123 3124 if (tag & HPSA_ERROR_BIT) { 3125 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3126 opcode, type); 3127 return -EIO; 3128 } 3129 3130 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3131 opcode, type); 3132 return 0; 3133 } 3134 3135 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 3136 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3137 3138 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3139 void * __iomem vaddr, bool use_doorbell) 3140 { 3141 u16 pmcsr; 3142 int pos; 3143 3144 if (use_doorbell) { 3145 /* For everything after the P600, the PCI power state method 3146 * of resetting the controller doesn't work, so we have this 3147 * other way using the doorbell register. 3148 */ 3149 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3150 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL); 3151 msleep(1000); 3152 } else { /* Try to do it the PCI power state way */ 3153 3154 /* Quoting from the Open CISS Specification: "The Power 3155 * Management Control/Status Register (CSR) controls the power 3156 * state of the device. The normal operating state is D0, 3157 * CSR=00h. The software off state is D3, CSR=03h. To reset 3158 * the controller, place the interface device in D3 then to D0, 3159 * this causes a secondary PCI reset which will reset the 3160 * controller." */ 3161 3162 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3163 if (pos == 0) { 3164 dev_err(&pdev->dev, 3165 "hpsa_reset_controller: " 3166 "PCI PM not supported\n"); 3167 return -ENODEV; 3168 } 3169 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3170 /* enter the D3hot power management state */ 3171 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3172 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3173 pmcsr |= PCI_D3hot; 3174 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3175 3176 msleep(500); 3177 3178 /* enter the D0 power management state */ 3179 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3180 pmcsr |= PCI_D0; 3181 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3182 3183 msleep(500); 3184 } 3185 return 0; 3186 } 3187 3188 /* This does a hard reset of the controller using PCI power management 3189 * states or the using the doorbell register. 3190 */ 3191 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3192 { 3193 u64 cfg_offset; 3194 u32 cfg_base_addr; 3195 u64 cfg_base_addr_index; 3196 void __iomem *vaddr; 3197 unsigned long paddr; 3198 u32 misc_fw_support, active_transport; 3199 int rc; 3200 struct CfgTable __iomem *cfgtable; 3201 bool use_doorbell; 3202 u32 board_id; 3203 u16 command_register; 3204 3205 /* For controllers as old as the P600, this is very nearly 3206 * the same thing as 3207 * 3208 * pci_save_state(pci_dev); 3209 * pci_set_power_state(pci_dev, PCI_D3hot); 3210 * pci_set_power_state(pci_dev, PCI_D0); 3211 * pci_restore_state(pci_dev); 3212 * 3213 * For controllers newer than the P600, the pci power state 3214 * method of resetting doesn't work so we have another way 3215 * using the doorbell register. 3216 */ 3217 3218 /* Exclude 640x boards. These are two pci devices in one slot 3219 * which share a battery backed cache module. One controls the 3220 * cache, the other accesses the cache through the one that controls 3221 * it. If we reset the one controlling the cache, the other will 3222 * likely not be happy. Just forbid resetting this conjoined mess. 3223 * The 640x isn't really supported by hpsa anyway. 3224 */ 3225 rc = hpsa_lookup_board_id(pdev, &board_id); 3226 if (rc < 0) { 3227 dev_warn(&pdev->dev, "Not resetting device.\n"); 3228 return -ENODEV; 3229 } 3230 if (board_id == 0x409C0E11 || board_id == 0x409D0E11) 3231 return -ENOTSUPP; 3232 3233 /* Save the PCI command register */ 3234 pci_read_config_word(pdev, 4, &command_register); 3235 /* Turn the board off. This is so that later pci_restore_state() 3236 * won't turn the board on before the rest of config space is ready. 3237 */ 3238 pci_disable_device(pdev); 3239 pci_save_state(pdev); 3240 3241 /* find the first memory BAR, so we can find the cfg table */ 3242 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3243 if (rc) 3244 return rc; 3245 vaddr = remap_pci_mem(paddr, 0x250); 3246 if (!vaddr) 3247 return -ENOMEM; 3248 3249 /* find cfgtable in order to check if reset via doorbell is supported */ 3250 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3251 &cfg_base_addr_index, &cfg_offset); 3252 if (rc) 3253 goto unmap_vaddr; 3254 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3255 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3256 if (!cfgtable) { 3257 rc = -ENOMEM; 3258 goto unmap_vaddr; 3259 } 3260 3261 /* If reset via doorbell register is supported, use that. */ 3262 misc_fw_support = readl(&cfgtable->misc_fw_support); 3263 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3264 3265 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3266 if (rc) 3267 goto unmap_cfgtable; 3268 3269 pci_restore_state(pdev); 3270 rc = pci_enable_device(pdev); 3271 if (rc) { 3272 dev_warn(&pdev->dev, "failed to enable device.\n"); 3273 goto unmap_cfgtable; 3274 } 3275 pci_write_config_word(pdev, 4, command_register); 3276 3277 /* Some devices (notably the HP Smart Array 5i Controller) 3278 need a little pause here */ 3279 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3280 3281 /* Wait for board to become not ready, then ready. */ 3282 dev_info(&pdev->dev, "Waiting for board to become ready.\n"); 3283 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); 3284 if (rc) 3285 dev_warn(&pdev->dev, 3286 "failed waiting for board to become not ready\n"); 3287 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 3288 if (rc) { 3289 dev_warn(&pdev->dev, 3290 "failed waiting for board to become ready\n"); 3291 goto unmap_cfgtable; 3292 } 3293 dev_info(&pdev->dev, "board ready.\n"); 3294 3295 /* Controller should be in simple mode at this point. If it's not, 3296 * It means we're on one of those controllers which doesn't support 3297 * the doorbell reset method and on which the PCI power management reset 3298 * method doesn't work (P800, for example.) 3299 * In those cases, don't try to proceed, as it generally doesn't work. 3300 */ 3301 active_transport = readl(&cfgtable->TransportActive); 3302 if (active_transport & PERFORMANT_MODE) { 3303 dev_warn(&pdev->dev, "Unable to successfully reset controller," 3304 " Ignoring controller.\n"); 3305 rc = -ENODEV; 3306 } 3307 3308 unmap_cfgtable: 3309 iounmap(cfgtable); 3310 3311 unmap_vaddr: 3312 iounmap(vaddr); 3313 return rc; 3314 } 3315 3316 /* 3317 * We cannot read the structure directly, for portability we must use 3318 * the io functions. 3319 * This is for debug only. 3320 */ 3321 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3322 { 3323 #ifdef HPSA_DEBUG 3324 int i; 3325 char temp_name[17]; 3326 3327 dev_info(dev, "Controller Configuration information\n"); 3328 dev_info(dev, "------------------------------------\n"); 3329 for (i = 0; i < 4; i++) 3330 temp_name[i] = readb(&(tb->Signature[i])); 3331 temp_name[4] = '\0'; 3332 dev_info(dev, " Signature = %s\n", temp_name); 3333 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3334 dev_info(dev, " Transport methods supported = 0x%x\n", 3335 readl(&(tb->TransportSupport))); 3336 dev_info(dev, " Transport methods active = 0x%x\n", 3337 readl(&(tb->TransportActive))); 3338 dev_info(dev, " Requested transport Method = 0x%x\n", 3339 readl(&(tb->HostWrite.TransportRequest))); 3340 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3341 readl(&(tb->HostWrite.CoalIntDelay))); 3342 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3343 readl(&(tb->HostWrite.CoalIntCount))); 3344 dev_info(dev, " Max outstanding commands = 0x%d\n", 3345 readl(&(tb->CmdsOutMax))); 3346 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3347 for (i = 0; i < 16; i++) 3348 temp_name[i] = readb(&(tb->ServerName[i])); 3349 temp_name[16] = '\0'; 3350 dev_info(dev, " Server Name = %s\n", temp_name); 3351 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3352 readl(&(tb->HeartBeat))); 3353 #endif /* HPSA_DEBUG */ 3354 } 3355 3356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3357 { 3358 int i, offset, mem_type, bar_type; 3359 3360 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3361 return 0; 3362 offset = 0; 3363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3364 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3365 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3366 offset += 4; 3367 else { 3368 mem_type = pci_resource_flags(pdev, i) & 3369 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3370 switch (mem_type) { 3371 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3372 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3373 offset += 4; /* 32 bit */ 3374 break; 3375 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3376 offset += 8; 3377 break; 3378 default: /* reserved in PCI 2.2 */ 3379 dev_warn(&pdev->dev, 3380 "base address is invalid\n"); 3381 return -1; 3382 break; 3383 } 3384 } 3385 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3386 return i + 1; 3387 } 3388 return -1; 3389 } 3390 3391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3392 * controllers that are capable. If not, we use IO-APIC mode. 3393 */ 3394 3395 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3396 { 3397 #ifdef CONFIG_PCI_MSI 3398 int err; 3399 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3400 {0, 2}, {0, 3} 3401 }; 3402 3403 /* Some boards advertise MSI but don't really support it */ 3404 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3405 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3406 goto default_int_mode; 3407 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3408 dev_info(&h->pdev->dev, "MSIX\n"); 3409 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3410 if (!err) { 3411 h->intr[0] = hpsa_msix_entries[0].vector; 3412 h->intr[1] = hpsa_msix_entries[1].vector; 3413 h->intr[2] = hpsa_msix_entries[2].vector; 3414 h->intr[3] = hpsa_msix_entries[3].vector; 3415 h->msix_vector = 1; 3416 return; 3417 } 3418 if (err > 0) { 3419 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3420 "available\n", err); 3421 goto default_int_mode; 3422 } else { 3423 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3424 err); 3425 goto default_int_mode; 3426 } 3427 } 3428 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3429 dev_info(&h->pdev->dev, "MSI\n"); 3430 if (!pci_enable_msi(h->pdev)) 3431 h->msi_vector = 1; 3432 else 3433 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3434 } 3435 default_int_mode: 3436 #endif /* CONFIG_PCI_MSI */ 3437 /* if we get here we're going to use the default interrupt mode */ 3438 h->intr[h->intr_mode] = h->pdev->irq; 3439 } 3440 3441 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3442 { 3443 int i; 3444 u32 subsystem_vendor_id, subsystem_device_id; 3445 3446 subsystem_vendor_id = pdev->subsystem_vendor; 3447 subsystem_device_id = pdev->subsystem_device; 3448 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3449 subsystem_vendor_id; 3450 3451 for (i = 0; i < ARRAY_SIZE(products); i++) 3452 if (*board_id == products[i].board_id) 3453 return i; 3454 3455 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 3456 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 3457 !hpsa_allow_any) { 3458 dev_warn(&pdev->dev, "unrecognized board ID: " 3459 "0x%08x, ignoring.\n", *board_id); 3460 return -ENODEV; 3461 } 3462 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 3463 } 3464 3465 static inline bool hpsa_board_disabled(struct pci_dev *pdev) 3466 { 3467 u16 command; 3468 3469 (void) pci_read_config_word(pdev, PCI_COMMAND, &command); 3470 return ((command & PCI_COMMAND_MEMORY) == 0); 3471 } 3472 3473 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 3474 unsigned long *memory_bar) 3475 { 3476 int i; 3477 3478 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 3479 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3480 /* addressing mode bits already removed */ 3481 *memory_bar = pci_resource_start(pdev, i); 3482 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 3483 *memory_bar); 3484 return 0; 3485 } 3486 dev_warn(&pdev->dev, "no memory BAR found\n"); 3487 return -ENODEV; 3488 } 3489 3490 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 3491 void __iomem *vaddr, int wait_for_ready) 3492 { 3493 int i, iterations; 3494 u32 scratchpad; 3495 if (wait_for_ready) 3496 iterations = HPSA_BOARD_READY_ITERATIONS; 3497 else 3498 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 3499 3500 for (i = 0; i < iterations; i++) { 3501 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 3502 if (wait_for_ready) { 3503 if (scratchpad == HPSA_FIRMWARE_READY) 3504 return 0; 3505 } else { 3506 if (scratchpad != HPSA_FIRMWARE_READY) 3507 return 0; 3508 } 3509 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3510 } 3511 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 3512 return -ENODEV; 3513 } 3514 3515 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 3516 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 3517 u64 *cfg_offset) 3518 { 3519 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 3520 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 3521 *cfg_base_addr &= (u32) 0x0000ffff; 3522 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 3523 if (*cfg_base_addr_index == -1) { 3524 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3525 return -ENODEV; 3526 } 3527 return 0; 3528 } 3529 3530 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 3531 { 3532 u64 cfg_offset; 3533 u32 cfg_base_addr; 3534 u64 cfg_base_addr_index; 3535 u32 trans_offset; 3536 int rc; 3537 3538 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 3539 &cfg_base_addr_index, &cfg_offset); 3540 if (rc) 3541 return rc; 3542 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 3543 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 3544 if (!h->cfgtable) 3545 return -ENOMEM; 3546 /* Find performant mode table. */ 3547 trans_offset = readl(&h->cfgtable->TransMethodOffset); 3548 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 3549 cfg_base_addr_index)+cfg_offset+trans_offset, 3550 sizeof(*h->transtable)); 3551 if (!h->transtable) 3552 return -ENOMEM; 3553 return 0; 3554 } 3555 3556 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 3557 { 3558 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3559 3560 /* Limit commands in memory limited kdump scenario. */ 3561 if (reset_devices && h->max_commands > 32) 3562 h->max_commands = 32; 3563 3564 if (h->max_commands < 16) { 3565 dev_warn(&h->pdev->dev, "Controller reports " 3566 "max supported commands of %d, an obvious lie. " 3567 "Using 16. Ensure that firmware is up to date.\n", 3568 h->max_commands); 3569 h->max_commands = 16; 3570 } 3571 } 3572 3573 /* Interrogate the hardware for some limits: 3574 * max commands, max SG elements without chaining, and with chaining, 3575 * SG chain block size, etc. 3576 */ 3577 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 3578 { 3579 hpsa_get_max_perf_mode_cmds(h); 3580 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 3581 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 3582 /* 3583 * Limit in-command s/g elements to 32 save dma'able memory. 3584 * Howvever spec says if 0, use 31 3585 */ 3586 h->max_cmd_sg_entries = 31; 3587 if (h->maxsgentries > 512) { 3588 h->max_cmd_sg_entries = 32; 3589 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 3590 h->maxsgentries--; /* save one for chain pointer */ 3591 } else { 3592 h->maxsgentries = 31; /* default to traditional values */ 3593 h->chainsize = 0; 3594 } 3595 } 3596 3597 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 3598 { 3599 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3600 (readb(&h->cfgtable->Signature[1]) != 'I') || 3601 (readb(&h->cfgtable->Signature[2]) != 'S') || 3602 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3603 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 3604 return false; 3605 } 3606 return true; 3607 } 3608 3609 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3610 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 3611 { 3612 #ifdef CONFIG_X86 3613 u32 prefetch; 3614 3615 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3616 prefetch |= 0x100; 3617 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3618 #endif 3619 } 3620 3621 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 3622 * in a prefetch beyond physical memory. 3623 */ 3624 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 3625 { 3626 u32 dma_prefetch; 3627 3628 if (h->board_id != 0x3225103C) 3629 return; 3630 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3631 dma_prefetch |= 0x8000; 3632 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3633 } 3634 3635 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 3636 { 3637 int i; 3638 u32 doorbell_value; 3639 unsigned long flags; 3640 3641 /* under certain very rare conditions, this can take awhile. 3642 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3643 * as we enter this code.) 3644 */ 3645 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3646 spin_lock_irqsave(&h->lock, flags); 3647 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 3648 spin_unlock_irqrestore(&h->lock, flags); 3649 if (!(doorbell_value & CFGTBL_ChangeReq)) 3650 break; 3651 /* delay and try again */ 3652 usleep_range(10000, 20000); 3653 } 3654 } 3655 3656 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 3657 { 3658 u32 trans_support; 3659 3660 trans_support = readl(&(h->cfgtable->TransportSupport)); 3661 if (!(trans_support & SIMPLE_MODE)) 3662 return -ENOTSUPP; 3663 3664 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3665 /* Update the field, and then ring the doorbell */ 3666 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3667 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3668 hpsa_wait_for_mode_change_ack(h); 3669 print_cfg_table(&h->pdev->dev, h->cfgtable); 3670 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3671 dev_warn(&h->pdev->dev, 3672 "unable to get board into simple mode\n"); 3673 return -ENODEV; 3674 } 3675 h->transMethod = CFGTBL_Trans_Simple; 3676 return 0; 3677 } 3678 3679 static int __devinit hpsa_pci_init(struct ctlr_info *h) 3680 { 3681 int prod_index, err; 3682 3683 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 3684 if (prod_index < 0) 3685 return -ENODEV; 3686 h->product_name = products[prod_index].product_name; 3687 h->access = *(products[prod_index].access); 3688 3689 if (hpsa_board_disabled(h->pdev)) { 3690 dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); 3691 return -ENODEV; 3692 } 3693 err = pci_enable_device(h->pdev); 3694 if (err) { 3695 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 3696 return err; 3697 } 3698 3699 err = pci_request_regions(h->pdev, "hpsa"); 3700 if (err) { 3701 dev_err(&h->pdev->dev, 3702 "cannot obtain PCI resources, aborting\n"); 3703 return err; 3704 } 3705 hpsa_interrupt_mode(h); 3706 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 3707 if (err) 3708 goto err_out_free_res; 3709 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3710 if (!h->vaddr) { 3711 err = -ENOMEM; 3712 goto err_out_free_res; 3713 } 3714 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 3715 if (err) 3716 goto err_out_free_res; 3717 err = hpsa_find_cfgtables(h); 3718 if (err) 3719 goto err_out_free_res; 3720 hpsa_find_board_params(h); 3721 3722 if (!hpsa_CISS_signature_present(h)) { 3723 err = -ENODEV; 3724 goto err_out_free_res; 3725 } 3726 hpsa_enable_scsi_prefetch(h); 3727 hpsa_p600_dma_prefetch_quirk(h); 3728 err = hpsa_enter_simple_mode(h); 3729 if (err) 3730 goto err_out_free_res; 3731 return 0; 3732 3733 err_out_free_res: 3734 if (h->transtable) 3735 iounmap(h->transtable); 3736 if (h->cfgtable) 3737 iounmap(h->cfgtable); 3738 if (h->vaddr) 3739 iounmap(h->vaddr); 3740 /* 3741 * Deliberately omit pci_disable_device(): it does something nasty to 3742 * Smart Array controllers that pci_enable_device does not undo 3743 */ 3744 pci_release_regions(h->pdev); 3745 return err; 3746 } 3747 3748 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3749 { 3750 int rc; 3751 3752 #define HBA_INQUIRY_BYTE_COUNT 64 3753 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3754 if (!h->hba_inquiry_data) 3755 return; 3756 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3757 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3758 if (rc != 0) { 3759 kfree(h->hba_inquiry_data); 3760 h->hba_inquiry_data = NULL; 3761 } 3762 } 3763 3764 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 3765 { 3766 int rc, i; 3767 3768 if (!reset_devices) 3769 return 0; 3770 3771 /* Reset the controller with a PCI power-cycle or via doorbell */ 3772 rc = hpsa_kdump_hard_reset_controller(pdev); 3773 3774 /* -ENOTSUPP here means we cannot reset the controller 3775 * but it's already (and still) up and running in 3776 * "performant mode". Or, it might be 640x, which can't reset 3777 * due to concerns about shared bbwc between 6402/6404 pair. 3778 */ 3779 if (rc == -ENOTSUPP) 3780 return 0; /* just try to do the kdump anyhow. */ 3781 if (rc) 3782 return -ENODEV; 3783 3784 /* Now try to get the controller to respond to a no-op */ 3785 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3786 if (hpsa_noop(pdev) == 0) 3787 break; 3788 else 3789 dev_warn(&pdev->dev, "no-op failed%s\n", 3790 (i < 11 ? "; re-trying" : "")); 3791 } 3792 return 0; 3793 } 3794 3795 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3796 const struct pci_device_id *ent) 3797 { 3798 int dac, rc; 3799 struct ctlr_info *h; 3800 3801 if (number_of_controllers == 0) 3802 printk(KERN_INFO DRIVER_NAME "\n"); 3803 3804 rc = hpsa_init_reset_devices(pdev); 3805 if (rc) 3806 return rc; 3807 3808 /* Command structures must be aligned on a 32-byte boundary because 3809 * the 5 lower bits of the address are used by the hardware. and by 3810 * the driver. See comments in hpsa.h for more info. 3811 */ 3812 #define COMMANDLIST_ALIGNMENT 32 3813 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 3814 h = kzalloc(sizeof(*h), GFP_KERNEL); 3815 if (!h) 3816 return -ENOMEM; 3817 3818 h->pdev = pdev; 3819 h->busy_initializing = 1; 3820 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 3821 INIT_LIST_HEAD(&h->cmpQ); 3822 INIT_LIST_HEAD(&h->reqQ); 3823 spin_lock_init(&h->lock); 3824 spin_lock_init(&h->scan_lock); 3825 rc = hpsa_pci_init(h); 3826 if (rc != 0) 3827 goto clean1; 3828 3829 sprintf(h->devname, "hpsa%d", number_of_controllers); 3830 h->ctlr = number_of_controllers; 3831 number_of_controllers++; 3832 3833 /* configure PCI DMA stuff */ 3834 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 3835 if (rc == 0) { 3836 dac = 1; 3837 } else { 3838 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3839 if (rc == 0) { 3840 dac = 0; 3841 } else { 3842 dev_err(&pdev->dev, "no suitable DMA available\n"); 3843 goto clean1; 3844 } 3845 } 3846 3847 /* make sure the board interrupts are off */ 3848 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3849 3850 if (h->msix_vector || h->msi_vector) 3851 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi, 3852 IRQF_DISABLED, h->devname, h); 3853 else 3854 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx, 3855 IRQF_DISABLED, h->devname, h); 3856 if (rc) { 3857 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3858 h->intr[h->intr_mode], h->devname); 3859 goto clean2; 3860 } 3861 3862 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 3863 h->devname, pdev->device, 3864 h->intr[h->intr_mode], dac ? "" : " not"); 3865 3866 h->cmd_pool_bits = 3867 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3868 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3869 h->cmd_pool = pci_alloc_consistent(h->pdev, 3870 h->nr_cmds * sizeof(*h->cmd_pool), 3871 &(h->cmd_pool_dhandle)); 3872 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3873 h->nr_cmds * sizeof(*h->errinfo_pool), 3874 &(h->errinfo_pool_dhandle)); 3875 if ((h->cmd_pool_bits == NULL) 3876 || (h->cmd_pool == NULL) 3877 || (h->errinfo_pool == NULL)) { 3878 dev_err(&pdev->dev, "out of memory"); 3879 rc = -ENOMEM; 3880 goto clean4; 3881 } 3882 if (hpsa_allocate_sg_chain_blocks(h)) 3883 goto clean4; 3884 init_waitqueue_head(&h->scan_wait_queue); 3885 h->scan_finished = 1; /* no scan currently in progress */ 3886 3887 pci_set_drvdata(pdev, h); 3888 memset(h->cmd_pool_bits, 0, 3889 ((h->nr_cmds + BITS_PER_LONG - 3890 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3891 3892 hpsa_scsi_setup(h); 3893 3894 /* Turn the interrupts on so we can service requests */ 3895 h->access.set_intr_mask(h, HPSA_INTR_ON); 3896 3897 hpsa_put_ctlr_into_performant_mode(h); 3898 hpsa_hba_inquiry(h); 3899 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3900 h->busy_initializing = 0; 3901 return 1; 3902 3903 clean4: 3904 hpsa_free_sg_chain_blocks(h); 3905 kfree(h->cmd_pool_bits); 3906 if (h->cmd_pool) 3907 pci_free_consistent(h->pdev, 3908 h->nr_cmds * sizeof(struct CommandList), 3909 h->cmd_pool, h->cmd_pool_dhandle); 3910 if (h->errinfo_pool) 3911 pci_free_consistent(h->pdev, 3912 h->nr_cmds * sizeof(struct ErrorInfo), 3913 h->errinfo_pool, 3914 h->errinfo_pool_dhandle); 3915 free_irq(h->intr[h->intr_mode], h); 3916 clean2: 3917 clean1: 3918 h->busy_initializing = 0; 3919 kfree(h); 3920 return rc; 3921 } 3922 3923 static void hpsa_flush_cache(struct ctlr_info *h) 3924 { 3925 char *flush_buf; 3926 struct CommandList *c; 3927 3928 flush_buf = kzalloc(4, GFP_KERNEL); 3929 if (!flush_buf) 3930 return; 3931 3932 c = cmd_special_alloc(h); 3933 if (!c) { 3934 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3935 goto out_of_memory; 3936 } 3937 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3938 RAID_CTLR_LUNID, TYPE_CMD); 3939 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3940 if (c->err_info->CommandStatus != 0) 3941 dev_warn(&h->pdev->dev, 3942 "error flushing cache on controller\n"); 3943 cmd_special_free(h, c); 3944 out_of_memory: 3945 kfree(flush_buf); 3946 } 3947 3948 static void hpsa_shutdown(struct pci_dev *pdev) 3949 { 3950 struct ctlr_info *h; 3951 3952 h = pci_get_drvdata(pdev); 3953 /* Turn board interrupts off and send the flush cache command 3954 * sendcmd will turn off interrupt, and send the flush... 3955 * To write all data in the battery backed cache to disks 3956 */ 3957 hpsa_flush_cache(h); 3958 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3959 free_irq(h->intr[h->intr_mode], h); 3960 #ifdef CONFIG_PCI_MSI 3961 if (h->msix_vector) 3962 pci_disable_msix(h->pdev); 3963 else if (h->msi_vector) 3964 pci_disable_msi(h->pdev); 3965 #endif /* CONFIG_PCI_MSI */ 3966 } 3967 3968 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3969 { 3970 struct ctlr_info *h; 3971 3972 if (pci_get_drvdata(pdev) == NULL) { 3973 dev_err(&pdev->dev, "unable to remove device \n"); 3974 return; 3975 } 3976 h = pci_get_drvdata(pdev); 3977 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3978 hpsa_shutdown(pdev); 3979 iounmap(h->vaddr); 3980 iounmap(h->transtable); 3981 iounmap(h->cfgtable); 3982 hpsa_free_sg_chain_blocks(h); 3983 pci_free_consistent(h->pdev, 3984 h->nr_cmds * sizeof(struct CommandList), 3985 h->cmd_pool, h->cmd_pool_dhandle); 3986 pci_free_consistent(h->pdev, 3987 h->nr_cmds * sizeof(struct ErrorInfo), 3988 h->errinfo_pool, h->errinfo_pool_dhandle); 3989 pci_free_consistent(h->pdev, h->reply_pool_size, 3990 h->reply_pool, h->reply_pool_dhandle); 3991 kfree(h->cmd_pool_bits); 3992 kfree(h->blockFetchTable); 3993 kfree(h->hba_inquiry_data); 3994 /* 3995 * Deliberately omit pci_disable_device(): it does something nasty to 3996 * Smart Array controllers that pci_enable_device does not undo 3997 */ 3998 pci_release_regions(pdev); 3999 pci_set_drvdata(pdev, NULL); 4000 kfree(h); 4001 } 4002 4003 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 4004 __attribute__((unused)) pm_message_t state) 4005 { 4006 return -ENOSYS; 4007 } 4008 4009 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 4010 { 4011 return -ENOSYS; 4012 } 4013 4014 static struct pci_driver hpsa_pci_driver = { 4015 .name = "hpsa", 4016 .probe = hpsa_init_one, 4017 .remove = __devexit_p(hpsa_remove_one), 4018 .id_table = hpsa_pci_device_id, /* id_table */ 4019 .shutdown = hpsa_shutdown, 4020 .suspend = hpsa_suspend, 4021 .resume = hpsa_resume, 4022 }; 4023 4024 /* Fill in bucket_map[], given nsgs (the max number of 4025 * scatter gather elements supported) and bucket[], 4026 * which is an array of 8 integers. The bucket[] array 4027 * contains 8 different DMA transfer sizes (in 16 4028 * byte increments) which the controller uses to fetch 4029 * commands. This function fills in bucket_map[], which 4030 * maps a given number of scatter gather elements to one of 4031 * the 8 DMA transfer sizes. The point of it is to allow the 4032 * controller to only do as much DMA as needed to fetch the 4033 * command, with the DMA transfer size encoded in the lower 4034 * bits of the command address. 4035 */ 4036 static void calc_bucket_map(int bucket[], int num_buckets, 4037 int nsgs, int *bucket_map) 4038 { 4039 int i, j, b, size; 4040 4041 /* even a command with 0 SGs requires 4 blocks */ 4042 #define MINIMUM_TRANSFER_BLOCKS 4 4043 #define NUM_BUCKETS 8 4044 /* Note, bucket_map must have nsgs+1 entries. */ 4045 for (i = 0; i <= nsgs; i++) { 4046 /* Compute size of a command with i SG entries */ 4047 size = i + MINIMUM_TRANSFER_BLOCKS; 4048 b = num_buckets; /* Assume the biggest bucket */ 4049 /* Find the bucket that is just big enough */ 4050 for (j = 0; j < 8; j++) { 4051 if (bucket[j] >= size) { 4052 b = j; 4053 break; 4054 } 4055 } 4056 /* for a command with i SG entries, use bucket b. */ 4057 bucket_map[i] = b; 4058 } 4059 } 4060 4061 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h, 4062 u32 use_short_tags) 4063 { 4064 int i; 4065 unsigned long register_value; 4066 4067 /* This is a bit complicated. There are 8 registers on 4068 * the controller which we write to to tell it 8 different 4069 * sizes of commands which there may be. It's a way of 4070 * reducing the DMA done to fetch each command. Encoded into 4071 * each command's tag are 3 bits which communicate to the controller 4072 * which of the eight sizes that command fits within. The size of 4073 * each command depends on how many scatter gather entries there are. 4074 * Each SG entry requires 16 bytes. The eight registers are programmed 4075 * with the number of 16-byte blocks a command of that size requires. 4076 * The smallest command possible requires 5 such 16 byte blocks. 4077 * the largest command possible requires MAXSGENTRIES + 4 16-byte 4078 * blocks. Note, this only extends to the SG entries contained 4079 * within the command block, and does not extend to chained blocks 4080 * of SG elements. bft[] contains the eight values we write to 4081 * the registers. They are not evenly distributed, but have more 4082 * sizes for small commands, and fewer sizes for larger commands. 4083 */ 4084 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; 4085 BUILD_BUG_ON(28 > MAXSGENTRIES + 4); 4086 /* 5 = 1 s/g entry or 4k 4087 * 6 = 2 s/g entry or 8k 4088 * 8 = 4 s/g entry or 16k 4089 * 10 = 6 s/g entry or 24k 4090 */ 4091 4092 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 4093 4094 /* Controller spec: zero out this buffer. */ 4095 memset(h->reply_pool, 0, h->reply_pool_size); 4096 h->reply_pool_head = h->reply_pool; 4097 4098 bft[7] = h->max_sg_entries + 4; 4099 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 4100 for (i = 0; i < 8; i++) 4101 writel(bft[i], &h->transtable->BlockFetch[i]); 4102 4103 /* size of controller ring buffer */ 4104 writel(h->max_commands, &h->transtable->RepQSize); 4105 writel(1, &h->transtable->RepQCount); 4106 writel(0, &h->transtable->RepQCtrAddrLow32); 4107 writel(0, &h->transtable->RepQCtrAddrHigh32); 4108 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 4109 writel(0, &h->transtable->RepQAddr0High32); 4110 writel(CFGTBL_Trans_Performant | use_short_tags, 4111 &(h->cfgtable->HostWrite.TransportRequest)); 4112 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4113 hpsa_wait_for_mode_change_ack(h); 4114 register_value = readl(&(h->cfgtable->TransportActive)); 4115 if (!(register_value & CFGTBL_Trans_Performant)) { 4116 dev_warn(&h->pdev->dev, "unable to get board into" 4117 " performant mode\n"); 4118 return; 4119 } 4120 /* Change the access methods to the performant access methods */ 4121 h->access = SA5_performant_access; 4122 h->transMethod = CFGTBL_Trans_Performant; 4123 } 4124 4125 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 4126 { 4127 u32 trans_support; 4128 4129 if (hpsa_simple_mode) 4130 return; 4131 4132 trans_support = readl(&(h->cfgtable->TransportSupport)); 4133 if (!(trans_support & PERFORMANT_MODE)) 4134 return; 4135 4136 hpsa_get_max_perf_mode_cmds(h); 4137 h->max_sg_entries = 32; 4138 /* Performant mode ring buffer and supporting data structures */ 4139 h->reply_pool_size = h->max_commands * sizeof(u64); 4140 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 4141 &(h->reply_pool_dhandle)); 4142 4143 /* Need a block fetch table for performant mode */ 4144 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 4145 sizeof(u32)), GFP_KERNEL); 4146 4147 if ((h->reply_pool == NULL) 4148 || (h->blockFetchTable == NULL)) 4149 goto clean_up; 4150 4151 hpsa_enter_performant_mode(h, 4152 trans_support & CFGTBL_Trans_use_short_tags); 4153 4154 return; 4155 4156 clean_up: 4157 if (h->reply_pool) 4158 pci_free_consistent(h->pdev, h->reply_pool_size, 4159 h->reply_pool, h->reply_pool_dhandle); 4160 kfree(h->blockFetchTable); 4161 } 4162 4163 /* 4164 * This is it. Register the PCI driver information for the cards we control 4165 * the OS will call our registered routines when it finds one of our cards. 4166 */ 4167 static int __init hpsa_init(void) 4168 { 4169 return pci_register_driver(&hpsa_pci_driver); 4170 } 4171 4172 static void __exit hpsa_cleanup(void) 4173 { 4174 pci_unregister_driver(&hpsa_pci_driver); 4175 } 4176 4177 module_init(hpsa_init); 4178 module_exit(hpsa_cleanup); 4179