xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 565d76cb)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296 	int i;
297 
298 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299 		if (unresettable_controller[i] == h->board_id)
300 			return 0;
301 	return 1;
302 }
303 
304 static ssize_t host_show_resettable(struct device *dev,
305 	struct device_attribute *attr, char *buf)
306 {
307 	struct ctlr_info *h;
308 	struct Scsi_Host *shost = class_to_shost(dev);
309 
310 	h = shost_to_hba(shost);
311 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313 
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316 	return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318 
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320 	"UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323 
324 static ssize_t raid_level_show(struct device *dev,
325 	     struct device_attribute *attr, char *buf)
326 {
327 	ssize_t l = 0;
328 	unsigned char rlevel;
329 	struct ctlr_info *h;
330 	struct scsi_device *sdev;
331 	struct hpsa_scsi_dev_t *hdev;
332 	unsigned long flags;
333 
334 	sdev = to_scsi_device(dev);
335 	h = sdev_to_hba(sdev);
336 	spin_lock_irqsave(&h->lock, flags);
337 	hdev = sdev->hostdata;
338 	if (!hdev) {
339 		spin_unlock_irqrestore(&h->lock, flags);
340 		return -ENODEV;
341 	}
342 
343 	/* Is this even a logical drive? */
344 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345 		spin_unlock_irqrestore(&h->lock, flags);
346 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
347 		return l;
348 	}
349 
350 	rlevel = hdev->raid_level;
351 	spin_unlock_irqrestore(&h->lock, flags);
352 	if (rlevel > RAID_UNKNOWN)
353 		rlevel = RAID_UNKNOWN;
354 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355 	return l;
356 }
357 
358 static ssize_t lunid_show(struct device *dev,
359 	     struct device_attribute *attr, char *buf)
360 {
361 	struct ctlr_info *h;
362 	struct scsi_device *sdev;
363 	struct hpsa_scsi_dev_t *hdev;
364 	unsigned long flags;
365 	unsigned char lunid[8];
366 
367 	sdev = to_scsi_device(dev);
368 	h = sdev_to_hba(sdev);
369 	spin_lock_irqsave(&h->lock, flags);
370 	hdev = sdev->hostdata;
371 	if (!hdev) {
372 		spin_unlock_irqrestore(&h->lock, flags);
373 		return -ENODEV;
374 	}
375 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376 	spin_unlock_irqrestore(&h->lock, flags);
377 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378 		lunid[0], lunid[1], lunid[2], lunid[3],
379 		lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381 
382 static ssize_t unique_id_show(struct device *dev,
383 	     struct device_attribute *attr, char *buf)
384 {
385 	struct ctlr_info *h;
386 	struct scsi_device *sdev;
387 	struct hpsa_scsi_dev_t *hdev;
388 	unsigned long flags;
389 	unsigned char sn[16];
390 
391 	sdev = to_scsi_device(dev);
392 	h = sdev_to_hba(sdev);
393 	spin_lock_irqsave(&h->lock, flags);
394 	hdev = sdev->hostdata;
395 	if (!hdev) {
396 		spin_unlock_irqrestore(&h->lock, flags);
397 		return -ENODEV;
398 	}
399 	memcpy(sn, hdev->device_id, sizeof(sn));
400 	spin_unlock_irqrestore(&h->lock, flags);
401 	return snprintf(buf, 16 * 2 + 2,
402 			"%02X%02X%02X%02X%02X%02X%02X%02X"
403 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
404 			sn[0], sn[1], sn[2], sn[3],
405 			sn[4], sn[5], sn[6], sn[7],
406 			sn[8], sn[9], sn[10], sn[11],
407 			sn[12], sn[13], sn[14], sn[15]);
408 }
409 
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415 	host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417 	host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419 	host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421 	host_show_resettable, NULL);
422 
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424 	&dev_attr_raid_level,
425 	&dev_attr_lunid,
426 	&dev_attr_unique_id,
427 	NULL,
428 };
429 
430 static struct device_attribute *hpsa_shost_attrs[] = {
431 	&dev_attr_rescan,
432 	&dev_attr_firmware_revision,
433 	&dev_attr_commands_outstanding,
434 	&dev_attr_transport_mode,
435 	&dev_attr_resettable,
436 	NULL,
437 };
438 
439 static struct scsi_host_template hpsa_driver_template = {
440 	.module			= THIS_MODULE,
441 	.name			= "hpsa",
442 	.proc_name		= "hpsa",
443 	.queuecommand		= hpsa_scsi_queue_command,
444 	.scan_start		= hpsa_scan_start,
445 	.scan_finished		= hpsa_scan_finished,
446 	.change_queue_depth	= hpsa_change_queue_depth,
447 	.this_id		= -1,
448 	.use_clustering		= ENABLE_CLUSTERING,
449 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
450 	.ioctl			= hpsa_ioctl,
451 	.slave_alloc		= hpsa_slave_alloc,
452 	.slave_destroy		= hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454 	.compat_ioctl		= hpsa_compat_ioctl,
455 #endif
456 	.sdev_attrs = hpsa_sdev_attrs,
457 	.shost_attrs = hpsa_shost_attrs,
458 };
459 
460 
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464 	list_add_tail(&c->list, list);
465 }
466 
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469 	u32 a;
470 
471 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472 		return h->access.command_completed(h);
473 
474 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476 		(h->reply_pool_head)++;
477 		h->commands_outstanding--;
478 	} else {
479 		a = FIFO_EMPTY;
480 	}
481 	/* Check for wraparound */
482 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483 		h->reply_pool_head = h->reply_pool;
484 		h->reply_pool_wraparound ^= 1;
485 	}
486 	return a;
487 }
488 
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
496 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498 
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500 	struct CommandList *c)
501 {
502 	unsigned long flags;
503 
504 	set_performant_mode(h, c);
505 	spin_lock_irqsave(&h->lock, flags);
506 	addQ(&h->reqQ, c);
507 	h->Qdepth++;
508 	start_io(h);
509 	spin_unlock_irqrestore(&h->lock, flags);
510 }
511 
512 static inline void removeQ(struct CommandList *c)
513 {
514 	if (WARN_ON(list_empty(&c->list)))
515 		return;
516 	list_del_init(&c->list);
517 }
518 
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523 
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
529 		return 1;
530 	return 0;
531 }
532 
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534 	unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536 	/* finds an unused bus, target, lun for a new physical device
537 	 * assumes h->devlock is held
538 	 */
539 	int i, found = 0;
540 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541 
542 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543 
544 	for (i = 0; i < h->ndevices; i++) {
545 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546 			set_bit(h->dev[i]->target, lun_taken);
547 	}
548 
549 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550 		if (!test_bit(i, lun_taken)) {
551 			/* *bus = 1; */
552 			*target = i;
553 			*lun = 0;
554 			found = 1;
555 			break;
556 		}
557 	}
558 	return !found;
559 }
560 
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563 		struct hpsa_scsi_dev_t *device,
564 		struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566 	/* assumes h->devlock is held */
567 	int n = h->ndevices;
568 	int i;
569 	unsigned char addr1[8], addr2[8];
570 	struct hpsa_scsi_dev_t *sd;
571 
572 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573 		dev_err(&h->pdev->dev, "too many devices, some will be "
574 			"inaccessible.\n");
575 		return -1;
576 	}
577 
578 	/* physical devices do not have lun or target assigned until now. */
579 	if (device->lun != -1)
580 		/* Logical device, lun is already assigned. */
581 		goto lun_assigned;
582 
583 	/* If this device a non-zero lun of a multi-lun device
584 	 * byte 4 of the 8-byte LUN addr will contain the logical
585 	 * unit no, zero otherise.
586 	 */
587 	if (device->scsi3addr[4] == 0) {
588 		/* This is not a non-zero lun of a multi-lun device */
589 		if (hpsa_find_target_lun(h, device->scsi3addr,
590 			device->bus, &device->target, &device->lun) != 0)
591 			return -1;
592 		goto lun_assigned;
593 	}
594 
595 	/* This is a non-zero lun of a multi-lun device.
596 	 * Search through our list and find the device which
597 	 * has the same 8 byte LUN address, excepting byte 4.
598 	 * Assign the same bus and target for this new LUN.
599 	 * Use the logical unit number from the firmware.
600 	 */
601 	memcpy(addr1, device->scsi3addr, 8);
602 	addr1[4] = 0;
603 	for (i = 0; i < n; i++) {
604 		sd = h->dev[i];
605 		memcpy(addr2, sd->scsi3addr, 8);
606 		addr2[4] = 0;
607 		/* differ only in byte 4? */
608 		if (memcmp(addr1, addr2, 8) == 0) {
609 			device->bus = sd->bus;
610 			device->target = sd->target;
611 			device->lun = device->scsi3addr[4];
612 			break;
613 		}
614 	}
615 	if (device->lun == -1) {
616 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617 			" suspect firmware bug or unsupported hardware "
618 			"configuration.\n");
619 			return -1;
620 	}
621 
622 lun_assigned:
623 
624 	h->dev[n] = device;
625 	h->ndevices++;
626 	added[*nadded] = device;
627 	(*nadded)++;
628 
629 	/* initially, (before registering with scsi layer) we don't
630 	 * know our hostno and we don't want to print anything first
631 	 * time anyway (the scsi layer's inquiries will show that info)
632 	 */
633 	/* if (hostno != -1) */
634 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635 			scsi_device_type(device->devtype), hostno,
636 			device->bus, device->target, device->lun);
637 	return 0;
638 }
639 
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642 	int entry, struct hpsa_scsi_dev_t *new_entry,
643 	struct hpsa_scsi_dev_t *added[], int *nadded,
644 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646 	/* assumes h->devlock is held */
647 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648 	removed[*nremoved] = h->dev[entry];
649 	(*nremoved)++;
650 	h->dev[entry] = new_entry;
651 	added[*nadded] = new_entry;
652 	(*nadded)++;
653 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655 			new_entry->target, new_entry->lun);
656 }
657 
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662 	/* assumes h->devlock is held */
663 	int i;
664 	struct hpsa_scsi_dev_t *sd;
665 
666 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667 
668 	sd = h->dev[entry];
669 	removed[*nremoved] = h->dev[entry];
670 	(*nremoved)++;
671 
672 	for (i = entry; i < h->ndevices-1; i++)
673 		h->dev[i] = h->dev[i+1];
674 	h->ndevices--;
675 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677 		sd->lun);
678 }
679 
680 #define SCSI3ADDR_EQ(a, b) ( \
681 	(a)[7] == (b)[7] && \
682 	(a)[6] == (b)[6] && \
683 	(a)[5] == (b)[5] && \
684 	(a)[4] == (b)[4] && \
685 	(a)[3] == (b)[3] && \
686 	(a)[2] == (b)[2] && \
687 	(a)[1] == (b)[1] && \
688 	(a)[0] == (b)[0])
689 
690 static void fixup_botched_add(struct ctlr_info *h,
691 	struct hpsa_scsi_dev_t *added)
692 {
693 	/* called when scsi_add_device fails in order to re-adjust
694 	 * h->dev[] to match the mid layer's view.
695 	 */
696 	unsigned long flags;
697 	int i, j;
698 
699 	spin_lock_irqsave(&h->lock, flags);
700 	for (i = 0; i < h->ndevices; i++) {
701 		if (h->dev[i] == added) {
702 			for (j = i; j < h->ndevices-1; j++)
703 				h->dev[j] = h->dev[j+1];
704 			h->ndevices--;
705 			break;
706 		}
707 	}
708 	spin_unlock_irqrestore(&h->lock, flags);
709 	kfree(added);
710 }
711 
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713 	struct hpsa_scsi_dev_t *dev2)
714 {
715 	/* we compare everything except lun and target as these
716 	 * are not yet assigned.  Compare parts likely
717 	 * to differ first
718 	 */
719 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720 		sizeof(dev1->scsi3addr)) != 0)
721 		return 0;
722 	if (memcmp(dev1->device_id, dev2->device_id,
723 		sizeof(dev1->device_id)) != 0)
724 		return 0;
725 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726 		return 0;
727 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728 		return 0;
729 	if (dev1->devtype != dev2->devtype)
730 		return 0;
731 	if (dev1->bus != dev2->bus)
732 		return 0;
733 	return 1;
734 }
735 
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743 	int *index)
744 {
745 	int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749 	for (i = 0; i < haystack_size; i++) {
750 		if (haystack[i] == NULL) /* previously removed. */
751 			continue;
752 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753 			*index = i;
754 			if (device_is_the_same(needle, haystack[i]))
755 				return DEVICE_SAME;
756 			else
757 				return DEVICE_CHANGED;
758 		}
759 	}
760 	*index = -1;
761 	return DEVICE_NOT_FOUND;
762 }
763 
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765 	struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767 	/* sd contains scsi3 addresses and devtypes, and inquiry
768 	 * data.  This function takes what's in sd to be the current
769 	 * reality and updates h->dev[] to reflect that reality.
770 	 */
771 	int i, entry, device_change, changes = 0;
772 	struct hpsa_scsi_dev_t *csd;
773 	unsigned long flags;
774 	struct hpsa_scsi_dev_t **added, **removed;
775 	int nadded, nremoved;
776 	struct Scsi_Host *sh = NULL;
777 
778 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779 		GFP_KERNEL);
780 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781 		GFP_KERNEL);
782 
783 	if (!added || !removed) {
784 		dev_warn(&h->pdev->dev, "out of memory in "
785 			"adjust_hpsa_scsi_table\n");
786 		goto free_and_out;
787 	}
788 
789 	spin_lock_irqsave(&h->devlock, flags);
790 
791 	/* find any devices in h->dev[] that are not in
792 	 * sd[] and remove them from h->dev[], and for any
793 	 * devices which have changed, remove the old device
794 	 * info and add the new device info.
795 	 */
796 	i = 0;
797 	nremoved = 0;
798 	nadded = 0;
799 	while (i < h->ndevices) {
800 		csd = h->dev[i];
801 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802 		if (device_change == DEVICE_NOT_FOUND) {
803 			changes++;
804 			hpsa_scsi_remove_entry(h, hostno, i,
805 				removed, &nremoved);
806 			continue; /* remove ^^^, hence i not incremented */
807 		} else if (device_change == DEVICE_CHANGED) {
808 			changes++;
809 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810 				added, &nadded, removed, &nremoved);
811 			/* Set it to NULL to prevent it from being freed
812 			 * at the bottom of hpsa_update_scsi_devices()
813 			 */
814 			sd[entry] = NULL;
815 		}
816 		i++;
817 	}
818 
819 	/* Now, make sure every device listed in sd[] is also
820 	 * listed in h->dev[], adding them if they aren't found
821 	 */
822 
823 	for (i = 0; i < nsds; i++) {
824 		if (!sd[i]) /* if already added above. */
825 			continue;
826 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827 					h->ndevices, &entry);
828 		if (device_change == DEVICE_NOT_FOUND) {
829 			changes++;
830 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
831 				added, &nadded) != 0)
832 				break;
833 			sd[i] = NULL; /* prevent from being freed later. */
834 		} else if (device_change == DEVICE_CHANGED) {
835 			/* should never happen... */
836 			changes++;
837 			dev_warn(&h->pdev->dev,
838 				"device unexpectedly changed.\n");
839 			/* but if it does happen, we just ignore that device */
840 		}
841 	}
842 	spin_unlock_irqrestore(&h->devlock, flags);
843 
844 	/* Don't notify scsi mid layer of any changes the first time through
845 	 * (or if there are no changes) scsi_scan_host will do it later the
846 	 * first time through.
847 	 */
848 	if (hostno == -1 || !changes)
849 		goto free_and_out;
850 
851 	sh = h->scsi_host;
852 	/* Notify scsi mid layer of any removed devices */
853 	for (i = 0; i < nremoved; i++) {
854 		struct scsi_device *sdev =
855 			scsi_device_lookup(sh, removed[i]->bus,
856 				removed[i]->target, removed[i]->lun);
857 		if (sdev != NULL) {
858 			scsi_remove_device(sdev);
859 			scsi_device_put(sdev);
860 		} else {
861 			/* We don't expect to get here.
862 			 * future cmds to this device will get selection
863 			 * timeout as if the device was gone.
864 			 */
865 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866 				" for removal.", hostno, removed[i]->bus,
867 				removed[i]->target, removed[i]->lun);
868 		}
869 		kfree(removed[i]);
870 		removed[i] = NULL;
871 	}
872 
873 	/* Notify scsi mid layer of any added devices */
874 	for (i = 0; i < nadded; i++) {
875 		if (scsi_add_device(sh, added[i]->bus,
876 			added[i]->target, added[i]->lun) == 0)
877 			continue;
878 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879 			"device not added.\n", hostno, added[i]->bus,
880 			added[i]->target, added[i]->lun);
881 		/* now we have to remove it from h->dev,
882 		 * since it didn't get added to scsi mid layer
883 		 */
884 		fixup_botched_add(h, added[i]);
885 	}
886 
887 free_and_out:
888 	kfree(added);
889 	kfree(removed);
890 }
891 
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897 	int bus, int target, int lun)
898 {
899 	int i;
900 	struct hpsa_scsi_dev_t *sd;
901 
902 	for (i = 0; i < h->ndevices; i++) {
903 		sd = h->dev[i];
904 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
905 			return sd;
906 	}
907 	return NULL;
908 }
909 
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913 	struct hpsa_scsi_dev_t *sd;
914 	unsigned long flags;
915 	struct ctlr_info *h;
916 
917 	h = sdev_to_hba(sdev);
918 	spin_lock_irqsave(&h->devlock, flags);
919 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920 		sdev_id(sdev), sdev->lun);
921 	if (sd != NULL)
922 		sdev->hostdata = sd;
923 	spin_unlock_irqrestore(&h->devlock, flags);
924 	return 0;
925 }
926 
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929 	/* nothing to do. */
930 }
931 
932 static void hpsa_scsi_setup(struct ctlr_info *h)
933 {
934 	h->ndevices = 0;
935 	h->scsi_host = NULL;
936 	spin_lock_init(&h->devlock);
937 }
938 
939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
940 {
941 	int i;
942 
943 	if (!h->cmd_sg_list)
944 		return;
945 	for (i = 0; i < h->nr_cmds; i++) {
946 		kfree(h->cmd_sg_list[i]);
947 		h->cmd_sg_list[i] = NULL;
948 	}
949 	kfree(h->cmd_sg_list);
950 	h->cmd_sg_list = NULL;
951 }
952 
953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
954 {
955 	int i;
956 
957 	if (h->chainsize <= 0)
958 		return 0;
959 
960 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
961 				GFP_KERNEL);
962 	if (!h->cmd_sg_list)
963 		return -ENOMEM;
964 	for (i = 0; i < h->nr_cmds; i++) {
965 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
966 						h->chainsize, GFP_KERNEL);
967 		if (!h->cmd_sg_list[i])
968 			goto clean;
969 	}
970 	return 0;
971 
972 clean:
973 	hpsa_free_sg_chain_blocks(h);
974 	return -ENOMEM;
975 }
976 
977 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
978 	struct CommandList *c)
979 {
980 	struct SGDescriptor *chain_sg, *chain_block;
981 	u64 temp64;
982 
983 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
984 	chain_block = h->cmd_sg_list[c->cmdindex];
985 	chain_sg->Ext = HPSA_SG_CHAIN;
986 	chain_sg->Len = sizeof(*chain_sg) *
987 		(c->Header.SGTotal - h->max_cmd_sg_entries);
988 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
989 				PCI_DMA_TODEVICE);
990 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
991 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
992 }
993 
994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
995 	struct CommandList *c)
996 {
997 	struct SGDescriptor *chain_sg;
998 	union u64bit temp64;
999 
1000 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1001 		return;
1002 
1003 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1004 	temp64.val32.lower = chain_sg->Addr.lower;
1005 	temp64.val32.upper = chain_sg->Addr.upper;
1006 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1007 }
1008 
1009 static void complete_scsi_command(struct CommandList *cp,
1010 	int timeout, u32 tag)
1011 {
1012 	struct scsi_cmnd *cmd;
1013 	struct ctlr_info *h;
1014 	struct ErrorInfo *ei;
1015 
1016 	unsigned char sense_key;
1017 	unsigned char asc;      /* additional sense code */
1018 	unsigned char ascq;     /* additional sense code qualifier */
1019 
1020 	ei = cp->err_info;
1021 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1022 	h = cp->h;
1023 
1024 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1025 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1026 		hpsa_unmap_sg_chain_block(h, cp);
1027 
1028 	cmd->result = (DID_OK << 16); 		/* host byte */
1029 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1030 	cmd->result |= ei->ScsiStatus;
1031 
1032 	/* copy the sense data whether we need to or not. */
1033 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1034 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1035 			SCSI_SENSE_BUFFERSIZE :
1036 			ei->SenseLen);
1037 	scsi_set_resid(cmd, ei->ResidualCnt);
1038 
1039 	if (ei->CommandStatus == 0) {
1040 		cmd->scsi_done(cmd);
1041 		cmd_free(h, cp);
1042 		return;
1043 	}
1044 
1045 	/* an error has occurred */
1046 	switch (ei->CommandStatus) {
1047 
1048 	case CMD_TARGET_STATUS:
1049 		if (ei->ScsiStatus) {
1050 			/* Get sense key */
1051 			sense_key = 0xf & ei->SenseInfo[2];
1052 			/* Get additional sense code */
1053 			asc = ei->SenseInfo[12];
1054 			/* Get addition sense code qualifier */
1055 			ascq = ei->SenseInfo[13];
1056 		}
1057 
1058 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1059 			if (check_for_unit_attention(h, cp)) {
1060 				cmd->result = DID_SOFT_ERROR << 16;
1061 				break;
1062 			}
1063 			if (sense_key == ILLEGAL_REQUEST) {
1064 				/*
1065 				 * SCSI REPORT_LUNS is commonly unsupported on
1066 				 * Smart Array.  Suppress noisy complaint.
1067 				 */
1068 				if (cp->Request.CDB[0] == REPORT_LUNS)
1069 					break;
1070 
1071 				/* If ASC/ASCQ indicate Logical Unit
1072 				 * Not Supported condition,
1073 				 */
1074 				if ((asc == 0x25) && (ascq == 0x0)) {
1075 					dev_warn(&h->pdev->dev, "cp %p "
1076 						"has check condition\n", cp);
1077 					break;
1078 				}
1079 			}
1080 
1081 			if (sense_key == NOT_READY) {
1082 				/* If Sense is Not Ready, Logical Unit
1083 				 * Not ready, Manual Intervention
1084 				 * required
1085 				 */
1086 				if ((asc == 0x04) && (ascq == 0x03)) {
1087 					dev_warn(&h->pdev->dev, "cp %p "
1088 						"has check condition: unit "
1089 						"not ready, manual "
1090 						"intervention required\n", cp);
1091 					break;
1092 				}
1093 			}
1094 			if (sense_key == ABORTED_COMMAND) {
1095 				/* Aborted command is retryable */
1096 				dev_warn(&h->pdev->dev, "cp %p "
1097 					"has check condition: aborted command: "
1098 					"ASC: 0x%x, ASCQ: 0x%x\n",
1099 					cp, asc, ascq);
1100 				cmd->result = DID_SOFT_ERROR << 16;
1101 				break;
1102 			}
1103 			/* Must be some other type of check condition */
1104 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1105 					"unknown type: "
1106 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1107 					"Returning result: 0x%x, "
1108 					"cmd=[%02x %02x %02x %02x %02x "
1109 					"%02x %02x %02x %02x %02x %02x "
1110 					"%02x %02x %02x %02x %02x]\n",
1111 					cp, sense_key, asc, ascq,
1112 					cmd->result,
1113 					cmd->cmnd[0], cmd->cmnd[1],
1114 					cmd->cmnd[2], cmd->cmnd[3],
1115 					cmd->cmnd[4], cmd->cmnd[5],
1116 					cmd->cmnd[6], cmd->cmnd[7],
1117 					cmd->cmnd[8], cmd->cmnd[9],
1118 					cmd->cmnd[10], cmd->cmnd[11],
1119 					cmd->cmnd[12], cmd->cmnd[13],
1120 					cmd->cmnd[14], cmd->cmnd[15]);
1121 			break;
1122 		}
1123 
1124 
1125 		/* Problem was not a check condition
1126 		 * Pass it up to the upper layers...
1127 		 */
1128 		if (ei->ScsiStatus) {
1129 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1130 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1131 				"Returning result: 0x%x\n",
1132 				cp, ei->ScsiStatus,
1133 				sense_key, asc, ascq,
1134 				cmd->result);
1135 		} else {  /* scsi status is zero??? How??? */
1136 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1137 				"Returning no connection.\n", cp),
1138 
1139 			/* Ordinarily, this case should never happen,
1140 			 * but there is a bug in some released firmware
1141 			 * revisions that allows it to happen if, for
1142 			 * example, a 4100 backplane loses power and
1143 			 * the tape drive is in it.  We assume that
1144 			 * it's a fatal error of some kind because we
1145 			 * can't show that it wasn't. We will make it
1146 			 * look like selection timeout since that is
1147 			 * the most common reason for this to occur,
1148 			 * and it's severe enough.
1149 			 */
1150 
1151 			cmd->result = DID_NO_CONNECT << 16;
1152 		}
1153 		break;
1154 
1155 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1156 		break;
1157 	case CMD_DATA_OVERRUN:
1158 		dev_warn(&h->pdev->dev, "cp %p has"
1159 			" completed with data overrun "
1160 			"reported\n", cp);
1161 		break;
1162 	case CMD_INVALID: {
1163 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1164 		print_cmd(cp); */
1165 		/* We get CMD_INVALID if you address a non-existent device
1166 		 * instead of a selection timeout (no response).  You will
1167 		 * see this if you yank out a drive, then try to access it.
1168 		 * This is kind of a shame because it means that any other
1169 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1170 		 * missing target. */
1171 		cmd->result = DID_NO_CONNECT << 16;
1172 	}
1173 		break;
1174 	case CMD_PROTOCOL_ERR:
1175 		dev_warn(&h->pdev->dev, "cp %p has "
1176 			"protocol error \n", cp);
1177 		break;
1178 	case CMD_HARDWARE_ERR:
1179 		cmd->result = DID_ERROR << 16;
1180 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1181 		break;
1182 	case CMD_CONNECTION_LOST:
1183 		cmd->result = DID_ERROR << 16;
1184 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1185 		break;
1186 	case CMD_ABORTED:
1187 		cmd->result = DID_ABORT << 16;
1188 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1189 				cp, ei->ScsiStatus);
1190 		break;
1191 	case CMD_ABORT_FAILED:
1192 		cmd->result = DID_ERROR << 16;
1193 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1194 		break;
1195 	case CMD_UNSOLICITED_ABORT:
1196 		cmd->result = DID_RESET << 16;
1197 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1198 			"abort\n", cp);
1199 		break;
1200 	case CMD_TIMEOUT:
1201 		cmd->result = DID_TIME_OUT << 16;
1202 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1203 		break;
1204 	case CMD_UNABORTABLE:
1205 		cmd->result = DID_ERROR << 16;
1206 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1207 		break;
1208 	default:
1209 		cmd->result = DID_ERROR << 16;
1210 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1211 				cp, ei->CommandStatus);
1212 	}
1213 	cmd->scsi_done(cmd);
1214 	cmd_free(h, cp);
1215 }
1216 
1217 static int hpsa_scsi_detect(struct ctlr_info *h)
1218 {
1219 	struct Scsi_Host *sh;
1220 	int error;
1221 
1222 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1223 	if (sh == NULL)
1224 		goto fail;
1225 
1226 	sh->io_port = 0;
1227 	sh->n_io_port = 0;
1228 	sh->this_id = -1;
1229 	sh->max_channel = 3;
1230 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1231 	sh->max_lun = HPSA_MAX_LUN;
1232 	sh->max_id = HPSA_MAX_LUN;
1233 	sh->can_queue = h->nr_cmds;
1234 	sh->cmd_per_lun = h->nr_cmds;
1235 	sh->sg_tablesize = h->maxsgentries;
1236 	h->scsi_host = sh;
1237 	sh->hostdata[0] = (unsigned long) h;
1238 	sh->irq = h->intr[h->intr_mode];
1239 	sh->unique_id = sh->irq;
1240 	error = scsi_add_host(sh, &h->pdev->dev);
1241 	if (error)
1242 		goto fail_host_put;
1243 	scsi_scan_host(sh);
1244 	return 0;
1245 
1246  fail_host_put:
1247 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1248 		" failed for controller %d\n", h->ctlr);
1249 	scsi_host_put(sh);
1250 	return error;
1251  fail:
1252 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1253 		" failed for controller %d\n", h->ctlr);
1254 	return -ENOMEM;
1255 }
1256 
1257 static void hpsa_pci_unmap(struct pci_dev *pdev,
1258 	struct CommandList *c, int sg_used, int data_direction)
1259 {
1260 	int i;
1261 	union u64bit addr64;
1262 
1263 	for (i = 0; i < sg_used; i++) {
1264 		addr64.val32.lower = c->SG[i].Addr.lower;
1265 		addr64.val32.upper = c->SG[i].Addr.upper;
1266 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1267 			data_direction);
1268 	}
1269 }
1270 
1271 static void hpsa_map_one(struct pci_dev *pdev,
1272 		struct CommandList *cp,
1273 		unsigned char *buf,
1274 		size_t buflen,
1275 		int data_direction)
1276 {
1277 	u64 addr64;
1278 
1279 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1280 		cp->Header.SGList = 0;
1281 		cp->Header.SGTotal = 0;
1282 		return;
1283 	}
1284 
1285 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1286 	cp->SG[0].Addr.lower =
1287 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1288 	cp->SG[0].Addr.upper =
1289 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1290 	cp->SG[0].Len = buflen;
1291 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1292 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1293 }
1294 
1295 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1296 	struct CommandList *c)
1297 {
1298 	DECLARE_COMPLETION_ONSTACK(wait);
1299 
1300 	c->waiting = &wait;
1301 	enqueue_cmd_and_start_io(h, c);
1302 	wait_for_completion(&wait);
1303 }
1304 
1305 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1306 	struct CommandList *c, int data_direction)
1307 {
1308 	int retry_count = 0;
1309 
1310 	do {
1311 		memset(c->err_info, 0, sizeof(c->err_info));
1312 		hpsa_scsi_do_simple_cmd_core(h, c);
1313 		retry_count++;
1314 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1315 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1316 }
1317 
1318 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1319 {
1320 	struct ErrorInfo *ei;
1321 	struct device *d = &cp->h->pdev->dev;
1322 
1323 	ei = cp->err_info;
1324 	switch (ei->CommandStatus) {
1325 	case CMD_TARGET_STATUS:
1326 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1327 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1328 				ei->ScsiStatus);
1329 		if (ei->ScsiStatus == 0)
1330 			dev_warn(d, "SCSI status is abnormally zero.  "
1331 			"(probably indicates selection timeout "
1332 			"reported incorrectly due to a known "
1333 			"firmware bug, circa July, 2001.)\n");
1334 		break;
1335 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1336 			dev_info(d, "UNDERRUN\n");
1337 		break;
1338 	case CMD_DATA_OVERRUN:
1339 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1340 		break;
1341 	case CMD_INVALID: {
1342 		/* controller unfortunately reports SCSI passthru's
1343 		 * to non-existent targets as invalid commands.
1344 		 */
1345 		dev_warn(d, "cp %p is reported invalid (probably means "
1346 			"target device no longer present)\n", cp);
1347 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1348 		print_cmd(cp);  */
1349 		}
1350 		break;
1351 	case CMD_PROTOCOL_ERR:
1352 		dev_warn(d, "cp %p has protocol error \n", cp);
1353 		break;
1354 	case CMD_HARDWARE_ERR:
1355 		/* cmd->result = DID_ERROR << 16; */
1356 		dev_warn(d, "cp %p had hardware error\n", cp);
1357 		break;
1358 	case CMD_CONNECTION_LOST:
1359 		dev_warn(d, "cp %p had connection lost\n", cp);
1360 		break;
1361 	case CMD_ABORTED:
1362 		dev_warn(d, "cp %p was aborted\n", cp);
1363 		break;
1364 	case CMD_ABORT_FAILED:
1365 		dev_warn(d, "cp %p reports abort failed\n", cp);
1366 		break;
1367 	case CMD_UNSOLICITED_ABORT:
1368 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1369 		break;
1370 	case CMD_TIMEOUT:
1371 		dev_warn(d, "cp %p timed out\n", cp);
1372 		break;
1373 	case CMD_UNABORTABLE:
1374 		dev_warn(d, "Command unabortable\n");
1375 		break;
1376 	default:
1377 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1378 				ei->CommandStatus);
1379 	}
1380 }
1381 
1382 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1383 			unsigned char page, unsigned char *buf,
1384 			unsigned char bufsize)
1385 {
1386 	int rc = IO_OK;
1387 	struct CommandList *c;
1388 	struct ErrorInfo *ei;
1389 
1390 	c = cmd_special_alloc(h);
1391 
1392 	if (c == NULL) {			/* trouble... */
1393 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1394 		return -ENOMEM;
1395 	}
1396 
1397 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1398 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1399 	ei = c->err_info;
1400 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1401 		hpsa_scsi_interpret_error(c);
1402 		rc = -1;
1403 	}
1404 	cmd_special_free(h, c);
1405 	return rc;
1406 }
1407 
1408 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1409 {
1410 	int rc = IO_OK;
1411 	struct CommandList *c;
1412 	struct ErrorInfo *ei;
1413 
1414 	c = cmd_special_alloc(h);
1415 
1416 	if (c == NULL) {			/* trouble... */
1417 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1418 		return -ENOMEM;
1419 	}
1420 
1421 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1422 	hpsa_scsi_do_simple_cmd_core(h, c);
1423 	/* no unmap needed here because no data xfer. */
1424 
1425 	ei = c->err_info;
1426 	if (ei->CommandStatus != 0) {
1427 		hpsa_scsi_interpret_error(c);
1428 		rc = -1;
1429 	}
1430 	cmd_special_free(h, c);
1431 	return rc;
1432 }
1433 
1434 static void hpsa_get_raid_level(struct ctlr_info *h,
1435 	unsigned char *scsi3addr, unsigned char *raid_level)
1436 {
1437 	int rc;
1438 	unsigned char *buf;
1439 
1440 	*raid_level = RAID_UNKNOWN;
1441 	buf = kzalloc(64, GFP_KERNEL);
1442 	if (!buf)
1443 		return;
1444 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1445 	if (rc == 0)
1446 		*raid_level = buf[8];
1447 	if (*raid_level > RAID_UNKNOWN)
1448 		*raid_level = RAID_UNKNOWN;
1449 	kfree(buf);
1450 	return;
1451 }
1452 
1453 /* Get the device id from inquiry page 0x83 */
1454 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1455 	unsigned char *device_id, int buflen)
1456 {
1457 	int rc;
1458 	unsigned char *buf;
1459 
1460 	if (buflen > 16)
1461 		buflen = 16;
1462 	buf = kzalloc(64, GFP_KERNEL);
1463 	if (!buf)
1464 		return -1;
1465 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1466 	if (rc == 0)
1467 		memcpy(device_id, &buf[8], buflen);
1468 	kfree(buf);
1469 	return rc != 0;
1470 }
1471 
1472 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1473 		struct ReportLUNdata *buf, int bufsize,
1474 		int extended_response)
1475 {
1476 	int rc = IO_OK;
1477 	struct CommandList *c;
1478 	unsigned char scsi3addr[8];
1479 	struct ErrorInfo *ei;
1480 
1481 	c = cmd_special_alloc(h);
1482 	if (c == NULL) {			/* trouble... */
1483 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1484 		return -1;
1485 	}
1486 	/* address the controller */
1487 	memset(scsi3addr, 0, sizeof(scsi3addr));
1488 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1489 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1490 	if (extended_response)
1491 		c->Request.CDB[1] = extended_response;
1492 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1493 	ei = c->err_info;
1494 	if (ei->CommandStatus != 0 &&
1495 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1496 		hpsa_scsi_interpret_error(c);
1497 		rc = -1;
1498 	}
1499 	cmd_special_free(h, c);
1500 	return rc;
1501 }
1502 
1503 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1504 		struct ReportLUNdata *buf,
1505 		int bufsize, int extended_response)
1506 {
1507 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1508 }
1509 
1510 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1511 		struct ReportLUNdata *buf, int bufsize)
1512 {
1513 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1514 }
1515 
1516 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1517 	int bus, int target, int lun)
1518 {
1519 	device->bus = bus;
1520 	device->target = target;
1521 	device->lun = lun;
1522 }
1523 
1524 static int hpsa_update_device_info(struct ctlr_info *h,
1525 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1526 {
1527 #define OBDR_TAPE_INQ_SIZE 49
1528 	unsigned char *inq_buff;
1529 
1530 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1531 	if (!inq_buff)
1532 		goto bail_out;
1533 
1534 	/* Do an inquiry to the device to see what it is. */
1535 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1536 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1537 		/* Inquiry failed (msg printed already) */
1538 		dev_err(&h->pdev->dev,
1539 			"hpsa_update_device_info: inquiry failed\n");
1540 		goto bail_out;
1541 	}
1542 
1543 	this_device->devtype = (inq_buff[0] & 0x1f);
1544 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1545 	memcpy(this_device->vendor, &inq_buff[8],
1546 		sizeof(this_device->vendor));
1547 	memcpy(this_device->model, &inq_buff[16],
1548 		sizeof(this_device->model));
1549 	memset(this_device->device_id, 0,
1550 		sizeof(this_device->device_id));
1551 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1552 		sizeof(this_device->device_id));
1553 
1554 	if (this_device->devtype == TYPE_DISK &&
1555 		is_logical_dev_addr_mode(scsi3addr))
1556 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1557 	else
1558 		this_device->raid_level = RAID_UNKNOWN;
1559 
1560 	kfree(inq_buff);
1561 	return 0;
1562 
1563 bail_out:
1564 	kfree(inq_buff);
1565 	return 1;
1566 }
1567 
1568 static unsigned char *msa2xxx_model[] = {
1569 	"MSA2012",
1570 	"MSA2024",
1571 	"MSA2312",
1572 	"MSA2324",
1573 	NULL,
1574 };
1575 
1576 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1577 {
1578 	int i;
1579 
1580 	for (i = 0; msa2xxx_model[i]; i++)
1581 		if (strncmp(device->model, msa2xxx_model[i],
1582 			strlen(msa2xxx_model[i])) == 0)
1583 			return 1;
1584 	return 0;
1585 }
1586 
1587 /* Helper function to assign bus, target, lun mapping of devices.
1588  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1589  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1590  * Logical drive target and lun are assigned at this time, but
1591  * physical device lun and target assignment are deferred (assigned
1592  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1593  */
1594 static void figure_bus_target_lun(struct ctlr_info *h,
1595 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1596 	struct hpsa_scsi_dev_t *device)
1597 {
1598 	u32 lunid;
1599 
1600 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1601 		/* logical device */
1602 		if (unlikely(is_scsi_rev_5(h))) {
1603 			/* p1210m, logical drives lun assignments
1604 			 * match SCSI REPORT LUNS data.
1605 			 */
1606 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1607 			*bus = 0;
1608 			*target = 0;
1609 			*lun = (lunid & 0x3fff) + 1;
1610 		} else {
1611 			/* not p1210m... */
1612 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1613 			if (is_msa2xxx(h, device)) {
1614 				/* msa2xxx way, put logicals on bus 1
1615 				 * and match target/lun numbers box
1616 				 * reports.
1617 				 */
1618 				*bus = 1;
1619 				*target = (lunid >> 16) & 0x3fff;
1620 				*lun = lunid & 0x00ff;
1621 			} else {
1622 				/* Traditional smart array way. */
1623 				*bus = 0;
1624 				*lun = 0;
1625 				*target = lunid & 0x3fff;
1626 			}
1627 		}
1628 	} else {
1629 		/* physical device */
1630 		if (is_hba_lunid(lunaddrbytes))
1631 			if (unlikely(is_scsi_rev_5(h))) {
1632 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1633 				*target = 0;
1634 				*lun = 0;
1635 				return;
1636 			} else
1637 				*bus = 3; /* traditional smartarray */
1638 		else
1639 			*bus = 2; /* physical disk */
1640 		*target = -1;
1641 		*lun = -1; /* we will fill these in later. */
1642 	}
1643 }
1644 
1645 /*
1646  * If there is no lun 0 on a target, linux won't find any devices.
1647  * For the MSA2xxx boxes, we have to manually detect the enclosure
1648  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1649  * it for some reason.  *tmpdevice is the target we're adding,
1650  * this_device is a pointer into the current element of currentsd[]
1651  * that we're building up in update_scsi_devices(), below.
1652  * lunzerobits is a bitmap that tracks which targets already have a
1653  * lun 0 assigned.
1654  * Returns 1 if an enclosure was added, 0 if not.
1655  */
1656 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1657 	struct hpsa_scsi_dev_t *tmpdevice,
1658 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1659 	int bus, int target, int lun, unsigned long lunzerobits[],
1660 	int *nmsa2xxx_enclosures)
1661 {
1662 	unsigned char scsi3addr[8];
1663 
1664 	if (test_bit(target, lunzerobits))
1665 		return 0; /* There is already a lun 0 on this target. */
1666 
1667 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1668 		return 0; /* It's the logical targets that may lack lun 0. */
1669 
1670 	if (!is_msa2xxx(h, tmpdevice))
1671 		return 0; /* It's only the MSA2xxx that have this problem. */
1672 
1673 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1674 		return 0;
1675 
1676 	memset(scsi3addr, 0, 8);
1677 	scsi3addr[3] = target;
1678 	if (is_hba_lunid(scsi3addr))
1679 		return 0; /* Don't add the RAID controller here. */
1680 
1681 	if (is_scsi_rev_5(h))
1682 		return 0; /* p1210m doesn't need to do this. */
1683 
1684 #define MAX_MSA2XXX_ENCLOSURES 32
1685 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1686 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1687 			"enclosures exceeded.  Check your hardware "
1688 			"configuration.");
1689 		return 0;
1690 	}
1691 
1692 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1693 		return 0;
1694 	(*nmsa2xxx_enclosures)++;
1695 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1696 	set_bit(target, lunzerobits);
1697 	return 1;
1698 }
1699 
1700 /*
1701  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1702  * logdev.  The number of luns in physdev and logdev are returned in
1703  * *nphysicals and *nlogicals, respectively.
1704  * Returns 0 on success, -1 otherwise.
1705  */
1706 static int hpsa_gather_lun_info(struct ctlr_info *h,
1707 	int reportlunsize,
1708 	struct ReportLUNdata *physdev, u32 *nphysicals,
1709 	struct ReportLUNdata *logdev, u32 *nlogicals)
1710 {
1711 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1712 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1713 		return -1;
1714 	}
1715 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1716 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1717 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1718 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1719 			*nphysicals - HPSA_MAX_PHYS_LUN);
1720 		*nphysicals = HPSA_MAX_PHYS_LUN;
1721 	}
1722 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1723 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1724 		return -1;
1725 	}
1726 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1727 	/* Reject Logicals in excess of our max capability. */
1728 	if (*nlogicals > HPSA_MAX_LUN) {
1729 		dev_warn(&h->pdev->dev,
1730 			"maximum logical LUNs (%d) exceeded.  "
1731 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1732 			*nlogicals - HPSA_MAX_LUN);
1733 			*nlogicals = HPSA_MAX_LUN;
1734 	}
1735 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1736 		dev_warn(&h->pdev->dev,
1737 			"maximum logical + physical LUNs (%d) exceeded. "
1738 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1739 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1740 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1741 	}
1742 	return 0;
1743 }
1744 
1745 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1746 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1747 	struct ReportLUNdata *logdev_list)
1748 {
1749 	/* Helper function, figure out where the LUN ID info is coming from
1750 	 * given index i, lists of physical and logical devices, where in
1751 	 * the list the raid controller is supposed to appear (first or last)
1752 	 */
1753 
1754 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1755 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1756 
1757 	if (i == raid_ctlr_position)
1758 		return RAID_CTLR_LUNID;
1759 
1760 	if (i < logicals_start)
1761 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1762 
1763 	if (i < last_device)
1764 		return &logdev_list->LUN[i - nphysicals -
1765 			(raid_ctlr_position == 0)][0];
1766 	BUG();
1767 	return NULL;
1768 }
1769 
1770 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1771 {
1772 	/* the idea here is we could get notified
1773 	 * that some devices have changed, so we do a report
1774 	 * physical luns and report logical luns cmd, and adjust
1775 	 * our list of devices accordingly.
1776 	 *
1777 	 * The scsi3addr's of devices won't change so long as the
1778 	 * adapter is not reset.  That means we can rescan and
1779 	 * tell which devices we already know about, vs. new
1780 	 * devices, vs.  disappearing devices.
1781 	 */
1782 	struct ReportLUNdata *physdev_list = NULL;
1783 	struct ReportLUNdata *logdev_list = NULL;
1784 	unsigned char *inq_buff = NULL;
1785 	u32 nphysicals = 0;
1786 	u32 nlogicals = 0;
1787 	u32 ndev_allocated = 0;
1788 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1789 	int ncurrent = 0;
1790 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1791 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1792 	int bus, target, lun;
1793 	int raid_ctlr_position;
1794 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1795 
1796 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1797 		GFP_KERNEL);
1798 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1799 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1800 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1801 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1802 
1803 	if (!currentsd || !physdev_list || !logdev_list ||
1804 		!inq_buff || !tmpdevice) {
1805 		dev_err(&h->pdev->dev, "out of memory\n");
1806 		goto out;
1807 	}
1808 	memset(lunzerobits, 0, sizeof(lunzerobits));
1809 
1810 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1811 			logdev_list, &nlogicals))
1812 		goto out;
1813 
1814 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1815 	 * but each of them 4 times through different paths.  The plus 1
1816 	 * is for the RAID controller.
1817 	 */
1818 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1819 
1820 	/* Allocate the per device structures */
1821 	for (i = 0; i < ndevs_to_allocate; i++) {
1822 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1823 		if (!currentsd[i]) {
1824 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1825 				__FILE__, __LINE__);
1826 			goto out;
1827 		}
1828 		ndev_allocated++;
1829 	}
1830 
1831 	if (unlikely(is_scsi_rev_5(h)))
1832 		raid_ctlr_position = 0;
1833 	else
1834 		raid_ctlr_position = nphysicals + nlogicals;
1835 
1836 	/* adjust our table of devices */
1837 	nmsa2xxx_enclosures = 0;
1838 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1839 		u8 *lunaddrbytes;
1840 
1841 		/* Figure out where the LUN ID info is coming from */
1842 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1843 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1844 		/* skip masked physical devices. */
1845 		if (lunaddrbytes[3] & 0xC0 &&
1846 			i < nphysicals + (raid_ctlr_position == 0))
1847 			continue;
1848 
1849 		/* Get device type, vendor, model, device id */
1850 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1851 			continue; /* skip it if we can't talk to it. */
1852 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1853 			tmpdevice);
1854 		this_device = currentsd[ncurrent];
1855 
1856 		/*
1857 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1858 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1859 		 * is nonetheless an enclosure device there.  We have to
1860 		 * present that otherwise linux won't find anything if
1861 		 * there is no lun 0.
1862 		 */
1863 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1864 				lunaddrbytes, bus, target, lun, lunzerobits,
1865 				&nmsa2xxx_enclosures)) {
1866 			ncurrent++;
1867 			this_device = currentsd[ncurrent];
1868 		}
1869 
1870 		*this_device = *tmpdevice;
1871 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1872 
1873 		switch (this_device->devtype) {
1874 		case TYPE_ROM: {
1875 			/* We don't *really* support actual CD-ROM devices,
1876 			 * just "One Button Disaster Recovery" tape drive
1877 			 * which temporarily pretends to be a CD-ROM drive.
1878 			 * So we check that the device is really an OBDR tape
1879 			 * device by checking for "$DR-10" in bytes 43-48 of
1880 			 * the inquiry data.
1881 			 */
1882 				char obdr_sig[7];
1883 #define OBDR_TAPE_SIG "$DR-10"
1884 				strncpy(obdr_sig, &inq_buff[43], 6);
1885 				obdr_sig[6] = '\0';
1886 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1887 					/* Not OBDR device, ignore it. */
1888 					break;
1889 			}
1890 			ncurrent++;
1891 			break;
1892 		case TYPE_DISK:
1893 			if (i < nphysicals)
1894 				break;
1895 			ncurrent++;
1896 			break;
1897 		case TYPE_TAPE:
1898 		case TYPE_MEDIUM_CHANGER:
1899 			ncurrent++;
1900 			break;
1901 		case TYPE_RAID:
1902 			/* Only present the Smartarray HBA as a RAID controller.
1903 			 * If it's a RAID controller other than the HBA itself
1904 			 * (an external RAID controller, MSA500 or similar)
1905 			 * don't present it.
1906 			 */
1907 			if (!is_hba_lunid(lunaddrbytes))
1908 				break;
1909 			ncurrent++;
1910 			break;
1911 		default:
1912 			break;
1913 		}
1914 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1915 			break;
1916 	}
1917 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1918 out:
1919 	kfree(tmpdevice);
1920 	for (i = 0; i < ndev_allocated; i++)
1921 		kfree(currentsd[i]);
1922 	kfree(currentsd);
1923 	kfree(inq_buff);
1924 	kfree(physdev_list);
1925 	kfree(logdev_list);
1926 }
1927 
1928 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1929  * dma mapping  and fills in the scatter gather entries of the
1930  * hpsa command, cp.
1931  */
1932 static int hpsa_scatter_gather(struct ctlr_info *h,
1933 		struct CommandList *cp,
1934 		struct scsi_cmnd *cmd)
1935 {
1936 	unsigned int len;
1937 	struct scatterlist *sg;
1938 	u64 addr64;
1939 	int use_sg, i, sg_index, chained;
1940 	struct SGDescriptor *curr_sg;
1941 
1942 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1943 
1944 	use_sg = scsi_dma_map(cmd);
1945 	if (use_sg < 0)
1946 		return use_sg;
1947 
1948 	if (!use_sg)
1949 		goto sglist_finished;
1950 
1951 	curr_sg = cp->SG;
1952 	chained = 0;
1953 	sg_index = 0;
1954 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1955 		if (i == h->max_cmd_sg_entries - 1 &&
1956 			use_sg > h->max_cmd_sg_entries) {
1957 			chained = 1;
1958 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1959 			sg_index = 0;
1960 		}
1961 		addr64 = (u64) sg_dma_address(sg);
1962 		len  = sg_dma_len(sg);
1963 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1964 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1965 		curr_sg->Len = len;
1966 		curr_sg->Ext = 0;  /* we are not chaining */
1967 		curr_sg++;
1968 	}
1969 
1970 	if (use_sg + chained > h->maxSG)
1971 		h->maxSG = use_sg + chained;
1972 
1973 	if (chained) {
1974 		cp->Header.SGList = h->max_cmd_sg_entries;
1975 		cp->Header.SGTotal = (u16) (use_sg + 1);
1976 		hpsa_map_sg_chain_block(h, cp);
1977 		return 0;
1978 	}
1979 
1980 sglist_finished:
1981 
1982 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1983 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1984 	return 0;
1985 }
1986 
1987 
1988 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1989 	void (*done)(struct scsi_cmnd *))
1990 {
1991 	struct ctlr_info *h;
1992 	struct hpsa_scsi_dev_t *dev;
1993 	unsigned char scsi3addr[8];
1994 	struct CommandList *c;
1995 	unsigned long flags;
1996 
1997 	/* Get the ptr to our adapter structure out of cmd->host. */
1998 	h = sdev_to_hba(cmd->device);
1999 	dev = cmd->device->hostdata;
2000 	if (!dev) {
2001 		cmd->result = DID_NO_CONNECT << 16;
2002 		done(cmd);
2003 		return 0;
2004 	}
2005 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2006 
2007 	/* Need a lock as this is being allocated from the pool */
2008 	spin_lock_irqsave(&h->lock, flags);
2009 	c = cmd_alloc(h);
2010 	spin_unlock_irqrestore(&h->lock, flags);
2011 	if (c == NULL) {			/* trouble... */
2012 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2013 		return SCSI_MLQUEUE_HOST_BUSY;
2014 	}
2015 
2016 	/* Fill in the command list header */
2017 
2018 	cmd->scsi_done = done;    /* save this for use by completion code */
2019 
2020 	/* save c in case we have to abort it  */
2021 	cmd->host_scribble = (unsigned char *) c;
2022 
2023 	c->cmd_type = CMD_SCSI;
2024 	c->scsi_cmd = cmd;
2025 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2026 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2027 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2028 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2029 
2030 	/* Fill in the request block... */
2031 
2032 	c->Request.Timeout = 0;
2033 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2034 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2035 	c->Request.CDBLen = cmd->cmd_len;
2036 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2037 	c->Request.Type.Type = TYPE_CMD;
2038 	c->Request.Type.Attribute = ATTR_SIMPLE;
2039 	switch (cmd->sc_data_direction) {
2040 	case DMA_TO_DEVICE:
2041 		c->Request.Type.Direction = XFER_WRITE;
2042 		break;
2043 	case DMA_FROM_DEVICE:
2044 		c->Request.Type.Direction = XFER_READ;
2045 		break;
2046 	case DMA_NONE:
2047 		c->Request.Type.Direction = XFER_NONE;
2048 		break;
2049 	case DMA_BIDIRECTIONAL:
2050 		/* This can happen if a buggy application does a scsi passthru
2051 		 * and sets both inlen and outlen to non-zero. ( see
2052 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2053 		 */
2054 
2055 		c->Request.Type.Direction = XFER_RSVD;
2056 		/* This is technically wrong, and hpsa controllers should
2057 		 * reject it with CMD_INVALID, which is the most correct
2058 		 * response, but non-fibre backends appear to let it
2059 		 * slide by, and give the same results as if this field
2060 		 * were set correctly.  Either way is acceptable for
2061 		 * our purposes here.
2062 		 */
2063 
2064 		break;
2065 
2066 	default:
2067 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2068 			cmd->sc_data_direction);
2069 		BUG();
2070 		break;
2071 	}
2072 
2073 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2074 		cmd_free(h, c);
2075 		return SCSI_MLQUEUE_HOST_BUSY;
2076 	}
2077 	enqueue_cmd_and_start_io(h, c);
2078 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2079 	return 0;
2080 }
2081 
2082 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2083 
2084 static void hpsa_scan_start(struct Scsi_Host *sh)
2085 {
2086 	struct ctlr_info *h = shost_to_hba(sh);
2087 	unsigned long flags;
2088 
2089 	/* wait until any scan already in progress is finished. */
2090 	while (1) {
2091 		spin_lock_irqsave(&h->scan_lock, flags);
2092 		if (h->scan_finished)
2093 			break;
2094 		spin_unlock_irqrestore(&h->scan_lock, flags);
2095 		wait_event(h->scan_wait_queue, h->scan_finished);
2096 		/* Note: We don't need to worry about a race between this
2097 		 * thread and driver unload because the midlayer will
2098 		 * have incremented the reference count, so unload won't
2099 		 * happen if we're in here.
2100 		 */
2101 	}
2102 	h->scan_finished = 0; /* mark scan as in progress */
2103 	spin_unlock_irqrestore(&h->scan_lock, flags);
2104 
2105 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2106 
2107 	spin_lock_irqsave(&h->scan_lock, flags);
2108 	h->scan_finished = 1; /* mark scan as finished. */
2109 	wake_up_all(&h->scan_wait_queue);
2110 	spin_unlock_irqrestore(&h->scan_lock, flags);
2111 }
2112 
2113 static int hpsa_scan_finished(struct Scsi_Host *sh,
2114 	unsigned long elapsed_time)
2115 {
2116 	struct ctlr_info *h = shost_to_hba(sh);
2117 	unsigned long flags;
2118 	int finished;
2119 
2120 	spin_lock_irqsave(&h->scan_lock, flags);
2121 	finished = h->scan_finished;
2122 	spin_unlock_irqrestore(&h->scan_lock, flags);
2123 	return finished;
2124 }
2125 
2126 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2127 	int qdepth, int reason)
2128 {
2129 	struct ctlr_info *h = sdev_to_hba(sdev);
2130 
2131 	if (reason != SCSI_QDEPTH_DEFAULT)
2132 		return -ENOTSUPP;
2133 
2134 	if (qdepth < 1)
2135 		qdepth = 1;
2136 	else
2137 		if (qdepth > h->nr_cmds)
2138 			qdepth = h->nr_cmds;
2139 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2140 	return sdev->queue_depth;
2141 }
2142 
2143 static void hpsa_unregister_scsi(struct ctlr_info *h)
2144 {
2145 	/* we are being forcibly unloaded, and may not refuse. */
2146 	scsi_remove_host(h->scsi_host);
2147 	scsi_host_put(h->scsi_host);
2148 	h->scsi_host = NULL;
2149 }
2150 
2151 static int hpsa_register_scsi(struct ctlr_info *h)
2152 {
2153 	int rc;
2154 
2155 	rc = hpsa_scsi_detect(h);
2156 	if (rc != 0)
2157 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2158 			" hpsa_scsi_detect(), rc is %d\n", rc);
2159 	return rc;
2160 }
2161 
2162 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2163 	unsigned char lunaddr[])
2164 {
2165 	int rc = 0;
2166 	int count = 0;
2167 	int waittime = 1; /* seconds */
2168 	struct CommandList *c;
2169 
2170 	c = cmd_special_alloc(h);
2171 	if (!c) {
2172 		dev_warn(&h->pdev->dev, "out of memory in "
2173 			"wait_for_device_to_become_ready.\n");
2174 		return IO_ERROR;
2175 	}
2176 
2177 	/* Send test unit ready until device ready, or give up. */
2178 	while (count < HPSA_TUR_RETRY_LIMIT) {
2179 
2180 		/* Wait for a bit.  do this first, because if we send
2181 		 * the TUR right away, the reset will just abort it.
2182 		 */
2183 		msleep(1000 * waittime);
2184 		count++;
2185 
2186 		/* Increase wait time with each try, up to a point. */
2187 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2188 			waittime = waittime * 2;
2189 
2190 		/* Send the Test Unit Ready */
2191 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2192 		hpsa_scsi_do_simple_cmd_core(h, c);
2193 		/* no unmap needed here because no data xfer. */
2194 
2195 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2196 			break;
2197 
2198 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2199 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2200 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2201 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2202 			break;
2203 
2204 		dev_warn(&h->pdev->dev, "waiting %d secs "
2205 			"for device to become ready.\n", waittime);
2206 		rc = 1; /* device not ready. */
2207 	}
2208 
2209 	if (rc)
2210 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2211 	else
2212 		dev_warn(&h->pdev->dev, "device is ready.\n");
2213 
2214 	cmd_special_free(h, c);
2215 	return rc;
2216 }
2217 
2218 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2219  * complaining.  Doing a host- or bus-reset can't do anything good here.
2220  */
2221 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2222 {
2223 	int rc;
2224 	struct ctlr_info *h;
2225 	struct hpsa_scsi_dev_t *dev;
2226 
2227 	/* find the controller to which the command to be aborted was sent */
2228 	h = sdev_to_hba(scsicmd->device);
2229 	if (h == NULL) /* paranoia */
2230 		return FAILED;
2231 	dev = scsicmd->device->hostdata;
2232 	if (!dev) {
2233 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2234 			"device lookup failed.\n");
2235 		return FAILED;
2236 	}
2237 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2238 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2239 	/* send a reset to the SCSI LUN which the command was sent to */
2240 	rc = hpsa_send_reset(h, dev->scsi3addr);
2241 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2242 		return SUCCESS;
2243 
2244 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2245 	return FAILED;
2246 }
2247 
2248 /*
2249  * For operations that cannot sleep, a command block is allocated at init,
2250  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2251  * which ones are free or in use.  Lock must be held when calling this.
2252  * cmd_free() is the complement.
2253  */
2254 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2255 {
2256 	struct CommandList *c;
2257 	int i;
2258 	union u64bit temp64;
2259 	dma_addr_t cmd_dma_handle, err_dma_handle;
2260 
2261 	do {
2262 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2263 		if (i == h->nr_cmds)
2264 			return NULL;
2265 	} while (test_and_set_bit
2266 		 (i & (BITS_PER_LONG - 1),
2267 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2268 	c = h->cmd_pool + i;
2269 	memset(c, 0, sizeof(*c));
2270 	cmd_dma_handle = h->cmd_pool_dhandle
2271 	    + i * sizeof(*c);
2272 	c->err_info = h->errinfo_pool + i;
2273 	memset(c->err_info, 0, sizeof(*c->err_info));
2274 	err_dma_handle = h->errinfo_pool_dhandle
2275 	    + i * sizeof(*c->err_info);
2276 	h->nr_allocs++;
2277 
2278 	c->cmdindex = i;
2279 
2280 	INIT_LIST_HEAD(&c->list);
2281 	c->busaddr = (u32) cmd_dma_handle;
2282 	temp64.val = (u64) err_dma_handle;
2283 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2284 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2285 	c->ErrDesc.Len = sizeof(*c->err_info);
2286 
2287 	c->h = h;
2288 	return c;
2289 }
2290 
2291 /* For operations that can wait for kmalloc to possibly sleep,
2292  * this routine can be called. Lock need not be held to call
2293  * cmd_special_alloc. cmd_special_free() is the complement.
2294  */
2295 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2296 {
2297 	struct CommandList *c;
2298 	union u64bit temp64;
2299 	dma_addr_t cmd_dma_handle, err_dma_handle;
2300 
2301 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2302 	if (c == NULL)
2303 		return NULL;
2304 	memset(c, 0, sizeof(*c));
2305 
2306 	c->cmdindex = -1;
2307 
2308 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2309 		    &err_dma_handle);
2310 
2311 	if (c->err_info == NULL) {
2312 		pci_free_consistent(h->pdev,
2313 			sizeof(*c), c, cmd_dma_handle);
2314 		return NULL;
2315 	}
2316 	memset(c->err_info, 0, sizeof(*c->err_info));
2317 
2318 	INIT_LIST_HEAD(&c->list);
2319 	c->busaddr = (u32) cmd_dma_handle;
2320 	temp64.val = (u64) err_dma_handle;
2321 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2322 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2323 	c->ErrDesc.Len = sizeof(*c->err_info);
2324 
2325 	c->h = h;
2326 	return c;
2327 }
2328 
2329 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2330 {
2331 	int i;
2332 
2333 	i = c - h->cmd_pool;
2334 	clear_bit(i & (BITS_PER_LONG - 1),
2335 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2336 	h->nr_frees++;
2337 }
2338 
2339 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2340 {
2341 	union u64bit temp64;
2342 
2343 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2344 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2345 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2346 			    c->err_info, (dma_addr_t) temp64.val);
2347 	pci_free_consistent(h->pdev, sizeof(*c),
2348 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2349 }
2350 
2351 #ifdef CONFIG_COMPAT
2352 
2353 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2354 {
2355 	IOCTL32_Command_struct __user *arg32 =
2356 	    (IOCTL32_Command_struct __user *) arg;
2357 	IOCTL_Command_struct arg64;
2358 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2359 	int err;
2360 	u32 cp;
2361 
2362 	memset(&arg64, 0, sizeof(arg64));
2363 	err = 0;
2364 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2365 			   sizeof(arg64.LUN_info));
2366 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2367 			   sizeof(arg64.Request));
2368 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2369 			   sizeof(arg64.error_info));
2370 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2371 	err |= get_user(cp, &arg32->buf);
2372 	arg64.buf = compat_ptr(cp);
2373 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2374 
2375 	if (err)
2376 		return -EFAULT;
2377 
2378 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2379 	if (err)
2380 		return err;
2381 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2382 			 sizeof(arg32->error_info));
2383 	if (err)
2384 		return -EFAULT;
2385 	return err;
2386 }
2387 
2388 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2389 	int cmd, void *arg)
2390 {
2391 	BIG_IOCTL32_Command_struct __user *arg32 =
2392 	    (BIG_IOCTL32_Command_struct __user *) arg;
2393 	BIG_IOCTL_Command_struct arg64;
2394 	BIG_IOCTL_Command_struct __user *p =
2395 	    compat_alloc_user_space(sizeof(arg64));
2396 	int err;
2397 	u32 cp;
2398 
2399 	memset(&arg64, 0, sizeof(arg64));
2400 	err = 0;
2401 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2402 			   sizeof(arg64.LUN_info));
2403 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2404 			   sizeof(arg64.Request));
2405 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2406 			   sizeof(arg64.error_info));
2407 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2408 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2409 	err |= get_user(cp, &arg32->buf);
2410 	arg64.buf = compat_ptr(cp);
2411 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2412 
2413 	if (err)
2414 		return -EFAULT;
2415 
2416 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2417 	if (err)
2418 		return err;
2419 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2420 			 sizeof(arg32->error_info));
2421 	if (err)
2422 		return -EFAULT;
2423 	return err;
2424 }
2425 
2426 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2427 {
2428 	switch (cmd) {
2429 	case CCISS_GETPCIINFO:
2430 	case CCISS_GETINTINFO:
2431 	case CCISS_SETINTINFO:
2432 	case CCISS_GETNODENAME:
2433 	case CCISS_SETNODENAME:
2434 	case CCISS_GETHEARTBEAT:
2435 	case CCISS_GETBUSTYPES:
2436 	case CCISS_GETFIRMVER:
2437 	case CCISS_GETDRIVVER:
2438 	case CCISS_REVALIDVOLS:
2439 	case CCISS_DEREGDISK:
2440 	case CCISS_REGNEWDISK:
2441 	case CCISS_REGNEWD:
2442 	case CCISS_RESCANDISK:
2443 	case CCISS_GETLUNINFO:
2444 		return hpsa_ioctl(dev, cmd, arg);
2445 
2446 	case CCISS_PASSTHRU32:
2447 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2448 	case CCISS_BIG_PASSTHRU32:
2449 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2450 
2451 	default:
2452 		return -ENOIOCTLCMD;
2453 	}
2454 }
2455 #endif
2456 
2457 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2458 {
2459 	struct hpsa_pci_info pciinfo;
2460 
2461 	if (!argp)
2462 		return -EINVAL;
2463 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2464 	pciinfo.bus = h->pdev->bus->number;
2465 	pciinfo.dev_fn = h->pdev->devfn;
2466 	pciinfo.board_id = h->board_id;
2467 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2468 		return -EFAULT;
2469 	return 0;
2470 }
2471 
2472 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2473 {
2474 	DriverVer_type DriverVer;
2475 	unsigned char vmaj, vmin, vsubmin;
2476 	int rc;
2477 
2478 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2479 		&vmaj, &vmin, &vsubmin);
2480 	if (rc != 3) {
2481 		dev_info(&h->pdev->dev, "driver version string '%s' "
2482 			"unrecognized.", HPSA_DRIVER_VERSION);
2483 		vmaj = 0;
2484 		vmin = 0;
2485 		vsubmin = 0;
2486 	}
2487 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2488 	if (!argp)
2489 		return -EINVAL;
2490 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2491 		return -EFAULT;
2492 	return 0;
2493 }
2494 
2495 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2496 {
2497 	IOCTL_Command_struct iocommand;
2498 	struct CommandList *c;
2499 	char *buff = NULL;
2500 	union u64bit temp64;
2501 
2502 	if (!argp)
2503 		return -EINVAL;
2504 	if (!capable(CAP_SYS_RAWIO))
2505 		return -EPERM;
2506 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2507 		return -EFAULT;
2508 	if ((iocommand.buf_size < 1) &&
2509 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2510 		return -EINVAL;
2511 	}
2512 	if (iocommand.buf_size > 0) {
2513 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2514 		if (buff == NULL)
2515 			return -EFAULT;
2516 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2517 			/* Copy the data into the buffer we created */
2518 			if (copy_from_user(buff, iocommand.buf,
2519 				iocommand.buf_size)) {
2520 				kfree(buff);
2521 				return -EFAULT;
2522 			}
2523 		} else {
2524 			memset(buff, 0, iocommand.buf_size);
2525 		}
2526 	}
2527 	c = cmd_special_alloc(h);
2528 	if (c == NULL) {
2529 		kfree(buff);
2530 		return -ENOMEM;
2531 	}
2532 	/* Fill in the command type */
2533 	c->cmd_type = CMD_IOCTL_PEND;
2534 	/* Fill in Command Header */
2535 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2536 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2537 		c->Header.SGList = 1;
2538 		c->Header.SGTotal = 1;
2539 	} else	{ /* no buffers to fill */
2540 		c->Header.SGList = 0;
2541 		c->Header.SGTotal = 0;
2542 	}
2543 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2544 	/* use the kernel address the cmd block for tag */
2545 	c->Header.Tag.lower = c->busaddr;
2546 
2547 	/* Fill in Request block */
2548 	memcpy(&c->Request, &iocommand.Request,
2549 		sizeof(c->Request));
2550 
2551 	/* Fill in the scatter gather information */
2552 	if (iocommand.buf_size > 0) {
2553 		temp64.val = pci_map_single(h->pdev, buff,
2554 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2555 		c->SG[0].Addr.lower = temp64.val32.lower;
2556 		c->SG[0].Addr.upper = temp64.val32.upper;
2557 		c->SG[0].Len = iocommand.buf_size;
2558 		c->SG[0].Ext = 0; /* we are not chaining*/
2559 	}
2560 	hpsa_scsi_do_simple_cmd_core(h, c);
2561 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2562 	check_ioctl_unit_attention(h, c);
2563 
2564 	/* Copy the error information out */
2565 	memcpy(&iocommand.error_info, c->err_info,
2566 		sizeof(iocommand.error_info));
2567 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2568 		kfree(buff);
2569 		cmd_special_free(h, c);
2570 		return -EFAULT;
2571 	}
2572 	if (iocommand.Request.Type.Direction == XFER_READ &&
2573 		iocommand.buf_size > 0) {
2574 		/* Copy the data out of the buffer we created */
2575 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2576 			kfree(buff);
2577 			cmd_special_free(h, c);
2578 			return -EFAULT;
2579 		}
2580 	}
2581 	kfree(buff);
2582 	cmd_special_free(h, c);
2583 	return 0;
2584 }
2585 
2586 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2587 {
2588 	BIG_IOCTL_Command_struct *ioc;
2589 	struct CommandList *c;
2590 	unsigned char **buff = NULL;
2591 	int *buff_size = NULL;
2592 	union u64bit temp64;
2593 	BYTE sg_used = 0;
2594 	int status = 0;
2595 	int i;
2596 	u32 left;
2597 	u32 sz;
2598 	BYTE __user *data_ptr;
2599 
2600 	if (!argp)
2601 		return -EINVAL;
2602 	if (!capable(CAP_SYS_RAWIO))
2603 		return -EPERM;
2604 	ioc = (BIG_IOCTL_Command_struct *)
2605 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2606 	if (!ioc) {
2607 		status = -ENOMEM;
2608 		goto cleanup1;
2609 	}
2610 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2611 		status = -EFAULT;
2612 		goto cleanup1;
2613 	}
2614 	if ((ioc->buf_size < 1) &&
2615 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2616 		status = -EINVAL;
2617 		goto cleanup1;
2618 	}
2619 	/* Check kmalloc limits  using all SGs */
2620 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2621 		status = -EINVAL;
2622 		goto cleanup1;
2623 	}
2624 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2625 		status = -EINVAL;
2626 		goto cleanup1;
2627 	}
2628 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2629 	if (!buff) {
2630 		status = -ENOMEM;
2631 		goto cleanup1;
2632 	}
2633 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2634 	if (!buff_size) {
2635 		status = -ENOMEM;
2636 		goto cleanup1;
2637 	}
2638 	left = ioc->buf_size;
2639 	data_ptr = ioc->buf;
2640 	while (left) {
2641 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2642 		buff_size[sg_used] = sz;
2643 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2644 		if (buff[sg_used] == NULL) {
2645 			status = -ENOMEM;
2646 			goto cleanup1;
2647 		}
2648 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2649 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2650 				status = -ENOMEM;
2651 				goto cleanup1;
2652 			}
2653 		} else
2654 			memset(buff[sg_used], 0, sz);
2655 		left -= sz;
2656 		data_ptr += sz;
2657 		sg_used++;
2658 	}
2659 	c = cmd_special_alloc(h);
2660 	if (c == NULL) {
2661 		status = -ENOMEM;
2662 		goto cleanup1;
2663 	}
2664 	c->cmd_type = CMD_IOCTL_PEND;
2665 	c->Header.ReplyQueue = 0;
2666 	c->Header.SGList = c->Header.SGTotal = sg_used;
2667 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2668 	c->Header.Tag.lower = c->busaddr;
2669 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2670 	if (ioc->buf_size > 0) {
2671 		int i;
2672 		for (i = 0; i < sg_used; i++) {
2673 			temp64.val = pci_map_single(h->pdev, buff[i],
2674 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2675 			c->SG[i].Addr.lower = temp64.val32.lower;
2676 			c->SG[i].Addr.upper = temp64.val32.upper;
2677 			c->SG[i].Len = buff_size[i];
2678 			/* we are not chaining */
2679 			c->SG[i].Ext = 0;
2680 		}
2681 	}
2682 	hpsa_scsi_do_simple_cmd_core(h, c);
2683 	if (sg_used)
2684 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2685 	check_ioctl_unit_attention(h, c);
2686 	/* Copy the error information out */
2687 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2688 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2689 		cmd_special_free(h, c);
2690 		status = -EFAULT;
2691 		goto cleanup1;
2692 	}
2693 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2694 		/* Copy the data out of the buffer we created */
2695 		BYTE __user *ptr = ioc->buf;
2696 		for (i = 0; i < sg_used; i++) {
2697 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2698 				cmd_special_free(h, c);
2699 				status = -EFAULT;
2700 				goto cleanup1;
2701 			}
2702 			ptr += buff_size[i];
2703 		}
2704 	}
2705 	cmd_special_free(h, c);
2706 	status = 0;
2707 cleanup1:
2708 	if (buff) {
2709 		for (i = 0; i < sg_used; i++)
2710 			kfree(buff[i]);
2711 		kfree(buff);
2712 	}
2713 	kfree(buff_size);
2714 	kfree(ioc);
2715 	return status;
2716 }
2717 
2718 static void check_ioctl_unit_attention(struct ctlr_info *h,
2719 	struct CommandList *c)
2720 {
2721 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2722 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2723 		(void) check_for_unit_attention(h, c);
2724 }
2725 /*
2726  * ioctl
2727  */
2728 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2729 {
2730 	struct ctlr_info *h;
2731 	void __user *argp = (void __user *)arg;
2732 
2733 	h = sdev_to_hba(dev);
2734 
2735 	switch (cmd) {
2736 	case CCISS_DEREGDISK:
2737 	case CCISS_REGNEWDISK:
2738 	case CCISS_REGNEWD:
2739 		hpsa_scan_start(h->scsi_host);
2740 		return 0;
2741 	case CCISS_GETPCIINFO:
2742 		return hpsa_getpciinfo_ioctl(h, argp);
2743 	case CCISS_GETDRIVVER:
2744 		return hpsa_getdrivver_ioctl(h, argp);
2745 	case CCISS_PASSTHRU:
2746 		return hpsa_passthru_ioctl(h, argp);
2747 	case CCISS_BIG_PASSTHRU:
2748 		return hpsa_big_passthru_ioctl(h, argp);
2749 	default:
2750 		return -ENOTTY;
2751 	}
2752 }
2753 
2754 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2755 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2756 	int cmd_type)
2757 {
2758 	int pci_dir = XFER_NONE;
2759 
2760 	c->cmd_type = CMD_IOCTL_PEND;
2761 	c->Header.ReplyQueue = 0;
2762 	if (buff != NULL && size > 0) {
2763 		c->Header.SGList = 1;
2764 		c->Header.SGTotal = 1;
2765 	} else {
2766 		c->Header.SGList = 0;
2767 		c->Header.SGTotal = 0;
2768 	}
2769 	c->Header.Tag.lower = c->busaddr;
2770 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2771 
2772 	c->Request.Type.Type = cmd_type;
2773 	if (cmd_type == TYPE_CMD) {
2774 		switch (cmd) {
2775 		case HPSA_INQUIRY:
2776 			/* are we trying to read a vital product page */
2777 			if (page_code != 0) {
2778 				c->Request.CDB[1] = 0x01;
2779 				c->Request.CDB[2] = page_code;
2780 			}
2781 			c->Request.CDBLen = 6;
2782 			c->Request.Type.Attribute = ATTR_SIMPLE;
2783 			c->Request.Type.Direction = XFER_READ;
2784 			c->Request.Timeout = 0;
2785 			c->Request.CDB[0] = HPSA_INQUIRY;
2786 			c->Request.CDB[4] = size & 0xFF;
2787 			break;
2788 		case HPSA_REPORT_LOG:
2789 		case HPSA_REPORT_PHYS:
2790 			/* Talking to controller so It's a physical command
2791 			   mode = 00 target = 0.  Nothing to write.
2792 			 */
2793 			c->Request.CDBLen = 12;
2794 			c->Request.Type.Attribute = ATTR_SIMPLE;
2795 			c->Request.Type.Direction = XFER_READ;
2796 			c->Request.Timeout = 0;
2797 			c->Request.CDB[0] = cmd;
2798 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2799 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2800 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2801 			c->Request.CDB[9] = size & 0xFF;
2802 			break;
2803 		case HPSA_CACHE_FLUSH:
2804 			c->Request.CDBLen = 12;
2805 			c->Request.Type.Attribute = ATTR_SIMPLE;
2806 			c->Request.Type.Direction = XFER_WRITE;
2807 			c->Request.Timeout = 0;
2808 			c->Request.CDB[0] = BMIC_WRITE;
2809 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2810 			break;
2811 		case TEST_UNIT_READY:
2812 			c->Request.CDBLen = 6;
2813 			c->Request.Type.Attribute = ATTR_SIMPLE;
2814 			c->Request.Type.Direction = XFER_NONE;
2815 			c->Request.Timeout = 0;
2816 			break;
2817 		default:
2818 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2819 			BUG();
2820 			return;
2821 		}
2822 	} else if (cmd_type == TYPE_MSG) {
2823 		switch (cmd) {
2824 
2825 		case  HPSA_DEVICE_RESET_MSG:
2826 			c->Request.CDBLen = 16;
2827 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2828 			c->Request.Type.Attribute = ATTR_SIMPLE;
2829 			c->Request.Type.Direction = XFER_NONE;
2830 			c->Request.Timeout = 0; /* Don't time out */
2831 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2832 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2833 			/* If bytes 4-7 are zero, it means reset the */
2834 			/* LunID device */
2835 			c->Request.CDB[4] = 0x00;
2836 			c->Request.CDB[5] = 0x00;
2837 			c->Request.CDB[6] = 0x00;
2838 			c->Request.CDB[7] = 0x00;
2839 		break;
2840 
2841 		default:
2842 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2843 				cmd);
2844 			BUG();
2845 		}
2846 	} else {
2847 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2848 		BUG();
2849 	}
2850 
2851 	switch (c->Request.Type.Direction) {
2852 	case XFER_READ:
2853 		pci_dir = PCI_DMA_FROMDEVICE;
2854 		break;
2855 	case XFER_WRITE:
2856 		pci_dir = PCI_DMA_TODEVICE;
2857 		break;
2858 	case XFER_NONE:
2859 		pci_dir = PCI_DMA_NONE;
2860 		break;
2861 	default:
2862 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2863 	}
2864 
2865 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2866 
2867 	return;
2868 }
2869 
2870 /*
2871  * Map (physical) PCI mem into (virtual) kernel space
2872  */
2873 static void __iomem *remap_pci_mem(ulong base, ulong size)
2874 {
2875 	ulong page_base = ((ulong) base) & PAGE_MASK;
2876 	ulong page_offs = ((ulong) base) - page_base;
2877 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2878 
2879 	return page_remapped ? (page_remapped + page_offs) : NULL;
2880 }
2881 
2882 /* Takes cmds off the submission queue and sends them to the hardware,
2883  * then puts them on the queue of cmds waiting for completion.
2884  */
2885 static void start_io(struct ctlr_info *h)
2886 {
2887 	struct CommandList *c;
2888 
2889 	while (!list_empty(&h->reqQ)) {
2890 		c = list_entry(h->reqQ.next, struct CommandList, list);
2891 		/* can't do anything if fifo is full */
2892 		if ((h->access.fifo_full(h))) {
2893 			dev_warn(&h->pdev->dev, "fifo full\n");
2894 			break;
2895 		}
2896 
2897 		/* Get the first entry from the Request Q */
2898 		removeQ(c);
2899 		h->Qdepth--;
2900 
2901 		/* Tell the controller execute command */
2902 		h->access.submit_command(h, c);
2903 
2904 		/* Put job onto the completed Q */
2905 		addQ(&h->cmpQ, c);
2906 	}
2907 }
2908 
2909 static inline unsigned long get_next_completion(struct ctlr_info *h)
2910 {
2911 	return h->access.command_completed(h);
2912 }
2913 
2914 static inline bool interrupt_pending(struct ctlr_info *h)
2915 {
2916 	return h->access.intr_pending(h);
2917 }
2918 
2919 static inline long interrupt_not_for_us(struct ctlr_info *h)
2920 {
2921 	return (h->access.intr_pending(h) == 0) ||
2922 		(h->interrupts_enabled == 0);
2923 }
2924 
2925 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2926 	u32 raw_tag)
2927 {
2928 	if (unlikely(tag_index >= h->nr_cmds)) {
2929 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2930 		return 1;
2931 	}
2932 	return 0;
2933 }
2934 
2935 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2936 {
2937 	removeQ(c);
2938 	if (likely(c->cmd_type == CMD_SCSI))
2939 		complete_scsi_command(c, 0, raw_tag);
2940 	else if (c->cmd_type == CMD_IOCTL_PEND)
2941 		complete(c->waiting);
2942 }
2943 
2944 static inline u32 hpsa_tag_contains_index(u32 tag)
2945 {
2946 	return tag & DIRECT_LOOKUP_BIT;
2947 }
2948 
2949 static inline u32 hpsa_tag_to_index(u32 tag)
2950 {
2951 	return tag >> DIRECT_LOOKUP_SHIFT;
2952 }
2953 
2954 
2955 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2956 {
2957 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2958 #define HPSA_SIMPLE_ERROR_BITS 0x03
2959 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2960 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
2961 	return tag & ~HPSA_PERF_ERROR_BITS;
2962 }
2963 
2964 /* process completion of an indexed ("direct lookup") command */
2965 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2966 	u32 raw_tag)
2967 {
2968 	u32 tag_index;
2969 	struct CommandList *c;
2970 
2971 	tag_index = hpsa_tag_to_index(raw_tag);
2972 	if (bad_tag(h, tag_index, raw_tag))
2973 		return next_command(h);
2974 	c = h->cmd_pool + tag_index;
2975 	finish_cmd(c, raw_tag);
2976 	return next_command(h);
2977 }
2978 
2979 /* process completion of a non-indexed command */
2980 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2981 	u32 raw_tag)
2982 {
2983 	u32 tag;
2984 	struct CommandList *c = NULL;
2985 
2986 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
2987 	list_for_each_entry(c, &h->cmpQ, list) {
2988 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2989 			finish_cmd(c, raw_tag);
2990 			return next_command(h);
2991 		}
2992 	}
2993 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2994 	return next_command(h);
2995 }
2996 
2997 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2998 {
2999 	struct ctlr_info *h = dev_id;
3000 	unsigned long flags;
3001 	u32 raw_tag;
3002 
3003 	if (interrupt_not_for_us(h))
3004 		return IRQ_NONE;
3005 	spin_lock_irqsave(&h->lock, flags);
3006 	while (interrupt_pending(h)) {
3007 		raw_tag = get_next_completion(h);
3008 		while (raw_tag != FIFO_EMPTY) {
3009 			if (hpsa_tag_contains_index(raw_tag))
3010 				raw_tag = process_indexed_cmd(h, raw_tag);
3011 			else
3012 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3013 		}
3014 	}
3015 	spin_unlock_irqrestore(&h->lock, flags);
3016 	return IRQ_HANDLED;
3017 }
3018 
3019 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3020 {
3021 	struct ctlr_info *h = dev_id;
3022 	unsigned long flags;
3023 	u32 raw_tag;
3024 
3025 	spin_lock_irqsave(&h->lock, flags);
3026 	raw_tag = get_next_completion(h);
3027 	while (raw_tag != FIFO_EMPTY) {
3028 		if (hpsa_tag_contains_index(raw_tag))
3029 			raw_tag = process_indexed_cmd(h, raw_tag);
3030 		else
3031 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3032 	}
3033 	spin_unlock_irqrestore(&h->lock, flags);
3034 	return IRQ_HANDLED;
3035 }
3036 
3037 /* Send a message CDB to the firmware. Careful, this only works
3038  * in simple mode, not performant mode due to the tag lookup.
3039  * We only ever use this immediately after a controller reset.
3040  */
3041 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3042 						unsigned char type)
3043 {
3044 	struct Command {
3045 		struct CommandListHeader CommandHeader;
3046 		struct RequestBlock Request;
3047 		struct ErrDescriptor ErrorDescriptor;
3048 	};
3049 	struct Command *cmd;
3050 	static const size_t cmd_sz = sizeof(*cmd) +
3051 					sizeof(cmd->ErrorDescriptor);
3052 	dma_addr_t paddr64;
3053 	uint32_t paddr32, tag;
3054 	void __iomem *vaddr;
3055 	int i, err;
3056 
3057 	vaddr = pci_ioremap_bar(pdev, 0);
3058 	if (vaddr == NULL)
3059 		return -ENOMEM;
3060 
3061 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3062 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3063 	 * memory.
3064 	 */
3065 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3066 	if (err) {
3067 		iounmap(vaddr);
3068 		return -ENOMEM;
3069 	}
3070 
3071 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3072 	if (cmd == NULL) {
3073 		iounmap(vaddr);
3074 		return -ENOMEM;
3075 	}
3076 
3077 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3078 	 * although there's no guarantee, we assume that the address is at
3079 	 * least 4-byte aligned (most likely, it's page-aligned).
3080 	 */
3081 	paddr32 = paddr64;
3082 
3083 	cmd->CommandHeader.ReplyQueue = 0;
3084 	cmd->CommandHeader.SGList = 0;
3085 	cmd->CommandHeader.SGTotal = 0;
3086 	cmd->CommandHeader.Tag.lower = paddr32;
3087 	cmd->CommandHeader.Tag.upper = 0;
3088 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3089 
3090 	cmd->Request.CDBLen = 16;
3091 	cmd->Request.Type.Type = TYPE_MSG;
3092 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3093 	cmd->Request.Type.Direction = XFER_NONE;
3094 	cmd->Request.Timeout = 0; /* Don't time out */
3095 	cmd->Request.CDB[0] = opcode;
3096 	cmd->Request.CDB[1] = type;
3097 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3098 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3099 	cmd->ErrorDescriptor.Addr.upper = 0;
3100 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3101 
3102 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3103 
3104 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3105 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3106 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3107 			break;
3108 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3109 	}
3110 
3111 	iounmap(vaddr);
3112 
3113 	/* we leak the DMA buffer here ... no choice since the controller could
3114 	 *  still complete the command.
3115 	 */
3116 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3117 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3118 			opcode, type);
3119 		return -ETIMEDOUT;
3120 	}
3121 
3122 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3123 
3124 	if (tag & HPSA_ERROR_BIT) {
3125 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3126 			opcode, type);
3127 		return -EIO;
3128 	}
3129 
3130 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3131 		opcode, type);
3132 	return 0;
3133 }
3134 
3135 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3136 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3137 
3138 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3139 	void * __iomem vaddr, bool use_doorbell)
3140 {
3141 	u16 pmcsr;
3142 	int pos;
3143 
3144 	if (use_doorbell) {
3145 		/* For everything after the P600, the PCI power state method
3146 		 * of resetting the controller doesn't work, so we have this
3147 		 * other way using the doorbell register.
3148 		 */
3149 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3150 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3151 		msleep(1000);
3152 	} else { /* Try to do it the PCI power state way */
3153 
3154 		/* Quoting from the Open CISS Specification: "The Power
3155 		 * Management Control/Status Register (CSR) controls the power
3156 		 * state of the device.  The normal operating state is D0,
3157 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3158 		 * the controller, place the interface device in D3 then to D0,
3159 		 * this causes a secondary PCI reset which will reset the
3160 		 * controller." */
3161 
3162 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3163 		if (pos == 0) {
3164 			dev_err(&pdev->dev,
3165 				"hpsa_reset_controller: "
3166 				"PCI PM not supported\n");
3167 			return -ENODEV;
3168 		}
3169 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3170 		/* enter the D3hot power management state */
3171 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3172 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3173 		pmcsr |= PCI_D3hot;
3174 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3175 
3176 		msleep(500);
3177 
3178 		/* enter the D0 power management state */
3179 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3180 		pmcsr |= PCI_D0;
3181 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3182 
3183 		msleep(500);
3184 	}
3185 	return 0;
3186 }
3187 
3188 /* This does a hard reset of the controller using PCI power management
3189  * states or the using the doorbell register.
3190  */
3191 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3192 {
3193 	u64 cfg_offset;
3194 	u32 cfg_base_addr;
3195 	u64 cfg_base_addr_index;
3196 	void __iomem *vaddr;
3197 	unsigned long paddr;
3198 	u32 misc_fw_support, active_transport;
3199 	int rc;
3200 	struct CfgTable __iomem *cfgtable;
3201 	bool use_doorbell;
3202 	u32 board_id;
3203 	u16 command_register;
3204 
3205 	/* For controllers as old as the P600, this is very nearly
3206 	 * the same thing as
3207 	 *
3208 	 * pci_save_state(pci_dev);
3209 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3210 	 * pci_set_power_state(pci_dev, PCI_D0);
3211 	 * pci_restore_state(pci_dev);
3212 	 *
3213 	 * For controllers newer than the P600, the pci power state
3214 	 * method of resetting doesn't work so we have another way
3215 	 * using the doorbell register.
3216 	 */
3217 
3218 	/* Exclude 640x boards.  These are two pci devices in one slot
3219 	 * which share a battery backed cache module.  One controls the
3220 	 * cache, the other accesses the cache through the one that controls
3221 	 * it.  If we reset the one controlling the cache, the other will
3222 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3223 	 * The 640x isn't really supported by hpsa anyway.
3224 	 */
3225 	rc = hpsa_lookup_board_id(pdev, &board_id);
3226 	if (rc < 0) {
3227 		dev_warn(&pdev->dev, "Not resetting device.\n");
3228 		return -ENODEV;
3229 	}
3230 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3231 		return -ENOTSUPP;
3232 
3233 	/* Save the PCI command register */
3234 	pci_read_config_word(pdev, 4, &command_register);
3235 	/* Turn the board off.  This is so that later pci_restore_state()
3236 	 * won't turn the board on before the rest of config space is ready.
3237 	 */
3238 	pci_disable_device(pdev);
3239 	pci_save_state(pdev);
3240 
3241 	/* find the first memory BAR, so we can find the cfg table */
3242 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3243 	if (rc)
3244 		return rc;
3245 	vaddr = remap_pci_mem(paddr, 0x250);
3246 	if (!vaddr)
3247 		return -ENOMEM;
3248 
3249 	/* find cfgtable in order to check if reset via doorbell is supported */
3250 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3251 					&cfg_base_addr_index, &cfg_offset);
3252 	if (rc)
3253 		goto unmap_vaddr;
3254 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3255 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3256 	if (!cfgtable) {
3257 		rc = -ENOMEM;
3258 		goto unmap_vaddr;
3259 	}
3260 
3261 	/* If reset via doorbell register is supported, use that. */
3262 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3263 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3264 
3265 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3266 	if (rc)
3267 		goto unmap_cfgtable;
3268 
3269 	pci_restore_state(pdev);
3270 	rc = pci_enable_device(pdev);
3271 	if (rc) {
3272 		dev_warn(&pdev->dev, "failed to enable device.\n");
3273 		goto unmap_cfgtable;
3274 	}
3275 	pci_write_config_word(pdev, 4, command_register);
3276 
3277 	/* Some devices (notably the HP Smart Array 5i Controller)
3278 	   need a little pause here */
3279 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3280 
3281 	/* Wait for board to become not ready, then ready. */
3282 	dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3283 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3284 	if (rc)
3285 		dev_warn(&pdev->dev,
3286 			"failed waiting for board to become not ready\n");
3287 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3288 	if (rc) {
3289 		dev_warn(&pdev->dev,
3290 			"failed waiting for board to become ready\n");
3291 		goto unmap_cfgtable;
3292 	}
3293 	dev_info(&pdev->dev, "board ready.\n");
3294 
3295 	/* Controller should be in simple mode at this point.  If it's not,
3296 	 * It means we're on one of those controllers which doesn't support
3297 	 * the doorbell reset method and on which the PCI power management reset
3298 	 * method doesn't work (P800, for example.)
3299 	 * In those cases, don't try to proceed, as it generally doesn't work.
3300 	 */
3301 	active_transport = readl(&cfgtable->TransportActive);
3302 	if (active_transport & PERFORMANT_MODE) {
3303 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3304 			" Ignoring controller.\n");
3305 		rc = -ENODEV;
3306 	}
3307 
3308 unmap_cfgtable:
3309 	iounmap(cfgtable);
3310 
3311 unmap_vaddr:
3312 	iounmap(vaddr);
3313 	return rc;
3314 }
3315 
3316 /*
3317  *  We cannot read the structure directly, for portability we must use
3318  *   the io functions.
3319  *   This is for debug only.
3320  */
3321 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3322 {
3323 #ifdef HPSA_DEBUG
3324 	int i;
3325 	char temp_name[17];
3326 
3327 	dev_info(dev, "Controller Configuration information\n");
3328 	dev_info(dev, "------------------------------------\n");
3329 	for (i = 0; i < 4; i++)
3330 		temp_name[i] = readb(&(tb->Signature[i]));
3331 	temp_name[4] = '\0';
3332 	dev_info(dev, "   Signature = %s\n", temp_name);
3333 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3334 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3335 	       readl(&(tb->TransportSupport)));
3336 	dev_info(dev, "   Transport methods active = 0x%x\n",
3337 	       readl(&(tb->TransportActive)));
3338 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3339 	       readl(&(tb->HostWrite.TransportRequest)));
3340 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3341 	       readl(&(tb->HostWrite.CoalIntDelay)));
3342 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3343 	       readl(&(tb->HostWrite.CoalIntCount)));
3344 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3345 	       readl(&(tb->CmdsOutMax)));
3346 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3347 	for (i = 0; i < 16; i++)
3348 		temp_name[i] = readb(&(tb->ServerName[i]));
3349 	temp_name[16] = '\0';
3350 	dev_info(dev, "   Server Name = %s\n", temp_name);
3351 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3352 		readl(&(tb->HeartBeat)));
3353 #endif				/* HPSA_DEBUG */
3354 }
3355 
3356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3357 {
3358 	int i, offset, mem_type, bar_type;
3359 
3360 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3361 		return 0;
3362 	offset = 0;
3363 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3364 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3365 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3366 			offset += 4;
3367 		else {
3368 			mem_type = pci_resource_flags(pdev, i) &
3369 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3370 			switch (mem_type) {
3371 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3372 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3373 				offset += 4;	/* 32 bit */
3374 				break;
3375 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3376 				offset += 8;
3377 				break;
3378 			default:	/* reserved in PCI 2.2 */
3379 				dev_warn(&pdev->dev,
3380 				       "base address is invalid\n");
3381 				return -1;
3382 				break;
3383 			}
3384 		}
3385 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3386 			return i + 1;
3387 	}
3388 	return -1;
3389 }
3390 
3391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3392  * controllers that are capable. If not, we use IO-APIC mode.
3393  */
3394 
3395 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3396 {
3397 #ifdef CONFIG_PCI_MSI
3398 	int err;
3399 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3400 	{0, 2}, {0, 3}
3401 	};
3402 
3403 	/* Some boards advertise MSI but don't really support it */
3404 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3405 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3406 		goto default_int_mode;
3407 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3408 		dev_info(&h->pdev->dev, "MSIX\n");
3409 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3410 		if (!err) {
3411 			h->intr[0] = hpsa_msix_entries[0].vector;
3412 			h->intr[1] = hpsa_msix_entries[1].vector;
3413 			h->intr[2] = hpsa_msix_entries[2].vector;
3414 			h->intr[3] = hpsa_msix_entries[3].vector;
3415 			h->msix_vector = 1;
3416 			return;
3417 		}
3418 		if (err > 0) {
3419 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3420 			       "available\n", err);
3421 			goto default_int_mode;
3422 		} else {
3423 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3424 			       err);
3425 			goto default_int_mode;
3426 		}
3427 	}
3428 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3429 		dev_info(&h->pdev->dev, "MSI\n");
3430 		if (!pci_enable_msi(h->pdev))
3431 			h->msi_vector = 1;
3432 		else
3433 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3434 	}
3435 default_int_mode:
3436 #endif				/* CONFIG_PCI_MSI */
3437 	/* if we get here we're going to use the default interrupt mode */
3438 	h->intr[h->intr_mode] = h->pdev->irq;
3439 }
3440 
3441 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3442 {
3443 	int i;
3444 	u32 subsystem_vendor_id, subsystem_device_id;
3445 
3446 	subsystem_vendor_id = pdev->subsystem_vendor;
3447 	subsystem_device_id = pdev->subsystem_device;
3448 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3449 		    subsystem_vendor_id;
3450 
3451 	for (i = 0; i < ARRAY_SIZE(products); i++)
3452 		if (*board_id == products[i].board_id)
3453 			return i;
3454 
3455 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3456 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3457 		!hpsa_allow_any) {
3458 		dev_warn(&pdev->dev, "unrecognized board ID: "
3459 			"0x%08x, ignoring.\n", *board_id);
3460 			return -ENODEV;
3461 	}
3462 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3463 }
3464 
3465 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3466 {
3467 	u16 command;
3468 
3469 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3470 	return ((command & PCI_COMMAND_MEMORY) == 0);
3471 }
3472 
3473 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3474 	unsigned long *memory_bar)
3475 {
3476 	int i;
3477 
3478 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3479 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3480 			/* addressing mode bits already removed */
3481 			*memory_bar = pci_resource_start(pdev, i);
3482 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3483 				*memory_bar);
3484 			return 0;
3485 		}
3486 	dev_warn(&pdev->dev, "no memory BAR found\n");
3487 	return -ENODEV;
3488 }
3489 
3490 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3491 	void __iomem *vaddr, int wait_for_ready)
3492 {
3493 	int i, iterations;
3494 	u32 scratchpad;
3495 	if (wait_for_ready)
3496 		iterations = HPSA_BOARD_READY_ITERATIONS;
3497 	else
3498 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3499 
3500 	for (i = 0; i < iterations; i++) {
3501 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3502 		if (wait_for_ready) {
3503 			if (scratchpad == HPSA_FIRMWARE_READY)
3504 				return 0;
3505 		} else {
3506 			if (scratchpad != HPSA_FIRMWARE_READY)
3507 				return 0;
3508 		}
3509 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3510 	}
3511 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3512 	return -ENODEV;
3513 }
3514 
3515 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3516 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3517 	u64 *cfg_offset)
3518 {
3519 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3520 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3521 	*cfg_base_addr &= (u32) 0x0000ffff;
3522 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3523 	if (*cfg_base_addr_index == -1) {
3524 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3525 		return -ENODEV;
3526 	}
3527 	return 0;
3528 }
3529 
3530 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3531 {
3532 	u64 cfg_offset;
3533 	u32 cfg_base_addr;
3534 	u64 cfg_base_addr_index;
3535 	u32 trans_offset;
3536 	int rc;
3537 
3538 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3539 		&cfg_base_addr_index, &cfg_offset);
3540 	if (rc)
3541 		return rc;
3542 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3543 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3544 	if (!h->cfgtable)
3545 		return -ENOMEM;
3546 	/* Find performant mode table. */
3547 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3548 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3549 				cfg_base_addr_index)+cfg_offset+trans_offset,
3550 				sizeof(*h->transtable));
3551 	if (!h->transtable)
3552 		return -ENOMEM;
3553 	return 0;
3554 }
3555 
3556 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3557 {
3558 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3559 
3560 	/* Limit commands in memory limited kdump scenario. */
3561 	if (reset_devices && h->max_commands > 32)
3562 		h->max_commands = 32;
3563 
3564 	if (h->max_commands < 16) {
3565 		dev_warn(&h->pdev->dev, "Controller reports "
3566 			"max supported commands of %d, an obvious lie. "
3567 			"Using 16.  Ensure that firmware is up to date.\n",
3568 			h->max_commands);
3569 		h->max_commands = 16;
3570 	}
3571 }
3572 
3573 /* Interrogate the hardware for some limits:
3574  * max commands, max SG elements without chaining, and with chaining,
3575  * SG chain block size, etc.
3576  */
3577 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3578 {
3579 	hpsa_get_max_perf_mode_cmds(h);
3580 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3581 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3582 	/*
3583 	 * Limit in-command s/g elements to 32 save dma'able memory.
3584 	 * Howvever spec says if 0, use 31
3585 	 */
3586 	h->max_cmd_sg_entries = 31;
3587 	if (h->maxsgentries > 512) {
3588 		h->max_cmd_sg_entries = 32;
3589 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3590 		h->maxsgentries--; /* save one for chain pointer */
3591 	} else {
3592 		h->maxsgentries = 31; /* default to traditional values */
3593 		h->chainsize = 0;
3594 	}
3595 }
3596 
3597 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3598 {
3599 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3600 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3601 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3602 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3603 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3604 		return false;
3605 	}
3606 	return true;
3607 }
3608 
3609 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3610 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3611 {
3612 #ifdef CONFIG_X86
3613 	u32 prefetch;
3614 
3615 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3616 	prefetch |= 0x100;
3617 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3618 #endif
3619 }
3620 
3621 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3622  * in a prefetch beyond physical memory.
3623  */
3624 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3625 {
3626 	u32 dma_prefetch;
3627 
3628 	if (h->board_id != 0x3225103C)
3629 		return;
3630 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3631 	dma_prefetch |= 0x8000;
3632 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3633 }
3634 
3635 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3636 {
3637 	int i;
3638 	u32 doorbell_value;
3639 	unsigned long flags;
3640 
3641 	/* under certain very rare conditions, this can take awhile.
3642 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3643 	 * as we enter this code.)
3644 	 */
3645 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3646 		spin_lock_irqsave(&h->lock, flags);
3647 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3648 		spin_unlock_irqrestore(&h->lock, flags);
3649 		if (!(doorbell_value & CFGTBL_ChangeReq))
3650 			break;
3651 		/* delay and try again */
3652 		usleep_range(10000, 20000);
3653 	}
3654 }
3655 
3656 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3657 {
3658 	u32 trans_support;
3659 
3660 	trans_support = readl(&(h->cfgtable->TransportSupport));
3661 	if (!(trans_support & SIMPLE_MODE))
3662 		return -ENOTSUPP;
3663 
3664 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3665 	/* Update the field, and then ring the doorbell */
3666 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3667 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3668 	hpsa_wait_for_mode_change_ack(h);
3669 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3670 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3671 		dev_warn(&h->pdev->dev,
3672 			"unable to get board into simple mode\n");
3673 		return -ENODEV;
3674 	}
3675 	h->transMethod = CFGTBL_Trans_Simple;
3676 	return 0;
3677 }
3678 
3679 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3680 {
3681 	int prod_index, err;
3682 
3683 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3684 	if (prod_index < 0)
3685 		return -ENODEV;
3686 	h->product_name = products[prod_index].product_name;
3687 	h->access = *(products[prod_index].access);
3688 
3689 	if (hpsa_board_disabled(h->pdev)) {
3690 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3691 		return -ENODEV;
3692 	}
3693 	err = pci_enable_device(h->pdev);
3694 	if (err) {
3695 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3696 		return err;
3697 	}
3698 
3699 	err = pci_request_regions(h->pdev, "hpsa");
3700 	if (err) {
3701 		dev_err(&h->pdev->dev,
3702 			"cannot obtain PCI resources, aborting\n");
3703 		return err;
3704 	}
3705 	hpsa_interrupt_mode(h);
3706 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3707 	if (err)
3708 		goto err_out_free_res;
3709 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3710 	if (!h->vaddr) {
3711 		err = -ENOMEM;
3712 		goto err_out_free_res;
3713 	}
3714 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3715 	if (err)
3716 		goto err_out_free_res;
3717 	err = hpsa_find_cfgtables(h);
3718 	if (err)
3719 		goto err_out_free_res;
3720 	hpsa_find_board_params(h);
3721 
3722 	if (!hpsa_CISS_signature_present(h)) {
3723 		err = -ENODEV;
3724 		goto err_out_free_res;
3725 	}
3726 	hpsa_enable_scsi_prefetch(h);
3727 	hpsa_p600_dma_prefetch_quirk(h);
3728 	err = hpsa_enter_simple_mode(h);
3729 	if (err)
3730 		goto err_out_free_res;
3731 	return 0;
3732 
3733 err_out_free_res:
3734 	if (h->transtable)
3735 		iounmap(h->transtable);
3736 	if (h->cfgtable)
3737 		iounmap(h->cfgtable);
3738 	if (h->vaddr)
3739 		iounmap(h->vaddr);
3740 	/*
3741 	 * Deliberately omit pci_disable_device(): it does something nasty to
3742 	 * Smart Array controllers that pci_enable_device does not undo
3743 	 */
3744 	pci_release_regions(h->pdev);
3745 	return err;
3746 }
3747 
3748 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3749 {
3750 	int rc;
3751 
3752 #define HBA_INQUIRY_BYTE_COUNT 64
3753 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3754 	if (!h->hba_inquiry_data)
3755 		return;
3756 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3757 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3758 	if (rc != 0) {
3759 		kfree(h->hba_inquiry_data);
3760 		h->hba_inquiry_data = NULL;
3761 	}
3762 }
3763 
3764 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3765 {
3766 	int rc, i;
3767 
3768 	if (!reset_devices)
3769 		return 0;
3770 
3771 	/* Reset the controller with a PCI power-cycle or via doorbell */
3772 	rc = hpsa_kdump_hard_reset_controller(pdev);
3773 
3774 	/* -ENOTSUPP here means we cannot reset the controller
3775 	 * but it's already (and still) up and running in
3776 	 * "performant mode".  Or, it might be 640x, which can't reset
3777 	 * due to concerns about shared bbwc between 6402/6404 pair.
3778 	 */
3779 	if (rc == -ENOTSUPP)
3780 		return 0; /* just try to do the kdump anyhow. */
3781 	if (rc)
3782 		return -ENODEV;
3783 
3784 	/* Now try to get the controller to respond to a no-op */
3785 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3786 		if (hpsa_noop(pdev) == 0)
3787 			break;
3788 		else
3789 			dev_warn(&pdev->dev, "no-op failed%s\n",
3790 					(i < 11 ? "; re-trying" : ""));
3791 	}
3792 	return 0;
3793 }
3794 
3795 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3796 				    const struct pci_device_id *ent)
3797 {
3798 	int dac, rc;
3799 	struct ctlr_info *h;
3800 
3801 	if (number_of_controllers == 0)
3802 		printk(KERN_INFO DRIVER_NAME "\n");
3803 
3804 	rc = hpsa_init_reset_devices(pdev);
3805 	if (rc)
3806 		return rc;
3807 
3808 	/* Command structures must be aligned on a 32-byte boundary because
3809 	 * the 5 lower bits of the address are used by the hardware. and by
3810 	 * the driver.  See comments in hpsa.h for more info.
3811 	 */
3812 #define COMMANDLIST_ALIGNMENT 32
3813 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3814 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3815 	if (!h)
3816 		return -ENOMEM;
3817 
3818 	h->pdev = pdev;
3819 	h->busy_initializing = 1;
3820 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3821 	INIT_LIST_HEAD(&h->cmpQ);
3822 	INIT_LIST_HEAD(&h->reqQ);
3823 	spin_lock_init(&h->lock);
3824 	spin_lock_init(&h->scan_lock);
3825 	rc = hpsa_pci_init(h);
3826 	if (rc != 0)
3827 		goto clean1;
3828 
3829 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3830 	h->ctlr = number_of_controllers;
3831 	number_of_controllers++;
3832 
3833 	/* configure PCI DMA stuff */
3834 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3835 	if (rc == 0) {
3836 		dac = 1;
3837 	} else {
3838 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3839 		if (rc == 0) {
3840 			dac = 0;
3841 		} else {
3842 			dev_err(&pdev->dev, "no suitable DMA available\n");
3843 			goto clean1;
3844 		}
3845 	}
3846 
3847 	/* make sure the board interrupts are off */
3848 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3849 
3850 	if (h->msix_vector || h->msi_vector)
3851 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3852 				IRQF_DISABLED, h->devname, h);
3853 	else
3854 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3855 				IRQF_DISABLED, h->devname, h);
3856 	if (rc) {
3857 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3858 		       h->intr[h->intr_mode], h->devname);
3859 		goto clean2;
3860 	}
3861 
3862 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3863 	       h->devname, pdev->device,
3864 	       h->intr[h->intr_mode], dac ? "" : " not");
3865 
3866 	h->cmd_pool_bits =
3867 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3868 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3869 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3870 		    h->nr_cmds * sizeof(*h->cmd_pool),
3871 		    &(h->cmd_pool_dhandle));
3872 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3873 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3874 		    &(h->errinfo_pool_dhandle));
3875 	if ((h->cmd_pool_bits == NULL)
3876 	    || (h->cmd_pool == NULL)
3877 	    || (h->errinfo_pool == NULL)) {
3878 		dev_err(&pdev->dev, "out of memory");
3879 		rc = -ENOMEM;
3880 		goto clean4;
3881 	}
3882 	if (hpsa_allocate_sg_chain_blocks(h))
3883 		goto clean4;
3884 	init_waitqueue_head(&h->scan_wait_queue);
3885 	h->scan_finished = 1; /* no scan currently in progress */
3886 
3887 	pci_set_drvdata(pdev, h);
3888 	memset(h->cmd_pool_bits, 0,
3889 	       ((h->nr_cmds + BITS_PER_LONG -
3890 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3891 
3892 	hpsa_scsi_setup(h);
3893 
3894 	/* Turn the interrupts on so we can service requests */
3895 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3896 
3897 	hpsa_put_ctlr_into_performant_mode(h);
3898 	hpsa_hba_inquiry(h);
3899 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3900 	h->busy_initializing = 0;
3901 	return 1;
3902 
3903 clean4:
3904 	hpsa_free_sg_chain_blocks(h);
3905 	kfree(h->cmd_pool_bits);
3906 	if (h->cmd_pool)
3907 		pci_free_consistent(h->pdev,
3908 			    h->nr_cmds * sizeof(struct CommandList),
3909 			    h->cmd_pool, h->cmd_pool_dhandle);
3910 	if (h->errinfo_pool)
3911 		pci_free_consistent(h->pdev,
3912 			    h->nr_cmds * sizeof(struct ErrorInfo),
3913 			    h->errinfo_pool,
3914 			    h->errinfo_pool_dhandle);
3915 	free_irq(h->intr[h->intr_mode], h);
3916 clean2:
3917 clean1:
3918 	h->busy_initializing = 0;
3919 	kfree(h);
3920 	return rc;
3921 }
3922 
3923 static void hpsa_flush_cache(struct ctlr_info *h)
3924 {
3925 	char *flush_buf;
3926 	struct CommandList *c;
3927 
3928 	flush_buf = kzalloc(4, GFP_KERNEL);
3929 	if (!flush_buf)
3930 		return;
3931 
3932 	c = cmd_special_alloc(h);
3933 	if (!c) {
3934 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3935 		goto out_of_memory;
3936 	}
3937 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3938 		RAID_CTLR_LUNID, TYPE_CMD);
3939 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3940 	if (c->err_info->CommandStatus != 0)
3941 		dev_warn(&h->pdev->dev,
3942 			"error flushing cache on controller\n");
3943 	cmd_special_free(h, c);
3944 out_of_memory:
3945 	kfree(flush_buf);
3946 }
3947 
3948 static void hpsa_shutdown(struct pci_dev *pdev)
3949 {
3950 	struct ctlr_info *h;
3951 
3952 	h = pci_get_drvdata(pdev);
3953 	/* Turn board interrupts off  and send the flush cache command
3954 	 * sendcmd will turn off interrupt, and send the flush...
3955 	 * To write all data in the battery backed cache to disks
3956 	 */
3957 	hpsa_flush_cache(h);
3958 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3959 	free_irq(h->intr[h->intr_mode], h);
3960 #ifdef CONFIG_PCI_MSI
3961 	if (h->msix_vector)
3962 		pci_disable_msix(h->pdev);
3963 	else if (h->msi_vector)
3964 		pci_disable_msi(h->pdev);
3965 #endif				/* CONFIG_PCI_MSI */
3966 }
3967 
3968 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3969 {
3970 	struct ctlr_info *h;
3971 
3972 	if (pci_get_drvdata(pdev) == NULL) {
3973 		dev_err(&pdev->dev, "unable to remove device \n");
3974 		return;
3975 	}
3976 	h = pci_get_drvdata(pdev);
3977 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3978 	hpsa_shutdown(pdev);
3979 	iounmap(h->vaddr);
3980 	iounmap(h->transtable);
3981 	iounmap(h->cfgtable);
3982 	hpsa_free_sg_chain_blocks(h);
3983 	pci_free_consistent(h->pdev,
3984 		h->nr_cmds * sizeof(struct CommandList),
3985 		h->cmd_pool, h->cmd_pool_dhandle);
3986 	pci_free_consistent(h->pdev,
3987 		h->nr_cmds * sizeof(struct ErrorInfo),
3988 		h->errinfo_pool, h->errinfo_pool_dhandle);
3989 	pci_free_consistent(h->pdev, h->reply_pool_size,
3990 		h->reply_pool, h->reply_pool_dhandle);
3991 	kfree(h->cmd_pool_bits);
3992 	kfree(h->blockFetchTable);
3993 	kfree(h->hba_inquiry_data);
3994 	/*
3995 	 * Deliberately omit pci_disable_device(): it does something nasty to
3996 	 * Smart Array controllers that pci_enable_device does not undo
3997 	 */
3998 	pci_release_regions(pdev);
3999 	pci_set_drvdata(pdev, NULL);
4000 	kfree(h);
4001 }
4002 
4003 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4004 	__attribute__((unused)) pm_message_t state)
4005 {
4006 	return -ENOSYS;
4007 }
4008 
4009 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4010 {
4011 	return -ENOSYS;
4012 }
4013 
4014 static struct pci_driver hpsa_pci_driver = {
4015 	.name = "hpsa",
4016 	.probe = hpsa_init_one,
4017 	.remove = __devexit_p(hpsa_remove_one),
4018 	.id_table = hpsa_pci_device_id,	/* id_table */
4019 	.shutdown = hpsa_shutdown,
4020 	.suspend = hpsa_suspend,
4021 	.resume = hpsa_resume,
4022 };
4023 
4024 /* Fill in bucket_map[], given nsgs (the max number of
4025  * scatter gather elements supported) and bucket[],
4026  * which is an array of 8 integers.  The bucket[] array
4027  * contains 8 different DMA transfer sizes (in 16
4028  * byte increments) which the controller uses to fetch
4029  * commands.  This function fills in bucket_map[], which
4030  * maps a given number of scatter gather elements to one of
4031  * the 8 DMA transfer sizes.  The point of it is to allow the
4032  * controller to only do as much DMA as needed to fetch the
4033  * command, with the DMA transfer size encoded in the lower
4034  * bits of the command address.
4035  */
4036 static void  calc_bucket_map(int bucket[], int num_buckets,
4037 	int nsgs, int *bucket_map)
4038 {
4039 	int i, j, b, size;
4040 
4041 	/* even a command with 0 SGs requires 4 blocks */
4042 #define MINIMUM_TRANSFER_BLOCKS 4
4043 #define NUM_BUCKETS 8
4044 	/* Note, bucket_map must have nsgs+1 entries. */
4045 	for (i = 0; i <= nsgs; i++) {
4046 		/* Compute size of a command with i SG entries */
4047 		size = i + MINIMUM_TRANSFER_BLOCKS;
4048 		b = num_buckets; /* Assume the biggest bucket */
4049 		/* Find the bucket that is just big enough */
4050 		for (j = 0; j < 8; j++) {
4051 			if (bucket[j] >= size) {
4052 				b = j;
4053 				break;
4054 			}
4055 		}
4056 		/* for a command with i SG entries, use bucket b. */
4057 		bucket_map[i] = b;
4058 	}
4059 }
4060 
4061 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4062 	u32 use_short_tags)
4063 {
4064 	int i;
4065 	unsigned long register_value;
4066 
4067 	/* This is a bit complicated.  There are 8 registers on
4068 	 * the controller which we write to to tell it 8 different
4069 	 * sizes of commands which there may be.  It's a way of
4070 	 * reducing the DMA done to fetch each command.  Encoded into
4071 	 * each command's tag are 3 bits which communicate to the controller
4072 	 * which of the eight sizes that command fits within.  The size of
4073 	 * each command depends on how many scatter gather entries there are.
4074 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4075 	 * with the number of 16-byte blocks a command of that size requires.
4076 	 * The smallest command possible requires 5 such 16 byte blocks.
4077 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4078 	 * blocks.  Note, this only extends to the SG entries contained
4079 	 * within the command block, and does not extend to chained blocks
4080 	 * of SG elements.   bft[] contains the eight values we write to
4081 	 * the registers.  They are not evenly distributed, but have more
4082 	 * sizes for small commands, and fewer sizes for larger commands.
4083 	 */
4084 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4085 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4086 	/*  5 = 1 s/g entry or 4k
4087 	 *  6 = 2 s/g entry or 8k
4088 	 *  8 = 4 s/g entry or 16k
4089 	 * 10 = 6 s/g entry or 24k
4090 	 */
4091 
4092 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4093 
4094 	/* Controller spec: zero out this buffer. */
4095 	memset(h->reply_pool, 0, h->reply_pool_size);
4096 	h->reply_pool_head = h->reply_pool;
4097 
4098 	bft[7] = h->max_sg_entries + 4;
4099 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4100 	for (i = 0; i < 8; i++)
4101 		writel(bft[i], &h->transtable->BlockFetch[i]);
4102 
4103 	/* size of controller ring buffer */
4104 	writel(h->max_commands, &h->transtable->RepQSize);
4105 	writel(1, &h->transtable->RepQCount);
4106 	writel(0, &h->transtable->RepQCtrAddrLow32);
4107 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4108 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4109 	writel(0, &h->transtable->RepQAddr0High32);
4110 	writel(CFGTBL_Trans_Performant | use_short_tags,
4111 		&(h->cfgtable->HostWrite.TransportRequest));
4112 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4113 	hpsa_wait_for_mode_change_ack(h);
4114 	register_value = readl(&(h->cfgtable->TransportActive));
4115 	if (!(register_value & CFGTBL_Trans_Performant)) {
4116 		dev_warn(&h->pdev->dev, "unable to get board into"
4117 					" performant mode\n");
4118 		return;
4119 	}
4120 	/* Change the access methods to the performant access methods */
4121 	h->access = SA5_performant_access;
4122 	h->transMethod = CFGTBL_Trans_Performant;
4123 }
4124 
4125 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4126 {
4127 	u32 trans_support;
4128 
4129 	if (hpsa_simple_mode)
4130 		return;
4131 
4132 	trans_support = readl(&(h->cfgtable->TransportSupport));
4133 	if (!(trans_support & PERFORMANT_MODE))
4134 		return;
4135 
4136 	hpsa_get_max_perf_mode_cmds(h);
4137 	h->max_sg_entries = 32;
4138 	/* Performant mode ring buffer and supporting data structures */
4139 	h->reply_pool_size = h->max_commands * sizeof(u64);
4140 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4141 				&(h->reply_pool_dhandle));
4142 
4143 	/* Need a block fetch table for performant mode */
4144 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4145 				sizeof(u32)), GFP_KERNEL);
4146 
4147 	if ((h->reply_pool == NULL)
4148 		|| (h->blockFetchTable == NULL))
4149 		goto clean_up;
4150 
4151 	hpsa_enter_performant_mode(h,
4152 		trans_support & CFGTBL_Trans_use_short_tags);
4153 
4154 	return;
4155 
4156 clean_up:
4157 	if (h->reply_pool)
4158 		pci_free_consistent(h->pdev, h->reply_pool_size,
4159 			h->reply_pool, h->reply_pool_dhandle);
4160 	kfree(h->blockFetchTable);
4161 }
4162 
4163 /*
4164  *  This is it.  Register the PCI driver information for the cards we control
4165  *  the OS will call our registered routines when it finds one of our cards.
4166  */
4167 static int __init hpsa_init(void)
4168 {
4169 	return pci_register_driver(&hpsa_pci_driver);
4170 }
4171 
4172 static void __exit hpsa_cleanup(void)
4173 {
4174 	pci_unregister_driver(&hpsa_pci_driver);
4175 }
4176 
4177 module_init(hpsa_init);
4178 module_exit(hpsa_cleanup);
4179