xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 4a3fad70)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
905 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
906 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.use_clustering		= ENABLE_CLUSTERING,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 1024,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049 			c->Header.ReplyQueue =
1050 				raw_smp_processor_id() % h->nreply_queues;
1051 		else
1052 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1053 	}
1054 }
1055 
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057 						struct CommandList *c,
1058 						int reply_queue)
1059 {
1060 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061 
1062 	/*
1063 	 * Tell the controller to post the reply to the queue for this
1064 	 * processor.  This seems to give the best I/O throughput.
1065 	 */
1066 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068 	else
1069 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092 	else
1093 		cp->reply_queue = reply_queue % h->nreply_queues;
1094 	/* Set the bits in the address sent down to include:
1095 	 *  - performant mode bit not used in ioaccel mode 2
1096 	 *  - pull count (bits 0-3)
1097 	 *  - command type isn't needed for ioaccel2
1098 	 */
1099 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101 
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 						struct CommandList *c,
1104 						int reply_queue)
1105 {
1106 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107 
1108 	/*
1109 	 * Tell the controller to post the reply to the queue for this
1110 	 * processor.  This seems to give the best I/O throughput.
1111 	 */
1112 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114 	else
1115 		cp->reply_queue = reply_queue % h->nreply_queues;
1116 	/*
1117 	 * Set the bits in the address sent down to include:
1118 	 *  - performant mode bit not used in ioaccel mode 2
1119 	 *  - pull count (bits 0-3)
1120 	 *  - command type isn't needed for ioaccel2
1121 	 */
1122 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1123 }
1124 
1125 static int is_firmware_flash_cmd(u8 *cdb)
1126 {
1127 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 }
1129 
1130 /*
1131  * During firmware flash, the heartbeat register may not update as frequently
1132  * as it should.  So we dial down lockup detection during firmware flash. and
1133  * dial it back up when firmware flash completes.
1134  */
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139 		struct CommandList *c)
1140 {
1141 	if (!is_firmware_flash_cmd(c->Request.CDB))
1142 		return;
1143 	atomic_inc(&h->firmware_flash_in_progress);
1144 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1145 }
1146 
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148 		struct CommandList *c)
1149 {
1150 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1151 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1152 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1153 }
1154 
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156 	struct CommandList *c, int reply_queue)
1157 {
1158 	dial_down_lockup_detection_during_fw_flash(h, c);
1159 	atomic_inc(&h->commands_outstanding);
1160 	switch (c->cmd_type) {
1161 	case CMD_IOACCEL1:
1162 		set_ioaccel1_performant_mode(h, c, reply_queue);
1163 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 		break;
1165 	case CMD_IOACCEL2:
1166 		set_ioaccel2_performant_mode(h, c, reply_queue);
1167 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 		break;
1169 	case IOACCEL2_TMF:
1170 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 		break;
1173 	default:
1174 		set_performant_mode(h, c, reply_queue);
1175 		h->access.submit_command(h, c);
1176 	}
1177 }
1178 
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181 	if (unlikely(hpsa_is_pending_event(c)))
1182 		return finish_cmd(c);
1183 
1184 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 }
1186 
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1188 {
1189 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 }
1191 
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1193 {
1194 	if (!h->hba_inquiry_data)
1195 		return 0;
1196 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197 		return 1;
1198 	return 0;
1199 }
1200 
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1203 {
1204 	/* finds an unused bus, target, lun for a new physical device
1205 	 * assumes h->devlock is held
1206 	 */
1207 	int i, found = 0;
1208 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1209 
1210 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1211 
1212 	for (i = 0; i < h->ndevices; i++) {
1213 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214 			__set_bit(h->dev[i]->target, lun_taken);
1215 	}
1216 
1217 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218 	if (i < HPSA_MAX_DEVICES) {
1219 		/* *bus = 1; */
1220 		*target = i;
1221 		*lun = 0;
1222 		found = 1;
1223 	}
1224 	return !found;
1225 }
1226 
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228 	struct hpsa_scsi_dev_t *dev, char *description)
1229 {
1230 #define LABEL_SIZE 25
1231 	char label[LABEL_SIZE];
1232 
1233 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234 		return;
1235 
1236 	switch (dev->devtype) {
1237 	case TYPE_RAID:
1238 		snprintf(label, LABEL_SIZE, "controller");
1239 		break;
1240 	case TYPE_ENCLOSURE:
1241 		snprintf(label, LABEL_SIZE, "enclosure");
1242 		break;
1243 	case TYPE_DISK:
1244 	case TYPE_ZBC:
1245 		if (dev->external)
1246 			snprintf(label, LABEL_SIZE, "external");
1247 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248 			snprintf(label, LABEL_SIZE, "%s",
1249 				raid_label[PHYSICAL_DRIVE]);
1250 		else
1251 			snprintf(label, LABEL_SIZE, "RAID-%s",
1252 				dev->raid_level > RAID_UNKNOWN ? "?" :
1253 				raid_label[dev->raid_level]);
1254 		break;
1255 	case TYPE_ROM:
1256 		snprintf(label, LABEL_SIZE, "rom");
1257 		break;
1258 	case TYPE_TAPE:
1259 		snprintf(label, LABEL_SIZE, "tape");
1260 		break;
1261 	case TYPE_MEDIUM_CHANGER:
1262 		snprintf(label, LABEL_SIZE, "changer");
1263 		break;
1264 	default:
1265 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1266 		break;
1267 	}
1268 
1269 	dev_printk(level, &h->pdev->dev,
1270 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272 			description,
1273 			scsi_device_type(dev->devtype),
1274 			dev->vendor,
1275 			dev->model,
1276 			label,
1277 			dev->offload_config ? '+' : '-',
1278 			dev->offload_to_be_enabled ? '+' : '-',
1279 			dev->expose_device);
1280 }
1281 
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284 		struct hpsa_scsi_dev_t *device,
1285 		struct hpsa_scsi_dev_t *added[], int *nadded)
1286 {
1287 	/* assumes h->devlock is held */
1288 	int n = h->ndevices;
1289 	int i;
1290 	unsigned char addr1[8], addr2[8];
1291 	struct hpsa_scsi_dev_t *sd;
1292 
1293 	if (n >= HPSA_MAX_DEVICES) {
1294 		dev_err(&h->pdev->dev, "too many devices, some will be "
1295 			"inaccessible.\n");
1296 		return -1;
1297 	}
1298 
1299 	/* physical devices do not have lun or target assigned until now. */
1300 	if (device->lun != -1)
1301 		/* Logical device, lun is already assigned. */
1302 		goto lun_assigned;
1303 
1304 	/* If this device a non-zero lun of a multi-lun device
1305 	 * byte 4 of the 8-byte LUN addr will contain the logical
1306 	 * unit no, zero otherwise.
1307 	 */
1308 	if (device->scsi3addr[4] == 0) {
1309 		/* This is not a non-zero lun of a multi-lun device */
1310 		if (hpsa_find_target_lun(h, device->scsi3addr,
1311 			device->bus, &device->target, &device->lun) != 0)
1312 			return -1;
1313 		goto lun_assigned;
1314 	}
1315 
1316 	/* This is a non-zero lun of a multi-lun device.
1317 	 * Search through our list and find the device which
1318 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1319 	 * Assign the same bus and target for this new LUN.
1320 	 * Use the logical unit number from the firmware.
1321 	 */
1322 	memcpy(addr1, device->scsi3addr, 8);
1323 	addr1[4] = 0;
1324 	addr1[5] = 0;
1325 	for (i = 0; i < n; i++) {
1326 		sd = h->dev[i];
1327 		memcpy(addr2, sd->scsi3addr, 8);
1328 		addr2[4] = 0;
1329 		addr2[5] = 0;
1330 		/* differ only in byte 4 and 5? */
1331 		if (memcmp(addr1, addr2, 8) == 0) {
1332 			device->bus = sd->bus;
1333 			device->target = sd->target;
1334 			device->lun = device->scsi3addr[4];
1335 			break;
1336 		}
1337 	}
1338 	if (device->lun == -1) {
1339 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340 			" suspect firmware bug or unsupported hardware "
1341 			"configuration.\n");
1342 			return -1;
1343 	}
1344 
1345 lun_assigned:
1346 
1347 	h->dev[n] = device;
1348 	h->ndevices++;
1349 	added[*nadded] = device;
1350 	(*nadded)++;
1351 	hpsa_show_dev_msg(KERN_INFO, h, device,
1352 		device->expose_device ? "added" : "masked");
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Called during a scan operation.
1358  *
1359  * Update an entry in h->dev[] array.
1360  */
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362 	int entry, struct hpsa_scsi_dev_t *new_entry)
1363 {
1364 	/* assumes h->devlock is held */
1365 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1366 
1367 	/* Raid level changed. */
1368 	h->dev[entry]->raid_level = new_entry->raid_level;
1369 
1370 	/*
1371 	 * ioacccel_handle may have changed for a dual domain disk
1372 	 */
1373 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374 
1375 	/* Raid offload parameters changed.  Careful about the ordering. */
1376 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1377 		/*
1378 		 * if drive is newly offload_enabled, we want to copy the
1379 		 * raid map data first.  If previously offload_enabled and
1380 		 * offload_config were set, raid map data had better be
1381 		 * the same as it was before. If raid map data has changed
1382 		 * then it had better be the case that
1383 		 * h->dev[entry]->offload_enabled is currently 0.
1384 		 */
1385 		h->dev[entry]->raid_map = new_entry->raid_map;
1386 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387 	}
1388 	if (new_entry->offload_to_be_enabled) {
1389 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1391 	}
1392 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393 	h->dev[entry]->offload_config = new_entry->offload_config;
1394 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1396 
1397 	/*
1398 	 * We can turn off ioaccel offload now, but need to delay turning
1399 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400 	 * can't do that until all the devices are updated.
1401 	 */
1402 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403 
1404 	/*
1405 	 * turn ioaccel off immediately if told to do so.
1406 	 */
1407 	if (!new_entry->offload_to_be_enabled)
1408 		h->dev[entry]->offload_enabled = 0;
1409 
1410 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 }
1412 
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415 	int entry, struct hpsa_scsi_dev_t *new_entry,
1416 	struct hpsa_scsi_dev_t *added[], int *nadded,
1417 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1418 {
1419 	/* assumes h->devlock is held */
1420 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421 	removed[*nremoved] = h->dev[entry];
1422 	(*nremoved)++;
1423 
1424 	/*
1425 	 * New physical devices won't have target/lun assigned yet
1426 	 * so we need to preserve the values in the slot we are replacing.
1427 	 */
1428 	if (new_entry->target == -1) {
1429 		new_entry->target = h->dev[entry]->target;
1430 		new_entry->lun = h->dev[entry]->lun;
1431 	}
1432 
1433 	h->dev[entry] = new_entry;
1434 	added[*nadded] = new_entry;
1435 	(*nadded)++;
1436 
1437 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 }
1439 
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1443 {
1444 	/* assumes h->devlock is held */
1445 	int i;
1446 	struct hpsa_scsi_dev_t *sd;
1447 
1448 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449 
1450 	sd = h->dev[entry];
1451 	removed[*nremoved] = h->dev[entry];
1452 	(*nremoved)++;
1453 
1454 	for (i = entry; i < h->ndevices-1; i++)
1455 		h->dev[i] = h->dev[i+1];
1456 	h->ndevices--;
1457 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 }
1459 
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461 	(a)[7] == (b)[7] && \
1462 	(a)[6] == (b)[6] && \
1463 	(a)[5] == (b)[5] && \
1464 	(a)[4] == (b)[4] && \
1465 	(a)[3] == (b)[3] && \
1466 	(a)[2] == (b)[2] && \
1467 	(a)[1] == (b)[1] && \
1468 	(a)[0] == (b)[0])
1469 
1470 static void fixup_botched_add(struct ctlr_info *h,
1471 	struct hpsa_scsi_dev_t *added)
1472 {
1473 	/* called when scsi_add_device fails in order to re-adjust
1474 	 * h->dev[] to match the mid layer's view.
1475 	 */
1476 	unsigned long flags;
1477 	int i, j;
1478 
1479 	spin_lock_irqsave(&h->lock, flags);
1480 	for (i = 0; i < h->ndevices; i++) {
1481 		if (h->dev[i] == added) {
1482 			for (j = i; j < h->ndevices-1; j++)
1483 				h->dev[j] = h->dev[j+1];
1484 			h->ndevices--;
1485 			break;
1486 		}
1487 	}
1488 	spin_unlock_irqrestore(&h->lock, flags);
1489 	kfree(added);
1490 }
1491 
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493 	struct hpsa_scsi_dev_t *dev2)
1494 {
1495 	/* we compare everything except lun and target as these
1496 	 * are not yet assigned.  Compare parts likely
1497 	 * to differ first
1498 	 */
1499 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500 		sizeof(dev1->scsi3addr)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->device_id, dev2->device_id,
1503 		sizeof(dev1->device_id)) != 0)
1504 		return 0;
1505 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506 		return 0;
1507 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508 		return 0;
1509 	if (dev1->devtype != dev2->devtype)
1510 		return 0;
1511 	if (dev1->bus != dev2->bus)
1512 		return 0;
1513 	return 1;
1514 }
1515 
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517 	struct hpsa_scsi_dev_t *dev2)
1518 {
1519 	/* Device attributes that can change, but don't mean
1520 	 * that the device is a different device, nor that the OS
1521 	 * needs to be told anything about the change.
1522 	 */
1523 	if (dev1->raid_level != dev2->raid_level)
1524 		return 1;
1525 	if (dev1->offload_config != dev2->offload_config)
1526 		return 1;
1527 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528 		return 1;
1529 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530 		if (dev1->queue_depth != dev2->queue_depth)
1531 			return 1;
1532 	/*
1533 	 * This can happen for dual domain devices. An active
1534 	 * path change causes the ioaccel handle to change
1535 	 *
1536 	 * for example note the handle differences between p0 and p1
1537 	 * Device                    WWN               ,WWN hash,Handle
1538 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1540 	 */
1541 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542 		return 1;
1543 	return 0;
1544 }
1545 
1546 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1547  * and return needle location in *index.  If scsi3addr matches, but not
1548  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549  * location in *index.
1550  * In the case of a minor device attribute change, such as RAID level, just
1551  * return DEVICE_UPDATED, along with the updated device's location in index.
1552  * If needle not found, return DEVICE_NOT_FOUND.
1553  */
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556 	int *index)
1557 {
1558 	int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563 	if (needle == NULL)
1564 		return DEVICE_NOT_FOUND;
1565 
1566 	for (i = 0; i < haystack_size; i++) {
1567 		if (haystack[i] == NULL) /* previously removed. */
1568 			continue;
1569 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570 			*index = i;
1571 			if (device_is_the_same(needle, haystack[i])) {
1572 				if (device_updated(needle, haystack[i]))
1573 					return DEVICE_UPDATED;
1574 				return DEVICE_SAME;
1575 			} else {
1576 				/* Keep offline devices offline */
1577 				if (needle->volume_offline)
1578 					return DEVICE_NOT_FOUND;
1579 				return DEVICE_CHANGED;
1580 			}
1581 		}
1582 	}
1583 	*index = -1;
1584 	return DEVICE_NOT_FOUND;
1585 }
1586 
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588 					unsigned char scsi3addr[])
1589 {
1590 	struct offline_device_entry *device;
1591 	unsigned long flags;
1592 
1593 	/* Check to see if device is already on the list */
1594 	spin_lock_irqsave(&h->offline_device_lock, flags);
1595 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596 		if (memcmp(device->scsi3addr, scsi3addr,
1597 			sizeof(device->scsi3addr)) == 0) {
1598 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599 			return;
1600 		}
1601 	}
1602 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603 
1604 	/* Device is not on the list, add it. */
1605 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1606 	if (!device)
1607 		return;
1608 
1609 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610 	spin_lock_irqsave(&h->offline_device_lock, flags);
1611 	list_add_tail(&device->offline_list, &h->offline_device_list);
1612 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 }
1614 
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617 	struct hpsa_scsi_dev_t *sd)
1618 {
1619 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620 		dev_info(&h->pdev->dev,
1621 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622 			h->scsi_host->host_no,
1623 			sd->bus, sd->target, sd->lun);
1624 	switch (sd->volume_offline) {
1625 	case HPSA_LV_OK:
1626 		break;
1627 	case HPSA_LV_UNDERGOING_ERASE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_NOT_AVAILABLE:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_UNDERGOING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_PENDING_RPI:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_ENCRYPTED_NO_KEY:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688 		dev_info(&h->pdev->dev,
1689 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690 			h->scsi_host->host_no,
1691 			sd->bus, sd->target, sd->lun);
1692 		break;
1693 	}
1694 }
1695 
1696 /*
1697  * Figure the list of physical drive pointers for a logical drive with
1698  * raid offload configured.
1699  */
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1702 				struct hpsa_scsi_dev_t *logical_drive)
1703 {
1704 	struct raid_map_data *map = &logical_drive->raid_map;
1705 	struct raid_map_disk_data *dd = &map->data[0];
1706 	int i, j;
1707 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708 				le16_to_cpu(map->metadata_disks_per_row);
1709 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710 				le16_to_cpu(map->layout_map_count) *
1711 				total_disks_per_row;
1712 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713 				total_disks_per_row;
1714 	int qdepth;
1715 
1716 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1718 
1719 	logical_drive->nphysical_disks = nraid_map_entries;
1720 
1721 	qdepth = 0;
1722 	for (i = 0; i < nraid_map_entries; i++) {
1723 		logical_drive->phys_disk[i] = NULL;
1724 		if (!logical_drive->offload_config)
1725 			continue;
1726 		for (j = 0; j < ndevices; j++) {
1727 			if (dev[j] == NULL)
1728 				continue;
1729 			if (dev[j]->devtype != TYPE_DISK &&
1730 			    dev[j]->devtype != TYPE_ZBC)
1731 				continue;
1732 			if (is_logical_device(dev[j]))
1733 				continue;
1734 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735 				continue;
1736 
1737 			logical_drive->phys_disk[i] = dev[j];
1738 			if (i < nphys_disk)
1739 				qdepth = min(h->nr_cmds, qdepth +
1740 				    logical_drive->phys_disk[i]->queue_depth);
1741 			break;
1742 		}
1743 
1744 		/*
1745 		 * This can happen if a physical drive is removed and
1746 		 * the logical drive is degraded.  In that case, the RAID
1747 		 * map data will refer to a physical disk which isn't actually
1748 		 * present.  And in that case offload_enabled should already
1749 		 * be 0, but we'll turn it off here just in case
1750 		 */
1751 		if (!logical_drive->phys_disk[i]) {
1752 			dev_warn(&h->pdev->dev,
1753 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754 				__func__,
1755 				h->scsi_host->host_no, logical_drive->bus,
1756 				logical_drive->target, logical_drive->lun);
1757 			logical_drive->offload_enabled = 0;
1758 			logical_drive->offload_to_be_enabled = 0;
1759 			logical_drive->queue_depth = 8;
1760 		}
1761 	}
1762 	if (nraid_map_entries)
1763 		/*
1764 		 * This is correct for reads, too high for full stripe writes,
1765 		 * way too high for partial stripe writes
1766 		 */
1767 		logical_drive->queue_depth = qdepth;
1768 	else {
1769 		if (logical_drive->external)
1770 			logical_drive->queue_depth = EXTERNAL_QD;
1771 		else
1772 			logical_drive->queue_depth = h->nr_cmds;
1773 	}
1774 }
1775 
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < ndevices; i++) {
1782 		if (dev[i] == NULL)
1783 			continue;
1784 		if (dev[i]->devtype != TYPE_DISK &&
1785 		    dev[i]->devtype != TYPE_ZBC)
1786 			continue;
1787 		if (!is_logical_device(dev[i]))
1788 			continue;
1789 
1790 		/*
1791 		 * If offload is currently enabled, the RAID map and
1792 		 * phys_disk[] assignment *better* not be changing
1793 		 * because we would be changing ioaccel phsy_disk[] pointers
1794 		 * on a ioaccel volume processing I/O requests.
1795 		 *
1796 		 * If an ioaccel volume status changed, initially because it was
1797 		 * re-configured and thus underwent a transformation, or
1798 		 * a drive failed, we would have received a state change
1799 		 * request and ioaccel should have been turned off. When the
1800 		 * transformation completes, we get another state change
1801 		 * request to turn ioaccel back on. In this case, we need
1802 		 * to update the ioaccel information.
1803 		 *
1804 		 * Thus: If it is not currently enabled, but will be after
1805 		 * the scan completes, make sure the ioaccel pointers
1806 		 * are up to date.
1807 		 */
1808 
1809 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 	}
1812 }
1813 
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816 	int rc = 0;
1817 
1818 	if (!h->scsi_host)
1819 		return 1;
1820 
1821 	if (is_logical_device(device)) /* RAID */
1822 		rc = scsi_add_device(h->scsi_host, device->bus,
1823 					device->target, device->lun);
1824 	else /* HBA */
1825 		rc = hpsa_add_sas_device(h->sas_host, device);
1826 
1827 	return rc;
1828 }
1829 
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 						struct hpsa_scsi_dev_t *dev)
1832 {
1833 	int i;
1834 	int count = 0;
1835 
1836 	for (i = 0; i < h->nr_cmds; i++) {
1837 		struct CommandList *c = h->cmd_pool + i;
1838 		int refcount = atomic_inc_return(&c->refcount);
1839 
1840 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 				dev->scsi3addr)) {
1842 			unsigned long flags;
1843 
1844 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1845 			if (!hpsa_is_cmd_idle(c))
1846 				++count;
1847 			spin_unlock_irqrestore(&h->lock, flags);
1848 		}
1849 
1850 		cmd_free(h, c);
1851 	}
1852 
1853 	return count;
1854 }
1855 
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857 						struct hpsa_scsi_dev_t *device)
1858 {
1859 	int cmds = 0;
1860 	int waits = 0;
1861 
1862 	while (1) {
1863 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864 		if (cmds == 0)
1865 			break;
1866 		if (++waits > 20)
1867 			break;
1868 		msleep(1000);
1869 	}
1870 
1871 	if (waits > 20)
1872 		dev_warn(&h->pdev->dev,
1873 			"%s: removing device with %d outstanding commands!\n",
1874 			__func__, cmds);
1875 }
1876 
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878 			struct hpsa_scsi_dev_t *device)
1879 {
1880 	struct scsi_device *sdev = NULL;
1881 
1882 	if (!h->scsi_host)
1883 		return;
1884 
1885 	/*
1886 	 * Allow for commands to drain
1887 	 */
1888 	device->removed = 1;
1889 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1890 
1891 	if (is_logical_device(device)) { /* RAID */
1892 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893 						device->target, device->lun);
1894 		if (sdev) {
1895 			scsi_remove_device(sdev);
1896 			scsi_device_put(sdev);
1897 		} else {
1898 			/*
1899 			 * We don't expect to get here.  Future commands
1900 			 * to this device will get a selection timeout as
1901 			 * if the device were gone.
1902 			 */
1903 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1904 					"didn't find device for removal.");
1905 		}
1906 	} else { /* HBA */
1907 
1908 		hpsa_remove_sas_device(device);
1909 	}
1910 }
1911 
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913 	struct hpsa_scsi_dev_t *sd[], int nsds)
1914 {
1915 	/* sd contains scsi3 addresses and devtypes, and inquiry
1916 	 * data.  This function takes what's in sd to be the current
1917 	 * reality and updates h->dev[] to reflect that reality.
1918 	 */
1919 	int i, entry, device_change, changes = 0;
1920 	struct hpsa_scsi_dev_t *csd;
1921 	unsigned long flags;
1922 	struct hpsa_scsi_dev_t **added, **removed;
1923 	int nadded, nremoved;
1924 
1925 	/*
1926 	 * A reset can cause a device status to change
1927 	 * re-schedule the scan to see what happened.
1928 	 */
1929 	spin_lock_irqsave(&h->reset_lock, flags);
1930 	if (h->reset_in_progress) {
1931 		h->drv_req_rescan = 1;
1932 		spin_unlock_irqrestore(&h->reset_lock, flags);
1933 		return;
1934 	}
1935 	spin_unlock_irqrestore(&h->reset_lock, flags);
1936 
1937 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939 
1940 	if (!added || !removed) {
1941 		dev_warn(&h->pdev->dev, "out of memory in "
1942 			"adjust_hpsa_scsi_table\n");
1943 		goto free_and_out;
1944 	}
1945 
1946 	spin_lock_irqsave(&h->devlock, flags);
1947 
1948 	/* find any devices in h->dev[] that are not in
1949 	 * sd[] and remove them from h->dev[], and for any
1950 	 * devices which have changed, remove the old device
1951 	 * info and add the new device info.
1952 	 * If minor device attributes change, just update
1953 	 * the existing device structure.
1954 	 */
1955 	i = 0;
1956 	nremoved = 0;
1957 	nadded = 0;
1958 	while (i < h->ndevices) {
1959 		csd = h->dev[i];
1960 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961 		if (device_change == DEVICE_NOT_FOUND) {
1962 			changes++;
1963 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964 			continue; /* remove ^^^, hence i not incremented */
1965 		} else if (device_change == DEVICE_CHANGED) {
1966 			changes++;
1967 			hpsa_scsi_replace_entry(h, i, sd[entry],
1968 				added, &nadded, removed, &nremoved);
1969 			/* Set it to NULL to prevent it from being freed
1970 			 * at the bottom of hpsa_update_scsi_devices()
1971 			 */
1972 			sd[entry] = NULL;
1973 		} else if (device_change == DEVICE_UPDATED) {
1974 			hpsa_scsi_update_entry(h, i, sd[entry]);
1975 		}
1976 		i++;
1977 	}
1978 
1979 	/* Now, make sure every device listed in sd[] is also
1980 	 * listed in h->dev[], adding them if they aren't found
1981 	 */
1982 
1983 	for (i = 0; i < nsds; i++) {
1984 		if (!sd[i]) /* if already added above. */
1985 			continue;
1986 
1987 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988 		 * as the SCSI mid-layer does not handle such devices well.
1989 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990 		 * at 160Hz, and prevents the system from coming up.
1991 		 */
1992 		if (sd[i]->volume_offline) {
1993 			hpsa_show_volume_status(h, sd[i]);
1994 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995 			continue;
1996 		}
1997 
1998 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999 					h->ndevices, &entry);
2000 		if (device_change == DEVICE_NOT_FOUND) {
2001 			changes++;
2002 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003 				break;
2004 			sd[i] = NULL; /* prevent from being freed later. */
2005 		} else if (device_change == DEVICE_CHANGED) {
2006 			/* should never happen... */
2007 			changes++;
2008 			dev_warn(&h->pdev->dev,
2009 				"device unexpectedly changed.\n");
2010 			/* but if it does happen, we just ignore that device */
2011 		}
2012 	}
2013 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2014 
2015 	/*
2016 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017 	 * any logical drives that need it enabled.
2018 	 *
2019 	 * The raid map should be current by now.
2020 	 *
2021 	 * We are updating the device list used for I/O requests.
2022 	 */
2023 	for (i = 0; i < h->ndevices; i++) {
2024 		if (h->dev[i] == NULL)
2025 			continue;
2026 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2027 	}
2028 
2029 	spin_unlock_irqrestore(&h->devlock, flags);
2030 
2031 	/* Monitor devices which are in one of several NOT READY states to be
2032 	 * brought online later. This must be done without holding h->devlock,
2033 	 * so don't touch h->dev[]
2034 	 */
2035 	for (i = 0; i < nsds; i++) {
2036 		if (!sd[i]) /* if already added above. */
2037 			continue;
2038 		if (sd[i]->volume_offline)
2039 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2040 	}
2041 
2042 	/* Don't notify scsi mid layer of any changes the first time through
2043 	 * (or if there are no changes) scsi_scan_host will do it later the
2044 	 * first time through.
2045 	 */
2046 	if (!changes)
2047 		goto free_and_out;
2048 
2049 	/* Notify scsi mid layer of any removed devices */
2050 	for (i = 0; i < nremoved; i++) {
2051 		if (removed[i] == NULL)
2052 			continue;
2053 		if (removed[i]->expose_device)
2054 			hpsa_remove_device(h, removed[i]);
2055 		kfree(removed[i]);
2056 		removed[i] = NULL;
2057 	}
2058 
2059 	/* Notify scsi mid layer of any added devices */
2060 	for (i = 0; i < nadded; i++) {
2061 		int rc = 0;
2062 
2063 		if (added[i] == NULL)
2064 			continue;
2065 		if (!(added[i]->expose_device))
2066 			continue;
2067 		rc = hpsa_add_device(h, added[i]);
2068 		if (!rc)
2069 			continue;
2070 		dev_warn(&h->pdev->dev,
2071 			"addition failed %d, device not added.", rc);
2072 		/* now we have to remove it from h->dev,
2073 		 * since it didn't get added to scsi mid layer
2074 		 */
2075 		fixup_botched_add(h, added[i]);
2076 		h->drv_req_rescan = 1;
2077 	}
2078 
2079 free_and_out:
2080 	kfree(added);
2081 	kfree(removed);
2082 }
2083 
2084 /*
2085  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086  * Assume's h->devlock is held.
2087  */
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089 	int bus, int target, int lun)
2090 {
2091 	int i;
2092 	struct hpsa_scsi_dev_t *sd;
2093 
2094 	for (i = 0; i < h->ndevices; i++) {
2095 		sd = h->dev[i];
2096 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097 			return sd;
2098 	}
2099 	return NULL;
2100 }
2101 
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2103 {
2104 	struct hpsa_scsi_dev_t *sd = NULL;
2105 	unsigned long flags;
2106 	struct ctlr_info *h;
2107 
2108 	h = sdev_to_hba(sdev);
2109 	spin_lock_irqsave(&h->devlock, flags);
2110 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111 		struct scsi_target *starget;
2112 		struct sas_rphy *rphy;
2113 
2114 		starget = scsi_target(sdev);
2115 		rphy = target_to_rphy(starget);
2116 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117 		if (sd) {
2118 			sd->target = sdev_id(sdev);
2119 			sd->lun = sdev->lun;
2120 		}
2121 	}
2122 	if (!sd)
2123 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124 					sdev_id(sdev), sdev->lun);
2125 
2126 	if (sd && sd->expose_device) {
2127 		atomic_set(&sd->ioaccel_cmds_out, 0);
2128 		sdev->hostdata = sd;
2129 	} else
2130 		sdev->hostdata = NULL;
2131 	spin_unlock_irqrestore(&h->devlock, flags);
2132 	return 0;
2133 }
2134 
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2137 {
2138 	struct hpsa_scsi_dev_t *sd;
2139 	int queue_depth;
2140 
2141 	sd = sdev->hostdata;
2142 	sdev->no_uld_attach = !sd || !sd->expose_device;
2143 
2144 	if (sd) {
2145 		if (sd->external)
2146 			queue_depth = EXTERNAL_QD;
2147 		else
2148 			queue_depth = sd->queue_depth != 0 ?
2149 					sd->queue_depth : sdev->host->can_queue;
2150 	} else
2151 		queue_depth = sdev->host->can_queue;
2152 
2153 	scsi_change_queue_depth(sdev, queue_depth);
2154 
2155 	return 0;
2156 }
2157 
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2159 {
2160 	/* nothing to do. */
2161 }
2162 
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2164 {
2165 	int i;
2166 
2167 	if (!h->ioaccel2_cmd_sg_list)
2168 		return;
2169 	for (i = 0; i < h->nr_cmds; i++) {
2170 		kfree(h->ioaccel2_cmd_sg_list[i]);
2171 		h->ioaccel2_cmd_sg_list[i] = NULL;
2172 	}
2173 	kfree(h->ioaccel2_cmd_sg_list);
2174 	h->ioaccel2_cmd_sg_list = NULL;
2175 }
2176 
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2178 {
2179 	int i;
2180 
2181 	if (h->chainsize <= 0)
2182 		return 0;
2183 
2184 	h->ioaccel2_cmd_sg_list =
2185 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186 					GFP_KERNEL);
2187 	if (!h->ioaccel2_cmd_sg_list)
2188 		return -ENOMEM;
2189 	for (i = 0; i < h->nr_cmds; i++) {
2190 		h->ioaccel2_cmd_sg_list[i] =
2191 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192 					h->maxsgentries, GFP_KERNEL);
2193 		if (!h->ioaccel2_cmd_sg_list[i])
2194 			goto clean;
2195 	}
2196 	return 0;
2197 
2198 clean:
2199 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2200 	return -ENOMEM;
2201 }
2202 
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2204 {
2205 	int i;
2206 
2207 	if (!h->cmd_sg_list)
2208 		return;
2209 	for (i = 0; i < h->nr_cmds; i++) {
2210 		kfree(h->cmd_sg_list[i]);
2211 		h->cmd_sg_list[i] = NULL;
2212 	}
2213 	kfree(h->cmd_sg_list);
2214 	h->cmd_sg_list = NULL;
2215 }
2216 
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2218 {
2219 	int i;
2220 
2221 	if (h->chainsize <= 0)
2222 		return 0;
2223 
2224 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225 				GFP_KERNEL);
2226 	if (!h->cmd_sg_list)
2227 		return -ENOMEM;
2228 
2229 	for (i = 0; i < h->nr_cmds; i++) {
2230 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231 						h->chainsize, GFP_KERNEL);
2232 		if (!h->cmd_sg_list[i])
2233 			goto clean;
2234 
2235 	}
2236 	return 0;
2237 
2238 clean:
2239 	hpsa_free_sg_chain_blocks(h);
2240 	return -ENOMEM;
2241 }
2242 
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244 	struct io_accel2_cmd *cp, struct CommandList *c)
2245 {
2246 	struct ioaccel2_sg_element *chain_block;
2247 	u64 temp64;
2248 	u32 chain_size;
2249 
2250 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251 	chain_size = le32_to_cpu(cp->sg[0].length);
2252 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253 				PCI_DMA_TODEVICE);
2254 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255 		/* prevent subsequent unmapping */
2256 		cp->sg->address = 0;
2257 		return -1;
2258 	}
2259 	cp->sg->address = cpu_to_le64(temp64);
2260 	return 0;
2261 }
2262 
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264 	struct io_accel2_cmd *cp)
2265 {
2266 	struct ioaccel2_sg_element *chain_sg;
2267 	u64 temp64;
2268 	u32 chain_size;
2269 
2270 	chain_sg = cp->sg;
2271 	temp64 = le64_to_cpu(chain_sg->address);
2272 	chain_size = le32_to_cpu(cp->sg[0].length);
2273 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2274 }
2275 
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277 	struct CommandList *c)
2278 {
2279 	struct SGDescriptor *chain_sg, *chain_block;
2280 	u64 temp64;
2281 	u32 chain_len;
2282 
2283 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284 	chain_block = h->cmd_sg_list[c->cmdindex];
2285 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286 	chain_len = sizeof(*chain_sg) *
2287 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288 	chain_sg->Len = cpu_to_le32(chain_len);
2289 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290 				PCI_DMA_TODEVICE);
2291 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292 		/* prevent subsequent unmapping */
2293 		chain_sg->Addr = cpu_to_le64(0);
2294 		return -1;
2295 	}
2296 	chain_sg->Addr = cpu_to_le64(temp64);
2297 	return 0;
2298 }
2299 
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301 	struct CommandList *c)
2302 {
2303 	struct SGDescriptor *chain_sg;
2304 
2305 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306 		return;
2307 
2308 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2311 }
2312 
2313 
2314 /* Decode the various types of errors on ioaccel2 path.
2315  * Return 1 for any error that should generate a RAID path retry.
2316  * Return 0 for errors that don't require a RAID path retry.
2317  */
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319 					struct CommandList *c,
2320 					struct scsi_cmnd *cmd,
2321 					struct io_accel2_cmd *c2,
2322 					struct hpsa_scsi_dev_t *dev)
2323 {
2324 	int data_len;
2325 	int retry = 0;
2326 	u32 ioaccel2_resid = 0;
2327 
2328 	switch (c2->error_data.serv_response) {
2329 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330 		switch (c2->error_data.status) {
2331 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332 			break;
2333 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2335 			if (c2->error_data.data_present !=
2336 					IOACCEL2_SENSE_DATA_PRESENT) {
2337 				memset(cmd->sense_buffer, 0,
2338 					SCSI_SENSE_BUFFERSIZE);
2339 				break;
2340 			}
2341 			/* copy the sense data */
2342 			data_len = c2->error_data.sense_data_len;
2343 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2344 				data_len = SCSI_SENSE_BUFFERSIZE;
2345 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2346 				data_len =
2347 					sizeof(c2->error_data.sense_data_buff);
2348 			memcpy(cmd->sense_buffer,
2349 				c2->error_data.sense_data_buff, data_len);
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353 			retry = 1;
2354 			break;
2355 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356 			retry = 1;
2357 			break;
2358 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359 			retry = 1;
2360 			break;
2361 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362 			retry = 1;
2363 			break;
2364 		default:
2365 			retry = 1;
2366 			break;
2367 		}
2368 		break;
2369 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2370 		switch (c2->error_data.status) {
2371 		case IOACCEL2_STATUS_SR_IO_ERROR:
2372 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2373 		case IOACCEL2_STATUS_SR_OVERRUN:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_UNDERRUN:
2377 			cmd->result = (DID_OK << 16);		/* host byte */
2378 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2379 			ioaccel2_resid = get_unaligned_le32(
2380 						&c2->error_data.resid_cnt[0]);
2381 			scsi_set_resid(cmd, ioaccel2_resid);
2382 			break;
2383 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2386 			/*
2387 			 * Did an HBA disk disappear? We will eventually
2388 			 * get a state change event from the controller but
2389 			 * in the meantime, we need to tell the OS that the
2390 			 * HBA disk is no longer there and stop I/O
2391 			 * from going down. This allows the potential re-insert
2392 			 * of the disk to get the same device node.
2393 			 */
2394 			if (dev->physical_device && dev->expose_device) {
2395 				cmd->result = DID_NO_CONNECT << 16;
2396 				dev->removed = 1;
2397 				h->drv_req_rescan = 1;
2398 				dev_warn(&h->pdev->dev,
2399 					"%s: device is gone!\n", __func__);
2400 			} else
2401 				/*
2402 				 * Retry by sending down the RAID path.
2403 				 * We will get an event from ctlr to
2404 				 * trigger rescan regardless.
2405 				 */
2406 				retry = 1;
2407 			break;
2408 		default:
2409 			retry = 1;
2410 		}
2411 		break;
2412 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413 		break;
2414 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415 		break;
2416 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417 		retry = 1;
2418 		break;
2419 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420 		break;
2421 	default:
2422 		retry = 1;
2423 		break;
2424 	}
2425 
2426 	return retry;	/* retry on raid path? */
2427 }
2428 
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430 		struct CommandList *c)
2431 {
2432 	bool do_wake = false;
2433 
2434 	/*
2435 	 * Reset c->scsi_cmd here so that the reset handler will know
2436 	 * this command has completed.  Then, check to see if the handler is
2437 	 * waiting for this command, and, if so, wake it.
2438 	 */
2439 	c->scsi_cmd = SCSI_CMD_IDLE;
2440 	mb();	/* Declare command idle before checking for pending events. */
2441 	if (c->reset_pending) {
2442 		unsigned long flags;
2443 		struct hpsa_scsi_dev_t *dev;
2444 
2445 		/*
2446 		 * There appears to be a reset pending; lock the lock and
2447 		 * reconfirm.  If so, then decrement the count of outstanding
2448 		 * commands and wake the reset command if this is the last one.
2449 		 */
2450 		spin_lock_irqsave(&h->lock, flags);
2451 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2452 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453 			do_wake = true;
2454 		c->reset_pending = NULL;
2455 		spin_unlock_irqrestore(&h->lock, flags);
2456 	}
2457 
2458 	if (do_wake)
2459 		wake_up_all(&h->event_sync_wait_queue);
2460 }
2461 
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463 				      struct CommandList *c)
2464 {
2465 	hpsa_cmd_resolve_events(h, c);
2466 	cmd_tagged_free(h, c);
2467 }
2468 
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470 		struct CommandList *c, struct scsi_cmnd *cmd)
2471 {
2472 	hpsa_cmd_resolve_and_free(h, c);
2473 	if (cmd && cmd->scsi_done)
2474 		cmd->scsi_done(cmd);
2475 }
2476 
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2478 {
2479 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2481 }
2482 
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484 		struct CommandList *c, struct scsi_cmnd *cmd,
2485 		struct hpsa_scsi_dev_t *dev)
2486 {
2487 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2488 
2489 	/* check for good status */
2490 	if (likely(c2->error_data.serv_response == 0 &&
2491 			c2->error_data.status == 0))
2492 		return hpsa_cmd_free_and_done(h, c, cmd);
2493 
2494 	/*
2495 	 * Any RAID offload error results in retry which will use
2496 	 * the normal I/O path so the controller can handle whatever is
2497 	 * wrong.
2498 	 */
2499 	if (is_logical_device(dev) &&
2500 		c2->error_data.serv_response ==
2501 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2502 		if (c2->error_data.status ==
2503 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504 			dev->offload_enabled = 0;
2505 			dev->offload_to_be_enabled = 0;
2506 		}
2507 
2508 		return hpsa_retry_cmd(h, c);
2509 	}
2510 
2511 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 		return hpsa_retry_cmd(h, c);
2513 
2514 	return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516 
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 					struct CommandList *cp)
2520 {
2521 	u8 tmf_status = cp->err_info->ScsiStatus;
2522 
2523 	switch (tmf_status) {
2524 	case CISS_TMF_COMPLETE:
2525 		/*
2526 		 * CISS_TMF_COMPLETE never happens, instead,
2527 		 * ei->CommandStatus == 0 for this case.
2528 		 */
2529 	case CISS_TMF_SUCCESS:
2530 		return 0;
2531 	case CISS_TMF_INVALID_FRAME:
2532 	case CISS_TMF_NOT_SUPPORTED:
2533 	case CISS_TMF_FAILED:
2534 	case CISS_TMF_WRONG_LUN:
2535 	case CISS_TMF_OVERLAPPED_TAG:
2536 		break;
2537 	default:
2538 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539 				tmf_status);
2540 		break;
2541 	}
2542 	return -tmf_status;
2543 }
2544 
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547 	struct scsi_cmnd *cmd;
2548 	struct ctlr_info *h;
2549 	struct ErrorInfo *ei;
2550 	struct hpsa_scsi_dev_t *dev;
2551 	struct io_accel2_cmd *c2;
2552 
2553 	u8 sense_key;
2554 	u8 asc;      /* additional sense code */
2555 	u8 ascq;     /* additional sense code qualifier */
2556 	unsigned long sense_data_size;
2557 
2558 	ei = cp->err_info;
2559 	cmd = cp->scsi_cmd;
2560 	h = cp->h;
2561 
2562 	if (!cmd->device) {
2563 		cmd->result = DID_NO_CONNECT << 16;
2564 		return hpsa_cmd_free_and_done(h, cp, cmd);
2565 	}
2566 
2567 	dev = cmd->device->hostdata;
2568 	if (!dev) {
2569 		cmd->result = DID_NO_CONNECT << 16;
2570 		return hpsa_cmd_free_and_done(h, cp, cmd);
2571 	}
2572 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573 
2574 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 	if ((cp->cmd_type == CMD_SCSI) &&
2576 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 		hpsa_unmap_sg_chain_block(h, cp);
2578 
2579 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582 
2583 	cmd->result = (DID_OK << 16); 		/* host byte */
2584 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2585 
2586 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587 		if (dev->physical_device && dev->expose_device &&
2588 			dev->removed) {
2589 			cmd->result = DID_NO_CONNECT << 16;
2590 			return hpsa_cmd_free_and_done(h, cp, cmd);
2591 		}
2592 		if (likely(cp->phys_disk != NULL))
2593 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2594 	}
2595 
2596 	/*
2597 	 * We check for lockup status here as it may be set for
2598 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599 	 * fail_all_oustanding_cmds()
2600 	 */
2601 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602 		/* DID_NO_CONNECT will prevent a retry */
2603 		cmd->result = DID_NO_CONNECT << 16;
2604 		return hpsa_cmd_free_and_done(h, cp, cmd);
2605 	}
2606 
2607 	if ((unlikely(hpsa_is_pending_event(cp))))
2608 		if (cp->reset_pending)
2609 			return hpsa_cmd_free_and_done(h, cp, cmd);
2610 
2611 	if (cp->cmd_type == CMD_IOACCEL2)
2612 		return process_ioaccel2_completion(h, cp, cmd, dev);
2613 
2614 	scsi_set_resid(cmd, ei->ResidualCnt);
2615 	if (ei->CommandStatus == 0)
2616 		return hpsa_cmd_free_and_done(h, cp, cmd);
2617 
2618 	/* For I/O accelerator commands, copy over some fields to the normal
2619 	 * CISS header used below for error handling.
2620 	 */
2621 	if (cp->cmd_type == CMD_IOACCEL1) {
2622 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623 		cp->Header.SGList = scsi_sg_count(cmd);
2624 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627 		cp->Header.tag = c->tag;
2628 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2630 
2631 		/* Any RAID offload error results in retry which will use
2632 		 * the normal I/O path so the controller can handle whatever's
2633 		 * wrong.
2634 		 */
2635 		if (is_logical_device(dev)) {
2636 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637 				dev->offload_enabled = 0;
2638 			return hpsa_retry_cmd(h, cp);
2639 		}
2640 	}
2641 
2642 	/* an error has occurred */
2643 	switch (ei->CommandStatus) {
2644 
2645 	case CMD_TARGET_STATUS:
2646 		cmd->result |= ei->ScsiStatus;
2647 		/* copy the sense data */
2648 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650 		else
2651 			sense_data_size = sizeof(ei->SenseInfo);
2652 		if (ei->SenseLen < sense_data_size)
2653 			sense_data_size = ei->SenseLen;
2654 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655 		if (ei->ScsiStatus)
2656 			decode_sense_data(ei->SenseInfo, sense_data_size,
2657 				&sense_key, &asc, &ascq);
2658 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659 			if (sense_key == ABORTED_COMMAND) {
2660 				cmd->result |= DID_SOFT_ERROR << 16;
2661 				break;
2662 			}
2663 			break;
2664 		}
2665 		/* Problem was not a check condition
2666 		 * Pass it up to the upper layers...
2667 		 */
2668 		if (ei->ScsiStatus) {
2669 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671 				"Returning result: 0x%x\n",
2672 				cp, ei->ScsiStatus,
2673 				sense_key, asc, ascq,
2674 				cmd->result);
2675 		} else {  /* scsi status is zero??? How??? */
2676 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677 				"Returning no connection.\n", cp),
2678 
2679 			/* Ordinarily, this case should never happen,
2680 			 * but there is a bug in some released firmware
2681 			 * revisions that allows it to happen if, for
2682 			 * example, a 4100 backplane loses power and
2683 			 * the tape drive is in it.  We assume that
2684 			 * it's a fatal error of some kind because we
2685 			 * can't show that it wasn't. We will make it
2686 			 * look like selection timeout since that is
2687 			 * the most common reason for this to occur,
2688 			 * and it's severe enough.
2689 			 */
2690 
2691 			cmd->result = DID_NO_CONNECT << 16;
2692 		}
2693 		break;
2694 
2695 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696 		break;
2697 	case CMD_DATA_OVERRUN:
2698 		dev_warn(&h->pdev->dev,
2699 			"CDB %16phN data overrun\n", cp->Request.CDB);
2700 		break;
2701 	case CMD_INVALID: {
2702 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2703 		print_cmd(cp); */
2704 		/* We get CMD_INVALID if you address a non-existent device
2705 		 * instead of a selection timeout (no response).  You will
2706 		 * see this if you yank out a drive, then try to access it.
2707 		 * This is kind of a shame because it means that any other
2708 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709 		 * missing target. */
2710 		cmd->result = DID_NO_CONNECT << 16;
2711 	}
2712 		break;
2713 	case CMD_PROTOCOL_ERR:
2714 		cmd->result = DID_ERROR << 16;
2715 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716 				cp->Request.CDB);
2717 		break;
2718 	case CMD_HARDWARE_ERR:
2719 		cmd->result = DID_ERROR << 16;
2720 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721 			cp->Request.CDB);
2722 		break;
2723 	case CMD_CONNECTION_LOST:
2724 		cmd->result = DID_ERROR << 16;
2725 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726 			cp->Request.CDB);
2727 		break;
2728 	case CMD_ABORTED:
2729 		cmd->result = DID_ABORT << 16;
2730 		break;
2731 	case CMD_ABORT_FAILED:
2732 		cmd->result = DID_ERROR << 16;
2733 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734 			cp->Request.CDB);
2735 		break;
2736 	case CMD_UNSOLICITED_ABORT:
2737 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739 			cp->Request.CDB);
2740 		break;
2741 	case CMD_TIMEOUT:
2742 		cmd->result = DID_TIME_OUT << 16;
2743 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744 			cp->Request.CDB);
2745 		break;
2746 	case CMD_UNABORTABLE:
2747 		cmd->result = DID_ERROR << 16;
2748 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2749 		break;
2750 	case CMD_TMF_STATUS:
2751 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752 			cmd->result = DID_ERROR << 16;
2753 		break;
2754 	case CMD_IOACCEL_DISABLED:
2755 		/* This only handles the direct pass-through case since RAID
2756 		 * offload is handled above.  Just attempt a retry.
2757 		 */
2758 		cmd->result = DID_SOFT_ERROR << 16;
2759 		dev_warn(&h->pdev->dev,
2760 				"cp %p had HP SSD Smart Path error\n", cp);
2761 		break;
2762 	default:
2763 		cmd->result = DID_ERROR << 16;
2764 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765 				cp, ei->CommandStatus);
2766 	}
2767 
2768 	return hpsa_cmd_free_and_done(h, cp, cmd);
2769 }
2770 
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772 	struct CommandList *c, int sg_used, int data_direction)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < sg_used; i++)
2777 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778 				le32_to_cpu(c->SG[i].Len),
2779 				data_direction);
2780 }
2781 
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783 		struct CommandList *cp,
2784 		unsigned char *buf,
2785 		size_t buflen,
2786 		int data_direction)
2787 {
2788 	u64 addr64;
2789 
2790 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791 		cp->Header.SGList = 0;
2792 		cp->Header.SGTotal = cpu_to_le16(0);
2793 		return 0;
2794 	}
2795 
2796 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797 	if (dma_mapping_error(&pdev->dev, addr64)) {
2798 		/* Prevent subsequent unmap of something never mapped */
2799 		cp->Header.SGList = 0;
2800 		cp->Header.SGTotal = cpu_to_le16(0);
2801 		return -1;
2802 	}
2803 	cp->SG[0].Addr = cpu_to_le64(addr64);
2804 	cp->SG[0].Len = cpu_to_le32(buflen);
2805 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2807 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808 	return 0;
2809 }
2810 
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2815 {
2816 	DECLARE_COMPLETION_ONSTACK(wait);
2817 
2818 	c->waiting = &wait;
2819 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2820 	if (timeout_msecs == NO_TIMEOUT) {
2821 		/* TODO: get rid of this no-timeout thing */
2822 		wait_for_completion_io(&wait);
2823 		return IO_OK;
2824 	}
2825 	if (!wait_for_completion_io_timeout(&wait,
2826 					msecs_to_jiffies(timeout_msecs))) {
2827 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2828 		return -ETIMEDOUT;
2829 	}
2830 	return IO_OK;
2831 }
2832 
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834 				   int reply_queue, unsigned long timeout_msecs)
2835 {
2836 	if (unlikely(lockup_detected(h))) {
2837 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838 		return IO_OK;
2839 	}
2840 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2841 }
2842 
2843 static u32 lockup_detected(struct ctlr_info *h)
2844 {
2845 	int cpu;
2846 	u32 rc, *lockup_detected;
2847 
2848 	cpu = get_cpu();
2849 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850 	rc = *lockup_detected;
2851 	put_cpu();
2852 	return rc;
2853 }
2854 
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2858 {
2859 	int backoff_time = 10, retry_count = 0;
2860 	int rc;
2861 
2862 	do {
2863 		memset(c->err_info, 0, sizeof(*c->err_info));
2864 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865 						  timeout_msecs);
2866 		if (rc)
2867 			break;
2868 		retry_count++;
2869 		if (retry_count > 3) {
2870 			msleep(backoff_time);
2871 			if (backoff_time < 1000)
2872 				backoff_time *= 2;
2873 		}
2874 	} while ((check_for_unit_attention(h, c) ||
2875 			check_for_busy(h, c)) &&
2876 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2877 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879 		rc = -EIO;
2880 	return rc;
2881 }
2882 
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884 				struct CommandList *c)
2885 {
2886 	const u8 *cdb = c->Request.CDB;
2887 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2888 
2889 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890 		 txt, lun, cdb);
2891 }
2892 
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894 			struct CommandList *cp)
2895 {
2896 	const struct ErrorInfo *ei = cp->err_info;
2897 	struct device *d = &cp->h->pdev->dev;
2898 	u8 sense_key, asc, ascq;
2899 	int sense_len;
2900 
2901 	switch (ei->CommandStatus) {
2902 	case CMD_TARGET_STATUS:
2903 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2904 			sense_len = sizeof(ei->SenseInfo);
2905 		else
2906 			sense_len = ei->SenseLen;
2907 		decode_sense_data(ei->SenseInfo, sense_len,
2908 					&sense_key, &asc, &ascq);
2909 		hpsa_print_cmd(h, "SCSI status", cp);
2910 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912 				sense_key, asc, ascq);
2913 		else
2914 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915 		if (ei->ScsiStatus == 0)
2916 			dev_warn(d, "SCSI status is abnormally zero.  "
2917 			"(probably indicates selection timeout "
2918 			"reported incorrectly due to a known "
2919 			"firmware bug, circa July, 2001.)\n");
2920 		break;
2921 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922 		break;
2923 	case CMD_DATA_OVERRUN:
2924 		hpsa_print_cmd(h, "overrun condition", cp);
2925 		break;
2926 	case CMD_INVALID: {
2927 		/* controller unfortunately reports SCSI passthru's
2928 		 * to non-existent targets as invalid commands.
2929 		 */
2930 		hpsa_print_cmd(h, "invalid command", cp);
2931 		dev_warn(d, "probably means device no longer present\n");
2932 		}
2933 		break;
2934 	case CMD_PROTOCOL_ERR:
2935 		hpsa_print_cmd(h, "protocol error", cp);
2936 		break;
2937 	case CMD_HARDWARE_ERR:
2938 		hpsa_print_cmd(h, "hardware error", cp);
2939 		break;
2940 	case CMD_CONNECTION_LOST:
2941 		hpsa_print_cmd(h, "connection lost", cp);
2942 		break;
2943 	case CMD_ABORTED:
2944 		hpsa_print_cmd(h, "aborted", cp);
2945 		break;
2946 	case CMD_ABORT_FAILED:
2947 		hpsa_print_cmd(h, "abort failed", cp);
2948 		break;
2949 	case CMD_UNSOLICITED_ABORT:
2950 		hpsa_print_cmd(h, "unsolicited abort", cp);
2951 		break;
2952 	case CMD_TIMEOUT:
2953 		hpsa_print_cmd(h, "timed out", cp);
2954 		break;
2955 	case CMD_UNABORTABLE:
2956 		hpsa_print_cmd(h, "unabortable", cp);
2957 		break;
2958 	case CMD_CTLR_LOCKUP:
2959 		hpsa_print_cmd(h, "controller lockup detected", cp);
2960 		break;
2961 	default:
2962 		hpsa_print_cmd(h, "unknown status", cp);
2963 		dev_warn(d, "Unknown command status %x\n",
2964 				ei->CommandStatus);
2965 	}
2966 }
2967 
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969 					u8 page, u8 *buf, size_t bufsize)
2970 {
2971 	int rc = IO_OK;
2972 	struct CommandList *c;
2973 	struct ErrorInfo *ei;
2974 
2975 	c = cmd_alloc(h);
2976 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977 			page, scsi3addr, TYPE_CMD)) {
2978 		rc = -1;
2979 		goto out;
2980 	}
2981 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983 	if (rc)
2984 		goto out;
2985 	ei = c->err_info;
2986 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987 		hpsa_scsi_interpret_error(h, c);
2988 		rc = -1;
2989 	}
2990 out:
2991 	cmd_free(h, c);
2992 	return rc;
2993 }
2994 
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996 						u8 *scsi3addr)
2997 {
2998 	u8 *buf;
2999 	u64 sa = 0;
3000 	int rc = 0;
3001 
3002 	buf = kzalloc(1024, GFP_KERNEL);
3003 	if (!buf)
3004 		return 0;
3005 
3006 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007 					buf, 1024);
3008 
3009 	if (rc)
3010 		goto out;
3011 
3012 	sa = get_unaligned_be64(buf+12);
3013 
3014 out:
3015 	kfree(buf);
3016 	return sa;
3017 }
3018 
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020 			u16 page, unsigned char *buf,
3021 			unsigned char bufsize)
3022 {
3023 	int rc = IO_OK;
3024 	struct CommandList *c;
3025 	struct ErrorInfo *ei;
3026 
3027 	c = cmd_alloc(h);
3028 
3029 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030 			page, scsi3addr, TYPE_CMD)) {
3031 		rc = -1;
3032 		goto out;
3033 	}
3034 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036 	if (rc)
3037 		goto out;
3038 	ei = c->err_info;
3039 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040 		hpsa_scsi_interpret_error(h, c);
3041 		rc = -1;
3042 	}
3043 out:
3044 	cmd_free(h, c);
3045 	return rc;
3046 }
3047 
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049 	u8 reset_type, int reply_queue)
3050 {
3051 	int rc = IO_OK;
3052 	struct CommandList *c;
3053 	struct ErrorInfo *ei;
3054 
3055 	c = cmd_alloc(h);
3056 
3057 
3058 	/* fill_cmd can't fail here, no data buffer to map. */
3059 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060 			scsi3addr, TYPE_MSG);
3061 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062 	if (rc) {
3063 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064 		goto out;
3065 	}
3066 	/* no unmap needed here because no data xfer. */
3067 
3068 	ei = c->err_info;
3069 	if (ei->CommandStatus != 0) {
3070 		hpsa_scsi_interpret_error(h, c);
3071 		rc = -1;
3072 	}
3073 out:
3074 	cmd_free(h, c);
3075 	return rc;
3076 }
3077 
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079 			       struct hpsa_scsi_dev_t *dev,
3080 			       unsigned char *scsi3addr)
3081 {
3082 	int i;
3083 	bool match = false;
3084 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3086 
3087 	if (hpsa_is_cmd_idle(c))
3088 		return false;
3089 
3090 	switch (c->cmd_type) {
3091 	case CMD_SCSI:
3092 	case CMD_IOCTL_PEND:
3093 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094 				sizeof(c->Header.LUN.LunAddrBytes));
3095 		break;
3096 
3097 	case CMD_IOACCEL1:
3098 	case CMD_IOACCEL2:
3099 		if (c->phys_disk == dev) {
3100 			/* HBA mode match */
3101 			match = true;
3102 		} else {
3103 			/* Possible RAID mode -- check each phys dev. */
3104 			/* FIXME:  Do we need to take out a lock here?  If
3105 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106 			 * instead. */
3107 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108 				/* FIXME: an alternate test might be
3109 				 *
3110 				 * match = dev->phys_disk[i]->ioaccel_handle
3111 				 *              == c2->scsi_nexus;      */
3112 				match = dev->phys_disk[i] == c->phys_disk;
3113 			}
3114 		}
3115 		break;
3116 
3117 	case IOACCEL2_TMF:
3118 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119 			match = dev->phys_disk[i]->ioaccel_handle ==
3120 					le32_to_cpu(ac->it_nexus);
3121 		}
3122 		break;
3123 
3124 	case 0:		/* The command is in the middle of being initialized. */
3125 		match = false;
3126 		break;
3127 
3128 	default:
3129 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130 			c->cmd_type);
3131 		BUG();
3132 	}
3133 
3134 	return match;
3135 }
3136 
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3139 {
3140 	int i;
3141 	int rc = 0;
3142 
3143 	/* We can really only handle one reset at a time */
3144 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146 		return -EINTR;
3147 	}
3148 
3149 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3150 
3151 	for (i = 0; i < h->nr_cmds; i++) {
3152 		struct CommandList *c = h->cmd_pool + i;
3153 		int refcount = atomic_inc_return(&c->refcount);
3154 
3155 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156 			unsigned long flags;
3157 
3158 			/*
3159 			 * Mark the target command as having a reset pending,
3160 			 * then lock a lock so that the command cannot complete
3161 			 * while we're considering it.  If the command is not
3162 			 * idle then count it; otherwise revoke the event.
3163 			 */
3164 			c->reset_pending = dev;
3165 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3166 			if (!hpsa_is_cmd_idle(c))
3167 				atomic_inc(&dev->reset_cmds_out);
3168 			else
3169 				c->reset_pending = NULL;
3170 			spin_unlock_irqrestore(&h->lock, flags);
3171 		}
3172 
3173 		cmd_free(h, c);
3174 	}
3175 
3176 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177 	if (!rc)
3178 		wait_event(h->event_sync_wait_queue,
3179 			atomic_read(&dev->reset_cmds_out) == 0 ||
3180 			lockup_detected(h));
3181 
3182 	if (unlikely(lockup_detected(h))) {
3183 		dev_warn(&h->pdev->dev,
3184 			 "Controller lockup detected during reset wait\n");
3185 		rc = -ENODEV;
3186 	}
3187 
3188 	if (unlikely(rc))
3189 		atomic_set(&dev->reset_cmds_out, 0);
3190 	else
3191 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3192 
3193 	mutex_unlock(&h->reset_mutex);
3194 	return rc;
3195 }
3196 
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198 	unsigned char *scsi3addr, unsigned char *raid_level)
3199 {
3200 	int rc;
3201 	unsigned char *buf;
3202 
3203 	*raid_level = RAID_UNKNOWN;
3204 	buf = kzalloc(64, GFP_KERNEL);
3205 	if (!buf)
3206 		return;
3207 
3208 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3209 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3210 		goto exit;
3211 
3212 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3214 
3215 	if (rc == 0)
3216 		*raid_level = buf[8];
3217 	if (*raid_level > RAID_UNKNOWN)
3218 		*raid_level = RAID_UNKNOWN;
3219 exit:
3220 	kfree(buf);
3221 	return;
3222 }
3223 
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227 				struct raid_map_data *map_buff)
3228 {
3229 	struct raid_map_disk_data *dd = &map_buff->data[0];
3230 	int map, row, col;
3231 	u16 map_cnt, row_cnt, disks_per_row;
3232 
3233 	if (rc != 0)
3234 		return;
3235 
3236 	/* Show details only if debugging has been activated. */
3237 	if (h->raid_offload_debug < 2)
3238 		return;
3239 
3240 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3241 				le32_to_cpu(map_buff->structure_size));
3242 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243 			le32_to_cpu(map_buff->volume_blk_size));
3244 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245 			le64_to_cpu(map_buff->volume_blk_cnt));
3246 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247 			map_buff->phys_blk_shift);
3248 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249 			map_buff->parity_rotation_shift);
3250 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3251 			le16_to_cpu(map_buff->strip_size));
3252 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253 			le64_to_cpu(map_buff->disk_starting_blk));
3254 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255 			le64_to_cpu(map_buff->disk_blk_cnt));
3256 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257 			le16_to_cpu(map_buff->data_disks_per_row));
3258 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259 			le16_to_cpu(map_buff->metadata_disks_per_row));
3260 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261 			le16_to_cpu(map_buff->row_cnt));
3262 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263 			le16_to_cpu(map_buff->layout_map_count));
3264 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265 			le16_to_cpu(map_buff->flags));
3266 	dev_info(&h->pdev->dev, "encryption = %s\n",
3267 			le16_to_cpu(map_buff->flags) &
3268 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3269 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3270 			le16_to_cpu(map_buff->dekindex));
3271 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272 	for (map = 0; map < map_cnt; map++) {
3273 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3274 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3275 		for (row = 0; row < row_cnt; row++) {
3276 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3277 			disks_per_row =
3278 				le16_to_cpu(map_buff->data_disks_per_row);
3279 			for (col = 0; col < disks_per_row; col++, dd++)
3280 				dev_info(&h->pdev->dev,
3281 					"    D%02u: h=0x%04x xor=%u,%u\n",
3282 					col, dd->ioaccel_handle,
3283 					dd->xor_mult[0], dd->xor_mult[1]);
3284 			disks_per_row =
3285 				le16_to_cpu(map_buff->metadata_disks_per_row);
3286 			for (col = 0; col < disks_per_row; col++, dd++)
3287 				dev_info(&h->pdev->dev,
3288 					"    M%02u: h=0x%04x xor=%u,%u\n",
3289 					col, dd->ioaccel_handle,
3290 					dd->xor_mult[0], dd->xor_mult[1]);
3291 		}
3292 	}
3293 }
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296 			__attribute__((unused)) int rc,
3297 			__attribute__((unused)) struct raid_map_data *map_buff)
3298 {
3299 }
3300 #endif
3301 
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305 	int rc = 0;
3306 	struct CommandList *c;
3307 	struct ErrorInfo *ei;
3308 
3309 	c = cmd_alloc(h);
3310 
3311 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312 			sizeof(this_device->raid_map), 0,
3313 			scsi3addr, TYPE_CMD)) {
3314 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315 		cmd_free(h, c);
3316 		return -1;
3317 	}
3318 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320 	if (rc)
3321 		goto out;
3322 	ei = c->err_info;
3323 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324 		hpsa_scsi_interpret_error(h, c);
3325 		rc = -1;
3326 		goto out;
3327 	}
3328 	cmd_free(h, c);
3329 
3330 	/* @todo in the future, dynamically allocate RAID map memory */
3331 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3332 				sizeof(this_device->raid_map)) {
3333 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334 		rc = -1;
3335 	}
3336 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337 	return rc;
3338 out:
3339 	cmd_free(h, c);
3340 	return rc;
3341 }
3342 
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344 		unsigned char scsi3addr[], u16 bmic_device_index,
3345 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3346 {
3347 	int rc = IO_OK;
3348 	struct CommandList *c;
3349 	struct ErrorInfo *ei;
3350 
3351 	c = cmd_alloc(h);
3352 
3353 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354 		0, RAID_CTLR_LUNID, TYPE_CMD);
3355 	if (rc)
3356 		goto out;
3357 
3358 	c->Request.CDB[2] = bmic_device_index & 0xff;
3359 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3360 
3361 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363 	if (rc)
3364 		goto out;
3365 	ei = c->err_info;
3366 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367 		hpsa_scsi_interpret_error(h, c);
3368 		rc = -1;
3369 	}
3370 out:
3371 	cmd_free(h, c);
3372 	return rc;
3373 }
3374 
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376 	struct bmic_identify_controller *buf, size_t bufsize)
3377 {
3378 	int rc = IO_OK;
3379 	struct CommandList *c;
3380 	struct ErrorInfo *ei;
3381 
3382 	c = cmd_alloc(h);
3383 
3384 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385 		0, RAID_CTLR_LUNID, TYPE_CMD);
3386 	if (rc)
3387 		goto out;
3388 
3389 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391 	if (rc)
3392 		goto out;
3393 	ei = c->err_info;
3394 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395 		hpsa_scsi_interpret_error(h, c);
3396 		rc = -1;
3397 	}
3398 out:
3399 	cmd_free(h, c);
3400 	return rc;
3401 }
3402 
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404 		unsigned char scsi3addr[], u16 bmic_device_index,
3405 		struct bmic_identify_physical_device *buf, size_t bufsize)
3406 {
3407 	int rc = IO_OK;
3408 	struct CommandList *c;
3409 	struct ErrorInfo *ei;
3410 
3411 	c = cmd_alloc(h);
3412 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413 		0, RAID_CTLR_LUNID, TYPE_CMD);
3414 	if (rc)
3415 		goto out;
3416 
3417 	c->Request.CDB[2] = bmic_device_index & 0xff;
3418 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3419 
3420 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421 						NO_TIMEOUT);
3422 	ei = c->err_info;
3423 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424 		hpsa_scsi_interpret_error(h, c);
3425 		rc = -1;
3426 	}
3427 out:
3428 	cmd_free(h, c);
3429 
3430 	return rc;
3431 }
3432 
3433 /*
3434  * get enclosure information
3435  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437  * Uses id_physical_device to determine the box_index.
3438  */
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440 			unsigned char *scsi3addr,
3441 			struct ReportExtendedLUNdata *rlep, int rle_index,
3442 			struct hpsa_scsi_dev_t *encl_dev)
3443 {
3444 	int rc = -1;
3445 	struct CommandList *c = NULL;
3446 	struct ErrorInfo *ei = NULL;
3447 	struct bmic_sense_storage_box_params *bssbp = NULL;
3448 	struct bmic_identify_physical_device *id_phys = NULL;
3449 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450 	u16 bmic_device_index = 0;
3451 
3452 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453 
3454 	encl_dev->sas_address =
3455 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3456 
3457 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458 		rc = IO_OK;
3459 		goto out;
3460 	}
3461 
3462 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463 		rc = IO_OK;
3464 		goto out;
3465 	}
3466 
3467 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468 	if (!bssbp)
3469 		goto out;
3470 
3471 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472 	if (!id_phys)
3473 		goto out;
3474 
3475 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476 						id_phys, sizeof(*id_phys));
3477 	if (rc) {
3478 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479 			__func__, encl_dev->external, bmic_device_index);
3480 		goto out;
3481 	}
3482 
3483 	c = cmd_alloc(h);
3484 
3485 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3487 
3488 	if (rc)
3489 		goto out;
3490 
3491 	if (id_phys->phys_connector[1] == 'E')
3492 		c->Request.CDB[5] = id_phys->box_index;
3493 	else
3494 		c->Request.CDB[5] = 0;
3495 
3496 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497 						NO_TIMEOUT);
3498 	if (rc)
3499 		goto out;
3500 
3501 	ei = c->err_info;
3502 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503 		rc = -1;
3504 		goto out;
3505 	}
3506 
3507 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3510 
3511 	rc = IO_OK;
3512 out:
3513 	kfree(bssbp);
3514 	kfree(id_phys);
3515 
3516 	if (c)
3517 		cmd_free(h, c);
3518 
3519 	if (rc != IO_OK)
3520 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521 			"Error, could not get enclosure information\n");
3522 }
3523 
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525 						unsigned char *scsi3addr)
3526 {
3527 	struct ReportExtendedLUNdata *physdev;
3528 	u32 nphysicals;
3529 	u64 sa = 0;
3530 	int i;
3531 
3532 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533 	if (!physdev)
3534 		return 0;
3535 
3536 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538 		kfree(physdev);
3539 		return 0;
3540 	}
3541 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3542 
3543 	for (i = 0; i < nphysicals; i++)
3544 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546 			break;
3547 		}
3548 
3549 	kfree(physdev);
3550 
3551 	return sa;
3552 }
3553 
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555 					struct hpsa_scsi_dev_t *dev)
3556 {
3557 	int rc;
3558 	u64 sa = 0;
3559 
3560 	if (is_hba_lunid(scsi3addr)) {
3561 		struct bmic_sense_subsystem_info *ssi;
3562 
3563 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564 		if (!ssi)
3565 			return;
3566 
3567 		rc = hpsa_bmic_sense_subsystem_information(h,
3568 					scsi3addr, 0, ssi, sizeof(*ssi));
3569 		if (rc == 0) {
3570 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571 			h->sas_address = sa;
3572 		}
3573 
3574 		kfree(ssi);
3575 	} else
3576 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3577 
3578 	dev->sas_address = sa;
3579 }
3580 
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582 	struct ReportExtendedLUNdata *physdev)
3583 {
3584 	u32 nphysicals;
3585 	int i;
3586 
3587 	if (h->discovery_polling)
3588 		return;
3589 
3590 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3591 
3592 	for (i = 0; i < nphysicals; i++) {
3593 		if (physdev->LUN[i].device_type ==
3594 			BMIC_DEVICE_TYPE_CONTROLLER
3595 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3596 			dev_info(&h->pdev->dev,
3597 				"External controller present, activate discovery polling and disable rld caching\n");
3598 			hpsa_disable_rld_caching(h);
3599 			h->discovery_polling = 1;
3600 			break;
3601 		}
3602 	}
3603 }
3604 
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607 	unsigned char scsi3addr[], u8 page)
3608 {
3609 	int rc;
3610 	int i;
3611 	int pages;
3612 	unsigned char *buf, bufsize;
3613 
3614 	buf = kzalloc(256, GFP_KERNEL);
3615 	if (!buf)
3616 		return false;
3617 
3618 	/* Get the size of the page list first */
3619 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621 				buf, HPSA_VPD_HEADER_SZ);
3622 	if (rc != 0)
3623 		goto exit_unsupported;
3624 	pages = buf[3];
3625 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3627 	else
3628 		bufsize = 255;
3629 
3630 	/* Get the whole VPD page list */
3631 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 				buf, bufsize);
3634 	if (rc != 0)
3635 		goto exit_unsupported;
3636 
3637 	pages = buf[3];
3638 	for (i = 1; i <= pages; i++)
3639 		if (buf[3 + i] == page)
3640 			goto exit_supported;
3641 exit_unsupported:
3642 	kfree(buf);
3643 	return false;
3644 exit_supported:
3645 	kfree(buf);
3646 	return true;
3647 }
3648 
3649 /*
3650  * Called during a scan operation.
3651  * Sets ioaccel status on the new device list, not the existing device list
3652  *
3653  * The device list used during I/O will be updated later in
3654  * adjust_hpsa_scsi_table.
3655  */
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3658 {
3659 	int rc;
3660 	unsigned char *buf;
3661 	u8 ioaccel_status;
3662 
3663 	this_device->offload_config = 0;
3664 	this_device->offload_enabled = 0;
3665 	this_device->offload_to_be_enabled = 0;
3666 
3667 	buf = kzalloc(64, GFP_KERNEL);
3668 	if (!buf)
3669 		return;
3670 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671 		goto out;
3672 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674 	if (rc != 0)
3675 		goto out;
3676 
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681 	this_device->offload_config =
3682 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683 	if (this_device->offload_config) {
3684 		this_device->offload_to_be_enabled =
3685 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687 			this_device->offload_to_be_enabled = 0;
3688 	}
3689 
3690 out:
3691 	kfree(buf);
3692 	return;
3693 }
3694 
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 	unsigned char *device_id, int index, int buflen)
3698 {
3699 	int rc;
3700 	unsigned char *buf;
3701 
3702 	/* Does controller have VPD for device id? */
3703 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 		return 1; /* not supported */
3705 
3706 	buf = kzalloc(64, GFP_KERNEL);
3707 	if (!buf)
3708 		return -ENOMEM;
3709 
3710 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 	if (rc == 0) {
3713 		if (buflen > 16)
3714 			buflen = 16;
3715 		memcpy(device_id, &buf[8], buflen);
3716 	}
3717 
3718 	kfree(buf);
3719 
3720 	return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722 
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 		void *buf, int bufsize,
3725 		int extended_response)
3726 {
3727 	int rc = IO_OK;
3728 	struct CommandList *c;
3729 	unsigned char scsi3addr[8];
3730 	struct ErrorInfo *ei;
3731 
3732 	c = cmd_alloc(h);
3733 
3734 	/* address the controller */
3735 	memset(scsi3addr, 0, sizeof(scsi3addr));
3736 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 		rc = -EAGAIN;
3739 		goto out;
3740 	}
3741 	if (extended_response)
3742 		c->Request.CDB[1] = extended_response;
3743 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745 	if (rc)
3746 		goto out;
3747 	ei = c->err_info;
3748 	if (ei->CommandStatus != 0 &&
3749 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 		hpsa_scsi_interpret_error(h, c);
3751 		rc = -EIO;
3752 	} else {
3753 		struct ReportLUNdata *rld = buf;
3754 
3755 		if (rld->extended_response_flag != extended_response) {
3756 			if (!h->legacy_board) {
3757 				dev_err(&h->pdev->dev,
3758 					"report luns requested format %u, got %u\n",
3759 					extended_response,
3760 					rld->extended_response_flag);
3761 				rc = -EINVAL;
3762 			} else
3763 				rc = -EOPNOTSUPP;
3764 		}
3765 	}
3766 out:
3767 	cmd_free(h, c);
3768 	return rc;
3769 }
3770 
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 		struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774 	int rc;
3775 	struct ReportLUNdata *lbuf;
3776 
3777 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 				      HPSA_REPORT_PHYS_EXTENDED);
3779 	if (!rc || rc != -EOPNOTSUPP)
3780 		return rc;
3781 
3782 	/* REPORT PHYS EXTENDED is not supported */
3783 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 	if (!lbuf)
3785 		return -ENOMEM;
3786 
3787 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 	if (!rc) {
3789 		int i;
3790 		u32 nphys;
3791 
3792 		/* Copy ReportLUNdata header */
3793 		memcpy(buf, lbuf, 8);
3794 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 		for (i = 0; i < nphys; i++)
3796 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797 	}
3798 	kfree(lbuf);
3799 	return rc;
3800 }
3801 
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 		struct ReportLUNdata *buf, int bufsize)
3804 {
3805 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807 
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 	int bus, int target, int lun)
3810 {
3811 	device->bus = bus;
3812 	device->target = target;
3813 	device->lun = lun;
3814 }
3815 
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 					unsigned char scsi3addr[])
3819 {
3820 	int rc;
3821 	int status;
3822 	int size;
3823 	unsigned char *buf;
3824 
3825 	buf = kzalloc(64, GFP_KERNEL);
3826 	if (!buf)
3827 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828 
3829 	/* Does controller have VPD for logical volume status? */
3830 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 		goto exit_failed;
3832 
3833 	/* Get the size of the VPD return buffer */
3834 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 					buf, HPSA_VPD_HEADER_SZ);
3836 	if (rc != 0)
3837 		goto exit_failed;
3838 	size = buf[3];
3839 
3840 	/* Now get the whole VPD buffer */
3841 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 					buf, size + HPSA_VPD_HEADER_SZ);
3843 	if (rc != 0)
3844 		goto exit_failed;
3845 	status = buf[4]; /* status byte */
3846 
3847 	kfree(buf);
3848 	return status;
3849 exit_failed:
3850 	kfree(buf);
3851 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853 
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 					unsigned char scsi3addr[])
3863 {
3864 	struct CommandList *c;
3865 	unsigned char *sense;
3866 	u8 sense_key, asc, ascq;
3867 	int sense_len;
3868 	int rc, ldstat = 0;
3869 	u16 cmd_status;
3870 	u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874 
3875 	c = cmd_alloc(h);
3876 
3877 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 					NO_TIMEOUT);
3880 	if (rc) {
3881 		cmd_free(h, c);
3882 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883 	}
3884 	sense = c->err_info->SenseInfo;
3885 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 		sense_len = sizeof(c->err_info->SenseInfo);
3887 	else
3888 		sense_len = c->err_info->SenseLen;
3889 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 	cmd_status = c->err_info->CommandStatus;
3891 	scsi_status = c->err_info->ScsiStatus;
3892 	cmd_free(h, c);
3893 
3894 	/* Determine the reason for not ready state */
3895 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3896 
3897 	/* Keep volume offline in certain cases: */
3898 	switch (ldstat) {
3899 	case HPSA_LV_FAILED:
3900 	case HPSA_LV_UNDERGOING_ERASE:
3901 	case HPSA_LV_NOT_AVAILABLE:
3902 	case HPSA_LV_UNDERGOING_RPI:
3903 	case HPSA_LV_PENDING_RPI:
3904 	case HPSA_LV_ENCRYPTED_NO_KEY:
3905 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 		return ldstat;
3910 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 		/* If VPD status page isn't available,
3912 		 * use ASC/ASCQ to determine state
3913 		 */
3914 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 			return ldstat;
3917 		break;
3918 	default:
3919 		break;
3920 	}
3921 	return HPSA_LV_OK;
3922 }
3923 
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 	unsigned char *is_OBDR_device)
3927 {
3928 
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933 
3934 	unsigned char *inq_buff;
3935 	unsigned char *obdr_sig;
3936 	int rc = 0;
3937 
3938 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 	if (!inq_buff) {
3940 		rc = -ENOMEM;
3941 		goto bail_out;
3942 	}
3943 
3944 	/* Do an inquiry to the device to see what it is. */
3945 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 		dev_err(&h->pdev->dev,
3948 			"%s: inquiry failed, device will be skipped.\n",
3949 			__func__);
3950 		rc = HPSA_INQUIRY_FAILED;
3951 		goto bail_out;
3952 	}
3953 
3954 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956 
3957 	this_device->devtype = (inq_buff[0] & 0x1f);
3958 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 	memcpy(this_device->vendor, &inq_buff[8],
3960 		sizeof(this_device->vendor));
3961 	memcpy(this_device->model, &inq_buff[16],
3962 		sizeof(this_device->model));
3963 	this_device->rev = inq_buff[2];
3964 	memset(this_device->device_id, 0,
3965 		sizeof(this_device->device_id));
3966 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 		sizeof(this_device->device_id)) < 0)
3968 		dev_err(&h->pdev->dev,
3969 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970 			h->ctlr, __func__,
3971 			h->scsi_host->host_no,
3972 			this_device->target, this_device->lun,
3973 			scsi_device_type(this_device->devtype),
3974 			this_device->model);
3975 
3976 	if ((this_device->devtype == TYPE_DISK ||
3977 		this_device->devtype == TYPE_ZBC) &&
3978 		is_logical_dev_addr_mode(scsi3addr)) {
3979 		unsigned char volume_offline;
3980 
3981 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3985 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986 		    h->legacy_board) {
3987 			/*
3988 			 * Legacy boards might not support volume status
3989 			 */
3990 			dev_info(&h->pdev->dev,
3991 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3992 				 this_device->target, this_device->lun);
3993 			volume_offline = 0;
3994 		}
3995 		this_device->volume_offline = volume_offline;
3996 		if (volume_offline == HPSA_LV_FAILED) {
3997 			rc = HPSA_LV_FAILED;
3998 			dev_err(&h->pdev->dev,
3999 				"%s: LV failed, device will be skipped.\n",
4000 				__func__);
4001 			goto bail_out;
4002 		}
4003 	} else {
4004 		this_device->raid_level = RAID_UNKNOWN;
4005 		this_device->offload_config = 0;
4006 		this_device->offload_enabled = 0;
4007 		this_device->offload_to_be_enabled = 0;
4008 		this_device->hba_ioaccel_enabled = 0;
4009 		this_device->volume_offline = 0;
4010 		this_device->queue_depth = h->nr_cmds;
4011 	}
4012 
4013 	if (this_device->external)
4014 		this_device->queue_depth = EXTERNAL_QD;
4015 
4016 	if (is_OBDR_device) {
4017 		/* See if this is a One-Button-Disaster-Recovery device
4018 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4019 		 */
4020 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4023 						OBDR_SIG_LEN) == 0);
4024 	}
4025 	kfree(inq_buff);
4026 	return 0;
4027 
4028 bail_out:
4029 	kfree(inq_buff);
4030 	return rc;
4031 }
4032 
4033 /*
4034  * Helper function to assign bus, target, lun mapping of devices.
4035  * Logical drive target and lun are assigned at this time, but
4036  * physical device lun and target assignment are deferred (assigned
4037  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4038 */
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4041 {
4042 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4043 
4044 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045 		/* physical device, target and lun filled in later */
4046 		if (is_hba_lunid(lunaddrbytes)) {
4047 			int bus = HPSA_HBA_BUS;
4048 
4049 			if (!device->rev)
4050 				bus = HPSA_LEGACY_HBA_BUS;
4051 			hpsa_set_bus_target_lun(device,
4052 					bus, 0, lunid & 0x3fff);
4053 		} else
4054 			/* defer target, lun assignment for physical devices */
4055 			hpsa_set_bus_target_lun(device,
4056 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057 		return;
4058 	}
4059 	/* It's a logical device */
4060 	if (device->external) {
4061 		hpsa_set_bus_target_lun(device,
4062 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063 			lunid & 0x00ff);
4064 		return;
4065 	}
4066 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067 				0, lunid & 0x3fff);
4068 }
4069 
4070 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071 	int i, int nphysicals, int nlocal_logicals)
4072 {
4073 	/* In report logicals, local logicals are listed first,
4074 	* then any externals.
4075 	*/
4076 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4077 
4078 	if (i == raid_ctlr_position)
4079 		return 0;
4080 
4081 	if (i < logicals_start)
4082 		return 0;
4083 
4084 	/* i is in logicals range, but still within local logicals */
4085 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086 		return 0;
4087 
4088 	return 1; /* it's an external lun */
4089 }
4090 
4091 /*
4092  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4093  * logdev.  The number of luns in physdev and logdev are returned in
4094  * *nphysicals and *nlogicals, respectively.
4095  * Returns 0 on success, -1 otherwise.
4096  */
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099 	struct ReportLUNdata *logdev, u32 *nlogicals)
4100 {
4101 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103 		return -1;
4104 	}
4105 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109 		*nphysicals = HPSA_MAX_PHYS_LUN;
4110 	}
4111 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113 		return -1;
4114 	}
4115 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116 	/* Reject Logicals in excess of our max capability. */
4117 	if (*nlogicals > HPSA_MAX_LUN) {
4118 		dev_warn(&h->pdev->dev,
4119 			"maximum logical LUNs (%d) exceeded.  "
4120 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4121 			*nlogicals - HPSA_MAX_LUN);
4122 			*nlogicals = HPSA_MAX_LUN;
4123 	}
4124 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical + physical LUNs (%d) exceeded. "
4127 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4130 	}
4131 	return 0;
4132 }
4133 
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135 	int i, int nphysicals, int nlogicals,
4136 	struct ReportExtendedLUNdata *physdev_list,
4137 	struct ReportLUNdata *logdev_list)
4138 {
4139 	/* Helper function, figure out where the LUN ID info is coming from
4140 	 * given index i, lists of physical and logical devices, where in
4141 	 * the list the raid controller is supposed to appear (first or last)
4142 	 */
4143 
4144 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4146 
4147 	if (i == raid_ctlr_position)
4148 		return RAID_CTLR_LUNID;
4149 
4150 	if (i < logicals_start)
4151 		return &physdev_list->LUN[i -
4152 				(raid_ctlr_position == 0)].lunid[0];
4153 
4154 	if (i < last_device)
4155 		return &logdev_list->LUN[i - nphysicals -
4156 			(raid_ctlr_position == 0)][0];
4157 	BUG();
4158 	return NULL;
4159 }
4160 
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163 		struct hpsa_scsi_dev_t *dev,
4164 		struct ReportExtendedLUNdata *rlep, int rle_index,
4165 		struct bmic_identify_physical_device *id_phys)
4166 {
4167 	int rc;
4168 	struct ext_report_lun_entry *rle;
4169 
4170 	rle = &rlep->LUN[rle_index];
4171 
4172 	dev->ioaccel_handle = rle->ioaccel_handle;
4173 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174 		dev->hba_ioaccel_enabled = 1;
4175 	memset(id_phys, 0, sizeof(*id_phys));
4176 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178 			sizeof(*id_phys));
4179 	if (!rc)
4180 		/* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183 		dev->queue_depth =
4184 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4185 				DRIVE_CMDS_RESERVED_FOR_FW;
4186 	else
4187 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4188 }
4189 
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191 	struct ReportExtendedLUNdata *rlep, int rle_index,
4192 	struct bmic_identify_physical_device *id_phys)
4193 {
4194 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4195 
4196 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197 		this_device->hba_ioaccel_enabled = 1;
4198 
4199 	memcpy(&this_device->active_path_index,
4200 		&id_phys->active_path_number,
4201 		sizeof(this_device->active_path_index));
4202 	memcpy(&this_device->path_map,
4203 		&id_phys->redundant_path_present_map,
4204 		sizeof(this_device->path_map));
4205 	memcpy(&this_device->box,
4206 		&id_phys->alternate_paths_phys_box_on_port,
4207 		sizeof(this_device->box));
4208 	memcpy(&this_device->phys_connector,
4209 		&id_phys->alternate_paths_phys_connector,
4210 		sizeof(this_device->phys_connector));
4211 	memcpy(&this_device->bay,
4212 		&id_phys->phys_bay_in_box,
4213 		sizeof(this_device->bay));
4214 }
4215 
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218 	struct bmic_identify_controller *id_ctlr,
4219 	u32 *nlocals)
4220 {
4221 	int rc;
4222 
4223 	if (!id_ctlr) {
4224 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225 			__func__);
4226 		return -ENOMEM;
4227 	}
4228 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4229 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230 	if (!rc)
4231 		if (id_ctlr->configured_logical_drive_count < 255)
4232 			*nlocals = id_ctlr->configured_logical_drive_count;
4233 		else
4234 			*nlocals = le16_to_cpu(
4235 					id_ctlr->extended_logical_unit_count);
4236 	else
4237 		*nlocals = -1;
4238 	return rc;
4239 }
4240 
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4242 {
4243 	struct bmic_identify_physical_device *id_phys;
4244 	bool is_spare = false;
4245 	int rc;
4246 
4247 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248 	if (!id_phys)
4249 		return false;
4250 
4251 	rc = hpsa_bmic_id_physical_device(h,
4252 					lunaddrbytes,
4253 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254 					id_phys, sizeof(*id_phys));
4255 	if (rc == 0)
4256 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4257 
4258 	kfree(id_phys);
4259 	return is_spare;
4260 }
4261 
4262 #define RPL_DEV_FLAG_NON_DISK                           0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4265 
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4267 
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269 				struct ext_report_lun_entry *rle)
4270 {
4271 	u8 device_flags;
4272 	u8 device_type;
4273 
4274 	if (!MASKED_DEVICE(lunaddrbytes))
4275 		return false;
4276 
4277 	device_flags = rle->device_flags;
4278 	device_type = rle->device_type;
4279 
4280 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282 			return false;
4283 		return true;
4284 	}
4285 
4286 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287 		return false;
4288 
4289 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290 		return false;
4291 
4292 	/*
4293 	 * Spares may be spun down, we do not want to
4294 	 * do an Inquiry to a RAID set spare drive as
4295 	 * that would have them spun up, that is a
4296 	 * performance hit because I/O to the RAID device
4297 	 * stops while the spin up occurs which can take
4298 	 * over 50 seconds.
4299 	 */
4300 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4301 		return true;
4302 
4303 	return false;
4304 }
4305 
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4307 {
4308 	/* the idea here is we could get notified
4309 	 * that some devices have changed, so we do a report
4310 	 * physical luns and report logical luns cmd, and adjust
4311 	 * our list of devices accordingly.
4312 	 *
4313 	 * The scsi3addr's of devices won't change so long as the
4314 	 * adapter is not reset.  That means we can rescan and
4315 	 * tell which devices we already know about, vs. new
4316 	 * devices, vs.  disappearing devices.
4317 	 */
4318 	struct ReportExtendedLUNdata *physdev_list = NULL;
4319 	struct ReportLUNdata *logdev_list = NULL;
4320 	struct bmic_identify_physical_device *id_phys = NULL;
4321 	struct bmic_identify_controller *id_ctlr = NULL;
4322 	u32 nphysicals = 0;
4323 	u32 nlogicals = 0;
4324 	u32 nlocal_logicals = 0;
4325 	u32 ndev_allocated = 0;
4326 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327 	int ncurrent = 0;
4328 	int i, n_ext_target_devs, ndevs_to_allocate;
4329 	int raid_ctlr_position;
4330 	bool physical_device;
4331 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4332 
4333 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4339 
4340 	if (!currentsd || !physdev_list || !logdev_list ||
4341 		!tmpdevice || !id_phys || !id_ctlr) {
4342 		dev_err(&h->pdev->dev, "out of memory\n");
4343 		goto out;
4344 	}
4345 	memset(lunzerobits, 0, sizeof(lunzerobits));
4346 
4347 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4348 
4349 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350 			logdev_list, &nlogicals)) {
4351 		h->drv_req_rescan = 1;
4352 		goto out;
4353 	}
4354 
4355 	/* Set number of local logicals (non PTRAID) */
4356 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357 		dev_warn(&h->pdev->dev,
4358 			"%s: Can't determine number of local logical devices.\n",
4359 			__func__);
4360 	}
4361 
4362 	/* We might see up to the maximum number of logical and physical disks
4363 	 * plus external target devices, and a device for the local RAID
4364 	 * controller.
4365 	 */
4366 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4367 
4368 	hpsa_ext_ctrl_present(h, physdev_list);
4369 
4370 	/* Allocate the per device structures */
4371 	for (i = 0; i < ndevs_to_allocate; i++) {
4372 		if (i >= HPSA_MAX_DEVICES) {
4373 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4375 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4376 			break;
4377 		}
4378 
4379 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380 		if (!currentsd[i]) {
4381 			h->drv_req_rescan = 1;
4382 			goto out;
4383 		}
4384 		ndev_allocated++;
4385 	}
4386 
4387 	if (is_scsi_rev_5(h))
4388 		raid_ctlr_position = 0;
4389 	else
4390 		raid_ctlr_position = nphysicals + nlogicals;
4391 
4392 	/* adjust our table of devices */
4393 	n_ext_target_devs = 0;
4394 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395 		u8 *lunaddrbytes, is_OBDR = 0;
4396 		int rc = 0;
4397 		int phys_dev_index = i - (raid_ctlr_position == 0);
4398 		bool skip_device = false;
4399 
4400 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4401 
4402 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4403 
4404 		/* Figure out where the LUN ID info is coming from */
4405 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4407 
4408 		/* Determine if this is a lun from an external target array */
4409 		tmpdevice->external =
4410 			figure_external_status(h, raid_ctlr_position, i,
4411 						nphysicals, nlocal_logicals);
4412 
4413 		/*
4414 		 * Skip over some devices such as a spare.
4415 		 */
4416 		if (!tmpdevice->external && physical_device) {
4417 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4418 					&physdev_list->LUN[phys_dev_index]);
4419 			if (skip_device)
4420 				continue;
4421 		}
4422 
4423 		/* Get device type, vendor, model, device id, raid_map */
4424 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425 							&is_OBDR);
4426 		if (rc == -ENOMEM) {
4427 			dev_warn(&h->pdev->dev,
4428 				"Out of memory, rescan deferred.\n");
4429 			h->drv_req_rescan = 1;
4430 			goto out;
4431 		}
4432 		if (rc) {
4433 			h->drv_req_rescan = 1;
4434 			continue;
4435 		}
4436 
4437 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438 		this_device = currentsd[ncurrent];
4439 
4440 		*this_device = *tmpdevice;
4441 		this_device->physical_device = physical_device;
4442 
4443 		/*
4444 		 * Expose all devices except for physical devices that
4445 		 * are masked.
4446 		 */
4447 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448 			this_device->expose_device = 0;
4449 		else
4450 			this_device->expose_device = 1;
4451 
4452 
4453 		/*
4454 		 * Get the SAS address for physical devices that are exposed.
4455 		 */
4456 		if (this_device->physical_device && this_device->expose_device)
4457 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4458 
4459 		switch (this_device->devtype) {
4460 		case TYPE_ROM:
4461 			/* We don't *really* support actual CD-ROM devices,
4462 			 * just "One Button Disaster Recovery" tape drive
4463 			 * which temporarily pretends to be a CD-ROM drive.
4464 			 * So we check that the device is really an OBDR tape
4465 			 * device by checking for "$DR-10" in bytes 43-48 of
4466 			 * the inquiry data.
4467 			 */
4468 			if (is_OBDR)
4469 				ncurrent++;
4470 			break;
4471 		case TYPE_DISK:
4472 		case TYPE_ZBC:
4473 			if (this_device->physical_device) {
4474 				/* The disk is in HBA mode. */
4475 				/* Never use RAID mapper in HBA mode. */
4476 				this_device->offload_enabled = 0;
4477 				hpsa_get_ioaccel_drive_info(h, this_device,
4478 					physdev_list, phys_dev_index, id_phys);
4479 				hpsa_get_path_info(this_device,
4480 					physdev_list, phys_dev_index, id_phys);
4481 			}
4482 			ncurrent++;
4483 			break;
4484 		case TYPE_TAPE:
4485 		case TYPE_MEDIUM_CHANGER:
4486 			ncurrent++;
4487 			break;
4488 		case TYPE_ENCLOSURE:
4489 			if (!this_device->external)
4490 				hpsa_get_enclosure_info(h, lunaddrbytes,
4491 						physdev_list, phys_dev_index,
4492 						this_device);
4493 			ncurrent++;
4494 			break;
4495 		case TYPE_RAID:
4496 			/* Only present the Smartarray HBA as a RAID controller.
4497 			 * If it's a RAID controller other than the HBA itself
4498 			 * (an external RAID controller, MSA500 or similar)
4499 			 * don't present it.
4500 			 */
4501 			if (!is_hba_lunid(lunaddrbytes))
4502 				break;
4503 			ncurrent++;
4504 			break;
4505 		default:
4506 			break;
4507 		}
4508 		if (ncurrent >= HPSA_MAX_DEVICES)
4509 			break;
4510 	}
4511 
4512 	if (h->sas_host == NULL) {
4513 		int rc = 0;
4514 
4515 		rc = hpsa_add_sas_host(h);
4516 		if (rc) {
4517 			dev_warn(&h->pdev->dev,
4518 				"Could not add sas host %d\n", rc);
4519 			goto out;
4520 		}
4521 	}
4522 
4523 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525 	kfree(tmpdevice);
4526 	for (i = 0; i < ndev_allocated; i++)
4527 		kfree(currentsd[i]);
4528 	kfree(currentsd);
4529 	kfree(physdev_list);
4530 	kfree(logdev_list);
4531 	kfree(id_ctlr);
4532 	kfree(id_phys);
4533 }
4534 
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536 				   struct scatterlist *sg)
4537 {
4538 	u64 addr64 = (u64) sg_dma_address(sg);
4539 	unsigned int len = sg_dma_len(sg);
4540 
4541 	desc->Addr = cpu_to_le64(addr64);
4542 	desc->Len = cpu_to_le32(len);
4543 	desc->Ext = 0;
4544 }
4545 
4546 /*
4547  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548  * dma mapping  and fills in the scatter gather entries of the
4549  * hpsa command, cp.
4550  */
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552 		struct CommandList *cp,
4553 		struct scsi_cmnd *cmd)
4554 {
4555 	struct scatterlist *sg;
4556 	int use_sg, i, sg_limit, chained, last_sg;
4557 	struct SGDescriptor *curr_sg;
4558 
4559 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4560 
4561 	use_sg = scsi_dma_map(cmd);
4562 	if (use_sg < 0)
4563 		return use_sg;
4564 
4565 	if (!use_sg)
4566 		goto sglist_finished;
4567 
4568 	/*
4569 	 * If the number of entries is greater than the max for a single list,
4570 	 * then we have a chained list; we will set up all but one entry in the
4571 	 * first list (the last entry is saved for link information);
4572 	 * otherwise, we don't have a chained list and we'll set up at each of
4573 	 * the entries in the one list.
4574 	 */
4575 	curr_sg = cp->SG;
4576 	chained = use_sg > h->max_cmd_sg_entries;
4577 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578 	last_sg = scsi_sg_count(cmd) - 1;
4579 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580 		hpsa_set_sg_descriptor(curr_sg, sg);
4581 		curr_sg++;
4582 	}
4583 
4584 	if (chained) {
4585 		/*
4586 		 * Continue with the chained list.  Set curr_sg to the chained
4587 		 * list.  Modify the limit to the total count less the entries
4588 		 * we've already set up.  Resume the scan at the list entry
4589 		 * where the previous loop left off.
4590 		 */
4591 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4592 		sg_limit = use_sg - sg_limit;
4593 		for_each_sg(sg, sg, sg_limit, i) {
4594 			hpsa_set_sg_descriptor(curr_sg, sg);
4595 			curr_sg++;
4596 		}
4597 	}
4598 
4599 	/* Back the pointer up to the last entry and mark it as "last". */
4600 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4601 
4602 	if (use_sg + chained > h->maxSG)
4603 		h->maxSG = use_sg + chained;
4604 
4605 	if (chained) {
4606 		cp->Header.SGList = h->max_cmd_sg_entries;
4607 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608 		if (hpsa_map_sg_chain_block(h, cp)) {
4609 			scsi_dma_unmap(cmd);
4610 			return -1;
4611 		}
4612 		return 0;
4613 	}
4614 
4615 sglist_finished:
4616 
4617 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4618 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619 	return 0;
4620 }
4621 
4622 #define BUFLEN 128
4623 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4624 						u8 *cdb, int cdb_len,
4625 						const char *func)
4626 {
4627 	char buf[BUFLEN];
4628 	int outlen;
4629 	int i;
4630 
4631 	outlen = scnprintf(buf, BUFLEN,
4632 				"%s: Blocking zero-length request: CDB:", func);
4633 	for (i = 0; i < cdb_len; i++)
4634 		outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4635 					"%02hhx", cdb[i]);
4636 	dev_warn(&h->pdev->dev, "%s\n", buf);
4637 }
4638 
4639 #define IO_ACCEL_INELIGIBLE 1
4640 /* zero-length transfers trigger hardware errors. */
4641 static bool is_zero_length_transfer(u8 *cdb)
4642 {
4643 	u32 block_cnt;
4644 
4645 	/* Block zero-length transfer sizes on certain commands. */
4646 	switch (cdb[0]) {
4647 	case READ_10:
4648 	case WRITE_10:
4649 	case VERIFY:		/* 0x2F */
4650 	case WRITE_VERIFY:	/* 0x2E */
4651 		block_cnt = get_unaligned_be16(&cdb[7]);
4652 		break;
4653 	case READ_12:
4654 	case WRITE_12:
4655 	case VERIFY_12: /* 0xAF */
4656 	case WRITE_VERIFY_12:	/* 0xAE */
4657 		block_cnt = get_unaligned_be32(&cdb[6]);
4658 		break;
4659 	case READ_16:
4660 	case WRITE_16:
4661 	case VERIFY_16:		/* 0x8F */
4662 		block_cnt = get_unaligned_be32(&cdb[10]);
4663 		break;
4664 	default:
4665 		return false;
4666 	}
4667 
4668 	return block_cnt == 0;
4669 }
4670 
4671 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4672 {
4673 	int is_write = 0;
4674 	u32 block;
4675 	u32 block_cnt;
4676 
4677 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4678 	switch (cdb[0]) {
4679 	case WRITE_6:
4680 	case WRITE_12:
4681 		is_write = 1;
4682 	case READ_6:
4683 	case READ_12:
4684 		if (*cdb_len == 6) {
4685 			block = (((cdb[1] & 0x1F) << 16) |
4686 				(cdb[2] << 8) |
4687 				cdb[3]);
4688 			block_cnt = cdb[4];
4689 			if (block_cnt == 0)
4690 				block_cnt = 256;
4691 		} else {
4692 			BUG_ON(*cdb_len != 12);
4693 			block = get_unaligned_be32(&cdb[2]);
4694 			block_cnt = get_unaligned_be32(&cdb[6]);
4695 		}
4696 		if (block_cnt > 0xffff)
4697 			return IO_ACCEL_INELIGIBLE;
4698 
4699 		cdb[0] = is_write ? WRITE_10 : READ_10;
4700 		cdb[1] = 0;
4701 		cdb[2] = (u8) (block >> 24);
4702 		cdb[3] = (u8) (block >> 16);
4703 		cdb[4] = (u8) (block >> 8);
4704 		cdb[5] = (u8) (block);
4705 		cdb[6] = 0;
4706 		cdb[7] = (u8) (block_cnt >> 8);
4707 		cdb[8] = (u8) (block_cnt);
4708 		cdb[9] = 0;
4709 		*cdb_len = 10;
4710 		break;
4711 	}
4712 	return 0;
4713 }
4714 
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 	struct scsi_cmnd *cmd = c->scsi_cmd;
4720 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 	unsigned int len;
4722 	unsigned int total_len = 0;
4723 	struct scatterlist *sg;
4724 	u64 addr64;
4725 	int use_sg, i;
4726 	struct SGDescriptor *curr_sg;
4727 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728 
4729 	/* TODO: implement chaining support */
4730 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736 
4737 	if (is_zero_length_transfer(cdb)) {
4738 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 		return IO_ACCEL_INELIGIBLE;
4741 	}
4742 
4743 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return IO_ACCEL_INELIGIBLE;
4746 	}
4747 
4748 	c->cmd_type = CMD_IOACCEL1;
4749 
4750 	/* Adjust the DMA address to point to the accelerated command buffer */
4751 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 				(c->cmdindex * sizeof(*cp));
4753 	BUG_ON(c->busaddr & 0x0000007F);
4754 
4755 	use_sg = scsi_dma_map(cmd);
4756 	if (use_sg < 0) {
4757 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 		return use_sg;
4759 	}
4760 
4761 	if (use_sg) {
4762 		curr_sg = cp->SG;
4763 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 			addr64 = (u64) sg_dma_address(sg);
4765 			len  = sg_dma_len(sg);
4766 			total_len += len;
4767 			curr_sg->Addr = cpu_to_le64(addr64);
4768 			curr_sg->Len = cpu_to_le32(len);
4769 			curr_sg->Ext = cpu_to_le32(0);
4770 			curr_sg++;
4771 		}
4772 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773 
4774 		switch (cmd->sc_data_direction) {
4775 		case DMA_TO_DEVICE:
4776 			control |= IOACCEL1_CONTROL_DATA_OUT;
4777 			break;
4778 		case DMA_FROM_DEVICE:
4779 			control |= IOACCEL1_CONTROL_DATA_IN;
4780 			break;
4781 		case DMA_NONE:
4782 			control |= IOACCEL1_CONTROL_NODATAXFER;
4783 			break;
4784 		default:
4785 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 			cmd->sc_data_direction);
4787 			BUG();
4788 			break;
4789 		}
4790 	} else {
4791 		control |= IOACCEL1_CONTROL_NODATAXFER;
4792 	}
4793 
4794 	c->Header.SGList = use_sg;
4795 	/* Fill out the command structure to submit */
4796 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 	cp->transfer_len = cpu_to_le32(total_len);
4798 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 	cp->control = cpu_to_le32(control);
4801 	memcpy(cp->CDB, cdb, cdb_len);
4802 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 	/* Tag was already set at init time. */
4804 	enqueue_cmd_and_start_io(h, c);
4805 	return 0;
4806 }
4807 
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 	struct CommandList *c)
4814 {
4815 	struct scsi_cmnd *cmd = c->scsi_cmd;
4816 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817 
4818 	if (!dev)
4819 		return -1;
4820 
4821 	c->phys_disk = dev;
4822 
4823 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826 
4827 /*
4828  * Set encryption parameters for the ioaccel2 request
4829  */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831 	struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833 	struct scsi_cmnd *cmd = c->scsi_cmd;
4834 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 	struct raid_map_data *map = &dev->raid_map;
4836 	u64 first_block;
4837 
4838 	/* Are we doing encryption on this device */
4839 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840 		return;
4841 	/* Set the data encryption key index. */
4842 	cp->dekindex = map->dekindex;
4843 
4844 	/* Set the encryption enable flag, encoded into direction field. */
4845 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846 
4847 	/* Set encryption tweak values based on logical block address
4848 	 * If block size is 512, tweak value is LBA.
4849 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 	 */
4851 	switch (cmd->cmnd[0]) {
4852 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 	case READ_6:
4854 	case WRITE_6:
4855 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856 				(cmd->cmnd[2] << 8) |
4857 				cmd->cmnd[3]);
4858 		break;
4859 	case WRITE_10:
4860 	case READ_10:
4861 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862 	case WRITE_12:
4863 	case READ_12:
4864 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865 		break;
4866 	case WRITE_16:
4867 	case READ_16:
4868 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869 		break;
4870 	default:
4871 		dev_err(&h->pdev->dev,
4872 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4873 			__func__, cmd->cmnd[0]);
4874 		BUG();
4875 		break;
4876 	}
4877 
4878 	if (le32_to_cpu(map->volume_blk_size) != 512)
4879 		first_block = first_block *
4880 				le32_to_cpu(map->volume_blk_size)/512;
4881 
4882 	cp->tweak_lower = cpu_to_le32(first_block);
4883 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885 
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 	struct scsi_cmnd *cmd = c->scsi_cmd;
4891 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892 	struct ioaccel2_sg_element *curr_sg;
4893 	int use_sg, i;
4894 	struct scatterlist *sg;
4895 	u64 addr64;
4896 	u32 len;
4897 	u32 total_len = 0;
4898 
4899 	if (!cmd->device)
4900 		return -1;
4901 
4902 	if (!cmd->device->hostdata)
4903 		return -1;
4904 
4905 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906 
4907 	if (is_zero_length_transfer(cdb)) {
4908 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4910 		return IO_ACCEL_INELIGIBLE;
4911 	}
4912 
4913 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 		return IO_ACCEL_INELIGIBLE;
4916 	}
4917 
4918 	c->cmd_type = CMD_IOACCEL2;
4919 	/* Adjust the DMA address to point to the accelerated command buffer */
4920 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921 				(c->cmdindex * sizeof(*cp));
4922 	BUG_ON(c->busaddr & 0x0000007F);
4923 
4924 	memset(cp, 0, sizeof(*cp));
4925 	cp->IU_type = IOACCEL2_IU_TYPE;
4926 
4927 	use_sg = scsi_dma_map(cmd);
4928 	if (use_sg < 0) {
4929 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 		return use_sg;
4931 	}
4932 
4933 	if (use_sg) {
4934 		curr_sg = cp->sg;
4935 		if (use_sg > h->ioaccel_maxsg) {
4936 			addr64 = le64_to_cpu(
4937 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938 			curr_sg->address = cpu_to_le64(addr64);
4939 			curr_sg->length = 0;
4940 			curr_sg->reserved[0] = 0;
4941 			curr_sg->reserved[1] = 0;
4942 			curr_sg->reserved[2] = 0;
4943 			curr_sg->chain_indicator = 0x80;
4944 
4945 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 		}
4947 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4948 			addr64 = (u64) sg_dma_address(sg);
4949 			len  = sg_dma_len(sg);
4950 			total_len += len;
4951 			curr_sg->address = cpu_to_le64(addr64);
4952 			curr_sg->length = cpu_to_le32(len);
4953 			curr_sg->reserved[0] = 0;
4954 			curr_sg->reserved[1] = 0;
4955 			curr_sg->reserved[2] = 0;
4956 			curr_sg->chain_indicator = 0;
4957 			curr_sg++;
4958 		}
4959 
4960 		switch (cmd->sc_data_direction) {
4961 		case DMA_TO_DEVICE:
4962 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4964 			break;
4965 		case DMA_FROM_DEVICE:
4966 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4968 			break;
4969 		case DMA_NONE:
4970 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4972 			break;
4973 		default:
4974 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4975 				cmd->sc_data_direction);
4976 			BUG();
4977 			break;
4978 		}
4979 	} else {
4980 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4981 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4982 	}
4983 
4984 	/* Set encryption parameters, if necessary */
4985 	set_encrypt_ioaccel2(h, c, cp);
4986 
4987 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4988 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4989 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4990 
4991 	cp->data_len = cpu_to_le32(total_len);
4992 	cp->err_ptr = cpu_to_le64(c->busaddr +
4993 			offsetof(struct io_accel2_cmd, error_data));
4994 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4995 
4996 	/* fill in sg elements */
4997 	if (use_sg > h->ioaccel_maxsg) {
4998 		cp->sg_count = 1;
4999 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5000 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5001 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5002 			scsi_dma_unmap(cmd);
5003 			return -1;
5004 		}
5005 	} else
5006 		cp->sg_count = (u8) use_sg;
5007 
5008 	enqueue_cmd_and_start_io(h, c);
5009 	return 0;
5010 }
5011 
5012 /*
5013  * Queue a command to the correct I/O accelerator path.
5014  */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019 	if (!c->scsi_cmd->device)
5020 		return -1;
5021 
5022 	if (!c->scsi_cmd->device->hostdata)
5023 		return -1;
5024 
5025 	/* Try to honor the device's queue depth */
5026 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5027 					phys_disk->queue_depth) {
5028 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5029 		return IO_ACCEL_INELIGIBLE;
5030 	}
5031 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5032 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5033 						cdb, cdb_len, scsi3addr,
5034 						phys_disk);
5035 	else
5036 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5037 						cdb, cdb_len, scsi3addr,
5038 						phys_disk);
5039 }
5040 
5041 static void raid_map_helper(struct raid_map_data *map,
5042 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5043 {
5044 	if (offload_to_mirror == 0)  {
5045 		/* use physical disk in the first mirrored group. */
5046 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5047 		return;
5048 	}
5049 	do {
5050 		/* determine mirror group that *map_index indicates */
5051 		*current_group = *map_index /
5052 			le16_to_cpu(map->data_disks_per_row);
5053 		if (offload_to_mirror == *current_group)
5054 			continue;
5055 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5056 			/* select map index from next group */
5057 			*map_index += le16_to_cpu(map->data_disks_per_row);
5058 			(*current_group)++;
5059 		} else {
5060 			/* select map index from first group */
5061 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5062 			*current_group = 0;
5063 		}
5064 	} while (offload_to_mirror != *current_group);
5065 }
5066 
5067 /*
5068  * Attempt to perform offload RAID mapping for a logical volume I/O.
5069  */
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5071 	struct CommandList *c)
5072 {
5073 	struct scsi_cmnd *cmd = c->scsi_cmd;
5074 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5075 	struct raid_map_data *map = &dev->raid_map;
5076 	struct raid_map_disk_data *dd = &map->data[0];
5077 	int is_write = 0;
5078 	u32 map_index;
5079 	u64 first_block, last_block;
5080 	u32 block_cnt;
5081 	u32 blocks_per_row;
5082 	u64 first_row, last_row;
5083 	u32 first_row_offset, last_row_offset;
5084 	u32 first_column, last_column;
5085 	u64 r0_first_row, r0_last_row;
5086 	u32 r5or6_blocks_per_row;
5087 	u64 r5or6_first_row, r5or6_last_row;
5088 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5089 	u32 r5or6_first_column, r5or6_last_column;
5090 	u32 total_disks_per_row;
5091 	u32 stripesize;
5092 	u32 first_group, last_group, current_group;
5093 	u32 map_row;
5094 	u32 disk_handle;
5095 	u64 disk_block;
5096 	u32 disk_block_cnt;
5097 	u8 cdb[16];
5098 	u8 cdb_len;
5099 	u16 strip_size;
5100 #if BITS_PER_LONG == 32
5101 	u64 tmpdiv;
5102 #endif
5103 	int offload_to_mirror;
5104 
5105 	if (!dev)
5106 		return -1;
5107 
5108 	/* check for valid opcode, get LBA and block count */
5109 	switch (cmd->cmnd[0]) {
5110 	case WRITE_6:
5111 		is_write = 1;
5112 	case READ_6:
5113 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5114 				(cmd->cmnd[2] << 8) |
5115 				cmd->cmnd[3]);
5116 		block_cnt = cmd->cmnd[4];
5117 		if (block_cnt == 0)
5118 			block_cnt = 256;
5119 		break;
5120 	case WRITE_10:
5121 		is_write = 1;
5122 	case READ_10:
5123 		first_block =
5124 			(((u64) cmd->cmnd[2]) << 24) |
5125 			(((u64) cmd->cmnd[3]) << 16) |
5126 			(((u64) cmd->cmnd[4]) << 8) |
5127 			cmd->cmnd[5];
5128 		block_cnt =
5129 			(((u32) cmd->cmnd[7]) << 8) |
5130 			cmd->cmnd[8];
5131 		break;
5132 	case WRITE_12:
5133 		is_write = 1;
5134 	case READ_12:
5135 		first_block =
5136 			(((u64) cmd->cmnd[2]) << 24) |
5137 			(((u64) cmd->cmnd[3]) << 16) |
5138 			(((u64) cmd->cmnd[4]) << 8) |
5139 			cmd->cmnd[5];
5140 		block_cnt =
5141 			(((u32) cmd->cmnd[6]) << 24) |
5142 			(((u32) cmd->cmnd[7]) << 16) |
5143 			(((u32) cmd->cmnd[8]) << 8) |
5144 		cmd->cmnd[9];
5145 		break;
5146 	case WRITE_16:
5147 		is_write = 1;
5148 	case READ_16:
5149 		first_block =
5150 			(((u64) cmd->cmnd[2]) << 56) |
5151 			(((u64) cmd->cmnd[3]) << 48) |
5152 			(((u64) cmd->cmnd[4]) << 40) |
5153 			(((u64) cmd->cmnd[5]) << 32) |
5154 			(((u64) cmd->cmnd[6]) << 24) |
5155 			(((u64) cmd->cmnd[7]) << 16) |
5156 			(((u64) cmd->cmnd[8]) << 8) |
5157 			cmd->cmnd[9];
5158 		block_cnt =
5159 			(((u32) cmd->cmnd[10]) << 24) |
5160 			(((u32) cmd->cmnd[11]) << 16) |
5161 			(((u32) cmd->cmnd[12]) << 8) |
5162 			cmd->cmnd[13];
5163 		break;
5164 	default:
5165 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5166 	}
5167 	last_block = first_block + block_cnt - 1;
5168 
5169 	/* check for write to non-RAID-0 */
5170 	if (is_write && dev->raid_level != 0)
5171 		return IO_ACCEL_INELIGIBLE;
5172 
5173 	/* check for invalid block or wraparound */
5174 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5175 		last_block < first_block)
5176 		return IO_ACCEL_INELIGIBLE;
5177 
5178 	/* calculate stripe information for the request */
5179 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5180 				le16_to_cpu(map->strip_size);
5181 	strip_size = le16_to_cpu(map->strip_size);
5182 #if BITS_PER_LONG == 32
5183 	tmpdiv = first_block;
5184 	(void) do_div(tmpdiv, blocks_per_row);
5185 	first_row = tmpdiv;
5186 	tmpdiv = last_block;
5187 	(void) do_div(tmpdiv, blocks_per_row);
5188 	last_row = tmpdiv;
5189 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191 	tmpdiv = first_row_offset;
5192 	(void) do_div(tmpdiv, strip_size);
5193 	first_column = tmpdiv;
5194 	tmpdiv = last_row_offset;
5195 	(void) do_div(tmpdiv, strip_size);
5196 	last_column = tmpdiv;
5197 #else
5198 	first_row = first_block / blocks_per_row;
5199 	last_row = last_block / blocks_per_row;
5200 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5201 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5202 	first_column = first_row_offset / strip_size;
5203 	last_column = last_row_offset / strip_size;
5204 #endif
5205 
5206 	/* if this isn't a single row/column then give to the controller */
5207 	if ((first_row != last_row) || (first_column != last_column))
5208 		return IO_ACCEL_INELIGIBLE;
5209 
5210 	/* proceeding with driver mapping */
5211 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5212 				le16_to_cpu(map->metadata_disks_per_row);
5213 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5214 				le16_to_cpu(map->row_cnt);
5215 	map_index = (map_row * total_disks_per_row) + first_column;
5216 
5217 	switch (dev->raid_level) {
5218 	case HPSA_RAID_0:
5219 		break; /* nothing special to do */
5220 	case HPSA_RAID_1:
5221 		/* Handles load balance across RAID 1 members.
5222 		 * (2-drive R1 and R10 with even # of drives.)
5223 		 * Appropriate for SSDs, not optimal for HDDs
5224 		 */
5225 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5226 		if (dev->offload_to_mirror)
5227 			map_index += le16_to_cpu(map->data_disks_per_row);
5228 		dev->offload_to_mirror = !dev->offload_to_mirror;
5229 		break;
5230 	case HPSA_RAID_ADM:
5231 		/* Handles N-way mirrors  (R1-ADM)
5232 		 * and R10 with # of drives divisible by 3.)
5233 		 */
5234 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5235 
5236 		offload_to_mirror = dev->offload_to_mirror;
5237 		raid_map_helper(map, offload_to_mirror,
5238 				&map_index, &current_group);
5239 		/* set mirror group to use next time */
5240 		offload_to_mirror =
5241 			(offload_to_mirror >=
5242 			le16_to_cpu(map->layout_map_count) - 1)
5243 			? 0 : offload_to_mirror + 1;
5244 		dev->offload_to_mirror = offload_to_mirror;
5245 		/* Avoid direct use of dev->offload_to_mirror within this
5246 		 * function since multiple threads might simultaneously
5247 		 * increment it beyond the range of dev->layout_map_count -1.
5248 		 */
5249 		break;
5250 	case HPSA_RAID_5:
5251 	case HPSA_RAID_6:
5252 		if (le16_to_cpu(map->layout_map_count) <= 1)
5253 			break;
5254 
5255 		/* Verify first and last block are in same RAID group */
5256 		r5or6_blocks_per_row =
5257 			le16_to_cpu(map->strip_size) *
5258 			le16_to_cpu(map->data_disks_per_row);
5259 		BUG_ON(r5or6_blocks_per_row == 0);
5260 		stripesize = r5or6_blocks_per_row *
5261 			le16_to_cpu(map->layout_map_count);
5262 #if BITS_PER_LONG == 32
5263 		tmpdiv = first_block;
5264 		first_group = do_div(tmpdiv, stripesize);
5265 		tmpdiv = first_group;
5266 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5267 		first_group = tmpdiv;
5268 		tmpdiv = last_block;
5269 		last_group = do_div(tmpdiv, stripesize);
5270 		tmpdiv = last_group;
5271 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5272 		last_group = tmpdiv;
5273 #else
5274 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5275 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5276 #endif
5277 		if (first_group != last_group)
5278 			return IO_ACCEL_INELIGIBLE;
5279 
5280 		/* Verify request is in a single row of RAID 5/6 */
5281 #if BITS_PER_LONG == 32
5282 		tmpdiv = first_block;
5283 		(void) do_div(tmpdiv, stripesize);
5284 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5285 		tmpdiv = last_block;
5286 		(void) do_div(tmpdiv, stripesize);
5287 		r5or6_last_row = r0_last_row = tmpdiv;
5288 #else
5289 		first_row = r5or6_first_row = r0_first_row =
5290 						first_block / stripesize;
5291 		r5or6_last_row = r0_last_row = last_block / stripesize;
5292 #endif
5293 		if (r5or6_first_row != r5or6_last_row)
5294 			return IO_ACCEL_INELIGIBLE;
5295 
5296 
5297 		/* Verify request is in a single column */
5298 #if BITS_PER_LONG == 32
5299 		tmpdiv = first_block;
5300 		first_row_offset = do_div(tmpdiv, stripesize);
5301 		tmpdiv = first_row_offset;
5302 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5303 		r5or6_first_row_offset = first_row_offset;
5304 		tmpdiv = last_block;
5305 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5306 		tmpdiv = r5or6_last_row_offset;
5307 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5308 		tmpdiv = r5or6_first_row_offset;
5309 		(void) do_div(tmpdiv, map->strip_size);
5310 		first_column = r5or6_first_column = tmpdiv;
5311 		tmpdiv = r5or6_last_row_offset;
5312 		(void) do_div(tmpdiv, map->strip_size);
5313 		r5or6_last_column = tmpdiv;
5314 #else
5315 		first_row_offset = r5or6_first_row_offset =
5316 			(u32)((first_block % stripesize) %
5317 						r5or6_blocks_per_row);
5318 
5319 		r5or6_last_row_offset =
5320 			(u32)((last_block % stripesize) %
5321 						r5or6_blocks_per_row);
5322 
5323 		first_column = r5or6_first_column =
5324 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5325 		r5or6_last_column =
5326 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5327 #endif
5328 		if (r5or6_first_column != r5or6_last_column)
5329 			return IO_ACCEL_INELIGIBLE;
5330 
5331 		/* Request is eligible */
5332 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5333 			le16_to_cpu(map->row_cnt);
5334 
5335 		map_index = (first_group *
5336 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5337 			(map_row * total_disks_per_row) + first_column;
5338 		break;
5339 	default:
5340 		return IO_ACCEL_INELIGIBLE;
5341 	}
5342 
5343 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5344 		return IO_ACCEL_INELIGIBLE;
5345 
5346 	c->phys_disk = dev->phys_disk[map_index];
5347 	if (!c->phys_disk)
5348 		return IO_ACCEL_INELIGIBLE;
5349 
5350 	disk_handle = dd[map_index].ioaccel_handle;
5351 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5352 			first_row * le16_to_cpu(map->strip_size) +
5353 			(first_row_offset - first_column *
5354 			le16_to_cpu(map->strip_size));
5355 	disk_block_cnt = block_cnt;
5356 
5357 	/* handle differing logical/physical block sizes */
5358 	if (map->phys_blk_shift) {
5359 		disk_block <<= map->phys_blk_shift;
5360 		disk_block_cnt <<= map->phys_blk_shift;
5361 	}
5362 	BUG_ON(disk_block_cnt > 0xffff);
5363 
5364 	/* build the new CDB for the physical disk I/O */
5365 	if (disk_block > 0xffffffff) {
5366 		cdb[0] = is_write ? WRITE_16 : READ_16;
5367 		cdb[1] = 0;
5368 		cdb[2] = (u8) (disk_block >> 56);
5369 		cdb[3] = (u8) (disk_block >> 48);
5370 		cdb[4] = (u8) (disk_block >> 40);
5371 		cdb[5] = (u8) (disk_block >> 32);
5372 		cdb[6] = (u8) (disk_block >> 24);
5373 		cdb[7] = (u8) (disk_block >> 16);
5374 		cdb[8] = (u8) (disk_block >> 8);
5375 		cdb[9] = (u8) (disk_block);
5376 		cdb[10] = (u8) (disk_block_cnt >> 24);
5377 		cdb[11] = (u8) (disk_block_cnt >> 16);
5378 		cdb[12] = (u8) (disk_block_cnt >> 8);
5379 		cdb[13] = (u8) (disk_block_cnt);
5380 		cdb[14] = 0;
5381 		cdb[15] = 0;
5382 		cdb_len = 16;
5383 	} else {
5384 		cdb[0] = is_write ? WRITE_10 : READ_10;
5385 		cdb[1] = 0;
5386 		cdb[2] = (u8) (disk_block >> 24);
5387 		cdb[3] = (u8) (disk_block >> 16);
5388 		cdb[4] = (u8) (disk_block >> 8);
5389 		cdb[5] = (u8) (disk_block);
5390 		cdb[6] = 0;
5391 		cdb[7] = (u8) (disk_block_cnt >> 8);
5392 		cdb[8] = (u8) (disk_block_cnt);
5393 		cdb[9] = 0;
5394 		cdb_len = 10;
5395 	}
5396 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5397 						dev->scsi3addr,
5398 						dev->phys_disk[map_index]);
5399 }
5400 
5401 /*
5402  * Submit commands down the "normal" RAID stack path
5403  * All callers to hpsa_ciss_submit must check lockup_detected
5404  * beforehand, before (opt.) and after calling cmd_alloc
5405  */
5406 static int hpsa_ciss_submit(struct ctlr_info *h,
5407 	struct CommandList *c, struct scsi_cmnd *cmd,
5408 	unsigned char scsi3addr[])
5409 {
5410 	cmd->host_scribble = (unsigned char *) c;
5411 	c->cmd_type = CMD_SCSI;
5412 	c->scsi_cmd = cmd;
5413 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5414 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5415 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5416 
5417 	/* Fill in the request block... */
5418 
5419 	c->Request.Timeout = 0;
5420 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5421 	c->Request.CDBLen = cmd->cmd_len;
5422 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5423 	switch (cmd->sc_data_direction) {
5424 	case DMA_TO_DEVICE:
5425 		c->Request.type_attr_dir =
5426 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5427 		break;
5428 	case DMA_FROM_DEVICE:
5429 		c->Request.type_attr_dir =
5430 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5431 		break;
5432 	case DMA_NONE:
5433 		c->Request.type_attr_dir =
5434 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5435 		break;
5436 	case DMA_BIDIRECTIONAL:
5437 		/* This can happen if a buggy application does a scsi passthru
5438 		 * and sets both inlen and outlen to non-zero. ( see
5439 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5440 		 */
5441 
5442 		c->Request.type_attr_dir =
5443 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5444 		/* This is technically wrong, and hpsa controllers should
5445 		 * reject it with CMD_INVALID, which is the most correct
5446 		 * response, but non-fibre backends appear to let it
5447 		 * slide by, and give the same results as if this field
5448 		 * were set correctly.  Either way is acceptable for
5449 		 * our purposes here.
5450 		 */
5451 
5452 		break;
5453 
5454 	default:
5455 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5456 			cmd->sc_data_direction);
5457 		BUG();
5458 		break;
5459 	}
5460 
5461 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5462 		hpsa_cmd_resolve_and_free(h, c);
5463 		return SCSI_MLQUEUE_HOST_BUSY;
5464 	}
5465 	enqueue_cmd_and_start_io(h, c);
5466 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5467 	return 0;
5468 }
5469 
5470 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5471 				struct CommandList *c)
5472 {
5473 	dma_addr_t cmd_dma_handle, err_dma_handle;
5474 
5475 	/* Zero out all of commandlist except the last field, refcount */
5476 	memset(c, 0, offsetof(struct CommandList, refcount));
5477 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5478 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5479 	c->err_info = h->errinfo_pool + index;
5480 	memset(c->err_info, 0, sizeof(*c->err_info));
5481 	err_dma_handle = h->errinfo_pool_dhandle
5482 	    + index * sizeof(*c->err_info);
5483 	c->cmdindex = index;
5484 	c->busaddr = (u32) cmd_dma_handle;
5485 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5486 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5487 	c->h = h;
5488 	c->scsi_cmd = SCSI_CMD_IDLE;
5489 }
5490 
5491 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5492 {
5493 	int i;
5494 
5495 	for (i = 0; i < h->nr_cmds; i++) {
5496 		struct CommandList *c = h->cmd_pool + i;
5497 
5498 		hpsa_cmd_init(h, i, c);
5499 		atomic_set(&c->refcount, 0);
5500 	}
5501 }
5502 
5503 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5504 				struct CommandList *c)
5505 {
5506 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5507 
5508 	BUG_ON(c->cmdindex != index);
5509 
5510 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5511 	memset(c->err_info, 0, sizeof(*c->err_info));
5512 	c->busaddr = (u32) cmd_dma_handle;
5513 }
5514 
5515 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5516 		struct CommandList *c, struct scsi_cmnd *cmd,
5517 		unsigned char *scsi3addr)
5518 {
5519 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5520 	int rc = IO_ACCEL_INELIGIBLE;
5521 
5522 	if (!dev)
5523 		return SCSI_MLQUEUE_HOST_BUSY;
5524 
5525 	cmd->host_scribble = (unsigned char *) c;
5526 
5527 	if (dev->offload_enabled) {
5528 		hpsa_cmd_init(h, c->cmdindex, c);
5529 		c->cmd_type = CMD_SCSI;
5530 		c->scsi_cmd = cmd;
5531 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5532 		if (rc < 0)     /* scsi_dma_map failed. */
5533 			rc = SCSI_MLQUEUE_HOST_BUSY;
5534 	} else if (dev->hba_ioaccel_enabled) {
5535 		hpsa_cmd_init(h, c->cmdindex, c);
5536 		c->cmd_type = CMD_SCSI;
5537 		c->scsi_cmd = cmd;
5538 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5539 		if (rc < 0)     /* scsi_dma_map failed. */
5540 			rc = SCSI_MLQUEUE_HOST_BUSY;
5541 	}
5542 	return rc;
5543 }
5544 
5545 static void hpsa_command_resubmit_worker(struct work_struct *work)
5546 {
5547 	struct scsi_cmnd *cmd;
5548 	struct hpsa_scsi_dev_t *dev;
5549 	struct CommandList *c = container_of(work, struct CommandList, work);
5550 
5551 	cmd = c->scsi_cmd;
5552 	dev = cmd->device->hostdata;
5553 	if (!dev) {
5554 		cmd->result = DID_NO_CONNECT << 16;
5555 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5556 	}
5557 	if (c->reset_pending)
5558 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5559 	if (c->cmd_type == CMD_IOACCEL2) {
5560 		struct ctlr_info *h = c->h;
5561 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5562 		int rc;
5563 
5564 		if (c2->error_data.serv_response ==
5565 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5566 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5567 			if (rc == 0)
5568 				return;
5569 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5570 				/*
5571 				 * If we get here, it means dma mapping failed.
5572 				 * Try again via scsi mid layer, which will
5573 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5574 				 */
5575 				cmd->result = DID_IMM_RETRY << 16;
5576 				return hpsa_cmd_free_and_done(h, c, cmd);
5577 			}
5578 			/* else, fall thru and resubmit down CISS path */
5579 		}
5580 	}
5581 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5582 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5583 		/*
5584 		 * If we get here, it means dma mapping failed. Try
5585 		 * again via scsi mid layer, which will then get
5586 		 * SCSI_MLQUEUE_HOST_BUSY.
5587 		 *
5588 		 * hpsa_ciss_submit will have already freed c
5589 		 * if it encountered a dma mapping failure.
5590 		 */
5591 		cmd->result = DID_IMM_RETRY << 16;
5592 		cmd->scsi_done(cmd);
5593 	}
5594 }
5595 
5596 /* Running in struct Scsi_Host->host_lock less mode */
5597 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5598 {
5599 	struct ctlr_info *h;
5600 	struct hpsa_scsi_dev_t *dev;
5601 	unsigned char scsi3addr[8];
5602 	struct CommandList *c;
5603 	int rc = 0;
5604 
5605 	/* Get the ptr to our adapter structure out of cmd->host. */
5606 	h = sdev_to_hba(cmd->device);
5607 
5608 	BUG_ON(cmd->request->tag < 0);
5609 
5610 	dev = cmd->device->hostdata;
5611 	if (!dev) {
5612 		cmd->result = DID_NO_CONNECT << 16;
5613 		cmd->scsi_done(cmd);
5614 		return 0;
5615 	}
5616 
5617 	if (dev->removed) {
5618 		cmd->result = DID_NO_CONNECT << 16;
5619 		cmd->scsi_done(cmd);
5620 		return 0;
5621 	}
5622 
5623 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5624 
5625 	if (unlikely(lockup_detected(h))) {
5626 		cmd->result = DID_NO_CONNECT << 16;
5627 		cmd->scsi_done(cmd);
5628 		return 0;
5629 	}
5630 	c = cmd_tagged_alloc(h, cmd);
5631 
5632 	/*
5633 	 * Call alternate submit routine for I/O accelerated commands.
5634 	 * Retries always go down the normal I/O path.
5635 	 */
5636 	if (likely(cmd->retries == 0 &&
5637 			!blk_rq_is_passthrough(cmd->request) &&
5638 			h->acciopath_status)) {
5639 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5640 		if (rc == 0)
5641 			return 0;
5642 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643 			hpsa_cmd_resolve_and_free(h, c);
5644 			return SCSI_MLQUEUE_HOST_BUSY;
5645 		}
5646 	}
5647 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5648 }
5649 
5650 static void hpsa_scan_complete(struct ctlr_info *h)
5651 {
5652 	unsigned long flags;
5653 
5654 	spin_lock_irqsave(&h->scan_lock, flags);
5655 	h->scan_finished = 1;
5656 	wake_up(&h->scan_wait_queue);
5657 	spin_unlock_irqrestore(&h->scan_lock, flags);
5658 }
5659 
5660 static void hpsa_scan_start(struct Scsi_Host *sh)
5661 {
5662 	struct ctlr_info *h = shost_to_hba(sh);
5663 	unsigned long flags;
5664 
5665 	/*
5666 	 * Don't let rescans be initiated on a controller known to be locked
5667 	 * up.  If the controller locks up *during* a rescan, that thread is
5668 	 * probably hosed, but at least we can prevent new rescan threads from
5669 	 * piling up on a locked up controller.
5670 	 */
5671 	if (unlikely(lockup_detected(h)))
5672 		return hpsa_scan_complete(h);
5673 
5674 	/*
5675 	 * If a scan is already waiting to run, no need to add another
5676 	 */
5677 	spin_lock_irqsave(&h->scan_lock, flags);
5678 	if (h->scan_waiting) {
5679 		spin_unlock_irqrestore(&h->scan_lock, flags);
5680 		return;
5681 	}
5682 
5683 	spin_unlock_irqrestore(&h->scan_lock, flags);
5684 
5685 	/* wait until any scan already in progress is finished. */
5686 	while (1) {
5687 		spin_lock_irqsave(&h->scan_lock, flags);
5688 		if (h->scan_finished)
5689 			break;
5690 		h->scan_waiting = 1;
5691 		spin_unlock_irqrestore(&h->scan_lock, flags);
5692 		wait_event(h->scan_wait_queue, h->scan_finished);
5693 		/* Note: We don't need to worry about a race between this
5694 		 * thread and driver unload because the midlayer will
5695 		 * have incremented the reference count, so unload won't
5696 		 * happen if we're in here.
5697 		 */
5698 	}
5699 	h->scan_finished = 0; /* mark scan as in progress */
5700 	h->scan_waiting = 0;
5701 	spin_unlock_irqrestore(&h->scan_lock, flags);
5702 
5703 	if (unlikely(lockup_detected(h)))
5704 		return hpsa_scan_complete(h);
5705 
5706 	/*
5707 	 * Do the scan after a reset completion
5708 	 */
5709 	spin_lock_irqsave(&h->reset_lock, flags);
5710 	if (h->reset_in_progress) {
5711 		h->drv_req_rescan = 1;
5712 		spin_unlock_irqrestore(&h->reset_lock, flags);
5713 		hpsa_scan_complete(h);
5714 		return;
5715 	}
5716 	spin_unlock_irqrestore(&h->reset_lock, flags);
5717 
5718 	hpsa_update_scsi_devices(h);
5719 
5720 	hpsa_scan_complete(h);
5721 }
5722 
5723 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5724 {
5725 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5726 
5727 	if (!logical_drive)
5728 		return -ENODEV;
5729 
5730 	if (qdepth < 1)
5731 		qdepth = 1;
5732 	else if (qdepth > logical_drive->queue_depth)
5733 		qdepth = logical_drive->queue_depth;
5734 
5735 	return scsi_change_queue_depth(sdev, qdepth);
5736 }
5737 
5738 static int hpsa_scan_finished(struct Scsi_Host *sh,
5739 	unsigned long elapsed_time)
5740 {
5741 	struct ctlr_info *h = shost_to_hba(sh);
5742 	unsigned long flags;
5743 	int finished;
5744 
5745 	spin_lock_irqsave(&h->scan_lock, flags);
5746 	finished = h->scan_finished;
5747 	spin_unlock_irqrestore(&h->scan_lock, flags);
5748 	return finished;
5749 }
5750 
5751 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5752 {
5753 	struct Scsi_Host *sh;
5754 
5755 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5756 	if (sh == NULL) {
5757 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5758 		return -ENOMEM;
5759 	}
5760 
5761 	sh->io_port = 0;
5762 	sh->n_io_port = 0;
5763 	sh->this_id = -1;
5764 	sh->max_channel = 3;
5765 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5766 	sh->max_lun = HPSA_MAX_LUN;
5767 	sh->max_id = HPSA_MAX_LUN;
5768 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5769 	sh->cmd_per_lun = sh->can_queue;
5770 	sh->sg_tablesize = h->maxsgentries;
5771 	sh->transportt = hpsa_sas_transport_template;
5772 	sh->hostdata[0] = (unsigned long) h;
5773 	sh->irq = pci_irq_vector(h->pdev, 0);
5774 	sh->unique_id = sh->irq;
5775 
5776 	h->scsi_host = sh;
5777 	return 0;
5778 }
5779 
5780 static int hpsa_scsi_add_host(struct ctlr_info *h)
5781 {
5782 	int rv;
5783 
5784 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5785 	if (rv) {
5786 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5787 		return rv;
5788 	}
5789 	scsi_scan_host(h->scsi_host);
5790 	return 0;
5791 }
5792 
5793 /*
5794  * The block layer has already gone to the trouble of picking out a unique,
5795  * small-integer tag for this request.  We use an offset from that value as
5796  * an index to select our command block.  (The offset allows us to reserve the
5797  * low-numbered entries for our own uses.)
5798  */
5799 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5800 {
5801 	int idx = scmd->request->tag;
5802 
5803 	if (idx < 0)
5804 		return idx;
5805 
5806 	/* Offset to leave space for internal cmds. */
5807 	return idx += HPSA_NRESERVED_CMDS;
5808 }
5809 
5810 /*
5811  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5812  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5813  */
5814 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5815 				struct CommandList *c, unsigned char lunaddr[],
5816 				int reply_queue)
5817 {
5818 	int rc;
5819 
5820 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5821 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5822 			NULL, 0, 0, lunaddr, TYPE_CMD);
5823 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5824 	if (rc)
5825 		return rc;
5826 	/* no unmap needed here because no data xfer. */
5827 
5828 	/* Check if the unit is already ready. */
5829 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5830 		return 0;
5831 
5832 	/*
5833 	 * The first command sent after reset will receive "unit attention" to
5834 	 * indicate that the LUN has been reset...this is actually what we're
5835 	 * looking for (but, success is good too).
5836 	 */
5837 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5838 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5839 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5840 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5841 		return 0;
5842 
5843 	return 1;
5844 }
5845 
5846 /*
5847  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5848  * returns zero when the unit is ready, and non-zero when giving up.
5849  */
5850 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5851 				struct CommandList *c,
5852 				unsigned char lunaddr[], int reply_queue)
5853 {
5854 	int rc;
5855 	int count = 0;
5856 	int waittime = 1; /* seconds */
5857 
5858 	/* Send test unit ready until device ready, or give up. */
5859 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5860 
5861 		/*
5862 		 * Wait for a bit.  do this first, because if we send
5863 		 * the TUR right away, the reset will just abort it.
5864 		 */
5865 		msleep(1000 * waittime);
5866 
5867 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5868 		if (!rc)
5869 			break;
5870 
5871 		/* Increase wait time with each try, up to a point. */
5872 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5873 			waittime *= 2;
5874 
5875 		dev_warn(&h->pdev->dev,
5876 			 "waiting %d secs for device to become ready.\n",
5877 			 waittime);
5878 	}
5879 
5880 	return rc;
5881 }
5882 
5883 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5884 					   unsigned char lunaddr[],
5885 					   int reply_queue)
5886 {
5887 	int first_queue;
5888 	int last_queue;
5889 	int rq;
5890 	int rc = 0;
5891 	struct CommandList *c;
5892 
5893 	c = cmd_alloc(h);
5894 
5895 	/*
5896 	 * If no specific reply queue was requested, then send the TUR
5897 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5898 	 * the loop exactly once using only the specified queue.
5899 	 */
5900 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5901 		first_queue = 0;
5902 		last_queue = h->nreply_queues - 1;
5903 	} else {
5904 		first_queue = reply_queue;
5905 		last_queue = reply_queue;
5906 	}
5907 
5908 	for (rq = first_queue; rq <= last_queue; rq++) {
5909 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5910 		if (rc)
5911 			break;
5912 	}
5913 
5914 	if (rc)
5915 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5916 	else
5917 		dev_warn(&h->pdev->dev, "device is ready.\n");
5918 
5919 	cmd_free(h, c);
5920 	return rc;
5921 }
5922 
5923 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5924  * complaining.  Doing a host- or bus-reset can't do anything good here.
5925  */
5926 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5927 {
5928 	int rc = SUCCESS;
5929 	struct ctlr_info *h;
5930 	struct hpsa_scsi_dev_t *dev;
5931 	u8 reset_type;
5932 	char msg[48];
5933 	unsigned long flags;
5934 
5935 	/* find the controller to which the command to be aborted was sent */
5936 	h = sdev_to_hba(scsicmd->device);
5937 	if (h == NULL) /* paranoia */
5938 		return FAILED;
5939 
5940 	spin_lock_irqsave(&h->reset_lock, flags);
5941 	h->reset_in_progress = 1;
5942 	spin_unlock_irqrestore(&h->reset_lock, flags);
5943 
5944 	if (lockup_detected(h)) {
5945 		rc = FAILED;
5946 		goto return_reset_status;
5947 	}
5948 
5949 	dev = scsicmd->device->hostdata;
5950 	if (!dev) {
5951 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5952 		rc = FAILED;
5953 		goto return_reset_status;
5954 	}
5955 
5956 	if (dev->devtype == TYPE_ENCLOSURE) {
5957 		rc = SUCCESS;
5958 		goto return_reset_status;
5959 	}
5960 
5961 	/* if controller locked up, we can guarantee command won't complete */
5962 	if (lockup_detected(h)) {
5963 		snprintf(msg, sizeof(msg),
5964 			 "cmd %d RESET FAILED, lockup detected",
5965 			 hpsa_get_cmd_index(scsicmd));
5966 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5967 		rc = FAILED;
5968 		goto return_reset_status;
5969 	}
5970 
5971 	/* this reset request might be the result of a lockup; check */
5972 	if (detect_controller_lockup(h)) {
5973 		snprintf(msg, sizeof(msg),
5974 			 "cmd %d RESET FAILED, new lockup detected",
5975 			 hpsa_get_cmd_index(scsicmd));
5976 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5977 		rc = FAILED;
5978 		goto return_reset_status;
5979 	}
5980 
5981 	/* Do not attempt on controller */
5982 	if (is_hba_lunid(dev->scsi3addr)) {
5983 		rc = SUCCESS;
5984 		goto return_reset_status;
5985 	}
5986 
5987 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5988 		reset_type = HPSA_DEVICE_RESET_MSG;
5989 	else
5990 		reset_type = HPSA_PHYS_TARGET_RESET;
5991 
5992 	sprintf(msg, "resetting %s",
5993 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5994 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5995 
5996 	/* send a reset to the SCSI LUN which the command was sent to */
5997 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5998 			   DEFAULT_REPLY_QUEUE);
5999 	if (rc == 0)
6000 		rc = SUCCESS;
6001 	else
6002 		rc = FAILED;
6003 
6004 	sprintf(msg, "reset %s %s",
6005 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6006 		rc == SUCCESS ? "completed successfully" : "failed");
6007 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6008 
6009 return_reset_status:
6010 	spin_lock_irqsave(&h->reset_lock, flags);
6011 	h->reset_in_progress = 0;
6012 	spin_unlock_irqrestore(&h->reset_lock, flags);
6013 	return rc;
6014 }
6015 
6016 /*
6017  * For operations with an associated SCSI command, a command block is allocated
6018  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6019  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6020  * the complement, although cmd_free() may be called instead.
6021  */
6022 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6023 					    struct scsi_cmnd *scmd)
6024 {
6025 	int idx = hpsa_get_cmd_index(scmd);
6026 	struct CommandList *c = h->cmd_pool + idx;
6027 
6028 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6029 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6030 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6031 		/* The index value comes from the block layer, so if it's out of
6032 		 * bounds, it's probably not our bug.
6033 		 */
6034 		BUG();
6035 	}
6036 
6037 	atomic_inc(&c->refcount);
6038 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6039 		/*
6040 		 * We expect that the SCSI layer will hand us a unique tag
6041 		 * value.  Thus, there should never be a collision here between
6042 		 * two requests...because if the selected command isn't idle
6043 		 * then someone is going to be very disappointed.
6044 		 */
6045 		dev_err(&h->pdev->dev,
6046 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6047 			idx);
6048 		if (c->scsi_cmd != NULL)
6049 			scsi_print_command(c->scsi_cmd);
6050 		scsi_print_command(scmd);
6051 	}
6052 
6053 	hpsa_cmd_partial_init(h, idx, c);
6054 	return c;
6055 }
6056 
6057 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6058 {
6059 	/*
6060 	 * Release our reference to the block.  We don't need to do anything
6061 	 * else to free it, because it is accessed by index.
6062 	 */
6063 	(void)atomic_dec(&c->refcount);
6064 }
6065 
6066 /*
6067  * For operations that cannot sleep, a command block is allocated at init,
6068  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6069  * which ones are free or in use.  Lock must be held when calling this.
6070  * cmd_free() is the complement.
6071  * This function never gives up and returns NULL.  If it hangs,
6072  * another thread must call cmd_free() to free some tags.
6073  */
6074 
6075 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6076 {
6077 	struct CommandList *c;
6078 	int refcount, i;
6079 	int offset = 0;
6080 
6081 	/*
6082 	 * There is some *extremely* small but non-zero chance that that
6083 	 * multiple threads could get in here, and one thread could
6084 	 * be scanning through the list of bits looking for a free
6085 	 * one, but the free ones are always behind him, and other
6086 	 * threads sneak in behind him and eat them before he can
6087 	 * get to them, so that while there is always a free one, a
6088 	 * very unlucky thread might be starved anyway, never able to
6089 	 * beat the other threads.  In reality, this happens so
6090 	 * infrequently as to be indistinguishable from never.
6091 	 *
6092 	 * Note that we start allocating commands before the SCSI host structure
6093 	 * is initialized.  Since the search starts at bit zero, this
6094 	 * all works, since we have at least one command structure available;
6095 	 * however, it means that the structures with the low indexes have to be
6096 	 * reserved for driver-initiated requests, while requests from the block
6097 	 * layer will use the higher indexes.
6098 	 */
6099 
6100 	for (;;) {
6101 		i = find_next_zero_bit(h->cmd_pool_bits,
6102 					HPSA_NRESERVED_CMDS,
6103 					offset);
6104 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6105 			offset = 0;
6106 			continue;
6107 		}
6108 		c = h->cmd_pool + i;
6109 		refcount = atomic_inc_return(&c->refcount);
6110 		if (unlikely(refcount > 1)) {
6111 			cmd_free(h, c); /* already in use */
6112 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6113 			continue;
6114 		}
6115 		set_bit(i & (BITS_PER_LONG - 1),
6116 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6117 		break; /* it's ours now. */
6118 	}
6119 	hpsa_cmd_partial_init(h, i, c);
6120 	return c;
6121 }
6122 
6123 /*
6124  * This is the complementary operation to cmd_alloc().  Note, however, in some
6125  * corner cases it may also be used to free blocks allocated by
6126  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6127  * the clear-bit is harmless.
6128  */
6129 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6130 {
6131 	if (atomic_dec_and_test(&c->refcount)) {
6132 		int i;
6133 
6134 		i = c - h->cmd_pool;
6135 		clear_bit(i & (BITS_PER_LONG - 1),
6136 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6137 	}
6138 }
6139 
6140 #ifdef CONFIG_COMPAT
6141 
6142 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6143 	void __user *arg)
6144 {
6145 	IOCTL32_Command_struct __user *arg32 =
6146 	    (IOCTL32_Command_struct __user *) arg;
6147 	IOCTL_Command_struct arg64;
6148 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6149 	int err;
6150 	u32 cp;
6151 
6152 	memset(&arg64, 0, sizeof(arg64));
6153 	err = 0;
6154 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6155 			   sizeof(arg64.LUN_info));
6156 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6157 			   sizeof(arg64.Request));
6158 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6159 			   sizeof(arg64.error_info));
6160 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6161 	err |= get_user(cp, &arg32->buf);
6162 	arg64.buf = compat_ptr(cp);
6163 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6164 
6165 	if (err)
6166 		return -EFAULT;
6167 
6168 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6169 	if (err)
6170 		return err;
6171 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6172 			 sizeof(arg32->error_info));
6173 	if (err)
6174 		return -EFAULT;
6175 	return err;
6176 }
6177 
6178 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6179 	int cmd, void __user *arg)
6180 {
6181 	BIG_IOCTL32_Command_struct __user *arg32 =
6182 	    (BIG_IOCTL32_Command_struct __user *) arg;
6183 	BIG_IOCTL_Command_struct arg64;
6184 	BIG_IOCTL_Command_struct __user *p =
6185 	    compat_alloc_user_space(sizeof(arg64));
6186 	int err;
6187 	u32 cp;
6188 
6189 	memset(&arg64, 0, sizeof(arg64));
6190 	err = 0;
6191 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6192 			   sizeof(arg64.LUN_info));
6193 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6194 			   sizeof(arg64.Request));
6195 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6196 			   sizeof(arg64.error_info));
6197 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6198 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6199 	err |= get_user(cp, &arg32->buf);
6200 	arg64.buf = compat_ptr(cp);
6201 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6202 
6203 	if (err)
6204 		return -EFAULT;
6205 
6206 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6207 	if (err)
6208 		return err;
6209 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6210 			 sizeof(arg32->error_info));
6211 	if (err)
6212 		return -EFAULT;
6213 	return err;
6214 }
6215 
6216 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6217 {
6218 	switch (cmd) {
6219 	case CCISS_GETPCIINFO:
6220 	case CCISS_GETINTINFO:
6221 	case CCISS_SETINTINFO:
6222 	case CCISS_GETNODENAME:
6223 	case CCISS_SETNODENAME:
6224 	case CCISS_GETHEARTBEAT:
6225 	case CCISS_GETBUSTYPES:
6226 	case CCISS_GETFIRMVER:
6227 	case CCISS_GETDRIVVER:
6228 	case CCISS_REVALIDVOLS:
6229 	case CCISS_DEREGDISK:
6230 	case CCISS_REGNEWDISK:
6231 	case CCISS_REGNEWD:
6232 	case CCISS_RESCANDISK:
6233 	case CCISS_GETLUNINFO:
6234 		return hpsa_ioctl(dev, cmd, arg);
6235 
6236 	case CCISS_PASSTHRU32:
6237 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6238 	case CCISS_BIG_PASSTHRU32:
6239 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6240 
6241 	default:
6242 		return -ENOIOCTLCMD;
6243 	}
6244 }
6245 #endif
6246 
6247 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6248 {
6249 	struct hpsa_pci_info pciinfo;
6250 
6251 	if (!argp)
6252 		return -EINVAL;
6253 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6254 	pciinfo.bus = h->pdev->bus->number;
6255 	pciinfo.dev_fn = h->pdev->devfn;
6256 	pciinfo.board_id = h->board_id;
6257 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6258 		return -EFAULT;
6259 	return 0;
6260 }
6261 
6262 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6263 {
6264 	DriverVer_type DriverVer;
6265 	unsigned char vmaj, vmin, vsubmin;
6266 	int rc;
6267 
6268 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6269 		&vmaj, &vmin, &vsubmin);
6270 	if (rc != 3) {
6271 		dev_info(&h->pdev->dev, "driver version string '%s' "
6272 			"unrecognized.", HPSA_DRIVER_VERSION);
6273 		vmaj = 0;
6274 		vmin = 0;
6275 		vsubmin = 0;
6276 	}
6277 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6278 	if (!argp)
6279 		return -EINVAL;
6280 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6281 		return -EFAULT;
6282 	return 0;
6283 }
6284 
6285 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6286 {
6287 	IOCTL_Command_struct iocommand;
6288 	struct CommandList *c;
6289 	char *buff = NULL;
6290 	u64 temp64;
6291 	int rc = 0;
6292 
6293 	if (!argp)
6294 		return -EINVAL;
6295 	if (!capable(CAP_SYS_RAWIO))
6296 		return -EPERM;
6297 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6298 		return -EFAULT;
6299 	if ((iocommand.buf_size < 1) &&
6300 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6301 		return -EINVAL;
6302 	}
6303 	if (iocommand.buf_size > 0) {
6304 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6305 		if (buff == NULL)
6306 			return -ENOMEM;
6307 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6308 			/* Copy the data into the buffer we created */
6309 			if (copy_from_user(buff, iocommand.buf,
6310 				iocommand.buf_size)) {
6311 				rc = -EFAULT;
6312 				goto out_kfree;
6313 			}
6314 		} else {
6315 			memset(buff, 0, iocommand.buf_size);
6316 		}
6317 	}
6318 	c = cmd_alloc(h);
6319 
6320 	/* Fill in the command type */
6321 	c->cmd_type = CMD_IOCTL_PEND;
6322 	c->scsi_cmd = SCSI_CMD_BUSY;
6323 	/* Fill in Command Header */
6324 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6325 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6326 		c->Header.SGList = 1;
6327 		c->Header.SGTotal = cpu_to_le16(1);
6328 	} else	{ /* no buffers to fill */
6329 		c->Header.SGList = 0;
6330 		c->Header.SGTotal = cpu_to_le16(0);
6331 	}
6332 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6333 
6334 	/* Fill in Request block */
6335 	memcpy(&c->Request, &iocommand.Request,
6336 		sizeof(c->Request));
6337 
6338 	/* Fill in the scatter gather information */
6339 	if (iocommand.buf_size > 0) {
6340 		temp64 = pci_map_single(h->pdev, buff,
6341 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6342 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6343 			c->SG[0].Addr = cpu_to_le64(0);
6344 			c->SG[0].Len = cpu_to_le32(0);
6345 			rc = -ENOMEM;
6346 			goto out;
6347 		}
6348 		c->SG[0].Addr = cpu_to_le64(temp64);
6349 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6350 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6351 	}
6352 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6353 					NO_TIMEOUT);
6354 	if (iocommand.buf_size > 0)
6355 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6356 	check_ioctl_unit_attention(h, c);
6357 	if (rc) {
6358 		rc = -EIO;
6359 		goto out;
6360 	}
6361 
6362 	/* Copy the error information out */
6363 	memcpy(&iocommand.error_info, c->err_info,
6364 		sizeof(iocommand.error_info));
6365 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6366 		rc = -EFAULT;
6367 		goto out;
6368 	}
6369 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6370 		iocommand.buf_size > 0) {
6371 		/* Copy the data out of the buffer we created */
6372 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6373 			rc = -EFAULT;
6374 			goto out;
6375 		}
6376 	}
6377 out:
6378 	cmd_free(h, c);
6379 out_kfree:
6380 	kfree(buff);
6381 	return rc;
6382 }
6383 
6384 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6385 {
6386 	BIG_IOCTL_Command_struct *ioc;
6387 	struct CommandList *c;
6388 	unsigned char **buff = NULL;
6389 	int *buff_size = NULL;
6390 	u64 temp64;
6391 	BYTE sg_used = 0;
6392 	int status = 0;
6393 	u32 left;
6394 	u32 sz;
6395 	BYTE __user *data_ptr;
6396 
6397 	if (!argp)
6398 		return -EINVAL;
6399 	if (!capable(CAP_SYS_RAWIO))
6400 		return -EPERM;
6401 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6402 	if (!ioc) {
6403 		status = -ENOMEM;
6404 		goto cleanup1;
6405 	}
6406 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6407 		status = -EFAULT;
6408 		goto cleanup1;
6409 	}
6410 	if ((ioc->buf_size < 1) &&
6411 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6412 		status = -EINVAL;
6413 		goto cleanup1;
6414 	}
6415 	/* Check kmalloc limits  using all SGs */
6416 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6417 		status = -EINVAL;
6418 		goto cleanup1;
6419 	}
6420 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6421 		status = -EINVAL;
6422 		goto cleanup1;
6423 	}
6424 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6425 	if (!buff) {
6426 		status = -ENOMEM;
6427 		goto cleanup1;
6428 	}
6429 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6430 	if (!buff_size) {
6431 		status = -ENOMEM;
6432 		goto cleanup1;
6433 	}
6434 	left = ioc->buf_size;
6435 	data_ptr = ioc->buf;
6436 	while (left) {
6437 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6438 		buff_size[sg_used] = sz;
6439 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6440 		if (buff[sg_used] == NULL) {
6441 			status = -ENOMEM;
6442 			goto cleanup1;
6443 		}
6444 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6445 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6446 				status = -EFAULT;
6447 				goto cleanup1;
6448 			}
6449 		} else
6450 			memset(buff[sg_used], 0, sz);
6451 		left -= sz;
6452 		data_ptr += sz;
6453 		sg_used++;
6454 	}
6455 	c = cmd_alloc(h);
6456 
6457 	c->cmd_type = CMD_IOCTL_PEND;
6458 	c->scsi_cmd = SCSI_CMD_BUSY;
6459 	c->Header.ReplyQueue = 0;
6460 	c->Header.SGList = (u8) sg_used;
6461 	c->Header.SGTotal = cpu_to_le16(sg_used);
6462 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6463 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6464 	if (ioc->buf_size > 0) {
6465 		int i;
6466 		for (i = 0; i < sg_used; i++) {
6467 			temp64 = pci_map_single(h->pdev, buff[i],
6468 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6469 			if (dma_mapping_error(&h->pdev->dev,
6470 							(dma_addr_t) temp64)) {
6471 				c->SG[i].Addr = cpu_to_le64(0);
6472 				c->SG[i].Len = cpu_to_le32(0);
6473 				hpsa_pci_unmap(h->pdev, c, i,
6474 					PCI_DMA_BIDIRECTIONAL);
6475 				status = -ENOMEM;
6476 				goto cleanup0;
6477 			}
6478 			c->SG[i].Addr = cpu_to_le64(temp64);
6479 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6480 			c->SG[i].Ext = cpu_to_le32(0);
6481 		}
6482 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6483 	}
6484 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6485 						NO_TIMEOUT);
6486 	if (sg_used)
6487 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6488 	check_ioctl_unit_attention(h, c);
6489 	if (status) {
6490 		status = -EIO;
6491 		goto cleanup0;
6492 	}
6493 
6494 	/* Copy the error information out */
6495 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6496 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6497 		status = -EFAULT;
6498 		goto cleanup0;
6499 	}
6500 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6501 		int i;
6502 
6503 		/* Copy the data out of the buffer we created */
6504 		BYTE __user *ptr = ioc->buf;
6505 		for (i = 0; i < sg_used; i++) {
6506 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6507 				status = -EFAULT;
6508 				goto cleanup0;
6509 			}
6510 			ptr += buff_size[i];
6511 		}
6512 	}
6513 	status = 0;
6514 cleanup0:
6515 	cmd_free(h, c);
6516 cleanup1:
6517 	if (buff) {
6518 		int i;
6519 
6520 		for (i = 0; i < sg_used; i++)
6521 			kfree(buff[i]);
6522 		kfree(buff);
6523 	}
6524 	kfree(buff_size);
6525 	kfree(ioc);
6526 	return status;
6527 }
6528 
6529 static void check_ioctl_unit_attention(struct ctlr_info *h,
6530 	struct CommandList *c)
6531 {
6532 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6533 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6534 		(void) check_for_unit_attention(h, c);
6535 }
6536 
6537 /*
6538  * ioctl
6539  */
6540 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6541 {
6542 	struct ctlr_info *h;
6543 	void __user *argp = (void __user *)arg;
6544 	int rc;
6545 
6546 	h = sdev_to_hba(dev);
6547 
6548 	switch (cmd) {
6549 	case CCISS_DEREGDISK:
6550 	case CCISS_REGNEWDISK:
6551 	case CCISS_REGNEWD:
6552 		hpsa_scan_start(h->scsi_host);
6553 		return 0;
6554 	case CCISS_GETPCIINFO:
6555 		return hpsa_getpciinfo_ioctl(h, argp);
6556 	case CCISS_GETDRIVVER:
6557 		return hpsa_getdrivver_ioctl(h, argp);
6558 	case CCISS_PASSTHRU:
6559 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560 			return -EAGAIN;
6561 		rc = hpsa_passthru_ioctl(h, argp);
6562 		atomic_inc(&h->passthru_cmds_avail);
6563 		return rc;
6564 	case CCISS_BIG_PASSTHRU:
6565 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6566 			return -EAGAIN;
6567 		rc = hpsa_big_passthru_ioctl(h, argp);
6568 		atomic_inc(&h->passthru_cmds_avail);
6569 		return rc;
6570 	default:
6571 		return -ENOTTY;
6572 	}
6573 }
6574 
6575 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6576 				u8 reset_type)
6577 {
6578 	struct CommandList *c;
6579 
6580 	c = cmd_alloc(h);
6581 
6582 	/* fill_cmd can't fail here, no data buffer to map */
6583 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6584 		RAID_CTLR_LUNID, TYPE_MSG);
6585 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6586 	c->waiting = NULL;
6587 	enqueue_cmd_and_start_io(h, c);
6588 	/* Don't wait for completion, the reset won't complete.  Don't free
6589 	 * the command either.  This is the last command we will send before
6590 	 * re-initializing everything, so it doesn't matter and won't leak.
6591 	 */
6592 	return;
6593 }
6594 
6595 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6596 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6597 	int cmd_type)
6598 {
6599 	int pci_dir = XFER_NONE;
6600 
6601 	c->cmd_type = CMD_IOCTL_PEND;
6602 	c->scsi_cmd = SCSI_CMD_BUSY;
6603 	c->Header.ReplyQueue = 0;
6604 	if (buff != NULL && size > 0) {
6605 		c->Header.SGList = 1;
6606 		c->Header.SGTotal = cpu_to_le16(1);
6607 	} else {
6608 		c->Header.SGList = 0;
6609 		c->Header.SGTotal = cpu_to_le16(0);
6610 	}
6611 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6612 
6613 	if (cmd_type == TYPE_CMD) {
6614 		switch (cmd) {
6615 		case HPSA_INQUIRY:
6616 			/* are we trying to read a vital product page */
6617 			if (page_code & VPD_PAGE) {
6618 				c->Request.CDB[1] = 0x01;
6619 				c->Request.CDB[2] = (page_code & 0xff);
6620 			}
6621 			c->Request.CDBLen = 6;
6622 			c->Request.type_attr_dir =
6623 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624 			c->Request.Timeout = 0;
6625 			c->Request.CDB[0] = HPSA_INQUIRY;
6626 			c->Request.CDB[4] = size & 0xFF;
6627 			break;
6628 		case RECEIVE_DIAGNOSTIC:
6629 			c->Request.CDBLen = 6;
6630 			c->Request.type_attr_dir =
6631 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6632 			c->Request.Timeout = 0;
6633 			c->Request.CDB[0] = cmd;
6634 			c->Request.CDB[1] = 1;
6635 			c->Request.CDB[2] = 1;
6636 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6637 			c->Request.CDB[4] = size & 0xFF;
6638 			break;
6639 		case HPSA_REPORT_LOG:
6640 		case HPSA_REPORT_PHYS:
6641 			/* Talking to controller so It's a physical command
6642 			   mode = 00 target = 0.  Nothing to write.
6643 			 */
6644 			c->Request.CDBLen = 12;
6645 			c->Request.type_attr_dir =
6646 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6647 			c->Request.Timeout = 0;
6648 			c->Request.CDB[0] = cmd;
6649 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6650 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6651 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6652 			c->Request.CDB[9] = size & 0xFF;
6653 			break;
6654 		case BMIC_SENSE_DIAG_OPTIONS:
6655 			c->Request.CDBLen = 16;
6656 			c->Request.type_attr_dir =
6657 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6658 			c->Request.Timeout = 0;
6659 			/* Spec says this should be BMIC_WRITE */
6660 			c->Request.CDB[0] = BMIC_READ;
6661 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6662 			break;
6663 		case BMIC_SET_DIAG_OPTIONS:
6664 			c->Request.CDBLen = 16;
6665 			c->Request.type_attr_dir =
6666 					TYPE_ATTR_DIR(cmd_type,
6667 						ATTR_SIMPLE, XFER_WRITE);
6668 			c->Request.Timeout = 0;
6669 			c->Request.CDB[0] = BMIC_WRITE;
6670 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6671 			break;
6672 		case HPSA_CACHE_FLUSH:
6673 			c->Request.CDBLen = 12;
6674 			c->Request.type_attr_dir =
6675 					TYPE_ATTR_DIR(cmd_type,
6676 						ATTR_SIMPLE, XFER_WRITE);
6677 			c->Request.Timeout = 0;
6678 			c->Request.CDB[0] = BMIC_WRITE;
6679 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6680 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6681 			c->Request.CDB[8] = size & 0xFF;
6682 			break;
6683 		case TEST_UNIT_READY:
6684 			c->Request.CDBLen = 6;
6685 			c->Request.type_attr_dir =
6686 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6687 			c->Request.Timeout = 0;
6688 			break;
6689 		case HPSA_GET_RAID_MAP:
6690 			c->Request.CDBLen = 12;
6691 			c->Request.type_attr_dir =
6692 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693 			c->Request.Timeout = 0;
6694 			c->Request.CDB[0] = HPSA_CISS_READ;
6695 			c->Request.CDB[1] = cmd;
6696 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6697 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6698 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6699 			c->Request.CDB[9] = size & 0xFF;
6700 			break;
6701 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6702 			c->Request.CDBLen = 10;
6703 			c->Request.type_attr_dir =
6704 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705 			c->Request.Timeout = 0;
6706 			c->Request.CDB[0] = BMIC_READ;
6707 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6708 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6709 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6710 			break;
6711 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6712 			c->Request.CDBLen = 10;
6713 			c->Request.type_attr_dir =
6714 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6715 			c->Request.Timeout = 0;
6716 			c->Request.CDB[0] = BMIC_READ;
6717 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6718 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6719 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6720 			break;
6721 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6722 			c->Request.CDBLen = 10;
6723 			c->Request.type_attr_dir =
6724 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 			c->Request.Timeout = 0;
6726 			c->Request.CDB[0] = BMIC_READ;
6727 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6728 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6729 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6730 			break;
6731 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6732 			c->Request.CDBLen = 10;
6733 			c->Request.type_attr_dir =
6734 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735 			c->Request.Timeout = 0;
6736 			c->Request.CDB[0] = BMIC_READ;
6737 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6738 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6739 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6740 			break;
6741 		case BMIC_IDENTIFY_CONTROLLER:
6742 			c->Request.CDBLen = 10;
6743 			c->Request.type_attr_dir =
6744 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745 			c->Request.Timeout = 0;
6746 			c->Request.CDB[0] = BMIC_READ;
6747 			c->Request.CDB[1] = 0;
6748 			c->Request.CDB[2] = 0;
6749 			c->Request.CDB[3] = 0;
6750 			c->Request.CDB[4] = 0;
6751 			c->Request.CDB[5] = 0;
6752 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6753 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6754 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6755 			c->Request.CDB[9] = 0;
6756 			break;
6757 		default:
6758 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6759 			BUG();
6760 		}
6761 	} else if (cmd_type == TYPE_MSG) {
6762 		switch (cmd) {
6763 
6764 		case  HPSA_PHYS_TARGET_RESET:
6765 			c->Request.CDBLen = 16;
6766 			c->Request.type_attr_dir =
6767 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6768 			c->Request.Timeout = 0; /* Don't time out */
6769 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6770 			c->Request.CDB[0] = HPSA_RESET;
6771 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6772 			/* Physical target reset needs no control bytes 4-7*/
6773 			c->Request.CDB[4] = 0x00;
6774 			c->Request.CDB[5] = 0x00;
6775 			c->Request.CDB[6] = 0x00;
6776 			c->Request.CDB[7] = 0x00;
6777 			break;
6778 		case  HPSA_DEVICE_RESET_MSG:
6779 			c->Request.CDBLen = 16;
6780 			c->Request.type_attr_dir =
6781 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6782 			c->Request.Timeout = 0; /* Don't time out */
6783 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6784 			c->Request.CDB[0] =  cmd;
6785 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6786 			/* If bytes 4-7 are zero, it means reset the */
6787 			/* LunID device */
6788 			c->Request.CDB[4] = 0x00;
6789 			c->Request.CDB[5] = 0x00;
6790 			c->Request.CDB[6] = 0x00;
6791 			c->Request.CDB[7] = 0x00;
6792 			break;
6793 		default:
6794 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6795 				cmd);
6796 			BUG();
6797 		}
6798 	} else {
6799 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6800 		BUG();
6801 	}
6802 
6803 	switch (GET_DIR(c->Request.type_attr_dir)) {
6804 	case XFER_READ:
6805 		pci_dir = PCI_DMA_FROMDEVICE;
6806 		break;
6807 	case XFER_WRITE:
6808 		pci_dir = PCI_DMA_TODEVICE;
6809 		break;
6810 	case XFER_NONE:
6811 		pci_dir = PCI_DMA_NONE;
6812 		break;
6813 	default:
6814 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6815 	}
6816 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6817 		return -1;
6818 	return 0;
6819 }
6820 
6821 /*
6822  * Map (physical) PCI mem into (virtual) kernel space
6823  */
6824 static void __iomem *remap_pci_mem(ulong base, ulong size)
6825 {
6826 	ulong page_base = ((ulong) base) & PAGE_MASK;
6827 	ulong page_offs = ((ulong) base) - page_base;
6828 	void __iomem *page_remapped = ioremap_nocache(page_base,
6829 		page_offs + size);
6830 
6831 	return page_remapped ? (page_remapped + page_offs) : NULL;
6832 }
6833 
6834 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6835 {
6836 	return h->access.command_completed(h, q);
6837 }
6838 
6839 static inline bool interrupt_pending(struct ctlr_info *h)
6840 {
6841 	return h->access.intr_pending(h);
6842 }
6843 
6844 static inline long interrupt_not_for_us(struct ctlr_info *h)
6845 {
6846 	return (h->access.intr_pending(h) == 0) ||
6847 		(h->interrupts_enabled == 0);
6848 }
6849 
6850 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6851 	u32 raw_tag)
6852 {
6853 	if (unlikely(tag_index >= h->nr_cmds)) {
6854 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6855 		return 1;
6856 	}
6857 	return 0;
6858 }
6859 
6860 static inline void finish_cmd(struct CommandList *c)
6861 {
6862 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6863 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6864 			|| c->cmd_type == CMD_IOACCEL2))
6865 		complete_scsi_command(c);
6866 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6867 		complete(c->waiting);
6868 }
6869 
6870 /* process completion of an indexed ("direct lookup") command */
6871 static inline void process_indexed_cmd(struct ctlr_info *h,
6872 	u32 raw_tag)
6873 {
6874 	u32 tag_index;
6875 	struct CommandList *c;
6876 
6877 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6878 	if (!bad_tag(h, tag_index, raw_tag)) {
6879 		c = h->cmd_pool + tag_index;
6880 		finish_cmd(c);
6881 	}
6882 }
6883 
6884 /* Some controllers, like p400, will give us one interrupt
6885  * after a soft reset, even if we turned interrupts off.
6886  * Only need to check for this in the hpsa_xxx_discard_completions
6887  * functions.
6888  */
6889 static int ignore_bogus_interrupt(struct ctlr_info *h)
6890 {
6891 	if (likely(!reset_devices))
6892 		return 0;
6893 
6894 	if (likely(h->interrupts_enabled))
6895 		return 0;
6896 
6897 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6898 		"(known firmware bug.)  Ignoring.\n");
6899 
6900 	return 1;
6901 }
6902 
6903 /*
6904  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6905  * Relies on (h-q[x] == x) being true for x such that
6906  * 0 <= x < MAX_REPLY_QUEUES.
6907  */
6908 static struct ctlr_info *queue_to_hba(u8 *queue)
6909 {
6910 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6911 }
6912 
6913 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6914 {
6915 	struct ctlr_info *h = queue_to_hba(queue);
6916 	u8 q = *(u8 *) queue;
6917 	u32 raw_tag;
6918 
6919 	if (ignore_bogus_interrupt(h))
6920 		return IRQ_NONE;
6921 
6922 	if (interrupt_not_for_us(h))
6923 		return IRQ_NONE;
6924 	h->last_intr_timestamp = get_jiffies_64();
6925 	while (interrupt_pending(h)) {
6926 		raw_tag = get_next_completion(h, q);
6927 		while (raw_tag != FIFO_EMPTY)
6928 			raw_tag = next_command(h, q);
6929 	}
6930 	return IRQ_HANDLED;
6931 }
6932 
6933 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6934 {
6935 	struct ctlr_info *h = queue_to_hba(queue);
6936 	u32 raw_tag;
6937 	u8 q = *(u8 *) queue;
6938 
6939 	if (ignore_bogus_interrupt(h))
6940 		return IRQ_NONE;
6941 
6942 	h->last_intr_timestamp = get_jiffies_64();
6943 	raw_tag = get_next_completion(h, q);
6944 	while (raw_tag != FIFO_EMPTY)
6945 		raw_tag = next_command(h, q);
6946 	return IRQ_HANDLED;
6947 }
6948 
6949 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6950 {
6951 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6952 	u32 raw_tag;
6953 	u8 q = *(u8 *) queue;
6954 
6955 	if (interrupt_not_for_us(h))
6956 		return IRQ_NONE;
6957 	h->last_intr_timestamp = get_jiffies_64();
6958 	while (interrupt_pending(h)) {
6959 		raw_tag = get_next_completion(h, q);
6960 		while (raw_tag != FIFO_EMPTY) {
6961 			process_indexed_cmd(h, raw_tag);
6962 			raw_tag = next_command(h, q);
6963 		}
6964 	}
6965 	return IRQ_HANDLED;
6966 }
6967 
6968 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6969 {
6970 	struct ctlr_info *h = queue_to_hba(queue);
6971 	u32 raw_tag;
6972 	u8 q = *(u8 *) queue;
6973 
6974 	h->last_intr_timestamp = get_jiffies_64();
6975 	raw_tag = get_next_completion(h, q);
6976 	while (raw_tag != FIFO_EMPTY) {
6977 		process_indexed_cmd(h, raw_tag);
6978 		raw_tag = next_command(h, q);
6979 	}
6980 	return IRQ_HANDLED;
6981 }
6982 
6983 /* Send a message CDB to the firmware. Careful, this only works
6984  * in simple mode, not performant mode due to the tag lookup.
6985  * We only ever use this immediately after a controller reset.
6986  */
6987 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6988 			unsigned char type)
6989 {
6990 	struct Command {
6991 		struct CommandListHeader CommandHeader;
6992 		struct RequestBlock Request;
6993 		struct ErrDescriptor ErrorDescriptor;
6994 	};
6995 	struct Command *cmd;
6996 	static const size_t cmd_sz = sizeof(*cmd) +
6997 					sizeof(cmd->ErrorDescriptor);
6998 	dma_addr_t paddr64;
6999 	__le32 paddr32;
7000 	u32 tag;
7001 	void __iomem *vaddr;
7002 	int i, err;
7003 
7004 	vaddr = pci_ioremap_bar(pdev, 0);
7005 	if (vaddr == NULL)
7006 		return -ENOMEM;
7007 
7008 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7009 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7010 	 * memory.
7011 	 */
7012 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7013 	if (err) {
7014 		iounmap(vaddr);
7015 		return err;
7016 	}
7017 
7018 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7019 	if (cmd == NULL) {
7020 		iounmap(vaddr);
7021 		return -ENOMEM;
7022 	}
7023 
7024 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7025 	 * although there's no guarantee, we assume that the address is at
7026 	 * least 4-byte aligned (most likely, it's page-aligned).
7027 	 */
7028 	paddr32 = cpu_to_le32(paddr64);
7029 
7030 	cmd->CommandHeader.ReplyQueue = 0;
7031 	cmd->CommandHeader.SGList = 0;
7032 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7033 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7034 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7035 
7036 	cmd->Request.CDBLen = 16;
7037 	cmd->Request.type_attr_dir =
7038 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7039 	cmd->Request.Timeout = 0; /* Don't time out */
7040 	cmd->Request.CDB[0] = opcode;
7041 	cmd->Request.CDB[1] = type;
7042 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7043 	cmd->ErrorDescriptor.Addr =
7044 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7045 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7046 
7047 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7048 
7049 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7050 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7051 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7052 			break;
7053 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7054 	}
7055 
7056 	iounmap(vaddr);
7057 
7058 	/* we leak the DMA buffer here ... no choice since the controller could
7059 	 *  still complete the command.
7060 	 */
7061 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7062 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7063 			opcode, type);
7064 		return -ETIMEDOUT;
7065 	}
7066 
7067 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7068 
7069 	if (tag & HPSA_ERROR_BIT) {
7070 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7071 			opcode, type);
7072 		return -EIO;
7073 	}
7074 
7075 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7076 		opcode, type);
7077 	return 0;
7078 }
7079 
7080 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7081 
7082 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7083 	void __iomem *vaddr, u32 use_doorbell)
7084 {
7085 
7086 	if (use_doorbell) {
7087 		/* For everything after the P600, the PCI power state method
7088 		 * of resetting the controller doesn't work, so we have this
7089 		 * other way using the doorbell register.
7090 		 */
7091 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7092 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7093 
7094 		/* PMC hardware guys tell us we need a 10 second delay after
7095 		 * doorbell reset and before any attempt to talk to the board
7096 		 * at all to ensure that this actually works and doesn't fall
7097 		 * over in some weird corner cases.
7098 		 */
7099 		msleep(10000);
7100 	} else { /* Try to do it the PCI power state way */
7101 
7102 		/* Quoting from the Open CISS Specification: "The Power
7103 		 * Management Control/Status Register (CSR) controls the power
7104 		 * state of the device.  The normal operating state is D0,
7105 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7106 		 * the controller, place the interface device in D3 then to D0,
7107 		 * this causes a secondary PCI reset which will reset the
7108 		 * controller." */
7109 
7110 		int rc = 0;
7111 
7112 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7113 
7114 		/* enter the D3hot power management state */
7115 		rc = pci_set_power_state(pdev, PCI_D3hot);
7116 		if (rc)
7117 			return rc;
7118 
7119 		msleep(500);
7120 
7121 		/* enter the D0 power management state */
7122 		rc = pci_set_power_state(pdev, PCI_D0);
7123 		if (rc)
7124 			return rc;
7125 
7126 		/*
7127 		 * The P600 requires a small delay when changing states.
7128 		 * Otherwise we may think the board did not reset and we bail.
7129 		 * This for kdump only and is particular to the P600.
7130 		 */
7131 		msleep(500);
7132 	}
7133 	return 0;
7134 }
7135 
7136 static void init_driver_version(char *driver_version, int len)
7137 {
7138 	memset(driver_version, 0, len);
7139 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7140 }
7141 
7142 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7143 {
7144 	char *driver_version;
7145 	int i, size = sizeof(cfgtable->driver_version);
7146 
7147 	driver_version = kmalloc(size, GFP_KERNEL);
7148 	if (!driver_version)
7149 		return -ENOMEM;
7150 
7151 	init_driver_version(driver_version, size);
7152 	for (i = 0; i < size; i++)
7153 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7154 	kfree(driver_version);
7155 	return 0;
7156 }
7157 
7158 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7159 					  unsigned char *driver_ver)
7160 {
7161 	int i;
7162 
7163 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7164 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7165 }
7166 
7167 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7168 {
7169 
7170 	char *driver_ver, *old_driver_ver;
7171 	int rc, size = sizeof(cfgtable->driver_version);
7172 
7173 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7174 	if (!old_driver_ver)
7175 		return -ENOMEM;
7176 	driver_ver = old_driver_ver + size;
7177 
7178 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7179 	 * should have been changed, otherwise we know the reset failed.
7180 	 */
7181 	init_driver_version(old_driver_ver, size);
7182 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7183 	rc = !memcmp(driver_ver, old_driver_ver, size);
7184 	kfree(old_driver_ver);
7185 	return rc;
7186 }
7187 /* This does a hard reset of the controller using PCI power management
7188  * states or the using the doorbell register.
7189  */
7190 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7191 {
7192 	u64 cfg_offset;
7193 	u32 cfg_base_addr;
7194 	u64 cfg_base_addr_index;
7195 	void __iomem *vaddr;
7196 	unsigned long paddr;
7197 	u32 misc_fw_support;
7198 	int rc;
7199 	struct CfgTable __iomem *cfgtable;
7200 	u32 use_doorbell;
7201 	u16 command_register;
7202 
7203 	/* For controllers as old as the P600, this is very nearly
7204 	 * the same thing as
7205 	 *
7206 	 * pci_save_state(pci_dev);
7207 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7208 	 * pci_set_power_state(pci_dev, PCI_D0);
7209 	 * pci_restore_state(pci_dev);
7210 	 *
7211 	 * For controllers newer than the P600, the pci power state
7212 	 * method of resetting doesn't work so we have another way
7213 	 * using the doorbell register.
7214 	 */
7215 
7216 	if (!ctlr_is_resettable(board_id)) {
7217 		dev_warn(&pdev->dev, "Controller not resettable\n");
7218 		return -ENODEV;
7219 	}
7220 
7221 	/* if controller is soft- but not hard resettable... */
7222 	if (!ctlr_is_hard_resettable(board_id))
7223 		return -ENOTSUPP; /* try soft reset later. */
7224 
7225 	/* Save the PCI command register */
7226 	pci_read_config_word(pdev, 4, &command_register);
7227 	pci_save_state(pdev);
7228 
7229 	/* find the first memory BAR, so we can find the cfg table */
7230 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7231 	if (rc)
7232 		return rc;
7233 	vaddr = remap_pci_mem(paddr, 0x250);
7234 	if (!vaddr)
7235 		return -ENOMEM;
7236 
7237 	/* find cfgtable in order to check if reset via doorbell is supported */
7238 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7239 					&cfg_base_addr_index, &cfg_offset);
7240 	if (rc)
7241 		goto unmap_vaddr;
7242 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7243 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7244 	if (!cfgtable) {
7245 		rc = -ENOMEM;
7246 		goto unmap_vaddr;
7247 	}
7248 	rc = write_driver_ver_to_cfgtable(cfgtable);
7249 	if (rc)
7250 		goto unmap_cfgtable;
7251 
7252 	/* If reset via doorbell register is supported, use that.
7253 	 * There are two such methods.  Favor the newest method.
7254 	 */
7255 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7256 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7257 	if (use_doorbell) {
7258 		use_doorbell = DOORBELL_CTLR_RESET2;
7259 	} else {
7260 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7261 		if (use_doorbell) {
7262 			dev_warn(&pdev->dev,
7263 				"Soft reset not supported. Firmware update is required.\n");
7264 			rc = -ENOTSUPP; /* try soft reset */
7265 			goto unmap_cfgtable;
7266 		}
7267 	}
7268 
7269 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7270 	if (rc)
7271 		goto unmap_cfgtable;
7272 
7273 	pci_restore_state(pdev);
7274 	pci_write_config_word(pdev, 4, command_register);
7275 
7276 	/* Some devices (notably the HP Smart Array 5i Controller)
7277 	   need a little pause here */
7278 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7279 
7280 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7281 	if (rc) {
7282 		dev_warn(&pdev->dev,
7283 			"Failed waiting for board to become ready after hard reset\n");
7284 		goto unmap_cfgtable;
7285 	}
7286 
7287 	rc = controller_reset_failed(vaddr);
7288 	if (rc < 0)
7289 		goto unmap_cfgtable;
7290 	if (rc) {
7291 		dev_warn(&pdev->dev, "Unable to successfully reset "
7292 			"controller. Will try soft reset.\n");
7293 		rc = -ENOTSUPP;
7294 	} else {
7295 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7296 	}
7297 
7298 unmap_cfgtable:
7299 	iounmap(cfgtable);
7300 
7301 unmap_vaddr:
7302 	iounmap(vaddr);
7303 	return rc;
7304 }
7305 
7306 /*
7307  *  We cannot read the structure directly, for portability we must use
7308  *   the io functions.
7309  *   This is for debug only.
7310  */
7311 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7312 {
7313 #ifdef HPSA_DEBUG
7314 	int i;
7315 	char temp_name[17];
7316 
7317 	dev_info(dev, "Controller Configuration information\n");
7318 	dev_info(dev, "------------------------------------\n");
7319 	for (i = 0; i < 4; i++)
7320 		temp_name[i] = readb(&(tb->Signature[i]));
7321 	temp_name[4] = '\0';
7322 	dev_info(dev, "   Signature = %s\n", temp_name);
7323 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7324 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7325 	       readl(&(tb->TransportSupport)));
7326 	dev_info(dev, "   Transport methods active = 0x%x\n",
7327 	       readl(&(tb->TransportActive)));
7328 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7329 	       readl(&(tb->HostWrite.TransportRequest)));
7330 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7331 	       readl(&(tb->HostWrite.CoalIntDelay)));
7332 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7333 	       readl(&(tb->HostWrite.CoalIntCount)));
7334 	dev_info(dev, "   Max outstanding commands = %d\n",
7335 	       readl(&(tb->CmdsOutMax)));
7336 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7337 	for (i = 0; i < 16; i++)
7338 		temp_name[i] = readb(&(tb->ServerName[i]));
7339 	temp_name[16] = '\0';
7340 	dev_info(dev, "   Server Name = %s\n", temp_name);
7341 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7342 		readl(&(tb->HeartBeat)));
7343 #endif				/* HPSA_DEBUG */
7344 }
7345 
7346 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7347 {
7348 	int i, offset, mem_type, bar_type;
7349 
7350 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7351 		return 0;
7352 	offset = 0;
7353 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7354 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7355 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7356 			offset += 4;
7357 		else {
7358 			mem_type = pci_resource_flags(pdev, i) &
7359 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7360 			switch (mem_type) {
7361 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7362 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7363 				offset += 4;	/* 32 bit */
7364 				break;
7365 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7366 				offset += 8;
7367 				break;
7368 			default:	/* reserved in PCI 2.2 */
7369 				dev_warn(&pdev->dev,
7370 				       "base address is invalid\n");
7371 				return -1;
7372 				break;
7373 			}
7374 		}
7375 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7376 			return i + 1;
7377 	}
7378 	return -1;
7379 }
7380 
7381 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7382 {
7383 	pci_free_irq_vectors(h->pdev);
7384 	h->msix_vectors = 0;
7385 }
7386 
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388  * controllers that are capable. If not, we use legacy INTx mode.
7389  */
7390 static int hpsa_interrupt_mode(struct ctlr_info *h)
7391 {
7392 	unsigned int flags = PCI_IRQ_LEGACY;
7393 	int ret;
7394 
7395 	/* Some boards advertise MSI but don't really support it */
7396 	switch (h->board_id) {
7397 	case 0x40700E11:
7398 	case 0x40800E11:
7399 	case 0x40820E11:
7400 	case 0x40830E11:
7401 		break;
7402 	default:
7403 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7404 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7405 		if (ret > 0) {
7406 			h->msix_vectors = ret;
7407 			return 0;
7408 		}
7409 
7410 		flags |= PCI_IRQ_MSI;
7411 		break;
7412 	}
7413 
7414 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7415 	if (ret < 0)
7416 		return ret;
7417 	return 0;
7418 }
7419 
7420 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7421 				bool *legacy_board)
7422 {
7423 	int i;
7424 	u32 subsystem_vendor_id, subsystem_device_id;
7425 
7426 	subsystem_vendor_id = pdev->subsystem_vendor;
7427 	subsystem_device_id = pdev->subsystem_device;
7428 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7429 		    subsystem_vendor_id;
7430 
7431 	if (legacy_board)
7432 		*legacy_board = false;
7433 	for (i = 0; i < ARRAY_SIZE(products); i++)
7434 		if (*board_id == products[i].board_id) {
7435 			if (products[i].access != &SA5A_access &&
7436 			    products[i].access != &SA5B_access)
7437 				return i;
7438 			dev_warn(&pdev->dev,
7439 				 "legacy board ID: 0x%08x\n",
7440 				 *board_id);
7441 			if (legacy_board)
7442 			    *legacy_board = true;
7443 			return i;
7444 		}
7445 
7446 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7447 	if (legacy_board)
7448 		*legacy_board = true;
7449 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7450 }
7451 
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7453 				    unsigned long *memory_bar)
7454 {
7455 	int i;
7456 
7457 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7458 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7459 			/* addressing mode bits already removed */
7460 			*memory_bar = pci_resource_start(pdev, i);
7461 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7462 				*memory_bar);
7463 			return 0;
7464 		}
7465 	dev_warn(&pdev->dev, "no memory BAR found\n");
7466 	return -ENODEV;
7467 }
7468 
7469 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7470 				     int wait_for_ready)
7471 {
7472 	int i, iterations;
7473 	u32 scratchpad;
7474 	if (wait_for_ready)
7475 		iterations = HPSA_BOARD_READY_ITERATIONS;
7476 	else
7477 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7478 
7479 	for (i = 0; i < iterations; i++) {
7480 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7481 		if (wait_for_ready) {
7482 			if (scratchpad == HPSA_FIRMWARE_READY)
7483 				return 0;
7484 		} else {
7485 			if (scratchpad != HPSA_FIRMWARE_READY)
7486 				return 0;
7487 		}
7488 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7489 	}
7490 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7491 	return -ENODEV;
7492 }
7493 
7494 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7495 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7496 			       u64 *cfg_offset)
7497 {
7498 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7499 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7500 	*cfg_base_addr &= (u32) 0x0000ffff;
7501 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7502 	if (*cfg_base_addr_index == -1) {
7503 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7504 		return -ENODEV;
7505 	}
7506 	return 0;
7507 }
7508 
7509 static void hpsa_free_cfgtables(struct ctlr_info *h)
7510 {
7511 	if (h->transtable) {
7512 		iounmap(h->transtable);
7513 		h->transtable = NULL;
7514 	}
7515 	if (h->cfgtable) {
7516 		iounmap(h->cfgtable);
7517 		h->cfgtable = NULL;
7518 	}
7519 }
7520 
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7523 + * */
7524 static int hpsa_find_cfgtables(struct ctlr_info *h)
7525 {
7526 	u64 cfg_offset;
7527 	u32 cfg_base_addr;
7528 	u64 cfg_base_addr_index;
7529 	u32 trans_offset;
7530 	int rc;
7531 
7532 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7533 		&cfg_base_addr_index, &cfg_offset);
7534 	if (rc)
7535 		return rc;
7536 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7537 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7538 	if (!h->cfgtable) {
7539 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7540 		return -ENOMEM;
7541 	}
7542 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7543 	if (rc)
7544 		return rc;
7545 	/* Find performant mode table. */
7546 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7547 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7548 				cfg_base_addr_index)+cfg_offset+trans_offset,
7549 				sizeof(*h->transtable));
7550 	if (!h->transtable) {
7551 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7552 		hpsa_free_cfgtables(h);
7553 		return -ENOMEM;
7554 	}
7555 	return 0;
7556 }
7557 
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7559 {
7560 #define MIN_MAX_COMMANDS 16
7561 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7562 
7563 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7564 
7565 	/* Limit commands in memory limited kdump scenario. */
7566 	if (reset_devices && h->max_commands > 32)
7567 		h->max_commands = 32;
7568 
7569 	if (h->max_commands < MIN_MAX_COMMANDS) {
7570 		dev_warn(&h->pdev->dev,
7571 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7572 			h->max_commands,
7573 			MIN_MAX_COMMANDS);
7574 		h->max_commands = MIN_MAX_COMMANDS;
7575 	}
7576 }
7577 
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579  * then we know that chained SG blocks work.  (Original smart arrays did not
7580  * support chained SG blocks and would return zero for max sg entries.)
7581  */
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7583 {
7584 	return h->maxsgentries > 512;
7585 }
7586 
7587 /* Interrogate the hardware for some limits:
7588  * max commands, max SG elements without chaining, and with chaining,
7589  * SG chain block size, etc.
7590  */
7591 static void hpsa_find_board_params(struct ctlr_info *h)
7592 {
7593 	hpsa_get_max_perf_mode_cmds(h);
7594 	h->nr_cmds = h->max_commands;
7595 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7596 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7597 	if (hpsa_supports_chained_sg_blocks(h)) {
7598 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7599 		h->max_cmd_sg_entries = 32;
7600 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7601 		h->maxsgentries--; /* save one for chain pointer */
7602 	} else {
7603 		/*
7604 		 * Original smart arrays supported at most 31 s/g entries
7605 		 * embedded inline in the command (trying to use more
7606 		 * would lock up the controller)
7607 		 */
7608 		h->max_cmd_sg_entries = 31;
7609 		h->maxsgentries = 31; /* default to traditional values */
7610 		h->chainsize = 0;
7611 	}
7612 
7613 	/* Find out what task management functions are supported and cache */
7614 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7615 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7616 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7617 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7618 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7619 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7620 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7621 }
7622 
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7624 {
7625 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7626 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7627 		return false;
7628 	}
7629 	return true;
7630 }
7631 
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7633 {
7634 	u32 driver_support;
7635 
7636 	driver_support = readl(&(h->cfgtable->driver_support));
7637 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7638 #ifdef CONFIG_X86
7639 	driver_support |= ENABLE_SCSI_PREFETCH;
7640 #endif
7641 	driver_support |= ENABLE_UNIT_ATTN;
7642 	writel(driver_support, &(h->cfgtable->driver_support));
7643 }
7644 
7645 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7646  * in a prefetch beyond physical memory.
7647  */
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7649 {
7650 	u32 dma_prefetch;
7651 
7652 	if (h->board_id != 0x3225103C)
7653 		return;
7654 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7655 	dma_prefetch |= 0x8000;
7656 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7657 }
7658 
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7660 {
7661 	int i;
7662 	u32 doorbell_value;
7663 	unsigned long flags;
7664 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7665 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7666 		spin_lock_irqsave(&h->lock, flags);
7667 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7668 		spin_unlock_irqrestore(&h->lock, flags);
7669 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7670 			goto done;
7671 		/* delay and try again */
7672 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7673 	}
7674 	return -ENODEV;
7675 done:
7676 	return 0;
7677 }
7678 
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7680 {
7681 	int i;
7682 	u32 doorbell_value;
7683 	unsigned long flags;
7684 
7685 	/* under certain very rare conditions, this can take awhile.
7686 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687 	 * as we enter this code.)
7688 	 */
7689 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7690 		if (h->remove_in_progress)
7691 			goto done;
7692 		spin_lock_irqsave(&h->lock, flags);
7693 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7694 		spin_unlock_irqrestore(&h->lock, flags);
7695 		if (!(doorbell_value & CFGTBL_ChangeReq))
7696 			goto done;
7697 		/* delay and try again */
7698 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7699 	}
7700 	return -ENODEV;
7701 done:
7702 	return 0;
7703 }
7704 
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7707 {
7708 	u32 trans_support;
7709 
7710 	trans_support = readl(&(h->cfgtable->TransportSupport));
7711 	if (!(trans_support & SIMPLE_MODE))
7712 		return -ENOTSUPP;
7713 
7714 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7715 
7716 	/* Update the field, and then ring the doorbell */
7717 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7718 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7719 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7720 	if (hpsa_wait_for_mode_change_ack(h))
7721 		goto error;
7722 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7723 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7724 		goto error;
7725 	h->transMethod = CFGTBL_Trans_Simple;
7726 	return 0;
7727 error:
7728 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7729 	return -ENODEV;
7730 }
7731 
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info *h)
7734 {
7735 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7736 	iounmap(h->vaddr);			/* pci_init 3 */
7737 	h->vaddr = NULL;
7738 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7739 	/*
7740 	 * call pci_disable_device before pci_release_regions per
7741 	 * Documentation/PCI/pci.txt
7742 	 */
7743 	pci_disable_device(h->pdev);		/* pci_init 1 */
7744 	pci_release_regions(h->pdev);		/* pci_init 2 */
7745 }
7746 
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info *h)
7749 {
7750 	int prod_index, err;
7751 	bool legacy_board;
7752 
7753 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7754 	if (prod_index < 0)
7755 		return prod_index;
7756 	h->product_name = products[prod_index].product_name;
7757 	h->access = *(products[prod_index].access);
7758 	h->legacy_board = legacy_board;
7759 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7760 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7761 
7762 	err = pci_enable_device(h->pdev);
7763 	if (err) {
7764 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7765 		pci_disable_device(h->pdev);
7766 		return err;
7767 	}
7768 
7769 	err = pci_request_regions(h->pdev, HPSA);
7770 	if (err) {
7771 		dev_err(&h->pdev->dev,
7772 			"failed to obtain PCI resources\n");
7773 		pci_disable_device(h->pdev);
7774 		return err;
7775 	}
7776 
7777 	pci_set_master(h->pdev);
7778 
7779 	err = hpsa_interrupt_mode(h);
7780 	if (err)
7781 		goto clean1;
7782 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7783 	if (err)
7784 		goto clean2;	/* intmode+region, pci */
7785 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7786 	if (!h->vaddr) {
7787 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7788 		err = -ENOMEM;
7789 		goto clean2;	/* intmode+region, pci */
7790 	}
7791 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7792 	if (err)
7793 		goto clean3;	/* vaddr, intmode+region, pci */
7794 	err = hpsa_find_cfgtables(h);
7795 	if (err)
7796 		goto clean3;	/* vaddr, intmode+region, pci */
7797 	hpsa_find_board_params(h);
7798 
7799 	if (!hpsa_CISS_signature_present(h)) {
7800 		err = -ENODEV;
7801 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7802 	}
7803 	hpsa_set_driver_support_bits(h);
7804 	hpsa_p600_dma_prefetch_quirk(h);
7805 	err = hpsa_enter_simple_mode(h);
7806 	if (err)
7807 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7808 	return 0;
7809 
7810 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7811 	hpsa_free_cfgtables(h);
7812 clean3:	/* vaddr, intmode+region, pci */
7813 	iounmap(h->vaddr);
7814 	h->vaddr = NULL;
7815 clean2:	/* intmode+region, pci */
7816 	hpsa_disable_interrupt_mode(h);
7817 clean1:
7818 	/*
7819 	 * call pci_disable_device before pci_release_regions per
7820 	 * Documentation/PCI/pci.txt
7821 	 */
7822 	pci_disable_device(h->pdev);
7823 	pci_release_regions(h->pdev);
7824 	return err;
7825 }
7826 
7827 static void hpsa_hba_inquiry(struct ctlr_info *h)
7828 {
7829 	int rc;
7830 
7831 #define HBA_INQUIRY_BYTE_COUNT 64
7832 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7833 	if (!h->hba_inquiry_data)
7834 		return;
7835 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7836 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7837 	if (rc != 0) {
7838 		kfree(h->hba_inquiry_data);
7839 		h->hba_inquiry_data = NULL;
7840 	}
7841 }
7842 
7843 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7844 {
7845 	int rc, i;
7846 	void __iomem *vaddr;
7847 
7848 	if (!reset_devices)
7849 		return 0;
7850 
7851 	/* kdump kernel is loading, we don't know in which state is
7852 	 * the pci interface. The dev->enable_cnt is equal zero
7853 	 * so we call enable+disable, wait a while and switch it on.
7854 	 */
7855 	rc = pci_enable_device(pdev);
7856 	if (rc) {
7857 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7858 		return -ENODEV;
7859 	}
7860 	pci_disable_device(pdev);
7861 	msleep(260);			/* a randomly chosen number */
7862 	rc = pci_enable_device(pdev);
7863 	if (rc) {
7864 		dev_warn(&pdev->dev, "failed to enable device.\n");
7865 		return -ENODEV;
7866 	}
7867 
7868 	pci_set_master(pdev);
7869 
7870 	vaddr = pci_ioremap_bar(pdev, 0);
7871 	if (vaddr == NULL) {
7872 		rc = -ENOMEM;
7873 		goto out_disable;
7874 	}
7875 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7876 	iounmap(vaddr);
7877 
7878 	/* Reset the controller with a PCI power-cycle or via doorbell */
7879 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7880 
7881 	/* -ENOTSUPP here means we cannot reset the controller
7882 	 * but it's already (and still) up and running in
7883 	 * "performant mode".  Or, it might be 640x, which can't reset
7884 	 * due to concerns about shared bbwc between 6402/6404 pair.
7885 	 */
7886 	if (rc)
7887 		goto out_disable;
7888 
7889 	/* Now try to get the controller to respond to a no-op */
7890 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7891 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7892 		if (hpsa_noop(pdev) == 0)
7893 			break;
7894 		else
7895 			dev_warn(&pdev->dev, "no-op failed%s\n",
7896 					(i < 11 ? "; re-trying" : ""));
7897 	}
7898 
7899 out_disable:
7900 
7901 	pci_disable_device(pdev);
7902 	return rc;
7903 }
7904 
7905 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7906 {
7907 	kfree(h->cmd_pool_bits);
7908 	h->cmd_pool_bits = NULL;
7909 	if (h->cmd_pool) {
7910 		pci_free_consistent(h->pdev,
7911 				h->nr_cmds * sizeof(struct CommandList),
7912 				h->cmd_pool,
7913 				h->cmd_pool_dhandle);
7914 		h->cmd_pool = NULL;
7915 		h->cmd_pool_dhandle = 0;
7916 	}
7917 	if (h->errinfo_pool) {
7918 		pci_free_consistent(h->pdev,
7919 				h->nr_cmds * sizeof(struct ErrorInfo),
7920 				h->errinfo_pool,
7921 				h->errinfo_pool_dhandle);
7922 		h->errinfo_pool = NULL;
7923 		h->errinfo_pool_dhandle = 0;
7924 	}
7925 }
7926 
7927 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7928 {
7929 	h->cmd_pool_bits = kzalloc(
7930 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7931 		sizeof(unsigned long), GFP_KERNEL);
7932 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7933 		    h->nr_cmds * sizeof(*h->cmd_pool),
7934 		    &(h->cmd_pool_dhandle));
7935 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7936 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7937 		    &(h->errinfo_pool_dhandle));
7938 	if ((h->cmd_pool_bits == NULL)
7939 	    || (h->cmd_pool == NULL)
7940 	    || (h->errinfo_pool == NULL)) {
7941 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7942 		goto clean_up;
7943 	}
7944 	hpsa_preinitialize_commands(h);
7945 	return 0;
7946 clean_up:
7947 	hpsa_free_cmd_pool(h);
7948 	return -ENOMEM;
7949 }
7950 
7951 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7952 static void hpsa_free_irqs(struct ctlr_info *h)
7953 {
7954 	int i;
7955 
7956 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7957 		/* Single reply queue, only one irq to free */
7958 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7959 		h->q[h->intr_mode] = 0;
7960 		return;
7961 	}
7962 
7963 	for (i = 0; i < h->msix_vectors; i++) {
7964 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7965 		h->q[i] = 0;
7966 	}
7967 	for (; i < MAX_REPLY_QUEUES; i++)
7968 		h->q[i] = 0;
7969 }
7970 
7971 /* returns 0 on success; cleans up and returns -Enn on error */
7972 static int hpsa_request_irqs(struct ctlr_info *h,
7973 	irqreturn_t (*msixhandler)(int, void *),
7974 	irqreturn_t (*intxhandler)(int, void *))
7975 {
7976 	int rc, i;
7977 
7978 	/*
7979 	 * initialize h->q[x] = x so that interrupt handlers know which
7980 	 * queue to process.
7981 	 */
7982 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7983 		h->q[i] = (u8) i;
7984 
7985 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7986 		/* If performant mode and MSI-X, use multiple reply queues */
7987 		for (i = 0; i < h->msix_vectors; i++) {
7988 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7989 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7990 					0, h->intrname[i],
7991 					&h->q[i]);
7992 			if (rc) {
7993 				int j;
7994 
7995 				dev_err(&h->pdev->dev,
7996 					"failed to get irq %d for %s\n",
7997 				       pci_irq_vector(h->pdev, i), h->devname);
7998 				for (j = 0; j < i; j++) {
7999 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8000 					h->q[j] = 0;
8001 				}
8002 				for (; j < MAX_REPLY_QUEUES; j++)
8003 					h->q[j] = 0;
8004 				return rc;
8005 			}
8006 		}
8007 	} else {
8008 		/* Use single reply pool */
8009 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8010 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8011 				h->msix_vectors ? "x" : "");
8012 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8013 				msixhandler, 0,
8014 				h->intrname[0],
8015 				&h->q[h->intr_mode]);
8016 		} else {
8017 			sprintf(h->intrname[h->intr_mode],
8018 				"%s-intx", h->devname);
8019 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8020 				intxhandler, IRQF_SHARED,
8021 				h->intrname[0],
8022 				&h->q[h->intr_mode]);
8023 		}
8024 	}
8025 	if (rc) {
8026 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8027 		       pci_irq_vector(h->pdev, 0), h->devname);
8028 		hpsa_free_irqs(h);
8029 		return -ENODEV;
8030 	}
8031 	return 0;
8032 }
8033 
8034 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8035 {
8036 	int rc;
8037 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8038 
8039 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8040 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8041 	if (rc) {
8042 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8043 		return rc;
8044 	}
8045 
8046 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8047 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8048 	if (rc) {
8049 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8050 			"after soft reset.\n");
8051 		return rc;
8052 	}
8053 
8054 	return 0;
8055 }
8056 
8057 static void hpsa_free_reply_queues(struct ctlr_info *h)
8058 {
8059 	int i;
8060 
8061 	for (i = 0; i < h->nreply_queues; i++) {
8062 		if (!h->reply_queue[i].head)
8063 			continue;
8064 		pci_free_consistent(h->pdev,
8065 					h->reply_queue_size,
8066 					h->reply_queue[i].head,
8067 					h->reply_queue[i].busaddr);
8068 		h->reply_queue[i].head = NULL;
8069 		h->reply_queue[i].busaddr = 0;
8070 	}
8071 	h->reply_queue_size = 0;
8072 }
8073 
8074 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8075 {
8076 	hpsa_free_performant_mode(h);		/* init_one 7 */
8077 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8078 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8079 	hpsa_free_irqs(h);			/* init_one 4 */
8080 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8081 	h->scsi_host = NULL;			/* init_one 3 */
8082 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8083 	free_percpu(h->lockup_detected);	/* init_one 2 */
8084 	h->lockup_detected = NULL;		/* init_one 2 */
8085 	if (h->resubmit_wq) {
8086 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8087 		h->resubmit_wq = NULL;
8088 	}
8089 	if (h->rescan_ctlr_wq) {
8090 		destroy_workqueue(h->rescan_ctlr_wq);
8091 		h->rescan_ctlr_wq = NULL;
8092 	}
8093 	kfree(h);				/* init_one 1 */
8094 }
8095 
8096 /* Called when controller lockup detected. */
8097 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8098 {
8099 	int i, refcount;
8100 	struct CommandList *c;
8101 	int failcount = 0;
8102 
8103 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8104 	for (i = 0; i < h->nr_cmds; i++) {
8105 		c = h->cmd_pool + i;
8106 		refcount = atomic_inc_return(&c->refcount);
8107 		if (refcount > 1) {
8108 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8109 			finish_cmd(c);
8110 			atomic_dec(&h->commands_outstanding);
8111 			failcount++;
8112 		}
8113 		cmd_free(h, c);
8114 	}
8115 	dev_warn(&h->pdev->dev,
8116 		"failed %d commands in fail_all\n", failcount);
8117 }
8118 
8119 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8120 {
8121 	int cpu;
8122 
8123 	for_each_online_cpu(cpu) {
8124 		u32 *lockup_detected;
8125 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8126 		*lockup_detected = value;
8127 	}
8128 	wmb(); /* be sure the per-cpu variables are out to memory */
8129 }
8130 
8131 static void controller_lockup_detected(struct ctlr_info *h)
8132 {
8133 	unsigned long flags;
8134 	u32 lockup_detected;
8135 
8136 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8137 	spin_lock_irqsave(&h->lock, flags);
8138 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8139 	if (!lockup_detected) {
8140 		/* no heartbeat, but controller gave us a zero. */
8141 		dev_warn(&h->pdev->dev,
8142 			"lockup detected after %d but scratchpad register is zero\n",
8143 			h->heartbeat_sample_interval / HZ);
8144 		lockup_detected = 0xffffffff;
8145 	}
8146 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8147 	spin_unlock_irqrestore(&h->lock, flags);
8148 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8149 			lockup_detected, h->heartbeat_sample_interval / HZ);
8150 	if (lockup_detected == 0xffff0000) {
8151 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8152 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8153 	}
8154 	pci_disable_device(h->pdev);
8155 	fail_all_outstanding_cmds(h);
8156 }
8157 
8158 static int detect_controller_lockup(struct ctlr_info *h)
8159 {
8160 	u64 now;
8161 	u32 heartbeat;
8162 	unsigned long flags;
8163 
8164 	now = get_jiffies_64();
8165 	/* If we've received an interrupt recently, we're ok. */
8166 	if (time_after64(h->last_intr_timestamp +
8167 				(h->heartbeat_sample_interval), now))
8168 		return false;
8169 
8170 	/*
8171 	 * If we've already checked the heartbeat recently, we're ok.
8172 	 * This could happen if someone sends us a signal. We
8173 	 * otherwise don't care about signals in this thread.
8174 	 */
8175 	if (time_after64(h->last_heartbeat_timestamp +
8176 				(h->heartbeat_sample_interval), now))
8177 		return false;
8178 
8179 	/* If heartbeat has not changed since we last looked, we're not ok. */
8180 	spin_lock_irqsave(&h->lock, flags);
8181 	heartbeat = readl(&h->cfgtable->HeartBeat);
8182 	spin_unlock_irqrestore(&h->lock, flags);
8183 	if (h->last_heartbeat == heartbeat) {
8184 		controller_lockup_detected(h);
8185 		return true;
8186 	}
8187 
8188 	/* We're ok. */
8189 	h->last_heartbeat = heartbeat;
8190 	h->last_heartbeat_timestamp = now;
8191 	return false;
8192 }
8193 
8194 /*
8195  * Set ioaccel status for all ioaccel volumes.
8196  *
8197  * Called from monitor controller worker (hpsa_event_monitor_worker)
8198  *
8199  * A Volume (or Volumes that comprise an Array set may be undergoing a
8200  * transformation, so we will be turning off ioaccel for all volumes that
8201  * make up the Array.
8202  */
8203 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8204 {
8205 	int rc;
8206 	int i;
8207 	u8 ioaccel_status;
8208 	unsigned char *buf;
8209 	struct hpsa_scsi_dev_t *device;
8210 
8211 	if (!h)
8212 		return;
8213 
8214 	buf = kmalloc(64, GFP_KERNEL);
8215 	if (!buf)
8216 		return;
8217 
8218 	/*
8219 	 * Run through current device list used during I/O requests.
8220 	 */
8221 	for (i = 0; i < h->ndevices; i++) {
8222 		device = h->dev[i];
8223 
8224 		if (!device)
8225 			continue;
8226 		if (!device->scsi3addr)
8227 			continue;
8228 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8229 						HPSA_VPD_LV_IOACCEL_STATUS))
8230 			continue;
8231 
8232 		memset(buf, 0, 64);
8233 
8234 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8235 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8236 					buf, 64);
8237 		if (rc != 0)
8238 			continue;
8239 
8240 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8241 		device->offload_config =
8242 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8243 		if (device->offload_config)
8244 			device->offload_to_be_enabled =
8245 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8246 
8247 		/*
8248 		 * Immediately turn off ioaccel for any volume the
8249 		 * controller tells us to. Some of the reasons could be:
8250 		 *    transformation - change to the LVs of an Array.
8251 		 *    degraded volume - component failure
8252 		 *
8253 		 * If ioaccel is to be re-enabled, re-enable later during the
8254 		 * scan operation so the driver can get a fresh raidmap
8255 		 * before turning ioaccel back on.
8256 		 *
8257 		 */
8258 		if (!device->offload_to_be_enabled)
8259 			device->offload_enabled = 0;
8260 	}
8261 
8262 	kfree(buf);
8263 }
8264 
8265 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8266 {
8267 	char *event_type;
8268 
8269 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8270 		return;
8271 
8272 	/* Ask the controller to clear the events we're handling. */
8273 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8274 			| CFGTBL_Trans_io_accel2)) &&
8275 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8276 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8277 
8278 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8279 			event_type = "state change";
8280 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8281 			event_type = "configuration change";
8282 		/* Stop sending new RAID offload reqs via the IO accelerator */
8283 		scsi_block_requests(h->scsi_host);
8284 		hpsa_set_ioaccel_status(h);
8285 		hpsa_drain_accel_commands(h);
8286 		/* Set 'accelerator path config change' bit */
8287 		dev_warn(&h->pdev->dev,
8288 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8289 			h->events, event_type);
8290 		writel(h->events, &(h->cfgtable->clear_event_notify));
8291 		/* Set the "clear event notify field update" bit 6 */
8292 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8293 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8294 		hpsa_wait_for_clear_event_notify_ack(h);
8295 		scsi_unblock_requests(h->scsi_host);
8296 	} else {
8297 		/* Acknowledge controller notification events. */
8298 		writel(h->events, &(h->cfgtable->clear_event_notify));
8299 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8300 		hpsa_wait_for_clear_event_notify_ack(h);
8301 	}
8302 	return;
8303 }
8304 
8305 /* Check a register on the controller to see if there are configuration
8306  * changes (added/changed/removed logical drives, etc.) which mean that
8307  * we should rescan the controller for devices.
8308  * Also check flag for driver-initiated rescan.
8309  */
8310 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8311 {
8312 	if (h->drv_req_rescan) {
8313 		h->drv_req_rescan = 0;
8314 		return 1;
8315 	}
8316 
8317 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8318 		return 0;
8319 
8320 	h->events = readl(&(h->cfgtable->event_notify));
8321 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8322 }
8323 
8324 /*
8325  * Check if any of the offline devices have become ready
8326  */
8327 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8328 {
8329 	unsigned long flags;
8330 	struct offline_device_entry *d;
8331 	struct list_head *this, *tmp;
8332 
8333 	spin_lock_irqsave(&h->offline_device_lock, flags);
8334 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8335 		d = list_entry(this, struct offline_device_entry,
8336 				offline_list);
8337 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8338 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8339 			spin_lock_irqsave(&h->offline_device_lock, flags);
8340 			list_del(&d->offline_list);
8341 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8342 			return 1;
8343 		}
8344 		spin_lock_irqsave(&h->offline_device_lock, flags);
8345 	}
8346 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347 	return 0;
8348 }
8349 
8350 static int hpsa_luns_changed(struct ctlr_info *h)
8351 {
8352 	int rc = 1; /* assume there are changes */
8353 	struct ReportLUNdata *logdev = NULL;
8354 
8355 	/* if we can't find out if lun data has changed,
8356 	 * assume that it has.
8357 	 */
8358 
8359 	if (!h->lastlogicals)
8360 		return rc;
8361 
8362 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8363 	if (!logdev)
8364 		return rc;
8365 
8366 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8367 		dev_warn(&h->pdev->dev,
8368 			"report luns failed, can't track lun changes.\n");
8369 		goto out;
8370 	}
8371 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8372 		dev_info(&h->pdev->dev,
8373 			"Lun changes detected.\n");
8374 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8375 		goto out;
8376 	} else
8377 		rc = 0; /* no changes detected. */
8378 out:
8379 	kfree(logdev);
8380 	return rc;
8381 }
8382 
8383 static void hpsa_perform_rescan(struct ctlr_info *h)
8384 {
8385 	struct Scsi_Host *sh = NULL;
8386 	unsigned long flags;
8387 
8388 	/*
8389 	 * Do the scan after the reset
8390 	 */
8391 	spin_lock_irqsave(&h->reset_lock, flags);
8392 	if (h->reset_in_progress) {
8393 		h->drv_req_rescan = 1;
8394 		spin_unlock_irqrestore(&h->reset_lock, flags);
8395 		return;
8396 	}
8397 	spin_unlock_irqrestore(&h->reset_lock, flags);
8398 
8399 	sh = scsi_host_get(h->scsi_host);
8400 	if (sh != NULL) {
8401 		hpsa_scan_start(sh);
8402 		scsi_host_put(sh);
8403 		h->drv_req_rescan = 0;
8404 	}
8405 }
8406 
8407 /*
8408  * watch for controller events
8409  */
8410 static void hpsa_event_monitor_worker(struct work_struct *work)
8411 {
8412 	struct ctlr_info *h = container_of(to_delayed_work(work),
8413 					struct ctlr_info, event_monitor_work);
8414 	unsigned long flags;
8415 
8416 	spin_lock_irqsave(&h->lock, flags);
8417 	if (h->remove_in_progress) {
8418 		spin_unlock_irqrestore(&h->lock, flags);
8419 		return;
8420 	}
8421 	spin_unlock_irqrestore(&h->lock, flags);
8422 
8423 	if (hpsa_ctlr_needs_rescan(h)) {
8424 		hpsa_ack_ctlr_events(h);
8425 		hpsa_perform_rescan(h);
8426 	}
8427 
8428 	spin_lock_irqsave(&h->lock, flags);
8429 	if (!h->remove_in_progress)
8430 		schedule_delayed_work(&h->event_monitor_work,
8431 					HPSA_EVENT_MONITOR_INTERVAL);
8432 	spin_unlock_irqrestore(&h->lock, flags);
8433 }
8434 
8435 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8436 {
8437 	unsigned long flags;
8438 	struct ctlr_info *h = container_of(to_delayed_work(work),
8439 					struct ctlr_info, rescan_ctlr_work);
8440 
8441 	spin_lock_irqsave(&h->lock, flags);
8442 	if (h->remove_in_progress) {
8443 		spin_unlock_irqrestore(&h->lock, flags);
8444 		return;
8445 	}
8446 	spin_unlock_irqrestore(&h->lock, flags);
8447 
8448 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8449 		hpsa_perform_rescan(h);
8450 	} else if (h->discovery_polling) {
8451 		if (hpsa_luns_changed(h)) {
8452 			dev_info(&h->pdev->dev,
8453 				"driver discovery polling rescan.\n");
8454 			hpsa_perform_rescan(h);
8455 		}
8456 	}
8457 	spin_lock_irqsave(&h->lock, flags);
8458 	if (!h->remove_in_progress)
8459 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8460 				h->heartbeat_sample_interval);
8461 	spin_unlock_irqrestore(&h->lock, flags);
8462 }
8463 
8464 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8465 {
8466 	unsigned long flags;
8467 	struct ctlr_info *h = container_of(to_delayed_work(work),
8468 					struct ctlr_info, monitor_ctlr_work);
8469 
8470 	detect_controller_lockup(h);
8471 	if (lockup_detected(h))
8472 		return;
8473 
8474 	spin_lock_irqsave(&h->lock, flags);
8475 	if (!h->remove_in_progress)
8476 		schedule_delayed_work(&h->monitor_ctlr_work,
8477 				h->heartbeat_sample_interval);
8478 	spin_unlock_irqrestore(&h->lock, flags);
8479 }
8480 
8481 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8482 						char *name)
8483 {
8484 	struct workqueue_struct *wq = NULL;
8485 
8486 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8487 	if (!wq)
8488 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8489 
8490 	return wq;
8491 }
8492 
8493 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8494 {
8495 	int dac, rc;
8496 	struct ctlr_info *h;
8497 	int try_soft_reset = 0;
8498 	unsigned long flags;
8499 	u32 board_id;
8500 
8501 	if (number_of_controllers == 0)
8502 		printk(KERN_INFO DRIVER_NAME "\n");
8503 
8504 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8505 	if (rc < 0) {
8506 		dev_warn(&pdev->dev, "Board ID not found\n");
8507 		return rc;
8508 	}
8509 
8510 	rc = hpsa_init_reset_devices(pdev, board_id);
8511 	if (rc) {
8512 		if (rc != -ENOTSUPP)
8513 			return rc;
8514 		/* If the reset fails in a particular way (it has no way to do
8515 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8516 		 * a soft reset once we get the controller configured up to the
8517 		 * point that it can accept a command.
8518 		 */
8519 		try_soft_reset = 1;
8520 		rc = 0;
8521 	}
8522 
8523 reinit_after_soft_reset:
8524 
8525 	/* Command structures must be aligned on a 32-byte boundary because
8526 	 * the 5 lower bits of the address are used by the hardware. and by
8527 	 * the driver.  See comments in hpsa.h for more info.
8528 	 */
8529 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8530 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8531 	if (!h) {
8532 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8533 		return -ENOMEM;
8534 	}
8535 
8536 	h->pdev = pdev;
8537 
8538 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8539 	INIT_LIST_HEAD(&h->offline_device_list);
8540 	spin_lock_init(&h->lock);
8541 	spin_lock_init(&h->offline_device_lock);
8542 	spin_lock_init(&h->scan_lock);
8543 	spin_lock_init(&h->reset_lock);
8544 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8545 
8546 	/* Allocate and clear per-cpu variable lockup_detected */
8547 	h->lockup_detected = alloc_percpu(u32);
8548 	if (!h->lockup_detected) {
8549 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8550 		rc = -ENOMEM;
8551 		goto clean1;	/* aer/h */
8552 	}
8553 	set_lockup_detected_for_all_cpus(h, 0);
8554 
8555 	rc = hpsa_pci_init(h);
8556 	if (rc)
8557 		goto clean2;	/* lu, aer/h */
8558 
8559 	/* relies on h-> settings made by hpsa_pci_init, including
8560 	 * interrupt_mode h->intr */
8561 	rc = hpsa_scsi_host_alloc(h);
8562 	if (rc)
8563 		goto clean2_5;	/* pci, lu, aer/h */
8564 
8565 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8566 	h->ctlr = number_of_controllers;
8567 	number_of_controllers++;
8568 
8569 	/* configure PCI DMA stuff */
8570 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8571 	if (rc == 0) {
8572 		dac = 1;
8573 	} else {
8574 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8575 		if (rc == 0) {
8576 			dac = 0;
8577 		} else {
8578 			dev_err(&pdev->dev, "no suitable DMA available\n");
8579 			goto clean3;	/* shost, pci, lu, aer/h */
8580 		}
8581 	}
8582 
8583 	/* make sure the board interrupts are off */
8584 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8585 
8586 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8587 	if (rc)
8588 		goto clean3;	/* shost, pci, lu, aer/h */
8589 	rc = hpsa_alloc_cmd_pool(h);
8590 	if (rc)
8591 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8592 	rc = hpsa_alloc_sg_chain_blocks(h);
8593 	if (rc)
8594 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8595 	init_waitqueue_head(&h->scan_wait_queue);
8596 	init_waitqueue_head(&h->event_sync_wait_queue);
8597 	mutex_init(&h->reset_mutex);
8598 	h->scan_finished = 1; /* no scan currently in progress */
8599 	h->scan_waiting = 0;
8600 
8601 	pci_set_drvdata(pdev, h);
8602 	h->ndevices = 0;
8603 
8604 	spin_lock_init(&h->devlock);
8605 	rc = hpsa_put_ctlr_into_performant_mode(h);
8606 	if (rc)
8607 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8608 
8609 	/* create the resubmit workqueue */
8610 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8611 	if (!h->rescan_ctlr_wq) {
8612 		rc = -ENOMEM;
8613 		goto clean7;
8614 	}
8615 
8616 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8617 	if (!h->resubmit_wq) {
8618 		rc = -ENOMEM;
8619 		goto clean7;	/* aer/h */
8620 	}
8621 
8622 	/*
8623 	 * At this point, the controller is ready to take commands.
8624 	 * Now, if reset_devices and the hard reset didn't work, try
8625 	 * the soft reset and see if that works.
8626 	 */
8627 	if (try_soft_reset) {
8628 
8629 		/* This is kind of gross.  We may or may not get a completion
8630 		 * from the soft reset command, and if we do, then the value
8631 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8632 		 * after the reset throwing away any completions we get during
8633 		 * that time.  Unregister the interrupt handler and register
8634 		 * fake ones to scoop up any residual completions.
8635 		 */
8636 		spin_lock_irqsave(&h->lock, flags);
8637 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8638 		spin_unlock_irqrestore(&h->lock, flags);
8639 		hpsa_free_irqs(h);
8640 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8641 					hpsa_intx_discard_completions);
8642 		if (rc) {
8643 			dev_warn(&h->pdev->dev,
8644 				"Failed to request_irq after soft reset.\n");
8645 			/*
8646 			 * cannot goto clean7 or free_irqs will be called
8647 			 * again. Instead, do its work
8648 			 */
8649 			hpsa_free_performant_mode(h);	/* clean7 */
8650 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8651 			hpsa_free_cmd_pool(h);		/* clean5 */
8652 			/*
8653 			 * skip hpsa_free_irqs(h) clean4 since that
8654 			 * was just called before request_irqs failed
8655 			 */
8656 			goto clean3;
8657 		}
8658 
8659 		rc = hpsa_kdump_soft_reset(h);
8660 		if (rc)
8661 			/* Neither hard nor soft reset worked, we're hosed. */
8662 			goto clean7;
8663 
8664 		dev_info(&h->pdev->dev, "Board READY.\n");
8665 		dev_info(&h->pdev->dev,
8666 			"Waiting for stale completions to drain.\n");
8667 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8668 		msleep(10000);
8669 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8670 
8671 		rc = controller_reset_failed(h->cfgtable);
8672 		if (rc)
8673 			dev_info(&h->pdev->dev,
8674 				"Soft reset appears to have failed.\n");
8675 
8676 		/* since the controller's reset, we have to go back and re-init
8677 		 * everything.  Easiest to just forget what we've done and do it
8678 		 * all over again.
8679 		 */
8680 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8681 		try_soft_reset = 0;
8682 		if (rc)
8683 			/* don't goto clean, we already unallocated */
8684 			return -ENODEV;
8685 
8686 		goto reinit_after_soft_reset;
8687 	}
8688 
8689 	/* Enable Accelerated IO path at driver layer */
8690 	h->acciopath_status = 1;
8691 	/* Disable discovery polling.*/
8692 	h->discovery_polling = 0;
8693 
8694 
8695 	/* Turn the interrupts on so we can service requests */
8696 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8697 
8698 	hpsa_hba_inquiry(h);
8699 
8700 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8701 	if (!h->lastlogicals)
8702 		dev_info(&h->pdev->dev,
8703 			"Can't track change to report lun data\n");
8704 
8705 	/* hook into SCSI subsystem */
8706 	rc = hpsa_scsi_add_host(h);
8707 	if (rc)
8708 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8709 
8710 	/* Monitor the controller for firmware lockups */
8711 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8712 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8713 	schedule_delayed_work(&h->monitor_ctlr_work,
8714 				h->heartbeat_sample_interval);
8715 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8716 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8717 				h->heartbeat_sample_interval);
8718 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8719 	schedule_delayed_work(&h->event_monitor_work,
8720 				HPSA_EVENT_MONITOR_INTERVAL);
8721 	return 0;
8722 
8723 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8724 	hpsa_free_performant_mode(h);
8725 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8726 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8727 	hpsa_free_sg_chain_blocks(h);
8728 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8729 	hpsa_free_cmd_pool(h);
8730 clean4: /* irq, shost, pci, lu, aer/h */
8731 	hpsa_free_irqs(h);
8732 clean3: /* shost, pci, lu, aer/h */
8733 	scsi_host_put(h->scsi_host);
8734 	h->scsi_host = NULL;
8735 clean2_5: /* pci, lu, aer/h */
8736 	hpsa_free_pci_init(h);
8737 clean2: /* lu, aer/h */
8738 	if (h->lockup_detected) {
8739 		free_percpu(h->lockup_detected);
8740 		h->lockup_detected = NULL;
8741 	}
8742 clean1:	/* wq/aer/h */
8743 	if (h->resubmit_wq) {
8744 		destroy_workqueue(h->resubmit_wq);
8745 		h->resubmit_wq = NULL;
8746 	}
8747 	if (h->rescan_ctlr_wq) {
8748 		destroy_workqueue(h->rescan_ctlr_wq);
8749 		h->rescan_ctlr_wq = NULL;
8750 	}
8751 	kfree(h);
8752 	return rc;
8753 }
8754 
8755 static void hpsa_flush_cache(struct ctlr_info *h)
8756 {
8757 	char *flush_buf;
8758 	struct CommandList *c;
8759 	int rc;
8760 
8761 	if (unlikely(lockup_detected(h)))
8762 		return;
8763 	flush_buf = kzalloc(4, GFP_KERNEL);
8764 	if (!flush_buf)
8765 		return;
8766 
8767 	c = cmd_alloc(h);
8768 
8769 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8770 		RAID_CTLR_LUNID, TYPE_CMD)) {
8771 		goto out;
8772 	}
8773 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8774 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8775 	if (rc)
8776 		goto out;
8777 	if (c->err_info->CommandStatus != 0)
8778 out:
8779 		dev_warn(&h->pdev->dev,
8780 			"error flushing cache on controller\n");
8781 	cmd_free(h, c);
8782 	kfree(flush_buf);
8783 }
8784 
8785 /* Make controller gather fresh report lun data each time we
8786  * send down a report luns request
8787  */
8788 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8789 {
8790 	u32 *options;
8791 	struct CommandList *c;
8792 	int rc;
8793 
8794 	/* Don't bother trying to set diag options if locked up */
8795 	if (unlikely(h->lockup_detected))
8796 		return;
8797 
8798 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8799 	if (!options)
8800 		return;
8801 
8802 	c = cmd_alloc(h);
8803 
8804 	/* first, get the current diag options settings */
8805 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8806 		RAID_CTLR_LUNID, TYPE_CMD))
8807 		goto errout;
8808 
8809 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8810 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8811 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8812 		goto errout;
8813 
8814 	/* Now, set the bit for disabling the RLD caching */
8815 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8816 
8817 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8818 		RAID_CTLR_LUNID, TYPE_CMD))
8819 		goto errout;
8820 
8821 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8823 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8824 		goto errout;
8825 
8826 	/* Now verify that it got set: */
8827 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8828 		RAID_CTLR_LUNID, TYPE_CMD))
8829 		goto errout;
8830 
8831 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8832 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8833 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8834 		goto errout;
8835 
8836 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8837 		goto out;
8838 
8839 errout:
8840 	dev_err(&h->pdev->dev,
8841 			"Error: failed to disable report lun data caching.\n");
8842 out:
8843 	cmd_free(h, c);
8844 	kfree(options);
8845 }
8846 
8847 static void hpsa_shutdown(struct pci_dev *pdev)
8848 {
8849 	struct ctlr_info *h;
8850 
8851 	h = pci_get_drvdata(pdev);
8852 	/* Turn board interrupts off  and send the flush cache command
8853 	 * sendcmd will turn off interrupt, and send the flush...
8854 	 * To write all data in the battery backed cache to disks
8855 	 */
8856 	hpsa_flush_cache(h);
8857 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8858 	hpsa_free_irqs(h);			/* init_one 4 */
8859 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8860 }
8861 
8862 static void hpsa_free_device_info(struct ctlr_info *h)
8863 {
8864 	int i;
8865 
8866 	for (i = 0; i < h->ndevices; i++) {
8867 		kfree(h->dev[i]);
8868 		h->dev[i] = NULL;
8869 	}
8870 }
8871 
8872 static void hpsa_remove_one(struct pci_dev *pdev)
8873 {
8874 	struct ctlr_info *h;
8875 	unsigned long flags;
8876 
8877 	if (pci_get_drvdata(pdev) == NULL) {
8878 		dev_err(&pdev->dev, "unable to remove device\n");
8879 		return;
8880 	}
8881 	h = pci_get_drvdata(pdev);
8882 
8883 	/* Get rid of any controller monitoring work items */
8884 	spin_lock_irqsave(&h->lock, flags);
8885 	h->remove_in_progress = 1;
8886 	spin_unlock_irqrestore(&h->lock, flags);
8887 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8888 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8889 	cancel_delayed_work_sync(&h->event_monitor_work);
8890 	destroy_workqueue(h->rescan_ctlr_wq);
8891 	destroy_workqueue(h->resubmit_wq);
8892 
8893 	hpsa_delete_sas_host(h);
8894 
8895 	/*
8896 	 * Call before disabling interrupts.
8897 	 * scsi_remove_host can trigger I/O operations especially
8898 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8899 	 * operations which cannot complete and will hang the system.
8900 	 */
8901 	if (h->scsi_host)
8902 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8903 	/* includes hpsa_free_irqs - init_one 4 */
8904 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8905 	hpsa_shutdown(pdev);
8906 
8907 	hpsa_free_device_info(h);		/* scan */
8908 
8909 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8910 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8911 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8912 	hpsa_free_performant_mode(h);			/* init_one 7 */
8913 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8914 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8915 	kfree(h->lastlogicals);
8916 
8917 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8918 
8919 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8920 	h->scsi_host = NULL;				/* init_one 3 */
8921 
8922 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8923 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8924 
8925 	free_percpu(h->lockup_detected);		/* init_one 2 */
8926 	h->lockup_detected = NULL;			/* init_one 2 */
8927 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8928 
8929 	kfree(h);					/* init_one 1 */
8930 }
8931 
8932 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8933 	__attribute__((unused)) pm_message_t state)
8934 {
8935 	return -ENOSYS;
8936 }
8937 
8938 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8939 {
8940 	return -ENOSYS;
8941 }
8942 
8943 static struct pci_driver hpsa_pci_driver = {
8944 	.name = HPSA,
8945 	.probe = hpsa_init_one,
8946 	.remove = hpsa_remove_one,
8947 	.id_table = hpsa_pci_device_id,	/* id_table */
8948 	.shutdown = hpsa_shutdown,
8949 	.suspend = hpsa_suspend,
8950 	.resume = hpsa_resume,
8951 };
8952 
8953 /* Fill in bucket_map[], given nsgs (the max number of
8954  * scatter gather elements supported) and bucket[],
8955  * which is an array of 8 integers.  The bucket[] array
8956  * contains 8 different DMA transfer sizes (in 16
8957  * byte increments) which the controller uses to fetch
8958  * commands.  This function fills in bucket_map[], which
8959  * maps a given number of scatter gather elements to one of
8960  * the 8 DMA transfer sizes.  The point of it is to allow the
8961  * controller to only do as much DMA as needed to fetch the
8962  * command, with the DMA transfer size encoded in the lower
8963  * bits of the command address.
8964  */
8965 static void  calc_bucket_map(int bucket[], int num_buckets,
8966 	int nsgs, int min_blocks, u32 *bucket_map)
8967 {
8968 	int i, j, b, size;
8969 
8970 	/* Note, bucket_map must have nsgs+1 entries. */
8971 	for (i = 0; i <= nsgs; i++) {
8972 		/* Compute size of a command with i SG entries */
8973 		size = i + min_blocks;
8974 		b = num_buckets; /* Assume the biggest bucket */
8975 		/* Find the bucket that is just big enough */
8976 		for (j = 0; j < num_buckets; j++) {
8977 			if (bucket[j] >= size) {
8978 				b = j;
8979 				break;
8980 			}
8981 		}
8982 		/* for a command with i SG entries, use bucket b. */
8983 		bucket_map[i] = b;
8984 	}
8985 }
8986 
8987 /*
8988  * return -ENODEV on err, 0 on success (or no action)
8989  * allocates numerous items that must be freed later
8990  */
8991 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8992 {
8993 	int i;
8994 	unsigned long register_value;
8995 	unsigned long transMethod = CFGTBL_Trans_Performant |
8996 			(trans_support & CFGTBL_Trans_use_short_tags) |
8997 				CFGTBL_Trans_enable_directed_msix |
8998 			(trans_support & (CFGTBL_Trans_io_accel1 |
8999 				CFGTBL_Trans_io_accel2));
9000 	struct access_method access = SA5_performant_access;
9001 
9002 	/* This is a bit complicated.  There are 8 registers on
9003 	 * the controller which we write to to tell it 8 different
9004 	 * sizes of commands which there may be.  It's a way of
9005 	 * reducing the DMA done to fetch each command.  Encoded into
9006 	 * each command's tag are 3 bits which communicate to the controller
9007 	 * which of the eight sizes that command fits within.  The size of
9008 	 * each command depends on how many scatter gather entries there are.
9009 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9010 	 * with the number of 16-byte blocks a command of that size requires.
9011 	 * The smallest command possible requires 5 such 16 byte blocks.
9012 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9013 	 * blocks.  Note, this only extends to the SG entries contained
9014 	 * within the command block, and does not extend to chained blocks
9015 	 * of SG elements.   bft[] contains the eight values we write to
9016 	 * the registers.  They are not evenly distributed, but have more
9017 	 * sizes for small commands, and fewer sizes for larger commands.
9018 	 */
9019 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9020 #define MIN_IOACCEL2_BFT_ENTRY 5
9021 #define HPSA_IOACCEL2_HEADER_SZ 4
9022 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9023 			13, 14, 15, 16, 17, 18, 19,
9024 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9025 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9026 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9027 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9028 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9029 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9030 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9031 	/*  5 = 1 s/g entry or 4k
9032 	 *  6 = 2 s/g entry or 8k
9033 	 *  8 = 4 s/g entry or 16k
9034 	 * 10 = 6 s/g entry or 24k
9035 	 */
9036 
9037 	/* If the controller supports either ioaccel method then
9038 	 * we can also use the RAID stack submit path that does not
9039 	 * perform the superfluous readl() after each command submission.
9040 	 */
9041 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9042 		access = SA5_performant_access_no_read;
9043 
9044 	/* Controller spec: zero out this buffer. */
9045 	for (i = 0; i < h->nreply_queues; i++)
9046 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9047 
9048 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9049 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9050 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9051 	for (i = 0; i < 8; i++)
9052 		writel(bft[i], &h->transtable->BlockFetch[i]);
9053 
9054 	/* size of controller ring buffer */
9055 	writel(h->max_commands, &h->transtable->RepQSize);
9056 	writel(h->nreply_queues, &h->transtable->RepQCount);
9057 	writel(0, &h->transtable->RepQCtrAddrLow32);
9058 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9059 
9060 	for (i = 0; i < h->nreply_queues; i++) {
9061 		writel(0, &h->transtable->RepQAddr[i].upper);
9062 		writel(h->reply_queue[i].busaddr,
9063 			&h->transtable->RepQAddr[i].lower);
9064 	}
9065 
9066 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9067 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9068 	/*
9069 	 * enable outbound interrupt coalescing in accelerator mode;
9070 	 */
9071 	if (trans_support & CFGTBL_Trans_io_accel1) {
9072 		access = SA5_ioaccel_mode1_access;
9073 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9074 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9075 	} else
9076 		if (trans_support & CFGTBL_Trans_io_accel2)
9077 			access = SA5_ioaccel_mode2_access;
9078 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9079 	if (hpsa_wait_for_mode_change_ack(h)) {
9080 		dev_err(&h->pdev->dev,
9081 			"performant mode problem - doorbell timeout\n");
9082 		return -ENODEV;
9083 	}
9084 	register_value = readl(&(h->cfgtable->TransportActive));
9085 	if (!(register_value & CFGTBL_Trans_Performant)) {
9086 		dev_err(&h->pdev->dev,
9087 			"performant mode problem - transport not active\n");
9088 		return -ENODEV;
9089 	}
9090 	/* Change the access methods to the performant access methods */
9091 	h->access = access;
9092 	h->transMethod = transMethod;
9093 
9094 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9095 		(trans_support & CFGTBL_Trans_io_accel2)))
9096 		return 0;
9097 
9098 	if (trans_support & CFGTBL_Trans_io_accel1) {
9099 		/* Set up I/O accelerator mode */
9100 		for (i = 0; i < h->nreply_queues; i++) {
9101 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9102 			h->reply_queue[i].current_entry =
9103 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9104 		}
9105 		bft[7] = h->ioaccel_maxsg + 8;
9106 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9107 				h->ioaccel1_blockFetchTable);
9108 
9109 		/* initialize all reply queue entries to unused */
9110 		for (i = 0; i < h->nreply_queues; i++)
9111 			memset(h->reply_queue[i].head,
9112 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9113 				h->reply_queue_size);
9114 
9115 		/* set all the constant fields in the accelerator command
9116 		 * frames once at init time to save CPU cycles later.
9117 		 */
9118 		for (i = 0; i < h->nr_cmds; i++) {
9119 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9120 
9121 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9122 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9123 					(i * sizeof(struct ErrorInfo)));
9124 			cp->err_info_len = sizeof(struct ErrorInfo);
9125 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9126 			cp->host_context_flags =
9127 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9128 			cp->timeout_sec = 0;
9129 			cp->ReplyQueue = 0;
9130 			cp->tag =
9131 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9132 			cp->host_addr =
9133 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9134 					(i * sizeof(struct io_accel1_cmd)));
9135 		}
9136 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9137 		u64 cfg_offset, cfg_base_addr_index;
9138 		u32 bft2_offset, cfg_base_addr;
9139 		int rc;
9140 
9141 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9142 			&cfg_base_addr_index, &cfg_offset);
9143 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9144 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9145 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9146 				4, h->ioaccel2_blockFetchTable);
9147 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9148 		BUILD_BUG_ON(offsetof(struct CfgTable,
9149 				io_accel_request_size_offset) != 0xb8);
9150 		h->ioaccel2_bft2_regs =
9151 			remap_pci_mem(pci_resource_start(h->pdev,
9152 					cfg_base_addr_index) +
9153 					cfg_offset + bft2_offset,
9154 					ARRAY_SIZE(bft2) *
9155 					sizeof(*h->ioaccel2_bft2_regs));
9156 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9157 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9158 	}
9159 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9160 	if (hpsa_wait_for_mode_change_ack(h)) {
9161 		dev_err(&h->pdev->dev,
9162 			"performant mode problem - enabling ioaccel mode\n");
9163 		return -ENODEV;
9164 	}
9165 	return 0;
9166 }
9167 
9168 /* Free ioaccel1 mode command blocks and block fetch table */
9169 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9170 {
9171 	if (h->ioaccel_cmd_pool) {
9172 		pci_free_consistent(h->pdev,
9173 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9174 			h->ioaccel_cmd_pool,
9175 			h->ioaccel_cmd_pool_dhandle);
9176 		h->ioaccel_cmd_pool = NULL;
9177 		h->ioaccel_cmd_pool_dhandle = 0;
9178 	}
9179 	kfree(h->ioaccel1_blockFetchTable);
9180 	h->ioaccel1_blockFetchTable = NULL;
9181 }
9182 
9183 /* Allocate ioaccel1 mode command blocks and block fetch table */
9184 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9185 {
9186 	h->ioaccel_maxsg =
9187 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9188 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9189 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9190 
9191 	/* Command structures must be aligned on a 128-byte boundary
9192 	 * because the 7 lower bits of the address are used by the
9193 	 * hardware.
9194 	 */
9195 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9196 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9197 	h->ioaccel_cmd_pool =
9198 		pci_alloc_consistent(h->pdev,
9199 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9200 			&(h->ioaccel_cmd_pool_dhandle));
9201 
9202 	h->ioaccel1_blockFetchTable =
9203 		kmalloc(((h->ioaccel_maxsg + 1) *
9204 				sizeof(u32)), GFP_KERNEL);
9205 
9206 	if ((h->ioaccel_cmd_pool == NULL) ||
9207 		(h->ioaccel1_blockFetchTable == NULL))
9208 		goto clean_up;
9209 
9210 	memset(h->ioaccel_cmd_pool, 0,
9211 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9212 	return 0;
9213 
9214 clean_up:
9215 	hpsa_free_ioaccel1_cmd_and_bft(h);
9216 	return -ENOMEM;
9217 }
9218 
9219 /* Free ioaccel2 mode command blocks and block fetch table */
9220 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9221 {
9222 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9223 
9224 	if (h->ioaccel2_cmd_pool) {
9225 		pci_free_consistent(h->pdev,
9226 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9227 			h->ioaccel2_cmd_pool,
9228 			h->ioaccel2_cmd_pool_dhandle);
9229 		h->ioaccel2_cmd_pool = NULL;
9230 		h->ioaccel2_cmd_pool_dhandle = 0;
9231 	}
9232 	kfree(h->ioaccel2_blockFetchTable);
9233 	h->ioaccel2_blockFetchTable = NULL;
9234 }
9235 
9236 /* Allocate ioaccel2 mode command blocks and block fetch table */
9237 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9238 {
9239 	int rc;
9240 
9241 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9242 
9243 	h->ioaccel_maxsg =
9244 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9245 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9246 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9247 
9248 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9249 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9250 	h->ioaccel2_cmd_pool =
9251 		pci_alloc_consistent(h->pdev,
9252 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9253 			&(h->ioaccel2_cmd_pool_dhandle));
9254 
9255 	h->ioaccel2_blockFetchTable =
9256 		kmalloc(((h->ioaccel_maxsg + 1) *
9257 				sizeof(u32)), GFP_KERNEL);
9258 
9259 	if ((h->ioaccel2_cmd_pool == NULL) ||
9260 		(h->ioaccel2_blockFetchTable == NULL)) {
9261 		rc = -ENOMEM;
9262 		goto clean_up;
9263 	}
9264 
9265 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9266 	if (rc)
9267 		goto clean_up;
9268 
9269 	memset(h->ioaccel2_cmd_pool, 0,
9270 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9271 	return 0;
9272 
9273 clean_up:
9274 	hpsa_free_ioaccel2_cmd_and_bft(h);
9275 	return rc;
9276 }
9277 
9278 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9279 static void hpsa_free_performant_mode(struct ctlr_info *h)
9280 {
9281 	kfree(h->blockFetchTable);
9282 	h->blockFetchTable = NULL;
9283 	hpsa_free_reply_queues(h);
9284 	hpsa_free_ioaccel1_cmd_and_bft(h);
9285 	hpsa_free_ioaccel2_cmd_and_bft(h);
9286 }
9287 
9288 /* return -ENODEV on error, 0 on success (or no action)
9289  * allocates numerous items that must be freed later
9290  */
9291 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9292 {
9293 	u32 trans_support;
9294 	unsigned long transMethod = CFGTBL_Trans_Performant |
9295 					CFGTBL_Trans_use_short_tags;
9296 	int i, rc;
9297 
9298 	if (hpsa_simple_mode)
9299 		return 0;
9300 
9301 	trans_support = readl(&(h->cfgtable->TransportSupport));
9302 	if (!(trans_support & PERFORMANT_MODE))
9303 		return 0;
9304 
9305 	/* Check for I/O accelerator mode support */
9306 	if (trans_support & CFGTBL_Trans_io_accel1) {
9307 		transMethod |= CFGTBL_Trans_io_accel1 |
9308 				CFGTBL_Trans_enable_directed_msix;
9309 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9310 		if (rc)
9311 			return rc;
9312 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9313 		transMethod |= CFGTBL_Trans_io_accel2 |
9314 				CFGTBL_Trans_enable_directed_msix;
9315 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9316 		if (rc)
9317 			return rc;
9318 	}
9319 
9320 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9321 	hpsa_get_max_perf_mode_cmds(h);
9322 	/* Performant mode ring buffer and supporting data structures */
9323 	h->reply_queue_size = h->max_commands * sizeof(u64);
9324 
9325 	for (i = 0; i < h->nreply_queues; i++) {
9326 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9327 						h->reply_queue_size,
9328 						&(h->reply_queue[i].busaddr));
9329 		if (!h->reply_queue[i].head) {
9330 			rc = -ENOMEM;
9331 			goto clean1;	/* rq, ioaccel */
9332 		}
9333 		h->reply_queue[i].size = h->max_commands;
9334 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9335 		h->reply_queue[i].current_entry = 0;
9336 	}
9337 
9338 	/* Need a block fetch table for performant mode */
9339 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9340 				sizeof(u32)), GFP_KERNEL);
9341 	if (!h->blockFetchTable) {
9342 		rc = -ENOMEM;
9343 		goto clean1;	/* rq, ioaccel */
9344 	}
9345 
9346 	rc = hpsa_enter_performant_mode(h, trans_support);
9347 	if (rc)
9348 		goto clean2;	/* bft, rq, ioaccel */
9349 	return 0;
9350 
9351 clean2:	/* bft, rq, ioaccel */
9352 	kfree(h->blockFetchTable);
9353 	h->blockFetchTable = NULL;
9354 clean1:	/* rq, ioaccel */
9355 	hpsa_free_reply_queues(h);
9356 	hpsa_free_ioaccel1_cmd_and_bft(h);
9357 	hpsa_free_ioaccel2_cmd_and_bft(h);
9358 	return rc;
9359 }
9360 
9361 static int is_accelerated_cmd(struct CommandList *c)
9362 {
9363 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9364 }
9365 
9366 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9367 {
9368 	struct CommandList *c = NULL;
9369 	int i, accel_cmds_out;
9370 	int refcount;
9371 
9372 	do { /* wait for all outstanding ioaccel commands to drain out */
9373 		accel_cmds_out = 0;
9374 		for (i = 0; i < h->nr_cmds; i++) {
9375 			c = h->cmd_pool + i;
9376 			refcount = atomic_inc_return(&c->refcount);
9377 			if (refcount > 1) /* Command is allocated */
9378 				accel_cmds_out += is_accelerated_cmd(c);
9379 			cmd_free(h, c);
9380 		}
9381 		if (accel_cmds_out <= 0)
9382 			break;
9383 		msleep(100);
9384 	} while (1);
9385 }
9386 
9387 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9388 				struct hpsa_sas_port *hpsa_sas_port)
9389 {
9390 	struct hpsa_sas_phy *hpsa_sas_phy;
9391 	struct sas_phy *phy;
9392 
9393 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9394 	if (!hpsa_sas_phy)
9395 		return NULL;
9396 
9397 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9398 		hpsa_sas_port->next_phy_index);
9399 	if (!phy) {
9400 		kfree(hpsa_sas_phy);
9401 		return NULL;
9402 	}
9403 
9404 	hpsa_sas_port->next_phy_index++;
9405 	hpsa_sas_phy->phy = phy;
9406 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9407 
9408 	return hpsa_sas_phy;
9409 }
9410 
9411 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9412 {
9413 	struct sas_phy *phy = hpsa_sas_phy->phy;
9414 
9415 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9416 	if (hpsa_sas_phy->added_to_port)
9417 		list_del(&hpsa_sas_phy->phy_list_entry);
9418 	sas_phy_delete(phy);
9419 	kfree(hpsa_sas_phy);
9420 }
9421 
9422 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9423 {
9424 	int rc;
9425 	struct hpsa_sas_port *hpsa_sas_port;
9426 	struct sas_phy *phy;
9427 	struct sas_identify *identify;
9428 
9429 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9430 	phy = hpsa_sas_phy->phy;
9431 
9432 	identify = &phy->identify;
9433 	memset(identify, 0, sizeof(*identify));
9434 	identify->sas_address = hpsa_sas_port->sas_address;
9435 	identify->device_type = SAS_END_DEVICE;
9436 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9437 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9438 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9439 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9440 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9441 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9442 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9443 
9444 	rc = sas_phy_add(hpsa_sas_phy->phy);
9445 	if (rc)
9446 		return rc;
9447 
9448 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9449 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9450 			&hpsa_sas_port->phy_list_head);
9451 	hpsa_sas_phy->added_to_port = true;
9452 
9453 	return 0;
9454 }
9455 
9456 static int
9457 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9458 				struct sas_rphy *rphy)
9459 {
9460 	struct sas_identify *identify;
9461 
9462 	identify = &rphy->identify;
9463 	identify->sas_address = hpsa_sas_port->sas_address;
9464 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9465 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9466 
9467 	return sas_rphy_add(rphy);
9468 }
9469 
9470 static struct hpsa_sas_port
9471 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9472 				u64 sas_address)
9473 {
9474 	int rc;
9475 	struct hpsa_sas_port *hpsa_sas_port;
9476 	struct sas_port *port;
9477 
9478 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9479 	if (!hpsa_sas_port)
9480 		return NULL;
9481 
9482 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9483 	hpsa_sas_port->parent_node = hpsa_sas_node;
9484 
9485 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9486 	if (!port)
9487 		goto free_hpsa_port;
9488 
9489 	rc = sas_port_add(port);
9490 	if (rc)
9491 		goto free_sas_port;
9492 
9493 	hpsa_sas_port->port = port;
9494 	hpsa_sas_port->sas_address = sas_address;
9495 	list_add_tail(&hpsa_sas_port->port_list_entry,
9496 			&hpsa_sas_node->port_list_head);
9497 
9498 	return hpsa_sas_port;
9499 
9500 free_sas_port:
9501 	sas_port_free(port);
9502 free_hpsa_port:
9503 	kfree(hpsa_sas_port);
9504 
9505 	return NULL;
9506 }
9507 
9508 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9509 {
9510 	struct hpsa_sas_phy *hpsa_sas_phy;
9511 	struct hpsa_sas_phy *next;
9512 
9513 	list_for_each_entry_safe(hpsa_sas_phy, next,
9514 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9515 		hpsa_free_sas_phy(hpsa_sas_phy);
9516 
9517 	sas_port_delete(hpsa_sas_port->port);
9518 	list_del(&hpsa_sas_port->port_list_entry);
9519 	kfree(hpsa_sas_port);
9520 }
9521 
9522 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9523 {
9524 	struct hpsa_sas_node *hpsa_sas_node;
9525 
9526 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9527 	if (hpsa_sas_node) {
9528 		hpsa_sas_node->parent_dev = parent_dev;
9529 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9530 	}
9531 
9532 	return hpsa_sas_node;
9533 }
9534 
9535 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9536 {
9537 	struct hpsa_sas_port *hpsa_sas_port;
9538 	struct hpsa_sas_port *next;
9539 
9540 	if (!hpsa_sas_node)
9541 		return;
9542 
9543 	list_for_each_entry_safe(hpsa_sas_port, next,
9544 			&hpsa_sas_node->port_list_head, port_list_entry)
9545 		hpsa_free_sas_port(hpsa_sas_port);
9546 
9547 	kfree(hpsa_sas_node);
9548 }
9549 
9550 static struct hpsa_scsi_dev_t
9551 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9552 					struct sas_rphy *rphy)
9553 {
9554 	int i;
9555 	struct hpsa_scsi_dev_t *device;
9556 
9557 	for (i = 0; i < h->ndevices; i++) {
9558 		device = h->dev[i];
9559 		if (!device->sas_port)
9560 			continue;
9561 		if (device->sas_port->rphy == rphy)
9562 			return device;
9563 	}
9564 
9565 	return NULL;
9566 }
9567 
9568 static int hpsa_add_sas_host(struct ctlr_info *h)
9569 {
9570 	int rc;
9571 	struct device *parent_dev;
9572 	struct hpsa_sas_node *hpsa_sas_node;
9573 	struct hpsa_sas_port *hpsa_sas_port;
9574 	struct hpsa_sas_phy *hpsa_sas_phy;
9575 
9576 	parent_dev = &h->scsi_host->shost_dev;
9577 
9578 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9579 	if (!hpsa_sas_node)
9580 		return -ENOMEM;
9581 
9582 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9583 	if (!hpsa_sas_port) {
9584 		rc = -ENODEV;
9585 		goto free_sas_node;
9586 	}
9587 
9588 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9589 	if (!hpsa_sas_phy) {
9590 		rc = -ENODEV;
9591 		goto free_sas_port;
9592 	}
9593 
9594 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9595 	if (rc)
9596 		goto free_sas_phy;
9597 
9598 	h->sas_host = hpsa_sas_node;
9599 
9600 	return 0;
9601 
9602 free_sas_phy:
9603 	hpsa_free_sas_phy(hpsa_sas_phy);
9604 free_sas_port:
9605 	hpsa_free_sas_port(hpsa_sas_port);
9606 free_sas_node:
9607 	hpsa_free_sas_node(hpsa_sas_node);
9608 
9609 	return rc;
9610 }
9611 
9612 static void hpsa_delete_sas_host(struct ctlr_info *h)
9613 {
9614 	hpsa_free_sas_node(h->sas_host);
9615 }
9616 
9617 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9618 				struct hpsa_scsi_dev_t *device)
9619 {
9620 	int rc;
9621 	struct hpsa_sas_port *hpsa_sas_port;
9622 	struct sas_rphy *rphy;
9623 
9624 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9625 	if (!hpsa_sas_port)
9626 		return -ENOMEM;
9627 
9628 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9629 	if (!rphy) {
9630 		rc = -ENODEV;
9631 		goto free_sas_port;
9632 	}
9633 
9634 	hpsa_sas_port->rphy = rphy;
9635 	device->sas_port = hpsa_sas_port;
9636 
9637 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9638 	if (rc)
9639 		goto free_sas_port;
9640 
9641 	return 0;
9642 
9643 free_sas_port:
9644 	hpsa_free_sas_port(hpsa_sas_port);
9645 	device->sas_port = NULL;
9646 
9647 	return rc;
9648 }
9649 
9650 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9651 {
9652 	if (device->sas_port) {
9653 		hpsa_free_sas_port(device->sas_port);
9654 		device->sas_port = NULL;
9655 	}
9656 }
9657 
9658 static int
9659 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9660 {
9661 	return 0;
9662 }
9663 
9664 static int
9665 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9666 {
9667 	*identifier = rphy->identify.sas_address;
9668 	return 0;
9669 }
9670 
9671 static int
9672 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9673 {
9674 	return -ENXIO;
9675 }
9676 
9677 static int
9678 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9679 {
9680 	return 0;
9681 }
9682 
9683 static int
9684 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9685 {
9686 	return 0;
9687 }
9688 
9689 static int
9690 hpsa_sas_phy_setup(struct sas_phy *phy)
9691 {
9692 	return 0;
9693 }
9694 
9695 static void
9696 hpsa_sas_phy_release(struct sas_phy *phy)
9697 {
9698 }
9699 
9700 static int
9701 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9702 {
9703 	return -EINVAL;
9704 }
9705 
9706 static struct sas_function_template hpsa_sas_transport_functions = {
9707 	.get_linkerrors = hpsa_sas_get_linkerrors,
9708 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9709 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9710 	.phy_reset = hpsa_sas_phy_reset,
9711 	.phy_enable = hpsa_sas_phy_enable,
9712 	.phy_setup = hpsa_sas_phy_setup,
9713 	.phy_release = hpsa_sas_phy_release,
9714 	.set_phy_speed = hpsa_sas_phy_speed,
9715 };
9716 
9717 /*
9718  *  This is it.  Register the PCI driver information for the cards we control
9719  *  the OS will call our registered routines when it finds one of our cards.
9720  */
9721 static int __init hpsa_init(void)
9722 {
9723 	int rc;
9724 
9725 	hpsa_sas_transport_template =
9726 		sas_attach_transport(&hpsa_sas_transport_functions);
9727 	if (!hpsa_sas_transport_template)
9728 		return -ENODEV;
9729 
9730 	rc = pci_register_driver(&hpsa_pci_driver);
9731 
9732 	if (rc)
9733 		sas_release_transport(hpsa_sas_transport_template);
9734 
9735 	return rc;
9736 }
9737 
9738 static void __exit hpsa_cleanup(void)
9739 {
9740 	pci_unregister_driver(&hpsa_pci_driver);
9741 	sas_release_transport(hpsa_sas_transport_template);
9742 }
9743 
9744 static void __attribute__((unused)) verify_offsets(void)
9745 {
9746 #define VERIFY_OFFSET(member, offset) \
9747 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9748 
9749 	VERIFY_OFFSET(structure_size, 0);
9750 	VERIFY_OFFSET(volume_blk_size, 4);
9751 	VERIFY_OFFSET(volume_blk_cnt, 8);
9752 	VERIFY_OFFSET(phys_blk_shift, 16);
9753 	VERIFY_OFFSET(parity_rotation_shift, 17);
9754 	VERIFY_OFFSET(strip_size, 18);
9755 	VERIFY_OFFSET(disk_starting_blk, 20);
9756 	VERIFY_OFFSET(disk_blk_cnt, 28);
9757 	VERIFY_OFFSET(data_disks_per_row, 36);
9758 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9759 	VERIFY_OFFSET(row_cnt, 40);
9760 	VERIFY_OFFSET(layout_map_count, 42);
9761 	VERIFY_OFFSET(flags, 44);
9762 	VERIFY_OFFSET(dekindex, 46);
9763 	/* VERIFY_OFFSET(reserved, 48 */
9764 	VERIFY_OFFSET(data, 64);
9765 
9766 #undef VERIFY_OFFSET
9767 
9768 #define VERIFY_OFFSET(member, offset) \
9769 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9770 
9771 	VERIFY_OFFSET(IU_type, 0);
9772 	VERIFY_OFFSET(direction, 1);
9773 	VERIFY_OFFSET(reply_queue, 2);
9774 	/* VERIFY_OFFSET(reserved1, 3);  */
9775 	VERIFY_OFFSET(scsi_nexus, 4);
9776 	VERIFY_OFFSET(Tag, 8);
9777 	VERIFY_OFFSET(cdb, 16);
9778 	VERIFY_OFFSET(cciss_lun, 32);
9779 	VERIFY_OFFSET(data_len, 40);
9780 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9781 	VERIFY_OFFSET(sg_count, 45);
9782 	/* VERIFY_OFFSET(reserved3 */
9783 	VERIFY_OFFSET(err_ptr, 48);
9784 	VERIFY_OFFSET(err_len, 56);
9785 	/* VERIFY_OFFSET(reserved4  */
9786 	VERIFY_OFFSET(sg, 64);
9787 
9788 #undef VERIFY_OFFSET
9789 
9790 #define VERIFY_OFFSET(member, offset) \
9791 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9792 
9793 	VERIFY_OFFSET(dev_handle, 0x00);
9794 	VERIFY_OFFSET(reserved1, 0x02);
9795 	VERIFY_OFFSET(function, 0x03);
9796 	VERIFY_OFFSET(reserved2, 0x04);
9797 	VERIFY_OFFSET(err_info, 0x0C);
9798 	VERIFY_OFFSET(reserved3, 0x10);
9799 	VERIFY_OFFSET(err_info_len, 0x12);
9800 	VERIFY_OFFSET(reserved4, 0x13);
9801 	VERIFY_OFFSET(sgl_offset, 0x14);
9802 	VERIFY_OFFSET(reserved5, 0x15);
9803 	VERIFY_OFFSET(transfer_len, 0x1C);
9804 	VERIFY_OFFSET(reserved6, 0x20);
9805 	VERIFY_OFFSET(io_flags, 0x24);
9806 	VERIFY_OFFSET(reserved7, 0x26);
9807 	VERIFY_OFFSET(LUN, 0x34);
9808 	VERIFY_OFFSET(control, 0x3C);
9809 	VERIFY_OFFSET(CDB, 0x40);
9810 	VERIFY_OFFSET(reserved8, 0x50);
9811 	VERIFY_OFFSET(host_context_flags, 0x60);
9812 	VERIFY_OFFSET(timeout_sec, 0x62);
9813 	VERIFY_OFFSET(ReplyQueue, 0x64);
9814 	VERIFY_OFFSET(reserved9, 0x65);
9815 	VERIFY_OFFSET(tag, 0x68);
9816 	VERIFY_OFFSET(host_addr, 0x70);
9817 	VERIFY_OFFSET(CISS_LUN, 0x78);
9818 	VERIFY_OFFSET(SG, 0x78 + 8);
9819 #undef VERIFY_OFFSET
9820 }
9821 
9822 module_init(hpsa_init);
9823 module_exit(hpsa_cleanup);
9824