xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 3a35093a)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259 			       IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261 				   BIG_IOCTL_Command_struct *ioc);
262 
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265 	void __user *arg);
266 #endif
267 
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272 					    struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275 	int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283 	unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285 
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290 
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 	struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 	struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 	int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304 			       u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 				    unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308 				bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 					   unsigned char lunaddr[],
311 					   int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313 				     int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 	struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 	unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 			       struct hpsa_scsi_dev_t *dev,
334 			       unsigned char *scsi3addr);
335 
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338 	unsigned long *priv = shost_priv(sdev->host);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344 	unsigned long *priv = shost_priv(sh);
345 	return (struct ctlr_info *) *priv;
346 }
347 
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350 	return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352 
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 			u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357 	struct scsi_sense_hdr sshdr;
358 	bool rc;
359 
360 	*sense_key = -1;
361 	*asc = -1;
362 	*ascq = -1;
363 
364 	if (sense_data_len < 1)
365 		return;
366 
367 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368 	if (rc) {
369 		*sense_key = sshdr.sense_key;
370 		*asc = sshdr.asc;
371 		*ascq = sshdr.ascq;
372 	}
373 }
374 
375 static int check_for_unit_attention(struct ctlr_info *h,
376 	struct CommandList *c)
377 {
378 	u8 sense_key, asc, ascq;
379 	int sense_len;
380 
381 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 		sense_len = sizeof(c->err_info->SenseInfo);
383 	else
384 		sense_len = c->err_info->SenseLen;
385 
386 	decode_sense_data(c->err_info->SenseInfo, sense_len,
387 				&sense_key, &asc, &ascq);
388 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 		return 0;
390 
391 	switch (asc) {
392 	case STATE_CHANGED:
393 		dev_warn(&h->pdev->dev,
394 			"%s: a state change detected, command retried\n",
395 			h->devname);
396 		break;
397 	case LUN_FAILED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: LUN failure detected\n", h->devname);
400 		break;
401 	case REPORT_LUNS_CHANGED:
402 		dev_warn(&h->pdev->dev,
403 			"%s: report LUN data changed\n", h->devname);
404 	/*
405 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 	 * target (array) devices.
407 	 */
408 		break;
409 	case POWER_OR_RESET:
410 		dev_warn(&h->pdev->dev,
411 			"%s: a power on or device reset detected\n",
412 			h->devname);
413 		break;
414 	case UNIT_ATTENTION_CLEARED:
415 		dev_warn(&h->pdev->dev,
416 			"%s: unit attention cleared by another initiator\n",
417 			h->devname);
418 		break;
419 	default:
420 		dev_warn(&h->pdev->dev,
421 			"%s: unknown unit attention detected\n",
422 			h->devname);
423 		break;
424 	}
425 	return 1;
426 }
427 
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433 		return 0;
434 	dev_warn(&h->pdev->dev, HPSA "device busy");
435 	return 1;
436 }
437 
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 		struct device_attribute *attr, char *buf)
441 {
442 	int ld;
443 	struct ctlr_info *h;
444 	struct Scsi_Host *shost = class_to_shost(dev);
445 
446 	h = shost_to_hba(shost);
447 	ld = lockup_detected(h);
448 
449 	return sprintf(buf, "ld=%d\n", ld);
450 }
451 
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 					 struct device_attribute *attr,
454 					 const char *buf, size_t count)
455 {
456 	int status, len;
457 	struct ctlr_info *h;
458 	struct Scsi_Host *shost = class_to_shost(dev);
459 	char tmpbuf[10];
460 
461 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462 		return -EACCES;
463 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 	strncpy(tmpbuf, buf, len);
465 	tmpbuf[len] = '\0';
466 	if (sscanf(tmpbuf, "%d", &status) != 1)
467 		return -EINVAL;
468 	h = shost_to_hba(shost);
469 	h->acciopath_status = !!status;
470 	dev_warn(&h->pdev->dev,
471 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 		h->acciopath_status ? "enabled" : "disabled");
473 	return count;
474 }
475 
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 					 struct device_attribute *attr,
478 					 const char *buf, size_t count)
479 {
480 	int debug_level, len;
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	char tmpbuf[10];
484 
485 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486 		return -EACCES;
487 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 	strncpy(tmpbuf, buf, len);
489 	tmpbuf[len] = '\0';
490 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491 		return -EINVAL;
492 	if (debug_level < 0)
493 		debug_level = 0;
494 	h = shost_to_hba(shost);
495 	h->raid_offload_debug = debug_level;
496 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 		h->raid_offload_debug);
498 	return count;
499 }
500 
501 static ssize_t host_store_rescan(struct device *dev,
502 				 struct device_attribute *attr,
503 				 const char *buf, size_t count)
504 {
505 	struct ctlr_info *h;
506 	struct Scsi_Host *shost = class_to_shost(dev);
507 	h = shost_to_hba(shost);
508 	hpsa_scan_start(h->scsi_host);
509 	return count;
510 }
511 
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514 	device->offload_enabled = 0;
515 	device->offload_to_be_enabled = 0;
516 }
517 
518 static ssize_t host_show_firmware_revision(struct device *dev,
519 	     struct device_attribute *attr, char *buf)
520 {
521 	struct ctlr_info *h;
522 	struct Scsi_Host *shost = class_to_shost(dev);
523 	unsigned char *fwrev;
524 
525 	h = shost_to_hba(shost);
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	fwrev = &h->hba_inquiry_data[32];
529 	return snprintf(buf, 20, "%c%c%c%c\n",
530 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532 
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 	     struct device_attribute *attr, char *buf)
535 {
536 	struct Scsi_Host *shost = class_to_shost(dev);
537 	struct ctlr_info *h = shost_to_hba(shost);
538 
539 	return snprintf(buf, 20, "%d\n",
540 			atomic_read(&h->commands_outstanding));
541 }
542 
543 static ssize_t host_show_transport_mode(struct device *dev,
544 	struct device_attribute *attr, char *buf)
545 {
546 	struct ctlr_info *h;
547 	struct Scsi_Host *shost = class_to_shost(dev);
548 
549 	h = shost_to_hba(shost);
550 	return snprintf(buf, 20, "%s\n",
551 		h->transMethod & CFGTBL_Trans_Performant ?
552 			"performant" : "simple");
553 }
554 
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 	struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct Scsi_Host *shost = class_to_shost(dev);
560 
561 	h = shost_to_hba(shost);
562 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565 
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 	0x324a103C, /* Smart Array P712m */
569 	0x324b103C, /* Smart Array P711m */
570 	0x3223103C, /* Smart Array P800 */
571 	0x3234103C, /* Smart Array P400 */
572 	0x3235103C, /* Smart Array P400i */
573 	0x3211103C, /* Smart Array E200i */
574 	0x3212103C, /* Smart Array E200 */
575 	0x3213103C, /* Smart Array E200i */
576 	0x3214103C, /* Smart Array E200i */
577 	0x3215103C, /* Smart Array E200i */
578 	0x3237103C, /* Smart Array E500 */
579 	0x323D103C, /* Smart Array P700m */
580 	0x40800E11, /* Smart Array 5i */
581 	0x409C0E11, /* Smart Array 6400 */
582 	0x409D0E11, /* Smart Array 6400 EM */
583 	0x40700E11, /* Smart Array 5300 */
584 	0x40820E11, /* Smart Array 532 */
585 	0x40830E11, /* Smart Array 5312 */
586 	0x409A0E11, /* Smart Array 641 */
587 	0x409B0E11, /* Smart Array 642 */
588 	0x40910E11, /* Smart Array 6i */
589 };
590 
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 	0x40800E11, /* Smart Array 5i */
594 	0x40700E11, /* Smart Array 5300 */
595 	0x40820E11, /* Smart Array 532 */
596 	0x40830E11, /* Smart Array 5312 */
597 	0x409A0E11, /* Smart Array 641 */
598 	0x409B0E11, /* Smart Array 642 */
599 	0x40910E11, /* Smart Array 6i */
600 	/* Exclude 640x boards.  These are two pci devices in one slot
601 	 * which share a battery backed cache module.  One controls the
602 	 * cache, the other accesses the cache through the one that controls
603 	 * it.  If we reset the one controlling the cache, the other will
604 	 * likely not be happy.  Just forbid resetting this conjoined mess.
605 	 * The 640x isn't really supported by hpsa anyway.
606 	 */
607 	0x409C0E11, /* Smart Array 6400 */
608 	0x409D0E11, /* Smart Array 6400 EM */
609 };
610 
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613 	int i;
614 
615 	for (i = 0; i < nelems; i++)
616 		if (a[i] == board_id)
617 			return 1;
618 	return 0;
619 }
620 
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623 	return !board_id_in_array(unresettable_controller,
624 			ARRAY_SIZE(unresettable_controller), board_id);
625 }
626 
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629 	return !board_id_in_array(soft_unresettable_controller,
630 			ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632 
633 static int ctlr_is_resettable(u32 board_id)
634 {
635 	return ctlr_is_hard_resettable(board_id) ||
636 		ctlr_is_soft_resettable(board_id);
637 }
638 
639 static ssize_t host_show_resettable(struct device *dev,
640 	struct device_attribute *attr, char *buf)
641 {
642 	struct ctlr_info *h;
643 	struct Scsi_Host *shost = class_to_shost(dev);
644 
645 	h = shost_to_hba(shost);
646 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648 
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651 	return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653 
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0	0
658 #define HPSA_RAID_4	1
659 #define HPSA_RAID_1	2	/* also used for RAID 10 */
660 #define HPSA_RAID_5	3	/* also used for RAID 50 */
661 #define HPSA_RAID_51	4
662 #define HPSA_RAID_6	5	/* also used for RAID 60 */
663 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669 	return !device->physical_device;
670 }
671 
672 static ssize_t raid_level_show(struct device *dev,
673 	     struct device_attribute *attr, char *buf)
674 {
675 	ssize_t l = 0;
676 	unsigned char rlevel;
677 	struct ctlr_info *h;
678 	struct scsi_device *sdev;
679 	struct hpsa_scsi_dev_t *hdev;
680 	unsigned long flags;
681 
682 	sdev = to_scsi_device(dev);
683 	h = sdev_to_hba(sdev);
684 	spin_lock_irqsave(&h->lock, flags);
685 	hdev = sdev->hostdata;
686 	if (!hdev) {
687 		spin_unlock_irqrestore(&h->lock, flags);
688 		return -ENODEV;
689 	}
690 
691 	/* Is this even a logical drive? */
692 	if (!is_logical_device(hdev)) {
693 		spin_unlock_irqrestore(&h->lock, flags);
694 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
695 		return l;
696 	}
697 
698 	rlevel = hdev->raid_level;
699 	spin_unlock_irqrestore(&h->lock, flags);
700 	if (rlevel > RAID_UNKNOWN)
701 		rlevel = RAID_UNKNOWN;
702 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703 	return l;
704 }
705 
706 static ssize_t lunid_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char lunid[8];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727 
728 static ssize_t unique_id_show(struct device *dev,
729 	     struct device_attribute *attr, char *buf)
730 {
731 	struct ctlr_info *h;
732 	struct scsi_device *sdev;
733 	struct hpsa_scsi_dev_t *hdev;
734 	unsigned long flags;
735 	unsigned char sn[16];
736 
737 	sdev = to_scsi_device(dev);
738 	h = sdev_to_hba(sdev);
739 	spin_lock_irqsave(&h->lock, flags);
740 	hdev = sdev->hostdata;
741 	if (!hdev) {
742 		spin_unlock_irqrestore(&h->lock, flags);
743 		return -ENODEV;
744 	}
745 	memcpy(sn, hdev->device_id, sizeof(sn));
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	return snprintf(buf, 16 * 2 + 2,
748 			"%02X%02X%02X%02X%02X%02X%02X%02X"
749 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 			sn[0], sn[1], sn[2], sn[3],
751 			sn[4], sn[5], sn[6], sn[7],
752 			sn[8], sn[9], sn[10], sn[11],
753 			sn[12], sn[13], sn[14], sn[15]);
754 }
755 
756 static ssize_t sas_address_show(struct device *dev,
757 	      struct device_attribute *attr, char *buf)
758 {
759 	struct ctlr_info *h;
760 	struct scsi_device *sdev;
761 	struct hpsa_scsi_dev_t *hdev;
762 	unsigned long flags;
763 	u64 sas_address;
764 
765 	sdev = to_scsi_device(dev);
766 	h = sdev_to_hba(sdev);
767 	spin_lock_irqsave(&h->lock, flags);
768 	hdev = sdev->hostdata;
769 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 		spin_unlock_irqrestore(&h->lock, flags);
771 		return -ENODEV;
772 	}
773 	sas_address = hdev->sas_address;
774 	spin_unlock_irqrestore(&h->lock, flags);
775 
776 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778 
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 	     struct device_attribute *attr, char *buf)
781 {
782 	struct ctlr_info *h;
783 	struct scsi_device *sdev;
784 	struct hpsa_scsi_dev_t *hdev;
785 	unsigned long flags;
786 	int offload_enabled;
787 
788 	sdev = to_scsi_device(dev);
789 	h = sdev_to_hba(sdev);
790 	spin_lock_irqsave(&h->lock, flags);
791 	hdev = sdev->hostdata;
792 	if (!hdev) {
793 		spin_unlock_irqrestore(&h->lock, flags);
794 		return -ENODEV;
795 	}
796 	offload_enabled = hdev->offload_enabled;
797 	spin_unlock_irqrestore(&h->lock, flags);
798 
799 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 		return snprintf(buf, 20, "%d\n", offload_enabled);
801 	else
802 		return snprintf(buf, 40, "%s\n",
803 				"Not applicable for a controller");
804 }
805 
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808 	     struct device_attribute *attr, char *buf)
809 {
810 	struct ctlr_info *h;
811 	struct scsi_device *sdev;
812 	struct hpsa_scsi_dev_t *hdev;
813 	unsigned long flags;
814 	int i;
815 	int output_len = 0;
816 	u8 box;
817 	u8 bay;
818 	u8 path_map_index = 0;
819 	char *active;
820 	unsigned char phys_connector[2];
821 
822 	sdev = to_scsi_device(dev);
823 	h = sdev_to_hba(sdev);
824 	spin_lock_irqsave(&h->devlock, flags);
825 	hdev = sdev->hostdata;
826 	if (!hdev) {
827 		spin_unlock_irqrestore(&h->devlock, flags);
828 		return -ENODEV;
829 	}
830 
831 	bay = hdev->bay;
832 	for (i = 0; i < MAX_PATHS; i++) {
833 		path_map_index = 1<<i;
834 		if (i == hdev->active_path_index)
835 			active = "Active";
836 		else if (hdev->path_map & path_map_index)
837 			active = "Inactive";
838 		else
839 			continue;
840 
841 		output_len += scnprintf(buf + output_len,
842 				PAGE_SIZE - output_len,
843 				"[%d:%d:%d:%d] %20.20s ",
844 				h->scsi_host->host_no,
845 				hdev->bus, hdev->target, hdev->lun,
846 				scsi_device_type(hdev->devtype));
847 
848 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 			output_len += scnprintf(buf + output_len,
850 						PAGE_SIZE - output_len,
851 						"%s\n", active);
852 			continue;
853 		}
854 
855 		box = hdev->box[i];
856 		memcpy(&phys_connector, &hdev->phys_connector[i],
857 			sizeof(phys_connector));
858 		if (phys_connector[0] < '0')
859 			phys_connector[0] = '0';
860 		if (phys_connector[1] < '0')
861 			phys_connector[1] = '0';
862 		output_len += scnprintf(buf + output_len,
863 				PAGE_SIZE - output_len,
864 				"PORT: %.2s ",
865 				phys_connector);
866 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 			hdev->expose_device) {
868 			if (box == 0 || box == 0xFF) {
869 				output_len += scnprintf(buf + output_len,
870 					PAGE_SIZE - output_len,
871 					"BAY: %hhu %s\n",
872 					bay, active);
873 			} else {
874 				output_len += scnprintf(buf + output_len,
875 					PAGE_SIZE - output_len,
876 					"BOX: %hhu BAY: %hhu %s\n",
877 					box, bay, active);
878 			}
879 		} else if (box != 0 && box != 0xFF) {
880 			output_len += scnprintf(buf + output_len,
881 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882 				box, active);
883 		} else
884 			output_len += scnprintf(buf + output_len,
885 				PAGE_SIZE - output_len, "%s\n", active);
886 	}
887 
888 	spin_unlock_irqrestore(&h->devlock, flags);
889 	return output_len;
890 }
891 
892 static ssize_t host_show_ctlr_num(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901 
902 static ssize_t host_show_legacy_board(struct device *dev,
903 	struct device_attribute *attr, char *buf)
904 {
905 	struct ctlr_info *h;
906 	struct Scsi_Host *shost = class_to_shost(dev);
907 
908 	h = shost_to_hba(shost);
909 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911 
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 			host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 		host_show_hp_ssd_smart_path_status,
922 		host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 			host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 	host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 	host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 	host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 	host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 	host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 	host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 	host_show_legacy_board, NULL);
939 
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941 	&dev_attr_raid_level,
942 	&dev_attr_lunid,
943 	&dev_attr_unique_id,
944 	&dev_attr_hp_ssd_smart_path_enabled,
945 	&dev_attr_path_info,
946 	&dev_attr_sas_address,
947 	NULL,
948 };
949 
950 static struct device_attribute *hpsa_shost_attrs[] = {
951 	&dev_attr_rescan,
952 	&dev_attr_firmware_revision,
953 	&dev_attr_commands_outstanding,
954 	&dev_attr_transport_mode,
955 	&dev_attr_resettable,
956 	&dev_attr_hp_ssd_smart_path_status,
957 	&dev_attr_raid_offload_debug,
958 	&dev_attr_lockup_detected,
959 	&dev_attr_ctlr_num,
960 	&dev_attr_legacy_board,
961 	NULL,
962 };
963 
964 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
966 
967 static struct scsi_host_template hpsa_driver_template = {
968 	.module			= THIS_MODULE,
969 	.name			= HPSA,
970 	.proc_name		= HPSA,
971 	.queuecommand		= hpsa_scsi_queue_command,
972 	.scan_start		= hpsa_scan_start,
973 	.scan_finished		= hpsa_scan_finished,
974 	.change_queue_depth	= hpsa_change_queue_depth,
975 	.this_id		= -1,
976 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
977 	.ioctl			= hpsa_ioctl,
978 	.slave_alloc		= hpsa_slave_alloc,
979 	.slave_configure	= hpsa_slave_configure,
980 	.slave_destroy		= hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982 	.compat_ioctl		= hpsa_compat_ioctl,
983 #endif
984 	.sdev_attrs = hpsa_sdev_attrs,
985 	.shost_attrs = hpsa_shost_attrs,
986 	.max_sectors = 2048,
987 	.no_write_same = 1,
988 };
989 
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992 	u32 a;
993 	struct reply_queue_buffer *rq = &h->reply_queue[q];
994 
995 	if (h->transMethod & CFGTBL_Trans_io_accel1)
996 		return h->access.command_completed(h, q);
997 
998 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999 		return h->access.command_completed(h, q);
1000 
1001 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002 		a = rq->head[rq->current_entry];
1003 		rq->current_entry++;
1004 		atomic_dec(&h->commands_outstanding);
1005 	} else {
1006 		a = FIFO_EMPTY;
1007 	}
1008 	/* Check for wraparound */
1009 	if (rq->current_entry == h->max_commands) {
1010 		rq->current_entry = 0;
1011 		rq->wraparound ^= 1;
1012 	}
1013 	return a;
1014 }
1015 
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041 
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049 					int reply_queue)
1050 {
1051 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053 		if (unlikely(!h->msix_vectors))
1054 			return;
1055 		c->Header.ReplyQueue = reply_queue;
1056 	}
1057 }
1058 
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060 						struct CommandList *c,
1061 						int reply_queue)
1062 {
1063 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064 
1065 	/*
1066 	 * Tell the controller to post the reply to the queue for this
1067 	 * processor.  This seems to give the best I/O throughput.
1068 	 */
1069 	cp->ReplyQueue = reply_queue;
1070 	/*
1071 	 * Set the bits in the address sent down to include:
1072 	 *  - performant mode bit (bit 0)
1073 	 *  - pull count (bits 1-3)
1074 	 *  - command type (bits 4-6)
1075 	 */
1076 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 					IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079 
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 						struct CommandList *c,
1082 						int reply_queue)
1083 {
1084 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 		&h->ioaccel2_cmd_pool[c->cmdindex];
1086 
1087 	/* Tell the controller to post the reply to the queue for this
1088 	 * processor.  This seems to give the best I/O throughput.
1089 	 */
1090 	cp->reply_queue = reply_queue;
1091 	/* Set the bits in the address sent down to include:
1092 	 *  - performant mode bit not used in ioaccel mode 2
1093 	 *  - pull count (bits 0-3)
1094 	 *  - command type isn't needed for ioaccel2
1095 	 */
1096 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098 
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100 						struct CommandList *c,
1101 						int reply_queue)
1102 {
1103 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104 
1105 	/*
1106 	 * Tell the controller to post the reply to the queue for this
1107 	 * processor.  This seems to give the best I/O throughput.
1108 	 */
1109 	cp->reply_queue = reply_queue;
1110 	/*
1111 	 * Set the bits in the address sent down to include:
1112 	 *  - performant mode bit not used in ioaccel mode 2
1113 	 *  - pull count (bits 0-3)
1114 	 *  - command type isn't needed for ioaccel2
1115 	 */
1116 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118 
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123 
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133 		struct CommandList *c)
1134 {
1135 	if (!is_firmware_flash_cmd(c->Request.CDB))
1136 		return;
1137 	atomic_inc(&h->firmware_flash_in_progress);
1138 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140 
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142 		struct CommandList *c)
1143 {
1144 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1145 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1146 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148 
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150 	struct CommandList *c, int reply_queue)
1151 {
1152 	dial_down_lockup_detection_during_fw_flash(h, c);
1153 	atomic_inc(&h->commands_outstanding);
1154 	if (c->device)
1155 		atomic_inc(&c->device->commands_outstanding);
1156 
1157 	reply_queue = h->reply_map[raw_smp_processor_id()];
1158 	switch (c->cmd_type) {
1159 	case CMD_IOACCEL1:
1160 		set_ioaccel1_performant_mode(h, c, reply_queue);
1161 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162 		break;
1163 	case CMD_IOACCEL2:
1164 		set_ioaccel2_performant_mode(h, c, reply_queue);
1165 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166 		break;
1167 	case IOACCEL2_TMF:
1168 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170 		break;
1171 	default:
1172 		set_performant_mode(h, c, reply_queue);
1173 		h->access.submit_command(h, c);
1174 	}
1175 }
1176 
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181 
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186 
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 	if (!h->hba_inquiry_data)
1190 		return 0;
1191 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 	/* finds an unused bus, target, lun for a new physical device
1200 	 * assumes h->devlock is held
1201 	 */
1202 	int i, found = 0;
1203 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204 
1205 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	for (i = 0; i < h->ndevices; i++) {
1208 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 			__set_bit(h->dev[i]->target, lun_taken);
1210 	}
1211 
1212 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 	if (i < HPSA_MAX_DEVICES) {
1214 		/* *bus = 1; */
1215 		*target = i;
1216 		*lun = 0;
1217 		found = 1;
1218 	}
1219 	return !found;
1220 }
1221 
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 	struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 	char label[LABEL_SIZE];
1227 
1228 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 		return;
1230 
1231 	switch (dev->devtype) {
1232 	case TYPE_RAID:
1233 		snprintf(label, LABEL_SIZE, "controller");
1234 		break;
1235 	case TYPE_ENCLOSURE:
1236 		snprintf(label, LABEL_SIZE, "enclosure");
1237 		break;
1238 	case TYPE_DISK:
1239 	case TYPE_ZBC:
1240 		if (dev->external)
1241 			snprintf(label, LABEL_SIZE, "external");
1242 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 			snprintf(label, LABEL_SIZE, "%s",
1244 				raid_label[PHYSICAL_DRIVE]);
1245 		else
1246 			snprintf(label, LABEL_SIZE, "RAID-%s",
1247 				dev->raid_level > RAID_UNKNOWN ? "?" :
1248 				raid_label[dev->raid_level]);
1249 		break;
1250 	case TYPE_ROM:
1251 		snprintf(label, LABEL_SIZE, "rom");
1252 		break;
1253 	case TYPE_TAPE:
1254 		snprintf(label, LABEL_SIZE, "tape");
1255 		break;
1256 	case TYPE_MEDIUM_CHANGER:
1257 		snprintf(label, LABEL_SIZE, "changer");
1258 		break;
1259 	default:
1260 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 		break;
1262 	}
1263 
1264 	dev_printk(level, &h->pdev->dev,
1265 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 			description,
1268 			scsi_device_type(dev->devtype),
1269 			dev->vendor,
1270 			dev->model,
1271 			label,
1272 			dev->offload_config ? '+' : '-',
1273 			dev->offload_to_be_enabled ? '+' : '-',
1274 			dev->expose_device);
1275 }
1276 
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 		struct hpsa_scsi_dev_t *device,
1280 		struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 	/* assumes h->devlock is held */
1283 	int n = h->ndevices;
1284 	int i;
1285 	unsigned char addr1[8], addr2[8];
1286 	struct hpsa_scsi_dev_t *sd;
1287 
1288 	if (n >= HPSA_MAX_DEVICES) {
1289 		dev_err(&h->pdev->dev, "too many devices, some will be "
1290 			"inaccessible.\n");
1291 		return -1;
1292 	}
1293 
1294 	/* physical devices do not have lun or target assigned until now. */
1295 	if (device->lun != -1)
1296 		/* Logical device, lun is already assigned. */
1297 		goto lun_assigned;
1298 
1299 	/* If this device a non-zero lun of a multi-lun device
1300 	 * byte 4 of the 8-byte LUN addr will contain the logical
1301 	 * unit no, zero otherwise.
1302 	 */
1303 	if (device->scsi3addr[4] == 0) {
1304 		/* This is not a non-zero lun of a multi-lun device */
1305 		if (hpsa_find_target_lun(h, device->scsi3addr,
1306 			device->bus, &device->target, &device->lun) != 0)
1307 			return -1;
1308 		goto lun_assigned;
1309 	}
1310 
1311 	/* This is a non-zero lun of a multi-lun device.
1312 	 * Search through our list and find the device which
1313 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 	 * Assign the same bus and target for this new LUN.
1315 	 * Use the logical unit number from the firmware.
1316 	 */
1317 	memcpy(addr1, device->scsi3addr, 8);
1318 	addr1[4] = 0;
1319 	addr1[5] = 0;
1320 	for (i = 0; i < n; i++) {
1321 		sd = h->dev[i];
1322 		memcpy(addr2, sd->scsi3addr, 8);
1323 		addr2[4] = 0;
1324 		addr2[5] = 0;
1325 		/* differ only in byte 4 and 5? */
1326 		if (memcmp(addr1, addr2, 8) == 0) {
1327 			device->bus = sd->bus;
1328 			device->target = sd->target;
1329 			device->lun = device->scsi3addr[4];
1330 			break;
1331 		}
1332 	}
1333 	if (device->lun == -1) {
1334 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 			" suspect firmware bug or unsupported hardware "
1336 			"configuration.\n");
1337 		return -1;
1338 	}
1339 
1340 lun_assigned:
1341 
1342 	h->dev[n] = device;
1343 	h->ndevices++;
1344 	added[*nadded] = device;
1345 	(*nadded)++;
1346 	hpsa_show_dev_msg(KERN_INFO, h, device,
1347 		device->expose_device ? "added" : "masked");
1348 	return 0;
1349 }
1350 
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357 	int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359 	/* assumes h->devlock is held */
1360 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361 
1362 	/* Raid level changed. */
1363 	h->dev[entry]->raid_level = new_entry->raid_level;
1364 
1365 	/*
1366 	 * ioacccel_handle may have changed for a dual domain disk
1367 	 */
1368 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369 
1370 	/* Raid offload parameters changed.  Careful about the ordering. */
1371 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372 		/*
1373 		 * if drive is newly offload_enabled, we want to copy the
1374 		 * raid map data first.  If previously offload_enabled and
1375 		 * offload_config were set, raid map data had better be
1376 		 * the same as it was before. If raid map data has changed
1377 		 * then it had better be the case that
1378 		 * h->dev[entry]->offload_enabled is currently 0.
1379 		 */
1380 		h->dev[entry]->raid_map = new_entry->raid_map;
1381 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382 	}
1383 	if (new_entry->offload_to_be_enabled) {
1384 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386 	}
1387 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388 	h->dev[entry]->offload_config = new_entry->offload_config;
1389 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1391 
1392 	/*
1393 	 * We can turn off ioaccel offload now, but need to delay turning
1394 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395 	 * can't do that until all the devices are updated.
1396 	 */
1397 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398 
1399 	/*
1400 	 * turn ioaccel off immediately if told to do so.
1401 	 */
1402 	if (!new_entry->offload_to_be_enabled)
1403 		h->dev[entry]->offload_enabled = 0;
1404 
1405 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407 
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410 	int entry, struct hpsa_scsi_dev_t *new_entry,
1411 	struct hpsa_scsi_dev_t *added[], int *nadded,
1412 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414 	/* assumes h->devlock is held */
1415 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416 	removed[*nremoved] = h->dev[entry];
1417 	(*nremoved)++;
1418 
1419 	/*
1420 	 * New physical devices won't have target/lun assigned yet
1421 	 * so we need to preserve the values in the slot we are replacing.
1422 	 */
1423 	if (new_entry->target == -1) {
1424 		new_entry->target = h->dev[entry]->target;
1425 		new_entry->lun = h->dev[entry]->lun;
1426 	}
1427 
1428 	h->dev[entry] = new_entry;
1429 	added[*nadded] = new_entry;
1430 	(*nadded)++;
1431 
1432 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434 
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439 	/* assumes h->devlock is held */
1440 	int i;
1441 	struct hpsa_scsi_dev_t *sd;
1442 
1443 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444 
1445 	sd = h->dev[entry];
1446 	removed[*nremoved] = h->dev[entry];
1447 	(*nremoved)++;
1448 
1449 	for (i = entry; i < h->ndevices-1; i++)
1450 		h->dev[i] = h->dev[i+1];
1451 	h->ndevices--;
1452 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454 
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456 	(a)[7] == (b)[7] && \
1457 	(a)[6] == (b)[6] && \
1458 	(a)[5] == (b)[5] && \
1459 	(a)[4] == (b)[4] && \
1460 	(a)[3] == (b)[3] && \
1461 	(a)[2] == (b)[2] && \
1462 	(a)[1] == (b)[1] && \
1463 	(a)[0] == (b)[0])
1464 
1465 static void fixup_botched_add(struct ctlr_info *h,
1466 	struct hpsa_scsi_dev_t *added)
1467 {
1468 	/* called when scsi_add_device fails in order to re-adjust
1469 	 * h->dev[] to match the mid layer's view.
1470 	 */
1471 	unsigned long flags;
1472 	int i, j;
1473 
1474 	spin_lock_irqsave(&h->lock, flags);
1475 	for (i = 0; i < h->ndevices; i++) {
1476 		if (h->dev[i] == added) {
1477 			for (j = i; j < h->ndevices-1; j++)
1478 				h->dev[j] = h->dev[j+1];
1479 			h->ndevices--;
1480 			break;
1481 		}
1482 	}
1483 	spin_unlock_irqrestore(&h->lock, flags);
1484 	kfree(added);
1485 }
1486 
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488 	struct hpsa_scsi_dev_t *dev2)
1489 {
1490 	/* we compare everything except lun and target as these
1491 	 * are not yet assigned.  Compare parts likely
1492 	 * to differ first
1493 	 */
1494 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495 		sizeof(dev1->scsi3addr)) != 0)
1496 		return 0;
1497 	if (memcmp(dev1->device_id, dev2->device_id,
1498 		sizeof(dev1->device_id)) != 0)
1499 		return 0;
1500 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501 		return 0;
1502 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503 		return 0;
1504 	if (dev1->devtype != dev2->devtype)
1505 		return 0;
1506 	if (dev1->bus != dev2->bus)
1507 		return 0;
1508 	return 1;
1509 }
1510 
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512 	struct hpsa_scsi_dev_t *dev2)
1513 {
1514 	/* Device attributes that can change, but don't mean
1515 	 * that the device is a different device, nor that the OS
1516 	 * needs to be told anything about the change.
1517 	 */
1518 	if (dev1->raid_level != dev2->raid_level)
1519 		return 1;
1520 	if (dev1->offload_config != dev2->offload_config)
1521 		return 1;
1522 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523 		return 1;
1524 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525 		if (dev1->queue_depth != dev2->queue_depth)
1526 			return 1;
1527 	/*
1528 	 * This can happen for dual domain devices. An active
1529 	 * path change causes the ioaccel handle to change
1530 	 *
1531 	 * for example note the handle differences between p0 and p1
1532 	 * Device                    WWN               ,WWN hash,Handle
1533 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535 	 */
1536 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537 		return 1;
1538 	return 0;
1539 }
1540 
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551 	int *index)
1552 {
1553 	int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558 	if (needle == NULL)
1559 		return DEVICE_NOT_FOUND;
1560 
1561 	for (i = 0; i < haystack_size; i++) {
1562 		if (haystack[i] == NULL) /* previously removed. */
1563 			continue;
1564 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565 			*index = i;
1566 			if (device_is_the_same(needle, haystack[i])) {
1567 				if (device_updated(needle, haystack[i]))
1568 					return DEVICE_UPDATED;
1569 				return DEVICE_SAME;
1570 			} else {
1571 				/* Keep offline devices offline */
1572 				if (needle->volume_offline)
1573 					return DEVICE_NOT_FOUND;
1574 				return DEVICE_CHANGED;
1575 			}
1576 		}
1577 	}
1578 	*index = -1;
1579 	return DEVICE_NOT_FOUND;
1580 }
1581 
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583 					unsigned char scsi3addr[])
1584 {
1585 	struct offline_device_entry *device;
1586 	unsigned long flags;
1587 
1588 	/* Check to see if device is already on the list */
1589 	spin_lock_irqsave(&h->offline_device_lock, flags);
1590 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591 		if (memcmp(device->scsi3addr, scsi3addr,
1592 			sizeof(device->scsi3addr)) == 0) {
1593 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594 			return;
1595 		}
1596 	}
1597 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 
1599 	/* Device is not on the list, add it. */
1600 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1601 	if (!device)
1602 		return;
1603 
1604 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605 	spin_lock_irqsave(&h->offline_device_lock, flags);
1606 	list_add_tail(&device->offline_list, &h->offline_device_list);
1607 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609 
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612 	struct hpsa_scsi_dev_t *sd)
1613 {
1614 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 	switch (sd->volume_offline) {
1620 	case HPSA_LV_OK:
1621 		break;
1622 	case HPSA_LV_UNDERGOING_ERASE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_NOT_AVAILABLE:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_UNDERGOING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_PENDING_RPI:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_ENCRYPTED_NO_KEY:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683 		dev_info(&h->pdev->dev,
1684 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685 			h->scsi_host->host_no,
1686 			sd->bus, sd->target, sd->lun);
1687 		break;
1688 	}
1689 }
1690 
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1697 				struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699 	struct raid_map_data *map = &logical_drive->raid_map;
1700 	struct raid_map_disk_data *dd = &map->data[0];
1701 	int i, j;
1702 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703 				le16_to_cpu(map->metadata_disks_per_row);
1704 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705 				le16_to_cpu(map->layout_map_count) *
1706 				total_disks_per_row;
1707 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708 				total_disks_per_row;
1709 	int qdepth;
1710 
1711 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713 
1714 	logical_drive->nphysical_disks = nraid_map_entries;
1715 
1716 	qdepth = 0;
1717 	for (i = 0; i < nraid_map_entries; i++) {
1718 		logical_drive->phys_disk[i] = NULL;
1719 		if (!logical_drive->offload_config)
1720 			continue;
1721 		for (j = 0; j < ndevices; j++) {
1722 			if (dev[j] == NULL)
1723 				continue;
1724 			if (dev[j]->devtype != TYPE_DISK &&
1725 			    dev[j]->devtype != TYPE_ZBC)
1726 				continue;
1727 			if (is_logical_device(dev[j]))
1728 				continue;
1729 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730 				continue;
1731 
1732 			logical_drive->phys_disk[i] = dev[j];
1733 			if (i < nphys_disk)
1734 				qdepth = min(h->nr_cmds, qdepth +
1735 				    logical_drive->phys_disk[i]->queue_depth);
1736 			break;
1737 		}
1738 
1739 		/*
1740 		 * This can happen if a physical drive is removed and
1741 		 * the logical drive is degraded.  In that case, the RAID
1742 		 * map data will refer to a physical disk which isn't actually
1743 		 * present.  And in that case offload_enabled should already
1744 		 * be 0, but we'll turn it off here just in case
1745 		 */
1746 		if (!logical_drive->phys_disk[i]) {
1747 			dev_warn(&h->pdev->dev,
1748 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749 				__func__,
1750 				h->scsi_host->host_no, logical_drive->bus,
1751 				logical_drive->target, logical_drive->lun);
1752 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1753 			logical_drive->queue_depth = 8;
1754 		}
1755 	}
1756 	if (nraid_map_entries)
1757 		/*
1758 		 * This is correct for reads, too high for full stripe writes,
1759 		 * way too high for partial stripe writes
1760 		 */
1761 		logical_drive->queue_depth = qdepth;
1762 	else {
1763 		if (logical_drive->external)
1764 			logical_drive->queue_depth = EXTERNAL_QD;
1765 		else
1766 			logical_drive->queue_depth = h->nr_cmds;
1767 	}
1768 }
1769 
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < ndevices; i++) {
1776 		if (dev[i] == NULL)
1777 			continue;
1778 		if (dev[i]->devtype != TYPE_DISK &&
1779 		    dev[i]->devtype != TYPE_ZBC)
1780 			continue;
1781 		if (!is_logical_device(dev[i]))
1782 			continue;
1783 
1784 		/*
1785 		 * If offload is currently enabled, the RAID map and
1786 		 * phys_disk[] assignment *better* not be changing
1787 		 * because we would be changing ioaccel phsy_disk[] pointers
1788 		 * on a ioaccel volume processing I/O requests.
1789 		 *
1790 		 * If an ioaccel volume status changed, initially because it was
1791 		 * re-configured and thus underwent a transformation, or
1792 		 * a drive failed, we would have received a state change
1793 		 * request and ioaccel should have been turned off. When the
1794 		 * transformation completes, we get another state change
1795 		 * request to turn ioaccel back on. In this case, we need
1796 		 * to update the ioaccel information.
1797 		 *
1798 		 * Thus: If it is not currently enabled, but will be after
1799 		 * the scan completes, make sure the ioaccel pointers
1800 		 * are up to date.
1801 		 */
1802 
1803 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805 	}
1806 }
1807 
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810 	int rc = 0;
1811 
1812 	if (!h->scsi_host)
1813 		return 1;
1814 
1815 	if (is_logical_device(device)) /* RAID */
1816 		rc = scsi_add_device(h->scsi_host, device->bus,
1817 					device->target, device->lun);
1818 	else /* HBA */
1819 		rc = hpsa_add_sas_device(h->sas_host, device);
1820 
1821 	return rc;
1822 }
1823 
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825 						struct hpsa_scsi_dev_t *dev)
1826 {
1827 	int i;
1828 	int count = 0;
1829 
1830 	for (i = 0; i < h->nr_cmds; i++) {
1831 		struct CommandList *c = h->cmd_pool + i;
1832 		int refcount = atomic_inc_return(&c->refcount);
1833 
1834 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835 				dev->scsi3addr)) {
1836 			unsigned long flags;
1837 
1838 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1839 			if (!hpsa_is_cmd_idle(c))
1840 				++count;
1841 			spin_unlock_irqrestore(&h->lock, flags);
1842 		}
1843 
1844 		cmd_free(h, c);
1845 	}
1846 
1847 	return count;
1848 }
1849 
1850 #define NUM_WAIT 20
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852 						struct hpsa_scsi_dev_t *device)
1853 {
1854 	int cmds = 0;
1855 	int waits = 0;
1856 	int num_wait = NUM_WAIT;
1857 
1858 	if (device->external)
1859 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860 
1861 	while (1) {
1862 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863 		if (cmds == 0)
1864 			break;
1865 		if (++waits > num_wait)
1866 			break;
1867 		msleep(1000);
1868 	}
1869 
1870 	if (waits > num_wait) {
1871 		dev_warn(&h->pdev->dev,
1872 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873 			__func__,
1874 			h->scsi_host->host_no,
1875 			device->bus, device->target, device->lun, cmds);
1876 	}
1877 }
1878 
1879 static void hpsa_remove_device(struct ctlr_info *h,
1880 			struct hpsa_scsi_dev_t *device)
1881 {
1882 	struct scsi_device *sdev = NULL;
1883 
1884 	if (!h->scsi_host)
1885 		return;
1886 
1887 	/*
1888 	 * Allow for commands to drain
1889 	 */
1890 	device->removed = 1;
1891 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892 
1893 	if (is_logical_device(device)) { /* RAID */
1894 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895 						device->target, device->lun);
1896 		if (sdev) {
1897 			scsi_remove_device(sdev);
1898 			scsi_device_put(sdev);
1899 		} else {
1900 			/*
1901 			 * We don't expect to get here.  Future commands
1902 			 * to this device will get a selection timeout as
1903 			 * if the device were gone.
1904 			 */
1905 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1906 					"didn't find device for removal.");
1907 		}
1908 	} else { /* HBA */
1909 
1910 		hpsa_remove_sas_device(device);
1911 	}
1912 }
1913 
1914 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915 	struct hpsa_scsi_dev_t *sd[], int nsds)
1916 {
1917 	/* sd contains scsi3 addresses and devtypes, and inquiry
1918 	 * data.  This function takes what's in sd to be the current
1919 	 * reality and updates h->dev[] to reflect that reality.
1920 	 */
1921 	int i, entry, device_change, changes = 0;
1922 	struct hpsa_scsi_dev_t *csd;
1923 	unsigned long flags;
1924 	struct hpsa_scsi_dev_t **added, **removed;
1925 	int nadded, nremoved;
1926 
1927 	/*
1928 	 * A reset can cause a device status to change
1929 	 * re-schedule the scan to see what happened.
1930 	 */
1931 	spin_lock_irqsave(&h->reset_lock, flags);
1932 	if (h->reset_in_progress) {
1933 		h->drv_req_rescan = 1;
1934 		spin_unlock_irqrestore(&h->reset_lock, flags);
1935 		return;
1936 	}
1937 	spin_unlock_irqrestore(&h->reset_lock, flags);
1938 
1939 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941 
1942 	if (!added || !removed) {
1943 		dev_warn(&h->pdev->dev, "out of memory in "
1944 			"adjust_hpsa_scsi_table\n");
1945 		goto free_and_out;
1946 	}
1947 
1948 	spin_lock_irqsave(&h->devlock, flags);
1949 
1950 	/* find any devices in h->dev[] that are not in
1951 	 * sd[] and remove them from h->dev[], and for any
1952 	 * devices which have changed, remove the old device
1953 	 * info and add the new device info.
1954 	 * If minor device attributes change, just update
1955 	 * the existing device structure.
1956 	 */
1957 	i = 0;
1958 	nremoved = 0;
1959 	nadded = 0;
1960 	while (i < h->ndevices) {
1961 		csd = h->dev[i];
1962 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963 		if (device_change == DEVICE_NOT_FOUND) {
1964 			changes++;
1965 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966 			continue; /* remove ^^^, hence i not incremented */
1967 		} else if (device_change == DEVICE_CHANGED) {
1968 			changes++;
1969 			hpsa_scsi_replace_entry(h, i, sd[entry],
1970 				added, &nadded, removed, &nremoved);
1971 			/* Set it to NULL to prevent it from being freed
1972 			 * at the bottom of hpsa_update_scsi_devices()
1973 			 */
1974 			sd[entry] = NULL;
1975 		} else if (device_change == DEVICE_UPDATED) {
1976 			hpsa_scsi_update_entry(h, i, sd[entry]);
1977 		}
1978 		i++;
1979 	}
1980 
1981 	/* Now, make sure every device listed in sd[] is also
1982 	 * listed in h->dev[], adding them if they aren't found
1983 	 */
1984 
1985 	for (i = 0; i < nsds; i++) {
1986 		if (!sd[i]) /* if already added above. */
1987 			continue;
1988 
1989 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990 		 * as the SCSI mid-layer does not handle such devices well.
1991 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992 		 * at 160Hz, and prevents the system from coming up.
1993 		 */
1994 		if (sd[i]->volume_offline) {
1995 			hpsa_show_volume_status(h, sd[i]);
1996 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997 			continue;
1998 		}
1999 
2000 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001 					h->ndevices, &entry);
2002 		if (device_change == DEVICE_NOT_FOUND) {
2003 			changes++;
2004 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005 				break;
2006 			sd[i] = NULL; /* prevent from being freed later. */
2007 		} else if (device_change == DEVICE_CHANGED) {
2008 			/* should never happen... */
2009 			changes++;
2010 			dev_warn(&h->pdev->dev,
2011 				"device unexpectedly changed.\n");
2012 			/* but if it does happen, we just ignore that device */
2013 		}
2014 	}
2015 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016 
2017 	/*
2018 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019 	 * any logical drives that need it enabled.
2020 	 *
2021 	 * The raid map should be current by now.
2022 	 *
2023 	 * We are updating the device list used for I/O requests.
2024 	 */
2025 	for (i = 0; i < h->ndevices; i++) {
2026 		if (h->dev[i] == NULL)
2027 			continue;
2028 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029 	}
2030 
2031 	spin_unlock_irqrestore(&h->devlock, flags);
2032 
2033 	/* Monitor devices which are in one of several NOT READY states to be
2034 	 * brought online later. This must be done without holding h->devlock,
2035 	 * so don't touch h->dev[]
2036 	 */
2037 	for (i = 0; i < nsds; i++) {
2038 		if (!sd[i]) /* if already added above. */
2039 			continue;
2040 		if (sd[i]->volume_offline)
2041 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042 	}
2043 
2044 	/* Don't notify scsi mid layer of any changes the first time through
2045 	 * (or if there are no changes) scsi_scan_host will do it later the
2046 	 * first time through.
2047 	 */
2048 	if (!changes)
2049 		goto free_and_out;
2050 
2051 	/* Notify scsi mid layer of any removed devices */
2052 	for (i = 0; i < nremoved; i++) {
2053 		if (removed[i] == NULL)
2054 			continue;
2055 		if (removed[i]->expose_device)
2056 			hpsa_remove_device(h, removed[i]);
2057 		kfree(removed[i]);
2058 		removed[i] = NULL;
2059 	}
2060 
2061 	/* Notify scsi mid layer of any added devices */
2062 	for (i = 0; i < nadded; i++) {
2063 		int rc = 0;
2064 
2065 		if (added[i] == NULL)
2066 			continue;
2067 		if (!(added[i]->expose_device))
2068 			continue;
2069 		rc = hpsa_add_device(h, added[i]);
2070 		if (!rc)
2071 			continue;
2072 		dev_warn(&h->pdev->dev,
2073 			"addition failed %d, device not added.", rc);
2074 		/* now we have to remove it from h->dev,
2075 		 * since it didn't get added to scsi mid layer
2076 		 */
2077 		fixup_botched_add(h, added[i]);
2078 		h->drv_req_rescan = 1;
2079 	}
2080 
2081 free_and_out:
2082 	kfree(added);
2083 	kfree(removed);
2084 }
2085 
2086 /*
2087  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088  * Assume's h->devlock is held.
2089  */
2090 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091 	int bus, int target, int lun)
2092 {
2093 	int i;
2094 	struct hpsa_scsi_dev_t *sd;
2095 
2096 	for (i = 0; i < h->ndevices; i++) {
2097 		sd = h->dev[i];
2098 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099 			return sd;
2100 	}
2101 	return NULL;
2102 }
2103 
2104 static int hpsa_slave_alloc(struct scsi_device *sdev)
2105 {
2106 	struct hpsa_scsi_dev_t *sd = NULL;
2107 	unsigned long flags;
2108 	struct ctlr_info *h;
2109 
2110 	h = sdev_to_hba(sdev);
2111 	spin_lock_irqsave(&h->devlock, flags);
2112 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113 		struct scsi_target *starget;
2114 		struct sas_rphy *rphy;
2115 
2116 		starget = scsi_target(sdev);
2117 		rphy = target_to_rphy(starget);
2118 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119 		if (sd) {
2120 			sd->target = sdev_id(sdev);
2121 			sd->lun = sdev->lun;
2122 		}
2123 	}
2124 	if (!sd)
2125 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126 					sdev_id(sdev), sdev->lun);
2127 
2128 	if (sd && sd->expose_device) {
2129 		atomic_set(&sd->ioaccel_cmds_out, 0);
2130 		sdev->hostdata = sd;
2131 	} else
2132 		sdev->hostdata = NULL;
2133 	spin_unlock_irqrestore(&h->devlock, flags);
2134 	return 0;
2135 }
2136 
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device *sdev)
2140 {
2141 	struct hpsa_scsi_dev_t *sd;
2142 	int queue_depth;
2143 
2144 	sd = sdev->hostdata;
2145 	sdev->no_uld_attach = !sd || !sd->expose_device;
2146 
2147 	if (sd) {
2148 		sd->was_removed = 0;
2149 		queue_depth = sd->queue_depth != 0 ?
2150 				sd->queue_depth : sdev->host->can_queue;
2151 		if (sd->external) {
2152 			queue_depth = EXTERNAL_QD;
2153 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154 			blk_queue_rq_timeout(sdev->request_queue,
2155 						HPSA_EH_PTRAID_TIMEOUT);
2156 		}
2157 		if (is_hba_lunid(sd->scsi3addr)) {
2158 			sdev->eh_timeout = CTLR_TIMEOUT;
2159 			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160 		}
2161 	} else {
2162 		queue_depth = sdev->host->can_queue;
2163 	}
2164 
2165 	scsi_change_queue_depth(sdev, queue_depth);
2166 
2167 	return 0;
2168 }
2169 
2170 static void hpsa_slave_destroy(struct scsi_device *sdev)
2171 {
2172 	struct hpsa_scsi_dev_t *hdev = NULL;
2173 
2174 	hdev = sdev->hostdata;
2175 
2176 	if (hdev)
2177 		hdev->was_removed = 1;
2178 }
2179 
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (!h->ioaccel2_cmd_sg_list)
2185 		return;
2186 	for (i = 0; i < h->nr_cmds; i++) {
2187 		kfree(h->ioaccel2_cmd_sg_list[i]);
2188 		h->ioaccel2_cmd_sg_list[i] = NULL;
2189 	}
2190 	kfree(h->ioaccel2_cmd_sg_list);
2191 	h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193 
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196 	int i;
2197 
2198 	if (h->chainsize <= 0)
2199 		return 0;
2200 
2201 	h->ioaccel2_cmd_sg_list =
2202 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203 					GFP_KERNEL);
2204 	if (!h->ioaccel2_cmd_sg_list)
2205 		return -ENOMEM;
2206 	for (i = 0; i < h->nr_cmds; i++) {
2207 		h->ioaccel2_cmd_sg_list[i] =
2208 			kmalloc_array(h->maxsgentries,
2209 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210 				      GFP_KERNEL);
2211 		if (!h->ioaccel2_cmd_sg_list[i])
2212 			goto clean;
2213 	}
2214 	return 0;
2215 
2216 clean:
2217 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2218 	return -ENOMEM;
2219 }
2220 
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (!h->cmd_sg_list)
2226 		return;
2227 	for (i = 0; i < h->nr_cmds; i++) {
2228 		kfree(h->cmd_sg_list[i]);
2229 		h->cmd_sg_list[i] = NULL;
2230 	}
2231 	kfree(h->cmd_sg_list);
2232 	h->cmd_sg_list = NULL;
2233 }
2234 
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237 	int i;
2238 
2239 	if (h->chainsize <= 0)
2240 		return 0;
2241 
2242 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243 				 GFP_KERNEL);
2244 	if (!h->cmd_sg_list)
2245 		return -ENOMEM;
2246 
2247 	for (i = 0; i < h->nr_cmds; i++) {
2248 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249 						  sizeof(*h->cmd_sg_list[i]),
2250 						  GFP_KERNEL);
2251 		if (!h->cmd_sg_list[i])
2252 			goto clean;
2253 
2254 	}
2255 	return 0;
2256 
2257 clean:
2258 	hpsa_free_sg_chain_blocks(h);
2259 	return -ENOMEM;
2260 }
2261 
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263 	struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265 	struct ioaccel2_sg_element *chain_block;
2266 	u64 temp64;
2267 	u32 chain_size;
2268 
2269 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270 	chain_size = le32_to_cpu(cp->sg[0].length);
2271 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272 				DMA_TO_DEVICE);
2273 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274 		/* prevent subsequent unmapping */
2275 		cp->sg->address = 0;
2276 		return -1;
2277 	}
2278 	cp->sg->address = cpu_to_le64(temp64);
2279 	return 0;
2280 }
2281 
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283 	struct io_accel2_cmd *cp)
2284 {
2285 	struct ioaccel2_sg_element *chain_sg;
2286 	u64 temp64;
2287 	u32 chain_size;
2288 
2289 	chain_sg = cp->sg;
2290 	temp64 = le64_to_cpu(chain_sg->address);
2291 	chain_size = le32_to_cpu(cp->sg[0].length);
2292 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294 
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296 	struct CommandList *c)
2297 {
2298 	struct SGDescriptor *chain_sg, *chain_block;
2299 	u64 temp64;
2300 	u32 chain_len;
2301 
2302 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303 	chain_block = h->cmd_sg_list[c->cmdindex];
2304 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305 	chain_len = sizeof(*chain_sg) *
2306 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307 	chain_sg->Len = cpu_to_le32(chain_len);
2308 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309 				DMA_TO_DEVICE);
2310 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311 		/* prevent subsequent unmapping */
2312 		chain_sg->Addr = cpu_to_le64(0);
2313 		return -1;
2314 	}
2315 	chain_sg->Addr = cpu_to_le64(temp64);
2316 	return 0;
2317 }
2318 
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320 	struct CommandList *c)
2321 {
2322 	struct SGDescriptor *chain_sg;
2323 
2324 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325 		return;
2326 
2327 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331 
2332 
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338 					struct CommandList *c,
2339 					struct scsi_cmnd *cmd,
2340 					struct io_accel2_cmd *c2,
2341 					struct hpsa_scsi_dev_t *dev)
2342 {
2343 	int data_len;
2344 	int retry = 0;
2345 	u32 ioaccel2_resid = 0;
2346 
2347 	switch (c2->error_data.serv_response) {
2348 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349 		switch (c2->error_data.status) {
2350 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351 			if (cmd)
2352 				cmd->result = 0;
2353 			break;
2354 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2356 			if (c2->error_data.data_present !=
2357 					IOACCEL2_SENSE_DATA_PRESENT) {
2358 				memset(cmd->sense_buffer, 0,
2359 					SCSI_SENSE_BUFFERSIZE);
2360 				break;
2361 			}
2362 			/* copy the sense data */
2363 			data_len = c2->error_data.sense_data_len;
2364 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2365 				data_len = SCSI_SENSE_BUFFERSIZE;
2366 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2367 				data_len =
2368 					sizeof(c2->error_data.sense_data_buff);
2369 			memcpy(cmd->sense_buffer,
2370 				c2->error_data.sense_data_buff, data_len);
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377 			retry = 1;
2378 			break;
2379 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380 			retry = 1;
2381 			break;
2382 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383 			retry = 1;
2384 			break;
2385 		default:
2386 			retry = 1;
2387 			break;
2388 		}
2389 		break;
2390 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2391 		switch (c2->error_data.status) {
2392 		case IOACCEL2_STATUS_SR_IO_ERROR:
2393 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2394 		case IOACCEL2_STATUS_SR_OVERRUN:
2395 			retry = 1;
2396 			break;
2397 		case IOACCEL2_STATUS_SR_UNDERRUN:
2398 			cmd->result = (DID_OK << 16);		/* host byte */
2399 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2400 			ioaccel2_resid = get_unaligned_le32(
2401 						&c2->error_data.resid_cnt[0]);
2402 			scsi_set_resid(cmd, ioaccel2_resid);
2403 			break;
2404 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2405 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2406 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2407 			/*
2408 			 * Did an HBA disk disappear? We will eventually
2409 			 * get a state change event from the controller but
2410 			 * in the meantime, we need to tell the OS that the
2411 			 * HBA disk is no longer there and stop I/O
2412 			 * from going down. This allows the potential re-insert
2413 			 * of the disk to get the same device node.
2414 			 */
2415 			if (dev->physical_device && dev->expose_device) {
2416 				cmd->result = DID_NO_CONNECT << 16;
2417 				dev->removed = 1;
2418 				h->drv_req_rescan = 1;
2419 				dev_warn(&h->pdev->dev,
2420 					"%s: device is gone!\n", __func__);
2421 			} else
2422 				/*
2423 				 * Retry by sending down the RAID path.
2424 				 * We will get an event from ctlr to
2425 				 * trigger rescan regardless.
2426 				 */
2427 				retry = 1;
2428 			break;
2429 		default:
2430 			retry = 1;
2431 		}
2432 		break;
2433 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2434 		break;
2435 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2436 		break;
2437 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2438 		retry = 1;
2439 		break;
2440 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2441 		break;
2442 	default:
2443 		retry = 1;
2444 		break;
2445 	}
2446 
2447 	if (dev->in_reset)
2448 		retry = 0;
2449 
2450 	return retry;	/* retry on raid path? */
2451 }
2452 
2453 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2454 		struct CommandList *c)
2455 {
2456 	struct hpsa_scsi_dev_t *dev = c->device;
2457 
2458 	/*
2459 	 * Reset c->scsi_cmd here so that the reset handler will know
2460 	 * this command has completed.  Then, check to see if the handler is
2461 	 * waiting for this command, and, if so, wake it.
2462 	 */
2463 	c->scsi_cmd = SCSI_CMD_IDLE;
2464 	mb();	/* Declare command idle before checking for pending events. */
2465 	if (dev) {
2466 		atomic_dec(&dev->commands_outstanding);
2467 		if (dev->in_reset &&
2468 			atomic_read(&dev->commands_outstanding) <= 0)
2469 			wake_up_all(&h->event_sync_wait_queue);
2470 	}
2471 }
2472 
2473 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2474 				      struct CommandList *c)
2475 {
2476 	hpsa_cmd_resolve_events(h, c);
2477 	cmd_tagged_free(h, c);
2478 }
2479 
2480 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2481 		struct CommandList *c, struct scsi_cmnd *cmd)
2482 {
2483 	hpsa_cmd_resolve_and_free(h, c);
2484 	if (cmd && cmd->scsi_done)
2485 		cmd->scsi_done(cmd);
2486 }
2487 
2488 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2489 {
2490 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2491 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2492 }
2493 
2494 static void process_ioaccel2_completion(struct ctlr_info *h,
2495 		struct CommandList *c, struct scsi_cmnd *cmd,
2496 		struct hpsa_scsi_dev_t *dev)
2497 {
2498 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2499 
2500 	/* check for good status */
2501 	if (likely(c2->error_data.serv_response == 0 &&
2502 			c2->error_data.status == 0)) {
2503 		cmd->result = 0;
2504 		return hpsa_cmd_free_and_done(h, c, cmd);
2505 	}
2506 
2507 	/*
2508 	 * Any RAID offload error results in retry which will use
2509 	 * the normal I/O path so the controller can handle whatever is
2510 	 * wrong.
2511 	 */
2512 	if (is_logical_device(dev) &&
2513 		c2->error_data.serv_response ==
2514 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2515 		if (c2->error_data.status ==
2516 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2517 			hpsa_turn_off_ioaccel_for_device(dev);
2518 		}
2519 
2520 		if (dev->in_reset) {
2521 			cmd->result = DID_RESET << 16;
2522 			return hpsa_cmd_free_and_done(h, c, cmd);
2523 		}
2524 
2525 		return hpsa_retry_cmd(h, c);
2526 	}
2527 
2528 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2529 		return hpsa_retry_cmd(h, c);
2530 
2531 	return hpsa_cmd_free_and_done(h, c, cmd);
2532 }
2533 
2534 /* Returns 0 on success, < 0 otherwise. */
2535 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2536 					struct CommandList *cp)
2537 {
2538 	u8 tmf_status = cp->err_info->ScsiStatus;
2539 
2540 	switch (tmf_status) {
2541 	case CISS_TMF_COMPLETE:
2542 		/*
2543 		 * CISS_TMF_COMPLETE never happens, instead,
2544 		 * ei->CommandStatus == 0 for this case.
2545 		 */
2546 	case CISS_TMF_SUCCESS:
2547 		return 0;
2548 	case CISS_TMF_INVALID_FRAME:
2549 	case CISS_TMF_NOT_SUPPORTED:
2550 	case CISS_TMF_FAILED:
2551 	case CISS_TMF_WRONG_LUN:
2552 	case CISS_TMF_OVERLAPPED_TAG:
2553 		break;
2554 	default:
2555 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2556 				tmf_status);
2557 		break;
2558 	}
2559 	return -tmf_status;
2560 }
2561 
2562 static void complete_scsi_command(struct CommandList *cp)
2563 {
2564 	struct scsi_cmnd *cmd;
2565 	struct ctlr_info *h;
2566 	struct ErrorInfo *ei;
2567 	struct hpsa_scsi_dev_t *dev;
2568 	struct io_accel2_cmd *c2;
2569 
2570 	u8 sense_key;
2571 	u8 asc;      /* additional sense code */
2572 	u8 ascq;     /* additional sense code qualifier */
2573 	unsigned long sense_data_size;
2574 
2575 	ei = cp->err_info;
2576 	cmd = cp->scsi_cmd;
2577 	h = cp->h;
2578 
2579 	if (!cmd->device) {
2580 		cmd->result = DID_NO_CONNECT << 16;
2581 		return hpsa_cmd_free_and_done(h, cp, cmd);
2582 	}
2583 
2584 	dev = cmd->device->hostdata;
2585 	if (!dev) {
2586 		cmd->result = DID_NO_CONNECT << 16;
2587 		return hpsa_cmd_free_and_done(h, cp, cmd);
2588 	}
2589 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2590 
2591 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2592 	if ((cp->cmd_type == CMD_SCSI) &&
2593 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2594 		hpsa_unmap_sg_chain_block(h, cp);
2595 
2596 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2597 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2598 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2599 
2600 	cmd->result = (DID_OK << 16); 		/* host byte */
2601 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2602 
2603 	/* SCSI command has already been cleaned up in SML */
2604 	if (dev->was_removed) {
2605 		hpsa_cmd_resolve_and_free(h, cp);
2606 		return;
2607 	}
2608 
2609 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610 		if (dev->physical_device && dev->expose_device &&
2611 			dev->removed) {
2612 			cmd->result = DID_NO_CONNECT << 16;
2613 			return hpsa_cmd_free_and_done(h, cp, cmd);
2614 		}
2615 		if (likely(cp->phys_disk != NULL))
2616 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617 	}
2618 
2619 	/*
2620 	 * We check for lockup status here as it may be set for
2621 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622 	 * fail_all_oustanding_cmds()
2623 	 */
2624 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625 		/* DID_NO_CONNECT will prevent a retry */
2626 		cmd->result = DID_NO_CONNECT << 16;
2627 		return hpsa_cmd_free_and_done(h, cp, cmd);
2628 	}
2629 
2630 	if (cp->cmd_type == CMD_IOACCEL2)
2631 		return process_ioaccel2_completion(h, cp, cmd, dev);
2632 
2633 	scsi_set_resid(cmd, ei->ResidualCnt);
2634 	if (ei->CommandStatus == 0)
2635 		return hpsa_cmd_free_and_done(h, cp, cmd);
2636 
2637 	/* For I/O accelerator commands, copy over some fields to the normal
2638 	 * CISS header used below for error handling.
2639 	 */
2640 	if (cp->cmd_type == CMD_IOACCEL1) {
2641 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642 		cp->Header.SGList = scsi_sg_count(cmd);
2643 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646 		cp->Header.tag = c->tag;
2647 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649 
2650 		/* Any RAID offload error results in retry which will use
2651 		 * the normal I/O path so the controller can handle whatever's
2652 		 * wrong.
2653 		 */
2654 		if (is_logical_device(dev)) {
2655 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656 				dev->offload_enabled = 0;
2657 			return hpsa_retry_cmd(h, cp);
2658 		}
2659 	}
2660 
2661 	/* an error has occurred */
2662 	switch (ei->CommandStatus) {
2663 
2664 	case CMD_TARGET_STATUS:
2665 		cmd->result |= ei->ScsiStatus;
2666 		/* copy the sense data */
2667 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669 		else
2670 			sense_data_size = sizeof(ei->SenseInfo);
2671 		if (ei->SenseLen < sense_data_size)
2672 			sense_data_size = ei->SenseLen;
2673 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674 		if (ei->ScsiStatus)
2675 			decode_sense_data(ei->SenseInfo, sense_data_size,
2676 				&sense_key, &asc, &ascq);
2677 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678 			switch (sense_key) {
2679 			case ABORTED_COMMAND:
2680 				cmd->result |= DID_SOFT_ERROR << 16;
2681 				break;
2682 			case UNIT_ATTENTION:
2683 				if (asc == 0x3F && ascq == 0x0E)
2684 					h->drv_req_rescan = 1;
2685 				break;
2686 			case ILLEGAL_REQUEST:
2687 				if (asc == 0x25 && ascq == 0x00) {
2688 					dev->removed = 1;
2689 					cmd->result = DID_NO_CONNECT << 16;
2690 				}
2691 				break;
2692 			}
2693 			break;
2694 		}
2695 		/* Problem was not a check condition
2696 		 * Pass it up to the upper layers...
2697 		 */
2698 		if (ei->ScsiStatus) {
2699 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701 				"Returning result: 0x%x\n",
2702 				cp, ei->ScsiStatus,
2703 				sense_key, asc, ascq,
2704 				cmd->result);
2705 		} else {  /* scsi status is zero??? How??? */
2706 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707 				"Returning no connection.\n", cp),
2708 
2709 			/* Ordinarily, this case should never happen,
2710 			 * but there is a bug in some released firmware
2711 			 * revisions that allows it to happen if, for
2712 			 * example, a 4100 backplane loses power and
2713 			 * the tape drive is in it.  We assume that
2714 			 * it's a fatal error of some kind because we
2715 			 * can't show that it wasn't. We will make it
2716 			 * look like selection timeout since that is
2717 			 * the most common reason for this to occur,
2718 			 * and it's severe enough.
2719 			 */
2720 
2721 			cmd->result = DID_NO_CONNECT << 16;
2722 		}
2723 		break;
2724 
2725 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726 		break;
2727 	case CMD_DATA_OVERRUN:
2728 		dev_warn(&h->pdev->dev,
2729 			"CDB %16phN data overrun\n", cp->Request.CDB);
2730 		break;
2731 	case CMD_INVALID: {
2732 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2733 		print_cmd(cp); */
2734 		/* We get CMD_INVALID if you address a non-existent device
2735 		 * instead of a selection timeout (no response).  You will
2736 		 * see this if you yank out a drive, then try to access it.
2737 		 * This is kind of a shame because it means that any other
2738 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739 		 * missing target. */
2740 		cmd->result = DID_NO_CONNECT << 16;
2741 	}
2742 		break;
2743 	case CMD_PROTOCOL_ERR:
2744 		cmd->result = DID_ERROR << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746 				cp->Request.CDB);
2747 		break;
2748 	case CMD_HARDWARE_ERR:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751 			cp->Request.CDB);
2752 		break;
2753 	case CMD_CONNECTION_LOST:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756 			cp->Request.CDB);
2757 		break;
2758 	case CMD_ABORTED:
2759 		cmd->result = DID_ABORT << 16;
2760 		break;
2761 	case CMD_ABORT_FAILED:
2762 		cmd->result = DID_ERROR << 16;
2763 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764 			cp->Request.CDB);
2765 		break;
2766 	case CMD_UNSOLICITED_ABORT:
2767 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769 			cp->Request.CDB);
2770 		break;
2771 	case CMD_TIMEOUT:
2772 		cmd->result = DID_TIME_OUT << 16;
2773 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774 			cp->Request.CDB);
2775 		break;
2776 	case CMD_UNABORTABLE:
2777 		cmd->result = DID_ERROR << 16;
2778 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2779 		break;
2780 	case CMD_TMF_STATUS:
2781 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782 			cmd->result = DID_ERROR << 16;
2783 		break;
2784 	case CMD_IOACCEL_DISABLED:
2785 		/* This only handles the direct pass-through case since RAID
2786 		 * offload is handled above.  Just attempt a retry.
2787 		 */
2788 		cmd->result = DID_SOFT_ERROR << 16;
2789 		dev_warn(&h->pdev->dev,
2790 				"cp %p had HP SSD Smart Path error\n", cp);
2791 		break;
2792 	default:
2793 		cmd->result = DID_ERROR << 16;
2794 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795 				cp, ei->CommandStatus);
2796 	}
2797 
2798 	return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800 
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802 		int sg_used, enum dma_data_direction data_direction)
2803 {
2804 	int i;
2805 
2806 	for (i = 0; i < sg_used; i++)
2807 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808 				le32_to_cpu(c->SG[i].Len),
2809 				data_direction);
2810 }
2811 
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813 		struct CommandList *cp,
2814 		unsigned char *buf,
2815 		size_t buflen,
2816 		enum dma_data_direction data_direction)
2817 {
2818 	u64 addr64;
2819 
2820 	if (buflen == 0 || data_direction == DMA_NONE) {
2821 		cp->Header.SGList = 0;
2822 		cp->Header.SGTotal = cpu_to_le16(0);
2823 		return 0;
2824 	}
2825 
2826 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827 	if (dma_mapping_error(&pdev->dev, addr64)) {
2828 		/* Prevent subsequent unmap of something never mapped */
2829 		cp->Header.SGList = 0;
2830 		cp->Header.SGTotal = cpu_to_le16(0);
2831 		return -1;
2832 	}
2833 	cp->SG[0].Addr = cpu_to_le64(addr64);
2834 	cp->SG[0].Len = cpu_to_le32(buflen);
2835 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838 	return 0;
2839 }
2840 
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846 	DECLARE_COMPLETION_ONSTACK(wait);
2847 
2848 	c->waiting = &wait;
2849 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2850 	if (timeout_msecs == NO_TIMEOUT) {
2851 		/* TODO: get rid of this no-timeout thing */
2852 		wait_for_completion_io(&wait);
2853 		return IO_OK;
2854 	}
2855 	if (!wait_for_completion_io_timeout(&wait,
2856 					msecs_to_jiffies(timeout_msecs))) {
2857 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2858 		return -ETIMEDOUT;
2859 	}
2860 	return IO_OK;
2861 }
2862 
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864 				   int reply_queue, unsigned long timeout_msecs)
2865 {
2866 	if (unlikely(lockup_detected(h))) {
2867 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868 		return IO_OK;
2869 	}
2870 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872 
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875 	int cpu;
2876 	u32 rc, *lockup_detected;
2877 
2878 	cpu = get_cpu();
2879 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880 	rc = *lockup_detected;
2881 	put_cpu();
2882 	return rc;
2883 }
2884 
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887 		struct CommandList *c, enum dma_data_direction data_direction,
2888 		unsigned long timeout_msecs)
2889 {
2890 	int backoff_time = 10, retry_count = 0;
2891 	int rc;
2892 
2893 	do {
2894 		memset(c->err_info, 0, sizeof(*c->err_info));
2895 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896 						  timeout_msecs);
2897 		if (rc)
2898 			break;
2899 		retry_count++;
2900 		if (retry_count > 3) {
2901 			msleep(backoff_time);
2902 			if (backoff_time < 1000)
2903 				backoff_time *= 2;
2904 		}
2905 	} while ((check_for_unit_attention(h, c) ||
2906 			check_for_busy(h, c)) &&
2907 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2908 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910 		rc = -EIO;
2911 	return rc;
2912 }
2913 
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915 				struct CommandList *c)
2916 {
2917 	const u8 *cdb = c->Request.CDB;
2918 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2919 
2920 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921 		 txt, lun, cdb);
2922 }
2923 
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925 			struct CommandList *cp)
2926 {
2927 	const struct ErrorInfo *ei = cp->err_info;
2928 	struct device *d = &cp->h->pdev->dev;
2929 	u8 sense_key, asc, ascq;
2930 	int sense_len;
2931 
2932 	switch (ei->CommandStatus) {
2933 	case CMD_TARGET_STATUS:
2934 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2935 			sense_len = sizeof(ei->SenseInfo);
2936 		else
2937 			sense_len = ei->SenseLen;
2938 		decode_sense_data(ei->SenseInfo, sense_len,
2939 					&sense_key, &asc, &ascq);
2940 		hpsa_print_cmd(h, "SCSI status", cp);
2941 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943 				sense_key, asc, ascq);
2944 		else
2945 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946 		if (ei->ScsiStatus == 0)
2947 			dev_warn(d, "SCSI status is abnormally zero.  "
2948 			"(probably indicates selection timeout "
2949 			"reported incorrectly due to a known "
2950 			"firmware bug, circa July, 2001.)\n");
2951 		break;
2952 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953 		break;
2954 	case CMD_DATA_OVERRUN:
2955 		hpsa_print_cmd(h, "overrun condition", cp);
2956 		break;
2957 	case CMD_INVALID: {
2958 		/* controller unfortunately reports SCSI passthru's
2959 		 * to non-existent targets as invalid commands.
2960 		 */
2961 		hpsa_print_cmd(h, "invalid command", cp);
2962 		dev_warn(d, "probably means device no longer present\n");
2963 		}
2964 		break;
2965 	case CMD_PROTOCOL_ERR:
2966 		hpsa_print_cmd(h, "protocol error", cp);
2967 		break;
2968 	case CMD_HARDWARE_ERR:
2969 		hpsa_print_cmd(h, "hardware error", cp);
2970 		break;
2971 	case CMD_CONNECTION_LOST:
2972 		hpsa_print_cmd(h, "connection lost", cp);
2973 		break;
2974 	case CMD_ABORTED:
2975 		hpsa_print_cmd(h, "aborted", cp);
2976 		break;
2977 	case CMD_ABORT_FAILED:
2978 		hpsa_print_cmd(h, "abort failed", cp);
2979 		break;
2980 	case CMD_UNSOLICITED_ABORT:
2981 		hpsa_print_cmd(h, "unsolicited abort", cp);
2982 		break;
2983 	case CMD_TIMEOUT:
2984 		hpsa_print_cmd(h, "timed out", cp);
2985 		break;
2986 	case CMD_UNABORTABLE:
2987 		hpsa_print_cmd(h, "unabortable", cp);
2988 		break;
2989 	case CMD_CTLR_LOCKUP:
2990 		hpsa_print_cmd(h, "controller lockup detected", cp);
2991 		break;
2992 	default:
2993 		hpsa_print_cmd(h, "unknown status", cp);
2994 		dev_warn(d, "Unknown command status %x\n",
2995 				ei->CommandStatus);
2996 	}
2997 }
2998 
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000 					u8 page, u8 *buf, size_t bufsize)
3001 {
3002 	int rc = IO_OK;
3003 	struct CommandList *c;
3004 	struct ErrorInfo *ei;
3005 
3006 	c = cmd_alloc(h);
3007 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008 			page, scsi3addr, TYPE_CMD)) {
3009 		rc = -1;
3010 		goto out;
3011 	}
3012 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013 			NO_TIMEOUT);
3014 	if (rc)
3015 		goto out;
3016 	ei = c->err_info;
3017 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018 		hpsa_scsi_interpret_error(h, c);
3019 		rc = -1;
3020 	}
3021 out:
3022 	cmd_free(h, c);
3023 	return rc;
3024 }
3025 
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027 						u8 *scsi3addr)
3028 {
3029 	u8 *buf;
3030 	u64 sa = 0;
3031 	int rc = 0;
3032 
3033 	buf = kzalloc(1024, GFP_KERNEL);
3034 	if (!buf)
3035 		return 0;
3036 
3037 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038 					buf, 1024);
3039 
3040 	if (rc)
3041 		goto out;
3042 
3043 	sa = get_unaligned_be64(buf+12);
3044 
3045 out:
3046 	kfree(buf);
3047 	return sa;
3048 }
3049 
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051 			u16 page, unsigned char *buf,
3052 			unsigned char bufsize)
3053 {
3054 	int rc = IO_OK;
3055 	struct CommandList *c;
3056 	struct ErrorInfo *ei;
3057 
3058 	c = cmd_alloc(h);
3059 
3060 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061 			page, scsi3addr, TYPE_CMD)) {
3062 		rc = -1;
3063 		goto out;
3064 	}
3065 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066 			NO_TIMEOUT);
3067 	if (rc)
3068 		goto out;
3069 	ei = c->err_info;
3070 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071 		hpsa_scsi_interpret_error(h, c);
3072 		rc = -1;
3073 	}
3074 out:
3075 	cmd_free(h, c);
3076 	return rc;
3077 }
3078 
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080 	u8 reset_type, int reply_queue)
3081 {
3082 	int rc = IO_OK;
3083 	struct CommandList *c;
3084 	struct ErrorInfo *ei;
3085 
3086 	c = cmd_alloc(h);
3087 	c->device = dev;
3088 
3089 	/* fill_cmd can't fail here, no data buffer to map. */
3090 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092 	if (rc) {
3093 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094 		goto out;
3095 	}
3096 	/* no unmap needed here because no data xfer. */
3097 
3098 	ei = c->err_info;
3099 	if (ei->CommandStatus != 0) {
3100 		hpsa_scsi_interpret_error(h, c);
3101 		rc = -1;
3102 	}
3103 out:
3104 	cmd_free(h, c);
3105 	return rc;
3106 }
3107 
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109 			       struct hpsa_scsi_dev_t *dev,
3110 			       unsigned char *scsi3addr)
3111 {
3112 	int i;
3113 	bool match = false;
3114 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116 
3117 	if (hpsa_is_cmd_idle(c))
3118 		return false;
3119 
3120 	switch (c->cmd_type) {
3121 	case CMD_SCSI:
3122 	case CMD_IOCTL_PEND:
3123 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124 				sizeof(c->Header.LUN.LunAddrBytes));
3125 		break;
3126 
3127 	case CMD_IOACCEL1:
3128 	case CMD_IOACCEL2:
3129 		if (c->phys_disk == dev) {
3130 			/* HBA mode match */
3131 			match = true;
3132 		} else {
3133 			/* Possible RAID mode -- check each phys dev. */
3134 			/* FIXME:  Do we need to take out a lock here?  If
3135 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136 			 * instead. */
3137 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138 				/* FIXME: an alternate test might be
3139 				 *
3140 				 * match = dev->phys_disk[i]->ioaccel_handle
3141 				 *              == c2->scsi_nexus;      */
3142 				match = dev->phys_disk[i] == c->phys_disk;
3143 			}
3144 		}
3145 		break;
3146 
3147 	case IOACCEL2_TMF:
3148 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149 			match = dev->phys_disk[i]->ioaccel_handle ==
3150 					le32_to_cpu(ac->it_nexus);
3151 		}
3152 		break;
3153 
3154 	case 0:		/* The command is in the middle of being initialized. */
3155 		match = false;
3156 		break;
3157 
3158 	default:
3159 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160 			c->cmd_type);
3161 		BUG();
3162 	}
3163 
3164 	return match;
3165 }
3166 
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168 	u8 reset_type, int reply_queue)
3169 {
3170 	int rc = 0;
3171 
3172 	/* We can really only handle one reset at a time */
3173 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175 		return -EINTR;
3176 	}
3177 
3178 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179 	if (!rc) {
3180 		/* incremented by sending the reset request */
3181 		atomic_dec(&dev->commands_outstanding);
3182 		wait_event(h->event_sync_wait_queue,
3183 			atomic_read(&dev->commands_outstanding) <= 0 ||
3184 			lockup_detected(h));
3185 	}
3186 
3187 	if (unlikely(lockup_detected(h))) {
3188 		dev_warn(&h->pdev->dev,
3189 			 "Controller lockup detected during reset wait\n");
3190 		rc = -ENODEV;
3191 	}
3192 
3193 	if (!rc)
3194 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195 
3196 	mutex_unlock(&h->reset_mutex);
3197 	return rc;
3198 }
3199 
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 	unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 	int rc;
3204 	unsigned char *buf;
3205 
3206 	*raid_level = RAID_UNKNOWN;
3207 	buf = kzalloc(64, GFP_KERNEL);
3208 	if (!buf)
3209 		return;
3210 
3211 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 		goto exit;
3214 
3215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217 
3218 	if (rc == 0)
3219 		*raid_level = buf[8];
3220 	if (*raid_level > RAID_UNKNOWN)
3221 		*raid_level = RAID_UNKNOWN;
3222 exit:
3223 	kfree(buf);
3224 	return;
3225 }
3226 
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 				struct raid_map_data *map_buff)
3231 {
3232 	struct raid_map_disk_data *dd = &map_buff->data[0];
3233 	int map, row, col;
3234 	u16 map_cnt, row_cnt, disks_per_row;
3235 
3236 	if (rc != 0)
3237 		return;
3238 
3239 	/* Show details only if debugging has been activated. */
3240 	if (h->raid_offload_debug < 2)
3241 		return;
3242 
3243 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 				le32_to_cpu(map_buff->structure_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 			le32_to_cpu(map_buff->volume_blk_size));
3247 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->volume_blk_cnt));
3249 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 			map_buff->phys_blk_shift);
3251 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 			map_buff->parity_rotation_shift);
3253 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 			le16_to_cpu(map_buff->strip_size));
3255 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_starting_blk));
3257 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 			le64_to_cpu(map_buff->disk_blk_cnt));
3259 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->data_disks_per_row));
3261 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 			le16_to_cpu(map_buff->metadata_disks_per_row));
3263 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 			le16_to_cpu(map_buff->row_cnt));
3265 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 			le16_to_cpu(map_buff->layout_map_count));
3267 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 			le16_to_cpu(map_buff->flags));
3269 	dev_info(&h->pdev->dev, "encryption = %s\n",
3270 			le16_to_cpu(map_buff->flags) &
3271 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 			le16_to_cpu(map_buff->dekindex));
3274 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 	for (map = 0; map < map_cnt; map++) {
3276 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 		for (row = 0; row < row_cnt; row++) {
3279 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280 			disks_per_row =
3281 				le16_to_cpu(map_buff->data_disks_per_row);
3282 			for (col = 0; col < disks_per_row; col++, dd++)
3283 				dev_info(&h->pdev->dev,
3284 					"    D%02u: h=0x%04x xor=%u,%u\n",
3285 					col, dd->ioaccel_handle,
3286 					dd->xor_mult[0], dd->xor_mult[1]);
3287 			disks_per_row =
3288 				le16_to_cpu(map_buff->metadata_disks_per_row);
3289 			for (col = 0; col < disks_per_row; col++, dd++)
3290 				dev_info(&h->pdev->dev,
3291 					"    M%02u: h=0x%04x xor=%u,%u\n",
3292 					col, dd->ioaccel_handle,
3293 					dd->xor_mult[0], dd->xor_mult[1]);
3294 		}
3295 	}
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 			__attribute__((unused)) int rc,
3300 			__attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304 
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 	int rc = 0;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 
3314 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 			sizeof(this_device->raid_map), 0,
3316 			scsi3addr, TYPE_CMD)) {
3317 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 		cmd_free(h, c);
3319 		return -1;
3320 	}
3321 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 			NO_TIMEOUT);
3323 	if (rc)
3324 		goto out;
3325 	ei = c->err_info;
3326 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 		hpsa_scsi_interpret_error(h, c);
3328 		rc = -1;
3329 		goto out;
3330 	}
3331 	cmd_free(h, c);
3332 
3333 	/* @todo in the future, dynamically allocate RAID map memory */
3334 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 				sizeof(this_device->raid_map)) {
3336 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 		rc = -1;
3338 	}
3339 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 	return rc;
3341 out:
3342 	cmd_free(h, c);
3343 	return rc;
3344 }
3345 
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 		unsigned char scsi3addr[], u16 bmic_device_index,
3348 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 	int rc = IO_OK;
3351 	struct CommandList *c;
3352 	struct ErrorInfo *ei;
3353 
3354 	c = cmd_alloc(h);
3355 
3356 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 		0, RAID_CTLR_LUNID, TYPE_CMD);
3358 	if (rc)
3359 		goto out;
3360 
3361 	c->Request.CDB[2] = bmic_device_index & 0xff;
3362 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363 
3364 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 			NO_TIMEOUT);
3366 	if (rc)
3367 		goto out;
3368 	ei = c->err_info;
3369 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 		hpsa_scsi_interpret_error(h, c);
3371 		rc = -1;
3372 	}
3373 out:
3374 	cmd_free(h, c);
3375 	return rc;
3376 }
3377 
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 	struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 	int rc = IO_OK;
3382 	struct CommandList *c;
3383 	struct ErrorInfo *ei;
3384 
3385 	c = cmd_alloc(h);
3386 
3387 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 		0, RAID_CTLR_LUNID, TYPE_CMD);
3389 	if (rc)
3390 		goto out;
3391 
3392 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 			NO_TIMEOUT);
3394 	if (rc)
3395 		goto out;
3396 	ei = c->err_info;
3397 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 		hpsa_scsi_interpret_error(h, c);
3399 		rc = -1;
3400 	}
3401 out:
3402 	cmd_free(h, c);
3403 	return rc;
3404 }
3405 
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 		unsigned char scsi3addr[], u16 bmic_device_index,
3408 		struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 	int rc = IO_OK;
3411 	struct CommandList *c;
3412 	struct ErrorInfo *ei;
3413 
3414 	c = cmd_alloc(h);
3415 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 		0, RAID_CTLR_LUNID, TYPE_CMD);
3417 	if (rc)
3418 		goto out;
3419 
3420 	c->Request.CDB[2] = bmic_device_index & 0xff;
3421 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422 
3423 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 						NO_TIMEOUT);
3425 	ei = c->err_info;
3426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 		hpsa_scsi_interpret_error(h, c);
3428 		rc = -1;
3429 	}
3430 out:
3431 	cmd_free(h, c);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 			unsigned char *scsi3addr,
3444 			struct ReportExtendedLUNdata *rlep, int rle_index,
3445 			struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 	int rc = -1;
3448 	struct CommandList *c = NULL;
3449 	struct ErrorInfo *ei = NULL;
3450 	struct bmic_sense_storage_box_params *bssbp = NULL;
3451 	struct bmic_identify_physical_device *id_phys = NULL;
3452 	struct ext_report_lun_entry *rle;
3453 	u16 bmic_device_index = 0;
3454 
3455 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456 		return;
3457 
3458 	rle = &rlep->LUN[rle_index];
3459 
3460 	encl_dev->eli =
3461 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462 
3463 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464 
3465 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466 		rc = IO_OK;
3467 		goto out;
3468 	}
3469 
3470 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471 		rc = IO_OK;
3472 		goto out;
3473 	}
3474 
3475 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476 	if (!bssbp)
3477 		goto out;
3478 
3479 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480 	if (!id_phys)
3481 		goto out;
3482 
3483 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484 						id_phys, sizeof(*id_phys));
3485 	if (rc) {
3486 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487 			__func__, encl_dev->external, bmic_device_index);
3488 		goto out;
3489 	}
3490 
3491 	c = cmd_alloc(h);
3492 
3493 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495 
3496 	if (rc)
3497 		goto out;
3498 
3499 	if (id_phys->phys_connector[1] == 'E')
3500 		c->Request.CDB[5] = id_phys->box_index;
3501 	else
3502 		c->Request.CDB[5] = 0;
3503 
3504 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505 						NO_TIMEOUT);
3506 	if (rc)
3507 		goto out;
3508 
3509 	ei = c->err_info;
3510 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511 		rc = -1;
3512 		goto out;
3513 	}
3514 
3515 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518 
3519 	rc = IO_OK;
3520 out:
3521 	kfree(bssbp);
3522 	kfree(id_phys);
3523 
3524 	if (c)
3525 		cmd_free(h, c);
3526 
3527 	if (rc != IO_OK)
3528 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529 			"Error, could not get enclosure information");
3530 }
3531 
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533 						unsigned char *scsi3addr)
3534 {
3535 	struct ReportExtendedLUNdata *physdev;
3536 	u32 nphysicals;
3537 	u64 sa = 0;
3538 	int i;
3539 
3540 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541 	if (!physdev)
3542 		return 0;
3543 
3544 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546 		kfree(physdev);
3547 		return 0;
3548 	}
3549 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550 
3551 	for (i = 0; i < nphysicals; i++)
3552 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554 			break;
3555 		}
3556 
3557 	kfree(physdev);
3558 
3559 	return sa;
3560 }
3561 
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563 					struct hpsa_scsi_dev_t *dev)
3564 {
3565 	int rc;
3566 	u64 sa = 0;
3567 
3568 	if (is_hba_lunid(scsi3addr)) {
3569 		struct bmic_sense_subsystem_info *ssi;
3570 
3571 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572 		if (!ssi)
3573 			return;
3574 
3575 		rc = hpsa_bmic_sense_subsystem_information(h,
3576 					scsi3addr, 0, ssi, sizeof(*ssi));
3577 		if (rc == 0) {
3578 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579 			h->sas_address = sa;
3580 		}
3581 
3582 		kfree(ssi);
3583 	} else
3584 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585 
3586 	dev->sas_address = sa;
3587 }
3588 
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590 	struct ReportExtendedLUNdata *physdev)
3591 {
3592 	u32 nphysicals;
3593 	int i;
3594 
3595 	if (h->discovery_polling)
3596 		return;
3597 
3598 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599 
3600 	for (i = 0; i < nphysicals; i++) {
3601 		if (physdev->LUN[i].device_type ==
3602 			BMIC_DEVICE_TYPE_CONTROLLER
3603 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3604 			dev_info(&h->pdev->dev,
3605 				"External controller present, activate discovery polling and disable rld caching\n");
3606 			hpsa_disable_rld_caching(h);
3607 			h->discovery_polling = 1;
3608 			break;
3609 		}
3610 	}
3611 }
3612 
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615 	unsigned char scsi3addr[], u8 page)
3616 {
3617 	int rc;
3618 	int i;
3619 	int pages;
3620 	unsigned char *buf, bufsize;
3621 
3622 	buf = kzalloc(256, GFP_KERNEL);
3623 	if (!buf)
3624 		return false;
3625 
3626 	/* Get the size of the page list first */
3627 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629 				buf, HPSA_VPD_HEADER_SZ);
3630 	if (rc != 0)
3631 		goto exit_unsupported;
3632 	pages = buf[3];
3633 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3635 	else
3636 		bufsize = 255;
3637 
3638 	/* Get the whole VPD page list */
3639 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641 				buf, bufsize);
3642 	if (rc != 0)
3643 		goto exit_unsupported;
3644 
3645 	pages = buf[3];
3646 	for (i = 1; i <= pages; i++)
3647 		if (buf[3 + i] == page)
3648 			goto exit_supported;
3649 exit_unsupported:
3650 	kfree(buf);
3651 	return false;
3652 exit_supported:
3653 	kfree(buf);
3654 	return true;
3655 }
3656 
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667 	int rc;
3668 	unsigned char *buf;
3669 	u8 ioaccel_status;
3670 
3671 	this_device->offload_config = 0;
3672 	this_device->offload_enabled = 0;
3673 	this_device->offload_to_be_enabled = 0;
3674 
3675 	buf = kzalloc(64, GFP_KERNEL);
3676 	if (!buf)
3677 		return;
3678 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679 		goto out;
3680 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682 	if (rc != 0)
3683 		goto out;
3684 
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689 	this_device->offload_config =
3690 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691 	if (this_device->offload_config) {
3692 		bool offload_enabled =
3693 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694 		/*
3695 		 * Check to see if offload can be enabled.
3696 		 */
3697 		if (offload_enabled) {
3698 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699 			if (rc) /* could not load raid_map */
3700 				goto out;
3701 			this_device->offload_to_be_enabled = 1;
3702 		}
3703 	}
3704 
3705 out:
3706 	kfree(buf);
3707 	return;
3708 }
3709 
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712 	unsigned char *device_id, int index, int buflen)
3713 {
3714 	int rc;
3715 	unsigned char *buf;
3716 
3717 	/* Does controller have VPD for device id? */
3718 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719 		return 1; /* not supported */
3720 
3721 	buf = kzalloc(64, GFP_KERNEL);
3722 	if (!buf)
3723 		return -ENOMEM;
3724 
3725 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727 	if (rc == 0) {
3728 		if (buflen > 16)
3729 			buflen = 16;
3730 		memcpy(device_id, &buf[8], buflen);
3731 	}
3732 
3733 	kfree(buf);
3734 
3735 	return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737 
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739 		void *buf, int bufsize,
3740 		int extended_response)
3741 {
3742 	int rc = IO_OK;
3743 	struct CommandList *c;
3744 	unsigned char scsi3addr[8];
3745 	struct ErrorInfo *ei;
3746 
3747 	c = cmd_alloc(h);
3748 
3749 	/* address the controller */
3750 	memset(scsi3addr, 0, sizeof(scsi3addr));
3751 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753 		rc = -EAGAIN;
3754 		goto out;
3755 	}
3756 	if (extended_response)
3757 		c->Request.CDB[1] = extended_response;
3758 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759 			NO_TIMEOUT);
3760 	if (rc)
3761 		goto out;
3762 	ei = c->err_info;
3763 	if (ei->CommandStatus != 0 &&
3764 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765 		hpsa_scsi_interpret_error(h, c);
3766 		rc = -EIO;
3767 	} else {
3768 		struct ReportLUNdata *rld = buf;
3769 
3770 		if (rld->extended_response_flag != extended_response) {
3771 			if (!h->legacy_board) {
3772 				dev_err(&h->pdev->dev,
3773 					"report luns requested format %u, got %u\n",
3774 					extended_response,
3775 					rld->extended_response_flag);
3776 				rc = -EINVAL;
3777 			} else
3778 				rc = -EOPNOTSUPP;
3779 		}
3780 	}
3781 out:
3782 	cmd_free(h, c);
3783 	return rc;
3784 }
3785 
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787 		struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789 	int rc;
3790 	struct ReportLUNdata *lbuf;
3791 
3792 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793 				      HPSA_REPORT_PHYS_EXTENDED);
3794 	if (!rc || rc != -EOPNOTSUPP)
3795 		return rc;
3796 
3797 	/* REPORT PHYS EXTENDED is not supported */
3798 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799 	if (!lbuf)
3800 		return -ENOMEM;
3801 
3802 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803 	if (!rc) {
3804 		int i;
3805 		u32 nphys;
3806 
3807 		/* Copy ReportLUNdata header */
3808 		memcpy(buf, lbuf, 8);
3809 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810 		for (i = 0; i < nphys; i++)
3811 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812 	}
3813 	kfree(lbuf);
3814 	return rc;
3815 }
3816 
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818 		struct ReportLUNdata *buf, int bufsize)
3819 {
3820 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822 
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824 	int bus, int target, int lun)
3825 {
3826 	device->bus = bus;
3827 	device->target = target;
3828 	device->lun = lun;
3829 }
3830 
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833 					unsigned char scsi3addr[])
3834 {
3835 	int rc;
3836 	int status;
3837 	int size;
3838 	unsigned char *buf;
3839 
3840 	buf = kzalloc(64, GFP_KERNEL);
3841 	if (!buf)
3842 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 
3844 	/* Does controller have VPD for logical volume status? */
3845 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846 		goto exit_failed;
3847 
3848 	/* Get the size of the VPD return buffer */
3849 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850 					buf, HPSA_VPD_HEADER_SZ);
3851 	if (rc != 0)
3852 		goto exit_failed;
3853 	size = buf[3];
3854 
3855 	/* Now get the whole VPD buffer */
3856 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857 					buf, size + HPSA_VPD_HEADER_SZ);
3858 	if (rc != 0)
3859 		goto exit_failed;
3860 	status = buf[4]; /* status byte */
3861 
3862 	kfree(buf);
3863 	return status;
3864 exit_failed:
3865 	kfree(buf);
3866 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868 
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877 					unsigned char scsi3addr[])
3878 {
3879 	struct CommandList *c;
3880 	unsigned char *sense;
3881 	u8 sense_key, asc, ascq;
3882 	int sense_len;
3883 	int rc, ldstat = 0;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887 
3888 	c = cmd_alloc(h);
3889 
3890 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892 					NO_TIMEOUT);
3893 	if (rc) {
3894 		cmd_free(h, c);
3895 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896 	}
3897 	sense = c->err_info->SenseInfo;
3898 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899 		sense_len = sizeof(c->err_info->SenseInfo);
3900 	else
3901 		sense_len = c->err_info->SenseLen;
3902 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903 	cmd_free(h, c);
3904 
3905 	/* Determine the reason for not ready state */
3906 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3907 
3908 	/* Keep volume offline in certain cases: */
3909 	switch (ldstat) {
3910 	case HPSA_LV_FAILED:
3911 	case HPSA_LV_UNDERGOING_ERASE:
3912 	case HPSA_LV_NOT_AVAILABLE:
3913 	case HPSA_LV_UNDERGOING_RPI:
3914 	case HPSA_LV_PENDING_RPI:
3915 	case HPSA_LV_ENCRYPTED_NO_KEY:
3916 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3918 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920 		return ldstat;
3921 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922 		/* If VPD status page isn't available,
3923 		 * use ASC/ASCQ to determine state
3924 		 */
3925 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927 			return ldstat;
3928 		break;
3929 	default:
3930 		break;
3931 	}
3932 	return HPSA_LV_OK;
3933 }
3934 
3935 static int hpsa_update_device_info(struct ctlr_info *h,
3936 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937 	unsigned char *is_OBDR_device)
3938 {
3939 
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944 
3945 	unsigned char *inq_buff;
3946 	unsigned char *obdr_sig;
3947 	int rc = 0;
3948 
3949 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950 	if (!inq_buff) {
3951 		rc = -ENOMEM;
3952 		goto bail_out;
3953 	}
3954 
3955 	/* Do an inquiry to the device to see what it is. */
3956 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958 		dev_err(&h->pdev->dev,
3959 			"%s: inquiry failed, device will be skipped.\n",
3960 			__func__);
3961 		rc = HPSA_INQUIRY_FAILED;
3962 		goto bail_out;
3963 	}
3964 
3965 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967 
3968 	this_device->devtype = (inq_buff[0] & 0x1f);
3969 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3970 	memcpy(this_device->vendor, &inq_buff[8],
3971 		sizeof(this_device->vendor));
3972 	memcpy(this_device->model, &inq_buff[16],
3973 		sizeof(this_device->model));
3974 	this_device->rev = inq_buff[2];
3975 	memset(this_device->device_id, 0,
3976 		sizeof(this_device->device_id));
3977 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978 		sizeof(this_device->device_id)) < 0) {
3979 		dev_err(&h->pdev->dev,
3980 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981 			h->ctlr, __func__,
3982 			h->scsi_host->host_no,
3983 			this_device->bus, this_device->target,
3984 			this_device->lun,
3985 			scsi_device_type(this_device->devtype),
3986 			this_device->model);
3987 		rc = HPSA_LV_FAILED;
3988 		goto bail_out;
3989 	}
3990 
3991 	if ((this_device->devtype == TYPE_DISK ||
3992 		this_device->devtype == TYPE_ZBC) &&
3993 		is_logical_dev_addr_mode(scsi3addr)) {
3994 		unsigned char volume_offline;
3995 
3996 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999 		volume_offline = hpsa_volume_offline(h, scsi3addr);
4000 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001 		    h->legacy_board) {
4002 			/*
4003 			 * Legacy boards might not support volume status
4004 			 */
4005 			dev_info(&h->pdev->dev,
4006 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4007 				 this_device->target, this_device->lun);
4008 			volume_offline = 0;
4009 		}
4010 		this_device->volume_offline = volume_offline;
4011 		if (volume_offline == HPSA_LV_FAILED) {
4012 			rc = HPSA_LV_FAILED;
4013 			dev_err(&h->pdev->dev,
4014 				"%s: LV failed, device will be skipped.\n",
4015 				__func__);
4016 			goto bail_out;
4017 		}
4018 	} else {
4019 		this_device->raid_level = RAID_UNKNOWN;
4020 		this_device->offload_config = 0;
4021 		hpsa_turn_off_ioaccel_for_device(this_device);
4022 		this_device->hba_ioaccel_enabled = 0;
4023 		this_device->volume_offline = 0;
4024 		this_device->queue_depth = h->nr_cmds;
4025 	}
4026 
4027 	if (this_device->external)
4028 		this_device->queue_depth = EXTERNAL_QD;
4029 
4030 	if (is_OBDR_device) {
4031 		/* See if this is a One-Button-Disaster-Recovery device
4032 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4033 		 */
4034 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4037 						OBDR_SIG_LEN) == 0);
4038 	}
4039 	kfree(inq_buff);
4040 	return 0;
4041 
4042 bail_out:
4043 	kfree(inq_buff);
4044 	return rc;
4045 }
4046 
4047 /*
4048  * Helper function to assign bus, target, lun mapping of devices.
4049  * Logical drive target and lun are assigned at this time, but
4050  * physical device lun and target assignment are deferred (assigned
4051  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052 */
4053 static void figure_bus_target_lun(struct ctlr_info *h,
4054 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055 {
4056 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4057 
4058 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059 		/* physical device, target and lun filled in later */
4060 		if (is_hba_lunid(lunaddrbytes)) {
4061 			int bus = HPSA_HBA_BUS;
4062 
4063 			if (!device->rev)
4064 				bus = HPSA_LEGACY_HBA_BUS;
4065 			hpsa_set_bus_target_lun(device,
4066 					bus, 0, lunid & 0x3fff);
4067 		} else
4068 			/* defer target, lun assignment for physical devices */
4069 			hpsa_set_bus_target_lun(device,
4070 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071 		return;
4072 	}
4073 	/* It's a logical device */
4074 	if (device->external) {
4075 		hpsa_set_bus_target_lun(device,
4076 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077 			lunid & 0x00ff);
4078 		return;
4079 	}
4080 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081 				0, lunid & 0x3fff);
4082 }
4083 
4084 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085 	int i, int nphysicals, int nlocal_logicals)
4086 {
4087 	/* In report logicals, local logicals are listed first,
4088 	* then any externals.
4089 	*/
4090 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091 
4092 	if (i == raid_ctlr_position)
4093 		return 0;
4094 
4095 	if (i < logicals_start)
4096 		return 0;
4097 
4098 	/* i is in logicals range, but still within local logicals */
4099 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100 		return 0;
4101 
4102 	return 1; /* it's an external lun */
4103 }
4104 
4105 /*
4106  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4107  * logdev.  The number of luns in physdev and logdev are returned in
4108  * *nphysicals and *nlogicals, respectively.
4109  * Returns 0 on success, -1 otherwise.
4110  */
4111 static int hpsa_gather_lun_info(struct ctlr_info *h,
4112 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113 	struct ReportLUNdata *logdev, u32 *nlogicals)
4114 {
4115 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117 		return -1;
4118 	}
4119 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123 		*nphysicals = HPSA_MAX_PHYS_LUN;
4124 	}
4125 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127 		return -1;
4128 	}
4129 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130 	/* Reject Logicals in excess of our max capability. */
4131 	if (*nlogicals > HPSA_MAX_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical LUNs (%d) exceeded.  "
4134 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4135 			*nlogicals - HPSA_MAX_LUN);
4136 		*nlogicals = HPSA_MAX_LUN;
4137 	}
4138 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139 		dev_warn(&h->pdev->dev,
4140 			"maximum logical + physical LUNs (%d) exceeded. "
4141 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144 	}
4145 	return 0;
4146 }
4147 
4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149 	int i, int nphysicals, int nlogicals,
4150 	struct ReportExtendedLUNdata *physdev_list,
4151 	struct ReportLUNdata *logdev_list)
4152 {
4153 	/* Helper function, figure out where the LUN ID info is coming from
4154 	 * given index i, lists of physical and logical devices, where in
4155 	 * the list the raid controller is supposed to appear (first or last)
4156 	 */
4157 
4158 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160 
4161 	if (i == raid_ctlr_position)
4162 		return RAID_CTLR_LUNID;
4163 
4164 	if (i < logicals_start)
4165 		return &physdev_list->LUN[i -
4166 				(raid_ctlr_position == 0)].lunid[0];
4167 
4168 	if (i < last_device)
4169 		return &logdev_list->LUN[i - nphysicals -
4170 			(raid_ctlr_position == 0)][0];
4171 	BUG();
4172 	return NULL;
4173 }
4174 
4175 /* get physical drive ioaccel handle and queue depth */
4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177 		struct hpsa_scsi_dev_t *dev,
4178 		struct ReportExtendedLUNdata *rlep, int rle_index,
4179 		struct bmic_identify_physical_device *id_phys)
4180 {
4181 	int rc;
4182 	struct ext_report_lun_entry *rle;
4183 
4184 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185 		return;
4186 
4187 	rle = &rlep->LUN[rle_index];
4188 
4189 	dev->ioaccel_handle = rle->ioaccel_handle;
4190 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191 		dev->hba_ioaccel_enabled = 1;
4192 	memset(id_phys, 0, sizeof(*id_phys));
4193 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195 			sizeof(*id_phys));
4196 	if (!rc)
4197 		/* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4200 		dev->queue_depth =
4201 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4202 				DRIVE_CMDS_RESERVED_FOR_FW;
4203 	else
4204 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205 }
4206 
4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208 	struct ReportExtendedLUNdata *rlep, int rle_index,
4209 	struct bmic_identify_physical_device *id_phys)
4210 {
4211 	struct ext_report_lun_entry *rle;
4212 
4213 	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214 		return;
4215 
4216 	rle = &rlep->LUN[rle_index];
4217 
4218 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219 		this_device->hba_ioaccel_enabled = 1;
4220 
4221 	memcpy(&this_device->active_path_index,
4222 		&id_phys->active_path_number,
4223 		sizeof(this_device->active_path_index));
4224 	memcpy(&this_device->path_map,
4225 		&id_phys->redundant_path_present_map,
4226 		sizeof(this_device->path_map));
4227 	memcpy(&this_device->box,
4228 		&id_phys->alternate_paths_phys_box_on_port,
4229 		sizeof(this_device->box));
4230 	memcpy(&this_device->phys_connector,
4231 		&id_phys->alternate_paths_phys_connector,
4232 		sizeof(this_device->phys_connector));
4233 	memcpy(&this_device->bay,
4234 		&id_phys->phys_bay_in_box,
4235 		sizeof(this_device->bay));
4236 }
4237 
4238 /* get number of local logical disks. */
4239 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240 	struct bmic_identify_controller *id_ctlr,
4241 	u32 *nlocals)
4242 {
4243 	int rc;
4244 
4245 	if (!id_ctlr) {
4246 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247 			__func__);
4248 		return -ENOMEM;
4249 	}
4250 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4251 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252 	if (!rc)
4253 		if (id_ctlr->configured_logical_drive_count < 255)
4254 			*nlocals = id_ctlr->configured_logical_drive_count;
4255 		else
4256 			*nlocals = le16_to_cpu(
4257 					id_ctlr->extended_logical_unit_count);
4258 	else
4259 		*nlocals = -1;
4260 	return rc;
4261 }
4262 
4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264 {
4265 	struct bmic_identify_physical_device *id_phys;
4266 	bool is_spare = false;
4267 	int rc;
4268 
4269 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270 	if (!id_phys)
4271 		return false;
4272 
4273 	rc = hpsa_bmic_id_physical_device(h,
4274 					lunaddrbytes,
4275 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276 					id_phys, sizeof(*id_phys));
4277 	if (rc == 0)
4278 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4279 
4280 	kfree(id_phys);
4281 	return is_spare;
4282 }
4283 
4284 #define RPL_DEV_FLAG_NON_DISK                           0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4287 
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4289 
4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291 				struct ext_report_lun_entry *rle)
4292 {
4293 	u8 device_flags;
4294 	u8 device_type;
4295 
4296 	if (!MASKED_DEVICE(lunaddrbytes))
4297 		return false;
4298 
4299 	device_flags = rle->device_flags;
4300 	device_type = rle->device_type;
4301 
4302 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304 			return false;
4305 		return true;
4306 	}
4307 
4308 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309 		return false;
4310 
4311 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312 		return false;
4313 
4314 	/*
4315 	 * Spares may be spun down, we do not want to
4316 	 * do an Inquiry to a RAID set spare drive as
4317 	 * that would have them spun up, that is a
4318 	 * performance hit because I/O to the RAID device
4319 	 * stops while the spin up occurs which can take
4320 	 * over 50 seconds.
4321 	 */
4322 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4323 		return true;
4324 
4325 	return false;
4326 }
4327 
4328 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329 {
4330 	/* the idea here is we could get notified
4331 	 * that some devices have changed, so we do a report
4332 	 * physical luns and report logical luns cmd, and adjust
4333 	 * our list of devices accordingly.
4334 	 *
4335 	 * The scsi3addr's of devices won't change so long as the
4336 	 * adapter is not reset.  That means we can rescan and
4337 	 * tell which devices we already know about, vs. new
4338 	 * devices, vs.  disappearing devices.
4339 	 */
4340 	struct ReportExtendedLUNdata *physdev_list = NULL;
4341 	struct ReportLUNdata *logdev_list = NULL;
4342 	struct bmic_identify_physical_device *id_phys = NULL;
4343 	struct bmic_identify_controller *id_ctlr = NULL;
4344 	u32 nphysicals = 0;
4345 	u32 nlogicals = 0;
4346 	u32 nlocal_logicals = 0;
4347 	u32 ndev_allocated = 0;
4348 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349 	int ncurrent = 0;
4350 	int i, ndevs_to_allocate;
4351 	int raid_ctlr_position;
4352 	bool physical_device;
4353 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354 
4355 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361 
4362 	if (!currentsd || !physdev_list || !logdev_list ||
4363 		!tmpdevice || !id_phys || !id_ctlr) {
4364 		dev_err(&h->pdev->dev, "out of memory\n");
4365 		goto out;
4366 	}
4367 	memset(lunzerobits, 0, sizeof(lunzerobits));
4368 
4369 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370 
4371 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372 			logdev_list, &nlogicals)) {
4373 		h->drv_req_rescan = 1;
4374 		goto out;
4375 	}
4376 
4377 	/* Set number of local logicals (non PTRAID) */
4378 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379 		dev_warn(&h->pdev->dev,
4380 			"%s: Can't determine number of local logical devices.\n",
4381 			__func__);
4382 	}
4383 
4384 	/* We might see up to the maximum number of logical and physical disks
4385 	 * plus external target devices, and a device for the local RAID
4386 	 * controller.
4387 	 */
4388 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389 
4390 	hpsa_ext_ctrl_present(h, physdev_list);
4391 
4392 	/* Allocate the per device structures */
4393 	for (i = 0; i < ndevs_to_allocate; i++) {
4394 		if (i >= HPSA_MAX_DEVICES) {
4395 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4397 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4398 			break;
4399 		}
4400 
4401 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402 		if (!currentsd[i]) {
4403 			h->drv_req_rescan = 1;
4404 			goto out;
4405 		}
4406 		ndev_allocated++;
4407 	}
4408 
4409 	if (is_scsi_rev_5(h))
4410 		raid_ctlr_position = 0;
4411 	else
4412 		raid_ctlr_position = nphysicals + nlogicals;
4413 
4414 	/* adjust our table of devices */
4415 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416 		u8 *lunaddrbytes, is_OBDR = 0;
4417 		int rc = 0;
4418 		int phys_dev_index = i - (raid_ctlr_position == 0);
4419 		bool skip_device = false;
4420 
4421 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4422 
4423 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424 
4425 		/* Figure out where the LUN ID info is coming from */
4426 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4428 
4429 		/* Determine if this is a lun from an external target array */
4430 		tmpdevice->external =
4431 			figure_external_status(h, raid_ctlr_position, i,
4432 						nphysicals, nlocal_logicals);
4433 
4434 		/*
4435 		 * Skip over some devices such as a spare.
4436 		 */
4437 		if (phys_dev_index >= 0 && !tmpdevice->external &&
4438 			physical_device) {
4439 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4440 					&physdev_list->LUN[phys_dev_index]);
4441 			if (skip_device)
4442 				continue;
4443 		}
4444 
4445 		/* Get device type, vendor, model, device id, raid_map */
4446 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447 							&is_OBDR);
4448 		if (rc == -ENOMEM) {
4449 			dev_warn(&h->pdev->dev,
4450 				"Out of memory, rescan deferred.\n");
4451 			h->drv_req_rescan = 1;
4452 			goto out;
4453 		}
4454 		if (rc) {
4455 			h->drv_req_rescan = 1;
4456 			continue;
4457 		}
4458 
4459 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460 		this_device = currentsd[ncurrent];
4461 
4462 		*this_device = *tmpdevice;
4463 		this_device->physical_device = physical_device;
4464 
4465 		/*
4466 		 * Expose all devices except for physical devices that
4467 		 * are masked.
4468 		 */
4469 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470 			this_device->expose_device = 0;
4471 		else
4472 			this_device->expose_device = 1;
4473 
4474 
4475 		/*
4476 		 * Get the SAS address for physical devices that are exposed.
4477 		 */
4478 		if (this_device->physical_device && this_device->expose_device)
4479 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480 
4481 		switch (this_device->devtype) {
4482 		case TYPE_ROM:
4483 			/* We don't *really* support actual CD-ROM devices,
4484 			 * just "One Button Disaster Recovery" tape drive
4485 			 * which temporarily pretends to be a CD-ROM drive.
4486 			 * So we check that the device is really an OBDR tape
4487 			 * device by checking for "$DR-10" in bytes 43-48 of
4488 			 * the inquiry data.
4489 			 */
4490 			if (is_OBDR)
4491 				ncurrent++;
4492 			break;
4493 		case TYPE_DISK:
4494 		case TYPE_ZBC:
4495 			if (this_device->physical_device) {
4496 				/* The disk is in HBA mode. */
4497 				/* Never use RAID mapper in HBA mode. */
4498 				this_device->offload_enabled = 0;
4499 				hpsa_get_ioaccel_drive_info(h, this_device,
4500 					physdev_list, phys_dev_index, id_phys);
4501 				hpsa_get_path_info(this_device,
4502 					physdev_list, phys_dev_index, id_phys);
4503 			}
4504 			ncurrent++;
4505 			break;
4506 		case TYPE_TAPE:
4507 		case TYPE_MEDIUM_CHANGER:
4508 			ncurrent++;
4509 			break;
4510 		case TYPE_ENCLOSURE:
4511 			if (!this_device->external)
4512 				hpsa_get_enclosure_info(h, lunaddrbytes,
4513 						physdev_list, phys_dev_index,
4514 						this_device);
4515 			ncurrent++;
4516 			break;
4517 		case TYPE_RAID:
4518 			/* Only present the Smartarray HBA as a RAID controller.
4519 			 * If it's a RAID controller other than the HBA itself
4520 			 * (an external RAID controller, MSA500 or similar)
4521 			 * don't present it.
4522 			 */
4523 			if (!is_hba_lunid(lunaddrbytes))
4524 				break;
4525 			ncurrent++;
4526 			break;
4527 		default:
4528 			break;
4529 		}
4530 		if (ncurrent >= HPSA_MAX_DEVICES)
4531 			break;
4532 	}
4533 
4534 	if (h->sas_host == NULL) {
4535 		int rc = 0;
4536 
4537 		rc = hpsa_add_sas_host(h);
4538 		if (rc) {
4539 			dev_warn(&h->pdev->dev,
4540 				"Could not add sas host %d\n", rc);
4541 			goto out;
4542 		}
4543 	}
4544 
4545 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546 out:
4547 	kfree(tmpdevice);
4548 	for (i = 0; i < ndev_allocated; i++)
4549 		kfree(currentsd[i]);
4550 	kfree(currentsd);
4551 	kfree(physdev_list);
4552 	kfree(logdev_list);
4553 	kfree(id_ctlr);
4554 	kfree(id_phys);
4555 }
4556 
4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558 				   struct scatterlist *sg)
4559 {
4560 	u64 addr64 = (u64) sg_dma_address(sg);
4561 	unsigned int len = sg_dma_len(sg);
4562 
4563 	desc->Addr = cpu_to_le64(addr64);
4564 	desc->Len = cpu_to_le32(len);
4565 	desc->Ext = 0;
4566 }
4567 
4568 /*
4569  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570  * dma mapping  and fills in the scatter gather entries of the
4571  * hpsa command, cp.
4572  */
4573 static int hpsa_scatter_gather(struct ctlr_info *h,
4574 		struct CommandList *cp,
4575 		struct scsi_cmnd *cmd)
4576 {
4577 	struct scatterlist *sg;
4578 	int use_sg, i, sg_limit, chained;
4579 	struct SGDescriptor *curr_sg;
4580 
4581 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582 
4583 	use_sg = scsi_dma_map(cmd);
4584 	if (use_sg < 0)
4585 		return use_sg;
4586 
4587 	if (!use_sg)
4588 		goto sglist_finished;
4589 
4590 	/*
4591 	 * If the number of entries is greater than the max for a single list,
4592 	 * then we have a chained list; we will set up all but one entry in the
4593 	 * first list (the last entry is saved for link information);
4594 	 * otherwise, we don't have a chained list and we'll set up at each of
4595 	 * the entries in the one list.
4596 	 */
4597 	curr_sg = cp->SG;
4598 	chained = use_sg > h->max_cmd_sg_entries;
4599 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601 		hpsa_set_sg_descriptor(curr_sg, sg);
4602 		curr_sg++;
4603 	}
4604 
4605 	if (chained) {
4606 		/*
4607 		 * Continue with the chained list.  Set curr_sg to the chained
4608 		 * list.  Modify the limit to the total count less the entries
4609 		 * we've already set up.  Resume the scan at the list entry
4610 		 * where the previous loop left off.
4611 		 */
4612 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4613 		sg_limit = use_sg - sg_limit;
4614 		for_each_sg(sg, sg, sg_limit, i) {
4615 			hpsa_set_sg_descriptor(curr_sg, sg);
4616 			curr_sg++;
4617 		}
4618 	}
4619 
4620 	/* Back the pointer up to the last entry and mark it as "last". */
4621 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622 
4623 	if (use_sg + chained > h->maxSG)
4624 		h->maxSG = use_sg + chained;
4625 
4626 	if (chained) {
4627 		cp->Header.SGList = h->max_cmd_sg_entries;
4628 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629 		if (hpsa_map_sg_chain_block(h, cp)) {
4630 			scsi_dma_unmap(cmd);
4631 			return -1;
4632 		}
4633 		return 0;
4634 	}
4635 
4636 sglist_finished:
4637 
4638 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4639 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640 	return 0;
4641 }
4642 
4643 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644 						u8 *cdb, int cdb_len,
4645 						const char *func)
4646 {
4647 	dev_warn(&h->pdev->dev,
4648 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4649 		 func, cdb_len, cdb);
4650 }
4651 
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
4654 static bool is_zero_length_transfer(u8 *cdb)
4655 {
4656 	u32 block_cnt;
4657 
4658 	/* Block zero-length transfer sizes on certain commands. */
4659 	switch (cdb[0]) {
4660 	case READ_10:
4661 	case WRITE_10:
4662 	case VERIFY:		/* 0x2F */
4663 	case WRITE_VERIFY:	/* 0x2E */
4664 		block_cnt = get_unaligned_be16(&cdb[7]);
4665 		break;
4666 	case READ_12:
4667 	case WRITE_12:
4668 	case VERIFY_12: /* 0xAF */
4669 	case WRITE_VERIFY_12:	/* 0xAE */
4670 		block_cnt = get_unaligned_be32(&cdb[6]);
4671 		break;
4672 	case READ_16:
4673 	case WRITE_16:
4674 	case VERIFY_16:		/* 0x8F */
4675 		block_cnt = get_unaligned_be32(&cdb[10]);
4676 		break;
4677 	default:
4678 		return false;
4679 	}
4680 
4681 	return block_cnt == 0;
4682 }
4683 
4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685 {
4686 	int is_write = 0;
4687 	u32 block;
4688 	u32 block_cnt;
4689 
4690 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691 	switch (cdb[0]) {
4692 	case WRITE_6:
4693 	case WRITE_12:
4694 		is_write = 1;
4695 		fallthrough;
4696 	case READ_6:
4697 	case READ_12:
4698 		if (*cdb_len == 6) {
4699 			block = (((cdb[1] & 0x1F) << 16) |
4700 				(cdb[2] << 8) |
4701 				cdb[3]);
4702 			block_cnt = cdb[4];
4703 			if (block_cnt == 0)
4704 				block_cnt = 256;
4705 		} else {
4706 			BUG_ON(*cdb_len != 12);
4707 			block = get_unaligned_be32(&cdb[2]);
4708 			block_cnt = get_unaligned_be32(&cdb[6]);
4709 		}
4710 		if (block_cnt > 0xffff)
4711 			return IO_ACCEL_INELIGIBLE;
4712 
4713 		cdb[0] = is_write ? WRITE_10 : READ_10;
4714 		cdb[1] = 0;
4715 		cdb[2] = (u8) (block >> 24);
4716 		cdb[3] = (u8) (block >> 16);
4717 		cdb[4] = (u8) (block >> 8);
4718 		cdb[5] = (u8) (block);
4719 		cdb[6] = 0;
4720 		cdb[7] = (u8) (block_cnt >> 8);
4721 		cdb[8] = (u8) (block_cnt);
4722 		cdb[9] = 0;
4723 		*cdb_len = 10;
4724 		break;
4725 	}
4726 	return 0;
4727 }
4728 
4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732 {
4733 	struct scsi_cmnd *cmd = c->scsi_cmd;
4734 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735 	unsigned int len;
4736 	unsigned int total_len = 0;
4737 	struct scatterlist *sg;
4738 	u64 addr64;
4739 	int use_sg, i;
4740 	struct SGDescriptor *curr_sg;
4741 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742 
4743 	/* TODO: implement chaining support */
4744 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4746 		return IO_ACCEL_INELIGIBLE;
4747 	}
4748 
4749 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750 
4751 	if (is_zero_length_transfer(cdb)) {
4752 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4754 		return IO_ACCEL_INELIGIBLE;
4755 	}
4756 
4757 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4759 		return IO_ACCEL_INELIGIBLE;
4760 	}
4761 
4762 	c->cmd_type = CMD_IOACCEL1;
4763 
4764 	/* Adjust the DMA address to point to the accelerated command buffer */
4765 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766 				(c->cmdindex * sizeof(*cp));
4767 	BUG_ON(c->busaddr & 0x0000007F);
4768 
4769 	use_sg = scsi_dma_map(cmd);
4770 	if (use_sg < 0) {
4771 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4772 		return use_sg;
4773 	}
4774 
4775 	if (use_sg) {
4776 		curr_sg = cp->SG;
4777 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4778 			addr64 = (u64) sg_dma_address(sg);
4779 			len  = sg_dma_len(sg);
4780 			total_len += len;
4781 			curr_sg->Addr = cpu_to_le64(addr64);
4782 			curr_sg->Len = cpu_to_le32(len);
4783 			curr_sg->Ext = cpu_to_le32(0);
4784 			curr_sg++;
4785 		}
4786 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787 
4788 		switch (cmd->sc_data_direction) {
4789 		case DMA_TO_DEVICE:
4790 			control |= IOACCEL1_CONTROL_DATA_OUT;
4791 			break;
4792 		case DMA_FROM_DEVICE:
4793 			control |= IOACCEL1_CONTROL_DATA_IN;
4794 			break;
4795 		case DMA_NONE:
4796 			control |= IOACCEL1_CONTROL_NODATAXFER;
4797 			break;
4798 		default:
4799 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800 			cmd->sc_data_direction);
4801 			BUG();
4802 			break;
4803 		}
4804 	} else {
4805 		control |= IOACCEL1_CONTROL_NODATAXFER;
4806 	}
4807 
4808 	c->Header.SGList = use_sg;
4809 	/* Fill out the command structure to submit */
4810 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811 	cp->transfer_len = cpu_to_le32(total_len);
4812 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814 	cp->control = cpu_to_le32(control);
4815 	memcpy(cp->CDB, cdb, cdb_len);
4816 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4817 	/* Tag was already set at init time. */
4818 	enqueue_cmd_and_start_io(h, c);
4819 	return 0;
4820 }
4821 
4822 /*
4823  * Queue a command directly to a device behind the controller using the
4824  * I/O accelerator path.
4825  */
4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827 	struct CommandList *c)
4828 {
4829 	struct scsi_cmnd *cmd = c->scsi_cmd;
4830 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831 
4832 	if (!dev)
4833 		return -1;
4834 
4835 	c->phys_disk = dev;
4836 
4837 	if (dev->in_reset)
4838 		return -1;
4839 
4840 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842 }
4843 
4844 /*
4845  * Set encryption parameters for the ioaccel2 request
4846  */
4847 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848 	struct CommandList *c, struct io_accel2_cmd *cp)
4849 {
4850 	struct scsi_cmnd *cmd = c->scsi_cmd;
4851 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852 	struct raid_map_data *map = &dev->raid_map;
4853 	u64 first_block;
4854 
4855 	/* Are we doing encryption on this device */
4856 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857 		return;
4858 	/* Set the data encryption key index. */
4859 	cp->dekindex = map->dekindex;
4860 
4861 	/* Set the encryption enable flag, encoded into direction field. */
4862 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863 
4864 	/* Set encryption tweak values based on logical block address
4865 	 * If block size is 512, tweak value is LBA.
4866 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4867 	 */
4868 	switch (cmd->cmnd[0]) {
4869 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870 	case READ_6:
4871 	case WRITE_6:
4872 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873 				(cmd->cmnd[2] << 8) |
4874 				cmd->cmnd[3]);
4875 		break;
4876 	case WRITE_10:
4877 	case READ_10:
4878 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879 	case WRITE_12:
4880 	case READ_12:
4881 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882 		break;
4883 	case WRITE_16:
4884 	case READ_16:
4885 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886 		break;
4887 	default:
4888 		dev_err(&h->pdev->dev,
4889 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4890 			__func__, cmd->cmnd[0]);
4891 		BUG();
4892 		break;
4893 	}
4894 
4895 	if (le32_to_cpu(map->volume_blk_size) != 512)
4896 		first_block = first_block *
4897 				le32_to_cpu(map->volume_blk_size)/512;
4898 
4899 	cp->tweak_lower = cpu_to_le32(first_block);
4900 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901 }
4902 
4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906 {
4907 	struct scsi_cmnd *cmd = c->scsi_cmd;
4908 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909 	struct ioaccel2_sg_element *curr_sg;
4910 	int use_sg, i;
4911 	struct scatterlist *sg;
4912 	u64 addr64;
4913 	u32 len;
4914 	u32 total_len = 0;
4915 
4916 	if (!cmd->device)
4917 		return -1;
4918 
4919 	if (!cmd->device->hostdata)
4920 		return -1;
4921 
4922 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923 
4924 	if (is_zero_length_transfer(cdb)) {
4925 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4927 		return IO_ACCEL_INELIGIBLE;
4928 	}
4929 
4930 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4932 		return IO_ACCEL_INELIGIBLE;
4933 	}
4934 
4935 	c->cmd_type = CMD_IOACCEL2;
4936 	/* Adjust the DMA address to point to the accelerated command buffer */
4937 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938 				(c->cmdindex * sizeof(*cp));
4939 	BUG_ON(c->busaddr & 0x0000007F);
4940 
4941 	memset(cp, 0, sizeof(*cp));
4942 	cp->IU_type = IOACCEL2_IU_TYPE;
4943 
4944 	use_sg = scsi_dma_map(cmd);
4945 	if (use_sg < 0) {
4946 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4947 		return use_sg;
4948 	}
4949 
4950 	if (use_sg) {
4951 		curr_sg = cp->sg;
4952 		if (use_sg > h->ioaccel_maxsg) {
4953 			addr64 = le64_to_cpu(
4954 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955 			curr_sg->address = cpu_to_le64(addr64);
4956 			curr_sg->length = 0;
4957 			curr_sg->reserved[0] = 0;
4958 			curr_sg->reserved[1] = 0;
4959 			curr_sg->reserved[2] = 0;
4960 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961 
4962 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963 		}
4964 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4965 			addr64 = (u64) sg_dma_address(sg);
4966 			len  = sg_dma_len(sg);
4967 			total_len += len;
4968 			curr_sg->address = cpu_to_le64(addr64);
4969 			curr_sg->length = cpu_to_le32(len);
4970 			curr_sg->reserved[0] = 0;
4971 			curr_sg->reserved[1] = 0;
4972 			curr_sg->reserved[2] = 0;
4973 			curr_sg->chain_indicator = 0;
4974 			curr_sg++;
4975 		}
4976 
4977 		/*
4978 		 * Set the last s/g element bit
4979 		 */
4980 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981 
4982 		switch (cmd->sc_data_direction) {
4983 		case DMA_TO_DEVICE:
4984 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986 			break;
4987 		case DMA_FROM_DEVICE:
4988 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4990 			break;
4991 		case DMA_NONE:
4992 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4994 			break;
4995 		default:
4996 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997 				cmd->sc_data_direction);
4998 			BUG();
4999 			break;
5000 		}
5001 	} else {
5002 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003 		cp->direction |= IOACCEL2_DIR_NO_DATA;
5004 	}
5005 
5006 	/* Set encryption parameters, if necessary */
5007 	set_encrypt_ioaccel2(h, c, cp);
5008 
5009 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012 
5013 	cp->data_len = cpu_to_le32(total_len);
5014 	cp->err_ptr = cpu_to_le64(c->busaddr +
5015 			offsetof(struct io_accel2_cmd, error_data));
5016 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017 
5018 	/* fill in sg elements */
5019 	if (use_sg > h->ioaccel_maxsg) {
5020 		cp->sg_count = 1;
5021 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5024 			scsi_dma_unmap(cmd);
5025 			return -1;
5026 		}
5027 	} else
5028 		cp->sg_count = (u8) use_sg;
5029 
5030 	if (phys_disk->in_reset) {
5031 		cmd->result = DID_RESET << 16;
5032 		return -1;
5033 	}
5034 
5035 	enqueue_cmd_and_start_io(h, c);
5036 	return 0;
5037 }
5038 
5039 /*
5040  * Queue a command to the correct I/O accelerator path.
5041  */
5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045 {
5046 	if (!c->scsi_cmd->device)
5047 		return -1;
5048 
5049 	if (!c->scsi_cmd->device->hostdata)
5050 		return -1;
5051 
5052 	if (phys_disk->in_reset)
5053 		return -1;
5054 
5055 	/* Try to honor the device's queue depth */
5056 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057 					phys_disk->queue_depth) {
5058 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5059 		return IO_ACCEL_INELIGIBLE;
5060 	}
5061 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5062 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063 						cdb, cdb_len, scsi3addr,
5064 						phys_disk);
5065 	else
5066 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067 						cdb, cdb_len, scsi3addr,
5068 						phys_disk);
5069 }
5070 
5071 static void raid_map_helper(struct raid_map_data *map,
5072 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5073 {
5074 	if (offload_to_mirror == 0)  {
5075 		/* use physical disk in the first mirrored group. */
5076 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5077 		return;
5078 	}
5079 	do {
5080 		/* determine mirror group that *map_index indicates */
5081 		*current_group = *map_index /
5082 			le16_to_cpu(map->data_disks_per_row);
5083 		if (offload_to_mirror == *current_group)
5084 			continue;
5085 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086 			/* select map index from next group */
5087 			*map_index += le16_to_cpu(map->data_disks_per_row);
5088 			(*current_group)++;
5089 		} else {
5090 			/* select map index from first group */
5091 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5092 			*current_group = 0;
5093 		}
5094 	} while (offload_to_mirror != *current_group);
5095 }
5096 
5097 /*
5098  * Attempt to perform offload RAID mapping for a logical volume I/O.
5099  */
5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101 	struct CommandList *c)
5102 {
5103 	struct scsi_cmnd *cmd = c->scsi_cmd;
5104 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105 	struct raid_map_data *map = &dev->raid_map;
5106 	struct raid_map_disk_data *dd = &map->data[0];
5107 	int is_write = 0;
5108 	u32 map_index;
5109 	u64 first_block, last_block;
5110 	u32 block_cnt;
5111 	u32 blocks_per_row;
5112 	u64 first_row, last_row;
5113 	u32 first_row_offset, last_row_offset;
5114 	u32 first_column, last_column;
5115 	u64 r0_first_row, r0_last_row;
5116 	u32 r5or6_blocks_per_row;
5117 	u64 r5or6_first_row, r5or6_last_row;
5118 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119 	u32 r5or6_first_column, r5or6_last_column;
5120 	u32 total_disks_per_row;
5121 	u32 stripesize;
5122 	u32 first_group, last_group, current_group;
5123 	u32 map_row;
5124 	u32 disk_handle;
5125 	u64 disk_block;
5126 	u32 disk_block_cnt;
5127 	u8 cdb[16];
5128 	u8 cdb_len;
5129 	u16 strip_size;
5130 #if BITS_PER_LONG == 32
5131 	u64 tmpdiv;
5132 #endif
5133 	int offload_to_mirror;
5134 
5135 	if (!dev)
5136 		return -1;
5137 
5138 	if (dev->in_reset)
5139 		return -1;
5140 
5141 	/* check for valid opcode, get LBA and block count */
5142 	switch (cmd->cmnd[0]) {
5143 	case WRITE_6:
5144 		is_write = 1;
5145 		fallthrough;
5146 	case READ_6:
5147 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148 				(cmd->cmnd[2] << 8) |
5149 				cmd->cmnd[3]);
5150 		block_cnt = cmd->cmnd[4];
5151 		if (block_cnt == 0)
5152 			block_cnt = 256;
5153 		break;
5154 	case WRITE_10:
5155 		is_write = 1;
5156 		fallthrough;
5157 	case READ_10:
5158 		first_block =
5159 			(((u64) cmd->cmnd[2]) << 24) |
5160 			(((u64) cmd->cmnd[3]) << 16) |
5161 			(((u64) cmd->cmnd[4]) << 8) |
5162 			cmd->cmnd[5];
5163 		block_cnt =
5164 			(((u32) cmd->cmnd[7]) << 8) |
5165 			cmd->cmnd[8];
5166 		break;
5167 	case WRITE_12:
5168 		is_write = 1;
5169 		fallthrough;
5170 	case READ_12:
5171 		first_block =
5172 			(((u64) cmd->cmnd[2]) << 24) |
5173 			(((u64) cmd->cmnd[3]) << 16) |
5174 			(((u64) cmd->cmnd[4]) << 8) |
5175 			cmd->cmnd[5];
5176 		block_cnt =
5177 			(((u32) cmd->cmnd[6]) << 24) |
5178 			(((u32) cmd->cmnd[7]) << 16) |
5179 			(((u32) cmd->cmnd[8]) << 8) |
5180 		cmd->cmnd[9];
5181 		break;
5182 	case WRITE_16:
5183 		is_write = 1;
5184 		fallthrough;
5185 	case READ_16:
5186 		first_block =
5187 			(((u64) cmd->cmnd[2]) << 56) |
5188 			(((u64) cmd->cmnd[3]) << 48) |
5189 			(((u64) cmd->cmnd[4]) << 40) |
5190 			(((u64) cmd->cmnd[5]) << 32) |
5191 			(((u64) cmd->cmnd[6]) << 24) |
5192 			(((u64) cmd->cmnd[7]) << 16) |
5193 			(((u64) cmd->cmnd[8]) << 8) |
5194 			cmd->cmnd[9];
5195 		block_cnt =
5196 			(((u32) cmd->cmnd[10]) << 24) |
5197 			(((u32) cmd->cmnd[11]) << 16) |
5198 			(((u32) cmd->cmnd[12]) << 8) |
5199 			cmd->cmnd[13];
5200 		break;
5201 	default:
5202 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203 	}
5204 	last_block = first_block + block_cnt - 1;
5205 
5206 	/* check for write to non-RAID-0 */
5207 	if (is_write && dev->raid_level != 0)
5208 		return IO_ACCEL_INELIGIBLE;
5209 
5210 	/* check for invalid block or wraparound */
5211 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212 		last_block < first_block)
5213 		return IO_ACCEL_INELIGIBLE;
5214 
5215 	/* calculate stripe information for the request */
5216 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217 				le16_to_cpu(map->strip_size);
5218 	strip_size = le16_to_cpu(map->strip_size);
5219 #if BITS_PER_LONG == 32
5220 	tmpdiv = first_block;
5221 	(void) do_div(tmpdiv, blocks_per_row);
5222 	first_row = tmpdiv;
5223 	tmpdiv = last_block;
5224 	(void) do_div(tmpdiv, blocks_per_row);
5225 	last_row = tmpdiv;
5226 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228 	tmpdiv = first_row_offset;
5229 	(void) do_div(tmpdiv, strip_size);
5230 	first_column = tmpdiv;
5231 	tmpdiv = last_row_offset;
5232 	(void) do_div(tmpdiv, strip_size);
5233 	last_column = tmpdiv;
5234 #else
5235 	first_row = first_block / blocks_per_row;
5236 	last_row = last_block / blocks_per_row;
5237 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239 	first_column = first_row_offset / strip_size;
5240 	last_column = last_row_offset / strip_size;
5241 #endif
5242 
5243 	/* if this isn't a single row/column then give to the controller */
5244 	if ((first_row != last_row) || (first_column != last_column))
5245 		return IO_ACCEL_INELIGIBLE;
5246 
5247 	/* proceeding with driver mapping */
5248 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249 				le16_to_cpu(map->metadata_disks_per_row);
5250 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251 				le16_to_cpu(map->row_cnt);
5252 	map_index = (map_row * total_disks_per_row) + first_column;
5253 
5254 	switch (dev->raid_level) {
5255 	case HPSA_RAID_0:
5256 		break; /* nothing special to do */
5257 	case HPSA_RAID_1:
5258 		/* Handles load balance across RAID 1 members.
5259 		 * (2-drive R1 and R10 with even # of drives.)
5260 		 * Appropriate for SSDs, not optimal for HDDs
5261 		 * Ensure we have the correct raid_map.
5262 		 */
5263 		if (le16_to_cpu(map->layout_map_count) != 2) {
5264 			hpsa_turn_off_ioaccel_for_device(dev);
5265 			return IO_ACCEL_INELIGIBLE;
5266 		}
5267 		if (dev->offload_to_mirror)
5268 			map_index += le16_to_cpu(map->data_disks_per_row);
5269 		dev->offload_to_mirror = !dev->offload_to_mirror;
5270 		break;
5271 	case HPSA_RAID_ADM:
5272 		/* Handles N-way mirrors  (R1-ADM)
5273 		 * and R10 with # of drives divisible by 3.)
5274 		 * Ensure we have the correct raid_map.
5275 		 */
5276 		if (le16_to_cpu(map->layout_map_count) != 3) {
5277 			hpsa_turn_off_ioaccel_for_device(dev);
5278 			return IO_ACCEL_INELIGIBLE;
5279 		}
5280 
5281 		offload_to_mirror = dev->offload_to_mirror;
5282 		raid_map_helper(map, offload_to_mirror,
5283 				&map_index, &current_group);
5284 		/* set mirror group to use next time */
5285 		offload_to_mirror =
5286 			(offload_to_mirror >=
5287 			le16_to_cpu(map->layout_map_count) - 1)
5288 			? 0 : offload_to_mirror + 1;
5289 		dev->offload_to_mirror = offload_to_mirror;
5290 		/* Avoid direct use of dev->offload_to_mirror within this
5291 		 * function since multiple threads might simultaneously
5292 		 * increment it beyond the range of dev->layout_map_count -1.
5293 		 */
5294 		break;
5295 	case HPSA_RAID_5:
5296 	case HPSA_RAID_6:
5297 		if (le16_to_cpu(map->layout_map_count) <= 1)
5298 			break;
5299 
5300 		/* Verify first and last block are in same RAID group */
5301 		r5or6_blocks_per_row =
5302 			le16_to_cpu(map->strip_size) *
5303 			le16_to_cpu(map->data_disks_per_row);
5304 		if (r5or6_blocks_per_row == 0) {
5305 			hpsa_turn_off_ioaccel_for_device(dev);
5306 			return IO_ACCEL_INELIGIBLE;
5307 		}
5308 		stripesize = r5or6_blocks_per_row *
5309 			le16_to_cpu(map->layout_map_count);
5310 #if BITS_PER_LONG == 32
5311 		tmpdiv = first_block;
5312 		first_group = do_div(tmpdiv, stripesize);
5313 		tmpdiv = first_group;
5314 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5315 		first_group = tmpdiv;
5316 		tmpdiv = last_block;
5317 		last_group = do_div(tmpdiv, stripesize);
5318 		tmpdiv = last_group;
5319 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5320 		last_group = tmpdiv;
5321 #else
5322 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324 #endif
5325 		if (first_group != last_group)
5326 			return IO_ACCEL_INELIGIBLE;
5327 
5328 		/* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330 		tmpdiv = first_block;
5331 		(void) do_div(tmpdiv, stripesize);
5332 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333 		tmpdiv = last_block;
5334 		(void) do_div(tmpdiv, stripesize);
5335 		r5or6_last_row = r0_last_row = tmpdiv;
5336 #else
5337 		first_row = r5or6_first_row = r0_first_row =
5338 						first_block / stripesize;
5339 		r5or6_last_row = r0_last_row = last_block / stripesize;
5340 #endif
5341 		if (r5or6_first_row != r5or6_last_row)
5342 			return IO_ACCEL_INELIGIBLE;
5343 
5344 
5345 		/* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347 		tmpdiv = first_block;
5348 		first_row_offset = do_div(tmpdiv, stripesize);
5349 		tmpdiv = first_row_offset;
5350 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351 		r5or6_first_row_offset = first_row_offset;
5352 		tmpdiv = last_block;
5353 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354 		tmpdiv = r5or6_last_row_offset;
5355 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356 		tmpdiv = r5or6_first_row_offset;
5357 		(void) do_div(tmpdiv, map->strip_size);
5358 		first_column = r5or6_first_column = tmpdiv;
5359 		tmpdiv = r5or6_last_row_offset;
5360 		(void) do_div(tmpdiv, map->strip_size);
5361 		r5or6_last_column = tmpdiv;
5362 #else
5363 		first_row_offset = r5or6_first_row_offset =
5364 			(u32)((first_block % stripesize) %
5365 						r5or6_blocks_per_row);
5366 
5367 		r5or6_last_row_offset =
5368 			(u32)((last_block % stripesize) %
5369 						r5or6_blocks_per_row);
5370 
5371 		first_column = r5or6_first_column =
5372 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373 		r5or6_last_column =
5374 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375 #endif
5376 		if (r5or6_first_column != r5or6_last_column)
5377 			return IO_ACCEL_INELIGIBLE;
5378 
5379 		/* Request is eligible */
5380 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381 			le16_to_cpu(map->row_cnt);
5382 
5383 		map_index = (first_group *
5384 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385 			(map_row * total_disks_per_row) + first_column;
5386 		break;
5387 	default:
5388 		return IO_ACCEL_INELIGIBLE;
5389 	}
5390 
5391 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392 		return IO_ACCEL_INELIGIBLE;
5393 
5394 	c->phys_disk = dev->phys_disk[map_index];
5395 	if (!c->phys_disk)
5396 		return IO_ACCEL_INELIGIBLE;
5397 
5398 	disk_handle = dd[map_index].ioaccel_handle;
5399 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5400 			first_row * le16_to_cpu(map->strip_size) +
5401 			(first_row_offset - first_column *
5402 			le16_to_cpu(map->strip_size));
5403 	disk_block_cnt = block_cnt;
5404 
5405 	/* handle differing logical/physical block sizes */
5406 	if (map->phys_blk_shift) {
5407 		disk_block <<= map->phys_blk_shift;
5408 		disk_block_cnt <<= map->phys_blk_shift;
5409 	}
5410 	BUG_ON(disk_block_cnt > 0xffff);
5411 
5412 	/* build the new CDB for the physical disk I/O */
5413 	if (disk_block > 0xffffffff) {
5414 		cdb[0] = is_write ? WRITE_16 : READ_16;
5415 		cdb[1] = 0;
5416 		cdb[2] = (u8) (disk_block >> 56);
5417 		cdb[3] = (u8) (disk_block >> 48);
5418 		cdb[4] = (u8) (disk_block >> 40);
5419 		cdb[5] = (u8) (disk_block >> 32);
5420 		cdb[6] = (u8) (disk_block >> 24);
5421 		cdb[7] = (u8) (disk_block >> 16);
5422 		cdb[8] = (u8) (disk_block >> 8);
5423 		cdb[9] = (u8) (disk_block);
5424 		cdb[10] = (u8) (disk_block_cnt >> 24);
5425 		cdb[11] = (u8) (disk_block_cnt >> 16);
5426 		cdb[12] = (u8) (disk_block_cnt >> 8);
5427 		cdb[13] = (u8) (disk_block_cnt);
5428 		cdb[14] = 0;
5429 		cdb[15] = 0;
5430 		cdb_len = 16;
5431 	} else {
5432 		cdb[0] = is_write ? WRITE_10 : READ_10;
5433 		cdb[1] = 0;
5434 		cdb[2] = (u8) (disk_block >> 24);
5435 		cdb[3] = (u8) (disk_block >> 16);
5436 		cdb[4] = (u8) (disk_block >> 8);
5437 		cdb[5] = (u8) (disk_block);
5438 		cdb[6] = 0;
5439 		cdb[7] = (u8) (disk_block_cnt >> 8);
5440 		cdb[8] = (u8) (disk_block_cnt);
5441 		cdb[9] = 0;
5442 		cdb_len = 10;
5443 	}
5444 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445 						dev->scsi3addr,
5446 						dev->phys_disk[map_index]);
5447 }
5448 
5449 /*
5450  * Submit commands down the "normal" RAID stack path
5451  * All callers to hpsa_ciss_submit must check lockup_detected
5452  * beforehand, before (opt.) and after calling cmd_alloc
5453  */
5454 static int hpsa_ciss_submit(struct ctlr_info *h,
5455 	struct CommandList *c, struct scsi_cmnd *cmd,
5456 	struct hpsa_scsi_dev_t *dev)
5457 {
5458 	cmd->host_scribble = (unsigned char *) c;
5459 	c->cmd_type = CMD_SCSI;
5460 	c->scsi_cmd = cmd;
5461 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5462 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464 
5465 	/* Fill in the request block... */
5466 
5467 	c->Request.Timeout = 0;
5468 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469 	c->Request.CDBLen = cmd->cmd_len;
5470 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471 	switch (cmd->sc_data_direction) {
5472 	case DMA_TO_DEVICE:
5473 		c->Request.type_attr_dir =
5474 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475 		break;
5476 	case DMA_FROM_DEVICE:
5477 		c->Request.type_attr_dir =
5478 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479 		break;
5480 	case DMA_NONE:
5481 		c->Request.type_attr_dir =
5482 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483 		break;
5484 	case DMA_BIDIRECTIONAL:
5485 		/* This can happen if a buggy application does a scsi passthru
5486 		 * and sets both inlen and outlen to non-zero. ( see
5487 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488 		 */
5489 
5490 		c->Request.type_attr_dir =
5491 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492 		/* This is technically wrong, and hpsa controllers should
5493 		 * reject it with CMD_INVALID, which is the most correct
5494 		 * response, but non-fibre backends appear to let it
5495 		 * slide by, and give the same results as if this field
5496 		 * were set correctly.  Either way is acceptable for
5497 		 * our purposes here.
5498 		 */
5499 
5500 		break;
5501 
5502 	default:
5503 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504 			cmd->sc_data_direction);
5505 		BUG();
5506 		break;
5507 	}
5508 
5509 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510 		hpsa_cmd_resolve_and_free(h, c);
5511 		return SCSI_MLQUEUE_HOST_BUSY;
5512 	}
5513 
5514 	if (dev->in_reset) {
5515 		hpsa_cmd_resolve_and_free(h, c);
5516 		return SCSI_MLQUEUE_HOST_BUSY;
5517 	}
5518 
5519 	c->device = dev;
5520 
5521 	enqueue_cmd_and_start_io(h, c);
5522 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5523 	return 0;
5524 }
5525 
5526 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527 				struct CommandList *c)
5528 {
5529 	dma_addr_t cmd_dma_handle, err_dma_handle;
5530 
5531 	/* Zero out all of commandlist except the last field, refcount */
5532 	memset(c, 0, offsetof(struct CommandList, refcount));
5533 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535 	c->err_info = h->errinfo_pool + index;
5536 	memset(c->err_info, 0, sizeof(*c->err_info));
5537 	err_dma_handle = h->errinfo_pool_dhandle
5538 	    + index * sizeof(*c->err_info);
5539 	c->cmdindex = index;
5540 	c->busaddr = (u32) cmd_dma_handle;
5541 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543 	c->h = h;
5544 	c->scsi_cmd = SCSI_CMD_IDLE;
5545 }
5546 
5547 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548 {
5549 	int i;
5550 
5551 	for (i = 0; i < h->nr_cmds; i++) {
5552 		struct CommandList *c = h->cmd_pool + i;
5553 
5554 		hpsa_cmd_init(h, i, c);
5555 		atomic_set(&c->refcount, 0);
5556 	}
5557 }
5558 
5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560 				struct CommandList *c)
5561 {
5562 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563 
5564 	BUG_ON(c->cmdindex != index);
5565 
5566 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567 	memset(c->err_info, 0, sizeof(*c->err_info));
5568 	c->busaddr = (u32) cmd_dma_handle;
5569 }
5570 
5571 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572 		struct CommandList *c, struct scsi_cmnd *cmd)
5573 {
5574 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5575 	int rc = IO_ACCEL_INELIGIBLE;
5576 
5577 	if (!dev)
5578 		return SCSI_MLQUEUE_HOST_BUSY;
5579 
5580 	if (dev->in_reset)
5581 		return SCSI_MLQUEUE_HOST_BUSY;
5582 
5583 	if (hpsa_simple_mode)
5584 		return IO_ACCEL_INELIGIBLE;
5585 
5586 	cmd->host_scribble = (unsigned char *) c;
5587 
5588 	if (dev->offload_enabled) {
5589 		hpsa_cmd_init(h, c->cmdindex, c);
5590 		c->cmd_type = CMD_SCSI;
5591 		c->scsi_cmd = cmd;
5592 		c->device = dev;
5593 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5594 		if (rc < 0)     /* scsi_dma_map failed. */
5595 			rc = SCSI_MLQUEUE_HOST_BUSY;
5596 	} else if (dev->hba_ioaccel_enabled) {
5597 		hpsa_cmd_init(h, c->cmdindex, c);
5598 		c->cmd_type = CMD_SCSI;
5599 		c->scsi_cmd = cmd;
5600 		c->device = dev;
5601 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5602 		if (rc < 0)     /* scsi_dma_map failed. */
5603 			rc = SCSI_MLQUEUE_HOST_BUSY;
5604 	}
5605 	return rc;
5606 }
5607 
5608 static void hpsa_command_resubmit_worker(struct work_struct *work)
5609 {
5610 	struct scsi_cmnd *cmd;
5611 	struct hpsa_scsi_dev_t *dev;
5612 	struct CommandList *c = container_of(work, struct CommandList, work);
5613 
5614 	cmd = c->scsi_cmd;
5615 	dev = cmd->device->hostdata;
5616 	if (!dev) {
5617 		cmd->result = DID_NO_CONNECT << 16;
5618 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5619 	}
5620 
5621 	if (dev->in_reset) {
5622 		cmd->result = DID_RESET << 16;
5623 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5624 	}
5625 
5626 	if (c->cmd_type == CMD_IOACCEL2) {
5627 		struct ctlr_info *h = c->h;
5628 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5629 		int rc;
5630 
5631 		if (c2->error_data.serv_response ==
5632 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5633 			rc = hpsa_ioaccel_submit(h, c, cmd);
5634 			if (rc == 0)
5635 				return;
5636 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5637 				/*
5638 				 * If we get here, it means dma mapping failed.
5639 				 * Try again via scsi mid layer, which will
5640 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5641 				 */
5642 				cmd->result = DID_IMM_RETRY << 16;
5643 				return hpsa_cmd_free_and_done(h, c, cmd);
5644 			}
5645 			/* else, fall thru and resubmit down CISS path */
5646 		}
5647 	}
5648 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5649 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5650 		/*
5651 		 * If we get here, it means dma mapping failed. Try
5652 		 * again via scsi mid layer, which will then get
5653 		 * SCSI_MLQUEUE_HOST_BUSY.
5654 		 *
5655 		 * hpsa_ciss_submit will have already freed c
5656 		 * if it encountered a dma mapping failure.
5657 		 */
5658 		cmd->result = DID_IMM_RETRY << 16;
5659 		cmd->scsi_done(cmd);
5660 	}
5661 }
5662 
5663 /* Running in struct Scsi_Host->host_lock less mode */
5664 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5665 {
5666 	struct ctlr_info *h;
5667 	struct hpsa_scsi_dev_t *dev;
5668 	struct CommandList *c;
5669 	int rc = 0;
5670 
5671 	/* Get the ptr to our adapter structure out of cmd->host. */
5672 	h = sdev_to_hba(cmd->device);
5673 
5674 	BUG_ON(cmd->request->tag < 0);
5675 
5676 	dev = cmd->device->hostdata;
5677 	if (!dev) {
5678 		cmd->result = DID_NO_CONNECT << 16;
5679 		cmd->scsi_done(cmd);
5680 		return 0;
5681 	}
5682 
5683 	if (dev->removed) {
5684 		cmd->result = DID_NO_CONNECT << 16;
5685 		cmd->scsi_done(cmd);
5686 		return 0;
5687 	}
5688 
5689 	if (unlikely(lockup_detected(h))) {
5690 		cmd->result = DID_NO_CONNECT << 16;
5691 		cmd->scsi_done(cmd);
5692 		return 0;
5693 	}
5694 
5695 	if (dev->in_reset)
5696 		return SCSI_MLQUEUE_DEVICE_BUSY;
5697 
5698 	c = cmd_tagged_alloc(h, cmd);
5699 	if (c == NULL)
5700 		return SCSI_MLQUEUE_DEVICE_BUSY;
5701 
5702 	/*
5703 	 * This is necessary because the SML doesn't zero out this field during
5704 	 * error recovery.
5705 	 */
5706 	cmd->result = 0;
5707 
5708 	/*
5709 	 * Call alternate submit routine for I/O accelerated commands.
5710 	 * Retries always go down the normal I/O path.
5711 	 */
5712 	if (likely(cmd->retries == 0 &&
5713 			!blk_rq_is_passthrough(cmd->request) &&
5714 			h->acciopath_status)) {
5715 		rc = hpsa_ioaccel_submit(h, c, cmd);
5716 		if (rc == 0)
5717 			return 0;
5718 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5719 			hpsa_cmd_resolve_and_free(h, c);
5720 			return SCSI_MLQUEUE_HOST_BUSY;
5721 		}
5722 	}
5723 	return hpsa_ciss_submit(h, c, cmd, dev);
5724 }
5725 
5726 static void hpsa_scan_complete(struct ctlr_info *h)
5727 {
5728 	unsigned long flags;
5729 
5730 	spin_lock_irqsave(&h->scan_lock, flags);
5731 	h->scan_finished = 1;
5732 	wake_up(&h->scan_wait_queue);
5733 	spin_unlock_irqrestore(&h->scan_lock, flags);
5734 }
5735 
5736 static void hpsa_scan_start(struct Scsi_Host *sh)
5737 {
5738 	struct ctlr_info *h = shost_to_hba(sh);
5739 	unsigned long flags;
5740 
5741 	/*
5742 	 * Don't let rescans be initiated on a controller known to be locked
5743 	 * up.  If the controller locks up *during* a rescan, that thread is
5744 	 * probably hosed, but at least we can prevent new rescan threads from
5745 	 * piling up on a locked up controller.
5746 	 */
5747 	if (unlikely(lockup_detected(h)))
5748 		return hpsa_scan_complete(h);
5749 
5750 	/*
5751 	 * If a scan is already waiting to run, no need to add another
5752 	 */
5753 	spin_lock_irqsave(&h->scan_lock, flags);
5754 	if (h->scan_waiting) {
5755 		spin_unlock_irqrestore(&h->scan_lock, flags);
5756 		return;
5757 	}
5758 
5759 	spin_unlock_irqrestore(&h->scan_lock, flags);
5760 
5761 	/* wait until any scan already in progress is finished. */
5762 	while (1) {
5763 		spin_lock_irqsave(&h->scan_lock, flags);
5764 		if (h->scan_finished)
5765 			break;
5766 		h->scan_waiting = 1;
5767 		spin_unlock_irqrestore(&h->scan_lock, flags);
5768 		wait_event(h->scan_wait_queue, h->scan_finished);
5769 		/* Note: We don't need to worry about a race between this
5770 		 * thread and driver unload because the midlayer will
5771 		 * have incremented the reference count, so unload won't
5772 		 * happen if we're in here.
5773 		 */
5774 	}
5775 	h->scan_finished = 0; /* mark scan as in progress */
5776 	h->scan_waiting = 0;
5777 	spin_unlock_irqrestore(&h->scan_lock, flags);
5778 
5779 	if (unlikely(lockup_detected(h)))
5780 		return hpsa_scan_complete(h);
5781 
5782 	/*
5783 	 * Do the scan after a reset completion
5784 	 */
5785 	spin_lock_irqsave(&h->reset_lock, flags);
5786 	if (h->reset_in_progress) {
5787 		h->drv_req_rescan = 1;
5788 		spin_unlock_irqrestore(&h->reset_lock, flags);
5789 		hpsa_scan_complete(h);
5790 		return;
5791 	}
5792 	spin_unlock_irqrestore(&h->reset_lock, flags);
5793 
5794 	hpsa_update_scsi_devices(h);
5795 
5796 	hpsa_scan_complete(h);
5797 }
5798 
5799 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5800 {
5801 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5802 
5803 	if (!logical_drive)
5804 		return -ENODEV;
5805 
5806 	if (qdepth < 1)
5807 		qdepth = 1;
5808 	else if (qdepth > logical_drive->queue_depth)
5809 		qdepth = logical_drive->queue_depth;
5810 
5811 	return scsi_change_queue_depth(sdev, qdepth);
5812 }
5813 
5814 static int hpsa_scan_finished(struct Scsi_Host *sh,
5815 	unsigned long elapsed_time)
5816 {
5817 	struct ctlr_info *h = shost_to_hba(sh);
5818 	unsigned long flags;
5819 	int finished;
5820 
5821 	spin_lock_irqsave(&h->scan_lock, flags);
5822 	finished = h->scan_finished;
5823 	spin_unlock_irqrestore(&h->scan_lock, flags);
5824 	return finished;
5825 }
5826 
5827 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5828 {
5829 	struct Scsi_Host *sh;
5830 
5831 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5832 	if (sh == NULL) {
5833 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5834 		return -ENOMEM;
5835 	}
5836 
5837 	sh->io_port = 0;
5838 	sh->n_io_port = 0;
5839 	sh->this_id = -1;
5840 	sh->max_channel = 3;
5841 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5842 	sh->max_lun = HPSA_MAX_LUN;
5843 	sh->max_id = HPSA_MAX_LUN;
5844 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5845 	sh->cmd_per_lun = sh->can_queue;
5846 	sh->sg_tablesize = h->maxsgentries;
5847 	sh->transportt = hpsa_sas_transport_template;
5848 	sh->hostdata[0] = (unsigned long) h;
5849 	sh->irq = pci_irq_vector(h->pdev, 0);
5850 	sh->unique_id = sh->irq;
5851 
5852 	h->scsi_host = sh;
5853 	return 0;
5854 }
5855 
5856 static int hpsa_scsi_add_host(struct ctlr_info *h)
5857 {
5858 	int rv;
5859 
5860 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5861 	if (rv) {
5862 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5863 		return rv;
5864 	}
5865 	scsi_scan_host(h->scsi_host);
5866 	return 0;
5867 }
5868 
5869 /*
5870  * The block layer has already gone to the trouble of picking out a unique,
5871  * small-integer tag for this request.  We use an offset from that value as
5872  * an index to select our command block.  (The offset allows us to reserve the
5873  * low-numbered entries for our own uses.)
5874  */
5875 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5876 {
5877 	int idx = scmd->request->tag;
5878 
5879 	if (idx < 0)
5880 		return idx;
5881 
5882 	/* Offset to leave space for internal cmds. */
5883 	return idx += HPSA_NRESERVED_CMDS;
5884 }
5885 
5886 /*
5887  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5888  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5889  */
5890 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5891 				struct CommandList *c, unsigned char lunaddr[],
5892 				int reply_queue)
5893 {
5894 	int rc;
5895 
5896 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5897 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5898 			NULL, 0, 0, lunaddr, TYPE_CMD);
5899 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5900 	if (rc)
5901 		return rc;
5902 	/* no unmap needed here because no data xfer. */
5903 
5904 	/* Check if the unit is already ready. */
5905 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5906 		return 0;
5907 
5908 	/*
5909 	 * The first command sent after reset will receive "unit attention" to
5910 	 * indicate that the LUN has been reset...this is actually what we're
5911 	 * looking for (but, success is good too).
5912 	 */
5913 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5914 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5915 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5916 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5917 		return 0;
5918 
5919 	return 1;
5920 }
5921 
5922 /*
5923  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5924  * returns zero when the unit is ready, and non-zero when giving up.
5925  */
5926 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5927 				struct CommandList *c,
5928 				unsigned char lunaddr[], int reply_queue)
5929 {
5930 	int rc;
5931 	int count = 0;
5932 	int waittime = 1; /* seconds */
5933 
5934 	/* Send test unit ready until device ready, or give up. */
5935 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5936 
5937 		/*
5938 		 * Wait for a bit.  do this first, because if we send
5939 		 * the TUR right away, the reset will just abort it.
5940 		 */
5941 		msleep(1000 * waittime);
5942 
5943 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5944 		if (!rc)
5945 			break;
5946 
5947 		/* Increase wait time with each try, up to a point. */
5948 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5949 			waittime *= 2;
5950 
5951 		dev_warn(&h->pdev->dev,
5952 			 "waiting %d secs for device to become ready.\n",
5953 			 waittime);
5954 	}
5955 
5956 	return rc;
5957 }
5958 
5959 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5960 					   unsigned char lunaddr[],
5961 					   int reply_queue)
5962 {
5963 	int first_queue;
5964 	int last_queue;
5965 	int rq;
5966 	int rc = 0;
5967 	struct CommandList *c;
5968 
5969 	c = cmd_alloc(h);
5970 
5971 	/*
5972 	 * If no specific reply queue was requested, then send the TUR
5973 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5974 	 * the loop exactly once using only the specified queue.
5975 	 */
5976 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5977 		first_queue = 0;
5978 		last_queue = h->nreply_queues - 1;
5979 	} else {
5980 		first_queue = reply_queue;
5981 		last_queue = reply_queue;
5982 	}
5983 
5984 	for (rq = first_queue; rq <= last_queue; rq++) {
5985 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5986 		if (rc)
5987 			break;
5988 	}
5989 
5990 	if (rc)
5991 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5992 	else
5993 		dev_warn(&h->pdev->dev, "device is ready.\n");
5994 
5995 	cmd_free(h, c);
5996 	return rc;
5997 }
5998 
5999 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6000  * complaining.  Doing a host- or bus-reset can't do anything good here.
6001  */
6002 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6003 {
6004 	int rc = SUCCESS;
6005 	int i;
6006 	struct ctlr_info *h;
6007 	struct hpsa_scsi_dev_t *dev = NULL;
6008 	u8 reset_type;
6009 	char msg[48];
6010 	unsigned long flags;
6011 
6012 	/* find the controller to which the command to be aborted was sent */
6013 	h = sdev_to_hba(scsicmd->device);
6014 	if (h == NULL) /* paranoia */
6015 		return FAILED;
6016 
6017 	spin_lock_irqsave(&h->reset_lock, flags);
6018 	h->reset_in_progress = 1;
6019 	spin_unlock_irqrestore(&h->reset_lock, flags);
6020 
6021 	if (lockup_detected(h)) {
6022 		rc = FAILED;
6023 		goto return_reset_status;
6024 	}
6025 
6026 	dev = scsicmd->device->hostdata;
6027 	if (!dev) {
6028 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6029 		rc = FAILED;
6030 		goto return_reset_status;
6031 	}
6032 
6033 	if (dev->devtype == TYPE_ENCLOSURE) {
6034 		rc = SUCCESS;
6035 		goto return_reset_status;
6036 	}
6037 
6038 	/* if controller locked up, we can guarantee command won't complete */
6039 	if (lockup_detected(h)) {
6040 		snprintf(msg, sizeof(msg),
6041 			 "cmd %d RESET FAILED, lockup detected",
6042 			 hpsa_get_cmd_index(scsicmd));
6043 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6044 		rc = FAILED;
6045 		goto return_reset_status;
6046 	}
6047 
6048 	/* this reset request might be the result of a lockup; check */
6049 	if (detect_controller_lockup(h)) {
6050 		snprintf(msg, sizeof(msg),
6051 			 "cmd %d RESET FAILED, new lockup detected",
6052 			 hpsa_get_cmd_index(scsicmd));
6053 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6054 		rc = FAILED;
6055 		goto return_reset_status;
6056 	}
6057 
6058 	/* Do not attempt on controller */
6059 	if (is_hba_lunid(dev->scsi3addr)) {
6060 		rc = SUCCESS;
6061 		goto return_reset_status;
6062 	}
6063 
6064 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6065 		reset_type = HPSA_DEVICE_RESET_MSG;
6066 	else
6067 		reset_type = HPSA_PHYS_TARGET_RESET;
6068 
6069 	sprintf(msg, "resetting %s",
6070 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6071 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6072 
6073 	/*
6074 	 * wait to see if any commands will complete before sending reset
6075 	 */
6076 	dev->in_reset = true; /* block any new cmds from OS for this device */
6077 	for (i = 0; i < 10; i++) {
6078 		if (atomic_read(&dev->commands_outstanding) > 0)
6079 			msleep(1000);
6080 		else
6081 			break;
6082 	}
6083 
6084 	/* send a reset to the SCSI LUN which the command was sent to */
6085 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6086 	if (rc == 0)
6087 		rc = SUCCESS;
6088 	else
6089 		rc = FAILED;
6090 
6091 	sprintf(msg, "reset %s %s",
6092 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6093 		rc == SUCCESS ? "completed successfully" : "failed");
6094 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6095 
6096 return_reset_status:
6097 	spin_lock_irqsave(&h->reset_lock, flags);
6098 	h->reset_in_progress = 0;
6099 	if (dev)
6100 		dev->in_reset = false;
6101 	spin_unlock_irqrestore(&h->reset_lock, flags);
6102 	return rc;
6103 }
6104 
6105 /*
6106  * For operations with an associated SCSI command, a command block is allocated
6107  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6108  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6109  * the complement, although cmd_free() may be called instead.
6110  */
6111 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6112 					    struct scsi_cmnd *scmd)
6113 {
6114 	int idx = hpsa_get_cmd_index(scmd);
6115 	struct CommandList *c = h->cmd_pool + idx;
6116 
6117 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6118 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6119 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6120 		/* The index value comes from the block layer, so if it's out of
6121 		 * bounds, it's probably not our bug.
6122 		 */
6123 		BUG();
6124 	}
6125 
6126 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6127 		/*
6128 		 * We expect that the SCSI layer will hand us a unique tag
6129 		 * value.  Thus, there should never be a collision here between
6130 		 * two requests...because if the selected command isn't idle
6131 		 * then someone is going to be very disappointed.
6132 		 */
6133 		if (idx != h->last_collision_tag) { /* Print once per tag */
6134 			dev_warn(&h->pdev->dev,
6135 				"%s: tag collision (tag=%d)\n", __func__, idx);
6136 			if (scmd)
6137 				scsi_print_command(scmd);
6138 			h->last_collision_tag = idx;
6139 		}
6140 		return NULL;
6141 	}
6142 
6143 	atomic_inc(&c->refcount);
6144 
6145 	hpsa_cmd_partial_init(h, idx, c);
6146 	return c;
6147 }
6148 
6149 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6150 {
6151 	/*
6152 	 * Release our reference to the block.  We don't need to do anything
6153 	 * else to free it, because it is accessed by index.
6154 	 */
6155 	(void)atomic_dec(&c->refcount);
6156 }
6157 
6158 /*
6159  * For operations that cannot sleep, a command block is allocated at init,
6160  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6161  * which ones are free or in use.  Lock must be held when calling this.
6162  * cmd_free() is the complement.
6163  * This function never gives up and returns NULL.  If it hangs,
6164  * another thread must call cmd_free() to free some tags.
6165  */
6166 
6167 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6168 {
6169 	struct CommandList *c;
6170 	int refcount, i;
6171 	int offset = 0;
6172 
6173 	/*
6174 	 * There is some *extremely* small but non-zero chance that that
6175 	 * multiple threads could get in here, and one thread could
6176 	 * be scanning through the list of bits looking for a free
6177 	 * one, but the free ones are always behind him, and other
6178 	 * threads sneak in behind him and eat them before he can
6179 	 * get to them, so that while there is always a free one, a
6180 	 * very unlucky thread might be starved anyway, never able to
6181 	 * beat the other threads.  In reality, this happens so
6182 	 * infrequently as to be indistinguishable from never.
6183 	 *
6184 	 * Note that we start allocating commands before the SCSI host structure
6185 	 * is initialized.  Since the search starts at bit zero, this
6186 	 * all works, since we have at least one command structure available;
6187 	 * however, it means that the structures with the low indexes have to be
6188 	 * reserved for driver-initiated requests, while requests from the block
6189 	 * layer will use the higher indexes.
6190 	 */
6191 
6192 	for (;;) {
6193 		i = find_next_zero_bit(h->cmd_pool_bits,
6194 					HPSA_NRESERVED_CMDS,
6195 					offset);
6196 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6197 			offset = 0;
6198 			continue;
6199 		}
6200 		c = h->cmd_pool + i;
6201 		refcount = atomic_inc_return(&c->refcount);
6202 		if (unlikely(refcount > 1)) {
6203 			cmd_free(h, c); /* already in use */
6204 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6205 			continue;
6206 		}
6207 		set_bit(i & (BITS_PER_LONG - 1),
6208 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6209 		break; /* it's ours now. */
6210 	}
6211 	hpsa_cmd_partial_init(h, i, c);
6212 	c->device = NULL;
6213 	return c;
6214 }
6215 
6216 /*
6217  * This is the complementary operation to cmd_alloc().  Note, however, in some
6218  * corner cases it may also be used to free blocks allocated by
6219  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6220  * the clear-bit is harmless.
6221  */
6222 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6223 {
6224 	if (atomic_dec_and_test(&c->refcount)) {
6225 		int i;
6226 
6227 		i = c - h->cmd_pool;
6228 		clear_bit(i & (BITS_PER_LONG - 1),
6229 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6230 	}
6231 }
6232 
6233 #ifdef CONFIG_COMPAT
6234 
6235 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6236 	void __user *arg)
6237 {
6238 	struct ctlr_info *h = sdev_to_hba(dev);
6239 	IOCTL32_Command_struct __user *arg32 = arg;
6240 	IOCTL_Command_struct arg64;
6241 	int err;
6242 	u32 cp;
6243 
6244 	if (!arg)
6245 		return -EINVAL;
6246 
6247 	memset(&arg64, 0, sizeof(arg64));
6248 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6249 		return -EFAULT;
6250 	if (get_user(cp, &arg32->buf))
6251 		return -EFAULT;
6252 	arg64.buf = compat_ptr(cp);
6253 
6254 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6255 		return -EAGAIN;
6256 	err = hpsa_passthru_ioctl(h, &arg64);
6257 	atomic_inc(&h->passthru_cmds_avail);
6258 	if (err)
6259 		return err;
6260 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6261 			 sizeof(arg32->error_info)))
6262 		return -EFAULT;
6263 	return 0;
6264 }
6265 
6266 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6267 	unsigned int cmd, void __user *arg)
6268 {
6269 	struct ctlr_info *h = sdev_to_hba(dev);
6270 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6271 	BIG_IOCTL_Command_struct arg64;
6272 	int err;
6273 	u32 cp;
6274 
6275 	if (!arg)
6276 		return -EINVAL;
6277 	memset(&arg64, 0, sizeof(arg64));
6278 	if (copy_from_user(&arg64, arg32,
6279 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6280 		return -EFAULT;
6281 	if (get_user(cp, &arg32->buf))
6282 		return -EFAULT;
6283 	arg64.buf = compat_ptr(cp);
6284 
6285 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6286 		return -EAGAIN;
6287 	err = hpsa_big_passthru_ioctl(h, &arg64);
6288 	atomic_inc(&h->passthru_cmds_avail);
6289 	if (err)
6290 		return err;
6291 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6292 			 sizeof(arg32->error_info)))
6293 		return -EFAULT;
6294 	return 0;
6295 }
6296 
6297 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6298 			     void __user *arg)
6299 {
6300 	switch (cmd) {
6301 	case CCISS_GETPCIINFO:
6302 	case CCISS_GETINTINFO:
6303 	case CCISS_SETINTINFO:
6304 	case CCISS_GETNODENAME:
6305 	case CCISS_SETNODENAME:
6306 	case CCISS_GETHEARTBEAT:
6307 	case CCISS_GETBUSTYPES:
6308 	case CCISS_GETFIRMVER:
6309 	case CCISS_GETDRIVVER:
6310 	case CCISS_REVALIDVOLS:
6311 	case CCISS_DEREGDISK:
6312 	case CCISS_REGNEWDISK:
6313 	case CCISS_REGNEWD:
6314 	case CCISS_RESCANDISK:
6315 	case CCISS_GETLUNINFO:
6316 		return hpsa_ioctl(dev, cmd, arg);
6317 
6318 	case CCISS_PASSTHRU32:
6319 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6320 	case CCISS_BIG_PASSTHRU32:
6321 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6322 
6323 	default:
6324 		return -ENOIOCTLCMD;
6325 	}
6326 }
6327 #endif
6328 
6329 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6330 {
6331 	struct hpsa_pci_info pciinfo;
6332 
6333 	if (!argp)
6334 		return -EINVAL;
6335 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6336 	pciinfo.bus = h->pdev->bus->number;
6337 	pciinfo.dev_fn = h->pdev->devfn;
6338 	pciinfo.board_id = h->board_id;
6339 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6340 		return -EFAULT;
6341 	return 0;
6342 }
6343 
6344 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6345 {
6346 	DriverVer_type DriverVer;
6347 	unsigned char vmaj, vmin, vsubmin;
6348 	int rc;
6349 
6350 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6351 		&vmaj, &vmin, &vsubmin);
6352 	if (rc != 3) {
6353 		dev_info(&h->pdev->dev, "driver version string '%s' "
6354 			"unrecognized.", HPSA_DRIVER_VERSION);
6355 		vmaj = 0;
6356 		vmin = 0;
6357 		vsubmin = 0;
6358 	}
6359 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6360 	if (!argp)
6361 		return -EINVAL;
6362 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6363 		return -EFAULT;
6364 	return 0;
6365 }
6366 
6367 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6368 			       IOCTL_Command_struct *iocommand)
6369 {
6370 	struct CommandList *c;
6371 	char *buff = NULL;
6372 	u64 temp64;
6373 	int rc = 0;
6374 
6375 	if (!capable(CAP_SYS_RAWIO))
6376 		return -EPERM;
6377 	if ((iocommand->buf_size < 1) &&
6378 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6379 		return -EINVAL;
6380 	}
6381 	if (iocommand->buf_size > 0) {
6382 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6383 		if (buff == NULL)
6384 			return -ENOMEM;
6385 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6386 			/* Copy the data into the buffer we created */
6387 			if (copy_from_user(buff, iocommand->buf,
6388 				iocommand->buf_size)) {
6389 				rc = -EFAULT;
6390 				goto out_kfree;
6391 			}
6392 		} else {
6393 			memset(buff, 0, iocommand->buf_size);
6394 		}
6395 	}
6396 	c = cmd_alloc(h);
6397 
6398 	/* Fill in the command type */
6399 	c->cmd_type = CMD_IOCTL_PEND;
6400 	c->scsi_cmd = SCSI_CMD_BUSY;
6401 	/* Fill in Command Header */
6402 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6403 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6404 		c->Header.SGList = 1;
6405 		c->Header.SGTotal = cpu_to_le16(1);
6406 	} else	{ /* no buffers to fill */
6407 		c->Header.SGList = 0;
6408 		c->Header.SGTotal = cpu_to_le16(0);
6409 	}
6410 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6411 
6412 	/* Fill in Request block */
6413 	memcpy(&c->Request, &iocommand->Request,
6414 		sizeof(c->Request));
6415 
6416 	/* Fill in the scatter gather information */
6417 	if (iocommand->buf_size > 0) {
6418 		temp64 = dma_map_single(&h->pdev->dev, buff,
6419 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6420 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6421 			c->SG[0].Addr = cpu_to_le64(0);
6422 			c->SG[0].Len = cpu_to_le32(0);
6423 			rc = -ENOMEM;
6424 			goto out;
6425 		}
6426 		c->SG[0].Addr = cpu_to_le64(temp64);
6427 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6428 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6429 	}
6430 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6431 					NO_TIMEOUT);
6432 	if (iocommand->buf_size > 0)
6433 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6434 	check_ioctl_unit_attention(h, c);
6435 	if (rc) {
6436 		rc = -EIO;
6437 		goto out;
6438 	}
6439 
6440 	/* Copy the error information out */
6441 	memcpy(&iocommand->error_info, c->err_info,
6442 		sizeof(iocommand->error_info));
6443 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6444 		iocommand->buf_size > 0) {
6445 		/* Copy the data out of the buffer we created */
6446 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6447 			rc = -EFAULT;
6448 			goto out;
6449 		}
6450 	}
6451 out:
6452 	cmd_free(h, c);
6453 out_kfree:
6454 	kfree(buff);
6455 	return rc;
6456 }
6457 
6458 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6459 				   BIG_IOCTL_Command_struct *ioc)
6460 {
6461 	struct CommandList *c;
6462 	unsigned char **buff = NULL;
6463 	int *buff_size = NULL;
6464 	u64 temp64;
6465 	BYTE sg_used = 0;
6466 	int status = 0;
6467 	u32 left;
6468 	u32 sz;
6469 	BYTE __user *data_ptr;
6470 
6471 	if (!capable(CAP_SYS_RAWIO))
6472 		return -EPERM;
6473 
6474 	if ((ioc->buf_size < 1) &&
6475 	    (ioc->Request.Type.Direction != XFER_NONE))
6476 		return -EINVAL;
6477 	/* Check kmalloc limits  using all SGs */
6478 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6479 		return -EINVAL;
6480 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6481 		return -EINVAL;
6482 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6483 	if (!buff) {
6484 		status = -ENOMEM;
6485 		goto cleanup1;
6486 	}
6487 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6488 	if (!buff_size) {
6489 		status = -ENOMEM;
6490 		goto cleanup1;
6491 	}
6492 	left = ioc->buf_size;
6493 	data_ptr = ioc->buf;
6494 	while (left) {
6495 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6496 		buff_size[sg_used] = sz;
6497 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6498 		if (buff[sg_used] == NULL) {
6499 			status = -ENOMEM;
6500 			goto cleanup1;
6501 		}
6502 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6503 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6504 				status = -EFAULT;
6505 				goto cleanup1;
6506 			}
6507 		} else
6508 			memset(buff[sg_used], 0, sz);
6509 		left -= sz;
6510 		data_ptr += sz;
6511 		sg_used++;
6512 	}
6513 	c = cmd_alloc(h);
6514 
6515 	c->cmd_type = CMD_IOCTL_PEND;
6516 	c->scsi_cmd = SCSI_CMD_BUSY;
6517 	c->Header.ReplyQueue = 0;
6518 	c->Header.SGList = (u8) sg_used;
6519 	c->Header.SGTotal = cpu_to_le16(sg_used);
6520 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6521 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6522 	if (ioc->buf_size > 0) {
6523 		int i;
6524 		for (i = 0; i < sg_used; i++) {
6525 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6526 				    buff_size[i], DMA_BIDIRECTIONAL);
6527 			if (dma_mapping_error(&h->pdev->dev,
6528 							(dma_addr_t) temp64)) {
6529 				c->SG[i].Addr = cpu_to_le64(0);
6530 				c->SG[i].Len = cpu_to_le32(0);
6531 				hpsa_pci_unmap(h->pdev, c, i,
6532 					DMA_BIDIRECTIONAL);
6533 				status = -ENOMEM;
6534 				goto cleanup0;
6535 			}
6536 			c->SG[i].Addr = cpu_to_le64(temp64);
6537 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6538 			c->SG[i].Ext = cpu_to_le32(0);
6539 		}
6540 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6541 	}
6542 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6543 						NO_TIMEOUT);
6544 	if (sg_used)
6545 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6546 	check_ioctl_unit_attention(h, c);
6547 	if (status) {
6548 		status = -EIO;
6549 		goto cleanup0;
6550 	}
6551 
6552 	/* Copy the error information out */
6553 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6554 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6555 		int i;
6556 
6557 		/* Copy the data out of the buffer we created */
6558 		BYTE __user *ptr = ioc->buf;
6559 		for (i = 0; i < sg_used; i++) {
6560 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6561 				status = -EFAULT;
6562 				goto cleanup0;
6563 			}
6564 			ptr += buff_size[i];
6565 		}
6566 	}
6567 	status = 0;
6568 cleanup0:
6569 	cmd_free(h, c);
6570 cleanup1:
6571 	if (buff) {
6572 		int i;
6573 
6574 		for (i = 0; i < sg_used; i++)
6575 			kfree(buff[i]);
6576 		kfree(buff);
6577 	}
6578 	kfree(buff_size);
6579 	return status;
6580 }
6581 
6582 static void check_ioctl_unit_attention(struct ctlr_info *h,
6583 	struct CommandList *c)
6584 {
6585 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6586 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6587 		(void) check_for_unit_attention(h, c);
6588 }
6589 
6590 /*
6591  * ioctl
6592  */
6593 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6594 		      void __user *argp)
6595 {
6596 	struct ctlr_info *h = sdev_to_hba(dev);
6597 	int rc;
6598 
6599 	switch (cmd) {
6600 	case CCISS_DEREGDISK:
6601 	case CCISS_REGNEWDISK:
6602 	case CCISS_REGNEWD:
6603 		hpsa_scan_start(h->scsi_host);
6604 		return 0;
6605 	case CCISS_GETPCIINFO:
6606 		return hpsa_getpciinfo_ioctl(h, argp);
6607 	case CCISS_GETDRIVVER:
6608 		return hpsa_getdrivver_ioctl(h, argp);
6609 	case CCISS_PASSTHRU: {
6610 		IOCTL_Command_struct iocommand;
6611 
6612 		if (!argp)
6613 			return -EINVAL;
6614 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6615 			return -EFAULT;
6616 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6617 			return -EAGAIN;
6618 		rc = hpsa_passthru_ioctl(h, &iocommand);
6619 		atomic_inc(&h->passthru_cmds_avail);
6620 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6621 			rc = -EFAULT;
6622 		return rc;
6623 	}
6624 	case CCISS_BIG_PASSTHRU: {
6625 		BIG_IOCTL_Command_struct ioc;
6626 		if (!argp)
6627 			return -EINVAL;
6628 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6629 			return -EFAULT;
6630 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6631 			return -EAGAIN;
6632 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6633 		atomic_inc(&h->passthru_cmds_avail);
6634 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6635 			rc = -EFAULT;
6636 		return rc;
6637 	}
6638 	default:
6639 		return -ENOTTY;
6640 	}
6641 }
6642 
6643 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6644 {
6645 	struct CommandList *c;
6646 
6647 	c = cmd_alloc(h);
6648 
6649 	/* fill_cmd can't fail here, no data buffer to map */
6650 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6651 		RAID_CTLR_LUNID, TYPE_MSG);
6652 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6653 	c->waiting = NULL;
6654 	enqueue_cmd_and_start_io(h, c);
6655 	/* Don't wait for completion, the reset won't complete.  Don't free
6656 	 * the command either.  This is the last command we will send before
6657 	 * re-initializing everything, so it doesn't matter and won't leak.
6658 	 */
6659 	return;
6660 }
6661 
6662 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6663 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6664 	int cmd_type)
6665 {
6666 	enum dma_data_direction dir = DMA_NONE;
6667 
6668 	c->cmd_type = CMD_IOCTL_PEND;
6669 	c->scsi_cmd = SCSI_CMD_BUSY;
6670 	c->Header.ReplyQueue = 0;
6671 	if (buff != NULL && size > 0) {
6672 		c->Header.SGList = 1;
6673 		c->Header.SGTotal = cpu_to_le16(1);
6674 	} else {
6675 		c->Header.SGList = 0;
6676 		c->Header.SGTotal = cpu_to_le16(0);
6677 	}
6678 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6679 
6680 	if (cmd_type == TYPE_CMD) {
6681 		switch (cmd) {
6682 		case HPSA_INQUIRY:
6683 			/* are we trying to read a vital product page */
6684 			if (page_code & VPD_PAGE) {
6685 				c->Request.CDB[1] = 0x01;
6686 				c->Request.CDB[2] = (page_code & 0xff);
6687 			}
6688 			c->Request.CDBLen = 6;
6689 			c->Request.type_attr_dir =
6690 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6691 			c->Request.Timeout = 0;
6692 			c->Request.CDB[0] = HPSA_INQUIRY;
6693 			c->Request.CDB[4] = size & 0xFF;
6694 			break;
6695 		case RECEIVE_DIAGNOSTIC:
6696 			c->Request.CDBLen = 6;
6697 			c->Request.type_attr_dir =
6698 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699 			c->Request.Timeout = 0;
6700 			c->Request.CDB[0] = cmd;
6701 			c->Request.CDB[1] = 1;
6702 			c->Request.CDB[2] = 1;
6703 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6704 			c->Request.CDB[4] = size & 0xFF;
6705 			break;
6706 		case HPSA_REPORT_LOG:
6707 		case HPSA_REPORT_PHYS:
6708 			/* Talking to controller so It's a physical command
6709 			   mode = 00 target = 0.  Nothing to write.
6710 			 */
6711 			c->Request.CDBLen = 12;
6712 			c->Request.type_attr_dir =
6713 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6714 			c->Request.Timeout = 0;
6715 			c->Request.CDB[0] = cmd;
6716 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6717 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6718 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6719 			c->Request.CDB[9] = size & 0xFF;
6720 			break;
6721 		case BMIC_SENSE_DIAG_OPTIONS:
6722 			c->Request.CDBLen = 16;
6723 			c->Request.type_attr_dir =
6724 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 			c->Request.Timeout = 0;
6726 			/* Spec says this should be BMIC_WRITE */
6727 			c->Request.CDB[0] = BMIC_READ;
6728 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6729 			break;
6730 		case BMIC_SET_DIAG_OPTIONS:
6731 			c->Request.CDBLen = 16;
6732 			c->Request.type_attr_dir =
6733 					TYPE_ATTR_DIR(cmd_type,
6734 						ATTR_SIMPLE, XFER_WRITE);
6735 			c->Request.Timeout = 0;
6736 			c->Request.CDB[0] = BMIC_WRITE;
6737 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6738 			break;
6739 		case HPSA_CACHE_FLUSH:
6740 			c->Request.CDBLen = 12;
6741 			c->Request.type_attr_dir =
6742 					TYPE_ATTR_DIR(cmd_type,
6743 						ATTR_SIMPLE, XFER_WRITE);
6744 			c->Request.Timeout = 0;
6745 			c->Request.CDB[0] = BMIC_WRITE;
6746 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6747 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6748 			c->Request.CDB[8] = size & 0xFF;
6749 			break;
6750 		case TEST_UNIT_READY:
6751 			c->Request.CDBLen = 6;
6752 			c->Request.type_attr_dir =
6753 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6754 			c->Request.Timeout = 0;
6755 			break;
6756 		case HPSA_GET_RAID_MAP:
6757 			c->Request.CDBLen = 12;
6758 			c->Request.type_attr_dir =
6759 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6760 			c->Request.Timeout = 0;
6761 			c->Request.CDB[0] = HPSA_CISS_READ;
6762 			c->Request.CDB[1] = cmd;
6763 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6764 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6765 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6766 			c->Request.CDB[9] = size & 0xFF;
6767 			break;
6768 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6769 			c->Request.CDBLen = 10;
6770 			c->Request.type_attr_dir =
6771 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6772 			c->Request.Timeout = 0;
6773 			c->Request.CDB[0] = BMIC_READ;
6774 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6775 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6776 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6777 			break;
6778 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6779 			c->Request.CDBLen = 10;
6780 			c->Request.type_attr_dir =
6781 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6782 			c->Request.Timeout = 0;
6783 			c->Request.CDB[0] = BMIC_READ;
6784 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6785 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6786 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6787 			break;
6788 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6789 			c->Request.CDBLen = 10;
6790 			c->Request.type_attr_dir =
6791 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6792 			c->Request.Timeout = 0;
6793 			c->Request.CDB[0] = BMIC_READ;
6794 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6795 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6796 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6797 			break;
6798 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6799 			c->Request.CDBLen = 10;
6800 			c->Request.type_attr_dir =
6801 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6802 			c->Request.Timeout = 0;
6803 			c->Request.CDB[0] = BMIC_READ;
6804 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6805 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6806 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6807 			break;
6808 		case BMIC_IDENTIFY_CONTROLLER:
6809 			c->Request.CDBLen = 10;
6810 			c->Request.type_attr_dir =
6811 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6812 			c->Request.Timeout = 0;
6813 			c->Request.CDB[0] = BMIC_READ;
6814 			c->Request.CDB[1] = 0;
6815 			c->Request.CDB[2] = 0;
6816 			c->Request.CDB[3] = 0;
6817 			c->Request.CDB[4] = 0;
6818 			c->Request.CDB[5] = 0;
6819 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6820 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6821 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6822 			c->Request.CDB[9] = 0;
6823 			break;
6824 		default:
6825 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6826 			BUG();
6827 		}
6828 	} else if (cmd_type == TYPE_MSG) {
6829 		switch (cmd) {
6830 
6831 		case  HPSA_PHYS_TARGET_RESET:
6832 			c->Request.CDBLen = 16;
6833 			c->Request.type_attr_dir =
6834 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6835 			c->Request.Timeout = 0; /* Don't time out */
6836 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6837 			c->Request.CDB[0] = HPSA_RESET;
6838 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6839 			/* Physical target reset needs no control bytes 4-7*/
6840 			c->Request.CDB[4] = 0x00;
6841 			c->Request.CDB[5] = 0x00;
6842 			c->Request.CDB[6] = 0x00;
6843 			c->Request.CDB[7] = 0x00;
6844 			break;
6845 		case  HPSA_DEVICE_RESET_MSG:
6846 			c->Request.CDBLen = 16;
6847 			c->Request.type_attr_dir =
6848 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6849 			c->Request.Timeout = 0; /* Don't time out */
6850 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6851 			c->Request.CDB[0] =  cmd;
6852 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6853 			/* If bytes 4-7 are zero, it means reset the */
6854 			/* LunID device */
6855 			c->Request.CDB[4] = 0x00;
6856 			c->Request.CDB[5] = 0x00;
6857 			c->Request.CDB[6] = 0x00;
6858 			c->Request.CDB[7] = 0x00;
6859 			break;
6860 		default:
6861 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6862 				cmd);
6863 			BUG();
6864 		}
6865 	} else {
6866 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6867 		BUG();
6868 	}
6869 
6870 	switch (GET_DIR(c->Request.type_attr_dir)) {
6871 	case XFER_READ:
6872 		dir = DMA_FROM_DEVICE;
6873 		break;
6874 	case XFER_WRITE:
6875 		dir = DMA_TO_DEVICE;
6876 		break;
6877 	case XFER_NONE:
6878 		dir = DMA_NONE;
6879 		break;
6880 	default:
6881 		dir = DMA_BIDIRECTIONAL;
6882 	}
6883 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6884 		return -1;
6885 	return 0;
6886 }
6887 
6888 /*
6889  * Map (physical) PCI mem into (virtual) kernel space
6890  */
6891 static void __iomem *remap_pci_mem(ulong base, ulong size)
6892 {
6893 	ulong page_base = ((ulong) base) & PAGE_MASK;
6894 	ulong page_offs = ((ulong) base) - page_base;
6895 	void __iomem *page_remapped = ioremap(page_base,
6896 		page_offs + size);
6897 
6898 	return page_remapped ? (page_remapped + page_offs) : NULL;
6899 }
6900 
6901 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6902 {
6903 	return h->access.command_completed(h, q);
6904 }
6905 
6906 static inline bool interrupt_pending(struct ctlr_info *h)
6907 {
6908 	return h->access.intr_pending(h);
6909 }
6910 
6911 static inline long interrupt_not_for_us(struct ctlr_info *h)
6912 {
6913 	return (h->access.intr_pending(h) == 0) ||
6914 		(h->interrupts_enabled == 0);
6915 }
6916 
6917 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6918 	u32 raw_tag)
6919 {
6920 	if (unlikely(tag_index >= h->nr_cmds)) {
6921 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6922 		return 1;
6923 	}
6924 	return 0;
6925 }
6926 
6927 static inline void finish_cmd(struct CommandList *c)
6928 {
6929 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6930 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6931 			|| c->cmd_type == CMD_IOACCEL2))
6932 		complete_scsi_command(c);
6933 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6934 		complete(c->waiting);
6935 }
6936 
6937 /* process completion of an indexed ("direct lookup") command */
6938 static inline void process_indexed_cmd(struct ctlr_info *h,
6939 	u32 raw_tag)
6940 {
6941 	u32 tag_index;
6942 	struct CommandList *c;
6943 
6944 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6945 	if (!bad_tag(h, tag_index, raw_tag)) {
6946 		c = h->cmd_pool + tag_index;
6947 		finish_cmd(c);
6948 	}
6949 }
6950 
6951 /* Some controllers, like p400, will give us one interrupt
6952  * after a soft reset, even if we turned interrupts off.
6953  * Only need to check for this in the hpsa_xxx_discard_completions
6954  * functions.
6955  */
6956 static int ignore_bogus_interrupt(struct ctlr_info *h)
6957 {
6958 	if (likely(!reset_devices))
6959 		return 0;
6960 
6961 	if (likely(h->interrupts_enabled))
6962 		return 0;
6963 
6964 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6965 		"(known firmware bug.)  Ignoring.\n");
6966 
6967 	return 1;
6968 }
6969 
6970 /*
6971  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6972  * Relies on (h-q[x] == x) being true for x such that
6973  * 0 <= x < MAX_REPLY_QUEUES.
6974  */
6975 static struct ctlr_info *queue_to_hba(u8 *queue)
6976 {
6977 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6978 }
6979 
6980 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6981 {
6982 	struct ctlr_info *h = queue_to_hba(queue);
6983 	u8 q = *(u8 *) queue;
6984 	u32 raw_tag;
6985 
6986 	if (ignore_bogus_interrupt(h))
6987 		return IRQ_NONE;
6988 
6989 	if (interrupt_not_for_us(h))
6990 		return IRQ_NONE;
6991 	h->last_intr_timestamp = get_jiffies_64();
6992 	while (interrupt_pending(h)) {
6993 		raw_tag = get_next_completion(h, q);
6994 		while (raw_tag != FIFO_EMPTY)
6995 			raw_tag = next_command(h, q);
6996 	}
6997 	return IRQ_HANDLED;
6998 }
6999 
7000 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7001 {
7002 	struct ctlr_info *h = queue_to_hba(queue);
7003 	u32 raw_tag;
7004 	u8 q = *(u8 *) queue;
7005 
7006 	if (ignore_bogus_interrupt(h))
7007 		return IRQ_NONE;
7008 
7009 	h->last_intr_timestamp = get_jiffies_64();
7010 	raw_tag = get_next_completion(h, q);
7011 	while (raw_tag != FIFO_EMPTY)
7012 		raw_tag = next_command(h, q);
7013 	return IRQ_HANDLED;
7014 }
7015 
7016 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7017 {
7018 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7019 	u32 raw_tag;
7020 	u8 q = *(u8 *) queue;
7021 
7022 	if (interrupt_not_for_us(h))
7023 		return IRQ_NONE;
7024 	h->last_intr_timestamp = get_jiffies_64();
7025 	while (interrupt_pending(h)) {
7026 		raw_tag = get_next_completion(h, q);
7027 		while (raw_tag != FIFO_EMPTY) {
7028 			process_indexed_cmd(h, raw_tag);
7029 			raw_tag = next_command(h, q);
7030 		}
7031 	}
7032 	return IRQ_HANDLED;
7033 }
7034 
7035 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7036 {
7037 	struct ctlr_info *h = queue_to_hba(queue);
7038 	u32 raw_tag;
7039 	u8 q = *(u8 *) queue;
7040 
7041 	h->last_intr_timestamp = get_jiffies_64();
7042 	raw_tag = get_next_completion(h, q);
7043 	while (raw_tag != FIFO_EMPTY) {
7044 		process_indexed_cmd(h, raw_tag);
7045 		raw_tag = next_command(h, q);
7046 	}
7047 	return IRQ_HANDLED;
7048 }
7049 
7050 /* Send a message CDB to the firmware. Careful, this only works
7051  * in simple mode, not performant mode due to the tag lookup.
7052  * We only ever use this immediately after a controller reset.
7053  */
7054 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7055 			unsigned char type)
7056 {
7057 	struct Command {
7058 		struct CommandListHeader CommandHeader;
7059 		struct RequestBlock Request;
7060 		struct ErrDescriptor ErrorDescriptor;
7061 	};
7062 	struct Command *cmd;
7063 	static const size_t cmd_sz = sizeof(*cmd) +
7064 					sizeof(cmd->ErrorDescriptor);
7065 	dma_addr_t paddr64;
7066 	__le32 paddr32;
7067 	u32 tag;
7068 	void __iomem *vaddr;
7069 	int i, err;
7070 
7071 	vaddr = pci_ioremap_bar(pdev, 0);
7072 	if (vaddr == NULL)
7073 		return -ENOMEM;
7074 
7075 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7076 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7077 	 * memory.
7078 	 */
7079 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7080 	if (err) {
7081 		iounmap(vaddr);
7082 		return err;
7083 	}
7084 
7085 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7086 	if (cmd == NULL) {
7087 		iounmap(vaddr);
7088 		return -ENOMEM;
7089 	}
7090 
7091 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7092 	 * although there's no guarantee, we assume that the address is at
7093 	 * least 4-byte aligned (most likely, it's page-aligned).
7094 	 */
7095 	paddr32 = cpu_to_le32(paddr64);
7096 
7097 	cmd->CommandHeader.ReplyQueue = 0;
7098 	cmd->CommandHeader.SGList = 0;
7099 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7100 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7101 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7102 
7103 	cmd->Request.CDBLen = 16;
7104 	cmd->Request.type_attr_dir =
7105 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7106 	cmd->Request.Timeout = 0; /* Don't time out */
7107 	cmd->Request.CDB[0] = opcode;
7108 	cmd->Request.CDB[1] = type;
7109 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7110 	cmd->ErrorDescriptor.Addr =
7111 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7112 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7113 
7114 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7115 
7116 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7117 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7118 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7119 			break;
7120 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7121 	}
7122 
7123 	iounmap(vaddr);
7124 
7125 	/* we leak the DMA buffer here ... no choice since the controller could
7126 	 *  still complete the command.
7127 	 */
7128 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7129 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7130 			opcode, type);
7131 		return -ETIMEDOUT;
7132 	}
7133 
7134 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7135 
7136 	if (tag & HPSA_ERROR_BIT) {
7137 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7138 			opcode, type);
7139 		return -EIO;
7140 	}
7141 
7142 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7143 		opcode, type);
7144 	return 0;
7145 }
7146 
7147 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7148 
7149 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7150 	void __iomem *vaddr, u32 use_doorbell)
7151 {
7152 
7153 	if (use_doorbell) {
7154 		/* For everything after the P600, the PCI power state method
7155 		 * of resetting the controller doesn't work, so we have this
7156 		 * other way using the doorbell register.
7157 		 */
7158 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7159 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7160 
7161 		/* PMC hardware guys tell us we need a 10 second delay after
7162 		 * doorbell reset and before any attempt to talk to the board
7163 		 * at all to ensure that this actually works and doesn't fall
7164 		 * over in some weird corner cases.
7165 		 */
7166 		msleep(10000);
7167 	} else { /* Try to do it the PCI power state way */
7168 
7169 		/* Quoting from the Open CISS Specification: "The Power
7170 		 * Management Control/Status Register (CSR) controls the power
7171 		 * state of the device.  The normal operating state is D0,
7172 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7173 		 * the controller, place the interface device in D3 then to D0,
7174 		 * this causes a secondary PCI reset which will reset the
7175 		 * controller." */
7176 
7177 		int rc = 0;
7178 
7179 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7180 
7181 		/* enter the D3hot power management state */
7182 		rc = pci_set_power_state(pdev, PCI_D3hot);
7183 		if (rc)
7184 			return rc;
7185 
7186 		msleep(500);
7187 
7188 		/* enter the D0 power management state */
7189 		rc = pci_set_power_state(pdev, PCI_D0);
7190 		if (rc)
7191 			return rc;
7192 
7193 		/*
7194 		 * The P600 requires a small delay when changing states.
7195 		 * Otherwise we may think the board did not reset and we bail.
7196 		 * This for kdump only and is particular to the P600.
7197 		 */
7198 		msleep(500);
7199 	}
7200 	return 0;
7201 }
7202 
7203 static void init_driver_version(char *driver_version, int len)
7204 {
7205 	memset(driver_version, 0, len);
7206 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7207 }
7208 
7209 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7210 {
7211 	char *driver_version;
7212 	int i, size = sizeof(cfgtable->driver_version);
7213 
7214 	driver_version = kmalloc(size, GFP_KERNEL);
7215 	if (!driver_version)
7216 		return -ENOMEM;
7217 
7218 	init_driver_version(driver_version, size);
7219 	for (i = 0; i < size; i++)
7220 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7221 	kfree(driver_version);
7222 	return 0;
7223 }
7224 
7225 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7226 					  unsigned char *driver_ver)
7227 {
7228 	int i;
7229 
7230 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7231 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7232 }
7233 
7234 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7235 {
7236 
7237 	char *driver_ver, *old_driver_ver;
7238 	int rc, size = sizeof(cfgtable->driver_version);
7239 
7240 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7241 	if (!old_driver_ver)
7242 		return -ENOMEM;
7243 	driver_ver = old_driver_ver + size;
7244 
7245 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7246 	 * should have been changed, otherwise we know the reset failed.
7247 	 */
7248 	init_driver_version(old_driver_ver, size);
7249 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7250 	rc = !memcmp(driver_ver, old_driver_ver, size);
7251 	kfree(old_driver_ver);
7252 	return rc;
7253 }
7254 /* This does a hard reset of the controller using PCI power management
7255  * states or the using the doorbell register.
7256  */
7257 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7258 {
7259 	u64 cfg_offset;
7260 	u32 cfg_base_addr;
7261 	u64 cfg_base_addr_index;
7262 	void __iomem *vaddr;
7263 	unsigned long paddr;
7264 	u32 misc_fw_support;
7265 	int rc;
7266 	struct CfgTable __iomem *cfgtable;
7267 	u32 use_doorbell;
7268 	u16 command_register;
7269 
7270 	/* For controllers as old as the P600, this is very nearly
7271 	 * the same thing as
7272 	 *
7273 	 * pci_save_state(pci_dev);
7274 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7275 	 * pci_set_power_state(pci_dev, PCI_D0);
7276 	 * pci_restore_state(pci_dev);
7277 	 *
7278 	 * For controllers newer than the P600, the pci power state
7279 	 * method of resetting doesn't work so we have another way
7280 	 * using the doorbell register.
7281 	 */
7282 
7283 	if (!ctlr_is_resettable(board_id)) {
7284 		dev_warn(&pdev->dev, "Controller not resettable\n");
7285 		return -ENODEV;
7286 	}
7287 
7288 	/* if controller is soft- but not hard resettable... */
7289 	if (!ctlr_is_hard_resettable(board_id))
7290 		return -ENOTSUPP; /* try soft reset later. */
7291 
7292 	/* Save the PCI command register */
7293 	pci_read_config_word(pdev, 4, &command_register);
7294 	pci_save_state(pdev);
7295 
7296 	/* find the first memory BAR, so we can find the cfg table */
7297 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7298 	if (rc)
7299 		return rc;
7300 	vaddr = remap_pci_mem(paddr, 0x250);
7301 	if (!vaddr)
7302 		return -ENOMEM;
7303 
7304 	/* find cfgtable in order to check if reset via doorbell is supported */
7305 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7306 					&cfg_base_addr_index, &cfg_offset);
7307 	if (rc)
7308 		goto unmap_vaddr;
7309 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7310 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7311 	if (!cfgtable) {
7312 		rc = -ENOMEM;
7313 		goto unmap_vaddr;
7314 	}
7315 	rc = write_driver_ver_to_cfgtable(cfgtable);
7316 	if (rc)
7317 		goto unmap_cfgtable;
7318 
7319 	/* If reset via doorbell register is supported, use that.
7320 	 * There are two such methods.  Favor the newest method.
7321 	 */
7322 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7323 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7324 	if (use_doorbell) {
7325 		use_doorbell = DOORBELL_CTLR_RESET2;
7326 	} else {
7327 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7328 		if (use_doorbell) {
7329 			dev_warn(&pdev->dev,
7330 				"Soft reset not supported. Firmware update is required.\n");
7331 			rc = -ENOTSUPP; /* try soft reset */
7332 			goto unmap_cfgtable;
7333 		}
7334 	}
7335 
7336 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7337 	if (rc)
7338 		goto unmap_cfgtable;
7339 
7340 	pci_restore_state(pdev);
7341 	pci_write_config_word(pdev, 4, command_register);
7342 
7343 	/* Some devices (notably the HP Smart Array 5i Controller)
7344 	   need a little pause here */
7345 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7346 
7347 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7348 	if (rc) {
7349 		dev_warn(&pdev->dev,
7350 			"Failed waiting for board to become ready after hard reset\n");
7351 		goto unmap_cfgtable;
7352 	}
7353 
7354 	rc = controller_reset_failed(vaddr);
7355 	if (rc < 0)
7356 		goto unmap_cfgtable;
7357 	if (rc) {
7358 		dev_warn(&pdev->dev, "Unable to successfully reset "
7359 			"controller. Will try soft reset.\n");
7360 		rc = -ENOTSUPP;
7361 	} else {
7362 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7363 	}
7364 
7365 unmap_cfgtable:
7366 	iounmap(cfgtable);
7367 
7368 unmap_vaddr:
7369 	iounmap(vaddr);
7370 	return rc;
7371 }
7372 
7373 /*
7374  *  We cannot read the structure directly, for portability we must use
7375  *   the io functions.
7376  *   This is for debug only.
7377  */
7378 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7379 {
7380 #ifdef HPSA_DEBUG
7381 	int i;
7382 	char temp_name[17];
7383 
7384 	dev_info(dev, "Controller Configuration information\n");
7385 	dev_info(dev, "------------------------------------\n");
7386 	for (i = 0; i < 4; i++)
7387 		temp_name[i] = readb(&(tb->Signature[i]));
7388 	temp_name[4] = '\0';
7389 	dev_info(dev, "   Signature = %s\n", temp_name);
7390 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7391 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7392 	       readl(&(tb->TransportSupport)));
7393 	dev_info(dev, "   Transport methods active = 0x%x\n",
7394 	       readl(&(tb->TransportActive)));
7395 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7396 	       readl(&(tb->HostWrite.TransportRequest)));
7397 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7398 	       readl(&(tb->HostWrite.CoalIntDelay)));
7399 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7400 	       readl(&(tb->HostWrite.CoalIntCount)));
7401 	dev_info(dev, "   Max outstanding commands = %d\n",
7402 	       readl(&(tb->CmdsOutMax)));
7403 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7404 	for (i = 0; i < 16; i++)
7405 		temp_name[i] = readb(&(tb->ServerName[i]));
7406 	temp_name[16] = '\0';
7407 	dev_info(dev, "   Server Name = %s\n", temp_name);
7408 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7409 		readl(&(tb->HeartBeat)));
7410 #endif				/* HPSA_DEBUG */
7411 }
7412 
7413 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7414 {
7415 	int i, offset, mem_type, bar_type;
7416 
7417 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7418 		return 0;
7419 	offset = 0;
7420 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7421 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7422 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7423 			offset += 4;
7424 		else {
7425 			mem_type = pci_resource_flags(pdev, i) &
7426 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7427 			switch (mem_type) {
7428 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7429 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7430 				offset += 4;	/* 32 bit */
7431 				break;
7432 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7433 				offset += 8;
7434 				break;
7435 			default:	/* reserved in PCI 2.2 */
7436 				dev_warn(&pdev->dev,
7437 				       "base address is invalid\n");
7438 				return -1;
7439 			}
7440 		}
7441 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7442 			return i + 1;
7443 	}
7444 	return -1;
7445 }
7446 
7447 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7448 {
7449 	pci_free_irq_vectors(h->pdev);
7450 	h->msix_vectors = 0;
7451 }
7452 
7453 static void hpsa_setup_reply_map(struct ctlr_info *h)
7454 {
7455 	const struct cpumask *mask;
7456 	unsigned int queue, cpu;
7457 
7458 	for (queue = 0; queue < h->msix_vectors; queue++) {
7459 		mask = pci_irq_get_affinity(h->pdev, queue);
7460 		if (!mask)
7461 			goto fallback;
7462 
7463 		for_each_cpu(cpu, mask)
7464 			h->reply_map[cpu] = queue;
7465 	}
7466 	return;
7467 
7468 fallback:
7469 	for_each_possible_cpu(cpu)
7470 		h->reply_map[cpu] = 0;
7471 }
7472 
7473 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7474  * controllers that are capable. If not, we use legacy INTx mode.
7475  */
7476 static int hpsa_interrupt_mode(struct ctlr_info *h)
7477 {
7478 	unsigned int flags = PCI_IRQ_LEGACY;
7479 	int ret;
7480 
7481 	/* Some boards advertise MSI but don't really support it */
7482 	switch (h->board_id) {
7483 	case 0x40700E11:
7484 	case 0x40800E11:
7485 	case 0x40820E11:
7486 	case 0x40830E11:
7487 		break;
7488 	default:
7489 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7490 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7491 		if (ret > 0) {
7492 			h->msix_vectors = ret;
7493 			return 0;
7494 		}
7495 
7496 		flags |= PCI_IRQ_MSI;
7497 		break;
7498 	}
7499 
7500 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7501 	if (ret < 0)
7502 		return ret;
7503 	return 0;
7504 }
7505 
7506 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7507 				bool *legacy_board)
7508 {
7509 	int i;
7510 	u32 subsystem_vendor_id, subsystem_device_id;
7511 
7512 	subsystem_vendor_id = pdev->subsystem_vendor;
7513 	subsystem_device_id = pdev->subsystem_device;
7514 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7515 		    subsystem_vendor_id;
7516 
7517 	if (legacy_board)
7518 		*legacy_board = false;
7519 	for (i = 0; i < ARRAY_SIZE(products); i++)
7520 		if (*board_id == products[i].board_id) {
7521 			if (products[i].access != &SA5A_access &&
7522 			    products[i].access != &SA5B_access)
7523 				return i;
7524 			dev_warn(&pdev->dev,
7525 				 "legacy board ID: 0x%08x\n",
7526 				 *board_id);
7527 			if (legacy_board)
7528 			    *legacy_board = true;
7529 			return i;
7530 		}
7531 
7532 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7533 	if (legacy_board)
7534 		*legacy_board = true;
7535 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7536 }
7537 
7538 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7539 				    unsigned long *memory_bar)
7540 {
7541 	int i;
7542 
7543 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7544 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7545 			/* addressing mode bits already removed */
7546 			*memory_bar = pci_resource_start(pdev, i);
7547 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7548 				*memory_bar);
7549 			return 0;
7550 		}
7551 	dev_warn(&pdev->dev, "no memory BAR found\n");
7552 	return -ENODEV;
7553 }
7554 
7555 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7556 				     int wait_for_ready)
7557 {
7558 	int i, iterations;
7559 	u32 scratchpad;
7560 	if (wait_for_ready)
7561 		iterations = HPSA_BOARD_READY_ITERATIONS;
7562 	else
7563 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7564 
7565 	for (i = 0; i < iterations; i++) {
7566 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7567 		if (wait_for_ready) {
7568 			if (scratchpad == HPSA_FIRMWARE_READY)
7569 				return 0;
7570 		} else {
7571 			if (scratchpad != HPSA_FIRMWARE_READY)
7572 				return 0;
7573 		}
7574 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7575 	}
7576 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7577 	return -ENODEV;
7578 }
7579 
7580 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7581 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7582 			       u64 *cfg_offset)
7583 {
7584 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7585 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7586 	*cfg_base_addr &= (u32) 0x0000ffff;
7587 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7588 	if (*cfg_base_addr_index == -1) {
7589 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7590 		return -ENODEV;
7591 	}
7592 	return 0;
7593 }
7594 
7595 static void hpsa_free_cfgtables(struct ctlr_info *h)
7596 {
7597 	if (h->transtable) {
7598 		iounmap(h->transtable);
7599 		h->transtable = NULL;
7600 	}
7601 	if (h->cfgtable) {
7602 		iounmap(h->cfgtable);
7603 		h->cfgtable = NULL;
7604 	}
7605 }
7606 
7607 /* Find and map CISS config table and transfer table
7608 + * several items must be unmapped (freed) later
7609 + * */
7610 static int hpsa_find_cfgtables(struct ctlr_info *h)
7611 {
7612 	u64 cfg_offset;
7613 	u32 cfg_base_addr;
7614 	u64 cfg_base_addr_index;
7615 	u32 trans_offset;
7616 	int rc;
7617 
7618 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7619 		&cfg_base_addr_index, &cfg_offset);
7620 	if (rc)
7621 		return rc;
7622 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7623 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7624 	if (!h->cfgtable) {
7625 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7626 		return -ENOMEM;
7627 	}
7628 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7629 	if (rc)
7630 		return rc;
7631 	/* Find performant mode table. */
7632 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7633 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7634 				cfg_base_addr_index)+cfg_offset+trans_offset,
7635 				sizeof(*h->transtable));
7636 	if (!h->transtable) {
7637 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7638 		hpsa_free_cfgtables(h);
7639 		return -ENOMEM;
7640 	}
7641 	return 0;
7642 }
7643 
7644 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7645 {
7646 #define MIN_MAX_COMMANDS 16
7647 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7648 
7649 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7650 
7651 	/* Limit commands in memory limited kdump scenario. */
7652 	if (reset_devices && h->max_commands > 32)
7653 		h->max_commands = 32;
7654 
7655 	if (h->max_commands < MIN_MAX_COMMANDS) {
7656 		dev_warn(&h->pdev->dev,
7657 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7658 			h->max_commands,
7659 			MIN_MAX_COMMANDS);
7660 		h->max_commands = MIN_MAX_COMMANDS;
7661 	}
7662 }
7663 
7664 /* If the controller reports that the total max sg entries is greater than 512,
7665  * then we know that chained SG blocks work.  (Original smart arrays did not
7666  * support chained SG blocks and would return zero for max sg entries.)
7667  */
7668 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7669 {
7670 	return h->maxsgentries > 512;
7671 }
7672 
7673 /* Interrogate the hardware for some limits:
7674  * max commands, max SG elements without chaining, and with chaining,
7675  * SG chain block size, etc.
7676  */
7677 static void hpsa_find_board_params(struct ctlr_info *h)
7678 {
7679 	hpsa_get_max_perf_mode_cmds(h);
7680 	h->nr_cmds = h->max_commands;
7681 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7682 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7683 	if (hpsa_supports_chained_sg_blocks(h)) {
7684 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7685 		h->max_cmd_sg_entries = 32;
7686 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7687 		h->maxsgentries--; /* save one for chain pointer */
7688 	} else {
7689 		/*
7690 		 * Original smart arrays supported at most 31 s/g entries
7691 		 * embedded inline in the command (trying to use more
7692 		 * would lock up the controller)
7693 		 */
7694 		h->max_cmd_sg_entries = 31;
7695 		h->maxsgentries = 31; /* default to traditional values */
7696 		h->chainsize = 0;
7697 	}
7698 
7699 	/* Find out what task management functions are supported and cache */
7700 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7701 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7702 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7703 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7704 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7705 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7706 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7707 }
7708 
7709 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7710 {
7711 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7712 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7713 		return false;
7714 	}
7715 	return true;
7716 }
7717 
7718 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7719 {
7720 	u32 driver_support;
7721 
7722 	driver_support = readl(&(h->cfgtable->driver_support));
7723 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7724 #ifdef CONFIG_X86
7725 	driver_support |= ENABLE_SCSI_PREFETCH;
7726 #endif
7727 	driver_support |= ENABLE_UNIT_ATTN;
7728 	writel(driver_support, &(h->cfgtable->driver_support));
7729 }
7730 
7731 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7732  * in a prefetch beyond physical memory.
7733  */
7734 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7735 {
7736 	u32 dma_prefetch;
7737 
7738 	if (h->board_id != 0x3225103C)
7739 		return;
7740 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7741 	dma_prefetch |= 0x8000;
7742 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7743 }
7744 
7745 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7746 {
7747 	int i;
7748 	u32 doorbell_value;
7749 	unsigned long flags;
7750 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7751 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7752 		spin_lock_irqsave(&h->lock, flags);
7753 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7754 		spin_unlock_irqrestore(&h->lock, flags);
7755 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7756 			goto done;
7757 		/* delay and try again */
7758 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7759 	}
7760 	return -ENODEV;
7761 done:
7762 	return 0;
7763 }
7764 
7765 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7766 {
7767 	int i;
7768 	u32 doorbell_value;
7769 	unsigned long flags;
7770 
7771 	/* under certain very rare conditions, this can take awhile.
7772 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7773 	 * as we enter this code.)
7774 	 */
7775 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7776 		if (h->remove_in_progress)
7777 			goto done;
7778 		spin_lock_irqsave(&h->lock, flags);
7779 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7780 		spin_unlock_irqrestore(&h->lock, flags);
7781 		if (!(doorbell_value & CFGTBL_ChangeReq))
7782 			goto done;
7783 		/* delay and try again */
7784 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7785 	}
7786 	return -ENODEV;
7787 done:
7788 	return 0;
7789 }
7790 
7791 /* return -ENODEV or other reason on error, 0 on success */
7792 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7793 {
7794 	u32 trans_support;
7795 
7796 	trans_support = readl(&(h->cfgtable->TransportSupport));
7797 	if (!(trans_support & SIMPLE_MODE))
7798 		return -ENOTSUPP;
7799 
7800 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7801 
7802 	/* Update the field, and then ring the doorbell */
7803 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7804 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7805 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7806 	if (hpsa_wait_for_mode_change_ack(h))
7807 		goto error;
7808 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7809 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7810 		goto error;
7811 	h->transMethod = CFGTBL_Trans_Simple;
7812 	return 0;
7813 error:
7814 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7815 	return -ENODEV;
7816 }
7817 
7818 /* free items allocated or mapped by hpsa_pci_init */
7819 static void hpsa_free_pci_init(struct ctlr_info *h)
7820 {
7821 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7822 	iounmap(h->vaddr);			/* pci_init 3 */
7823 	h->vaddr = NULL;
7824 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7825 	/*
7826 	 * call pci_disable_device before pci_release_regions per
7827 	 * Documentation/driver-api/pci/pci.rst
7828 	 */
7829 	pci_disable_device(h->pdev);		/* pci_init 1 */
7830 	pci_release_regions(h->pdev);		/* pci_init 2 */
7831 }
7832 
7833 /* several items must be freed later */
7834 static int hpsa_pci_init(struct ctlr_info *h)
7835 {
7836 	int prod_index, err;
7837 	bool legacy_board;
7838 
7839 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7840 	if (prod_index < 0)
7841 		return prod_index;
7842 	h->product_name = products[prod_index].product_name;
7843 	h->access = *(products[prod_index].access);
7844 	h->legacy_board = legacy_board;
7845 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7846 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7847 
7848 	err = pci_enable_device(h->pdev);
7849 	if (err) {
7850 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7851 		pci_disable_device(h->pdev);
7852 		return err;
7853 	}
7854 
7855 	err = pci_request_regions(h->pdev, HPSA);
7856 	if (err) {
7857 		dev_err(&h->pdev->dev,
7858 			"failed to obtain PCI resources\n");
7859 		pci_disable_device(h->pdev);
7860 		return err;
7861 	}
7862 
7863 	pci_set_master(h->pdev);
7864 
7865 	err = hpsa_interrupt_mode(h);
7866 	if (err)
7867 		goto clean1;
7868 
7869 	/* setup mapping between CPU and reply queue */
7870 	hpsa_setup_reply_map(h);
7871 
7872 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7873 	if (err)
7874 		goto clean2;	/* intmode+region, pci */
7875 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7876 	if (!h->vaddr) {
7877 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7878 		err = -ENOMEM;
7879 		goto clean2;	/* intmode+region, pci */
7880 	}
7881 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7882 	if (err)
7883 		goto clean3;	/* vaddr, intmode+region, pci */
7884 	err = hpsa_find_cfgtables(h);
7885 	if (err)
7886 		goto clean3;	/* vaddr, intmode+region, pci */
7887 	hpsa_find_board_params(h);
7888 
7889 	if (!hpsa_CISS_signature_present(h)) {
7890 		err = -ENODEV;
7891 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7892 	}
7893 	hpsa_set_driver_support_bits(h);
7894 	hpsa_p600_dma_prefetch_quirk(h);
7895 	err = hpsa_enter_simple_mode(h);
7896 	if (err)
7897 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7898 	return 0;
7899 
7900 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7901 	hpsa_free_cfgtables(h);
7902 clean3:	/* vaddr, intmode+region, pci */
7903 	iounmap(h->vaddr);
7904 	h->vaddr = NULL;
7905 clean2:	/* intmode+region, pci */
7906 	hpsa_disable_interrupt_mode(h);
7907 clean1:
7908 	/*
7909 	 * call pci_disable_device before pci_release_regions per
7910 	 * Documentation/driver-api/pci/pci.rst
7911 	 */
7912 	pci_disable_device(h->pdev);
7913 	pci_release_regions(h->pdev);
7914 	return err;
7915 }
7916 
7917 static void hpsa_hba_inquiry(struct ctlr_info *h)
7918 {
7919 	int rc;
7920 
7921 #define HBA_INQUIRY_BYTE_COUNT 64
7922 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7923 	if (!h->hba_inquiry_data)
7924 		return;
7925 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7926 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7927 	if (rc != 0) {
7928 		kfree(h->hba_inquiry_data);
7929 		h->hba_inquiry_data = NULL;
7930 	}
7931 }
7932 
7933 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7934 {
7935 	int rc, i;
7936 	void __iomem *vaddr;
7937 
7938 	if (!reset_devices)
7939 		return 0;
7940 
7941 	/* kdump kernel is loading, we don't know in which state is
7942 	 * the pci interface. The dev->enable_cnt is equal zero
7943 	 * so we call enable+disable, wait a while and switch it on.
7944 	 */
7945 	rc = pci_enable_device(pdev);
7946 	if (rc) {
7947 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7948 		return -ENODEV;
7949 	}
7950 	pci_disable_device(pdev);
7951 	msleep(260);			/* a randomly chosen number */
7952 	rc = pci_enable_device(pdev);
7953 	if (rc) {
7954 		dev_warn(&pdev->dev, "failed to enable device.\n");
7955 		return -ENODEV;
7956 	}
7957 
7958 	pci_set_master(pdev);
7959 
7960 	vaddr = pci_ioremap_bar(pdev, 0);
7961 	if (vaddr == NULL) {
7962 		rc = -ENOMEM;
7963 		goto out_disable;
7964 	}
7965 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7966 	iounmap(vaddr);
7967 
7968 	/* Reset the controller with a PCI power-cycle or via doorbell */
7969 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7970 
7971 	/* -ENOTSUPP here means we cannot reset the controller
7972 	 * but it's already (and still) up and running in
7973 	 * "performant mode".  Or, it might be 640x, which can't reset
7974 	 * due to concerns about shared bbwc between 6402/6404 pair.
7975 	 */
7976 	if (rc)
7977 		goto out_disable;
7978 
7979 	/* Now try to get the controller to respond to a no-op */
7980 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7981 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7982 		if (hpsa_noop(pdev) == 0)
7983 			break;
7984 		else
7985 			dev_warn(&pdev->dev, "no-op failed%s\n",
7986 					(i < 11 ? "; re-trying" : ""));
7987 	}
7988 
7989 out_disable:
7990 
7991 	pci_disable_device(pdev);
7992 	return rc;
7993 }
7994 
7995 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7996 {
7997 	kfree(h->cmd_pool_bits);
7998 	h->cmd_pool_bits = NULL;
7999 	if (h->cmd_pool) {
8000 		dma_free_coherent(&h->pdev->dev,
8001 				h->nr_cmds * sizeof(struct CommandList),
8002 				h->cmd_pool,
8003 				h->cmd_pool_dhandle);
8004 		h->cmd_pool = NULL;
8005 		h->cmd_pool_dhandle = 0;
8006 	}
8007 	if (h->errinfo_pool) {
8008 		dma_free_coherent(&h->pdev->dev,
8009 				h->nr_cmds * sizeof(struct ErrorInfo),
8010 				h->errinfo_pool,
8011 				h->errinfo_pool_dhandle);
8012 		h->errinfo_pool = NULL;
8013 		h->errinfo_pool_dhandle = 0;
8014 	}
8015 }
8016 
8017 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8018 {
8019 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8020 				   sizeof(unsigned long),
8021 				   GFP_KERNEL);
8022 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8023 		    h->nr_cmds * sizeof(*h->cmd_pool),
8024 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8025 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8026 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8027 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8028 	if ((h->cmd_pool_bits == NULL)
8029 	    || (h->cmd_pool == NULL)
8030 	    || (h->errinfo_pool == NULL)) {
8031 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8032 		goto clean_up;
8033 	}
8034 	hpsa_preinitialize_commands(h);
8035 	return 0;
8036 clean_up:
8037 	hpsa_free_cmd_pool(h);
8038 	return -ENOMEM;
8039 }
8040 
8041 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8042 static void hpsa_free_irqs(struct ctlr_info *h)
8043 {
8044 	int i;
8045 	int irq_vector = 0;
8046 
8047 	if (hpsa_simple_mode)
8048 		irq_vector = h->intr_mode;
8049 
8050 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8051 		/* Single reply queue, only one irq to free */
8052 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8053 				&h->q[h->intr_mode]);
8054 		h->q[h->intr_mode] = 0;
8055 		return;
8056 	}
8057 
8058 	for (i = 0; i < h->msix_vectors; i++) {
8059 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8060 		h->q[i] = 0;
8061 	}
8062 	for (; i < MAX_REPLY_QUEUES; i++)
8063 		h->q[i] = 0;
8064 }
8065 
8066 /* returns 0 on success; cleans up and returns -Enn on error */
8067 static int hpsa_request_irqs(struct ctlr_info *h,
8068 	irqreturn_t (*msixhandler)(int, void *),
8069 	irqreturn_t (*intxhandler)(int, void *))
8070 {
8071 	int rc, i;
8072 	int irq_vector = 0;
8073 
8074 	if (hpsa_simple_mode)
8075 		irq_vector = h->intr_mode;
8076 
8077 	/*
8078 	 * initialize h->q[x] = x so that interrupt handlers know which
8079 	 * queue to process.
8080 	 */
8081 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8082 		h->q[i] = (u8) i;
8083 
8084 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8085 		/* If performant mode and MSI-X, use multiple reply queues */
8086 		for (i = 0; i < h->msix_vectors; i++) {
8087 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8088 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8089 					0, h->intrname[i],
8090 					&h->q[i]);
8091 			if (rc) {
8092 				int j;
8093 
8094 				dev_err(&h->pdev->dev,
8095 					"failed to get irq %d for %s\n",
8096 				       pci_irq_vector(h->pdev, i), h->devname);
8097 				for (j = 0; j < i; j++) {
8098 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8099 					h->q[j] = 0;
8100 				}
8101 				for (; j < MAX_REPLY_QUEUES; j++)
8102 					h->q[j] = 0;
8103 				return rc;
8104 			}
8105 		}
8106 	} else {
8107 		/* Use single reply pool */
8108 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8109 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8110 				h->msix_vectors ? "x" : "");
8111 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8112 				msixhandler, 0,
8113 				h->intrname[0],
8114 				&h->q[h->intr_mode]);
8115 		} else {
8116 			sprintf(h->intrname[h->intr_mode],
8117 				"%s-intx", h->devname);
8118 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8119 				intxhandler, IRQF_SHARED,
8120 				h->intrname[0],
8121 				&h->q[h->intr_mode]);
8122 		}
8123 	}
8124 	if (rc) {
8125 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8126 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8127 		hpsa_free_irqs(h);
8128 		return -ENODEV;
8129 	}
8130 	return 0;
8131 }
8132 
8133 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8134 {
8135 	int rc;
8136 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8137 
8138 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8139 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8140 	if (rc) {
8141 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8142 		return rc;
8143 	}
8144 
8145 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8146 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8147 	if (rc) {
8148 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8149 			"after soft reset.\n");
8150 		return rc;
8151 	}
8152 
8153 	return 0;
8154 }
8155 
8156 static void hpsa_free_reply_queues(struct ctlr_info *h)
8157 {
8158 	int i;
8159 
8160 	for (i = 0; i < h->nreply_queues; i++) {
8161 		if (!h->reply_queue[i].head)
8162 			continue;
8163 		dma_free_coherent(&h->pdev->dev,
8164 					h->reply_queue_size,
8165 					h->reply_queue[i].head,
8166 					h->reply_queue[i].busaddr);
8167 		h->reply_queue[i].head = NULL;
8168 		h->reply_queue[i].busaddr = 0;
8169 	}
8170 	h->reply_queue_size = 0;
8171 }
8172 
8173 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8174 {
8175 	hpsa_free_performant_mode(h);		/* init_one 7 */
8176 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8177 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8178 	hpsa_free_irqs(h);			/* init_one 4 */
8179 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8180 	h->scsi_host = NULL;			/* init_one 3 */
8181 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8182 	free_percpu(h->lockup_detected);	/* init_one 2 */
8183 	h->lockup_detected = NULL;		/* init_one 2 */
8184 	if (h->resubmit_wq) {
8185 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8186 		h->resubmit_wq = NULL;
8187 	}
8188 	if (h->rescan_ctlr_wq) {
8189 		destroy_workqueue(h->rescan_ctlr_wq);
8190 		h->rescan_ctlr_wq = NULL;
8191 	}
8192 	if (h->monitor_ctlr_wq) {
8193 		destroy_workqueue(h->monitor_ctlr_wq);
8194 		h->monitor_ctlr_wq = NULL;
8195 	}
8196 
8197 	kfree(h);				/* init_one 1 */
8198 }
8199 
8200 /* Called when controller lockup detected. */
8201 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8202 {
8203 	int i, refcount;
8204 	struct CommandList *c;
8205 	int failcount = 0;
8206 
8207 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8208 	for (i = 0; i < h->nr_cmds; i++) {
8209 		c = h->cmd_pool + i;
8210 		refcount = atomic_inc_return(&c->refcount);
8211 		if (refcount > 1) {
8212 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8213 			finish_cmd(c);
8214 			atomic_dec(&h->commands_outstanding);
8215 			failcount++;
8216 		}
8217 		cmd_free(h, c);
8218 	}
8219 	dev_warn(&h->pdev->dev,
8220 		"failed %d commands in fail_all\n", failcount);
8221 }
8222 
8223 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8224 {
8225 	int cpu;
8226 
8227 	for_each_online_cpu(cpu) {
8228 		u32 *lockup_detected;
8229 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8230 		*lockup_detected = value;
8231 	}
8232 	wmb(); /* be sure the per-cpu variables are out to memory */
8233 }
8234 
8235 static void controller_lockup_detected(struct ctlr_info *h)
8236 {
8237 	unsigned long flags;
8238 	u32 lockup_detected;
8239 
8240 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8241 	spin_lock_irqsave(&h->lock, flags);
8242 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8243 	if (!lockup_detected) {
8244 		/* no heartbeat, but controller gave us a zero. */
8245 		dev_warn(&h->pdev->dev,
8246 			"lockup detected after %d but scratchpad register is zero\n",
8247 			h->heartbeat_sample_interval / HZ);
8248 		lockup_detected = 0xffffffff;
8249 	}
8250 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8251 	spin_unlock_irqrestore(&h->lock, flags);
8252 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8253 			lockup_detected, h->heartbeat_sample_interval / HZ);
8254 	if (lockup_detected == 0xffff0000) {
8255 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8256 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8257 	}
8258 	pci_disable_device(h->pdev);
8259 	fail_all_outstanding_cmds(h);
8260 }
8261 
8262 static int detect_controller_lockup(struct ctlr_info *h)
8263 {
8264 	u64 now;
8265 	u32 heartbeat;
8266 	unsigned long flags;
8267 
8268 	now = get_jiffies_64();
8269 	/* If we've received an interrupt recently, we're ok. */
8270 	if (time_after64(h->last_intr_timestamp +
8271 				(h->heartbeat_sample_interval), now))
8272 		return false;
8273 
8274 	/*
8275 	 * If we've already checked the heartbeat recently, we're ok.
8276 	 * This could happen if someone sends us a signal. We
8277 	 * otherwise don't care about signals in this thread.
8278 	 */
8279 	if (time_after64(h->last_heartbeat_timestamp +
8280 				(h->heartbeat_sample_interval), now))
8281 		return false;
8282 
8283 	/* If heartbeat has not changed since we last looked, we're not ok. */
8284 	spin_lock_irqsave(&h->lock, flags);
8285 	heartbeat = readl(&h->cfgtable->HeartBeat);
8286 	spin_unlock_irqrestore(&h->lock, flags);
8287 	if (h->last_heartbeat == heartbeat) {
8288 		controller_lockup_detected(h);
8289 		return true;
8290 	}
8291 
8292 	/* We're ok. */
8293 	h->last_heartbeat = heartbeat;
8294 	h->last_heartbeat_timestamp = now;
8295 	return false;
8296 }
8297 
8298 /*
8299  * Set ioaccel status for all ioaccel volumes.
8300  *
8301  * Called from monitor controller worker (hpsa_event_monitor_worker)
8302  *
8303  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8304  * transformation, so we will be turning off ioaccel for all volumes that
8305  * make up the Array.
8306  */
8307 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8308 {
8309 	int rc;
8310 	int i;
8311 	u8 ioaccel_status;
8312 	unsigned char *buf;
8313 	struct hpsa_scsi_dev_t *device;
8314 
8315 	if (!h)
8316 		return;
8317 
8318 	buf = kmalloc(64, GFP_KERNEL);
8319 	if (!buf)
8320 		return;
8321 
8322 	/*
8323 	 * Run through current device list used during I/O requests.
8324 	 */
8325 	for (i = 0; i < h->ndevices; i++) {
8326 		int offload_to_be_enabled = 0;
8327 		int offload_config = 0;
8328 
8329 		device = h->dev[i];
8330 
8331 		if (!device)
8332 			continue;
8333 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8334 						HPSA_VPD_LV_IOACCEL_STATUS))
8335 			continue;
8336 
8337 		memset(buf, 0, 64);
8338 
8339 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8340 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8341 					buf, 64);
8342 		if (rc != 0)
8343 			continue;
8344 
8345 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8346 
8347 		/*
8348 		 * Check if offload is still configured on
8349 		 */
8350 		offload_config =
8351 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8352 		/*
8353 		 * If offload is configured on, check to see if ioaccel
8354 		 * needs to be enabled.
8355 		 */
8356 		if (offload_config)
8357 			offload_to_be_enabled =
8358 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8359 
8360 		/*
8361 		 * If ioaccel is to be re-enabled, re-enable later during the
8362 		 * scan operation so the driver can get a fresh raidmap
8363 		 * before turning ioaccel back on.
8364 		 */
8365 		if (offload_to_be_enabled)
8366 			continue;
8367 
8368 		/*
8369 		 * Immediately turn off ioaccel for any volume the
8370 		 * controller tells us to. Some of the reasons could be:
8371 		 *    transformation - change to the LVs of an Array.
8372 		 *    degraded volume - component failure
8373 		 */
8374 		hpsa_turn_off_ioaccel_for_device(device);
8375 	}
8376 
8377 	kfree(buf);
8378 }
8379 
8380 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8381 {
8382 	char *event_type;
8383 
8384 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8385 		return;
8386 
8387 	/* Ask the controller to clear the events we're handling. */
8388 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8389 			| CFGTBL_Trans_io_accel2)) &&
8390 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8391 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8392 
8393 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8394 			event_type = "state change";
8395 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8396 			event_type = "configuration change";
8397 		/* Stop sending new RAID offload reqs via the IO accelerator */
8398 		scsi_block_requests(h->scsi_host);
8399 		hpsa_set_ioaccel_status(h);
8400 		hpsa_drain_accel_commands(h);
8401 		/* Set 'accelerator path config change' bit */
8402 		dev_warn(&h->pdev->dev,
8403 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8404 			h->events, event_type);
8405 		writel(h->events, &(h->cfgtable->clear_event_notify));
8406 		/* Set the "clear event notify field update" bit 6 */
8407 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8408 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8409 		hpsa_wait_for_clear_event_notify_ack(h);
8410 		scsi_unblock_requests(h->scsi_host);
8411 	} else {
8412 		/* Acknowledge controller notification events. */
8413 		writel(h->events, &(h->cfgtable->clear_event_notify));
8414 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8415 		hpsa_wait_for_clear_event_notify_ack(h);
8416 	}
8417 	return;
8418 }
8419 
8420 /* Check a register on the controller to see if there are configuration
8421  * changes (added/changed/removed logical drives, etc.) which mean that
8422  * we should rescan the controller for devices.
8423  * Also check flag for driver-initiated rescan.
8424  */
8425 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8426 {
8427 	if (h->drv_req_rescan) {
8428 		h->drv_req_rescan = 0;
8429 		return 1;
8430 	}
8431 
8432 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8433 		return 0;
8434 
8435 	h->events = readl(&(h->cfgtable->event_notify));
8436 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8437 }
8438 
8439 /*
8440  * Check if any of the offline devices have become ready
8441  */
8442 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8443 {
8444 	unsigned long flags;
8445 	struct offline_device_entry *d;
8446 	struct list_head *this, *tmp;
8447 
8448 	spin_lock_irqsave(&h->offline_device_lock, flags);
8449 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8450 		d = list_entry(this, struct offline_device_entry,
8451 				offline_list);
8452 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8453 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8454 			spin_lock_irqsave(&h->offline_device_lock, flags);
8455 			list_del(&d->offline_list);
8456 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8457 			return 1;
8458 		}
8459 		spin_lock_irqsave(&h->offline_device_lock, flags);
8460 	}
8461 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8462 	return 0;
8463 }
8464 
8465 static int hpsa_luns_changed(struct ctlr_info *h)
8466 {
8467 	int rc = 1; /* assume there are changes */
8468 	struct ReportLUNdata *logdev = NULL;
8469 
8470 	/* if we can't find out if lun data has changed,
8471 	 * assume that it has.
8472 	 */
8473 
8474 	if (!h->lastlogicals)
8475 		return rc;
8476 
8477 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8478 	if (!logdev)
8479 		return rc;
8480 
8481 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8482 		dev_warn(&h->pdev->dev,
8483 			"report luns failed, can't track lun changes.\n");
8484 		goto out;
8485 	}
8486 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8487 		dev_info(&h->pdev->dev,
8488 			"Lun changes detected.\n");
8489 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8490 		goto out;
8491 	} else
8492 		rc = 0; /* no changes detected. */
8493 out:
8494 	kfree(logdev);
8495 	return rc;
8496 }
8497 
8498 static void hpsa_perform_rescan(struct ctlr_info *h)
8499 {
8500 	struct Scsi_Host *sh = NULL;
8501 	unsigned long flags;
8502 
8503 	/*
8504 	 * Do the scan after the reset
8505 	 */
8506 	spin_lock_irqsave(&h->reset_lock, flags);
8507 	if (h->reset_in_progress) {
8508 		h->drv_req_rescan = 1;
8509 		spin_unlock_irqrestore(&h->reset_lock, flags);
8510 		return;
8511 	}
8512 	spin_unlock_irqrestore(&h->reset_lock, flags);
8513 
8514 	sh = scsi_host_get(h->scsi_host);
8515 	if (sh != NULL) {
8516 		hpsa_scan_start(sh);
8517 		scsi_host_put(sh);
8518 		h->drv_req_rescan = 0;
8519 	}
8520 }
8521 
8522 /*
8523  * watch for controller events
8524  */
8525 static void hpsa_event_monitor_worker(struct work_struct *work)
8526 {
8527 	struct ctlr_info *h = container_of(to_delayed_work(work),
8528 					struct ctlr_info, event_monitor_work);
8529 	unsigned long flags;
8530 
8531 	spin_lock_irqsave(&h->lock, flags);
8532 	if (h->remove_in_progress) {
8533 		spin_unlock_irqrestore(&h->lock, flags);
8534 		return;
8535 	}
8536 	spin_unlock_irqrestore(&h->lock, flags);
8537 
8538 	if (hpsa_ctlr_needs_rescan(h)) {
8539 		hpsa_ack_ctlr_events(h);
8540 		hpsa_perform_rescan(h);
8541 	}
8542 
8543 	spin_lock_irqsave(&h->lock, flags);
8544 	if (!h->remove_in_progress)
8545 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8546 				HPSA_EVENT_MONITOR_INTERVAL);
8547 	spin_unlock_irqrestore(&h->lock, flags);
8548 }
8549 
8550 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8551 {
8552 	unsigned long flags;
8553 	struct ctlr_info *h = container_of(to_delayed_work(work),
8554 					struct ctlr_info, rescan_ctlr_work);
8555 
8556 	spin_lock_irqsave(&h->lock, flags);
8557 	if (h->remove_in_progress) {
8558 		spin_unlock_irqrestore(&h->lock, flags);
8559 		return;
8560 	}
8561 	spin_unlock_irqrestore(&h->lock, flags);
8562 
8563 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8564 		hpsa_perform_rescan(h);
8565 	} else if (h->discovery_polling) {
8566 		if (hpsa_luns_changed(h)) {
8567 			dev_info(&h->pdev->dev,
8568 				"driver discovery polling rescan.\n");
8569 			hpsa_perform_rescan(h);
8570 		}
8571 	}
8572 	spin_lock_irqsave(&h->lock, flags);
8573 	if (!h->remove_in_progress)
8574 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8575 				h->heartbeat_sample_interval);
8576 	spin_unlock_irqrestore(&h->lock, flags);
8577 }
8578 
8579 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8580 {
8581 	unsigned long flags;
8582 	struct ctlr_info *h = container_of(to_delayed_work(work),
8583 					struct ctlr_info, monitor_ctlr_work);
8584 
8585 	detect_controller_lockup(h);
8586 	if (lockup_detected(h))
8587 		return;
8588 
8589 	spin_lock_irqsave(&h->lock, flags);
8590 	if (!h->remove_in_progress)
8591 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8592 				h->heartbeat_sample_interval);
8593 	spin_unlock_irqrestore(&h->lock, flags);
8594 }
8595 
8596 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8597 						char *name)
8598 {
8599 	struct workqueue_struct *wq = NULL;
8600 
8601 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8602 	if (!wq)
8603 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8604 
8605 	return wq;
8606 }
8607 
8608 static void hpda_free_ctlr_info(struct ctlr_info *h)
8609 {
8610 	kfree(h->reply_map);
8611 	kfree(h);
8612 }
8613 
8614 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8615 {
8616 	struct ctlr_info *h;
8617 
8618 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8619 	if (!h)
8620 		return NULL;
8621 
8622 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8623 	if (!h->reply_map) {
8624 		kfree(h);
8625 		return NULL;
8626 	}
8627 	return h;
8628 }
8629 
8630 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8631 {
8632 	int rc;
8633 	struct ctlr_info *h;
8634 	int try_soft_reset = 0;
8635 	unsigned long flags;
8636 	u32 board_id;
8637 
8638 	if (number_of_controllers == 0)
8639 		printk(KERN_INFO DRIVER_NAME "\n");
8640 
8641 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8642 	if (rc < 0) {
8643 		dev_warn(&pdev->dev, "Board ID not found\n");
8644 		return rc;
8645 	}
8646 
8647 	rc = hpsa_init_reset_devices(pdev, board_id);
8648 	if (rc) {
8649 		if (rc != -ENOTSUPP)
8650 			return rc;
8651 		/* If the reset fails in a particular way (it has no way to do
8652 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8653 		 * a soft reset once we get the controller configured up to the
8654 		 * point that it can accept a command.
8655 		 */
8656 		try_soft_reset = 1;
8657 		rc = 0;
8658 	}
8659 
8660 reinit_after_soft_reset:
8661 
8662 	/* Command structures must be aligned on a 32-byte boundary because
8663 	 * the 5 lower bits of the address are used by the hardware. and by
8664 	 * the driver.  See comments in hpsa.h for more info.
8665 	 */
8666 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8667 	h = hpda_alloc_ctlr_info();
8668 	if (!h) {
8669 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8670 		return -ENOMEM;
8671 	}
8672 
8673 	h->pdev = pdev;
8674 
8675 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8676 	INIT_LIST_HEAD(&h->offline_device_list);
8677 	spin_lock_init(&h->lock);
8678 	spin_lock_init(&h->offline_device_lock);
8679 	spin_lock_init(&h->scan_lock);
8680 	spin_lock_init(&h->reset_lock);
8681 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8682 
8683 	/* Allocate and clear per-cpu variable lockup_detected */
8684 	h->lockup_detected = alloc_percpu(u32);
8685 	if (!h->lockup_detected) {
8686 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8687 		rc = -ENOMEM;
8688 		goto clean1;	/* aer/h */
8689 	}
8690 	set_lockup_detected_for_all_cpus(h, 0);
8691 
8692 	rc = hpsa_pci_init(h);
8693 	if (rc)
8694 		goto clean2;	/* lu, aer/h */
8695 
8696 	/* relies on h-> settings made by hpsa_pci_init, including
8697 	 * interrupt_mode h->intr */
8698 	rc = hpsa_scsi_host_alloc(h);
8699 	if (rc)
8700 		goto clean2_5;	/* pci, lu, aer/h */
8701 
8702 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8703 	h->ctlr = number_of_controllers;
8704 	number_of_controllers++;
8705 
8706 	/* configure PCI DMA stuff */
8707 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8708 	if (rc != 0) {
8709 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8710 		if (rc != 0) {
8711 			dev_err(&pdev->dev, "no suitable DMA available\n");
8712 			goto clean3;	/* shost, pci, lu, aer/h */
8713 		}
8714 	}
8715 
8716 	/* make sure the board interrupts are off */
8717 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8718 
8719 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8720 	if (rc)
8721 		goto clean3;	/* shost, pci, lu, aer/h */
8722 	rc = hpsa_alloc_cmd_pool(h);
8723 	if (rc)
8724 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8725 	rc = hpsa_alloc_sg_chain_blocks(h);
8726 	if (rc)
8727 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8728 	init_waitqueue_head(&h->scan_wait_queue);
8729 	init_waitqueue_head(&h->event_sync_wait_queue);
8730 	mutex_init(&h->reset_mutex);
8731 	h->scan_finished = 1; /* no scan currently in progress */
8732 	h->scan_waiting = 0;
8733 
8734 	pci_set_drvdata(pdev, h);
8735 	h->ndevices = 0;
8736 
8737 	spin_lock_init(&h->devlock);
8738 	rc = hpsa_put_ctlr_into_performant_mode(h);
8739 	if (rc)
8740 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8741 
8742 	/* create the resubmit workqueue */
8743 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8744 	if (!h->rescan_ctlr_wq) {
8745 		rc = -ENOMEM;
8746 		goto clean7;
8747 	}
8748 
8749 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8750 	if (!h->resubmit_wq) {
8751 		rc = -ENOMEM;
8752 		goto clean7;	/* aer/h */
8753 	}
8754 
8755 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8756 	if (!h->monitor_ctlr_wq) {
8757 		rc = -ENOMEM;
8758 		goto clean7;
8759 	}
8760 
8761 	/*
8762 	 * At this point, the controller is ready to take commands.
8763 	 * Now, if reset_devices and the hard reset didn't work, try
8764 	 * the soft reset and see if that works.
8765 	 */
8766 	if (try_soft_reset) {
8767 
8768 		/* This is kind of gross.  We may or may not get a completion
8769 		 * from the soft reset command, and if we do, then the value
8770 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8771 		 * after the reset throwing away any completions we get during
8772 		 * that time.  Unregister the interrupt handler and register
8773 		 * fake ones to scoop up any residual completions.
8774 		 */
8775 		spin_lock_irqsave(&h->lock, flags);
8776 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777 		spin_unlock_irqrestore(&h->lock, flags);
8778 		hpsa_free_irqs(h);
8779 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8780 					hpsa_intx_discard_completions);
8781 		if (rc) {
8782 			dev_warn(&h->pdev->dev,
8783 				"Failed to request_irq after soft reset.\n");
8784 			/*
8785 			 * cannot goto clean7 or free_irqs will be called
8786 			 * again. Instead, do its work
8787 			 */
8788 			hpsa_free_performant_mode(h);	/* clean7 */
8789 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8790 			hpsa_free_cmd_pool(h);		/* clean5 */
8791 			/*
8792 			 * skip hpsa_free_irqs(h) clean4 since that
8793 			 * was just called before request_irqs failed
8794 			 */
8795 			goto clean3;
8796 		}
8797 
8798 		rc = hpsa_kdump_soft_reset(h);
8799 		if (rc)
8800 			/* Neither hard nor soft reset worked, we're hosed. */
8801 			goto clean7;
8802 
8803 		dev_info(&h->pdev->dev, "Board READY.\n");
8804 		dev_info(&h->pdev->dev,
8805 			"Waiting for stale completions to drain.\n");
8806 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8807 		msleep(10000);
8808 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8809 
8810 		rc = controller_reset_failed(h->cfgtable);
8811 		if (rc)
8812 			dev_info(&h->pdev->dev,
8813 				"Soft reset appears to have failed.\n");
8814 
8815 		/* since the controller's reset, we have to go back and re-init
8816 		 * everything.  Easiest to just forget what we've done and do it
8817 		 * all over again.
8818 		 */
8819 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8820 		try_soft_reset = 0;
8821 		if (rc)
8822 			/* don't goto clean, we already unallocated */
8823 			return -ENODEV;
8824 
8825 		goto reinit_after_soft_reset;
8826 	}
8827 
8828 	/* Enable Accelerated IO path at driver layer */
8829 	h->acciopath_status = 1;
8830 	/* Disable discovery polling.*/
8831 	h->discovery_polling = 0;
8832 
8833 
8834 	/* Turn the interrupts on so we can service requests */
8835 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8836 
8837 	hpsa_hba_inquiry(h);
8838 
8839 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8840 	if (!h->lastlogicals)
8841 		dev_info(&h->pdev->dev,
8842 			"Can't track change to report lun data\n");
8843 
8844 	/* hook into SCSI subsystem */
8845 	rc = hpsa_scsi_add_host(h);
8846 	if (rc)
8847 		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8848 
8849 	/* Monitor the controller for firmware lockups */
8850 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8851 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8852 	schedule_delayed_work(&h->monitor_ctlr_work,
8853 				h->heartbeat_sample_interval);
8854 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8855 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8856 				h->heartbeat_sample_interval);
8857 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8858 	schedule_delayed_work(&h->event_monitor_work,
8859 				HPSA_EVENT_MONITOR_INTERVAL);
8860 	return 0;
8861 
8862 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8863 	kfree(h->lastlogicals);
8864 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8865 	hpsa_free_performant_mode(h);
8866 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8867 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8868 	hpsa_free_sg_chain_blocks(h);
8869 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8870 	hpsa_free_cmd_pool(h);
8871 clean4: /* irq, shost, pci, lu, aer/h */
8872 	hpsa_free_irqs(h);
8873 clean3: /* shost, pci, lu, aer/h */
8874 	scsi_host_put(h->scsi_host);
8875 	h->scsi_host = NULL;
8876 clean2_5: /* pci, lu, aer/h */
8877 	hpsa_free_pci_init(h);
8878 clean2: /* lu, aer/h */
8879 	if (h->lockup_detected) {
8880 		free_percpu(h->lockup_detected);
8881 		h->lockup_detected = NULL;
8882 	}
8883 clean1:	/* wq/aer/h */
8884 	if (h->resubmit_wq) {
8885 		destroy_workqueue(h->resubmit_wq);
8886 		h->resubmit_wq = NULL;
8887 	}
8888 	if (h->rescan_ctlr_wq) {
8889 		destroy_workqueue(h->rescan_ctlr_wq);
8890 		h->rescan_ctlr_wq = NULL;
8891 	}
8892 	if (h->monitor_ctlr_wq) {
8893 		destroy_workqueue(h->monitor_ctlr_wq);
8894 		h->monitor_ctlr_wq = NULL;
8895 	}
8896 	kfree(h);
8897 	return rc;
8898 }
8899 
8900 static void hpsa_flush_cache(struct ctlr_info *h)
8901 {
8902 	char *flush_buf;
8903 	struct CommandList *c;
8904 	int rc;
8905 
8906 	if (unlikely(lockup_detected(h)))
8907 		return;
8908 	flush_buf = kzalloc(4, GFP_KERNEL);
8909 	if (!flush_buf)
8910 		return;
8911 
8912 	c = cmd_alloc(h);
8913 
8914 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8915 		RAID_CTLR_LUNID, TYPE_CMD)) {
8916 		goto out;
8917 	}
8918 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8919 			DEFAULT_TIMEOUT);
8920 	if (rc)
8921 		goto out;
8922 	if (c->err_info->CommandStatus != 0)
8923 out:
8924 		dev_warn(&h->pdev->dev,
8925 			"error flushing cache on controller\n");
8926 	cmd_free(h, c);
8927 	kfree(flush_buf);
8928 }
8929 
8930 /* Make controller gather fresh report lun data each time we
8931  * send down a report luns request
8932  */
8933 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8934 {
8935 	u32 *options;
8936 	struct CommandList *c;
8937 	int rc;
8938 
8939 	/* Don't bother trying to set diag options if locked up */
8940 	if (unlikely(h->lockup_detected))
8941 		return;
8942 
8943 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8944 	if (!options)
8945 		return;
8946 
8947 	c = cmd_alloc(h);
8948 
8949 	/* first, get the current diag options settings */
8950 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8951 		RAID_CTLR_LUNID, TYPE_CMD))
8952 		goto errout;
8953 
8954 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8955 			NO_TIMEOUT);
8956 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8957 		goto errout;
8958 
8959 	/* Now, set the bit for disabling the RLD caching */
8960 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8961 
8962 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8963 		RAID_CTLR_LUNID, TYPE_CMD))
8964 		goto errout;
8965 
8966 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8967 			NO_TIMEOUT);
8968 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8969 		goto errout;
8970 
8971 	/* Now verify that it got set: */
8972 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8973 		RAID_CTLR_LUNID, TYPE_CMD))
8974 		goto errout;
8975 
8976 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8977 			NO_TIMEOUT);
8978 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8979 		goto errout;
8980 
8981 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8982 		goto out;
8983 
8984 errout:
8985 	dev_err(&h->pdev->dev,
8986 			"Error: failed to disable report lun data caching.\n");
8987 out:
8988 	cmd_free(h, c);
8989 	kfree(options);
8990 }
8991 
8992 static void __hpsa_shutdown(struct pci_dev *pdev)
8993 {
8994 	struct ctlr_info *h;
8995 
8996 	h = pci_get_drvdata(pdev);
8997 	/* Turn board interrupts off  and send the flush cache command
8998 	 * sendcmd will turn off interrupt, and send the flush...
8999 	 * To write all data in the battery backed cache to disks
9000 	 */
9001 	hpsa_flush_cache(h);
9002 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9003 	hpsa_free_irqs(h);			/* init_one 4 */
9004 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9005 }
9006 
9007 static void hpsa_shutdown(struct pci_dev *pdev)
9008 {
9009 	__hpsa_shutdown(pdev);
9010 	pci_disable_device(pdev);
9011 }
9012 
9013 static void hpsa_free_device_info(struct ctlr_info *h)
9014 {
9015 	int i;
9016 
9017 	for (i = 0; i < h->ndevices; i++) {
9018 		kfree(h->dev[i]);
9019 		h->dev[i] = NULL;
9020 	}
9021 }
9022 
9023 static void hpsa_remove_one(struct pci_dev *pdev)
9024 {
9025 	struct ctlr_info *h;
9026 	unsigned long flags;
9027 
9028 	if (pci_get_drvdata(pdev) == NULL) {
9029 		dev_err(&pdev->dev, "unable to remove device\n");
9030 		return;
9031 	}
9032 	h = pci_get_drvdata(pdev);
9033 
9034 	/* Get rid of any controller monitoring work items */
9035 	spin_lock_irqsave(&h->lock, flags);
9036 	h->remove_in_progress = 1;
9037 	spin_unlock_irqrestore(&h->lock, flags);
9038 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9039 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9040 	cancel_delayed_work_sync(&h->event_monitor_work);
9041 	destroy_workqueue(h->rescan_ctlr_wq);
9042 	destroy_workqueue(h->resubmit_wq);
9043 	destroy_workqueue(h->monitor_ctlr_wq);
9044 
9045 	hpsa_delete_sas_host(h);
9046 
9047 	/*
9048 	 * Call before disabling interrupts.
9049 	 * scsi_remove_host can trigger I/O operations especially
9050 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9051 	 * operations which cannot complete and will hang the system.
9052 	 */
9053 	if (h->scsi_host)
9054 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9055 	/* includes hpsa_free_irqs - init_one 4 */
9056 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9057 	__hpsa_shutdown(pdev);
9058 
9059 	hpsa_free_device_info(h);		/* scan */
9060 
9061 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9062 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9063 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9064 	hpsa_free_performant_mode(h);			/* init_one 7 */
9065 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9066 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9067 	kfree(h->lastlogicals);
9068 
9069 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9070 
9071 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9072 	h->scsi_host = NULL;				/* init_one 3 */
9073 
9074 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9075 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9076 
9077 	free_percpu(h->lockup_detected);		/* init_one 2 */
9078 	h->lockup_detected = NULL;			/* init_one 2 */
9079 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9080 
9081 	hpda_free_ctlr_info(h);				/* init_one 1 */
9082 }
9083 
9084 static int __maybe_unused hpsa_suspend(
9085 	__attribute__((unused)) struct device *dev)
9086 {
9087 	return -ENOSYS;
9088 }
9089 
9090 static int __maybe_unused hpsa_resume
9091 	(__attribute__((unused)) struct device *dev)
9092 {
9093 	return -ENOSYS;
9094 }
9095 
9096 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9097 
9098 static struct pci_driver hpsa_pci_driver = {
9099 	.name = HPSA,
9100 	.probe = hpsa_init_one,
9101 	.remove = hpsa_remove_one,
9102 	.id_table = hpsa_pci_device_id,	/* id_table */
9103 	.shutdown = hpsa_shutdown,
9104 	.driver.pm = &hpsa_pm_ops,
9105 };
9106 
9107 /* Fill in bucket_map[], given nsgs (the max number of
9108  * scatter gather elements supported) and bucket[],
9109  * which is an array of 8 integers.  The bucket[] array
9110  * contains 8 different DMA transfer sizes (in 16
9111  * byte increments) which the controller uses to fetch
9112  * commands.  This function fills in bucket_map[], which
9113  * maps a given number of scatter gather elements to one of
9114  * the 8 DMA transfer sizes.  The point of it is to allow the
9115  * controller to only do as much DMA as needed to fetch the
9116  * command, with the DMA transfer size encoded in the lower
9117  * bits of the command address.
9118  */
9119 static void  calc_bucket_map(int bucket[], int num_buckets,
9120 	int nsgs, int min_blocks, u32 *bucket_map)
9121 {
9122 	int i, j, b, size;
9123 
9124 	/* Note, bucket_map must have nsgs+1 entries. */
9125 	for (i = 0; i <= nsgs; i++) {
9126 		/* Compute size of a command with i SG entries */
9127 		size = i + min_blocks;
9128 		b = num_buckets; /* Assume the biggest bucket */
9129 		/* Find the bucket that is just big enough */
9130 		for (j = 0; j < num_buckets; j++) {
9131 			if (bucket[j] >= size) {
9132 				b = j;
9133 				break;
9134 			}
9135 		}
9136 		/* for a command with i SG entries, use bucket b. */
9137 		bucket_map[i] = b;
9138 	}
9139 }
9140 
9141 /*
9142  * return -ENODEV on err, 0 on success (or no action)
9143  * allocates numerous items that must be freed later
9144  */
9145 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9146 {
9147 	int i;
9148 	unsigned long register_value;
9149 	unsigned long transMethod = CFGTBL_Trans_Performant |
9150 			(trans_support & CFGTBL_Trans_use_short_tags) |
9151 				CFGTBL_Trans_enable_directed_msix |
9152 			(trans_support & (CFGTBL_Trans_io_accel1 |
9153 				CFGTBL_Trans_io_accel2));
9154 	struct access_method access = SA5_performant_access;
9155 
9156 	/* This is a bit complicated.  There are 8 registers on
9157 	 * the controller which we write to to tell it 8 different
9158 	 * sizes of commands which there may be.  It's a way of
9159 	 * reducing the DMA done to fetch each command.  Encoded into
9160 	 * each command's tag are 3 bits which communicate to the controller
9161 	 * which of the eight sizes that command fits within.  The size of
9162 	 * each command depends on how many scatter gather entries there are.
9163 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9164 	 * with the number of 16-byte blocks a command of that size requires.
9165 	 * The smallest command possible requires 5 such 16 byte blocks.
9166 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9167 	 * blocks.  Note, this only extends to the SG entries contained
9168 	 * within the command block, and does not extend to chained blocks
9169 	 * of SG elements.   bft[] contains the eight values we write to
9170 	 * the registers.  They are not evenly distributed, but have more
9171 	 * sizes for small commands, and fewer sizes for larger commands.
9172 	 */
9173 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9174 #define MIN_IOACCEL2_BFT_ENTRY 5
9175 #define HPSA_IOACCEL2_HEADER_SZ 4
9176 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9177 			13, 14, 15, 16, 17, 18, 19,
9178 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9179 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9180 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9181 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9182 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9183 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9184 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9185 	/*  5 = 1 s/g entry or 4k
9186 	 *  6 = 2 s/g entry or 8k
9187 	 *  8 = 4 s/g entry or 16k
9188 	 * 10 = 6 s/g entry or 24k
9189 	 */
9190 
9191 	/* If the controller supports either ioaccel method then
9192 	 * we can also use the RAID stack submit path that does not
9193 	 * perform the superfluous readl() after each command submission.
9194 	 */
9195 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9196 		access = SA5_performant_access_no_read;
9197 
9198 	/* Controller spec: zero out this buffer. */
9199 	for (i = 0; i < h->nreply_queues; i++)
9200 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9201 
9202 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9203 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9204 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9205 	for (i = 0; i < 8; i++)
9206 		writel(bft[i], &h->transtable->BlockFetch[i]);
9207 
9208 	/* size of controller ring buffer */
9209 	writel(h->max_commands, &h->transtable->RepQSize);
9210 	writel(h->nreply_queues, &h->transtable->RepQCount);
9211 	writel(0, &h->transtable->RepQCtrAddrLow32);
9212 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9213 
9214 	for (i = 0; i < h->nreply_queues; i++) {
9215 		writel(0, &h->transtable->RepQAddr[i].upper);
9216 		writel(h->reply_queue[i].busaddr,
9217 			&h->transtable->RepQAddr[i].lower);
9218 	}
9219 
9220 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9221 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9222 	/*
9223 	 * enable outbound interrupt coalescing in accelerator mode;
9224 	 */
9225 	if (trans_support & CFGTBL_Trans_io_accel1) {
9226 		access = SA5_ioaccel_mode1_access;
9227 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9228 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9229 	} else
9230 		if (trans_support & CFGTBL_Trans_io_accel2)
9231 			access = SA5_ioaccel_mode2_access;
9232 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9233 	if (hpsa_wait_for_mode_change_ack(h)) {
9234 		dev_err(&h->pdev->dev,
9235 			"performant mode problem - doorbell timeout\n");
9236 		return -ENODEV;
9237 	}
9238 	register_value = readl(&(h->cfgtable->TransportActive));
9239 	if (!(register_value & CFGTBL_Trans_Performant)) {
9240 		dev_err(&h->pdev->dev,
9241 			"performant mode problem - transport not active\n");
9242 		return -ENODEV;
9243 	}
9244 	/* Change the access methods to the performant access methods */
9245 	h->access = access;
9246 	h->transMethod = transMethod;
9247 
9248 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9249 		(trans_support & CFGTBL_Trans_io_accel2)))
9250 		return 0;
9251 
9252 	if (trans_support & CFGTBL_Trans_io_accel1) {
9253 		/* Set up I/O accelerator mode */
9254 		for (i = 0; i < h->nreply_queues; i++) {
9255 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9256 			h->reply_queue[i].current_entry =
9257 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9258 		}
9259 		bft[7] = h->ioaccel_maxsg + 8;
9260 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9261 				h->ioaccel1_blockFetchTable);
9262 
9263 		/* initialize all reply queue entries to unused */
9264 		for (i = 0; i < h->nreply_queues; i++)
9265 			memset(h->reply_queue[i].head,
9266 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9267 				h->reply_queue_size);
9268 
9269 		/* set all the constant fields in the accelerator command
9270 		 * frames once at init time to save CPU cycles later.
9271 		 */
9272 		for (i = 0; i < h->nr_cmds; i++) {
9273 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9274 
9275 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9276 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9277 					(i * sizeof(struct ErrorInfo)));
9278 			cp->err_info_len = sizeof(struct ErrorInfo);
9279 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9280 			cp->host_context_flags =
9281 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9282 			cp->timeout_sec = 0;
9283 			cp->ReplyQueue = 0;
9284 			cp->tag =
9285 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9286 			cp->host_addr =
9287 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9288 					(i * sizeof(struct io_accel1_cmd)));
9289 		}
9290 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9291 		u64 cfg_offset, cfg_base_addr_index;
9292 		u32 bft2_offset, cfg_base_addr;
9293 
9294 		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9295 				    &cfg_base_addr_index, &cfg_offset);
9296 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9297 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9298 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9299 				4, h->ioaccel2_blockFetchTable);
9300 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9301 		BUILD_BUG_ON(offsetof(struct CfgTable,
9302 				io_accel_request_size_offset) != 0xb8);
9303 		h->ioaccel2_bft2_regs =
9304 			remap_pci_mem(pci_resource_start(h->pdev,
9305 					cfg_base_addr_index) +
9306 					cfg_offset + bft2_offset,
9307 					ARRAY_SIZE(bft2) *
9308 					sizeof(*h->ioaccel2_bft2_regs));
9309 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9310 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9311 	}
9312 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9313 	if (hpsa_wait_for_mode_change_ack(h)) {
9314 		dev_err(&h->pdev->dev,
9315 			"performant mode problem - enabling ioaccel mode\n");
9316 		return -ENODEV;
9317 	}
9318 	return 0;
9319 }
9320 
9321 /* Free ioaccel1 mode command blocks and block fetch table */
9322 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9323 {
9324 	if (h->ioaccel_cmd_pool) {
9325 		dma_free_coherent(&h->pdev->dev,
9326 				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9327 				  h->ioaccel_cmd_pool,
9328 				  h->ioaccel_cmd_pool_dhandle);
9329 		h->ioaccel_cmd_pool = NULL;
9330 		h->ioaccel_cmd_pool_dhandle = 0;
9331 	}
9332 	kfree(h->ioaccel1_blockFetchTable);
9333 	h->ioaccel1_blockFetchTable = NULL;
9334 }
9335 
9336 /* Allocate ioaccel1 mode command blocks and block fetch table */
9337 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9338 {
9339 	h->ioaccel_maxsg =
9340 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9341 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9342 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9343 
9344 	/* Command structures must be aligned on a 128-byte boundary
9345 	 * because the 7 lower bits of the address are used by the
9346 	 * hardware.
9347 	 */
9348 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9349 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9350 	h->ioaccel_cmd_pool =
9351 		dma_alloc_coherent(&h->pdev->dev,
9352 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9353 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9354 
9355 	h->ioaccel1_blockFetchTable =
9356 		kmalloc(((h->ioaccel_maxsg + 1) *
9357 				sizeof(u32)), GFP_KERNEL);
9358 
9359 	if ((h->ioaccel_cmd_pool == NULL) ||
9360 		(h->ioaccel1_blockFetchTable == NULL))
9361 		goto clean_up;
9362 
9363 	memset(h->ioaccel_cmd_pool, 0,
9364 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9365 	return 0;
9366 
9367 clean_up:
9368 	hpsa_free_ioaccel1_cmd_and_bft(h);
9369 	return -ENOMEM;
9370 }
9371 
9372 /* Free ioaccel2 mode command blocks and block fetch table */
9373 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9374 {
9375 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9376 
9377 	if (h->ioaccel2_cmd_pool) {
9378 		dma_free_coherent(&h->pdev->dev,
9379 				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9380 				  h->ioaccel2_cmd_pool,
9381 				  h->ioaccel2_cmd_pool_dhandle);
9382 		h->ioaccel2_cmd_pool = NULL;
9383 		h->ioaccel2_cmd_pool_dhandle = 0;
9384 	}
9385 	kfree(h->ioaccel2_blockFetchTable);
9386 	h->ioaccel2_blockFetchTable = NULL;
9387 }
9388 
9389 /* Allocate ioaccel2 mode command blocks and block fetch table */
9390 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9391 {
9392 	int rc;
9393 
9394 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9395 
9396 	h->ioaccel_maxsg =
9397 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9398 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9399 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9400 
9401 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9402 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9403 	h->ioaccel2_cmd_pool =
9404 		dma_alloc_coherent(&h->pdev->dev,
9405 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9406 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9407 
9408 	h->ioaccel2_blockFetchTable =
9409 		kmalloc(((h->ioaccel_maxsg + 1) *
9410 				sizeof(u32)), GFP_KERNEL);
9411 
9412 	if ((h->ioaccel2_cmd_pool == NULL) ||
9413 		(h->ioaccel2_blockFetchTable == NULL)) {
9414 		rc = -ENOMEM;
9415 		goto clean_up;
9416 	}
9417 
9418 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9419 	if (rc)
9420 		goto clean_up;
9421 
9422 	memset(h->ioaccel2_cmd_pool, 0,
9423 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9424 	return 0;
9425 
9426 clean_up:
9427 	hpsa_free_ioaccel2_cmd_and_bft(h);
9428 	return rc;
9429 }
9430 
9431 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9432 static void hpsa_free_performant_mode(struct ctlr_info *h)
9433 {
9434 	kfree(h->blockFetchTable);
9435 	h->blockFetchTable = NULL;
9436 	hpsa_free_reply_queues(h);
9437 	hpsa_free_ioaccel1_cmd_and_bft(h);
9438 	hpsa_free_ioaccel2_cmd_and_bft(h);
9439 }
9440 
9441 /* return -ENODEV on error, 0 on success (or no action)
9442  * allocates numerous items that must be freed later
9443  */
9444 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9445 {
9446 	u32 trans_support;
9447 	unsigned long transMethod = CFGTBL_Trans_Performant |
9448 					CFGTBL_Trans_use_short_tags;
9449 	int i, rc;
9450 
9451 	if (hpsa_simple_mode)
9452 		return 0;
9453 
9454 	trans_support = readl(&(h->cfgtable->TransportSupport));
9455 	if (!(trans_support & PERFORMANT_MODE))
9456 		return 0;
9457 
9458 	/* Check for I/O accelerator mode support */
9459 	if (trans_support & CFGTBL_Trans_io_accel1) {
9460 		transMethod |= CFGTBL_Trans_io_accel1 |
9461 				CFGTBL_Trans_enable_directed_msix;
9462 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9463 		if (rc)
9464 			return rc;
9465 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9466 		transMethod |= CFGTBL_Trans_io_accel2 |
9467 				CFGTBL_Trans_enable_directed_msix;
9468 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9469 		if (rc)
9470 			return rc;
9471 	}
9472 
9473 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9474 	hpsa_get_max_perf_mode_cmds(h);
9475 	/* Performant mode ring buffer and supporting data structures */
9476 	h->reply_queue_size = h->max_commands * sizeof(u64);
9477 
9478 	for (i = 0; i < h->nreply_queues; i++) {
9479 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9480 						h->reply_queue_size,
9481 						&h->reply_queue[i].busaddr,
9482 						GFP_KERNEL);
9483 		if (!h->reply_queue[i].head) {
9484 			rc = -ENOMEM;
9485 			goto clean1;	/* rq, ioaccel */
9486 		}
9487 		h->reply_queue[i].size = h->max_commands;
9488 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9489 		h->reply_queue[i].current_entry = 0;
9490 	}
9491 
9492 	/* Need a block fetch table for performant mode */
9493 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9494 				sizeof(u32)), GFP_KERNEL);
9495 	if (!h->blockFetchTable) {
9496 		rc = -ENOMEM;
9497 		goto clean1;	/* rq, ioaccel */
9498 	}
9499 
9500 	rc = hpsa_enter_performant_mode(h, trans_support);
9501 	if (rc)
9502 		goto clean2;	/* bft, rq, ioaccel */
9503 	return 0;
9504 
9505 clean2:	/* bft, rq, ioaccel */
9506 	kfree(h->blockFetchTable);
9507 	h->blockFetchTable = NULL;
9508 clean1:	/* rq, ioaccel */
9509 	hpsa_free_reply_queues(h);
9510 	hpsa_free_ioaccel1_cmd_and_bft(h);
9511 	hpsa_free_ioaccel2_cmd_and_bft(h);
9512 	return rc;
9513 }
9514 
9515 static int is_accelerated_cmd(struct CommandList *c)
9516 {
9517 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9518 }
9519 
9520 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9521 {
9522 	struct CommandList *c = NULL;
9523 	int i, accel_cmds_out;
9524 	int refcount;
9525 
9526 	do { /* wait for all outstanding ioaccel commands to drain out */
9527 		accel_cmds_out = 0;
9528 		for (i = 0; i < h->nr_cmds; i++) {
9529 			c = h->cmd_pool + i;
9530 			refcount = atomic_inc_return(&c->refcount);
9531 			if (refcount > 1) /* Command is allocated */
9532 				accel_cmds_out += is_accelerated_cmd(c);
9533 			cmd_free(h, c);
9534 		}
9535 		if (accel_cmds_out <= 0)
9536 			break;
9537 		msleep(100);
9538 	} while (1);
9539 }
9540 
9541 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9542 				struct hpsa_sas_port *hpsa_sas_port)
9543 {
9544 	struct hpsa_sas_phy *hpsa_sas_phy;
9545 	struct sas_phy *phy;
9546 
9547 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9548 	if (!hpsa_sas_phy)
9549 		return NULL;
9550 
9551 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9552 		hpsa_sas_port->next_phy_index);
9553 	if (!phy) {
9554 		kfree(hpsa_sas_phy);
9555 		return NULL;
9556 	}
9557 
9558 	hpsa_sas_port->next_phy_index++;
9559 	hpsa_sas_phy->phy = phy;
9560 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9561 
9562 	return hpsa_sas_phy;
9563 }
9564 
9565 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9566 {
9567 	struct sas_phy *phy = hpsa_sas_phy->phy;
9568 
9569 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9570 	if (hpsa_sas_phy->added_to_port)
9571 		list_del(&hpsa_sas_phy->phy_list_entry);
9572 	sas_phy_delete(phy);
9573 	kfree(hpsa_sas_phy);
9574 }
9575 
9576 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9577 {
9578 	int rc;
9579 	struct hpsa_sas_port *hpsa_sas_port;
9580 	struct sas_phy *phy;
9581 	struct sas_identify *identify;
9582 
9583 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9584 	phy = hpsa_sas_phy->phy;
9585 
9586 	identify = &phy->identify;
9587 	memset(identify, 0, sizeof(*identify));
9588 	identify->sas_address = hpsa_sas_port->sas_address;
9589 	identify->device_type = SAS_END_DEVICE;
9590 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9591 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9592 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9593 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9594 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9595 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9596 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9597 
9598 	rc = sas_phy_add(hpsa_sas_phy->phy);
9599 	if (rc)
9600 		return rc;
9601 
9602 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9603 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9604 			&hpsa_sas_port->phy_list_head);
9605 	hpsa_sas_phy->added_to_port = true;
9606 
9607 	return 0;
9608 }
9609 
9610 static int
9611 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9612 				struct sas_rphy *rphy)
9613 {
9614 	struct sas_identify *identify;
9615 
9616 	identify = &rphy->identify;
9617 	identify->sas_address = hpsa_sas_port->sas_address;
9618 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9619 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9620 
9621 	return sas_rphy_add(rphy);
9622 }
9623 
9624 static struct hpsa_sas_port
9625 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9626 				u64 sas_address)
9627 {
9628 	int rc;
9629 	struct hpsa_sas_port *hpsa_sas_port;
9630 	struct sas_port *port;
9631 
9632 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9633 	if (!hpsa_sas_port)
9634 		return NULL;
9635 
9636 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9637 	hpsa_sas_port->parent_node = hpsa_sas_node;
9638 
9639 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9640 	if (!port)
9641 		goto free_hpsa_port;
9642 
9643 	rc = sas_port_add(port);
9644 	if (rc)
9645 		goto free_sas_port;
9646 
9647 	hpsa_sas_port->port = port;
9648 	hpsa_sas_port->sas_address = sas_address;
9649 	list_add_tail(&hpsa_sas_port->port_list_entry,
9650 			&hpsa_sas_node->port_list_head);
9651 
9652 	return hpsa_sas_port;
9653 
9654 free_sas_port:
9655 	sas_port_free(port);
9656 free_hpsa_port:
9657 	kfree(hpsa_sas_port);
9658 
9659 	return NULL;
9660 }
9661 
9662 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9663 {
9664 	struct hpsa_sas_phy *hpsa_sas_phy;
9665 	struct hpsa_sas_phy *next;
9666 
9667 	list_for_each_entry_safe(hpsa_sas_phy, next,
9668 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9669 		hpsa_free_sas_phy(hpsa_sas_phy);
9670 
9671 	sas_port_delete(hpsa_sas_port->port);
9672 	list_del(&hpsa_sas_port->port_list_entry);
9673 	kfree(hpsa_sas_port);
9674 }
9675 
9676 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9677 {
9678 	struct hpsa_sas_node *hpsa_sas_node;
9679 
9680 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9681 	if (hpsa_sas_node) {
9682 		hpsa_sas_node->parent_dev = parent_dev;
9683 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9684 	}
9685 
9686 	return hpsa_sas_node;
9687 }
9688 
9689 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9690 {
9691 	struct hpsa_sas_port *hpsa_sas_port;
9692 	struct hpsa_sas_port *next;
9693 
9694 	if (!hpsa_sas_node)
9695 		return;
9696 
9697 	list_for_each_entry_safe(hpsa_sas_port, next,
9698 			&hpsa_sas_node->port_list_head, port_list_entry)
9699 		hpsa_free_sas_port(hpsa_sas_port);
9700 
9701 	kfree(hpsa_sas_node);
9702 }
9703 
9704 static struct hpsa_scsi_dev_t
9705 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9706 					struct sas_rphy *rphy)
9707 {
9708 	int i;
9709 	struct hpsa_scsi_dev_t *device;
9710 
9711 	for (i = 0; i < h->ndevices; i++) {
9712 		device = h->dev[i];
9713 		if (!device->sas_port)
9714 			continue;
9715 		if (device->sas_port->rphy == rphy)
9716 			return device;
9717 	}
9718 
9719 	return NULL;
9720 }
9721 
9722 static int hpsa_add_sas_host(struct ctlr_info *h)
9723 {
9724 	int rc;
9725 	struct device *parent_dev;
9726 	struct hpsa_sas_node *hpsa_sas_node;
9727 	struct hpsa_sas_port *hpsa_sas_port;
9728 	struct hpsa_sas_phy *hpsa_sas_phy;
9729 
9730 	parent_dev = &h->scsi_host->shost_dev;
9731 
9732 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9733 	if (!hpsa_sas_node)
9734 		return -ENOMEM;
9735 
9736 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9737 	if (!hpsa_sas_port) {
9738 		rc = -ENODEV;
9739 		goto free_sas_node;
9740 	}
9741 
9742 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9743 	if (!hpsa_sas_phy) {
9744 		rc = -ENODEV;
9745 		goto free_sas_port;
9746 	}
9747 
9748 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9749 	if (rc)
9750 		goto free_sas_phy;
9751 
9752 	h->sas_host = hpsa_sas_node;
9753 
9754 	return 0;
9755 
9756 free_sas_phy:
9757 	hpsa_free_sas_phy(hpsa_sas_phy);
9758 free_sas_port:
9759 	hpsa_free_sas_port(hpsa_sas_port);
9760 free_sas_node:
9761 	hpsa_free_sas_node(hpsa_sas_node);
9762 
9763 	return rc;
9764 }
9765 
9766 static void hpsa_delete_sas_host(struct ctlr_info *h)
9767 {
9768 	hpsa_free_sas_node(h->sas_host);
9769 }
9770 
9771 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9772 				struct hpsa_scsi_dev_t *device)
9773 {
9774 	int rc;
9775 	struct hpsa_sas_port *hpsa_sas_port;
9776 	struct sas_rphy *rphy;
9777 
9778 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9779 	if (!hpsa_sas_port)
9780 		return -ENOMEM;
9781 
9782 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9783 	if (!rphy) {
9784 		rc = -ENODEV;
9785 		goto free_sas_port;
9786 	}
9787 
9788 	hpsa_sas_port->rphy = rphy;
9789 	device->sas_port = hpsa_sas_port;
9790 
9791 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9792 	if (rc)
9793 		goto free_sas_port;
9794 
9795 	return 0;
9796 
9797 free_sas_port:
9798 	hpsa_free_sas_port(hpsa_sas_port);
9799 	device->sas_port = NULL;
9800 
9801 	return rc;
9802 }
9803 
9804 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9805 {
9806 	if (device->sas_port) {
9807 		hpsa_free_sas_port(device->sas_port);
9808 		device->sas_port = NULL;
9809 	}
9810 }
9811 
9812 static int
9813 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9814 {
9815 	return 0;
9816 }
9817 
9818 static int
9819 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9820 {
9821 	struct Scsi_Host *shost = phy_to_shost(rphy);
9822 	struct ctlr_info *h;
9823 	struct hpsa_scsi_dev_t *sd;
9824 
9825 	if (!shost)
9826 		return -ENXIO;
9827 
9828 	h = shost_to_hba(shost);
9829 
9830 	if (!h)
9831 		return -ENXIO;
9832 
9833 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9834 	if (!sd)
9835 		return -ENXIO;
9836 
9837 	*identifier = sd->eli;
9838 
9839 	return 0;
9840 }
9841 
9842 static int
9843 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9844 {
9845 	return -ENXIO;
9846 }
9847 
9848 static int
9849 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9850 {
9851 	return 0;
9852 }
9853 
9854 static int
9855 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9856 {
9857 	return 0;
9858 }
9859 
9860 static int
9861 hpsa_sas_phy_setup(struct sas_phy *phy)
9862 {
9863 	return 0;
9864 }
9865 
9866 static void
9867 hpsa_sas_phy_release(struct sas_phy *phy)
9868 {
9869 }
9870 
9871 static int
9872 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9873 {
9874 	return -EINVAL;
9875 }
9876 
9877 static struct sas_function_template hpsa_sas_transport_functions = {
9878 	.get_linkerrors = hpsa_sas_get_linkerrors,
9879 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9880 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9881 	.phy_reset = hpsa_sas_phy_reset,
9882 	.phy_enable = hpsa_sas_phy_enable,
9883 	.phy_setup = hpsa_sas_phy_setup,
9884 	.phy_release = hpsa_sas_phy_release,
9885 	.set_phy_speed = hpsa_sas_phy_speed,
9886 };
9887 
9888 /*
9889  *  This is it.  Register the PCI driver information for the cards we control
9890  *  the OS will call our registered routines when it finds one of our cards.
9891  */
9892 static int __init hpsa_init(void)
9893 {
9894 	int rc;
9895 
9896 	hpsa_sas_transport_template =
9897 		sas_attach_transport(&hpsa_sas_transport_functions);
9898 	if (!hpsa_sas_transport_template)
9899 		return -ENODEV;
9900 
9901 	rc = pci_register_driver(&hpsa_pci_driver);
9902 
9903 	if (rc)
9904 		sas_release_transport(hpsa_sas_transport_template);
9905 
9906 	return rc;
9907 }
9908 
9909 static void __exit hpsa_cleanup(void)
9910 {
9911 	pci_unregister_driver(&hpsa_pci_driver);
9912 	sas_release_transport(hpsa_sas_transport_template);
9913 }
9914 
9915 static void __attribute__((unused)) verify_offsets(void)
9916 {
9917 #define VERIFY_OFFSET(member, offset) \
9918 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9919 
9920 	VERIFY_OFFSET(structure_size, 0);
9921 	VERIFY_OFFSET(volume_blk_size, 4);
9922 	VERIFY_OFFSET(volume_blk_cnt, 8);
9923 	VERIFY_OFFSET(phys_blk_shift, 16);
9924 	VERIFY_OFFSET(parity_rotation_shift, 17);
9925 	VERIFY_OFFSET(strip_size, 18);
9926 	VERIFY_OFFSET(disk_starting_blk, 20);
9927 	VERIFY_OFFSET(disk_blk_cnt, 28);
9928 	VERIFY_OFFSET(data_disks_per_row, 36);
9929 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9930 	VERIFY_OFFSET(row_cnt, 40);
9931 	VERIFY_OFFSET(layout_map_count, 42);
9932 	VERIFY_OFFSET(flags, 44);
9933 	VERIFY_OFFSET(dekindex, 46);
9934 	/* VERIFY_OFFSET(reserved, 48 */
9935 	VERIFY_OFFSET(data, 64);
9936 
9937 #undef VERIFY_OFFSET
9938 
9939 #define VERIFY_OFFSET(member, offset) \
9940 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9941 
9942 	VERIFY_OFFSET(IU_type, 0);
9943 	VERIFY_OFFSET(direction, 1);
9944 	VERIFY_OFFSET(reply_queue, 2);
9945 	/* VERIFY_OFFSET(reserved1, 3);  */
9946 	VERIFY_OFFSET(scsi_nexus, 4);
9947 	VERIFY_OFFSET(Tag, 8);
9948 	VERIFY_OFFSET(cdb, 16);
9949 	VERIFY_OFFSET(cciss_lun, 32);
9950 	VERIFY_OFFSET(data_len, 40);
9951 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9952 	VERIFY_OFFSET(sg_count, 45);
9953 	/* VERIFY_OFFSET(reserved3 */
9954 	VERIFY_OFFSET(err_ptr, 48);
9955 	VERIFY_OFFSET(err_len, 56);
9956 	/* VERIFY_OFFSET(reserved4  */
9957 	VERIFY_OFFSET(sg, 64);
9958 
9959 #undef VERIFY_OFFSET
9960 
9961 #define VERIFY_OFFSET(member, offset) \
9962 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9963 
9964 	VERIFY_OFFSET(dev_handle, 0x00);
9965 	VERIFY_OFFSET(reserved1, 0x02);
9966 	VERIFY_OFFSET(function, 0x03);
9967 	VERIFY_OFFSET(reserved2, 0x04);
9968 	VERIFY_OFFSET(err_info, 0x0C);
9969 	VERIFY_OFFSET(reserved3, 0x10);
9970 	VERIFY_OFFSET(err_info_len, 0x12);
9971 	VERIFY_OFFSET(reserved4, 0x13);
9972 	VERIFY_OFFSET(sgl_offset, 0x14);
9973 	VERIFY_OFFSET(reserved5, 0x15);
9974 	VERIFY_OFFSET(transfer_len, 0x1C);
9975 	VERIFY_OFFSET(reserved6, 0x20);
9976 	VERIFY_OFFSET(io_flags, 0x24);
9977 	VERIFY_OFFSET(reserved7, 0x26);
9978 	VERIFY_OFFSET(LUN, 0x34);
9979 	VERIFY_OFFSET(control, 0x3C);
9980 	VERIFY_OFFSET(CDB, 0x40);
9981 	VERIFY_OFFSET(reserved8, 0x50);
9982 	VERIFY_OFFSET(host_context_flags, 0x60);
9983 	VERIFY_OFFSET(timeout_sec, 0x62);
9984 	VERIFY_OFFSET(ReplyQueue, 0x64);
9985 	VERIFY_OFFSET(reserved9, 0x65);
9986 	VERIFY_OFFSET(tag, 0x68);
9987 	VERIFY_OFFSET(host_addr, 0x70);
9988 	VERIFY_OFFSET(CISS_LUN, 0x78);
9989 	VERIFY_OFFSET(SG, 0x78 + 8);
9990 #undef VERIFY_OFFSET
9991 }
9992 
9993 module_init(hpsa_init);
9994 module_exit(hpsa_cleanup);
9995